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Abstract

Mathematical aggregation of the probabilistic expert’s judgements in a structured expert

judgement analysis is said to be relevant and critical. Due to absence of data, the judgements

of the experts are used to perform forecasting and risk analysis. However, there is a gap

in the literature where there may exist correlation in such judgements. This research is

concerned with the situation where multiple experts are providing their numerical probability

assessment for multiple quantities of interest. For each quantity of interest, there is a need

of linear optimal weight on the basis of the experts’ judgement. This optimality is achieved

by minimising the mean squared error (MSE) between the unbiased judgements provided by

the experts for a quantity of interest, whose true value is unknown. Further, it has been

assumed that the judgements of the experts is dependent on the sets of multiple quantities

of interests, while, their errors presented in the judgements are correlated. This thesis

presents two novel mathematical methods towards aggregating expert’s judgement through

linear pooling. The first method is based on the empirical Bayes parametric formulation,

and the second method is non-parametric. Both the chosen methods are compared using

a stimulation study. This is to examine the performance of a given dependency structure

which is further illustrated using a case study. In this context, a highly positive correlated
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expert gets the least weight when compared to an independent or negatively correlated

experts. As stated in literature and reaffirmed through the simulation studies in this thesis,

asymptotically the non-parametric approach has a slower error rate convergence, where

the error is defined in terms of the MSE in comparison to the parametric empirical Bayes

method. Based on the simulation study and the case study results, it is found that the

empirical Bayes method outperforms the non-parametric method.
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Notation

z represents the number of experts

n represents the total number of questions

i, j represent the experts where i and j ∈ 1, 2, ..., z

k represents the question number; it acts as a counter for the number of questions, therefore

k ∈ 1, 2, ..., n

Xki is the random variable representing expert i’s assessment on question k

xki is the realisation of Xki

µki = E (Xki) is the expectation of expert i’s assessment of question k

µi = E (Xki|µki) is the conditional expectation of expert i’s assessment of question k and

is the true value for expert i’s assessment ∀ k

σki =
√
E (Xki − µki)2 is the standard deviation of expert i’s assessment on question k

cijk = Cov (Xki, Xkj) is the covariance between expert i and expert j’s assessment over

kth question; where Cov (Xki, Xkj) = E ((Xki − µki) (Xkj − µkj)).

Ck is the covariance matrix for kth question where cij is the (i, j)th element ∀ k

C represents the covariance matrix ∀ k

C−1 represents the inverse of the covariance matrix ∀ k
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ρijk = Cov (Xki, Xkj)
σkiσkj

is the correlation between expert i and expert j’s assessment on

question k

θk = E (µki) is the prior mean of expert i’s assessment of question k

τk = V ar (µki) is the prior variance of expert i’s assessment of question k

Π is the correlation matrix whose elements are σki, cij , µk and ρij

wi is the weight assigned to expert i

w
¯

= (w1, ..., wz) is the vector of weights assigned to experts

λ is the Lagrange multiplier

ˆρijk is the estimator of ρijk

ρ̂ij =

n∑
k=1

ˆρijk

n

ŵi is the estimator of wi

θ̂k is the estimator of θk

τ̂k is the estimator of τk

µ̂ki is the estimator of µki

µ̂ is the sample average

U is the functional space

Lc represents the copula function
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Chapter 1

Introduction

1.1 Research motivation

Judgements and decision-making are widely discussed and implemented across many disci-

plines such as social psychology, behavioural economics and management science, to tag a

few. Judgements are often defined as the processes that lead to decision making. Howard,

(1998) stated that the main reason for such a wide discussion across the disciplines and

within psychology is due to the decision-making that lies in every corner of the human

thought process. O’Hagan et al (2006) added that another such reason is the ability to

make the decisions which is often attributed to the cognitive processes within the human

mind.

Decision making, especially under uncertainty paves the way for practical and philosophical

thought governing processes. Further, it leads to the development of decision analysis. The

situations that require decision making vary and so does the complexity of it. Decisions
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are often based on human judgements and beliefs and sometimes based on experimental

evidence that the individual has been exposed to. Kahneman and Tversky (1982) provided

the reasons for the human mind’s ability to make judgements under uncertainty. Their list

comprised of reliance on judgemental heuristics and prevalence of biases that the authors

felt were responsible for shaping the mind. Thus, as per the assumptions of Howard (1998),

it can be said that the discipline of decision analysis follows a course of action or a course

of thought process, which is governed by subjective beliefs. This fundamental aspect of

the discipline finds its roots embedded in the statistical decision theory. The statistical

decision theory also provides a course of action that leads this thought process to form a

decision under uncertainty or according to the demands of the problem under consideration

(Howard, 1998). At the heart of decision analysis, there lies a process that is governed by

information and refers to the models, relationships or the probability assignments. This might

be important in characterising the links between outcomes and decisions. These models

could be complex and dynamic or even relatively simple in many cases, and the remaining

uncertainty would be characterised by probability assignments (O’Hagan et. al, 2006). The

very task of decision making is not often easy for the human nature, considering the process

of logical thought in applying a belief to the value of the system or a process (Hogarth, 1978,

1987, 2001; Girotto, et. al, 2001). Further, in an uncertain world, reasonable decisions may

lead to non-desired outcomes and vice versa. As a result, the distinction between decision

and outcomes becomes very crucial to perceive, and it forms an important criteria which is

needed for decision analysis. It is quite sure that the modelled probability distributions follow

a specific numerical construct and mathematical modelling assumptions while representing
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an approximation of the empirical rational system. This can further be used to understand

and predict uncertain events (Cooke, 1991). However, Kahneman and Tversky (1982)

opined that an individual is often coherent with his/her judgements. The authors further

touched upon the subjectivity that governs the beliefs conveyed on a particular system or

the probability values to a prescribed problem. Then, they concluded that the subjective

probabilities play a crucial role in life because of its very nature. The people also tend to

apply the correct Bayesian rules to the decision problems based on its intuitive nature, but

often fail to appreciate the full statistical principle behind the rules. Although this inner

coherency may or may not lead to a good outcome, but given the uncertainty, there is a

crucial need to account for such coherency.

Surowiecki (2005) mentioned that one of the core ideas regarding decision making that

was put forward by philosophers, including Aristotle, was the wisdom that lies in crowds

as opposed to that of a single person. At a very basic level, it stresses upon the fact that

the two heads are better than one, and if there are more number of heads, then, the better

outcome of a decision is anticipated as noted by Lyon and Pacuit, (2013). The study of the

wisdom of crowd spans across disciplines, with a wide range of literature across management

science, computer science, social psychology, social choice theory and behavioural economics,

to name a few. A major part of management science deals with the issues of decision-making,

and this process often involves three key entities, namely the decision-makers, the analysts

and the experts. More often, the analysts and the decision-makers refer to the individuals

where a decision maker can play the role of an analyst based on the identified problem and

vice versa. Budescu and Chen (2014) defined the ’wisdom of the crowd’ as the ability of
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statistical aggregation based on the multiple opinions to outperform individuals, including

experts, in various prediction and estimation tasks. Lyon and Pacuit (2013) revisited this

definition and provided a brief insight into the aggregation of human judgements. They

provided six core aspects; namely, the input, the output, the elicitation method, the aggre-

gation, the recruitment, and the standards of evaluation. It may also be pointed out here

that this collective wisdom is often used to solve a problem in management science and

other disciplines, and its roots lie in the statistical decision theory as mentioned earlier.

There have been several statistical theories that have been formulated for decision making

under risk and uncertainty. Assertions like these rely on the assumptions that there are no

systematic errors in the assessments of the crowds. This is not true always. For an instance,

in the field of experimental psychology, the empirical studies have presented the predictable

errors made by the laypersons assessing the number of fatalities per annum due to the cause

of death. On the other hand, the low frequency events are over-estimated whereas the

higher ones are underestimated (Lichtenstein S, et. al, 1978). This highlights the need for a

careful selection of experts who are knowledgeable about the problem under considerations.

However, unfortunately, experts are not immune to such bias in their assessment, and this

empathises the role of the elicitation process. Even with a well-constructed elicitation

process, there can be a systematic error in judgement amongst the subsets of experts,

derived from shared or similar experiences. This research is concerned with aggregating such

judgement amongst experts where the systematic errors may be present amongst some.

Surowiecki (2005) presented an anecdote that highlighted the power of collective thinking

over individual thinking with Sir Francis Galton’s surprise on asking a lay person to guess the
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weight of an ox. At the conclusion of this activity, an individual could not correctly guess

the weight of an ox but a crowd median guess was fairly accurate. The issue surrounding

the collective thinking also highlighted the diversity that existed within the crowd, and the

way the problem was perceived by each and every individual separately. This diversity in

the thought process gives a wider range of insight into the domain knowledge that further

helps to accurately solve a problem or as in this case helps to arrive at an accurate value

for the weight of an ox, which matched its true butchered weight. Thus with the help of

aggregation based on these human judgements, one can predict better or arrive at a better

decision. When the ’crowd’ is replaced from a general problem and appraisal of aggregation

of human judgements is shifted to a specific domain knowledge, the definition of ’crowd’

gets changed. It then maps onto a team of experts or a group of experts. These experts

are defined as people who have strong domain knowledge and are regarded as specialists in

the chosen area of work or the area where the problem exists (O’Hagan et. al, 2006). The

judgements tend to be correlated with each other due to the shared domain knowledge and

though the diversity is often desired, it does not always presents what it is exists. On the

basis of these given dependencies, there remains a complete lack of knowledge regarding

the true values of the problems which are desired to be solved. The challenges related

to mathematics aggregate to provide a meaningful decision which later on becomes fairly

challenging.

’Aggregation’ refers to aggregating the subjective probability distributions from various

experts and assessing the same scenario to obtain one subjective distribution. The challenge

is to obtain a comprehensive and exhaustive database of information where the opinions
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are statistically independent. This is because the relevance and usefulness of information

decrease with an increase in the correlations between the experts, as the information no

longer remain statistically independent (Broomell and Budescu, 2009). In such scenarios,

consulting multiple experts could be considered same as consulting one expert. This thesis is

focussed on the development of mathematical models that aim to aggregate or combine these

judgements accounting for the correlation in the error of these judgements. This aggregation

provides the decision maker with one single probability distribution, which may be used

to tackle decision problems. These models incorporate not only the positive dependencies

between the judgements or assessments but also provide an aggregation framework when

there is a potential disagreement within the group of experts.

1.2 Research gap

There is a gap in the literature between the aggregation of expert’s judgement where

judgements are correlated in errors. There is an evident gap in the literature also on

the use of the mathematical approaches that have been proposed in this thesis. The

data structure as expressed in Table 1.1 has not been aggregated based on the proposed

mathematical methods, namely the empirical Bayes method and the non-parametric method

using constrained optimisation with Lagrange multipliers in the literature. Further, the

empirical Bayes method has not been explored in the literature towards aggregating expert

judgements, accounting for the correlation in the judgement errors. A fairly interesting

question then arises to explore why expert judgement aggregation lacks the potential use
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of aggregation using the empirical Bayes method for modelling statistical dependence 1

and also to provide mathematical models that would meaningfully combine these correlated

judgements. The judgements have often been treated as the data for analysis within

risk and reliability. Apart from that, often several semi-parametric and non-parametric

mathematical approaches have been used towards aggregating these judgements, but none

of the approaches has used the techniques of reducing the mean squared loss error. Therefore,

the gap in the literature on the basis of the treatment of judgements accounts for the

dependencies that exist between them and paves the way for this research.

1.3 Research aim

The aim of this research is to mathematically aggregate the probability judgements that the

experts have provided based on the quantities of interest while accounting for the correlation

in the error of these assessments. Table 1.1 shows the assumed structure of the problem

that has been considered in this thesis. Each question measures some quantity of interest

and each expert has provided his best guessed on that particular quantity of interest. It is

assumed that each expert is unbiased therefore their best guess represents the true value of

the underlying quantity of interest.

1Statistical dependence refers to the correlation in the judgement error throughout the thesis and

dependence and correlation are used interchangeably throughout the text.
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Table 1.1: Problem structure of the thesis in terms of experts’ assessments of the questions

E1 E2 ... Ei Ez

Q1 x11 x12 ... x1i ...

... ... ... ... ... ...

Qk ... ... ... xki ...

Qn xn1, ... ... ... xnz

where x1i is the realisation of expert i on question 1, as defined in the notation list. Given

these realisations we can then compute the standard deviation of expert i’s assessment on

question k along with the expectation of expert i’s assessment on question k. The formulas

for computing the expectations and the standard deviations are listed under notation. The

aggregation of these assessments is then achieved by two different mathematical methods.

These methods have been adopted and presented in the thesis; one is non-parametric method

towards the aggregation of dependent expert judgements and the other is an empirical Bayes

method. The data considered throughout the thesis is the same structure as expressed in

Table 1.1. The expert assessments are the realisations in the form of their best guesses and

these are the point estimates. For the non-parametric method, a constrained optimisation

technique using Lagrange multipliers has been proposed to minimise the mean squared

error whereas, in the case of empirical Bayes method, it is assumed that these realisations

are from a multivariate normal distribution with unknown parameters. There are further

assumptions on the likelihood function and using the Bayes rule, the posterior distribution is

then calculated. The non- parametric method is more appealing to be used in practice due
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to its ease of understanding and formulation than the empirical Bayes approach. These two

different methods have been discussed in detail in chapters three and four and are compared

and contrasted within the thesis in chapter five. Both of these methods have also been

applied to a real expert’s judgement data from an ageing bridge.

1.4 Research philosophy and methodology

In statistics, two main and contrasting philosophical paradigms have always existed namely,

the frequentist and the Bayesian paradigm; however at the methodological level, these

differences are often unexpressed (Bayyari and Berger, 2004). The frequentist school of

thought runs on the belief that there exists a single truth. Besides that, the collected

information forms a noisy sample of realisation of the true values using the process of

repeated experimentations and sampling. The Bayesian school of thought, on the other

hand, advocates the belief that there is no truth which can be assessed through the data

collection (Ambaum, 2012).

The Bayesian belief is subjective and is conditioned on a random set of events which have

their own subjective probabilities (Ambaum, 2012). It is evident in literature that human

judgements have often been shelved as ’Bayesian’, and the reason for this is attributed

to the fact that judgements are beliefs, which are subjective by their very nature, and

at many levels have an impact on the shared knowledge and experience in its collective

form (Kahneman and Tversky , 1982; Hartmann and Hajek, 2010). At the outset, when

an expert is asked to provide his beliefs, he provides his understanding of the subject in

terms of his probabilities, which are not the part of any experiment; however, they could
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be based on his personal expertise and experience (Lindley, 2000). The debate based on

the superiority of the frequentist or Bayesian with the others have received much attention

in the literature. But, keeping the academic significance on mind, an objective related to

Bayesian methodology is preferred over the individual paradigms of isolation (Bayyari and

Berger, 2004; Efron, 2006). Several important statistical inferential theories are worthy

of note (Cox and Hinkley, 1979); namely, the sufficiency principle, the likelihood principle,

the invariance principle and conditionality principle. The likelihood principle is based on

the notion that all the information from the sample is contained in the likelihood function

thus constructed. The combination of the likelihood principle with the law of likelihood

often produces the most probable values where the likelihood is maximised. This method of

estimating parameters is known as the maximum likelihood method.

In this research, the available data is in the form of a secondary dataset 2 and are treated

as data that belong to a certain class of probability distribution, which positions this thesis

within a frequentist paradigm of statistics. The inferential theory used in this thesis follows

the likelihood principle and the likelihood functions. This summarises all the information

contained in the sample dataset. Though this thesis is built on a secondary dataset which

is a collection of expert’s judgement, but as these judgements are observed for repeated

set of questions and the parameters remain constant throughout the repeatable process,

the statistical philosophy adopted is in line with the frequentist paradigm. To reiterate,

the critical positioning of this research is within the frequentist paradigm of statistics and

the scope of this thesis is restricted to provide a better statistical inference based on the
2A dataset that is not collected for the purpose of this research and is not collected by the user of the

dataset

30



repeated measures of these judgements provided by the experts through a repeatable sample

of questions.

The empirical work in this research is based on an investigation of secondary data. that has

resulted from the study of the reliability of the Forth Road Bridge conducted by Professors

Quigley and Walls (2010). The use of secondary data in research has been speculated in

literature; while there are several advantages of using secondary data. At the same time,

there are some serious drawbacks where the data might not have been collected to answer

similar research questions. However, as Ghauri (2004) argued that any research must start

with secondary data, within this thesis as the research motivation is drawn from the data

and the mathematical methods that are developed using the secondary dataset. But, later

they are generalised (Ghauri, 2004). The outline of the research methodology adopted in

this thesis is:

1. Modelling framework: Two mathematical models are proposed; namely, parametric

model based on empirical Bayes formulation and non-parametric modelling framework

for the aggregation of dependent judgements.

2. Model evaluation: The models developed are evaluated based on the statistical

measures of mean squared errors and simulations.

3. Real world data application: The models thus developed, have been applied to the

real world dataset of an ageing bridge.
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1.5 Research contribution

The potential contributions to knowledge that this thesis aims to provide are enumerated as

below:

1. To provide mathematical models that aggregate expert’s judgement where the judge-

ments are correlated in errors.

2. To demonstrate the impact of correlated errors on aggregation of these judgements

not only in abstract examples but also in a real data of an ageing bridge. Thus,

strengthening the impact of this research work in a real case of reliability and risk-

analysis.

1.6 Outline of the thesis

This thesis is organised into seven chapters. Chapter two provides a literature review on

aggregation of expert’s judgements and highlights the gap in the literature. This chapter

also provides a literature review of the proposed methods highlighting their strengths,

weaknesses and usage. Chapter three presents the first mathematical method which is

the non-parametric method towards the aggregation of correlated expert’s judgements.

This chapter also demonstrates the aggregation of judgements based on artificial examples.

Chapter four presents the second mathematical method based on the empirical Bayes

method for the aggregation of expert’s judgements. This chapter demonstrates the use of

empirical Bayes method towards aggregation based on the same examples from chapter

three. Chapter five presents a simulation study comparing the approaches developed and
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proposed in chapter three and chapter four. Chapter six presents data from an ageing bridge

where the mathematical methods developed are then illustrated. The last chapter that is

chapter seven is a discussion chapter that argues the limitations of this thesis highlighting

the key findings and future direction that this research could be potentially led to.
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Chapter 2

Review of the expert judgement

aggregation literature

2.1 Introduction

This chapter is divided into two main sections. Section 2.1 provides a literature review of

the expert’s judgement aggregation literature. The section is organised into various sections

highlighting the behavioural and the mathematical models that exist in the literature based

on the expert’s judgement aggregation. Section 2.2 provides a literature review of the

proposed models that are further developed for the aggregation of experts’ judgement in

this thesis.
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2.1.1 A brief historical overview of aggregation of judgements

The first historical account of ’aggregation of judgements or opinions’ was found in Sir

Francis Galton’s work on ’Inquiries into Human Faculty and its Development’ in 1883. In this

notable work, Sir Francis provided a statistical reasoning to the aggregation of judgements’

framework. The experiments conducted by him paved the way for the statistical justification

of an increased sample size; where a large crowd was asked to find a solution to a problem

which may or may not have a true answer. The collective judgements of the crowd would

often get close to the true answer, and in some situations even predict the true value with

accuracy. It raised some important questions. One of the main issues surrounding the study

of uncertainty around aggregation and its impact lay in those situations where individual

groups neither know the answer nor have any idea about what could possibly be the answer.

This then fed into a more interesting question that when the individual judgements are

known, what additional information can the aggregated result provide? One of the most

challenging questions was whose judgements would one end up with once such judgements

are aggregated? The collective judgement is a reflection of an individual in the group,

but, since this is aggregated by the decision maker or the statistician, then, the question

arises whether his or her judgements would make an impact on the total group’s judgement.

Furthermore, would the statistician’s view of the group and also the prior knowledge influence

the aggregate view? The answers to most of these questions do not exist.

In the work of Sir Francis like in most other case studies surrounding the aggregation

literature, the true value of the underlying parameter of interest is often known to the

decision maker (Winkler and Clemen, 1991). But, this is not uncommon that is not a known

35



or agreed method to reveal the unknown for which it sometimes become impossible to search

the true values of the interest quantity. Therefore, the scientific community could never

really provide a justification as to why or how the crowds and groups got the right answers

to problems that have no known or true answers. A way of understanding the phenomena of

this wisdom to find out the true value is to analyse the aggregation of the opinions of the

people in independent and large groups so that it may lead to error cancellation. Therefore,

all that remains will be the information provided by each individual in the group, and when

that information is aggregated by simple averaging, it often turns out to be close to the

correct answer or a perceived correct answer (Galton, 1883). The famous example coined

by Galton is a proof of this. As mentioned in chapter 1, in an experiment he had asked a

group of lay persons to judge the weight of an ox and then on averaging the weights, he

concluded that the correct weight was exactly same as that predicted by the crowd. However,

disastrous decisions with aggregated judgements (Surowiecki, 2005) have not been ignored

in the literature. The reason for such mishaps revolved around the fact that no one in the

group had any idea about the true value of the unknown. Not many research articles are

made available in the public domain that highlight the failure in decision making based on

aggregation of judgements (Surowiecki, 2005). On the contrary, in situations when a group

that is responsible for making decisions comprises people who have ideas around the true

answers, the group decision should invariably lead to the correct decision or approximately

close to the right decision (Surowiecki, 2005).

Following Galton’s work (1883) and through the later works by Kahneman and Tversky

(1982), the use of Bayes’ rule for aggregation has been a prominent rule or heuristic that has
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been used by groups for aggregation of judgements across several situations and different

disciplines. Kahneman and Tversky (1982) stated that the Bayes’ rule offered people a

set of rules that helped them to make decisions and also helped in incorporating the new

information as and when they become available.

2.1.2 Background to experts, judgements and psychology behind judge-

ments

Introduction

Well defined data often draws on data sets collected through survey questionnaires or data

collected through observed experiments or historical records (Vose, 2008). These kinds of

data are not always readily available and are also not suited to many inferential analyses

(Vose, 2008), the prime reason being the subjectivity and uncertainty that surrounds the real

life problems. If one were to take a step back and reflect, then the amount of experience a

person has in performing a task would hold a far more in-depth understanding of the job, as

opposed to generating data under controlled experimental conditions towards understanding

that job. However, quantifying the experience in a meaningful manner is often challenging.

Although having successfully achieved the task of quantification, the judgements could

then act as a source of data, and provide a better insight into the understanding of the

uncertainty surrounding the problem at hand. This would, in turn, enhance the process of

decision making. The need to look beyond well-defined data often pushes one to explore

the idea of judgements or opinions of experts, and this kind of collective judgements often

provided an alternate source of data. This then very rightly raises two key questions; one as
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to who would one term as an expert; and second, how many experts would one require for

decision making? The second question on the number of experts would rightly be governed

by the problem at hand. However, these two questions naturally draw various other issues

that surround experts’ judgement. Discussion of these issues in an intricate detail is beyond

the scope of the thesis; however, the psychological aspects surrounding expert judgements,

which cannot be entirely ignored, has been briefly discussed subsequently in this chapter.

The expert

There are various definitions of ’an expert’ in literature. An expert is defined as ’a person

with substantive knowledge about the events whose uncertainty is to be assessed’ (Ferrel,

1985). Experts may also be defined as people who have substantial knowledge of the

research area that is being studied (O’Hagan et. al, 2006). Otway et. al (1992), referred to

an expert’s state of knowledge at the time of response to the question. Further, O’Hagan

and colleagues, (2006) stated that not only is it necessary for an individual to have the

knowledge but the individual’s ability to also use that knowledge is what determines his/her

expertise and classifies him/her as an ’expert’. The question on how many experts need to

be consulted incorporated an interesting statistical debate. Broomell and Budescu (2009)

have stated that the need and desire to capture the maximum amount of information often

leads the decision makers to seek advice from multiple experts, and aggregate their opinions

so as to achieve more accurate decisions. Shirazi (2009) stated that experts’ judgement are

considered uncertain, hence having multiple experts forms a more inclusive data source of

information around the problem. The use of multiple experts can also be viewed as a source
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of increasing the sample size and obtaining as much information as possible (Winkler, 1921;

Vose, 1996). Quigley and Walls (2010) have summarised the issues surrounding experts’

judgement into two broad categories of eliciting and using the judgements, further includes

a selection of experts, determination of expert panel size, ascertainment of calibration and

aggregation methods.

Subjective aspects underlying judgements

Hogarth (1987) stated that the human or subjective component behind experts’ judgement

cannot be entirely ignored, although these are almost impossible to assess and/or measure

in the context of pure statistical and mathematical research. Psychology literature and

research further suggest that humans tend to have directional biases and that if given a task

of identifying numerical and alphabetical serial orders, memory processes work differently,

but in both the cases the middle term or the multi-term of an array is identified most

slowly (Jou, 2003). In most of the expert judgement elicitations, the experts are often

asked to assess their middle quartiles while specifying probabilistic judgements (Cooke,

1991; Jouini and Clemen, 1996; Quigley and Walls, 2010), which offer an interesting insight

into how well aware the experts are in specifying these quartiles. Although every expert

elicitation task follows standard protocols to reduce bias but due to the very nature of human

psychology, it does lead one to wonder whether such judgements are usually directionally

biased? Psychology literature further reveals that the mental representations and type of

questioning are likely to sway inferences in probabilistic and statistical domains, and the

reasoners do not always correctly estimate conditional probabilities (Gong et. al, 2010).
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Moreover, it has been seen that the people can solve problems where they can provide reasons

extensionally, in spite of whether or not they have been able to process the information

like the way a human mid is adapting to solve issues. Reasoning about initial probability is

likely to be affected by the structure of the problem and the form of the question asked.

It appears that human cognitive architecture runs some computationally trivial algorithms,

like Bayes’ rule, for drawing probabilistic and statistical inferences. As mentioned by Cooke

(1991), there might arise some differences in the way the middle term is characterised or a

way in which the conditional probabilities are perceived as most of the experts’ judgements

are specified as quartiles or percentiles or as conditional probabilities. Jou (2003) specified

that this makes mathematics an interesting subject to assess the behaviour of the upper

and lower quartile values in relation to the median or middle values specified by the experts.

It is believed that both the developmental and individual differences in reasoning can be

at least be partially explained by differential access to knowledge stored in the long-term

memory of a human brain (Ben-Arieh et. al, 2006).

There are several steps undertaken during the expert elicitation process to make sure that

the bias is reduced from the model. At the same time, this might minimise the bias which

occurs when the experts have been provided with some estimates from another context.

This bases his or her opinion on the estimation to assess other variables. This bias may

be termed as an anchorage, and a more formal definition of an anchorage may be viewed

as an occurrence where the experts elicit probabilities of several events with respect to an

initial assessment (Quigley and Walls, 2010), thus rendering a pattern in the assessments.

Checking the judgements for the source of potential patterns can always be a pivotal task
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due to the directional bias that exists within the human psyche. There might be other

complex cognitive processes and executive function at work which is beyond the scope

of this study, which underlies the expert elicitation process. It nevertheless makes one

wonder whether such cognitive concepts possibly underlie even more complex mathematical

reasoning and numerical problem-solving. Also, as individuals tend to think differently,

and some ways of thinking resist change even after the substantial amount of training and

instruction; this can perhaps influence the way one learns and perceives mathematical and

scientific concepts (McNeil et. al, 2010). However, experts with shared knowledge coming

from similar educational backgrounds and exposure to similar work environments may still

differ in the reasoning and judgements (Winkler, 1999). Disagreements or differences in

opinions and judgements of the same variables are bound to occur, especially because of

the differences in individual understanding, the perception of views, and memory (Ben-Arieh

et. al, 2006). Another possible source of difference can be demonstrated by memory and

cognition tests, where the results show that complex and simple tasks involve two distinct

learning systems (Lee, 1995), thus making the difference in opinions on the same quantity,

evident.

2.1.3 Dependence and probability axioms in aggregation

Dependence or correlation plays an important part in the aggregation of judgements. Two

critical ways of modelling dependence i.e. Bayesian and axiomatic, have been found in

the literature. In the Bayesian setting, as commonly used and described later in this

chapter, the estimation of the dependence parameter is a challenging task, barring the
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conditions where the distribution reduces to bivariate normal (Chhibber et. al, 1992).

In the work by Jouini and Clemen, (1996), the dependence parameter is modelled using

copulas, which gives more flexibility to the dependence modelling between the experts. In

the use of copula models, the simple combining rules fall out as special cases of these

models (Winkler, 1999). The decision maker’s posterior distribution is then defined as

P (θ|f1...fn) ∝ Lc × [(1− F1(θ))...(1− Fn(θ))]×
∏
fi(θ) where Lc represents the copula

density function and P (θ|f1...fn) gives the posterior distribution. The likelihood function is

expressed in terms of the copula and the marginal or prior distributions.

A copula function provides a way to write the joint distribution function given the marginal

(Nelsen, 2006). In this approach, the individual judgements are entirely different from the

judgements about dependence. The approaches for calibration are data based and involve

only the marginal distributions. The dependence between the experts is encoded in the

copula function. Hammitt and Shlyakhter (1999) implemented the Clemen’s copula model

so that it can aggregate the experts’ opinions to study the global climatic changes and cancer

risks. But, the experts’ judgements have been studied as the marginal while combining

the dependency between the judgements using the copula function. This has helped in

further development of the model to produce a posterior distribution through the formula

discussed above. Kallen and Cooke (2002) proposed a copula-based aggregation model for

expert judgements as a follow-up study to Jouini and Clemen (1996), where they explored

the limitations of the latter study and suggested further exploration of the mathematical

construct of the copula.

Apart from the Bayesian aggregation methods, the copula method also allows for modelling
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experts dependence. The copula method interprets the expert judgements as data and uses

them to update the decision makers’ prior distribution for the target variable to produce the

posterior distribution. The copula approach provides a way of isolating the description of

the dependence structure from the individual factors and provides a technique that allows

the combination of marginal models with a variety of possible dependence models, and

to investigate the sensitivity to the dependence specification, which is also suggested by

Kallen and Cooke (2002). In axiomatic approaches to aggregation, difficulties often arise.

These are centred on the probability axioms for aggregation of expert judgements, such as

preservation of independence, monotonicity, and continuity. These properties were earlier

proposed by Morris (1974), and have been further studied by French (1986) and Genest

et al., (1986). Ironically, all these properties have shown to fail in the paper by Lindley

(1986). The main reason for the failure of these properties has been attributed to the

limited evidence available, which also goes to show that aggregation using simple averages

of the multiple judgements as a model performs equally at par with other mathematical

aggregation models (French, 1986). Mixture distributions and copula models are both based

on modelling statistical dependence between experts judgement, and use multiple experts to

assess the same variable. Though the copula approach fulfils the criteria of aggregation in

terms of exchangeability, it overlooks the axiom of external Bayesianity (Wisse et. al, 2008).

In addition to this, Jouini and Clemen (1996) chose the dependence parameter value based

on the decision maker’s belief. Due to the modelling assumptions of zero cross correlation,

and positive dependence, the copula modelling approach to aggregate expert judgements is

not a suitable modelling framework for this thesis. However, modelling dependence using
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copulas could possibly be useful if negative correlations and cross-correlations could be

incorporated into the model. This is one area which needs further investigation and the

reasons can be attributed to the unanimous choice of modelling dependence using copulas

(Nelsen, 2006; Jouini and Clemen, 1996; Kallen and Cooke, 2002).

2.1.4 Aggregation of expert judgements

Aggregating or combining the data leads to a reduction in errors (Armstrong and School,

1985; Hogarth, 1987), especially because humans tend to ignore the dependence between

variables, and also because the mind introduces its own complications and perspectives.

Though formal elicitation allows the collection of different points of views and perspectives

from experts with different education and cultural background (Zio and Apostolakis, 1997), it

would even be adequate for decision makers to obtain the individual probability assessments.

It further helps in making decisions in context to individual assessments other than attempting

to integrate these to produce a single distribution. One could then argue that this would rule

out the purpose of aggregation of expert’s judgement. However, the reason for aggregating

judgements remains an on-going debate because a clear and concise view of the experts’ is

captured with individual judgements, yet the aggregated result may or may not have such an

interpretation (O’Hagan et. al, 2006). Evidence in psychology literature of decision making

(Hogarth, 1987; Jou, 2003), suggests that humans have difficulty in combining information

especially from dependent data sources and they have difficulty in specifying a median value

or a middle value (Jou, 2003) in which case aggregating the judgements becomes crucial as

the experts may provide median value as judgements or can have different perceptions to
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the questions that are being asked.

Aggregating the probabilistic expert judgements would be useful especially when there

are multiple experts on the same area of expertise, and multiple experts judging the same

scenario, aggregating the judgements into a single distribution so as to capture the similarities

in their perspectives on the situation and/or differences in their opinions, that can further

add to the differences in their perspectives, understanding and thoughts on the questions

related to the same situation (Winkler, 1981). Further, Arrow’s impossibility theorem of

social choice (Fishburn, 1970) states that a consensual solution derived from all experts

judgement collected is a socially acceptable solution when they are all assessing the same

thing or in other words, the individuals have some commonality between them (Yan et. al,

2011). Although the social choice that drives the consensual decision deals with utilities that

are assessed by experts which are different from probabilistic judgements; the underlying key

aspect stresses on the need for aggregation so as to arrive at a meaningful decision. When

experts are pooled together, collectively they offer sufficient insights leading to the building

of a comprehensive theory and support the process of decision-making.

The judgements that are given by the experts’ often rely on the use of known strategies,

and the experts tend to rely more on the knowledge that they follow through a routine and

a process that leads to a particular knowledge, thus making the judgements conditioned

with respect to all relevant information. For example, if an expert starts with the event

most likely to occur and assigns it a probability value and makes all other probability values

relative to this one, then these judgements become conditioned and introduce biases in

the model (Goldstein and Hogarth, 1997). Also, Bonabeau (2003) stated that one should
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not trust one’s intuition about a process or a system, rather one should adopt a radical

way of thinking. This then draws the argument on experts’ judgements that can then

these judgements be postulated as to how radical the thought process is behind the routine

knowledge? This draws an attention on the arguments made by the experts’ judgements to

understand whether the judgements can be postulated and proved as radical in context to

the thought process behind the routine knowledge.

The approach of thought can possibly be attributed to one’s experience, education, and

consistently sound and rational choices through life. Basic differences between the factors

affecting the thought process possibly result in disagreements or differences in opinions

between experts on a same scenario or situation (Goldstein and Hogarth, 1997), which

is of interest to the decision makers for they can then account and justify this difference

with a combination of different opinions and judgements (Moon and Kang 1999). Also,

mathematical aggregation makes the analyses auditable (Hanea et. al, 2017).

2.1.5 Behavioural aggregation methods

There are potential benefits of different modelling approaches to combining experts’ judge-

ment, which is broadly categorised into behavioural and mathematical models. The issue

over mathematical aggregation versus behavioural aggregation is also an on-going debate

and there is no evidence in the present literature to support that one is better than the other

(O’Hagan et. al, 2006). In mathematical aggregation, the experts do not influence each

other’s decisions or subjective probabilities. In the behavioural approach, the experts are

allowed to share their judgement and reassess their distributions. Some of these techniques
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are known as the Delphi method and the Nominal Group Technique (Ferrell, 1985), which

are discussed later in the chapter together with the relevant mathematical aggregation

methods to this research in detail. If expert judgements are used to assess uncertainty within

the behavioural models, it does not necessarily imply that just because individuals may

perform poorly while assessing uncertainty, group elicitations should not be done. At the

same time, it also does not mean that complex mathematical models should not be explored

which may offer a better tool to the understanding of the aggregation while assessing the

uncertainty of the variables (O’Hagan et. al, 2006).

The aggregated judgement would help the decision maker in making an informed decision

encapsulating the individual behaviour and the dependency between experts’ if any (O’Hagan

et. al, 2006). The statistical model of aggregation of experts’ judgements has a better power

of the test as opposed to individual judgements. By increasing the number of experts there is

an increase in the statistical power of the model based on linear pooling of judgement means,

which can easily be explained due to an increase in the sample size; and the aggregation

itself helps in making an informed decision around the optimal number and choice of experts

(Hogarth, 1987). Another view was presented in a survey paper on judgement aggregation

by List and Puppe (2009), where the importance of aggregating experts’ judgements was

reviewed. It was also stated that the collective or aggregated opinion is merely an outcome

of a collective thought and action process (Bonilla, 2006; List and Puppe, 2009). In the

behavioural aggregation methods, approaches are required to somehow combine the experts

by making them interact in some way or the other. These are done by either face-to-face

group meetings or sharing information via virtual methods and other specific procedures
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such as the Delphi method or the Nominal Group technique (O’Hagan et. al, 2006). In

the Delphi method, the experts first assess and present their probability distribution and

then a group discussion takes place, after which the experts may or may not update their

probabilities. The Delphi method requires mathematical aggregation of the final probability

distributions (Okoli and Pawlowski, 2004).

Studies of different researchers like Gigone and Hastie (1997) have compared the math-

ematical and behavioural aggregation methods but these have been consistent with the

mathematical models which are simple statistical methods of averages and linear combina-

tion. Therefore, the results from these studies have been mixed, with some advocating the

behavioural aggregation methods and some the mathematical ones (Winkler, 1991; Shirazi,

2009). Several studies on the behavioural aggregation of expert’s judgements have proposed

the use of fuzzy theory and linguistic criterion’s at multi-granularity levels (Ben-Arieh et. al,

2006; Salo, 1995; Vanicek et. al, 2009). Cornell (1996), proposed aggregation of expert

judgements at two levels. At first, he combined the experts’ judgements by simply averaging

and providing each expert an equal weight. Secondly, he sent the results back to the experts

so that they get an opportunity to revise the judgements depending on what others would

say. This technique is based on the Delphi method of aggregation of judgements, which is a

behavioural method of aggregation.

Gigone and Hastie (1997) showed that simple mathematical average of individual experts’

judgement outperformed the group judgements in their experimental study of groups for

economic and policy decision making within the context of democratic institutions and soci-

eties. Flores and White (1989) showed in their experiment on comparing mathematical and
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behavioural aggregation methods that both the methods i.e. behavioural and mathematical

were at par in their performance for the aggregation experiment with respect to group

judgements. The challenge, therefore, was in finding mathematical modelling procedures

which also involved behavioural aspects for aggregating experts’ judgement. Overall, the

scientific community stands divided on the aggregation of experts’ judgements, and there is

an on-going debate surrounding the different approaches to establish a ’best’ known method

(Winkler, 1999).

2.1.6 Mathematical aggregation of expert judgements

The two commonly used methods in the mathematical aggregation of expert judgements

are the Bayesian methods and the axiomatic approaches (Winkler, 1999; O’Hagan et. al,

2006). Many different methods are adopted for the axiomatic aggregation; some of them

are detailed in the paragraphs below.

Cooke’s Classical Method for aggregation and linear pooling

Cookes’ classical method (1991) is one of the widely used mathematical aggregation models

for experts’ judgements. This method works on the linear pool of weights of experts’ opinions

using seed variables or real data. The experts are given a set of questions to give their

opinion on, the answers to which are already known to the decision maker. The experts

are required to specify their probability in terms of quartiles and a score is assigned to

weigh the judgements. The scoring rule differs from information and calibration. Based on

their performance on the pre-defined exercise, weights are assigned to each expert, and the

aggregation is a simple weighted average of the opinions. These weights are a combination
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of the information and calibration score.

The potential criticisms of Cooke’s classical model are that it ignores the experts correlated

errors in judgement, and it may happen that two experts potentially perform equally well

and are assigned the same weight but in essence, one expert can be made redundant, as

he/she may be highly correlated with the other. So in essence as the correlations are ignored;

a final outcome is a large number of experts who are highly correlated, but the information

received in form of their judgements are similar; hence having a large number of experts

does not necessarily help as there is no additional contribution to the knowledge base of the

decision problem.

Lin (2011) studied the aggregation by Kullback-Leibler divergence criteria of uncertainty

judgements in risk assessments to evaluate the expert’s knowledge on particular questions.

This has helped to develop a new model which would better rank and assign scores to the

experts, those who are in line with the Cooke’s model. Along with this classical method,

linear pooling of opinions was also used to aggregate opinions in a Bayesian framework.

Some of these initial models were proposed by Genest et al., (1986).

Bayesian method of aggregation

The first Bayesian method of aggregation of expert judgements was offered by Morris

(1974, 1977). Since Morris’s novel work, many Bayesian methods have been developed

and introduced over the years. The Bayesian method is one of the methods that allows

to model dependence between expert judgements (Chhibber et. al, 1992). The problem

of dependence is one of the major issues in aggregation, and being difficult to evaluate,
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it is also the central part of a combination of expert’s judgements (Kallen and Cooke,

2002). Judgements from multiple experts about a parameter are extremely informative if the

experts are statistically independent but, when there is a statistical dependence between the

experts then the judgements are correlated, and the relevance and usefulness of information

decrease Broomell et al. (2009). Therefore dependence modelling forms a key issue in the

aggregation of expert judgements.

In the Bayesian aggregation framework, each expert’s distribution is taken as a prior

probability distribution, which is then multiplied by the likelihood of the occurrence of the

event in the light of the data to give the posterior distribution. The likelihood function of the

Bayesian aggregation model allows the flexibility to calibrate the experts’ judgements and

also accounts for inter-expert dependence. The systematic location biases for the experts’

can be modelled either as an additive model or a multiplicative model.

In the paper by Chhibber et. al, (1992), assuming, P (X|E) = P (E|X)× P (X)/K, where

the P (X|E) represents the decision maker’s belief of X in the light of event E, where, E is

the expert judgement; P (X|E) is completely determined by P (E|X), which is also known

as the likelihood function, K being the normalising constant. For example, if there are two

experts and under the assumption that the location bias model to be multiplicative, the

likelihood function can be viewed as a bi-variate log-Normal distribution having the following

form:
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where b is the median of E and ρ is the correlation coefficient; the inter-dependence

between the experts is quantified using ρ. Thus the median of the posterior distributions can

be computed. Under the circumstances mentioned above and with the prior being modelled

as log-normal the Bayesian aggregation then reduces to weighted geometric mean (Chhibber

et. al, 1992). One of the critical issues surrounding Bayesian aggregation methods is the

specification and choice of the likelihood function (Winkler, 1999). In the example above,

the priors or the marginals are assumed to be Gaussian, and hence the likelihood form

is bivariate Gaussian, but with an increase in the number of parameters for assessment,

the Bayesian aggregation method becomes non-trivial and mathematically cumbersome

(Chhibber et. al, 1992).

Another method of aggregation within the Bayesian framework of aggregation is the Mendel

and Sheridan’s model (1989). This model uses non-normal probability distributions, assuming

that each expert provides m fractiles of his distribution and that each expert’s actual outcome

is assumed to fall within (m + 1)n bins. This approach provides joint calibration, as it

produces probability distributions that are based on a multivariate setting but this method

also requires the estimation of the parameters of the likelihood function, which is challenging

in practice (Shirazi, 2009). Although the decision maker can assess the prior distribution
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from the data subjectively, this may be a difficult task, especially if one considers the Mendel

and Sheridan’s model, as one is then required to assess elements of the covariance matrix of

the probabilities associated with each cell in the (m + 1)n array.

Overall, identifying an exact likelihood function for expert probability is considered challenging

and difficult within the Bayesian aggregation of expert judgement (Chhibber et. al, 1992;

Morris, 1977). However, there are studies that have computed likelihood functions where

the distributions are normal (Chhibber et. al, 1993; Morris, 1977; Winkler, 1999).

Moments Method for aggregation

Wisse et. al, (2008) studied a method of moments for aggregating expert judgements based

on Bayes linear methodology. The objective of the paper was to be able to aggregate expert

judgements in a non-Bayesian way using expert assessments of moments. The authors

used the extended Pearson-Tukey method to derive assessments of the first and second

moment for the quantile assessments. This method ignores the computational complexities

of continuous probability distributions.

In addition, Genest et. al (1986) developed a method of aggregation of judgements where

the experts just specify certain moments of a distribution rather than specifying the whole

probability distribution. Zio (1996) and Xu (2000) studied the aggregation problem with

analytical hierarchy process. Xu (2000) looked at the weighted geometric mean of the

analytical hierarchy process for aggregating expert judgements. This method works with an

assumption that the experts’ judgement matrix is consistent and the method works perfectly

well within the set criteria. Zio (1996) used the simple weighted averaging method within
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the hierarchical structure. The hierarchy is built based on the confidence that the decision

maker has the experts and these weights are further used to aggregate the judgements.

Maximizing Entropy method for aggregation

Myung et. al (1996) and Wood et. al (2006) studied the aggregation of expert judgements

by maximising the underlying entropy function. Maximum entropy method is a statistical

inference procedure that satisfies the five axioms of invariance, uniqueness, null information,

system independence and subset independence. The inference gives the best probability

estimate from the given information without assuming any other knowledge beyond the

constrained set of information. This method of maximum entropy stands sound not only

on theoretical grounds but also retains the versatility to be used in different practical

applications. In this method, the event to be predicted and the individual predictions are

assumed to be discrete random variables. The Shannon’s information is used to derive the

aggregation rules for combining two or more expert predictions into a single aggregated

prediction that approximately calibrates different degrees of expert competence. However,

the problem of modelling the dependence between the judgements remains unanswered with

this method.

Other models in literature

Zio and Apostolakis (1997) proposed a mixture distribution to aggregate the expert judge-

ments by studying within expert and between expert variability. This is one research which

has addressed the issue of aggregation of between expert and within expert judgements.

However, the work has not been extensively used in practice. The authors stated that the
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main motivation behind developing this paper was mainly due to the aggregation models

that tend to produce composite distributions. This is to reflect the less uncertainty as

opposed to an expert’s individual distributions. And one of the possible reasons for this

discrepancy is the attribution between the expert’s variability that is not modelled and

captured accurately. The difference or similarity of experts’ assessments on the variables is

modelled but the dependence between the experts is often not captured accurately. Some of

the reasons for this dependence may be attributed to shared information, shared knowledge

and similar education background among other factors, as already discussed earlier in this

chapter, but these between expert dependence is often not modelled. This study attempted

to account for between and within expert variability in the context of the future climate of

Yucca mountain vicinity. However, the theoretical framework could not be applied due to

the constraints of equal weights of experts and the assumption of the underlying probability

distribution of the unknown parameter.

Jouini and Clemen (1996), considered a Bayesian decision maker who is interested in making

an inference about an unknown parameter say θ. The decision maker defines his prior

probability density as p(θ), and n experts provide their opinions gi(θ). Each of these gi are

the expert’s personal probability distribution for the parameter θ. Then by using the Bayes’

theorem, the posterior distribution is given by p(θ|g1, ..., gn) ∝ p(θ) × fn((g1, ..., gn)|θ),

where fn((g1, ..., gn)|θ)is the likelihood function for the expert judgements. Following from

Clemen and Winkler (1991), Jouini and Clemen, assumed that for the aggregation problem,

everything that the decision maker knows is incorporated into the experts judgements.

For this reason, the prior adopted in their approach was an non informative prior density.
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If we take Hi and hi as expert i′s cumulative distribution function and density function

respectively, then the likelihood function is given by

fn = Lcn((1−H1(θ))..., (1−Hn(θ)))h1(θ)...hn(θ)

where Lcn is the copula. The dependence value is captured through the correlation

value ρ and Gaussian copula parameters are estimated for the model.

The reasons for the choice of Gaussian copula can be attributed to the properties that

are mentioned by the authors in their paper; such as symmetry and exchangeability while

accounting for the statistical dependence between expert judgements. Jouini and Clemen

(1996) proposed a Frank copula, for the estimation of posterior probabilities and benchmarked

the results of Frank copula to the Gaussian copula.

Frederic et. al, (2012) proposed a product of odds model to aggregate expert judgements.

In their model, the statistician or the decision maker is able to incorporate his beliefs into

the aggregated assessment of the expert judgements. The underlying assumption of their

model is that the decision maker has an access to the information on the unknown event

or more precisely the decision maker has his own beliefs around the unknown parameter

that can be incorporated. This model also ignores the dependencies that might exist while

consulting more than one expert. This model stresses on the combination of the statistician’s

knowledge and the expert’s knowledge, which in essence ignores the situations where the

experts may or may not be known to the statistician.
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2.2 Summary

This section provided an in-depth literature review of aggregation of expert’s judgement.

It provided background into aggregation and the different types of aggregation procedures

and methodologies that exist in literature; incorporating both behavioural and mathematical

models. The relevance of aggregation of wisdom or knowledge of the crowd was justified

and the issue that was highlighted lay in successfully identifying the definition of a ’crowd’;

leading to a definition of an expert. This further provided a background to the psychological

aspects that surround the process of decision-making across disciplines. The psychological

aspects shed light on the fact that humans use rules and heuristics to provide a solution

to problems throughout history. The Bayes theorem has always had a prominence within

the aggregation framework across disciplines (Surowiecki, 2005). Psychologically, knowingly

or unknowingly, people have always used the Bayes theorem to come up with solutions

to unknown problems using their beliefs. The Bayes theorem is viewed as an intuitive

mechanism where people update their judgements or beliefs as new facts become available.

As a result, they can reach a more meaningful conclusion (Kahneman and Tversky, 1982).

The existence of correlations between experts especially when they have shared beliefs and

work environment, among other factors were highlighted.

Therefore, in an attempt to gather and analyse a coherent dataset, which comprises these

judgements as probabilistic data the dependencies and correlations would undoubtedly, play

a critical role. On the other hand, the mathematical aggregation methods consisted of

processes and analytical models which helped in using individual probability distributions

to produce a single ’aggregated’ probability distribution (Winkler, 1999). At the same
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time, the behavioural aggregation can be viewed as the combining experts being opposed

to amalgamate the probability distributions. Behavioural method attempted to generate

agreement among the experts by getting them to interact in some way, based on the

assumption that as the information got shared through these interactions, better arguments

and information was likely to influence the group and that redundant information was likely

to be discarded, thus having the final decision practically in agreement with all the experts

(O’Hagan et. al, 2006).

However, judgements from experts would be invariably correlated due to their shared

experiences and other psychological factors. Therefore, while aggregating the judgements

mathematically, there is a strong need to model the dependencies that exist. Aggregation of

the individual subjective distributions to form coherent unifying distributions would enhance

the understanding of the unknown parameter, whose true value can never be measured

or known. There might arise circumstances, where the decision maker is dealing with a

secondary dataset, incorporating his/her understanding on either judging the credibility of

the experts or on the unknown quantities are next to impossible. In such situations, making

use of the available data would be the most sensible way forward. As stated by Winkler

(1991), in the light of uncertainty, all available information must be aggregated to gain a

better understanding of the problem that is being dealt with. Further, in all the mathematical

models that have been discussed in this chapter, there is no unifying mathematical model

for aggregation; more rightly so, as each model is dependent on the problem that it is being

used to solve. In a comparison study on the performances of the mathematical models of

aggregation of expert judgements, by Hammitt and Zhang (2013), it has been observed
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that the equal-weight combination rule, which is the method most often applied in practice,

has the worst performance. The simulation of the data for this comparison study further

stated that the assumptions of positive correlations between the expert’s errors are not a

likely condition to be found in practice. While discussing the dependence modelling method

with copulas, it was stated that the decision maker concentrates probability on values to

which all experts assign significant probability and very little probability to values to which

any expert assigns a small probability or a zero probability.

In summary, the literature provided a gap that exists with regards to mathematical models

for aggregation where the judgements are correlated. Having stated this, there exist models

that do study dependencies between judgements but these have a narrow focus, primarily

concentrating on either positive correlations or focussing on a scenario of consulting a

maximum of two experts. It also provided evidence for the lack of methodological approaches

encompassing both the research philosophical paradigms which can also incorporate a wide

range of data structures together with addressing the issues of correlations.

2.3 Review of the proposed mathematical methods

2.3.1 Introduction

This section provides a literature review of the proposed methods i.e. non-parametric and

empirical Bayes methods. These methods are further developed for aggregation of correlated

experts judgements in this thesis.
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2.3.2 Non-parametric method

Background

The development of non-parametric methods was relatively slow until the end of the Second

World War, but since then their growth has touched almost every phase of statistical activity

(Hjort et. al, 2010). There has been a prominent statistical inferential procedure throughout

the history, but, the aspect of inference surpasses the parametric and non-parametric forms

of the statistical inference. At last, this helps in incorporating both as noted by Kass,

(2010) and Tukey (1960). Furthermore, the need for data analysis beyond the known

parametric forms has been a prominent feature (Tukey, 1962). Tukey advocated the need

for non-parametric methods as the first steps towards providing more realistic frameworks

for understanding and analyses of data. It is also well established that the study of random

patterns of data is often guided by a set of rules and a set of assumptions. These assumptions

are often challenged and argued across disciplines, and have helped in the formation of

the norm that most mathematical models do help in the understanding of the complex

phenomenon of the real world, not necessarily providing an in-depth solution (Vose,2008;

Alejandro et. al,2011). Another reason for the advocacy of non-parametric methods by

Tukey was the presence of fluctuations in the data with a reasonable distribution but unlikely

to fit a normal distribution. The need to use data for both exploratory and confirmatory

analyses has been stressed upon, and it was believed that modifying the data to fit a

statistical model is far less credible than using the data to tell its own story (Tukey, 1960).

The use of five measures; namely, the median, quartiles and the two extremes; the maximum

and the minimum, were popularised for understanding data and helped to reiterate the
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clear advantage of non-parametric forms over parametric distributions. It was obvious that

these measures would be always defined for all empirical distributions and with the use of

exploratory data analysis, Tukey (1962) also tried to provide means to reduce the errors in

formulating the statistical models for further drawing inference.

There are several other aspects that do contribute to the lack of structure and understanding

of these replica models of reality. As a result, the assumptions surrounding the parametric

model fitting to understand the data are often relaxed. The statistical decision theory

and inference procedures are built on the parametric forms of probability distributions and

provide a wide range of tools and techniques to deal with data structures; however, within

the realm of these decision theoretic frameworks, the question that is often challenging is to

have a procedure or a set of techniques that can capitalise on the nature and structure of

data that are not well defined. A host of data structures would then get a representation

and meaning through the procedures that are not primarily dominated by the probability

distributions (Tukey, 1960; 1962).

One of the major drawbacks in using non-parametric statistical methods is the asymptotic

inferential procedures that underlie these statistics. Although, non-parametric methods have

fewer assumptions on the data, the methods lack power for a small sample size. Therefore,

according to the literature, unless the normality conditions of the underlying data are

completely violated, it is not advisable to use non-parametric methods. These methods are

known to obey consistency where the posterior distribution properly accumulates its mass

around the true model with an increased sample size. However, for an identical problem

set, this accumulation has a different rate of convergence in comparison to the parametric
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methods (Hjort et. al, 2010).

Aggregation of judgements using non-parametric method

In the context of aggregation of experts’ judgement data, several non-parametric inferential

procedures exist in literature. However, most of these methods have been used for ranking

the expert judgement, and providing orders to the judgements in social decision-making

context (Muller and Mitra, 2013; Kauko et. al, 2003; Tsyganok et. al, 2012). One of the

popular non-parametric aggregation approaches is that of maximisation of entropy (Myung et.

al, 1996; Wood et. al, 2006). This method makes use of the five point estimates as described

in the previous paragraph of this chapter. Vincentization and parameter averaging are two

other non-parametric methods used for combining judgements or combining information

from independent sources (Genest, 1992; Gu, 2009). Both these approaches are fairly

popular within psychology where the aggregation of information is of prime importance.

It has been noted that the classical method of Cooke in respect to aggregate judgements

has been compared with the non-parametric sign test, being developed by Clemen. In this

context, the distance between the medians of the aggregated results and the seed variables

were at first compared to measure the accuracy of the models. This study concluded

that equal-weighting of experts was a flawed method at many levels and a more rigorous

mathematical aggregated model was required to address the issue (Yin and Cheng, 2009).

The allocation of weights to the judgements provided by the experts is a crucial task within

the aggregation framework. Several mathematical constructs exists and some of these

have been presented in this chapter. One of the most common construct towards weight
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allocation to the judgements is that of equal weights. Every expert’s judgement is given an

equal weight and it is then aggregated to provide a weighted average to the questions or

variables under study. The allocation of weights becomes hard when the judgements are

correlated. Cooke (1991), used a method where he tested the performance of the experts

against questions that he had answers to, therefore, when the same set of experts were

asked to assess and provide their judgements on an the quantity, whose values were not

known, based on their previous performances, the weights were assigned to each expert.

Also, in this approach, the author assumed the experts to be independent of each other.

In a study of the Yucca Mountain range in Nevada, authors, Zio and Apostolakis (1997)

and Jouini and Clemen (1996), in separate studies on the same subject, made use of the

decision makers’ belief, ranked the experts and assigned weights. Zio and Apostolakis

(1997), used equal weightings in their mixture model method when they aggregated the

expert judgements. Although Jouini and Clemen (1996), studied the correlation between

the judgements, the correlation was assessed by the decision makers and not through the

data. It was the decision makers’ belief as to how he felt the experts were correlated

and performed on the assessment tasks. Though the expert elicitation task is structured

in a sense that it is aimed at reducing biases that might exists in the judgements, it is

not entirely possible to control for the bias that might exist inherently within the expert.

However, it is advisable to accumulate judgements from independent experts so as to gain

maximum information but because inherent dependencies cannot be completely ignored

in a multi-expert scenario, therefore discounting the correlated experts in terms of weight

assignment of their judgements becomes necessary.
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2.3.3 Empirical Bayes method

Background

Empirical Bayes (EB) method is a powerful data analysis tool (Casella, 1995) especially in

the case of a multi-parameter estimation problem where known correlations or relationships

between the different variables suggest pooling information across similar experiments gain

a better inference of the underlying parameter. The Bayesian literature is predominantly

concerned with the construction of the posterior distributions given the data and prior beliefs.

Given the prior beliefs; which may be expressed as probability distributions, the construction

of the posterior distributions would entail either maximise the information that is obtained

through the assessments or minimising the errors that exist because of the discrepancies or

misspecification of the actual and calculated parameter values. In EB, the method the prior

and the likelihood are both estimated from the available data and then using the Bayes

theorem, the posterior distribution is calculated (Efron et. al, 2002).

This method is applicable when the decision problem is presented repeatedly and indepen-

dently with a fixed but unknown a prior distribution of the parameters (Robbins, 1956).

Robbin’s theory on EB justified the development of EB method to aggregating correlated

experts judgement data. Bayesian techniques such as the EB approach, have also been

used for addressing various practical issues over the years. EB methods are considered as

powerful data analysis tools in present era. This is significant especially, when the inferential

statements are made regarding the parameter which is based on data (Casella, 1985; Deely

and Lindley, 1981; Carlin and Lewis, 1996). The problem that has been addressed in this

thesis comprises drawing an inference from an observed statistical value upon the unknown
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value of a parameter and thus examining the chance of the inference to be correct (Mises,

1943).

Aggregation of judgements using EB methods

Empirical Bayes statistical inference theory could be divided into the parametric empirical

Bayes inference and non-parametric empirical Bayes inference. The main difference between

these two methods of inferences being that for the parametric empirical Bayes inference, the

prior belongs to some class of parametric distributions with unknown parameters, which need

to be estimated from the data. These parameters are also referred to as hyperparameters.

The form of the prior in a nonparametric empirical Bayes inference procedure is not assumed

to follow any known parametric form.

EB methods have been used in literature and across disciplines, and within the framework

of decision analysis, these methods have been used for aggregation of various risk and

other decision factors. Arbenz and Canestraro (2010) used internal data from the insurance

institutions and other external sources of data to study insurance risk using empirical Bayes

methodology. The prior distribution that was applied to the loss default models was assumed

to follow beta distribution because of its suitability to the data structure. There are several

pieces of evidence of use of empirical Bayes techniques for aggregation; for example, in the

area of financial risk (Kiefer, 2006) this method has been used to combine expert judgements

with observed data for the construction of low default portfolios of the various financial

instruments. The prior distribution was modelled as beta distribution. It has been seen

that in most of the financial risk studies, in particular within operational risk while using

65



EB methodology for aggregation of data, beta distribution is commonly used (Lambrigger

et. al, 2007). The EB statistical technique has also been used for aggregating spatial data

within epidemiological studies concerning disease mapping (Devine et. al, 1994) However,

the epidemiological study does not account for any form correlation in the modelling.

2.3.4 Strengths and weaknesses of EB method

Like any mathematical method, the EB methodology has been criticised by several authors

(Gelman, 2004) where the empiricism within Bayesian paradigm has been questioned. There

is no denying fact that Bayesian inference has attractive features for its coherence and good

frequentist properties (Petrone et. al., 2012). However, eliciting an honest prior might

not be a simple task, and as a result adopting the empirical method where estimating the

parameters from data would add more meaning and render a structure to the Bayesian

analysis. In a fairly large sample, EB leads to similar inferential answers as a proper Bayesian

inference. In a data-driven choice of prior hyperparameters situation, empirical Bayes is

a preferred method of analysis as opposed to a fully Bayesian methodology (Petrone et.

al. 2012). The inconsistencies within EB methods have been found where the issues lay

with the decomposition of variance within the EB methods (Cooke, 1986). Within the

context of this thesis, the decomposition of variance factor was important; and literature

suggested that it was unreasonable that one expert always gave the same standard deviation

for all questions and that EB methodology provided a first order approximation to reality.

However, EB techniques were useful for estimating between expert variability for many sets

of expert opinions. It was further argued that the question on the decomposition of variance
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might or might not be independent. This means the way applied by an expert in assessing

the probability of one question might not be possible to be applied in another process or

method. Hence, the dependence between the judgements across rows is not the same across

the columns. Therefore, EB methodology may be applied to model the dependencies and

aggregate the expert judgements.

A fairly common criticism that has always surrounded the EB methodology is the fact that

the data is used twice to model; firstly, to decide on the prior parameters and then for model

the dependence between the judgements. In this thesis, it is assumed that the judgements

provided by the experts in terms of the point estimates come from a normal distribution and

thus the prior is constructed from the data and is assumed to follow a normal distribution

and then the likelihood is constructed using the same data. This prior and likelihood and

then used to compute the posterior distribution. This is closely followed by further criticism

of the property of exchangeability. In many real world contexts, exchangeability would not

be a preferred property, and therefore the use of empiricism within the Bayesian context

would be overruled. However, within the context of this research, the desired property

of exchangeability does hold true. Exchangeability is defined in terms of the dependence

structure similar to the definition in Jouini and Clemen (1996), meaning the joint distribution

function is the same irrespective of any permutation of the judgements provided by the

experts. In a situation like this, where the model is developed based on a real world data,

the values of the parameter are unknown, hence deciding on a prior distribution such as a

normal distribution for the data was a sensible thing to do. Moreover, the EB procedures

provide evaluations over both the parameter space and the data space, and it is known as
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the plausible compromise between a strictly Bayesian modelling and a frequentist method

towards modelling (Carlin and Louis 1999).

Another issue while dealing with expert judgements is the issue concerning the credibility

of the experts. It can be argued that the experience and the rigorous training that the

experts have been through justify their credibility as experts and therefore their judgements.

However, in a more realistic setting, it might happen that the experts are biased but not

credible. As a result of this, the estimates provided by the experts are different but these are

biased estimates. But as the true value of the parameters remains unknown; the confidence

on the aggregated result will not change irrespective of the results being small or large. The

small or large results may be predominantly due to the positive and negative correlations

that exist between the judgements of the experts.

2.4 Summary

This section summarizes the non-parametric and EB methods that are further developed

to aggregate correlated judgements. The literature review provides an insight into the

use of both these methods in aggregation but with a narrow definitive scope. It has been

further established through the literature that dependence modelling plays a crucial role in

aggregating judgements. Therefore, the gap in the literature on using these two methods

for aggregation in presence of correlation sets the path for this research. Therefore, the

thesis further aims to make a contribution in the field of existing literature regarding the

experts’ judgements aggregation while proposing the two alternative methods as mentioned

earlier to aggregate the correlated judgements.
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Chapter 3

Non-parametric method for expert

judgement aggregation

3.1 Introduction

Since the experts are sought in absence of the true knowledge of the parameters or quantities

of interest, the question around confidence on the expert’s judgements may itself be

challenging. The question essential to answer then is what weights are to be allocated to the

experts on their judgements? This chapter provides a non-parametric model to aggregate

correlated expert’s judgements. This method, as stated in the literature review, makes

no parametric assumptions on the judgement data and works with the first two moments

from the data along with the covariance matrix of the judgements. Section 3.2 derives

the non-parametric model for aggregation and illustrates the weight allocation to experts

through hypothetical examples. Section 3.3 presents the identifiability of the parameters
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thus making inference possible. It is crucial property in statistics so that it is established

that the parameters that are inferred can be estimated from the data. Section 3.4 discusses

the findings of this chapter.

3.2 Non-parametric model for aggregation

The method developed in this chapter address the issue of weight allocation adopting a least

square method minimising mean square error (MSE) using Lagrange multipliers. Usually,

after the computation of the parameter estimates from the judgement data, the frequently

encountered operation is to minimize the error that might occur during the estimation

process. In order to minimize the errors, a quadratic form in terms of MSE is proposed. A

quadratic form of loss function is preferred because the judgements provided by the experts

could potentially be directionally biased. Although, it is assumed that the experts have

provided the true values to the parameters and the aggregation is based on this assumption,

it cannot be cross checked for the directional errors in the data unless the true values are

known. Hence, the squared loss function is chosen over the other error functions. Several

variants for solving a squared loss function appear in literature and when a function is to

be minimized or maximized over a set of constraints, the standard way of dealing with it

is by introducing a new set of constraints which holds the equation constant under the

variations. This method is known as the Lagrange multiplier approach. When first introduced

Lagrange multipliers were used to deal with problems with equality constraints because

mathematics were predominantly synonymous with the study of equations (Rockafellar,

1993), hence the popularity of the multipliers were restricted to constrained optimisation
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with equality constraints. With the advancement in mathematics, the constraints were

modified to represent the real world scenarios and hence the use of Lagrange multipliers

slowly saw embracing inequality constraints. In order to find a local maxima or a local

minima, the function was either minimised or maximised (was achieved by simply reversing

the signs) depending on constraint or a set of constraints, dependent on the problem. A

linear independence is assumed between the constraints that the function minimised or

maximised is subjected to. It seemed evident that Lagrange only advised proceeding as if

seeking a maximum or minimum, and that the key point being that the variables can be

found by solving the given set of equations. Although, the validity of that assertion did

not depend on the existence of an unconstrained extremum at the solution point. However,

in today’s context these multipliers are used with partial derivatives to locate a suitable

maxima or minima (obtained by reversing signs) subject to a suitable list of constraints.

The Lagrange multipliers enable us to avoid making a choice of the independent variables

and they permit the symmetry in a problem where the variables are entered symmetrically

at the onset. These multipliers have been embedded in history for centuries. With a

primary focus on being used for solving optimisation problems, named after the French

mathematician Joseph Louis Lagrange, this provided an unique and accurate way of dealing

with polynomials of a higher degree. These have had a rigorous use in the field of geometry

where they have been used to study the impact between space and time at various different

dimensions. Although the reach and usage of Lagrange multipliers stretch beyond the

discipline of mathematics, restricting its use within the scope of this thesis, the usage

is primarily dominated by finding the local maxima and local minima of the MSE of the
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aggregated judgements. The MSE in essence is computed as an estimator to estimate the

error between the predicted and the actual or true value of the parameters (Taylor and

Mann, 1983).

Using the mathematical construct of MSE and Lagrange multipliers, the theoretical basis

for aggregation of correlation expert judgements is then expressed in terms of the following

theorem.
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Non-parametric method for expert

aggregation

The following notation are used to define the theorem below :

Table 3.1: Notation used

z represents the number of experts

n represents the total number of questions

i, j represent the experts where i and j ∈ 1, 2, ..., z

k represents the question number; it acts as a counter

for the number of questions, therefore k ∈ 1, 2, ..., n

Xki is the random variable representing expert i’s as-

sessment on question k

xki is the realisation of Xki

µki = E (Xki) is the expectation of expert i’s assessment of ques-

tion k
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µi = E (Xki|µki) is the true value for expert i’s assessment ∀ k

σki =
√
E (Xki − µki)2 is the standard deviation of expert i’s assessment

on question k

cijk = Cov (Xki, Xkj) is the covariance between expert i and expert j’s as-

sessment over kth question; where Cov (Xki, Xkj)

= E ((Xki − µki) (Xkj − µkj)).

Ck is the covariance matrix for kth question where cij

is the (i, j)th element ∀ k

C represents the covariance matrix ∀ k

C−1 represents the inverse of the covariance matrix ∀ k

Π is the correlation matrix whose elements are σki,

cij , µk and ρij

wi is the weight assigned to expert i

w
¯

= (w1, ..., wz) is the vector of weights assigned to experts

λ is the Lagrange multiplier

ŵi is the estimator of wi

µ̂np denotes the non-parametric mean

Theorem 1 Let the mean square error be defined as MSE = E

((
z∑
i=1

wiXi − µi
)2
)
, for

k = 1

Then the weights assigned to the experts’ assessments that minimise the MSE are propor-

tional to the covariance matrix (C) as w
¯

= argmin
w

MSE ∝ C−1 such that,
z∑
i=1

wi = 1
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Proof 1 ŵ
¯

= argmin
∀wi

MSE = argmin
∀wi

E

((∑
∀i
wiXi − µi

)2
)

such that,
z∑
i=1

wi = 1

Using the Lagrange multiplier approach,

L = E

((∑
∀i
wiXi − µi

)2
)

+ λ

(
z∑
i=1

wi − 1
)

The first order conditions with respect to the weights are as in the following for which there

will be z such equations for each i

dL

dwj
= E

(
2
(∑
∀i
wiXi − µi

)
Xi

)
+ λ (3.1)

This is then set to 0, which then results in wi to be represented by the following :

dL

dλ
=

z∑
i=1

wi − 1 = 0 (3.2)

from (1),

∑
∀i
wiE (XiXj)− µ2

i + λ
2 = 0

which is then equal to,

∑
∀i
wicij + λ

2 = 0

∑
∀i
w
¯

= −λ
2

Therefore, w
¯
∝ C−11

¯
, where 1

¯
is a column of ones, thus giving a vector of weights for each

expert.

Corollary 1 If σ2
i = σ2

j ∀ i, j, and µi = θ, ∀, i, then w
¯

is a function of Π.
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3.2.1 Examples demonstrating the theorem

Here, we provide two hypothetical examples demonstrating the between expert aggregation

and within expert aggregation using Theorem 1. The example assumes a set of four experts

each providing us their best estimates on four questions. Each of the question is considered

independent of each other and each expert is assumed to be unbiased, which means that

we assume that the experts are providing us the true value of the unknown parameter under

consideration. The optimal weights are computed using Theorem 1 which minimizes the

MSE. Example 3.1. Let us consider Table 3.2 that summarises the experts judgement on

four questions:

Table 3.2: Example 3.1: Experts judgement on four questions

E1 E2 E3 E4

Q1 0 0.5 0.3 0.08

Q2 0 0.5 0.6 0

Q3 0.2 0 0.2 0.5

Q4 0.99 0.35 0.1 0

We then compute the mean and covariances of these assessments across all questions.

Therefore,

µ1 = 0.220, µ2 = 0.275, µ3 = 0.225, and µ4 = 0.360

The covariance is calculated using cijk = Cov (Xki, Xkj) is the covariance between expert i
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and expert j’s assessment over kth question; where Cov (Xki, Xkj) = E ((Xki − µki) (Xkj − µkj)).

Therefore the covariance matrix is given as:

Table 3.3: Covariance matrix of the assessments

E1 E2 E3 E4

E1 0.2220 -0.0184 -0.0727 -0.0242

E2 -0.0184 0.0556 0.0266 -0.0519

E3 -0.0727 0.0267 0.0466 -0.0166

E4 -0.0242 -0.0519 -0.0166 0.0574

Then using ρijk = Cov(Xki,Xkj)
σkiσkj

is the correlation between expert i and expert j’s

assessment on question k we get the correlation matrix as Table 3.4

Table 3.4: Correlation matrix of the assessments

[E1] [E2] [E3] [E4]

[E1] 1 -0.1653 -0.7138 -0.2141

[E2] -0.1653 1 0.5233 -0.9185

[E3] -0.7138 0.5233 1 -0.3219

[E4] -0.2141 -0.9185 -0.3219 1

Given the covariance matrix in Table 3.3, we can then use Theorem 1, which states

that the weights that minimize MSE is the inverse of the covariance matrix multiplied by a

vector of ones, therefore, we calculate the inverse of the covariance matrix C. Further, we
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can then compute the weights and normalise them so that the sum of the weights add to 1.

Therefore, the weights are: E1 = 0.0077, E2 = 0.7855, E3 = 0.1809 and E4 = 0.0257.

According to the weights received by the experts, Expert 2 has received the highest weight

whereas Expert 1 has received the least weight. If we check the correlation matrix, Table 3.4,

we see that Expert 1 and Expert 4 are negatively correlated with all other experts but Expert

4 is highly negative correlated as opposed to Expert 1 therefore Expert 4 receives a higher

weight than Expert 1. Whereas Expert 2 is highly negatively correlated with Expert 4 and

highly positively correlated with Expert 3, therefore receives a higher weight than all other

experts. Expert 3 receives the second highest weight as it is highly negatively correlated

with Expert 1. Thus this kind of aggregation takes into account the correlations that exists

among the experts. It is hard to make a claim as to whether Expert 1 is a good expert

or whether Expert 2,3 and 4 are enough for the assessment and Expert 1 is a redundant

expert but this claim cannot be made because there is an underlying assumption that all

experts are unbiased and they are giving true values of the unknown parameter. Though we

cannot make any claims around which is the best expert out of the four experts however

while aggregating it is worth taking the correlation of their assessments into account.

Example 3.2: In this example, we take into account the within expert correlation while

aggregating. So we consider a different set of data for four experts on four independent

questions.

78



Table 3.5: Example 2: Expert assessments on four independent questions

Q1 Q2 Q3 Q4

E1 0.9722 0.6763 0.5806 0.3796

E2 0.0980 0.2474 0.6962 0.1571

E3 0.7718 0.7475 0.9909 0.3367

E4 0.6445 0.5815 0.6299 0.9982

Given these assessments, the means are then calculated across experts judgement,

µ1 = 0.62166, µ2 = 0.5632, µ3 = 0.7244 and µ4 = 0.4679

Therefore, the covariance will be constructed using the column means.

Table 3.6: Covariance of the expert assessments

E1 E2 E3 E4

E1 0.0608 -0.0184 0.03411 -0.0322

E2 -0.0184 0.0736 0.0500 -0.01763

E3 0.0341 0.0500 0.0744 -0.04631

E4 -0.0322 -0.0176 -0.0463 0.0367

Given the covariances and means, we could then calculate the correlations as in Table

3.7.
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Table 3.7: Correlation between the experts assessment

E1 E2 E3 E4

E1 1 -0.2756 0.5067 -0.6832

E2 -0.2756 1 0.6758 -0.3389

E3 0.5067 0.6758 1 -0.8854

E4 -0.6832 -0.3389 -0.8854 1

Given the covariance matrix in Table 3.6, we can then invert the matrix to get the

optimal weights. Therefore the optimal weights obtained are as follows: E1 = 0.2960,

E2 = 0.1690, E3 = 0.0648 and E4 = 0.4700. Here we see that Expert 4 has received

highest weight and on assessing the correlation matrix in Table 3.7, we can see that Expert

4 is highly negatively correlated with all other experts. Expert 3 has received the lowest

weight because this expert is positively correlated with Expert 2 and Expert 1 but highly

negatively correlated with Expert 4. Again it cannot be concluded with certainty on which

of these four experts could be possibly made redundant but given their correlations on their

own assessments across questions, it is worth aggregating given the correlations.

3.3 Identifiability of Parameters

In statistics, identifiability of parameters is considered to make the inference possible, and it

is therefore necessary to be able to mathematically establish these properties. As stated

in section 2.3.2; non-parametric statistics lack asymptotic features and statistical power of

tests for small sample sizes.
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In the absence of correlations,

E (XkiXkj)→ µn
2 ∀ i, j, k, where i and j denote the experts, k is a counter for the number

of questions and n represents the total number of questions. The total number of experts is

denoted by z 3, i, j = 1, ..., z, ∀i 6= j

Therefore,

E (XkiXkj) = E (Xki)E (Xkj), where ∀i, j, k.

The correlation coefficient ρijk can be expressed in terms of the data as follows:

E
(
X2

ki

)
= σki

2 + µki
2

z∑
i=1

n∑
k=1

x2
ki

z×n →

z∑
i=1

n∑
k=1

σki
2

z×n + µki
2

z∑
i=1

n∑
k=1

x2
ki

z×n −

z∑
i=1

n∑
k=1

σki
2

z×n → µki
2 ∀ i, j, k

E (XkiXkj) = cijk + µki
2

z∑
i=1

n∑
k=1

xkixkj

z×n = ρijk

z∑
i=1

n∑
k=1

σkiσkj

z×n + µki
2

z∑
i=1

n∑
k=1

xkixkj

z×n − ρijk

z∑
i=1

n∑
k=1

σkiσkj

z×n → µki
2 ∀ i, j, k

z∑
i=1

n∑
k=1

x2
ki

z×n −

z∑
i=1

n∑
k=1

σki
2

z×n =

z∑
i=1

n∑
k=1

xkixkj

z×n − ρijk

z∑
i=1

n∑
k=1

σkiσkj

z×n

ρijk

z∑
i=1

n∑
k=1

σkiσkj

z×n −

z∑
i=1

n∑
k=1

σki
2

z×n =

z∑
i=1

z∑
k=1

xkixkj

z×n −

z∑
i=1

n∑
k=1

x2
ki

z×n

ρ̂ijk =

z∑
i=1

n∑
k=1

xkixkj

z×n −

z∑
i=1

n∑
k=1

x2
ki

z×n +

z∑
i=1

n∑
k=1

σki
2

z×n
z∑
i=1

n∑
k=1

σkiσkj

z×n

ρ̂ijk =
z∑
i=1

n∑
k=1

(
xkixkj−x2

ki+σki2
σkiσkj

)

The convergence is in probability and having expressed the correlation in terms of data, the

mean can then be expressed in terms of data given dependence:
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z∑
i=1

n∑
k=1

xkixkj

z×n =
z∑
i=1

n∑
k=1

(
xikxjk−x2

ki+σki2
σkiσkj

)
z∑
i=1

n∑
k=1

σkiσkj

z×n

+ µki
2

µ̂2
ki =

z∑
i=1

n∑
k=1

xkixkj

z×n −
z∑
i=1

n∑
k=1

(
xikxjk−x2

ki+σki2
σkiσkj

)
z∑
i=1

n∑
k=1

σkiσkj

z×n


µ̂2
ki = 1

z×n

(
z∑
i=1

n∑
k=1

xkixkj −
z∑
i=1

n∑
k=1

(
xkixkj−x2

ki+σki2
σkiσkj

)
(σkiσkj)

)
= 1

z×n

(
z∑
i=1

n∑
k=1

xkixkj −
z∑
i=1

n∑
k=1

(
xkixkj − x2

ki + σki
2))

= 1
z×n

(
z∑
i=1

n∑
k=1

(
x2
ki − σki2

))
Corollary 2 MSE tends to 0, as z → ∞ and n → ∞ The asymptotic properties of the

MSE can then be derived as:

MSE (µ̂np) = E

((∑
∀ki
wkiXki − µki

)2
)

= E
(
X2

ki

)
+ µ2

ki − 2µkiE (Xik)

= ρijk
σkiσkj
z×n

ρ̂ijk =
z∑
i=1

n∑
k=1

(
xkixkj−x2

ki+σki2
σkiσkj

)
MSE (µ̂np) = 1

z×n
z∑
i=1

n∑
k=1

(
xkixkj − x2

ki + σki
2)

if xki = 0, MSE (µ̂np)→
z∑
i=1

n∑
k=1

(
σki

2

z×n

)

Therefore, the MSE tends to 0, as z →∞ and n→∞.

3.4 Discussion

This chapter presented one mathematical method to aggregating correlated judgements

under the assumptions of unbiased experts based on no assumptions on the parametric form

of data. Although as the weights are directly proportional to the inverse of the covariance

matrix, the assumption of a well defined positive definite covariance matrix is embedded.
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There can be situations when the covariance matrix may not be positive definite; that

can arise when the variances are zero. In such situations, a generalised inverse of the

covariance matrix could be used instead for this proposed model to hold true. However, it

is not always advisable to convert signular matrices into non-singular forms for modelling

because the singularity could potentially lead to understanding the judgements that have

been specified by the experts. Therefore, mathematically, this non-parametric model to

aggregate correlated judgements would have a limited scope when the covariance matrices

are singular.

It has been seen that the assignment of weights is of prime importance while aggregating

judgements, especially when the judgements are correlated. It is well established in literature

that if the experts are highly positively correlated then consulting multiple experts is same

as consulting one expert because there is no gain in information; however, if the experts are

negatively correlated, though there is more information gain around the parameter of interest,

at the same time it also raises issues and concerns around the expert’s understanding of

the problem. It is fairly intuitive that in presence of any correlation whether negative or

positive, the aggregated impact on the questions will be less than the arithmetic average

when the judgements are treated independently. The method presented here assumed that

the correlations are constant across the set of questions; as the questions are assumed to be

independent. This is a fair assumption given that the questions are all related to assessing

the same quantity of interest. When assessing the same quantity of interest, the shared

knowledge shared work experience would play a crucial role in the assessments provided by

the experts, hence assuming a constant correlation throughout their assessments is a fair

83



assumption.

To conclude, correlations among expert judgements would invariably exist and this chapter

provides a novel way of addressing the issue of aggregating judgements using these correlations

in a sensible way while reducing the mean of the squared error using constrained optimisation

with Lagrange multipliers.
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Chapter 4

Empirical Bayes method for

aggregation of expert judgement

4.1 Introduction

This chapter presents the empirical Bayes’ method for aggregation of correlated expert’s

judgements. Section 4.2 introduces the normal/normal EB model for aggregation. This

section then uses the exact same hypothetical examples from chapter three and allocates

the weights to experts using EB method. Section 4.3 presents the identifiability of the

parameters which further draws into identifying that the parameters can be estimated from

data. Section 4.4 discusses and summarises the findings of this chapter.

85



4.2 Normal/Normal EB model for aggregation

The EB method for aggregation provides a novel way of aggregating the correlated experts

judgements. It has already been established that the dependence between expert judgements

should be modelled while aggregating the judgements otherwise the estimates tend to be

erroneous (Chhibber and Apostolakis, 1993). While devising and dealing with an experi-

mental design study, the dependence between and within the judgements are sensible ways

for aggregation. The between and within expert variability has been discussed by Zio and

Apostolakis (1997), but there is very little evidence in extant literature, which provides a

suitable model to address the between and within expert variability. Although a lot of work

has been done within the parametric framework of EB methodology, very little attempt has

been made to structure a mathematical model around aggregation using correlated expert

judgements. Thus, an attempt has been made to provide a modelling framework using EB

methodology towards aggregating dependent expert judgements.

The biggest challenge that has been highlighted time and again is when to aggregate the

probabilities elicited by the experts. The question that has intrigued many researchers is

whether there is any impact of the new information on the aggregated posterior distribution,

also known as ’external Bayesianity’. Bacco et. al, (2012) studied the impact of unanim-

ity and compromise, which the decision maker and the experts together arrive at while

combining probabilities. A two expert example using logitnormal distribution is proposed

through their work where the potential source of information that is available to the expert

and the statistician has been classified into three different categories. These categories

are detailed information; specialist information available only to a specialist expert; and
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information concerning the decision problem at hand. In deciding on the most suited order

of aggregation of the elicited probabilities, Bacco and colleagues (2012) concluded that

coherent inference does not require experts to be combined via external Bayesian operator.

It has been further stated that the disobedience of the EB operators takes place with regards

to coherency because the information that is available to the experts is not necessarily

available to the decision maker; therefore, which one of the information sources based on

their categorisation is the expert extracting maximum information is unknown. Barker and

Olaleyeln (2012) have also questioned the order of aggregation where the aggregation is

based on quantiles and not probabilities, It has been found that combining experts earlier,

before recomposition of the quantities, leads to smaller errors with less variance. Although

the study is primarily based on simulations (the difference in errors is not huge) and it

has been pointed out that in real world datasets, these differences might have a strong

impact. Fairly recent mathematical aggregation literature showed that aggregating quantiles

yielded a better aggregated result as opposed to aggregation of probabilities (Winkler et.

al, 2013). However this thesis does not attempt to address the issues surrounding the

aggregation order. This thesis provides mathematical frameworks to address dependencies

and aggregate expert judgements when the judgements are expressed as point estimates.

Further, the homogeneity or the extent to which the experts are similar in terms of the

judgements that they are providing, that exists between the judgements through a repeated

set of questions is an interesting aspect. EB approaches have been used to study this

homogeneity, and it has been found that the inference accuracy increases when the pool of

observations, and, as in this case, the expert’s judgement is perfectly homogeneous (Quigley
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and Walls, 2011). As the relationship between the judgements provided by the experts is

studied through correlations; the construction of the correlation matrix thus play a very

important role in the aggregation analyses. However, linear correlation acts as a good

measure when determining the co-movement given the Normal distribution scenario. It is

well known that two variables can have a zero correlation but at the same time be strongly

dependent (Ledoit and Wolf, 2003). Certainly in situations with non-normal distributions,

linear correlation functions are able to conceal the strong co-dependence information that is

contained in a full joint distribution. There could potentially be issues with the correlation

matrix supporting negative eigenvalue and not being positive definite. The judgements

could likely be negatively correlated on some questions and share a positive correlation on

others. In situations when the true value is unknown to both the decision maker and the

experts, then a strong positive correlation would give more confidence to the decision that

would be concluded as an outcome of the aggregation (Jouini and Clemen, 1996). The

EB method developed in this chapter provides a modelling framework that provides the

inclusion of all possible (positive, negative and zero) correlations structure that might exist

in a real scenario.

Consider the following notation:

Table 4.1: Notation used

z represents the number of experts

n represents the total number of questions

i, j represent the experts where i and j ∈ 1, 2, ..., z
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k represents the question number; it acts as a counter

for the number of questions, therefore k ∈ 1, 2, ..., n

Xki is the random variable representing expert i’s as-

sessment on question k

xki is the realisation of Xki

µki = E (Xki) is the expectation of expert i’s assessment of ques-

tion k

µi = E (Xki|µki) is the conditional expectation of expert i’s assess-

ment of question k and is the true value for expert

i’s assessment ∀ k

σki =
√
E (Xki − µki)2 is the standard deviation of expert i’s assessment

on question k

cijk = Cov (Xki, Xkj) is the covariance between expert i and expert j’s as-

sessment over kth question; where Cov (Xki, Xkj)

= E ((Xki − µki) (Xkj − µkj)).

Ck is the covariance matrix for kth question where cij

is the (i, j)th element ∀ k

C represents the covariance matrix ∀ k

C−1 represents the inverse of the covariance matrix ∀ k

ρijk = Cov (Xki, Xkj)
σkiσkj

is the correlation between expert i and expert j’s

assessment on question k
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θk = E (µki) is the prior mean of expert i’s assessment of ques-

tion k

τk = V ar (µki) is the prior variance of expert i’s assessment of

question k

Π is the correlation matrix whose elements are σki,

cij , µk and ρij

wi is the weight assigned to expert i

ˆρijk is the estimator of ρijk; ρ̂ij =

n∑
k=1

ˆρijk

n

ŵi is the estimator of wi

θ̂k is the estimator of θk

τ̂k is the estimator of τk

µ̂ki is the estimator of µki

The following set of general assumptions are made in the thesis on the proposed

approaches:

ρijk = ρij ∀ k

Cov (Xk1i, Xk2j) = 0 ∀ k1 6= k2

µki = µi ∀ i

µk are assumed to be independent and identically distributed and follow N (θk, τk)

X
¯k

follow multivariate Normal distribution MVN
(
µ
k
, Ck

)
µ̂ is the sample average
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Given these set of assumptions, under the assumptions of Normality and Bayes rule, the

parameters of the posterior distribution is given by Theorem 2; where E (µki)=θk which is

the prior mean and τ2
k=V (µki), which is the prior variance and these are calculated from

the data. Also, E (Xki)=θ. However, the posterior parameters are specified for k=1 in

theorem 2.

Theorem 2 Given the prior distribution of n unbiased experts, where Xki is the ith expert’s

judgement on kth question and this judgement is assumed to follow N
(
θk, τ

2
k

)
and the

likelihood follows a multivariate Normal distribution, N (µk, Ck). Then the posterior

distribution is N
(
µ1, σ

2
1
)
Normal with mean is a weighted average of the prior mean and

the data and precision which is defined as the reciprocal of the variances (Bernado et. al,

2003), where

µ1 = θ

1
τ2
k(

1
τ2
k

+
z∑
j=1

z∑
i=1

cij

) +

z∑
i=1

ci.xki(
1
τ2
k

+
z∑
j=1

z∑
i=1

cijk

) ;where, ci. =
z∑
j=1

cijk

σ2
1 =

z∑
i=1

z∑
j>i,j 6=i

(
1

σ2
ki(1− ρ2

ijk)
− 2ρijk
σkiσkj(1− ρ2

ijk)
+ 1
τ2
k

)
and the weights are computed as

ŵi ∝ C−1 + 1
τ2
k

Proof 2 In this derivation, the number of experts are denoted as z and the number of

questions are denoted as n; consider a case where there are two expert assessments, xki

and xkj , a normal prior and a normal likelihood,

π (µi|xki) ∝ exp
(
−1

2

(
xki − µi
σki

)2
)

exp
(
−1

2

(
µi − θ
τk

)2)

The posterior distribution can then be derived using the likelihood and the prior and it may
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be expressed as:

π (µi|xki, xkj) ∝ exp

− 1
2
(
1− ρ2

ijk

)


(xki−µi)2

σ2
ki

+ (xkj−µi)2

σ2
kj

−2ρijk(xki−µi)(xkj−µi)
σkiσkj


 exp

(
−1

2

(
µi − θ
τk

)2)

On completing squares and collecting the terms for µ2
i , µi and constants:

(xki − µi)2

σ2
ki

(
1− ρ2

ijk

) + (xkj − µi)2

σ2
kj

(
1− ρ2

ijk

) − 2ρijk (xki − µi) (xkj − µi)
σkiσkj

(
1− ρ2

ijk

) +
(
µi − θ
τk

)2

= µ2
i


1

σ2
ki

(
1−ρ2

ijk

) + 1
σ2
kj

(
1−ρ2

ijk

)
+ 1
τ2
k
− 2ρijk

σkiσkj
(

1−ρ2
ijk

)
− 2µi



xki
σ2
ki

(
1−ρ2

ijk

) + xkj

σ2
kj

(
1−ρ2

ijk

)
+ θ
τ2
k
− ρijk(xki+xkj)

σkiσkj
(

1−ρ2
ijk

)


+ const

where const is the constant term comprising data.

=
(

1
σ2
ki

(
1−ρ2

ijk

) + 1
σ2
kj

(
1−ρ2

ijk

) + 1
τ2
k
− 2ρijk

σkiσkj
(

1−ρ2
ijk

))µ2
i − 2µi

(
xki

σ2
ki

(
1−ρ2

ijk

)+
xkj

σ2
kj

(
1−ρ2

ijk

)+ θ

τ2
k

−
ρijk(xi+xj)
σiσj(1−ρ2)

)
(

1
σ2
i

(
1−ρ2

ijk

)+ 1
σ2
kj

(
1−ρ2

ijk

)+ 1
τ2
k

−
2ρijk

σkiσkj

(
1−ρ2

ijk

))
+ const

Further simplification leads to the following, where the posterior distribution is expressed as

a function of data (xki), µi, σ2
ki and the correlation coefficient, ρijk.
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=
(

1
σ2
ki

(
1−ρ2

ijk

) + 1
σ2
kj

(
1−ρ2

ijk

) + 1
τ2
k
− 2ρijk

σkiσkj
(

1−ρ2
ijk

))

µ2
i − 2µi

(
xki

σ2
ki

(
1−ρ2

ijk

)+
xkj

σ2
kj

(
1−ρ2

ijk

)+ θ

τ2
k

−
ρijk(xki+xkj)
σkiσkj

(
1−ρ2

ijk

))(
1

σ2
ki

(
1−ρ2

ijk

)+ 1
σ2
kj

(
1−ρ2

ijk

)+ 1
τ2
k

−
2ρijk

σkiσkj

(
1−ρ2

ijk

))

+


(

xki

σ2
ki

(
1−ρ2

ijk

)+
xkj

σ2
kj

(
1−ρ2

ijk

)+ θ

τ2
k

−
ρijk(xi+xj)
σiσj(1−ρ2)

)
(

1
σ2
i

(
1−ρ2

ijk

)+ 1
σ2
kj

(
1−ρ2

ijk

)+ 1
τ2
k

−
2ρijk

σkiσkj

(
1−ρ2

ijk

))


2


+ const

Therefore in the two expert case, it can be seen that µi, which is the mean of the expert

assessments is expressed as a function of the prior mean, θ, the variance, σ2
ki and the prior

variance, τ2
k .

E [µi|xki, xkj ] =

xki
σ2
ki

(
1−ρ2

ijk

) + xkj

σ2
kj

(
1−ρ2

ijk

) + θ
τ2
k
− ρ(xki+xkj)

σkiσkj
(

1−ρ2
ijk

)
1

σ2
ki

(
1−ρ2

ijk

) + 1
σ2
kj

(
1−ρ2

ijk

) + 1
τ2
k
− 2ρijk

σkiσkj
(

1−ρ2
ijk

)

=
σ2
kiσ

2
kjτ

2
k

(
xki
σ2
ki

+ xkj
σ2
kj

+ θ
(

1−ρ2
ijk

)
τ2
k

− ρijk(xki+xkj)
σkiσkj

)
σ2
kjτ

2
k + σ2

kiτ
2
k + σ2

kiσ
2
kj

(
1− ρ2

ijk

)
− 2ρijkσkiσkjτ2

k

=


1

σ2
kjτ

2
k + σ2

kiτ
2
k+

σ2
kiσ

2
kj

(
1− ρ2

ijk

)
− 2ρijkσkiσkjτ2

k




(
σ2
kj − ρijkσkiσkj

)
τ2
kxki+(

σ2
kj − ρijkσkiσkj

)
τ2
kxkj + σ2

kiσ
2
kj

(
1− ρ2

ijk

)
θ



On generalising the two expert case onto four experts; the posterior distribution of µi is

93



normal with mean, µ1,

µ1 =

xk1
σ2
k1(1−ρ2

ijk
) + xk2

σ2
k2(1−ρ2

ijk
) + xk3

σ2
k3(1−ρ2

ijk
) + xk4

σ2
k4(1−ρ2

ijk
) −

ρ12k(xk1+xk2)
σk1σk2(1−ρ2

ijk
)−

ρ13k(xk1+xk3)
σk1σk3(1−ρ2

ijk
) −

ρ14k(xk1+xk4)
σk1σk4(1−ρ2

ijk
) −

ρ23k(xk2+xk3)
σk2σk3(1−ρ2

ijk
) −

ρ24k(xk2+xk4)
σk2σk4(1−ρ2

ijk
) −

ρ34k(xk3+xk4)
σk3σk4(1−ρ2

ijk
) + θ

τ2
k

1
σ2
k1(1−ρ2

ijk
) + 1

σ2
k2(1−ρ2

ijk
) + 1

σ2
k3(1−ρ2

ijk
) + 1

σ2
k4(1−ρ2

ijk
) −

2ρ12k
σk1σk2(1−ρ2

ijk
) −

2ρ13k
σk1σk3(1−ρ2

ijk
)−

2ρ14k
σk1σk4(1−ρ2

ijk
) −

2ρ23k
σk2σk3(1−ρ2

ijk
) −

2ρ24k
σk2σk4(1−ρ2

ijk
) −

2ρ34k
σk3σk4(1−ρ2

ijk
) + 1

τ2
k

Generalising the number of experts to z, the posterior mean can be written as,

=
z∑
i=1

z∑
j>i,j 6=i

 xki
σ2
ki

(1−ρ2
ijk

)
−

ρijk(xki+xkj)

σkiσkj(1−ρ2
ijk

)
+ θ

τ2
k

1
σ2
ki

(1−ρ2
ijk

)
−

2ρijk
σkiσkj(1−ρ2

ijk
)
+ 1
τ2
k


=

z∑
i=1

z∑
j>i,j 6=i

(
xkiσkiσkj(1−ρ2

ijk)τ2
k−ρijk(xki+xkj)σ2

ki(1−ρ
2
ijk)τ2

k+θσ2
ki(1−ρ

2
ijk)σkiσkj(1−ρ2

ijk)
σkiσkj(1−ρ2

ijk
)τ2
k
−2ρijkσ2

ki
(1−ρ2

ijk
)τ2
k

+σ2
ki

(1−ρ2
ijk

)σkiσkj(1−ρ2
ijk

)

)
=

z∑
i=1

z∑
j>i,j 6=i

(
xkiσkjτ

2
k−ρijk(xki+xkj)σkiτ

2
k+θσ2

kiσkj(1−ρ
2
ijk)

σkjτ
2
k
−2ρijkσkiτ

2
k

+σ2
ki

(1−ρ2
ijk

)σkj

)

Therefore, the posterior mean is a weighted average of the prior mean and the data. Also,

in order to estimate the parameters, the maximum likelihood estimation procedures have

been followed, which results in the following estimates of mean and variance. In maximum

likelihood estimation, the log of the likelihood function, in this case, the log of the multi-

variate normal likelihood function is maximized with respect to the parameters, θ and τk,

respectively, and the first partial order derivative is equated to zero, the equation is then

solved for the parameters. The second derivative is calculated to test whether the likelihood

is maximized as it intended. Differentiating with respect to θ, and solving for θ gives,
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θ̂ =
z∑
i=1

z∑
j>i,j 6=i

(
1− ρ2

ijk

)
σ2

kiσkj + kiτ2
kσkj − ρijk (xki + xkj) τ2

kσki

τ2
kσkj + σ2

kiσkj
(
1− ρ2

ijk

)
− 2ρijkσkiτ2

k

The posterior mean can thus, be re-written as follows :

= θ

1
τ2
k(

1
τ2
k

+
z∑
j=1

z∑
i=1

cij

) +

z∑
i=1

ci.xki(
1
τ2
k

+
z∑
j=1

z∑
i=1

cijk

)
where : ci. =

z∑
j=1

cijk

E [µi|xki] = w0E [µi] +
z∑
i=1

wixki

wi = ci.(
1
τ2
k

+
z∑
j=1

z∑
i=1

cijk

)
w0 = 1−

z∑
i=1

wi

4.2.1 Examples demonstrating the theorem

Consider Table 3.2, where four experts provided their assessments on four questions. Based

on these assessments, the first two moments, i.e., the mean and the standard deviation were

calculated for each question. According to Theorem 2, the aggregated weight is sum of the

prior precision (reciprocal of the variance) and the prior variance of the data. We calculate the

prior variance given the data in Table 3.2 which are : σ2
1 = 0.22202500 , σ2

2 = 0.05562500,

σ2
3 = 0.02666667 and σ2

4 = 0.05743333. The prior precision is calculated from the data

which is τ1 = 0.2256841, τ2 = 0.3201562, τ3 = 0.2061553 and τ4 = 0.4450468. Given the

correlation between these assessments as in Table 3.4, the weights are then calculated as

follows :
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Table 4.3: Weights assigned to each expert for between expert correlation (based on Table

3.2.)

E1 0.2835

E2 0.2497

E3 0.3214

E4 0.1452

On comparison, Expert 2 and Expert 3 have also received higher weights as opposed to

Expert 1 and Expert 4. Expert 1 received the least weight according to the EB method but

the same method assigned Expert 4 the least weight. This is because of the prior variance

of Expert 4. A higher prior variance leads to less homogeneity in the expert assessments

while a low prior variance leads to a lower MSE (Quigley, et. al, 2011). On comparing the

prior variance, it can be seen that Expert 4 has a higher prior variance of 0.4450468 as

opposed to all other experts; therefore it is reinforcing the literature on EB method that

prior variance has an impact on the aggregation given the correlations which is absent in

the non-parametric method to aggregation.

Now considering Table 3.5, where four experts have provided their assessments on four

independent questions and the covariance matrices calculated on Table 3.6, the weights

assigned to each expert based on EB method is again computed as a sum of the prior

variance of the data and the prior variance. Therefore, the weights assigned to experts are

as follows:
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Table 4.4: Weights assigned to each expert for within expert correlation (based on Table

3.5.)

E1 0.2469

E2 0.2186

E3 0.2115

E4 0.3227

The allocation of weights using the between experts and within expert aggregation is

different. The between expert aggregation in Table 4.3 has assigned the highest weight to

E3 whereas the within expert correlation, Table 4.4 has assigned highest weight to E4. The

reason for the difference may be attributed to the high negative correlation between E3

and E4. It can also be seen that the allocation of weights for within expert correlation for

both the methods i.e. the non-parametric and EB method is the same. Both the methods

have assigned the highest weight to Expert 4 and the least weight to Expert 3. Expert 4

received the highest weight because the prior variance of Expert 4 is lowest τ4 = 0.1916 as

opposed to the prior variances of Expert 1, τ1 = 0.2465, Expert 2, τ2 = 0.2713 and Expert 3,

τ3 = 0.2729. While it can be easily seen that all other experts have received similar weights

because their prior variances, in the examples, are similar as well. Though the correlations

have played a critical role but as stated in the literature, the prior variances play an equal

important role in assigning optimal weights to expert assessments given their dependencies.
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4.3 Identifiability of Parameters

The asymptotic properties of EB estimates are investigated and it can be shown that

Eθ [E (XkiXkj) |θk]→ τk
2 + µki

2 ∀i, j, k, when ρijk = 0, i.e. in absence of any correlation,

the Eθ [E (xkixkj) |θk]→ prior mean µki and prior variance τ2
k .

Eθ [E (XkiXkj) |θk] = ρijkσkiσkj + E (Xki)E (Xkj) = ρijkσkiσkj + E
(
θ2
k

)
= ρijkσkiσkj + V ar(θk) + (E (θk))2

Eθ [E (XkiXkj) |θk] = ρijkσkiσkj + τk
2 + µki

2

z∑
i=1

z∑
j=1

n∑
k=1

XkiXkj

z × n
→ ρijk

z∑
i=1

n∑
k=1

σkiσkj

z × n
+ τk

2 + µki
2

Thus, the correlation can be expressed in terms of expert judgements and the uncer-

tainties provided by the experts:
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z∑
i=1

z∑
j=1

n∑
k=1

xkixkj

z × n
→ ρijk

z∑
i=1

n∑
k=1

σkiσkj

z × n
+ τk

2 + µki
2

z∑
i=1

z∑
j=1

n∑
k=1

xkixkj

z × n
− ρijk

z∑
i=1

n∑
k=1

σkiσkj

z × n
→ τk

2 + µki
2

Eθ [E (XkiXkj) |θk]→ τk
2 + µki

2

Eθ
[
E
(
X2

ki

)
|θk
]

= σki
2 + τk

2 + µki
2

z∑
i=1

n∑
k=1

x2
ki

z × n
→

z∑
i=1

n∑
k=1

σki
2

z × n
+
(
τk

2 + µki
2)

Eθ
[
E
(
x2
ki

)
|θk
]

=

z∑
i=1

n∑
k=1

x2
ki

z × n
−

z∑
i=1

n∑
k=1

σki
2

z × n
→ τk

2 + µki
2

z∑
i=1

z∑
j=1

n∑
k=1

xkixkj

z × n
− ρijk

z∑
i=1

n∑
k=1

σkiσkj

z × n
=

z∑
i=1

n∑
k=1

x2
ki

z × n
−

z∑
i=1

n∑
k=1

σki
2

z × n

ρ̂ijk


z∑
i=1

n∑
k=1

σkiσkj

z × n

 =

z∑
i=1

n∑
k=1

σki
2

z × n
+

z∑
i=1

z∑
j=1

n∑
k=1

xkixkj

z × n
−

z∑
i=1

n∑
k=1

x2
ki

z × n

ρ̂ijk =

z∑
i=1

n∑
k=1

σki
2

z × n
+

z∑
i=1

z∑
j=1

n∑
k=1

xkixkj

z × n
−

z∑
i=1

n∑
k=1

x2
ki

z × n
z∑
i=1

n∑
k=1

σkiσkj

z × n

ρ̂ijk =

z∑
i=1

z∑
j=1

n∑
k=1

xkixkj +
z∑
i=1

n∑
k=1

σki
2 −

z∑
i=1

n∑
k=1

x2
ki

z∑
i=1

n∑
k=1

σkiσkj

Using the estimate for the correlation, the prior mean and variance can be expressed in

terms of data:
z∑
i=1

z∑
j=1

n∑
k=1

xkixkj

z × n
−


z∑
i=1

z∑
j=1

n∑
k=1

xkixkj +
z∑
i=1

n∑
k=1

σki
2 −

z∑
i=1

n∑
k=1

x2
ki

z∑
i=1

n∑
k=1

σkiσkj


z∑
i=1

n∑
k=1

σkiσkj

z × n
→ τk

2 + µki
2

z∑
i=1

n∑
k=1

x2
ki −

z∑
i=1

n∑
k=1

σki
2

z × n
→ τk

2 + µki
2

The asymptotes suggest that the correlation coefficient can be entirely expressed in terms

of the judgements and the standard deviations of these judgements. For a large sample size
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of expert judgements and questions, the covariance tends to the sum of the prior mean and

the prior variance. The Mean Square Error (MSE) form is intractable, hence the impact

of sample size on MSE is studied through simulations. However, when the experts provide

same assessments for a particular question and they have the same uncertainty then, MSE

tends to the prior variance:

MSE (θk)→ τk
2 ∀xki = xkj , σki = σkj

MSE (θk) = E
(
θ̂k − θk

)2
= V ar(θ̂k) +

(
E
(
θ̂k − θk

))2

= E
(
θ̂2
k

)
+ E

(
θk

2
)
− 2E

(
θkθ̂k

)
= V ar

(
θ̂k
)

+
(
E
(
θ̂k
))2

+ E
(
θk

2
)
− 2E

(
θkθ̂k

)
= V ar

(
θ̂k
)

= 1
z∑

i,j=1

n∑
k=1

(
1

σ2
ki(1− ρijk2) −

2ρijk
σkiσkj(1− ρijk2) + 1

τk2

)

ρ̂ijk =
z∑
i=1

n∑
k=1

(
xkixkj − x2

ik + σik
2

σikσjk

)

MSE (θk) = 1

z∑
i,j=1

n∑
k=1


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4.4 Discussion

The method proposed in this chapter is based on an empirical Bayes setting that uses the

parametric normal distribution to model the prior and the likelihood. The structure of the

aggregation within the Bayesian framework is cumbersome (Chhibber et. al, 1996). However,
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the significant use of this EB method permits the use of a broad correlation structure not

necessarily restricting the correlations to be positive. Throughout the development of the

approaches for aggregation, it has been assumed that the experts are well calibrated. The

understanding of calibration while specifying probability values has been studied in both

psychological literature as well as the statistical literature. Kahneman et. al, (1982) stated

that in most real world decision problems, fairly large assessment errors make relatively little

difference in the expected gain. However, this view has been argued by other scientists and

it is stated that calibration is essential while assessments. Furthermore, it has been strongly

suggested that any outcome that is achieved after a rigorous training, coherent subjectivists

are well calibrated (Kahneman et. al, 1982). The calibration of expert judgements may

also be viewed as a cognitive psychological process. It has been argued by Kahneman

et. al, (1982), that people often tend to use simplification rules and heuristics to specify

probability numbers. However, it has been counter argued that through proper training

provided to the experts before the assessments are recorded, this issue of calibration may

be tackled (Quigley and Walls, 2010). The posterior mean and variance within the EB

framework are a combination of the weighted average of the expert judgements and the

prior parameters. Based on the illustrated example it can be seen that the existence of less

prior variation results in the experts getting more weight for their assessments; whereas if

the assessments are heterogeneous then there is an increase in the uncertainty resulting in

the experts receiving less weight for their assessments.
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Chapter 5

Comparative study of the proposed

methods

In this chapter, both the mathematical models namely, the non-parametric method and the

EB method to aggregate correlated experts are compared on various criteria. These are

namely, mathematical complexities, sensitivity to parameters, ease of understanding and

convergence criteria. The sensitivity to parameters and the convergence of error (MSE) are

examined through simulations. The simulations have been carried out in R software using

standard R packages. Section 5.1 to 5.3 details the simulation outline and compares the

results of both the models on the simulated data across various parameter settings. These

in turn help in drawing conclusive remarks on the sensitivity of the models to the changes

in parameters. Section 5.4 compares the ratio of MSE EB to MSE non-parametric, thus

helping to draw a conclusion on the rate of convergence using both models. Section 5.5

studies the allocation of weight to experts given a diverse correlation structure. This section
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helps in formulating the conclusion around the allocation of weights using both the models.

5.1 Simulation of MSE using EB and non-parametric methods

In this section, structured simulations have been carried out for both the EB and non-

parametric approaches to study the impact on MSE by varying and controlling for correlations

and variances. The choice of the initial values of the parameters in terms of the number of

experts and the number of questions is set to 2 so that a host of correlation matrices can

be tested and the impact of the aggregation models developed in the thesis based across a

broad range of correlations can be analysed. Literature does provide an evidence that there

is a reduction in MSE with an increase in the number of experts or questions (Hogarth,

1987), hence the setting has been restricted to bivariate. As correlation and variations

are the two most important concepts that form the focal point of this thesis, a range of

values have been considered for both these parameters, i.e., C,ρ and τ . The initial values

for the errors are set to 0 and 1000 simulation runs are been performed to test the models

developed in the thesis. In order to study the impact of correlations on MSE, the following

algorithmic steps have been followed:

1. Set simulation runs, simruns, to 1000

2. Set z, number of experts to 2

3. Vary τ2 to [0.001, 0.1, 0.5, 0.9]

4. Vary ρ to [−0.1,−0.5, 0.1, 0.5, 0.9]
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5. Generate θ using rnorm, to generate random normal variates in R

6. For each θ generate data, x, using mvrnorm function in R

7. Calculate the sample mean from the data x

8. Calculate MSE EB as follows :

MSE (θ) = 1

z∑
i,j=1

simruns∑
k=1
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9. Calculate MSE non-parametric as follows:

MSE = E
(
(
∑z
i=1wiXi − µ)2

)
, where wi can be computed from the covariance

matrix generated by the simulated data. Detailed mathematics and derivations are in

chapters three and four of the thesis.

10. Repeat 5 to 9 by varying values of τ and ρ

5.2 MSE EB

5.2.1 Impact of changing prior variance on MSE

Figure 5.1 shows that with a lower prior variance such as τ = 0.0001, the MSE EB approaches

to 0 faster than with a higher prior variance. The four histograms demonstrate the different

MSE EB distributions that occur in presence of different values of τ .
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Figure 5.1: Figure showing the impact of changing prior variance on MSE EB

5.2.2 MSE EB : Impact of changing correlations on MSE

Figure 5.2 shows that with a negative correlation coefficient, the MSE EB approaches to 0

faster than with a positive correlation coefficient given all other parameters stay constant.

For Figure 5.2, the prior variance i.e., τ , was fixed at 0.5 in order to assess the changes in

MSE that is impacted solely by the correlation coefficient changes.
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Figure 5.2: Figure showing the impact of changing correlation coefficient on MSE EB

5.3 MSE non-parametric

5.3.1 MSE non-parametric : Impact of changing prior mean on MSE

Figure 5.3 shows the impact of changing prior mean on MSE non parametric. A lower prior

mean makes the MSE approach to 0 faster than a higher prior mean. However, it is worth

noting that the MSE calculated using the non-parametric method in general leads to a

slower rate of convergence of the MSE in comparison to the EB approach. An examination

of the x-axis of Figure 5.3 shows a slower rate of convergence as opposed to the EB method.
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Figure 5.3: Figure showing the impact of changing prior mean µ on MSE non parametric

5.3.2 MSE non-parametric : Impact of changing correlations on MSE

Figure 5.4 shows the impact of changing correlation coefficient on MSE non parametric. A

negative correlation makes the MSE approach to 0 faster than a positive correlation when

all other parameters are kept constant.
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Figure 5.4: Figure showing the impact of changing correlation coefficient ρ on MSE non

parametric

5.4 Comparison between MSE EB and MSE non parametric

It has been seen through the illustrated examples of chapter 3 and 4 that the allocation of

weights to the experts in presence of correlation is similar. However, to arrive at a conclusive

remark on the weight allocation using both the methods, weight allocation through different

covariance structures are investigated in this section. Table 5.1 demonstrates a correlation

structure among 3 experts where E1 and E2 are correlated with 0.5 whereas E1 and E3 are

correlated with 0.9; the prior variance is fixed at 0.5 for all the three experts. Hence, using

the prior variance and the correlation matrix, it can be seen that the non-parametric method

108



has allocated least weights to E1 and E3 as opposed to E2. One possible reason for this

difference is a lower correlation among E1 and E2 as opposed to the correlation between E1

and E3. Given a constant prior variance and an equal correlation of E2 with E1 and E3,

the EB method has assigned a higher weight to E2 as opposed to others. In fact, both the

methods have allocated the highest weight to E2; thus leading into a conclusion that lesser

correlation leads to a higher weight allocation using both the methods.

Further investigations into the weighting process can be seen in Table 5.4 where the weights

are equal given the independence in judgements of E1 and E3; and an assignment of a low

weight to E2 due to his correlation with the other two experts. In Table 5.5, the assignment

of weights is driven by a high prior variance of one expert, E2. Due to a high uncertainty in

the judgements, E2 eventually receives the least weight as opposed to E1 and E3 whose

prior variance is kept fixed at 0.1.

109



(a) MSE EB to MSE Npar when ρ = 0.5 (b) MSE EB to MSE Npar when ρ = −0.5

Figure 5.5: Figures 5.5(a) and 5.5(b) provide ratio of MSE EB to MSE Npar and it can be

seen that the convergence for non-parametric is slower than EB.

5.5 Comparison of weights using EB and non-parametric ap-

proach

It has been seen through the illustrated examples of chapter 3 and 4 that the allocation of

weights to the experts in presence of correlation is similar. However, to arrive at a conclusive

remark on the weight allocation using both the methods, weight allocation through different

covariance structures are investigated in this section. Table 5.1 demonstrates a correlation

structure among 3 experts where E1 and E2 are correlated with 0.5 whereas E1 and E3 are
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(a) MSE - EB (b) MSE-non-parametric

Figure 5.6: The impact of an increase in the sample size of the experts will potentially lead

to a faster convergence in MSE and this has been expressed through figures 5.6 (a) and

5.6(b). Impact of 5 experts where µ = 0.5, τ = 0.1, σ = 0.1, for all experts, however, E1

and E3 are correlated at 0.9 and all other experts are positively correlated at 0.5 on MSE.

The simulation runs were 1000.

correlated with 0.9; the prior variance is fixed at 0.5 for all the three experts. Hence, using

the prior variance and the correlation matrix, it can be seen that the non-parametric method

has allocated least weights to E1 and E3 as opposed to E2. One possible reason for this

difference is a lower correlation among E1 and E2 as opposed to the correlation between E1

and E3. Given a constant prior variance and an equal correlation of E2 with E1 and E3,
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the EB method has assigned a higher weight to E2 as opposed to others. In fact, both the

methods have allocated the highest weight to E2; thus leading into a conclusion that lesser

correlation leads to a higher weight allocation using both the methods.

Further investigations into the weighting process can be seen in Table 5.4 where the weights

are equal given the independence in judgements of E1 and E3; and an assignment of a low

weight to E2 due to his correlation with the other two experts. In Table 5.5, the assignment

of weights is driven by a high prior variance of one expert, E2. Due to a high uncertainty in

the judgements, E2 eventually receives the least weight as opposed to E1 and E3 whose

prior variance is kept fixed at 0.1.

Table 5.1: Correlation matrix where E1 and E2 are correlated with 0.5 and E1 and E3 are

correlated with 0.9

E1 E2 E3

E1 1 0.5 0.9

E2 0.5 1 0.5

E3 0.9 0.5 1

Table 5.2: Weights assigned to experts

non-parametric EB

E1 0.2632 0.2911

E2 0.4737 0.4177

E3 0.2632 0.2911
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Table 5.3: Correlation matrix where E1 and E2 are correlated with 0.5 and E1 and E3 are

independent

E1 E2 E3

E1 1 0.5 0

E2 0.5 1 0.5

E3 0 0.5 1

Given the correlation matrix in Table 5.1 and with σ = 0.1 for all the three experts, the

weights then assigned are as follows:

Table 5.4: Weights assigned to experts

non-parametric EB

E1 0.5 0.4483

E2 0 0.1034

E3 0.5 0.4483

Table 5.5: Weights assigned to experts where ,τ for E2 = 0.9 and for E1,E3 are 0.1

non-parametric EB

E1 0.4554 0.4372

E2 0.0892 0.1256

E3 0.4554 0.4372
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5.6 Discussion

In summary, this chapter provided a mathematical formulation that showed that the MSE

using non-parametric method is slower in convergence to error than the MSE computed

using EB method in presence of the correlated judgements. Further, it has been shown

in this chapter that the weight allocation to experts using both the approaches is fairly

similar; where a highly correlated expert is penalized and an independent expert is given

higher weight to his/her assessments. This is what has been seen through the hypothetical

examples of chapter three and four respectively. The MSE has a tractable feature while

using the non-parametric method whereas using the EB approach, the form of MSE becomes

cumbersome and does not have a closed form solution; thus highlights the mathematical

complexity involving the EB method as opposed to the non-parametric method. Although it

is established in the literature that a high sample size would lead to a lower MSE through

the simulations reported in this chapter, it has been seen that the decrease in MSE not only

depends on a large sample size but also on the correlations. The ratio of MSE EB to MSE

non-parametric through the simulation studies have shown that EB performs better than

method especially when the homogeneity of the experts is taken into consideration. For

a higher prior variation, the MSE is large as opposed to a lower variation in the pool of

experts who are chosen for the assessment task (Quigley et. al, 2011). However, the impact

of this prior variation does not have any impact on the non-parametric method, thus making

it evident that in absence of the true value of the quantities of interest, the non-parametric

method is not inclusive of all available information about the experts. The results for weight

allocations are consistent with the proposed literature surrounding dependencies because a
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sample of positively correlated experts is equivalent to having one expert. However, as these

correlations cannot be ignored, when modelled they provide a meaningful way of allocating

the weights to the judgements. The impact of a change in the sample size of experts and

questions has been a subject of speculation for many different studies and through this

study it has been reinforced that an increase in the number of questions or an increase in

the number of experts does converge MSE faster to zero using both the methods. The

theoretical derivation of the MSE for convergence have also been derived in chapters three

and four respectively for the methods thus restating the impact of an increase in the sample

size of experts and of questions.

Therefore, based on the study that has been conducted in this chapter, it may be concluded

EB method is a preferred method for aggregation of correlated expert judgements as it is

inclusive of the homogeneity of variance of the expert’s judgements and has asymptotic

features that exhibit a faster rate of convergence to error as opposed to non-parametric

method.
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Chapter 6

Application of proposed methods to

FRB dataset

6.1 Introduction

This chapter provides the data analysis and aggregates the secondary dataset of expert

judgements on the Forth Road Bridge, using the methods developed in this thesis. Section

6.2 provides a brief background to the case of the ageing bridge along with the data structure

that is to be analysed. Section 6.3 presents an empirical data analysis of the expert judgement

data and establishes the presence of correlation in the judgements. Section 6.4 is divided

into subsections which allocate the weights to the experts based on the non-parametric and

EB method developed in chapters three and four. Through the tabulated results in section

(including subsections) 6.4, it can be seen that the weight allocation to experts given their

correlation is fairly similar using both the methods. Section 6.5 discusses and summaries
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the findings of this chapter.

6.2 Background

Forth Road Bridge (FRB) is a suspension bridge near Edinburgh, Scotland which, was

opened in 1964, and continues to serve as a vital link in Scotland’s strategic road networks.

The bridge has a main span of 1006 meters and side spans of 408 meters, (Colford and

Clark, 2009). As a part of the Forth Estuary Transport Authority (FETA) requirement, the

management and maintenance of the bridge is a carried out routinely. According to the

results of the first internal inspection dated back in 2004/5, which were carried out by Faber

Maunsell (Aecom) in association with Weidlinger Contractor C Spencer Ltd, it was concluded

that there was an 8% strength loss in the main cables of the bridge (Colford and Clark,

2009). Along with this, it was also concluded that if the rate of deterioration could not be

stopped or slowed down then the loading restrictions on the bridge may have to be put under

serious considerations between 2014 and 2020. Following this, the second inspection was

carried out in 2008 to benchmark the condition of the cables. The engineers concluded that

the rate of deterioration was of the order of 10%, which basically showed an increase of 2%

in the condition of the cables in past four years (Colford and Clark, 2009). The results from

the internal inspections essentially stressed upon the fact that there could be absolutely no

guarantee, given any further installations that were to be done to the bridge that would not

prevent any further deterioration to the cables (Colford and Clark, 2009). Thus, following a

cost and tendering task in August 2006, a feasibility study was commissioned to determine

whether or not the main cables of the bridge could be either replaced or augmented (Andrew
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and Colford, 2006). One of the critical objectives of the study was to identify the most

appropriate construction methods to be adopted should the main cables of the bridge be

augmented or replaced . The complexity of the study increased as it involved weather

conditions, transportations and the economy of surrounding areas along with the structural

options. The feasibility study was scoped to include structural assessments of the existing

and proposed cables; structural assessments of other aspects of the bridge such as decks,

anchorages and saddles, among others; risk assessments, construction feasibility and safety

assessments; traffic management; and economic assessments together with capital cost

assessments. One of the quickest ways that would have dealt with the replacement of

cables would have been to close the bridge for a period of three years, which in turn would

have potentially eliminated the risks to the users of the bridge. However, it was considered

politically unacceptable to close the bridge for this period (Colford et. al, 2009). A closer look

at the scope of the feasibility study would have drawn the attention towards the condition

of the anchorages, mainly because there was no access to the base of the rock tunnels, and

the only inspection possible was to monitor for the movement at the strand anchor bearing

plate. A feasibility study was conducted by Professors Quigley and Walls, Department of

Management Science, University of Strathclyde to support W.A. Fairhurst and Partners, who

were appointed as the consulting firm in statistically assessing the condition and capacity of

the cable anchorages of the bridge (Quigley and Walls, 2010). The primary objective of the

case study was to assess the long term ability to provide anchorage to the main cables with

an adequate factor of safety.

In general, the conditions of transportation infrastructure has been of prime concern across
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the globe. The steep rise in population that adds onto the traffic volumes, limited funding

available towards the maintenance of ageing bridges pushes the understanding and insights

into the risk and reliability. Engineering tests such as direct pull-off test and others have

been suggested as laboratory tests to compliment and contribute to the understanding of

these conditions of such ageing bridges (Carrillo, 2012).

Along with the suggested and available laboratory methods for testing the conditions,

expert judgements have been used with the framework of risk and reliability to tackle such

engineering issues. The data for this thesis was available in terms of expert judgements to

inform decisions concerning the selection of engineering tests to account for infrastructure

such as for the anchorage capacity of the bridge. Expert judgement elicitation process was

followed according to the Stanford Research Institutes general model for elicitation (Quigley

and Walls, 2010) so as to reduce biases in the data collection process. Four experts were

chosen based on their area of expertise, making sure that all relevant perspectives of the

problem were covered. A Bayesian network was constructed and elicited to represent the

expert judgements, which provides a model to support comparison of alternative engineering

tests and sampling strategies. The elicitation process was twofold; one resulted in qualitative

structuring of the problem and the other was quantification of the Bayesian Belief network

(BBN) which was populated by the experts. Through the BBN, the conditional probabilities

of the experts were collected. These conditional probabilities on the different states of the

variables comprised the secondary dataset or data as referred throughout this thesis.
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6.3 Empirical data analysis of the case study

The data consists of four expert judgements on variables such as Capacity, Tensioning

North and South, Grout Condition North and South, Cracked Wires, Broken Wires, Surface

Corrosion, Pitting, Capacity, Condition and engineering tests such as Direct pull of test, Lab

wire inspection test, Lab tensile and On-site inspection test. Each expert provided his/her

conditional probability estimate in terms of best guess. The data structure is similar to the

Table 1.1 in chapter 1, where the best guess estimates are considered for several variables. A

total of 1148 questions have been answered by 4 experts. To best understand the judgements

that have been provided; an overview of the relationship between independent and dependent

variables deduced from the Bayesian Belief Network that has been developed by Professors

Quigley and Walls,(2010) is studied. The following relationships are deduced from the BBN

1. Bend, Grout condition North and South, Tensioning North and South are the inde-

pendent variables

2. Pitting and Surface corrosion are dependent on the states of the Grout Condition

3. Cracked Wires are dependent on Pitting and Surface corrosion. Broken Wires are

dependent on Cracked Wires

4. The variable Condition is dependent on Pitting, Surface Corrosion, Cracked Wires and

Broken Wires

5. The engineering tests such as the Direct pull of test are dependent on Capacity, Bend

and the Grout Condition
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Figure 6.1: Bayesian Belief Network explaining relationships between variables, Quigley and

Walls (2010)
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6. The lab tensile strength test is dependent on Capacity and Tensioning

7. Lab Wire Inspection test is dependent on Pitting, Surface Corrosion, Cracked Wires

and Broken Wires

8. Capacity is dependent on the variable Condition

9. On-site inspection test is dependent on Surface corrosion, Cracked Wires and Broken

Wires.

Based on the secondary dataset of the Forth Road Bridge, five engineering tests were

proposed. These were namely:

1. Direct Pull of test (DPT)

2. Lab wire inspection test (LWIT)

3. On site inspection test (ONIT)

4. Load test outcome (LTOS)

5. Lab Tensile test on strand (LTTS)

Each of these above mentioned tests had a number of outcomes. The experts have assessed

these outcomes based on a combination of several conditions. For example, in order to

understand the condition of the grout condition given that there is no pitting, the expert

has provided his judgement on no movement which is an outcome of the direct pull-off test.

Hence, if the grout condition is an independent event and pitting is another independent

event, then the condition that there is no movement given that there is grout and given that
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there is no pitting gives a conditional probability that has been elicited from the experts.

Each of these outcome combination for all the five tests are tabulated in Appendix A (A1 to

A5). Further, these optimal test strategies have been studied using the BBNs and also using

Bayes Linear methodology (Quigley, et. al, 2013; Quigley and Walls, 2010) for this dataset.

Prior to using the mathematical models developed in the thesis, exploratory data analysis was

carried out to provide an overview of the data. The presence of correlation has been assessed

using the Pearson correlation coefficient which examines a linear relationship between any

two variables. For example, Figure 6.2 shows the scatter plots of the best estimates of

all experts across 1148 questions. It is seen that E2 and E4 are strongly correlated with

a correlation coefficient of 0.72 as opposed to E1 and E2 who have a correlation of 0.29.

In addition to the Pearson product moment correlation, Spearman’s rho, which is the

non-parametric measure of statistical dependence, is computed for all the four experts. The

rho value for E2 and E4 is statistically significant at 0.63 indicates a high correlation between

these two experts, indicating a strong correlation between E2 and E4.

Table 6.1: Product moment correlation between the experts

E1 E2 E3 E4

E1 1

E2 0.2893 1 0.5323 0.7213

E3 0.3478 1 0.6015

E4 0.4866 1
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Table 6.2: Spearman’s rank correlation between the experts

E1 E2 E3 E4

E1 1 0.2249 0.2932 0.4528

E2 0.2249 1 0.4021 0.6333

E3 0.2932 0.4021 1 0.4923

E4 0.4528 0.6333 0.4923 1

Figure 6.2: Scatterplot of expert judgements

To test for internal consistency as the same variable has been assessed by all the experts,

the Cronbach’s alpha measure has been calculated. The alpha value for the estimates is

0.641. The alpha value can also be interpreted as the correlation of an observed expert with

all other experts. As a rule of thumb, alpha value for more that 0.6 is interpreted as a good

and adequate measure of consistency (Cronbach, 1951). Therefore, according to the test
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results, it can be concluded that there is an adequate consistency across the dataset. Based

on the analyses and results above, it can be concluded that the experts are correlated in

their judgements.

6.4 Analyses using EB and non-parametric approaches

The problem of interest given this real dataset of correlated expert judgements is to un-

derstand what is the aggregated opinion on the set of proposed engineering tests? Having

established a correlation structure overall between the expert judgements on the complete

dataset of 1148 questions, then the dataset was broken into the five segments. Each segment

belonged to each of the five proposed engineering test as enumerated above. The correlation

matrix for each test across experts has been calculated and then both the proposed methods

i.e. non-parametric and EB method have been applied to aggregate the judgements given

the correlations for each test. The analysis section is broken into two sections; in section

6.4.1, the four expert judgements are aggregated using EB and non- parametric method

across all questions and are compared to the simple arithmetic average. In section 6.4.2,

the weight allocation to each expert using EB and non-parametric method is shown. Data

from each of the engineering tests have been assumed to follow a normal distribution. The

point estimates are then calculated using the EB and the non-parametric methods. Each of

the estimate is tabulated for each test in Appendix A of this thesis.
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6.4.1 Aggregation of judgements across questions using EB, non-parametric

methods

Using the correlations, the EB point estimates and the non-parameteric estimates have

been calculated and compared to simple airthmetic averages for all the engineering tests. It

can be seen from Table A.1 to Table A.5 (attached to appendix A) that the EB estimates

provide the lowest estimate for most questions in comparison to the non-parametric and

simple arithmetic averages. The aggregated distribution computed using averages can be

misleading as it ignores the presence of correlation between the expert judgements. The

parametric EB method assumes a normal distribution which is symmetric in nature and

incorporates a negative correlation matrix.

Aggregation methods on DPT

The correlation and covariance matrices across 96 questions have been calculated. The

correlation matrix show a presence of negative correlation where E2 is negatively correlated

with all the other three experts. Also, the prior variances for each expert are as follows :

E1 = 0.3038279, E2 = 0.4181079, E3 = 0.2889256 and E4 = 0.2995611.
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Table 6.3: Correlation Matrix - DPT Test

E1 E2 E3 E4

E1 1 -0.1138209 0.4202440 0.8373401

E2 -0.1138209 1 -0.1392042 -0.1223879

E3 0.4202440 -0.1392042 1 0.3376372

E4 0.8373401 -0.1223879 0.3376372 1

Given the correlation matrix, the covariance matrix is calculated as follows:

Table 6.4: Covariance Matrix - DPT Test

E1 E2 E3 E4

E1 0.09231140 -0.01445899 0.03689056 0.07621053

E2 -0.01445899 0.17481420 -0.01681615 -0.01532895

E3 0.03689056 -0.01681615 0.08347799 0.02922279

E4 0.07621053 -0.01532895 0.02922279 0.08973684

Given the variances and the covariance matrix, using the EB method, the weight allocated

to each expert is as follows:
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Table 6.5: Weight allocation EB method - DPT Test

Weight allocated

E1 0.2480957

E2 0.1980516

E3 0.2844636

E4 0.2693891

The inverse of the covariance matrix is calculated in order to aggregate judgements

using non-parametric method. The weights allocated by using the non-parametric method

are as follows:

Table 6.6: Weight allocation non-parametric method - DPT Test

Weight allocated

E1 0.05358375

E2 0.27847950

E3 0.37414749

E4 0.29378926

It can be seen from Table 6.5 and Table 6.6 that the experts have been allocated different

weights based on the two different methods. The non-parametric method has penalised E1

because of his strong positive correlation with E4 whereas the EB method has penalised E2

for his negative correlation with all the other three experts. Interestingly enough, both E3

and E4 have received high weights through both the methods. E3 has received the highest
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weight using both the methods thus making E3 to be a highly reliable expert in this case.

Aggregation methods on LTOS

The correlation and covariance matrices across 16 questions have been calculated. The

correlation matrix show a positive correlation amongst experts. Also, the prior variances

for each expert are as follows : E1 = 0.4949642, E2 = 0.3966815, E3 = 0.4745173 and

E4 = 0.3901789.

Table 6.7: Correlation Matrix - LTOS Test

E1 E2 E3 E4

E1 1 0.04292017 0.6948907 0.7009184

E2 0.04292017 1 0.2340637 0.2760023

E3 0.69489065 0.23406367 1 0.6933693

E4 0.70091838 0.27600233 0.6933693 1

Given the correlation matrix, the covariance matrix is calculated as follows:

Table 6.8: Covariance Matrix - LTOS Test

E1 E2 E3 E4

E1 0.244989583 0.008427083 0.16320833 0.13536458

E2 0.008427083 0.157356250 0.04405833 0.04271875

E3 0.163208333 0.044058333 0.22516667 0.12837500

E4 0.135364583 0.042718750 0.12837500 0.15223958

129



Given the variances and the covariance matrix, using the EB method, the weight allocated

to each expert is as follows:

Table 6.9: Weight allocation EB method - LTOS Test

Weight allocated

E1 0.2174177

E2 0.2961574

E3 0.2070601

E4 0.2793648

The inverse of the covariance matrix is calculated in order to aggregate judgements

using non-parametric method. The weights allocated by using the non-parametric method

are as follows:

Table 6.10: Weight allocation non-parametric method - LTOS Test

Weight allocated

E1 0.199832666

E2 0.503325469

E3 0.007008922

E4 0.289832943

It can be seen from Table 6.9 and Table 6.10 that the experts have been allocated

similar weights based on the two different methods. Both the methods have allocated E3
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the least weight among all other experts. One possible reason could be that E3 is highly

positively correlated with E1, E4 and also has a high prior variance as compared to all other

experts. Whereas, even in spite of having a high variance, E1 has a slightly higher weight as

opposed to E3 due to its lesser degree of correlation with other experts as opposed to E3.

Both the methods have unanimously allocated the highest weight to E2 given its correlation

with other experts.

Aggregation methods on LWIT

The correlation and covariance matrices across 416 questions have been calculated. The

correlation matrix show a presence of negative correlation where E3 and E4 are negatively

correlated. Also, the prior variances for each expert are as follows : E1 = 0.2515237,

E2 = 0.3058281, E3 = 0.3670020 and E4 = 0.2528545.

Table 6.11: Correlation Matrix - LWIT Test

E1 E2 E3 E4

E1 1 0.53650231 0.01692747 0.9353705

E2 0.53650231 1 0.02954798 0.5636581

E3 0.01692747 0.02954798 1 -0.0533432

E4 0.93537054 0.56365808 -0.05334320 1

Given the correlation matrix, the covariance matrix is calculated as follows:
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Table 6.12: Covariance Matrix - LWIT Test

E1 E2 E3 E4

E1 0.06326418 0.041269374 0.001562570 0.059488542

E2 0.04126937 0.093530816 0.003316452 0.043587685

E3 0.00156257 0.003316452 0.134690504 -0.004950149

E4 0.05948854 0.043587685 -0.004950149 0.063935405

Given the variances and the covariance matrix, using the EB method, the weight allocated

to each expert is as follows:

Table 6.13: Weight allocation EB method - LWIT Test

Weight allocated

E1 0.2727272

E2 0.2300197

E3 0.2028609

E4 0.2943922

The inverse of the covariance matrix is calculated in order to aggregate judgements

using non-parametric method. The weights allocated by using the non-parametric method

are as follows:
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Table 6.14: Weight allocation non-parametric method - LWIT Test

Weight allocated

E1 0.09473991

E2 0.16327965

E3 0.30296004

E4 0.43902039

It can be seen from Table 6.13 and Table 6.14 that the E4 has been allocated the highest

weight using both the methods. While E4 is highly positively correlated with E1, he is also

negatively correlated with E3. Interestingly, the EB method has assigned similar weights to

E1 and E4 as they are highly positively correlated whereas the non-parametric method has

penalised E1 and assigned E4 the highest weight given their correlation. One possible reason

for this discrepancy in assignment of weight for E1 can be attributed to the prior variance

of E1 and E4. As EB method takes into account the variances while allocating the weights,

having similar sample variances does make E1 and E4 compatible in their judgements.

Aggregation methods on ONIT

The correlation and covariance matrices across 416 questions have been calculated. The

correlation matrix show a presence of negative correlation where E2 is negatively correlated

with all the other three experts. Also, the prior variances for each expert are as follows :

E1 = 0.2630612, E2 = 0.3200856, E3 = 0.3226339 and E4 = 0.2644492.
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Table 6.15: Correlation Matrix - ONIT Test

E1 E2 E3 E4

E1 1 0.49510315 0.31809803 0.9379115

E2 0.4951032 1 0.04858244 0.4904952

E3 0.3180980 0.04858245 1 0.2588606

E4 0.9379115 0.49049522 0.25886061 1

Given the correlation matrix, the covariance matrix is calculated as follows:

Table 6.16: Covariance Matrix - ONIT Test

E1 E2 E3 E4

E1 0.06920120 0.041688728 0.026997763 0.06524705

E2 0.04168873 0.102454792 0.005017131 0.04151864

E3 0.02699776 0.005017131 0.104092626 0.02208605

E4 0.06524705 0.041518638 0.022086054 0.06993335

Given the variances and the covariance matrix, using the EB method, the weight allocated

to each expert is as follows:
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Table 6.17: Weight allocation EB method - ONIT Test

Weight allocated

E1 0.2571549

E2 0.2295041

E3 0.2325712

E4 0.2807698

The inverse of the covariance matrix is calculated in order to aggregate judgements

using non-parametric method. The weights allocated by using the non-parametric method

are as follows:

Table 6.18: Weight allocation non-parametric method - ONIT Test

Weight allocated

E1 0.006165874

E2 0.273986858

E3 0.344075389

E4 0.375771879

It can be seen from Table 6.17 and Table 6.18 that E4 has been allocated the highest

weight using both the methods. Due to a very high positive correlation between E1 and E4,

the non-parametric method has penalised E1 but the EB method has given it the second

highest weight due to its prior variance. E2 has received the lowest weight using both the

methods.
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Aggregation methods on LTTS

The correlation and covariance matrices across 8 questions have been calculated. The

correlation matrix show a presence of negative correlation where E2 is negatively correlated

with all the other three experts. Also, the prior variances for each expert are as follows :

E1 = 0.3537730, E2 = 0.4758451, E3 = 0.4350402 and E4 = 0.4862392.

Table 6.19: Correlation Matrix - LTTS Test

E1 E2 E3 E4

E1 1 0.6334924 0.5362010 0.3784896

E2 0.6334924 1 0.2035115 0.6421252

E3 0.5362010 0.2035115 1 0.7191765

E4 0.3784896 0.6421252 0.7191765 1

Given the correlation matrix, the covariance matrix is calculated as follows:

Table 6.20: Covariance Matrix - LTTS Test

E1 E2 E3 E4

E1 0.12515536 0.10664286 0.08252429 0.06510714

E2 0.10664286 0.22642857 0.04212929 0.14857143

E3 0.08252429 0.04212929 0.18926000 0.15213000

E4 0.06510714 0.14857143 0.15213000 0.23642857

Given the variances and the covariance matrix, using the EB method, the weight allocated

to each expert is as follows:
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Table 6.21: Weight allocation EB method - LTTS Test

Weight allocated

E1 0.3311689

E2 0.2149394

E3 0.2458123

E4 0.2080794

The inverse of the covariance matrix is calculated in order to aggregate judgements

using non-parametric method. The weights allocated by using the non-parametric method

are as follows:

Table 6.22: Weight allocation non-parametric method - LTTS Test

Weight allocated

E1 0.57888202

E2 0.10879146

E3 0.22915698

E4 0.08316955

It can be seen from Table 6.21 and Table 6.22 that E1 has been allocated the highest

weight whereas E4 has been allocated the least weight using both the methods. The

allocation of weights to the experts is similar in this test for both the methods.
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6.5 Allocation of weights - combined

In this section, the weight allocation across all the five proposed engineering tests is divided

based on the method. Figure 6.3 shows the weight allocation for all four experts across the

five tests using EB method and Figure 6.4 shows the weight allocation for all four experts

across the five tests using the non-parametric method. It can be seen that the weight

allocation has been fairly similar across tests using both the methods.

Figure 6.3: Figure6.3 depicts the EB assignment to the weights to different experts across

different tests. It can be seen that Expert 1 has received the maximum weight in LTTS

test while all the four experts have received similar weights in ONIT test. The experts have

further received similar weights in LWIT test with E4 receiving a highest weight of 0.29 and

E3 receiving a lowest weight of 0.20.
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Figure 6.4: Figure6.4 depicts the assignment to the weights to different experts across

different tests. It can be seen that Expert 1 has received the maximum weight in LTTS test

and least weight in ONIT test and DPT test. E4 has received highest weight in LWIT test

and ONIT test.

6.6 Discussion

The data used for this analysis is provided in appendix A (A1 to A5) of the thesis. It can

be seen that the assignments of weights have been similar, where a positively correlated

expert has received low weight as opposed to a negatively correlated or independent expert.

Although in cases like in LWIT where the assignment of weight has been significantly different
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using both the methods; it can be seen that the use of prior variance in the EB method

adds to the difference.

With the application of the proposed methods on the case study data, it has been revealed

that both the methods penalize an expert for being highly positively correlated with one or

more experts. However, it is worth mentioning that this aggregation is done in complete

absence of true values of the underlying parameters. This further brings to question whether

being positively correlated should really be penalized or whether being positive correlated is

just a reflection of the experts’ confidence in the true value of the underlying parameter

of interest? Further, as it has been pointed out in the expert judgement literature that

often positive correlation is required as it strengthens ones beliefs around the underlying

parameter. This then brings to the question that whether having a set of all highly positively

correlated experts is essential for a problem because it will be same as asking one expert

rather than a whole set of expert? It is beyond the scope of this thesis to address the issue

on an optimal number of experts for an aggregation problem but rather this thesis reinforces

the knowledge that correlations among expert judgements is inevitable and there it must be

accounted for rather than ignored while aggregating expert judgements.

The findings are summarized with respect to the conditions and the detailed comparison

tables are attached to Appendix A (A1 to A5) of this thesis. It can be seen that some tests

have a negative correlation matrix, which reflects some of disagreement that might exist

between the experts across the different questions that they have assessed. On tracking

back to the original dataset, there have been traces of difference in opinions that the experts

have expressed during the elicitation process. These differences of opinions on assessing
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the states of different variables (also referred to as questions) impacts the correlation that

exists between them, thus forcing some of the correlations in the judgements to be negative.

It is also worth debating whether one method is better than the other and having referred

back to the literature it can be seen that there is no predetermined mechanism by which a

methodological superiority can be defined. Therefore, making an expert redundant because

his / her judgements are identical to another may or may not be sensible because maybe

the identical judgements do reflect the true answers. Also the real world data analyses

showed that though the experts are identical on one test outcome, they differ on the others.

Hypothetically, if the experts were similar on all questions and all test outcomes, then having

two experts would be same as having one expert. Hence, from a pool of four experts making

an expert redundant based on his/her performance on one test result would not be an ideal

solution. The inference around which expert is the best or most reliable can also not be

made because each expert has his/her own variance around the set of questions that they

have defined. Hence, if the correlations of the experts together with their homogeneity

in their variance can be best made use of while aggregating, informed decisions based on

aggregation can be useful. The aim of this chapter was to apply both the models developed

through chapter three and four to the secondary data of the Forth Road Bridge given the

correlated judgements. It has been seen that the EB method made use of all available

information including the prior variance of the experts while assigning fairly similar weights

as the non-parametric method. Hence, based on the analyses of this dataset, EB method

for weighting and aggregating is preferred over the non-parametric method.
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Chapter 7

Discussion

This thesis highlighted the gap within the expert judgement literature where the dependencies

between the judgements have not been accounted for while aggregating. This chapter

provides the main findings of the individual chapters, a summary of the salient features

of the mathematical approaches developed throughout the thesis, limitations and future

research work while aggregating expert judgements when the judgements are correlated.

7.1 Summary of key findings

This thesis reinforces the view in the literature that correlations play a crucial role in the

aggregation of expert judgements. Several reasons for the presence of this correlation have

been touched upon in the literature review of chapter two of the thesis; like shared education

shared knowledge among others. The aggregated judgement then provides a reflection of

what the experts believe in, and also of the association and knowledge that they share of the

problem at hand. A complete positive correlation among experts would be ideal and would
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render more confidence in the values of the parameters. However, the expert judgements

could be negatively correlated (as is seen in chapter six of the thesis).

A structured method has been provided in this thesis towards weighting and aggregating

judgements when the they are correlated. Also in cases when faced with a negative correlation

between the judgements, it could be worth investigating or contacting the experts directly,

which could also lead to potentially bringing in the behavioural aspects of the aggregation.

Both the parametric and non-parametric models developed in the thesis, have presented their

pros and cons. Besides that, the novels help in providing the different forms of correlations.

The results (attached to appendix A (A1:A5))show that the impact of aggregation in

presence of any correlation is much lesser than simple arithmetic averages of the judgements.

This holds true even when the experts are treated as independently (as seen in chapter five,

Table 5.4). Both the EB and non-parametric methods used the first two moments and the

covariance matrix to aggregate the judgements.

The non-parametric method is computationally less challenging as opposed to the EB

approach, however, it lacks the asymptotic features of the EB approach. Also within the EB

approach, the homogeneity, expressed in terms of the variance of the judgements provided,

that exists among the pool of experts plays a crucial role in determining the overall aggregate

variance as the combined variance is a combination of the prior and the likelihood variance.

Hence, the more homogeneous the errors in the judgements are, the less uncertainty exists

in the aggregate variance. This makes the EB method more appealing to aggregation than

the non-parametric method in absence of the true value of the parameters of interest.

The weight allocation using both the EB and non-parametric method is similar. The weight
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allocation differs significantly from the equal weightings due to the presence of correlation

that exists between the judgements. The EB method is mathematically cumbersome

especially having no closed form solutions. This would be similar to the other Bayesian

approaches that are used to aggregate expert judgements (Chhibber et. al, 1992) and

as mentioned in chapter four, there are no closed form solutions to the squared loss of

estimated errors. This is unlike the non-parametric approach, which provides a closed form

solution to the estimated errors and is computationally less challenging for any sample of

expert assessment.

The research into the methods has been conducted in multiple layers: a theoretical exposition

of methods, an illustration of methods to simple hypothetical examples, examination of

asymptotic properties of methods under a controlled simulation study, and application of

methods to real expert judgement elicited in a secondary dataset.

7.2 Limitations and future work

Aggregation of expert judgements has been an important and productive field in terms

of mathematical and as well as behavioural modelling. Aggregation of judgements has

received significant importance in social policy making, environmental studies, epidemiological

research, geological studies amongst many other varied disciplines (Bosetti et. al, 2012;

Sabou et. al, 2013; Sol, 2013; Oz, and Mohamed, 2013). The mathematical constructs used

across these studies vary from fuzzy logic to simple averages and it is primarily governed

by the type of data. This area branches out into various other disciplines with a close

connection to psychology and neuroscience that has been relatively less researched. The
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empiricism which is captured by the probabilities and assessed by the experts, supply singular

vision in terms of correlation. This might exist and stress on the occurrence of the shared

beliefs and knowledge which is a recurrent fear among the experts’ judgement data.

There is a cost implication on acquiring and training experts for problems in real life.

Through this work, it has been seen that correlations have a strong impact while aggregating

opinion. It is a concern whether all positively correlated expert judgements are meaningless

or whether that is an accurate reflection of the true value? Irrespective of the problem under

review, it was beyond the scope of this thesis to study the optimality criteria surrounding

the choice of experts.

However, the methods developed in this thesis can be improved with the use of different

relevant prior distributions as opposed to the normal distribution. For example, the expert

assessments could be assumed to follow a Beta prior or an uninformed prior and the likelihood

could have been computed using MCMC algorithm for convergence. The non-parametric

approach of minimising the MSE could be improved on by considering other loss functions.

From the mathematical modelling perspective, the proposed assumptions surrounding the

EB methods could be challenged and the sensitivity of a non-normal prior distribution and

a different likelihood to that used in the thesis could be potentially used for aggregation

(Frederick et. al, 2012). Although, the choice of the prior and likelihood is usually driven by

the data.

Also, within the modelling approach, the non-parametric method proposed in this thesis

depends on the use of Lagrange multipliers to achieve local minima for the MSE, given

the constraint of weights. However, this method cannot be applied to error functions that
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are not convex in nature, as for the generalised Lagrange multiplier method to work, the

underlying functions need to be either convex in nature or satisfy the Lipschitz continuity

(Fernandez, 1997).

The dependencies could also be studied using Bayesian Belief Networks exploring external

Bayesianity for multivariate expert judgements accounting for the overconfidence and pooling

strategies for experts (Faria, 1996). Throughout this thesis, the correlations have been

assessed using the product-moment correlations. However, if the rankings of the experts

on the questions were available, then either the estimation of other correlations such as

Kendall’s tau or Spearman’s rank correlation could be used to assess the dependence. With

these measures, similar to Clemen and Reilly (1999)’s work, the likelihood function would

then be expressed as a multivariate Gaussian copula instead of the normal/normal EB model

as proposed in this thesis.

The potential impact of bias on aggregation has been theoretically presented in this thesis,

attached to appendix B; however in cases where it is difficult to measure biases then

the theoretical constructs around measuring biases would not have much impact on the

mathematical models.

In situations, when the experts provide similar judgements across questions, and each of

these experts also has the same variance across these repeated set of questions, this makes

the covariance matrix singular. Although there are mathematical methodologies that deal

with the problem of singular matrices, it is not advisable to convert every singular matrix

into a non-singular form because the singularity does help in understanding the state of the

underlying assessments. Hence, an amalgamation of behavioural methods and mathematical
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methods could potentially help deal with such situations. Singularity has not been an issue

in this thesis but it could potentially have an impact with different real world datasets.

There are also, several mathematical techniques in literature that deal with issues concerning

singularity of the covariance matrix (McNeil, 1998; Jackal et al, 2000). Hence, if encountered

with the problem of singularity the methods developed in this thesis can be used to aggregate

given the techniques in literature.

On retrospection, the entire study on aggregation of correlated expert judgements could be

potentially carried out adopting an experimental design pathway. Within this, a classical

design of experiment method to the various tests and the judgements could be structured

and the variability could potentially be explained in form of an analysis of variance (ANOVA)

table summarising the variability between questions and also within experts. The potential

challenges with this experimental design of study would be to test for its optimality. The

problems with dealing with optimal designs within classical statistical literature are presented

in Montgomery (2009). Whether a Bayesian experimental design study could be more

suited to this context or a classical method is debatable as the expert data is subjective

but because the treatment of the judgements is as data, it could be positioned within

a classical design of experiment framework. Though an ANOVA method have stricter

criteria of normality to understand and explain the underlying variation, but, it becomes

interesting while formulating and extending the present research into answering the optimal

criteria. This covers the number of experts and the number of questions with a trade off in

between the experts’ judgements variations. Adopting a design of experiment like approach

to aggregation of experts’ judgements could potentially lead to a controlled experimental
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method of expert judgement elicitation. However, structuring an experimental design often

leads to understanding and studying cause and effect between factors and other variables.

Therefore, in the context of experts’ judgement aggregation, factors like cost and the

uncertainty around the true value of the quantity of interest, could potentially be roadblocks

in the experimental design pathway.

Another dimension that could potentially enhance the aggregation framework mathematically

would be to incorporate the psychological factors that influence the correlations. The experts

could also be given self-reported questionnaires on self-esteem and other factors (Rosenberg,

M. (1965)). The data for analysis can then be a pooled data from the self-reported

questionnaires and the expert judgements. Both the EB and non-parametric methods can

then be applied to a pooled data which also comprises the psychological factors.

7.3 Summary of thesis contribution

Aggregation of judgements and opinions is incomplete without assessing the dependencies

that exist between these judgements at different levels. Although the importance of the

wisdom of the crowd has been highlighted in chapter one of this thesis, Eger (2013) presents

several conditions under which such collective wisdom can completely fail. These conditions

are based on a social learning process model which has applications across disciplines and

most widely within social networks. The failure of the model raises issues around the

rationality of the beliefs in the first place and the existence of bias in the judgements.

The questions around the correctness of judgements that are being provided and also on

how close to the true value these judgements are begged some vital questions in research.
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However, in the absence of these true values, a rational and mathematically valid method

towards the reduction of uncertainties could be seen as an alternative to providing an answer

with fewer errors. Within the context of aggregation of judgements from multiple experts,

this research makes the following contributions to knowledge:

1. Developed and evaluated mathematical methods that aggregate correlated expert’s

judgements.

2. Investigated and articulated the impact of correlations on aggregation of expert’s

judgements.

The thesis provides methodological contributions in form of two mathematical models;

one based on an empirical Bayes method and the other based on non-parametric method,

to aggregate dependent expert judgements data and through these methods, the effect

and impact of correlations have been studied and investigated, re-emphasising on the

importance of modelling the correlation. It has been seen that non-parametric methods

lack the asymptotic features are opposed to EB methods, however, in presence of negative

correlations, the MSE tends to converge to zero faster as oppose to in presence of positive

correlation. While recent studies have argued the importance of weighting individual experts

as opposed to equal weighting scheme (Bolger and Rowe, 2015), this research supports

the literature claim of weighting individual experts. However, through this research it has

been shown that the weighting done in presence of correlations and prior variances of the

experts leads to an informed decision making under uncertainty. It has been seen that highly

positively correlated experts receive lower weights for their assessments; in essence making

one of the expert redundant, however, the question as to whether that particular assessment
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is the true value of the underlying parameter is debatable; especially when the true value

of the underlying parameter of interest is not known. Based on the data analysis and

simulations of this work, the EB method for aggregation is recommended for aggregation of

correlated expert’s judgements under uncertainty as opposed to the non-parametric method.
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Appendix A

Dataset of an ageing bridge

A.1 Aggregated expert assessments for direct pull off test

The table below compares the aggregated assessments of the experts on their judgements

on the direct pull-off test. The comparison is between the nonparametric methods, EB

methods and simple average. The weights used for the experts for EB aggregation are

: E1=0.2480957, E2=0.1980516, E3=0.2844636 and E4=0.2693891. The weights used

for the experts for Non-parametric aggregation are: E1=0.05358375, E2=0.27847950,

E3=0.37414749 and E4=0.29378926.

Table A.1: DPT - Test comparison results

Outcome Condition E1 E2 E3 E4 Average EB NP

FE OLBFE 0.8 0.01 1 0.8 0.6525 0.178563205 0.163707673

JUD OLBFE 0.8 0.5 0 0.7 0.5 0.154817005 0.096939808

NM OLBFE 0.1 1 0 0.1 0.3 0.054225348 0.0783042

166



TF OLBFE 0 0 0 0 0 0 0

FE OLBPE 0.8 0.25 0 0.75 0.45 0.147720093 0.083207205

JUD OLBPE 0.8 0.6 0.8 0.7 0.725 0.18854059 0.178731294

NM OLBPE 0.1 1 0 0.1 0.3 0.054225348 0.0783042

TF OLBPE 0 0 0 0 0 0 0

FE OLBNE 0.7 0.35 0.65 0.7 0.6 0.160294698 0.1459562

JUD OLBNE 0.7 0.25 0.0999 0.6 0.412475 0.131830843 0.080194848

NM OLBNE 0.1 1 0 0.2 0.325 0.058355248 0.085648932

TF OLBNE 0 0 0 0 0 0 0

FE OLNBFE 0.8 0.01 0 0.85 0.415 0.143054605 0.073843167

JUD OLNBFE 0.8 0.65 0 0.85 0.575 0.166508973 0.118399887

NM OLNBFE 0.1 1 0 0.25 0.3375 0.060420198 0.089321298

TF OLNBFE 0 0 0 0 0 0 0

FE OLNBPE 0.8 0.25 0.05 0.85 0.4875 0.15372867 0.09522878

JUD OLNBPE 0.8 0.45 0.8 0.7 0.6875 0.183043473 0.168288312

NM OLNBPE 0.1 1 0 0.1 0.3 0.054225348 0.0783042

TF OLNBPE 0 0 0 0 0 0 0

FE OLNBNE 0.7 0.5 0.65 0.7 0.6375 0.165791815 0.156399181

JUD OLNBNE 0.7 0 0.0999 0.7 0.374975 0.12679888 0.07013461

NM OLNBNE 0.1 1 0 0.1 0.3 0.054225348 0.0783042

TF OLNBNE 0 0 0 0 0 0 0
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FE RCALBFE 0.6 0.01 0 0.75 0.34 0.11202871 0.063819248

JUD RCALBFE 0.6 0.8 0 0 0.35 0.110005945 0.063733463

NM RCALBFE 0.1 1 0 0 0.275 0.050095448 0.070959469

TF RCALBFE 0 0 0 0 0 0 0

FE RCALBPE 0.6 0.2 0.1 0.75 0.4125 0.12274908 0.086400711

JUD RCALBPE 0.6 0.15 0.65 0.5 0.475 0.13125741 0.116003168

NM RCALBPE 0.1 1 0 0 0.275 0.050095448 0.070959469

TF RCALBPE 0 0 0 0 0 0 0

FE RCALBNE 0.6 0.35 0.75 0.75 0.6125 0.152669005 0.157642659

JUD RCALBNE 0.6 0 0 0.7 0.325 0.109597285 0.059450683

NM RCALBNE 0.1 1 0 0 0.275 0.050095448 0.070959469

TF RCALBNE 0 0 0 0 0 0 0

FE RCALFE 0.6 0.01 0 0.8 0.3525 0.11409366 0.067491613

JUD RCALFE 0.6 0.5 0 0 0.275 0.09901171 0.0428475

NM RCALFE 0.1 1 0 0 0.275 0.050095448 0.070959469

TF RCALFE 0 0 0 0 0 0 0

FE RCALPE 0.6 0.2 0.05 0.8 0.4125 0.122935353 0.085396233

JUD RCALPE 0.6 0 0.7 0.6 0.475 0.13176887 0.117581762

NM RCALPE 0.1 1 0 0 0.275 0.050095448 0.070959469

TF RCALPE 0 0 0 0 0 0 0

FE RCALNE 0.6 0.35 0.75 0.8 0.625 0.154733955 0.161315025
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JUD RCALNE 0.6 1 0 0.8 0.6 0.150374635 0.13641529

NM RCALNE 0.1 0 0 0 0.025 0.013447998 0.001339594

TF RCALNE 0 0 0 0 0 0 0

FE RCULBFE 0.6 0.01 0 0.3 0.2275 0.09344416 0.030767956

JUD RCULBFE 0.6 0.5 0.75 0.2 0.5125 0.135451673 0.127689617

NM RCULBFE 0.1 0 0 0.1 0.05 0.017577898 0.008684325

TF RCULBFE 0 1 0 0 0.25 0.03664745 0.069619875

FE RCULPE 0.6 0.2 0 0.2 0.25 0.096277275 0.036651001

JUD RCULPE 0.6 0.25 0.7 0.2 0.4375 0.124411133 0.105607805

NM RCULPE 0.1 0 0 0.1 0.05 0.017577898 0.008684325

TF RCULPE 0 1 0 0 0.25 0.03664745 0.069619875

FE RCULNE 0.6 0.35 0 0.1 0.2625 0.097644493 0.03974925

JUD RCULNE 0.6 0.05 0.5 0.1 0.3125 0.105437033 0.065631724

NM RCULNE 0.1 0 0 0.05 0.0375 0.015512948 0.00501196

TF RCULNE 0 1 0 0 0.25 0.03664745 0.069619875

FE RCULNBFE 0.6 0 0 0.3 0.225 0.093077685 0.030071757

JUD RCULNBFE 0.6 0.5 0.75 0.3 0.5375 0.139581573 0.135034349

NM RCULNBFE 0.1 0 0 0.15 0.0625 0.019642848 0.012356691

TF RCULNBFE 0 1 0 0 0.25 0.03664745 0.069619875

FE RCULNBPE 0.6 0.2 0 0.3 0.275 0.100407175 0.043995732

JUD RCULNBPE 0.6 0.25 0.65 0.3 0.45 0.126662355 0.108275693
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NM RCULNBPE 0.1 0 0 0.1 0.05 0.017577898 0.008684325

TF RCULNBPE 0 1 0 0 0.25 0.03664745 0.069619875

FE RCULNBNE 0.6 0.35 0 0.2 0.2875 0.101774393 0.047093982

JUD RCULNBNE 0.6 0 0.65 0.2 0.3625 0.113370593 0.083525993

NM RCULNBNE 0.1 0 0 0.1 0.05 0.017577898 0.008684325

TF RCULNBNE 0 1 0 0 0.25 0.03664745 0.069619875

FE FBFE 0 0 0 0 0 0 0

JUD FBFE 0 0 0.85 0 0.2125 0.031937518 0.079506342

NM FBFE 0.2 0 0 0.4 0.15 0.043415595 0.032058114

TF FBFE 0 1 0 0 0.25 0.03664745 0.069619875

FE FBPE 0 0 0 0 0 0 0

JUD FBPE 0 0 0.45 0 0.1125 0.016908098 0.042091593

NM FBPE 0.2 0 0 0.2 0.1 0.035155795 0.017368651

TF FBPE 0 1 0 0 0.25 0.03664745 0.069619875

FE FBNE 0 0 0 0 0 0 0

JUD FBNE 0 0 0 0 0 0 0

NM FBNE 0.2 0 0 0 0.05 0.026895995 0.002679188

TF FBNE 0 1 0 0 0.25 0.03664745 0.069619875

FE FNBFE 0 0 0 0 0 0 0

JUD FNBFE 0 0 0.75 0 0.1875 0.028180163 0.070152654

NM FNBFE 0.2 0 0 0.5 0.175 0.047545495 0.039402845
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TF FNBFE 0 1 0 0 0.25 0.03664745 0.069619875

FE FNBPE 0 0 0 0 0 0 0

JUD FNBPE 0 0 0.75 0 0.1875 0.028180163 0.070152654

NM FNBPE 0.2 0 0 0.2 0.1 0.035155795 0.017368651

TF FNBPE 0 1 0 0 0.25 0.03664745 0.069619875

FE FNBNE 0 0 0 0 0 0 0

JUD FNBNE 0 0 0 0 0 0 0

NM FNBNE 0.2 0 0 0 0.05 0.026895995 0.002679188

TF FNBNE 0 1 0 0 0.25 0.03664745 0.069619875

A.2 Aggregated expert assessments for lab wire inspection

test

The table below compares the aggregated assessments of the experts on their judgements

on the labwire inspection test. The comparison is between the nonparametric methods,

EB methods and simple average. The weights used for the experts for EB aggregation

are : E1=0.2727272, E2=0.2300197, E3=0.2028609 and E4=0.2943922. The weights

used for the experts for Non-parametric aggregation are: E1=0.09473991, E2=0.16327965,

E3=0.30296004 and E4=0.43902039.

Table A.2: LWIT Test results

Outcome Condition E1 E2 E3 E4 Average EB NP
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ALLOK NNCNCNBW 0.95 1 0.95 0.9 0.95 0.9468 0.9362

SCWO NNCNCNBW 0.35 0 1 0.4 0.4375 0.4161 0.5117

PO NNCNCNBW 0.3 0 0 0.25 0.1375 0.1554 0.1382

SCPWO NNCNCNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

SCWCO NNCNCNBW 0.2 0 0 0.3 0.125 0.1429 0.1507

SCWBWO NNCNCNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

PCO NNCNCNBW 0.2 0 0 0.3 0.125 0.1429 0.1507

PBWO NNCNCNBW 0.2 0 0 0.2 0.1 0.1134 0.1068

SCCBW NNCNCNBW 0.2 0 0 0.2 0.1 0.1134 0.1068

PCBW NNCNCNBW 0.2 0 0 0.2 0.1 0.1134 0.1068

SCPBW NNCNCNBW 0.2 0 0 0.1 0.075 0.0840 0.0629

SCPC NNCNCNBW 0.2 0 0 0.1 0.075 0.0840 0.0629

SCPCBW NNCNCNBW 1 0 0 1 0.5 0.5671 0.5338

ALLOK NNCNCBW 0 0 0.8 0 0.2 0.1623 0.2424

SCWO NNCNCBW 0.35 0 0.95 0.1 0.35 0.3176 0.3649

PO NNCNCBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCPWO NNCNCBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCWCO NNCNCBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCWBWO NNCNCBW 0.5 0 1 0.3 0.45 0.4275 0.4820

PCO NNCNCBW 0.3 0 0 0.3 0.15 0.1701 0.1601

PBWO NNCNCBW 0.45 0 0 0.3 0.1875 0.2110 0.1743
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SCCBW NNCNCBW 0.45 0 0 0.3 0.1875 0.2110 0.1743

PCBW NNCNCBW 0.45 0 0 0.2 0.1625 0.1816 0.1304

SCPBW NNCNCBW 0.35 0 0 0.2 0.1375 0.1543 0.1210

SCPC NNCNCBW 0.3 0 0 0.2 0.125 0.1407 0.1162

SCPCBW NNCNCBW 1 0 0 1 0.5 0.5671 0.5338

ALLOK NNCCPNBW 0 0 0.8 0 0.2 0.1623 0.2424

PO NNCCPNBW 0.35 0 0.95 0.4 0.425 0.4059 0.4966

PO NNCCPNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCPWO NNCCPNBW 0.3 0 0 0.25 0.1375 0.1554 0.1382

SCWCO NNCCPNBW 0.45 0 1 0.299 0.43725 0.4136 0.4769

SCWBWO NNCCPNBW 0.35 0 0 0.3 0.1625 0.1838 0.1649

PCO NNCCPNBW 0.45 0 0 0.3 0.1875 0.2110 0.1743

PBWO NNCCPNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCCBW NNCCPNBW 0.25 0 0 0.2 0.1125 0.1271 0.1115

PCBW NNCCPNBW 0.25 0 0 0.2 0.1125 0.1271 0.1115

SCPBW NNCCPNBW 0.25 0 0 0.2 0.1125 0.1271 0.1115

SCPC NNCCPNBW 0.3 0 0 0.15 0.1125 0.1260 0.0943

SCPCBW NNCCPNBW 1 0 0 1 0.5 0.5671 0.5338

ALLOK NNCCPBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO NNCCPBW 0.35 0 0.95 0.2 0.375 0.3471 0.4088

PO NNCCPBW 0.3 0 0 0.3 0.15 0.1701 0.1601
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SCPWO NNCCPBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCWCO NNCCPBW 0.45 0 0 0.3 0.1875 0.2110 0.1743

SCWBWO NNCCPBW 0.45 0 0 0.3 0.1875 0.2110 0.1743

PCO NNCCPBW 0.4 0 0 0.4 0.2 0.2268 0.2135

PBWO NNCCPBW 0.4 0 0 0.3 0.175 0.1974 0.1696

SCCBW NNCCPBW 0.4 0 1 0.3 0.425 0.4003 0.4726

PCBW NNCCPBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCPBW NNCCPBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCPC NNCCPBW 0.3 0 0 0.4 0.175 0.1996 0.2040

SCPCBW NNCCPBW 1 0 0 1 0.5 0.5671 0.5338

ALLOK NCNCNBW 0.9 0 0.85 0.85 0.65 0.6681 0.7159

SCWO NCNCNBW 0.9 0.9 1 0.85 0.9125 0.9056 0.9083

PO NCNCNBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCPWO NCNCNBW 0.3 0.75 0 0.3 0.3375 0.3427 0.2826

SCWCO NCNCNBW 0.3 0.2 0 0.25 0.1875 0.2014 0.1708

SCWBWO NCNCNBW 0.25 0.2 0 0.25 0.175 0.1878 0.1661

PCO NCNCNBW 0.2001 0 0 0.2 0.100025 0.1135 0.1068

PBWO NCNCNBW 0.2001 0 0 0.2 0.100025 0.1135 0.1068

SCCBW NCNCNBW 0.2001 0.2 0 0.2 0.150025 0.1595 0.1394

PCBW NCNCNBW 0.2001 0 0 0.2 0.100025 0.1135 0.1068

SCPBW NCNCNBW 0.25 0.2 0 0.2 0.1625 0.1731 0.1441
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SCPC NCNCNBW 0.25 1 0 0.2 0.3625 0.3571 0.2748

SCPCBW NCNCNBW 1 0 0 1 0.5 0.5671 0.5338

ALLOK NCNCBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO NCNCBW 0.6 0.8 0.95 0.8 0.7875 0.7759 0.8265

PO NCNCBW 0.2001 0 0 0.35 0.137525 0.1576 0.1726

SCPWO NCNCBW 0.35 0 0 0.35 0.175 0.1985 0.1868

SCWCO NCNCBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCWBWO NCNCBW 0.9 0.1 1 0.4 0.6 0.5891 0.5802

PCO NCNCBW 0.2001 0 0 0.2 0.100025 0.1135 0.1068

PBWO NCNCBW 0.4 0 0 0.35 0.1875 0.2121 0.1916

SCCBW NCNCBW 0.4 0.1 0 0.4 0.225 0.2498 0.2298

PCBW NCNCBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCPBW NCNCBW 0.4 0.1 0 0.4 0.225 0.2498 0.2298

SCPC NCNCBW 0.35 0.1 0 0.4 0.2125 0.2362 0.2251

PO NCNCBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK NCCPNBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO NCCPNBW 0.3 0.8 0.95 0.2 0.5625 0.5174 0.5347

PO NCCPNBW 0.3 0 0 0.2 0.125 0.1407 0.1162

SCPWO NCCPNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCWCO NCCPNBW 0.9 0.5 1 0.8 0.8 0.7988 0.8211

SCWBWO NCCPNBW 0.4 0 0 0.4 0.2 0.2268 0.2135
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PCO NCCPNBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

PBWO NCCPNBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCCBW NCCPNBW 0.4 0.5 0 0.3 0.3 0.3124 0.2512

PCBW NCCPNBW 0.3 0 0 0.2 0.125 0.1407 0.1162

SCPBW NCCPNBW 0.3 0.15 0 0.2 0.1625 0.1752 0.1407

SCPC NCCPNBW 0.4 0.15 0 0.3 0.2125 0.2319 0.1941

SCPCBW NCCPNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK NCCPBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO NCCPBW 0.3 0.6 0.9 0.4 0.55 0.5202 0.5747

PO NCCPBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCPWO NCCPBW 0.35 0.5 0 0.4 0.3125 0.3282 0.2904

SCWCO NCCPBW 0.4 0.25 0.5 0.4 0.3875 0.3858 0.4058

SCWBWO NCCPBW 0.4 0.05 0.5 0.3 0.3125 0.3103 0.3292

PCO NCCPBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

PBWO NCCPBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCCBW NCCPBW 0.9 0 1 0.5 0.6 0.5955 0.6077

PCBW NCCPBW 0.4 0.9 0 0.6 0.475 0.4927 0.4483

SCPBW NCCPBW 0.4 0 0 0.3 0.175 0.1974 0.1696

SCPC NCCPBW 0.4 0.1 0 0.3 0.2 0.2204 0.1859

SCPCBW NCCPBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWONCNCNBW 0 0 0.8 0 0.2 0.1623 0.2424
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SCWO IWONCNCNBW 0.3 0 0.5 0.4 0.3 0.3010 0.3555

PO IWONCNCNBW 0.9 0.25 0.9 0.701 0.68775 0.6919 0.7065

SCPWO IWONCNCNBW 0.3 0.2 1 0.4 0.475 0.4484 0.5396

SCWCO IWONCNCNBW 0.25 0.5 0 0.3 0.2625 0.2715 0.2370

SCWBWO IWONCNCNBW 0.2001 0 0 0.3 0.125025 0.1429 0.1507

PCO IWONCNCNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

PBWO IWONCNCNBW 0.25 0 0 0.2 0.1125 0.1271 0.1115

SCCBW IWONCNCNBW 0.25 0.5 0 0.2 0.2375 0.2421 0.1931

PCBW IWONCNCNBW 0.25 0.05 0 0.2 0.125 0.1386 0.1197

SCPBW IWONCNCNBW 0.25 0.05 0 0.2 0.125 0.1386 0.1197

SCPC IWONCNCNBW 0.25 0.05 0 0.2 0.125 0.1386 0.1197

SCPCBW IWONCNCNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWONCNCBW 0 0 0.8 0 0.2 0.1623 0.2424

SCWO IWONCNCBW 0.3 0 0.55 0.3 0.2875 0.2817 0.3268

PO IWONCNCBW 0.4 0 0.5 0.4 0.325 0.3283 0.3650

SCPWO IWONCNCBW 0.4 0 0.5 0.3 0.3 0.2988 0.3211

SCWCO IWONCNCBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCWBWO IWONCNCBW 0.4 0 0.0501 0.3 0.187525 0.2076 0.1848

PCO IWONCNCBW 0.4 0 0 0.3 0.175 0.1974 0.1696

PBWO IWONCNCBW 0.9 0 0.75 0.95 0.65 0.6773 0.7296

SCCBW IWONCNCBW 0.35 0.5 0 0.4 0.3125 0.3282 0.2904
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PCBW IWONCNCBW 0.4 0.6 0 0.499 0.37475 0.3940 0.3549

SCPBW IWONCNCBW 0.4 0.05 1 0.4 0.4625 0.4412 0.5246

SCPC IWONCNCBW 0.35 0.05 0 0.3 0.175 0.1953 0.1730

SCPCBW IWONCNCBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWONCCPNBW 0 0 0.8 0 0.2 0.1623 0.2424

SCWO IWONCCPNBW 0.3 0 0.55 0.2 0.2625 0.2523 0.2829

PO IWONCCPNBW 0.4 0 0.5 0.1 0.25 0.2400 0.2333

SCPWO IWONCCPNBW 0.4 0 0.5 0.2 0.275 0.2694 0.2772

SCWCO IWONCCPNBW 0.4 0 0 0.6 0.25 0.2857 0.3013

SCWBWO IWONCCPNBW 0.3 0 0.85 0.3 0.3625 0.3426 0.4176

PCO IWONCCPNBW 0.9 0.1 0 0.7 0.425 0.4745 0.4089

PBWO IWONCCPNBW 0.4 0 0 0.3 0.175 0.1974 0.1696

SCCBW IWONCCPNBW 0.3 0.8 0 0.4 0.375 0.3836 0.3347

PCBW IWONCCPNBW 0.35 0.8 0 0.4 0.3875 0.3972 0.3394

SCPBW IWONCCPNBW 0.3 0.15 0 0.3 0.1875 0.2046 0.1846

SCPC IWONCCPNBW 0.4 0.15 1 0.2 0.4375 0.4053 0.4532

SCPCBW IWONCCPNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWONCCPBW 0 0 0.7 0 0.175 0.1420 0.2121

SCWO IWONCCPBW 0.3 0 0.55 0.2 0.2625 0.2523 0.2829

PO IWONCCPBW 0.4 0.1 0.5 0.3 0.325 0.3218 0.3374

SCPWO IWONCCPBW 0.35 0 0 0.4 0.1875 0.2132 0.2088
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SCWCO IWONCCPBW 0.35 0 0 0.3 0.1625 0.1838 0.1649

SCWBWO IWONCCPBW 0.4 0 0 0.4 0.2 0.2268 0.2135

PCO IWONCCPBW 0.45 0 0.5 0.3 0.3125 0.3125 0.3258

PBWO IWONCCPBW 0.45 0 1 0.3 0.4375 0.4139 0.4773

SCCBW IWONCCPBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

PCBW IWONCCPBW 0.9 0.5 0 0.85 0.5625 0.6107 0.5401

SCPBW IWONCCPBW 0.35 0.2 0 0.4 0.2375 0.2592 0.2414

SCPC IWONCCPBW 0.35 0.2 0 0.2 0.1875 0.2003 0.1536

SCPCBW IWONCCPBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWOCNCNBW 0 0 0.7 0 0.175 0.1420 0.2121

PO IWOCNCNBW 0.3 0.8 0.95 0.1 0.5375 0.4880 0.4908

PO IWOCNCNBW 0.3 0 0.8 0.1 0.3 0.2735 0.3147

SCPWO IWOCNCNBW 0.9 0.3 1 0.95 0.7875 0.7970 0.8543

SCWCO IWOCNCNBW 0.3 0.1 0 0.2 0.15 0.1637 0.1326

SCWBWO IWOCNCNBW 0.3 0.1 0 0.2 0.15 0.1637 0.1326

PCO IWOCNCNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

PBWO IWOCNCNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCCBW IWOCNCNBW 0.3 0.1 0 0.3 0.175 0.1931 0.1765

PCBW IWOCNCNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCPBW IWOCNCNBW 0.4 0.1 0 0.2 0.175 0.1910 0.1420

SCPC IWOCNCNBW 0.4 0.3 0 0.2 0.225 0.2370 0.1747
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SCPCBW IWOCNCNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWOCNCBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO IWOCNCBW 0.3 0.8 0.85 0.3 0.5625 0.5266 0.5483

PO IWOCNCBW 0.3 0 0.85 0.3 0.3625 0.3426 0.4176

PO IWOCNCBW 0.4 0.3 0.4 0.4 0.375 0.3770 0.3837

SCWCO IWOCNCBW 0.3 0.1 0 0.3 0.175 0.1931 0.1765

PO IWOCNCBW 0.4 0.1 0.0499 0.4 0.237475 0.2600 0.2449

PCO IWOCNCBW 0.3 0 0 0.3 0.15 0.1701 0.1601

PBWO IWOCNCBW 0.4 0.05 0.5 0.4 0.3375 0.3398 0.3731

SCCBW IWOCNCBW 0.35 0.1 0 0.35 0.2 0.2215 0.2031

PCBW IWOCNCBW 0.35 0 0 0.35 0.175 0.1985 0.1868

SCPBW IWOCNCBW 0.9 0.1 1 0.9 0.725 0.7363 0.7997

SCPC IWOCNCBW 0.35 0.3 0 0.35 0.25 0.2675 0.2358

SCPCBW IWOCNCBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWOCCPNBW 0 0 0.6501 0 0.162525 0.1319 0.1970

SCWO IWOCCPNBW 0.3 0.8 0.85 0.3 0.5625 0.5266 0.5483

PO IWOCCPNBW 0.3 0 0.75 0.3 0.3375 0.3223 0.3873

SCPWO IWOCCPNBW 0.4 0.3 0.6 0.4 0.425 0.4176 0.4443

SCWCO IWOCCPNBW 0.4 0.1 0.05 0.4 0.2375 0.2600 0.2450

SCWBWO IWOCCPNBW 0.3 0.1 0 0.3 0.175 0.1931 0.1765

PCO IWOCCPNBW 0.4 0.05 0.5 0.4 0.3375 0.3398 0.3731
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PBWO IWOCCPNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCCBW IWOCCPNBW 0.4 0.1 0 0.4 0.225 0.2498 0.2298

PCBW IWOCCPNBW 0.4 0 0 0.4 0.2 0.2268 0.2135

SCPBW IWOCCPNBW 0.4 0.1 0 0.4 0.225 0.2498 0.2298

SCPC IWOCCPNBW 0.9 0.3 1 0.9 0.775 0.7823 0.8323

SCPCBW IWOCCPNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IWOCCPBW 0 0 0.6501 0 0.162525 0.1319 0.1970

SCWO IWOCCPBW 0.25 0.8 0.8 0.2 0.5125 0.4734 0.4845

PO IWOCCPBW 0.25 0 0.6 0.2 0.2625 0.2488 0.2933

SCPWO IWOCCPBW 0.3 0.3 0.4 0.4 0.35 0.3497 0.3742

SCWCO IWOCCPBW 0.3 0.1 0.05 0.4 0.2125 0.2327 0.2355

SCWBWO IWOCCPBW 0.3 0.1 0.0499 0.3 0.187475 0.2033 0.1916

PO IWOCCPBW 0.3 0.05 0.5 0.4 0.3125 0.3125 0.3637

PBWO IWOCCPBW 0.3 0.05 0.5 0.3 0.2875 0.2831 0.3198

SCCBW IWOCCPBW 0.35 0.1 0.0499 0.3 0.199975 0.2169 0.1963

PCBW IWOCCPBW 0.35 0 1 0.4 0.4375 0.4161 0.5117

SCPBW IWOCCPBW 0.35 0.1 0 0.4 0.2125 0.2362 0.2251

SCPC IWOCCPBW 0.35 0.3 0 0.4 0.2625 0.2822 0.2578

SCPCBW IWOCCPBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK EWONCNCNBW 0 0 0.8 0 0.2 0.1623 0.2424

SCWO EWONCNCNBW 0.35 0 0.95 0.4 0.425 0.4059 0.4966
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PO EWONCNCNBW 0.9 0.25 1 0.4 0.6375 0.6236 0.6047

SCPWO EWONCNCNBW 0.35 0.2 0 0.399 0.23725 0.2589 0.2410

SCWCO EWONCNCNBW 0.25 0.5 0 0.3 0.2625 0.2715 0.2370

SCWBWO EWONCNCNBW 0.2 0 0 0.3 0.125 0.1429 0.1507

PCO EWONCNCNBW 0.25 0 0 0.299 0.13725 0.1562 0.1550

PBWO EWONCNCNBW 0.25 0 0 0.2 0.1125 0.1271 0.1115

SCCBW EWONCNCNBW 0.25 0.5 0 0.2 0.2375 0.2421 0.1931

PCBW EWONCNCNBW 0.25 0.05 0 0.2 0.125 0.1386 0.1197

SCPBW EWONCNCNBW 0.25 0.05 0 0.2 0.125 0.1386 0.1197

SCPC EWONCNCNBW 0.25 0.05 0 0.2 0.125 0.1386 0.1197

SCPCBW EWONCNCNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK EWONCNCBW 0 0 0.8 0 0.2 0.1623 0.2424

SCWO EWONCNCBW 0.35 0 0.9 0.3 0.3875 0.3663 0.4375

PO EWONCNCBW 0.35 0 0.05 0.4 0.2 0.2234 0.2239

SCPWO EWONCNCBW 0.35 0 0 0.3 0.1625 0.1838 0.1649

SCWCO EWONCNCBW 0.3 0 0 0.4 0.175 0.1996 0.2040

SCWBWO EWONCNCBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

PCO EWONCNCBW 0.3 0 0 0.3 0.15 0.1701 0.1601

PBWO EWONCNCBW 0.9 0 0.05 0.95 0.475 0.5353 0.5175

SCCBW EWONCNCBW 0.3 0.5 0 0.4 0.3 0.3146 0.2857

PCBW EWONCNCBW 0.35 0.6 0 0.499 0.36225 0.3804 0.3502
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SCPBW EWONCNCBW 0.35 0.05 1 0.4 0.45 0.4276 0.5199

SCPC EWONCNCBW 0.35 0.05 0 0.3 0.175 0.1953 0.1730

SCPCBW EWONCNCBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK EWONCCPNBW 0 0 0.8 0 0.2 0.1623 0.2424

SCWO EWONCCPNBW 0.35 0 0.9 0.2 0.3625 0.3369 0.3936

PO EWONCCPNBW 0.35 0 0.05 0.1 0.125 0.1350 0.0922

SCPWO EWONCCPNBW 0.3 0 0 0.2 0.125 0.1407 0.1162

SCWCO EWONCCPNBW 0.3 0 0 0.6 0.225 0.2585 0.2918

SCWBWO EWONCCPNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

PCO EWONCCPNBW 0.9 0 0.75 0.7 0.5875 0.6037 0.6198

PBWO EWONCCPNBW 0.3 0.1 0 0.3 0.175 0.1931 0.1765

SCCBW EWONCCPNBW 0.25 0 0 0.4 0.1625 0.1859 0.1993

PCBW EWONCCPNBW 0.3 0.8 0 0.4 0.375 0.3836 0.3347

SCPBW EWONCCPNBW 0.25 0.8 0 0.3 0.3375 0.3405 0.2860

SCPC EWONCCPNBW 0.35 0.15 1 0.2 0.425 0.3917 0.4484

SCPCBW EWONCCPNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK EWONCCPBW 0 0 0.8 0 0.2 0.1623 0.2424

SCWO EWONCCPBW 0.3 0 0.8 0.2 0.325 0.3030 0.3586

PO EWONCCPBW 0.35 0.1 0.05 0.3 0.2 0.2169 0.1963

SCPWO EWONCCPBW 0.3 0 0 0.4 0.175 0.1996 0.2040

SCWCO EWONCCPBW 0.3 0 0 0.3 0.15 0.1701 0.1601
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SCWBWO EWONCCPBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

PCO EWONCCPBW 0.4 0 0.4 0.3 0.275 0.2786 0.2908

PBWO EWONCCPBW 0.4 0 0.4 0.3 0.275 0.2786 0.2908

SCCBW EWONCCPBW 0.3 0 0 0.4 0.175 0.1996 0.2040

PCBW EWONCCPBW 0.9 0.5 1 0.85 0.8125 0.8136 0.8430

SCPBW EWONCCPBW 0.3 0.2 0 0.4 0.225 0.2456 0.2367

SCPC EWONCCPBW 0.3 0.2 0 0.2 0.175 0.1867 0.1489

SCPCBW EWONCCPBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK EWOCNCNBW 0 0 0.7 0 0.175 0.1420 0.2121

SCWO EWOCNCNBW 0.3 0.8 0.95 0.1 0.5375 0.4880 0.4908

PO EWOCNCNBW 0.3 0 0.95 0.1 0.3375 0.3040 0.3601

PO EWOCNCNBW 0.9 0.3 1 0.95 0.7875 0.7970 0.8543

PO EWOCNCNBW 0.25 0.1 0 0.2 0.1375 0.1501 0.1278

SCWBWO EWOCNCNBW 0.25 0.1 0 0.2 0.1375 0.1501 0.1278

PO EWOCNCNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

PBWO EWOCNCNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

SCCBW EWOCNCNBW 0.25 0.1 0 0.3 0.1625 0.1795 0.1717

PCBW EWOCNCNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554

SCPBW EWOCNCNBW 0.3 0.1 0 0.2 0.15 0.1637 0.1326

SCPC EWOCNCNBW 0.3 0.3 0 0.2 0.2 0.2097 0.1652

SCPCBW EWOCNCNBW 1 1 0 1 0.75 0.7971 0.6970
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ALLOK EWOCNCBW 0 0 0.7 0 0.175 0.1420 0.2121

SCWO EWOCNCBW 0.25 0.8 0.6 0.3 0.4875 0.4622 0.4678

PO EWOCNCBW 0.25 0 0.2 0.3 0.1875 0.1971 0.2160

SCPWO EWOCNCBW 0.35 0.3 0.4 0.4 0.3625 0.3634 0.3789

SCWCO EWOCNCBW 0.25 0.1 0.0499 0.3 0.174975 0.1896 0.1868

SCWBWO EWOCNCBW 0.35 0.1 0 0.4 0.2125 0.2362 0.2251

PCO EWOCNCBW 0.25 0 0.1 0.3 0.1625 0.1768 0.1857

PBWO EWOCNCBW 0.35 0.05 0 0.4 0.2 0.2247 0.2169

SCCBW EWOCNCBW 0.3 0.1 0 0.35 0.1875 0.2079 0.1984

PCBW EWOCNCBW 0.3 0 0 0.35 0.1625 0.1849 0.1821

SCPBW EWOCNCBW 0.9 0.1 0 0.9 0.475 0.5334 0.4967

SCPC EWOCNCBW 0.3 0.3 1 0.35 0.4875 0.4567 0.5340

SCPCBW EWOCNCBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK EWOCCPNBW 0 0 0.7 0 0.175 0.1420 0.2121

SCWO EWOCCPNBW 0.25 0.8 0.6 0.3 0.4875 0.4622 0.4678

PO EWOCCPNBW 0.25 0 0.2 0.3 0.1875 0.1971 0.2160

SCPWO EWOCCPNBW 0.35 0.3 0.4 0.4 0.3625 0.3634 0.3789

SCWCO EWOCCPNBW 0.35 0.1 0.0499 0.4 0.224975 0.2463 0.2402

SCWBWO EWOCCPNBW 0.25 0.1 0 0.3 0.1625 0.1795 0.1717

PCO EWOCCPNBW 0.25 0.05 0.1 0.4 0.2 0.2177 0.2378

PBWO EWOCCPNBW 0.25 0 0 0.3 0.1375 0.1565 0.1554
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SCCBW EWOCCPNBW 0.35 0.1 0 0.4 0.2125 0.2362 0.2251

PCBW EWOCCPNBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

SCPBW EWOCCPNBW 0.35 0.1 0 0.4 0.2125 0.2362 0.2251

SCPC EWOCCPNBW 0.9 0.3 1 0.9 0.775 0.7823 0.8323

SCPCBW EWOCCPNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK EWOCCPBW 0 0 0.7 0 0.175 0.1420 0.2121

SCWO EWOCCPBW 0.2 0.8 0.55 0.2 0.4375 0.4090 0.4040

PO EWOCCPBW 0.2 0 0.2 0.2 0.15 0.1540 0.1673

SCPWO EWOCCPBW 0.25 0.3 0.3499 0.4 0.324975 0.3259 0.3543

SCWCO EWOCCPBW 0.25 0.1 0.0499 0.4 0.199975 0.2191 0.2307

SCWBWO EWOCCPBW 0.25 0.1 0.0499 0.3 0.174975 0.1896 0.1868

PCO EWOCCPBW 0.25 0.05 0.1501 0.4 0.212525 0.2279 0.2529

PBWO EWOCCPBW 0.25 0.05 0.1501 0.3 0.187525 0.1984 0.2090

SCCBW EWOCCPBW 0.3 0.1 0.0499 0.3 0.187475 0.2033 0.1916

PCBW EWOCCPBW 0.3 0 0.55 0.4 0.3125 0.3111 0.3707

SCPBW EWOCCPBW 0.3 0.1 0.15 0.4 0.2375 0.2530 0.2658

SCPC EWOCCPBW 0.3 0.3 0.5 0.4 0.375 0.3700 0.4045

SCPCBW EWOCCPBW 1 1 1 1 1 1.0000 1.0000

ALLOK IEWNCNCNBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO IEWNCNCNBW 0.35 0 0.85 0.3 0.375 0.3562 0.4224

PO IEWNCNCNBW 0.9 0.25 0.95 0.8 0.725 0.7312 0.7651
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SCPWO IEWNCNCNBW 0.4 0.2 1 0.4 0.5 0.4757 0.5491

SCWCO IEWNCNCNBW 0.3 0.5 0 0.2 0.25 0.2557 0.1979

SCWBWO IEWNCNCNBW 0.3 0 0 0.2 0.125 0.1407 0.1162

PCO IEWNCNCNBW 0.3 0 0 0.4 0.175 0.1996 0.2040

PBWO IEWNCNCNBW 0.3 0 0 0.1 0.1 0.1113 0.0723

SCCBW IEWNCNCNBW 0.3 0.5 0 0.2 0.25 0.2557 0.1979

PCBW IEWNCNCNBW 0.3 0.05 0 0.2 0.1375 0.1522 0.1244

SCPBW IEWNCNCNBW 0.3 0.05 0 0.2 0.1375 0.1522 0.1244

SCPC IEWNCNCNBW 0.3 0.05 0 0.2 0.1375 0.1522 0.1244

PO IEWNCNCNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IEWNCNCBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO IEWNCNCBW 0.35 0 0.7 0.3 0.3375 0.3258 0.3769

PO IEWNCNCBW 0.4 0 0.4 0.4 0.3 0.3080 0.3347

SCPWO IEWNCNCBW 0.4 0 0.5 0.4 0.325 0.3283 0.3650

SCWCO IEWNCNCBW 0.35 0 0 0.3 0.1625 0.1838 0.1649

SCWBWO IEWNCNCBW 0.3 0 0.1 0.3 0.175 0.1904 0.1904

PCO IEWNCNCBW 0.35 0 0 0.4 0.1875 0.2132 0.2088

PBWO IEWNCNCBW 0.9 0 0 0.8 0.425 0.4810 0.4365

SCCBW IEWNCNCBW 0.35 0.5 0 0.4 0.3125 0.3282 0.2904

PCBW IEWNCNCBW 0.4 0.6 0 0.3 0.325 0.3354 0.2676

SCPBW IEWNCNCBW 0.4 0.05 1 0.3 0.4375 0.4118 0.4807
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SCPC IEWNCNCBW 0.4 0.05 0 0.3 0.1875 0.2089 0.1778

SCPCBW IEWNCNCBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IEWNCCPNBW 0 0 0.75 0 0.1875 0.1521 0.2272

SCWO IEWNCCPNBW 0.35 0 0.7 0.2 0.3125 0.2963 0.3330

PO IEWNCCPNBW 0.4 0 0.4 0.3 0.275 0.2786 0.2908

SCPWO IEWNCCPNBW 0.35 0 0.5 0.4 0.3125 0.3146 0.3602

SCWCO IEWNCCPNBW 0.35 0 0.0499 0.4 0.199975 0.2233 0.2239

SCWBWO IEWNCCPNBW 0.3 0 0 0.4 0.175 0.1996 0.2040

PCO IEWNCCPNBW 0.9 0.1 0.101 0.8 0.47525 0.5245 0.4834

PBWO IEWNCCPNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

SCCBW IEWNCCPNBW 0.3 0.8 0 0.3 0.35 0.3542 0.2908

PCBW IEWNCCPNBW 0.35 0.8 0 0.4 0.3875 0.3972 0.3394

SCPBW IEWNCCPNBW 0.3 0.15 0 0.4 0.2125 0.2341 0.2285

SCPC IEWNCCPNBW 0.35 0.15 1 0.4 0.475 0.4506 0.5362

SCPCBW IEWNCCPNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IEWNCCPBW 0 0 0.7 0 0.175 0.1420 0.2121

SCWO IEWNCCPBW 0.3 0 0.65 0.3 0.3125 0.3020 0.3571

PO IEWNCCPBW 0.35 0.1 0.25 0.3 0.25 0.2575 0.2569

SCPWO IEWNCCPBW 0.35 0 0.35 0.3 0.25 0.2548 0.2709

SCWCO IEWNCCPBW 0.35 0 0.05 0.4 0.2 0.2234 0.2239

SCWBWO IEWNCCPBW 0.35 0 0.05 0.5 0.225 0.2528 0.2678
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PCO IEWNCCPBW 0.4 0 0.15 0.3 0.2125 0.2278 0.2150

PBWO IEWNCCPBW 0.4 0 0.15 0.3 0.2125 0.2278 0.2150

SCCBW IEWNCCPBW 0.35 0 0.05 0.3 0.175 0.1939 0.1800

PCBW IEWNCCPBW 0.9 0.5 0.65 0.85 0.725 0.7426 0.7370

SCPBW IEWNCCPBW 0.35 0.2 0.15 0.5 0.3 0.3191 0.3308

SCPC IEWNCCPBW 0.35 0.2 0.45 0.4 0.35 0.3505 0.3778

SCPCBW IEWNCCPBW 1 1 1 1 1 1.0000 1.0000

ALLOK IEWCNCNBW 0 0 0.7 0 0.175 0.1420 0.2121

SCWO IEWCNCNBW 0.3 0.8 0.9 0.3 0.575 0.5367 0.5634

PO IEWCNCNBW 0.3 0 0.9 0.3 0.375 0.3527 0.4328

SCPWO IEWCNCNBW 0.9 0.3 1 0.8 0.75 0.7528 0.7884

SCWCO IEWCNCNBW 0.3 0.1 0 0.2 0.15 0.1637 0.1326

SCWBWO IEWCNCNBW 0.3 0.1 0 0.3 0.175 0.1931 0.1765

PCO IEWCNCNBW 0.3 0 0 0.3 0.15 0.1701 0.1601

PBWO IEWCNCNBW 0.3 0 0 0.2 0.125 0.1407 0.1162

SCCBW IEWCNCNBW 0.3 0.1 0 0.2 0.15 0.1637 0.1326

PCBW IEWCNCNBW 0.3 0 0 0.5 0.2 0.2290 0.2479

SCPBW IEWCNCNBW 0.35 0.1 0 0.2 0.1625 0.1773 0.1373

SCPC IEWCNCNBW 0.35 0.3 0 0.2 0.2125 0.2233 0.1699

SCPCBW IEWCNCNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IEWCNCBW 0 0 0.65 0 0.1625 0.1319 0.1969
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SCWO IEWCNCBW 0.3 0.8 0.6 0.3 0.5 0.4759 0.4725

PO IEWCNCBW 0.3 0 0.3 0.2 0.2 0.2016 0.2071

SCPWO IEWCNCBW 0.4 0.3 0.3 0.4 0.35 0.3567 0.3534

SCWCO IEWCNCBW 0.3 0.1 0 0.3 0.175 0.1931 0.1765

SCWBWO IEWCNCBW 0.4 0.1 0.15 0.4 0.2625 0.2803 0.2753

PCO IEWCNCBW 0.3 0 0 0.3 0.15 0.1701 0.1601

PBWO IEWCNCBW 0.4 0.05 0 0.3 0.1875 0.2089 0.1778

SCCBW IEWCNCBW 0.35 0.1 0 0.2 0.1625 0.1773 0.1373

PCBW IEWCNCBW 0.35 0 0 0.2 0.1375 0.1543 0.1210

SCPBW IEWCNCBW 0.9 0.1 1 0.8 0.7 0.7068 0.7558

SCPC IEWCNCBW 0.35 0.3 0 0.2 0.2125 0.2233 0.1699

SCPCBW IEWCNCBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IEWCCPNBW 0 0 0.65 0 0.1625 0.1319 0.1969

PO IEWCCPNBW 0.3 0.8 0.6 0.2 0.475 0.4464 0.4286

PO IEWCCPNBW 0.3 0 0.3 0.2 0.2 0.2016 0.2071

SCPWO IEWCCPNBW 0.4 0.3 0.3 0.4 0.35 0.3567 0.3534

SCWCO IEWCCPNBW 0.4 0.1 0.05 0.3 0.2125 0.2306 0.2011

SCWBWO IEWCCPNBW 0.3 0.1 0 0.3 0.175 0.1931 0.1765

PCO IEWCCPNBW 0.4 0.05 0.15 0.3 0.225 0.2393 0.2232

PBWO IEWCCPNBW 0.3 0 0 0.2 0.125 0.1407 0.1162

SCCBW IEWCCPNBW 0.4 0.1 0 0.3 0.2 0.2204 0.1859
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PCBW IEWCCPNBW 0.4 0 0 0.3 0.175 0.1974 0.1696

SCPBW IEWCCPNBW 0.4 0.1 0 0.4 0.225 0.2498 0.2298

PO IEWCCPNBW 0.9 0.3 1 0.8 0.75 0.7528 0.7884

SCPCBW IEWCCPNBW 1 1 0 1 0.75 0.7971 0.6970

ALLOK IEWCCPBW 0 0 0.55 0 0.1375 0.1116 0.1666

SCWO IEWCCPBW 0.25 0.8 0.5 0.2 0.4375 0.4125 0.3936

PO IEWCCPBW 0.25 0 0.25 0.2 0.175 0.1778 0.1872

SCPWO IEWCCPBW 0.3 0.3 0.4 0.2 0.3 0.2908 0.2864

SCWCO IEWCCPBW 0.3 0.1 0.0499 0.2 0.162475 0.1738 0.1477

SCWBWO IEWCCPBW 0.3 0.1 0.0499 0.3 0.187475 0.2033 0.1916

PCO IEWCCPBW 0.3 0.05 0.15 0.3 0.2 0.2121 0.2137

PBWO IEWCCPBW 0.3 0.05 0.15 0.4 0.225 0.2415 0.2576

SCCBW IEWCCPBW 0.35 0.1 0.0499 0.2 0.174975 0.1875 0.1524

PCBW IEWCCPBW 0.35 0 0.6 0.3 0.3125 0.3055 0.3466

SCPBW IEWCCPBW 0.35 0.1 0.1 0.3 0.2125 0.2271 0.2115

SCPC IEWCCPBW 0.35 0.3 0.6 0.3 0.3875 0.3745 0.3956

SCPCBW IEWCCPBW 1 1 1 1 1 1.0000 1.0000

A.3 Aggregated expert assessments for on-site inspection test

The table below compares the aggregated assessments of the experts on their judgements

on onsite inspection test. The comparison is between the nonparametric methods, EB
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methods and simple average. The weights used for the experts for EB aggregation are

: E1=0.2571549, E2=0.2295041, E3=0.2325712 and E4=0.2807698. The weights used

for the experts for Non-parametric aggregation are: E1=0.006165874, E2=0.273986858,

E3=0.344075389 and E4=0.375771879.

Table A.3: ONS Test comparison results

Outcome Condition E1 E2 E3 E4 Average EB NP

ALLOK NNCNCNBW 0.98 1 1 0.9 0.97 0.2581 0.2406

SCWO NNCNCNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PO NNCNCNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCPWO NNCNCNBW 0.2 0 0 0.1 0.08 0.0199 0.0097

SCWCO NNCNCNBW 0.15 0 0 0.1 0.06 0.0167 0.0096

SCWBWO NNCNCNBW 0.15 0 0 0.2 0.09 0.0237 0.0190

PCO NNCNCNBW 0.15 0 0 0.2 0.09 0.0237 0.0190

PBWO NNCNCNBW 0.15 0 1 0.2 0.34 0.0818 0.1050

SCCBW NNCNCNBW 0.1 0 0 0.1 0.05 0.0134 0.0095

PCBW NNCNCNBW 0.1 0 0 0.1 0.05 0.0134 0.0095

SCPBW NNCNCNBW 0.1 0 0 0.1 0.05 0.0134 0.0095

SCPC NNCNCNBW 0.1 1 0 0.1 0.30 0.0872 0.0780

SCPCBW NNCNCNBW 0 0 0 1 0.25 0.0702 0.0939

ALLOK NNCNCBW 1 1 1 1 1.00 0.2664 0.2500

SCWO NNCNCBW 0.3 0 0 0.3 0.15 0.0403 0.0286
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PO NNCNCBW 0.25 1 1 0.2 0.61 0.1620 0.1737

SCPWO NNCNCBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCWCO NNCNCBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCWBWO NNCNCBW 0.45 1 0 0.3 0.44 0.1237 0.0974

PCO NNCNCBW 0.2 1 0 0.2 0.35 0.1007 0.0876

PBWO NNCNCBW 0.4 0 0 0.3 0.18 0.0468 0.0288

SCCBW NNCNCBW 0.35 0 0 0.2 0.14 0.0365 0.0193

PCBW NNCNCBW 0.35 0 1 0.2 0.39 0.0947 0.1053

SCPBW NNCNCBW 0.35 0 0 0.2 0.14 0.0365 0.0193

SCPC NNCNCBW 0.3 0 0 0.2 0.13 0.0333 0.0193

SCPCBW NNCNCBW 1 0 0 1 0.50 0.1345 0.0955

ALLOK NNCCPNBW 0 0 1 0 0.25 0.0581 0.0860

SCWO NNCCPNBW 0.3 0 0 0.2 0.13 0.0333 0.0193

PO NNCCPNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCPWO NNCCPNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCWCO NNCCPNBW 0.4 0 0 0.4 0.20 0.0538 0.0382

SCWBWO NNCCPNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PCO NNCCPNBW 0.4 0 0 0.4 0.20 0.0538 0.0382

PBWO NNCCPNBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCCBW NNCCPNBW 0.2 0 0 0.201 0.10 0.0270 0.0192

PCBW NNCCPNBW 0.2 0 0 0.201 0.10 0.0270 0.0192
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SCPBW NNCCPNBW 0.2 0 0 0.101 0.08 0.0199 0.0098

SCPC NNCCPNBW 0.2 0 0 0.101 0.08 0.0199 0.0098

SCPCBW NNCCPNBW 1 0 0 1 0.50 0.1345 0.0955

ALLOK NNCCPBW 0 0 1 0 0.25 0.0581 0.0860

SCWO NNCCPBW 0.3 0 0 0.201 0.13 0.0334 0.0193

PO NNCCPBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCPWO NNCCPBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCWCO NNCCPBW 0.4 0 0 0.4 0.20 0.0538 0.0382

SCWBWO NNCCPBW 0.4 0 0 0.4 0.20 0.0538 0.0382

PCO NNCCPBW 0.35 0.001 0 0.3 0.16 0.0436 0.0288

PBWO NNCCPBW 0.35 1 0 0.4 0.44 0.1243 0.1066

SCCBW NNCCPBW 0.35 0 0 0.3 0.16 0.0436 0.0287

PCBW NNCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCPBW NNCCPBW 0.3 0 0 0.201 0.13 0.0334 0.0193

SCPC NNCCPBW 0.25 0 0 0.201 0.11 0.0302 0.0193

SCPCBW NNCCPBW 1 0 0 1 0.50 0.1345 0.0955

ALLOK NCNCNBW 0.9 0 0 0.95 0.46 0.1245 0.0906

SCWO NCNCNBW 0.9 0.9 1 0.801 0.90 0.2386 0.2243

PO NCNCNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCPWO NCNCNBW 0.25 0.75 0 0.3 0.33 0.0925 0.0799

SCWCO NCNCNBW 0.25 0.2 0 0.2 0.16 0.0449 0.0329
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SCWBWO NCNCNBW 0.25 0.2 0 0.2 0.16 0.0449 0.0329

PCO NCNCNBW 0.2001 0 0 0.2 0.10 0.0269 0.0191

PBWO NCNCNBW 0.15 0 0 0.2 0.09 0.0237 0.0190

SCCBW NCNCNBW 0.15 0.2 0 0.2 0.14 0.0384 0.0327

PCBW NCNCNBW 0.15 0 0 0.2 0.09 0.0237 0.0190

SCPBW NCNCNBW 0.2 0.2 0 0.2 0.15 0.0416 0.0328

SCPC NCNCNBW 0.2 1 0 0.2 0.35 0.1007 0.0876

SCPCBW NCNCNBW 1 0 0 1 0.50 0.1345 0.0955

ALLOK NCNCBW 0 0 0 0 0.00 0.0000 0.0000

SCWO NCNCBW 0.4999 0.8 0.85 0.699 0.71 0.1896 0.1944

PO NCNCBW 0.2001 0 0 0.3 0.13 0.0339 0.0285

SCPWO NCNCBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCWCO NCNCBW 0.3 0 0 0.4 0.18 0.0474 0.0380

SCWBWO NCNCBW 0.9 0.1 1 0.4 0.60 0.1515 0.1318

PCO NCNCBW 0.2001 0 0 0.25 0.11 0.0304 0.0238

PBWO NCNCBW 0.3 0 0 0.4 0.18 0.0474 0.0380

SCCBW NCNCBW 0.3 0.1 0 0.4 0.20 0.0547 0.0449

PCBW NCNCBW 0.25 0 0 0.4 0.16 0.0441 0.0380

SCPBW NCNCBW 0.3 0.1 0 0.301 0.18 0.0478 0.0356

SCPC NCNCBW 0.25 0.1 0 0.4 0.19 0.0515 0.0448

SCPCBW NCNCBW 1 1 0 1 0.75 0.2082 0.1640
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ALLOK NCCPNBW 0 1 0 0 0.25 0.0738 0.0685

SCWO NCCPNBW 0.25 0.8 0.85 0.101 0.50 0.1316 0.1378

PO NCCPNBW 0.25 0 0 0.101 0.09 0.0232 0.0099

SCPWO NCCPNBW 0.25 0 0 0.201 0.11 0.0302 0.0193

SCWCO NCCPNBW 0.9 0.5 0 0.801 0.55 0.1510 0.1109

SCWBWO NCCPNBW 0.35 0 1 0.3 0.41 0.1017 0.1147

PCO NCCPNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PBWO NCCPNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCCBW NCCPNBW 0.35 0.5 0 0.201 0.26 0.0735 0.0537

PCBW NCCPNBW 0.25 0 1 0.2 0.36 0.0883 0.1052

SCPBW NCCPNBW 0.25 0.15 0 0.3 0.18 0.0482 0.0388

SCPC NCCPNBW 0.35 0.15 0 0.201 0.18 0.0477 0.0297

SCPCBW NCCPNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK NCCPBW 0 0 0 0 0.00 0.0000 0.0000

SCWO NCCPBW 0.25 0.6 0.85 0.201 0.48 0.1239 0.1335

PO NCCPBW 0.25 0 0 0.201 0.11 0.0302 0.0193

SCPWO NCCPBW 0.3 0.5 0 0.3 0.28 0.0772 0.0629

SCWCO NCCPBW 0.35 0.25 1 0.3 0.48 0.1201 0.1319

SCWBWO NCCPBW 0.35 0.05 0 0.3 0.18 0.0472 0.0321

PCO NCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PBWO NCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286
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SCCBW NCCPBW 0.9 0 1 0.85 0.69 0.1757 0.1673

PCBW NCCPBW 0.35 0.9 0 0.3 0.39 0.1099 0.0904

SCPBW NCCPBW 0.35 0 1 0.2 0.39 0.0947 0.1053

SCPC NCCPBW 0.35 0.1 1 0.2 0.41 0.1021 0.1122

SCPCBW NCCPBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWONCNCNBW 0 0 0.8 0 0.20 0.0465 0.0688

SCWO IWONCNCNBW 0.25 0 0 0.201 0.11 0.0302 0.0193

PO IWONCNCNBW 0.9 0.25 1 0.801 0.74 0.1907 0.1798

SCPWO IWONCNCNBW 0.25 0.2 1 0.2 0.41 0.1030 0.1189

SCWCO IWONCNCNBW 0.2001 0.5 1 0.2 0.48 0.1219 0.1394

SCWBWO IWONCNCNBW 0.2001 0 1 0.2 0.35 0.0850 0.1051

PCO IWONCNCNBW 0.25 0 0 0.3 0.14 0.0371 0.0286

PBWO IWONCNCNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCCBW IWONCNCNBW 0.2001 0.5 0 0.2 0.23 0.0638 0.0533

PCBW IWONCNCNBW 0.25 0.05 0 0.2 0.13 0.0338 0.0226

SCPBW IWONCNCNBW 0.25 0.05 0 0.2 0.13 0.0338 0.0226

SCPC IWONCNCNBW 0.25 0.05 0 0.099 0.10 0.0267 0.0131

SCPCBW IWONCNCNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWONCNCBW 0 0 0.8 0 0.20 0.0465 0.0688

SCWO IWONCNCBW 0.25 0 0 0.201 0.11 0.0302 0.0193

PO IWONCNCBW 0.35 0 0.6 0.3 0.31 0.0784 0.0803
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SCPWO IWONCNCBW 0.35 0 0 0.3 0.16 0.0436 0.0287

SCWCO IWONCNCBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCWBWO IWONCNCBW 0.35 0 0 0.4 0.19 0.0506 0.0381

PCO IWONCNCBW 0.35 0 0 0.4 0.19 0.0506 0.0381

PBWO IWONCNCBW 0.9 0 1 0.9 0.70 0.1792 0.1720

SCCBW IWONCNCBW 0.3 0.5 0 0.3 0.28 0.0772 0.0629

PCBW IWONCNCBW 0.35 0.6 0 0.3 0.31 0.0878 0.0698

SCPBW IWONCNCBW 0.35 0.05 0 0.3 0.18 0.0472 0.0321

SCPC IWONCNCBW 0.3 0.05 0 0.201 0.14 0.0371 0.0228

SCPCBW IWONCNCBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWONCCPNBW 0 0 0.8 0 0.20 0.0465 0.0688

SCWO IWONCCPNBW 0.25 0 0 0.101 0.09 0.0232 0.0099

PO IWONCCPNBW 0.35 0 0.6 0.2 0.29 0.0714 0.0709

SCPWO IWONCCPNBW 0.35 0 0 0.4 0.19 0.0506 0.0381

SCWCO IWONCCPNBW 0.35 0 0 0.4 0.19 0.0506 0.0381

SCWBWO IWONCCPNBW 0.25 0 0 0.201 0.11 0.0302 0.0193

PCO IWONCCPNBW 0.9 0.1 0 0.9 0.48 0.1284 0.0928

PBWO IWONCCPNBW 0.35 0 1 0.3 0.41 0.1017 0.1147

SCCBW IWONCCPNBW 0.25 0.8 0 0.2 0.31 0.0891 0.0740

PCBW IWONCCPNBW 0.3 0.8 0 0.3 0.35 0.0994 0.0834

SCPBW IWONCCPNBW 0.25 0.15 0 0.201 0.15 0.0412 0.0295
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SCPC IWONCCPNBW 0.35 0.15 0 0.201 0.18 0.0477 0.0297

SCPCBW IWONCCPNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWONCCPBW 0 0 0.8 0 0.20 0.0465 0.0688

SCWO IWONCCPBW 0.25 0 0 0.201 0.11 0.0302 0.0193

PO IWONCCPBW 0.35 0.1 0.6 0.3 0.34 0.0858 0.0872

SCPWO IWONCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCWCO IWONCCPBW 0.3 0 0 0.201 0.13 0.0334 0.0193

SCWBWO IWONCCPBW 0.35 0 0 0.3 0.16 0.0436 0.0287

PCO IWONCCPBW 0.4 0 0.5 0.3 0.30 0.0758 0.0718

PBWO IWONCCPBW 0.4 0 0.5 0.4 0.33 0.0829 0.0812

SCCBW IWONCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PCBW IWONCCPBW 0.9 0.5 1 0.85 0.81 0.2125 0.2015

SCPBW IWONCCPBW 0.3 0.2 0 0.201 0.18 0.0481 0.0330

SCPC IWONCCPBW 0.3 0.2 0 0.201 0.18 0.0481 0.0330

SCPCBW IWONCCPBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWOCNCNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IWOCNCNBW 0.25 0.8 0 0.099 0.29 0.0820 0.0645

PO IWOCNCNBW 0.25 0 0.8 0.201 0.31 0.0767 0.0881

SCPWO IWOCNCNBW 0.9 0.3 1 0.899 0.77 0.2012 0.1924

SCWCO IWOCNCNBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

SCWBWO IWOCNCNBW 0.25 0.1 0 0.201 0.14 0.0376 0.0261
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PCO IWOCNCNBW 0.25 0 0 0.3 0.14 0.0371 0.0286

PBWO IWOCNCNBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCCBW IWOCNCNBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

PCBW IWOCNCNBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCPBW IWOCNCNBW 0.35 0.1 0 0.3 0.19 0.0509 0.0356

SCPC IWOCNCNBW 0.35 0.3 0 0.2 0.21 0.0587 0.0399

SCPCBW IWOCNCNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWOCNCBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IWOCNCBW 0.25 0.8 0 0.3 0.34 0.0961 0.0834

PO IWOCNCBW 0.25 0 0 0.299 0.14 0.0371 0.0285

SCPWO IWOCNCBW 0.35 0.3 0 0.399 0.26 0.0726 0.0586

SCWCO IWOCNCBW 0.25 0.1 0 0.201 0.14 0.0376 0.0261

SCWBWO IWOCNCBW 0.35 0.1 0 0.299 0.19 0.0509 0.0355

PCO IWOCNCBW 0.25 0 0 0.3 0.14 0.0371 0.0286

PBWO IWOCNCBW 0.35 0.05 0.85 0.3 0.39 0.0967 0.1053

SCCBW IWOCNCBW 0.3 0.1 0 0.2 0.15 0.0407 0.0261

PCBW IWOCNCBW 0.3 0 0 0.2 0.13 0.0333 0.0193

SCPBW IWOCNCBW 0.9 0.1 1 0.899 0.72 0.1865 0.1787

SCPC IWOCNCBW 0.3 0.3 0 0.201 0.20 0.0555 0.0399

SCPCBW IWOCNCBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWOCCPNBW 0 0 0 0 0.00 0.0000 0.0000
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SCWO IWOCCPNBW 0.25 0.8 0 0.2 0.31 0.0891 0.0740

PO IWOCCPNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCPWO IWOCCPNBW 0.35 0.3 0 0.3 0.24 0.0657 0.0493

SCWCO IWOCCPNBW 0.35 0.1 0 0.3 0.19 0.0509 0.0356

SCWBWO IWOCCPNBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

PCO IWOCCPNBW 0.35 0.05 0.75 0.201 0.34 0.0839 0.0874

PBWO IWOCCPNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCCBW IWOCCPNBW 0.35 0.1 0 0.2 0.16 0.0439 0.0262

PCBW IWOCCPNBW 0.35 0 0 0.3 0.16 0.0436 0.0287

SCPBW IWOCCPNBW 0.35 0.1 0 0.2 0.16 0.0439 0.0262

SCPC IWOCCPNBW 0.9 0.3 1 0.899 0.77 0.2012 0.1924

SCPCBW IWOCCPNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IWOCCPBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IWOCCPBW 0.2 0.8 0 0.2 0.30 0.0859 0.0739

PO IWOCCPBW 0.2 0 0 0.201 0.10 0.0270 0.0192

SCPWO IWOCCPBW 0.25 0.3 0 0.3 0.21 0.0593 0.0491

SCWCO IWOCCPBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

SCWBWO IWOCCPBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

PCO IWOCCPBW 0.25 0.05 0 0.2 0.13 0.0338 0.0226

PBWO IWOCCPBW 0.25 0.05 0 0.25 0.14 0.0373 0.0273

SCCBW IWOCCPBW 0.3 0.1 0 0.3 0.18 0.0477 0.0355
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PCBW IWOCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCPBW IWOCCPBW 0.3 0.1 0 0.2 0.15 0.0407 0.0261

SCPC IWOCCPBW 0.3 0.3 0 0.2 0.20 0.0555 0.0398

SCPCBW IWOCCPBW 1 1 1 1 1.00 0.2664 0.2500

ALLOK EWONCNCNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWONCNCNBW 0.3 0 0 0.4 0.18 0.0474 0.0380

PO EWONCNCNBW 0.9 0.25 1 0.6 0.69 0.1766 0.1609

SCPWO EWONCNCNBW 0.3 0.2 0 0.3 0.20 0.0551 0.0423

SCWCO EWONCNCNBW 0.2 0.5 0 0.199 0.22 0.0637 0.0533

SCWBWO EWONCNCNBW 0.2 0 0 0.3 0.13 0.0339 0.0285

PCO EWONCNCNBW 0.2 0 0 0.3 0.13 0.0339 0.0285

PBWO EWONCNCNBW 0.2 0 0 0.199 0.10 0.0268 0.0190

SCCBW EWONCNCNBW 0.2 0.5 0 0.199 0.22 0.0637 0.0533

PCBW EWONCNCNBW 0.2 0.05 0 0.199 0.11 0.0305 0.0224

SCPBW EWONCNCNBW 0.2 0.05 0 0.3 0.14 0.0376 0.0319

SCPC EWONCNCNBW 0.2 0.05 0 0.199 0.11 0.0305 0.0224

SCPCBW EWONCNCNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK EWONCNCBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWONCNCBW 0.3 0 0 0.2 0.13 0.0333 0.0193

PO EWONCNCBW 0.3 0 0.75 0.4 0.36 0.0910 0.1026

SCPWO EWONCNCBW 0.3 0 0 0.201 0.13 0.0334 0.0193
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SCWCO EWONCNCBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCWBWO EWONCNCBW 0.2 0 0 0.3 0.13 0.0339 0.0285

CO EWONCNCBW 0.25 0 0 0.201 0.11 0.0302 0.0193

PBWO EWONCNCBW 0.9 0 1 0.85 0.69 0.1757 0.1673

SCCBW EWONCNCBW 0.25 0.5 0 0.201 0.24 0.0671 0.0535

PCBW EWONCNCBW 0.3 0.6 0 0.3 0.30 0.0846 0.0697

SCPBW EWONCNCBW 0.3 0.05 0 0.2 0.14 0.0370 0.0227

CPC EWONCNCBW 0.3 0.05 0 0.3 0.16 0.0440 0.0321

SCPCBW EWONCNCBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK EWONCCPNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWONCCPNBW 0.3 0 0 0.2 0.13 0.0333 0.0193

PO EWONCCPNBW 0.3 0 0 0.2 0.13 0.0333 0.0193

SCPWO EWONCCPNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCWCO EWONCCPNBW 0.25 0 0 0.6 0.21 0.0582 0.0568

SCWBWO EWONCCPNBW 0.2 0 0 0.3 0.13 0.0339 0.0285

PCO EWONCCPNBW 0.9 0 1 0.8 0.68 0.1722 0.1626

PBWO EWONCCPNBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

SCCBW EWONCCPNBW 0.2 0 0 0.4 0.15 0.0409 0.0379

PCBW EWONCCPNBW 0.25 0.8 0 0.301 0.34 0.0962 0.0835

SCPBW EWONCCPNBW 0.2 0.8 0 0.3 0.33 0.0929 0.0833

SCPC EWONCCPNBW 0.3 0.15 0 0.2 0.16 0.0444 0.0295
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SCPCBW EWONCCPNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK EWONCCPBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWONCCPBW 0.25 0 0 0.2 0.11 0.0301 0.0192

PO EWONCCPBW 0.3 0.1 0 0.3 0.18 0.0477 0.0355

SCPWO EWONCCPBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCWCO EWONCCPBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCWBWO EWONCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PCO EWONCCPBW 0.35 0 0 0.4 0.19 0.0506 0.0381

PBWO EWONCCPBW 0.35 0 0 0.201 0.14 0.0366 0.0194

SCCBW EWONCCPBW 0.25 0 0 0.2 0.11 0.0301 0.0192

PCBW EWONCCPBW 0.9 0.5 1 0.899 0.82 0.2160 0.2061

SCPBW EWONCCPBW 0.25 0.2 0 0.201 0.16 0.0449 0.0330

SCPC EWONCCPBW 0.25 0.2 0 0.201 0.16 0.0449 0.0330

SCPCBW EWONCCPBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK EWOCNCNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWOCNCNBW 0.25 0.8 0 0.1 0.29 0.0821 0.0646

PO EWOCNCNBW 0.25 0 0.301 0.1 0.16 0.0406 0.0357

SCPWO EWOCNCNBW 0.9 0.3 1 0.901 0.78 0.2014 0.1926

SCWCO EWOCNCNBW 0.2 0.1 0 0.2 0.13 0.0343 0.0259

SCWBWO EWOCNCNBW 0.2 0.1 0 0.2 0.13 0.0343 0.0259

PCO EWOCNCNBW 0.2 0 0 0.3 0.13 0.0339 0.0285
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PBWO EWOCNCNBW 0.2 0 0 0.2 0.10 0.0269 0.0191

SCCBW EWOCNCNBW 0.2 0.1 0 0.2 0.13 0.0343 0.0259

PCBW EWOCNCNBW 0.2 0 0 0.3 0.13 0.0339 0.0285

SCPBW EWOCNCNBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

SCPC EWOCNCNBW 0.25 0.3 0 0.2 0.19 0.0522 0.0397

SCPCBW EWOCNCNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK EWOCNCBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWOCNCBW 0.2001 0.8 0 0.2 0.30 0.0859 0.0739

PO EWOCNCBW 0.2001 0 0 0.3 0.13 0.0339 0.0285

SCPWO EWOCNCBW 0.3 0.3 0 0.3 0.23 0.0625 0.0492

SCWCO EWOCNCBW 0.2001 0.1 0 0.4 0.18 0.0483 0.0447

SCWBWO EWOCNCBW 0.3 0.1 0 0.4 0.20 0.0547 0.0449

PCO EWOCNCBW 0.2001 0 0 0.201 0.10 0.0270 0.0192

PBWO EWOCNCBW 0.3 0.05 0.35 0.3 0.25 0.0644 0.0622

SCCBW EWOCNCBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

PCBW EWOCNCBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCPBW EWOCNCBW 0.9 0.1 1 0.9 0.73 0.1866 0.1788

SCPC EWOCNCBW 0.25 0.3 0 0.3 0.21 0.0593 0.0491

SCPCBW EWOCNCBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK EWOCCPNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWOCCPNBW 0.2001 0.8 0 0.201 0.30 0.0860 0.0740
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PO EWOCCPNBW 0.2001 0 0 0.201 0.10 0.0270 0.0192

SCPWO EWOCCPNBW 0.3 0.3 0 0.2 0.20 0.0555 0.0398

SCWCO EWOCCPNBW 0.3 0.1 0 0.3 0.18 0.0477 0.0355

SCWBWO EWOCCPNBW 0.2001 0.1 0 0.201 0.13 0.0343 0.0260

PCO EWOCCPNBW 0.2001 0.05 0.3501 0.201 0.20 0.0510 0.0527

PBWO EWOCCPNBW 0.2001 0 0 0.1 0.08 0.0199 0.0097

SCCBW EWOCCPNBW 0.3 0.1 0 0.3 0.18 0.0477 0.0355

PCBW EWOCCPNBW 0.3 0 0 0.2 0.13 0.0333 0.0193

SCPBW EWOCCPNBW 0.3 0.1 0 0.3 0.18 0.0477 0.0355

SCPC EWOCCPNBW 0.9 0.3 1 0.9 0.78 0.2013 0.1925

SCPCBW EWOCCPNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK EWOCCPBW 0 0 0 0 0.00 0.0000 0.0000

SCWO EWOCCPBW 0.15 0.8 0 0.2 0.29 0.0827 0.0738

PO EWOCCPBW 0.15 0 0 0.2 0.09 0.0237 0.0190

SCPWO EWOCCPBW 0.2 0.3 0 0.3 0.20 0.0560 0.0490

SCWCO EWOCCPBW 0.2 0.1 0 0.3 0.15 0.0413 0.0353

SCWBWO EWOCCPBW 0.2 0.1 0 0.3 0.15 0.0413 0.0353

PCO EWOCCPBW 0.2 0.05 0 0.4 0.16 0.0446 0.0413

PBWO EWOCCPBW 0.2 0.05 0 0.3 0.14 0.0376 0.0319

SCCBW EWOCCPBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

PCBW EWOCCPBW 0.25 0 0 0.4 0.16 0.0441 0.0380
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SCPBW EWOCCPBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

SCPC EWOCCPBW 0.25 0.3 0 0.201 0.19 0.0523 0.0398

SCPCBW EWOCCPBW 1 1 1 1 1.00 0.2664 0.2500

ALLOK IEWNCNCNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWNCNCNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PO IEWNCNCNBW 0.9 0.25 1 0.8 0.74 0.1906 0.1797

SCPWO IEWNCNCNBW 0.35 0.2 0 0.3 0.21 0.0583 0.0424

SCWCO IEWNCNCNBW 0.25 0.5 0 0.2 0.24 0.0670 0.0534

SCWBWO IEWNCNCNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

PCO IEWNCNCNBW 0.25 0 0 0.301 0.14 0.0372 0.0287

PBWO IEWNCNCNBW 0.25 0 0 0.1 0.09 0.0231 0.0098

SCCBW IEWNCNCNBW 0.25 0.5 0 0.2 0.24 0.0670 0.0534

PCBW IEWNCNCNBW 0.25 0.05 0 0.2 0.13 0.0338 0.0226

SCPBW IEWNCNCNBW 0.25 0.05 0 0.2 0.13 0.0338 0.0226

SCPC IEWNCNCNBW 0.25 0.05 0 0.2 0.13 0.0338 0.0226

SCPCBW IEWNCNCNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IEWNCNCBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWNCNCBW 0.3 0 0 0.201 0.13 0.0334 0.0193

PO IEWNCNCBW 0.35 0 0 0.2 0.14 0.0365 0.0193

SCPWO IEWNCNCBW 0.35 0 0 0.2 0.14 0.0365 0.0193

CWCO IEWNCNCBW 0.3 0 0 0.3 0.15 0.0403 0.0286
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SCWBWO IEWNCNCBW 0.25 0 0 0.3 0.14 0.0371 0.0286

PCO IEWNCNCBW 0.3 0 0 0.3 0.15 0.0403 0.0286

PBWO IEWNCNCBW 0.9 0 1 0.9 0.70 0.1792 0.1720

SCCBW IEWNCNCBW 0.3 0.5 0 0.3 0.28 0.0772 0.0629

PCBW IEWNCNCBW 0.35 0.6 0 0.4 0.34 0.0948 0.0792

CPBW IEWNCNCBW 0.35 0.05 0 0.3 0.18 0.0472 0.0321

SCPC IEWNCNCBW 0.35 0.05 0 0.3 0.18 0.0472 0.0321

SCPCBW IEWNCNCBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IEWNCCPNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWNCCPNBW 0.3 0 0 0.2 0.13 0.0333 0.0193

PO IEWNCCPNBW 0.35 0 0 0.3 0.16 0.0436 0.0287

SCPWO IEWNCCPNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCWCO IEWNCCPNBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCWBWO IEWNCCPNBW 0.25 0 0 0.4 0.16 0.0441 0.0380

PCO IEWNCCPNBW 0.9 0.1 1 0.8 0.70 0.1795 0.1694

PBWO IEWNCCPNBW 0.25 0 0 0.3 0.14 0.0371 0.0286

SCCBW IEWNCCPNBW 0.25 0.8 0 0.3 0.34 0.0961 0.0834

PCBW IEWNCCPNBW 0.3 0.8 0 0.4 0.38 0.1064 0.0928

SCPBW IEWNCCPNBW 0.25 0.15 0 0.2 0.15 0.0412 0.0294

SCPC IEWNCCPNBW 0.3 0.15 0 0.2 0.16 0.0444 0.0295

SCPCBW IEWNCCPNBW 1 1 0 1 0.75 0.2082 0.1640

208



ALLOK IEWNCCPBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWNCCPBW 0.25 0 0 0.2 0.11 0.0301 0.0192

PO IEWNCCPBW 0.3 0.1 0 0.2 0.15 0.0407 0.0261

SCPWO IEWNCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCWCO IEWNCCPBW 0.3 0 0 0.4 0.18 0.0474 0.0380

SCWBWO IEWNCCPBW 0.3 0 0 0.4 0.18 0.0474 0.0380

PCO IEWNCCPBW 0.35 0 0 0.3 0.16 0.0436 0.0287

PBWO IEWNCCPBW 0.35 0 0 0.3 0.16 0.0436 0.0287

SCCBW IEWNCCPBW 0.3 0 1 0.201 0.38 0.0915 0.1054

PCBW IEWNCCPBW 0.9 0.5 0 0.801 0.55 0.1510 0.1109

SCPBW IEWNCCPBW 0.3 0.2 0 0.3 0.20 0.0551 0.0423

SCPC IEWNCCPBW 0.3 0.2 0 0.4 0.23 0.0621 0.0517

SCPCBW IEWNCCPBW 1 1 0 1 0.75 0.2082 0.1640

LLOK IEWCNCNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWCNCNBW 0.25 0.8 0 0.3 0.34 0.0961 0.0834

PO IEWCNCNBW 0.25 0 1 0.3 0.39 0.0953 0.1146

SCPWO IEWCNCNBW 0.9 0.3 0 0.85 0.51 0.1397 0.1018

SCWCO IEWCNCNBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

SCWBWO IEWCNCNBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

PCO IEWCNCNBW 0.25 0 0 0.3 0.14 0.0371 0.0286

PBWO IEWCNCNBW 0.25 0 0 0.2 0.11 0.0301 0.0192
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SCCBW IEWCNCNBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

PCBW IEWCNCNBW 0.25 0 0 0.4 0.16 0.0441 0.0380

CPBW IEWCNCNBW 0.3 0.1 0 0.2 0.15 0.0407 0.0261

SCPC IEWCNCNBW 0.3 0.3 0 0.2 0.20 0.0555 0.0398

SCPCBW IEWCNCNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IEWCNCBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWCNCBW 0.25 0.8 0 0.3 0.34 0.0961 0.0834

PO IEWCNCBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCPWO IEWCNCBW 0.35 0.3 0 0.3 0.24 0.0657 0.0493

SCWCO IEWCNCBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

SCWBWO IEWCNCBW 0.35 0.1 0 0.301 0.19 0.0510 0.0357

PCO IEWCNCBW 0.25 0 0 0.3 0.14 0.0371 0.0286

PBWO IEWCNCBW 0.35 0.05 0 0.201 0.15 0.0403 0.0228

SCCBW IEWCNCBW 0.3 0.1 0 0.2 0.15 0.0407 0.0261

PCBW IEWCNCBW 0.3 0 0 0.2 0.13 0.0333 0.0193

SCPBW IEWCNCBW 0.9 0.1 1 0.85 0.71 0.1830 0.1741

SCPC IEWCNCBW 0.3 0.3 0 0.2 0.20 0.0555 0.0398

SCPCBW IEWCNCBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IEWCCPNBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWCCPNBW 0.25 0.8 0 0.2 0.31 0.0891 0.0740

PO IEWCCPNBW 0.25 0 0 0.299 0.14 0.0371 0.0285
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SCPWO IEWCCPNBW 0.35 0.3 0 0.3 0.24 0.0657 0.0493

SCWCO IEWCCPNBW 0.35 0.1 0 0.3 0.19 0.0509 0.0356

SCWBWO IEWCCPNBW 0.25 0.1 0 0.3 0.16 0.0445 0.0354

PCO IEWCCPNBW 0.35 0.05 0 0.3 0.18 0.0472 0.0321

PBWO IEWCCPNBW 0.25 0 0 0.2 0.11 0.0301 0.0192

SCCBW IEWCCPNBW 0.35 0.1 0 0.3 0.19 0.0509 0.0356

PCBW IEWCCPNBW 0.35 0 0 0.3 0.16 0.0436 0.0287

SCPBW IEWCCPNBW 0 0.1 0 0.499 0.15 0.0424 0.0537

SCPC IEWCCPNBW 0.9 0.3 1 0.8 0.75 0.1943 0.1831

SCPCBW IEWCCPNBW 1 1 0 1 0.75 0.2082 0.1640

ALLOK IEWCCPBW 0 0 0 0 0.00 0.0000 0.0000

SCWO IEWCCPBW 0.2 0.8 0 0.2 0.30 0.0859 0.0739

PO IEWCCPBW 0.2 0 0 0.2 0.10 0.0269 0.0191

SCPWO IEWCCPBW 0.25 0.3 0 0.3 0.21 0.0593 0.0491

SCWCO IEWCCPBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

SCWBWO IEWCCPBW 0.25 0.1 0 0.2 0.14 0.0375 0.0260

PCO IEWCCPBW 0.25 0.05 0 0.3 0.15 0.0408 0.0320

PBWO IEWCCPBW 0.25 0.05 0 0.201 0.13 0.0339 0.0227

SCCBW IEWCCPBW 0.3 0.1 0 0.3 0.18 0.0477 0.0355

PCBW IEWCCPBW 0.3 0 0 0.3 0.15 0.0403 0.0286

SCPBW IEWCCPBW 0.3 0.1 0 0.2 0.15 0.0407 0.0261
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SCPC IEWCCPBW 0.3 0.3 0 0.2 0.20 0.0555 0.0398

SCPCBW IEWCCPBW 1 0 0 1 0.50 0.1345 0.0955

A.4 Aggregated expert assessments for load test outcome

spreading tendon inspection test

The table below compares the aggregated assessments of the experts on their judgements

on load test outcome spreading tendon test. The comparison is between the nonpara-

metric methods, EB methods and simple average. The weights used for the experts for

EB aggregation are : E1=0.2174177, E2=0.2961574, E3=0.2070601 and E4=0.2793648.

The weights used for the experts for Non-parametric aggregation are: E1=0.199832666,

E2=0.503325469, E3=0.007008922 and E4=0.289832943.

Outcome Condition E1 E2 E3 E4 Average EB NP

FE OLAS 1 1 1 0 0.75 0.1801588 0.177541764

TF OLAS 0 1 0 0 0.25 0.07403935 0.125831367

FE OLNAS 0.95 1 1 0.95 0.975 0.243790219 0.24387918

TF OLNAS 1 0 0 0 0.25 0.054354425 0.049958167

FE RCALAS 1 1 1 0.9 0.975 0.24301588 0.242754176

TF RCALAS 0 1 0 0 0.25 0.07403935 0.125831367

FE RCALNAS 1 1 1 1 1 0.25 0.25

TF RCALNAS 0 1 0 0 0.25 0.07403935 0.125831367
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FE RCUALAS 0.9 0.85 0.9 0.6 0.8125 0.200345673 0.196970961

TF RCUALAS 0 0.99 0 0 0.2475 0.073298957 0.124573054

FE RCUALNAS 0.9 0.85 0.9 0.3 0.7375 0.179393313 0.17523349

TF RCUALNAS 0 1 1 0 0.5 0.125804375 0.127583598

FE FAS 0 0 0.3 0 0.075 0.015529508 0.000525669

TF FAS 0 1 0 0 0.25 0.07403935 0.125831367

FE FNAS 0 0 0.3 0 0.075 0.015529508 0.000525669

TF FNAS 0 1 0 0 0.25 0.07403935 0.125831367

A.5 Aggregated expert assessments for lab tensile test on

strand

The table below compares the aggregated assessments of the experts on their judgements

on load test outcome spreading tendon test. The comparison is between the nonparametric

methods, EB methods and simple average. The weights used for the experts for EB aggrega-

tion are : E1=0.3311689, E2=0.2149394, E3=0.2458123 and E4=0.2080794. The weights

used for the experts for Non-parametric aggregation are: E1=0.57888202, E2=0.10879146,

E3=0.22915698 and E4=0.08316955.

Outcome Condition E1 E2 E3 E4 Average EB NP

FWEEL OL 0.99 1 0.95 1 0.985 0.2461 0.2457

FWNEEL OL 1 0 1 0 0.5 0.1442 0.2020
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FWEEL RCAL 0.8 0.95 0.9499 0.9 0.899975 0.2225 0.2147

FWNEEL RCAL 1 1 1 1 1 0.2500 0.2500

FWEEL RCUAL 0.6 0.25 0.85 0.7 0.6 0.1518 0.1569

FWNEEL RCUAL 1 1 0 0 0.5 0.1365 0.1719

FWEEL F 0 0 0.0501 0 0.012525 0.0031 0.0029

FWNEEL F 1 1 1 1 1 0.2500 0.2500
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Appendix B

Model derivations for aggregation

of correlated judgements with bias

This chapter presents two models for dealing with biases in the correlated judgements.

Section B1 presents the non-parametric model with bias and section B2 presents the EB

parametric model with bias. These models have not been implemented in the main chapters

as the models have been developed in absence of complete truth around the parameters of

interest. Therefore, adding a bias term to it would add to the systematic errors in both the

models. However, for the sake of completeness of the models, both the theorems dealing

with biases are presented here in the appendix.

B.1 Non-parametric aggregation model with bias

Theorem 3 Let the mean square error be defined as MSE = E
(
(
∑
wiXi − µbi)2

)
, for k

= 1
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where bi denotes the multiplicative bias that exists in the judgements and C denotes the

covariance matrix; then the optimal weights in terms of Mean Square Error, for aggregating

the judgements are proportional to the solution of ˆw
¯ bki

∝ C−1, where, ˆw
¯ bki

=
(
ŵ1
b1
, ..., ŵnbn

)
,

is the vector of weights applied to the assessments of experts.

Proof 3 ŵ
¯

= argminS∀wi = argmin∀wiE
(
(
∑
∀iwiXi − µ)2

)
Using the Lagrange multiplier approach,

L = E
(
(
∑
∀iwiXi − µ)2

)
+ λ

(
n∑
i=1

wi − 1
)

The first order conditions with respect to the weights are as in the following for which there

will be n such equations, one for each i,

dL

dwi
= E (2 (

∑
∀iwiXi − µ)Xi) + λ

This is then set to zero and results in the following with ŵi used to represent the estimated

weight.

∑
∀i ŵiE (XiXi)− µE (Xi) = λ

Given the assumption of biasedness, for each i,

∑
∀i ŵi

(
cij + (biµ)2

)
= λ

The first order condition with respect to the constraint is as in the following,

dL

dλ
=

n∑
i=1

ŵi − 1 = 0

Substituting back into the first order constraints with respect to the weights, the following

equation is thus obtained,

∑
∀j ŵicij = λ

Therefore,

ŵ
¯ b
∝ C−1
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Lemma 1 Assume a sample of n unbiased experts each providing a prediction, Xik, where

i = 1, 2, ..., n and k = 1, 2, ...,m on some unknown quantity θk. If the moments are denoted

as E(Xik) = µk + bik and C(XiXj) = cij , where bik denotes the additive bias that exists

in the judgements and C denotes the covariance matrix; then the optimal weights in terms

of Mean Square Error (S), for aggregating the judgements are proportional to the solution

of ŵ
¯ b
∝ C−1, where, ŵ

¯ b
= (ŵ

¯ 1, ..., ŵ¯ n
), is the vector of weights applied to the assessments

of experts.

B.2 EB model with bias

Assume that an expert provides us his estimate x1 and the difference between the estimate

and the true value is represented by a location bias error, e, such that, x1 = µ1 + e1. The

workings are assuming a normal- normal model (as described in chapter four of this thesis)

adjusted for location bias. The model presented here is assuming four experts and the

judgements are treated as variables, x1, ..., x4, then consider the judgements as sum of two

terms, x1 = µ1 + e1, x2 = µ2 + e2, x3 = µ3 + e3, x4 = µ4 + e4 where e represents the error

terms; then on taking expectations,

x1 = µ+ b1

x2 = µ+ b2

x3 = µ+ b3

x4 = µ+ b4
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where

E (e1) = b1

and b, is the bias.

The above equations show that the expert judgements are assumed to be biased by the

additive quantities of

b1, b2, b3, b4

. The likelihood function as a multivariate normal for four experts,

L (µ|x1, x2, x3, x4) = exp



− 1
2(1−ρ2)


(x1−(µ+b1))2

σ21
+ (x2−(µ+b2))2

σ22
+

(x3−(µ+b3))2

σ23
+ (x4−(µ+b4))2

σ24

−


2ρ12(x1−(µ+b1))(x2−(µ+b2))
σ1σ2

+ 2ρ13(x1−(µ+b1))(x3−(µ+b3))
σ1σ3

+2ρ14(x1−(µ+b1))(x4−(µ+b4))
σ1σ4

+ 2ρ23(x2−(µ+b2))(x3−(µ+b3))
σ2σ3

+2ρ24(x2−(µ+b2))(x4−(µ+b4))
σ2σ4

+ 2ρ34(x3−(µ+b3))(x4−(µ+b4))
σ3σ4




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On completing squares, and multiplying with prior, the posterior mean and variance are

given as follows,

µ1 =

(
x1−b1

(1−ρ2)σ21

)
+
(

x2−b2
(1−ρ2)σ22

)
+
(

x3−b3
(1−ρ2)σ23

)
+
(

x4−b4
(1−ρ2)σ24

)
− ρ12

(1−ρ2)σ1σ2
(x1 + x2 + b1 + b2)− ρ13

(1−ρ2)σ1σ3
(x1 + x3 + b1 + b3)

− ρ14
(1−ρ2)σ1σ4

(x1 + x4 + b1 + b4)− ρ23
(1−ρ2)σ2σ3

(x2 + x3 + b2 + b3)

− ρ24
(1−ρ2)σ2σ4

(x2 + x4 + b2 + b4)− ρ34
(1−ρ2)σ3σ4

(x3 + x4 + b3 + b4) + θ
τ2

1
(1−ρ2)σ21

+ 1
(1−ρ2)σ22

+ 1
(1−ρ2)σ23

+ 1
(1−ρ2)σ24

− 2ρ12
(1−ρ2)σ1σ2

− 2ρ13
(1−ρ2)σ1σ3

− 2ρ14
(1−ρ2)σ1σ4

− 2ρ23
(1−ρ2)σ2σ3

− 2ρ24
(1−ρ2)σ2σ4

− 2ρ34
(1−ρ2)σ3σ4

+ 1
τ2



σ2 =


1

(1−ρ2)σ21
+ 1

(1−ρ2)σ22
+ 1

(1−ρ2)σ23
+ 1

(1−ρ2)σ24
− 2ρ12

(1−ρ2)σ1σ2

− 2ρ13
(1−ρ2)σ1σ3

− 2ρ14
(1−ρ2)σ1σ4

− 2ρ23
(1−ρ2)σ2σ3

− 2ρ24
(1−ρ2)σ2σ4

− 2ρ34
(1−ρ2)σ3σ4

+ 1
τ2


It can be seen that the posterior mean is a weighted average of the prior mean and adjusted

to the location bias. The workings are below:

= (x12+µ2+b1
2−2µx1+2µb1−2b1x1)

σ21
+ (x22+µ2+b2

2−2µx2+2µb2−2b2x2)
σ22

+

(x32−µ2−b3
2−2µx3+2µb3−2b3x3)

σ23
+ (x42−µ2−b4

2−2µx4+2µb4−2b4x4)
σ24

=
(
x12

σ21
+ x22

σ22
+ x32

σ23
+ x42

σ24

)
+ µ2

(
1
σ21

+ 1
σ22

+ 1
σ23

+ 1
σ24

)
+
(
b1

2

σ21
+ b2

2

σ22
+ b3

2

σ23
+ b4

2

σ24

)
−2µ

((
x1−b1
σ21

)
+
(
x2−b2
σ22

)
+
(
x3−b3
σ23

)
+
(
x4−b4
σ24

))
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µ2
(

1
σ21

+ 1
σ22

+ 1
σ23

+ 1
σ24
− 2ρ12

σ1σ2
− 2ρ13

σ1σ3
− 2ρ14

σ1σ4
− 2ρ23

σ2σ3
− 2ρ24

σ2σ4
− 2ρ34

σ3σ4
+ 1

τ2

)

−2µ



(
x1−b1
σ21

)
+
(
x2−b2
σ22

)
+
(
x3−b3
σ23

)
+
(
x4−b4
σ24

)
− ρ12

σ1σ2
(x1 + x2 + b1 + b2)

− ρ13
σ1σ3

(x1 + x3 + b1 + b3)− ρ14
σ1σ4

(x1 + x4 + b1 + b4)− ρ23
σ2σ3

(x2 + x3 + b2 + b3)

− ρ24
σ2σ4

(x2 + x4 + b2 + b4)− ρ34
σ3σ4

(x3 + x4 + b3 + b4) + θ
τ2


+

θ2

τ2 +
(
x12

σ21
+ x22

σ22
+ x32

σ23
+ x42

σ24

)
+
(
b1

2

σ21
+ b2

2

σ22
+ b3

2

σ23
+ b4

2

σ24

)

−


2ρ12
σ1σ2

(x1x2 − x1b2 + x2b1) + 2ρ13
σ1σ3

(x1x3 − x1b3 + x3b1) + 2ρ14
σ1σ4

(x1x4 − x1b4 + x4b1) +

2ρ23
σ2σ3

(x2x3 − x2b3 + x3b2) + 2ρ24
σ2σ4

(x2x4 − x2b4 + x4b2) + 2ρ34
σ3σ4

(x3x4 − x3b4 + x4b3)


−
(

2ρ12b1b2
σ1σ2

+ 2ρ13b1b3
σ1σ3

+ 2ρ14b1b4
σ1σ4

+ 2ρ23b2b3
σ2σ3

+ 2ρ24b2b4
σ2σ4

+ 2ρ34b3b4
σ3σ4

)

On simplifying and substituting the constant terms with c,
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µ2
(

1
σ21

+ 1
σ22

+ 1
σ23

+ 1
σ24
− 2ρ12

σ1σ2
− 2ρ13

σ1σ3
− 2ρ14

σ1σ4
− 2ρ23

σ2σ3
− 2ρ24

σ2σ4
− 2ρ34

σ3σ4
+ 1

τ2

)

−2µ



(
x1−b1
σ21

)
+
(
x2−b2
σ22

)
+
(
x3−b3
σ23

)
+
(
x4−b4
σ24

)
− ρ12

σ1σ2
(x1 + x2 + b1 + b2)

− ρ13
σ1σ3

(x1 + x3 + b1 + b3)− ρ14
σ1σ4

(x1 + x4 + b1 + b4)− ρ23
σ2σ3

(x2 + x3 + b2 + b3)

− ρ24
σ2σ4

(x2 + x4 + b2 + b4)− ρ34
σ3σ4

(x3 + x4 + b3 + b4) + θ
τ2


+

c

=



µ−



(
x1−b1
σ21

)
+
(
x2−b2
σ22

)
+
(
x3−b3
σ23

)
+
(
x4−b4
σ24

)
− ρ12

σ1σ2
(x1 + x2 + b1 + b2)

− ρ13
σ1σ3

(x1 + x3 + b1 + b3)− ρ14
σ1σ4

(x1 + x4 + b1 + b4)− ρ23
σ2σ3

(x2 + x3 + b2 + b3)

− ρ24
σ2σ4

(x2 + x4 + b2 + b4)− ρ34
σ3σ4

(x3 + x4 + b3 + b4) + θ
τ2(

1
σ21

+ 1
σ22

+ 1
σ23

+ 1
σ24
− 2ρ12
σ1σ2

− 2ρ13
σ1σ3

− 2ρ14
σ1σ4

− 2ρ23
σ2σ3

− 2ρ24
σ2σ4

− 2ρ34
σ3σ4

+ 1
τ2

)


√

1(
1
σ21

+ 1
σ22

+ 1
σ23

+ 1
σ24
− 2ρ12
σ1σ2

− 2ρ13
σ1σ3

− 2ρ14
σ1σ4

− 2ρ23
σ2σ3

− 2ρ24
σ2σ4

− 2ρ34
σ3σ4

+ 1
τ2

)



2

+ c
′
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