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SUMMARY

The computational analysis of vortex shedding flow is presented, using the
commercially available computational fluid dynamics ( CFD ) software
package PHOENICS. In this analysis it is shown how the use of the
conventional PHOENICS default first-order hybrid-upwind convective
differencing scheme provides an excellent example of the effects of
multidimensional false diffusion. These effects are substantially reduced
with the introduction of an alternative scheme, SUCCA ( Skew Upwind
Corner Convection Algorithm ), for the modelling of convective transport
in 2D and 3D analyses; resulting in the promotion of continuous vortex
shedding for the 2D model. The mechanism of pulsating flow influence on
the vortex shedding process has also been simulated. The results show that

a complex transient phenomenon such as vortex shedding can be analysed
using the PHOENICS code but only with the implementation of an
alternative convection algorithm. The resuits also demonstrate the SUCCA
scheme’s ability to accurately represent convective transport and hence
substantially reduce the effects of multidimensional false diffusion in

numerical flow analyses.
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a discretised convection / diffusion coefficient
A bluff body length, area

b linearised source / sink term

B bluff body width

C modified convection coefficent
C1 species concentration

D pipe diameter

f vortex shedding frequency

H channel width

k., KE turbulence kinetic energy

m cell face mass flux

O order of accuracy

P.p pressure term

P.N.S.E.W, main and surrounding grid point locations

SW,SE,NW,

NE

PIL PHOENICS Input Language
Pe Peclet number

r radial component direction
Re Reynolds number

Str Strouhal number

S volumetric source / sink term

Vihi



Tt time
U,u,U1 u-velocity component
V,v,V1 v-velocity component

W,w,W1 w-velocity component

X, x x-direction
y-direction
z-direction
& distance, Kronecker delta
e fluid strain
e ,EP dissipation rate of turbulence kinetic energy
Y. summation term
o normal stress, combined stress
¢ computed dependent variable
Tt fluid molecular viscosity
P fluid density
0 skew flow angle, circumferential component direction
T shear stress term
V - fluid kinematic viscosity

A Cartesian tensor notation components where
i=123 =123 k=123
/ laminar conditions
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nb neighbour
o inlet conditions

P.N,S,E,W, main and surrounding grid point locations

SW,SE,NW,

NE

p inlet pulsating flow conditions

r radial component direction

rms root mean square

S, W south and west cell faces

SW typical modified convection term location for upwind cell
t turbulent conditions

00 outlet condition

¢ computed dependent variable

0 circumferential component direction

VS vortex shedding under steady flow conditions

vortex shedding under pulsating flow conditions

~ instantaneous quantity
- average quantity

y fluctuating quantity



1.1 The Vortex Shedding Flowmeter

The separating flow around bluff ( or non-streamlined ) bodies is

renowned for its production of an unsteady wake. At appropriate Reynolds
numbers the wake may be seen to take the form of the well known
Karman'' vortex street in which the cyclically shed vortices are convected
downstream in a regular array. Such unsteady flows are of practical
interest to engineers. Particular examples may range from the vortex
induced vibrations of structures to the vortex shedding flowmeter where,
In the latter case, the frequency of the shed vortices should be directly
proportional to the bulk mean velocity in a well designed meter.

Over the last 20 years the vortex shedding flowmeter has been
developed into a valuable metering instrument, being used for many
industrial flow process monitoring and control applications'*¥ involving all
types of liquids, gases and steam. The many advantages of this type of
meter include good accuracy and long-term repeatability, a wide operating
range and a linear frequency output. This linear frequency output is found
to be a function of the dimensionless Strouhal number:

_f,b
U

1.1

The principle of the meter is such that having measured the transient
vortex shedding frequency f, , the calibrated universal Strouhal number

for the meter is used with the bluff body width b to obtain the mean bulk
velocity [j :



The meter itself has no moving parts but its operation does involve a
hydrodynamic oscillation. It is known that the vortex shedding process in
steady flow remains compietely stable, even in the presence of high
turbulence levels such as those found in high Reynolds number pipe flows
( see Chapter 2 ). In periodic pulsating flow, however, from a source such
as a reciprocating or centrifugal positive displacement machine it has been
shown'*® that there exists an interference with the vortex shedding
process.

The extent of this interference is found to be a function of the
pulsation frequency and pulsation amplitude, with the maximum
interference occurring with the vortex shedding process synchronizingitself
at half the pulsation frequency; a phenomenon known as locking-in. This

interference manifests itself as percentage change in the calibrated Strouhatl

number for the meter with changes of + 40% occurring at lock-in, even

though the pulsation amplitude may only be of a comparable level to that

of normal pipe turbulence.

1.2 Computations id Dynamics

The development of computational fluid dynamics ( CFD ) software for
the numerical prediction of complex fluid flow behaviour has taken place
over the last 30 years, in parallel with advances in digital computer
technology. The development of such CFD codes has given the engineer a

valuable tool which will further promote the understanding of fluid fiow

behaviour.

Computational techniques involved in solving fluid flow problems fall



iNto two main categories, these being:
1) finite difference techniques
2) finite element techniques

The method of finite differences, within a finite volume environment,
IS described in detail in Chapter 3. ”Among the advantages of the use of this
technique are, firstly, the maintenance of the conservation principle
embodied within the flow equations and , secondly, the use of stable,
efficient and accurate solution methods."?®"?®

In the finite element method the flow equations are approximated using
parameters relating to the geometry of the fluid element and the
mathematical functions chosen to represent the velocity and pressure terms
at locations on the edges and within the finite element. A penalty function
method'®”’'may be adopted to give a relationship between the pressure field
and the continuity equation. Such a method provides the basis for a stable
and efficient numerical solution of the flow field since it promotes banded
coefficient matrices.

The principal advantage of finite elements is the geometrical flexibility
in the problem description which the technique allows. The development
of more stable and efficient solution algorithms®”**®has seen an increase
in the use of finite element CFD codes and for the vortex shedding problem
itself Van de Vosse et a/*®have predicted this unsteady problem in laminar
flow.

In the context of this work, the commercially available CFD software
package PHOENICS'", a finite volume / finite difference type code, has

been used in an attempt to ascertain the extent of the capabilities of such



a code in relation to the simulation of a complex transient phenomenon
such as vortex shedding. Emphasis has been placed upon analyzing the
vortex shedding process for both laminar and turbulent flow regimes,
turbulent pulsating flow conditions with specific regard to the locking-in

process and three-dimensional turbulent flow.



CHAPTER 2 LITERATURE REVIEW

The literature available in relation to the subject of flow over bluff
bodies is extensive. The following review represents an assessment of the
more relevant and most commonly referenced articles on the matter.

The unsteady wake produced by flow over a bluff symmetrical obstacle
for a Reynolds number above a certain critical value was first observed by
Strouhal'”’, who noted the subsequent downstream formation of a vortex
street. Mallock® and Benard” both described the initial formation of twin
symmetrical standing vortices downstream of the obstacle at the beginning
of the motion, followed by an elongation of the vortex pair to an
asymmetrical position. The vortices were then observed to move away

from the body, being discharged alternately from the two sides. This

eddying motion was observed to possess a definite frequency for each

Reynolds number.

Mallock and Benard observed that downstream, the vortices assumed
what appeared to be a regular pattern, which in most cases was evident
at a distance four or five diameters behind the solid body. The vortices
arranged themselves in a double row, iﬁ which éach vortex was positioned
opposite the mid-point of the interval between the two vortices in the
opposite row. In suitable circumstances the trail of vortices was seen to
persist for a considerable distance downstream of the solid body.
Karman and Rubach"® considered the system far downstream of the
bluff body and found that the shed vortices do not in fact arrange
themselves exactly on two parallel rows with a definite spacing ratio but

the trail tends to widen out downstream, and the spacing ratio changes. It



has been suggested''" that the regularity shown in many photographs is
often due, in part, to the effect of channel walls, which have a lateral
compressing effect on the flow.

The first detailed experimental examination of the structure of the free
vortex layers in the bluff body wake was made by Fage and Johansen'?,
who, for two-dimensional motion examined the layers from bodies of several
shapes. The authors found that the velocity distribution across the vortex
layer in its initial stages showed maxima at the outside edges and minima
at the inside edge with the maximum velocity in every case greater than
the undisturbed free stream velocity. Measurements of the rate of
discharge of vorticity and pressure distribution across the layer were also
taken.

Schiller and Linke''® considered a similar flow geometry, extending the
analysis further downstream of the biuff bilockage. The authors found that
for certain Reynolds number values ( based on the diameter of the bluff
cylinder ) the width of the vortex layer grew according to x'2 where x is
some downstream distance. Since this law of growth is characteristic of
the laminar boundary layer, it was assumed that the vortex layers are
laminar so long as this law holds. Schiller and Linke also found that, as
expected, the critical distance for the transition to turbulence approaches
the cylinder as the Reynolds number increases.

At higher Reynolds numbers the diffusion of the vortices takes place
so rapidly that the formation of the double vortex row is lost in the
turbulent wake. However vortices continue to be shed with unfailing
regularity until an approximate Reynolds number { based on biuff body

width ) of 5x10°. Beyond this upper limit the flow is completely



turbulent"'®. Humphreys®*and Morkovin®*both noted this complete loss of
periodicity in the wake for Reynolds numbers between the critical value of
1x10° and 3.5x10° when the re-attachment of the two vortex layers was
observed. However, Roshko®®, who performed experiments for Reynolds
numbers up to the value 1x10’, observed the recovery of periodicity in the
near wake at this post-critical Reynolds number.

On the frequency of vortex shedding Rayleigh'® suggested the

following formula for low Reynolds number flow over a circular cylinder:

f d
o 0.195(1-201 2.1
U Re

based on the result of his analysis of the original observations of Strouhal'”.
The dimensionless ratio fwdlfj- is commonly referred to as the Strouhal
number after the Austrian physicist. Karman and Rubach''”, Fage and
Johansen''? and Tyler''® all made experimental studies of Strouhal number

variation for various bluff body shapes, while Rosenhead and Schwabe'"”

considered the effects of channel walls on the stability and characteristics

of the vortex street.

The theoretical analysis of flow past bluff bodies was first considered
by Kirchoff''® and Karman'". In the free streamline theory developed by
Kirchoff, the free vortex layers which originate from the bluff body are
idealised by surfaces ( streamlines ) of velocity discontinuity. These free
streamlines divide the flow into a wake and an outer potential field.
Kirchoff’s theory, however, assumes the velocity of the vortex layer to be
that of the u'ndisturbed free stream velocity. This underestimation of the

separation velocity, as experimentally verified by Fage and Johansen''?,



thus predicts values of drag lower than those observed.

Karman'"! approached the problem by considering the periodic vortex
shedding nature of the flow itself. However, the theory was incomplete Iin
that it could not, by itself, relate the vortex street dimensions and velocities
to the obstacle dimension and ffée stream velocity. Additional empirical
data was required from experimental analyses.

Roshko''® proposed a modified Kirchoff analysis where the separation
velocity is allowed to assume some arbitrary value as a function of the free
stream velocity. The same author'?®, by allowing for some annihilation ot
vorticity in the free vortex layers ( following Fage and Johansen ),
combined the free streamline theory of Kirchoff with Karman’s theory of
the vortex street to relate the drag to only one experimental measurement,
that of the Strouhal number. In this paper, Roshko also defined a universal
Strouhal number based upon the free shear wake width and the separation
velocity. Roshko'®®'stated that vortex shedding frequency is related to the

wake width, with the following inverse relationship applying:

1
e 2.2

d*
where d* is the wake width between the free shear layers prior to vortex
creation. With this general relationship it follows that bluffer bodies, which
promote a larger wake width, will have lower vortex shedding frequencies
and 'hence lower Strouhal numbers. However, this relationship is only
appropriate at higher Reynolds numbers { > 10000 ) for which the Strouhal

number is distinctly different for different shaped cylinders, though

approximately constant for each individual one.



Gerrard'?" proposed that there should in fact be two characteristic
lengths influencing the mechanics of the vortex shedding process; these
being the axial length of the formation region immediately downstream of
the bluff body and the free shear wake width. Gerrard'?? also noted the
apparent transition to three-dimensionality in the wake of a two-
dimensional bluff body in which stable, transitional and fully turbulent flows
were considered.

The existence of coherent large scale structures behind bodies at high
Reynolds numbers has been well established'®®. Cantwell'*® studied the
near wake of a two-dimensional cylinder at a Reynolds number of 140000
to reveal coherent structures having an appearance resembling the classical
periodic vortex pattern of Karman'"',

The study of Perry and Watmuff'?® revealed that coherent large scale
eddies exist in the wakes behind three-dimensional blunt bodies at high
Reynolds numbers and that these structures retain their identity for long
streamwise distances. Also, the geometry of the phase-averaged vector
field displays the same general features as in the unsteady laminar flow
wake results of Perry et a/ ‘*®.

Computational analyses in this field have mainly concentrated upon
unsteady laminar and turbulent flow past circular cylinders'*”?®?% Some
such simulations'*® analyzing the two-dimensional unsteady form of the
Navier-Stokes equations have utilised the discrete vortex method,
employing a transport equation for vorticity. This Lagrangian approach
helps to circumvent the problems of artificial viscosity and stability often
associated with Eulerian analyses®®®", However, problems involved in the

modelling of energy dissipation and vortex diffusion in the wake have to be



addressed. Others such as Braza et a/ '?” have used a control volume /
finite difference approximation for the two-dimensional governingequations
using a log-polar coordinate system to overcome the problem associated
with modelling the circular geometry of the bluff cylinder. It was observed
in this analysis that due to, what was considered to be, a relatively low
order of accuracy (0,2) present in the numerical schemes employed that a
very fine grid was required for moderate (300) and high (1000) Reynolds
number calculations.

The most notable computational study involving vortex shedding from
rectangular cylinders is that of Davis et a/ *?"*". In these analyses the two-
dimensional unsteady laminar form of the Navier-Stokes equations are
modelled using a direct finite difference version of the conservative form

of the governing equations. Convective transport was modelled using the

third-order accurate QUICKEST scheme of Leonard™?.
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PHQENI FD CODE

3.1 General Description
3.1.1 The Structure of PHOENICS
PHOENICS ( Parabolic Hyperbolic Or Eilliptic Numerical Integration Code

Series ) is a commercial software tool for analysis of transport phenomena
governed by conservation equations. For the numerical analysis of fluid
flow in general, the description of ‘computational fluid dynamics’ (CFD) is
often associated with such codes.

The two essential components within the PHOENICS code are a pre-
processor called SATELLITE and a processor called EARTH.

The pre-processor SATELLITE can be described as an interpreter; from

instructions provided by the user it creates a data file containing

instructions which EARTH can understand and obey. Normally, SATELLITE
will receive its instructions through a file called Q1, provided by the user,
which contains all of the geometry, boundary conditions and solution
control parameters necessary for the problem description.

The processor EARTH contains the main flow-simulating software.
EARTH reads the data file provided by SATELLITE and executes the
corresponding computations; it then creates an output file called RESULT,
which the user can read, and a file of results called PHIDA. The PHIDA file
iIs a graphics file which can be visualised by using the post-processor
PHOTON.

Both SATELLITE and EARTH possess space for additional FORTRAN
coding which is input by the user. In EARTH this coding framework is
called GROUND and the main function of GROUND is to provide a variety

of data-setting and feature-adding alternatives that are not contained within

11



EARTH. As the use of GROUND necessitates the addition of user-defined
FORTRAN coding sequences, re-compilation and re-linking sequences must

be performed prior to execution.

3.1.2 Equations Solved

The conservation equations solved by PHOENICS take the form of
partial differential equations describing, for example, the conservation of:
- mass, momentum, energy, chemical reactions
- In one-, two- and three-dimensional geometries
- for steady and unsteady problems

The conservation equations have a general form:

Se0)+ 2o ,4:)-—-( ,a"’]+s, 31
X\ "~ 9X;
as derived in Appendix A. The four terms in this general differential
equation are referred to as the transient, convection, diffusion and source
terms respectively. The general differential equation may take various

different mathematical forms, for example, the momentum equation can be

described as a second-order, non-linear partial differential equation.

3.2 Nume 1ition of Fluid Flow Within PHOQEN
3.2.1 Numerical Approximation

The partial differential equations describing the fluid flow are transiated

into a set of (solvable) linear algebraic equations. This is achieved by
considering the behaviour of the continuous equations at discrete intervais

of time and space. This process is known as discretisation. In PHOENICS

12



the finite-volume method is used for discretisation.

3.2.2 The Finite-Volume Method

The strategy behind the finite-volume method can be described in the
following manner. The geometrical space occupied by the problem is
subdivided into a number of cells or volumes as shown in Figures 3.1 to
3.4. Each cell has six faces and has at its centre a grid point (node) P. The
neig_hbouring nodes are denoted as North, South, East, West, High and
Low. For rectangular Cartesian or cylindrical-polar grids, the lines
connecting grid points are aligned with the coordinate axes.

At the point P, we denote the value of the dependent variable
as ¢p . ¢p is related to the values of ¢ at neighbouring grid points, and
in unsteady problems to the value of ¢ at an earlier time interval. A linear
algebraic equation expressing this relationship may be written as:

8pdp = 8ydy + Asbs + aydy + 8pbg + 8,0, + 8.0, + rdr + D

R

where the a’s are coefficients and b is necessary to take account of source
terms. The coefficients and source term in equation 3.2 are formulated by
integration of the appropriate differential equation over each control volume
and time interval as described in Patankar®® and as illustrated for steady
flow in Section 3.3. For discretisation in time, implicit temporal

differencing® is used.

Equations of the type 3.2 are known as finite-volume equations and
equation 3.2 describes the processes affecting the value of ¢ in cell P in

relation to its neighbour cells, transient effects and source term b.

13
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3.2.3 Staggered Grids

To avoid numerical problems associated with schemes involving
downwind grid points for the representation of the pressure and convection
terms P29 PHOENICS uses a staggered grid for the solution of the
hydrodynamic (momentum) equations as shown in Figure 3.5. The grid cell
structure specified by the user is the grid used for the solution of scalar
quantities; for example, the values of pressure and species concentration
may be found at the central points of each cell. The velocity components

are found for points at the centre of the faces of these grid cells.

3.2.4 Source Terms and Bc dar ynditic

Boundary conditions within PHOENICS are implemented by the
inclusion of additional source and/or sink terms in the finite volume
equations for computational cells at the domain boundaries. Since the form
of the source term is required to be linear in nature for compatibility with

the algebraic equation solution, PHOENICS adopts the following relationship

for source terms:

S, = f x CO x (VAL - ¢) 3.2a

where ¢ is the solution dependent variable, f is a multiplying factor, CO
is the source coefficient and VAL is the required value of dependent
variable in each boundary cell. The use of this relationship is shown in the
following example which considers the zero-slip boundary condition for the
x-direction momentum equation in laminar flow. In Figure 3.6, the exact
expression for the wall shear stress is t, = - i (0u/oy) . For the cell

shown in the Figure, the velocity gradient at the wall is approximated

15



user-defined scalar cell

v-momentum cell

u-momentum cell

Figure 3.5 Staggered momentum cells.
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by du/foy = ug/(8y), , since the fluid velocity at the wall is zero. The total

shear force acting on the boundary control volume is:

B -
AXAZ (ay/2) (0 - ug)

hence the user may input a source COefficient of 1.0 and a VALue of 0.0.

The multiplication factor fis seen to be AXAZp/(Ay[2) and the overall

effect is to produce a sink of momentum in the finite volume equations at

the boundary cells.

4
L' X 5}’)5

Figure 3.6 Boundary cell in laminar flow,

Here, it is assumed that the boundary condition is linear, however it is
possible to input non-linear sources through special GROUND coding for the

CO and VAL terms as described in Chapter 4.

3.3 Modelling of the Conve

arms Within PHOEN|

The default scheme within PHOENICS for the discretisation of
convective-diffusive transport is the hybrid scheme™®. The hybrid scheme
possesses the benefits of central difference approximation accuracy
coupled with the stability of the upwind scheme®. The following example

describes the hybrid-upwind formulation. Consider the 1-D convection-

diffusion problem, with no sources, as related to Figure 3.7:

17



Figure 3.7 Grid cell layout for 1-D convection-diffusion problem.

The equation describing the transport process may be written as:

Sove =2 (r, 2] 3.3

integrating over the control volume for the solution cell P, i.e.:

rd ®)
£ (pud)dx = f ( X dx] 3.4
we obtain
(pUtb). B (PU(b)W = (F¢-gd-(£-) - ( ¢-g%) 3.9

Now, assuming a piecewise linear ¢ -profile for the diffusion terms we

may represent the gradient values at the cell interfaces in the following

manner.

F.(¢5 = ¢p) ~ Fw(¢P - ¢w)

(8x), (8x),, 39

(pUd), - (PU¢)w =

For simplicity we let the mass flux terms (pU), = F, and (pu), =F,, ,and
the diffusive flux terms T,/(8x), =D, and T,/(8x), =D, , hence equation

3.6 becomes:

18



F,(b, B Fw¢w = Do((bE - ¢P) - Dw(¢P - ¢’W) 3.7

Having discretised the diffusion terms in relation to the solution grid points
we must now do the same for the convection terms. The overall

discretisation equation for the solution cell P can be written as:

8P¢P = 8E¢E+8w¢w 3-8

and for the hybrid scheme we may represent the convective and diffusive

transport of ¢ in the following manner:

or 3.9

and
ay - D,,,[[Pe.1 +-%€.o]]
or 3.10
F
ay '-'ﬂ IV'DW+_§!' ”

where the symbol [ I stands for the largest of the quantities contained
within it and Pe is the Peclet number ( or cell Reynolds number ) defined as
the ratio of the strengths of convection to diffusioni.e. Pe=F,/D, .Itcan
be seen that for cell Peclet numbers lying in the range -2<FPex<2 , i.e.
where the strengths of convection and diffusion are assumed to have

approximately equal magnitude, the discretisation equation will take the

19



form of a central difference approximation involving both upwind and
downwind neighbour cells. Outwith this range convective transport is

assumed to dominate diffusive transport and the hybrid scheme reduces to

the upwind formulation where:
aE = [["F’,O]] ’ aw = HFW'O]]
and 3.11

BP=BE+GW

with diffusion terms negated.
Thus for convection-dominated flow regions where the strength of
convection exceeds that of diffusion, the hybrid scheme defauits to the

upwind scheme with diffusion terms being neglected.

3.4 Solution of the Flow Figid
3.4.1 Non-Linearity

The conservation equations solved by PHOENICS may be non-linear in
nature. An example of this non-linearity is the convection terms in the
momentum equations. When the convection terms are discretised, the
coefficients of the finite-volume equatidns will themselves be functions of
the solution dependent variable. As such an iterative solution of the

algebraic equations is required with regular updating of the finite-volume

coefficients as the solution progresses.

3.4.2 The SIMPLE Algorithm

The difficulty in the solution of the momentum equations to yield the
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velocity components is the unknown pressure field; there is no obvious
pressure equation. However, it is possibie to determine the pressure field
indirectly using the continuity equation. The basic principle is that when the
correct pressure field is substituted into the momentum equations, the
resulting velocity field satisfies the continuity equation. A 'guess and
correct’ procedure is adopted where the guessed pressure is continually
adjusted in the momentum solution. The pressure modification continues
until the continuity equation is satisfied.

This pressure correction process, together with the solution procedure,
is known as the SIMPLE algorithm®® (Semi-Implicit Method for Pressure

Linked Equations). PHOENICS uses a slight variant of the SIMPLE algorithm
known as SIMPLEST"®,

3.5 Turbulence Modelling Within PHC
3.5.1 The

J U -V. l A Mo i‘n

The aim of any turbulence model is to attempt to relate the Reynolds

stresses of the time-averaged turbulent Navier-Stokes equations in terms
of mean-flow quantities. The time-averaged turbulent compressible Navier-

Stokes equations for may be written in Cartesian tensor notation:

L Uau{"'l‘e Sytvio— ox [[Eﬂ+ - ]- 2[%
/

ot Tox, pax ! ax, ax,) 3| ax,

a ........._..

ax,

as derived in Appendix B. In the context of this work an eddy-viscosity
approach is adopted where, in analogy with the molecular viscous stress,

the Reynolds (turbulence) stresses are modelled in the following manner®®:
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—— |9y au| 2
"U;U] "—'Vt[—a'; +-é;l] —_é-bﬂk 3.13
| {

where k is the turbulent kinetic energy ( = -2-u,’u,’ ). Substituting equation

u, ou
Sl
oX 0X; oX;
re-arranging equation 3.14 gives:

ou ou| 2 o |y,
ol )-S5

3.13 into the momentum equation 3.12 gives:

E.a_-hﬂaa-’hlééa J {[E_t_l_:,+63] 2

A v "2
ot ‘ox;, p ox ox,\\ ox, ox;| 3

L
ax,

3.14

aa’ _a_‘;’——l_aéb + ....a_..

—_—tlY—=

i P 3.15
of ‘ox; p 8)9 ax,

assuming the normal turbulent stress terms -%6 ,k may be included in the

pre-decomposed pressure term'*® we may write:

-?-‘-J—’+Uau’="l—a£6'+i V,"'V') —Qﬂ'i'yl "—2"\’, "a"'"t"l! bg 3-16
at ‘ax, pox, " ox ox, dx;] 3 '|ox;
Re-arranging equation 3.16 we can write:
%y g 1Py | 2, 10U 3, 10 1 3.17
ot ‘ox; pox, " ox| \ox, ax ox;] 3

and for incompressible flow the term 3y, /ox, =0 . thus equation 3.17 may

be written as:
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oy, .Jau,_ 1926 3

/ §t=— 3.18
ot ax; p 9X oXx;

du, au, oy,
Veloo Yo | "Vl 5y
ox, ox; ox;

Equation 3.18 represents the modelled form of the incompressible turbulent

momentum equations.

The eddy-viscosity v, itself can be dimensionally related to the local

turbulent velocity and turbulent length scale'*"*? by:

v,=C,L/k 3.19

where C: iIs a turbulent diffusion coefficient. From dimensional
considerations'* the dissipation of turbulent kinetic energy may be written

as.

u3
w U 3.20
)

where U and L are local reference velocity and length scales of the large

scale turbulent eddies, hence:

Nl

E=CDk

— 3.21
L

again, taking U=k and substituting equation 3.21 into equation 3.19 we

eliminate L:

V.
V' = OI:CDL

€

2
- v,-c X 3.22
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3.5.2 The k-€¢ Turbulence Model

The modelled form of the transport equations for the turbulent velocity

scale( <Kk ) and the turbulent length scale( =€ )} take the following

form(43)
K-transport
_3_’_( _}_‘?.E___a__v_'f_a_k_ +Pk-e 3.23

€ -equation

_ 2
Oe | _‘9£ _ O |Yerr Oe| | c1£Pk - 02_‘-_ 3.24
ot ax, ox;\ o, dX, k K

where the effective viscosity term is defined as v=Vv,+v, . The term
representing the production of turbulent kinetic energy may be written

Substituting for the modelled Reynolds stress term (equation 3.13) gives:

au, aﬂ] au, 2 o5

P, =v
) '(ax, ax, | ox;

The empirically derived turbulence constants have the following values:
C ¢, €, o o

!
009 14 192 10 1.3
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3.5.3 Boundar onditions in Turbulent Flow

Boundary conditions for the momentum, k and € equations at solid

boundaries are provided using the universal log-law wall function:

Y _ _1|ntu"yJ + C 3.26

u K \

¥

where C and X are constants, y is the distance from the wall and U, is
the shear velocity ( = \/;ol_p , where t, is the wall shear stress). The use
of this universal velocity profile provides a computationally-inexpensive link
from the boundary cell node, through the turbulent boundary layer, to the
solid surface. In the momentum equations the wall shear stress is
calculated, based on a local skin friction coefficient, to provide a sink of
momentum at the boundary cell. The resulting skin friction coefficient and
node velocity are used to estimate the turbulence kinetic energy and
turbulence dissipation rate within the boundary cell.

At free boundaries, realistic values of kand € (and hence v, ) may be

estimated from equations relating the mean inlet velocity and a suitable

length scale.
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HAPTER 4 LAMINAR VORTEX SHEDDIN

4.1 Introduction

The computational analysis of laminar vortex shedding from a
rectangular cylinder was undertaken. Such an analysis was executed as it
was considered to represent a stepping stone to the eventual desired
PHOENICS simulation of unsteady turbulent flow within the modelied

vortex shedding flowmeter geometry. The Q1 file for this study is

presented in Appendix C.

4.2 Geometrical Configuration

The geometrical configuration for the laminar vortex shedding problem
is shown in Figure 4.1. The geometry is identical to that examined by Davis
et a/** where a rectangular bluff body is positioned in the centre of a two-
dimensional plane channel whose containing walls lie a distance H apart.
The bluff body itself has a length A and a width B with an aspect ratio A/B
of 1.0. The top and bottom edges of the bluff body lie parallel with the

containing walls. A blockage ratio is defined as the ratio B/H and has a
value of 1/4.

A non-uniform computational mesh of 756X by 40Y was employed such
that a direct comparison could be made with the results of Davis et a/. The
computational mesh in the region of vortex shedding is shown in Figure

4.2. In the study of Davis et a/ a similar non-uniform grid of 76X by 42Y

was used.
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4.3 Numerical Model
4.3.1 Governing Equations

The unsteady incompressible fluid flow was modelled by partial
differential equations describing the conservation of mass and the

conservation of momentum in two rectangular Cartesian coordinate

directions:

nservation of mentum:

ol ol
..f! 0,——-' = ..___E 3, + v, ! 4.1
ot ox, p ox; ax, ox;
9 oa) =0 4.2a
ox, /
4.3.2 Boundary Conditions

At the free boundary on the upwind faces of the computational domain
a fully developed laminar velocity profile was implemented which has a
maximum velocity U, at the channel centre-line. A similar velocity profile
was applied at the downwind free boundary, together with a uniform
pressure prescription. At solid surfaces the no-slip condition was employed
for parallel velocity components.

For the flow, the Reynolds number is defined as Re=U,8/v .
Following Davis et a/ a non-dimensional analysis is considered where all
lengths are normalised with respect to B, all velocities with respect

to U, and time with respect to B/U, . The dimensionless Strouhal

28



number which relates the vortex shedding frequency f to a characteristic

dimension and velocity is defined as Str=fB[ U, .

4.3.3 Convergence Criteria

Convergence was assumed within each particular time step when
progressive single cell values of pressure and velocity in the region of
vortex shedding showed little change per iteration as the calculation
progfessed. An examination of the sum of the residual errors for each of

the equation sets solved also gave an indication of the degree of

convergence.

4.4 Laminar Vorte adding

Analysis

A transient calculation was performed for a Reynolds number of 500
with the PHOENICS default hybrid scheme in operation. Such a Reynolds
number was known to be beyond the critical Reynolds number at which the
vortex shedding process would occur®®. On commencement of the
impulsively started calculation the growth and development of a
symmetrical vortex pair in the early stages of the transience was evident.
The growth of this vortex pair was observed to be directly proportional to
time to the power 2/3 which is in good agreement with experimental
analysis"*#. As the flow calculation continued a stage was reached where
the growth of the twin vortices had ceased. This flow pattern is shown in
Figure 4.3.

At this stage in the physical analysis of such a flow a position of
unstable equilibrium has been reached. As the flow proceeds not every

small fluctuation within the flow can be damped and this leads to an
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asymmetrical eddy pattern. Contrary to expectations, however, the
numerical calculation with the hybrid scheme produced only a twin
symmetrical vortex pattern of stable, steady size as highlighted in Figure

4.3.

In a real flow the sources of the destabilising small fluctuations may be

explained by:

a) non-uniform inlet conditions
b) irregularity of the boundary conditions (e.g. surface roughness)

c) oscillations in the running conditions of the experiment (e.g. sound

waves or structural vibrations)

Obviously such destabilising parameters are absent in any numerical study
which prescribes symmetric flow geometry, initial and boundary conditions.
However, numerical perturbating factors due to round-off or truncation

errors are present which may amplify instability and provoke vortex

shedding. The work of Braza et a/?” shows, however, that such a
calculation will always eventually achieve a symmetric flow pattern as the
calculation progresses. Anderson et a/*® have also considered a similar
problem where numerical errors have been allowed to effectively destabilise
the Navier-Stokes equation and produce a resultant flow field which
resembles its true physical counterpart. However, it was observed that if
the time resolution of the calculation is improved then convergence to the
initial time-dependent symmetric solution was achieved. Thus, it is
apparent that the mathematical solution of the Navier-Stokes equation with

symmetric initial conditions should remain symmetric as the flow evolves,
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even up to higher Reynolds numbers in the region of 1000%”.

The above analyses indicate that an explicit perturbation must be
provided in order to compute accurately flows of physical interest, such as
vortex shedding. However, it is important to verify whether the unsteady
flow pattern produced is dependent upon the nature of the numerically
introduced disturbance. Braza et a/?”’ have reported that the numerical
perturbations introduced into a flow which is below the critical Reynolds
number are effectively damped. When the same conditions are applied to
a flow which is now above the critical Reynolds number a continuous
periodic wake is formed which is found to be similar to tHat reported from
experimental studies. This appears to indicate that any reasonable attempt
at modelling the natural perturbations which promote instability in a real
flow will create continuous vortex shedding. The vortex shedding process
will occur, in spite of the fact that the nature of the numerical and physical
perturbations may be fundamentally different. Such a phenomenon
suggests that the periodic character of the flow appearing beyond a critical
value of the Reynolds number is an intrinsic property of the Navier-Stokes
equation and Is independent of the nature of the perturbations. Also, it may
be said that such numerical disturbances are responsible solely for changing
the flow regime from steady to periodic and that the numerical
disturbances need only be applied temporarily even though in the physical
process such disturbances are random but always present.

The method employed to initiate the vortex shedding process was to

iImpose a circulation around the bluff body in a steady-flow caiculation. This

was achieved by removing the no-slip condition around the surfaces of the

bluff body, then by applying a velocity to the single cell layer surrounding
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the body a circulation is achieved. The circulation velocity was
approximately equal to that of the incoming maximum velocity. Next, a
steady-flow is imposed through the channel and the resulting steady
asymmetric flow field is used as the initial conditions for a transient
solution of flow past the bluff body without added circulation. This steady
asymmetric flow field is shown in Figure 4.4.

The method was a success, in that the calculations showed vortices
being shed from the body at a frequency in approximate agreement with
expectations, as seen in Figure 4.5. However, the rate of dissipation of the
vortices downstream of the body was clearly much too rapid, and after a
number of cycles of shedding, the size and strength of the vortices had
decayed to very low levels. This process of decay can be represented as
a single cell axial velocity transient in the region of vortex shedding, as
shown in Figure 4.6. The velocity transient is seen to decay over a period
of approximately seven shedding cycles, eventually returning to the steady

stable twin vortex wake of Figure 4.3.

Two separate possible causes of this premature vortex decay were

identified:

1) the imposed downstream pressure boundary condition of a uniform

pressure across the flow channel

2) false diffusion (numerical dissipation)

The first possibility was examined in depth. It was considered that the
existence of a fully developed velocity profile at the outlet of the

computational domain is uncertain. Such a profile can only be assumed if
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the distance from the region of vortex shedding is such that the convected
vortices will have decayed totally due to the action of viscous dissipation.
Following Davis et a/ this problem is overcome by ‘stretching’ the
calculation domain downstream of the bluff body using a finite-to-infinite
mapping. This attempt to model infinity allows the prescription of a fully
developed velocity profile at the outlet of the computational domain to be
assumed with a reasonable degree of confidence. Such 'stretching’ of the
calculation domain thus allows a uniform pressure prescription on the
downwind free boundary. This attempt to reduce the influence of the
downstream boundary condition on the flow near to the bluff body was
engaged, however, the elimination of the first possibility was concluded as
these changes were observed to have little effect on the vortex decay.
The large amount of false diffusion apparently responsible for the rapid
vortex decay is associated with the first order accurate upwind scheme
used in PHOENICS for the estimation of the convection terms in the
momentum conservation equations. Under this scheme, when the direction
of flow is inclined at an angle to a computational cell (as must be the case
In some regions for any numerical representation of a vortex), the assumed
contributions of convection from neighbouring cells to the discretised
conservation equation for the cell in question are of poor accuracy. The
resulting errors manifest themselves as an apparent increase in the
exchange coefficient of the conservation equation with a resultant increase
In the diffusion of the conserved species normal to the streamlines. The

magnitude of the false diffusion coefficient has been estimated'®® as:

4(Ay sin°6 + Ax cos”0)
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hence, the degree of false diffusion is seen to be a function of the oblique
angle of the velocity vector from the x-direction and the cell dimensions.
This effect has been described in detail by Patankar®®, It was thus
concluded that an alternative to the upwind scheme was necessary. The

development of this aspect of the computational software is described in

the following section.

4.4.1 The SUCCA2D Scheme
4.4.1.1 Introduction

One of the main constraints within the PHOENICS code is that the
grid cell cluster on which the discretised conservation equations are based
comprises only five cells for a two-dimensional problem; a central grid cell
P and four immediately adjacent neighbour cells N,S,E and W, as shown in
Figure 4.7. The use of this simple cluster allows the use of simple and
efficient numerical equation solvers. It presents no special difficulty if the
conventional first- order upwind scheme is used for the discretisation of

convective transport, since the conditions in the centre cell are assumed to

be influenced only by those four neighbours.

Improvement of the accuracy of the numerical scheme necessitates
that additional or nearby neighbouring grid cells are taken into account
when forming the discretised conservation equation for a particular cell.

The use of such schemes is possible in PHOENICS, but only by including
the influence of cells other than the four immediate neighbours in the

source term of the equation, rather than by increasing the number of terms.

When this is done, care must be taken to ensure that the equations remain

conservative.
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Figure 4.7 PHOENICS grid cell cluster.

Figure 4.8 QUICK grid cell cluster.
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Many alternative schemes have been proposed. For example, the
QUICK scheme of Leonard”* extends the cluster along the lines of grid
cells to include four additional cells (Figure 4.8). Although this scheme
improves the accuracy of gradient estimates along the lines of grid cells,
it does not explicitly recognise the fact that flow variables are conserved
in the streamwise direction; faise diffusion errors can still result, and it also
suffers from stability problems under certain circumstances'?.

The SKEW scheme devised by Raithby“*” and the CUPID scheme of
Patel et a/*® include the corner cells (Figure 4.9). Raithby’s scheme has
now been demonstrated to be non-conservative and unstable'?. In the
CUPID scheme the convection terms in the conservation equations are
modelled in terms of the local direction of the streamlines. The developed
scheme presented in this work is a modified version of the CUPID scheme

and a comparison of these two flow-oriented schemes is discussed.

4.4.1.2 An Alternative Convection A20

heme -

Prior to analyzing the criteria required for the convection algorithm,

the following basic rules should apply to the computational environment

within which the alternative scheme will exist. These rules specify that the

general numerical scheme should®®'

- ensure flux consistency at cell faces, i.e. the flux leaving through a

specific cell face must be equivalent to that entering the adjacent cell

through their common face.

- always produce positive coefficients to promote a stable, diagonally
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Figure 4.10 SUCCA2D grid cell cluster.
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dominant coefficient matrix.
- ensure the conservation principle is maintained.
- treat sources in a@a manner such that the incidence of unbounded solutions

is reduced. Broadly, this entails linearizing the source term with a negative

slope.
- to be consistent with the differential transport equation the coefficients

for the solution cell P must obey the relation a, = ¥_a,, -
- obey sufficient criteria to promote a convergent solution, one such

criterion being known as the Scarborough criterion:

Y |a,l s 1 for all equations
|ap| < 1 for at least one equation
note, this is a sufficient criterion and is not a pre-requisite to ensure
convergence.
With the previously described limitations of earlier schemes in mind any

alternative algorithm to reduce the effects of multi-dimensional false

diffusion should satisfy the following criteria, i.e. the alternative scheme

should:

- remain unconditionally conservative.
- be formulated in such a manner as to produce positive coefficients (thus

reducing the risk of potential oscillatory behaviour, e.g. the SKEW

scheme).

- be relatively easy to implement and computationally inexpensive to run.

With the satisfaction of the above constraints, the algorithm should be

constructed, following the CUPID formulation, such that it will comply with
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the following two additional demands, namely:

a) for a zero skew flow angle the normal hybrid-upwind scheme should be

defaulted for the convection terms
b) when the incoming cell mass fluxes are equal (flow angle 6 =45° ) all

the contributions of the conserved species into the solution cell should

come from the upwind corner cell.

The alternative scheme has been formally titled SUCCA2D (Skew Upwind
Corner Convection Algorithm 2D) and is applied within the nine cell grid
cluster shown in Figure 4.10. Considering the SW corner inflow for cell P

the SUCCAZ2D algorithm may be written for the convective transport of the

conserved species ¢ as:

4.3
and:
. m,
m —
( S ms ]QS
Cobp = [ | n',wi}’ for 45° <0 < 90° 4.4
Hmy, +— SW

mt
+ 0.0
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i.e. Cpbp=Cebgs+ Cq gy

This formulation of the SUCCA2D algorithm satisfies all of the
discriminating criteria outlined above and is discussed in section 4.4.1.4.
The GROUND FORTRAN coding for the SUCCA2D scheme itself is

presented in Appendix L.

4.4.1.3 The A2D Scheme Appliec he Momentum Equation

Previous flow-oriented schemes such as SKEW/CUPID have
concentrated on analyzing the transport of scalar variables within the flow.
The following example shows how the SUCCA2D scheme can be applied

to the transport of momentum.

Consider the two-dimensional steady state convection-diffusion problem
shown in Figure 4.11. The governing equations describing the fluid flow

will be:

d 0 d( odu d( ou oP
A uu e — - A — el S — — el A ———— -
ax(p ) + ay(pVU) 3 (|.|. ) + (p ) 3 4 4a

o, o d( ov o oV oP
—(pUyVv —_— = | py— Mla2r] - 2L _
2 ouv) + Zov ax(u ) . (u ) 4.4b

In Figure 4.11 the solution cell is that containing U, and the local flow is

from the SW corner cell with the local flow direction lying within the

range 0° <0 <45° . The mass fluxes through the west and south faces of

the solution cell will be:



diffusion problem sho wing

momentum cells.

staggered

Figure 4.11 Convection-
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My, = ppAp(U, + U,)]2 4.5

my = (Mg, + m,,)/2 4.6

On the first iterative sweep through the calculation domain the PHOENICS
default hybrid-upwind scheme is used. This is done to achieve initial values

for the mass fluxes which are to be modified within the SUCCA2D scheme

from the first sweep onwards.

With the default (hybrid) scheme in operation the x-direction
momentum equation ( equation 4.4a ) in discretised form will be:

ayU,=a,u,+a,u,+a,u,+b+(Pp-PgA, 4.7

where b= source term

P = cell face pressure

A = coll face area

and a, = convection plus diffusion terms
a, = convection term only

a, = diffusion term only

It should also be noted that the downwind convection terms
within &, and &, have been negated due to the upwinding nature of the
hybrid scheme and that the only convection terms are contained within the
upwind momentum coefficients 8 and &8, . As it stands, this

discretisation process will promote the numerical diffusion of momentum

normal to the streamliines.

With the SUCCA2D scheme now implemented on the second sweep

the mass fluxes (convection coefficients) are modified according to
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equation 4.3 and the discretised momentum equation now takes the form:

apup =8,Uq *+ a,:,u_, +a8,u, + b,uw + D+ (PP - PE)Ap 48

where &, and a, = diffusion terms only and the SUCCA2D scheme sets the

following parameters:

C, = 0 (l.e. the convactive part of coefficient a,)
a. = C, = modified convection coefficient = (r,, - (rh,)?[ m,,)

b, = created convection coefficient = (rh, + (m)?| m,,) = C,,

The term bD,U,, is added to the ‘'main’ source term b and the series of

these linear algebraic finite volume equations is solved within PHOENICS

using the SIMPLEST algorithm.

Figure 4.12 summarises the solution sequence for the SUCCA2D

scheme. The local flow in this example is from the SW corner cell with the
local flow direction lying within the range 0° <0 <458° . This summary

flowchart will highlight the:
- negation of the convection coefficient C,
- modification of the convection coefficient C,,
- creation of the convection coefficient D,
- identification of the SW cell as the upwind corner cell

- implementation of the value of v in the SW corner cell for the solution

of momentum
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Main Store convection coefficients in an array
Solver
Is this the first sweep? yes Use default hybrid scheme within
main solver

Identify other local
upwind comer cell

locations and modify
convection coefficients

no

Is m, > 00 and m, = 0.07

yes
set a = (
s¢t a, = [m,, - -(i-:'-'-):] i.e. west coefficient

3
set b, = [rn, + -(%fl-] i.e. south coefficient

[dentify SW cell as upwind comer cell

Store b, as a coefficient array that can be implemented as
part of the main source term b

Store the variable u as a value array and use the value of u
in the SW comer cell i.e. i,

Figure 4.12 The solution sequence for the SUCCA2D scheme.
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4.4.1.4 A Comparison Between A2D anc PID

Adheren Basic Rul

Just as the CUPID scheme has been formulated to adhere to the
rules of any general numerical scheme, as outlined above, the SUCCA2D
scheme too is found to comply,”although in a slightly different manner.
Since the SUCCA2D scheme introduces the influence of upstream variables
through the main source term of the finite volume equation then the
crite<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>