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Abstract 

Breast cancer is one of the most dangerous diseases that can afflict especially women. 

Computer-aided diagnosis (CADx/CAD) systems may help radiologists in fast and accurate 

decision making to detect early stage of breast cancer and reduce mortality. By fusion of 

different techniques in image processing, machine learning (ML), and deep learning (DL), 

several techniques are proposed in this thesis for analysing breast cancer images, aiming to 

classify normal/ abnormal lesions in mammography images. The classification method is 

generally implemented using ML classifiers and DL methods based on the deep convolutional 

neural networks (DCNN).  

This thesis presents new methods, assembled on recently developed DL models based on 

different fusion techniques to develop three different frameworks. The first framework presents 

an approach for segmenting the region of interest (ROI) followed by classifying it using 

DCNN. In the second framework, a fusion-based novel approach is presented to classify the 

mammogram lesions using several DCNNs. Additionally, it employs some ML techniques to 

improve the classification accuracy. However, the third framework introduces the decision-

level fusion rather than feature fusion forming a second stage classification to improve the 

classification accuracy as well.  

Overall, the methods proposed in this thesis achieved promising classification accuracy results 

that improve the performance of the state-of-the-art approaches and may help to improve the 

diagnosis of breast cancer.   

The methodologies presented in this work are evaluated on several publicly available datasets, 

including the digital database for screening mammography (DDSM), the curated breast 

imaging subset of DDSM (CBIS-DDSM), and the mammographic image analysis society 

digital mammogram dataset (MIAS). Considering their limitations, a new mammogram 

dataset, “DAR-Breast,” is collected from the Armed Forces Hospital in Egypt, the first such in 

Egypt, to benefit the advancement in this area.  
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Chapter 1  

Introduction 

1.1 Background and Motivation 
Breast cancer is considered a crucial problem among women all over the world [1].  It is 

one of the most common kinds of cancer, as well as the leading cause of mortality among 

women [1]. However, early detection and diagnosis of breast cancer increase the chances for 

successful treatment and complete recovery for the patient [2]. There are many imaging 

modalities for detecting breast cancer among them ultrasound, computed tomography (CT), 

mammogram, magnetic resonance imaging (MRI), thermography, nuclear medicine, and 

positron emission tomography (PET) [3], [4]. However, mammography is the primary 

recommended imaging modality for breast cancer screening [5]. This is because breast cancer 

has a known asymptomatic phase that can be detected with mammography [5]. Moreover, 

mammography is considered a useful early detection tool before the appearance of the physical 

symptoms [5]. However, even though a mammogram may show suspicious regions, it cannot 

prove that an abnormal area is cancerous. If a mammogram presents a suspicion of cancer, a 

biopsy should be performed [4]. The most important abnormalities that could be found on an 

image modality are masses and microcalcifications (MC) [6]. 

Manual readings of mammograms may result in misdiagnosis due to human errors caused 

by visual fatigue [7]. Consequently, in the last three decades, various computer-aided diagnosis 

(CADx/CAD) systems have been proposed for breast cancer diagnosis using computer vision 

and machine learning (ML) techniques [8]. CAD systems aim at giving a second objective 

opinion to help the radiologist for clarification and diagnosis [7]. Moreover, they are used as 

applications that differentiate between different types of tumours [9]. A lesion could be 

classified as either normal or abnormal [9]. Additionally, abnormal lesions could be benign or 

malignant [9]. The advances in breast cancer diagnosis and CAD systems have led to a (30% 

– 50%) fall in mortality in several countries [2].  

Over the years, artificial intelligence (AI) has been widely used in clinical cancer 

research due to its feasibility and advantages [10], [11]. The concept of AI emerged first in 

1956; however, the earliest work in medical AI dates to early 1970 [12]. The main aim of AI 

is to build machines that can think and reason over complex tasks just like human beings and 
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thereby sharing the same essential cognitive characteristics [13]. Meanwhile, the field of AI 

has made many developments as gradually AI implementation became real in scientific 

research laboratories [12], [13].  

The primary methodology behind the AI is machine learning (ML) [14] as shown in 

Figure 1.1. There are many categories of ML methods, such as unsupervised and supervised 

ML [12], [15]. The unsupervised ML discovers patterns from a dataset that has no labelled 

samples for training the model. Instead, they cluster the samples by either the similarity or 

distance between their features [12]. Conversely, for the supervised ML, the dataset contains 

labelled samples to train the model by minimising the prediction error of the training samples 

[12].  Most applications of ML rely on supervised ML, which is used extensively in medical 

applications due to its remarkable capability for extracting valuable information from medical 

datasets [16].  

On the other hand, deep learning (DL) is the fastest-growing field of ML [17], which has 

emerged as the state-of-the-art ML method in many applications [18] as shown in Figure 1.1. 

DL is a type of representation and learning method in which a complex multilayer neural 

network architecture is applied to learn the representations of data automatically by 

transforming the input information into multiple levels of abstractions [19]. The advantage of 

the DL is that it uses effective unsupervised or semi-supervised feature learning and layered 

feature extraction instead of hand-crafted feature extraction [20]. The major aim of feature 

learning is to seek for better representation of data and to produce a more effective model to 

learn these representations from large-scale dataset. The representation is similar to the 

development of the real neural networks, which is based on the understanding of how 

information is processed and transmitted in neural-alike systems [21].  

Generally, research on deep learning for medical images focuses mainly on four aspects: 

Structure detection, segmentation, labelling and captioning, and computer-aided detection or 

diagnosis [21], [22]. For pattern recognition tasks the deep convolutional neural networks 

(DCNN) are currently widely used for image analysis and data classification [21]. There are 

many DCNNs architectures proposed so far, where some of the state-of-the-art architectures 

are used in this thesis, including the AlexNet [23], GoogleNet [24], Inception-v3 [25], the 

ResNet [26], Inception ResNet-v2 [27], and MobileNet-v2 [28]. 
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Figure 1.1: A schematic diagram showing the difference between AI, ML, and DL.  Adapted from [14].   

Furthermore, the transfer learning technique [29] is introduced in this thesis. This is a 

technique performed on DCNN networks so that it could be used in any classification problem 

[30]. The DCNNs networks are designed to classify 1000 classes. However, in this thesis, it is 

required to classify two classes.  Therefore, this is accomplished by replacing the last fully 

connected layer in any network with a new layer for the classification of two classes [31]. 

1.2 Problem Statement, Aims, and Objectives 

1.2.1 Problem Statement 
Breast cancer is one of the most prevalent cancer types in the world. Both men and 

women have been diagnosed with this form of cancer, but the prevalence of women is far 

beyond reference [1]. Early diagnosis can prevent the disease from developing into becoming 

lethal [2]. In addition, it has been reported that mammography is classified as the most popular 

and easiest method of breast cancer detection in its early stages [32]. Currently the radiologists 

can predict breast cancer from mammography images with an accuracy over 90% [32]. 

Nevertheless, about 10% of breast cancer can be missed, and this can be further reduced by 

double-checking and reading of the mammography images [32].  

Double-checking requires the same mammogram to be analysed by two different 

radiologists at different times. Although it has been shown to increase the accuracy of correct 

detection by up to 15% in comparison with single checking, however, this is a time consuming 

and costly procedure. Therefore, CAD systems are desired to cut the cost for accurate 

Any technique 
that enables 
computers to 
mimic human 
intelligence  

ARTIFICIAL INTELLIGENCE 
 

MACHINE LEARNING (ML) 
A subset of AI, 
which use 
statistical methods 
to enable machines 
to improve with 
experience  

A subset of ML, 
which make the 
computation of 
multi-layer neural 
network feasible  

DEEP LEARNING (DL) 

1950’s 1980’s 2010’s 



4 
 

diagnosis. This diagnosis contains several methods and techniques, including dataset 

collections, data analysis, image processing, and ML/ DL based decision making [9]. 

To tackle these issues, one proposed solution is the use of computer vision and image 

processing for feature extraction, followed by ML and DL algorithms to assist in the diagnosis 

process. Therefore, in this thesis, several DL based frameworks have been developed.   

1.2.2 Thesis Aims 
The work presented in this thesis aims to develop computer method for automatic 

segmentation and classification of different breast cancer lesions, which can act as a second 

opinion for assisting the radiologists to classify the breast cancer in mammography images. We 

aim to provide more accurate and efficient analysis to improve the classification accuracy of 

the state-of-the-art methods.  

1.2.3 Thesis Objectives 
In this thesis, new diagnostic tools will be developed, for analysing breast cancer in 

mammography images. These techniques are presented in three proposed frameworks 

respectively to tackle three major tasks in mammography analysis, i.e. detection, segmentation, 

and classification of cancer lesions. The objectives of the work in this thesis are summarised 

as follows: 

1. To develop effective tools for diagnosing breast cancer lesions from mammography 

images. 

2. To classify breast lesions into normal or abnormal in addition to benign and malignant 

images. To carry out this, we developed various pattern recognition techniques by 

proposing diagnosis frameworks based on features and decision fusion.  

3. To further refine the classification accuracy of existing DL models and derive the best 

possible classifiers, using decision level fusion.   

4. To collect and publicly share a new high-resolution dataset of mammogram images from 

Egypt in high resolution — labelled by radiologists.   
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1.3 Contributions 
In this thesis, three novel DCNN based frameworks are developed and presented to 

differentiate between different types of breast cancer tumours in mammograms. The main 

contributions of this thesis are summarised as follows: 

1. In the first framework, two methodologies are used to segment the region of interest 

(ROI), i.e., the circular contours and adaptive thresholding. The mass ROIs of breast 

lesions are then classified using an end-to-end fine-tuned AlexNet architecture. 

Additionally, to improve the classification accuracy, the deep features are extracted and 

classified using the SVM classifier. Detail of the hybrid approach is presented in Chapter 

4.  

2. In the second framework, a fusion-based novel approach is presented to classify the 

mammogram lesions. First, features are extracted and classified using several fine-tuned 

DCNN architectures including the AlexNet, GoogleNet, ResNet-18, ResNet-50, and 

ResNet-101. These extracted deep features are applied separately to construct SVM 

classifiers with different kernels. Afterward, the extracted deep features are ranked to 

form four feature sets that include a different combination of deep features. Finally, the 

principal component analysis (PCA) technique is used to reduce the feature space and the 

computational cost of the four feature sets. This methodology is presented in Chapter 5. 

3. In the third framework, another new fusion technique is introduced for decision-level 

fusion rather than feature fusion. Based on the outcomes of the individual classifiers, a 

second stage classification is employed for improving the classification accuracy as 

detailed in Chapter 6. 

4. Since there are few publicly available high-resolution mammogram datasets in this area, 

therefore, a useful dataset is collected in this thesis. Mammogram scans annotated by 

expert radiologists were collected from the Armed Forces Hospital located in Alexandria, 

Egypt, namely “DAR-Breast” dataset. To the best of our knowledge, this is the first time 

mammogram breast cancer scans are acquired and analysed for the purpose of breast 

cancer diagnosis in Egypt. The results of the third framework presented in Chapter 6 is 

evaluated using “DAR-Breast” dataset.   
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1.4 Publications Arising from this Thesis 
The work presented in this thesis has generated the following research outputs: 

• D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using 

deep convolutional neural networks and support vector machines,” PeerJ, vol. 7, 

p. e6201, 2019 doi:10.7717/peerj.6201 [33].  

• D. A. Ragab, O. Attallah, M. Sharkas, J. Ren, and S. Marshall, “A Framework 

for Breast Cancer Classification using Multi-DCNNs,” Computers in Biology and 

Medicine, vol. 131, p. 104245, April 2021, 

https://doi.org/10.1016/j.compbiomed.2021.104245 [34].  

1.5 Thesis Structure  
This thesis is composed of seven chapters. Chapter 1 is the overall introduction of the 

thesis, which covers the motivation and summarised the contributions of the work as well as 

the research aims and objectives. In Chapter 2, an overview of breast cancer is provided along 

with different imaging modalities used in breast cancer screening. In the following Chapter 3, 

a description of the conventional CAD systems and the major components are presented, along 

with an introduction to the DCNN. In addition, a description of the available mammogram 

datasets is also introduced, followed by a comprehensive overview of the results derived on 

these datasets from the state-of-the-art ML and DCNNs based CAD systems. 

The three frameworks proposed in this thesis are detailed in Chapters 4-6, including the 

methodology, introduction, experimental setup, and the results. In Chapter 4, two 

methodologies are used to segment the ROI, i.e., the circular contours and adaptive 

thresholding. The mass ROIs of breast lesions are then classified using an end-to-end fine-

tuned AlexNet architecture. Then, the deep features are extracted and classified using the SVM 

classifier to improve the classification accuracy. In Chapter 5, a fusion-based novel approach 

is presented. This is performed by extracting, fusing, and classifying the deep features using 

SVM classifiers with different kernels. Then the PCA technique is applied to reduce the feature 

space and the computational cost. In Chapter 6, another new fusion technique is introduced for 

decision-level fusion rather than feature fusion. Finally, in Chapter 7, the thesis is concluded 

with summarised contributions and directions for future investigation.  
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Chapter 2 

Introduction to Breast Cancer 

2.1 Introduction 
For years, cancer has been one of the biggest threats to human life [1]; it is expected to 

become the leading cause of death over the next few decades. Based on statistics from the 

World Health Organization (WHO), deaths caused by cancer are expected to increase in the 

future [35]. Figure 2.1 shows the estimated number of incident cancer cases located in women 

of all ages until the year 2020 [36]. According to Figure 2.1 and as reported from WHO it was 

clear that breast cancer ranked in the first place with respect to other organs for women [36].  

In the following sections, a brief overview of the incidence of breast cancer worldwide 

and especially in Egypt. In addition, breast anatomy is presented, and then breast cancer is 

explained, including how the cancer is produced, the types of breast cancer and tumours, stages 

of cancer, and the types of abnormalities. Furthermore, radiology-screening methods are 

discussed.   

 
Figure 2.1:  The estimated number of cancer incidence locations in females worldwide*. Adopted from  [36].  
* The figure is online at https://gco.iarc.fr/today/online-analysis-multi-bars 

https://gco.iarc.fr/today/online-analysis-multi-bars
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2.2 Breast Cancer Incidence  
Breast cancer is one of the most common kinds of cancer, as well as the leading cause of 

mortality among women, especially in developed and underdeveloped countries. Moreover, it 

is the second most common cancer in the world and by far the most frequent cancer among 

women [37] as discussed in the following sub-sections. 

2.2.1 Breast Cancer Worldwide 
Incidence rates vary nearly fourfold across the world regions, with rates ranging from 27 

per 100,000 in Middle Africa and Eastern Asia to 96 in Western Europe [2]. In the USA about 

19% of breast cancers are diagnosed in women ages 30 – 49 years, and 44% occur among 

women who are age 65 years or older [2]. In Japan, breast cancer in women aged younger than 

35 years old comprises approximately 3% of Japanese breast cancer patients. In most African 

countries, breast cancer among young women comprises a high proportion of cases than among 

older women [2]. This is a demography-driven phenomenon rather than a true intrinsic 

biological significance because the African population has a low median age; generally 20 

years and below [2].  

Nevertheless, in North Africa, the incidence among women aged 15 – 49 is lower than 

in Western countries, but the very low incidence among women aged more than 50, combined 

with the young age pyramid of North-Africa, makes the relative proportions of young patients 

substantially higher (50 – 60% versus 20% in France) [2]. Such epidemiological features result 

mainly from peculiar risk factor profiles, which are typical of many developing countries and 

include notably rapid changes in reproductive behaviours [1]. In Arab women, the average age 

at presentation of breast cancer is a decade earlier than in the US and European women’. The 

median age at diagnosis in Arab populations is about 48 years, and about two-thirds of women 

with breast cancer are younger than 50 years [37]. Figure 2.2 shows the incidence versus the 

mortality of breast cancer among women of all ages for the six continents worldwide [36].   

2.2.2 Breast Cancer in Egypt 
Cancer is an increasing problem in Egypt. The commonest sites were liver (23.8 %), 

breast (15.4 %), and bladder (6.9 %) for both sexes, liver (33.6 %) and bladder (10.7 %) among 

men, and breast (32.0 %) and liver (13.5 %) among women [38]. The percentage of the most 

frequent types of cancer for women that occur in Egypt as reported from the National Cancer 

Registry Program (NCRP) is displayed in Table 2.1. 
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Figure 2.2: Incidence vs. Mortality for breast cancer worldwide*. Adopted from [36].   

* The figure is online at https://gco.iarc.fr/today/online-analysis-scatter-plot 

https://gco.iarc.fr/today/online-analysis-scatter-plot
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Table 2.1: The most frequent cancer sites for women in Egypt based on the results of the NCRP. Adapted from 
[39]. 

Cancer Site Percentage (%) Age Standardized Incidence Rate (ASR) 

Breast 35.1 48.8 
Liver 13.54 24.4 
Brain 5.17 8.0 
Ovary 4.12 6.3 

Thyroid 3.28 4.3 

As it is obvious from Table 2.1, the highest percentage of cancer in women is breast 

cancer. It is rated the highest cancers, among other sites accounting 35.1% [39]. Egypt is 

expected to experience the highest increase in the coming two decades [38]. Moreover, 

according to the study in [39], the authors estimated that the number of breast cancer cases in 

Egypt will increase gradually until the year 2050.  

2.3 Breast Cancer 

2.3.1 Breast Anatomy 
The breast is composed of different tissue, ranging from very fatty tissue to very dense 

tissue. It is mainly composed of three types of tissues, breast fat (or adipose tissue), glandular 

tissue, and connective tissue [40]. The proportions of these main types of tissue may vary from 

one woman to another. Within this tissue is a network of lobes. Each lobe is composed of tiny 

tube-like structures called lobules containing milk glands. Tiny ducts connect the glands, 

lobules, and lobes, carrying milk from the lobes to the nipple [40]. The nipple is located in the 

middle of the areola, which is the darker area that surrounds the nipple. Blood and lymph 

vessels also run throughout the breast. Blood nourishes the cells, while the lymph system drains 

bodily waste products [40]. The lymph vessels connect to lymph nodes, the tiny, bean-shaped 

organs that help fight infection [40]. The amount of water, fat, and fibro-glandular tissue may 

also vary due to normal hormonal changes in different stages [41]. Breast anatomy is shown in 

Figure 2.3. 
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Figure 2.3: A labelled breast anatomy. Adopted from [42]. 

2.3.2 Types of Breast Cancer  
Cancer is characterized by abnormal cells that grow and invade healthy cells in the 

body.  Breast cancer starts in the cells of the breast as a group of cancer cells that can then 

invade surrounding tissues or spread to other areas of the body [43]. Figure 2.4 shows the steps 

of cancer cell reproduction. Cancer begins in the cells, which are the basic building blocks that 

form the tissue.  Sometimes, the process of cell growth goes wrong and new cells form; when 

this occurs; a build-up of cells often forms a mass of tissue called a lump or tumour [43]. 

Breast cancer occurs when malignant tumours develop in the breast.  These cells can 

spread by breaking away from the original tumour and entering blood vessels or lymph vessels, 

which branch into tissues throughout the body. When cancer cells travel to other parts of the 

body and begin damaging other tissues and organs, the process is called metastasis [43].  

 
Figure 2.4: The steps of cancer cell reproduction. Adopted from [43].  



12 
 

 
Figure 2.5: The most common types of breast cancer. Adopted from [41]. 

A cancer that occurs in the breast can be one of two most common types: in situ (or non-

invasive) and invasive. In situ cancers are those in which cancer cells remain within the 

basement membrane of the lobules and the draining lactiferous duct. Therefore, the ductal 

carcinoma in situ (DCIS) is a type of cancer in which cancerous cells are inside some of the 

ducts, but have not spread to other regions of the breast or body [44], [45]. However, the lobular 

carcinoma in situ (LCIS) is not a type of cancer, but in the presence of this disease, there are 

high chances of developing cancer [46]. LCIS is characterized by changes in the cells within 

the breast lobes as shown in Figure 2.5.  

On the other hand, invasive cancers are those, in which the cancer cells spread outside 

the basement membrane of the ducts and lobules into the surrounding adjacent normal tissue 

[41]. Thus, invasive ductal carcinoma (IDC) is the most common type of breast cancer; it 

represents about 70% to 80% of breast cancer cases and it occurs in the cells that line the ducts 

of the breast [47]. In addition, invasive lobular carcinoma (ILC) [48] represents about 10% of 

breast cancer cases and occurs in the cells that line the lobules of the breast as shown in Figure 

2.5. Furthermore, another type of invasive breast cancer, which is inflammatory breast cancer. 

It is considered an uncommon type of breast cancer, and it accounts for about 1% to 5% of all 

breast cancers [49]. 
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Figure 2.6: Samples for benign breast cancer tumours. Adopted from [50].   

 
Figure 2.7: Samples for malignant breast cancer tumours. Adopted from [50]. 

2.3.3 Types of Tumours  
A tumour is a mass of abnormal tissue, it is either benign or malignant [43]. 

1) Benign Tumours  

The cells from benign tumours do not spread to other parts of the body. These cells are 

not life-threatening [43]. When a tumour is diagnosed as benign, doctors will usually leave it 

alone rather than remove it. Even though these tumours are not generally aggressive towards 

surrounding tissue, occasionally they may continue to grow, pressing on organs and causing 

pain or other problems. In these situations, the tumour is removed, allowing pain or 

complications to subside [43]. Samples of benign tumours are shown in Figure 2.6.  

2) Malignant Tumours 

They are cancerous and aggressive because they invade and damage the surrounding 

tissues and organs [43]. They can spread to other parts of the body. When a tumour is suspected 

to be malignant, the doctor will perform a biopsy to determine the severity or aggressiveness 

of the tumour [43]. Samples of malignant tumours are shown in Figure 2.7.  

2.3.4 Stages of Breast Cancer  
Breast cancer has been divided into five stages according to the size and location of the 

tumour as demonstrated in Table 2.2 [51]–[53]. 
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Table 2.2: The stages of breast cancer. Adapted from [51]. 

Stages Size of Tumour Location 
Zero - Cells have not spread outside the ducts or lobules 
One < 2 cm in diameter Did not spread to the lymph nodes or outside the breast 

Two 5 cm Has not spread to the lymph nodes 
2 cm Spread to the lymph nodes 

Three > 5 cm Spread to lymph nodes or other tissue near the breast 

Four - Cancer has spread to other organs or tissues, such as liver, lungs, 
brain, or the skeletal system 

Table 2.3: BI-RADS scores description. Adapted from [54].  

BI-RADS Scores Description 
0 Needs additional imaging evaluation 
1 Negative – No abnormalities 
2 Benign finding(s) 
3 Benign finding(s) – Short-interval follow-up is suggested. 
4 Suspicious anomaly  – Biopsy should be considered 
5 Highly suggestive of malignancy – Appropriate action should be taken 
6 Biopsy proven malignancy 

2.4 Breast Cancer Abnormalities   
When radiologists interpret mammograms, they look for specific abnormalities. The 

most common findings seen on mammography are masses, calcifications, architectural 

distortion of breast tissue, and asymmetries [55]. Furthermore, they assign a score to the 

abnormalities, which is used to communicate with doctors about how they are concerned about 

the findings. To standardize the terminology of the mammography report, the assessment of 

findings, and the recommendation of action to be taken, the American College of Radiology 

(ACR) has developed the Breast Imaging Reporting and Data System (BI-RADS) score [56]. 

The BI-RADS score ranges from ‘0’ to ‘6’ based on the level of suspicion [54]. The scores of 

BI-RADS are tabulated in Table 2.3. 

The masses and calcifications are considered an important early signs of the disease, 

although the other signs are less important, as the architectural distortions and asymmetries are 

similar in appearance to mass, and can often be confused by the radiologists to be masses [55]. 

Therefore, in the following sub-sections, the masses and calcifications will be discussed. 

2.4.1 Mass  
A mass is defined as a space-occupying lesion seen in more than one projection. It is 

usually characterized by its shape and margin [57]. Masses are quite subtle and often occurring 

in the dense areas of the breast tissue. They have smoother boundaries than calcifications, 

various shapes such as round, oval, and lobular. Moreover, they have different margins such as 
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circumscribed, speculated, and ill-defined [6]. A mass with a regular shape and well-

circumscribed boundary has a higher probability of being benign; on the other hand, a 

malignant mass usually has an irregular shape and a speculated, rough, and blurry boundary 

[57]. Figure 2.8 shows a malignant mass sample extracted from the DAR-Breast dataset.  

2.4.2 Calcifications  

Oppositely, calcifications are tiny calcium deposits that have accumulated in the breast 

tissue. They appear as small white spots with a diameter of less than 0.5 mm. Calcifications are 

often difficult to detect since they are very small, have an inhomogeneous background, and 

have low contrast with the background [58]. Benign calcifications are usually larger and coarser 

with round and smooth contours. However, malignant calcifications tend to be numerous, 

clustered, small, varying in size and shape, angular, irregularly shaped, and branching in 

orientation [6]. Figure 2.9 shows an example of a malignant calcifications sample extracted 

from DAR-Breast dataset. There are two types of calcifications, microcalcifications (MC) they 

can be benign or malignant. However, macrocalcifications are often benign.  

 
Figure 2.8: A malignant mass sample contoured with a circle extracted from the DAR-Breast dataset.  

 
Figure 2.9: A clustered malignant calcification sample contoured with a circle extracted from the DAR-Breast 
dataset. 
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2.5 Breast Cancer Screening Methods  
There are various types of screening devices for breast cancer, such as breast self-

examination, breast ultrasound, computed tomography (CT), mammogram, magnetic 

resonance imaging (MRI), thermography, positron emission tomography (PET), and nuclear 

medicine imaging [3], [4].  

2.5.1 Breast Self-Examination 
Breast self-examination is a screening method used in an attempt to detect early breast 

cancer. The method involves the woman herself looking at and feeling each breast for possible 

lumps, distortions, or swelling [59]. Adult women of all ages are encouraged to perform breast 

self-exams at least once a month. The test could be performed in the shower, in front of a 

mirror, or lying down [60].  

Steps for Breast Self-Examination: 

The breast self-examination consists of five steps as summarised in Figure 2.10 [59]; 

1) Look at your breasts in the mirror with your shoulders straight and your arms on your 

hips. You have to check that breasts are in their usual size, shape, and colour, and they 

are evenly shaped without visible distortion or swelling.  

2) Raise your arms over your head and look for the same changes. 

3) With your arms still over your head, look for any signs of fluid coming out of any of 

both nipples. 

4) Feel your breasts while lying down, using your right hand to feel your left breast and 

vice versa. Use a firm, smooth touch with the first few finger pads of your hand to 

complete an outer circle. Then move in 1 inch towards the nipple and complete another 

circle, and keep repeating until you reach the nipple. Follow a pattern to be sure that 

you cover the whole breast. You are looking for a lump.  

5) Feel your breasts in the shower, as it is easier when the skin is wet and slippery. Then 

cover the same hand moments described in step 4.  

 
Figure 2.10: The steps of breast self-examination. Adopted from [59]. 

1 2,3 4 5 
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Figure 2.11: An ultrasound image of a breast mass. Adopted from [61].   

2.5.2 Breast Ultrasound   
Breast ultrasound uses sound waves to make a computer picture of the inside of the 

breast [49]. Ultrasound is useful for looking at some breast changes, such as lumps or changes 

in women with dense breast tissue [49]. It can differentiate between fluid-filled cysts which are 

very unlikely to be cancer and solid masses which might need further testing to be sure they 

are not cancer [49]. Additionally, ultrasound can be used as a helpful guide for the 

biopsy needle into an area so that cells can be taken out and tested for cancer [49]. Figure 2.11 

shows an ultrasound image of a breast mass. 

During screening breast ultrasound, a gel is applied to the skin of the breast, and a wand-

like instrument called a transducer is moved over the skin [49]. The transducer sends out sound 

waves and picks up the echoes as they bounce off body tissues. The echoes are made into a 

picture on a computer screen [49]. The patient might feel some pressure as the transducer is 

moved across the breast, but it should not be painful [49]. Ultrasound has some advantages 

such as it is widely available, easy to have, and does not expose a person to radiation. It also 

costs less than a lot of other options [49]. 

2.5.3 Mammography  
Mammography is one of the most reliable methods for early detection of breast 

carcinomas [62]. However, it is difficult for radiologists to provide both accurate and uniform 

evaluation for the enormous number of mammograms generated in widespread screening [62]. 

Mammography is a specific type of imaging that uses a low-dose X-ray system to examine the 

breast [5]. A labelled mammogram image is shown in Figure 2.12. During the test, each breast 

is positioned carefully on a special film cassette and then gently compressed with a paddle. 

This compression flattens the breast so that the maximum amount of tissue can be imaged [5]. 

Special energy and wavelength of the x-rays allow them to pass through the compressed breast 

https://www.cancer.org/cancer/breast-cancer/non-cancerous-breast-conditions/fibrosis-and-simple-cysts-in-the-breast.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/breast-biopsy.html
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and create the image of the internal structures of the breast onto a film cassette positioned under 

the breast [62]. Differences in absorption and the corresponding varying exposure level of the 

film create the images, which can clearly show normal structures such as fat, fibro-glandular 

tissue, breast ducts, and nipples [62]. Furthermore, abnormalities such as masses and 

calcifications are also visible. The abnormalities appear as levels of white on a mammogram, 

however, fat and everything else such as glands and connective tissue appears as black regions 

[62].  

There are two types of mammography, film mammography and digital mammography. 

In film mammography, the image is created directly on film, whereas digital mammography 

takes an electronic image of the breast and stores it directly on a computer [57]. Nowadays, in 

most Hospitals, film mammography is replaced with digital mammography since it has many 

potential advantages over film mammography [57]. In digital mammography, each breast is 

imaged separately in two views [6]: The craniocaudal (CC) view and the mediolateral-oblique 

(MLO) view as shown in Figure 2.13.  

The main advantage of using mammogram screening that mammograms use low doses 

of radiation (x-rays) to produce a 1-D image of the breast and the calcium deposits are 

accurately visualised [63]. On the other hand, mammograms have some limitations such as it 

uses ionizing radiation, patients can feel discomfort because of breast compression, the breast 

must be repositioned for different views, and imaging dense breast tissue is difficult [63]. 
 

 
Figure 2.12: A labelled mammogram image.   

Pectoral Muscle 

Mammogram Background  

Breast Composition  
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                                                            (a)                                                     (b) 

Figure 2.13: Two views of a mammogram image (a) CC view and (b) MLO view for the right breast extracted 
from the DAR-Breast dataset.  

2.5.4 Magnetic Resonance Imaging  
Magnetic resonance imaging (MRI) as shown in Figure 2.14 is the most attractive 

alternative to a mammogram [64]. MRI is sensitive for detecting some cancers, which could 

be missed by mammography [64]. In addition, MRI can help radiologists to determine how to 

treat breast cancer by identifying the stage of the disease. It is highly effective to image breasts 

after breast surgery or radiation therapy. To be effective; contrast-enhanced breast MRI is 

carried out by injecting the patient’s body with a paramagnetic contrast agent [64]. This method 

is based on the hypothesis that after the injection of the agent, abnormalities enhance more than 

normal tissues due to their increased vascularity, vascular permeability, and interstitial spaces 

[64]. MRI forms a 3-D uncompressed image. Moreover, it can perform with all women, 

including those who are not suitable for mammography, such as young women with dense 

breasts and women with silicone-filled breast implants [64]. Since it uses magnetic fields, MRI 

has no harmful effects on human bodies; however, MRI takes a long time to perform and has 

a high cost, which is more than ten times greater than mammography [64]. The advantages of 

the MRI are; it is more sensitive than mammography and it uses magnets that emit radio waves 

to produce a 3-D view of the breast and the underlying structures and vessels [65]. Moreover, 

it has no ionizing radiation, thus no harmful effects. The images generated by MRI are 

remarkably complete, detailed, and precise than other cardiac imaging tests [65]. Furthermore, 

MRI may be able to visualise dense breast tissues compared with mammography [65]. On the 

other hand, the disadvantages of MRI scans are; it cannot visualise calcifications that typically 

surround DCIS lesions, and a patient could develop an allergic reaction to the contrasting agent, 

or that a skin infection could develop at the site of injection [65]. 
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Figure 2.14: An example of a breast MRI scan. Adopted from [52].  

2.5.5  Thermography  
Thermography is a biological or functional exam, which is considered a high technology 

tool that specifically measures inflammation in the body [66].  This test is particularly good for 

assessing active areas of cancer cell formation. It is more effective and is significantly less 

invasive than mammography [66]. Thermography is a scanning device that measures the 

body’s surface temperature and presents the information as a digitized image. This tool makes 

a digital map of the body and illustrates heat patterns very accurately [66].  These patterns may 

detect some abnormal condition such as cancer cell growth or active infection. Thermal images 

are usually captured from shoulder to waist [67], [68]. Figure 2.15 shows a sample of a breast 

thermogram scan. Thermography does not use ionizing radiation, venipuncture, or other 

invasive procedures. Besides that, it is a quick, painless, economic, risk-free, and patient-

friendly imaging method [68]. Therefore, it is suitable for all breast sizes and densities, 

pregnant or nursing women, implanted breast, and even post-operative patients. Thermography 

detects physiological changes by measuring the infrared radiation emitted by the body [68].  

 
Figure 2.15: An example of a thermogram scan. Adopted from [69]. 
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2.5.6 Positron Emission Tomography  
Positron Emission Tomography (PET) is nuclear medicine and a functional 

imaging technique that is used to observe metabolic processes in the body. It scans all the body 

from the forehead to the middle of the thighs [70]. The system detects pairs of gamma 

rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into 

the body on a biologically active molecule [70]. Three-dimensional images of tracer 

concentration within the body are then constructed by computer analysis. In modern PET-

CT scanners, three-dimensional imaging are often accomplished with the aid of a CT X-ray 

scan performed on the patient during the same session, in the same machine [70]. PET scanning 

is a molecular imaging procedure that allows physicians to obtain three-dimensional images of 

what is happening in a patient’s body at the molecular and cellular level. For a PET scan, a 

patient is injected with a very small amount of a radiotracer such as fluorodeoxyglucose, which 

contains both a sugar and a radioactive element [70]. The radiotracer travels through the body 

and is absorbed by tumours or cancer cells. The patient then lies down on an examining table 

and is moved to the centre of a PET/CT scanner [70]. The PET/CT scanner contains a PET 

scanner and a CT scanner next to each other. The CT scan and the PET scan are obtained one 

after the other. The PET scanner is composed of an array of detectors that receive signals 

emitted by the radiotracer [70]. Using these signals, the PET scanner detects the amount of 

metabolic activity while a computer reassembles the signals into images [71]. Figure 2.16 

shows a breast PET scan image.  

The pros of PET scan are the ability to study body function through biochemical 

functions that can detect the disease, making it more effective in diagnosing than other imaging 

tests [72]. By studying the metabolic functions in patients, PET imaging can be used as an 

alternative to biopsy and other exploratory surgeries to determine how much the disease has 

spread [72]. It can distinguish between benign and malignant tumours, which gives it a benefit 

to be a more accurate medical tool that can reduce the number of unnecessary surgeries 

performed due to incorrect diagnosis and staging data [72]. Conversely, PET scan risks are 

caused by the radioactive component used during this procedure. Although the radioactive 

compounds used in PET imaging are short-lived, it may not be suitable for patients who are 

pregnant, suspect that they are pregnant, or are breastfeeding [72]. PET scans require 

cyclotrons, an expensive machine that creates the radioisotopes that are used in the radioactive 

tracers required for PET imaging. PET scans are not offered in the majority of medical centres 

in the world, consequently, it is a difficult treatment to receive [72], [73]. Figure 2.17 and 

https://en.wikipedia.org/wiki/Gamma_ray
https://en.wikipedia.org/wiki/Gamma_ray
https://en.wikipedia.org/wiki/Positron
https://en.wikipedia.org/wiki/Radioactive_tracer
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Figure 2.18 shows the PET scan device and the radioactive isotope machine, respectively. 

These were obtained from the West of Scotland PET Centre at Gartnavel General Hospital 

during my visit to the Hospital. 

 
Figure 2.16: A PET scan image for breast. Adopted from [70]. 

 
Figure 2.17: A PET scan device captured from the West of Scotland PET Centre at Gartnavel General Hospital. 

 

Figure 2.18: The Radioactive isotope machine captured from the West of Scotland PET Centre at Gartnavel 
General Hospital.  
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Figure 2.19: A nuclear medicine breast imaging sample. Adopted from [74].   

2.5.7 Nuclear Medicine Imaging 
Nuclear medicine imaging, which is called radionuclide scanning, is considered an 

effective diagnostic tool. This is because it shows not only the anatomy of an organ or body 

part, but the function of the organ as well [74]. Therefore, nuclear medicine can be valuable in 

the early diagnosis, treatment, and prevention of numerous medical conditions and continues 

to grow as a powerful medical tool [74]. On the other hand, nuclear medicine breast imaging 

is a supplemental breast exam that may be used in some patients to investigate a breast 

abnormality. A nuclear medicine test could not be considered as a primary investigative tool 

for breast cancer. However, it is used to investigate a breast abnormality after a mammography 

diagnosis [74]. Moreover, it helps radiologists to decide whether a breast abnormality requires 

biopsy or not. Nuclear medicine breast imaging is considered a non-invasive test. It involves 

injecting a radioactive tracer into the patient. Since the dye accumulates differently in 

cancerous and non-cancerous tissues [74], [75]. After injection, the radiotracer eventually 

accumulates in the breast, where it gives off energy in the form of gamma rays. A device 

called a gamma camera detects this energy [75]. The camera and a computer measure the 

amount of radiotracer absorbed by the body and produce pictures that detail organ, tissue 

structure, and function. Figure 2.19 shows a nuclear medicine breast-imaging sample.  

https://www.radiologyinfo.org/en/glossary/glossary.cfm?gid=479
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Figure 2.20: The international symbol of breast cancer awareness. Adopted from [76]. 

2.6 Breast Cancer Awareness  

2.6.1 Breast Cancer Symbol 
The pink symbol of breast cancer shown in Figure 2.20, implemented in the early 1990s, 

represents the international symbol of breast cancer awareness [76]. In addition, it is used by 

various breast cancer organizations to promote breast cancer awareness and to support 

fundraising campaigns [76]. The first breast cancer awareness foundation was founded in 1982 

in memory of Susan Komen, who died from the disease at age 36 in 1980 [76]. 

2.6.2 Early Detection of Breast Cancer 
At present, there are no effective ways to prevent breast cancer, because its cause remains 

unknown. However, efficient diagnosis in its early stages can give a woman a better chance of 

full recovery. Therefore, early detection of breast cancer can play an important role in reducing 

the associated morbidity and mortality rates [57].  

Manual readings of mammograms may result in misdiagnosis due to human errors caused 

by visual fatigue. Computer-aided diagnosis systems (CAD) serve as a second opinion for 

radiologists. CAD systems in the field of digital mammography are divided into two main 

categories; computer-aided detection systems (CADe) and computer-aided diagnosis systems 

(CADx/CAD) [77]. The CADe systems are capable of pinpointing suspicion regions for further 

analysis from an expert radiologist. However, the CAD systems are capable of making a 
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decision, whether the examined suspicion regions consist of abnormal or healthy tissue and 

distinguishing between benign and malignant lesions [78].  

2.7 Summary 
This chapter demonstrates a structured introduction to breast cancer. Firstly, the 

incidence of breast cancer worldwide, and especially in Egypt, is discussed. After a peer review 

it shows that breast cancer has a priority position among cancers for women. Secondly, the 

anatomy of the breast is illustrated, by highlighting the important parts of the breast. Then, a 

quick introduction about the different types and stages of breast cancers is given, as well as 

various types of tumours. Afterward, the mass and calcifications are presented, which are 

actually the most important abnormalities that occur in the breast. Due to the fact that a breast 

tumour examination can help to detect the tumours in the early stages, screening devices for 

breast cancer are introduced.  To conclude, the medical imaging examination in digital 

mammography are found to be the most effective way of breast cancer detection. This is 

because breast cancer has a known asymptomatic phase that can be detected with the 

mammography. The CAD system played an important role in medical image classification, 

especially in classifying breast cancer, so the CAD system will be discussed in detail in Chapter 

3.  
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Chapter 3  

Computer-Aided Diagnosis: Datasets and State-of-the-Art 

3.1 Introduction 
Computer-aided diagnosis, known as CADx or CAD  [79], is a fundamental tool for 

assisting radiologists in the image interpretation task. Since the 1980s, its popularity has grown, 

and it has become an important area of research. The first attempts to analyse radiographic 

abnormalities using computers took place in the mid of 1950s [79]. However, in the 1960s and 

1970s, the first automatic detection and classification of lesions in breast images were 

investigated [79]. The creation of medical image databases with annotations, which are in some 

cases freely available for the scientific community, enables the training and testing processes, 

and the assessment of CAD scheme’s performance as well [7]. A CAD system aims to 

determine the abnormalities in the breast with great accuracy and reliability. It plays as a second 

opinion to radiologists, which means that the radiologists can use the results of CAD in making 

a decision [80]. However, the radiologists must determine the final diagnostic decisions for 

patient treatment [80].  

In this chapter, a discussion on the available mammogram datasets is provided, and then 

the steps of forming the CAD system are presented. Finally, this chapter provides the reader 

with a comprehensive survey of published works related to CAD systems for breast cancer 

classification. It is divided into two sections: CAD systems using ML and DL techniques.  

3.2 Mammogram Breast Cancer Datasets 
The relevant datasets that are used in most of the state-of-the-art studies are seven 

datasets, which are the Mammographic Image Analysis Society Digital Mammogram dataset 

(MIAS) [81], the Digital Database for Screening Mammography (DDSM) [82], the OPTIMAM 

database (OMI-DB) [83],  the INbreast dataset [84], the Breast Cancer Digital Repository Film 

Mammography dataset (BCDR) [85], the Curated Breast Imaging subset of DDSM (CBIS-

DDSM) [86], and the Digital Mammography Dream Challenge dataset [87]. These datasets 

will be discussed in the following sub-sections.  

http://commercial.cancerresearchuk.org/optimam-mammography-image-database-and-viewing-software
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3.2.1 The MIAS Dataset 
The MIAS dataset was created by an UK research organisation, namely the 

Mammographic Image Analysis Society (MIAS) [81]. The films have been digitised to a 50-

micron pixel edge. All images are freely available online with a size of 1024 × 1024 [88]. 

Mammogram images are available through the pilot European image processing archive 

(PEIPA) at the University of Essex. The MIAS dataset contains 322 marked breast images in 

the portable grey map (PGM) format of 161 women in MLO view only [81]. A ground truth 

(GT) was prepared by experienced radiologists and confirmed using a biopsy test. The GT of 

the MIAS mammograms shows the location of the abnormality, the radius of the circle which 

contains the abnormal region, the characteristics of the background tissues, the breast density 

of each image such as fatty, glandular, or dense, and the severity of each abnormality either 

normal, benign or malignant  [81]. A sample extracted from the MIAS dataset is shown in 

Figure 3.1.  

3.2.2 The DDSM Dataset 
The Digital Database for Screening Mammography (DDSM) dataset is a well-known 

dataset released in the year 2001 [82], which is considered as one of the few publicly available 

online dataset [89] that is used for breast cancer detection and classification [82]. The DDSM 

is a collaborative effort involving the Massachusetts General Hospital, the University of South 

Florida, and the Sandia National Laboratories. Additionally, this dataset is collected from many 

sources: Wake Forest University’s School of Medicine, Sacred Heart Hospital, Massachusetts 

General Hospital, and Washington University of St Louis (School of Medicine) [82]. It consists 

of 2620 scanned film mammography cases available in 43 volumes representing real breast 

data. The resolution of the mammogram is 50µm/pixel and the grey level depths are 12 bits 

and 16 bits. The volumes could be normal, benign, or malignant samples [82]. Each case 

involves four breast images, two of them are MLO views and the others are CC views of each 

breast. The images are in Joint Photographic Experts Group (JPEG) format. Benign and 

malignant masses in all mammograms are labelled and annotated by expert radiologists [82]. 

A benign and malignant mass tumour extracted from the DDSM dataset are shown in Figure 

3.2.  
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                                                          (a)                                                                     (b) 
Figure 3.1: Samples extracted from the MIAS dataset (a) normal and (b) spiculated mass samples [81].   

 

                                                                     (a)                                 (b) 
Figure 3.2: A benign (left) and a malignant (right) mass tumour extracted from the DDSM dataset [82]. 

3.2.3 The OPTIMAM Database (OMI-DB) 
The OMI-DB [83] is an extensive mammography image database of over 145,000 cases 

in over 2.4 million images, though not freely available. It is comprised of unprocessed and 

processed full-field digital mammogram (FFDM) from the National Breast Screening System 

(NBSS) in the UK, which also contains manually GT determined by domain experts and 

associated clinical data linked to the images [83]. The OMI-DB is composed of three sets of 

images, i.e., normal, benign, and malignant images, which have been selectively collected from 

three sites during the years of 2010 – 2019 [83].  

http://commercial.cancerresearchuk.org/optimam-mammography-image-database-and-viewing-software
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3.2.4 The INbreast Dataset 
The INbreast dataset was obtained from the S. João Hospital Centre in Porto [84] under 

the permission of both the Hospital’s Ethics Committee and the National Committee of Data 

Protection [84]. The images were acquired between April 2008 and July 2010, and the 

acquisition equipment was the Mammo Novation Siemens FFDM, with a solid-state detector 

of amorphous selenium, a pixel size of 70 mm (microns), and 14-bit contrast resolution [84]. 

The INbreast dataset consists of 115 cases, of which 90 have two images (MLO and CC) of 

each breast and the remaining 25 cases are from 141 women who had a mastectomy, and two 

views of only one breast were included [84]. Therefore, in total there are 410 images available 

in the digital imaging and communication in medicine (DICOM) format. The sizes of the 

images are 3328 × 4084 or 2560 × 3328 pixels depending on the compression plates used in 

the acquisition process. All lesions including masses were assigned to a standardised Breast 

Imaging-Reporting and Data System (BI-RADS) category [90] by a radiologist after 

interpreting the corresponding mammogram. While the INbreast dataset should be obtainable 

via a request from, over the duration of this research projecting access has proven unsuccessful 

over a prolonged period. This dataset therefore appears to be hard to obtain at best [91]. 

3.2.5 The BCDR Dataset 
The Breast Cancer Digital Repository Film mammography dataset # 3 (BCDR-F03) [85] 

dataset is extracted from the Breast Cancer Digital Repository, which is considered as a new 

dataset of film mammography. It is composed of 736 biopsy-proven lesions of 344 patients 

collected between March 2009 and March 2013. Each case includes clinical data for each 

patient, and both CC and MLO view mammograms, are available with the coordinates of the 

lesion’s contours. BCDR-F03 is a binary class dataset composed of benign and malignant cases 

[85].  

3.2.6 The CBIS-DDSM Dataset 
The Curated Breast Imaging subset of the DDSM (CBIS-DDSM) is an updated and 

standardised version of the DDSM dataset released in the year 2017 by Lee et al. [86]. It is a 

free online dataset available in [92]. The CBIS-DDSM contains 6775 studies with 10,239 

images in the standard DICOM format, which includes the original and segmented ROI images. 

The dataset contains 753 microcalcification and 891 mass cases in 1546 and 1318 images, 

respectively, for both MLO and CC views of the screened breasts [86]. Figure 3.3 shows 

samples of a benign and malignant mass.  
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Figure 3.3:  A benign (left) and a malignant (right) mass tumour extracted from the CBIS-DDSM dataset [86]. 

3.2.7 The Digital Mammography Dream Challenge Dataset 
The Digital Mammography Dream Challenge [87] is a new dataset. The crowdsourcing 

coding competition offers a large monetary prize for the best algorithm in accurately predicting 

breast cancer on screening mammography [87]. This dataset consists of 34 and 466 abnormal 

and normal samples, respectively [93].  

3.2.8 Comparative Investigation of the existing Datasets 
In this work, the MIAS, DDSM, and CBIS-DDSM datasets are analysed due to their wide 

use. Furthermore, these datasets are used in order to compare our new proposed method with 

related studies on the same datasets. Since the OMI-DB, INbreast, and BCDR-F03 datasets are 

hard to access as they are subject to potentially protracted approval processes, they have been 

omitted from the comparison for fairness of access. On the other hand, the Digital 

Mammography Dream Challenge dataset is not normalised hence, it was not used in this work.  

The summary of the mammography datasets used in this thesis is shown in Table 3.1. 

Table 3.1: The summary of the mammography datasets used in this thesis.  

Dataset Number of cases Number of images Available classes Image format 

MIAS - 322 
Normal, Benign, and 

Malignant 

PGM 
DDSM 2620 10480 JPEG 
CBIS-DDSM 1644 3586 DICOM 
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3.3 Computer-Aided Diagnosis System 
In the last two decades, the enormous growth in computer-aided diagnosis (CAD) 

research has occurred to support radiologists for the early detection of masses in mammograms 

[79]. However, these systems have limited effectiveness in terms of accuracy and are disposed 

to reduce the number of False Positives (FP) and False Negatives (FN) [94], [95]. CAD systems 

have been an essential part of screening mammograms, despite their effectiveness in the current 

form [96]. 

A breast cancer CAD system usually consists of five stages; (1) image pre-processing, 

(2) image segmentation, (3) feature extraction, (4) features classifications, and (5) system 

evaluation. The block diagram of a classical CAD system is shown in Figure 3.4 and it will be 

discussed in the following sub-sections.  

3.3.1 Image Pre-processing 
Image pre-processing is an important step in the process; it is a common name for 

operations with images at the lowest level of image processing [97].  The aim of pre-processing 

is an improvement of the image data that suppresses or enhances some image features important 

for further processing, although geometric transformations of images such as rotation, scaling, 

translation is classified among pre-processing methods [97]. The classifiers perform well when 

they can be training on a large number of samples. Since the amount of biomedical data 

available for this project is insufficient, data augmentation is applied in its different forms in 

order to increase this amount of data [98]. In the following sub-sections, the image 

enhancement and data augmentation techniques will be presented as they are considered in this 

work.  

3.3.1.1 Image Enhancement 

The image enhancement technique is used to suppress noise and improve the contrast of 

the image as it enlarges the intensity difference between objects and backgrounds [99]. The 

goal of the image enhancement techniques is to accentuate certain image features for the 

subsequent analysis or display [99]. Since the mammographic image has low contrast and it is 

hard to read the abnormalities, therefore, enhancement is applied to the mammographic image 

[100], [101]. There are several types of image enhancement techniques, among them the global 

histogram modification, local processing, and multi-scale processing approaches [99]. 
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Figure 3.4: The main components of a CAD system.  

The global histogram modification approach is to reassign the intensity values of pixels 

to make the new distribution of the intensity uniform. It is effective in enhancing the entire 

image with low contrast, but it cannot enhance the textural information and it only works with 

images having one object [102]–[104]. The most common global histogram technique is the 

adaptive histogram equalization (AHE). It is capable of improving an image’s local contrast 

and bringing out more details in the image. However, it can also produce significant noise 

[105]. AHE is an excellent contrast enhancement method for both natural and medical images 

[106]. A generalization of AHE called contrast limited adaptive histogram equalization 

(CLAHE) was developed, where the histogram is calculated for the contextual region of the 

pixel [107]. One of the disadvantages of AHE is that it may over enhance the noises in the 

images due to the integration operation. Therefore, CLAHE is used as it uses a clip level to 

limit the local histogram to restrict the amount of contrast enhancement for each pixel [108]. 

The CLAHE algorithm can be summarised as follows: (1) divide the original image into 

contextual regions of equal size, (2) apply the histogram equalization on each region, (3) limit 

this histogram by the clip level, (4) redistribute the clipped amount among the histogram, and 

(5) obtain the enhanced pixel value by the histogram integration [108]. 

The local processing approach is based on non-linear mapping methods, such as adaptive 

histogram techniques [107]. Its implementation can be feature-based, which can be gained by 

edge detection or by using local statistic information such as local mean, standard deviation, 

etc. The local approach is effective in the local texture enhancement, but it cannot enhance the 

entire image well. On the other hand, the multi-scale processing approach is based on wavelet 

transformation [109]; it is flexible to select local features to be enhanced, and it can suppress 

the noise. However, it is difficult to determine the mother wavelet for transformation and 

weight modification functions [110].  

3.3.1.2 Data Augmentation 

Training the model with a quite small dataset leads to overfitting during the learning 

process. This means that the model remembers the details of the training set and it does not 

generalize it based on the validation or testing sets [111]. Therefore, to construct an efficient 
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classification model, a large dataset should be used [112]. However, the most frequently 

mentioned problem in the field of ML/DL is the lack of a sufficient amount of the training data 

or uneven class balance within the datasets [113]. This is because the biomedical datasets 

contain a slight number of samples due to limited patient volume. One of the ways of dealing 

with this problem is data augmentation [98].  It is a widely used technique in many ML tasks 

to virtually enlarge the training dataset size and avoid overfitting [114]. Data augmentation 

aims to increase the number of images; this is done by generating new images from original 

ones [115], [116]. Data augmentation has many forms, such as rotation, flipping, and 

transformation [117], [118].  

3.3.2 Image Segmentation 
Image segmentation is used to divide an image into parts having similar features and 

properties. The main aim of segmentation is to extract the regions of interest (ROIs) containing 

all the abnormalities in the breast and locate the suspicious regions from the ROI. This is 

achieved by simplifying the image by presenting it in an easily analysable way [6], [101]. There 

are several segmentation techniques, such as thresholding technique, region-based technique, 

and edge detection technique [119], [120]. 

3.3.2.1 Thresholding Techniques 

Thresholding methods are the simplest methods for image segmentation. The image 

pixels are divided with respect to their intensity level. There are two threshold techniques: 

Global and local thresholding [119]. Global thresholding is one of the common techniques for 

image segmentation. It is based on global information such as the histogram of a mammogram, 

and it is not good for identifying ROIs because masses are often superimposed on the tissue of 

the same intensity level [6]. Therefore, global thresholding has good results when used as a 

primary step of some other segmentation techniques [121]. The global thresholding is done by 

setting an appropriate threshold value (T). This value of (T) will be constant for the whole 

image. Based on (T), the output image p (x,y) can be obtained from the original image q (x,y) 

as given in equation (3.1). However, local thresholding is slightly better than global 

thresholding; the threshold value is defined locally for each pixel based on the intensity values 

of its neighbour pixels [119]. Multiple pixels belonging to the same class are not always 

homogenous and may be represented by different feature values [121]. 

𝑝𝑝(𝑥𝑥,𝑦𝑦) =  �1, 𝑖𝑖𝑖𝑖 𝑞𝑞(𝑥𝑥,𝑦𝑦) > 𝑇𝑇
0, 𝑖𝑖𝑖𝑖 𝑞𝑞(𝑥𝑥,𝑦𝑦) ≤ 𝑇𝑇                                            (3.1) 
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3.3.2.2 Region-Based Techniques 

The region-based segmentation divides the image into different regions based on 

predefined criteria [122]. There are two main types for region-based segmentation, (1) region 

growing and (2) region splitting and merging. The region growing can remove a region from 

an image based on some predefined criteria such as the intensity. Region growing is an 

approach to image segmentation in which neighbouring pixels are examined and joined to a 

region class where no edges are detected [123].  The region growing is also classified as a 

pixel-based image segmentation method as it involves the selection of initial seed points. A 

seed pixel is chosen as a starting point from which the region iteratively grows and aggregates 

with neighbouring pixels that fulfil a certain homogeneity criterion [123]. On the other hand, 

the region splitting and merging method is the opposite of the region growing method as it 

works on the complete image [124]. 

3.3.2.3 Edge Detection Techniques 

Edge detection methods transform original images into edge images benefits from the 

changes of grey tones in the image [125]. This is performed by dividing an image into an object 

and its background by observing the change in intensity or pixels of an image [122]. Edges are 

detected to identify the discontinuities in the image. Edges are local changes in the image 

intensity. Edges typically occur on the boundary between two regions [122]. The edges on the 

region are traced by identifying the pixel value and it is compared with the neighbouring pixels 

[126]. The major property of the edge detection technique is its ability to extract the exact edge 

line with good orientation. The main features can be extracted from the edges of an image and 

used by advanced computer vision algorithms [125]. Edge detection is used for object 

detection, which serves various applications like medical image processing [125]. There are 

many edge detection techniques, such as Sobel, Canny, and Robert’s operators, the result of 

these methods is a binary image [125]. 

3.3.3 Feature Extraction 
Feature extraction is a reliable tool to reduce the amount of irrelevant information, 

producing a robust feature vector [127].  The features that characterize a specific region are 

calculated from the ROI characteristics such as size, shape, density, etc. There are many 

techniques for feature extraction. Although, three main types of features could be extracted; 

intensity (colour), geometry (shape), and texture features [127]. The intensity or the colour 

feature is considered the simplest feature compared to other features. Images characterized by 

colour features have many advantages such as robustness, effectiveness, and simplicity. Colour 

https://en.wikipedia.org/w/index.php?title=Seed_point&action=edit&redlink=1
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features can be derived from a histogram of an image. The weakness of colour histogram is 

that the colour histogram of two different things with the same colour can be the same. 

However, the geometric or shape feature is an important visual feature and one of the primitive 

feature for image content description. The shape of an object refers to its physical structure and 

profile. Shape content description cannot be defined exactly because it is difficult to measure 

the similarity between the shapes. The geometric feature extraction technique can include the 

moment, perimeter, and area of an image [128]. On the other hand, the texture features are 

based on the texture of the image. There are many techniques used by several researchers for 

texture feature extraction, such as wavelets, statistical features, and fractals. Texture analysis 

methods have been utilized in a variety of application domains such as medical image 

processing, document processing, remote sensing, and content-based image retrieval [129].  

In recent years, deep learning (DL) techniques and especially the deep convolutional 

neural networks (DCNN) have attracted great attention due to their outstanding performance 

as a feature extractor. Consequently, the DCNN is used in this research to extract the features 

from the breast mammography images. 

3.3.3.1 Deep Convolutional Neural Network  

Deep learning (DL) can be defined as a set of methods that learn data representations 

using multiple levels of representation [130]. This can be obtained by composing simple, but 

non-linear models that transform the representation from one level starting with the raw input 

into increasing levels of representation [130]. The idea of representation learning is not new, 

but recently it emerged as a viable alternative due to the appearance and the popularization of 

the graphic processing units (GPUs), which are capable of delivering high computational at 

relatively low cost, achieved through their massively parallel architecture [20], [130], [131].  

In recent years, DL based on a convolutional neural network (CNN) or deep 

convolutional neural network (DCNN) has attracted great attention in AI due to its successes 

in various research fields, such as pattern recognition, computer vision, natural language 

processing, and big-data analysis [132]–[134]. The convolutional process can simplify an 

image containing millions of pixels to a set of small feature maps, thereby reducing the 

dimension of input data while retaining the most-important difference features [23]. Moreover, 

DCNN achieved outstanding performance in recognition of natural images [23], [135], [136]. 

Additionally, DL techniques are one of the most often used algorithms for getting better, 

scalable, and accurate results from the data as compared to state-of-the-art methods of ML. 

DCNN is applied to the biomedical images to diagnose diseases with precisely tailored 
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treatment plans for improving the patient’s health. DCNN is widely used in breast cancer 

classification problem due to its ability to extract useful features from images. Additionally, 

mammograms, MRI, etc. are the trending biomedical images for the diagnosis of patients by 

minimising the intervention of humans [22], [137]–[145] and [18], [19], [146], [147]. 

A DCNN consists of multiple trainable stages stacked on top of each other, followed by 

a supervised classifier and sets of arrays named feature maps to represent both the input and 

output of each stage [148]. There are three main types of layers used to build DCNN 

architectures, convolutional layer, pooling layer, and fully connected (FC) layer [149].  

• Convolution Layer 

The convolutional layer computes the output neurons connected to the local regions in 

the input. Each neuron computes a dot product between their weights and the region connected 

to the input volume. The set of weights that is convolved with the input is called filter or kernel. 

Every filter is small spatially (width and height), but extends through the full depth of the input 

volume. The distance between the applications of filters is called stride [149]. The output of a 

convolution layer is calculated as,  

The output size of the conv layer = ��
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
� + 1� . (3.2) 

• Pooling Layer 

The pooling layer down samples the volume spatially, independently in each depth slice 

of the input volume to reduce the amount of computation and improve the robustness [150]. 

Thus, the pool operator resizes the input along width and height, discarding activations. The 

maximum-pooling function is applying a window function to the input patch and computes the 

maximum in that neighbourhood [149].  The output of the pooling layer is calculated using 

equation (3.3). 

The output size of the pooling layer  = ��
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
� + 1�              (3.3) 

• Fully Connected Layer 

In a fully connected layer (FC), neurons have full connections to all activations in the 

previous layer and their activations can be computed using a matrix followed by a bias offset. 

This type of layer is standard with a regular neural network. The last fully-connected layer 

holds the net output, such as probability distributions over classes [149]. 

Additionally, there are other layers such as normalisation layer [151] and a rectified 

linear unit (ReLU) or activation function [152]. The normalisation layer normalises the output 
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of the previous activation layer by subtracting the batch mean and dividing by batch standard 

deviation. However, the ReLU is a piecewise linear function that outputs the input directly if 

it is positive otherwise outputs zero [153]. The input of the DCNN is the intensity volume (R, 

G, B) of an image. While the output produces a distribution of predicted probabilities over the 

1000 classes for ImageNet classification [154].  

There are many DCNN architectures between them CiFarNet [155], [156], AlexNet [23], 

VGGs nets [157], GoogleNet [24], Inception-v3 [25], the ResNet [26], Inception ResNet-v2 

[27], and MobileNet-v2 [28]. Table 3.2 and Figure 3.5 show the summary and the timeline of 

the used DCNN architectures, respectively. Moreover, the full details of the networks used in 

this work are presented in Appendix A. All DCNNs are firstly trained using the ImageNet 

dataset [154], which contains 1.2 million natural images for the classification of 1000 classes.  

3.3.3.1.1 Transfer Learning    

Generally, the training process for DCNNs requires a large number of annotated samples 

to avoid overfitting to the training dataset. Researchers often address this issue as transfer 

learning, which is also known as domain adaptation. Transfer learning is considered to be an 

efficient methodology, in which the knowledge from one image domain can be transferred to 

another image domain [29], [31], [158]. Transfer learning is an efficient approach for dealing 

with small datasets by allowing pre-trained networks to be fine-tuned and adjusted to solve 

problems from a particular domain or imaging modality. The weights of the model are pre-

initialized when utilizing a pre-trained version, as opposed to being randomly initialized while 

training from scratch [159]. Moreover, the transfer learning technique is performed on DCNN 

networks so that it could be used in any classification problem [160]. The DCNN is firstly pre-

trained using the ImageNet dataset [154] with 1000 classes. Therefore, the last fully connected 

layer is replaced by a new layer for the classification of two classes either benign and malignant 

masses or normal and abnormal masses.  

Some research papers discuss the importance of the transfer learning technique as in 

[161] the authors suggested that the success of any transfer learning approach highly depends 

on the extent of similarity between the datasets on which a DCNN is pre-trained and the 

database to which the image features are transferred. Suzuki et al. [150] introduced transfer 

learning in the DCNN achieving a sensitivity of 89.9% when differentiating between mass and 

normal lesions using the DDSM dataset [82]. Their study was the first demonstration of the 

DCNN mammography CAD applications. Huynah et al. [159] used transfer learning to extract 

and classify the DCNN features of 219 mammogram lesions from the University of Chicago 
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Medical Centre reaching an AUC equals to 0.81 (81%). Moreover, Tajbakash et al. [162] 

debated if the use of pre-trained DCNNs with sufficient fine-tuning could eliminate the need 

for training a DCNN from scratch. The authors analysed the influence of the choice of the 

training samples on the performance of DCNNs and concluded that there is no set rule to say 

if a shallow tuning or deep tuning is beneficial and that the optimal method is dependent on the 

type of the application [162]. Jiang et al. [163] explored the transfer learning to fine-tune the 

GoogleNet and AlexNet DCNNs architectures, to classify breast lesions. The AUC of the 

GoogleNet and AlexNet was 0.88 (88%) and 0.83 (83%), respectively. The authors were the 

first to introduce the new dataset BCDR-F03 to evaluate the results [85]. Samala et al. [164] 

introduced a multi-stage transfer learning for digital breast tomosynthesis (DBT) using deep 

neural networks. The knowledge learned from ImageNet was fine-tuned first with the 

mammography data and then with the DBT data. The AUC reached 0.91 (91%) for the DBT 

collected from the University of Michigan and the Massachusetts General Hospital. Chougrad 

et al. [165] used the transfer learning technique to fine-tuned the VGG-16 DCNN architecture 

to classify the lesions of the CBIS-DDSM [86], MIAS [81], INbreast [84], and BCDR-F03 

datasets [85].  

Table 3.2: A summary of the state-of-the-art DCNN architectures used in this thesis. 

DCNN Architectures Number of Layers Input Size Output Size 
AlexNet 8 227 × 227 4096 × 2 

MobilNet-v2 16 224 × 224 1280 × 2 
ResNet-18 18 224 × 224 512 × 2 
GoogleNet 22 224 × 224 1024 × 2 

Inception-v3 48 229 × 229 2048 × 2 
ResNet-50 50 224 × 224 2048 × 2 

ResNet-101 101 224 × 224 2048 × 2 
Inception ResNet-v2 164 299 × 299 1536 × 2 

 
Figure 3.5: The timeline of the used state-of-the-art DCNN architectures.  
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2018 

2016 2014 
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3.3.4 Features Classifications  
In this step, the features extracted are input into a classifier to classify the suspicious 

areas into normal tissues, benign, or malignant areas. There are many known classifiers among 

them k-nearest neighbour (k-NN) [166], [167], linear discriminant analysis (LDA) [168], [169], 

decision trees (DT) [170], [171], artificial neural network (ANN) [172]–[174], and support 

vector machine (SVM) [175]. However, the DT and SVM classifiers are used in this work and 

are explained briefly in the following sub-sections.  

3.3.4.1 Decision Trees  

Decision trees (DT) are commonly used in ML techniques. They are used extensively in 

medical applications such as breast cancer, ovarian cancer, and heart sound diagnosis [170]. 

This is due to their ability to visualise the reactions between data attributes. Visualization 

facilitates the doctors’ understanding of how the classification decision is made [170]. DT can 

handle categorical and numeric attributes. They are also robust to outliers and missing values. 

A DT classifies data points in the training set based on rules or conditions to form a tree 

structure. A DT construction is like a tree with a root node whose leaves representing class 

labels, and branch nodes, which represent attributes and reasons, which lead to those class 

labels [170]. Nodes are connected by arcs, which represent the conditions on the attributes. The 

attribute splitting is determined by a metric such as information gain, gain ratio, or Gini index 

[171]. DT has several types of trees such as J48, random forest (RF), and random tree (RT).  

J48 DT classifier uses top-down and greedy search through all probable nodes to 

construct a DT [171]. Furthermore, the RF is considered a strong classifier that achieves high 

classification accuracy with datasets with a huge number of features even without any feature 

selection [171]. Moreover, RF is capable of figuring out the important attributes of a dataset. 

Additionally, RT selects a random number of attributes to construct a DT and classify the data 

[170], [171]. 

3.3.4.2 Support Vector Machines  

A support vector machine (SVM) is a tool that originated in modern statistical learning 

theory [175]. In recent years, SVM has found a wide range of real-world applications, including 

handwritten digit recognition, object recognition, speaker identification, face detection in 

images, and text categorization [12]. The SVM proved to be an efficient method for many real-

world problems because of its high generalization performance without the need to add a priori 

knowledge. The SVM can map the input vectors into a high dimensional feature space through 

some non-linear mapping. In this space, an optimal separating hyper-plane is constructed [176]. 
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The formulation of SVM is based on the principle of structural risk minimization. Instead of 

minimizing an objective function based on the training samples such as mean square error 

(MSE), the SVM attempts to minimize a bound on the generalization error [177]. This means 

that the error made by the learning machine on test data is not used during training.  As a result, 

SVM tends to perform well when applied to data outside the training set. Indeed, it has been 

reported that SVM based approaches are significantly outperforming competing methods in 

many applications [176]. SVM achieves this advantage by focusing on the training examples 

that are most difficult to classify. These borderline training examples are called support vectors 

[177].  

SVM performs classification by constructing N-dimensional hyper-planes that optimally 

separates the data into two categories. SVM models are closely related to neural networks 

[178]. In the parlance of SVM literature, a predictor variable is called an attribute, and a 

transformed attribute that is used to define the hyper-plane is called a feature. The task of 

choosing the most suitable representation is known as feature selection. A set of features that 

describes one case, a row of predictor values is called a vector [178]. Therefore, the goal of 

SVM is to find the optimal hyper-plane that separates clusters of a vector in such a way that 

cases with one category of the target variable are on one side of the plane, and cases with the 

other category are on the other side of the plane [178]. In other words, SVM aims to devise a 

computationally efficient way of learning separating hyper-planes in a high dimensional feature 

space. The vectors near the hyper-plane are the support vectors [178] as shown in Figure 3.6. 

The performance of SVM depends on kernel methods. The classification problem can be 

restricted to consideration of the two-class problem without loss of generality. In this problem, 

the goal is to separate the two classes by a function and to produce a classifier that generalizes 

well. Consider the example, in Figure 3.7, where many possible linear kernels can separate the 

data, but only one that maximizes the margin. This linear classifier is termed the optimal 

separating hyper-plane. Generally, the SVM is an implementation of the structural risk 

minimization principle, whose object is to minimize the upper bound on the generalization 

error [177], [179]. There are two cases for SVM: Linear SVM and non-linear SVM. The linear 

SVM has a linear kernel function as shown in Figure 3.7, however, the non-linear SVM kernels 

could be cubic, quadratic, and Gaussian as shown in Figure 3.8.  
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Figure 3.6: The SVM process showing the separation between two classes A and B. Adopted from [180].  

 
Figure 3.7: The optimal separating hyper-plane with a linear kernel function. Adopted from [180].  

 

Figure 3.8: An example of a non-linear SVM. Adopted from [180].  

3.3.5 Performance Metrics 
The goal of classification learning is to build a classifier from a set of training samples 

with class labels such that the classifier can well predict the unseen testing samples [181]. The 

predictive ability of the classification algorithm is typically measured by its predictive 

accuracy. However, accuracy is not enough. Therefore, there are several evaluation tools to 

assess a classifier amongst them, the confusion matrix, the sensitivity, the specificity, the 

receiver-operating curve (ROC), the area under the ROC curve (AUC), the precision, and the 

F1-score [181]. Moreover, cross-validation has been widely used to evaluate ML algorithms. 

In addition, statistical analysis is commonly used to measure the statistical significance of the 

results of CAD systems. Therefore, these performance metrics are presented in the following 

sub-sections. 
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Table 3.3: An example of a confusion matrix. 

Class Label Predicted Class Label 
Normal Abnormal 

Normal TN FP 

Abnormal FN TP 

3.3.5.1 The Confusion Matrix 

The confusion matrix is a specific table visualizing the performance of the classifier 

[182]. Usually, in the field of ML, a confusion matrix is known as the error matrix. An image 

region is said to be positive or negative, depending on the data type. Furthermore, a decision 

for the detected result can be either correct (true) or incorrect (false). Therefore, the decision 

will be one of four possible categories: True positive (TP), true negative (TN), false positive 

(FP), and false-negative (FN) [182]. The correct decision is the diagonal of the confusion 

matrix. Table 3.3 provides an example of the confusion matrix for two classes’ normal and 

abnormal classification. FN and FP are two kinds of errors [182].  

An FN error implies that a true abnormality was not detected and an FP error occurs 

when a normal region was falsely identified as an abnormality. On the other hand, a TP decision 

is a correct judgment of an actual abnormality and a TN decision means a normal region was 

correctly labelled [6]. For years, the performance of diagnostic systems has been measured and 

reported in terms of correct percent, which is the percentage of diagnostic decisions that proved 

to be correct [5].  

3.3.5.2 Accuracy 

Accuracy is a measure used to determine how many instances the classifier has correctly 

classified from the whole data [181]. Thus, it indicates the ability of the classifier to perform 

well. The accuracy is defined as in equation (3.4). 

                                              𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
                                               (3.4) 

3.3.5.3 The Receiver Operating Characteristics  

The receiver operating characteristic (ROC) analysis is a well-known evaluation method 

for detection tasks [183]. It is based on statistical decision theory and it is developed in signal 

detection theory. ROC analysis was first used in medical decision making, subsequently, it was 

used in medical imaging. A ROC curve is a graph representing the true positive rate (TPR) as 

a function of the false positive rate (FPR) [183]. The TPR is called sensitivity or recall while 

the true negative rate (TNR) is called the specificity and they are defined as in equations (3.5) 

and (3.6), respectively.  
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                                    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑇𝑇𝑇𝑇𝑇𝑇) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 
                                                                (3.5) 

                                     𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑇𝑇𝑇𝑇𝑇𝑇) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                                (3.6) 

Additionally, FPR and FNR indicate the false positive rate and false-negative rate, 

respectively, as in equations (3.7) and (3.8). FPR and FNR criteria represent the system error. 

FPR is a false alarm rate indicating the percentage of class (1) that has been incorrectly 

classified as class (2). Whereas FNR provides the percentage of class (2) that has been 

incorrectly classified as class (1) by the classifier  [184].  

                                                        𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇                                                                        (3.7) 

                                                      𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇                                                                          (3.8) 

3.3.5.4 The Area under the ROC Curve  

The area under the ROC curve (AUC) is used in medical diagnostic systems. The AUC 

provides an approach for evaluating models based on an average of each point on the ROC 

curve. Since the AUC score is always between ‘0’ and ‘1,’ therefore, the model with a higher 

AUC value gives a better classifier performance [185].  

3.3.5.5 Precision  

The precision is the ratio of correctly predicted positive observations of the total 

predicted positive observations [186]. High precision relates to low FPR [181]. The precision 

is calculated using the following equation, 

                                                    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                                 (3.9) 

3.3.5.6 F1-Score 

The F1-score is the harmonic mean of precision and recall. It is used as a statistical 

measure to rate the performance. F1-score reaches its best score at value one. This score takes 

both false positives and false negatives into account [181], [186]. F1-score is defined as in 

equation (3.10). 

                                        F1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

                                               (3.10) 

3.3.5.7 Cross-Validation 

The cross-validation is used to indicate how well the model will predict unseen data. 

Cross-validation is done by partitioning a dataset and using a subset to train the algorithm and 

the remaining data to test it [187]. The common cross-validation techniques are the k-fold 

cross-validation and hold out. In the k-fold cross technique, the data are randomly sorted and 
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divided into k folds. One of the folds is used for testing and the remaining folds for training the 

algorithm. This scenario is repeated k times [187]. On the other hand, the holdout technique 

divides the data into exactly two subsets of a specified ratio for training and testing [187]. 

3.3.5.8 Statistical Analysis 

A result is statistically significant when a p-value is less than the significance level α. 

The p-value is the probability of obtaining at least as extreme results given that the null 

hypothesis is true [188]. The significance level α is the probability of rejecting the null 

hypothesis given that it is true. Statistical methods can be parametric or non-parametric. 

Parametric methods have several parameters such as the one-way analysis of variance 

(ANOVA) test. Whereas, non-parametric methods are statistics not based on parameterized 

families of probability distributions [188].  

3.4 State-of-the-Art Review for Breast Cancer 

Classifications 
Recently, several researchers studied and proposed methods for detecting and classifying 

breast abnormality in mammography images using ML and DL techniques [189]–[192]. The 

following sub-sections will discuss the most relevant studies for breast cancer classification 

using conventional ML and DL frameworks.  

3.4.1 Machine Learning-based Frameworks  
Machine learning (ML) methods are used extensively in medical applications this is 

because they have a remarkable capability for extracting and classifying the valued data from 

the medical datasets [193]. Researchers discussed some ML techniques to classify lesions of 

breast cancer giving a promising accuracy as in [194]–[203] and [204], [205], [214], [206]–

[213].  

Through the years 2005 till recently CAD systems using classical ML evolved; Fu et al. 

[215] extracted and selected using a sequential forward search (SFS) strategy 61 features for 

each MC sample from both the spatial and spectral domain. The selected features were 

classified by SVM and general regression neural network (GRNN) classifiers achieving 0.98 

(98%) and 0.978 (97.8%) of AUC, respectively.  The approach proposed was evaluated on the 

database of Nijmegen University Hospital located in the Netherlands [215]. Liu et al. [216] 

used the SVM classifier to classify the masses of the DDSM dataset [82] yielding to 0.7 (70%) 

of AUC. Sharkas et al. [217] used the discrete wavelet transform (DWT), the contourlet 
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transform, and the principal component analysis (PCA) methods for extracting features. The 

system was able to detect and classify normal and abnormal tissues in addition to benign and 

malignant MC tumours of the DDSM [82] dataset. They achieved an accuracy of 98%. Al 

Sharkawy et al. [218] extracted and classified mass lesions of the DDSM [82] dataset using 

DWT and SVM, respectively. The accuracy achieved was 92%. Anitha et al. [219] extracted 

the grey level co-occurrence matrix (GLCM) features of the MIAS [81] dataset, then classified 

them using SVM achieving 95% accuracy. Ragab et al. [220] used the DWT as a feature 

extraction technique to detect mass abnormalities of the DDSM [82] dataset.  The authors 

employed SVM and ANN for classifying normal, abnormal tissues, benign, and malignant MCs 

tumours. The accuracy achieved was 96% and 98% for ANN and SVM, respectively.  

Zheng et al. [221] constructed a hybrid of K-means and SVM algorithms to extract and 

classify the features of the Wisconsin diagnostic breast cancer (WDBC) dataset giving an 

accuracy of 97.38%. Beura et al. [222] used the GLCM and DWT to extract the texture features 

from the MIAS [81] and the DDSM [82] datasets. The authors classified the ROI using a feed-

forward back-propagation multilayer neural network (BPNN) achieving an accuracy of 98% 

and 98.8% for MIAS and DDSM datasets, respectively. Abdel-Zaher et al. [223] developed a 

CAD scheme for the detection of breast cancer using a deep belief network unsupervised path 

followed by a backpropagation supervised path. The technique was tested on the Wisconsin 

breast cancer dataset (WBCD) dataset giving an accuracy of 99.68% [223]. Kim et al. [224] 

classified the mass samples of the DDSM [82] dataset using DT, LDA, and SVM. The highest 

AUC achieved was 0.95 (95%) for the SVM classifier. 

   Additionally, in 2016, Saad et al. [225] segmented the MC samples extracted from the 

DDSM [82] and MIAS [81] datasets using Otsu’s algorithm. The segmented samples went 

through two classification techniques: ANN and adaptive boosting (AdaBoosting), which is 

defined as a strong classifier formed by a combination of different weak classifiers. The authors 

achieved an overall accuracy of 98.68% [225]. Zhang et al. [226] use Fourier transforms and 

PCA, followed by SVM to classify the samples of the MIAS dataset [81] achieving 92.16% 

accuracy. Pawar and Talbar [227] used a wrapper method for feature selection. The features of 

the MIAS dataset were extracted using the wavelet co-occurrence features from the four 

decomposition levels. The accuracy achieved was 89.47%. Xie et al. [228] proposed a novel 

CAD system for the diagnosis of breast cancer mammograms extracted from DDSM [82] and 

MIAS [81] datasets based on extreme learning machine (ELM) and SVM. The system achieves 

a better average accuracy of 96.02%.  
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Furthermore, in 2017, Khan et al. [229] used a bank of Gabor filters to extract the 

directional textural features and the SVM classifier to classify normal and abnormal samples 

of the MIAS dataset [81]. The accuracy achieved was ranged from 68% to 98%. Al-Salihy et 

al. [230] classified 569 mass samples (357 benign and 212 malignant) extracted from the 

WBCD dataset using decision tree classifiers such as RF DT, J48 DT, Function Tree, decision 

stump, Alternating DT, and best first tree algorithm. The highest and lowest accuracies 

achieved were 97.17% and 88% for the Function Tree and decision stump, respectively [230]. 

3.4.1.1 The Most Relevant ML Frameworks  

In the year 2018, Seryasat and Haddadnia [231] extracted the morphological and texture 

features from the MIAS [81] and DDSM [82] datasets. The relevant features were selected and 

then classified using ensemble classifier achieving an accuracy of 94.8% and 92% for MIAS 

[81] and DDSM [82] datasets, respectively. Tasdemir et al. [232] extracted the features using 

wavelet transform, Haralick, and histogram of oriented gradient (HOG) descriptors. A 

wrapper-based feature selection method was implemented to reduce the number of dimensions 

and eliminate irrelevant features. In addition, several ML classifiers such as SVM and RF DT 

were used to classify the samples of the digital mammography dream challenge dataset [87]. 

The highest accuracy achieved was 87.5% using the RF DT classifier [232]. Wang et al. [233] 

used the SVM based ensemble learning algorithms to classify the samples of two datasets, (1) 

WDBC dataset including 569 instances (357 benign and 212 malignant) collected from the 

University of Wisconsin Hospitals, and (2) Surveillance, Epidemiology, and End Results 

(SEER) breast cancer dataset collected from National Cancer Institute’s SEER program. The 

authors achieved an accuracy of 97.89% [233].  

Additionally, in the year 2019, Dhahri et al. [234] employed the ensemble of the 

following classifiers, SVM, k-NN, DT, gradient boosting classifier (GB), RF DT, logistic 

regression (LR), AdaBoosting classifier, Gaussian Naïve Bayes (GNB), and LDA to classify 

the lesions of WBCD dataset. The accuracy achieved was 97.34% [234]. Ragab et al. [235] 

used image processing techniques to remove the pectoral muscle of the MIAS [81] and the 

digital mammography dream challenge dataset [87]. The authors extracted the features using 

some statistical metrics and classified them using single and multiple classifiers. The highest 

accuracy achieved was 99.7% [235]. 

Moreover, in the year 2020, Assiri et al. [236] proposed an ensemble classifier based on 

a majority voting mechanism. The performance of different state-of-the-art ML classification 

algorithms was evaluated for the WBCD dataset achieving accuracy of 99.42% [236]. 
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Mohammed et al. [237] proposed an approach that improves the accuracy and enhances the 

performance of three different classifiers: J48 DT, Naïve Bayes (NB), and Sequential Minimal 

Optimization (SMO). The experiments were performed on the WBCD dataset achieving 

99.56% using the SMO classifier [237]. 

Furthermore, recently, Mangukiya et al. [238] used the SVM, Decision Tree, NB, k-NN, 

Adaboost, extreme gradient boosting (XGBoost), and Random Forest to detect and classify 

breast cancer. The authors conducted their experiments on the WBCD dataset. The experiments 

showed that XGboost classifier offered the highest accuracy 98.24% [238]. Table 3.4 

summarizes the ML techniques used recently for mammogram breast cancer classifications.  

3.4.2 Deep Learning-based Frameworks  
During the past few years, various contributions have been made in literature regarding 

the application of deep learning [17], [130] and exclusively through deep convolutional neural 

networks (DCNN) techniques for breast cancer diagnosis [21], [239]–[242]. This is because 

DCNN has surpassed the accuracy of almost all other traditional classification methods and 

even the human ability [243]. Moreover, DCNN is used to classify the breast tumours not only 

in mammogram modalities [244], [245] but also in MRI scans as in [246]–[250] and 

microscopic images such as the histopathological breast images as in [251]–[255] and [256]–

[264]. 

Furthermore, several researchers studied the diagnoses of breast cancer in ultrasound 

images as in [265]–[267].  Moon et al. [268] proposed a CAD system for tumour diagnosis in 

ultrasound images using an image fusion method combined with different image content 

representations and an ensemble of different DCNN architectures. The DCNN-based methods 

include VGG Net, ResNet, and DenseNet [268]. The experiments were performed on private 

and open datasets [268]. The private dataset has 1687 total tumours including 953 benign and 

734 malignant tumours. However, the open dataset has 697 total tumours including 437 benign 

lesions, 210 malignant tumours, and 133 normal images. When using the private dataset, the 

results for accuracy, sensitivity, specificity, precision, F1-score, and the AUC were 91.10%, 

85.14%, 95.77%, 94.03%, 89.36%, and 0.9697 (96.97%), respectively [268]. On the other 

hand, the accuracy, sensitivity, specificity, precision, F1-score, and the AUC achieved, when 

using the open dataset were 94.62%, 92.31%, 95.60%, 90%, 91.14%, and 0.9711 (97.11%), 

respectively [268].  
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Table 3.4: Classification results for breast cancer using different ML algorithms. 

Paper Year Classification Dataset Result 

[215] 2005 SVM  
GRNN 

Database of Nijmegen University 
Hospital  AUC = 0.98 – 0.978  

[216] 2010 SVM DDSM AUC = 0.7 (70%) 
[217] 2011 SVM DDSM Accuracy = 98% 
[218] 2012 SVM DDSM Accuracy = 92% 
[219] 2012 SVM MIAS Accuracy = 95% 
[220] 2013 ANN – SVM DDSM Accuracy = 96% – 98%  
[221] 2014 SVM WBCD Accuracy = 97.38% 
[222] 2015 BPNN MIAS – DDSM   Accuracy = 98% – 98.8% 
[223] 2015 ANN WDBC Accuracy = 99.68% 
[224] 2015 SVM DDSM AUC = 0.95 (95%) 
[225] 2016 ANN – AdaBoosting  DDSM – MIAS  Accuracy = 98.68% 
[226] 2016 SVM MIAS Accuracy = 92.16% 

[228] 2016 SVM 
ELM 

DDSM 
MIAS Accuracy = 96.02% 

[229] 2017 SVM MIAS Accuracy = 68% –  98% 
[230] 2017 DT WBCD Accuracy = 88% – 97.17% 
[231] 2018 Ensemble classifier DDSM – MIAS Accuracy = 92% –  94.8%  

[232] 2018 SVM – RF DT Digital mammography dream 
challenge dataset Accuracy = 87.5% 

[233] 2018 SVM WDBC Accuracy = 97.89% 
[234] 2019 Ensemble classifier WBCD Accuracy = 97.34% 

[235] 2019 Single and MCS MIAS - Digital mammography 
dream challenge Accuracy = 99.7% 

[236] 2020 Ensemble classifier WBCD Accuracy = 99.42% 
[237] 2020 J48 DT – NB – SMO  WBCD Accuracy = 99.56% 
[238] 2022 XGBoost  WBCD Accuracy = 98.24% 

Pi et al. [269] considered the heterogeneity of breast lesions and perform diagnoses using 

a multiple-instance learning method. This was performed by extracting and fusing the deep 

features of ResNet-50, Inception-v3, and DenseNet-169, followed by feature aggregation 

operators such as maximum, mean, and quantile [269]. The authors achieved an accuracy of 

96.41% and 0.983 (98.3%) of AUC for classifying benign and malignant lesions of ultrasound 

images collected and obtained from the People’s Hospital of DeYang City [269]. Wang et al. 

[270] proposed a CAD system based on DCNN to classify breast cancer lesions in automated 

breast ultrasound imaging. The proposed DCNN adopts a modified Inception-v3 architecture 

to provide efficient feature extraction in breast ultrasound imaging. The proposed DCNN was 

trained and evaluated on 316 breast lesions (135 malignant and 181 benign). The authors 

achieved an AUC, sensitivity, and specificity values of 0.9468 (94.68%), 0.886, (88.6%) and 

0.876 (87.6%), respectively with five-fold cross-validation [270]. Irfan et al. [271] developed 

an algorithm based on dilated semantic segmentation network with morphological operation to 

segment ultrasonic breast lesions. The feature vectors acquired from DenseNet-201 and 24 

layer DCNN employing parallel fusion were fused to categorize the nodules. These feature 

vectors are merged with the SVM classification and attained an accuracy of 98.9% [271]. 
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Since the work presented in this thesis depends on classifying the breast lesions in 

mammogram image modalities. Therefore, in the following sub-sections, the most relevant 

classification results depending on the classification of individual features and deep feature 

fusion will be discussed.  

3.4.2.1  Classification of Individual Features in Mammogram Images 

This section provides a comprehensive survey of recently published works related to 

breast cancer classification using DCNN based CAD system.  In the year 2016, Arevalo et al. 

[272] proposed a DCNN model that learns features for mammography mass lesions before 

feeding them to the classification stage. The researchers achieved an accuracy of 86% using 

736 images of the BCDR-F03 [85] dataset. Wichakam and Vateekul [273] extracted the 

features using DCNN, then classify them using the SVM classifier. The sensitivity achieved 

was 98.44% using the INbreast dataset [84]. Jain and Levy [274] used AlexNet DCNN to 

classify benign and malignant masses in mammograms of the DDSM dataset [82] achieving an 

accuracy of 66% [274]. Yi and Dunnmon [275] used the GoogleNet architecture to classify 

benign and malignant breast mammogram tumours of a subset of the DDSM dataset [82]. The 

accuracy and AUC achieved were 85% and 0.91 (91%), respectively.  

Moreover, in the year 2017, Jadoon et al. [276]  proposed a model that classifies three 

classes; normal, benign, and malignant. The model proposed two methods for feature 

extraction, namely convolutional neural network discrete wavelet (CNN-DW) and 

convolutional neural network curvelet transform (CNN-CT). The authors classified the samples 

of the image retrieval in medical applications (IRMA) dataset using the SVM classifier. They 

achieved accuracy rated from 81.83% to 83.74% [276]. Carneiro et al. [277] developed an 

automated DL model to examine the two views of the mammogram CC and MLO of the two 

datasets DDSM [82] and INbreast [84]. The authors achieved AUC 0.9 (90%) and 0.7 (70%) 

for both semi-automated and fully automated techniques, respectively [277]. Zhu et al. [278] 

proposed an end-to-end trained AlexNet DCNN for mass classification based on the whole 

mammogram image and not the ROI. The results of the proposed method were validated on 

INbreast dataset [84]. The accuracy achieved was 84% for the end-to-end AlexNet DCNN. The 

authors then employed the idea of extracting the deep features and classify them using RF DT. 

In this case, the accuracy increased to 91% [278]. Zhang et al. [279] developed and evaluated 

DCNN models for whole mammography image classification introducing transfer learning and 

data augmentation techniques. The authors collected the images from the department of 

radiology, University of Kentucky. The AUC scored 0.73 (73%) [279]. Dhungel et al. [280] 



50 
 

proposed a multi-view deep residual neural network for the fully automated classification of 

mammograms. The authors achieved an AUC of 0.8 (80%) on classifying malignant and benign 

samples of the INbreast dataset [84]. Shen [281] used DCNN to classify the lesions of DDSM 

[82] and INbreast [84] datasets achieving an AUC of 0.91 (91%) and 0.96 (96%), respectively. 

Zhang et al. [282] extracted and classified the features of the DDSM dataset [82] using a fine-

tuned AlexNet DCNN. The AUC and the sensitivity achieved were 0.8 (80%) and 72%, 

respectively. Duraisamy and Emperumal [283] extracted the features using a DCNN algorithm 

then classified the features using a well-known fully complex-valued relaxation network 

(FCRN) classifier. The authors used two datasets (1) MIAS [81] and (2) BCDR-F03 [85] 

datasets to perform their experiments. The accuracy and AUC achieved were 99% and 0.9815 

(98.15%), respectively [283]. Platania et al. [284] proposed a framework for automated breast 

cancer detection and diagnosis, providing automated ROI detection and diagnosis using 

DCNN. The framework presented was tested on the DDSM [82] dataset achieving 90% and 

93.5% for detection and classification accuracies, respectively [284]. 

In the year 2018, Al Hussien and Salem [285] proposed a DCNN architecture model to 

classify the samples of the INbreast dataset [84]. The accuracy and AUC achieved with 5-fold 

cross-validation were 80% and 0.78 (78%), respectively. Xi et al. [286] classified the mass and 

calcifications samples of the CBIS-DDSM dataset [86] using several fine-tuned DCNN 

architectures. The authors achieved 91.23%, 92.53%, 91.1%, and 91.8% of accuracy for 

AlexNet, GoogleNet, VGGNet, and ResNet, respectively [286]. Ribli et al. [287] used the fast 

R-CNN for the classification of benign and malignant lesions of the INbreast [84] and Digital 

Mammography Dream Challenge [87] datasets giving 0.95 (95%) and 0.85 (85%) of AUC, 

respectively. Al-Antari et al. [288] proposed a fully integrated CAD system including three DL 

stages detection, segmentation, and classification. First, an automatic DL You-Only-Look-

Once (YOLO) detector was used to detect the breast lesion from the entire mammogram images 

extracted from INbreast [84] dataset. Second, the ROI was segmented using a full resolution 

convolutional network. Finally, a DCNN classifier was presented to distinguish between 

benign or malignant detected and segmented masses. The results were evaluated by fourfold 

cross-validation achieving 98.96% of accuracy [288]. Chougrad et al. [289] extracted and 

classified the lesions of DDSM [82],  INbreast [84], and BCDR-F03 [85] datasets using the 

fine-tuned VGG-16, ResNet-50, and Inception-v3 DCNN architectures.  The highest accuracy 

and AUC achieved were for Inception-v3 DCNN architecture, achieving 97.35%, 0.98 (98%), 

95.5%, 0.987 (97%), and 96.67%, 0.96 (96%) for DDSM, INbreast, and BCDR-F03 datasets, 
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respectively. However, when merging the three datasets to increase the training set the accuracy 

increased to 98.94% for Inception-v3 DCNN as well [289]. 

Moreover, in the year 2019, Ting et al. [290] presented an algorithm called convolutional 

neural network improvement in breast cancer classification (CNNI-BCC) to assist medical 

experts in the classification of breast cancer lesions through the implementation of DCNN. The 

proposed method classified the lesions of the MIAS dataset [81] giving 90.5%, 89.47%, 

90.71%, and 0.9 (90%) for the accuracy, sensitivity, specificity, and AUC, respectively [290]. 

Mechira et al. [291] used the AlexNet architecture to detect breast cancer from 8000 

mammogram images extracted from the DDSM dataset [82]. The authors achieved 89.23% for 

accuracy, 91.11% for sensitivity, and 87.75% for specificity. Li et al. [292] proposed a new 

modification for DenseNet architecture by replacing the first convolution layers with an 

Inception model naming it DenseNet-II. Additionally, the authors classified the lesions of 

mammography breast cancer using AlexNet, VGGNet, GoogleNet, and DenseNet-II, giving an 

average accuracy of 94.55%. The authors performed their experiments on a dataset collected 

from the First Hospital of Shanxi Medical University [292]. Mendel et al. [293] extracted and 

classified the features of 78 mammogram lesions using pre-trained DCNN VGG-19 and SVM, 

respectively. The AUC achieved was 0.81 (81%). Agarwal et al. [294] used the transfer 

learning technique to fine-tune the pre-trained DCNN architectures; VGG-16, ResNet-50, and 

Inception-v3 to classify breast tumours in mammograms. The DCNNs were trained on the 

public dataset CBIS-DDSM [86] and tested on the INbreast dataset [84]. The accuracy achieved 

was 83.69% for both VGG-16 and ResNet-50 DCNN, however, it increased to 84.16% for 

Inception-v3 DCNN [294]. Shamy and Dheeba [295] initialized the K-means Gaussian mixture 

model and DCNN for the detection and classification of breast cancer. The first stage was to 

identify the ROI. The second stage was ROI texture extraction and feature optimization with 

the optimized feature selection algorithm. Finally, the predicted anomalies were classified as 

malignant or benign through DCNN. The proposed method was evaluated using MIAS [81] 

dataset achieving 95.8% accuracy [295]. Lotter et al. [296] cropped the mammogram samples 

into patches and labelled them with ‘1’  and ‘0’ for with and without lesion, respectively. A 

large number of patches were generated and then trained using the ResNet-50 DCNN 

architecture. The detection model outputs bounding boxes with corresponding classification 

scores, then trained using end-to-end RetinaNet on the full image. They used 2D and 3D 

mammogram samples extracted from DDSM [82] and a dataset collected from the UK named 

the UK-based OPTIMAM [83] mammography  image database collected from many sites 
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[296].  McKinney et al. [297] constructed an AI system for breast cancer prediction consisting 

of an ensemble of three DL models including ReTinaNet, MobileNet-v2, and ResNet-50 

architectures each operating on a different level of analysis. Each model produces a cancer risk 

score between ‘0’ and ‘1’ for the entire mammography case. The authors evaluated the 

performance of the AI system using two large, clinically representative datasets from the UK 

and USA. They compared the predictions of the system to those made by readers in routine 

clinical practice and show that performance exceeds that of individual radiologists. These 

observations were confirmed by an independently conducted reader study [297].  

Moreover, in the year 2020, Alkhaleefah et al. [298] generated new training samples 

from the CBIS-DDSM [86] dataset by performing several augmentation techniques including 

rotation, flipping, zooming, changing brightness, and contrast. They classified the lesions with 

the fine-tuned DCNN VGG-19 using the transfer learning technique achieving accuracy and 

an AUC of 90.4% and 0.941 (94.1%), respectively [298]. Agarwal et al. [299] presented a mass 

detection framework based on the faster region-based convolutional neural network (Faster-

RCNN) and applied it to the OPTIMAM mammography image database [83]. The TPR 

obtained was 0.93 (93%). The authors used the transfer learning technique to fine-tune the 

Faster-RCNN model [299]. Wu et al. [300] labelled the breast images using two types of labels 

(1) breast-level labels indicating whether there is a benign or malignant finding in each breast 

and (2) pixel-level labels indicating the location of biopsies malignant and benign findings. 

Moreover, they cropped each image view to a fixed size. The authors proposed a deep multi-

view DCNN architecture based on four columns of ResNet-22 DCNN for training. Then they 

applied a sliding window to create two heat maps for each image containing an estimated 

probability of a benign or malignant finding for each pixel. The dataset used included 229,426 

digital screening mammography exams, approved from the institutional review board (IRB), 

and was compliant with the health insurance portability. The AUC achieved was 0.895 (89.5%) 

[300].  

Al-Antari et al. [301] used the YOLO detector to detect the breast lesion from the entire 

mammogram images extracted from DDSM and INbreast datasets. The lesions were classified 

using three fine-tuned end-to-end DCNN architectures ResNet-50, Inception ResNet-v2, and 

feedforward DCNN. The Inception ResNet-v2 DCNN achieved the highest accuracy of 97.5% 

and 95.32% for DDSM and INbreast datasets, respectively. However, the accuracies achieved 

for ResNet-50 were 95.83% and 92.55% for DDSM [86] and INbreast [84] datasets, 

respectively [301]. Arefan et al. [302] extracted the deep features using an end-to-end fine-
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tuned GoogleNet DCNN architecture and classify them using the LDA classifier. The proposed 

approach was evaluated on a dataset consisting of 226 patient mammograms approved by the 

IRB. The AUC achieved for the end-to-end GoogleNet and GoogleNet-LDA were 0.67 (67%) 

and 0.73 (73%), respectively when classifying normal and abnormal lesions [302]. Wessels 

and Van der Haar [303] used the fine-tuned VGG-16 and GoogleNet DCNN architectures 

classify mammogram samples extracted from DDSM [82] and MIAS [81] datasets. The 

accuracies achieved to classify the normal and abnormal lesions from the DDSM dataset were 

59.17% and 76.19% for VGG-16 and GoogleNet DCNN architectures, respectively. On the 

other hand, when distinguishing between the samples extracted from the MIAS dataset the 

accuracies increased yielding to 97.68% and 85.5% for VGG-16 and GoogleNet DCNN 

architectures, respectively [303]. Agnes et al. [304] proposed an end-to-end supervised DCNN 

approach named multiscale all convolutional neural networks (MA-CNN) for classifying 

mammogram images from the MIAS [81] dataset. MA-CNN model implements multilevel 

dilated convolutions that could extract both low-level and high-level contextual features from 

the image. The proposed system consists of two major phases: Context feature extraction and 

classification of mammograms into normal and abnormal patterns. The system achieved 

accuracy and an AUC of 96.47% and 0.99 (99%), respectively [304].  

Recently, Saber et al. [305] employed the transfer learning technique to fine-tuned the 

pre-trained DCNN architectures to extract the deep features and then classify them using the 

SVM classifier. They used the VGG-16, VGG-19, ResNet-50, Inception-v3, and Inception 

ResNet-v2 architectures achieving an accuracy of 98.96%, 95.84%, 97.11%, 98.15%, and 

94.23%, respectively [305]. The authors evaluated their results on the MIAS dataset [305]. 

Hamed et al. [306] used the ResNet, VGG, Xception, and Inception-v3 DCNNs to distinguish 

between benign and malignant tumours of the INbreast dataset [84]. The authors achieved 95% 

accuracy [306]. Malebary and Hashmi [307] proposed a novel technique based on k-mean 

clustering, Long Short-Term Memory (LSTM) network of Recurrent Neural Network (RNN), 

RF DT, and boosting techniques to classify the breast mass into benign, malignant, and normal 

[307]. The authors performed their experiments on the two datasets; DDSM and MIAS datasets 

achieving 96% and 95% for accuracy, respectively [307].  Table 3.5 summarizes the recent DL 

techniques using individual deep features of breast cancer classifications in mammograms. 

Moreover, the deep learning methods for individual breast cancer classification features were 

mentioned as in [308]–[317] and [318]–[325].  
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3.4.2.2 Classification of Deep Features Fusion in Mammogram Images 

Recently, several researchers led to fusing the deep features to improve the classification 

accuracy and this was proved in many research papers [326]–[328]. Wang et al. [329] fused 

the deep features with morphological features, texture features, and density features; then 

classify them using an ELM classifier. The experiments were performed on 400 mammogram 

images extracted from a private hospital achieving accuracy and an AUC of 86.5% and 0.923 

(92.3%), respectively. Khan et al. [330] proposed a multi-view feature fusion (MVFF) based 

CAD system using a feature fusion technique of four views for the classification of 

mammograms. The authors performed their experiments on the CBIS-DDSM [86] and MIAS 

[81] datasets.  The deep features were extracted and fused from four fine-tuned DCNN 

architectures VGG-16, VGG-19, GoogleNet, and ResNet-50. The fused deep features were 

classified according to a three stages strategy for classifications: (1) classification of the 

mammogram (normal/abnormal), (2) classification of abnormality (mass/calcification), and (3) 

classification of pathology (benign/malignant). For the first classification stage the accuracy, 

AUC, sensitivity, and specificity achieved were 96.66%, 0.934 (93.4%), 96.31%, and 90.47%, 

respectively. On the other hand, the accuracy, AUC, sensitivity, and specificity for the second 

and third stages classifications achieved 92.29% and 80.56%, 0.923 (92.3%) and 0.769 

(76.9%), 93.37% and 81.82%, 91.17% and 72.02%, respectively [330]. Song et al. [331] 

proposed a new CAD system to classify three classes, normal, benign, and malignant samples 

of the DDSM dataset [82]. The authors fused the deep features of GoogleNet, Inception-v2, 

and Inception with n × n convolution with handcrafted features. The handcrafted features 

included scoring features, GLCM, and histogram of oriented gradient (HOG) features. The 

features were classified by SVM and XGBoost classifiers.  The authors first classified the end-

to-end DCNN features achieving an accuracy of 82.84%; however, when classifying the fused 

features the accuracy increased reaching 92.8%. The results achieved by the XGBoost proved 

to be higher than those achieved by the SVM classifier [331].  

Zhang et al. [332] proposed a simple and effective model called DE-Ada* which is an 

organic integration of multi-feature fusions, for breast mass classification. DE-Ada* consists 

of the following state-of-the-art technologies: “D” represents the discriminant correlation 

analysis (DCA) algorithm, “E” represents the modified effective range-based gene selection 

(ERGS) algorithm, “Ada” represents the well-known adaptive boosting (AdaBoosting) 

algorithm, and “*” represents two ensemble learning strategies. The authors fused the image 

features including Gist, the scale-invariant feature transform (SIFT), the HOG, and the local 
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binary pattern (LBP) features, with the deep features extracted from the fine-tuned DenseNet, 

VGGNet, and ResNet DCNN architectures. The authors used single and MCS classifiers to 

classify the fused features such as k-NN, SVM, DT, NB, AdaBoosting, and XGBoost. The 

experiments were performed on the CBIS-DDSM [86] and INbreast [84] datasets, achieving 

accuracies of 90.91% and 87.93%, respectively [332].  

Yu et al. [333] designed a framework to fuse the deep features of the fine-tuned VGG-

16 and VGG-19 DCNN architectures. The authors classified the lesions of the MIAS [81] 

dataset achieving an accuracy of 89.06%. Arora et al. [334] employed the transfer learning 

technique to extract and fuse the deep features of AlexNet, VGG-16, GoogleNet, ResNet-18, 

and Inception ResNet DCNN architectures from the CBIS-DDSM [86] dataset. The deep 

features were classified using ANN classifier achieving equal accuracy and an AUC of 0.88 

(88%) [334]. Maqsood et al. [335] proposed a framework CAD system to identify breast cancer 

in mammogram. They extracted the deep features by determining the best layers which enhance 

the classification accuracy of the following DCNNs architectures: Inception ResNet-v2, 

Inception-v3, VGG-16, VGG-19, GoogleNet, ResNet-18, ResNet-50, and ResNet-101. Then 

they fused all the extracted feature vectors using the convolutional sparse image decomposition 

approach [335]. The proposed approach employed on DDSM, INbreast, and MIAS datasets 

and attained an average accuracy of 97.49% [335]. Zahoor et al. [336] extracted and fused the 

deep features of the fine-tuned architectures MobileNet-v2 and NasNet Mobile. They 

optimized the fused deep features using the modified entropy whale optimization algorithm. 

The authors tested their proposed technique on the three publicly datasets: INbreast, MIAS, 

and CBISDDSM, achieving an accuracy of 99.7%, 99.8%, and 93.8%, respectively [336].  

Table 3.6 summarizes the recent DL techniques using deep features fusion for breast cancer 

classifications in mammograms. Furthermore, DCNN can be used to classify tumours in other 

organs such as blood [337], liver [338], brain [339], etc. 

3.5 Summary 
With the advancement in digital computing technology, many researchers have 

combined image processing and pattern recognition to develop CAD systems to assist 

radiologists in the diagnosis process. Thus, in this chapter, the five steps used to build-up a 

CAD system were discussed. Firstly, the images go through the enhancement step to improve 

their contrast and suppress the noise. Therefore, some image enhancement techniques were 

presented.  Moreover, in order to enhance the performance of the CAD system; data 
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augmentation was applied to increase the data, thus, a brief description of data augmentation 

was given. Secondly, the ROI was determined from the image. Then, some features were 

extracted from the ROI to remove irrelevant information from it. Afterward, these features 

were classified according to their type. Finally, the evaluation of the diagnostic test is 

immensely important in modern medicine for confirming not only the presence of disease but 

to rule out the disease in healthy samples. Therefore, some scores such as accuracy, AUC, 

sensitivity, specificity, precision, and F1-score were defined to assess a classifier.  

DL had been successfully used in several AI applications such as computer vision and 

pattern recognition. Recently, DCNN had gained attention in the medical area and especially 

for classifying mammography breast cancer. Therefore, in this work, DCNN was used as a 

feature extractor and classification. The structure of the DCNN was discussed, which consists 

of convolutional, pooling, and fully connected layers. Furthermore, the transfer learning 

technique was introduced to be able to use DCNN architectures in various applications. Finally, 

this chapter presented the results of the state-of-the-art of the traditional ML and DCNNs 

techniques for breast cancer classification. Besides, this chapter presented and discussed the 

available mammogram breast datasets that were used in the state-of-the-art techniques.  
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Table 3.5: A comparative view of the classification results of breast cancer using individual deep features. 

 

Reference  Year Feature Extraction Classification Dataset Result 

[272] 2016 DCNN BCDR-F03 Accuracy = 86% 
[273] 2016 DCNN SVM INbreast Sensitivity = 98.44% 
[274] 2016 AlexNet  DDSM Accuracy = 66% 
[275] 2016 GoogleNet DDSM Accuracy = 85%, AUC = 0.91  
[276]   2017 CNN-DW-CNN-CT SVM IRMA Accuracy = 81.83% - 83.74% 

[277] 2017 DCNN DDSM 
INbreast AUC = 0.9 - 0.7  

[278] 2017 AlexNet DCNN INbreast Accuracy = 84% 
AlexNet DCNN RF DT Accuracy = 91% 

[279] 2017 DCNN University of 
Kentucky AUC = 0.73  

[280] 2017 ResNet  INbreast AUC = 0.8  

[281] 2017 DCNN DDSM 
INbreast AUC = 0.91- 0.96  

[282] 2017 AlexNet  DDSM AUC = 0.8, Sensitivity = 72%  

[283] 2017 DCNN FCRN MIAS 
BCDR-F03 

Accuracy = 99% 
AUC = 0.9815  

[284] 2017 DCNN DDSM Accuracy = 93.5% 
[285] 2018 DCNN INbreast Accuracy = 80%, AUC = 0.78  
[286] 2018 AlexNet, GoogleNet, VGGNet, ResNet  CBIS-DDSM Accuracy = 92.53% 

[287] 2018 R-CNN 

INbreast 
Digital 

Mammography 
Dream 

Challenge 

AUC = 0.95 - 0.85  

[288] 2018 DCNN INbreast Accuracy = 98.96% 

[289] 2018 VGG-16, ResNet-50, Inception-v3  
DDSM, 

INbreast,  
BCDR-F03 

Accuracy = 98.94% 

[290] 2019 CNNI-BCC MIAS Accuracy = 90.5%, AUC = 0.9  
[291] 2019 AlexNet  DDSM Accuracy = 89.23% 

[292] 2019 DesNet-II,  AlexNet, VGGNet, 
GoogleNet  

First Hospital of 
Shanxi Medical 

University 
Accuracy = 94.55% 

[293] 2019 VGG-19 SVM Private dataset AUC = 0.81  

[294] 2019 VGG-16, ResNet-50, and Inception-v3 CBIS-DDSM 
INbreast Accuracy = 84.16% 

[295] 2019 DCNN MIAS Accuracy = 95.8% 
[298] 2020 VGG-19 CBIS-DDSM Accuracy = 90.4%, AUC = 0.941  
[299] 2020 Faster-RCNN OPTIMAM TPR = 93% 
[300] 2020 ResNet-22 Private dataset AUC = 0.895  

[301] 2020 ResNet-50 – Inception ResNet-v2  DDSM 
INbreast 

Accuracy = 95.83% -  92.55% 
Accuracy = 97.5% - 95.32% 

[302] 2020 GoogleNet Private dataset AUC = 0.67 
GoogleNet  LDA AUC = 0.73 

[303] 2020 VGG-16 and GoogleNet DCNNs DDSM 
MIAS 

Accuracy = 59.17% - 97.68% 
Accuracy = 76.19% - 85.5% 

[304] 2020 MA-CNN MIAS Accuracy = 96.47%   
AUC = 0.99  

[305] 2021 
VGG-16, VGG-19, 

ResNet-50, Inception-
v3, Inception ResNet-v2 

SVM MIAS Accuracy =  98.96%, 95.84%, 
97.11%, 98.15%, and 94.23% 

[306] 2021 ResNet, VGG, Xception, and Inception-v3 INbreast  Accuracy = 95% 
[307] 2021 LSTM of RNN, RF DT, Boosting  DDSM – MIAS  Accuracy = 96% - 95%  
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Table 3.6: A comparative view of the classification results of breast cancer using deep feature fusion. 

 

  

Reference  Year Feature Extraction Classification Dataset Result 

[329] 2019 Fused deep features with 
morphological features ELM Private dataset Accuracy = 86.5%, AUC = 0.923 

[330] 2019 Deep features fusion of VGG-16, VGG-19, 
GoogleNet, ResNet-50 

CBIS-DDSM 
MIAS Accuracy = 96.6%, AUC = 0.934 

[331] 2020 GoogleNet 
Inception-v2 XGBoost DDSM Accuracy = 92.8% 

[332] 2020 

The fusion of Gist, SIFT, 
HOG, LBP, VGG, 

ResNet, and DenseNet 
features 

SVM 
XGBoost 

NB 
k-NN 
DT 

AdaBoosting 

CBIS-DDSM 
INbreast Accuracy = 90.91% - 87.93% 

[333] 2020 The fusion of VGG-16 and VGG-19 MIAS Accuracy = 89.06% 

[334] 2020 

Deep features fusion of 
AlexNet, VGG-16, 

GoogleNet, ResNet-18, 
Inception ResNet 

ANN CBIS-DDSM AUC = 0.88 

[335] 2022 

Deep features fusion of Inception ResNet-
v2, Inception-v3, VGG-16, VGG-19, 
GoogleNet, ResNet-18, ResNet-50, 

ResNet-101 

DDSM 
INbreast 
MIAS 

Accuracy =  97.49% 

[336] 2022 Deep features fusion of Mobilenet-v2 and 
NasNet Mobile 

INbreast 
MIAS 

CBISDDSM 

Accuracy = 99.7%, 99.8%, 
93.8% 
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Chapter 4  

AlexNet-SVM: A Framework for Breast Cancer 
Segmentation and Classification  

4.1 Introduction 
In this chapter, a new methodology for classifying benign and malignant mass tumours 

using DL and some segmentation techniques are introduced. Two segmentation approaches are 

used; the first one involves determining the ROI using circular contours, while the second uses 

the adaptive threshold method. The AlexNet DCNN is used as a feature extractor and a 

classifier. However, it is fine-tuned to classify two classes instead of 1000 classes. Moreover, 

the last FC layer of the DCNN is connected to SVM to obtain better classification results. The 

proposed framework was trained and tested on the DDSM [82] and the CBIS-DDSM [86] 

datasets.  

4.2 Methodology  
As stated in Chapter 3, the CAD system consists of five main modules, (1) image 

enhancement, (2) image segmentation, (3) feature extraction, (4) feature classification, and 

finally, (5) evaluating the classifier. Consequently, for the proposed framework, the images are 

enhanced using the CLAHE method as shown in Figure 4.1. The ROI is then extracted from 

the original mammogram image by circular contours and adaptive threshold method. As the 

tumours in the DDSM [82] dataset are labelled with a red contour as illustrated in Figure 4.2-

(a). Accordingly, these contours are determined by examining the pixel values of the tumour 

and use them to extract the ROI as shown in Figure 4.2-(b). However, for the adaptive threshold 

method, the first step to extract the ROI is to determine the tumour region by a threshold value, 

which is a value determined with respect to the red colour pixel. After some trials, the threshold 

was set to 76 for all the images regardless of the size of the tumour. Then, the biggest area 

within this threshold along the image was determined and the tumour was cropped as shown in 

Figure 4.2-(c).  
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                                                 (a)                                        (b)  

Figure 4.1: An example of image enhancement; (a) Original malignant mass case extracted from DDSM [82] 
dataset and (b) enhanced image using CLAHE method. 

 

                          (a)                                                     (b)                                                       (c) 
Figure 4.2: The image segmentation techniques; (a) Original enhanced malignant mass case extracted from DDSM 
[82], (b) enhanced ROI extracted using circular contours, and (c) enhanced ROI extracted by the adaptive 
threshold method. 

The steps for the adaptive threshold method can be summarised as follows: 

1) Convert the original mammogram greyscale image into a binary image using the 

adaptive threshold technique. 

2) Binary image objects are labelled and the number of pixels is counted.  

All binary objects are removed except for the largest one, which is the tumour with 

respect to the threshold. The largest area is enclosed within the red contour labelled 

around the tumour. 

3) After the algorithm checks all pixels in the binary image, the largest area pixels within 

the threshold are set to “1”, otherwise all other pixels are set to “0.” 

4) The resulting binary image is multiplied with the original mammogram image to get 

the final image without taking into consideration the rest of the breast region or any 

other artefacts.  
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Figure 4.3 : The proposed framework. 
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In the feature extraction step, the features are extracted using a fine-tuned AlexNet 

DCNN architecture. This is performed by replacing the last FC layer with a new layer for the 

classification of two classes, benign and malignant masses. The proposed framework uses two 

classifiers fine-tuned AlexNet DCNN and SVM. The SVM is used because it achieved high 

classification rates in the breast cancer classification problem. The proposed framework is 

shown in Figure 4.3.  

4.3 Experimental Setup  
All the experiments were carried out using MATLAB R2018a with an academic license 

provided by the University of Strathclyde. Experiments were applied to the DDSM [82] and 

the CBIS-DDSM [86] mammogram datasets.  

4.3.1 Augmentation 
Due to the insufficient amount of samples and the classifiers perform well, giving high 

accuracy rates when training on a huge number of samples. Therefore, data augmentation 

technique and especially the rotation form was applied to the samples. Each original image was 

rotated by four angles, which are 0, 90, 180, and 270 degrees. Accordingly, each original image 

was augmented to four images.  

4.3.2 Parameter Setting    
To train the fine-tuned AlexNet DCNN, numerous network hyper-parameters were tuned 

whereas others were kept unchanged from their default values as the performance of AlexNet 

was insensitive to the parameter selection. These network hyper-parameters were the mini-

batch size, the number of epochs, the initial learning rate, and the validation frequency. The 

maximum number of epochs was set to 20, however, to avoid overfitting an early stopping 

criteria was set in which epoch number 12 proved to be the best epoch. Moreover, the L2-

regularization or the weight decay was set to 0.0005. The L2-regularization was considered the 

most common type of regularization and it was used to avoid overfitting. The mini-batch size 

was chosen to be 10, which was selected to fits the memory of the GPU. In addition, the initial 

learning rate was chosen to be 10-5, which achieved the highest classification accuracy while 

lessening the training time. Additionally, the validation frequency was set to 128. These 

configurations were to confirm that the parameters were fine-tuned for the diagnosis of medical 

data. The optimization algorithm used was the stochastic gradient descent with 

momentum (SGDM) [15] learning algorithm.  
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4.4 Results and Discussions  
This framework presented two approaches for segmentation techniques to classify mass 

tumours in a mammogram using DCNN. The input layer of the AlexNet architecture requires 

that the size of the image is 227 × 227 × 3. Therefore, there was a pre-processing step to convert 

all the input images regardless of their sizes to the size required by the AlexNet. The features 

went through the DCNN and SVM for classification, in which the last FC layer was connected 

to SVM with different kernel functions to obtain better results. When using the end-to-end 

DCNN seventy percent of the images were used for training and the rest for testing and 

validation as this is the common ratio used in the classification problem. The number of 

training, testing, and validation samples for each segmentation technique is shown in Table 

4.1. However, when classifying the deep features using SVM five fold cross-validation was 

used giving a ratio of 80%:20% for training and testing samples. This means that SVM with 

different kernels classifiers were taught with four folds and verified by the remaining fold. 

Thus, the model was taught five times and the testing classification accuracy was calculated 

for each time then averaged. The results computed for the two used datasets will be presented 

and discussed in the following sub-sections.  

4.4.1 DDSM Dataset 
A subset from the DDSM was extracted to apply the proposed methods. For the first 

segmentation technique; the ROI was cropped using the circular contour method that was 

already labelled with a red contour.  The accuracy of the new-trained end-to-end AlexNet 

DCNN was only 71.01%. Whereas, when classifying the extracted deep features using SVM 

the results were better. The accuracy with the linear kernel function was 78.8%, which was the 

highest value compared to the other kernels. Moreover, the AUC, sensitivity, specificity, 

precision, and F1-score reached 0.88 (88%), 0.770 (77%), 0.810 (81%), 0.822 (82.22%), and 

0.796 (79.6%), respectively, which proved to be the highest values compared to the other 

kernels too, as it was obvious from Table 4.2. Figure 4.4-(a) and Figure 4.4-(b) demonstrate 

the SVM classification accuracy between benign and malignant tumours samples and the ROC 

curve computed in this case.  

Table 4.1: The number of training, testing, and validation samples for all the datasets used.  

 Training Testing Validation Total  

DDSM (ROI cropped using circular contour)  1580 338 338 2256 
DDSM (ROI using adaptive threshold)  1288 276 276 1840 
CBIS-DDSM  3690 791 791 5272 
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Furthermore, for the second segmentation technique; the adaptive threshold was 

determined using the red contour surrounding the tumour area. The accuracy of the end-to-end 

DCNN reached only 69.2%. However, the accuracy of the SVM classifier with linear kernel 

function, increased to 81.2% with AUC equals 0.880 (88%). This was clear in Figure 4.4-(c) 

and in the computed ROC curve shown in Figure 4.4-(d). The SVM with linear kernel function 

revealed to be the highest values compared to the others as well as clear in Table 4.3. Moreover, 

the sensitivity, specificity, precision, and F1-score achieved 0.783 (78.3%), 0.845 (84.5%), 

0.860 (86%), and 0.820 (82%), respectively. The deep features extracted from the DCNN is 

visualised in Figure 4.5. In this figure, the features from the first and fifth convolutional layers 

were visualised as an example.  

Therefore, for the DDSM samples, the accuracy of the end-to-end new-trained AlexNet 

DCNN architecture for the first segmentation method was higher than that of the second 

method. Additionally, when classifying the benign and malignant masses features extracted 

from AlexNet DCNN by SVM, the accuracy for the adaptive threshold method was higher than 

the cropped ROI using the circular contour method. However, the SVM with linear kernel 

function achieved the highest accuracy for both segmentation techniques compared to the other 

kernel functions. Furthermore, the AUC for both segmentation methods were the same. One 

can easily notice this from the ROC curves shown in Figure 4.4-(b) and Figure 4.4-(d) of the 

first and second segmentation techniques, respectively. On the other hand, when calculating 

the sensitivity, specificity, precision, and F1-score for each SVM kernel function for both 

segmentation techniques, it was proved that the kernel with the highest accuracy has all the 

other scores high as well as it was clear in Table 4.2 and Table 4.3. Finally, all the results 

obtained for the classification of benign and malignant masses for both segmentation 

techniques for the DDSM dataset were summarised in Table 4.4. 
Table 4.2: The classification scores of SVM with different kernel functions for cropping the ROI using circular 
contour for the DDSM dataset. 

SVM Kernel 
Functions 

Cropping ROI using Circular Contour 
Accuracy 

(Std) 
AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

Linear 78.8% 
(0.004) 

0.880 
(0.001) 

0.770 
(0.01) 

0.810  
(0.009) 

0.822  
(0.014) 

0.796 
(0.004) 

Quadratic 77% 
(0.01) 

0.857 
(0.011) 

0.765  
(0.016) 

0.787  
(0.016) 

0.796  
(0.017) 

0.779  
(0.013) 

Cubic  77.6% 
(0.004) 

0.860 
(0.001) 

0.767  
(0.003) 

0.789  
(0.007) 

0.796  
(0.009) 

0.782 
(0.005) 

Medium Gaussian 78.2% 
(0.011) 

0.874 
(0.009) 

0.772  
(0.011) 

0.795  
(0.009) 

0.802  
(0.008) 

0.787 
(0.009) 

Coarse Gaussian 75.8 % 
(0.02) 

0.850  
(0.017) 

0.729  
(0.03) 

0.802  
(0.006) 

0.830 
(0.014) 

0.776 
(0.013) 
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Table 4.3: The scores of SVM with different kernel functions for the adaptive threshold method for the DDSM 
dataset. 

 

 
Figure 4.4: The SVM classification between benign and malignant masses and the computed ROC for both 
segmentation techniques for the DDSM dataset. 

(a) The SVM classification between benign and malignant masses segmented by the circular contour method, (b) The computed ROC for the 
circular contour method, (c) SVM classification between benign and malignant masses segmented by the adaptive threshold method, and (d) 
The computed ROC for the adaptive threshold method. 

SVM Kernel 
Functions 

Adaptive Threshold Segmentation 

Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

Linear 81.2% 
(0.005) 

0.880 
(0.005) 

0.783 
(0.007) 

0.845 
(0.007) 

0.860 
(0.007) 

0.820 
(0.005) 

Quadratic 78.4% 
(0.008) 

0.854 
(0.009) 

0.771 
(0.025) 

0.81 
(0.019) 

0.823 
(0.022) 

0.793 
(0.013) 

Cubic  77.4% 
(0.004) 

0.839 
(0.008) 

0.762 
(0.006) 

0.786 
(0.006) 

0.795 
(0.009) 

0.779 
(0.005) 

Medium Gaussian 78.7% 
(0.008) 

0.858 
(0.007) 

0.762 
(0.007) 

0.813 
(0.016) 

0.828 
(0.02) 

0.794 
(0.01) 

Coarse Gaussian 78.2% 
(0.014) 

0.866 
(0.013) 

0.745 
(0.014) 

0.826 
(0.015) 

0.850 
(0.013) 

0.795 
(0.013) 
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                    (a)                                                 (b)                                                                 (c) 

Figure 4.5: Visualising the deep features of the AlexNet DCNN segmented by the adaptive threshold method.  

(a) Benign ROI image extracted from DDSM dataset, (b) the deep features from the first convolutional layer, and (c) the deep features from 
the fifth convolutional layer. 

Table 4.4: The summary of the results obtained to classify benign and malignant masses for the DDSM dataset. 

 Segmentation Techniques 

Cropping ROI using Circular Contour Adaptive Threshold  
Trained DCNN Accuracy 71.01% 69.2% 
SVM Accuracy 78.8% 81.2% 
AUC 0.880 0.880 
Sensitivity 0.770 0.783 
Specificity 0.810 0.845 
Precision 0.820 0.860 
F1-score 0.796 0.820 

4.4.2 CBIS-DDSM Dataset  
For this dataset, the samples were only enhanced using CLAHE, this was because the 

samples of this dataset were already segmented. The accuracy achieved for the end-to-end fine-

tuned AlexNet DCNN became 73.6%, which was higher than the DDSM samples. Then the 

deep features were extracted by AlexNet DCNN as visualised in Figure 4.6.  In this figure, the 

first and second convolutional layers were visualised as an example. Additionally, when 

classifying the deep features extracted from the DCNN using the SVM classifier the accuracy 

reached 87.2% using the medium Gaussian kernel function as illustrated in Table 4.5. Besides, 

the AUC was 0.94 (94%) as shown in the ROC curve in Figure 4.7. This time the SVM with 

the Medium Gaussian achieved the highest values for all the scores compared to other kernel 

functions as demonstrated in Table 4.5. The sensitivity, specificity, precision, and F1-score 

reached 0.863 (86.3%), 0.878 (87.8%), 0.880 (88%), and 0.872 (87.2%), respectively. As it 

was obvious that all the values achieved for the CBIS-DDSM were higher than that of the 

DDSM dataset, this was because the data of the CBIS-DDSM were already segmented.  



67 
 

 
                          (a)                                                 (b)                                                                 (c) 

Figure 4.6: Visualising the deep features of the AlexNet DCNN for the CBIS-DDSM dataset.  

(a) Malignant ROI image, (b) the deep features from the first convolutional layer, and (c) the deep features from the second 
convolutional layer. 

Table 4.5: The evaluation scores calculated for SVM with different kernel functions for the CBIS-DDSM dataset.  

 
Figure 4.7: The computed ROC curve for the CBIS-DDSM dataset. 

SVM Kernel Functions 
CBIS-DDSM Dataset 

Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

Linear 86.3% 
(0.004) 

0.940 
(0.001) 

0.854 
(0.002) 

0.872 
(0.005) 

0.874 
(0.006) 

0.865 
(0.004) 

Quadratic 84.1% 
(0.012) 

0.914 
(0.015) 

0.842 
(0.013) 

0.85 
(0.013) 

0.851 
(0.012) 

0.846 
(0.012) 

Cubic  83% 
(0.014) 

0.902 
(0.014) 

0.830 
(0.013) 

0.831 
(0.014) 

0.831 
(0.014) 

0.831 
(0.014) 

Medium Gaussian 87.2% 
(0.004) 

0.940 
(0.001) 

0.863 
(0.001) 

0.878 
(0.006) 

0.880 
(0.007) 

0.872 
(0.004) 

Coarse Gaussian 86.2% 
(0.003) 

0.937 
(0.005) 

0.860 
(0.005) 

0.877 
(0.001) 

0.880 
(0.001) 

0.868 
(0.003) 
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Table 4.6: The ANOVA test details for the different kernel functions of the SVM classifier for the circular contour 
method of the DDSM dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.00535 4 0.00134 11.09 < 0.001 

Error 0.00543 45 0.0012   
Total 0.01079 49    

Table 4.7: The ANOVA test details for the different kernel functions of the SVM classifier for the adaptive 
threshold method of the DDSM dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.00848 4 0.00212 30.54 < 0.001 

Error 0.00312 45 0.00007   
Total 0.0116 49    

Table 4.8: The ANOVA test details for the different kernel functions of the SVM classifier for the CBIS-DDSM 
dataset.    

 Source of Variation SS df MS F p-Value 
Columns 0.01159 4 0.0029 41.92 < 0.001 

Error 0.00311 45 0.00007   
Total 0.01471 49    

To test and validate the statistical significance of the results, a one-way analysis of 

variance (ANOVA) test was performed on all the results obtained from the repeated five fold 

cross-validation process. The null hypothesis Ho for all classification was that the mean 

accuracies of all SVM kernel classifiers were the same. This test was performed on all the 

accuracy results of the different kernels of the SVM classifier to test the statistical significance 

between them. Table 4.6 and Table 4.7 show the ANOVA test for the first and second 

segmentation techniques for the DDSM dataset, respectively. On the other hand, Table 4.8 

shows the ANOVA for the accuracies obtained from different SVM kernels for the CBIS-

DDSM dataset. It can be observed from Tables 4.6–4.8 that the p-values achieved were lower 

than α, where α = 0.05. Therefore, it can be concluded that there was a statistically significant 

difference between the accuracies of the classifiers. 

Finally, the proposed framework has been compared with other state-of-the-art that have 

the same conditions to prove the efficiency of the proposed method as discussed in Chapter 3. 

Regarding the DCNN AlexNet architectures, the results have shown that the framework 

proposed recorded the highest AUC, which was equal to 0.94 (94%) for the CBIS-DDSM 

dataset compared to Huynah et al. [159] and Jiang et al. [163]. The former achieved AUC 0.81 

(81%) while the latter achieved 0.83 (83%). Huynah et al. [159] applied their experiments on 

219 breast lesions collected from the University of Chicago medical center. The AlexNet with 

the transfer learning method was also used. However, Jiang et al. [163] used the BCDR-F03 

dataset. They performed their tests on 736 mass cases. The ROI was extracted using the Otsu 
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segmentation algorithm. Besides, the transfer learning was used to classify two classes instead 

of 1000 like in this proposed framework.   

4.5 Summary 
The goal of this work was to classify benign and malignant lesions in mammograms by 

proposing a new framework. Two segmentation techniques were suggested and applied only 

to the DDSM dataset. However, for the CBIS-DDSM dataset, the data provided was already 

segmented so, therefore, no need for the segmentation step. 

In the first technique, the ROI was cropped from the original image using circular 

contour. This was because the tumours in the DDSM dataset were labelled with a red contour. 

Whereas, in the second technique, the adaptive threshold method was used by setting a 

threshold, which was found to be equal to 76, and then determining the largest area including 

this threshold. In the feature extraction step, the DCNN was used. The AlexNet was retrained 

to distinguish between two classes and its parameters were changed to classify medical images. 

The accuracy of the end-to-end DCNN of the circular contour method was higher than 

that of the adaptive threshold method by 1.8% using the DDSM dataset. To achieve better 

accuracy, the last fully connected layer in the DCNN was replaced by SVM. When comparing 

the two segmentation techniques for the DDSM dataset it was found that the SVM with linear 

kernel function for the adaptive threshold method provided promising results. Moreover, when 

using the samples of the CBIS-DDSM dataset, the accuracy of the end-to-end DCNN process 

increased to those of the DDSM samples. In addition, the accuracy and AUC of the extracted 

features classified by the SVM with medium Gaussian kernel function increased as well.   
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Chapter 5  

Deep Features Fusion Framework for Breast Cancer 
Classification  

5.1 Introduction 
The novelty of this chapter lies in the design of an efficient framework based on the 

extraction, fusion, and classification of different deep features using DL techniques. This 

framework is evaluated using two datasets, CBIS-DDSM [86] and MIAS [81]. The samples of 

the datasets are segmented; hence segmenting the ROI as performed during the preprocessing 

for the method in Chapter 4 is no longer required. Several papers in the literature employed 

individual DCNNs to classify breast cancer in their CAD systems [274], [275], [286], [291], 

[293], [294], and [301] where the classification accuracies between 68% – 94% were not 

sufficient for a reliable and powerful CAD system. However, other papers proposed the use of 

feature fusion from several DCNNs of different architectures [257], [330], [331]. Although the 

fusion techniques could improve the accuracy to 92.8% – 97.67%, however, the combination 

of deep features contributed the most to the improved performance was not analysed. 

Moreover, they did not investigate how to reduce the computational cost of the CAD system. 

To tackle these drawbacks, a framework is proposed to explore the fusion of various features 

extracted from different DCNNs for choosing the best combination of the features, which 

improves the accuracy of the framework. Moreover, the proposed framework used the principal 

component analysis (PCA) to reduce the feature dimension as well as the associated 

computational cost. These procedures are made through four different scenarios as discussed 

in the following sections.  

5.2 Methodology 
First, the images are enhanced using the CLAHE enhancement technique and the ROIs 

are determined. The samples of the datasets used were already segmented using the information 

provided by the dataset. Then a framework is constructed using four different scenarios. For 

the first scenario, five end-to-end pre-trained DCNNs are used; AlexNet [23], GoogleNet [24], 

the ResNet-18, ResNet-50, and ResNet-101 [26]. The input layer of each of the five DCNN 

architectures constructed requires a specific image size. For example, the input layer of the 

GoogleNet architecture needed was 224 × 224 × 3. Thus, a pre-processing step is required to 
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change all image sizes to the size required for each DCNN architecture. Afterward, in the 

second scenario, the deep features of the DCNNs are extracted and fed to an SVM classifier 

with different kernel functions. This is performed to test if classifying the deep features with 

another classifier would enhance the accuracy of the end-to-end DCNN. In the third scenario, 

four sets of deep features are generated. These features include a different combination of deep 

features extracted from the five DCNNs architecture. This scenario is implemented to 

investigate if fusing deep features could enhance the accuracy of the SVM classifiers. It also 

selects the best combination of deep features, which improves the classification results. Deep 

feature fusion leads to a large feature space, therefore, in the fourth scenario, the effect of using 

a feature reduction method such as PCA is tested. PCA is applied to the feature sets to remove 

the irrelevant features and reduce the feature vector length. Additionally, the PCA reduces the 

computational cost as well as. The number of principal components is chosen in a sequential 

forward strategy. Figure 5.1 shows the proposed framework. 

The PCA technique reduces the number of observed variables to a small number of 

principal components that still contain most of the information of the large set [340]. PCA is 

performed using the variance-covariance structure of a set of variables through linear 

combinations. It is used when variables are highly correlated, and it is suitable for data sets in 

multiple dimensions [340]. PCA provides a powerful tool for data analysis and pattern 

recognition. It is used frequently in signal and image processing [340]. The PCA technique can 

be summarised in the following steps: (1) subtract the mean from each of the data dimensions, 

(2) calculate the covariance matrix, (3) calculate the eigenvectors and the eigenvalues of the 

covariance matrix, (4) choose the components and form a feature vector, and (5) generate the 

new dataset [340].  
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Figure 5.1: The proposed framework.  
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Figure 5.2:  The fifth feature values versus the sixth feature values for the first 10 samples of the CBIS-DDSM 
images and their rotated versions for the ResNet-18 DCNN architecture features. 

5.3 Experimental Setup 
All the experiments were performed on the Intel® CORE™ I7 processor and NVIDIA 

GeForce 940MX, Windows 10, 64 bit with 8 GB of random-access memory (RAM). The 

software used to implement the experiments was MATLAB R2018b with an academic license 

provided by the University of Strathclyde.  The experiments were applied on the CBIS-DDSM 

[86] and the MIAS [81] datasets to test the performance of the proposed framework. Moreover, 

the transfer learning technique is performed on all the DCNNs architectures to classify two 

classes instead of 1000. 

5.3.1 Augmentation 
Due to the lack of mammogram images, therefore, it was necessary to perform data 

augmentation techniques. The rotation method was applied to the training samples to increase 

the data.  This was performed by rotating each original image by four angles (0, 90, 180, and 

270 degrees). Therefore, each image was augmented to four images.  The two-dimensional 

scatter plot based on the feature vectors for benign and malignant samples of the CBIS-DDSM 

breast cancer dataset is shown in Figure 5.2. This figure represents the fifth feature versus the 

sixth feature as an example for the features of ResNet-18 DCNN architecture for the first 10 

samples of the CBIS-DDSM dataset images and their orientations with a total of 40 images for 

each class.  
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5.3.2 Parameter Setting   
For training the five DCNNs, some parameters were adjusted while others were not 

altered from their default values as the adjustment of those parameters did not affect the DCNN 

performance. The hyper-parameters adjusted in the DCNNs were the minibatch size which was 

the number of samples included in each sub-epoch weight change and was chosen to be 10. 

This number was chosen to fit the memory of the GPU, as increasing it lead to an “out of 

memory” problem and the optimisation problem became numerically untractable. The learning 

rate defined as the stride size at every iteration whilst turning on the way to a minimum of a 

loss function. It was selected to be 10-5, which achieved the highest accuracy while minimizing 

the training time. It is well-known that increasing the number of epochs increases the training 

time. The sum of epochs was modified to 10 as rising this number did not enhance the 

performance. The L2-regularization was set to 0.0005 to avoid the overfitting. These 

arrangements were to approve that the parameters were modified for classifying medical breast 

cancer mammogram images. The optimization algorithm SGDM was applied as well as in the 

framework presented in Chapter 4.   

5.4 Results and Discussions 
The proposed framework performs four scenarios. For the first scenario, seventy percent 

of the images were used for training and the rest for testing and validation, as this was the 

common ratio used in the classification problem. Although, for the rest of the scenario, the ratio 

of the training and testing was 80%:20%. This was because these scenarios were validated 

using five fold cross-validation. This means that the classifiers were trained with four folds and 

confirmed by the remaining fold. Consequently, the scenarios were taught five times and the 

testing classification accuracy was calculated for each time then averaged. 

For the CBIS-DDSM dataset benign and malignant mass samples from the two 

mammogram views: CC and MLO were extracted and used in the four scenarios of the CAD 

system. Images of this dataset were already segmented and the breast cancer lesion was shown. 

Therefore, they do not need to be segmented. The samples were only enhanced using the 

CLAHE method. On the other hand, for the MIAS dataset, the number of samples for normal, 

benign, and malignant was not normalized. Therefore, we differentiated between only two 

classes, i.e. normal and abnormal, which is consistent with most existing works on the MIAS 

dataset as reported in [165], [229], [290], [303], [341], [342]. Therefore, the images were 

enhanced and the ROI was cropped using the co-ordinates of the centre and the radius of the 
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abnormality provided by the dataset. Table 5.1 shows the numbers of training, testing, and 

validation samples used for the CBIS-DDSM and MIAS datasets. In the following sub-

sections, the results of the four scenarios will be presented and discussed for the CBIS-DDSM 

and MIAS datasets.  

5.4.1 Scenario (1)   
In this scenario, five end-to-end DCNNs including AlexNet, GoogleNet, ResNet-18, 

ResNet-50, and ResNet-101 were constructed. For the CBIS-DDSM dataset, the classification 

accuracy ranged from (71.09% – 76.01%) with the best accuracy achieved using the end-to-

end GoogleNet as illustrated in Table 5.2. Moreover, the training time for the five networks 

varied between (6:30 – 62 hours) which is quite significant. On the other hand, the accuracy of 

DCNN networks in the case of the MIAS dataset ranged from (59.69% – 74.40%) with the 

highest accuracy achieved using GoogleNet architecture as well, as shown in Table 5.3. Table 

5.2 and Table 5.3 show the classification accuracy for the different DCNN architecture to 

classify benign and malignant lesions and normal and abnormal lesions for the CBIS-DDSM 

and the MIAS datasets, respectively.  

5.4.2 Scenario (2)   
To improve the classification accuracy of DCNNs constructed in the first scenario, the 

deep features were extracted from each network. These deep features were used separately to 

train and test SVM classifiers with different kernel functions. The deep features obtained for 

each DCNN for the CBIS-DDSM dataset are visualised in Figures 5.3 – 5.7. In these figures, 

the first and second convolutional layers were visualised for AlexNet, GoogleNet, ResNet-18, 

ResNet-50, and ResNet-101, respectively. Moreover, the classification accuracies for the 

CBIS-DDSM dataset increased and ranged between 85.2% and 93.7% as obvious from Table 

5.4. The scores obtained from the deep features of the ResNet-18 proved to be the highest 

compared to the other networks. Furthermore, when comparing the different SVM kernels 

constructed using ResNet-18 deep features the best accuracy was for the medium Gaussian 

kernel function. The accuracy was 93.7% and the AUC scored 0.98 (98%) as shown in Figure 

5.8. Additionally, the sensitivity and specificity were 0.940 (94%) and 0.931 (93.1%), 

respectively. Table 5.4 shows the accuracy, AUC, sensitivity, and specificity of the SVM 

classifiers with different kernels constructed with the five deep feature sets. Additionally, 

Figure 5.8 displays the ROC curve and the AUC computed for the ResNet-18 deep features 

with medium Gaussian kernel function SVM. 
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Table 5.1: The total number of samples used for the CBIS-DDSM and MIAS datasets. 

Table 5.2: The accuracy and the trained time of the end-to-end DCNN architectures for the CBIS-DDSM dataset.  

 DCNN Architectures DCNN Accuracy Training Time 
AlexNet 74.68% 6 hours, 30  min 

GoogleNet 76.01% 12 hours 
ResNet-18 72.23% 14 hours 
ResNet-50 71.09% 33 hours 

ResNet-101 71.47% 62 hours 

Table 5.3: The accuracy of the end-to-end DCNN architectures for the MIAS dataset.   

DCNN Architectures DCNN Accuracy 
AlexNet 59.69% 

GoogleNet 74.40% 
ResNet-18 68.22% 
ResNet-50 68.73% 

ResNet-101 67.44% 

On the other hand, for the MIAS dataset, the accuracies of the SVM classifiers 

constructed using each deep feature of the DCNN have also increased to reach a range of (71% 

– 95.4%). This time the highest accuracy was achieved using the deep features of the ResNet-

50 architecture. Furthermore, the quadratic kernel SVM constructed using these deep features 

ranked the first accuracy, which was 95.4% compared to the other kernels. The sensitivity and 

specificity of the quadratic SVM in this case, were 0.966 (96.6%) and 0.921 (92.1%), 

respectively. The classification accuracies of these models are illustrated in Table 5.5. 

Moreover, the AUC calculated from the ROC curve was 0.990 (99%) as shown in Figure 5.9. 

 
                              (a)                                                (b)                                                           (c) 

Figure 5.3: Visualising the deep features for the fine-tuned AlexNet DCNN architecture. 

(a) Malignant ROI from the CBIS-DDSM dataset, (b) the activation features from the first convolutional layer, and (c) the activation features 
from the second convolutional layer. 

 Training Testing Validation Total 

CBIS-DDSM Benign 2728 3690 791 791 5272 Malignant 2544 

MIAS Normal 836 900 194 194 1288 Abnormal 452 
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                                       (a)                                                 (b)                                                (c) 

Figure 5.4: Visualising the deep features for the fine-tuned GoogleNet DCNN architecture. 

(a) Malignant ROI from the CBIS-DDSM dataset, (b) the activation features from the first convolutional layer, and (c) the activation features 
from the second convolutional layer. 

 

                               (a)                                                 (b)                                                   (c) 

Figure 5.5: Visualising the deep features for the fine-tuned ResNet-18 DCNN architecture. 

(a) Benign ROI from the CBIS-DDSM dataset, (b) the activation features from the first convolutional layer, and (c) the activation features 
from the second convolutional layer. 

  
                               (a)                                               (b)                                                      (c) 

Figure 5.6: Visualising the deep features for the fine-tuned ResNet-50 DCNN architecture. 

(a) Benign ROI from the CBIS-DDSM dataset, (b) the activation features from the first convolutional layer, and (c) the activation features 
from the second convolutional layer. 
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                               (a)                                                (b)                                                    (c) 

Figure 5.7: Visualising the deep features for the fine-tuned ResNet-101 DCNN architecture.   

(a) Benign ROI from the CBIS-DDSM dataset, (b) the activation features from the first convolutional layer, and (c) the activation features 
from the second convolutional layer. 

 
Figure 5.8: The computed ROC for the ResNet-18 with medium Gaussian kernel function SVM of the CBIS-
DDSM dataset.  

  



79 
 

Table 5.4: The calculated scores of the DCNN deep features for the CBIS-DDSM dataset classified by the SVM 
classifier with different kernels. 

DCNN  Different Kernels Accuracy (Std) AUC (Std) Sensitivity (Std) Specificity (Std) 

AlexNet 

Linear 91.3% (0.001) 0.970 (0) 0.918 (0.005) 0.911 (0.001) 
Quadratic 91.0% (0.002) 0.960 (0.004) 0.909 (0.006) 0.911 (0.001) 

Cubic 90.9% (0.002)  0.960 (0.001) 0.904 (0.004) 0.913 (0.005) 
Medium Gaussian 91.1% (0.001) 0.970 (0) 0.910 (0.001) 0.910 (0.001) 
Coarse Gaussian 89.2% (0.001) 0.960 (0.001) 0.884 (0.003) 0.899 (0.001) 

GoogleNet 

Linear 90.1% (0.002) 0.970 (0) 0.900 (0.001) 0.900 (0.001) 
Quadratic 89.4% (0.003) 0.970 (0.004) 0.900 (0.001) 0.900 (0.001) 

Cubic 88.7% (0.004) 0.960 (0.004) 0.883 (0.004) 0.891 (0.004) 
Medium Gaussian 87.9% (0.002) 0.950 (0.004) 0.859 (0) 0.905 (0) 
Coarse Gaussian 88.6% (0.004) 0.950 (0.004) 0.898 (0.001) 0.876 (0.006) 

ResNet-18 

Linear 93.5%  (0.002) 0.980 (0.001) 0.931 (0.001) 0.939 (0.004) 
Quadratic 93.1% (0.002) 0.980 (0.001) 0.930 (0.003) 0.931 (0.004) 

Cubic 93.0% (0.001) 0.980 (0.001) 0.930 (0.001) 0.930 (0.001) 
Medium Gaussian 93.7% (0) 0.980 (0.013) 0.940 (0.001) 0.931 (0.003) 

Coarse Gaussian 93.4% (0.001) 0.980 (0.001) 0.932 (0.003) 0.940 (0.001) 

ResNet-50 

Linear 87.2% (0.002) 0.950 (0.005) 0.864 (0.003) 0.879 (0.001) 
Quadratic 88.4% (0.003) 0.950 (0) 0.880 (0.008) 0.887 (0.005) 

Cubic 87.8% (0.001) 0.950 (0) 0.873 (0.001) 0.884 (0.005) 
Medium Gaussian 87.3%  (0.01) 0.950 (0) 0.861 (0.006) 0.894 (0.004) 
Coarse Gaussian 85.2% (0.005) 0.930 (0.004) 0.833 (0.006) 0.874 (0.001) 

ResNet-101 

Linear 89.5% (0.001) 0.96 (0.001) 0.878 (0.021) 0.906 (0.007) 
Quadratic 89.3% (0.002) 0.96 (0.001) 0.893 (0.006) 0.900 (0.006) 

Cubic 89.1% (0.001)  0.95 (0.004) 0.89 (0.003) 0.893 (0.005) 
Medium Gaussian 89.3% (0.002)  0.96 (0.001) 0.877 (0.006) 0.908 (0.001) 
Coarse Gaussian 87.9% (0.004)  0.94 (0.004) 0.853 (0.006) 0.905 (0.001) 

 

 
Figure 5.9: The computed ROC for the ResNet-50 with quadratic kernel SVM function of the MIAS dataset. 
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Table 5.5: The calculated scores of the different SVM kernel functions for the DCNN deep features for the 
MIAS dataset. 

5.4.3 Scenario (3)   
This scenario was conducted to determine if combining deep features would enhance the 

performance of the SVM classifiers; consequently, four feature sets representing different 

combination deep features were produced. To generate these sets, the classification accuracies 

produced in scenario (1) were used as a ranking method to order the deep features extracted 

from each DCNN in descending order. Subsequently, this ranking was employed in sequential 

forward feature set selection to identify the best combination of deep features.  

For the CBIS-DDSM dataset, it was clear from Table 5.2 that the GoogleNet and AlexNet 

features achieved the highest accuracies compared to the others. Therefore, these features were 

combined to produce a single feature vector with 5120 features named feature set (1). The 

linear kernel SVM achieved the highest accuracy, which was 94.4%. Moreover, the ResNet-18 

features were added to the feature set (1). This set was named feature set (2) containing 5632 

features. The highest accuracy achieved was 96.9% for the linear kernel SVM as well.  

Additionally, the features of ResNet-101 were added to feature set (2) producing a feature 

DCNN Different Kernels Accuracy (Std) AUC (Std) Sensitivity (Std) Specificity (Std) 

AlexNet 

Linear 79.7% (0.002) 0.860 (0.001) 0.871 (0.007) 0.684 (0.003) 
Quadratic 80.8% (0.007) 0.880 (0.004) 0.841 (0.04) 0.723 (0.016) 

Cubic 80.0% (0.002) 0.860 (0.001) 0.84 (0.004) 0.725 (0.006) 
Medium Gaussian 78.8% (0.007) 0.860 (0.006) 0.884 (0.006) 0.662 (0.007) 
Coarse Gaussian 72.7% (0.004) 0.820 (0.001) 0.902 (0.003) 0.573 (0.002) 

GoogleNet 

Linear 76.6% (0.007) 0.830 (0.004) 0.841 (0.011) 0.65 (0.005) 
Quadratic 76.4% (0.007) 0.830 (0.004) 0.802 (0.044) 0.667 (0.009) 

Cubic 77.2% (0.007) 0.840 (0.005) 0.817 (0.011) 0.688 (0.002) 
Medium Gaussian 77.3% (0.004) 0.830 (0.007) 0.888 (0.002) 0.641 (0.003) 
Coarse Gaussian 71% (0.003) 0.790 (0) 0.916 (0.004) 0.557 (0.003) 

ResNet-18 

Linear 87.8% (0.002) 0.940 (0.001) 0.937 (0.004) 0.792 (0.001) 
Quadratic 89.1% (0.002) 0.940 (0.001) 0.921 (0.037) 0.821 (0.011) 

Cubic 87.9% (0.003)  0.940 (0.004) 0.921 (0.005) 0.810 (0.001) 
Medium Gaussian 85.3% (0.001) 0.930 (0.004) 0.944 (0.001) 0.740 (0.002) 
Coarse Gaussian 73.7% (0.002)  0.910 (0.004) 0.964 (0.001) 0.574 (0.002) 

ResNet-50 

Linear 94.4% (0.004) 0.990 (0) 0.968 (0.004) 0.894 (0.007) 
Quadratic 95.4% (0.001) 0.990 (0) 0.966 (0.015) 0.921 (0.011) 

Cubic 94.6% (0.002) 0.990 (0) 0.971 (0.005) 0.908 (0.001) 
Medium Gaussian 92% (0.001) 0.980 (0.001) 0.976 (0.001) 0.838 (0.001) 
Coarse Gaussian 79.1% (0.002) 0.950 (0.004) 0.977 (0.01) 0.627 (0.002) 

ResNet-101 

Linear 93.1% (0.003) 0.980 (0.001) 0.976 (0.004) 0.860 (0.001) 
Quadratic 93.6% (0.002) 0.980 (0.001) 0.961 (0.026) 0.887 (0.01) 

Cubic 93.6% (0.003) 0.980 (0.001) 0.966 (0.004) 0.882 (0.003) 
Medium Gaussian 91% (0.004) 0.970 (0.004) 0.974 (0.004) 0.817 (0.003) 
Coarse Gaussian 79.1% (0.001) 0.960 (0.001) 0.977 (0.001) 0.627 (0.001) 
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vector of 7680 features in length named feature set (3). The accuracy increased to 97.5% for 

the linear kernel SVM. Finally, all the deep features were combined to produce a feature vector 

with 9728 features in length named feature set (4). Figure 5.10 shows a comparison for the 

accuracies of SVM classifiers of different kernels for the four feature sets. This figure reveals 

that increasing the number of deep features will increase the classification accuracy of the SVM 

classifiers. It was obvious that feature set (4) had improved the accuracy to reach 97.9% using 

the quadratic and cubic kernels. This was higher than the 93.7% of the linear SVM classifier 

constructed using only the deep features of ResNet-18 in scenario (2). Thus, Table 5.6 shows 

the accuracy, AUC, sensitivity, and specificity for the SVM classifiers of different kernels for 

feature set (4). Table 5.6 also indicated that the sensitivity and specificity were both equal to 

0.98 (98%), which were higher than those achieved in the scenario (2). Additionally, the AUC 

of the cubic and quadratic SVM classifiers achieved the highest accuracy yielding to 1.00 

(100%) as shown in the ROC curve in Figure 5.11. 

Conversely, for the MIAS dataset, four sets of different combinations of deep features 

were generated in the same manner as those produced in the CBIS-DDSM. Feature set (1) 

represents those extracted from the GoogleNet and ResNet-50 as these DCNNs achieved the 

highest accuracies compared to the others as in Table 5.3. The feature-length of feature set (1) 

was 3072 features. The highest accuracy achieved was 95% using the quadratic kernel SVM. 

On the other hand, feature set (2) consists of feature set (1) plus ResNet-18 producing 3584 

feature-length. The accuracy was 96.3% achieved using the quadratic kernel SVM as well. The 

features of the ResNet-101 were added to the feature set (2) and named feature set (3).  The 

highest accuracy achieved was 97.4% for the quadratic kernel SVM. Finally, adding the 

AlexNet features to feature set (3) produces feature set (4). This time the accuracy decreased 

to 96.6%. Figure 5.12 shows the accuracies of the SVM classifiers constructed using different 

kernels for the four sets of features. Figure 5.12 reveals that feature set (3) had the highest 

classification accuracy 97.4% using the quadratic kernel SVM classifier. This was higher than 

the 95.4% accuracy achieved using the deep features of ResNet-50 only in the second scenario. 

Hence, Table 5.7 shows different scores for the feature set (3) which achieved the highest 

accuracy using the quadratic SVM classifier. Furthermore, the sensitivity and the specificity 

increased to 0.987 (98.7%) and 0.949 (94.9%), respectively, which were higher than 0.966 

(96.6%) and 0.921 (92.1%), achieved in the second scenario. Additionally, the AUC increased 

from 0.99 (99%) to 1.00 (100%) as clear in Figure 5.13. The ROC curve and the AUC for the 

quadratic kernel SVM function of feature set (3) are shown in Figure 5.13. 



82 
 

 
Figure 5.10: The accuracies of different SVM kernel functions for the different deep features combination of the 
CBIS-DDSM dataset. 

Feature Set (1) = GoogleNet and AlexNet. 
Feature Set (2) = GoogleNet, AlexNet, and ResNet-18. 
Feature Set (3) = GoogleNet, AlexNet, ResNet-18, and ResNet-101. 
Feature Set (4) = GoogleNet, AlexNet, ResNet-18, ResNet-101, and ResNet-50. 

Table 5.6: The calculated scores of the different SVM kernel functions for feature set (4) for the CBIS-DDSM 
dataset.  

 GoogleNet, AlexNet, ResNet-18, ResNet-101, and ResNet-50 DCNN Features 

 Accuracy (Std) AUC (Std) Sensitivity (Std) Specificity (Std) 

Linear 97.6% (0.001) 0.999 (0) 0.971 (0.001) 0.980 (0.001) 
Quadratic 97.9% (0.001) 1.000* (0) 0.980 (0.003) 0.980 (0.001) 

Cubic 97.9% (0.001) 1.000* (0) 0.980 (0.001) 0.980 (0.001) 
Medium Gaussian 96.3% (0.001) 0.990 (0) 0.951 (0) 0.970 (0) 
Coarse Gaussian 94.6% (0) 0.990 (0) 0.950 (0) 0.950 (0) 

* rounded values  
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Figure 5.11: The computed ROC for all combined DCNN features for the cubic and quadratic SVM kernel 
functions of the CBIS-DDSM dataset. 

 

Figure 5.12: The accuracies of different SVM kernel functions for the different deep features combination of the 
MIAS dataset.  

Feature Set (1) = GoogleNet and ResNet-50. 
Feature Set (2) = GoogleNet, ResNet-50, and, ResNet-18. 
Feature Set (3) = GoogleNet, ResNet-50, ResNet-18, and ResNet-101. 
Feature Set (4) = GoogleNet, ResNet-50, ResNet-18, and ResNet-101, and AlexNet.  

Table 5.7: The calculated scores of the different SVM kernel functions for feature set (3) of the MIAS dataset. 

GoogleNet, ResNet-50, ResNet-18, and ResNet-101 DCNN Features 

 Accuracy (Std) AUC (Std) Sensitivity (Std) Specificity (Std) 
Linear 96.3% (0.001) 0.990 (0) 0.990 (0) 0.917 (0) 

Quadratic 97.4% (0) 1.000* (0) 0.987 (0.013) 0.949 (0.012) 
Cubic 96.2% (0) 0.999 (0) 0.990 (0.001) 0.926 (0.001) 

Medium Gaussian 93.3% (0) 0.990 (0)  0.989 (0.001) 0.854 (0.001) 
Coarse Gaussian 79% (0) 0.960 (0.001) 1.000 (0.001) 0.629 (0.001) 

* rounded values 

 

Figure 5.13:  The computed ROC for the feature set three for the fusion of deep features for the quadratic SVM 
kernel function of the MIAS dataset.  
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5.4.4 Scenario (4)   
PCA was applied in this scenario to reduce the large feature space of the feature sets 

generated in the third scenario. In order to select the number of principal components that 

achieve the highest accuracy, a sequential forward strategy was used. It started with 50 

principal components and added the components iteratively. 

For the CBIS-DDSM dataset, when reducing the features of sets (1) and (2) the 

accuracies reached 93.6% and 96.5% with 300 principal components only. However, for 

feature sets (3) and (4), the accuracies became 97.4% and 97.8% with 400 principal 

components only. Therefore, the highest classification accuracy in this scenario was achieved 

using feature set (4) as shown in Figure 5.14. This figure represents the classification accuracy, 

using the PCA reduction for the four feature sets. Moreover, the execution time for training 

decreased from 287.48 s to 57.85 s. 

Whereas for the MIAS dataset, when the PCA method was applied to feature sets (1) and 

(2) the accuracies yielded to 94.7% and 95.3%, respectively. This was achieved using 150 

principal components.  Furthermore, the accuracies of feature sets (3) and (4) became 96.8% 

and 95.2% with 200 principal components. Thus, the highest accuracy achieved for the MIAS 

dataset in this scenario was for feature set (3) as shown in Figure 5.15. Furthermore, the 

operating time decreased from 40.77 s to 1.97 s when applying PCA on feature set (3).   

 

Figure 5.14: A comparison of the classification accuracy of different combined deep features after PCA feature 
reduction for the CBIS-DDSM dataset. 
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Figure 5.15: A comparison of the classification accuracy of different combined deep features after PCA feature 
reduction for the MIAS dataset. 

To validate the statistical significance of the results obtained in all scenarios, an ANOVA 

test was performed on all the results by a five fold cross-validation repetition method. The null 

hypothesis Ho for all classification was that the mean accuracies of all SVM kernel functions 

classifiers were the same. Tables 5.8 –  5.12 and Tables 5.13 –  5.17 show the ANOVA test for 

the deep features of the five DCNN architectures constructed in scenario (2) for the CBIS-

DDSM and MIAS datasets, respectively. For scenario (3), since the highest accuracy was 

achieved using feature set (4) and feature set (3) for the CBIS-DDSM and MIAS datasets, 

respectively, therefore, the ANOVA test was computed to these sets. Table 5.18 and Table 5.19 

show the ANOVA test for the feature set (4) and feature set (3) performed in the scenario (3) 

for CBIS-DDSM and MIAS datasets, respectively. From these tables, it was revealed that the 

p-values achieved were lower than α, where α = 0.05. Consequently, it can be concluded that 

there was a statistically significant difference between the accuracies of the classifiers. 

Table 5.8: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of AlexNet DCNN for the CBIS-DDSM dataset.    

 Source of Variation SS df MS F p-Value 
Columns 0.00298 4 0.00074 532.99 < 0.001 

Error 0.00006 45 0   
Total 0.00304 49    

 
Table 5.9: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of GoogleNet DCNN for the CBIS-DDSM dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.00267 4 0.00067 100.86 < 0.001 

Error 0.0003 45 0.00001   
Total 0.00296 49    
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Table 5.10: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-18 DCNN for the CBIS-DDSM dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.00037 4 9.33 × 10-5 68.29 < 0.001 

Error 0.00006 45 1.3667 × 10-6   
Total 0.00043 49    

Table 5.11: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-50 DCNN for the CBIS-DDSM dataset.    

 Source of Variation SS df MS F p-Value 
Columns 0.00605 4 0.00151 60.45 < 0.001 

Error 0.00113 45 0.00003   
Total 0.00717 49    

Table 5.12: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-101 DCNN for the CBIS-DDSM dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.00173 4 0.00043 120.51 < 0.001 

Error 0.00016 45 0   
Total 0.00189 49    

Table 5.13: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of AlexNet DCNN for the MIAS dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.04284 4 0.01071 509.95 < 0.001 

Error 0.00095 45 0.00002   
Total 0.04379 49    

Table 5.14: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of GoogleNet DCNN for the MIAS dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.02842 4 0.00711 241.35 < 0.001 

Error 0.00132 45 0.00003   
Total 0.02975 49    

Table 5.15: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-18 DCNN for the MIAS dataset.   

Source of Variation SS df MS F p-Value 
Columns 0.15896 4 0.03974 11332.57 < 0.001 

Error 0.00016 45 0   
Total 0.15912 49    

Table 5.16: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-50 DCNN for the MIAS dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.18644 4 0.04661 16208.77 < 0.001 

Error 0.00013 45 0   
Total 0.18657 49    
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Table 5.17: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-101 DCNN for the MIAS dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.15574 4 0.03894 8375.22 < 0.001 

Error 0.00021 45 0   
Total 0.15595 49    

Table 5.18: The ANOVA test details for the different kernel functions of the SVM classifier for the feature set (4) 
in scenario (3) for the CBIS-DDSM dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.00795 4 0.00199 99391 < 0.001 

Error 0 45 0   
Total 0.00795 49    

Table 5.19: The ANOVA test details for the different kernel functions of the SVM classifier for the feature set (3) 
in scenario (3) for the MIAS dataset.    

Source of Variation SS df MS F p-Value 
Columns 0.23117 4 0.05779 9.3699 × 1016 < 0.001 

Error 0 45 0   
Total 0.23117 49    

Finally, the proposed framework has been compared with the applicable state-of-the-art 

frameworks presented in Chapter 3 to prove the efficiency of the proposed method. The results 

reveal that the proposed framework has outperformed others. Regarding the CBIS-DDSM 

dataset, the results have shown that the proposed framework recorded slightly high 

classification accuracy and AUC compared to Khan et. al [330]. This was obvious as Khan et. 

al [330] achieved 96.6% for accuracy and 0.934 (93.4%) for AUC. However, Khan et al. [330] 

fused the deep features of VGG-16, VGG-19, GoogleNet, and ResNet-50 DCNN. Moreover, 

it was found that the accuracy increased compared to the first framework proposed in Chapter 

4 as well [33]. Moreover, lately, in 2020, Zhang et al. [332] fused some handcrafted features 

with deep features and classify them using several classifiers.  However, the accuracy achieved 

was lower than the one achieved by feature set (4) generated in the fourth scenario by 6.99%. 

Whereas for the MIAS dataset, the accuracy achieved was higher than that in Hepsag et al. 

[342] and Tan et al. [317] as well. This was clear as the highest classification accuracy and 

AUC achieved were 97.4% and 0.99 (99%).  

On the other hand, when comparing the usage of different DCNN architectures, it was 

obvious that the scores achieved by the proposed scenarios were high as well. In 2017, Jiang 

et al. [163] and Zhang et al. [282] achieved an AUC of 0.83 (83%) and 0.8 (80%), respectively 

using the AlexNet DCNN. However, they evaluated the approaches on different datasets 

BCDR-03 and DDSM, respectively. Moreover, Jiang et al. [163] used the GoogleNet DCNN 

to achieve a better AUC compared to the one achieved using the AlexNet although, it was still 
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lower than that of the proposed framework. Moreover, in 2020, Song et al. [331] extracted and 

classified the deep features of GoogleNet and Inception-v2 using the XGBoost classifier 

achieving an accuracy of 92.8%. Besides, there was a very small slight difference between the 

accuracy achieved in this proposed work with the work offered by Khan et al. [257]. They 

fused the deep features of VGGNet, GoogleNet, and ResNet DCNN. However, Khan et al. 

[257] applied their experiments on microscopic samples. 

5.5 Summary 

In this chapter, various fusion methods were presented by executing four scenarios. The 

first scenario composed of constructing five end-to-end pre-trained fine-tuned DCNN networks 

of different architectures. In order to increase and enhance the classification accuracy of 

scenario (1), the second scenario was constructed by extracting the deep features of the DCNNs 

constructed in scenario (1). These deep features were used separately to design SVM classifiers 

with different kernel functions. The results showed that the classification accuracies in scenario 

(2) were higher than those of scenario (1). On the other hand, the third scenario was devised to 

test if combining deep features would enhance the accuracy of the SVM classifiers. In this 

scenario, four feature sets were generated by ranking the accuracies of the deep features 

achieved in scenario (1) in descending order. These feature sets were used to train the SVM 

classifiers. The results showed that combining more deep features increased the performance 

of the SVM classifiers in both datasets. This demonstrated that the feature fusion using feature 

set (4) for the CBIS-DDSM dataset and feature set (3) for the MIAS dataset had improved the 

accuracy to reach 97.9% and 97.4%, respectively. Finally, in scenario (4), PCA was used to 

reduce the large dimension of the feature space produced in scenario (3). The results showed 

that PCA had reduced the feature space to 400 and 200 principal components for the CBIS-

DDSM and the MIAS datasets, respectively. In addition, the classification accuracies were the 

same as in scenario (3). However, the computational cost decreased when applying PCA to the 

feature fusion. This was clear as the execution time for the classification process reduced from 

287.48 s to 57.85 s and from 40.77 s to 1.9794 s for the CBIS-DDSM and MIAS datasets, 

respectively.  
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Chapter 6  

A Breast Cancer Classification Framework Based on the 
Decision-Levels Fusion using Multiple DCNNs 

6.1 Introduction 

This chapter presents a novel framework to investigate different fusion techniques based 

on decision-level fusion rather than feature fusion. This framework is built-up using six 

scenarios to help radiologists to classify breast cancer lesions in mammograms. The first one 

is creating end-to-end pre-trained fine-tuned DCNN networks. In the second one, the deep 

features of the DCNNs are extracted and fed to an SVM classifier with different kernel 

functions. The third experiment is performed by deep features fusion to prove that combining 

deep features would enhance the accuracy of the SVM classifiers. The fourth scenario is 

extracting the outcomes of the samples instead of the features from the DCNN architectures of 

the first scenario and fed them separately to individual and MCS classifiers.  In the fifth 

scenario, the outcomes of each DCNN are fused and fed into individual and MCS as well. 

Finally, the sixth scenario is constructed by fusing the outcomes of each individual and multiple 

classifiers for all DCNN architectures. All the scenarios are performed on a new mammogram 

dataset namely the “DAR-Breast” dataset collected from the Armed Forces Hospital located in 

Alexandria, Egypt.  

6.2 The DAR-Breast Dataset 
Patients’ mammogram images were collected from the Armed Forces Hospital located 

in Alexandria, Egypt named the DAR-Breast dataset. To the best of our knowledge, this is the 

first time mammogram breast cancer scans are acquired and analysed for the purpose of breast 

cancer diagnosis in Egypt in addition to the Middle East. DAR-Breast consists of seventy-six 

cases, including 268 images being categorised as normal, benign, malignant masses, suspicious 

calcifications, and architectural distortion samples as illustrated in Figure 6.1. All the samples 

were in the DICOM format and labelled by expert radiologists from the hospital. As the number 

of samples is not normalised, we grouped the benign, malignant masses, suspicious 

calcifications, and architectural distortion samples as abnormal samples. Thus, we 

differentiated between only two classes, i.e. normal and abnormal. Figure 6.2 shows a normal 
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and abnormal mammogram sample extracted from the dataset. The mammograms were 

captured using a Siemens MAMMOMAT Inspiration device with a detector of amorphous 

selenium.  

The MAMMOMAT Inspiration in Figure 6.3 is provided with progressive reconstruction 

intelligently minimizing exposure, (prime) technology. This technology allows the dose to be 

reduced by up to 30% without impairing image quality. Combining the multiple dose-saving 

features, MAMMOMAT Inspiration is the reference for a low dose [343]. Additionally, the 

MAMMOMAT Inspiration device increases the diagnostic certainty with high definition breast 

tomosynthesis, with the widest angle of 50° and unique EMPIRE Technology. It obtains highly 

defined tissue and lesion morphology in unprecedented detail and gains deeper insights in both 

2D and 3D – leading to more accurate and earlier detection [343].  

  

 
Figure 6.1: The distribution of the number of cases from the DAR-Breast dataset.  
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Figure 6.2: A mammogram sample extracted from the DAR-Breast dataset, an abnormal (left) and a normal 
(right) samples.   

 
Figure 6.3: The MAMMOMAT Inspiration mammogram device located in the Armed Forces Hospital.  
Captured from Armed Forces Hospital. 
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6.3 Methodology 
Firstly, the ROI is extracted by suppressing the breast from the images and removing any 

artefacts. This is performed using the following steps; 

1) Orient all the mammogram samples in the same direction to avoid the situation 

of applying different methods for the left and the right-oriented MLO 

mammograms. Therefore, for example, flip all the RMLO view to look like the 

LMLO view samples.  

2) Eliminate the mammogram image from any radiopaque artefacts such as labels 

by using thresholding and morphological operations [344].  A global threshold 

with a value of 18 was found to be the most suitable threshold for transforming 

the greyscale images into binary [0, 1] format [344]. Figure 6.4 shows the 

mammogram image sample with artefact suppression.  

The proposed framework as shown in Figure 6.5 performs six scenarios:-  

1) An end-to-end DCNN process: The pre-trained architectures; AlexNet, 

GoogleNet, Inception-v3, Inception ResNet-v2, MobileNet-v2, ResNet-18, 

ResNet-50, and ResNet-101 are used.  

2) Deep features extraction: Classify the deep features individually using several 

SVM classifiers with different kernel functions. 

3) Deep features fusion.  

4) Decision-levels extraction: The decisions of the samples from scenario (1) are 

extracted and classified using individual and MCS classifiers.  

5) Decision-levels fusion: Fusing and classifying the decision-level in scenario (4) 

by the same individual and MCS classifiers. 

6) A multi-stage classifier: The decision-levels for each individual and MCS 

classifiers constructed in scenario (4) are fused individually and classified again 

using the same individual and MCS classifiers. 

As it is obvious that the first three scenarios are constructed in the same manner as the 

ones generated in Chapter 5. This was performed to validate the classification accuracy 

obtained on the two publicity datasets the CBIS-DDSM [86] and MIAS [81] in Chapter 5 with 

the DAR-Breast dataset. On the other hand, for scenarios (4) – (6) novel fusion techniques are 

proposed. The individual classifier used in these scenarios is the DT with different trees such 

as  J48 DT, RF DT, and RT DT.  
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The multiple classifier systems (MCS) are a hybrid method that fuses the classification 

results of several classifiers connected by a combiner. The MCS adds the strength of each 

classifier that usually exceeds the performance of each classifier. This is corresponding to 

medical applications in cases where the diagnosis of a specific illness is made by taking 

decisions from various doctors to come to a more confident final decision [345]. The MCS can 

avoid the possibility of poor results that are generated from a certain unsuitably selected model. 

The MCS has two structures: Cascaded and Parallel. In the cascaded structure, several 

classifiers are connected in series such as the AdaBoosting ensemble [345]. Each classifier in 

the ensemble attempts to improve the performance of the previous weaker classifier. It uses a 

class weighting resampling technique to train the next classifier in the ensemble. Instances that 

are not correctly classified with the first classifier in the ensemble are given higher weights and 

then these resampled instances enter the next classifier [345]. This procedure is repeated until 

all classifiers of the ensemble are processed. On the other hand, in the parallel structure, some 

classifiers are connected in parallel and their predictions are fused using either majority voting, 

maximum probability, minimum probability, or averaging methods. These classifiers may be 

of the same or different types, such as the bagging ensemble [345]. The bagging ensemble 

stands for bootstrap aggregation. It depends on the bootstrap resampling method to generate 

several data subsets from the original data randomly. These subsets are used to build several 

classifiers of the same type, such as decision trees [345]. Hence, the MCS used in scenarios (4) 

– (6) is constructed using three different structures. The first structure includes AdaBoosting 

with J48 DT, RF DT, and RT DT. The second structure is bagging with J48 DT, RF DT, and 

RT DT. In addition, the third structure is an MCS constructed with J48 DT, RF DT, RT DT, 

and combined using averaging fusing technique. 

 
           (a)                                                                (b) 

Figure 6.4: An example of an abnormal sample and its ROI; (a) the original abnormal sample extracted from 
DAR-Breast dataset and (b) suppressed image from artefacts.   
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Figure 6.5: The proposed framework. 
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6.4 Experimental Setup 
The proposed framework was applied to the mammogram images to distinguish between 

normal and abnormal classes. The scenarios were performed on the Intel® CORE™ I7 

processor and NVIDIA GeForce 940MX, Windows 10, 64 bit with 8 GB of RAM. The software 

used to implement the scenarios was Matlab R2019b with an academic license provided by the 

University of Strathclyde. In addition, a computationally efficient tool called Waikato 

Environment for Knowledge Analysis (WEKA) [346] was used to perform scenarios (4), (5), 

and (6). WEKA is open-source software, which consists of a collection of ML algorithms for 

data mining tasks.  The scenarios were applied to the DAR-Breast. After being confirmed by 

the experts’ radiologists in the Hospital, the samples were categorized into normal and 

abnormal lesions and the ROI was determined. Additionally, all image sizes were changed 

according to each DCNN input image size as the input layer for each DCNN architecture was 

different. For example, the input layer of the Inception-v3 architecture required is 229 × 229 × 

3. Therefore, the images were modified to the specific size of the network.  

6.4.1 Augmentation 
Various data augmentation techniques were applied to all images, including rotation, 

flipping horizontally, and randomly varying the image contrast and brightness by a factor 

between (0.5 and 2) and (-20 and 20), respectively.  Firstly, the original images were rotated 

by four angles (0, 90, 180, and 270 degrees), and each rotated image was flipped horizontally. 

Therefore, in this stage, each original image was augmented to 8 images. Afterward, the image 

contrast and brightness were changed and the resulted images were rotated by the four angles 

and flipped horizontally as well. Therefore, each image was augmented to 24 images. The two-

dimensional scatter plot based on the feature vectors for normal and abnormal samples is shown 

in Figure 6.6. This figure presents the first feature values versus the fourth feature values as an 

example for the features of ResNet-18 DCNN architecture for the first 10 samples of images 

and their augmented versions with a total of 240 images for both classes.  

6.4.2 Parameter Setting   
Some parameters were adjusted after fine-tuning the eight DCNNs architectures and 

applying the transfer learning technique to the fully connected layer. The maximum number of 

epochs was set to 20, although, to avoid overfitting an early stopping criteria was set.  

Therefore, for AlexNet, GoogleNet, ResNet-18, ResNet-50, ResNet-101, Inception-v3, 

Inception ResNet-v2, and MobileNet-v2 DCNNs, epoch number 13, 12, 13, 6, 10, 9, 8, and 5, 
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respectively proved to be the best epoch. Furthermore, the initial learning rate and the 

momentum for the DCNNs were 10−5 and 0.9, respectively. Moreover, the weight decay which 

is L2-regularization was used to avoid overfitting and was set to 5 × 10−4.  The mini-batch size 

was set to 4. Additionally, the validation frequency was set to the maximum number of 

iterations per epoch this is done to validate the result at the end of each epoch. The maximum 

number of iterations per epoch was calculated by dividing the number of training images by 

the mini-batch size. According to this rule, the maximum number of iterations per epoch is 

inversely proportional to the minibatch size. It means that when decreasing the mini-batch size, 

the maximum number of iterations per epoch increases, which gives more accurate results for 

each epoch. The other parameters were left with their default values. These configurations were 

to confirm that the parameters were fine-tuned for the medical breast cancer diagnosis. The 

optimization algorithm used was the SGDM. 

6.5 Results and Discussions  
The proposed framework performs six scenarios. The first three scenarios were the same 

as the scenarios introduced in Chapter 5 to validate the concept proposed on the new dataset 

DAR-Breast used in this chapter. However, in scenarios (4) – (6), new fusion procedures were 

presented. The transfer learning technique was offered in the first scenario to replace the last 

FC layer in the pre-trained DCNNs with a new one to classify two classes instead of 1000. 

Additionally, for the first scenario, seventy percent of the images were used for training and 

the rest for testing and validation as illustrated in Table 6.1. Although, for the rest of the 

scenarios, the ratio of the training and testing was 80%:20%. This was because these scenarios 

were validated using five fold cross-validation. Subsequently, the classifiers were trained with 

four folds and authenticated by the remaining fold. Consequently, the scenarios were trained 

five times and the testing classification accuracy was calculated for each time then averaged. 

Moreover, the nested cross-fold validation was conducted for the prune overfitting of DT 

classifiers.  The nested cross-validation is a well-known procedure and used to reduce error 

pruning. It was used to overcome overfitting and over-optimistic results that may occur during 

model construction and parameter. Additionally, it produces a stable model which refers to 

how different models produced from the model selection algorithm were close to each other 

when training misclassification cost occurs [347]. Therefore, five-folds nested cross-validation 

was used for parameter selection. Similarly, five fold cross-validation was used to validate the 

performance of the models and avoid overfitting. Moreover, pruning was performed for tree 
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classifiers. For the RF DT, the number of trees generated was 10. In the following sub-sections, 

the results of the six scenarios will be presented and discussed.  

Table 6.1: The number of training, testing, and validation samples. 

 Training Testing Validation Total 

Normal 2952 
4502 965 965 6432 Abnormal 3480 

 

Figure 6.6: The first feature values versus the fourth feature values for the first 10 samples of images and their 
augmented versions for the ResNet-18 DCNN architecture features. 

6.5.1 Scenario (1) 
This scenario was formed via an end-to-end pre-trained DCNN of 8 different 

architectures; AlexNet, GoogleNet, ResNet-18, ResNet-50, ResNet-101, Inception-v3, 

Inception ResNet-v2, and MobileNet-v2. Table 6.2 shows the calculated accuracy, AUC, 

sensitivity, specificity, precision, F1-score, and the training time for each end-to-end DCNN 

architecture arranged in descending order according to the accuracy values. As it was obvious 

from Table 6.2 that the classification accuracy fluctuated from (79.79% – 92.12%) with the 

best accuracy achieved using ResNet-18. The AUC computed for the ResNet-18 was 0.983 

(98.3%) as clear in the ROC curve shown in Figure 6.7. Additionally, the other calculated 

scores such as sensitivity, specificity, precision, and F1-score for the fine-tuned ResNet-18 

achieved 0.976 (97.6%), 0.858 (85.8%), 0.873 (87.3%), and 0.922 (92.2%), respectively. On 

the other hand, the end-to-end MobileNet-v2 DCNN achieved the lowest accuracy and AUC 

scores of 79.79%, 0.88 (88%), respectively. In addition, it achieved 0.767 (76.7%), 0.836 

(83.6%), 0.824 (82.4%), and 0.795 (79.5%) for the sensitivity, specificity, precision, and F1-

score, respectively. Furthermore, the training time for the 8 networks varied between (4 – 55 

hours). The Inception ResNet-v2 took a very long time to train it took 55 hours. This was 
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because it consists of 164 layers as shown in Table 6.2 which were the biggest number of layers 

compared to the other networks.  

Table 6.2: The calculated scores for the end-to-end DCNN architectures.  

 DCNN 
Architectures Accuracy AUC Sensitivity Specificity Precision F1-

score 
Training 

Time  
Number 
of Layers 

ResNet-18 92.12% 0.983 0.976 0.858 0.873 0.922  4 hours 18 
GoogleNet 91.04% 0.968 0.931 0.886 0.891 0.911 5 hours 22 
ResNet-101 88.6% 0.955 0.926 0.840 0.853 0.889 19 hours 101 
ResNet-50 87.88% 0.956 0.835 0.932 0.924 0.878 9 hours 50 
AlexNet 84.97% 0.939 0.793 0.918 0.906 0.846 5 hours 8 

Inception ResNet-v2 84.25% 0.933 0.951 0.716 0.770 0.851 55 hours 164 
Inception-v3 84.09% 0.961 0.729 0.973 0.965 0.831 14 hours 48 
MobileNet-v2 79.79% 0.880 0.767 0.836 0.824 0.795 6 hours 16 

 
Figure 6.7: The ROC curve for ResNet-18 DCNN architecture. 
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                                                   (n)                                                              (o) 

 

                                                       (p)                                                    (q) 
Figure 6.8: The visualisation of the first and second convolutional layers of the deep features from the 8 fine-
tuned DCNN architectures. 

(a) Malignant ROI image, (b) the activation features from the first convolutional layer for AlexNet DCNN, (c) the activation features from the 
second convolutional layer for AlexNet DCNN, (d) the activation features from the first convolutional layer for GoogleNet DCNN, (e) the 
activation features from the second convolutional layer for GoogleNet DCNN, (f) the activation features from the first convolutional layer for 
Inception-v3 DCNN, (g) the activation features from the second convolutional layer for Inception-v3 DCNN, (h) the activation features from 
the first convolutional layer for Inception ResNet-v2 DCNN, (i) the activation features from the second convolutional layer for Inception 
ResNet-v2 DCNN, (j) the activation features from the first convolutional layer for MobileNet-v2 DCNN, (k) the activation features from the 
second convolutional layer for MobileNet-v2 DCNN, (l) the activation features from the first convolutional layer for ResNet-18 DCNN, (m) 
the activation features from the second convolutional layer for ResNet-18 DCNN, (n) the activation features from the first convolutional layer 
for ResNet-50 DCNN, (o) the activation features from the second convolutional layer for ResNet-50 DCNN, (p) the activation features from 
the first convolutional layer for ResNet-101 DCNN, and (q) the activation features from the second convolutional layer for ResNet-101 DCNN.  
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6.5.2 Scenario (2) 
In this scenario, the deep features were extracted from each network and went separately 

through SVM classifiers with different kernel functions to classify normal and abnormal 

lesions. The deep features extracted from each DCNN network are visualised in Figure 6.8 

showing the first and second convolutional layers for the AlexNet, GoogleNet, Inception-v3, 

Inception ResNet-v2, MobileNet-v2, ResNet-18, ResNet-50, and ResNet-101, respectively. 

Furthermore, the different scores of the SVM classifiers with different kernels constructed with 

the eight deep feature sets are illustrated in Table 6.3. Additionally, Figure 6.9 shows a 

comparison for the classification accuracies of deep features using an SVM classifier with 

different kernel functions. It was obvious from Figure 6.9 that the classification accuracies had 

increased and ranged between 91.3% and 98.0% compared to the classification accuracies 

obtained in scenario (1). Besides, all the other scores obtained from this scenario compared to 

those in the first scenario increased as well,  as illustrated in Table 6.3. The deep features of 

the ResNet-18, GoogleNet, and ResNet-50 proved to be the highest compared to the other 

networks. However, there was a small slight difference between the accuracies of these 

networks. The ResNet-18 deep features attained the highest classification accuracy, using the 

Medium Gaussian kernel function SVM classifier.  The accuracy yielded to 98%. Moreover, 

the AUC achieved 1.000, however, the sensitivity, specificity, precision, and F1-score attained 

the same value of 0.981 (98.1%) as shown in Table 6.3. Additionally, the deep features of the 

GoogleNet ranked the second-highest classification accuracy of 97.8% via the quadratic kernel 

SVM classifier. The AUC and the sensitivity were 1.000 and 0.978 (97.8%), respectively. 

Although the rest of the scores were the same achieving 0.979 (97.9%). Furthermore, the 

accuracy and the AUC of the deep features of the ResNet-50 scored 97.7% and 0.990, 

respectively. Whereas the sensitivity, specificity, precision, and F1-score achieved almost the 

same scores with a difference of 0.002%. Although, these scores were accomplished using the 

cubic kernel SVM classifier. Additionally, as it was noticeable from Table 6.3 that the cubic 

kernel SVM classifier achieved the highest classification accuracy compared with the other 

kernels. Consequently, the accuracy in this scenario increased by 5.88%.  
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Table 6.3: The calculated scores of the different SVM kernel functions for the DCNN deep features.  

DCNN Different 
Kernels 

Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

ResNet-18 

Linear 97.9% (0.001) 1.000* (0)  0.979 (0.002) 0.98 (0.001) 0.980 (0.001) 0.979 (0.001) 
Quadratic 97.8% (0.001) 1.000* (0) 0.978 (0.001) 0.978 (0.002) 0.978 (0.002) 0.978 (0.001) 

Cubic 97.8% (0.001) 1.000* (0) 0.978 (0.001) 0.980 (0.001) 0.980 (0.001) 0.979 (0.001) 
Medium Gaussian 98% (0.001) 1.000* (0) 0.981 (0.001) 0.981 (0.001) 0.981 (0.001) 0.981 (0.001) 

Coarse Gaussian 97.2% (0.002) 1.000* (0) 0.977 (0.001) 0.969 (0.004) 0.968 (0.004) 0.973 (0.003) 

GoogleNet 

Linear 97.7% (0.001) 1.000* (0)  0.975 (0.001) 0.981 (0.002) 0.981 (0.002) 0.978 (0.001) 
Quadratic 97.8% (0.001) 1.000* (0) 0.978 (0.001) 0.979 (0.001) 0.979 (0.001) 0.979 (0.001) 

Cubic 97.7% (0.001) 1.000* (0) 0.976 (0.001) 0.978 (0.002) 0.978 (0.002) 0.977 (0.001) 
Medium Gaussian 97.5% (0.001) 1.000* (0) 0.969 (0.002) 0.981 (0.001) 0.981 (0.001) 0.975 (0.002) 
Coarse Gaussian 97.1% (0.001) 1.000* (0) 0.974 (0.002) 0.970 (0.002) 0.969 (0.002) 0.972 (0.002) 

ResNet-101 

Linear 97.1% (0.001) 1.000* (0) 0.969 (0.002) 0.974 (0.001) 0.974 (0.001) 0.972 (0.001) 
Quadratic 97.3% (0.001) 1.000* (0) 0.972 (0.001) 0.975 (0.001) 0.975 (0.001) 0.974 (0.001) 

Cubic 97.5% (0.001) 0.991 (0.004) 0.974 (0.001) 0.976 (0.001) 0.976 (0.001) 0.976 (0.001) 
Medium Gaussian 97.3% (0.001) 0.999 (0.004) 0.972 (0.001) 0.976 (0.001) 0.976 (0.001) 0.974 (0.001) 
Coarse Gaussian 96.2% (0.005) 0.990 (0) 0.962 (0.005) 0.961 (0.006) 0.960 (0.006) 0.962 (0.005) 

ResNet-50 

Linear 97.3% (0.001) 1.000* (0) 0.973 (0.001) 0.974 (0.001) 0.974 (0.001) 0.974 (0.001) 
Quadratic 97.6% (0.001) 1.000* (0) 0.976 (0.002) 0.976 (0.001) 0.976 (0.001) 0.976 (0.002) 

Cubic 97.7% (0.001) 0.990 (0) 0.977 (0.002) 0.978 (0) 0.978 (0) 0.978 (0.001) 
Medium Gaussian 97.5% (0.001) 1.000* (0) 0.975 (0.001) 0.976 (0.001) 0.976 (0.001)  0.976 (0.001) 
Coarse Gaussian 96.1% (0.001) 0.990 (0) 0.966 (0) 0.957 (0.001) 0.956 (0.001) 0.961 (0.001) 

AlexNet 

Linear 96.0% (0.002) 0.990 (0) 0.957 (0.002) 0.963 (0.003) 0.963 (0.003) 0.960 (0.001) 
Quadratic 96.3% (0.002) 0.990 (0) 0.963 (0.003) 0.965 (0.002) 0.964 (0.002) 0.964 (0.001) 

Cubic 96.4% (0.002)  0.990 (0) 0.962 (0.003) 0.966 (0.001) 0.966 (0.001) 0.964 (0.002) 
Medium Gaussian 96.2% (0.002) 0.990 (0) 0.964 (0.001) 0.962 (0.004) 0.961 (0.004) 0.963 (0.002) 
Coarse Gaussian 95.5% (0.001) 0.990 (0) 0.961 (0.002) 0.950 (0.003) 0.949 (0.003) 0.955 (0.001) 

Inception 
ResNet-v2 

Linear 92.0% (0.002) 0.980 (0.001) 0.893 (0.004) 0.947 (0.001) 0.95 (0.001) 0.921 (0.002) 
Quadratic 93.3% (0.004) 0.981 (0.004) 0.921 (0.011) 0.948 (0.002) 0.949 (0.002) 0.933 (0.004) 

Cubic 94.2% (0.003) 0.984 (0.006) 0.936 (0.004) 0.948 (0.002) 0.948 (0.002) 0.942 (0.003) 
Medium Gaussian 93.2% (0.004) 0.980 (0.001) 0.913 (0.007) 0.950 (0.002) 0.952 (0.002) 0.932 (0.004) 
Coarse Gaussian 91.3% (0.001) 0.980 (0.001) 0.882 (0.009) 0.950 (0.001) 0.954 (0.001) 0.917 (0.005) 

Inception-v3 

Linear 96.4% (0.001) 0.990 (0) 0.968 (0.002) 0.960 (0.002) 0.959 (0.002) 0.964 (0.001) 
Quadratic 96.7% (0.001) 0.990 (0) 0.969 (0.003) 0.967 (0.001) 0.966 (0.002) 0.968 (0.001) 

Cubic 96.9% (0.002) 0.990 (0) 0.968 (0.003) 0.971 (0.001) 0.971 (0.001) 0.970 (0.002) 
Medium Gaussian 96.5% (0.001) 0.990 (0) 0.967 (0.001) 0.964 (0.001) 0.963 (0.002) 0.965 (0.001) 
Coarse Gaussian 95% (0.002) 0.990 (0) 0.958 (0.003) 0.944 (0.003) 0.943 (0.003) 0.951 (0.002) 

MobileNet-v2 

Linear 94.0% (0.002) 0.980 (0.001) 0.937 (0.001) 0.943 (0.003) 0.943 (0.003) 0.940 (0.002) 
Quadratic 94.7% (0.002) 0.990 (0) 0.946 (0.001) 0.948 (0.002) 0.948 (0.002) 0.947 (0.001) 

Cubic 95.2% (0.002) 0.990 (0) 0.951 (0.002) 0.954 (0.002) 0.954 (0.002) 0.952 (0.002) 
Medium Gaussian 94.8% (0.003) 0.990 (0) 0.946 (0.004) 0.950 (0.002) 0.950 (0.002) 0.948 (0.003) 
Coarse Gaussian 92.9% (0.002) 0.980 (0.001) 0.930 (0.001) 0.930 (0.001) 0.929 (0.002) 0.930 (0.001) 

* rounded values 
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Figure 6.9: The classification accuracies of deep features using SVM classifier with different kernel functions.  

6.5.3 Scenario (3) 
This scenario was performed to test if combining deep features would improve the 

performance of the SVM classifiers. Hence, seven feature sets representing a different fusion 

of deep features were generated. These sets were made-up by arranging the classification 

accuracies produced in the first scenario in descending order and compose the feature sets by 

adding the features in a sequential forward strategy. From Table 6.2, since the end-to-end 

ResNet-18 and GoogleNet DCNNs attained the highest accuracy in the first scenario, therefore, 

the feature set (1) included these features, giving one feature vector with 1536 features. Then 

the rest of the sets were generated in the same manner. The features of ResNet-101 were added 

on the feature set (1) producing one feature vector with 3584 features and named feature set 

(2). Feature set (3) was 5632 features including the ResNet-50 features added on the feature 

set (2). Additionally, the AlexNet features were added on the feature set (3) giving one feature 

vector of 9728 features named feature set (4). Feature set (5) included the combination of 

feature set (4) and the features of Inception ResNet-v2. The length of the feature set (5) became 

11264 features. Furthermore, Inception-v3 features were added on the feature set (5) generating 

feature set (6) with 13312 features. Finally, all the features were fused to produce feature set 

(7) containing 14592 features.  Table 6.4 tabulates all the scores calculated for the feature sets. 

Moreover, a comparison between the classification accuracies of different SVM kernels for the 

different deep feature sets is given in Figure 6.10.  
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The highest accuracy for all the feature sets was obtained using the linear kernel SVM as 

shown in Figure 6.10, and they were almost the same but varying by 0.3%. Additionally, all 

the other scores for all the feature sets were almost the same with a small slight difference, as 

tabulated in Table 6.4. Therefore, this scenario proved that the fusion of features increased the 

accuracy compared to the first and second scenarios, thus, the accuracy achieved in this 

scenario was higher than scenario (2) by 0.8%.  

Table 6.4: The different scores calculated for each feature set.   

 

  

 Different 
Kernels 

Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

Feature 
Set (1) 

Linear 98.6% (0.001) 1.000* (0) 0.986 (0.001)  0.986 (0.001) 0.986 (0.001) 0.986 (0.001) 
Quadratic 98.5% (0.001) 1.000* (0) 0.985 (0.001) 0.985 (0.001) 0.984 (0.001)  0.985 (0.001)  

Cubic 98.4% (0.002) 1.000* (0) 0.985 (0.001) 0.985 (0.001)  0.985 (0.001) 0.985 (0.001) 
Medium Gaussian 98.4% (0.001) 1.000* (0) 0.983 (0.001) 0.985 (0.002) 0.985 (0.001) 0.984 (0.002)  
Coarse Gaussian 98.1% (0.001) 1.000* (0) 0.984 (0.002) 0.979 (0.003) 0.978 (0.003) 0.981 (0.002) 

Feature 
Set (2) 

Linear 98.6% (0.001) 1.000* (0) 0.986 (0.002) 0.986 (0.001) 0.986 (0.001) 0.986 (0.001) 
Quadratic 98.5% (0.001) 1.000* (0) 0.985 (0.002)  0.986 (0.001) 0.986 (0.001) 0.986 (0.001) 

Cubic 98.5% (0.001) 1.000* (0) 0.985 (0.001) 0.985 (0.002) 0.985 (0.001) 0.985 (0.001) 
Medium Gaussian 98.3% (0.002) 1.000* (0) 0.983 (0.001) 0.984 (0.001)  0.984 (0.002)  0.984 (0.002) 
Coarse Gaussian 98.3% (0.001) 1.000* (0) 0.987 (0.002) 0.980 (0.001) 0.979 (0.002) 0.983 (0.001) 

Feature 
Set (3) 

Linear 98.5% (0.001) 1.000* (0) 0.985 (0.002) 0.985 (0.002) 0.984 (0.001) 0.985 (0.001) 
Quadratic 98.5% (0.001) 1.000* (0) 0.985 (0.002) 0.985 (0.002)  0.985 (0.001) 0.985 (0.001) 

Cubic 98.5% (0.001) 1.000* (0) 0.985 (0.003) 0.985 (0.001) 0.985 (0.001) 0.985 (0.001) 
Medium Gaussian 98.5% (0.003)  1.000* (0) 0.985 (0.002) 0.985 (0.002)  0.984 (0.001) 0.985 (0.003) 
Coarse Gaussian 98.3% (0.002) 1.000* (0) 0.990 (0.001) 0.978 (0.003) 0.977 (0.001)  0.984 (0.002) 

Feature 
Set (4) 

Linear 98.7% (0.001) 1.000* (0) 0.990 (0.001) 0.986 (0.001) 0.985 (0.001) 0.988 (0.001) 
Quadratic 98.7% (0.001)  1.000* (0) 0.989 (0.002) 0.986 (0.002) 0.985 (0.001) 0.987 (0.001)  

Cubic 98.6% (0.001) 1.000* (0) 0.987 (0.001)  0.986 (0.002) 0.985 (0.003) 0.986 (0.002) 
Medium Gaussian 98.6% (0.001) 1.000* (0) 0.989 (0.003) 0.984 (0.003) 0.983 (0.001) 0.986 (0.001) 
Coarse Gaussian 98.4% (0.001) 1.000* (0) 0.987 (0.001) 0.981 (0.002) 0.980 (0.001) 0.984 (0.002) 

Feature 
Set (5) 

Linear 98.7% (0.001) 1.000* (0) 0.989 (0.001) 0.986 (0.001) 0.985 (0.001) 0.987 (0.001) 
Quadratic 98.6% (0.001)  1.000* (0) 0.986 (0.002) 0.986 (0.001) 0.986 (0.001) 0.986 (0.002) 

Cubic 98.5% (0.001) 1.000* (0) 0.985 (0.002) 0.986 (0.001) 0.986 (0.001) 0.986 (0.001) 
Medium Gaussian 98.6% (0.001) 1.000* (0) 0.989 (0.001) 0.985 (0.001) 0.984 (0.002) 0.987 (0.003) 
Coarse Gaussian 98.5% (0.001) 1.000* (0) 0.989 (0.001) 0.983 (0.001) 0.982 (0.002) 0.986 (0.001) 

Feature 
Set (6) 

Linear 98.8% (0.001) 1.000* (0) 0.990 (0.001) 0.986 (0.001) 0.985 (0.001) 0.988 (0.002) 
Quadratic 98.6% (0.001) 1.000* (0) 0.986 (0.001) 0.986 (0.001) 0.986 (0.001) 0.986 (0.001) 

Cubic 98.6% (0.001) 1.000* (0) 0.986 (0.001) 0.987 (0.001) 0.987 (0.001) 0.987 (0.001) 
Medium Gaussian 98.6% (0.001) 1.000* (0) 0.989 (0.002) 0.985 (0.001) 0.984 (0.002) 0.987 (0.002) 
Coarse Gaussian 98.5% (0.001) 1.000* (0) 0.989 (0.003) 0.981 (0.001) 0.980 (0.001) 0.985 (0.002) 

Feature 
Set (7) 

Linear 98.8% (0.001) 1.000* (0) 0.991 (0.001) 0.987 (0.001) 0.986 (0.002) 0.989 (0.001) 
Quadratic 98.7% (0.001) 1.000* (0) 0.987 (0.001) 0.988 (0.001)  0.988 (0.001) 0.988 (0.002) 

Cubic 98.6% (0.001) 1.000* (0) 0.986 (0.002) 0.988 (0.001) 0.988 (0.001) 0.987 (0.002) 
Medium Gaussian 98.8% (0.001) 1.000* (0) 0.991 (0.001) 0.987 (0.002) 0.986 (0.001) 0.989 (0.002) 
Coarse Gaussian 98.4% (0.001) 1.000* (0) 0.989 (0.002) 0.981 (0.002) 0.980 (0.003) 0.985 (0.002) 

* rounded values 
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Figure 6.10: The classification accuracies of different SVM kernels for the different DCNN deep feature sets.  
Feature Set (1) = ResNet-18 and GoogleNet. 
Feature Set (2) = ResNet-18, GoogleNet, and ResNet-101.  
Feature Set (3) = ResNet-18, GoogleNet, ResNet-101, and ResNet-50. 
Feature Set (4) = ResNet-18, GoogleNet, ResNet-101, ResNet-50, and AlexNet. 
Feature Set (5) = ResNet-18, GoogleNet, ResNet-101, ResNet-50, AlexNet, and Inception ResNet-v2. 
Feature Set (6) = ResNet-18, GoogleNet, ResNet-101, ResNet-50, AlexNet, Inception ResNet-v2, and Inception-v3. 
Feature Set (7) = ResNet-18, GoogleNet, ResNet-101, ResNet-50, AlexNet, Inception ResNet-v2, Inception-v3, and MobileNet-v2. 

6.5.4 Scenario (4) 
In this scenario, a novel technique was introduced by extracting the decision-levels of 

each DCNN model constructed in scenario (1) instead of the features. Afterward, these 

outcomes were classified using individual classifiers such as J48 DT, RF DT, and RT DT. 

Additionally, the probabilities were classified using MCS classifiers. The MCS classifiers were 

implemented by three different structures. The first one was the combination of J48 DT, RF 

DT, and RT DT classifiers. Whereas the second and third structures were the AdaBoosting and 

bagging ensemble of J48 DT, RF DT, and RT DT classifiers. A comparison between the 

classification accuracies of individual and MCS used for all DCNN outcomes is shown in 

Figure 6.11. In addition, Table 6.5 tabulates the classification scores for the outcomes of the 

DCNN architectures.  

For the individual classifiers, the J48 DT classifier achieved the highest accuracy for all 

DCNN decision levels ranged from 91.56% to 96.74% as shown in Figure 6.11. Additionally, 

it was clear from Figure 6.11 that the highest and lowest accuracies were for ResNet-18 and 

Inception ResNet-v2 DCNN decision-levels, respectively. Hence, for the ResNet-18 DCNN 

decision-levels the AUC yielded to 0.964 (96.4%). The sensitivity and the F1-score achieved 

0.961 (96.1%) and 0.968 (96.8%). However, the specificity and the precision reached the same 

score of 0.975 (97.5%) as shown in Table 6.5.  
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On the other hand, for the MCS classifiers, the bagging ensemble of J48 DT, RF DT, and 

RT DT classifiers achieved the highest accuracy for all DCNN outcomes. The accuracies 

fluctuated from 89.83% to 96.24%. As it was noticeable from Table 6.5, the outcomes of 

ResNet-18 DCNN reached 96.24% and 0.992 (99.2%) for accuracy and AUC, respectively. 

However, the outcomes of the Inception-ResNet-v2 achieved 89.83% and 0.951 (95.1%) for 

accuracy and AUC, respectively. It was obvious that still the classification accuracy achieved 

in this scenario did not increase compared to that achieved in scenarios (2) and (3). Although 

the accuracy did not improve; however, the number of features in the feature vector decreased 

compared to the previous scenarios. Thus, this was efficient as reducing the number of features, 

reduce the complexity of the classification process. 

Table 6.5: The classification scores for the decision levels of the DCNN architectures.  

 Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

ResNet-18 
J48 DT 96.74% (0.001) 0.964 (0.005)  0.961 (0.002) 0.975 (0.002) 0.975 (0.002) 0.968 (0.001) 
RF DT 94.91% (0.002) 0.986 (0.001) 0.945 (0.002) 0.954 (0.002) 0.955 (0.002) 0.950 (0.002) 
RT DT 94.76% (0.002) 0.950 (0.002) 0.941 (0.003) 0.956 (0.002) 0.956 (0.002) 0.949 (0.002) 
J48+RF+RT 94.95% (0.002) 0.985 (0.002) 0.946 (0.002) 0.954 (0.002) 0.955 (0.002) 0.950 (0.002) 
AdaBoosting 94.91% (0.002) 0.979 (0.003) 0.945 (0.003) 0.954 (0.002) 0.955 (0.003) 0.950 (0.002) 
Bagging 96.24% (0.002) 0.992 (0.001) 0.958 (0.002) 0.968 (0.002) 0.969 (0.002) 0.963 (0.002) 

GoogleNet 
J48 DT 96.45% (0.001) 0.970 (0.002) 0.968 (0.005) 0.963 (0.003) 0.963 (0.003) 0.966 (0.002) 
RF DT 94.67% (0.002) 0.984 (0.001) 0.943 (0.003) 0.952 (0.002) 0.952 (0.002) 0.948 (0.002) 
RT DT 94.65% (0.002) 0.937 (0.003) 0.942 (0.003) 0.952 (0.002) 0.953 (0.002) 0.948 (0.002) 
J48+RF+RT 94.66% (0.002) 0.984 (0.001) 0.943 (0.003) 0.952 (0.002) 0.952 (0.002) 0.948 (0.002) 
AdaBoosting 94.66% (0.002) 0.960 (0.003) 0.942 (0.002) 0.952 (0.002) 0.952 (0.002) 0.948 (0.002) 
Bagging 95.87% (0.001) 0.989 (0.001) 0.957 (0.002) 0.962 (0.001) 0.962 (0.002) 0.960 (0.001) 

ResNet-101 
J48 DT 95.68% (0.001) 0.953 (0.002) 0.940 (0.001) 0.974 (0.001) 0.975 (0.001) 0.957 (0.001) 
RF DT 93.25% (0.002) 0.976 (0.002) 0.928 (0.002) 0.938 (0.003) 0.938 (0.002) 0.934 (0.002) 
RT DT 93.18% (0.002) 0.926 (0.002) 0.925 (0.002) 0.939 (0.003) 0.940 (0.003) 0.933 (0.002) 
J48+RF+RT 93.27% (0.002) 0.976 (0.002) 0.928 (0.002) 0.938 (0.002) 0.939 (0.002) 0.934 (0.002) 
AdaBoosting 93.11% (0.002) 0.957 (0.003) 0.927 (0.002) 0.936 (0.002) 0.936 (0.003) 0.932 (0.002) 
Bagging 94.78% (0.002) 0.985 (0.002) 0.940 (0.002) 0.956 (0.002) 0.957 (0.003) 0.949 (0.002) 

ResNet-50 
J48 DT 95.81% (0.001) 0.958 (0.003) 0.947 (0.003) 0.970 (0.003) 0.971 (0.004) 0.959 (0.001) 
RF DT 93.62% (0.002) 0.978 (0.001) 0.933 (0.003) 0.941 (0.002) 0.942 (0.003) 0.937 (0.002) 
RT DT 93.38% (0.002) 0.938 (0.002) 0.926 (0.002) 0.942 (0.002) 0.943 (0.003) 0.935 (0.002) 
J48+RF+RT 93.68% (0.002) 0.978 (0.002) 0.933 (0.003) 0.942 (0.002) 0.942 (0.003) 0.938 (0.002) 
AdaBoosting 93.72% (0.003) 0.972 (0.002) 0.933 (0.003) 0.942 (0.003) 0.942 (0.003) 0.938 (0.002) 
Bagging 95.30% (0.002) 0.985 (0.001) 0.947 (0.003) 0.960 (0.002) 0.961 (0.002) 0.954 (0.002) 

AlexNet 
J48 DT 95.57% (0.001) 0.953 (0.003) 0.944 (0.002) 0.968 (0.001) 0.969 (0.001) 0.957 (0.001) 
RF DT 93.09% (0.002) 0.978 (0.001) 0.928 (0.003) 0.935 (0.002) 0.936 (0.002) 0.932 (0.002) 
RT DT 93.06% (0.002) 0.931 (0.002) 0.927 (0.003) 0.935 (0.002) 0.936 (0.002) 0.932 (0.002) 
J48+RF+RT 93.08% (0.002) 0.978 (0.002) 0.927 (0.003) 0.935 (0.002) 0.936 (0.002) 0.932 (0.002) 
AdaBoosting 93.07% (0.002) 0.974 (0.002) 0.927 (0.003) 0.936 (0.002) 0.936 (0.002) 0.932 (0.002) 
Bagging 94.59% (0.002) 0.985 (0.001) 0.941 (0.002) 0.951 (0.003) 0.952 (0.003) 0.947 (0.002) 
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 Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

Inception ResNet-v2 
J48 DT 91.56% (0.001) 0.908 (0.001) 0.884 (0.001) 0.947 (0.001) 0.951 (0.001) 0.917 (0.001) 
RF DT 86.62% (0.002) 0.936 (0.002) 0.856 (0.003) 0.877 (0.003) 0.880 (0.003) 0.868 (0.002) 
RT DT 86.58% (0.002) 0.864 (0.002) 0.855 (0.002) 0.877 (0.003) 0.880 (0.003) 0.868 (0.002) 
J48+RF+RT 86.66% (0.002) 0.937 (0.003) 0.856 (0.003) 0.877 (0.003) 0.881 (0.003) 0.868 (0.002) 
AdaBoosting 86.61% (0.002) 0.932 (0.002) 0.856 (0.003) 0.877 (0.003) 0.880 (0.003) 0.868 (0.003) 
Bagging 89.83% (0.002) 0.951 (0.002) 0.880 (0.002) 0.917 (0.004) 0.920 (0.004) 0.900 (0.002) 

Inception-v3 
J48 DT 94.70% (0.001) 0.944 (0.002) 0.941 (0.002) 0.953 (0.003) 0.953 (0.003) 0.948 (0.001) 
RF DT 91.66% (0.002) 0.970 (0.002) 0.913 (0.003) 0.921 (0.003) 0.922 (0.003) 0.918 (0.002 ) 
RT DT 91.48% (0.002) 0.917 (0.002) 0.909 (0.003) 0.921 (0.003) 0.922 (0.003) 0.916 (0.002) 
J48+RF+RT 91.68% (0.002) 0.970 (0.002) 0.913 (0.003) 0.921 (0.003) 0.922 (0.003) 0.918 (0.002) 
AdaBoosting 91.66% (0.002) 0.967 (0.003) 0.913 (0.003) 0.921 (0.003) 0.922 (0.003) 0.918 (0.002) 
Bagging 93.68% (0.002) 0.980 (0.002) 0.933 (0.003) 0.942 (0.002) 0.942 (0.002)  0.938(0.002) 

MobileNet-v2 
J48 DT 91.69% (0.002) 0.915 (0.002) 0.920 (0.002) 0.916 (0.003) 0.915 (0.003) 0.918 (0.002) 
RF DT 87.63% (0.002) 0.948 (0.002) 0.869 (0.003) 0.884 (0.002) 0.885 (0.003) 0.878 (0.002) 
RT DT 87.23% (0.002) 0.877 (0.002) 0.860 (0.003) 0.884 (0.003) 0.888 (0.003) 0.874 (0.002) 
J48+RF+RT 87.69% (0.002) 0.950 (0.002) 0.871 (0.003) 0.884 (0.003) 0.885 (0.003) 0.878 (0.002) 
AdaBoosting 87.69% (0.002) 0.940 (0.002) 0.871 (0.003) 0.883 (0.003) 0.885 (0.003) 0.878 (0.002) 
Bagging 90.12% (0.002) 0.962 (0.001) 0.898 (0.003) 0.906(0.003) 0.906 (0.003) 0.902 (0.002) 

 

 

Figure 6.11: A comparison between the classification accuracies of individual and MCS used for all DCNN 
outcomes. 

Table 6.6: The scores calculated for the fusion of the decision levels classified by individual and MCS classifiers.  

 Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-Score 
(Std) 

J48 DT 97.69% (0.002) 0.989  (0.002) 0.978 (0.004) 0.978 (0.003) 0.977 (0.003) 0.978 (0.002) 

RF DT 97.65% (0.001) 0.999 (0.001) 0.974 (0.002) 0.980 (0.001) 0.980 (0.001) 0.977 (0.001) 
RT DT 96.98% (0.002) 0.970 (0.003) 0.966 (0.003) 0.974 (0.002) 0.974 (0.002) 0.971 (0.002) 
J48+RF+RT 97.49% (0.002) 0.998 (0) 0.972 (0.003) 0.979 (0.001) 0.979 (0.001) 0.976 (0.002) 
AdaBoosting 97.59% (0.002) 0.994 (0.002) 0.973 (0.002) 0.980 (0.002) 0.980 (0.002) 0.977 (0.002) 

Bagging 97.66% (0.001) 0.999 (0.001) 0.975 (0.002)  0.980 (0.001) 0.980 (0.001) 0.978 (0.001) 
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6.5.5 Scenario (5) 
Another fusion strategy was performed in this scenario to determine if combining the 

decision-levels would enhance the performance of the classifiers as when combining the deep 

features in scenario (3). Therefore, the decision-levels extracted in the scenario (4) were fused 

to produce one feature vector with only eight features. This feature vector was also fed into the 

same individual and MCS constructed in the fourth scenario. The scores calculated were 

illustrated in Table 6.6. The highest and lowest accuracies were 97.69% and 96.98% achieved 

by the J48 DT and the RT DT, respectively as illustrated in Table 6.6. Furthermore, for the 

MCS classifiers the bagging ensemble of J48 DT, RF DT, and RT DT classifiers achieved the 

highest classification accuracy of 97.66%. It was clear that the accuracies achieved in this 

scenario did not improve compared to scenario (3), however, the feature vector length 

decreased.  

6.5.6 Scenario (6) 
In this scenario, a second stage of classification was constructed to improve the 

classification accuracy and decrease the complexity of the classification process. This was 

generated by extracting the outcomes of each classifier for the classified decision-levels in 

scenario (4). The decision levels of each individual and MCS classifiers for all the DCNN 

models were combined separately forming one feature vector with 8 features.  This feature 

vector was again classified using the same individuals and MCS classifiers. The accuracies in 

this scenario fluctuated from 91.88% to 97.76%. Figure 6.12 shows the classification 

accuracies for all the fused decision levels of each classifier classified again using the single 

and MCS classifiers.  As it was clear from this figure that the highest classification accuracy 

between all the classifiers was the fusion of the decision-levels classified by the J48 DT, 

therefore, the scores achieved of this classifier were presented in Table 6.7.  On the other hand, 

the least classification accuracy was for the fusion of the decision levels of the RT DT scoring 

91.88% using the J48 DT. Additionally, the fusion of the other classifiers achieved a promising 

result as shown in Figure 6.12.  

As it was noticeable, this scenario proved that the second stage of classification improved 

the classification accuracy results compared to scenarios (4) and (5). Furthermore, when 

comparing the classification accuracy obtained in scenario (6) with the rest of the scenarios, it 

was clear that the accuracy decreased by 1.04% from scenario (3). However, the feature vector 

length decreased, which reduced the complexity of the classification process. A comparison 

for the classification accuracies achieved in the six scenarios was demonstrated in Figure 6.13.  



109 
 

 

Figure 6.12: The classification accuracies of the second stage classification constructed in scenario (6).  

Table 6.7: The scores for the fusion of the J48 DT outcomes classified by the individual and MCS classifiers.  

 Accuracy 
(Std) 

AUC 
(Std) 

Sensitivity 
(Std) 

Specificity 
(Std) 

Precision 
(Std) 

F1-score 
(Std) 

J48 DT 97.55% (0.002) 0.990 (0.002) 0.978 (0.002) 0.974 (0.002) 0.973 (0.002) 0.976 (0.002) 
RF DT 97.75% (0.001) 0.996 (0.001) 0.982 (0.002) 0.975 (0.002) 0.974 (0.002) 0.978 (0.001) 
RT DT 97.57% (0.001) 0.977 (0.002) 0.978 (0.002) 0.976 (0.002) 0.975 (0.002) 0.976 (0.001) 
J48+RF+RT 97.68% (0.001) 0.997 (0.001) 0.981 (0.002) 0.974 (0.002) 0.973 (0.002) 0.977 (0.002) 
AdaBoosting 97.69% (0.001) 0.990 (0.002) 0.981 (0.002) 0.974 (0.002) 0.973 (0.002) 0.977 (0.001) 
Bagging 97.76% (0.001) 0.997 (0.001) 0.982 (0.002) 0.974 (0.002) 0.973 (0.002) 0.978 (0.001) 

 

 

Figure 6.13: A comparison for the accuracies achieved in the six scenarios. 
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For any medical system to be reliable, it should accomplish a sensitivity, a specificity, 

and a precision bigger than or equal to 80%, 95%, and 95%, respectively. Therefore, the 

proposed framework with all scenarios was reliable.   

To authenticate the statistical significance of the results obtained in the proposed 

scenarios, the ANOVA test was performed by the repeated five fold cross-validation procedure. 

The null hypothesis Ho for all classification was that the mean accuracies achieved in each 

scenario. For scenario (2), the test was performed on all the classification accuracy results of 

the different kernels of the SVM classifier to test the statistical significance between them. 

Tables 6.8 – 6.10 show the ANOVA test details for the deep features of the three highest DCNN 

architectures results obtained in this scenario, which were ResNet-18, GoogleNet, and ResNet-

50, respectively. Moreover, for scenario (3), since there was a slight difference in the 

classification accuracy values between the different feature sets created in this scenario. 

Consequently, the ANOVA test was performed on the classification accuracy results for feature 

set (7) as shown in Table 6.11. For scenario (4), when comparing the classified accuracies for 

the outcomes of the eight DCNN architectures, it was clear that the decision levels of the 

ResNet-18 DCNN architecture achieved the highest accuracy as in Table 6.5. Therefore, the 

ANOVA test was performed on the results achieved by this architecture as illustrated in Table 

6.12. Additionally, Table 6.13 presents the ANOVA test details of the results executed in 

scenario (5). Furthermore, as the fusion of the J48 DT decision-levels classified by the J48 DT 

achieved the highest classification accuracy in scenario (6).  Thus, the ANOVA test was 

performed on the results achieved on this set as illustrated in Table 6.14. As it was clear from 

Tables 6.8 – 6.14 that the p-values achieved were lower than α, where α = 0.05, accordingly, 

there was a statistically significant difference between the accuracies of the classifiers 

constructed. 

Table 6.8: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-18 DCNN.  

Source of Variation SS df MS F p-Value 
Columns 0.00036 4 9.008 × 10-5 95.38 < 0.001 

Error 0.00004 45 9.44444 × 10-7   
Total 0.0004 49    

Table 6.9: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of GoogleNet DCNN.  

Source of Variation SS df MS F p-Value 
Columns 0.00033 4 8.25 × 10-5 136.12 < 0.001 

Error 0.00003 45 6.06667 × 10-7   
Total 0.00036 49    
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Table 6.10: The ANOVA test details for the different kernel functions of the SVM classifier for the deep features 
of ResNet-50 DCNN.  

Source of Variation SS df MS F p-Value 
Columns 0.00163 4 4.1 × 10-4 1977.48 < 0.001 

Error 0.00001 45 0   
Total 0.00164 49    

Table 6.11: The ANOVA test details for the different kernel functions of the SVM classifier for feature set (7) in 
scenario (3).  

Source of Variation SS df MS F p-Value 
Columns 0.00012 4 2.915 × 10-5 16.42 < 0.001 

Error 0.00008 45 1.77556 × 10-6   
Total 0.0002 49    

Table 6.12: The ANOVA test details for the ResNet-18 DCNN decision-levels in scenario (4). 

Source of Variation SS df MS F p-Value 
Columns 0.00359 5 0.00072 468.37 < 0.001 

Error 0.00008 54 0   
Total 0.00368 59    

Table 6.13: The ANOVA test details for the 8 DCNN decision-levels fusion in scenario (5). 

Source of Variation SS df MS F p-Value 
Columns 0.00037 5 7.34335 × 10-5 40.17 < 0.001 

Error 0.0001 54 1.82815 × 10-6   
Total 0.00047 59    

Table 6.14: The ANOVA test details for the J48 DT decision-levels fusion in scenario (6). 

Source of Variation SS df MS F p-Value 
Columns 4.00933 × 10-5 5 8.01867 × 10-6 11.01 < 0.001 

Error 3.9314 × 10-5 54 7.28037 × 10-7   
Total 7.94073 × 10-5 59    

Finally, the proposed framework has been compared with the applicable state-of-the-art 

frameworks presented in Chapter 3 to prove the efficiency of the proposed method. It was 

noticeable that the proposed framework with all scenarios has outperformed other systems. 

Regarding the usage of fine-tuned DCNN architectures, many researchers proposed this 

method as in Xi et al. [286], Ting et al. [290], Alkhaleefah et al. [298],  Al-Antari et al. [301], 

and Wessels and Van der Haar [303]. The methods proposed by these researchers were 

evaluated on the publicity datasets. In addition, the classification accuracy achieved was less 

than the scores obtained in this work. Additionally, the results presented in this work were 

assessed on a new mammography dataset. Li et al. [292] evaluated the results of end-to-end 

fine-tuned DCNN on a private dataset collected from the First Hospital of Shanxi Medical 

University. The accuracy achieved was 94.55%, which also proved to be less than achieved in 

this framework.  
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On the other hand, recently, researchers led to different fusion strategies to increase the 

classification accuracy of a system as in  [330]–[332]. The highest accuracies achieved by these 

researchers ranged from 82.84% to 96.6%. Therefore, when comparing these fusion methods 

with the one proposed in this framework, it was found that the accuracy attained beaten all 

other results.  

6.6 Summary  
In this chapter, a novel decision-levels based framework to distinguish between different 

breast cancer classes was presented. Addiditionally, a new mammogram dataset namely the 

“DAR-Breast” was acquired and used to test the performance of the work proposed. This 

framework was performed by six scenarios. The first scenario composed of constructing eight 

end-to-end pre-trained fine-tuned DCNN networks of different architectures. Furthermore, 

scenario (2) created by extracting the deep features of the fine-tuned DCNNs and classify them 

separately using SVM classifiers with different kernel functions. The goal of this scenario was 

to improve the classification accuracies of scenario (1). Therefore, the results revealed that the 

classification accuracies in scenario (2) were higher than scenario (1). Afterward, the 

classification accuracies achieved in scenario (1) were arranged in descending order. 

Accordingly, from this arrangement, seven feature sets were generated, forming scenario (3). 

The classification accuracy achieved in this scenario increased by 0.8% than in scenario (2).  

Furthermore, a novel technique to enhance the classification accuracy of the breast cancer 

classification problem was presented in scenarios (4) – (6). In scenario (4), the decision-levels 

of the DCNN networks constructed in scenario (1) were extracted separately and considered as  

features. This was performed to decrease the feature length vector, which proved its efficiency 

to lessen the complexity of the classification process. These outcomes were fed into individual 

and MCS classifiers to test the accuracy. The individual classifiers included different types of 

DT classifiers this was because DT achieved a high accuracy rate in the medical field. The 

MCS classifiers were constructed using AdaBoosting and bagging ensemble. The accuracies 

achieved in this scenario did not improve compared to those of scenarios (2) and (3), however, 

the feature vector decreased. In scenario (5), all the outcomes extracted from scenario (4) were 

combined forming a new feature vector with only eight features in length. The accuracy 

achieved in this scenario increased compared to that in scenario (4). 
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Finally, in scenario (6), another new fusion method was presented by constructing a 

second stage of classification. The decision-levels of each classifier for the classified outcomes 

in scenario (4) were extracted. These outcomes were used to construct a second level of 

classification by fusing separately for each individual and MCS classifiers’ outcomes forming 

one feature vector with eight features. Afterward, the new feature vector was classified using 

the individual and MCS as well.  In this case, the fusion of J48 DT features achieved the highest 

classification accuracy. All the accuracy results obtained from all scenarios were analysed by 

the ANOVA test.  
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Chapter 7  

Conclusions and Future Work  

7.1 Conclusions  

Incidence of breast cancer rates is found to be maximal and its survival rates are very less 

as soon as patients reach stage three of the disease. Moreover, radiologists cannot easily provide 

accurate evaluation due to the huge number of mammograms generated in widespread 

screening. To combat these problems, modern techniques and recent advancements in 

diagnosis are essential to control the progression of tumours and reduce death rates. They are 

considered as a boon to mankind because they can provide early detection in lesser time and 

are also non-invasive in nature. Thus, breast cancer can be treated at its earliest stage when 

compared to conventional methods. Therefore, it is necessary to use new techniques and 

concentrate on development in the diagnosis of the disease so that treatment of the disease can 

be made easier and in less possible time. Consequently, CAD systems have been developed to 

detect the indicators of breast cancer and improve the accuracy of diagnosis. 

Currently, ML and specifically the DL methods were used extensively to tackle medical 

problems. The DL techniques were considered the newest class of ML techniques and were 

used extensively, as they can overcome the limitations of the classical ML methods with hand-

crafted features. DL methods showed their superiority over classical ML methods in most 

cases.  

The training process of DCNNs requires a large number of annotated samples to avoid 

overfitting to the training dataset, however, there was always an insufficient amount of medical 

images. In addition, with the increasing amount of data, DCNNs outperform conventional ML 

techniques. Therefore, the data augmentation technique with different forms was applied to all 

the datasets used in this work.   

In this thesis, we proposed a combination of DL techniques to build efficient frameworks 

in CAD systems to assist the radiologists in classifying mammography breast cancer tumours.  

We tested these techniques using  three publicly available datasets, MIAS, DDSM, and CBIS-

DDSM. We have demonstrated to achieve the state-of-the-art performance using our proposed 

methodologies. The main contributions of this thesis can be summarised as follows:  
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In Chapter 4, we proposed two segmentation methodologies i.e., the circular contours 

and adaptive thresholding to segment the ROI from the original image of the DDSM dataset. 

The AlexNet DCNN was employed as an end-to-end process, achieving an accuracy for the 

circular contour method higher than that of the adaptive thresholding method.  Additionally, to 

improve the classification accuracy, the deep features were extracted and classified using the 

SVM classifier. It was found that the adaptive thresholding method provided better results. On 

the other hand, for the CBIS-DDSM dataset, the classification accuracy of the end-to-end 

DCNN increased compared to that achieved using the DDSM samples. Moreover, when 

classifying the deep features extracted using SVM, the accuracy increased as well. Therefore, 

the highest accuracy achieved from this framework was 87.2% using the images of the CBIS-

DDSM dataset.  

In Chapter 5, a framework is proposed to explore different combinations of deep features 

and select the optimal one, to further improve the classification accuracy. In addition, it has 

also reduced the computational cost through PCA based dimension reduction of the fuse 

features. This was performed by constructing four different scenarios and evaluated on two 

datasets; the CBIS-DDSM and the MIAS. The scenarios were: (1) end-to-end DCNN process, 

(2) extracting the deep features and classifying them using the SVM classifier with different 

kernel functions, (3) fusing the deep features in a sequential forward strategy, and classify them 

sing the SVM classifier with different kernel functions, and (4) reducing the feature dimension 

and the computational cost. The results of the scenarios indicated that the proposed framework 

is capable of successfully classifying breast cancer lesions, where the highest accuracies 

achieved were 97.9% and 97.4% using the fusion of deep features for CBIS-DDSM and MIAS 

datasets, respectively.  

In Chapter 6, novel fusion techniques were used to construct the third framework, by 

generating six scenarios. The first three scenarios were the same as the ones constructed in the 

preceding framework in Chapter 5. Although, there was a slight change in scenario (1), using 

Inception-v3, Inception ResNet-v2, and MobileNet-v2  DCNNs models besides the ones used 

previously in Chapter 5. On the other hand, scenarios (4) – (6), employed a novel technique to 

enhance and improve the classification accuracy by decision-level fusion of the outcomes of 

the DCNNs and classifying them with different trees of DT and their ensembles. This 

framework was reliable and efficient and it was capable to classify the breast lesions and 

decrease the complexity. Additionally a new mammogram dataset collected from the Armed 

Forces Hospital located in Egypt named DAR-Breast was also introduced. 
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In conclusion, this study is a crucial trial compromising a simple construction, low cost, 

efficient, and automatic diagnostic tool that can achieve a high accuracy based on multiple 

DCNNs and various fusion techniques. The DCNN methods are more capable of distinguishing 

between cancerous and non-cancerous cases than manual interpretation of mammogram 

images. These frameworks can assist the radiologists to accurately diagnose the breast cancer. 

It can also reduce the time and effort made by them during the examination process and reduce 

human misdiagnosis that could occur due to human fatigue.  Moreover, the frameworks 

presented in this thesis could also be potentially adapted and applied for the detection and 

classification of cancers in any other organs. 

7.2 Future Work  
The work presented in this thesis was found to successfully obtain some promising results 

to the automatic interpretation of breast cancer images that might decreases human mistakes in 

the process of the diagnosis. Moreover, it reduces the complexity and the cost of breast cancer 

diagnosis. However, there are still many aspects that are worth further investigation to increase 

the classification accuracy. These are summarised in several future directions as detailed 

below: 

• Deep-learning networks of other kinds, such as RNN, generative adversarial networks 

(GANs) [348], and clustering should be explored.  

• Strategies based on various DCNN architectures, as well as hyperparameter optimization, 

must be investigated. 

• Combining handcrafted features such as statistical features, GLCM features, and Curvelet 

transform with deep features.   

• Extracting the deep features from the handcrafted features may enhance the performance 

of the classifier.  

• Datasets focused on mammography and histopathology are publicly available. In 

contrast, datasets based on other imaging modalities such as infrared thermal imaging, 

computed tomography, and digital breast tomosynthesis are not publicly available. 

Additionally, studies conducted using such imaging modalities go through unpublished 

datasets. Therefore, datasets for new breast imaging modalities could be collected and 

acquired for breast cancer diagnosis.  
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• Segmentation models, such as U-net, have provided cutting-edge segmentation findings 

in a variety of computer vision datasets [349]. Furthermore, applying this technique 

involving various imaging modalities may boost breast cancer classification accuracy 

results. 

• Combining the clinical data with the deep features which may boost the performance of 

the classifier.  

• Multi-modality research could be investigated. This coould be performed by  combining 

schemes based on multiple different breast imaging modalities, such as mammography 

with MRI scans and mammography with PET scans. 

• Multi-centre studies could be implemented to construct a powerful framework. The multi-

centre studies depends on a dataset obtained from a single scanning centre lead to model 

complications and make it difficult to be employed on datasets from other locations or 

using different acquiring device or scanning parameters [350].  Thus, datasets from multi-

centre are necessary. The multi-centre study includes combining datasets from several 

centres acquired from either different locations, scanner, or scanning parameters to 

increase the size of the dataset used to construct and train the CAD system. Datasets from 

multiple centres are effectively grouped for detection and repetition [351], [352]. The 

training set of the data used to construct the model will contain data from the multi-centre, 

which accommodates the deviation produced due to the variation in scanner or scanning 

parameters. Additionally, combining data from multi-centre will help recruitment, 

strengthen the CAD system power, and cope among scanner variance in order to generate 

better generalisable performances, which disclose joint areas that contribute the 

classification consistently within each dataset [353]. The multi-centre classification 

concept was employed in several studies [354]–[358]. Furthermore, a cross-study could 

be implemented as well. In which a dataset is used for training and testing with another 

dataset.  
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Appendix A 

State-of-the-Art DCNN Architectures  

There are several state-of-the-art DCNN architectures; Figure A.1 shows a comparison 

between the operating parameters and the estimated accuracies achieved by the most relevant 

DCNN architectures. In this work five state-of-the-art DCNN architectures were used; AlexNet 

[23], GoogleNet [24], Inception-v3 [25], the ResNet [26], Inception ResNet-v2 [27], and 

MobileNet-v2 [28]. These architectures will be discussed in the following sections [359].  

 
Figure A.1: A comparison between different types of DCNN architectures concerning accuracies.  Adopted 
from [360].  
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A.1 AlexNet Architecture   
The AlexNet architecture [23] achieved significantly improved performance over the 

other non-deep learning methods for ImageNet large scale visual recognition challenge 

(ILSVRC) 2012. This success has revived the interest in DCNNs in computer vision. AlexNet 

has five convolution layers, three pooling layers, and three fully-connected layers with 

approximately 60 million free parameters [23] as shown in Figure A.2.  

A detailed layer description of AlexNet architecture is given in Table A.1. The output 

layer of the first convolutional layer in the AlexNet architecture is calculated using equation 

(3.2) in Chapter 3. The output equals 55 × 55 × 96, which demonstrates that the size of the 

feature map is 55 × 55 in width and height. In addition, the number of feature maps is 96 as 

clear in Table A.1.  

Figure A.2: The AlexNet DCNN architecture. Adapted from [23]. 

Table A.1: The layers of AlexNet DCNN architecture.   

Layer Name Description Output Size 

Input layer 227 × 227 × 3 

conv1 
Filter Size  11 × 11  

55 × 55 × 96 Stride 4 
Padding 0 

pool1 Pooling Size  3 × 3 27 × 27 × 96 
Stride 2 

conv2 Filter Size  5 × 5 27 × 27 × 256 
Stride 1 

pool2 Pooling Size  3 × 3 13 × 13 × 256 
Stride 2 

conv3 Filter Size  3 × 3 13 × 13 × 384  
Stride 1 

conv4 Filter Size  3 × 3 13 × 13 × 384 
Stride 1 

conv5 Filter Size  3 × 3 13 × 13 × 256 
Stride  1 

pool5 Pooling Size  3 × 3 6 ×  6 × 256 
Stride 2 

Fully connected (FC) 4096 × 2 
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pool2 
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Input 
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A.2 GoogleNet Architecture  

GoogleNet [24] model is significantly more complex and deep than all DCNN 

architectures. It was introduced by Szegedy C. et al. [24] who proposed a structure that 

computationally efficient.  More importantly, it introduces a new module called “Inception”; 

therefore, it is named Inception-v1. It concatenates filters of different sizes and dimensions into 

a single new filter. The main difference between the Inception module and a conventional 

convolutional layer is that the Inception module allows the extraction of features with different 

kernel sizes. GoogleNet has two convolution layers, two pooling layers, nine Inception layers, 

and a fully connected layer before the output. Each Inception layer consists of six convolution 

layers and one pooling layer as shown in Figure A.3 [24]. The GoogleNet architecture and a 

detailed layer description for GoogleNet are illustrated in Figure 4.4 and Table A.2, 

respectively.  

 
Figure A.3: The Inception module. Adapted from [24].  

 
Figure A.4: The GoogleNet DCNN architecture. Adapted from [24].  
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Table A.2: The layers of GoogleNet DCNN architecture.   

 Layer Name Filter Size Stride Output Size 

Input Layer 224 × 224 × 3 
conv1 7 × 7 2 112 × 112 × 64 
pool1 3 × 3 2 56 × 56 × 64 
conv2 3 × 3  1 56 × 56 × 192 
pool2 3 × 3 2 28 × 28 × 192 

Inception (3a) - - 28 × 28 × 256 
Inception (3b) - - 28 × 28 × 480 

pool3 3 × 3 2 14 × 14 × 480 
Inception (4a) - - 14 × 14 × 512 
Inception (4b) - - 14 × 14 × 512 
Inception (4c) - - 14 × 14 × 512  
Inception (4d) - - 14 × 14 × 528 
Inception (4e) - - 14 × 14 × 832 

pool4 3 × 3 2 7 × 7 × 832 
Inception (5a) - - 7 × 7 × 832 
Inception (5b) - - 7 × 7 × 1024 

average pooling  7 × 7  1 1 × 1 × 1024 

fully connected (FC) 1024 × 2 
 

A.3 Inception-v3 
Inception-v3 [25] is a widely used image recognition model that attains greater than 

78.1% accuracy on the ImageNet dataset. It is an extended network of the popular GoogleNet 

network [24]. It accomplished a good classification performance in several biomedical 

applications using the transfer-learning technique. Inception-v3 proposed the inception module 

as well, which concatenates multiple different sized convolutional filters into a new filter. Such 

design decreases the number of parameters to be trained and thereby reduces the computational 

complexity [25], [361]. The motivation behind the Inception architecture is that it incorporates 

different orders of convolutional blocks [25]. 

Inception-v3 architecture is made-up of symmetric and asymmetric building blocks, 

including convolutions, average pooling, maximum pooling, con cats, dropouts, and fully 

connected layers. The first several layers of the Inception-v3 architecture consist of six 

convolutional layers with kernel sizes of 3 × 3 and an average-pooling layer with a kernel size 

of 3 × 3, followed by 5 Inception-A, 4 Inception-B, and 2 Inception-C modules as shown in 

Figure A.5. The Inception modules are illustrated in Figure A.6. The Inception-A module used 

in Inception-v3 is the same as the Inception module used in GoogleNet architecture, however, 

the 5 × 5 convolutions are factored to two 3 × 3 convolutions. A detailed layer description for 

Inception-v3 is given in Table A.3. 
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Figure A.5: The Inception-v3 architecture. Adapted from [25]. 
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Figure A.6: The Inception modules used in Inception-v3 architecture (a) Inception-A module, (b) Inception-B module, and 
(c) Inception-C module. Adapted from [25]. 
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Table A.3: The layers of Inception-v3 DCNN architecture. 

Layer Name Filter Size Output Size 
Input Layer 299 × 299 × 3 

conv1 3 × 3 149 × 149 × 32 
conv2 3 × 3 147 × 147 × 32 
conv3 3 × 3  147 × 147 × 64 
pool1 3 × 3 73 × 73 × 64 
conv4 3 × 3 71 × 71 × 80 
conv5 3 × 3 35 × 35 × 192 
conv6 3 × 3 35 × 35 × 288 

5 × Inception-A - 17 × 17 × 768 
4 × Inception-B - 8 × 8 × 1280 
2 × Inception-C - 8 × 8 × 2048  

fully connected (FC) 2048 × 2 

A.4 ResNet Architecture   
ResNet won the first place in ILSVRC and COCO 2015 competition in ImageNet 

Detection, ImageNet localization, Coco detection, and Coco segmentation [26]. The gradients 

of a deep convolution network have higher chances of fading with the increase of the number 

of network layers, which hardens the convergence of a network. Batch normalization is 

commonly used to solve this problem, however, its performance becomes flooded and then 

worsens quickly at the beginning of the network converge [362]. To overcome this, a deep 

residual learning algorithm was proposed by He et al.  [26] who constructed a network called 

deep residual network  (ResNet) [26]. This method adds shortcuts called residuals between 

layers of traditional DCNNs to bypass a few convolution layers at a time. It increases the 

number of deep layers as well to enhance its performance and employs the residual shortcuts 

to accelerate the convergence of these large numbers of deep layers. A ResNet has several 

stacks of residual blocks. Each block is made up of several stacked convolution layers. Every 

single convolution layer takes the output fields of the feature map of the previous layer as its 

input. The output of every residual block is added to its input through an associate identity 

mapping path [363]. ResNet has some common architectures such as ResNet-18, ResNet-50, 

and ResNet-101. A detailed layer description for ResNet-18, ResNet-50, and ResNet-101 

architecture is illustrated in Table A.4. 
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Table A.4: The layers of ResNet DCNN architecture. 

Layer Name Output Size ResNet-18 ResNet-50 ResNet-101 
Input Layer 224 × 224 × 3 

conv1 112 × 112 × 64 
Filter size = 7 × 7 

Number of filters = 64 
Stride = 2 Padding = 3 

pool1 56 × 56 × 64 Pool size = 3 × 3 Stride = 2 

conv2_x 56 × 56 × 64 �3 × 3, 64
3 × 3, 64� × 2 �

1 × 1, 64
3 × 3, 64
1 × 1, 256

� × 3 �
1 × 1, 64
3 × 3, 64
1 × 1, 256

� × 3 

conv3_x 28 × 28 × 128 �3 × 3, 128
3 × 3, 128� × 2 �

1 × 1, 128
3 × 3, 128
1 × 1, 512

� × 4 �
1 × 1, 128
3 × 3, 128
1 × 1, 512

� × 4 

conv4_x 14 × 14 × 256 �3 × 3, 256
3 × 3, 256� × 2 �

1 × 1, 256
3 × 3, 256
1 × 1, 1024

� × 6 �
1 × 1, 256
3 × 3, 256
1 × 1, 1024

� × 23 

conv5_x 7 × 7 × 512 �3 × 3, 512
3 × 3, 512� × 2 �

1 × 1, 512
3 × 3, 512
1 × 1, 2048

� × 3 �
1 × 1, 512
3 × 3, 512
1 × 1, 2048

� × 3 

Average pooling 
Pool size = 7 × 7 Stride = 7 

1 × 1 ×  512 1 × 1 × 2048 1 × 1 × 2048 
Fully connected (FC) 2 (512 × 2) 2 (2048 × 2) 2 (2048 × 2) 

A.5 Inception ResNet-v2 
Inception Resnet-v2 [27] is formulated based on a combination of the Inception module 

and the residual connection. In the Inception-ResNet block, multiple sized convolutional filters 

are combined with residual connections. The usage of residual connections not only avoids the 

degradation problem caused by deep structures, but also reduces the training time [27]. The 

Inception-ResNet-v2 has a computational cost similar to Inception-v4. Figure A.7 shows the 

basic network architecture of Inception Resnet-v2. Moreover, the block diagrams of the stem, 

Inception ResNet-A, Reduction-A, Inception ResNet-B, Reduction-B, and Inception ResNet-

C are illustrated in Figure A.8, Figure A.9, Figure A.10, Figure A.11, Figure A.12, and Figure 

A.13, respectively. 

 

 

 

 

 

Figure A.7: The Inception ResNet-v2 architecture. Adapted from [27]. 
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Figure A.8: The scheme for stem module for Inception ResNet-v2 architecture. Adapted from [27]. 
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Figure A.9: The schema for the Inception ResNet-A module of Inception ResNet-v2 architecture. Adapted from 
[27]. 

 

 

 

 

 

 

 

 

 

Figure A.10: The schema for the reduction-A module of Inception ResNet-v2 architecture. Adapted from [27]. 

*k, l, m, n numbers represent the filter bank sizes, which are equals to 256, 256, 384, and 384, respectively.  
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Figure A.11: The schema for the Inception ResNet-B module of Inception ResNet-v2 architecture. Adapted 
from [27]. 

 

 

 

 

 

 

 

 

 

 
Figure A.12: The schema for the reduction-B module of Inception ResNet-v2 architecture. Adapted from [27].  
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Figure A.13: The schema for the Inception ResNet-C module of Inception ResNet-v2 architecture. Adapted 
from [27]. 

A.6 MobileNet-v2 
A group of researchers from Google released the MobileNet-v2 [28] architecture, which 

is optimized for mobile devices. The architecture delivers high accuracy results while keeping 

the parameters and mathematical operations as low as possible to bring deep neural networks 

to mobile devices [364]. MobileNet is small, has low-latency, low-power models 

parameterized to meet the resource constraints of a variety of use cases [365].  

MobileNet-v1 is introduced to support classification, detection, embedding, and 

segmentation. Moreover, the new mobile architecture, MobileNet-v2  is the improved version 

of MobileNet-v1 [364]. However, MobileNet-v2 [28] architecture improves the state-of-the-

art performance of mobile models on multiple tasks and benchmarks as well as across a 

spectrum of different model sizes. It is a very effective feature extractor for object detection 

and segmentation. The MobileNet-v2 models are much faster in comparison to MobileNet-v1. 

It uses two times fewer operations, has higher accuracy, and needs 30 percent less 

parameters.  The architecture of MobileNet-v2 consists of a fully convolution layer with 32 
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filters, followed by 19 residual bottleneck layers [28]. A detailed layer description of 

MobileNet-v2 is illustrated in Table A.5.  

Table A.5: The layers of MobileNet-v2 DCNN architecture.  

Layer Name Filter Size Stride Input Size 

Input Layer 224 × 224 × 3 
conv 3 × 3 × 3 × 32 2 112 × 112 × 32 

conv dw 3 × 3 × 32 dw 1 112 × 112 × 32 
conv 1 × 1 × 32 × 64 1 112 × 112 × 32 

conv dw 3 × 3 × 64 dw 2 112 × 112 × 64 
conv 1 × 1 × 64 × 128 1 56 × 56 × 64 

conv dw 3 × 3 × 128 dw 1 56 × 56 × 128 
conv 1 × 1 × 128 × 128 1 56 × 56 × 128 

conv dw 3 × 3 × 128 dw 2 56 × 56 × 128 
conv 1 × 1 × 128 × 256 1 28 × 28 × 128 

conv dw 3 × 3 × 256 dw 1 28 × 28 × 256 
conv 1 × 1 × 256 × 256 1 28 × 28 × 256 

conv dw 3 × 3 × 256 dw 2 28 × 28 × 256 
conv 1 × 1 × 256 × 512 1 14 × 14 × 256 

5 × conv dw 3 × 3 × 512 dw 1 14 × 14 × 512 
conv 1 × 1 × 512 × 512 14 × 14 × 512 
conv dw 3 × 3 × 512 dw 2 14 × 14 × 512 

conv 1 × 1 × 512 × 1024 1 7 × 7 × 512 
conv dw 3 × 3 × 1024 dw 2 7 × 7 × 1024 

conv 1 × 1 × 1024 × 1024 1 7 × 7 × 1024 
Avg. Pool Pool 7 × 7 1 7 × 7 × 1024 

FC 1024 × 1000 1 1 × 1 × 1024 

Softmax classifier  1 1 × 1 × 1000 
Output Size = 1280 × 2 
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