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Abstract

This thesis continues the study of interval orders and related structures, containing

results on both the labeled and unlabeled variants.

Following a result of Eriksen and Sjöstrand (2014) we identify a link between struc-

tures following the Fishburn distribution and Mahonian structures. This is used to

detail a technique for the construction of Fishburn structures (structures in bijec-

tion with unlabeled interval orders) from appropriate Mahonian structures.

This technique is introduced on a bivincular pattern of Bousquet-Mélou et al.

(2010) and then used to introduce a previously unconsidered class of matchings;

explicitly, zero alignment matchings according to the number of arcs which are both

right-crossed and left-nesting.

The technique is then used to identify a statistic on the factorial posets of Claesson

and Linusson (2011) following the Fishburn distribution. Factorial posets mapped

to zero by this statistic are canonically labeled factorial posets which may alterna-

tively be viewed as unlabeled interval orders.

As a consequence of our approach we find an identity for the Fishburn numbers

in terms of the Mahonian numbers and discuss linear combinations of Fishburn

patterns in a manner similar to that of the Mahonian combinations of Babson and

Steingrímsson (2001).

To study labeled interval orders we introduce ballot matrices, a signed combinatorial

structure whose definition naturally follows from the generating function for labeled

interval orders.

A sign reversing involution on ballot matrices is defined. Adapting a bijection

of Dukes, Jelínek and Kibitzke (2011), we show that matrices fixed under this

involution are in bijection with labeled interval orders and that they decompose to

a pair consisting of a permutation and an inversion table.
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To fully classify such pairs results pertaining to the enumeration of permutations

having a given set of ascent bottoms are given. This allows for a new formula for

the number of labeled interval orders.
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CHAPTER 1

Introduction

This thesis studies enumerative and bijective results related to interval orders and

other equinumerous structures (often referred to as Fishburn structures).

The key enumerative results of this thesis are new identities for both unlabeled and

labeled interval orders.

In chapter 2 we show that the number in of unlabeled interval orders of size n can

be written in terms of the Mahonian numbers mn,k (A008302) as

in =
n−2∑
i=0

(−1)i
(n−i

2 )∑
j=i

(
j

i

)
mn−i,j ,

corresponding to OEIS sequence A022493.

This also allows an identity in terms of mn,k for the number rn of flat interval

orders (the subset of interval orders with trivial automorphism group),

rn =
n∑
k=0

k−2∑
i=0

(k−i
2 )∑
j=i

(−1)n−k+i
(
n− 1
k − 1

)(
j

i

)
mk−i,j .

In chapter 3 the number `n of labeled interval orders of size n are shown to be given

by

`n =
∑

{s1,...,sk}⊆[n−1]

(
det
[(

n− si
sj+1 − si

)]
·
k+1∏
r=1

rsr−sr−1

)
,

where s0 = 0 and sk+1 = n. This corresponds to OEIS sequence A079144.

For unlabeled interval orders the bijective results in this thesis arise from a new

technique for the construction of Fishburn structures based on a simple argument

by inclusion-exclusion. Such structures are studied with respect to a statistic which

follows what we refer to as the Fishburn distribution. Structures mapped to zero

by this statistic are the Fishburn structures.
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http://oeis.org/A008302
http://oeis.org/A022493
http://oeis.org/A079144
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The technique is demonstrated on two previously known Fishburn structures and

on a third, previously unidentified, Fishburn structure; namely, zero alignment

matchings according to the number of arcs which are both left-nesting and right-

crossed.

Consequences of the technique prompts consideration of linear combinations of

permutation patterns following the Fishburn distribution. We give an example of

such a combination, namely

+

and provide brief commentary for consideration for future work.

For labeled interval orders the bijective results of this thesis include the introduction

of ballot matrices, a notable subset of which are equinumerous with labeled interval

orders. Using ballot matrices as an intermediate object labeled interval orders are

shown to be in bijection with pairs of permutations in the following sets. Firstly,

{(π, τ) ∈ Sn ×Sn : A(τ) ⊆ D(π)},

where A(τ) is the set of ascent bottoms of τ , and D(π) is the set of descent positions

of π. Secondly,

{(π, τ) ∈ Sn ×Sn : D(π) ⊆ A(τ)}.

The work on labeled interval orders was done in collaboration with Anders Claesson.

The thesis is structured as follows:

• The remainder of this chapter provides a literature review and summarizes

current techniques to enumerate Fishburn structures.

• Chapter 2 presents results related to unlabeled interval orders and other

Fishburn structures.

• Chapter 3 handles the labeled case, presenting a characterization of la-

beled intervals as pairs of permutations.

The contributions of Chapter 2 can be summarised as the following.
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(1) Producing a new technique for enumerating Fishburn structures.

(2) Introducing matchings with no alignments as a Fishburn structure accord-

ing to the number of arcs which are both left-nesting and right-crossed

(definitions are given in the chapter).

(3) Identifying mislabelings, the number of which define a statistic on the

factorial posets following the Fishburn distribution.

(4) Demonstrating a linear combination of mesh patterns following the Fish-

burn distribution.

(5) Finding an identity for the Fishburn distribution in terms of the Mahonian

numbers.

The work in Chapter 3 may be summarised thusly.

(1) The introduction of ballot matrices.

(2) Extending work of Dukes et al. [10] to give a surjection between ballot

matrices and labeled interval orders.

(3) A proof that labeled interval orders are in bijection with pairs of permu-

tations where the set of ascent bottoms of one permutation is a subset of

the set of descent positions of the other.

(4) A proof that labeled interval orders are in bijection with pairs of permu-

tations where the set of descent positions of one permutation is a subset

of the set of ascent bottoms of the other.

(5) Finding a new identity for the number of labeled interval orders of size n.

Background

A poset P is said to be an interval order if each z ∈ P can be assigned a closed

interval [`z, rz] ⊂ R such that x <P y if and only if rx < `y. Such posets are

known to be equivalently characterized as those with a linear ordering by inclusion

on the predecessor sets for each element (see, for example, Bogart [3]), where the

predecessor set of an element x ∈ P is defined as follows:

pred (x) = {y ∈ P : y <P x}.
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An additional, equivalent definition is given by Fishburn [15] as posets with no

induced subposet isomorphic to the pair of disjoint chains of length two, the so

called (2 + 2)-free posets.

Enumerative work by Haxell, McDonald, and Thomason [16] provided a recursive

algorithm to determine in, the number of unlabeled interval orders of size n, suit-

able for small values of n (the figures for n ≤ 60 are given in the paper). El-Zahar

[13] and Kahmis [18] provided functional equations satisfied by the ordinary gen-

erating function for interval orders, however they are not solved at the time they

are presented.

Resurgent interest. Following a recent resurgence of interest a wide variety

of enumerative results pertaining to interval orders as well as bijective relations to

other Fishburn structures have been discovered. These often preserve an impressive

number of statistics.

This resurgence was born from the introduction of a new class of permutation

patterns, bivincular patterns, by Bousquet-Mélou et al. [4]. They demonstrated that

unlabeled interval orders are in bijection with permutations avoiding the pattern

,

(for definition and example see page 17) and a subset of fixed point free involu-

tions referred to in the literature as non-neighbor-nesting matchings (occasionally

Stoimenow matchings).

Stoimenow [24] considered non-neighbor-nesting matchings as an upper bound for

the dimension of the space of Vassiliev invariants for knots. Zagier [26] determined

their ordinary generating function to be

∑
m≥0

m∏
i=1

(1− (1− x)i).

and gave an asymptotic formula formn, the number of non-neighbor-nesting match-

ings of size n.
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mn ∼ n! 12
√

3
π

5
2
e
π2

12

(
6
π2

)n√
n.

The work of Bousquet-Mélou et al. [4] that interval orders and non neighbor-nesting

matchings are equinumerous thus gave that the generating function and asymptotic

results of Zagier are equally applicable to interval orders. This, for the first time,

explicitly identified the ordinary generating function for interval orders and allowed

that in = mn.

The bijections used by Bousquet-Mélou et al. [4] are via constructions encoded

with an intermediate structure they introduce, namely ascent sequences, a subset

of inversion tables which are recursively defined. We detail their approach later in

this chapter on page 12.

The same approach, using ascent sequences to encode construction, was adopted

by Dukes and Parviainen [12] in giving a bijection between integer matrices (up-

per triangular matrices with non-negative entries such that every row and column

contains at least one non-zero entry) and ascent sequences.

Taking advantage of the equivalent definition of interval orders, that the strict

predecessor sets can be given a total order under inclusion, Dukes, Jelínek and

Kubitzke [10] show an intuitive relation between the integer matrices and interval

orders where two elements are related in the poset if they share a hook under

the diagonal of the matrix. This approach also allows explanation for the labeled

counterpart of integer matrices, composition matrices, which are in bijection with

labeled interval orders. Their approach provides a more direct relation between

both labeled and unlabeled interval orders and their generating function than had

appeared in the literature to that point. Details of the hook construction are given

on page 13.

Solving a conjecture of Claesson and Linusson [9], Levande [20, 21] identifies an

additional, non-trivial, subclass of matchings enumerated by the Fishburn numbers

(the non 2-neighbor-nesting matchings). To this end he adopts the use of signed,

filled partition shapes, which follow naturally from the generating function, as an

intermediary object upon which an involution is used to identify fixed points.
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The dual of a poset is the mapping taking a poset P to a poset P ′ defined by

taking all relations x <P y in P to the relations y <P ′ x in P ′. A poset P is

called a self-dual poset if taking the dual returns an isomorphic poset. Jelínek [17],

via generating function manipulation, derives the ordinary generating function for

self-dual interval orders as

∑
m≥0

1
(1− x)m+1

m−1∏
i=0

(
1

(1− x)i+1 − 1
)
.

The labeled case. To study labeled interval orders, Claesson, Dukes and Ku-

bitzke [7] introduce composition matrices, a labeled counterpart to integer matrices.

They show that composition matrices have exponential generating function

∑
m≥0

m∏
i=1

(1− e−xi),

again a function originally considered by Zagier [26]. They present a one-to-one

correspondence between labeled interval orders and composition matrices via the

Cartesian product of ascent sequences and set partitions.

Prompted by the bijections of Bousquet-Mélou et al. [4], Brightwell and Keller [6]

consider enumeration of labeled interval orders of size n, denoted `n. They give an

asymptotic formula for `n, that

`n ∼ (n!)2 12
√

3
π

5
2

(
6
π2

)n√
n.

Factorial supersets. Permutations and inversion tables are obvious supersets

with cardinality n! of the permutations and ascent sequences studied by Bousquet-

Mélou et al. [4] Claesson and Linusson [9] introduce factorial matchings, a subset

of naturally labeled (2 + 2)-free posets satisfying an additional labeling property.

Furthermore they demonstrate that matchings with no left-nestings are a natural

n! superclass of non-neighbor-nesting matchings.

In addition to identifying the generating function for labeled interval orders, Claes-

son, Dukes and Kubitzke identify the partition matrices, a superset of integer ma-

trices which are counted by n!.
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Eriksen and Sjöstrand [14] provide bijections between various Fishburn structures

enumerated by n!—including non left-nesting matchings and permutations—and a

class of filled partition shapes. In doing so they find the full distribution for these

structures according to statistics where previous work had focused on solely in

terms of avoidance. This distribution is the aforementioned Fishburn distribution

where the row sums are equal to the factorial.

Flat interval orders. Khamis [19] and, independently, Dukes, Kitaev, Rem-

mel and Steingrímsson [11] consider the enumeration of flat (alternatively primitive

or rigid) interval orders, those with trivial automorphism group.

The generating function for such posets is the following:

∑
m≥0

m∏
i=0

(
1− 1

(1 + x)i

)
.

Brightwell and Keller [6] provide an asymptotic approximation for the number rn

of flat interval orders of size n,

rn ∼ n! 12
√

3
π

5
2
e
−π2

12

(
6
π2

)n√
n.

The set of interval orders may be formed from the set of flat interval orders by

substituting entries in flat interval orders with non-empty sets.

Therefore an immediate consequence from the formula for flat interval orders, al-

though seemingly hitherto never explicitly stated, is that the cycle index series

ZF (x1, x2, x3, . . . ) for interval orders may be deduced (for information on the cycle

index series see, for example, Bergeron et al. [2, Chapter 1, Section 2]). Substituting

the cycle index series for non-empty sets into the previous formula yields:

ZF (x1, x2, x3, . . . ) =
∑
m≥0

m∏
i=1

(
1− 1

(exp
(
x1
1 + x2

2 + x3
3 + · · ·

)
)i

)
.

The cycle index series encapsulates information on both labeled and unlabeled

structures and it is easily checked that:

ZF (x, x2, x3, . . . ) =
∑
m≥0

m∏
i=1

(1− (1− x)i),
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and that:

ZF (x, 0, 0, . . . ) =
∑
m≥0

m∏
i=1

(1− e−xi),

as would be expected.

Ascent sequence encoding of interval orders

In this section we demonstrate the bijection, omitting proofs, of Bousquet-Mélou

et al. [4] between ascent sequences and interval orders. This is to allow the reader

to make comparison with the technique presented in Chapter 2. The bijection is

dependent on several properties of interval orders, we lead with their introduction.

As noted earlier, an equivalent definition for an interval order is a poset where the

predecessor sets can be linearly ordered by inclusion.

Let D0 ⊂ D1 ⊂ · · · ⊂ Dk be the predecessor sets of some poset P . Define a function

h on posets returning the number of unique predecessor sets, h(P ) = k + 1. For

x ∈ P let d(x) be the index of the predecessor set, called the level of x, i.e. defined

as follows.

∀x ∈ Di d(x) = i.

Analogous to the predecessor set for an element in a poset is the definition of the

successor set.

Succ (x) = {y ∈ P : x <P y}.

An element x ∈ P is a maximal element in the poset if Succ (x) = ∅. Let Y be the

subset of elements in the underlying set of P which are maximal in P .

Key to the bijection is a function giving the minimal predecessor index for maximal

elements in the poset.

m(P ) = min d(y) y ∈ Y.

We now detail the bijection.

Let υ = b1b2 . . . bn be an inversion table (i.e. each bi ∈ [0, i−1]). An ascent in υ is an

i such that bi > bi−1. Let Asc (υ) be the set of ascents for υ and asc (υ) = |Asc (υ)|.
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We define an ascent sequence as an inversion table such that b1 = 0 and each

bi ∈ [0, 1 + asc (b1b2 . . . bi−1)]. Note that this is a recursive specification.

The empty poset and the empty inversion sequence are defined to be in bijection.

For i ∈ N let Q be the poset constructed on b1b2 . . . bi−1 and let Y be the set of

maximal elements in Q. The following case analysis on bi defines the insertion

procedure of a new element into the poset Q.

Add 1: If bi ≤ m(Q) then insert a new entry x with Pred (x) = Di and

empty successor set.

Add 2: If bi = h(Q), add a new entry x covering all entries in Q, Pred (x) =

{y : y ∈ Q}, and empty successor set.

Add 3: If m(Q) < bi < h(Q) insert a new entry x with Pred (x) = Di and

empty successor set. Let M be the set of g maximal elements of Q with

level less than i,

M = {y ∈ Y : d(y) < i}.

Add additional relations into the poset. For all x ≤ z with z ∈ M set

x <Q y for all {y ∈ Q : i ≤ d(y) < h(q)}.

Example 1. Consider the ascent sequence 0112023. The construction is as follows.

0−→ 1−→ 1−→ 2−→

0−→ 2−→ 3−→

Matrix hook bijection

An integer matrix is an upper triangular matrix with non-negative integer entries

such that all rows and columns contain at least one non-zero entry. A composition

matrix is the labeled counterpart: an upper triangular matrix on some underlying

set U whose entries are sets which partition U satisfying that there are no rows or

columns which contain only the empty set.
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x

y

.

Figure 1. Diagrammatic hook representation


{1} {6} ∅ ∅

{4, 7} ∅ ∅
{2, 5} ∅

{3}

 ←→

1

74

2

6

5

3

Figure 2. Poset and matrix hook example

Dukes et al. [10] provide a direct bijection between composition matrices and la-

beled interval orders, equally valid for integer matrices and unlabeled interval or-

ders. We present, proofs omitted, the labeled case. This is for the reader to make

comparison to the technique used to enumerate interval orders in Chapter 2 and as

background for the adapted surjection we introduce in Chapter 3.

Let A be a composition matrix on U . For all x, y ∈ U if x is an entry in the set

in the matrix at position (i, j) and y an element in the set at position (i′, j′) then

define the corresponding poset P by declaring that x <P y in P if j < i′.

This is diagrammatically seen by setting x <P y in P if the “hook” from x to y

passing through (i′, j) goes below the diagonal of the matrix as seen in Figure 1. It

becomes quickly evident that an equivalent characterization is that the predecessor

set of y is the union of columns 1 through i′ − 1.

Figure 2 demonstrates this bijection on a labeled variant of our earlier poset.



CHAPTER 2

Sieved enumeration of Fishburn structures

This chapter details a new technique for the enumeration of Fishburn structures

and some consequences thereof. The technique follows from identifying that Eriksen

and Sjöstrand’s [14] refinement of Zagier’s formula giving the Fishburn distribution

may be written in terms of the q-factorial (n)q!.

Eriksen and Sjöstrand consider the distribution of the bivincular pattern

(1) .

originally introduced by Bousquet-Mélou et al. [4] in studying its avoidance. We

shall refer to this pattern as σ throughout this chapter.

Eriksen and Sjöstrand show that the Fishburn distribution is given by the coeffi-

cients fn,k of the following ordinary generating function,

∑
n≥0

∑
π∈Sn

xnyσ(π) =
∑
n≥0

∑
k≥0

fn,kx
nyk

=
∑
m≥0

(−1)m
m∏
i=1

(1 + (y − 1)x)i − 1
1− y .

By considering the q-factorial,

(n)q! =
n∏
i=1

1− qi

1− q ,

we note that Eriksen and Sjöstrand’s refinement may be written as as the substi-

tution of q by x(y − 1) + 1,

∑
n≥0

(n)x(y−1)+1!x
n.

A simple combinatorial explanation corresponding to this generating function sub-

stitution exists and forms the basis for the technique in this chapter.

15
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We shall introduce the technique by replicating the result of Eriksen and Sjös-

trand [14] counting occurrences of σ in permutations. The technique is then for-

mally stated and its application demonstrated by introducing a new Fishburn subset

of matchings, those with zero alignments according to the number of arcs that are

both left-nesting and right-crossed.

We then construct the factorial posets of Claesson and Linusson [9] marked accord-

ing to a new feature which we name mislabelings. We show that factorial posets

with respect to the number of mislabelings follow the Fishburn distribution. A

factorial poset with zero mislabelings satisfies a condition of Claesson and Linusson

giving that the poset is a canonically labeled interval order.

Our technique gives a close correspondence between certain Mahonian structures

(structures enumerated by the q-factorial) and the Fishburn structures. Due to the

manner in which contemporary interest in interval orders has been prompted, by the

introduction of bivincular patterns, it is natural to consider linear combinations of

patterns which follow the Fishburn distribution. We present an example motivated

from work of Claesson and Brändén [5] and briefly discuss the limitations of our

technique towards this purpose.

As a further consequence of the relationship to the q-factorial we provide a new

identity for coefficients fn,k of the Fishburn distribution with respect to the Maho-

nian numbers mn,k (A008302), that

fn,k =
n−2∑
i=k

(−1)i+k
(
i

k

) (n−i
2 )∑
j=i

(
j

i

)
mn−i,j .

Of particular interest is when k = 0, which gives an identity for the nth Fishburn

number (A022493)
n−2∑
i=0

(−1)i
(n−i

2 )∑
j=i

(
j

i

)
mn−i,j .

Terminology and background

For a, b ∈ Z with a < b let [b] denote the set {1, . . . , b} and [a, b] the set {a, . . . , b}.

http://oeis.org/A008302
http://oeis.org/A022493
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1
1, 1

1, 2, 2, 1
1, 3, 5, 6, 5, 3, 1

1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1
1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1

. . .

Figure 1. Mahonian Triangle (A008302), mn,k

For U , a linearly ordered set, and x ∈ U not the maximal element of U then,

where there is no ambiguity, we shall abuse notation and use x+ 1 to refer to the

immediate successor of x in U .

Mahonian numbers. For n ∈ N let (n)q! denote the q-factorial, defined as

(n)q! =
n∏
i=1

i−1∑
j=0

qj =
n∏
i=1

1− qi

1− q .

The coefficients of the q-factorial are known as the Mahonian numbers (A008302).

The first few terms are shown in Figure 1. We shall use mn,k to denote the kth

entry of row n.

Mahonian numbers derive their name from seminal work identifying permutation

statistics by Major MacMahon [22]. As a result, and particularly in the case of per-

mutations, structures counted by the q-factorial are often referred to as Mahonian

structures.

Permutation patterns. A permutation is a bijection on a finite set U . The

results in this chapter assume that there is a total order on U . We shall therefore

assume throughout that, for n ∈ N, permutations as elements of Sn are bijections

on the set [n].

For n, k ∈ N with n > k take permutations π ∈ Sn and τ ∈ Sk. An occurrence of

τ as a classical permutation pattern in π is a subsequence of π whose entries are in

the same relative order as in τ . For example taking τ = 132 and π = 4671253 then

the following subsequences of π correspond to occurrences of τ ,

465 475 153 253.

http://oeis.org/A008302
http://oeis.org/A008302
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Permutations may be represented on a grid by dots placed at line intersects such

that each line is intersected by exactly one dot. The permutation maps the value of

the vertical line to the value of the corresponding horizontal line indicated by the

dot placement. For example, the grid below represents the permutation 4671253.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

A mesh pattern, introduced by Brändén and Claesson [5], consists of a classical

permutation pattern and a (potentially empty) set of shaded boxes on the grid

representation of that pattern. An occurrence of a mesh pattern consists of an

occurrence of the underlying classical permutation such that there are no entries of

π contained within the shaded boxes.

For example, there are two occurrences of the following mesh pattern in π,

.

Namely 465 and 253. Whereas, although an occurrence of the underlying classical

pattern, 475 is not an occurrence of the above mesh pattern as 6 occurs between

the 4 and 7.

A vincular pattern is a mesh pattern where only entire columns may be shaded out.

A bivincular pattern is a mesh pattern where any shaded boxes must contribute

to an entire row or column of shaded boxes. The above mesh pattern is also a

bivincular pattern.

A permutation with no occurrences of a pattern is said to avoid that pattern.

Occurrences of the pattern

,

are known as inversions and are counted by the q-factorial (see MacMahon [22]).
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Posets. A poset P is defined as a set and an associated binary relation <P

satisfying reflexivity, antisymmetry, and transitivity. A poset constructed on some

linearly ordered set U is said to be naturally labeled if i <P j =⇒ i <U j.

An interval order is a poset P where each z ∈ P can be assigned a closed interval

[`z, rz] ⊂ R such that x <P y if and only if rx < `y. Equivalent conditions are that

an interval order is a poset whose predecessor sets can be assigned a total order

by inclusion [3] or that a poset is an interval order if it has no induced subposet

isomorphic to the pair of disjoint two element chains, i.e. the poset is (2+2)-free [15].

For i ∈ P , let the following notation be used for the predecessor and successor sets

of i:

Pred i = {j ∈ P : j <P i}, pred i = |Pred i|,

Succ i = {` ∈ P : i <P `}, succ i = |Succ i|.

Matchings. A matching of size n is a fixed point free involution of semi-length

n. Matchings are typically represented as a set of ordered pairs (i, j) such that i < j.

The first entry in the pair is referred to as the arc opener and the second entry the

closer.

Diagrammatically matchings are seen as arcs on the numberline [2n]. For example,

the matching of size 10

{(1, 10), (2, 9), (3, 6), (4, 11), (5, 7), (8, 12), (13, 15), (14, 16)},

is represented as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A nesting arc in a matching is an arc which entirely encloses another arc when seen

diagrammatically, i.e. an (i, j) such that there exists (k, `) with i < k < ` < j. The

arc which is enclosed is known as a nested arc. If k = i+ 1 then the arcs are called
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left-nesting and left-nested, respectively. If `+ 1 = j then the arcs are right-nesting

and right-nested, respectively.

For example, in the above matching (2, 9) is a nesting arc with respect to the nested

arc (3, 6). Furthermore (2, 9) is left-nesting with (3, 6) left-nested.

A crossing arc in a matching is the leftmost of two intersecting arcs when seen

diagrammatically, i.e. an (i, j) such that there exists (k, `) with i < k < j < `. The

same approach as for nestings is taken to define crossed, left-crossing, left-crossed,

right-crossing and right-crossed arcs.

In the above matching (4, 10) is a crossing arc with (8, 12) a crossed arc. Further-

more (4, 10) is a right-crossing with (8, 12) right-crossed,

An alignment in a matching is two arcs (i, j) and (k, `) such that i < j < k < `.

For example, (8, 12) and (13, 15) in the above matching are alignments.

For two arcs (i, j) and (k, `), we say that k is an embraced nested opener if k is the

opener for an arc nested by (i, j).

Statistics and features. Given some set of structures X a statistic ψ is

defined as a function taking a structure to a natural number, i.e. ψ : X → N.

A feature of a structure is a property, aspect or substructure of a combinatorial

structure. For example, an inversion in a permutation, or a nesting in a matching

are features.

Original Fishburn permutation

We lead with a previously studied example. Recall the mesh pattern

σ = ,

with avoidance originally given by Bousquet-Mélou et al. [4] and the full distribution

given by Eriksen and Sjöstrand [14].

In their paper Eriksen and Sjöstrand show a bijection between permutations and

filled partition shapes by using the filled entries in the partition shapes to encode
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the insertion of elements into an ordered list of blocks. Upon completion the block

structure is dropped and the elements read left-to-right return the permutation.

Their bijection allows that multiple statistics are equidistributed between the two

structures and through this they provide the non-commutative generating function

with respect to those statistics.

In this section we shall focus on a small part of their work by considering the

distribution of occurrences of σ in isolation from other statistics. This differs from

the work of Eriksen and Sjöstrand in that the proof is based on insertion of entries

into a permutation rather than encoding the construction. Our application of the

sieve principle is the same.

We begin with the fact that the number of inversions in permutations follow the

Mahonian distribution. To construct a permutation of size n with i marked occur-

rences of σ take a permutation of size n− i with i marked inversions. Each marked

inversion will be used to insert a new entry which is the first entry of an occur-

rence of σ. The sieve principle will then be applied to return those permutations

satisfying that all occurrences of σ are marked.

Define an order on inversions based on the position in the permutation of the first

entry in the tuple and value of the second entry in the tuple. For a permutation

a1a2 . . . an let (ai, aj) and (ai′ , aj′) be two inversions. If i = i′ it follows ai = ai′

and, without loss of generality, we can assume aj < aj′ . We then define

(ai, aj) < (ai′ , aj′).

Otherwise i 6= i′ then, without loss of generality, assume i < i′. Then we define

(ai, aj) < (ai′ , aj′).

As an example, in the permutation 246531 the following inversions are sorted

(4, 1) < (6, 1) < (6, 5).
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In the above order, each inversion (aj , ak) is used to insert a new entry into the

permutation. Taking the position before the leftmost entry to be position 0, incre-

ment all ai > ak by one and insert ak + 1 at position j − 1. Thus an occurrence of

σ is created.

Example 2. Take the permutation 246531 where we consider the following inver-

sions to be marked

(4, 1) < (6, 1) < (6, 5).

As the values in the inversions change, at each step the next inversion to be used

will be colored in red. Inserted entries will be marked blue.

The inversion (4, 1) is the first inversion under our defined order. Increase all entries

greater than 1 by 1

357641,

and insert 2 at position 1

3257641.

The next inversion is now labeled (7, 1) with the 7 at position 4. Increase all entries

greater than 1 and insert 2 at position 3

43628751.

Applying the process to the final inversion, now labeled (8, 7), leads to the permu-

tation

436289751.

Note that the inserted entries (marked blue) are all the first entries in an occurrence

of σ.

Proposition 3. The above procedure describes a bijection between permutations

of length n with k marked inversions and permutations of length n+ k with k first

entries in an occurrence of σ marked.
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Proof. To show that this mapping is well defined we need to demonstrate

that at each step the insertion of an entry does not remove an occurrence of σ

previously inserted by this process.

This is enforced by the ordering defined on inversions. Let (ai, aj) and (ai′ , aj′) be

inversions.

(1) If i = i′ then aj < aj′ and therefore (ai, aj) < (ai′ , aj′). Our insertion

process gives that aj′ + 1 is inserted in the position immediately following

that of aj and thus forming an ascent with aj . Furthermore as aj′ >

aj , the minimal entry in the occurrence of σ that aj is contained in is

not incremented. Therefore the occurrence is preserved with the newly

inserted entry aj′ taking the role of the largest entry in the occurrence.

(2) If i < i′ then (ai, aj) < (ai′ , aj′). As aj′ +1 is inserted further to the right

in the permutation the ascent that ai involved cannot be broken. If aj <

aj′ the minimal entry in the occurrence of σ remains unchanged. If aj >

aj′ then all entries in the occurrence of σ containing aj are incremented.

If aj = aj′ then aj′ replaces the minimal entry of the occurrence of σ

containing aj .

Thus the mapping is well defined. To show that the mapping is a bijection we

demonstrate that it is both injective and surjective.

Injectivity is enforced by the total order on inversions and that an inversion pair

uniquely determines the entry which is inserted.

For surjectivity note that the process we have defined inserts the first entries of

marked occurrences of σ in a left-to-right order within the permutation. We can

consider the reverse of the insertion operation taking a permutation with marked

occurrences of σ to a permutation with marked inversions.

Given a permutation of size n with marked occurrences of σ, take the rightmost

marked occurrence. Removing the first entry contained in the occurrence and

standardizing the permutation leaves a permutation of size n − 1 with a marked

inversion. Surjectivity follows from repeated application. �
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Corollary 4. Permutations with marked occurrences of σ are given by the ordi-

nary generating function

u(x, z) =
∑
n≥0

(n)xz+1!x
n,

where the coefficient of xnzk gives the number of permutations of length n with k

marked occurrences of σ.

Proof. Permutations with respect to inversions are enumerated by the q-

factorial. Under the above process an inversion is either marked, in which case

a new entry uniquely specifying a marked occurrence of σ is inserted, or it is un-

marked. This is equivalent to the substitution (xz+1) in place of q in the q-factorial

with the marking of the occurrence of σ denoted by z. �

Recreating Eriksen and Sjöstrand’s result we now apply the sieve principle to per-

mutations with subsets of occurrences of σ marked returning those with all oc-

currences of σ marked. For more details on this varient of the sieve principle see

Wilf [25, Chapter 4, Section 2].

Corollary 5. Permutations with respect to occurrences of σ are given by the

ordinary generating function

∑
n≥0

(n)x(y−1)+1!x
n,

where the coefficient of xnyk gives the number of permutations of length n with

exactly k occurrences of σ.

Proof. The previous corollary gives that permutations with respect to marked

occurrences of σ are given by the ordinary generating function

u(x, z) =
∑
n≥0

(n)xz+1!x
n.

In this set a permutation with k marked occurrences of σ occurs a total of
(
k
i

)
times

with i occurrences of σ marked.
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Let f(x, y) be the ordinary generating function for permutations with all occur-

rences of σ marked. Consider the substitution of y by z + 1. This corresponds to

remarking occurrences of σ with a z, or unmarking them them with the 1. As such

each permutation will occur
(
k
i

)
times with i occurrences of σ now marked by z.

Thus we have that

u(x, z) = f(x, z + 1).

The result then follows through the reverse substitution of z by y−1 into u(x, z). �

Remark 6. The distributions of

and

given by Eriksen and Sjöstrand [14] can be shown in a near identical manner. Again

the key is to note that in occurrences of these patterns each has a point whose value

and position are uniquely determined by the other points and that together these

other two points form an inversion.

Technique

We can generalize the previous two corollaries to explicitly state a new technique

for constructing Fishburn structures. We present it as the following theorem.

Theorem 7. Let F be a Mahonian stucture according to the distribution of some

q-feature.

F follows the Fishburn distribution with respect to some feature p if we can show

that there is a bijection between F structures of size n with k marked q-features and

F structures of size n+ k with k marked p-features.

Proof. By definition, the distribution of q-features in F follows the ordinary

generating function ∑
n≥0

(n)q!x
n.

Take F with subsets of q-features marked by some variable w. As a q-feature is

either marked or it is not then the generating function for such structures is given



26 2. SIEVED ENUMERATION OF FISHBURN STRUCTURES

by the substitution of q by w + 1 into the previous equation. We therefore have

∑
n≥0

(n)w+1!x
n.

We now use that there exists a bijection between F structures of size n with k

marked q-features and F structures of size n + k with k marked p-features. This

allows that subsets of q-features marked with w can be taken to subsets of p-features

marked by z with the inclusion of an additional element. In terms of generating

function this corresponds to the substitution of w by xz.

Therefore the ordinary generating function of F structures with subsets of marked

p-features is ∑
n≥0

(n)xz+1!x
n.

If subsets of p-features are marked, then each F structure occurs
(
k
j

)
times with

j marked p-features. By the sieve principle (see Wilf [25, Chapter 4, Section 2]),

as in the previous corollary, through the substitution of z by y − 1 it then follows

that F structures with all p-features marked are given by the ordinary generating

function for the Fishburn distribution

∑
n≥0

(n)x(y−1)+1!x
n.

�

Zero alignment matchings

In this section we apply Theorem 7 to identify a new Fishburn statistic on a sub-

set of matchings. Explicitly, matchings with zero alignments follow the Fishburn

distribution according to the number of arcs which are both left-nesting and right-

crossed.

Recall that two arcs (i, j) and (k, `) are an alignment if i < j < k < `.

A matching with no alignments (a zero alignment matching) is equivalently char-

acterized as one where all the openers in the diagrammatic representation occur

before all the closers.
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The following proposition is well known.

Proposition 8 (Folklore). There are n! zero alignment matchings of semi-length

n.

Furthermore they are enumerated by (n)! when refined according to the number of

nestings.

Proof. This is easiest seen via recursion with a bijection between matchings

with no alignments and inversion tables. Take the empty matching and the empty

inversion table to be in bijection.

Let b1b2 . . . bn be an inversion table with each bi ∈ [0, i − 1] and M the matching

constructed from b1b2 . . . bn−1. Label the position to the left of the first closer as 0

and label the positions to the left of an opener right-to-left from 1 to n− 1. Insert

a new arc into M with opener at position bn and closer at the rightmost position

in the matching.

By construction inserted openers occur to the left of all the closers and it is easy to

see that entries in the inversion table correspond to the number of nested arcs. �

Recall that a left-nesting arc is an arc (i, j) such that there exists an arc (i+ 1, `)

with ` < j. Recall also that (i, j) is right-crossed if there exists an arc (k, j−1) with

k < i. We shall call an arc which is both left-nesting and right-crossed a confused

arc.

Define an order on embraced nested openers. We shall write embraced nested

openers as ordered pairs. Take ((i, j), k) and ((i′, j′), k′) where k and k′ are openers

with (i, j) an arc embracing k and (i′, j′) an arc embracing k′. If k = k′ then,

without loss of generality, assume j < j′ and define

((i′, j′), k′) < ((i, j), k).

Otherwise, without loss of generality, assume k < k′ and define

((i′, j′), k′) < ((i, j), k).

For example, take the matching {(1, 9), (2, 12), (3, 10), (4, 7), (5, 8), (6, 11)}.



28 2. SIEVED ENUMERATION OF FISHBURN STRUCTURES

1 2 3 4 5 6 7 8 9 10 11 12

The following subset of embraced nested openers are sorted:

((2, 12), 4) < ((1, 9), 4) < ((2, 12), 3).

Given a matching with a subset of embraced openers marked, using the above order,

for each embraced nested opener ((i, j), k) insert a new arc opening immediately

to the left of the embraced nested opener k and closing immediately to the right

of arc closer j. As i < k, the new arc is therefore right-crossed, furthermore as the

arc with opener k is nested by (i, j) it follows that the newly inserted arc left nests

the arc with opener k. As both right-crossed and left-nesting the inserted arc is

confused.

Example 9. We demonstrate on our example matching.

1 2 3 4 5 6 7 8 9 10 11 12

Consider the following nested openers marked.

((2, 12), 4) ((1, 9), 4) ((2, 12), 3)

As in the example for permutations the next nested opener to be considered will be

colored red and inserted arcs blue. Inserting a confused arc from the first embraced

nested opener results in the following matching.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

The next two steps are as follows.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

It is easily checked that the inserted arcs are confused and their removal returns

the original matching.

Proposition 10. The above is a bijection between zero alignment matchings of

semi-length n with k marked embraced openers and zero alignment matchings of

semi-length n+ k with k marked confused arcs.

Proof. We are required to show that at each stage the process is well defined:

that no alignments are introduced and that no previously inserted confused arc has

its left nesting or right crossed attributes removed.

That no alignment is introduced can be seen by contradiction. As the inserted arc

has its opener to the left of an existing opener and its closer to the right of an

existing closer no new alignment can be introduced if the original matching was a

zero alignment matching.
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That each step of the process does not break the right-crossed or left-nesting prop-

erty of a previously inserted arc is given by the order on nested openers. If two

inserted arcs share the same opener as part of their nested opener, then that both

arcs are still left nesting is given by the order on nesting arc closers. If two inserted

arcs share the same nesting arc closer as part of their nested opener, then that both

arcs are right nesting is given by the order of the opener.

Each inserted arc has its opener and closer uniquely determined by the nested

opener. Furthermore it is clear that removing inserted arcs returns the original

matching. Injectivity and surjectivy are thus simple. �

The following corollary then results from Theorem 7 and the above proposition.

Corollary 11. Zero alignment matchings with respect to confused arcs follow the

Fishburn distribution.

Factorial posets

Identifying appropriate statistics and applying the technique given by Theorem 7

to the factorial posets of Claesson and Linusson [9] allows for a new method for the

enumeration of interval orders which differs from both the recursive construction

of Bousquet-Mélou et al. [4] and the matrix hook bijection of Dukes, Jelínek and

Kubitzke [10].

Claesson and Linusson [9] define the factorial posets, a set of labeled interval orders

counted by n!, as follows. A factorial poset P on some linearly ordered underlying

set U is a naturally labeled poset with the additional condition that, for i, j, k ∈ U ,

i <U j <P k =⇒ i <P k.

This is referred to as the factorial condition.

Easily seen to be equivalent, a poset is factorial if and only if for each k ∈ P there

exists j ∈ [0, k−1] such that Pred k = [1, j]. As the predecessor sets can be linearly

ordered by inclusion it follows that factorial posets are a subset of naturally labeled

interval orders.
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Claesson and Linusson take advantage of this by using entries of an inversion table

to encode the construction of a factorial poset, thus giving that the two structures

are in bijection. We include their result for completeness.

Theorem 12 (Claesson and Linusson [9]). Factorial posets on [n] are in bijection

with inversion tables of length n.

Proof. As a poset is factorial if and only if for all k ∈ P there exists j ∈

[0, k− 1] such that Pred k = [1, j]. An inversion table b1b2 . . . bn is given by setting

bk to the value j ∈ [0, k − 1]. �

Claesson and Linusson identify numerous statistics preserved by their bijection. In

particular that the number of incomparable pairs in factorial posets, defined as

|{(i, j) ∈ P × P : i 6<P j, i <U j}|,

are counted by the q-factorial.

Taking two factorial posets to be equivalent if they are structurally isomorphic,

Claesson and Linusson demonstrate that posets satisfying that for all i ∈ [n− 1]

pred i ≤ pred (i+ 1) or succ i > succ (i+ 1)

are unique representatives of their equivalence class.

Again we include their result.

Proposition 13 (Claesson and Linusson [9]). There is exactly one way to label a

(2 + 2)-free poset such that it satisfies

pred i ≤ pred (i+ 1) or succ i > succ (i+ 1).

Proof. A poset satisfying the above condition has that for all i ∈ [n] the pairs

(succ i,pred i)

are weakly decreasing on the first coordinate and weakly increasing on the sec-

ond. The factorial condition gives that for i, j ∈ [n] the pairs (succ i,pred i) and
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(succ j,pred j) are equal if an only if the pairs are indistinguishable within the

poset, thus giving a canonical labeling. �

We extend this notion to consider a new feature on factorial posets, explicitly

elements which fail to satisfy this property.

Definition 14 (Mislabeling). Define a mislabeling in a factorial poset on [n] to be

an i ∈ [n− 1] such that

pred i > pred (i+ 1) and succ i ≤ succ (i+ 1).

Example 15. The poset

1

2

4

3 5 6

has the set of mislabelings {2, 4}.

By definition a factorial poset with zero mislabelings satisfies the condition from

Proposition 13 and is thus a unique representative of its isomorphism class.

A consequence of the factorial condition is that if pred i > pred (i+ 1) then i and

i+ 1 are incomparable as if i <P i+ 1 then the factorial condition requires that for

all ` <U i =⇒ ` <P i+ 1. Furthermore, there must exist ` such that ` <P i but

that ` 6<P i+ 1.

Therefore an equivalent condition to pred i > pred (i+ 1) is that there exists an

induced subposet isomorphic to (2 + 1) with the following labeling

`

i

i + 1

Sieved enumeration of interval orders. Recall that we write incomparable

pairs as (i, j) with i <U j.

Let U be some linearly ordered set with |U | = n. For some k ∈ [0, n − 1] take a

poset P built on the first n− k elements of U with k marked incomparable pairs.
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Define an order on incomparable pairs. Let (i, j) and (i′, j′) be two pairs. If j = j′

without loss of generality assume i <U i′. Then we define

(i′, j′) < (i, j).

Otherwise j 6= j′ then, without loss of generality, assume j <U j′. Then we define

(i, j) < (i′, j′).

To illustrate, the following pairs are sorted according to the above order.

(2, 3) < (1, 3) < (4, 6) < (3, 6).

In this order, each pair (i, j) is then used to insert a new element into the poset.

This new element has predecessor set

{h ∈ P : h ≤U i},

and successor set

Succ j.

Increment all k ∈ P with k ≥U j to its immediate successor in U , giving the newly

inserted element the value j.

By definition this introduces an occurrence of

i

j

j + 1

into the new poset with the inserted element marked in blue. Furthermore as the

successor set of the inserted element j is equal to that of the successor set of the

element now labeled j + 1 it follows that the newly inserted element with label j is

a mislabeling.

Example 16. Consider our earlier factorial poset built on [6].
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1

2

4

3 5 6

We consider the following incomparable pairs to be marked

(2, 3) < (1, 3) < (4, 6) < (3, 6)

As the values within the pairs change at each stage we will denote the next incom-

parable pair to be used in red. Inserted elements will be colored blue.

The pair (2, 3) specifies the new element ` to be inserted defined by

Pred ` = {h ∈ U : h ≤U 2} = {1, 2} and Succ ` = Succ 3 = {4}.

1

2

`

4

3 5 6

All elements with label greater or equal to 3 are incremented by one and the newly

inserted element ` is given the label 3.

1

2

3

5

4 6 7

The remaining steps are as follows.

1

2

3

6

5 7 8

4 −→

1

2

3

6

5 7 9

4

8

−→

1

2

3

6

5 7 10

4

8

9

Thus we have returned a poset of size 10 with set of marked mislabelings {3, 4, 8, 9}.
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Proposition 17. The procedure described above gives a bijection between factorial

posets on n entries with k marked incomparable pairs and factorial posets on n+ k

entries with k marked mislabelings.

Proof. We shall first show that the process described above is well defined.

This is equivalent to showing that at each insertion the following properties are

preserved for the resulting poset: it is naturally labeled, it satisfies the factorial

condition and it does not remove any mislabelings previously inserted by the pro-

cess.

For the incomparable pair (i, j) and newly inserted element ` we have that ` covers

all {h ∈ P : h <U i} and thus by construction it is both naturally labeled and sat-

isfies the factorial condition. Elements smaller than j under U remain unchanged.

The newly inserted element is given the same successor set as the element which

previously had that label and thus the insertion does not break the factorial con-

dition for any element larger under U than j. This also ensures that the naturally

labeled property is preserved.

That no previously inserted mislabelings are removed by the process is given by

the order on incomparable pairs and the factorial property, thus the process is

a mapping between factorial posets with marked incomparable pairs to factorial

posets with marked mislabelings.

Next we show that the mapping is bijective. That it is injective follows from the

total order defined on incomparable pairs and that the insertion of a new element

is uniquely determined by an incomparable pair.

It remains to show surjectivity. The process we have defined inserts mislabelings

in order according to U . We can consider the reverse of the insertion operation

taking a factorial poset with marked mislabelings to a factorial poset with marked

incomparable pairs.

Given a factorial poset of size n with k marked mislabelings take the mislabeling

with the largest value j and remove it from the poset. As j is a mislabeling there

exists ` <P j such that ` 6< j+1. Take the largest such ` and mark the incomparable

pair consisting of (`, j + 1). Thus we have returned a poset of size n− 1 with k− 1
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marked mislabelings and 1 marked incomparable pair. Surjectivity follows from

repeated application.

As it is both surjective and injective the mapping is a bijection. �

The following corollary then results from Theorem 7 and Proposition 17.

Corollary 18. Factorial posets follow the Fishburn distribution according to the

number of mislabelings.

Substitution of y = 0 into the ordinary generating function for the Fishburn distri-

bution, ∑
n≥0

(n)x(y−1)+1!x
n|y=0,

returns the ordinary generating function for factorial posets with no mislabelings.

Proposition 13 gives that such posets are unique representatives of their isomor-

phism class thus yielding, as expected, the result of Bousquet-Mélou et al. [4] that

the generating function for unlabeled interval orders is given by

∑
n≥0

(n)−x+1!x
n.

Linear Combination of Mesh Patterns

In order to motivate this section we briefly review the connections between permu-

tation patterns, Fishburn structures and the Mahonian distribution.

Recall that contemporary study of Fishburn structures has been motivated by the

introduction of bivincular patterns [4], which were in turn given as a generalization

of the vincular patterns (né generalized patterns) of Babson and Steingrímsson [1].

Furthermore the mesh patterns of Claesson and Brändén [5] evolve as an abstraction

of bivincular patterns. We therefore have the following hierarchy of patterns.

classical ⊂ vincular ⊂ bivincular ⊂ mesh
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The introduction of vincular patterns by Babson and Steingrímsson was in order to

provide a unifying framework via permutation patterns for certain Mahonian per-

mutation statistics, arguably the most simple of which is the number of inversions

corresponding to the classical pattern

.

They identify several examples where the sum of occurrences contained in a linear

combination of vincular patterns is used to encode both previously studied and new

statistics which follow the Mahonian distribution on permutations.

For example, the major index on permutations is defined as being the total sum of

descent positions. Babson and Steingrímsson identify this as corresponding to the

following linear combination of vincular patterns,

+ + + .

As this chapter has identified an explicit link between Mahonian and Fishburn

structures and that the study of these structures has been strongly influenced by

the aforementioned hierarchy of pattern types it is therefore natural to consider

linear combinations of patterns which follow the Fishburn distribution. This section

presents one such non-trival example which is based upon a linear combination of

mesh patterns introduced by Claesson and Brändén [5].

Claesson and Brändén demonstrate that occurrences of the following patterns in

permutations are Mahonian.

+ .

(we take a trival symmetry of the patterns appearing in the original paper)

Checking via computer where a new entry may be inserted into the above patterns

such that the inserted entry has its value and position fixed by pre-existing entries

within the pattern leads us to conjecture the following proposition.
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Proposition 19. The linear combination of mesh patterns

q1 + p2 = + ,

follows the Fishburn distribution.

Unfortunately it is not obvious that Theorem 7 can be applied here so we adopt a

more direct approach.

Recall σ defined on page 15. An occurrence abc of σ in a permutation satisfies one

of two conditions:

(1) There exists d with d < c occurring to the right of c in the permutation.

(2) There is no such d.

Thus σ can be viewed as the following linear combination of mesh patterns.

p1 + p2 = + .

In addition to showing that σ follows the Fishburn distribution, Eriksen and Sjös-

trand show that occurrences of the following are equidistributed with σ.

υ = .

In a similar manner as before consider the following decomposition of υ.

q1 + q2 = + .

The patterns in Proposition 19 are the combination of patterns q1 and p2. We

prove Proposition 19 via an involution on permutations which takes occurrences of

p1 to occurrences of q1 and vice versa whilst preserving the number of occurrences

of p2. The proof is provided later in this section. We begin with an observation on

occurrences of p1 and q1.
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Lemma 20. For some fixed permutation let abcd and a′b′c′d′ be occurrences of p1.

If b = b′ then the occurrences are equal i.e. a = a′, b = b′, c = c′ and d = d′.

Similarly let efgh and e′f ′g′h′ to be occurrences of q1. If f = f ′ then the occur-

rences are equal.

Proof. In an occurrence of p1 the entry corresponding to b must immediately

follow the entry corresponding to a in the permutation, as b = b′ it then follows

that a = a′. The value of a fixes the value of c and thus c = c′. The entry for d

is fixed as the first right-to-left minima occurring after c in the permutation, thus

d = d′.

The proof to the second statement is similar to the above, mutatis mutandis. �

As the previous lemma shows that the second entry in occurrences of both p1 and

q1 fix the remaining entries we define an involution on basis of the following cases.

(1) Occurrences of p1 in which the second entry is also the second entry of an

occurrence of q1 are left unmodified.

(2) For all occurrences abcd of p1 in which b is not the second entry in an

occurrence of q1 move the entry in the permutation corresponding to b to

the position immediately before the entry corresponding to c.

(3) For all occurrences efgh of q1 in which f is not the second entry in an

occurrence of p1 do the opposite of the previous case; move the entry

corresponding to f to the position immediately to the right of the entry

corresponding to e in the permutation.

To demonstrate that this is an involution we are required to show that it is well

defined in preserving occurrences of patterns.

Lemma 21. The above involution preserves the number of occurrences of p2.

Proof. For a fixed permutation let abcd be an occurrence of p1 and efgh an

occurrence of q1. Take ijk to be some occurrence of p2.

It follows immediately by definition of the decomposition of σ that a b in the

occurrence of p1 cannot be equal to j. As two elements occur below and to the left
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it cannot be equal to k, which is a right-to-left minima, nor i which is one greater

to than k. Thus the element to be moved in an occurrence of p1 in the involution

is not involved as part of an occurrence of p2.

It remains to check if its new location after applying the involution breaks an

occurrence of p2. Assume c = j, then after applying the involution b is moved to

immediately before the c then the occurrence of p2 is broken but as b > c a new

occurrence is created and thus the total number is preserved.

The entry corresponding to f in the occurrence of q1 may be equal to j, however

after applying the involution the g in the occurrence of q1 plays the same role as it

is larger than the next right-to-left minima. As f is immediately positioned before

an element smaller than it in the permutation it cannot be equal to i. Furthermore

f cannot be equal to k as there are entries smaller and to the right of it. Thus the

element to be moved in an occurrence of p1 in the involution is either not involved

as part of an occurrence of p2 or a new occurrence is created after the involution is

applied.

Again we ask if the new placement of f after the involution is applied breaks any

pre-existing occurrence of p2. Assume g = j, then moving f immediately to the left

of g in the permutation breaks the occurrence of p2 but as f > g a new occurrence

is created and thus the total number is preserved

Therefore the involution preserves the number of occurrences of p2. �

Lemma 22. For a fixed permutation the involution allows us to map occurrences of

p1 to occurrences of q1 and vice versa.

Proof. Consider the different cases under the involution.

An occurrence of p1 in which the second entry is also the second entry of an occur-

rence of q1 are mapped to one another.

For abcd a fixed occurrence of p1 and efgh some occurrence of q1 such that b 6= f

we have that as the position immediately before b in the permutation is occupied

by a with a < b therefore b 6= g. As b has two smaller entries to its right it is not h,
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which is a right-to-left minima. Assume b = e, applying the involution breaks this

occurrence of q1, however a new occurrence is formed.

For efgh a fixed occurrence of q1 and abcd some occurrence of p1 such that f 6= b

we have that as the position immediately after f in the permutation is occupied by

g with g < f therefore f 6= a. As f has two smaller entries to its right it is not a

right-to-left minima and thus cannot be d in an occurrence of q1. Assume f = c

applying the involution breaks this occurrence of p1, however a new occurrence is

formed. �

The above Lemmas allow us to prove Proposition 19.

Proposition 19. Occurrences of σ = p1 + p2 in permutations are known to

be enumerated by the Fishburn distribution. Lemma 22 shows that for a given

permutation the involution maps occurrences of p1 to occurrences of q1 and vice

versa whilst Lemma 21 gives that this preserves occurrences of p2.

Thus the number of occurrences of q1 + p2 follow the Fishburn distribution. �

Remark 23. It is undeniable that the proof presented above is an unelegant case

analysis. Ideally we would want a general approach to construct a set of linear com-

binations of patterns following the Fishburn distribution from any given Mahonian

linear combination of patterns. However, as noted earlier, it is not evident that the

technique detailed earlier in this chapter can be used here.

We highlight this as an area worthy of additional study.

Fishburn distribution

We obtain the following corollaries concerning the Fishburn distribution from The-

orem 7 and its proof.

Corollary 24. For some appropriate structure let p be a feature which follows the

Fishburn distribution and q a feature which follows the Mahonian distribution.

Letting un,i denote the number of structures of size n with i marked p-features,

∑
n≥0

∑
i≥0

un,ix
nzi =

∑
n≥0

(n)xz+1!x
n,
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1
2

6, 1
24, 9

120, 72, 5
720, 600, 98, 1

5040, 5400, 1450, 76
40320, 52920, 20100, 2200, 35

362880, 564480, 279300, 48750, 2299, 9
. . .

Figure 2. Unsieved Fishburn distribution: number of structures
of size n with i marked p-features, un,i

we have that

un,i =
(n−i

2 )∑
j=i

(
j

i

)
mn−i,j .

The first few terms of un,i are shown in Figure 2

Proof. Theorem 7 gives that a q-factorial structure of size n−i with i marked

q-features can be extended to a structure of size n with i marked p-features.

For a Mahonian structure of size n − i with j q-features then i are selected. The

number of q-factorial structures of size n− i with j q-features is given by Mahonian

number mn−i,j .

The maximum number of q-features a q-factorial structure of size n− i can have is(
n−i

2
)
. Thus j is bounded as

i ≤ j ≤
(
n− i

2

)
.

�

Remark 25. The row sums of Figure 2 (A179525), i.e.

∑
i=0

un,i,

have previously been studied by Jelínek [17] as counting primitive row Fishburn

matrices, upper-triangular, binary non-row empty matrices, according to the sum

of the entries. Jelínek considers such matrices as part of his work on counting self-

dual interval orders; he demonstrates a relation between the generating functions

http://oeis.org/A179525
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of self-dual interval orders enumerated by a reduced size function and primitive row

Fishburn matrices.

We note that the coefficient of xnzk in the refined formula

∑
n≥0

(n)xz+1!x
n

can be interpreted as counting the number of primitive row Fishburn matrices such

that:

(1) There are a total of k entries in the matrix that are not the first to occur

in their row.

(2) The entries in the matrix sum to n.

Corollary 26. Recalling that fn,k denotes the coefficient in the Fishburn distri-

bution ∑
n≥0

∑
k≥0

fn,kx
nyk =

∑
n≥0

(n)x(y−1)+1!x
n,

we have that

fn,k =
n−2∑
i=k

(−1)i+k
(
i

k

)
un,i

=
n−2∑
i=k

(−1)i+k
(
i

k

) (n−i
2 )∑
j=i

(
j

i

)
mn−i,j .

The first few terms are shown in Figure 3

Proof. Again for some appropriate structure let p be a feature which follows

the Fishburn distribution.

Recall from the proof of Theorem 7 that to take structures with subsets of p-features

marked to structures with all p-features marked corresponds to the substitution of

y − 1 by z.

The result then follows from the previous corollary and binomial expansion. �

We get the following corollary from setting i = 0 in the above.
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1
2

5, 1
15, 9

53, 62, 5
217, 407, 95, 1

1014, 2728, 1222, 76
5335, 19180, 13710, 2060, 35

31240, 142979, 146754, 39644, 2254, 9
. . .

Figure 3. Fishburn distribution, fn,k

Corollary 27. The number in of Fishburn structures of size n can be written in

terms of the Mahonian numbers mn,k,

in =
n−2∑
i=0

(−1)i
(n−i

2 )∑
j=i

(
j

i

)
mn−i,j .

Remark 28. In the above corollary the upper bound n−2 for the initial summation

is justified by noting that an occurrence of σ can be uniquely determined by the first

element in the occurrence and that two more entries must follow in the permutation.

Therefore there can be no more than n− 2 occurrences of a Fishburn statistic in a

structure of size n.

This is sufficient for our purposes however we note that this is not the least upper

bound (easily checked empirically). We leave this as an open question.

Question 29. Is there an aesthetically pleasing expression for the least upper bound

for the value of a Fishburn statistic?

Recall that we use rn to denote the number of flat interval orders. Brightwell and

Keller [6] provide an asymptotic approximation for rn,

rn ∼ n! 12
√

3
π

5
2
e
−π2

12

(
6
π2

)n√
n.

It is well known that in can be derived from rn by replacing entries of flat inter-

val orders with non-empty sets of entries. Let I(x) and R(x) be the exponential

generating functions for interval orders and flat interval orders respectively. Then,
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I(x) = R

(
x

1− x

)
.

Simple algebraic manipulation of the coefficients of the above formula returns an

identity for rn in terms of in,

rn =
n∑
k=0

(−1)n−k
(
n− 1
k − 1

)
ik.

Via substitution of the result in Corollary 27 into the above equation we get the

following.

Corollary 30. The number rn of flat interval orders of size n can be written in

terms of the Mahonian numbers mn,k,

rn =
n∑
k=0

k−2∑
i=0

(k−i
2 )∑
j=i

(−1)n−k+i
(
n− 1
k − 1

)(
j

i

)
mk−i,j .

Figures 2 and 3 are expanded in Appendix A.





CHAPTER 3

Decomposing labeled interval orders

This chapter details work done with Anders Claesson and published in the Elec-

tronic Journal of Combinatorics [8].

This chapter interprets the exponential generating function for labeled interval

orders, ∑
m≥0

m∏
i=1

(1− e−xi),

as a combinatorial specification for upper triangular, non-row empty matrices whose

entries are ballots.

A bijection of Dukes et al. [10] is adapted to a surjection mapping ballot matrices to

labeled interval orders and used to define an equivalence relation on ballot matrices.

A sign reversing involution is then used to identify fixed points for which there is

exactly one per equivalence class. The decomposition of any single fixed point into

a pair consisting of a permutation and an inversion table is then provided. This

allows for the main result of this chapter, that the set of labeled interval orders on

[n] is in bijection with two separate sets. Firstly,

{(π, τ) ∈ Sn ×Sn : A(τ) ⊆ D(π)},

where A(τ) is the set of ascent bottoms of τ , and D(π) is the set of descent positions

of π. Secondly,

{(π, τ) ∈ Sn ×Sn : D(π) ⊆ A(τ)}.

As a consequence we derive a new formula for the number of labeled interval orders

on [n]:

∑
{s1,...,sk}⊆[n−1]

(
det
[(

n− si
sj+1 − si

)]
·
k+1∏
r=1

rsr−sr−1

)

where s0 = 0 and sk+1 = n.

47
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Terminology and preliminaries

For non-negative integers a and b with a < b, let [b] denote the set {1, . . . , b}

and [a, b] the set {a, . . . , b}. This chapter will feature three main combinatorial

structures: permutations, inversion tables and ballots. In this section a summary

is provided to remind the reader of relevant results pertaining to these structures

and to set the notational convention that shall be followed.

Permutations. A permutation is a bijection on a finite set. As in the previous

chapter, the permutations that we study are assumed to be bijections on a totally

ordered sets and we shall take [n] as the default example.

A descent in a permutation π = a1a2 . . . an ∈ Sn is a pair (ai, ai+1) where ai > ai+1.

Following Stanley [23, Section 2.2] let D(π) = {i : ai < ai+1} ⊆ [n− 1] denote the

set of descent positions and define

αn(S) = {π ∈ Sn : D(π) ⊆ S}, αn(S) = |αn(S)|,

βn(S) = {π ∈ Sn : D(π) = S}, βn(S) = |βn(S)|.

Let S = {s1, s2, . . . , sk} and 1 ≤ s1 < s2 < · · · < sk < n. Also, let s0 = 0 and

sk+1 = n. Partitioning [n] into blocks of cardinalities

s1 − s0, s2 − s1, . . . , sk+1 − sk

a permutation is formed by listing elements within the blocks in increasing order

and concatenating the blocks. The only position in which a descent can occur is at

the join between two blocks. Thus,

(2) αn(S) =
(

n

s1 − s0, s2 − s1, . . . , sk+1 − sk

)
.

By the sieve principle we have that βn(S) =
∑
T⊆S(−1)|S\T |αn(T ). One can show

[23, Example 2.2.4] that this leads to the formula

βn(S) = det
[(

n− si
sj+1 − si

)]
,

where (i, j) ∈ [0, k]× [0, k].
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Figure 1. Inversion table 231100

Inversion tables. Given a permutation π = a1a2 . . . an, an inversion in π is

a pair (ai, aj) where ai > aj and i < j. An inversion table is an encoding of a

permutation where the ith value is the number of inversions in which i is involved

as the smaller element. The set of inversion tables of length n will be denoted

InvTabn:

InvTabn = { b1b2 . . . bn : bi ∈ [0, n− i] }.

An inversion table may be viewed diagrammatically. To make clear the relationship

between inversion tables and n by n upper triangular matrices containing exactly

one entry per row we shall break convention and view an inversion table as right

aligned, decreasing rows where an entry in row i at column j corresponds to the

inversion table with ith entry n− j. An example is shown in Figure 1.

Define Dent to be the function taking an inversion table to the set of distinct

entries it contains. For example, Dent(430200) = {0, 2, 3, 4}. We further say that

a ∈ [n− 1] is missing from a length n inversion table if a is not in its set of distinct

entries. For instance, 1 and 5 are both missing from 430200.

Ballots. A ballot, alternatively known as an ordered set partition, is a collec-

tion of pairwise disjoint non-empty sets (referred to as blocks) where the blocks

are assigned some total ordering. Adopting a symbolic approach, let L be the con-

struction taking a set U to the set of linear orders built upon U . Also, let E+ be

the non-empty set construction. That is, E+[U ] = {U} if U is non-empty, and

E+[∅] = ∅. Then define Bal, the construction of ballots, to be the composition

L(E+):

Bal = L(E+) =
∑
k≥0

(E+)k.



50 3. DECOMPOSING LABELED INTERVAL ORDERS

Consider signed ballots, as above but where each ballot is assigned to be either

positive or negative. A positive ballot contains an even number of blocks and a

negative ballot contains an odd number of blocks. For any species F , let−1·F = −F

be as F but with the sign of each object negated. Using E−1 to refer to signed

ballots—the notation stemming from its role as the symbolic multiplicative inverse

of set—we have

E−1 = L(−E+) =
∑
k≥0

(−1)k(E+)k.

It follows that signed ballots have exponential generating function

(3) 1
1 + (ex − 1) = e−x =

∑
n≥0

(−1)nx
n

n! .

See, for example, Bergeron et al. [2, Section 2.5].

We use the notation (E−1)+ to refer to the subset of signed ballots which are

positive and (E−1)− to refer to the subset which are negative.

Ballot matrices and interval orders

Equation (3) implies that the number of ballots constructed on some set U with an

even number of blocks differ from the number of ballots of U with an odd number

of blocks by 1. To be precise

|(E−1)+[U ]| − |(E−1)−[U ]| = (−1)|U |.

An involution on ballots witnesses this fact. In the above equation the sign of a

ballot with k blocks is (−1)k. Note that we can change the sign of a ballot with

|U | ≥ 2 by splitting a non-singleton block into two blocks or by merging two blocks.

Let ω = B1 . . . Bk be a ballot in Bal[U ]. That is, each Bi is non-empty and U is

the disjoint union of the sets B1 through Bk.

Take any linear order on U . Let x = minU be smallest element of U . If x ∈ Bi and

Bi contains at least two elements, then delete x from Bi and create a new block

{x} to the immediate right of Bi. For example,

ω = {2, 5}{1, 4, 6}{3} 7→ {2, 5}{4, 6}{1}{3} = ξ.
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If Bi = {x} and i > 1 then delete this block from ω and add x to Bi−1. With ω

and ξ as in the example above, we have ξ 7→ ω. If B1 = {x} then proceed with the

next smallest element of U and the ballot B2B3 . . . Bk. For example,

{1}{2}{5}{4, 6}{3} 7→ {1}{2}{5}{3, 4, 6}.

For U = {u1, u2, . . . , un} and u1 < u2 < · · · < un the single fixed point under this

sign reversing involution is {u1}{u2} . . . {un}.

Ballot Matrices. The exponential generating function for the number of la-

beled interval orders was shown by Claesson et al. [10] to be a function originally

studied by Zagier [26],

∑
m≥0

m∏
i=1

(1− e−xi) =
∑
m≥0

(−1)m
m∏
i=1

(e−xi − 1).

It it thus natural to consider the signed combinatorial structure

∑
m≥0

(−1)m
m∏
i=1

(
(E−1)i − 1

)
.

An ((E−1)i − 1)-structure is a non-empty sequence of i pairwise disjoint ballots.

As such, a (−1)m
∏m
i=1
(
(E−1)i−1

)
-structure is an upper triangular m×m matrix

of pairwise disjoint ballots such that each row is non-empty.

The sign of the matrix is the product of the signs of the ballot entries and the signs

of the rows. If A is such a matrix and the total number of blocks of all ballots in

A is `, then the sign of A is (−1)`+m. We shall call such matrices Ballot matrices

and use the notation BalMat for the construction with BalMat+ and BalMat− the

positive and negative parts respectively. As an example, for U = {1, 2} we have

BalMat+[U ] =


[
{1, 2}

]
,

 ∅ {1}
{2}

 ,
 ∅ {2}

{1}

 ,
 {2} ∅

{1}

 ,
 {1} ∅

{2}




and

BalMat−[U ] =
{[
{1}{2}

]
,

[
{2}{1}

]}
.
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We note the similarity between ballot matrices and the composition matrices of

Claesson et al. [7]. The entries of composition matrices are sets, which may be

viewed as either as ballots with a single block or as ballots where each element is

contained within its own singleton block and the blocks are ordered according to

the order on U . Therefore composition matrices are a subset of ballot matrices.

For our purposes we wish to define an involution whose fixed points are either

all positive or all negative for any given U . However for both interpretations of

composition matrices as ballot matrices the sign is not consistent, there exist both

positive and negative composition matrices when |U | ≥ 2, and hence they are not

suitable candidates for the fixed points of our involution.

Recall that Dukes et al. [10] provide a direct bijection between composition matrices

and labeled interval orders, this was detailed on page 13.

We adapt their bijection to define a surjection taking ballot matrices to labeled

interval orders as follows.

Definition 31. Let A ∈ BalMat[U ], and let x and y be elements of U . Further,

let ω and ξ be the ballot entries (i, j) and (i′, j′) of A such that x is contained in

the underlying set of ω and y is contained in the underlying set of ξ. Define the

poset P (A) by declaring that x < y in P if j < i′.

Again we have the alternative formulation that x < y in P if the “hook” from x to

y passing through (i′, j) goes below the diagonal:


x

y

.

Equivalently, the strict downset of y is the union of columns 1 through i′ − 1.

Figure 2 shows an example of a ballot matrix and its corresponding poset.
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∅ {6} ∅ {4, 5}

∅ {3} ∅
{1} ∅

{2}


6

1

2

3 4 5

Figure 2. A ballot matrix and its corresponding poset

Given a poset P , the predecessor set (also known as the downset) of x ∈ P is the

set of elements smaller than x:

pred (x) = {y ∈ P : y <P x}.

It is a well known that a poset is an interval order if and only if there is a linear

ordering by inclusion on the predecessor set of each element {pred (x) : x ∈ P}

(see, for example, Bogart [3]). As the mapping states that the strict downset of y

is the union of columns 1 through i′ − 1 there is a linear ordering on downsets and

hence every poset which is mapped to must be an interval order.

In addition, composition matrices are a subset of ballot matrices and as Dukes et

al. [10] show that for composition matrices the mapping is a bijection it follows

that the adapted mapping is a surjection.

If we declare that two ballot matrices in BalMat[U ] are equivalent if they determine

the same interval order, then, by definition, there are as many equivalence classes

as there are interval orders on U . In the next section we define a sign reversing

involution that respects this equivalence relation.

The involution

We now define the involution on ballot matrices. We begin by applying the ballot

involution componentwise to entries of BalMat.

Choose some linear order for the entries of the matrix; for instance, order the entries

(ballots) with respect to their minimum element, or order them lexicographically

with respect to their position (i, j) in the matrix. Then apply the ballot involution

to the first entry that is not fixed, if such an element exists, and denote this oper-

ation ψ. A matrix is a fixed point under this sign reversing involution if and only
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if each entry of the matrix is fixed, and thus of the form

{a1}{a2} . . . {aj} with a1 < a2 < · · · < aj .

Note that if A is a k×k matrix fixed under ψ, then the sign of A is (−1)n+k, where

n = |U |. We shall define a sign reversing involution ϕ on the fixed points of ψ.

Let A ∈ BalMat[U ] be a matrix fixed under ψ. Let x ∈ U and assume that x is on

row i and column j of A. We say that x is a pivot element of A if row i contains

at least two elements of U and x is the smallest element on row i, or the following

three conditions are met:

(1) column i is empty;

(2) {x} is the only non-empty ballot on its row;

(3) x is smaller than the minimum element of row i+ 1 of A.

As an illustration, the pivot elements of the matrix

∅ {4} ∅ ∅ ∅

{6}{8} ∅ {3}{7} ∅

∅ {2} ∅

{9} {5}

{1}


are 2, 3 and 5.

If the set of pivot elements of A is empty, then let ϕ(A) = A. Otherwise, let x be

the smallest pivot element of A, and assume that x belongs to the (i, j) entry of A.

(1) If there is more than one element on row i, then remove x from row i and

make a new row immediately above row i with the block {x} in column

j and the rest of the entries empty. Also insert a new empty column i,

pushing the existing columns one step to the right.

(2) If column i is empty, {x} is the only non-empty ballot on its row, and x

is smaller than the minimum element of row i+ 1, then remove column i

and merge row i with row i+ 1 by inserting the singleton block x at the

front of the ballot in position (i+ 1, j).
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Applying ϕ to the example matrix above we get

∅ {4} ∅ ∅

{6}{8} {3}{7} ∅

{2}{9} {5}

{1}


.

Note that the smallest pivot element of this matrix is still 2, and applying ϕ to it

would bring back the original matrix.

Our main involution η : BalMat[U ]→ BalMat[U ] is then defined as the composition

of ψ and ϕ in the following sense:

η(A) =


ϕ(A) if ψ(A) = A,

ψ(A) if ψ(A) 6= A.

It is clear that η is sign reversing. That any fixed point of η has positive sign will

be seen in Section 3.

Proposition 32. The involution η preserves the interval order in the following

sense. Let A ∈ BalMat[U ]. Let P and Q be the interval orders corresponding to A

and η(A), respectively. Then P = Q.

Proof. If A is a fixed point of η, equality is immediate. Further, the block

structure of the elements of A is immaterial to the definition of the poset. Thus, if

ψ(A) 6= A and η(A) = ψ(A), then equality is immediate. For the remainder of the

proof assume that η(A) = ϕ(A) 6= A.

The proof that the involution preserves the interval order is equivalent to saying

that the strict downset of each element is preserved. This follows from a case

analysis. Recall that the strict downset of x at position (i, j) in the matrix is the

union of columns 1 through i− 1.

Let B = η(A). The involution has two possibilities. If the minimal pivot element

x at position (i, j) in A is not the only element on its row, then B is formed by

initially inserting a new empty row above row i and a new empty column before
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column i. The pivot element x is moved to the new row maintaining its column

and hence its strict downset is unchanged.

We now demonstrate that the insertion of the new empty row at position i and

new empty column at position i preserves hooks below the diagonal. For y 6= x at

position (i′, j′) in A there are three possibilities.

(1) The element y is above the newly inserted row and to the left of the new

column, i.e. y remains at position (i′, j′) in B with i′ < i and j′ < i. Then

the new column is inserted to the right of the columns which form the

strict downset of y and hence the downset is unchanged.

(2) The element y is to the right of the newly inserted column and above the

inserted row, i.e. y is at position (i′, j′+1) in B with i′ < i < j′. Again as

i′ < i the new column is inserted to the right of the columns which form

the strict downset of y and the downset is unchanged.

(3) The element y is below the newly inserted row and to the right but of the

new column, i.e. y is at position (i′+ 1, j′+ 1) in B with i < i′ and i < j′.

As i < i′, the number of columns which form the downset of y is increased

by 1. The newly inserted column i is empty and therefore contributes no

new entries. As i < i′ the previous rightmost column i′ − 1 is shifted one

place to the right to column i′+ 1 in the new matrix. The downset of y in

B is therefore the union of elements 1 through i′ and hence the downset

is unchanged.

Note that x remains the pivot element in the newly constructed matrix B, the only

non-empty ballot on its row, and with column i empty. Therefore showing that the

second possibility of the involution preserves posets follows from taking the reverse

of the above cases.

As the strict downsets are equal the posets are equal. �
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Fixed points

A fixed point under the sign reversing involution η on BalMat is an n × n matrix

with no pivot elements, equivalently a matrix such that

(1) there is exactly one element per row;

(2) if a < b, with a on row i, and b on row i+ 1, then column i is non-empty.

Note that the total number of blocks in such a matrix is n—each element is in its

own block—and thus it has sign (−1)2n = 1, positive.

Further, matrices which satisfy these conditions can be decomposed to a pair con-

sisting of a permutation and an inversion table: As there is exactly one element

per row, a permutation π = a1 . . . an can be read setting each ai the value held in

row i. As the matrix is also upper triangular, the position of the element in a row

specifies an inversion table b1b2 . . . bn where each bi is n minus the column in which

the entry in row i occurs.

As an example, consider the matrix below. It decomposes into the permutation

4132 together with the inversion table 2010:

∅ {4} ∅ ∅

∅ ∅ {1}

{3} ∅

{2}


'

(
4132,

)
' ( 4132, 2010 ) .

Take the equivalence class on ballot matrices where two matrices are equivalent if

they correspond to the same interval order. We wish to show that there is exactly

one fixed point under η per equivalence class. For this purpose and to make explicit

the link to previous work we provide a bijection between composition matrices and

ballot matrices.

For the following, take the structure of the entries of a composition matrix to be

ballots where each element is contained within a singleton block and the blocks are

ordered according to the order on the underlying set.
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Given an m ×m ballot matrix A ∈ BalMat[U ], let ui be the smallest element on

the ith row of A, and define G(A) = U \ {u1, u2, . . . , um}.

Assuming that G(A) is non-empty, define ρ to be the following operation. Take

x = minG(A) at position (i, j) in A. Insert a new row containing only empty

ballots above row i and a new column containing only empty ballots to the left of

column i. Move x to create a singleton ballot in the new row preserving its column.

Note that |G(ρ(A))| = |G(A)| − 1. An example with G(A) = {4, 6} is given below:



{2, 6} ∅ ∅ ∅

{3} ∅ {4}

∅ {1}

{5}


ρ7−→



{2, 6} ∅ ∅ ∅ ∅

∅ ∅ ∅ {4}

{3} ∅ ∅

∅ {1}

{5}


.

The inverse operation will be denoted ρ−1. To state it explicitly, let A ∈ BalMat[U ]

be a m×m ballot matrix, and let ui be the smallest element on the ith row of A, as

before. Then take H(A) to be the subset of {u1, u2, . . . , um−1} consisting of those

ui such that the following three conditions hold: column i is empty; ui is the sole

element on row i; and ui > ui+1.

Assuming that H(A) is non-empty, define ρ−1 to be the following operation. Take

x = maxH(A) at position (i, j) in A. Append x in a singleton block at the end of

the ballot in position (i+ 1, j), then remove row and column i.

Proposition 33. There is a bijection between composition matrices and ballot

matrices fixed under η. As a result there is a unique ballot matrix fixed under η per

equivalence class.

Proof. We first show that successive application of the mapping ρ gives an

injection from composition matrices into ballot matrices fixed under η.

The same argument as in Proposition 32 shows that ρ preserves the interval order.

Take a composition matrix. Let A be the matrix returned after repeated application

of ρ until the set of elements G(A) is empty. We claim A is a ballot matrix fixed

under η.
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From definition we know that G(A) is empty. Therefore there is exactly one element

per row. The other requirement to be a fixed point under η is that if a < b with

a on row i and b on row i + 1 then column i must be non-empty. As composition

matrices have the property that all columns are non-empty and ρ only introduces

an empty column i when a > b with a on row i, this requirement is met.

Repeated application of ρ is therefore a mapping between composition matrices

and ballot matrices fixed under η with injectivity following from the preservation

of interval order.

As ρ preserves the interval order, the reverse operation ρ−1 also preserves the

interval order.

Take a fixed point matrix. Let A be the matrix returned after repeated application

of ρ−1 until the set of elements H(A) is empty. We claim A is a composition matrix.

Composition matrices are neither row nor column empty. Non-row empty is a

property of fixed point ballot matrices and ρ−1 does not introduce any empty

columns. If a fixed point matrix contains an empty column i then from definition

there is an a > b with a and b on rows i and i + 1 respectively. However as G(A)

is empty it follows that all empty columns are removed.

Hence all fixed point matrices can be mapped to a composition matrices with the

interval order preserved by repeated application of ρ−1, giving surjectivity. �

Let BalMatη[U ] denote the set of fixed points under η. Writing simply x for the

ballot {x}, the complete list of matrices in BalMatη[3] is given in Figure 3.

Permutations from ascent bottoms

In order to examine the fixed points under η we shall consider how to characterize

the pairs resulting from their decomposition to a permutation and an inversion

table. For this purpose, this section is concerned with counting the number of

permutations whose set of ascent bottoms is equal to some given set. Bijections

between such permutations and two different sets of inversion tables are provided.

We make repeated use of the sieve principle and our presentation follows that of

Stanley [23, Section 2.2].
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 3 ∅ ∅
2 ∅

1

 3 ∅ ∅
∅ 2

1

 ∅ 3 ∅
2 ∅

1

 ∅ 3 ∅
∅ 2

1

 ∅ ∅ 3
2 ∅

1


 ∅ ∅ 3

∅ 2
1

 3 ∅ ∅
1 ∅

2

 ∅ 3 ∅
1 ∅

2

 ∅ 3 ∅
∅ 1

2

 ∅ ∅ 3
1 ∅

2


 2 ∅ ∅

3 ∅
1

 2 ∅ ∅
∅ 3

1

 2 ∅ ∅
1 ∅

3

 ∅ 2 ∅
1 ∅

3

 ∅ 2 ∅
∅ 1

3


 ∅ ∅ 2

1 ∅
3

 1 ∅ ∅
3 ∅

2

 1 ∅ ∅
∅ 3

2

 1 ∅ ∅
2 ∅

3


Figure 3. Complete list of matrices in BalMatη[3]

Recall the definitions of αn(S) and βn(S):

αn(S) = {τ ∈ Sn : D(τ) ⊆ S}, αn(S) = |αn(S)|,

βn(S) = {τ ∈ Sn : D(τ) = S}, βn(S) = |βn(S)|.

In an analogous fashion, for π = a1a2 . . . an ∈ Sn, let

A(π) = {ai : i ∈ [n− 1], ai < ai+1}

be the set of ascent bottoms of π. Let

κn(S) = {π ∈ Sn : A(π) ⊆ S}, κn(S) = |κn(S)|,

λn(S) = {π ∈ Sn : A(π) = S}, λn(S) = |λn(S)|.

Note that by definition κn(S) =
∑
T⊆S λn(T ), and by the sieve principle, λn(S) =∑

T⊆S(−1)|S\T |κn(T ).

The following set of sequences will be convenient as an intermediate structure for

later proofs.

Definition 34. For fixed n, let S = {s1, . . . , sk} with 1 ≤ s1 < · · · < sk < n be

given. Also, set s0 = 0 and sk+1 = n. Define the Cartesian product

Cn(S) = [0, k]sk+1−sk × · · · × [0, 1]s2−s1 × [0, 0]s1−s0 .

We shall call an element of Cn(S) a construction choice.
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As example, for n = 8 and S = {3, 5, 6, 7} we have s1 − s0 = 3, s2 − s1 = 2, and

s3 − s2 = s4 − s3 = s5 − s4 = 1. Thus

Cn(S) = [0, 4]× [0, 3]× [0, 2]× [0, 1]× [0, 1]× [0, 0]× [0, 0]× [0, 0].

An example of a construction choice in Cn(S) is 42001000, we shall use this as a

running example throughout the remainder of this section.

Proposition 35. For fixed n, let S = {s1, . . . , sk} and 1 ≤ s1 < · · · < sk < n be

given. Then κn(S) is in bijection with Cn(S).

Proof. Take a construction choice c1c2 . . . cn ∈ Cn(S). We will use this to

construct a permutation by insertion of entries at active sites. Start with the empty

permutation. This has a single active site, labeled zero. Reading the construction

choice in reverse order, insert elements into the permutation beginning with the

minimal element. That is, ci is the choice of active site for the insertion of n+ 1− i

into the permutation.

A new active site is created when an element of S is introduced into the permutation.

The active sites are labeled according to the order in which they are inserted. That

is, assuming entries of S are numerically ordered then the active site to the right

of si in the permutation is labeled i. Note that a consequence of this is that si is

an ascent bottom if and only if i is contained within the construction choice. As

a larger element is inserted at each step this ensures that the only place where an

ascent can take place is after an entry of in the permutation which is contained

within S. Therefore only elements of S can be ascent bottoms.

It is easy to see how to reverse this procedure and thus it provides the claimed

bijection. �

Example 36. For n = 8 and S = {3, 5, 6, 7} the construction process for the

permutation with construction choice 42001000 is as follows. Note the new active
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site created when an element of S is inserted.

0

01 Insert 1 at site 0

021 Insert 2 at site 0

03121 Insert 3 at site 0, contained in S

031421 Insert 4 at site 1

05231421 Insert 5 at site 0, contained in S

0635231421 Insert 6 at site 0, contained in S

063527431421 Insert 7 at site 2, contained in S

0635274831421 Insert 8 at site 4

So the resulting permutation is π = 65783421, with A(π) = {3, 5, 7}.

Corollary 37. For fixed n, let S = {s1, . . . , sk} with 1 ≤ s1 < · · · < sk < n be

given. Then

κn(S) =
k+1∏
r=1

rsr−sr−1 ,

where s0 = 0 and sk+1 = n.

Proof. By Proposition 35 we have that κn(S) is the cardinality of Cn(S), from

which the formula immediately follows. �

We shall now show that construction choices in Cn(S), and thus permutations in

κn(S), are in bijection with two different sets of inversion tables. Namely

{
υ ∈ InvTabn : Dent(υ) ⊆ {0, s1, s2, . . . , sk}

}
and {

υ ∈ InvTabn : [n− 1] \Dent(υ) ⊆ {n− s1, . . . , n− sk}
}
.

Proposition 38. For fixed n, let S = {s1, . . . , sk} with 1 ≤ s1 < · · · < sk < n be

given. Then there is a bijection between κn(S) and inversion tables whose entries
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are a subset of {0} ∪ S,

{
υ ∈ InvTabn : Dent(υ) ⊆ {0, s1, s2, . . . , sk}

}
.

Proof. Again we shall use the construction choice. Entries contained within

the inversion table are a subset of S. Therefore elements which are in [n − 1] but

not in S, that is, elements of [n − 1] \ S, cannot be contained in the inversion

table. These entries are therefore forbidden. Label the remaining possible entries

right to left from [0, k]. In this context it is convenient to use our diagrammatic

representation of an inversion table. As an example, let n = 8 and S = {3, 5, 6, 7}.

As [n− 1] \ S = {1, 2, 4}, the columns 8− 1, 8− 2, and 8− 4 are forbidden (dark,

below). Labeling those which remain right-to-left with [0, 4] yields

01234
1
2
3
4
5
6
7
8 .

Given a construction choice c1c2 . . . cn ∈ Cn(S), assign the entry on row i to be in

the column labeled ci. Note that as a consequence si is contained in the inversion

table if and only if i is contained within the construction choice. To consider the

range of construction choices which are valid, we also note that there are k + 1

allowed columns for the first sk − sk−1 rows, k choices for the next sk−1 − sk−2

rows, and so on. This agrees with the definition of Cn(n). Taking our example

construction choice of 42001000 yields the inversion table υ = 75003000 where

Dent(υ) = {0, 3, 5, 7}:

.

�
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Applying the sieve principle to the set of inversion tables from Proposition 38 we

arrive at the following result.

Corollary 39. There is a bijection between λn(S) and inversion tables whose

entries are exactly those in {0} ∪ S,

{
υ ∈ InvTabn : Dent(υ) = {0, s1, . . . , sk}

}
.

To prove the bijection between κn(S) and the second set of inversion tables, con-

sideration of a set of ballots is useful. The proof of Proposition 40 below shows one

way to make a ballot in Bal[n] (short for Bal[[n]]) from a given construction choice.

Proposition 40. For fixed n, let S = {s1, . . . , sk} and 1 ≤ s1 < · · · < sk < n be

given. Then Cn(S) is in bijection with the set of ballots

{
B1 . . . Bk+1 ∈ Bal[n] : {minB1, . . . ,minBk+1} = {1, s1 + 1, . . . , sk + 1}

}
.

Proof. We will show how to construct a ballot from a given construction

choice c1c2 . . . cn. Take k+ 1 empty blocks. At any point in the following construc-

tion each block will be considered either open or closed, and the open blocks will be

numbered 0, 1, . . . , k, from left to right. Initially all blocks are open. For i equal

to 1, 2, . . . , n, in that order, let a = n+ 1− i and insert a into the cith open block.

If a ∈ {1, s1 + 1, . . . , sk + 1} then also close the block a is inserted into. This way a

is guaranteed end up as the minimal element of its block. It is easy to see how to

reverse this procedure and thus it provides the claimed bijection. �

Example 41. For n = 8 and S = {3, 5, 6, 7} consider the construction of a ballot

whose minimal block elements are {1, 4, 6, 7, 8} with construction choice 42001000.

Initially we have 5 empty blocks labeled from [0, 4]. Note that when a minimal

block element is inserted, that block is no longer open and the remaining blocks
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are relabeled.

{}0{}1{}2{}3{}4

{}0{}1{}2{}3{8}4 8 inserted in block 4, is minimal entry

{}0{}1{7}2{}3{8} 7 inserted in block 2, is minimal entry

{6}0{}1{7}{}2{8} 6 inserted in block 0, is minimal entry

{6}{5}0{7}{}1{8} 5 inserted in block 0

{6}{5}0{7}{4}{8} 4 inserted in block 1, is minimal entry

{6}{3, 5}0{7}{4}{8} 3 inserted in block 0

{6}{2, 3, 5}0{7}{4}{8} 2 inserted in block 0

{6}{1, 2, 3, 5}0{7}{4}{8} 1 inserted in block 0, is minimal entry

Therefore the final ballot is {6}{1, 2, 3, 5}{7}{4}{8}.

Proposition 42. There is a bijection between κn(S) and inversion tables whose

missing elements are a subset of n− s1, n− s2, . . . , n− sk,

{
υ ∈ InvTabn : [n− 1] \Dent(υ) ⊆ {n− s1, . . . , n− sk}

}
.

Or, equivalently,

{
υ ∈ InvTabn : [0, n− 1] \ {n− s1, . . . , n− sk} ⊆ Dent(υ)

}
.

Proof. As seen in the proof of Equation (2) from Section 3, a ballot can be

taken to a permutation by writing the entries within a block in decreasing order

and concatenating the blocks. By this method only the minimal element in a block

may be an ascent bottom in the permutation, with the exception of the final block

whose minimal element is the last element in the permutation.

Hence, for a fixed n and S, the ballot construction gives a bijection between per-

mutations whose set of ascent bottoms is a subset of S and permutations whose set

of ascent bottoms plus the last element is a subset of {1}∪{s1 + 1, . . . , sk + 1}. Let

π = a1 . . . an be any such permutation. We shall denote the set of ascent bottoms
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plus the final element of π as T = {t1, t2, . . . , tj}:

A(π) ∪ {an} = T ⊆ {1} ∪ {s1 + 1, . . . , sk + 1}.

An element in a permutation can either be an ascent bottom, a descent top, or the

final element. Taking the complement of a permutation takes an ascent bottom ti

to a descent top n+ 1− ti. Letting πc denote the complement of π, it follows that

for πc the set of descent tops and final element is

{n+ 1− t1, n+ 1− t2, . . . , n+ 1− tj} ⊆ {n} ∪ {n− s1, . . . , n− sk},

which contains at least the element n. The set of ascent bottoms in πc contains

everything which is not a descent top or the final element.

A(πc) = [n] \ {n+ 1− t1, . . . , n+ 1− tj}.

As T ⊆ {1} ∪ {s1 + 1, . . . , sk + 1}, it follows that

[n− 1] \ {n− s1, . . . , n− sk} ⊆ A(πc).

From Corollary 39 we have that πc corresponds to an inversion table whose entries

are exactly those in {0} ∪A(πc), thus giving a unique inversion table satisfying

[0, n− 1] \ {n− s1, . . . , n− sk} ⊆ Dent(υ).

This concludes the proof. �

Example 43. As in previous examples, let n = 8, S = {3, 5, 6, 7} and consider the

construction choice 42001000. From Example 36 the permutation in κn(S) that is

given by the construction choice is π = 65783421. We wish to find the inversion

table υ corresponding to π satisfying

[0, 7] \ {8− 3, 8− 5, 8− 6, 8− 7} = {0, 4, 6, 7} ⊆ Dent(υ).

From Example 41 the ballot given by the construction choice is {6}{1, 2, 3, 5}{7}{4}{8}.

Writing the elements within a block in decreasing order and concatenating the

blocks gives the permutation τ = 65321748 with set of ascent bottoms {1, 4} and
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final element {8} where

{1, 4, 8} ⊂ {1, s1 + 1, . . . , sk + 1} = {1, 3 + 1, 5 + 1, 6 + 1, 7 + 1}.

The complement of τ is τ c = 34678251 and has set of descent tops {9− 4, 9− 1} =

{5, 8} and final element 9− 8 = 1. Every other entry in τ c is an ascent bottom:

A(τ c) = {2, 3, 4, 6, 7}.

Taking S′ = A(τ c), it follows from Proposition 35 that the construction choice

uniquely specifying τ c ∈ κn(S′) is 54312000. Applying Proposition 38 and Corol-

lary 39, we can show that τ c corresponds to the inversion table 76423000, which,

by construction, has set of distinct entries

Dent(76423000) = {0, 2, 3, 4, 6, 7} = {0} ∪A(τ c).

Thus we have constructed υ satisfying {0, 4, 6, 7} ⊆ {0, 2, 3, 4, 6, 7} = Dent(υ).

Decomposition of fixed points

Recall that matrices fixed under the involution η satisfy the properties

(1) there is exactly one element per row;

(2) if a < b, with a on row i, and b on row i+ 1, then column i is non-empty.

Also recall that a fixed point matrix can be viewed as a pair consisting of a permu-

tation and an inversion table.

For A ∈ BalMatη[U ] where n = |U |, let π(A) = a1 . . . an be the permutation defined

by setting ai the value held in the unique nonzero element of row i of A. Let an

equivalence relation ∼ on BalMatη[U ] be defined by A ∼ B if π(A) = π(B).

Proposition 44. For π ∈ Sn, the equivalence class [π]∼ is determined by the

descent set S = {s1, s2, . . . , sn} = D(π) of π alone. In fact, fixed point matrices in

[π]∼ can be viewed as pairs consisting of the permutation π and an inversion table

whose set of missing entries is a subset of {n− s1, n− s2, . . . , n− sk}.



68 3. DECOMPOSING LABELED INTERVAL ORDERS

Proof. It is a defining property of a fixed point matrix that if a < b, with a

on row i, and b on row i + 1, then column i is required to be non-empty. This is

equivalent to saying that when the matrix is decomposed into a permutation and

inversion table, that n− i is an entry contained within the inversion table.

So, if a > b then we have a descent in the associated permutation and therefore

column i may or may not be empty. It follows that n − i may or may not be

contained in the inversion table.

Therefore, for π ∈ Sn, if the set of descent positions is D(π) = S = {s1, s2, . . . , sk},

then the set of inversion tables with which π can be paired are exactly those where

the set of missing entries is a subset of {n− s1, n− s2, . . . , n− sk}. �

Theorem 45. Labeled interval orders on [n] are in bijection with the set

∑
S⊆[n−1]

βn(S)× κn(S).

This set may be alternatively written as

{(π, τ) ∈ Sn ×Sn : A(τ) ⊆ D(π)}.

Proof. The adapted surjection of Dukes et al. is a bijection between labeled

interval orders and fixed point ballot matrices. This is given by the equivalence

class on ballot matrices according to interval order and Proposition 33 which shows

that there is a unique fixed point per equivalence class.

A fixed point matrix can be decomposed into a permutation π and an inversion

table. If D(π) = {s1, s2, . . . sk} Proposition 44 gives that the set of inversion tables

with which π can be paired are those whose set of missing elements is a subset of

{n−s1, n−s2, . . . , n−sk}. We know from Proposition 42 that such inversion tables

are in bijection with permutations in κn(D(π)). �

Corollary 46. The number of labeled interval orders on [n] is given by the formula

∑
{s1,...,sk}⊆[n−1]

(
det
[(

n− si
sj+1 − si

)]
·
k+1∏
r=1

rsr−sr−1

)
,

in which s0 = 0 and sk+1 = n.
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Proof. This follows from the formula for βn, see Stanley [23, Example 2.2.4],

and the formula for κn given by Corollary 37. �

In the above we have taken the permutation to be fixed and considered the set of

inversion tables in the equivalence class under ∼. It is equally natural to instead

take the inversion table as fixed.

As before, for A ∈ BalMatη[U ], let υ(A) = b1b2 . . . bn be the inversion table from

the decomposition of a ballot matrix fixed under η defined by setting bi to n − j

where j is the column of the only non-empty ballot entry on row i of A.

Let the equivalence relation ≈ on BalMatη[U ] be defined by A ≈ B if υ(A) = υ(B).

Proposition 47. For υ ∈ InvTabn, the equivalence class [υ]≈ is determined by

Dent(υ) alone. In fact, fixed point matrices in [υ]≈ can be viewed as pairs consisting

of the inversion table υ and a permutation whose descent set is a subset of Dent(υ)\

{0}.

Proof. This proof is similar to that of Proposition 44. Define S =

{s1, s2, . . . , sk} to be the set of distinct entries in υ with the exception of 0.

S = Dent(υ) \ {0}.

From the definition of the decomposition, matrices in [υ]≈ satisfy that columns

n− s1, n− s2, . . . , n− sk are non-empty.

Recall that, for a ballot matrix fixed under η, if there is an ascent at position i,

ai < ai+1, then column i must be non-empty. If there is a descent, then it may

or may not be non-empty. Therefore the set of ascent positions in the associated

permutation must be a subset of n− s1, n− s2, . . . , n− sk. Trivially, reversing such

a permutation yields a permutation whose descent set is a subset of s1, s2, . . . , sk.

Therefore, for any given inversion table where the distinct entries is {0}∪S, the set

of permutations which can be associated are trivially in bijection with those where

the descent set is a subset of S. �
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Theorem 48. Labeled interval orders on [n] are in bijection with the set

∑
S⊆[n−1]

αn(S)× λn(S).

This set may be alternatively written as

{(π, τ) ∈ Sn ×Sn : D(π) ⊆ A(τ)}.

Proof. Corollary 39 gives that permutations in λn(S) are in bijection with

inversion tables with set of distinct elements {0}∪S. Proposition 47 states that the

permutations with which an inversion table υ can be paired are those with their

descent set a subset of Dent(υ) \ {0}. From definition, such permutations are those

contained within αn(S). �
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