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Abstract

For the perimeter length Ln and the area An of the convex hull of the first n steps

of a planar random walk, this thesis study n→ ∞ mean and variance asymptotics

and establish distributional limits. The results apply to random walks both with

drift (the mean of random walk increments) and with no drift under mild moments

assumptions on the increments.

Assuming increments of the random walk have finite second moment and non-

zero mean, Snyder and Steele showed that n−1Ln converges almost surely to a

deterministic limit, and proved an upper bound on the variance Var[Ln] = O(n).

We show that n−1Var[Ln] converges and give a simple expression for the limit,

which is non-zero for walks outside a certain degenerate class. This answers a

question of Snyder and Steele. Furthermore, we prove a central limit theorem for

Ln in the non-degenerate case.

Then we focus on the perimeter length with no drift and area with both drift

and zero-drift cases. These results complement and contrast with previous work

and establish non-Gaussian distributional limits. We deduce these results from

weak convergence statements for the convex hulls of random walks to scaling limits

defined in terms of convex hulls of certain Brownian motions. We give bounds that

confirm that the limiting variances in our results are non-zero.
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Chapter 1

Introduction

1.1 Background on Random Walk

Let Z1, Z2, . . . be independent identically distributed (i.i.d.) random variables

taking values in Rd and let Sn =
∑n

i=1 Zi. Sn is a random walk [30, p. 88].

Random walk theory is a classical and well-studied topic in probability the-

ory. In 1905, Albert Einstein studied the Brownian motion in his paper “On the

Movement of Small Particles Suspended in a Stationary Liquid Demanded by the

Molecular-Kinetic Theory of Heat”. Brownian motion is the random motion of

particles in a fluid which is found by the botanist Robert Brown in 1827 [32, Sec.

2.1]. He noted that the pollen grains in water kept moved through randomly. Ein-

stein explained in details how the motion that Brown had observed was a result

of the pollen being moved by individual water molecules.

Scientists then gave the mathematical formalisation for the Brownian motion

and its generalisation: random walk. The term random walk was first used by

Karl Pearson in 1905. In a letter to Nature, he gave a simple model to describe a

mosquito infestation in a forest. At each time step, a single mosquito moves a fixed

length in a randomly chosen direction. Pearson wanted to know the distribution of

the mosquitoes after many steps had been taken. The letter was answered by Lord

Rayleigh, who had already solved a more general form of this problem in 1880, in

the context of sound waves in heterogeneous materials. Modelling a sound wave

travelling through the material can be thought of as summing up a sequence of

random wave-vectors of constant amplitude but random phase since sound waves

1



Chapter 1 2

in the material have roughly constant wavelength, but their directions are altered

at scattering sites within the material.

There are some classical results we need to bear in mind when we study random

walks. First we need to introduce the concepts of recurrence and transience. A

random walk Sn taking values in Rd is called point-recurrent if

P(Sn = 0 infinitely often) = 1

and point-transient if

P(Sn = 0 infinitely often) = 0.

If the random walk is not discrete then these definitions are not very useful. Instead

we say that the random walk is neighbourhood-recurrent if for some ε > 0,

P(|Sn| < ε infinitely often) = 1

and neighbourhood-transient if

P(|Sn| < ε infinitely often) = 0.

In the discrete case, for a simple random walk we have the Pólya’s theorem [48].

A random walk Sn =
∑n

i=1 Zi on Zd is simple if for any i ∈ N,

P(Zi = e) =

 (2d)−1 if e ∈ Zd and ∥e∥ = 1,

0 otherwise.

Theorem 1.1 (Pólya). A simple random walk Sn =
∑n

i=1 Zi in Zd is recurrent

for d = 1 or d = 2 and transient for d ≥ 3.

This theorem was generalised by Chung and Fuchs [15] in 1951.

Theorem 1.2 (Chung–Fuchs). Let Sn be a random walk in Rd. Then,

(i) If d = 1 and n−1Sn → 0 in probability, then Sn is neighbourhood-recurrent.

(ii) If d = 2 and n−1/2Sn converges in distribution to a centred normal distribu-

tion, then Sn is neighbourhood-recurrent.

(iii) If d ≥ 3 and the random walk is not contained in a lower-dimensional sub-

space, then it is neighbourhood-transient.
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1.2 Background on geometric probability

A central theme of classical geometric probability or stochastic geometry concerns

the study of the properties of random point sets in Euclidean space and associated

structures. For example, a large literature is devoted to study of the lengths of

graphs on random vertex sets in Euclidean space Rd, d ≥ 2. The interests are

primarily in the lengths of those graphs representing the solutions to problems in

Euclidean combinatorial optimization (see [60] or [67]). In the classical setting,

the random point sets are generated by i.i.d. random variables. Some typical

problems involve the construction of the shortest possible network of some kind:

Let X0, X1, . . . , Xn be i.i.d. random points with common distribution on Rd

and V = {Xi}ni=0.

(i) Travelling salesman problem. Find the length of shortest closed path travers-

ing each vertex in V exactly once.

(ii) Minimal spanning tree. Find the minimal total edge length of a spanning

tree through V .

(iii) Minimal Euclidean matching. Find the minimal total edge length of a Eu-

clidean matching of points in V .

Many of the questions of geometric probability or stochastic geometry are

equally valid for point sets generated by random walk trajectories.

1.3 Random convex hulls

We first define the convex hull here. A set C in Rd is convex if it has the following

property [29, p. 42]:

(1− λ)x+ λy ∈ C for any x, y ∈ C, 0 ≤ λ ≤ 1.

Given a set A in Rd, its convex hull is the intersection of all convex sets in Rd which

contain A. Since the intersection of convex sets is always convex, the convex hull

of A is convex and it is the smallest convex set in Rd with respect to set inclusion,

which contains A.
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One of the motivations to study the convex hulls is to find the extreme values

in the random points. For the 1-dimensional case, the extreme values are just the

maximum and minimum values. For higher dimensional cases, the extreme values

could be determined by the convex hulls.

However, the extreme values have different meanings in these two different

main settings of classical stochastic geometry. For the setting of i.i.d. random

points, one important concern is the outlier detection in random sample. For the

setting of trajectories of stochastic processes, extremes are important for study of

record values. It gives two related but different streams of research, with different

underlying probabilistic models and different motivating questions, though gener-

ally the motivations are all comes from multidimensional theory of extremes. See

for example [4], [5], [6] and [45].

1.3.1 i.i.d. random points

Convex hulls of iid. random points, also known as random polytopes, were first

studied by Geffroy [24] (1961), Rényi and Sulanke [50] (1963), and Efron [18]

(1965). In the case where the points are normally distributed, the resulting con-

vex hulls are known as Gaussian polytopes. See Reitzner [49, Random polytopes,

pp. 45-76] (2010) and Hug [31] (2013) for recent surveys.

Motivation arises in statistics (multivariate extremes) and convex geometry

(approximation of convex sets), and there are connection to the isotropic constant

in functional analysis: see Reitzner [49]. He also listed some other applications

including to the analysis of algorithms and optimization.

For the multivariate extremes, let X0, X1, . . . , Xn be the iid. random points

with common distribution on Rd and V = {Xi}ni=0. In the case of d = 1, iid.

points extremes are used in outlier detection in statistics. In the case of d ≥ 2,

Green [28] describes the peeling algorithm for detection of multivariate outliers via

the iterated removal of points on the boundary of the convex hulls.

For the approximation of convex sets, Reitzner [49] insulates the algorithms to

efficiently compute convex hull for large point set in Rd.
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1.3.2 Trajectories of stochastic process

Before the study of random polytopes, Lévy [40] had considered the convex hull

of planar Brownian motion. The study of convex hull of random walk goes back

to Spitzer and Widom [58]. Generally, the convex hull of a stochastic process is

an interesting geometrical object, related to extremes of the stochastic processes,

giving a multivariate analogue of record values.

In one dimension, a value of a process is a record value if it is either less than

all previous values (a lower record) or greater than all previous values (an upper

record). In higher dimensions, a natural definition of “record” is then a point that

lies outside the convex hull of all previous values.

More recent work on convex hull of Brownian motion includes Burdzy [11]

(1985), Cranston, Hsu and March [13] (1989), Eldan [20] (2014), Evans [21] (1985),

Pitman and Ross [47] (2012).

For general stochastic processes, convex hulls and related convex minorants or

majorants, are studied by Bass [8] (1982) and Sinai [55] (1998).

1.4 Applications for convex hulls of random

walks

In recent studies of random walks, attention has focussed on various geometrical

aspects of random walk trajectories. Many of the questions of stochastic geometry,

traditionally concerned with functionals of independent random points, are also of

interest for point sets generated by random walks.

Study of the convex hull of planar random walk goes back to Spitzer and

Widom [58] and the continuum analogue, convex hull of planar Brownian motion,

to Lévy [40, §52.6, pp. 254–256]; both have received renewed interest recently, in

part motivated by applications arising for example in modelling the ‘home range’

of animals. Random walks have been extensively used to model the movement

of animals; Karl Pearson’s original motivation for the random walk problem orig-

inated with modelling the migration of animal species such as mosquitoes, and

subsequently random walks have been used to model the locomotion of microbes:

see [16,56] for surveys. If the trajectory of the random walker represents the loca-
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tions visited by a roaming animal, then the convex hull is a natural estimate of the

‘home range’ of the animal [65,66]. Natural properties of interest are the perimeter

length and area of the convex hull. See [42] for a recent survey of motivation and

previous work. The method of Chapter 3 in part relies on an analysis of scaling

limits, and thus links the discrete and continuum settings.

1.5 Introduction of the model

On each unsteady step, a drunken gardener deposits one of n seeds. Once the

flowers have bloomed, what is the minimum length of fencing required to enclose

the garden?

Let Z1, Z2, . . . be a sequence of independent, identically distributed (i.i.d.)

random vectors on R2. Write 0 for the origin in R2. Define the random walk

(Sn;n ∈ Z+) by S0 := 0 and for n ≥ 1, Sn :=
∑n

i=1 Zi. Let hull(S0, . . . , Sn) be the

convex hull of positions of the walk up to and including the nth step, which is the

smallest convex set that contains S0, S1 . . . , Sn. Let Ln denote the length of the

perimeter of hull(S0, . . . , Sn) and An be the area of the convex hull. (See Figure

1.1.)

We will impose a moments condition of the following form:

(Mp) Suppose that E [∥Z1∥p] <∞.

For almost everything that follows, we will assume that at least the p = 1 case

of (Mp) holds, and frequently we will assume the p = 2 case. For several of our

results we assume that (Mp) holds for some p > 2. In any case, we will be explicit

about which case we assume at any particular point.

Given that (Mp) holds for some p ≥ 1, then µ := EZ1 ∈ R2, the mean drift

vector of the walk, is well defined. If (Mp) holds for some p ≥ 2, then Σ :=

E [(Z1 − µ)(Z1 − µ)⊤], the covariance matrix associated with Z, is well defined; Σ

is positive semidefinite and symmetric. We write σ2 := trΣ = E [∥Z1 −µ∥2]. Here
and elsewhere Z1 and µ are viewed as column vectors, and ∥•∥ is the Euclidean

norm. We also introduce the decomposition σ2 = σ2
µ + σ2

µ⊥
with

σ2
µ := E

[
((Z1 − µ) · µ̂)2

]
= E [(Z1 · µ̂)2]− ∥µ∥2 ∈ R+.
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Figure 1.1: Simulated path of a zero-drift random walk and its convex hull.

Here and elsewhere, ‘·’ denotes the scalar product, µ̂ := ∥µ∥−1µ for µ ̸= 0, and

R+ := [0,∞).

0 50 100 150 200 250

−
20

−
10

0
10

20

Figure 1.2: Example with mean drift E [Z1] of magnitude ∥µ∥ = 1/4 and n = 103

steps.

Convex hulls of random points have received much attention over the last sev-

eral decades: see [42] for an extensive survey, including more than 150 bibliographic
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references, and sources of motivation more serious than our drunken gardener, such

as modelling the ‘home-range’ of animal populations. An important tool in the

study of random convex hulls is provided by a result of Cauchy in classical convex

geometry. Spitzer and Widom [58], using Cauchy’s formula, and later Baxter [9],

using a combinatorial argument, showed that

E [Ln] = 2
n∑

i=1

1

i
E ∥Si∥. (1.1)

Note that E [Ln] thus scales like n in the case where the one-step mean drift vector

E [Z1] ̸= 0 but like n1/2 in the case where E [Z1] = 0 (provided E [∥Z1∥2] < ∞).

The Spitzer–Widdom–Baxter result, in common with much of the literature, is

concerned with first-order properties of Ln: see [42] for a summary of results in

this direction for various random convex hulls, with a specific focus on (driftless)

planar Brownian motion.

Much less is known about higher-order properties of Ln. There is a clear

distinction between the zero drift case (E [Z1] = 0) and the non-zero drift case

(∥E [Z1]∥ > 0). For example, denote rn := infx∈∂hull(S0,...,Sn) ∥x∥. Note that rn is

non decreasing in n, because S0 = 0 ∈ hull(S0, . . . , Sn) ⊆ hull(S0, . . . , Sn+1). We

investigated the asymptotic behaviour of rn in the following two different cases.

Proposition 1.3. (i) Suppose E [∥Z1∥2] < ∞ and E [Z1] = 0. Then

limn→∞ rn = ∞ a.s.

(ii) Suppose E ∥Z1∥ <∞ and E [Z1] ̸= 0. Then limn→∞ rn <∞ a.s.

Proof. (i) In the first case, the random walk (Sn;n ∈ Z+) is recurrent (see

e.g. [17]). There exists h ∈ R+, depending on the distributioon of Z1, such

that Sn will visit any ball of radius at least h infinitely often (e.g., in the

case of simple symmetric random walk on Z2, it suffices to take h = 1).

Let r > 0. Then, Sn will visit B((r + h)y;h) infinitely often for each y ∈
{(1, 1), (−1, 1), (1,−1), (−1,−1)}. Here the notation B(x; r) is a Euclidean

ball (a disk) with centre x ∈ R2 and radius r ∈ R+.

So there exists some random time N with N <∞ a.s. such that {S0, . . . , SN}
contains a point in each of these four balls, and so hull(S0, . . . , SN) contains

the square with these points as its corners, which in turn contains B(0; r).

So lim infn→∞ rn ≥ r for any r ∈ R+. So limn→∞ rn = ∞.
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(ii) In the second case, the random walk is transient (see [17]). Let Wi be a

wedge with apex Si with a angle θ < π (say θ = π/4) so that θ is bisected by

EZ1. By the Strong Law of Large Numbers, ∥Sn/n− EZ1∥ → 0 a.s. and so

Sn/n · EZ⊥
1 → 0 a.s., where EZ⊥

1 is the normal vector of EZ1. This implies

the number of points outside the wedge Wi is finite for any i ∈ Z+. We

take some Sk inside the wedge W0 and denote the set of finitely many points

outside Wk by {Sσj
: j = 1, 2, . . . ,m}. Note that S0 is outside Wk so the set

{Sσj
} is non-empty. Hence, there must be some Sσt ∈ {Sσj

} standing on the

boundary of the convex hull, Sσt ∈ ∂hull(S0, . . . , Sn) for all n ≥ σt. Then,

lim supn→∞ rn ≤ ∥Sσt∥ < ∞, which implies limn→∞ rn < ∞ a.s. since rn is

non decreasing.

Remark 1.1. The key property for (i) is not (compact set) recurrence, but angular

recurrence in the sense that Sn visits any cone with apex at 0 and non-zero angle

infinitely often. Thus the same distinction between (i) and (ii) persists for random

walks in Rd, d ≥ 3, with the notation extended in the natural way.

Because of this distinction, we always separate the arguments of Ln and An

into the cases of non-zero and zero drift.

To illustrate our model, here we give some pictures of simulation examples (see

Figure 1.3).

1.6 Outline of the thesis

Chapter 2 is some necessary mathematical prerequisites for our results. It includes

the concepts of the study objects and the essential tools used in the rest chapters.

In Chapter 3 we describe our scaling limit approach, and carry it through

after presenting the necessary preliminaries; the main new results of this chapter,

Theorems 3.6 and 3.8, give weak convergence statements for convex hulls of random

walks in the case of zero and non-zero drift, respectively. Armed with these weak

convergence results, we present asymptotics for expectations and variances of the

quantities Ln and An in Section 5.4, 6.4 and 6.5; the arguments in this section

rely in part on the scaling limit apparatus, and in part on direct random walk
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Figure 1.3: The number of steps n = 300 for all three examples. The top left:

Simple random walk on Z2. Zi takes (±1, 0), (0,±1) each with probability 1/4.

The top right: Zi takes (±1, 0), (0,±1), (−1, 1), (1,−1) each with probability 1/6.

The bottom left: Pearson–Rayleigh random walk. Zi takes value uniformly on the

unit circle.

computations. This section concludes with upper and lower bounds we found for

the limiting variances.

Snyder and Steele [57] showed that n−1Ln converges almost surely to a deter-

ministic limit, and proved an upper bound on the variance Var[Ln] = O(n) [57].

In Chapter 4, we give a different approach to prove their major results, which in-

cludes the fact that n−1E [Ln] converges (Proposition 4.7) and a simple expression

for the limit in Proposition 4.5. For the zero drift case, we give a new improved
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limit expression in Proposition 4.9.

Chapter 5 gives the convergence of n−1Var[Ln] in Proposition 5.4, which is first

proved by Snyder and Steele [57]. They also gave the law of large numbers for

Ln in the non-zero drift case. But we found it also valid for the zero drift case

(Proposition 5.5). Apart from that, the following of major results in this chapter

are new. For the non-zero drift case, we give a simple expression for the limit

of n−1Var[Ln] in Theorem 5.13 [63, Theorem 1.1], which is non-zero for walks

outside a certain degenerate class. This answers a question of Snyder and Steele.

It is also the only case where the perimeter length Ln is Gaussian. So we give a

central limit theorem for Ln in this case in Theorem 5.14 [63, Theorem 1.2]. For

the non-zero drift case, the limit expression of n−1Var[Ln] is given in Proposition

5.15 [64, Proposition 3.5] and its upper and lower bounds are given by Proposition

5.16 [64, Proposition 3.7].

Chapter 6 is an analogue of Chapter 5 for the area An. In Theorem 6.8 we

give the asymptotic for the expected area EAn with zero drift, which is a bit more

general than the form given by Barndorff–Nielsen and Baxter [3]. Apart from that,

the following of major results in this chapter are new. We give the asymptotic for

the expected area EAn with drift in Proposition 6.9 [64, Proposition 3.4] and also

the asymptotics for their variance VarAn in both zero drift (Proposition 6.12 [64,

Proposition 3.5]) and non-zero drift cases (Proposition 6.13 [64, Proposition 3.6]).

Meanwhile, some upper and lower variance bounds are provided by the last section

of this chapter.



Chapter 2

Mathematical prerequisites

2.1 Convergence of random variables

First of all, we define the different modes of convergence we will need in this thesis.

Let X and X1, X2, . . . be random variables in R.
Xn converges almost surely to X (Xn

a.s.−→ X) as n→ ∞ iff

P ({ω : Xn(ω) → X(ω) as n→ ∞}) = 1.

Xn converges in probability to X (Xn
p−→ X) as n→ ∞ iff, for every ε > 0,

P (|Xn −X| > ε) → 0 as n→ ∞.

The Lp norm of X is defined by

∥X∥p := (E |X|p)1/p .

Xn converges in Lp to X (Xn
Lp

−→ X) for p ≥ 1, as n→ ∞ iff

E (|Xn −X|p) → 0, i.e. ∥Xn −X∥p → 0, as n→ ∞.

Let FX(x) = P(X ≤ x), x ∈ R, be the distribution function of X and let

C(FX) = {x : FX(x) is continuous at x} be the continuity set of FX . Xn converges

in distribution to X (Xn
d−→ X) as n→ ∞ iff

FXn(x) → FX(x) as n→ ∞, for all x ∈ C(FX).

12
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The concept of convergence in distribution extends to random variables in Rd in

terms of the joint distribution functions P[X(1)
n ≤ x(1), . . . , X

(d)
n ≤ x(d)].

These modes of convergence have the following logical relationships.

Xn
Lp

−→ X =⇒

Xn
p−→ X =⇒ Xn

d−→ X

Xn
a.s.−→ X =⇒

Now we collect some basic results on deducing convergence lemmas and theo-

rems.

Lemma 2.1 (Dominated convergence [30] p.57). Let X,Y and X1, X2, . . . be ran-

dom variables. Suppose that |Xn| ≤ Y for all n, where EY <∞, and that Xn → X

a.s. as n→ ∞. Then

E |Xn −X| → 0 as n→ ∞,

In particular,

EXn → EX as n→ ∞.

Lemma 2.2 (Pratt’s lemma [30] p.221). Let X and X1, X2, . . . be random vari-

ables. Suppose that Xn → X almost surely as n→ ∞, and that

|Xn| ≤ Yn for all n, Yn → Y a.s., EYn → EY as n→ ∞.

Then

Xn → X in L1 and EXn → EX as n→ ∞.

Lemma 2.3 (The Borel–Cantelli lemma [30] p.96, 98). Let {An, n ≥ 1} be arbi-

trary events. Then

∞∑
n=1

P(An) <∞ =⇒ P(An i.o.) = 0.

Moreover, suppose that X1, X2, . . . are random variables. Then,

∞∑
n=1

P(|Xn| > ε) <∞ for any ε > 0 =⇒ Xn → 0 a.s. as n→ ∞.
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Lemma 2.4 (Slutsky’s theorem [30] p.249). Let X1, X2, . . . and Y1, Y2, . . . be se-

quences of random variables, Suppose that

Xn
d−→ X and Yn

p−→ a as n→ ∞,

where a is some constant. Then,

Xn + Yn
d−→ X + a and Xn · Yn

d−→ X · a.

Here we also introduce some useful concepts of uniform integrability.

A collection of random variables Xi, i ∈ I, is said to be uniformly integrable if

lim
M→∞

(
sup
i∈I

E (|Xi|1(|Xi| > M))

)
= 0.

Lemma 2.5. Let X and X1, X2, . . . be random variables. If Xn → X in probability

then the following are equivalent:

(i) {Xn}∞i=1 is uniformly integrable.

(ii) Xn → X in L1.

(iii) E |Xn| → E |X| <∞.

Lemma 2.6 (convergence of means [35] p.45). Let X,X1, X2, . . . be R+-valued

random variables with Xn
d−→ X. If {Xi}∞i=1 is uniformly integrable, then EXn →

EX as n→ ∞.

2.2 Martingales

A sequence {Xn}∞i=1 of random variables is {Fn}-adapted if Xn is Fn-measurable

for all n, which means for any k ∈ R, {ω : Xn(ω) ≤ k} ∈ Fn.

An integrable {Fn}-adapted sequence Xn is called a martingale if

E (Xn+1 | Fn) = Xn a.s. for all n ≥ 0.

It is called a submartingale if

E (Xn+1 | Fn) ≥ Xn a.s. for all n ≥ 0,
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and a supermartingale if

E (Xn+1 | Fn) ≤ Xn a.s. for all n ≥ 0.

An integrable, {Fn}-adapted sequence {Dn} is called a martingale difference se-

quence if

E (Dn+1 | Fn) = 0 for all n ≥ 0.

Then, the sequence of Mn :=
∑n

k=1Dk is {Fn}-martingale since

E [Mn+1 −Mn | Fn] = E [Dn+1 | Fn] = 0,

which indicate

E [Mn+1 | Fn] =Mn.

Lemma 2.7 (Orthogonality of martingale differences [30] p.488). Let {Dn}∞n=0 be

a martingale difference sequence. Then E [DmDn] = 0 for m ̸= n. Hence,

Var

(
n∑

i=0

Di

)
=

n∑
i=0

Var(Di).

We use a standard martingale difference construction based on resampling.

Consider the functional on Rn, f : Rn → R. Let Y1, Y2, . . . , Yn be iid. random

variables and Wn = f(Y1, . . . , Yn). Let Y ′
1 , Y

′
2 , . . . , Y

′
n be independent copies of

Y1, Y2, . . . , Yn and

W (i)
n = f(Y1, . . . , Yi−1, Y

′
i , Yi+1, . . . , Yn).

Let Dn,i = E [Wn −W
(i)
n | Fi] where Fi = σ(Y1, . . . , Yi).

Lemma 2.8. Let n ∈ N. Then

(i) Wn − EWn =
∑n

i=1Dn,i;

(ii) Var(Wn) =
∑n

i=1 E [D2
n,i] whenever the latter sum is finite.

Proof. The idea is well known. Since W
(i)
n is independent of Yi,

E [W (i)
n | Fi] = E [W (i)

n | Fi−1] = E [Wn | Fi−1].

So,

Dn,i = E [Wn | Fi]− E [Wn | Fi−1].
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Hence Dn,i is martingale differences, since

E [Dn,i | Fi−1] = E [Wn | Fi−1]− E [Wn | Fi−1] = 0

and
n∑

i=1

Dn,i = E [Wn | Fn]− E [Wn | F0] = Wn − EWn.

So,

E

( n∑
i=1

Dn,i

)2
 = Var(Wn).

But by orthogonality of martingale differences, (Lemma 2.7),

Var(Wn) =
n∑

i=1

E [D2
n,i].

Note that by the conditional Jensen’s inequality (E ([ ξ | F ]))2 ≤ E [ ξ2 | F ], we

have

D2
n,i ≤ E

[(
Wn −W (i)

n

)2 | Fi

]
.

So from part (ii) of Lemma 2.8,

Var(Wn) ≤
n∑

i=1

E
[(
W (i)

n −Wn

)2]
.

This gives a upper bound for the variance of Wn, which is a factor of 2 larger than

the upper bound obtained from the Efron–Stein inequality (equation (2.3) in [57]):

Lemma 2.9.

Var(Wn) ≤
1

2

n∑
i=1

E
[(
W (i)

n −Wn

)2]
.

2.3 Reflection principle for Brownian motion

Lemma 2.10 (Reflection principle [44] p.44). If T is a stopping time and {w(t) :
t ≥ 0} is a standard 1-dimensional Brownian motion, then the process {w∗(t) :

t ≥ 0} called Brownian motion reflected at T and defined by

w∗(t) = w(t)1{t ≤ T}+ (2w(T )− w(t)) 1{t > T}

is also a standard Brownian motion.
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Corollary 2.11. Suppose r > 0 and {w(t) : t ≥ 0} is a standard 1-dimensional

Brownian motion. Then,

P
(

sup
0≤s≤t

w(s) > r

)
= 2P (w(t) > r) .

2.4 Useful inequalities

We collect some useful inequalities which is useful in the next chapters.

Lemma 2.12 (Markov’s inequality [30] p.120). Let X be a random variable. Sup-

pose that E |X|r <∞ for some r > 0, and let x > 0. Then,

P(|X| > x) ≤ E |X|r

xr
.

Lemma 2.13 (Chebyshev’s inequality [30] p.121). Let X be a random variable.

Suppose that VarX <∞. Then for x > 0,

P(|X − EX| > x) ≤ VarX
x2

.

Lemma 2.14 (The Cauchy–Schwarz inequality [30] p.130). Suppose that random

variables X and Y have finite variances. Then,

|EXY | ≤ E |XY | ≤ ∥X∥2∥Y ∥2 =
√
E (X2)E (Y 2).

The next result generalises the Cauchy–Schwarz inequality.

Lemma 2.15 (The Hölder inequality [30] p.129). Let X and Y be random vari-

ables. Suppose that p−1 + q−1 = 1, E |X|p <∞ and E |Y |q <∞, then

|EXY | ≤ E |XY | ≤ ∥X∥p∥Y ∥q = (EXp)1/p(EY q)1/q.

Lemma 2.16 (The Minkowski inequality [30] p.129). Let p ≥ 1. Suppose that X

and Y are random variables, such that E |X|p <∞ and E |Y |p <∞. Then,

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p.

This is the triangle inequality for the Lp norm.

Now we introduce some inequalities on martingales.
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Lemma 2.17 (Doob’s inequality [17] p.214). If Xn is a martingale, then for 1 <

p <∞,

E
[(

max
0≤m≤n

|Xm|
)p]

≤
(

p

p− 1

)p

E (|Xn|p).

Lemma 2.18 (Azuma–Hoeffding inequality [46] p.33). Let Dn,i (i = 1, . . . , n) be

a martingale difference sequence adapted to a filtration Fi, which means Dn,i is

Fi-measurable and E [Dn,i|Fi−1] = 0. Then, for any t > 0,

P

(∣∣∣ n∑
i=1

Dn,i

∣∣∣ > t

)
≤ 2 exp

(
− t2

2nd2∞

)
,

where d∞ is such that |Dn,i| ≤ d∞ a.s. for all n, i.

We also introduce some inequalities for sums of independent random variables.

Lemma 2.19 (Marcinkiewicz–Zygmund inequality [30] p.151). Let p ≥ 1. Suppose

that X,X1, X2, . . . , Xn are independent, identically distributed random variables

with mean 0 and E |X|p < ∞. Set Sn =
∑n

k=1Xk. Then there exists a constant

Bp depending only on p, such that

E |Sn|p ≤

BpnE |X|, if 1 ≤ p ≤ 2,

Bpn
p/2E |X|p/2, if p > 2.

Lemma 2.20 (Rosenthal’s inequality [30] p.151). Let p ≥ 1. Suppose that

X1, X2, . . . , Xn are independent random variables such that E|Xk|p < ∞ for all

k. Set Sn =
∑n

k=1Xk. Then,

E |Sn|p ≤ max

{
2p

n∑
k=1

E |Xk|p, 2p
2

(
n∑

k=1

E |Xk|

)p}
.

2.5 Useful theorems and lemmas

Lemma 2.21 (Fubini’s theorem [30] p.65). Let (Ω1,F1, P1) and (Ω2,F2, P2) be

probability spaces, and consider the product space (Ω1×Ω2,F1×F2, P ), where P =

P1 × P2 is the product measure. Suppose that X = (X1, X2) is a two-dimensional

random variable, and that g is F1 × F2-measurable, and (i) non-negative or (ii)

integrable. Then,

E g(X) =

∫
Ω

g(X) dP =

∫
Ω1

(∫
Ω2

g(X) dP2

)
dP1 =

∫
Ω2

(∫
Ω1

g(X) dP1

)
dP2.
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Lemma 2.22. Let {yn}∞n=1 be a sequence of real numbers and let y ∈ R. If yn → y

as n→ ∞, then n−1
∑n

i=1 yi → y as n→ ∞.

Proof. By assumption, for any ε > 0 there exists n0 ∈ N such that |yn− y| ≤ ε for

all n ≥ n0. Then,∣∣∣∣∣ 1n
n∑

i=1

yi − y

∣∣∣∣∣ =
∣∣∣∣∣1n

n∑
i=1

(yi − y)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n0∑
i=1

(yi − y)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=n0+1

(yi − y)

∣∣∣∣∣
≤ 1

n

n0∑
i=1

|yi − y|+ 1

n

n∑
i=n0+1

|yi − y|

≤ 1

n

n0∑
i=1

|yi − y|+ ε

≤ 2ε,

for all n big enough. Since ε > 0 was arbitrary, the result follows.

2.6 Multivariate normal distribution

Let Σ be a symmetric positive semi-definite (d × d) matrix. Then, there exists

an unique positive semi-definite symmetric matrix Σ1/2 such that Σ = Σ1/2Σ1/2

[41]. The matrix Σ1/2 can also be regarded as a linear transform of Rd given by

x 7→ Σ1/2x.

For a random variable Y , the notation Y ∼ N (0,Σ) means Y has d dimensional

normal distribution with mean 0 and covariance matrix Σ. In the degenerate case,

all entries of the covariance matrix is 0, Σ = 0, which means that Y = 0 almost

surely.

Lemma 2.23. Suppose X ∼ N (0, I) and let Y = Σ1/2X. Then Y ∼ N (0,Σ).

Lemma 2.24 (Multidimensional Central Limit Theorem [41] p.62). Suppose

{Zi}∞i=1 is a sequence of i.i.d. random variables on Rd. Sn =
∑n

i=1 Zi is a random

walk on Rd. If E (∥Z1∥2) <∞, EZ1 = 0 and E (Z1Z
⊤
1 ) = Σ, then

n−1/2Sn
d−→ N (0,Σ).
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2.7 Analytic and Geometric prerequisites

We recall a few basic facts from real analysis: [53] is an excellent general reference.

The Heine–Borel theorem states that a set in Rd is compact if and only if it

is closed and bounded [53, p. 40]. Compactness is preserved under continuous

mappings: if (X, ρX) is a compact metric space and (Y, ρY ) is a metric space, and

f : (X, ρX) → (Y, ρY ) is continuous, then the image f(X) is compact [53, p. 89];

moreover f is uniformly continuous on X [53, p. 91]. For any such uniformly

continuous f , there is a monotonic modulus of continuity µf : R+ → R+ such that

ρY (f(x1), f(x2)) ≤ µf (ρX(x1, x2)) for all x1, x2 ∈ X, and for which µf (ρ) ↓ 0 as

ρ ↓ 0 (see e.g. [35, p. 57]).

Let d be a positive integer. For T > 0, let C([0, T ];Rd) denote the class of

continuous functions from [0, T ] to Rd. Endow C([0, T ];Rd) with the supremum

metric

ρ∞(f, g) := sup
t∈[0,T ]

ρ(f(t), g(t)), for f, g ∈ C([0, T ];Rd).

Let C0([0, T ];Rd) denote those functions in C([0, T ];Rd) that map 0 to the origin

in Rd.

Usually, we work with T = 1, in which case we write simply

Cd := C([0, 1];Rd), and C0
d := {f ∈ Cd : f(0) = 0}.

For f ∈ C([0, T ];Rd) and t ∈ [0, T ], define f [0, t] := {f(s) : s ∈ [0, t]}, the
image of [0, t] under f . Note that, since [0, t] is compact and f is continuous,

the interval image f [0, t] is compact. We view elements f ∈ C([0, T ];Rd) as paths

indexed by time [0, T ], so that f [0, t] is the section of the path up to time t.

We need some notation and concepts from convex geometry: we found [29] to

be very useful, supplemented by [58] as a convenient reference for a little integral

geometry. Let d be a positive integer. Let ρ(x,y) = ∥x−y∥ denote the Euclidean

distance between x and y in Rd. For a set A ⊆ Rd, write ∂A for the boundary of A

(the intersection of the closure of A with the closure of Rd\A), and int(A) := A\∂A
for the interior of A. For A ⊆ Rd and a point x ∈ Rd, set ρ(x, A) := infy∈A ρ(x,y),

with the usual convention that inf ∅ = +∞. We write λd for Lebesgue measure on

Rd. Write Sd−1 := {u ∈ Rd : ∥u∥ = 1} for the unit sphere in Rd.
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Let Kd denote the collection of convex compact sets in Rd, and write

K0
d := {A ∈ Kd : 0 ∈ A}

for those sets in Kd that include the origin. The Hausdorff metric on K0
d will be

denoted

ρH(A,B) := max
{
sup
x∈B

ρ(x, A), sup
y∈A

ρ(y, B)
}
for A,B ∈ Kd.

Given A ∈ Kd, for r > 0 set

πr(A) := {x ∈ Rd : ρ(x, A) ≤ r},

the parallel body of A at distance r. Note that, two equivalent descriptions of ρH

(see e.g. Proposition 6.3 of [29]) are for A,B ∈ K0
d,

ρH(A,B) = inf {r ≥ 0 : A ⊆ πr(B) and B ⊆ πr(A)} ; and (2.1)

ρH(A,B) = sup
e∈Sd−1

|hA(e)− hB(e)| , (2.2)

where hA(x) := supy∈A(x · y) is the support function of A and x · y is the inner

product of x and y, i.e. (x1, y1) · (x2, y2) = x1x2 + y1y2.

2.8 Continuous mapping theorem and Donsker’s

Theorem

We consider random walks in Rd in this section. First we need to define the weak

convergence in Rd.

Suppose (Ω,F ,P) is a probability space and (M,ρ) is a metric space. For

n ≥ 1, suppose that

Xn, X : Ω −→M

are random variables taking values in M . If

E f(Xn) → E f(X) as n→ ∞,

for all bounded, continuous functional f :M −→ R, then we say that Xn converges

weakly to X and write Xn ⇒ X. The weak convergence generalises the concept of

convergence in distribution for random variables on Rd.
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Lemma 2.25 (continuous mapping theorem [35] p.41). Fix two metric spaces

(M1, ρ1) and (M2, ρ2). Let X,X1, X2, . . . be random variables taking values in

M1 with Xn ⇒ X. Suppose f is a mapping on (M1, ρ1) → (M2, ρ2), which is

continuous everywhere in M1 apart from possible on a set A ⊆ M1 with P(X ∈
A) = 0. Then, f(Xn) ⇒ f(X).

We generalise the definition of Zi and Sn a little in this section. Let {Zi}∞i=1 be

a i.i.d. random vectors on Rd and Sn =
∑n

i=1 Zi. For each n ∈ N and all t ∈ [0, 1],

define

Xn(t) := S⌊nt⌋ + (nt− ⌊nt⌋)
(
S⌊nt⌋+1 − S⌊nt⌋

)
= S⌊nt⌋ + (nt− ⌊nt⌋)Z⌊nt⌋+1.

Let b := (b(s))s∈[0,1] denote standard Brownian motion in Rd, started at b(0) = 0.

Lemma 2.26 (Donsker’s Theorem). Let d ∈ N. Suppose that E (∥Z1∥2) < ∞,

∥EZ1∥ = 0, and E [Z1Z
⊤
1 ] = Σ . Then, as n→ ∞,

n−1/2Xn ⇒ Σ1/2b,

in the sense of weak convergence on (C0
d , ρ∞).

Remark 2.1. Donsker’s theorem generalizes the multidimensional central limit the-

orem (Lemma 2.24) to a functional central limit theorem, because weak conver-

gence of paths implies convergence in distribution of the endpoints. Indeed, taking

t = 1 in Donsker’s Theorem, the marginal convergence gives

n−1/2Xn(1) = n−1/2Sn
d−→ Σ1/2b(1).

Here by Lemma 2.23, Σ1/2b(1) ∼ N (0,Σ) since b(1) ∼ N (0, I). Then we have

n−1/2Sn
d−→ N (0,Σ), which is Lemma 2.24.

2.9 Cauchy formula

For this section we take d = 2. We consider the A : K2 → R+ and L : K2 → R+

given by the area and the perimeter length of convex compact sets in the plane.

Formally, we may define

A(A) := λ2(A), and L(A) := lim
r↓0

(
λ2(πr(A))− λ2(A)

r

)
, for A ∈ K2. (2.3)
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The limit in (2.3) exists by the Steiner formula of integral geometry (see e.g. [54]),

which expresses λ2(πr(A)) as a quadratic polynomial in r whose coefficients are

given in terms of the intrinsic volumes of A:

λ2(πr(A)) = λ2(A) + rL(A) + πr2 1{A ̸= ∅}. (2.4)

In particular,

L(A) =

 H1(∂A) if int(A) ̸= ∅,

2H1(∂A) if int(A) = ∅,

where Hd is d-dimensional Hausdorff measure on Borel sets. We observe the

translation-invariance and scaling properties

L(x+ αA) = αL(A), and A(x+ αA) = α2A(A),

where for A ∈ K2, x+ αA = {x+ αy : y ∈ A} ∈ K2.

For A ∈ K2, Cauchy obtained the following formula:

L(A) =
∫ π

0

(
sup
y∈A

(y · eθ)− inf
y∈A

(y · eθ)
)
dθ. (2.5)

We will need the following consequence of (2.5).

Proposition 2.27. Let K = {z0, . . . , zn} be a finite point set in R2, and let

C = hull(K). Then

L(C) =
∫ π

0

(
max
0≤i≤n

(zi · eθ)− min
0≤i≤n

(zi · eθ)
)
dθ. (2.6)

In particular, for the case of our random walk, (2.6) says

Ln = L(hull(S0, . . . , Sn)) =

∫ π

0

(
max
0≤i≤n

(Si · eθ)− min
0≤i≤n

(Si · eθ)
)
dθ. (2.7)

An immediate but useful consequence of (2.7) is that

Ln+1 ≥ Ln, a.s. (2.8)

In the case where K is a finite point set, hull(K) is a convex polygon, the

boundary of which contains vertices V ⊆ K (extreme points of the convex hull)

and the line-segment edges connecting them; note that hull(K) = hull(V).
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Now, by convexity,

sup
y∈C

(y · eθ) = max
0≤i≤n

(zi · eθ) = sup
y∈V

(y · eθ),

and similarly for the infimum. So (2.5) does indeed imply (2.6). However, to

keep this presentation as self-contained as possible, we give a direct proof of (2.6)

without appealing to the more general result (2.5).

Proof of Proposition 2.27. The above discussion shows that it suffices to consider

the case where V = K in which all of the zi are on the boundary of the convex

hull. Without loss of generality, suppose that 0 ∈ C. Then we may rewrite (2.6)

as

L(C) =
∫ 2π

0

max
0≤i≤n

(zi · eθ) dθ.

Suppose also that zi = ∥zi∥eθi in polar coordinates, labelled so that 0 ≤ θ0 < θ1 <

· · · < θn < 2π. Thus starting from the rightmost point of ∂C on the horizontal axis

and traversing the boundary anticlockwise, one visits the vertices z0, z1, . . . , zn in

order.

O

z0
zn+1

z1

ẑ1

yn+1

ẑn+1

z2
ẑ2

z3

z4

z5

zn

zn−1

zn−2

ẑ3

ẑ4

ẑ5

ẑn−1

ẑn

y2

y3

y4

y5

Figure 2.1: Proof of Proposition 2.27

Let zn+1 := z0. Draw the perpendicular line of zk−zk−1 passing through point
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0 and denote the foot as yk. For 1 ≤ k ≤ n+ 1, let

ẑk :=


yk, if yk ∈ line segment zk−1zk

zk, if yk ∈ extended line of −−−−→zk−1zk

zk−1, if yk ∈ extended line of −−−−→zkzk−1

and let ẑ0 := ẑn+1. Notice that ẑ1, . . . , ẑn+1 are ordered in the same way as

z0, . . . , zn (see Figure 2.1). Therefore,

∂C =
n∪

k=0

[(ẑk+1 − zk) ∪ (zk − ẑk)] .

Write ẑi = ∥ẑi∥eθ̂i for 0 ≤ i ≤ n+ 1 in the polar coordinates, we have∫ 2π

0

max
0≤i≤n

(zi · eθ) dθ =
n∑

k=0

∫ θ̂k+1

θ̂k

zk · eθ dθ.

Consider
∫ θ̂k+1

θ̂k
zk · eθ dθ. Let zk := (α1, β1), zk+1 := (α2, β2) and zk−1 := (α0, β0).

Without loss of generality, we can set β1 = 0 and α1 > 0. Then we have β2 ≥ 0,

β0 ≤ 0, 0 ≤ θ̂k+1 ≤ π/2 and −π/2 ≤ θ̂k ≤ 0. So,∫ θ̂k+1

θ̂k

zk · eθ dθ =
∫ θ̂k+1

θ̂k

(α1, 0) · (cos θ, sin θ) dθ

=α1(sin θ̂k+1 − sin θ̂k)

=α1

(
∥ẑk+1 − zk∥

α1

− −∥zk − ẑk∥
α1

)
=∥ẑk+1 − zk∥+ ∥zk − ẑk∥.

Hence,∫ 2π

0

max
0≤i≤n

(zi·eθ) dθ =
n∑

k=0

∫ θ̂k+1

θ̂k

zk·eθ dθ =
n∑

k=0

(∥ẑk+1 − zk∥+ ∥zk − ẑk∥) = L(C).
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Scaling limits for convex hulls

3.1 Overview

For some of the results that follow, scaling limit ideas are useful. Recall that

Sn =
∑n

k=1 Zk is the location of our random walk in R2 after n steps. Write

Sn := {S0, S1, . . . , Sn}. Our strategy to study properties of the random convex set

hullSn (such as Ln or An) is to seek a weak limit for a suitable scaling of hullSn,

which we must hope to be the convex hull of some scaling limit representing the

walk Sn.

In the case of zero drift (µ = 0) a candidate scaling limit for the walk is readily

identified in terms of planar Brownian motion. For the case µ ̸= 0, the ‘usual’

approach of centering and then scaling the walk (to again obtain planar Brownian

motion) is not useful in our context, as this transformation does not act on the

convex hull in any sensible way. A better idea is to scale space differently in the

direction of µ and in the orthogonal direction.

In other words, in either case we consider ϕn(Sn) for some affine continuous

scaling function ϕn : R2 → R2. The convex hull is preserved under affine transfor-

mations, so

ϕn(hullSn) = hullϕn(Sn),

the convex hull of a random set which will have a weak limit. We will then be able

to deduce scaling limits for quantities Ln and An provided, first, that we work in

suitable spaces on which our functionals of interest enjoy continuity, so that we

can appeal to the continuous mapping theorem for weak limits, and, second, that

26
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ϕn acts on length and area by simple scaling. The usual n−1/2 scaling when µ = 0

is fine; for µ ̸= 0 we scale space in one coordinate by n−1 and in the other by n−1/2,

which acts nicely on area, but not length. Thus these methods work exactly in

the three cases corresponding to (6.8).

In view of the scaling limits that we expect, it is natural to work not with point

sets like Sn, but with continuous paths ; instead of Sn we consider the interpolating

path constructed as follows. For each n ∈ N and all t ∈ [0, 1], define

Xn(t) := S⌊nt⌋ + (nt− ⌊nt⌋)
(
S⌊nt⌋+1 − S⌊nt⌋

)
= S⌊nt⌋ + (nt− ⌊nt⌋)Z⌊nt⌋+1.

Note that Xn(0) = S0 and Xn(1) = Sn. Given n, we are interested in the convex

hull of the image in R2 of the interval [0, 1] under the continuous function Xn. Our

scaling limits will be of the same form.

3.2 Convex hulls of paths

In this section we study some basic properties of the map from a continuous path

to its convex hull. Let f ∈ C([0, T ],Rd). For any t ∈ [0, T ], f [0, t] is compact, and

so Carathéodory’s theorem for convex hulls (see Corollary 3.1 of [29, p. 44]) shows

that hull(f [0, t]) is compact. So hull(f [0, t]) ∈ Kd is convex, bounded, and closed;

in particular, it is a Borel set.

For reasons that we shall see, it mostly suffices to work with paths parametrized

over the interval [0, 1]. For f ∈ Cd, define

H(f) := hull (f [0, 1]) .

First we prove continuity of the map f 7→ H(f).

Lemma 3.1. For any f, g ∈ C0
d, we have

ρH(H(f), H(g)) ≤ ρ∞(f, g). (3.1)

Hence the function H : (C0
d , ρ∞) → (K0

d, ρH) is continuous.

Proof. Let f, g ∈ C0
d . Then H(f) and H(g) are non-empty, as they both contain

f(0) = g(0) = 0. Consider x ∈ H(f). Since the convex hull of a set is the set of
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all convex combinations of points of the set (see Lemma 3.1 of [29, p. 42]), there

exist a finite positive integer n, weights λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1, and

t1, . . . , tn ∈ [0, 1] for which x =
∑n

i=1 λif(ti). Then, taking y =
∑n

i=1 λig(ti), we

have that y ∈ H(g) and, by the triangle inequality,

ρ(x,y) =
n∑

i=1

λiρ(f(ti), g(ti)) ≤ ρ∞(f, g).

Thus, writing r = ρ∞(f, g), every x ∈ H(f) has x ∈ πr(H(g)), so H(f) ⊆
πr(H(g)). The symmetric argument gives H(g) ⊆ πr(H(f)). Thus, by (2.1),

we obtain (3.1).

Given f ∈ Cd, let E(f) := ext(H(f)), the extreme points of the convex hull

(see [29, p. 75]). The set E(f) is the smallest set (by inclusion) that generatesH(f)

as its convex hull, i.e., for any A for which hull(A) = H(f), we have E(f) ⊆ A;

see Theorem 5.5 of [29, p. 75]. In particular, E(f) ⊆ f [0, 1].

Lemma 3.2. Let f ∈ Cd. Let q : Rd → R be continuous and convex. Then q

attains its supremum over H(f) at a point of f , i.e.,

sup
x∈H(f)

q(x) = max
t∈[0,1]

q(f(t)).

Proof. Theorem 5.6 of [29, p. 76] shows that any continuous convex function on

H(f) attains its maximum at a point of E(f). Hence, since E(f) ⊆ f [0, 1],

sup
x∈H(f)

q(x) = sup
x∈E(f)

q(x) ≤ sup
x∈f [0,1]

q(x).

On the other hand, f [0, 1] ⊆ H(f), so supx∈f [0,1] q(x) ≤ supx∈H(f) q(x). Hence

sup
x∈H(f)

q(x) = sup
x∈f [0,1]

q(x) = sup
t∈[0,1]

q(f(t)).

Since q ◦ f is the composition of two continuous functions, it is itself continuous,

and so the supremum is attained in the compact set [0, 1].

For A ∈ K0
d, the support function of A is hA : Rd → R+ defined by

hA(x) := sup
y∈A

(x · y).
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For A ∈ K0
2, Cauchy’s formula (2.5) states

L(A) =
∫
S1
hA(u)du =

∫ 2π

0

hA(eθ)dθ.

We end this section by showing that the map t 7→ hull(f [0, t]) on [0, T ] is

continuous if f is continuous on [0, T ], so that the continuous trajectory t 7→ f(t)

is accompanied by a continuous ‘trajectory’ of its convex hulls. This observation

was made by El Bachir [19, pp. 16–17]; we take a different route based on the path

space result Lemma 3.1. First we need a lemma.

Lemma 3.3. Let T > 0 and f ∈ C([0, T ];Rd). Then the map defined for t ∈ [0, T ]

by t 7→ gt, where gt : [0, 1] → Rd is given by gt(s) = f(ts), s ∈ [0, 1], is a continuous

function from ([0, T ], ρ) to (Cd, ρ∞).

Proof. First we fix t ∈ [0, T ] and show that s 7→ gt(s) is continuous, so that gt ∈ Cd
as claimed. Since f is continuous on the compact interval [0, T ], it is uniformly

continuous, and admits a monotone modulus of continuity µf . Hence

ρ(gt(s1), gt(s2)) = ρ(f(ts1), f(ts2)) ≤ µf (ρ(ts1, ts2)) = µf (tρ(s1, s2)),

which tends to 0 as ρ(s1, s2) → 0. Hence gt ∈ Cd.
It remains to show that t 7→ gt is continuous. But on Cd,

ρ∞(gt1 , gt2) = sup
s∈[0,1]

ρ(f(t1s), f(t2s))

≤ sup
s∈[0,1]

µf (ρ(t1s, t2s))

≤ µf (ρ(t1, t2)),

which tends to 0 as ρ(t1, t2) → 0, again using the uniform continuity of f .

Here is the path continuity result for convex hulls of continuous paths; cf [19,

p. 16–17].

Corollary 3.4. Let T > 0 and f ∈ C0([0, T ];Rd) with f(0) = 0. Then the map

defined for t ∈ [0, T ] by t 7→ hull(f [0, t]) is a continuous function from ([0, T ], ρ)

to (K0
d, ρH).
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Proof. By Lemma 3.3, t 7→ gt is continuous, where gt(s) = f(ts), s ∈ [0, 1].

Note that, since f(0) = 0, gt ∈ C0
d . But the sets f [0, t] and gt[0, 1] coincide,

so hull(f [0, t]) = H(gt), and, by Lemma 3.1, gt 7→ H(gt) is continuous. Thus

t 7→ H(gt) is the composition of two continuous functions, hence itself a continuous

function:
[0, T ] −→ C0

d −→ K0
d

t 7→ gt 7→ H(gt)

Recall definitions of the functionals for perimeter length L and area A in (2.3).

We give the following inequalities in the metric spaces.

Lemma 3.5. Suppose that A,B ∈ K0
2. Then

ρ(L(A),L(B)) ≤ 2πρH(A,B); (3.2)

ρ(A(A),A(B)) ≤ πρH(A,B)2 + (L(A) ∨ L(B))ρH(A,B). (3.3)

Hence, the functions L and A are both continuous from (K0
2, ρH) to (R+, ρ).

Proof. First consider L. By Cauchy’s formula,

|L(A)− L(B)| =
∣∣∣∣∫

S1
(hA(u)− hB(u)) du

∣∣∣∣
≤
∫
S1

sup
u∈S1

|hA(u)− hB(u)| du = 2πρH(A,B),

by the triangle inequality and then (2.2). This gives (3.2).

Now consider A. Set r = ρH(A,B). Then, by (2.1), A ⊆ πr(B). Hence

A(A) ≤ A(πr(B)) ≤ A(B) + rL(B) + πr2,

by (2.4). With the analogous argument starting from B ⊆ πr(A), we get (3.3).

3.3 Brownian convex hulls as scaling limits

Now we return to considering the random walk Sn =
∑n

k=1 Zk in R2. The two

different scalings outlined in Section 3.1, for the cases µ = 0 and µ ̸= 0, lead to

different scaling limits for the random walk. Both are associated with Brownian

motion.
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In the case µ = 0, the scaling limit is the usual planar Brownian motion, at least

when Σ = I, the identity matrix. Let b := (b(s))s∈[0,1] denote standard Brownian

motion in R2, started at b(0) = 0. For convenience we may assume b ∈ C0
2 (we

can work on a probability space for which continuity holds for all sample points,

rather than merely almost all). For t ∈ [0, 1], let

ht := hull b[0, t] ∈ K0
2 (3.4)

denote the convex hull of the Brownian path up to time t. By Corollary 3.4, t 7→ ht

is continuous. Much is known about the properties of ht: see e.g. [13, 19, 21, 36].

We also set

ℓt := L(ht), and at := A(ht), (3.5)

the perimeter length and area of the standard Brownian convex hull. By Lemma

3.5, the processes t 7→ ℓt and t 7→ at also have continuous sample paths.

We also need to work with the case of general covariances Σ; to do so we in-

troduce more notation and recall some facts about multivariate Gaussian random

vectors. For definiteness, we view vectors as Cartesian column vectors when re-

quired. Since Σ is positive semidefinite and symmetric, there is a (unique) positive

semidefinite symmetric matrix square-root Σ1/2 for which Σ = (Σ1/2)2. The map

x 7→ Σ1/2x associated with Σ1/2 is a linear transformation on R2 with Jacobian

detΣ1/2 =
√
detΣ; hence A(Σ1/2A) = A(A)

√
detΣ for any measurable A ⊆ R2.

If W ∼ N (0, I), then by Lemma 2.23, Σ1/2W ∼ N (0,Σ), a bivariate normal

distribution with mean 0 and covariance Σ; the notation permits Σ = 0, in which

case N (0, 0) stands for the degenerate normal distribution with point mass at

0. Similarly, given b a standard Brownian motion on R2, the diffusion Σ1/2b is

correlated planar Brownian motion with covariance matrix Σ. Recall that ‘⇒’

(see Section 2.8) indicates weak convergence.

Theorem 3.6. Suppose that E (∥Z1∥2) <∞ and µ = 0. Then, as n→ ∞,

n−1/2 hull{S0, S1, . . . , Sn} ⇒ Σ1/2h1,

in the sense of weak convergence on (K0
2, ρH).

Proof. Donsker’s theorem (see Lemma 2.26) implies that n−1/2Xn ⇒ Σ1/2b on

(C0
2 , ρ∞). Now, the point set Xn[0, 1] is the union of the line segments {Sk +
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θ(Sk+1 − Sk) : θ ∈ [0, 1]} over k = 0, 1, . . . , n − 1. Since the convex hull is

preserved under affine transformations,

H(n−1/2Xn) = n−1/2H(Xn) = n−1/2 hull{S0, S1, . . . , Sn}.

By Lemma 3.1, H is continuous, and so the continuous mapping theorem (see

Lemma 2.25) implies that

n−1/2 hull{S0, S1, . . . , Sn} ⇒ H(Σ1/2b) on (K0
2, ρH).

Finally, invariance of the convex hull under affine transformations shows

H(Σ1/2b) = Σ1/2H(b) = Σ1/2h1.

Theorem 3.6 together with the continuous mapping theorem and Lemma 3.5

implies the following distributional limit results in the case µ = 0. Recall that

‘
d−→’ (see Section 2.1) denotes convergence in distribution for R-valued random

variables.

Corollary 3.7. Suppose that E (∥Z1∥2) <∞ and µ = 0. Then, as n→ ∞,

n−1/2Ln
d−→ L(Σ1/2h1), and n−1An

d−→ A(Σ1/2h1) = a1
√
detΣ.

Remark 3.1. Recall that a1 = A(h1) is the area of the standard 2-dimensional

Brownian convex hull run for unit time. The distributional limits for n−1/2Ln and

n−1An in Corollary 3.7 are supported on R+ and, as we will show in Proposition

5.16 and Proposition 6.14 below, are non-degenerate if Σ is positive definite; hence

they are non-Gaussian excluding trivial cases.

In the case µ ̸= 0, the scaling limit can be viewed as a space-time trajectory of

one-dimensional Brownian motion. Let w := (w(s))s∈[0,1] denote standard Brow-

nian motion in R, started at w(0) = 0; similarly to above, we may take w ∈ C0
1 .

Define b̃ ∈ C0
2 in Cartesian coordinates via

b̃(s) = (s, w(s)), for s ∈ [0, 1];

thus b̃[0, 1] is the space-time diagram of one-dimensional Brownian motion run for

unit time. For t ∈ [0, 1], let h̃t := hull b̃[0, t] ∈ K0
2, and define ãt := A(h̃t). (Closely

related to h̃t is the greatest convex minorant of w over [0, t], which is of interest

in its own right, see e.g. [47] and references therein.)
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Figure 3.1: Simulated path of n = 1000 steps a random walk with drift µ = (1
2
, 1
4
)

and its convex hull (top left) and (not to the same scale) the image under ψµ
n

(bottom right).

Suppose µ ̸= 0 and σ2
µ⊥

∈ (0,∞). Given µ ∈ R2 \{0}, let µ̂⊥ be the unit vector

perpendicular to µ obtained by rotating µ̂ by π/2 anticlockwise. For n ∈ N, define
ψµ
n : R2 → R2 by the image of x ∈ R2 in Cartesian components:

ψµ
n(x) =

(
x · µ̂
n∥µ∥

,
x · µ̂⊥√
nσ2

µ⊥

)
.

In words, ψµ
n rotates R2, mapping µ̂ to the unit vector in the horizontal direction,

and then scales space with a horizontal shrinking factor ∥µ∥n and a vertical factor√
nσ2

µ⊥
; see Figure 3.1 for an illustration.

Theorem 3.8. Suppose that E (∥Z1∥2) < ∞, µ ̸= 0, and σ2
µ⊥

> 0. Then, as

n→ ∞,

ψµ
n(hull{S0, S1, . . . , Sn}) ⇒ h̃1,

in the sense of weak convergence on (K0
2, ρH).

Proof. Observe that µ̂ ·Sn is a random walk on R with one-step mean drift µ̂ ·µ =

∥µ∥ ∈ (0,∞), while µ̂⊥ · Sn is a walk with mean drift µ̂⊥ · µ = 0 and increment

variance

E
[
(µ̂⊥ · Z)2

]
= E

[
(µ̂⊥ · (Z − µ))2

]
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= E [∥Z − µ∥2]− E [(µ̂ · (Z − µ))2] = σ2 − σ2
µ

= σ2
µ⊥
.

According to the strong law of large numbers, for any ε > 0 there exists Nε ∈ N
a.s. such that |m−1µ̂ · Sm − ∥µ∥| < ε for m ≥ Nε. Now we have that

sup
Nε/n≤t≤1

∣∣∣∣ µ̂ · S⌊nt⌋

n
− t∥µ∥

∣∣∣∣ ≤ sup
Nε/n≤t≤1

(
⌊nt⌋
n

) ∣∣∣∣ µ̂ · S⌊nt⌋

⌊nt⌋
− ∥µ∥

∣∣∣∣
+ ∥µ∥ sup

0≤t≤1

∣∣∣∣⌊nt⌋n − t

∣∣∣∣
≤ sup

Nε/n≤t≤1

∣∣∣∣ µ̂ · S⌊nt⌋

⌊nt⌋
− ∥µ∥

∣∣∣∣+ ∥µ∥
n

≤ ε+
∥µ∥
n
.

On the other hand,

sup
0≤t≤Nε/n

∣∣∣∣ µ̂ · S⌊nt⌋

n
− t∥µ∥

∣∣∣∣ ≤ 1

n
max{µ̂ · S0, . . . , µ̂ · SNε}+

Nε∥µ∥
n

→ 0, a.s.,

since Nε <∞ a.s. Combining these last two displays and using the fact that ε > 0

was arbitrary, we see that

sup
0≤t≤1

∣∣n−1µ̂ · S⌊nt⌋ − t∥µ∥
∣∣→ 0, a.s. (the functional version of the strong law).

Similarly,

sup
0≤t≤1

∣∣n−1µ̂ · S⌊nt⌋+1 − t∥µ∥
∣∣→ 0, a.s. as well.

Since Xn(t) interpolates S⌊nt⌋ and S⌊nt⌋+1, it follows that

sup
0≤t≤1

∣∣n−1µ̂ ·Xn(t)− t∥µ∥
∣∣→ 0, a.s.

In other words, (n∥µ∥)−1Xn · µ̂ converges a.s. to the identity function t 7→ t on

[0, 1].

For the other component, Donsker’s theorem (Lemma 2.26) gives (nσ2
µ⊥
)−1/2Xn·

µ̂⊥ ⇒ w on (C0
1 , ρ∞). It follows that, as n → ∞, ψµ

n(Xn) ⇒ b̃, on (C0
2 , ρ∞). Hence

by Lemma 3.1 and since ψµ
n acts as an affine transformation on R2,

ψµ
n(H(Xn)) = H(ψµ

n(Xn)) ⇒ H(b̃),

on (K0
2, ρH), and the result follows.
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Theorem 3.8 with the continuous mapping theorem (Lemma 2.25), Lemma 3.5,

and the fact that A(ψµ
n(A)) = n−3/2∥µ∥−1(σ2

µ⊥
)−1/2A(A) for measurable A ⊆ R2,

implies the following distributional limit for An in the case µ ̸= 0.

Corollary 3.9. Suppose that E (∥Z1∥2) <∞, µ ̸= 0, and σ2
µ⊥
> 0. Then

n−3/2An
d−→ ∥µ∥(σ2

µ⊥
)1/2ã1, as n→ ∞.

Remarks 3.2. (i) Only the σ2
µ⊥
> 0 case is non-trivial, since σ2

µ⊥
= 0 if and only if

Z is parallel to ±µ a.s., in which case all the points S0, . . . , Sn are collinear and

An = 0 a.s. for all n.

(ii) The limit in Corollary 3.9 is non-negative and non-degenerate (see Proposition

6.14 below) and hence non-Gaussian.

The framework of this chapter shows that whenever a discrete-time process in

Rd converges weakly to a limit on the space of continuous paths, the corresponding

convex hulls converge. It would be of interest to extend the framework to admit

discontinuous limit processes, such as Lévy processes with jumps [36] that arise as

scaling limits of random walks whose increments have infinite variance.
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Spitzer–Widom formula for the

expected perimeter length and its

consequences

4.1 Overview

Our contribution in this Chapter is giving a new proof of the Spitzer–Widom

formula in Section 4.2 and giving the asymptotics for the expected perimeter length

in Section 4.3 by using that formula. Firstly, we show how to deduce the Spitzer–

Widom formula from the Cauchy formula.

The following theorem is Theorem 2 in [58].

Theorem 4.1 (Spitzer–Widom formula). Suppose that E ∥Z1∥ <∞. Then

ELn = 2
n∑

k=1

1

k
E ∥Sk∥.

The basis for our derivation of the Spitzer–Widdom formula is an analogous

result for one-dimensional random walk, stated in Lemma 4.3 below, which is

itself a consequence of the combinatorial result given in Lemma 4.2. Lemma 4.2

was stated by Kac [34, pp. 502–503 and Theorem 4.2 on p. 508] and attributed

to Hunt; the proof given is due to Dyson. Lemma 4.3 is variously attributed to

Chung, Hunt, Dyson and Kac; it is also related to results of Sparre Andersen [1]

and is a special case of what has become known as the Spitzer or Spitzer–Baxter

36
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identity [35, Ch. 9] for random walks, which is a more sophisticated result usually

deduced from Wiener–Hopf Theory.

4.2 Derivation of Spitzer–Widom formula

Let X1, X2, . . . be i.i.d. random variables. Let Tn =
∑n

i=1Xi and Mn =

max{0, T1, . . . , Tn}. Let σ : (1, 2, . . . , n) 7→ (σ1, σ2, . . . , σn) ∈ Zn
+ be a permuta-

tion on {1, . . . , n}. Then (πn; ◦) is a group consisting of σ under the composition

operation. For σ ∈ πn, let T
σ
n =

∑n
i=1Xσi

and Mσ
n = max{0, T σ

1 , . . . , T
σ
n }.

Lemma 4.2. ∑
σ∈πn

Mσ
n =

∑
σ∈πn

Xσ1

n∑
k=1

1{T σ
k > 0}.

Proof. Note that if T σ
k ≤ 0, then Mσ

k −Mσ
k−1 = 0. If T σ

k > 0, then

Mσ
k = max(T σ

1 , T
σ
2 , . . . , T

σ
k ) = Xσ1 +max(0, Xσ2 , Xσ2 +Xσ3 , . . . ,

k∑
l=2

Xσl
).

Combining these two cases, we get

Mσ
k −Mσ

k−1 =1{T σ
k > 0}

[
Xσ1 +max

(
0, Xσ2 , Xσ2 +Xσ3 , . . . ,

k∑
l=2

Xσl

)
−max

(
0, Xσ1 , Xσ1 +Xσ2 , . . . ,

k−1∑
j=1

Xσj

)]
.

Fix k ∈ {1, . . . , n}. Let G(ωk+1, . . . , ωn) be the subset of πn consisting of

permutations whose last (n− k) indices are ωk+1, . . . , ωn, where 1 ≤ ωi ≤ n. Then

πn is decomposed into n!
k!

disjoint subsets G(ωk+1, . . . , ωn) of size k!.

Denote

f(σ1, . . . , σk−1, σk) := max
(
0, Xσ1 , Xσ1 +Xσ2 , . . . ,

k−1∑
j=1

Xσj

)
.

Then,

Mσ
k −Mσ

k−1 = 1{T σ
k > 0} [Xσ1 + f(σ2, . . . , σk, σ1)− f(σ1, . . . , σk−1, σk)] .
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Summing both sides of the equation over {σ ∈ πn}, since∑
σ∈πn

=
∑

1≤σk+1,...,σn≤n

∑
σ∈G(σk+1,...,σn)

,

and ∑
σ∈G(σk+1,...,σn)

f(σ2, . . . , σk, σ1) =
∑

σ∈G(σk+1,...,σn)

f(σ1, . . . , σk−1, σk),

we get ∑
σ∈πn

(
Mσ

k −Mσ
k−1

)
=
∑
σ∈πn

Xσ1 1{T σ
k > 0}. (4.1)

The result is implied by summing both sides of the equation (4.1) from k = 1

to n. Note that Mσ
0 = max(0) = 0.

Here we use the notation x+ := x1{x > 0} and x− := −x1{x < 0} for x ∈ R.
So x = x+ − x− and |x| = x+ + x−.

The following result on the expected maximum of 1-dimensional random walk

is variously attributed to Chung, Hunt, Dyson and Kac. A combinatorial proof

similar to the one given here can be found on page 301-302 of [14].

Lemma 4.3. Suppose that E |Xk| <∞. Then,

EMn =
n∑

k=1

E (T+
k )

k
.

Proof. By Lemma 4.2, we have

EMn = EMσ
n =

1

n!

∑
σ∈πn

EMσ
n

=
1

n!

∑
σ∈πn

E
[
Xσ1

n∑
k=1

1{T σ
k > 0}

]
= E

[
X1

n∑
k=1

1{Tk > 0}
]
,

since the Xi are i.i.d., E (X1 1{Tk > 0}) = E (Xi 1{Tk > 0}) for any 1 ≤ i ≤ k.

Also, E (X1 1{Tk > 0}) = k−1E (Tk 1{Tk > 0}). Then,

E
[
X1

n∑
k=1

1{Tk > 0}
]
=

n∑
k=1

E
[
X1 1{Tk > 0}

]
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=
n∑

k=1

E
[Tk
k

1{Tk > 0}
]

=
n∑

k=1

E (T+
k )

k
.

Remark 4.1. Fluctuation theory for one-dimensional random walks concerns a se-

ries of important identities involving the distributions of Mn, Tn, and other quan-

tities associated with the random walk path. A cornerstone of the theory is the

celebrated double generating-function identity of Spitzer which states that

∞∑
n=0

tnE [eiuMn ] = exp

{
∞∑
k=1

tk

k
E [eiuT

+
k ]

}

for |t| < 1. Lemma 3.3 is a corollary to Spitzer’s identity, obtained on differen-

tiating with respect to u and setting u = 0. The proof of Spitzer’s identity may

be approached from an analytic perspective, using the Wiener–Hopf factorization

(see e.g. Resnick [51, Ch. 7]), or from a combinatorial one (see e.g. Karlin and Tay-

lor [37, Ch. 17]). These references discuss many other aspects of fluctuation theory,

as do Chung [14, §§8.4 & 8.5], Feller [23], Asmussen [2, Ch. VIII], and Takács [62].

In particular, Chung [14, pp. 301–302] gives a direct proof of Lemma 4.3 closely

related to the one presented here; essentially the same proof is in [2, p. 232].

Proof of the Spitzer–Widom formula.

Denote Mn(θ) := max0≤i≤n(Si · eθ) and mn(θ) := min0≤i≤n(Si · eθ). Note that

Mn(θ) ≥ 0 and mn(θ) ≤ 0 since 0 ∈ Hn.

Applying Fubini’s theorem (see Lemma 2.21) in Cauchy formula (2.7), we get

ELn =

∫ π

0

(EMn(θ)− Emn(θ)) dθ.

Observe that Sn · eθ is a one-dimensional random walk on R. Take Tk = Sk · eθ
in Lemma 4.3. Then,

EMn(θ) =
n∑

k=1

E [(Sk · eθ)+]
k

and Emn(θ) = −
n∑

k=1

E [(−Sk · eθ)+]
k

,

since mn(θ) = −max0≤i≤n(−Si · eθ). So, since x− = (−x)+,

ELn =

∫ π

0

n∑
k=1

1

k
E
[
(Sk · eθ)+ + (Sk · eθ)−

]
dθ
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=

∫ π

0

n∑
k=1

E |Sk · eθ|
k

dθ.

Then, by Fubini’s theorem,

ELn =
n∑

k=1

1

k

∫ π

0

E |Sk · eθ| dθ

=
n∑

k=1

1

k
E
∫ π

0

|Sk · eθ| dθ

=2
n∑

k=1

E ∥Sk∥
k

.

4.3 Asymptotics for the expected perimeter

length

To investigate the first-order properties of ELn, we suggested by the Spitzer-

Widom formula (1.1) that the first-order properties of E ∥Sn∥ need to be studied

first.

Lemma 4.4. If E ∥Z1∥ <∞, then n−1E ∥Sn∥ → ∥µ∥ as n→ ∞.

Proof. The strong law of large numbers for Sn says ∥Sn/n − EZ1∥ → 0 a.s. as

n→ ∞. Then by the triangle inequality,

∥Sn/n∥ = ∥Sn/n− EZ1 + EZ1∥ ≤ ∥Sn/n− EZ1∥+ ∥EZ1∥

and

∥EZ1∥ ≤ ∥EZ1 − Sn/n∥+ ∥Sn/n∥.

So, ∥Sn∥/n→ ∥EZ1∥ a.s. as n→ ∞.

Similarly, let Yn =
∑n

i=1 ∥Zi∥, then Yn/n → E ∥Z1∥ a.s. as n → ∞. Also we

simply have E [Yn/n] = E ∥Z1∥ and 0 ≤ ∥Sn∥/n ≤ Yn/n. Hence, the result is

proved by Pratt’s Lemma (see Lemma 2.2).

The following asymptotic result for ELn was obtained as equation (2.16) by

Snyder & Steele [57] under the stronger condition E (∥Z1∥2) < ∞; as Lemma 4.4

shows, a finite first moment is sufficient.
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Proposition 4.5. Suppose E ∥Z1∥ <∞, then n−1ELn → 2∥µ∥, as n→ ∞.

Proof. The result is implied by the Spitzer–Widom formula (1.1) and Lemma 2.22

with yn = n−1E ∥Sn∥, since yn → ∥µ∥ by Lemma 4.4.

Remarks 4.2. (i) Proposition 4.5 says that if µ ̸= 0 then ELn is of order n. If

µ = 0, it says ELn = o(n). We will show later in Proposition 4.9 that under

mild extra conditions in the µ = 0 case, n−1/2ELn has a limit.

(ii) Snyder and Steele [57, p. 1168] showed that if E (∥Z1∥2) <∞ and µ ̸= 0, then

in fact n−1Ln → 2∥µ∥ a.s. as n→ ∞. We give a proof of this in Proposition

5.5 below.

For the zero drift case µ = 0, we have the following.

Lemma 4.6. Suppose E (∥Z1∥2) < ∞ and µ = 0, then E (∥Sn∥2) = O(n) and

E ∥Sn∥ = O(n1/2).

Proof. Consider ∥Sn∥2,

∥Sn+1∥2 = ∥Sn + Zn+1∥2 = ∥Sn∥2 + 2Sn · Zn+1 + ∥Zn+1∥2. (4.2)

So,

E (∥Sn+1∥2)− E (∥Sn∥2) = E (∥Z1∥2),

since Sn and Zn+1 are independent and Zn+1 has mean 0, so E (Sn · Zn+1) =

ESn · EZn+1 = 0. Then sum from n = 0 to m− 1 to get

E (∥Sm∥2)− E (∥S0∥2) = mE (∥Z1∥2).

Hence, E (∥Sn∥2) = O(n). The last result is given by Jensen’s inequality, E ∥Sn∥ ≤
(E [∥Sn∥2])1/2.

Remark 4.3. Lemma 4.6 only gives the upper bound for the order of E ∥Sn∥. Under
the mild assumption P(∥Z1∥ = 0) < 1, n−1/2E ∥Sn∥ in fact has a positive limit, as

we will see in the proof of Proposition 4.9 below. This extra condition is of course

necessary for the positive limit, since if Z1 ≡ 0 then E ∥Sn∥ ≡ 0.

Proposition 4.7. Suppose E (∥Z1∥2) <∞ and µ = 0, then ELn = O(n1/2).
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Proof. By Lemma 4.6 and Spitzer–Widom formula (1.1), for some constant C,

ELn ≤ 2
n∑

i=1

C
√
i

i
= 2C

n∑
i=1

i−1/2 = O(n1/2).

Lemma 4.8. Let p > 1. Suppose that E [∥Z1∥p] <∞.

(i) For any e ∈ S1 such that e · µ = 0, E [max0≤m≤n |Sm · e|p] = O(n1∨(p/2)).

(ii) Moreover, if µ = 0, then E [max0≤m≤n ∥Sm∥p] = O(n1∨(p/2)).

(iii) On the other hand, if µ ̸= 0, then E [max0≤m≤n |Sm · µ̂|p] = O(np).

Proof. Given that µ · e = 0, Sn · e is a martingale, and hence, by convexity, |Sn · e|
is a non-negative submartingale. Then, for p > 1,

E
[
max

0≤m≤n
|Sm · e|p

]
≤
(

p

p− 1

)p

E [|Sn · e|p] = O(n1∨(p/2)),

where the first inequality is Doob’s Lp inequality (see Lemma 2.17) and the second

is the Marcinkiewicz–Zygmund inequality (see Lemma 2.19). This gives part (i).

Part (ii) follows from part (i): take {e1, e2} an orthonormal basis of R2 and

apply (i) with each basis vector. Then by the triangle inequality

max
0≤m≤n

∥Sm∥ ≤ max
0≤m≤n

|Sm · e1|+ max
0≤m≤n

|Sm · e2|

together with Minkowski’s inequality (see Lemma 2.16), we have

E
[
max

0≤m≤n
∥Sm∥p

]
≤ E

[(
max

0≤m≤n
|Sm · e1|+ max

0≤m≤n
|Sm · e2|

)p]
=

∥∥∥∥ max
0≤m≤n

|Sm · e1|+ max
0≤m≤n

|Sm · e2|
∥∥∥∥p
p

≤

(∥∥∥∥ max
0≤m≤n

|Sm · e1|
∥∥∥∥
p

+

∥∥∥∥ max
0≤m≤n

|Sm · e2|
∥∥∥∥
p

)p

= O(n1∨(p/2)).

Part (iii) follows from the fact that

max
0≤m≤n

|Sm · µ̂| ≤
n∑

k=1

|Zk · µ̂| ≤
n∑

k=1

∥Zk∥
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and an application of Rosenthal’s inequality (see Lemma 2.20) to the latter sum

gives

E
[
max

0≤m≤n
∥Sm · µ̂∥p

]
≤ E

[(
n∑

k=1

∥Zk∥

)p ]

≤ max

{
2p

n∑
k=1

E ∥Zk∥p, 2p
2

(
n∑

k=1

E ∥Zk∥

)p}
≤ max {O(n), O(np)}

≤ O(np).

Proposition 4.7 gives the order of ELn. Now we can have the exact limit by

the following result, the statement of which is similar to an example on p. 508

of [58].

Proposition 4.9. Suppose E (∥Z1∥2) <∞ and µ = 0. Then, for Y ∼ N (0,Σ),

lim
n→∞

n−1/2ELn = EL(Σ1/2h1) = 4E ∥Y ∥.

Proof. The finite point-set case of Cauchy’s formula gives

Ln =

∫
S1

max
0≤k≤n

(Sk · e)de ≤ 2π max
0≤k≤n

∥Sk∥. (4.3)

Then by Lemma 4.8(ii) we have supn E [(n−1/2Ln)
2] < ∞. Hence n−1/2Ln is uni-

formly integrable, so that Theorem 3.6 yields limn→∞ n−1/2ELn = EL(Σ1/2h1).

It remains to show that limn→∞ n−1/2ELn = 4E ∥Y ∥. One can use Cauchy’s

formula to compute EL(Σ1/2h1); instead we give a direct random walk argument,

following [58]. The central limit theorem for Sn implies that n−1/2∥Sn∥ → ∥Y ∥ in

distribution. Under the given conditions, E [∥Sn+1∥2] = E [∥Sn∥2] + E [∥Zn+1∥2],
so that E [∥Sn∥2] = O(n). It follows that n−1/2∥Sn∥ is uniformly integrable, and

hence

lim
n→∞

n−1/2E ∥Sn∥ = E ∥Y ∥.

So for any ε > 0, there is some n0 ∈ N such that
∣∣k−1/2E ∥Sk∥ − E ∥Y ∥

∣∣ < ε

for all k ≥ n0. Then by the S–W formula (1.1), we have∣∣∣∣∣ELn√
n

− 2E ∥Y ∥ 1√
n

n∑
k=1

k−1/2

∣∣∣∣∣
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=
2√
n

∣∣∣∣∣
n∑

k=1

(
E ∥Sk∥
k

− E ∥Y ∥k−1/2

)∣∣∣∣∣
≤ 2√

n

n∑
k=1

∣∣∣∣E ∥Sk∥√
k

− E ∥Y ∥
∣∣∣∣ k−1/2

=
2√
n

(
n0∑
k=1

+
n∑

i=n0+1

)∣∣∣∣E ∥Sk∥√
k

− E ∥Y ∥
∣∣∣∣ k−1/2

≤ D√
n
+

2√
n

n∑
k=n0+1

∣∣∣∣E ∥Sk∥√
k

− E ∥Y ∥
∣∣∣∣ k−1/2

≤ D√
n
+

2ε√
n

n∑
k=n0+1

k−1/2,

for some constant D and the n0 mentioned above.

Also notice the fact that limn→∞ n−1/2
∑n

k=1 k
−1/2 = 2. This can be proved by

the monotonicity,

2
[
(n+ 1)1/2 − 1

]
=

∫ n+1

1

x−1/2 dx ≤
n∑

k=1

k−1/2 ≤
∫ n

0

x−1/2 dx = 2n1/2.

Taking n→ ∞ in the displayed inequality gives

lim sup
n→∞

∣∣∣∣∣ELn√
n

− 2E ∥Y ∥ 1√
n

n∑
k=1

k−1/2

∣∣∣∣∣ ≤ 4ε.

Since ε > 0 was arbitrary, it follows that

lim
n→∞

∣∣∣∣∣ELn√
n

− 2E ∥Y ∥ 1√
n

n∑
k=1

k−1/2

∣∣∣∣∣ = 0.

Therefore,

lim
n→∞

ELn√
n

= lim
n→∞

2E ∥Y ∥ 1√
n

n∑
k=1

k−1/2 = 4E ∥Y ∥.

Cauchy’s formula applied to the line segment from 0 to Y with Fubini’s theorem

implies 2E ∥Y ∥ =
∫
S1 E [(Y · e)+]de. Here Y · e = e⊤Y is univariate normal with

mean 0 and variance e⊤Σe = ∥Σ1/2e∥2, so that E [(Y · e)+] is ∥Σ1/2e∥ times one

half of the mean of the square-root of a χ2
1 random variable. Hence

E ∥Y ∥ = (8π)−1/2

∫
S1
∥Σ1/2e∥ de,
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which in general may be expressed via a complete elliptic integral of the second

kind in terms of the ratio of the eigenvalues of Σ. In the particular case Σ = I,

E ∥Y ∥ =
√
π/2 so then Proposition 4.9 implies that

lim
n→∞

n−1/2ELn =
√
8π,

matching the formula E ℓ1 =
√
8π of Letac and Takács [39, 61] (see Lemma 4.10

below). We also note the bounds

π−1/2
√
tr Σ ≤ E ∥Y ∥ ≤

√
tr Σ; (4.4)

the upper bound here is from Jensen’s inequality and the fact that E [∥Y ∥2] = trΣ.

The lower bound in (4.4) follows from the inequality

E ∥Y ∥ ≥ sup
e∈S1

E |Y · e| =
√
2/π sup

e∈S1
(Var[Y · e])1/2

together with the fact that

sup
e∈S1

Var[Y · e] = sup
e∈S1

∥Σ1/2e∥2 = ∥Σ1/2∥2op = ∥Σ∥op = λΣ ≥ 1

2
trΣ,

where ∥•∥op is the matrix operator norm and λΣ is the largest eigenvalue of Σ; in

statistical terminology, λΣ is the variance of the first principal component associ-

ated with Y .

We give a proof of the formula of Letac and Takács [39, 61].

Lemma 4.10. Let ℓ1 = L(h1) (see equation (3.5)) be the perimeter length of

convex hull of a standard Brownian motion on [0, 1] in R2. Then, E ℓ1 =
√
8π.

Proof. Applying Fubinis theorem (Lemma 2.21) in Cauchy formula (2.5) for ℓ1,

ℓ1 =

∫ 2π

0

sup
t∈[0,1]

(b(t) · eθ) dθ,

we have

E ℓ1 =
∫ 2π

0

E sup
t∈[0,1]

(b(t) · eθ) dθ

= 2πE sup
t∈[0,1]

(b(t) · eθ), where b(t) · eθ is a 1 dimensional Brownian motion,

= 2πE sup
t∈[0,1]

w(t).
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Here w(t) is defined as a standard 1-dimensional Brownian motion, which is the

same as in Corollary 2.11. Then we have

E sup
t∈[0,1]

w(t) =

∫ ∞

0

P

(
sup
t∈[0,1]

w(t) > r

)
dr

= 2

∫ ∞

0

P (w(1) > r) dr, by Reflection principle (Corollary 2.11),

= 2

∫ ∞

0

dr√
2π

∫ ∞

r

e−y2/2 dy

=

√
2

π

∫ ∞

0

dy

∫ y

0

e−y2/2 dr, by changing orders of integrals,

=

√
2

π

Hence, the result follows.
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Asymptotics for perimeter length

of the convex hull

5.1 Overview

To start this chapter we discuss some simulations. We considered a specific form of

random walk with increments Zi−E [Zi] = (cosΘi, sinΘi), where Θi was uniformly

distributed on [0, 2π), corresponding to a uniform distribution on a unit circle

centred at E [Zi] = µ. We took one example with µ = 0, and two examples with

µ ̸= 0 of different magnitudes.

For the expected perimeter length, the simulations (see Figure 5.1) are con-

sistent with the Spitzer–Widdom–Baxter result (see the argument below (1.1)),

Proposition 4.9 and Proposition 5.5. In the case of µ = 0, the result in Proposi-

tion 4.9 take the form: limn→∞ n−1/2ELn = 4E ∥Y ∥ = 4. In the case of µ ̸= 0, the

result in Proposition 5.5 take the form: n−1Ln
a.s.−→ 2∥µ∥ = 0.4 or 0.72.

For the variance of perimeter length with drift, the result in Theorem 5.13

take the form: limn→∞ Var[Ln] = 4E [cos2Θ1] = 2 and in Theorem 5.14,

(2n)−1/2(Ln −E [Ln]) converges in distribution to a standard normal distribution.

The corresponding pictures in Figures 5.2 and 5.3 show an agreement between the

simulations and the theory. In the zero drift case, the simulations (the leftmost

plot in Figure 5.2) suggest that limn→∞ n−1Var[Ln] exists but Figure 5.3 does not

appear to be consistent with a normal distribution as a limiting distribution.

47
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Figure 5.1: Plots of y = E [Ln] estimates against x = (left to right) n1/2, n, n for

about 25 values of n in the range 102 to 2.5× 105 for 3 examples with ∥µ∥ = (left

to right) 0, 0.2, 0.36. Each point is estimated from 103 repeated simulations. Also

plotted are straight lines y = 3.532x (leftmost plot), y = 0.40x (middle plot) and

y = 0.721x (rightmost plot).
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Figure 5.2: Plots of y = Var[Ln] estimates against x = n for the three examples

described in Figure 5.1. Also plotted are straight lines y = 0.536x (leftmost plot)

and y = 2x (other two plots).

We will show in Proposition 5.15 that

if µ = 0 : lim
n→∞

n−1VarLn = u0(Σ),

where u0( •) is finite and positive provided σ2 < ∞. For the constant u0(I) (I

being the identity matrix), Table 5.1 gives numerical evaluation of rigorous bound

that we prove in Proposition 5.16 below, plus estimate from simulations. See also

Section 7.2 for an explicit integral expression for u0(I).
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Figure 5.3: Simulated histogram estimates for the distribution of Ln−E [Ln]√
Var[Ln]

with

n = 5 × 103 in the three examples described in Figure 5.1. Each histogram is

compiled from 103 samples.

lower bound simulation estimate upper bound

u0(I) 2.65× 10−3 1.08 9.87

Table 5.1: The simulation estimate is based on 105 instances of a walk of length

n = 105. The final decimal digit in the numerical upper (lower) bounds has been

rounded up (down).

5.2 Upper bound for the variance

Assuming that E [∥Z1∥2] < ∞, Snyder and Steele [57] obtained an upper bound

for Var[Ln] using Cauchy’s formula together with a version of the Efron–Stein

inequality. Snyder and Steele’s result (Theorem 2.3 of [57]) can be expressed as

n−1Var[Ln] ≤
π2

2

(
E [∥Z1∥2]− ∥E [Z1]∥2

)
, (n ∈ N := {1, 2, . . .}). (5.1)

As far as we are aware, there are no lower bounds for Var[Ln] in the literature.

According to the discussion in [57, §5], Snyder and Steele had “no compelling

reason to expect that O(n) is the correct order of magnitude” in their upper

bound for Var[Ln], and they speculated that perhaps Var[Ln] = o(n) (maybe with

a distinction between the cases of zero and non-zero drift). Our first main result

settles this question under minimal conditions, confirming that (5.1) is indeed of

the correct order, apart from in certain degenerate cases, while demonstrating that

the constant on the right-hand side of (5.1) is not, in general, sharp.

The first step in looking for the variance upper bound is a martingale difference

argument, based on resampling members of the sequence Z1, . . . , Zn, to get an
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expression for Var[Ln] amenable to analysis: see Section 2.2. Let F0 denote the

trivial σ-algebra, and for n ∈ N set Fn := σ(Z1, . . . , Zn), the σ-algebra generated

by the first n steps of the random walk. Then Sn is Fn-measurable, and for n ∈ N
we can write Ln = Λn(Z1, . . . , Zn) for Λn : R2n → [0,∞) a measurable function.

Let Z ′
1, Z

′
2, . . . be an independent copy of the sequence Z1, Z2, . . .. Fix n ∈ N.

For i ∈ {1, . . . , n}, we ‘resample’ the ith increment, replacing Zi with Z
′
i, as follows.

Set

S
(i)
j :=

Sj if j < i

Sj − Zi + Z ′
i if j ≥ i;

(5.2)

then (S
(i)
j ; 0 ≤ j ≤ n) is a modification of the random walk (Sj; 0 ≤ j ≤ n) that

keeps all the components apart from the ith step which is independently resampled.

We let L
(i)
n denote the perimeter length of the corresponding convex hull for this

modified walk, namely hull(S
(i)
0 , . . . , S

(i)
n ), i.e.,

L(i)
n := Λn(Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zn).

For i ∈ {1, . . . , n}, define

Dn,i := E [Ln − L(i)
n | Fi]; (5.3)

in other words, −Dn,i is the expected change in the perimeter length of the convex

hull, given Fi, on replacing Zi by Z
′
i. The point of this construction is the following

result.

Lemma 5.1. Let n ∈ N. Then (i) Ln − E [Ln] =
∑n

i=1Dn,i; and (ii) Var[Ln] =∑n
i=1 E [D2

n,i], whenever the latter sum is finite.

Proof. Take Wn = Ln in Lemma 2.8. Then the results follow.

Remark 5.1. Lemma 5.1 with the conditional Jensen’s inequality gives the bound

Var[Ln] ≤
n∑

i=1

E
[(
L(i)
n − Ln

)2]
,

which is a factor of 2 larger than the upper bound obtained from the Efron–Stein

inequality: Var[Ln] ≤ 2−1
∑n

i=1 E
[
(L

(i)
n − Ln)

2
]
(see equation (2.3) in [57]).
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Let eθ = (cos θ, sin θ) be the unit vector in direction θ ∈ (−π, π]. For θ ∈ [0, π],

define

Mn(θ) := max
0≤j≤n

(Sj · eθ), and mn(θ) := min
0≤j≤n

(Sj · eθ).

Note that since S0 = 0, we have Mn(θ) ≥ 0 and mn(θ) ≤ 0, a.s. In the present

setting (see equation (2.7)), Cauchy’s formula for convex sets yields

Ln =

∫ π

0

(Mn(θ)−mn(θ)) dθ =

∫ π

0

Rn(θ)dθ,

where Rn(θ) :=Mn(θ)−mn(θ) ≥ 0 is the parametrized range function. Similarly,

when the ith increment is resampled,

L(i)
n =

∫ π

0

(
M (i)

n (θ)−m(i)
n (θ)

)
dθ =

∫ π

0

R(i)
n (θ)dθ,

where R
(i)
n (θ) =M

(i)
n (θ)−m

(i)
n (θ), defining

M (i)
n (θ) := max

0≤j≤n
(S

(i)
j · eθ), and m(i)

n (θ) := min
0≤j≤n

(S
(i)
j · eθ).

Thus to study Dn,i = E [Ln − L
(i)
n | Fi] we will consider

Ln − L(i)
n =

∫ π

0

(
Rn(θ)−R(i)

n (θ)
)
dθ =

∫ π

0

∆(i)
n (θ)dθ, (5.4)

where ∆
(i)
n (θ) := Rn(θ)−R

(i)
n (θ). For θ ∈ [0, π], let

Jn(θ) := arg min
0≤j≤n

(Sj · eθ), and J̄n(θ) := arg max
0≤j≤n

(Sj · eθ),

so mn(θ) = SJn(θ) · eθ and Mn(θ) = SJ̄n(θ) · eθ. Similarly, recalling (5.2), define

J (i)
n (θ) := arg min

0≤j≤n
(S

(i)
j · eθ), and J̄ (i)

n (θ) := arg max
0≤j≤n

(S
(i)
j · eθ).

(Apply the following conventions in the event of ties: arg min takes the maximum

argument among tied values, and arg max the minimum.)

We will use the following simple bound repeatedly in the arguments that follow.

This upper bound for |∆(i)
n (θ)| is also given in Lemma 2.1 of [57]. But we have a

different way to prove here.

Lemma 5.2. Almost surely, for any θ ∈ [0, π] and any i ∈ {1, 2, . . . , n},

|∆(i)
n (θ)| ≤ |(Zi − Z ′

i) · eθ| ≤ ∥Zi∥+ ∥Z ′
i∥. (5.5)
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Proof. Consider the effect on Sk · eθ when Zi is replaced by Z ′
i. If i > k, then

Sk · eθ = S
(i)
k · eθ. If i ≤ k, then Sk · eθ = S

(i)
k · eθ + (Zi − Z ′

i) · eθ. Hence, for all i,

Sk · eθ ≤ S
(i)
k · eθ + ((Zi − Z ′

i) · eθ ∨ 0).

Therefore,

max
1≤k≤n

Sk · eθ ≤ max
1≤k≤n

S
(i)
k · eθ + ((Zi − Z ′

i) · eθ ∨ 0).

Similarly, we have

min
1≤k≤n

Sk · eθ ≥ min
1≤k≤n

S
(i)
k · eθ + ((Zi − Z ′

i) · eθ ∧ 0).

Combining these two inequalities with maximum and minimum, we get

Rn(θ)−R(i)
n (θ) ≤ ((Zi − Z ′

i) · eθ ∨ 0)− ((Zi − Z ′
i) · eθ ∧ 0)

= |(Zi − Z ′
i) · eθ|.

Also similarly, we can get R
(i)
n (θ)−Rn(θ) ≤ |(Z ′

i−Zi) ·eθ|. Thus, the result follows
from the triangle inequality.

The following is Lemma 2.2 in [57].

Lemma 5.3. For all 1 ≤ i ≤ n,

E

[(∫ π

0

|(Zi − Z ′
i) · eθ| dθ

)2
]
≤ π2

(
E ∥Z1∥2 − ∥µ∥2

)
= π2σ2.

Proof. By Cauchy-Schwarz Inequality, we have

E

[(∫ π

0

|(Zi − Z ′
i) · eθ| dθ

)2
]
≤ πE

(∫ π

0

|(Zi − Z ′
i) · eθ|

2
dθ

)
.

Then, since Zi, Z
′
i are identically and independently distributed,

E
[
|Zi · eθ − Z ′

i · eθ|2
]
= E

[
(Zi · eθ)2

]
+ E

[
(Z ′

i · eθ)2
]
− 2E [(Zi · eθ)(Z ′

i · eθ)]

= 2Var[Z1 · eθ]

= 2
(
σ2
µ cos

2 θ + σ2
µ⊥

cos2 θ + 2 cos θ sin θρµµ⊥σµσµ⊥
)
,

where ρµµ⊥ is the covariance of (Z1 − µ) · µ̂ and (Z1 − µ) · µ̂⊥. So,

E
∫ π

0

|(Zi − Z ′
i) · eθ|

2
dθ = 2

(
σ2
µ

∫ π

0

cos2 θ dθ + σ2
µ⊥

∫ π

0

sin2 θ dθ

)
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+ 4ρµµ⊥σµσµ⊥

∫ π

0

cos θ sin θ dθ

= π(σ2
µ + σ2

µ⊥
).

This proves the lemma.

The next result is a version of Theorem 2.3 in [57]. But they get better right-

hand side by using Efron–Stein inequality

Proposition 5.4. Suppose E (∥Z1∥2) <∞. Then

Var(Ln) ≤
π2σ2

2
n. (5.6)

Proof. By Lemma 2.9, equation (5.4) and (5.5),

Var[Ln] ≤
1

2

n∑
i=1

E

[(∫ π

0

∆(i)
n (θ)dθ

)2
]

≤ 1

2

n∑
i=1

E

[(∫ π

0

|(Zi − Z ′
i) · eθ| dθ

)2
]

≤ 1

2

n∑
i=1

π2σ2

=
nπ2σ2

2
,

since Zi are independent identically distributed.

5.3 Law of large numbers

As we mentioned earlier in Remarks 4.2, Snyder and Steele [57] has shown the

asymptotic behaviour of Ln/n. They state their law of large numbers only for

µ ̸= 0 but the case with µ = 0 works equally well. Here we give a different proof

of the law of large numbers by using the variance bound.

Proposition 5.5. If E (∥Z1∥2) <∞, then n−1Ln → 2∥µ∥ a.s. as n→ ∞.

Proof. We have n−1ELn → 2∥µ∥ by Proposition 4.5 and the variance bound

VarLn ≤ Cn by Proposition 5.4. Chebyshev’s inequality says, for any ε > 0,

P
(∣∣∣∣Ln

n
− ELn

n

∣∣∣∣ > ε

)
≤ Var(n−1Ln)

ε2
≤ C

ε2n
.
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Take n = nk = k2, then

∞∑
k=1

P
(∣∣∣∣Lnk

nk

− ELnk

nk

∣∣∣∣ > ε

)
≤ C

ε2

∞∑
k=1

1

k2
<∞.

So the Borel–Cantelli lemma (see Lemma 2.3) implies that |n−1
k Lnk

−n−1
k ELnk

| →
0 a.s. as k → ∞. Hence∣∣∣∣Lnk

nk

− 2∥µ∥
∣∣∣∣ ≤ ∣∣∣∣Lnk

nk

− ELnk

nk

∣∣∣∣+ ∣∣∣∣ELnk

nk

− 2∥µ∥
∣∣∣∣→ 0 a.s. as k → 0.

For any n, let k = ⌊
√
n⌋. Then nk ≤ n < nk+1. Since Ln is non-decreasing in

n by (2.8), we have

Ln

n
≤
Lnk+1

n
≤
Lnk+1

nk+1

· nk+1

n
≤
Lnk+1

nk+1

· nk+1

nk

,

and also
Ln

n
≥ Lnk

n
≥ Lnk

nk

· nk

n
≥ Lnk

nk

· nk

nk+1

.

Then as n→ ∞, k → ∞ so

Lnk

nk

a.s.→ 2∥µ∥ and
nk

nk+1

=
(⌊
√
n⌋)2

(⌊
√
n⌋+ 1)2

→ 1.

Therefore n−1Ln → 2∥µ∥ a.s.

Proposition 5.5 says that if E [∥Z1∥2] < ∞ and µ = 0, then n−1Ln → 0 a.s.

But Proposition 4.7 says that ELn = O(n1/2), so we might expect to be able to

improve on this ‘law of large numbers’. Indeed, we have the following.

Proposition 5.6. Suppose E [∥Z1∥2] <∞.

(i) For any α > 1/2, as n→ ∞,

Ln − ELn

nα
→ 0, in probability.

(ii) If, in addition, µ = 0, then for any α > 1/2, n−αLn → 0 a.s. as n→ ∞.

Proof. Similarly to the proof of Proposition 5.5, Chebyshev’s inequality gives, for

ε > 0,

P
(
|Ln − ELn|

nα
> ε

)
≤ C

ε2
n1−2α. (5.7)
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The right-hand side here tends to 0 as n→ ∞ provided α > 1/2, giving (i).

For part (ii), take n = nk = 2k in (5.7). Then

∞∑
k=1

P
(
|Lnk

− ELnk
|

nα
k

> ε

)
<∞,

provided α > 1/2. So

lim
k→∞

|Lnk
− ELnk

|
nα
k

= 0, a.s.

But

lim
k→∞

ELnk

nα
k

= lim
n→∞

ELn

nα
= 0,

by Proposition 4.7, and hence

lim
k→∞

Lnk

nα
k

= 0, a.s.

For every positive integer n, there exists k(n) ∈ Z+ for which 2k(n) ≤ n < 2k(n)+1

and k(n) → ∞ as n→ ∞. Hence, by (2.8),

Ln

nα
≤ L2k(n)+1

(2k(n))α
= 2α

L2k(n)+1

(2k(n)+1)α
,

which tends to 0 a.s. as n→ ∞.

Moreover, (Ln − ELn)n
−α in Proposition 5.6(i) is also convergent to 0 almost

surely, if we assume ∥Z1∥ is upper bounded by some constant. To show this, we

need to use Azuma–Hoeffding inequality (see Lemma 2.18).

Lemma 5.7. Assume ∥Z1∥ ≤ B a.s. for some constant B. Then, for any t > 0,

P (|Ln − ELn| > t) ≤ 2 exp

(
− t2

8π2B2n

)
.

Proof. Let Dn,i = E [Ln − L
(i)
n |Fi], where F0 denote the trivial σ-algebra, and for

i ∈ N, Fi = σ(Z1, . . . , Zi) is the σ-algebra generated by the first n steps of the

random walk. So Dn,i is Fi-measurable. Since L
(i)
n is independent of Zi,

E [L(i)
n |Fi] = E [L(i)

n |Fi−1] = E [Ln|Fi−1],

so that Dn,i = E [Ln|Fi]− E [Ln|Fi−1]. Hence, E [Dn,i|Fi−1] = 0.
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By using equation (5.5) and our assumption that ∥Z1∥ ≤ B a.s., we can deduce

an upper bound for |Dn,i| as follows.

|Dn,i| ≤ E
[∫ π

0

|∆(i)
n (θ)|dθ

∣∣∣Fi

]
≤ π(∥Zi∥+ ∥Z ′

i∥) ≤ 2πB.

Hence, the result follows Lemma 2.18 with d∞ = 2πB.

Proposition 5.8. Suppose ∥Z1∥ ≤ B for some constant B. Then for any α > 1/2,

Ln − ELn

nα
→ 0 a.s.

Proof. The result follows Lemma 5.7 by using Borel–Cantelli Lemma (see Lemma

2.3).

5.4 Central limit theorem for the non-zero drift

case

5.4.1 Control of extrema

For the remainder of this section, without loss of generality, we suppose that

E [Z1] = µeπ/2 with µ ∈ (0,∞). Observe that (Sj · eθ; 0 ≤ j ≤ n) is a one-

dimensional random walk: indeed, Sj · eθ =
∑j

k=1 Zk · eθ. The mean drift of this

one-dimensional random walk is

E [Z1 · eθ] = E [Z1] · eθ = µ sin θ. (5.8)

Note that the drift µ sin θ is positive if θ ∈ (0, π). This crucial fact gives us

control over the behaviour of the extrema such asMn(θ) andmn(θ) that contribute

to (5.4), and this will allow us to estimate the conditional expectation of the final

term in (5.4) (see Lemma 5.10 below).

For γ ∈ (0, 1/2) and δ ∈ (0, π/2) (two constants that will be chosen to be

suitably small later in our arguments), we denote by En,i(δ, γ) the event that the

following occur:

• for all θ ∈ [δ, π − δ], Jn(θ) < γn and J̄n(θ) > (1− γ)n;

• for all θ ∈ [δ, π − δ], J
(i)
n (θ) < γn and J̄

(i)
n (θ) > (1− γ)n.
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We write Ec
n,i(δ, γ) for the complement of En,i(δ, γ). The idea is that En,i(δ, γ)

will occur with high probability, and on this event we have good control over

∆
(i)
n (θ). The next result formalizes these assertions. For γ ∈ (0, 1/2), define

In,γ := {1, . . . , n} ∩ [γn, (1− γ)n].

Lemma 5.9. For any γ ∈ (0, 1/2) and any δ ∈ (0, π/2), the following hold.

(i) If i ∈ In,γ, then, a.s., for any θ ∈ [δ, π − δ],

∆(i)
n (θ)1(En,i(δ, γ)) = (Zi − Z ′

i) · eθ 1(En,i(δ, γ)). (5.9)

(ii) If E ∥Z1∥ <∞ and ∥E [Z1]∥ ̸= 0, then min1≤i≤n P[En,i(δ, γ)] → 1 as n→ ∞.

Proof. First we prove part (i). Suppose that i ∈ In,γ , so γn ≤ i ≤ (1 − γ)n.

Suppose that θ ∈ [δ, π − δ]. Then on En,i(δ, γ), we have Jn(θ) < i < J̄n(θ) and

J
(i)
n (θ) < i < J̄

(i)
n (θ). Then from (5.2) it follows that in fact Jn(θ) = J

(i)
n (θ) and

J̄n(θ) = J̄
(i)
n (θ). Hence mn(θ) = m

(i)
n (θ) and

M (i)
n (θ) = S

(i)

J̄n(θ)
· eθ =Mn(θ) + (Z ′

i − Zi) · eθ, by (5.2).

Equation (5.9) follows.

Next we prove part (ii). Suppose that µ = ∥E [Z1]∥ > 0. Since E ∥Z1∥ < ∞,

the strong law of large numbers implies that ∥n−1Sn−E [Z1]∥ → 0, a.s., as n→ ∞.

In other words, for any ε1 > 0, there exists N := N(ε1) such that P[N < ∞] = 1

and ∥n−1Sn − E [Z1]∥ < ε1 for all n ≥ N . In particular, for n ≥ N , by (5.8),∣∣n−1Sn · eθ − µ sin θ
∣∣ = ∣∣n−1Sn · eθ − E [Z1] · eθ

∣∣ ≤ ∥∥n−1Sn − E [Z1]
∥∥ < ε1,

(5.10)

for all θ ∈ [0, 2π).

Take ε1 < µ sin δ. If n ≥ N , then, by (5.10),

Sn · eθ > (µ sin θ − ε1)n ≥ (µ sin δ − ε1)n,

provided θ ∈ [δ, π − δ]. By choice of ε1, the last term in the previous display is

strictly positive. Hence, for n ≥ N , for any θ ∈ [δ, π − δ], Sn · eθ > 0. But,

S0 · eθ = 0. So Jn(θ) < N for all θ ∈ [δ, π − δ], and

P
[
∩θ∈[δ,π−δ]{Jn(θ) < γn}

]
≥ P[N < γn] → 1,
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as n→ ∞, since N <∞ a.s.

Now,

max
0≤j≤(1−γ)n

Sj · eθ ≤ max

{
max
0≤j≤N

Sj · eθ, max
N≤j≤(1−γ)n

Sj · eθ
}
. (5.11)

For the final term on the right-hand side of (5.11), (5.10) implies that

max
N≤j≤(1−γ)n

Sj · eθ ≤ max
0≤j≤(1−γ)n

(µ sin θ + ε1)j ≤ (µ sin θ + ε1)(1− γ)n.

On the other hand, if n ≥ N , then (5.10) implies that Sn · eθ ≥ (µ sin θ − ε1)n.

Here

µ sin θ − ε1 ≥ (µ sin θ + ε1)(1− γ) if ε1 <
γµ sin θ

2− γ
.

Now we choose ε1 <
γµ sin δ

2
. Then, for any θ ∈ [δ, π − δ], we have that, for n ≥ N ,

Sn · eθ > max
N≤j≤(1−γ)n

Sj · eθ.

Hence, by (5.11),

P
[
∩θ∈[δ,π−δ]{J̄n(θ) > (1− γ)n}

]
≥ P

[
∩θ∈[δ,π−δ]

{
Sn · eθ > max

0≤j≤(1−γ)n
Sj · eθ

}]
≥ P

[
N ≤ n, ∩θ∈[δ,π−δ]

{
Sn · eθ > max

0≤j≤N
Sj · eθ

}]
.

Also, for n ≥ N , Sn · eθ > (1− γ
2
)µn sin δ, so we obtain

P
[
∩θ∈[δ,π−δ]{J̄n(θ) > (1− γ)n}

]
≥ P

[
N ≤ n, max

0≤j≤N
∥Sj∥ ≤

(
1− γ

2

)
µn sin δ

]
,

using the fact that max0≤j≤N Sj · eθ ≤ max0≤j≤N ∥Sj∥ for all θ.

Now, as n→ ∞, P[N > n] → 0, and

P
[
max
0≤j≤N

∥Sj∥ >
(
1− γ

2

)
µn sin δ

]
→ 0,

since N <∞ a.s. So we conclude that

P
[
∩θ∈[δ,π−δ]{Jn(θ) < γn, J̄n(θ) > (1− γ)n}

]
→ 1,

as n → ∞, and the same result holds for J
(i)
n (θ) and J̄

(i)
n (θ), uniformly in i ∈

{1, . . . , n}, since resampling Zi does not change the distribution of the trajectory.



Chapter 5 59

5.4.2 Approximation for the martingale differences

The following result is a key component to our proof. Recall that Dn,i = E [Ln −
L
(i)
n | Fi].

Lemma 5.10. Suppose that E ∥Z1∥ <∞, γ ∈ (0, 1/2), and δ ∈ (0, π/2). For any

i ∈ In,γ,∣∣∣∣Dn,i −
2(Zi − E [Z1]) · E [Z1]

∥E [Z1]∥

∣∣∣∣ ≤ 4δ∥Zi∥+ 4δE ∥Z1∥+ 3π∥Zi∥P[Ec
n,i(δ, γ) | Fi]

+ 3πE [∥Z ′
i∥1(Ec

n,i(δ, γ)) | Fi], a.s. (5.12)

Proof. Taking (conditional) expectations in (5.4), we obtain

Dn,i =

∫ π

0

E [∆(i)
n (θ)1(En,i(δ, γ)) | Fi]dθ +

∫ π

0

E [∆(i)
n (θ)1(Ec

n,i(δ, γ)) | Fi]dθ.

(5.13)

For the second term on the right-hand side of (5.13), we have∣∣∣∣∫ π

0

E [∆(i)
n (θ)1(Ec

n,i(δ, γ)) | Fi]dθ

∣∣∣∣ ≤ ∫ π

0

E [|∆(i)
n (θ)|1(Ec

n,i(δ, γ)) | Fi]dθ. (5.14)

Applying the bound (5.5), we obtain∫ π

0

E [|∆(i)
n (θ)|1(Ec

n,i(δ, γ)) | Fi]dθ ≤ πE [(∥Zi∥+ ∥Z ′
i∥)1(Ec

n,i(δ, γ)) | Fi]

= π∥Zi∥P[Ec
n,i(δ, γ) | Fi] + πE [∥Z ′

i∥1(Ec
n,i(δ, γ)) | Fi], (5.15)

since Zi is Fi-measurable with E ∥Zi∥ <∞.

We decompose the first integral on the right-hand side of (5.13) as I1+ I2+ I3,

where

I1 :=

∫ δ

0

E [∆(i)
n (θ)1(En,i(δ, γ)) | Fi]dθ,

I2 :=

∫ π−δ

δ

E [∆(i)
n (θ)1(En,i(δ, γ)) | Fi]dθ,

I3 :=

∫ π

π−δ

E [∆(i)
n (θ)1(En,i(δ, γ)) | Fi]dθ.

First we deal with I1 and I3. We have

|I1| ≤
∫ δ

0

E [|∆(i)
n (θ)| | Fi]dθ ≤ δE [∥Zi∥+ ∥Z ′

i∥ | Fi], a.s.,
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by another application of (5.5). Here E [∥Zi∥ | Fi] = ∥Zi∥, since Zi is Fi-

measurable, and, since Z ′
i is independent of Fi, E [∥Z ′

i∥ | Fi] = E ∥Z ′
i∥ = E ∥Z1∥.

A similar argument applies to I3, so that

|I1 + I3| ≤ 2δ∥Zi∥+ 2δE ∥Z1∥, a.s. (5.16)

We now consider I2. From (5.9), since i ∈ In,γ, we have

I2 =

∫ π−δ

δ

E [(Zi − Z ′
i) · eθ 1(En,i(δ, γ)) | Fi]dθ

=

∫ π−δ

δ

E [(Zi − Z ′
i) · eθ | Fi]dθ −

∫ π−δ

δ

E [(Zi − Z ′
i) · eθ 1(Ec

n,i(δ, γ)) | Fi]dθ.

Here, by the triangle inequality,∣∣∣∣∫ π−δ

δ

E [(Zi − Z ′
i) · eθ 1(Ec

n,i(δ, γ)) | Fi]dθ

∣∣∣∣
≤
∫ π

0

E [(∥Zi∥+ ∥Z ′
i∥)1(Ec

n,i(δ, γ)) | Fi]dθ

= π∥Zi∥P[Ec
n,i(δ, γ) | Fi] + πE [∥Z ′

i∥1(Ec
n,i(δ, γ)) | Fi], (5.17)

similarly to (5.15). Finally, similarly to (5.16),∣∣∣∣∫ π−δ

δ

E [(Zi − Z ′
i) · eθ | Fi]dθ −

∫ π

0

E [(Zi − Z ′
i) · eθ | Fi]dθ

∣∣∣∣
≤ 2δE [∥Zi∥+ ∥Z ′

i∥ | Fi] = 2δ (∥Zi∥+ E ∥Z1∥) . (5.18)

We combine (5.13) with (5.14) and the bounds in (5.15)–(5.18) to give∣∣∣∣Dn,i −
∫ π

0

E [(Zi − Z ′
i) · eθ | Fi]dθ

∣∣∣∣ ≤ 4δ∥Zi∥+ 4δE ∥Z1∥+ 3π∥Zi∥P[Ec
n,i(δ, γ) | Fi]

+ 3πE [∥Z ′
i∥1(Ec

n,i(δ, γ)) | Fi], a.s. (5.19)

To complete the proof of the lemma, we compute the integral on the left-hand side

of (5.19). First note that E [(Zi − Z ′
i) · eθ | Fi] = (Zi − E [Z ′

i]) · eθ, since Zi is

Fi-measurable and Z ′
i is independent of Fi, so that∫ π

0

E [(Zi − Z ′
i) · eθ | Fi]dθ =

∫ π

0

(Zi − E [Zi]) · eθdθ.

To evaluate the last integral, it is convenient to introduce the notation Zi−E [Zi] =

RieΘi
where Ri = ∥Zi − E [Zi]∥ ≥ 0 and Θi ∈ [0, 2π). Then∫ π

0

(Zi − E [Zi]) · eθdθ =
∫ π

0

RieΘi
· eθdθ = Ri

∫ π

0

cos(θ −Θi)dθ
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= 2Ri sinΘi = 2RieΘi
· eπ/2.

Now (5.12) follows from (5.19), and the proof is complete.

5.4.3 Proofs for the central limit theorem

For ease of notation, we write Yi := 2∥E [Z1]∥−1(Zi − E [Z1]) · E [Z1], and define

Wn,i := Dn,i − Yi.

The upper bound for |Wn,i| in Lemma 5.10 together with Lemma 5.9(ii) will enable

us to prove the following result, which will be the basis of our proof of Theorem

5.12.

Lemma 5.11. Suppose that E [∥Z1∥2] <∞ and ∥E [Z1]∥ ≠ 0. Then

lim
n→∞

n−1

n∑
i=1

E [W 2
n,i] = 0.

Proof. Fix ε > 0. We take γ ∈ (0, 1/2) and δ ∈ (0, π/2), to be specified later. We

divide the sum of interest into two parts, namely i ∈ In,γ and i /∈ In,γ. Now from

(5.4) with (5.5) we have |L(i)
n − Ln| ≤ π(∥Zi∥+ ∥Z ′

i∥), a.s., so that

|Dn,i| ≤ πE [∥Zi∥+ ∥Z ′
i∥ | Fi] = π(∥Zi∥+ E ∥Zi∥).

It then follows from the triangle inequality that

|Wn,i| ≤ |Dn,i|+ 2∥Zi − E [Zi]∥ ≤ (π + 2)(∥Zi∥+ E ∥Zi∥).

So provided E [∥Z1∥2] < ∞, we have E [W 2
n,i] ≤ C0 for all n and all i, for some

constant C0 <∞, depending only on the distribution of Z1. Hence

1

n

∑
i/∈In,γ

E [W 2
n,i] ≤

1

n
2γnC0 = 2γC0,

using the fact that there are at most 2γn terms in the sum. From now on, choose

γ > 0 small enough so that 2γC0 < ε.

Now consider i ∈ In,γ. For such i, (5.12) shows that, for some constant C1 <∞,

|Wn,i| ≤ C1(1 + ∥Zi∥)δ + C1∥Zi∥P[Ec
n,i(δ, γ) | Fi]
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+ C1E [∥Z ′
i∥1(Ec

n,i(δ, γ)) | Fi], a.s. (5.20)

Here, for any B1 ∈ (0,∞), a.s.,

E [∥Z ′
i∥1(Ec

n,i(δ, γ)) | Fi] ≤ E [∥Z ′
i∥1{∥Z ′

i∥ > B1} | Fi] + B1P[Ec
n,i(δ, γ) | Fi]

= E [∥Z ′
i∥1{∥Z ′

i∥ > B1}] + B1P[Ec
n,i(δ, γ) | Fi],

since Z ′
i is independent of Fi. Here, since E ∥Z ′

i∥ = E ∥Z1∥ < ∞, the dominated

convergence theorem (see Lemma 2.1) implies that E [∥Z ′
i∥1{∥Z ′

i∥ > B1}] → 0 as

B1 → ∞. So we can choose B1 = B1(δ) large enough so that

E [∥Z ′
i∥1(Ec

n,i(δ, γ)) | Fi] ≤ δ +B1P[Ec
n,i(δ, γ) | Fi], a.s.

Combining this with (5.20) we see that there is a constant C2 <∞ for which

|Wn,i| ≤ C2(1 + ∥Zi∥)
(
δ +B1P[Ec

n,i(δ, γ) | Fi]
)
, a.s.

Hence

W 2
n,i ≤ C2

2(1 + ∥Zi∥)2
(
δ2 + 2B1δP[Ec

n,i(δ, γ) | Fi] +B2
1P[Ec

n,i(δ, γ) | Fi]
2
)

≤ C2
3(1 + ∥Zi∥)2

(
δ +B2

1P[Ec
n,i(δ, γ) | Fi]

)
,

for some constant C3 < ∞, using the facts that δ < π/2 < 2 and P[Ec
n,i(δ, γ) |

Fi] ≤ 1. Taking expectations we get

E [W 2
n,i] ≤ C2

3δE [(1 + ∥Zi∥)2] + C2
3B

2
1E
[
(1 + ∥Zi∥)2P[Ec

n,i(δ, γ) | Fi]
]
.

Provided E [∥Z1∥2] < ∞, there is a constant C4 < ∞ such that the first term on

the right-hand side of the last display is bounded by C4δ. Now fix δ > 0 small

enough so that C4δ < ε; this choice also fixes B1. Then

E [W 2
n,i] ≤ ε+ C2

3B
2
1E
[
(1 + ∥Zi∥)2P[Ec

n,i(δ, γ) | Fi]
]
. (5.21)

For the final term in (5.21), observe that, for any B2 ∈ (0,∞), a.s.,

(1 + ∥Zi∥)2P[Ec
n,i(δ, γ) | Fi] ≤ (1 +B2)

2P[Ec
n,i(δ, γ) | Fi]

+ (1 + ∥Zi∥)2 1{∥Zi∥ > B2}. (5.22)
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Here E [(1 + ∥Zi∥)2 1{∥Zi∥ > B2}] → 0 as B2 → ∞, provided E [∥Z1∥2] < ∞,

by the dominated convergence theorem. Hence, since δ and B1 are fixed, we can

choose B2 = B2(ε) ∈ (0,∞) such that

C2
3B

2
1E
[
(1 + ∥Zi∥)2 1{∥Zi∥ > B2}

]
< ε.

Then taking expectations in (5.22) we obtain from (5.21) that

E [W 2
n,i] ≤ 2ε+ C2

3B
2
1(1 +B2)

2P[Ec
n,i(δ, γ)].

Now choose n0 such that C2
3B

2
1(1 + B2)

2P[Ec
n,i(δ, γ)] < ε for all n ≥ n0, which

we may do by Lemma 5.9(ii). So for the given ε > 0 and γ ∈ (0, 1/2), we can

choose n0 such that for all i ∈ In,γ and all n ≥ n0, E [W 2
n,i] ≤ 3ε. Hence

1

n

∑
i∈In,γ

E [W 2
n,i] ≤ 3ε,

for all n ≥ n0.

Combining the estimates for i ∈ In,γ and i /∈ In,γ, we see that

1

n

n∑
i=1

E [W 2
n,i] ≤ 2γC0 + 3ε ≤ 4ε,

for all n ≥ n0. Since ε > 0 was arbitrary, the result follows.

Now we can claim and prove our main theorems.

Theorem 5.12. Suppose that E [∥Z1∥2] <∞ and ∥E [Z1]∥ ≠ 0. Then, as n→ ∞,

n−1/2

∣∣∣∣∣Ln − E [Ln]−
n∑

i=1

2(Zi − E [Z1]) · E [Z1]

∥E [Z1]∥

∣∣∣∣∣→ 0, in L2.

Proof. First note that

E [Wn,i | Fi−1] = E [Dn,i | Fi−1]− E [Yi | Fi−1] = 0− E [Yi],

since Dn,i is a martingale difference sequence and Yi is independent of Fi−1. Here,

by definition, E [Yi] = 0, and so Wn,i is also a martingale difference sequence.

Therefore, by orthogonality,

n−1E

( n∑
i=1

Wn,i

)2
 = n−1

n∑
i=1

E
[
W 2

n,i

]
→ 0 as n→ ∞, by Lemma 5.11.

In other words, n−1/2
∑n

i=1Wn,i → 0 in L2, which, with Lemma 5.1(i), implies the

statement in the theorem.
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Theorem 5.13. Suppose that E [∥Z1∥2] <∞ and ∥E [Z1]∥ ̸= 0. Then

lim
n→∞

n−1Var[Ln] =
4E [((Z1 − E [Z1]) · E [Z1])

2]

∥E [Z1]∥2
= 4σ2

µ. (5.23)

Remarks 5.2. (i) The assumptions E [∥Z1∥2] < ∞ and ∥E [Z1]∥ ̸= 0 ensure

4σ2
µ <∞.

(ii) To compare the limit result (5.23) with Snyder and Steele’s upper bound

(5.1), observe that

4σ2
µ = 4

(
E [(Z1 · E [Z1])

2]− ∥E [Z1]∥4

∥E [Z1]∥2

)
≤ 4

(
E [∥Z1∥2]− ∥E [Z1]∥2

)
.

(iii) The limit 4σ2
µ is zero if and only if (Z1 −E [Z1]) ·E [Z1] = 0 with probability

1, i.e., if Z1−E [Z1] is always orthogonal to E [Z1]. In such a degenerate case,

(5.23) says that Var[Ln] = o(n). This is the case, for example, if Z1 takes

values (1, 1) and (1,−1) each with probability 1/2. Note that the Snyder–

Steele bound (5.1) applied in this example says only that Var[Ln] ≤ (π2/2)n,

which is not the correct order. Here, the two-dimensional trajectory can be

viewed as a space-time trajectory of a one-dimensional simple symmetric

random walk. We conjecture that in fact Var[Ln] = O(log n). Steele [59]

obtains variance results for the number of faces of the convex hull of one-

dimensional simple random walk, and comments that such results for Ln

seem “far out of reach” [59, p. 242].

Proof. Write

ξn =
Ln − E [Ln]√

n
; and ζn =

1√
n

n∑
i=1

Yi, where Yi =
2(Zi − E [Z1]) · E [Z1]

∥E [Z1]∥
.

(5.24)

Then Theorem 5.12 shows that |ξn − ζn| → 0 in L2 as n → ∞. Also, with 4σ2
µ as

given by (5.23), E [ζ2n] = 4σ2
µ. Then a computation shows that

n−1Var[Ln] = E [ξ2n] = E [(ξn − ζn)
2] + E [ζ2n] + 2E [(ξn − ζn)ζn].

Here, by the L2 convergence, E [(ξn − ζn)
2] → 0 and, by the Cauchy–Schwarz

inequality (see Lemma 2.14),

|E [(ξn − ζn)ζn]| ≤
(
E [(ξn − ζn)

2]E [ζ2n]
)1/2 → 0 as well.

So E [ξ2n] → 4σ2
µ as n→ ∞.
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In the case where E [∥Z1∥2] < ∞ and ∥E [Z1]∥ = µ > 0, Snyder and Steele

deduce from their bound (5.1) a strong law of large numbers for Ln, namely

limn→∞ n−1Ln = 2µ, a.s. (see [57, p. 1168]). Given this and the variance asymp-

totics of Theorem 5.13, it is natural to ask whether there is an accompanying cen-

tral limit theorem. Our next result gives a positive answer in the non-degenerate

case, again with essentially minimal assumptions.

In the proof of Theorem 5.14 we will use two facts about convergence in distri-

bution that we now recall (see Lemma 2.4). First, if sequences of random variables

ξn and ζn are such that ζn → ζ in distribution for some random variable ζ and

|ξn−ζn| → 0 in probability, then ξn → ζ in distribution (this is Slutsky’s theorem).

Second, if ζn → ζ in distribution and αn → α in probability, then αnζn → αζ in

distribution.

Theorem 5.14. Suppose that E [∥Z1∥2] <∞, ∥E [Z1]∥ ̸= 0 and σ2
µ > 0. Then for

any x ∈ R,

lim
n→∞

P
[
Ln − E [Ln]√

Var[Ln]
≤ x

]
= lim

n→∞
P
[
Ln − E [Ln]√

4σ2
µn

≤ x

]
= Φ(x), (5.25)

where Φ is the standard normal distribution function.

Proof. Use the notation for ξn and ζn as given by (5.24). Then, by Theorem 5.12,

|ξn − ζn| → 0 in L2, and hence in probability.

In the sum ζn, the Yi are i.i.d. random variables with mean 0 and variance

E [Y 2
i ] = 4σ2

µ. Hence the classical central limit theorem (see e.g. [17, p. 93]) shows

that ζn converges in distribution to a normal random variable with mean 0 and

variance 4σ2
µ. Slutsky’s theorem then implies that ξn has the same distributional

limit. Hence, for any x ∈ R,

lim
n→∞

P

[
ξn√
4σ2

µ

≤ x

]
= lim

n→∞
P

[
Ln − E [Ln]√

4σ2
µn

≤ x

]
= Φ(x),

where Φ is the standard normal distribution function. Moreover,

P

[
Ln − E [Ln]√

Var[Ln]
≤ x

]
= P

[
ξnαn√
4σ2

µ

≤ x

]
,

where αn =
√

4σ2
µn

Var[Ln]
→ 1 by Theorem 5.13. Thus we verify the limit statements

in (5.25).



Chapter 5 66

5.5 Asymptotics for the zero drift case

Recall that h1 is defined in (3.4) and Σ is a covariance matrix (see Section 3.3),

which is positive semidefinite and symmetric. Let

u0(Σ) := VarL(Σ1/2h1), (5.26)

we have the following results.

Proposition 5.15. Suppose that (Mp) holds for some p > 2, and µ = 0. Then

lim
n→∞

n−1VarLn = u0(Σ).

Proof. From (4.3) and Lemma 4.8(ii), for p > 2 we have supn E [(n−1L2
n)

p/2] <∞.

Hence n−1L2
n is uniformly integrable, and we deduce convergence of n−1VarLn in

Corollary 3.7.

The next result gives bounds on u0(Σ) defined in (5.26).

Proposition 5.16.

263

1080
π−3/2e−144/25 tr Σ ≤ u0(Σ) ≤

π2

2
trΣ. (5.27)

In addition, if Σ = I we have the following sharper form of the lower bound:

Varℓ1 = u0(I) ≥
2

5

(
1− 8

25π

)
e−25π/16 > 0.

For the proof of this result, we rely on a few facts about one-dimensional

Brownian motion, including the bound (see e.g. equation (2.1) of [33]), valid for

all r > 0,

P
[
sup
0≤s≤1

|w(s)| ≤ r

]
≥ 4

π

(
e−π2/(8r2) − 1

3
e−9π2/(8r2)

)
. (5.28)

We let Φ denote the distribution function of a standard normal random variable;

we will also need the standard Gaussian tail bound (see e.g. [17, p. 12])

1− Φ(x) =
1√
2π

∫ ∞

x

e−y2/2dy ≥ 1

x
√
2π

(
1− 1

x2

)
e−x2/2, for x > 0. (5.29)

We also note that for e ∈ S1 the diffusion e · (Σ1/2b) is one-dimensional Brownian

motion with variance parameter e⊤Σe.
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The idea behind the variance lower bounds is elementary. For a random variable

X with mean EX, we have, for any θ ≥ 0,

VarX = E
[
(X − EX)2

]
≥ θ2P [|X − EX| ≥ θ] .

If EX ≥ 0, taking θ = αEX for α > 0, we obtain

VarX ≥ α2(EX)2
(
P[X ≤ (1− α)EX] + P[X ≥ (1 + α)EX]

)
, (5.30)

and our lower bounds use whichever of the latter two probabilities is most conve-

nient.

Proof of Proposition 5.16. We start with the upper bounds. Snyder and Steele’s

bound (5.6) with the statement for VarLn in Proposition 5.15 gives the upper

bound in (5.27).

We now move on to the lower bounds. Let eΣ ∈ S1 denote an eigenvector of Σ

corresponding to the principal eigenvalue λΣ. Then since Σ1/2h1 contains the line

segment from 0 to any (other) point in Σ1/2h1, we have from monotonicity of L
that

L(Σ1/2h1) ≥ 2 sup
0≤s≤1

∥Σ1/2b(s)∥ ≥ 2 sup
0≤s≤1

(
eΣ · (Σ1/2b(s))

)
.

Here eΣ · (Σ1/2b) has the same distribution as λ
1/2
Σ w. Hence, for α > 0,

P
[
L(Σ1/2h1) ≥ (1 + α)EL(Σ1/2h1)

]
≥ P

[
sup
0≤s≤1

w(s) ≥ 1 + α

2
λ
−1/2
Σ EL(Σ1/2h1)

]
≥ P

[
sup
0≤s≤1

w(s) ≥ 2(1 + α)
√
2

]
,

using the fact that λΣ ≥ 1
2
tr Σ and the upper bound in (4.4). Applying (5.30) to

X = L(Σ1/2h1) ≥ 0 gives, for α > 0,

VarL(Σ1/2h1) ≥ α2(EL(Σ1/2h1))
2P
[
sup
0≤s≤1

w(s) ≥ 2(1 + α)
√
2

]
≥ 32

π
α2 (tr Σ)

(
1− Φ(2(1 + α)

√
2)
)
,

using the lower bound in (4.4) and the fact that P[sup0≤s≤1w(s) ≥ r] = 2P[w(1) ≥
r] = 2(1 − Φ(r)) for r > 0, which is a consequence of the reflection principle.
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Numerical curve sketching suggests that α = 1/5 is close to optimal; this choice

of α gives, using (5.29),

VarL(Σ1/2h1) ≥
32

25π
(tr Σ)

(
1− Φ(12

√
2/5)

)
≥ 263

1080
π−3/2 (tr Σ) exp

{
−144

25

}
,

which is the lower bound in (5.27). We get a sharper result when Σ = I and

L(h1) = ℓ1, since we know E ℓ1 =
√
8π explicitly. Then, similarly to above, we get

Varℓ1 ≥ 8πα2P
[
sup
0≤s≤1

w(s) ≥ (1 + α)
√
2π

]
, for α > 0,

which at α = 1/4 yields the stated lower bound.
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Results on area of the convex hull

6.1 Overview

The aims of the present chapter are to provide first and second-order information

for An in both the cases µ = 0 and µ ̸= 0. We start by some simulations. We

considered the same form of random walk as in Section 5.1.

For the expected area, the simulations (see Figure 6.1) are consistent with

Theorem 6.8 and Theorem 6.9. In the case of µ = 0, Theorem 6.8 implies:

limn→∞ n−1EAn = π
2

√
detΣ = 0.785. In the case of µ ̸= 0, Theorem 6.9 takes the

form: limn→∞ n−3/2EAn = 1
3
∥µ∥

√
2πσ2

µ⊥
= 0.236 or 0.425.

For the variance of area, Proposition 6.12 and 6.13 show that the limits for

variance exist in both zero and non-zero drift cases. For example, we will show

that

if µ ̸= 0 : lim
n→∞

n−3VarAn = v+∥µ∥2σ2
µ⊥
;

if µ = 0 : lim
n→∞

n−2VarAn = v0 detΣ, (6.1)

where v0 and v+ are finite and positive, and these quantities are in fact variances

associated with convex hulls of Brownian scaling limits for the walk. These scaling

limits provide the basis of the analysis in this chapter; the methods are necessarily

quite different from those in [63]. For the constants v0 and v+, Table 6.1 gives

numerical evaluations of rigorous bounds that we prove in Proposition 6.14 below,

plus estimates from simulations. The variance limits we deduced in the simulations

(see Figure 6.2) are indeed lie in the variance bounds given by Proposition 6.14.

69
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Figure 6.1: Plots of y = E [An] estimates against x = (left to right) n, n3/2, n3/2

for about 25 values of n in the range 102 to 2.5 × 105 for 3 examples with ∥µ∥ =

(left to right) 0, 0.4, 0.72. Each point is estimated from 103 repeated simulations.

Also plotted are straight lines y = 0.781x (leftmost plot), y = 0.236x (middle plot)

and y = 0.425x (rightmost plot).

lower bound simulation estimate upper bound

v0 8.15× 10−7 0.30 5.22

v+ 1.44× 10−6 0.019 2.08

Table 6.1: Each of the simulation estimates is based on 105 instances of a walk

of length n = 105. The final decimal digit in each of the numerical upper (lower)

bounds has been rounded up (down).

6.2 Upper bound for the expected value and

variance for the area

Proposition 6.1. Let p ≥ 1. Suppose that E [∥Z1∥2p] <∞.

(i) We have E [Ap
n] = O(n3p/2). Suppose in addition E (∥Z1∥4p) < ∞, then

Var(Ap
n) = O(n3p).

(ii) Moreover, if µ = 0 we have E [Ap
n] = O(np). Suppose in addition

E (∥Z1∥4p) <∞, then Var(Ap
n) = O(n2p).

Proof. For part (i), it suffices to suppose µ ̸= 0. Then, bounding the convex hull
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Figure 6.2: Plots of y = Var[An] estimates against x = (left to right) n2, n3, n3

for the three examples described in Figure 6.1. Also plotted are straight lines y =

0.0748x (leftmost plot), y = 0.00152x (middle plot) and y = 0.00480x (rightmost

plot).

by a rectangle,

An ≤
(

max
0≤m≤n

Sm · µ̂− min
0≤m≤n

Sm · µ̂
)(

max
0≤m≤n

Sm · µ̂⊥ − min
0≤m≤n

Sm · µ̂⊥

)
≤ 4

(
max

0≤m≤n
|Sm · µ̂|

)(
max

0≤m≤n
|Sm · µ̂⊥|

)
.

Hence, by the Cauchy–Schwarz inequality, we have

E [Ap
n] ≤ 4p

(
E
[
max

0≤m≤n
|Sm · µ̂|2p

])1/2(
E
[
max

0≤m≤n
|Sm · µ̂⊥|2p

])1/2

.

Now an application of Proposition 4.8(i) and (iii) gives E [Ap
n] = O(n3p/2).

Suppose in addition E (∥Z1∥4p) <∞. By the same process as above, we have

A2p
n ≤ 42p

(
max

0≤m≤n
|Sm · µ̂|2p

)(
max

0≤m≤n
|Sm · µ̂⊥|2p

)
,

and E (A2p
n ) = O(n3p). Hence, Var(Ap

n) = E (A2p
n )− (EAp

n)
2 = O(n3p).

For part (ii), µ = 0. Since the convex hull(S0, . . . , Sn) is contained in the disk of

radius max0≤m≤n ∥Sm∥ and centre 0, Ap
n ≤ πp(max0≤m≤n ∥Sm∥2p) a.s. Proposition

4.8(ii) then yields E [Ap
n] = O(np).

Suppose in addition E (∥Z1∥4p) < ∞. By the same process as above, we have

E [A2p
n ] = O(n2p). Therefore, Var(Ap

n) = O(n2p).

Remark 6.1. We will show below in Theorem 6.9 n−3/2EAn has a limit in the

non-zero drift case and, in Proposition 6.8, n−1EAn has a limit in the zero drift

case.
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6.3 Asymptotics for the expected area

Let T (u,v) (u,v ∈ R2) be the area of a triangle with sides of u,v and u + v.

Then,

T (u,v) =
1

2

√
∥u∥2∥v∥2 − (u · v)2.

For α, β > 0, T (αu, βv) = αβT (u,v).

Lemma 6.2. Suppose E (∥Z1∥2) < ∞, EZ1 = 0 and E (ZT
1 Z1) = Σ. Then as

m→ ∞ and (k −m) → ∞,

ET (Sm, Sk − Sm)√
m(k −m)

→ ET (Y1, Y2),

where Y1, Y2 are iid. rvs. Y1, Y2 ∼ N (0,Σ).

Proof. By Central Limit Theorem in R2 (see [17]), n−1/2Sn
d.→ N (0,Σ). Since Sm

and Sk − Sm are independent, as m and k −m→ ∞,(
Sm√
m
,
Sk − Sm√
k −m

)
d.→ T (Y1, Y2).

Using the fact T is continuous,

T (Sm, Sk − Sm)√
m(k −m)

= T

(
Sm√
m
,
Sk − Sm√
k −m

)
d.→ T (Y1, Y2).

Also, by Lemma 4.6,

E

[ET (Sm, Sk − Sm)√
m(k −m)

]2 ≤ E (∥Sm∥2∥Sk − Sm∥2)
m(k −m)

≤ E ∥Sm∥2

m
· E ∥Sk − Sm∥2

k −m
<∞.

That means m−1/2(k −m)−1/2T (Sm, Sk − Sm) is uniformly integrable over (m, k)

with m ≥ 1, k ≥ m+ 1. So the result follows.

We state the following result without proof. It is a higher dimensional analogue

of S–W formula (1.1). See Barndorff–Nielson and Baxter [9] for the proof.

Lemma 6.3 (Barndorff Nielsen & Baxter).

E (An) =
n∑

k=2

k−1∑
m=1

E
[
T (Sm, Sk − Sm)

]
m(k −m)

. (6.2)
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Lemma 6.4.

lim
k→∞

k−1∑
m=1

1

m1/2(k −m)1/2
= π.

Proof. Let f(m, k) = m−1/2(k − m)−1/2. For any δ ∈ (0, 1), we have f(m, k) ≤
f(m− δ, k) if m ≤ k/2 and f(m, k) ≥ f(m− δ, k) if m ≥ k/2. Consider the sum

as two parts,
k−1∑
m=1

f(m, k) =

⌊k/2⌋∑
m=1

+
k−1∑

m=⌊k/2⌋+1

 f(m, k).

Then,

k−1∑
m=1

f(m, k) ≥
∫ ⌊k/2⌋

1

f(m, k) dm+

∫ k−1

⌊k/2⌋+1

f(m− 1, k) dm,

by letting u =
m

k
and v =

m− 1

k
,

=

∫ ⌊ k
2
⌋/k

1/k

1√
u(1− u)

du+

∫ 1− 2
k

⌊ k
2
⌋/k

1√
v(1− v)

dv

=

∫ 1−2/k

1/k

1√
u(1− u)

du.

Also,

k−1∑
m=1

f(m, k) ≤
∫ ⌊k/2⌋

1

f(m− 1, k) dm+

∫ k−1

⌊k/2⌋+1

f(m, k) dm

=

∫ ⌊ k
2
⌋/k−1/k

0

1√
u(1− u)

du+

∫ 1− 1
k

⌊ k
2
⌋/k+1/k

1√
v(1− v)

dv

≤
∫ 1−1/k

0

1√
u(1− u)

du.

Therefore,

lim
k→∞

k−1∑
m=1

f(m, k) =

∫ 1

0

[u(1− u)]−1/2 du = B

(
1

2
,
1

2

)
= Γ

(
1

2

)2

= π, (6.3)

where B( • , •) is the Beta function and Γ( •) is the Gamma function.

Lemma 6.5.

lim
n→∞

1

n

n∑
k=2

k−1∑
m=1

1

m1/2(k −m)1/2
= π.
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Proof. The result follows from Lemma 2.22 and Lemma 6.4.

Proposition 6.6. Suppose E (∥Z1∥2) <∞ and µ = 0. Then,

lim
n→∞

EAn

n
= πET (Y1, Y2),

where Y1, Y2 are iid. rvs. Y1, Y2 ∼ N (0,Σ) and Σ = E (ZT
1 Z1).

Proof. In (6.2), denote g(k,m) := m−1/2(k −m)−1/2E
[
T (Sm, Sk − Sm)

]
. Then,

EAn =
n∑

k=2

k−1∑
m=1

g(k,m)

m1/2(k −m)1/2
. (6.4)

and by Lemma 6.2,

lim
m→∞, k−m→∞

g(k,m) = ET (Y1, Y2) := λ. (6.5)

So, for every ε > 0, there existsm0 ∈ Z+ such that for anym ≥ m0 and k−m ≥ m0

we have |g(k,m)− λ| ≤ ε.

For the upper bound of EAn, Separate the inner sum as

EAn =

(
m0∑
k=2

+
n∑

k=m0+1

)
k−1∑
m=1

g(k,m)

m1/2(k −m)1/2

=
n∑

k=m0+1

k−1∑
m=1

g(k,m)

m1/2(k −m)1/2
+O(1)

=
n∑

k=m0+1

(
m0∑
m=1

+
k−1∑

m=k−m0

+

k−m0−1∑
m=m0+1

)
g(k,m)

m1/2(k −m)1/2
+O(1),

where

n∑
k=m0+1

(
m0∑
m=1

+
k−1∑

m=k−m0

)
g(k,m)

m1/2(k −m)1/2

≤ m0

n∑
k=m0+1

max1≤m≤m0 g(k,m)

(k −m0)1/2
+m0

n∑
k=m0+1

maxk−m0≤m≤k g(k,m)

(k −m0)1/2

≤ λ′
n∑

k=m0+1

2m0

(k −m0)1/2
, since max

1≤k,m≤n
g(k,m) <∞,

≤ O(n1/2), (6.6)
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where λ′ is some constant, and

n∑
k=m0+1

k−m0−1∑
m=m0+1

g(k,m)

m1/2(k −m)1/2
≤ (λ+ ε)

n∑
k=2

k−1∑
m=1

1

m1/2(k −m)1/2
.

By Lemma 6.5,

lim sup
n→∞

1

n

n∑
k=m0+1

k−m0−1∑
m=m0+1

g(k,m)

m1/2(k −m)1/2
≤ (λ+ ε)π.

Hence, lim supn→∞ n−1EAn ≤ (λ + ε)π by (6.6). So lim supn→∞ n−1EAn ≤ λπ,

since ε > 0 was arbitrary.

For the lower bound

EAn ≥
n∑

k=2

k−m0∑
m=m0

g(k,m)

m1/2(k −m)1/2

≥ (λ− ε)
n∑

k=2

k−m0∑
m=m0

1

m1/2(k −m)1/2

≥ (λ− ε)
n∑

k=2

(
k−1∑
m=1

−
m0−1∑
m=1

−
k−1∑

m=k−m0+1

)
1

m1/2(k −m)1/2

≥ (λ− ε)
n∑

k=2

k−1∑
m=1

1

m1/2(k −m)1/2
− (λ− ε)

n∑
k=2

2(m0 − 1)

(k − 1)1/2
.

By Lemma 6.5, lim infn→∞ n−1EAn ≥ (λ− ε)π. Therefore lim infn→∞ n−1EAn ≥
λπ, since ε > 0 was arbitrary. Then the result follows.

Lemma 6.7. If Y1, Y2 are iid. rvs. Y1, Y2 ∼ N (0,Σ) and Σ = E (ZT
1 Z1) Then,

ET (Y1, Y2) =
1

2

√
detΣ.

Proof. With Σ = (Σ1/2)2, we have that (Y1, Y2) is equal in distribution to

(Σ1/2W1,Σ
1/2W2) where W1 and W2 are independent N (0, I) random vectors.

Since Σ1/2 acts as a linear transformation on R2 with Jacobian
√
detΣ,

ET (Y1, Y2) = ET (Σ1/2W1,Σ
1/2W2) =

√
detΣET (W1,W2).

Here

ET (W1,W2) =
1

2
E [∥W1∥∥W2∥ sinΘ],
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where the minimum angle Θ between W1 and W2 is uniform on [0, π], and

(∥W1∥, ∥W2∥,Θ) are independent. Hence

ET (W1,W2) =
1

2
(E ∥W1∥)2(E sinΘ) =

1

2
,

using the fact that E sinΘ = 2/π and ∥W1∥ is the square-root of a χ2
2 random

variable, so E ∥W1∥ =
√
π/2 and the result follows.

Theorem 6.8. Suppose that E ∥Z1∥2 <∞ and µ = 0. Then,

lim
n→∞

n−1EAn =
π

2

√
detΣ.

Proof. The result follows from Proposition 6.6 combining with Lemma 6.7.

Theorem 6.9. Suppose that (Mp) holds for some p > 2, µ ̸= 0, and σ2
µ⊥

> 0.

Then

lim
n→∞

n−3/2EAn = ∥µ∥(σ2
µ⊥
)1/2E ã1 =

1

3
∥µ∥

√
2πσ2

µ⊥
.

In particular, E ã1 = 1
3

√
2π.

Proof. Recall that ã1 = A(h̃1) is the convex hull area of the space-time diagram

of one-dimensional Brownian motion run for unit time.

Given E [∥Z1∥p] < ∞ for some p > 2, Proposition 6.1(i) shows that E [A
p/2
n ] =

O(n3p/4), so that E [(n−3/2An)
p/2] is uniformly bounded. Hence n−3/2An is uni-

formly integrable, so Corollary 3.9 implies that

lim
n→∞

n−3/2EAn = ∥µ∥(σ2
µ⊥
)1/2E ã1. (6.7)

In light of (6.7), it remains to identify E ã1 = 1
3

√
2π. It does not seem straight-

forward to work directly with the Brownian limit; it turns out again to be simpler

to work with a suitable random walk. We choose a walk that is particularly con-

venient for computations.

Let ξ ∼ N (0, 1) be a standard normal random variable, and take Z to be

distributed as Z = (1, ξ) in Cartesian coordinates. Then Sn = (n,
∑n

k=1 ξk) is the

space-time diagram of the symmetric random walk on R generated by i.i.d. copies

ξ1, ξ2, . . . of ξ.

For Z = (1, ξ), µ = (1, 0) and σ2 = σ2
µ⊥

= E [ξ2] = 1. Thus by (6.7), to complete

the proof of Theorem 6.9 it suffices to show that for this walk limn→∞ n−3/2EAn =
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1
3

√
2π. If u, v ∈ R2 have Cartesian components u = (u1, u2) and v = (v1, v2), then

we may write T (u, v) = 1
2
|u1v2 − v1u2|. Hence

T (Sm, Sk − Sm) =
1

2

∣∣∣∣∣(k −m)
m∑
j=1

ξj −m
k∑

j=m+1

ξj

∣∣∣∣∣ .
By properties of the normal distribution, the right-hand side of the last display

has the same distribution as 1
2
|ξ
√
km(k −m)|. Hence

ET (Sm, Sk − Sm)√
m(k −m)

=
1

2
E |ξ

√
k| = 1

2

√
2k/π,

using the fact that |ξ| is distributed as the square-root of a χ2
1 random variable,

so E |ξ| =
√

2/π. Hence, by (6.4), this random walk enjoys the exact formula

EAn =
1√
2π

n∑
k=2

k−1∑
m=1

√
k√

m(k −m)
.

Then from (6.3) we obtain EAn ∼
√
π/2

∑n
k=2 k

1/2, which gives the result.

Remark 6.2. The idea used in the proof of Theorem 6.9, first establishing the

existence of a limit for a class of models and then choosing a particular model

for which the limit can be conveniently evaluated, goes back at least to Kac;

see [34, p. 293].

6.4 Law of large numbers for the area

Proposition 6.10. Suppose E (∥Z1∥4) <∞ and ∥EZ1∥ = 0. Then for any α > 1,

n−αAn → 0 a.s. as n→ ∞.

Proof. By Chebyshev’s inequality for An,

P
(
|An − EAn|

nα
≥ ε

)
= P(|An − EAn| ≥ εnα) ≤ Var(An)

ε2n2α
.

Since Var(An) = O(n2) by Proposition 6.1(ii), for any α > 1, as n→ ∞ we have

P
(
|An − EAn|

nα
≥ ε

)
= O(n2−2α).

So n−α(An − EAn) → 0 in probability.
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Take n = nk = 2k for k ∈ N, we have

P
(
|Ank

− EAnk
|

nα
k

≥ ε

)
= O(n2−2α

k ) = O(4k(1−α)).

So for any ε > 0,
∞∑
k=1

P
(
|Ank

− EAnk
|

nα
k

≥ ε

)
<∞.

By Borel–Cantelli Lemma (Lemma 2.3), as k → ∞

Ank
− EAnk

nα
k

→ 0 a.s.

By Proposition 6.1(ii), n−α
k EAnk

→ 0 as n→ ∞, we get

Ank

nα
k

→ 0 a.s. as k → ∞.

For any n ∈ N, there exists k(n) ∈ N such that 2k(n) ≤ n < 2k(n)+1. By

monotonicity of An,

2−α
Ank(n)

nα
k(n)

=
A2k(n)

(2k(n)+1)α
≤ An

nα
≤ A2k(n)+1

(2k(n))α
= 2α

Ank(n)+1

nα
k(n)+1

.

The result follows by the Squeezing Theorem.

Proposition 6.11. Suppose E (∥Z1∥4) <∞. Then, for any α > 3/2, n−αAn → 0

a.s. as n→ ∞.

Proof. By Chebyshev’s inequality for An,

P
(
|An − EAn|

nα
≥ ε

)
= P(|An − EAn| ≥ εnα) ≤ Var(An)

ε2n2α
.

Since Var(An) = O(n3) by Proposition 6.1(i), for any α > 3/2, as n→ ∞ we have

P
(
|An − EAn|

nα
≥ ε

)
= O(n3−2α).

So n−α(An − EAn) → 0 in probability.

Take n = nk = 2k for k ∈ N, we have

P
(
|Ank

− EAnk
|

nα
k

≥ ε

)
= O(n3−2α

k ) = O(4k(3/2−α)).
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So for any ε > 0,
∞∑
k=1

P
(
|Ank

− EAnk
|

nα
k

≥ ε

)
<∞.

By Borel–Cantelli Lemma (Lemma 2.3), as k → ∞

Ank
− EAnk

nα
k

→ 0 a.s.

By Proposition 6.1(i), n−α
k EAnk

→ 0 as n→ ∞, we get

Ank

nα
k

→ 0 a.s. as k → ∞.

For any n ∈ N, there exists k(n) ∈ N such that 2k(n) ≤ n < 2k(n)+1. By

monotonicity of An,

2−α
Ank(n)

nα
k(n)

=
A2k(n)

(2k(n)+1)α
≤ An

nα
≤ A2k(n)+1

(2k(n))α
= 2α

Ank(n)+1

nα
k(n)+1

.

The result follows by the Squeezing Theorem.

6.5 Asymptotics for the variance

Recall that Proposition 5.15 shows limn→∞ n−1VarLn = u0(Σ). In this section, we

will show that

if µ ̸= 0 : lim
n→∞

n−3VarAn = v+∥µ∥2σ2
µ⊥
;

if µ = 0 : lim
n→∞

n−2VarAn = v0 detΣ. (6.8)

The quantities v0 and v+ in (6.8) are finite and positive, as is u0( •) provided

σ2 ∈ (0,∞), and these quantities are in fact variances associated with convex

hulls of Brownian scaling limits for the walk.

Proposition 6.12. Suppose that (Mp) holds for some p > 4, and µ = 0. Then

lim
n→∞

n−2VarAn = v0 detΣ.

Proof. Lemma 6.1(ii) shows that E [A
2(p/4)
n ] = O(np/2), so that E [(n−2A2

n)
p/4] is

uniformly bounded. Hence n−2A2
n is uniformly integrable, and we deduce conver-

gence of n−2VarAn in Corollary 3.7.
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For the case with drift, we have the following variance result.

Proposition 6.13. Suppose that (Mp) holds for some p > 4 and µ ̸= 0. Then

lim
n→∞

n−3VarAn = v+∥µ∥2σ2
µ⊥
.

Proof. Given E [∥Z1∥p] <∞ for some p > 4, Lemma 6.1(i) shows that E [A
2(p/4)
n ] =

O(n3p/4), so that E [(n−3A2
n)

p/4] is uniformly bounded. Hence n−3A2
n is uniformly

integrable, so Corollary 3.9 yields the result.

6.6 Variance bounds

Proposition 6.14. We have u0(Σ) = 0 if and only if tr Σ = 0. The following

inequalities for the quantities defined at (5.26) hold.

0 <
4

49

(
e−7π2/12 − 1

3
e−21π2/4

)2

≤ v0 ≤ 16(log 2)2 − π2

4
; (6.9)

0 <
2

225

(
e−25π/9 − 1

3
e−25π

)
≤ v+ ≤ 4 log 2− 2π

9
. (6.10)

Proof. Bounding ã1 by the area of a rectangle, we have

ã1 ≤ r1 ≤ 2 sup
0≤s≤1

|w(s)|, a.s., (6.11)

where r1 := sup0≤s≤1w(s) − inf0≤s≤1w(s). A result of Feller [22] states that

E [r21] = 4 log 2. So by the first inequality in (6.11), we have E [ã21] ≤ 4 log 2,

and by Theorem 6.9 we have E ã1 = 1
3

√
2π; the upper bound in (6.10) follows.

Similarly, for any orthonormal basis {e1, e2} of R2, we bound a1 by a rectangle

a1 ≤
(

sup
0≤s≤1

e1 · b(s)− inf
0≤s≤1

e1 · b(s)
)(

sup
0≤s≤1

e2 · b(s)− inf
0≤s≤1

e2 · b(s)
)
,

and the two (orthogonal) components are independent, so E [a21] ≤ (E [r21])
2 =

16(log 2)2, which with the fact that E a1 = π
2
gives the upper bound in (6.9).

We now move on to the lower bounds. Tractable upper bounds for a1 and ã1

are easier to come by than lower bounds, and thus we obtain a lower bound on the

variance by showing the appropriate area has positive probability of being smaller

than the corresponding mean.
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Consider a1; note E a1 = π/2 [19]. Since, for any orthonormal basis {e1, e2} of

R2,

a1 ≤ π sup
0≤s≤1

∥b(s)∥2 ≤ π sup
0≤s≤1

|e1 · b(s)|2 + π sup
0≤s≤1

|e2 · b(s)|2,

using the fact that e1 · b and e2 · b are independent one-dimensional Brownian

motions,

P[a1 ≤ r] ≥ P
[
sup
0≤s≤1

|w(s)|2 ≤ r

2π

]2
, for r > 0.

We apply (5.30) with X = a1 and α ∈ (0, 1), and set r = (1− α)π
2
to obtain

Var a1 ≥ α2π
2

4
P
[
sup
0≤s≤1

|w(s)| ≤
√
1− α

2

]2
≥ 4α2

(
exp

{
− π2

2(1− α)

}
− 1

3
exp

{
− 9π2

2(1− α)

})2

,

by (5.28). Taking α = 1/7 is close to optimal, and gives the lower bound in (6.9).

For ã1, we apply (5.30) with X = ã1 and α ∈ (0, 1). Using the fact that

E ã1 = 1
3

√
2π (from Theorem 6.9) and the weaker of the two bounds in (6.11), we

obtain

Var ã1 ≥ α22π

9
P

[
sup
0≤s≤1

|w(s)| ≤ (1− α)
√
2π

6

]

≥ 8

9
α2

(
exp

{
− 9π

4(1− α)2

}
− 1

3
exp

{
− 81π

4(1− α)2

})
,

by (5.28). Taking α = 1/10 is close to optimal, and gives the lower bound in

(6.10).

Remark 6.3. The main interest of the lower bounds in Proposition 6.14 is that they

are positive; they are certainly not sharp. The bounds can surely be improved. We

note just the following idea. A lower bound for ã1 can be obtained by conditioning

on θ := sup{s ∈ [0, 1] : w(s) = 0} and using the fact that the maximum of w up

to time θ is distributed as the maximum of a scaled Brownian bridge; combin-

ing this with the previous argument improves the lower bound on v+ to 2.09×10−6.
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Conclusions and open problems

7.1 Summary of the limit theorems

We summarize in general the asymptotic behaviour of the expectation and variance

of Ln and An as the following table.

limit exists for E limit exists for Var limit law

µ = 0
Ln n−1/2ELn

§ n−1VarLn non-Gaussian

An n−1EAn
¶ n−2VarAn non-Gaussian

µ ̸= 0
Ln n−1ELn

§† n−1VarLn
‡ Gaussian‡

An n−3/2EAn n−3VarAn non-Gaussian

Table 7.1: Results originate from: § [58]; † [57]; ‡ [63]; ¶ [3] (in part); the rest are

new. The limit laws exclude degenerate cases when associated variances vanish.

Table 7.2 collets the lower and upper bounds and simulation estimates for the

constants defined at equation (5.26) and equation (6.8).

Claussen et al. [12] give some numerical estimations that Var l1 ≈ 1.075 and

Var a1 ≈ 0.31, which is a good agreement with our limit estimations 1.08 and 0.30.
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lower bound simulation estimate upper bound

u0(I) 2.65× 10−3 1.08 9.87

v0 8.15× 10−7 0.30 5.22

v+ 1.44× 10−6 0.019 2.08

Table 7.2: Each of the simulation estimates is based on 105 instances of a walk

of length n = 105. The final decimal digit in each of the numerical upper (lower)

bounds has been rounded up (down).

7.2 Exact evaluation of limiting variances

It would, of course, be of interest to evaluate any of u0, v0, or v+ exactly. In

general this looks hard. The paper [52] provides a key component to a possible

approach to evaluating u0. By Cauchy’s formula and Fubini’s theorem,

E [ℓ21] =

∫
S1

∫
S1
E
[(

sup
0≤s≤1

(e1 · b(s))
)(

sup
0≤t≤1

(e2 · b(t))
)]

de1de2.

Here, the two standard one-dimensional Brownian motions e1 · b and e2 · b have

correlation determined by the cosine of the angle ϕ between them, i.e.,

E [(e1 · b(s))(e2 · b(t))] = (s ∧ t) e1 · e2 = (s ∧ t) cosϕ.

The result of Rogers and Shepp [52] then shows that

E
[(

sup
0≤s≤1

(e1 · b(s))
)(

sup
0≤t≤1

(e2 · b(t))
)]

= c(cosϕ),

where the function c is given explicitly in [52]. Using this result, we obtain

E [ℓ21] = 4π

∫ π/2

−π/2

c(sin θ)dθ = 4π

∫ π/2

−π/2

dθ

∫ ∞

0

du cos θ
cosh(uθ)

sinh(uπ/2)
tanh

(
(2θ + π)u

4

)
.

We have not been able to deal with this integral analytically, but numerical in-

tegration gives E [ℓ21] ≈ 26.1677, which with the fact that E ℓ1 =
√
8π gives

u0(I) = Varℓ1 ≈ 1.0350, in reasonable agreement with the simulation estimate

in Table 6.1.

Another possible approach to evaluating u0 is suggested by a remarkable com-

putation of Goldman [27] for the analogue of u0(I) = Varℓ1 for the planar Brownian
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bridge. Specifically, if b′t is the standard Brownian bridge in R2 with b′0 = b′1 = 0,

and ℓ′1 = L(hull b′[0, 1]) the perimeter length of its convex hull, [27, Théorème 7]

states that

Varℓ′1 =
π2

6

(
2π

∫ π

0

sin θ

θ
dθ − 2− 3π

)
≈ 0.34755.

7.3 Open problems

7.3.1 Degenerate case for Ln when µ ̸= 0 and σ2µ = 0

Recall Remark 5.2(iii) for Theorem 5.13. For example, consider

Z1 =

 (1, 1), with probability 1/2;

(1,−1), with probability 1/2.

Then the σ2
µ in Theorem 5.13 is zero and our results on the second-order prop-

erties of Ln in Chapter 5 can not be applied in this degenerate case. See Figure

7.1 for an example of random walk in this case.

Figure 7.1: Example of the degenerate case with n = 100.

For this example, we conjecture VarLn

logn
→ constant, based on some simulations.

See Figure 7.2 below.

A second open question is whether in this case Ln−ELn√
VarLn

has a distributional

limit. If so, is that limit normal? We conjecture that there is a limit, but it is not

normal (see Figure 7.3).

7.3.2 Heavy-tailed increments

All main results from previous chapters are based on the assumption Mp for p = 2,

that the second moments of increments are finite. But what happens in the heavy-

tail problems, in which E (∥Z1∥2) = ∞? We give two simulation examples.
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Figure 7.2: Simulation for the degenerate case VarLn = 0.6612 log(n).
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Figure 7.3: Simulations for the degenerate case.

7.3.3 Centre-of-mass process

We can associate to a random walk trajectory S0, S1, S2, . . . its centre-of-mass

process G0, G1, G2, . . . defined by G0 := S0 = 0 and for n ≥ 1 by Gn = 1
n

∑n
k=1 Sk.

By convexity, the convex hull of {G0, G1, . . . , Gn} is contained in the convex hull
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of {S0, S1, . . . , Sn}. What can one say about its perimeter length or area? Note

that one may express Gn as a weighted sum of the increments of the walk as

Gn =
n∑

k=1

(
n− k + 1

n

)
Zk.

Then, for example, we expect that the method of Section 5.4 carries through to

this case; this is one direction for future work.

7.3.4 Higher dimensions

Most of the analysis of Ln in this thesis is restricted to d = 2 because we rely on

the Cauchy formula for planar convex sets. In higher dimensions, the analogues of

Ln and An are the intrinsic volumes of the convex body. Analogues of Cauchy’s

formula are available, but these seem more difficult to use as the basis for analysis.

However, the scaling limit theories in Chapter 3 may have some relatively

straightforward corollaries in higher dimensions. So, some analogous results for

An in Chapter 6 may not be so difficult to figure out.
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