Functional screening for gene trap mutants involved in perineuronal net formation.

A thesis presented by Adil Abbasi

In fulfilment for the degree of Doctor of Philosophy

2023

Strathclyde institute of Pharmacy and Biomedical Sciences University of Strathclyde

Declaration

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree. The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Act as qualified by the University of Strathclyde Regulation 3.49

Due acknowledgment must always be made of the use of any material contained in or derived from this thesis.

Signed: Adil Abbasi

Date 31/05/2023

Acknowledgments

First of all, I would like to thank Allah SWT, the most merciful and the most gracious for giving me the opportunity to get to this part of my studies. I would also like to thank my supervisor Dr Benjamin Pickard for his mentorship, guidance, and support throughout the course of my studies. Due to his patience, discussions, criticisms and questions, Ben has brought out the best in me and he made my research and studies at Strathclyde a very enjoyable time despite me being a very challenging individual to deal with. I would also like to give a special thanks to Dr Christine Dufes the head of the graduate school for doing an outstanding job and providing me with the necessary support and guidance when my mental health issues were spiralling out of control.

I would like to give special thanks for my beautiful wife, Arooj Tariq for her immense support, patience and encouragement throughout all of this. Special thanks also go to my mum and dad and my brothers Aali Abbasi, Saoud Tariq Abbasi and Zeeshan Abbasi for their continued support and my father-in-law Tariq Mustafa Abbasi and my mother-in-law Naheed Tariq Abbasi for their continued support and encouragement. Further thanks are also extended to my sister Anab Tariq Abbasi who is my partner in crime. I would like to also thank my aunty and uncle (Sadaf Mustafa Abbasi) and (Zahid Imtiaz) for always guiding me and providing me with excellent guidance and life skills even when I was considerably testing their patience levels. Without all these people helping me and guiding me today, I do not think I would be in the place I am today. I owe a lot to these individuals for helping me become the person I am today. I would also like to give special acknowledgment and thanks to Naweed Safdar for his continued guidance and knowledge which has helped change my attitude to life immensely. However, nothing happens without the permission of Allah the most merciful and I am truly grateful for everything I have been given in my life and the opportunity to complete this PhD. Despite all the numerous challenges and hardships, I have faced recently, I would like to say Al-hamdullilah. I would also like to pay a final tribute to Haji Ghulam Mustafa Abbasi who is one of the greatest Islamic characters of the 21st century. His honesty and directness showed me the way to be happy in life. Though he is no longer with me, I owe a lot to him for seeing the best in me when others were putting me down.

This PhD has taught me one thing. Money and status aren't important. Good character and behaviour are. Don't look down on anyone and don't think you are better than anyone. Be humble and simple.

Contents

Declaration	2
Acknowledgments	3
List of Figures and Tables	7
List of Abbreviations	11
Abstract	14
Chapter 1	16
Introduction	16
1. The Perineuronal Net (PNN)	17
1.1 Extracellular matrix in the central nervous system	17
1.1.1 ECM types in the central nervous system	18
1.2 Components of the perineuronal net	20
1.2.1 PNN component- Glycosaminoglycans	22
1.2.2 PNN component- Hyaluronan and proteoglycan binding link protein (HAPLN)	24
1.2.3 Perineuronal net component - Lecticans	24
1.2.4 PNN component- Chondroitin sulphate proteoglycans and their synthesis, sulphation, and epimerisation	28
1.2.5 PNN components- Tenascins	31
1.3 The development and functions of the PNN	33
1.3.1 PNN detection by a plant molecule, wisteria floribunda agglutinin, and association of this staining with a specif	fic
neuronal cell type	37
1.4 Defects in the PNN are associated with disease.	38
1.5 The aims of this screen and the technologies to be used (Gene traps and CRISPR)	41
1.5.1 Gene trapping	42
1.5.2 CRISPR	45
1.5 Hypothesis/Aims	46
Chapter 2	47
Materials and Methods	47
2. Materials	48
2.1 Gene Trap Screen to identify WFA expression mutants	53
2.1 Cell culture	53
2.1.2 Live cell staining for PNN expression with WFA	56
2.1.3 Immunofluorescence Microscopy	56
2.1.4 Mutant gene identification	58
2.2 Creation of CRISPR constructs	61
2.3 Production of stable cell line mutant KOs	62

2.5 Drug inhibitor effect on WFA staining	69
2.6 siRNA knockdown of <i>GALNTL6</i>	69
2.7 Pull-down Assay	70
CHAPTER 3	72
Characterisation of the Perineuronal Net (PNN) in human SH-SY5Y neuroblastoma cells	72
3.1 SH-SY5Y cells express PNNs	73
3.2 HEK293 and LAN5 cells lines, but not A549 cells, show positive staining with WFA	76
3.3 Testing potential protein target(s) of WFA staining	78
3.4 Does the WFA staining on SH-SY5Y cells respond to pharmacological inhibitors of the PNN that have been de in the literature?	escribed 81
3.5 Conclusion	
CHAPTER 4	90
RESULTS: Using a gene trap screen to identify critical genes for PNN formation	90
4.1 Introduction and screening technology optimisation	91
4.2 Optimising library plating and live staining procedures	93
4.3 Results of the screen	95
4.3.1 Mutant colony U4D displays reduced WFA-binding glycoprotein expression	97
4.3.2 Mutant colony P38A displays reduced WFA-binding glycoprotein expression	98
4.3.3 Mutant colony U1B displays reduced WFA-binding glycoprotein expression	99
4.3.4 Mutant colony P36b displays reduced WFA staining	100
4.3.5 Mutant colony P37b displays reduced WFA staining	101
4.3.6 Mutant colony P39a displays reduced WFA staining	102
4.3.7 Mutant colony u6a displays reduced WFA staining	103
4.3.8 Mutant colony U9B displays reduced WFA staining	103
4.3.9 Analysing the expression of Neurocan and Versican in selected mutant colonies	104
4.3.10 Analysing the PNN protein expression of selected mutant colonies by Western blotting through staining vanti- <i>Neurocan</i> antibodies or WFA.	with 112
4.4 Conclusion	117
CHAPTER 5	119
RESULTS: Identification and analysis of the mutant genes from the selected screen colonies	119
5.1 Using RACE-PCR to determine the identity of mutant genes	120
5.2 Identification of the mutant genes using plasmid cloning and sequencing of the RACE-PCR products	122
5.3 U4D is identified as <i>DCC</i> using BLAT	126
5.4 P38A is identified as possessing mutated FAF1 using BLAT	128
5.5 U1B is identified as containing a mutation of the GALNTL6 gene	130
5.6 Conclusion	131

CHAPTER 6	. 132
RESULTS: Applying CRISPR mutation, siRNA knockdown, and pharmacological inhibition to examine candidate protein	
function	. 132
6.1 Introduction	. 133
6.2 Crispr construct design and purchase.	. 134
6.3 In-house designed CRISPR construct results.	. 135
6.4 siRNA inhibition of <i>GALNTL6</i>	. 142
6.5 Pharmacological inhibition of <i>FAF1</i> protein	. 143
6.6 Conclusion	. 146
Chapter 7	. 148
RESULTS: Identifying the PNN protein component in SH-SH5Y cells which interacts with <i>Wisteria floribunda</i> (Japanese wisteria) agglutinin (WFA)	. 148
7.1 Introduction	. 149
7.2 Pull down assay results and identification of protein band.	. 151
7.3 The structure and role of Vimentin	. 156
7.4 Conclusion	. 161
CHAPTER 8	. 162
Discussion	. 162
8.1 Brief summary of findings	. 163
8.2 Critical analysis of the research: staining pattern	. 165
8.3 Critical analysis of the research: Pharmacological effects contrasted with the literature	. 165
8.4 Critical analysis of the research	. 166
8.5 Critical analysis of the research: Issues with CRISPR validation	. 168
8.6 Critical analysis of the research: Pharmacological downregulation as an alternative	. 168
8.7 Critical analysis of the research: Exploring the functions of the candidates	. 169
8.8 Critical analysis of the research: What does WFA bind to?	. 169
8.9 Future of PNN research and final thoughts	. 172
Chapter 9	. 175
References	. 175
Appendix 1	. 218

List of Figures and Tables

List of figures

Figure 1.1 The central nervous system extracellular matrix is a complex and diverse molecular structure

Figure 1.2 The composition and function of the perineuronal net (PNN) and its relation to the work described in this thesis.

Figure 1.3. Synthesis of Hyaluronic acid is necessary for PNN assembly.

Figure 1.4 Lectican Domain Structure

Figure 1.5 Critical period of plasticity

Figure 1.6 Figure 1.6 The gene trap construct used in the original lithium gene trap screen known as PGTIV3 definitely.

Figure 2.1. The pGTIV3 gene trap plasmid used in the creation of the mutant SH-SY5Y gene trap library (map created in SnapGene).

Figure 2.2 pGEM T Easy Vector.

Figure 2.3 Sequencing results to confirm successful cloning of *FAF1* targeting gRNAs into CRISPR plasmids.

Figure 2.4- Sequencing results to confirm successful cloning of *Galntl6* targeting gRNAs into CRISPR plasmids.

Figure 2.5 pU6-(BbsI) _CBh-Cas9-T2A-mCherry CRISPR construct plasmid.

Figure 2.6 p5pCas9(BB)-2A-Puro (PX459) CRISPR construct plasmid.

Figure 2.7. Sequencing results to confirm successful cloning of *DCC* targeting gRNAs into CRISPR plasmids.

Figure 3.1 Successful staining of PNN-positive neurons in the mouse brain using WFA

Figure 3.2 No WFA staining of SH-SY5Y cells (Negative control).

Figure 3.3 Successful staining of SH-SY5Y cells with WFA.

Figure 3.4 WFA-binding glycoprotein is expressed in SH-SY5Y, LAN5 HEK293, but not A549, cells

Figure 3.5. WFA staining of SH-SY5Y cells shows the presence of perineuronal nets

Figure 3.6. SH-SY5Y cells express Neurocan

Figure 3.7. SH-SY5Y cells express Versican.

Figure 3.8 No effect on WFA staining using inhibitors fluoxetine and venlafaxine in SH-SY5Y cells.

Figure 3.9. No effect on WFA staining when SH-SY5Y cells are treated with Fluoxetine

Figure 3.10 No effect on WFA staining when SH-SY5Y cells are treated with venlafaxine.

Figure 3.11 No effect on WFA staining when SH-SY5Y cells are treated with lithium or GSK 3 inhibitor (1-Azakenpaullone)

Figure 4.1 The pGTIV3 gene trap plasmid used in the creation of the mutant SH-SY5Y gene trap library (map created in SnapGene).

Figure 4.2 Plating out the SH-SY5Y mutant cell library to obtain larger. distinct colonies.

Figure 4.3 Endogenous venus fluorescent protein expression makes detection of PNN levels with a green probe impossible.

- Figure 4.4 Schematic of the Avidin-biotin interaction
- Figure 4.5 WFA-biotin and streptavidin-red fluorophore complex testing
- Figure 4.6 Successful WFA staining of SH-SY5Y cells.
- Figure 4.7 Reduced WFA staining seen in mutant colony U4D
- Figure 4.8 Mutant colony P38A has reduced WFA expression and an abnormal shape compared to wild type.
- Figure 4.9. Reduced WFA staining seen in mutant colony U1B SH-SY5Y mutant colony.
- Figure 4.10 Mutant colony P36 b has reduced WFA.
- Figure 4.11 Mutant colony P37b has no change in WFA staining
- Figure 4.12 Mutant colony P39a has reduced WFA staining
- Figure 4.13 Reduced WFA staining seen in mutant colony U6a
- Figure 4.14 No change in WFA staining seen in mutant colony U9B.
- Figure 4.15 Reduced *Neurocan* levels seen in mutant colony P38A.
- Figure 4.16. Increased Versican expression in mutant colony P38A.
- Figure 4.17 Reduced levels of *Neurocan* seen in mutant colony U1B.
- Figure 4.18. No change in Versican levels in mutant colony U1B.
- Figure 4.19 Reduced levels of *Neurocan* seen in mutant colony U4D.
- Figure 4.20 No change in Versican levels in mutant colony U4D
- Figure 4.21 No significant change in *Neurocan* levels of mutant colonies during protein analysis
- Figure 4.22. Reduced WFA expression seen in mutant colonies P38A, U1B, U4D compared to wild type

Figure 4.23 Schematic produced in BioRender depicting the various ways in which perineuronal net synthesis could be altered resulting in abnormal perineuronal nets

Figure 5.1 Gene trapping and RACE-PCR

Figure 5.2 Successful RNA extraction of mutant colonies with reduced WFA expression.

Figure 5.3. Gel electrophoresis of RACE- PCR products.

Figure 5.4 Where RACE-PCR products align within the genome and in relation to potentially 'trapped' genes.

Figure 6.1 Reduced levels of *DCC* expression shown in gene trap mutant colony U4D.

Figure 6.2 No significant change seen in *GALNTL6* expression of *GALNTL6* KO CRISPR mutants during protein analysis

Figure 6.3 Reduced FAF1 levels seen in mutant colony P38A during protein analysis.

Figure 6.4 No reduced WFA staining seen in wild type or FAF1 pool cells when trypsinised.

Figure 6.5 GALNTL6 silenced genes via siRNA interference does not result in reduced WFA expression.

Figure 6.6 Use of *FAF1* inhibitor KR-33493 does not reduce WFA staining in wild type cells.

Figure 7.1. Successful pull-down of WFA-binding protein from SH-SY5Y cells.

Figure 7.2 The full list of identified proteins

Figure 7.3 Protein sequence of Vimentin.

List of tables

Table 1. Proteoglycans expressed within the central nervous system

Table 1.2. GAGs characteristics

Table 1.3 Role of perineuronal net components identified in initial lithium gene trap screen and association with psychiatric wellness

Table 2.1 List of materials used.

Table 2.2 List of solutions used.

Table 2.3 List of antibodies used.

Table 4.1 Colonies picked during the mutant gene trap screen with reduced WFA staining.

Table 5.1 Sequencing of mutant colonies.

Table 7.1 Top ten proteins identified that were not annotated as 'contaminants' by the FingerPrints Laboratory.

List of Abbreviations

ACAN-Aggrecan

ADAMST- disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13

AMPA- α -amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

BBB-blood-brain barrier

BCAN-Brevican

- ChABC- Chondroitinase ABC
- CLD- C-terminal lectin-like domain
- CNS- Central nervous system
- CRISPR- Clustered regularly interspaced short palindromic repeats
- CSPGs-chondroitin sulphate proteoglycan
- C6STs -chondroitin-6-sulphate sulphotransferases
- C4STs)-4-O sulphotransferases
- CSK-cytoskeleton buffer
- DAPI- 4'6'-diamino-2-phenylindole
- DCC-deleted in colorectal cancer
- DMSO- dimethyl sulfoxide
- DNA- Deoxyribonucleic acid
- DMEM-Dulbecco's Modified Eagle Medium
- ECACC-European Collection of Authenticated Cell Cultures
- ECL- Enhanced chemiluminescence
- ECM- Extracellular matrix
- ER-endoplasmic reticulum
- FAF1-Fas-associated factor 1

FCS- Foetal Calf serum GAG-glycosaminoglycan GAG-glycosaminoglycan Glc-Glucuronic acid-Glc GlcNAc -Glc-NAc-N-acetylglucosamine GSK-3Glycogen Synthase Kinase-3 HA-Hyaluronan- HA HAS-hyaluronan synthases HAPLN- Hyaluronan and proteoglycan binding link protein HEK293- human embryonic kidney 293 LTP-hippocampal long-term potentiation MMP- Matrix metalloproteinase **MS-** Multiple sclerosis **NES-nestin** NCAN- Neurocan NMDA- n-methyl-D-aspartate NPY-Neuropeptide Y PAM- Protospacer adjacent motif PBS-T PBS + 0.1% Tlen20 PCR- polymerase chain reaction PFA- paraformaldehyde PGs-proteoglycans PNS- Peripheral nervous system PNN- perineuronal net

- PCR- polymerase chain reaction
- $PTP\sigma$ -receptor-type tyrosine-protein phosphatase S
- RACE-rapid amplification of cDNA ends'

TN-c-Tenascin C

- TN-R Tenascin R
- TBE-Tris/Borate/EDTA
- TH-tyrosine hydroxylase
- VCAN- Versican
- WFA- Wisteria floribunda agglutinin

Abstract

A tissue's cells function within the context of an extracellular matrix (ECM) of glycosylated and crosslinked proteins that provide structural support and adhesion, while also modulating intercellular communication. In the central nervous system (CNS), the ECM is vital for the complex neuronal migration and neurite projection stages during embryonic development that create the precise anatomies and morphologies of functioning brain circuitry.

The historical discovery of a plant-derived molecule, *Wisteria floribunda* agglutinin (WFA), revolutionised the study of brain ECM because it binds to (and, therefore, is used to stain) one specific form of ECM called the perineuronal net (PNN). As its name suggests, this creates a 'cage' specifically around the soma of parvalbumin-containing interneurons. The critical role of this class of neurons in brain activity regulation, and known involvement in specific neuropsychiatric pathologies, ignited much investigation of the PNN. It is now known that its dysfunction is associated with multiple conditions. In our laboratory, a previous cellular 'gene trap' genetic screen identified that the mutation of protein components of the PNN contributed to the response to lithium, a mood stabiliser treatment for the psychiatric disorder bipolar disorder.

In this thesis, the further application of gene trap screening to search for genes encoding proteins that contribute directly to, or regulate, the formation of the perineuronal net on *SH-SY5Y* neuroblastoma cells, a commonly used model of neurons is described. The hypothesis was that identified genes would not only provide greater insight into the PNN structure but might offer new targets for the treatment of CNS disorders. A 'library' of randomly mutated cells was created, and WFA was used to identify mutant colonies with reduced staining, indicative of PNN dysfunction.

Several PNN-defective cell colonies were isolated, and their mutated genes identified using a modified polymerase chain reaction (PCR) protocol. Three genes, *DCC*, *FAF1*, and *GALNTL6* were among those that were identified and considered the best candidates to take forward for further analysis. *DCC* protein is the netrin-1 receptor, which has important roles in CNS development. *FAF1*, the FAS associated factor 1 protein, which participates in apoptosis and autophagy processes. *GALNTL6* is a glycosyl transferase enzyme that modifies proteins through O-linked glycosylation – a very strong candidate in light of the substantial glycosylation that occurs to PNN proteins, and which is thought to be the target of WFA staining.

These three proteins required validation through the generation of independent mutations/inhibition in cells. CRISPR, siRNA and pharmacological means was used to attempt this. Multiple genetic ablations failed to produce successful defective gene alleles meaning that full validation of these three candidate genes was not possible, and their role in PNN function remains unclarified.

However, the still-unknown targets of WFA in a 'pull-down' assay of proteins lysed from *SH-SY5Y* cells was pursued-associated protein material was assessed by mass spectrometry. Among the top hits was the protein vimentin which is known to exist within the cytoplasm of the cells but also to be secreted into the ECM, where it reportedly shows post-translational modification by O-linked glycosylation.

In summary, despite failure to fully validate screen findings, these studies identified a number of candidates for further investigation in the context of PNN function and role in associated disease. The protein vimentin should also be pursued in terms of its potential contribution to PNN function and as the target of the WFA stain.

Chapter 1 Introduction

1. The Perineuronal Net (PNN)

The central nervous system (CNS) is composed of the brain and spinal cord and is key for the integration of information sent by physiological and sensory systems, and subsequent processing and control of responses to promote survival and reproduction (Bonneh-Barkay & Wiley, 2009). The central nervous system integrates and adapts to this information through learning and memory through its ability to establish, withdraw and modify synaptic connections between neurons. Modulation of the synaptic connections between neurons in response to environmental stimuli is referred to as neuronal or synaptic plasticity and is thought to be the basis of learning and memory.

Neuronal plasticity is achieved, in part, by changes in the extracellular matrix (ECM) as well as the increased number and sensitivity of neurotransmitter receptors and synapses. The ECM can be classified into regionally specialised forms such as the perineuronal net (PNN) – the focus of the work described in this thesis. The PNN plays a key role in the regulation of neuronal plasticity (Sood *et al.*, 2015) but that is just one functional aspect of an extracellular structure that is hugely complex in its molecular composition, highly limited in its distribution, and consistently linked to neuropsychiatric and neurodegenerative disease states. PNNs are typified by their enrichment in a specific type of glycosaminoglycan (GAG), chondroitin sulphate. The following sections will explore the extracellular matrix and specifically, PNNs, thus providing the rationale for the experimental investigations described in this thesis.

1.1 Extracellular matrix in the central nervous system

The extracellular matrix (ECM) helps connect cells, resulting in formation of tissues (Warren *et al.*, 2018). The composition of the ECM varies according to the cell type of the tissue thus permitting it to undergo many specific functions. The neuronal ECM is considered unique within the human body with regards to its composition and diversity. It represents approximately 20% of the total volume of the adult brain and has key roles in early development as well as in adult neuronal function. Within the adult CNS, functions include proliferation, differentiation, migration, plasticity, and regeneration of neural cells.

Secretion of the neural ECM occurs from both neurons and glia. In contrast to other tissues, the neural ECM possesses limited numbers of structural (load-bearing) fibrous proteins such as collagen, laminin and elastin, but enhanced levels of proteoglycans (PGs). Major components of the neural ECM include hyaluronic acid, proteoglycans, link proteins and tenascins (Reichardt & Prokop,

2011) while associated proteins such as reelin, ECM receptors and integrins also play a considerable role in development processes.

The extracellular matrix typically provides a structural support for the cells and maintains tissue integrity (Warren *et al.*, 2018). In the brain, the ECM also permits communication between adjacent and distant cells by stimulating the transport and availability of various molecules (Warren *et al.*, 2018). The ECM offers a pertinent environment for enzymes involved in post-synthesis modifications and for signalling molecular cleavage of myelin around axons. Production of myelin occurs via oligodendrocytes in the CNS and promotes efficient propagation of the action potential. Within the peripheral nervous system (PNS), ECM components such as laminin and collagen stimulate myelination of peripheral nerves via regulation of Schwann cell proliferation, adhesion and spreading.

1.1.1 ECM types in the central nervous system

The ECM within the central nervous system is organised within various compartments with differing composition and function (See Figure 1.1) (Lau *et al.*, 2013). The basement membrane (basal lamina) is a specialized extracellular matrix surrounding the blood vessels and surface of the CNS and is essential for the development of epithelial tissues and organs. The basement membrane is involved in neurogenesis, CNS injury repair and nerve regeneration and is a significant component of the blood-brain barrier (BBB). Another compartment within the CNS is the interstitial matrix which corresponds to molecules which fill the space between the CNS cells in the parenchyma, which is the functional part of the brain. This can be divided into both the loose matrix as well as the membrane-associated matrix. Within some regions of the CNS, the interstitial matrix can become more complex, resulting in the production of a condensed matrix structure termed the perineuronal net. Historically, perineuronal nets were reported by Camello Golgi in the 19th Century. However, over the last few decades, the molecular composition and anatomy of the PNN has been substantially documented (Soleman *et al.*, 2013).

Figure 1.1 The central nervous system extracellular matrix is a complex and diverse molecular structure. The ECM of the CNS has three major components: the basement membrane, perineuronal net and the neuronal interstitial matrix. The basement membrane is located around surrounding cerebral blood vessels, whereas the perineuronal net is a dense matrix which surrounds neuronal cell bodies and dendrites. The neuronal interstitial matrix occupies the space between the neurons and glial cells. Taken from (Lau et al., 2013).

1.2 Components of the perineuronal net

Perineuronal nets produce large and stable aggregates via specific interactions on the surface of the soma and proximal dendrites in sub-populations of neurons described in more detail in section 1.3 (Kwok *et al.*, 2011). At the cellular level, the PNN appears as a meshed coat on the neuronal soma resulting in the compartmentalisation and regulation of synaptic formation and connection (Kwok *et al.*, 2011).

The perineuronal net is a specialized complex of cross-linked, glycosylated proteins and oligosaccharides and is described as having a typical honeycomb-like structure within the literature (John et al., 2022). With regards to protein glycosylation, there are two types which are defined as Nlinked and O-linked glycosylation both which require the import of the target polypeptide into the endoplasmic reticulum (ER). N-linked glycosylation begins in the endoplasmic reticulum, but Olinked glycosylation does not occur until the polypeptide has been transported into the Golgi apparatus. N-linked glycosylation is the attachment of an oligosaccharide to a nitrogen atom of an asparagine residue of a protein. Glycosylation is an important modification of eukaryotic proteins because the added sugar residues are often used as molecular flags or recognition signals to other cells which can interact with them or as a means to modify protein-protein interactions. N-linked glycosylation is a co-translational mechanism, whereas O-linked glycosylation must be occurring post-translationally. Other major differences in the two types of glycosylation are (1) N-linked glycosylation occurs on asparagine (N) residues within an N-X-S or N-X-T consensus sequence (X is any amino acid other than P or D) while O-linked glycosylation occurs on the side chain hydroxyl oxygen of either serine or threonine residues determined not by surrounding sequence, but by secondary and tertiary structure; (2) N-linked glycosylation begins with 14 specific sugar residues that are then pruned and remodelled, while O-linked glycosylation is based on sequential addition of individual sugars, and does not usually extend beyond a few residues. Though the perineuronal net component chondroitin sulphate proteoglycans undergo N-linked glycosylation, it is known that due to the sequential addition of individual sugars, O-linked glycosylation is also occurring during perineuronal net development. For example, protein cores are post translationally modified by Olinked glycosylation via glycosyltransferases producing proteoglycans. In the figure below (Fig. 1.2), the main components of the PNN are indicated and subsequently described in the text.

Figure 1.2 The composition and function of the perineuronal net (PNN) and its relation to the work described in this thesis. The PNN is a complex form of extracellular matrix that is primarily

based on secreted and anchored hyaluronic acid chains that are cross-linked by chondroitin sulphate proteoglycans (CSPGs). At the core of the CSPG is a protein member of the lectican family with Aggrecan, Neurocan, Versican, Brevican, and phosphacan being the principal members. These proteins are substantially modified by the addition of chondroitin sulphate side-chains through the process of O-linked glycosylation. CSPGs bind to each through tenascin-mediated interactions, and to the hyaluronic acid chains through HAPLN-mediated interactions. CSPGs are known to interact with other cell surface proteins such as integrins, NCAM, and several receptor-type protein tyrosine phosphatases. The thickness of the PNN around a neuron increases as a function of maturity matched by a shift in chondroitin sulphation pattern from C6-S to C4-S. This thickness can be reduced by the action of proteases such as MMP9 and Chondroitinase. The journey of the PNN component proteins begins with transcription in the nucleus, translation and translocation into the luminal space of the endoplasmic reticulum, and trafficking through the Golgi body (where O-linked modification occurs), and eventual secretion. One the candidate proteins identified in the screen described in Chapter 6 is GALNTL6, an enzyme contributing to O-linked glycosylation. Also shown, both internally and in an extracellular form (with potential O-linked glycosylation), is the intermediate filament, vimentin. This protein is identified from an experimental pull-down of proteins that interact with the Wisteria floribunda agglutinin molecule (Chapter 7) that is a commonly used stain for the presence of the PNN. The actions of the PNN in neurotransmitter receptor clustering, restriction of synaptic connections, and the binding of specific signalling molecules (e.g., SEMA3A and OTX2) are also illustrated in the figure. Figure created using BioRender, Powerpoint, and by hand.

1.2.1 PNN component- Glycosaminoglycans

Glycosaminoglycans (GAGs) are divided into four groups which are based on their core disaccharide structures. These include heparin sulphate and chondroitin sulphate which are produced in the Golgi apparatus whilst their lectican protein cores are produced in the rough endoplasmic reticulum (Bonneh-Barkay & Wiley, 2009). These are post translationally modified via O-linked glycosylation via glycosyl transferases producing proteoglycans. On the other hand, keratan sulphate can modify proteins via N-linked glycosylation or O-linked glycosylation of the proteoglycan. Furthermore, the fourth class of GAG is hyaluronic acid (HA) is a large linear polysaccharide composed of repeating disaccharide units of glucuronic acid (Glc) and N-acetylglucosamine (GlcNAc) in the sequence [- $\beta(1,4)$ -GlcA- $\beta(1,3)$ -GlcNAc-] (see Fig.1.2 and Fig.1.3). HA represents the backbone of the ECM upon

which other ECM molecules aggregate and assemble, and is the only component entirely based on disaccharides. During physiological conditions, HA is composed of 2,000-20,000 disaccharide units, corresponding to 1,000-10,000 kDa and 2-25 µm in length. Synthesis of HA occurs via the hyaluronan synthases (HAS1-3), and degradation occurs via hyaluronidases. Use of in situ hybridisation indicates that PNN neurons within the cerebellum possess HAS-2 and HAS-3 activity, while spinal cord neurons express the isoforms HAS-1 and HAS-3. These neural HAS enzymes are transmembrane and synthesise HA chains of various lengths and at various speeds. Chain length differences arising from differential HAS expression have an effect on PNN structure and mechanical strength. In agreement with this, studies reported pig heart valves with high regions of tensile strength are associated with decreased levels of GAG chain length and content (Stephens et al.,2008). The HA chain is extruded via the plasma membrane into the ECM as synthesis occurs. Results from studies conducted with *in vitro* models provide a strong basis that neuronal surface associated HAS can anchor hyaluronan chains to the neuronal surface. Due to its large size, negative charge, random coil structure, and hydrophobic faces (resulting from its 16 carboxyl groups and hydrogen clusters), HA has the ability to influence physicochemical and hydrodynamic properties of the surrounding tissue (Bonneh-Barkay & Wiley, 2009). The most abundant GAG within the foetal rat brain is HA (25%) but its level decreases significantly (to 10%) after birth (Warren et al., 2018). During development, HA is concentrated within the intermediate zone – helping give rise to white matter (Warren et al., 2018). With regards to adult animals, HA localizes around myelinated fibres in white matter, but it is also located within grey matter in PNNs (Warren *et al.*, 2018).

Figure 1.3. Synthesis of Hyaluronic acid is necessary for PNN assembly. The process of hyaluronic acid synthesis occurs via hyaluronic acid synthase. Occurring in the cytosol and 23

extracellular space, production of hyaluronic acid is undertaken where the building blocks such as UDP and its other similar family members are bound to the sugar precursors are then utilised by hyaluronic synthase 2 resulting in formation of hyaluronic acid. Taken from (Escudero; 2011)

1.2.2 PNN component- Hyaluronan and proteoglycan binding link protein (HAPLN)

Hyaluronan and proteoglycan binding link protein (HAPLN) is a family of proteins with four members (HAPLN 1-4) (Dityatev *et al.*, 2010). These are involved in stabilising interactions between HA and CSPGs (Dityatev *et al.*, 2010). HAPLNs are composed of Ig-like V-type, link 1 domain and link 2 domain and are 38-43 kDa (Dityatev *et al.*, 2010). Their structures are homologous to G1 lectican domains (described below) which also bind to HA (Dityatev *et al.*, 2010). HAPLN1 interacts with both HA and lecticans (such as *Aggrecan*) and is thus vital for cross-linking the components of the specialised PNN matrix (Dityatev *et al.*, 2010). Studies have shown that animals lacking HAPLN1 or HAPLN4 in the CNS have abnormal PNNs (Dityatev *et al.*, 2010). The absence of HAPLN1 in PNN-bearing cells hinders production of a compact pericellular matrix (Kwok *et al.*, 2010).

1.2.3 Perineuronal net component - Lecticans

Another key component of the PNN is the lectican family. Lecticans are classified as members of the chondroitin sulphate proteoglycan (CSPG) family - the proteoglycan status indicates that they are 'more glycan than protein' (compared to glycoproteins). These possess the ability to bind to both hyaluronan and lectins such as WFA - a plant molecule that will figure heavily in this thesis as a PNN detection tool (Kwok *et al.*,2010). The structure of these lecticans involve a protein core onto which is covalently attached linear and unbranched chondroitin sulphate GAG chains (Fig. 1.2). This covalent attachment occurs via serine residues on the core protein through the process of O-linked glycosylation producing the complete CSPG.

There are five lectican members: *Aggrecan*, *Neurocan*, *Phosphacan*, *Versican* and *Brevican*. Of the five, *Brevican* (BCAN) resides in both the ECM and is also linked to the cell membrane exterior. This linkage occurs via a glycosylphosphatidylinositol anchor. It is important to note that while the presence of *Aggrecan* (*ACAN*) is detected on all PNN-positive neurons, the other lecticans reside in

sub-populations of PNNs. PNNs have been shown to have reduced *Brevican* levels but no alterations in *Aggrecan* expression in the absence of HAPLN4 (bral2) (Carulli & Verhaagen, 2021).

The importance of *Aggrecan* is further confirmed in *in vitro* HEK293 cell mutant models and also organotypic cultures derived from *Aggrecan* knockout animals. These models result in failed production of normal PNNs (Giamanco *et al.*,2010).

The size of the lectican molecule and the extent of glycosylation in the middle GAG attachment regions can alter levels of crosslinking in perineuronal nets and thus alter compactness (Table 1). Lectican-CSPGs can also interact with receptor-type tyrosine-protein phosphatase S (PTPRS; also known as PTPσ) and PTPRC (also known as LCA/LAR) receptors, among other molecules (Fig. 1.2) which are expressed widely by CNS neurons and on PNN-bearing cells. Despite no established role for these receptors in PNN function, the consequences for axon regeneration are well documented (Yamaguchi, 2000). Another proposed PNN signalling route is via reticulon 4 receptor (the Nogo receptor) whose function can also be modulated by Lectican-CSPG.

Proteoglycan	Name	Core protein	Number of	Туре
		size (kDa)	GAG chains	
	Aggrecan	224	100	Secretory
	Versican V0	370	17-23	Secretory
CSPG	Versican V1	262	12-15	Secretory
	Versican V2	180	5-8	Secretory
	Brevican	97	0-5	Secretory
	Neurocan	133	3	Secretory
	Phosphacan	173	3-4	Secretory

Table 1. Proteoglycans expressed within the central nervous system. Table 1 shows the proteoglycans expressed within the central nervous system. As can be seen above, most chondroitin sulphate proteoglycans are secretory and Versican also has 3 isoforms differing in sizes of 262, 180 and 370 kDa respectively.

Figure 1.4 Lectican Domain Structure. *Figure 1.4 above adapted from (Yamaguchi, 2000). Lecticans possess N-term G1 domains as well as C-ter G3 domains. The G1 domain is composed of Ig-like loops and two link modules. On the other hand, the G2 domain consists of only two link modules. The G3 domain is composed of one or two EGF repeats, a C-type lectin domain as well as a CRP-like domain. Lecticans possess chondroitin sulphate chains (yellow) within the central domain. Keratan sulphate chains (pink) are also present within the N terminal part of the central domain of Aggrecan only.*

Aggrecan is distributed through the entire body with the majority in the cartilage and brain *ACAN*'s structure involves a N-terminal domain (G1) which is separated from a second globular domain (G2) via a short interglobular domain (See Figure 1.4). Other regions include an elongated domain carrying keratan sulphate and chondroitin sulphate chains as well as a C-terminal globular G3 domain. Proteoglycan tandem repeats located in the G1 domain are responsible for *ACAN*'s interaction with hyaluronan. *Aggrecan* possesses a significant role in production and formation of complex PNN structure with *ACAN* knockout animals displaying abnormal PNN formation.

NCAN is also classified as a major component of the extracellular matrix and has a full-length protein composed of 1,321 amino acids with a molecular weight of 220 kDa (Siebert, Conta Steencken and Osterhout, 2014). It possesses 5/6 N-linked and 40 O-linked potential glycosylation sites as Well as three active domains (Siebert, Conta Steencken and Osterhout, 2014). These domains include an N-terminal hyaluronan-binding domain, a C-terminal lectin-like domain (CLD), and a central GAG attachment region (See Figure 1.4) which possesses no homology with other family members (Siebert, Conta Steencken and Osterhout, 2014). Importantly, lectican family members have similar characterization with regards to CLDs and N-terminal globular hyaluronan binding domains but differ in central regions (Siebert, Conta Steencken and Osterhout, 2014). Functional studies on NCAN indicates it contributes to the mesh-like structure of the PNN by binding multiple ECM components (hyaluronan, heparin, Neural cell adhesion molecule (NCAM) Tenascin C (TN-c) and Tenascin R (Siebert, Conta Steencken and Osterhout, 2014). Brain expression of NCAN occurs during embryonic and post-natal brain development. Embryonic studies show that NCAN is first detected at the tenth embryonic day and maximum expression occurs at birth with reduced levels in mature mouse brains (Kwok et al., 2011). Importantly, after birth, CS chains on Neurocan have altered sulphation patterns (Warren et al., 2018). NCAN expression occurs in various areas including the thalamus, spinal cord, hypothalamus and the cerebellum (Kwok et al., 2011). A lack of Neurocan decreases late phase hippocampal long-term potentiation (LTP) (Warren et al., 2018).

Like the other lecticans, *Versican* (1,000 kDa) has a globular domain involving an N-terminal, Cterminal and a GAG side chain (Kwok *et al.*, 2011). *Versican* possesses four isoforms, V0, V1, V2, and V3 expressed in various tissues including the brain. The structure of *Versican* isoforms include N-terminal domains (G1), GAG attachment region and a C-terminal domain (G3) (Kwok *et al.*, 2011). However, the V3 isoform possess no GAG attachment region but still crucially possesses the ability to bind to hyaluronan via the G1 domain and to EGF receptors (Kwok *et al.*, 2011). In some studies, it has been demonstrated that *Versican* impacts immunity and inflammation via regulation of cell trafficking and activation (Wight *et al.*, 2020). Consequently, *Versican* is emerging as a potential target within the control of inflammation within various diseases (Wight *et al.*, 2020)

Brevican has a molecular mass of 140 kDa and has been shown to interact with *Tenascin R* (Kwok *et al.*, 2011). Other studies have demonstrated upregulated *Brevican* expression with glial cell proliferation during early nervous system development and it also plays a role in cell adhesion, neurite outgrowth as well as synaptic plasticity (Kwok *et al.*, 2011).

Versican, Neurocan and *Aggrecan* have all been shown to inhibit axonal regeneration and neurogenesis after central nervous system injury. *Neurocan* polymorphisms have been associated with risk of bipolar disorder and schizophrenia (Siebert, Conta Steencken and Osterhout, 2014) and one study indicated decreased levels of CSPG labelled perineuronal nets in PM brain tissue from patients diagnosed with schizophrenia (Siebert, Conta Steencken and Osterhout, 2014).

1.2.4 PNN component- Chondroitin sulphate proteoglycans and their synthesis, sulphation, and epimerisation

I have already discussed the Hyaluronan and Lectican-associated glycosaminoglycans (GAGs). These are members of a wider family of Chondroitin sulphate proteoglycans. This family of linear polysaccharides are located in the 'glycocalyx' (meaning the shell of heavy glycosylation around a cell) and the ECM of most animal tissues. Composed of repeating disaccharide units such as hexosamine and uronic acid (apart from keratan sulphate) and sulphated at various positions, this gives rise to two subfamilies, glucosaminoglycans and galactosaminoglycans. Members of the glucosaminoglycan family include heparin/heparin sulphate, keratan sulphate and HA (non-sulphated). Chondroitin sulphate and dermatan sulphate make up the other subfamily. With the exception of HA, other GAGs are produced as part of a proteoglycan molecule which is formed of a core protein and at least one GAG. Heparin/Heparin sulphate and CS/DS are linked covalently to protein serine residues via a O-glycosylation post translational modification. This occurs at a specific amino acid sequence Gly-Ser-Gly and starts with the addition of a specific linker tetra saccharide. The sequence of this tetra saccharide linker is Ser-Xyl- Gal- Gl-GlCA.

Subsequent additions to the tetra saccharide linker indicate whether the proteoglycan will result in a chondroitin sulphate proteoglycan or dermatan sulphate proteoglycan (Pomin and Mulloy, 2018). GalNAc residue addition to the tetra saccharide linker in chondroitin occurs via an enzyme, GalNAcT-I. This is encoded by the *CSGALNACT1* gene. Subsequently, multiple additions of GlcA of UDP-GlcA and GalNAc of UDP-GalNaC occur to produce the GAG polymer attached to the proteoglycan.

Further modification of the GAG backbone may occur via epimerisation. This occurs during GAG synthesis in the Golgi apparatus to produce stereoisomers. Epimerisation involves inverting the configuration of the asymmetric centre at C5 position of the glucuronic acid resulting in production

of an epimer iduronic acid (IdoA). Catalysis of this reaction occurs via glucuronyl C5-epimerase. GAG backbones have a relatively simple structure. However, due to the epimerisation of the glucoronic acid, the position and number of sulphate on one monosaccharide, and the size variety between molecules leads to plethora of isoforms within subfamilies and huge variation of potential glycosylation structures. The structure of each GAG molecule could be unique because there is no underlying blueprint as there is for mRNA to peptide sequence.

Subsequently, polymerization then occurs in various highly organized processes regulated by two types of polymerases such as GlcAT-II and GalNAc-TII to result in production of the repeating disaccharide motif GlcA-GalNac. Both these enzymes then add an individual sugar to the non-reducing end of the growing nascent chain. GalNAcT1 is not able to polymerize the CS chain whereas GalNACT-II is not able to identify the tetra saccharide of the linkage region. This is also true of both GlcAT-I and GlcAT-II.

Glycosaminoglycans may also be modified via a process called sulphation: the transfer of a sulphate group (SO₄²⁻) to various positions on the disaccharide units - within the Golgi apparatus. Required for this process are specific sulfotransferases (STs), enzymes that transfer the sulpho- group from the universal sulphate donor 3' phosphoadenosine 5'-phosphosulpate (PAPS) to the GAG backbone. Synthesis of PAPS occurs in the cytosol and then it is translocated to the Golgi apparatus via PAPS translocase. GalNAc and GlcA are sulphated at various positions involves various CS sulfotransferase. Within the same chain, all sulphation patters can be located. Sulphation of C6 is catalysed via chondroitin-6-sulphate sulphotransferases (C6STs) of which C6ST1 was the first characterized. With regards to 4-O sulphation, this is catalysed by 4-O sulphotransferases (C4STs), and this is most common within sulphation processes in CS and DS chains. Various isoforms of C4ST occurs and can sulphate different regions. During PNN formation, 6-O-sulphation pattern is dominant in the juvenile brain this producing C6-S which is more permissive (Siebert, Conta Steencken and Osterhout, 2014). In contrast, 4-O-sulphation is more dominant within the adult brain to result in production of C4-S which is an inhibitory form of chondroitin sulphates (see Fig. 1.2). Changes in sulphation pattern are crucial for PNN formation (Siebert, Conta Steencken and Osterhout, 2014). This is demonstrated in studies where transgenic mice overexpress C6ST-1 displaying juvenile state sulphation patterns. Also, overexpressing C6ST-1 prevents the maturation of electrophysiological properties of PV-expressing interneurons (Siebert, Conta Steencken and Osterhout, 2014). This also decreases the inhibitory effects of PV cells due to improper PNN formation. Therefore, these transgenic mice display juvenile levels of ocular dominance plasticity even in adulthood (Siebert, Conta Steencken and Osterhout, 2014). By overexpressing C6ST-1, this reduces *Aggrecan* levels in the aged brain without altering other PNN components (Siebert, Conta Steencken and Osterhout, 2014). This suggests that CS sulphation patterns of *Aggrecan* chains affect CSPG stability therefore maintaining PNN formation. With regards to neuropsychiatric disorders, altered C6ST-1 expression and CS sulphation patterns are present in brains of bipolar patients. Similar results are also obtained in schizophrenia and in mice with cortical brain injury (Siebert, Conta Steencken and Osterhout, 2014).

GAG	Localization	Comments
Hyaluronate	synovial fluid, articular cartilage, skin, ECM of loose connective tissue	large polymers: molecular weight can reach 1 million Daltons
Chondroitin sulphate	cartilage, bone, heart valves	most abundant GAG: principally associated with protein to form proteoglycans. Sulphation of chondroitin sulphates occurs on the C-2 position of the uronic acid residues and the C-4 and/or C-6 positions of GalNAc residues. the chondroitin sulphate proteoglycans form a family of molecules called lecticans and includes <i>Aggrecan</i> , <i>Versican</i> , <i>Brevican</i> ,
Heparan sulphate	basement membranes, components of cell surfaces	and <i>Neurocan</i> ; major component of the ECM contains higher acetylated glucosamine than heparin and is associated with protein forming heparin sulphate proteoglycans (HSPG); major HSPG forms are the syndecans and GPI-linked glypicans; HSPG binds numerous ligands such as fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF); HSPG also binds chylomicron remnants at the surface of hepatocytes; HSPG derived from endothelial cells act as anti-coagulant molecules
Heparin	component of intracellular granules of mast cells, lining the arteries of the lungs, liver and skin skin, blood vessels,	more sulphated than heparin sulphates; clinically useful as an injectable anticoagulant although the precise role <i>in vivo</i> is likely defence against invading bacteria and foreign substances was originally referred to as chondroitin sulphate B. The sulphation of
Dermatan sulphate	heart valves, tendons, lung	dermatan sulphates occurs on the C-2 position of the uronic acid residues and the C-4 and/or C-6 positions of GalNAc residues; may

		function in coagulation, wound repair, fibrosis, and infection; excess
		accumulation in the mitral valve can result in mitral valve prolapse
Keratan sulphate chono	cornea, bone, cartilage	usually associated with protein forming proteoglycaps: keratan subbate
	aggregated with	
	chondroitin sulphates	proteoglycans including Keratin, fibromodulin, Aggrecan,

Table 1.2 GAGs characteristics. Table 1.2 adapted from (Themedicalbiochemistrypage.org, 2018) above represents the various characteristics of GAGs. As detailed above, the most abundant GAGs are chondroitin sulphate proteoglycans, and they form the family of lecticans.

1.2.5 PNN components- Tenascins

Tenascins are classified as multimeric ECM molecules falling into several categories: -C, R, W, X and Y. Expression of *Tenascin C* and *X* occurs outside the nervous system in many areas such as dense connective tissue and smooth muscle. Contrastingly, *Tenascins R, C* and *W* possess restricted expression with W occurring in bone and *R* and *C* within the nervous system (Kimura *et al.*, 2007).

Tenascins C and R have been reported to play significant roles in cell proliferation, migration, differentiation, synaptic plasticity, axonal guidance and myelination (Warren et al., 2018). Tenascin C is an 1,800 kDa protein which is produced from six monomers which are linked covalently with disulphide bonds. The monomers are formed of a tenascin assembly domain, a cysteine rich domain, 14.5 EGF like domains, 8 fibronectin-type III homologous domains and a fibrinogen like domain (Warren et al., 2018). Tenascin C expression has been reported to be enhanced during development and within the adult brain (Warren et al., 2018). Within early development of the CNS, it is highly expressed by various types of cells including immature astrocytes and a restricted population of immature neurons (Warren et al., 2018). Tenascin C has also been linked to proliferation of progenitor cells, migration and neurite outgrowth as Well as having a role in learning/neuronal plasticity (Warren et al., 2018). Tenascin R (TN-R) is expressed solely within the CNS (Reichardt & Prokop, 2011). This is a 180 kDa protein from which production of a 160 kDa form occurs via proteolytic cleavage (Reichardt & Prokop, 2011). Both isoforms can be expressed during CNS development (Reichardt & Prokop, 2011). The fully active form of *Tenascin R* is produced from twothree monomers which are linked via disulphide bonds (Reichardt & Prokop, 2011). Similar to Tenascin C, the monomer is also formed of a tenascin assembly domain, cysteine-rich N terminal region, 4.5 EGF like domains, 8 fibronectin type III repeats, a carboxyl terminal region and a fibrinogen like domain (Reichardt & Prokop, 2011). Tenascin R undergoes post-translation modifications which results in addition of three sulphated oligosaccharides (Reichardt & Prokop, 2011). One of these is a CS oligosaccharide which can mediate Tn-R interaction with Tenascin C and fibronectin to inhibit neurite outgrowth (Reichardt & Prokop, 2011). Tenascin R is expressed in a certain subpopulation of neurons and oligodendrocytes specifically the cortical region and laminae (Reichardt & Prokop, 2011). *Tenascin R* possesses dual roles where it plays a significant role in oligodendrocytes differentiation (Reichardt & Prokop, 2011). With regards to PNNs, Tenascin-R immunostaining displayed co localisation with WFA staining in PNNs (Carruli et al., 2006). In association with the G3 domain of lecticans, fibronectin III repeats bind in *Tenascin R* trimers (Zimmerman and Dours Zimmerman, 2008). This occurs in a calcium dependent manner. One *Tenascin R* trimer bonds up to 3 lectican molecules. As well as structural differences, tenascins can also vary in the expression patterns where *Tenascin C* can be detected within the developing mouse brain at week 10 whilst Tenascin R expression is more predominant in adults (Jakovljevic et al., 2021). Within the first few weeks of life, the brain extracellular matrix is composed of *Tenascin C*, as well as Neurocan and Versican, and this structural composition indicates a more diffuse extracellular matrix organisation which permits the modulation of connectivity within the developing brains (Jakovljevic et al., 2021). As time goes on, proteoglycan expressions move towards smaller molecules such as Aggrecan Brevican and Tenascin R with downregulation of Tenascin C which is able to ensure a more condensed extracellular matrix and perineuronal net therefore restricting and stabilizing established synaptic connections (Jakovljevic et al., 2021). Importantly, this Tenascin Rlectican interaction aids in strengthening PNNs.

Furthermore, it has been shown that *Tenascin R* and phosph*acan* (RPTP ζ) cooperate to promote building of PNNs. *Tenascin R* associates with the (RPTP ζ) ectodomain and provides a structural basis for these interactions (Sinha *et al.*, 2023). Phosph*acan* has also been shown to produce a similar complex with *Tenascin C* promoting neural plasticity. Further studies have indicated that mutating residues at the RPTP ζ - *Tenascin R* interface hinders the formation of PNNs in dissociated neuronal cultures (Sinha *et al.*, 2023). Of utmost importance, studies utilising Tn-R knockout mice displayed abnormal PNN staining. Irregular WFA staining distribution occurred around the perikarya. Finally, decreased levels of punctuate staining occurred in dendritic shafts (Iber *et al.*, 1999)

1.3 The development and functions of the PNN

PNNs have numerous physical and functional roles. By wrapping the whole cell body of the neuron, PNNs hinder the formation of new neuronal contacts and synapses thus restricting plasticity. Production of PNNs occur on various types of neurons including excitatory principal neurons and inhibitory GABAergic neurons (Lee et al., 2017). PNNs play a role in several cellular functions such ionic buffering, restriction of AMPA receptor motility and clustering, neuroprotection, synaptogenesis, and regulation of neural plasticity (Lee et al., 2017). Within certain brain regions, PNN production is only associated with a single class of inhibitory interneurons which express parvalbumin (Miyata and Kitagawa, 2017). Interestingly, PNNs may regulate parvalbumin cell function through capture of secreted proteins at the cell surface (Lee et al., 2017). One example is Otx2, a transcription factor which is produced in the retina and choroid plexus, and its association with the PNN initiates maturation of the underlying parvalbumin cells (Lee *et al.*, 2017). Otx 2 also known as orthodenticle homeobox 2 is required to be captured by PNNs to be internalized by the neurons. Importantly, this is required for Parvalbumin positive neuron maturation within the cortex to regulate plasticity (Beurdeley et al., 2012). Use of Chondroitinase ABC (ChABC) degrades PNNS and decreases Otx2 levels within the neuron (Beurdeley et al., 2012). Another study indicates that PNNs alter PV expression levels and therefore plasticity capacity of the neuron. Animal models with Otx2 gene point mutation leads to delayed maturation of parvalbumin interneurons (Beurdeley et al., 2012).

Various components of PNNs possess specific binding capacities for proteins. Growth factors such as midline and fibroblast growth factor 2 have been shown to bind to CS-E which is enriched within PNNs. Also, Semaphorin 3A, a chemo repulsive molecule binds to PNNs via CS-E. Degradation of PNNs using ChABC results in removal of Sema3a from the neuronal surface (Berretta *et al.*, 2015). This indicates that Sema3a is presented to approaching axons from other neurons by PNNs (Berretta *et al.*, 2015). Essentially, this permits Sema3a to function as a repulsive signalling molecule. In the brain, Neuropeptide Y(NPY) interacts with a family of G protein–coupled receptors that includes the Y1 (Y1R), Y5 (Y5R), and Y2 receptors, the last one considered to function mainly as a presynaptic receptor (Eva *et al.*, 2006). NPY plays both inhibitory and stimulatory effects in learning and memory, depending on the type of memory, brain region and receptor subtype. There is compelling evidence that the NPY-Y1R signal differently modulates learning and memory processes and synaptic transmission (Gøtzsche and Woldbye, 2016). Some studies have shown that activation of TrkB in parvalbumin interneurons is essential for the stimulation of reversal learning in spatial and fear

memory by anti-depressants such as fluoxetine which is known to decrease WFA staining in *post mortem* brains of patients diagnosed with bipolar disorder (Jetsonen *et al.*,2023). It has also been shown that hippocampal parvalbumin interneurons play a significant role in memory development (Miranda *et al.*,2022).

Studies have shown that cavities located within PNNs have synapses which act as memory stores and that they remain stable after events leading to synaptic withdrawal symptoms such as hibernation or anoxia (Ruzicka *et al.*,2022). Recent studies further monitored place memory before and after synaptic withdrawal occurring as a result of acute hibernation-like state (HLS) (Ruzicka *et al.*,2022). Animals with no perineuronal nets due to enzymatic digestion occurring via ChABc or *Aggrecan* knockout were compared with wild type controls (Ruzicka *et al.*, 2022). This showed that HLS induced synapse withdrawal resulted in memory deficit but not to the levels of untreated animals which was not worsened by PNN attenuation (Ruzicka *et al.*, 2022). After HLS, only animals deficient of PNNs displayed memory restoration or relearning (Ruzicka *et al.*, 2022). Lack of PNNs altered the restoration of excitatory synapses on PNN-bearing neurons (Ruzicka *et al.*, 2022). Taking into consideration all of the above, there appears to be a role for hippocampal PNNs within learning but not long-term memory storage.

PNNs, by virtue of the negatively charged GAGs, provide an ion buffering capacity around various subpopulations of neurons - mostly for the cations linked to fast spiking interneurons. This buffering capacity also prevents oxidative stress by the retention of Fe^{3+} ions. PNNs have, therefore, been shown to play a role in oxidative stress, particularly that generated by the fast-spiking interneurons. One study involving a triple knockout in mice of the main constituent of PNNs: *Aggrecan, Tenascin R* and *HapIn1*. resulted in protection against oxidative stress stimulated by FeCL3 (van 't Spijker and Kwok, 2017). In a similar manner, degradation of PNNs using ChABC results in parvalbumin neurons becoming vulnerable to oxidative stress (van't Spijker and Kwok, 2017). With regards to neurodegenerative disorders, PNNs have been shown to protect neurons from amyloid beta toxicity in comparison with those neurons with no PNNs (Miyata *et al.*, 2007). This demonstrates that importance of PNNs acting as a physical barrier against neurotoxic molecules.

PNNs also act as a barrier for the lateral diffusion of AMPA receptors. AMPA receptors are glutamate-gated ion channels and required for fast excitatory neurotransmission (Pantazopoulos and Berretta, 2016). AMPA receptor mobility on the plasma membrane is essential for regulation of

receptor numbers at the synapse and their availability is decreased via the compartmentalisation of synapses of the synaptic membrane through the action of PNNs (Frischknecht et al., 2009).PNNs decrease the mobility of membrane-bound proteins on the neuronal surface. Use of hyaluronidase to remove PNNs in neuronal cultures leads to increased lateral diffusion of AMPA receptor subunits (Pantazopoulos and Berretta, 2016). Studies involving whole-cell patch clamp recordings indicated that induced diffusion increase permits fast exchange of desensitized receptors under high stimulation (Pantazopoulos and Berretta, 2016). Consequently, this leads to increases in paired-pulse ratio which is classified as short-term synaptic plasticity. The PNNs ability to inhibit synaptic plasticity arises from the limitation to the lateral mobility of membrane bound proteins (Pantazopoulos and Berretta, 2016).

For animals to establish normal anatomical and physiological properties of neurons, patterned neuronal activity within the early postnatal period is significant. Studies involving rodents enriched in total darkness from birth reduced PNN formation as well as Tn-R and *Aggrecan* within the visual cortex (Wang and Fawcett, 2012). This also extended to PNN formation within deep cerebellar nuclei (Wang and Fawcett, 2012). These results indicate association between external stimuli as well and synthesis and PNN maintenance (Wang and Fawcett, 2012). Dark rearing decreases Crtl1, HA synthase 2/3 though Crtl1 expression levels can be restored within days of light exposure (Wang and Fawcett, 2012).

Other studies have shown that PNNs are produced within the neocortical layers 2-6 neurons during postnatal days and stabilize around PD42 within the mouse primary visual cortex. This suggests full production of PNNs occurs by the end of the critical period (Wang and Fawcett, 2012). One key point to note is various key PNN components are upregulated during the developmental period. However, during adulthood, these are downregulated as displayed in rats indicating that increased protein levels are required for PNN formations (Wang and Fawcett, 2012). This is in contrast to the level of proteins required for stabilized PNNs. *Aggrecan* and link protein mRNA are demonstrated in studies to be up-regulated during PNN formation occurring in postnatal development. This once against demonstrates the importance of these components in initiating PNN formation (Wang and Fawcett, 2012).

PNNs also regulate the synapse through parvalbumin. Various neurons surrounded by PNNs are parvalbumin expressing interneurons (Härtig *et al.*, 1995; Baig *et al.*, 2005; Yamada *et al.*,

2015). Parvalbumin is classified as a calcium binding protein which maintains short term synaptic plasticity. This was confirmed via electrophysiology experiments on a parvalbumin knockout mouse model (Cawellard *et al.*, 2000). Possibly, parvalbumin regulates the short-term plasticity via binding of calcium ions. In the mouse hippocampus, PNN digestion leads to decreased parvalbumin levels inside neurons (Yamada *et al.*,2015). Both parvalbumin mRNA as well as the amount of the protein itself are decreased by ChABC injection into the brain. These results conclude that PNNs assist in regulating the parvalbumin levels in the neuron thus permitting them to regulate plasticity. The PNN can limit neuronal plasticity in adulthood (See figure 1.5). PNNs become stabilised during adulthood (Slaker, Blacktop and Sorg, 2016) and experimental degradation of PNNs using the bacterial enzyme Chondroitinase ABC can result in a return to juvenile states of plasticity (Slaker, Blacktop and Sorg, 2016).

Figure 1.5 Critical period of plasticity. *Figure 1.5 above adapted from (Wang and Fawcett, 2012)* shows the mechanisms involved in critical period plasticity. A: This shows the progression from newborn animals all the way through to the early post-natal period. By use of ChABC, a bacterial enzyme involved in degrading PNNs, this reactivates the critical period of plasticity, B: This shows the immature neurons within central nervous system PNNs develop and upregulation of various
extracellular matrix components. Through use of ChABC, this disrupts PNNs wrapped around neurons (Wang and Fawcett, 2012).

1.3.1 PNN detection by a plant molecule, wisteria floribunda agglutinin, and association of this staining with a specific neuronal cell type

The analysis of PNNs has been substantially assisted by the availability and use of WFA (Wisteria floribunda agglutinin), a plant lectin that specifically binds to PNNs (Slaker, Harkness and Sorg, 2016). WFA staining is accepted as an indirect measure of PNN maturity: brighter WFA staining represents a more mature PNN, whereas dimmer staining indicates an immature PNN (Slaker, Harkness and Sorg, 2016). WFA staining has identified that PNN formation often occurs around parvalbumin-containing (PV) inhibitory interneurons (Pantazopoulos and Berretta, 2016). At the molecular level, WFA lectin is thought to bind to an unidentified sulphation motif present in the CS-GAG chains of most PNNs. Transgenic mice overexpressing juvenile type CS sulphation pattern had reduced levels of Otx2 in PV interneurons (Sorg *et al.*, 2016). Though WFA is a broad marker of PNNs, other markers also exist. 3B3 is an antibody raised against native chondroitin sulphate motifs involvingchondroitin-6-sulphate. 3B3 immunolabelled PNNs are more numerous and display broader distribution within the human amygdala (Slaker, Blacktop and Sorg, 2016).

Importantly, CS chains and sulphation patterns alter function and interaction with growth factors and cytokines (Eskici *et al.*, 2018). CS 4 and CS6 are common sulphation patterns within the brain (Sorg *et al.*, 2016). In essence, CS 6 in conjunction with *Aggrecan* plays a significant role in regulation of astrocyte maturation (Sorg *et al.*, 2016). As well as the others mentioned above, 3B3 labels a broad distribution of PNNs. 3B3 (antibody raised against *Aggrecan*) functions by detecting a non-reducing terminal end saturated disaccharide consisting of glucuronic N acetyl galactosamine 6 sulphate (Sorg *et al.*, 2016). Other antibodies involved in labelling PNNs include CS56 which recognises CS-C and CS-D chains. CS-C is classified as the major form during early development and decreased with the closure of critical periods. Decreased levels of CS56 labelled and 3B3 PNNs have also been reported in bipolar disorder and schizophrenia (Sorg *et al.*, 2016). Other studies have depicted that WFA may not detect CS 6 sulphation patterns which are recognised by 3B3 and CS56. Similarly, 3B3 and CS56 do not express CSPGs labelled by WFA (Sorg *et al.*, 2016). CSPGs receptors have been demonstrated to be crucial to pyramidal neurons and GABAergic interneurons. Through

interactions, PNNs may alter the functions of these (Siebert *et al.*, 2014). It has been proposed that CSPG receptors function as part of multicomponent molecular systems as a signalling platform various intracellular pathways. These pathways are key in gating neuronal maturation and structural stability this altering brain function and plasticity (Siebert *et al.*, 2014),

PNN formation results in upregulation of various CSPG core proteins and changes in the GAG sulphation patterns including removal of CS-6 and increased levels of CS-4 Cartilage link proteins has also been shown to trigger PNN formation (Siebert *et al.*, 2014). Interestingly, studies using mice with Crtl1 deletion indicate that lack of this protein leads to aberrant PNN formation (Siebert *et al.*, 2014), 2014),

1.4 Defects in the PNN are associated with disease.

ECM abnormalities are associated with the pathophysiology of psychiatric disorders such as schizophrenia, bipolar disorder, autism among others. PNN disruption has been reported in schizophrenia, with reduced levels of CSPG labelled PNNs within the amygdala, entorhinal cortex and prefrontal cortex (Pantazopoulos and Berretta, 2016). Decreased levels of PNNs also occur associated with abnormal CSPG expression within glial cells. In addition, evidence from human genetic and *post mortem* studies indicates that CSPGs, reelin, *SEMA3A*, and integrins are involved in PNN interactions. Others such as matrix metalloproteinases have also been implicated (Pantazopoulos and Berretta, 2016). MMPs are released by neurons in response to activity. These have been shown to be involved in plasticity and memory. Some studies have shown that induction of ocular dominance plasticity in mice via monocular deprivation both during and after the critical period results in PNN degradation via release of MMP-9 (Murase *et al.*, 2022). Further studies have indicated that *Brevican* is degrade by two other metalloproteinases such as ADAMST1 and ADAMST4 during excitotoxicity (Nakamura *et al.*, 2000). Parvalbumin positive interneurons also express metalloproteinase mRNAs and it has been shown that MMP3 and MMP13 are upregulated after seizures in these types of neurons (Beroun *et al.*, 2019).

With regards to bipolar disorder, reduced *reelin* expression has been noted within the prefrontal cortex, hippocampus, and cerebellum as well as within bipolar patients' blood samples. *Post mortem* studies of bipolar patients indicate reduced PNN levels across various nuclei within the amygdala

(Carulli *et al.*, 2016). Other neuropsychiatric disorders such as autism display ECM abnormalities. Where genome wide association studies have occurred, this indicate ECM molecules mentioned above as well as hyaluronan surface receptor, *CD44* and *Otx-2* are key regulators. However, most evidence focuses on Reelin. Altered reelin expression has been demonstrated in patients with autism (Carulli *et al.*,2016).

With regards to schizophrenia, disruption of glutamatergic/GABAergic function suggests that PNNs are involved heavily in the excitatory/inhibitory balance because they surround PV-containing fast spiking GABAergic interneurons within the pre-frontal cortex (Sorg *et al.*, 2016). These interneurons play a major role in production of gamma oscillations (30–120 Hz). Removal of these results in alterations of these oscillations. Gamma oscillations are instrumental in their synchronous network activity, which monitors information processing and cognitive flexibility (Sorg et al., 2016). This is in agreement with other studies that indicate that PV neurons have abnormal production within schizophrenia and autism (Wohr et al., 2015). In some psychiatric conditions such as schizophrenia, autism and bipolar disorder have been associated with abnormalities in inhibitory interneurons. Decreases in the number and staining intensity of pnns in the amygdala, thalamic reticular nucleus, entorhinal cortex and prefrontal cortex has been noted within post-mortem brain tissue from patients with schizophrenia (Bitanihirwe et al., 2014). A further study which examined thalamic reticular nucleus of post-mortem schizophrenia patients reported a loss of PV+ interneurons and PNNs (Steullet *et al.*, 2017). Similarly, in another study of amygdala and entorhinal cortex of patients with schizophrenia, the number of parvalbumin neurons was normal but the levels of PNN decreased (Enwright et al., 2016).

PNNs have been implicated in animal models of a number of other neurological disorders. Epilepsy results in long term increases in the excitability of various affected brain regions leading to an upregulation of 6-sulphated chondroitin glycan's within perineuronal nets (Chaunsali *et al.*, 2021). Biochemical and immunohistochemical studies of both animal models and human temporal lobe epilepsy tissue samples reveal abnormal expression of individual extracellular matrix molecules such as chondroitin sulphate proteoglycans, heparin sulphate proteoglycans, hyaluronan, *Aggrecan* and *Brevican* (Chaunsali *et al.*, 2021). There is also shown to be disruption of perineuronal net integrity and often decreased perineuronal net density and decreased parvalbumin neurons (Chaunsali *et al.*, 2021). In a recent study involving a mouse model of human glioma-associated epilepsy, cortical PNNs were altered by glioma-released MMPs which enhanced the membrane capacitance of the PV neurons resulting in decreased spike firing activity leading to decreased overall inhibitory drive

(Tewari *et al.*, 2022). This suggests a key role of PNNs in initiating the fast-spiking properties of PV neurons.

Furthermore, digestion of PNNs via MMPs render the brain regions more susceptible for further seizures. In the cases of amyotrophic lateral sclerosis, perineuronal nets display damage around affected motor neurons but can be preserved via protected stem cell therapy (Sorg *et al.*,2016). Degradation of perineuronal nets by MMPs within disease results in PV interneuron dysfunction which can alter the balance of excitation and inhibition within affected brain regions (Soles *et al.*, 2023) Decreased PNNs lead to reduced growth factor levels, loss of neuroprotection against oxidative stress, modified ion concentrations within neuronal microenvironment and altered expression of neurotransmitter receptors and ion channels resulting in altered neuroplasticity (Soles *et al.*, 2023). MMP-9 has also been implicated in perineuronal net maintenance and it has been shown that increased MMP-9 levels could contribute to perineuronal net degradation as well as altered levels of β - amyloid within Alzheimer's disease (Pinter & Alpar, 2022)

PNN reduction can also occur via microglia involved in phagocytosis. This is mediated by microglia phagocytosis which is involved in spinal cord injury promoting a pain phenotype (Tansley *et al.*, 2022). PNNs within the spinal cord are located around the large somas of spinoparabrachial projecting neurons within Lamina 1 of the dorsal horn (Tansley *et al.*, 2022). Reduced WFA staining was identified after three days of spinal nerve injury around these neurons. The WFA signal was located within microglial lysosomes suggesting that microglia were phagocytosing PNNs (Tansley *et al.*, 2022). Interestingly, removal of microglia hindered PNN degradation and pain phenotypes demonstrating that microglia-mediated degradations of PNNs on spinoparabrachial projection neurons stimulates pain behaviour (Tansley *et al.*, 2022)

Neurodegenerative diseases are classified as a group of chronic, progressive disorders characterized by gradual loss of neurons. Alzheimer's disease is the most common type affecting millions worldwide and is a chronic degenerative disorder that destroys memory and other important functions. Alzheimer's is characterized by beta aggregated fibrils of neurotoxic elements such as amyloid beta and Tau-protein. PNNs are known to have a neuroprotective role and thus they have the ability to restrict the processes of distribution and internalization of Tau protein thus protecting the neuron that they surround (Sorg *et al.*, 2016). Neurons that are enwrapped by PNNs are not affected by increased levels of neurofibrillary tangles despite the severity of the damaged region.

CSPGs usually provide the neuroprotective effect in Alzheimer's disease. Various studies have shown that in Alzheimer's diseased brains, there is an alteration in glycan sulphation patterns (Logsdon *et al.*, 2021). Sulphation has been shown to key factor in developing a stable perineuronal net. Also, there is the presence of CS-E chains in perineuronal nets. However, recent studies have shown that neurons in culture which express CSPG rich PNNs withstand amyloid beta treatment whilst neurons without PNNs succumb to the treatment (Sierbert *et al.*, 2014). Also, CSPGs protect neurons in culture from delayed cell death via glutamate stimulation of AMPA-R and NMDA-R (Sierbert *et al.*, 2014). In addition, *Brevican* levels are upregulated in PNNs of Alzheimer's patients as well as HAPLN1 (Thon *et al.*, 2000). Moreover, PNNs protect the neurons from oxidative stress in both normal aged brains and Alzheimer's disease. Ions produced from oxidative stress are repelled by negative charges of HA and CS (Sorg *et al.*, 2016). PNNs protect from oxidative stress and amyloid beta accumulation but also removal of PNNS by ChABC stimulates plasticity to compensate for functional loss of neurons thus increasing memory as demonstrated in previous studies (Fawcett *et al.*, 2022). PNNs have also been implicated in other neurodegenerative diseases such as multiple sclerosis and Parkinson's disease (Sorg *et al.*, 2016).

1.5 The aims of this screen and the technologies to be used (Gene traps and CRISPR)

Taking into consideration all of the above, it is clear that the PNN is a highly specialised structure with roles in the healthy and diseased brain. Its coordinated composition, profile of developmental change, and restriction to certain neurons, suggests a tightly controlled regulation that is poorly understood. Therefore, it is important to investigate this regulation and what therapeutic insights or potential it might offer. This thesis describes the use of a technique previously applied in the laboratory in which laboratory cells are randomly mutated to form a 'gene trap' library which can be functionally screened for mutants with particular phenotypes of interest. As I have a molecular tool, WFA, for assessing PNN expression I chose to interrogate a gene trap library for PNN regulation mutants. By initiating a live screen, plating out the gene trap library and searching for instances of reduced WFA staining, it was reasoned that it would help us identify regulator genes. Furthermore, a gene trap only results in a heterozygous gene knockout meaning only 50 percent of the gene is lacking. The benefits and disadvantages of this feature will be discussed later, but I planned to

validate candidate genes with CRISPR-mediated homozygous knockout analysis. Below, both gene trapping and CRISPR are explained in more detail.

1.5.1 Gene trapping

Gene trapping is used for cellular mutagenesis and after transfection or electroporation of the gene trap vector into a cell, it stably integrates within nuclear genomic DNA (Gow et al., 2013). Crucially, if this integration occurs within gene introns, then the splice acceptor/donor sequences divert and hinder the normal exon-exon splicing (Gow et al., 2013). This results in three outcomes (Figure 1.6). Firstly, mRNA from the trapped allele of the endogenous gene is truncated or becomes unstable thus leading to a loss-of-function mutation. Secondly, the endogenous gene and gene trap sequence splicing events result in the production of translated fusion mRNAs producing neomycin/G418 resistance in productively mutated cells. Finally, the fusion mRNAs can be processed in a 'rapid amplification of cDNA ends' (RACE) PCR protocol to permit identification of the trapped gene (Gow et al., 2013). By using this process to induce mutations within a cell line, functional screening can then identify genes of interest. It is important to note that the gene trap screen results in only a heterozygous knockout and some genes that have no introns or very small introns will be unable to be targeted. Previous studies using gene trap mutants derived from the SH-SY5Y neuroblastoma cell line identified various genes linked to functional cellular response to the mood stabiliser, lithium (Gow et al., 2013) (Table 1.3). These studies linked lithium response to genes associated directly or indirectly with the construction or function of perineuronal nets such as Versican, Tenascin C, Sema3a and CCL2. Interestingly, Versican is closely related to Neurocan, one of the higher genetic risk factors for bipolar disorder, the psychiatric disorder for which lithium is prescribed. The importance of the genes identified in the lithium gene trap screen has been highlighted in many other studies. Versican, for example, has been shown to be an extracellular matrix regulator of inflammation within the brain whereas *Neurocan* has been shown to be a risk factor for bipolar disorder and is required for early development of the brain (Wight et al., 2020, Zhou et al., 2001) With regards to *Tenascin C* and *Tenascin R*, these has been respectively shown as risk factors for depression, schizophrenia whilst also playing a key role in tissue injury and repair as well as neurogenesis and neuronal plasticity (Xu et al., 2013). CCL2 has been shown to play a role in depression and is released as an inflammatory marker in response to neurodegenerative diseases (Leighton et al., 2017). Finally, SEMA3A which forms neuronal contacts with the surface of the

perineuronal net has been shown as a risk factor for various psychiatric diseases and is also involved in axonal guidance and neuronal plasticity (Carulli *et al.*, 2021). These circumstantial, but compelling, results paint a picture whereby lithium may reverse disease-associated abnormalities in PNN function – and further support the rationale for a direct genetic investigation of PNN regulation.

PNN component identified in lithium screen	Links with neuropsychiatric diseases
Versican	Extracellular matrix regulator of inflammation in brain
Neurocan	GWAS risk factor for bipolar disorder and required for early development in the brain
Tenascin C	Risk factor for unipolar depression as detailed in GWAS catalogue, key role in tissue injury and repair
Tenascin R	GWAS catalogue shows ADHD and schizophrenia risk factor and depression, regulates neurogenesis and plays role in plasticity
CCL2	Plays role in depression and released in response to neurodegenerative diseases
Sema3a	GWAS shows risk factor for ADHD, unipolar depression, bipolar disorder, autism spectrum disorder, schizophrenia, involved in axonal guidance and neuronal plasticity

Table 1.3 Role of perineuronal net components identified in initial lithium gene trap screen and association with psychiatric wellness. Table 1.3 shows the genes that were identified in the initial lithium gene trap screen which identified various perineuronal components as failing to respond to lithium treatment. Information regarding the various components mentioned above was collated from GWAS catalogue (<u>https://www.ebi.ac.uk/gwas/</u>). Further information presented in the table is also referenced in text above detailing the roles of these perineuronal net components in psychiatric disease.

Figure 1.6 The gene trap construct used in the original lithium gene trap screen known as PGTIV3. This gene trap vector was initially created and utilised with studies involved embryonic stem cells. As mentioned above, gene trapping involves the insertion of a gene trap vector into an intron of a gene resulting in three outcomes which are normal splice acceptor/splice donor sequences divert the normal exon to exon splicing and this results in formation of a truncated protein. Secondly, this results in production of fusion mRNAs between the neomycin resistance gene and trapped exon and finally these can be rapidly amplified via cDNA ends. However, it is important to note that this gene trap vector has several properties which results in heterozygous knockouts. Firstly, there is synthetic intron present which contains a cis-acting ARE element full of adenine and uridine residues resulting in mRNA degradation. If the intron integrates itself outside the genome, neomycin will not be expressed meaning the cells will die. There is an adenovirus splice acceptor site present which is commonly used in molecular studies and is known to be a good splice acceptor site. There is also the presence of an internal ribosomal entry site which drives the production of yellow venus protein and rather than having a 1 in 3 chance of matching reading frame and being expressed, this

increases the likelihood of the venus yellow fluorescent protein being expressed. A poly A site is also present to stop production and a beta actin promoter is also present to drive the expression of the neomycin resistance gene. Cells which have the presence of the neomycin resistance gene means that the gene trap has integrated itself into the genome.

1.5.2 CRISPR

Clustered regularly interspaced repeats are classified as a modified form of bacterial immune system (Guell, Yang and Church, 2014). In recent times, this system has been adapted and utilised to target specific regions of DNA and manipulate the DNA (Guell, Yang and Church, 2014). CRISPR provides the ability to knock down genes which have been identified using gene trapping (Guell, Yang and Church, 2014). CRISPR arrays contain a DNA sequence classified as the PAM region which shares sequence homology with invading DNA. This provides a genetic memory of past invasions, and it utilised on secondary infections to target Cas nucleases to the invading pathogen genomes resulting in DNA degradation (Hsu *et al.*, 2014). CRISPR involves various components such as an endonuclease, guide RNA and a PAM motif. The guide RNA permits Cas9 endonuclease to cut a precis genomic locus of many possible loci. However, without binding to the guide RNA, Cas9 cannot cut. This Cas9 endonuclease binding to the target genome locus occurs via the target sequence within the guide RNA and the PAM (3bp). For the double stranded DNA to be cut via Cas9, the PAM sequence must be present immediately downstream (3') of the site targeted by the guide RNA. The guide RNA binds to the target sequence, cas9 binds to the guide RNA and cuts both DNA strands and the cut is repaired inducing a mutation which shuts off the targeted gene.

1.5 Hypothesis/Aims

Aim of project

- To identify SH-SY5Y mutant genes via gene trapping that result in reduced PNN staining
- To produce CRISPR KO cell lines to validate candidate genes identified.
- To confirm reduced expression of CRISPR-mutated candidate genes
- To analyse the effect of CRISPR mutated candidate genes on WFA staining as well as other key PNN components

Hypothesis

Gene trap mutants producing reduced PNN staining will be key regulators in the function and maturation of the perineuronal net and are potentially important targets in neuropsychiatric disease therapy.

Chapter 2 Materials and Methods

2. Materials

Equipment	Supplier	Catalogue/Model Number		
Nikon TMS Inverted Phase	Marshal Scientific	NI-TMS		
Contrast Microscope				
MSC-Advantage™ Class II	Thermo Fisher Scientific	51025411		
Biological Safety Cabinet				
Galaxy S CO ₂ Incubator	Samson Scientific	Model 170-200		
PipetBoy	Thermo Fisher Scientific	-		
Starstedt Serological Pipette	Starstedt	86.1254.001		
Corning cell culture flasks	Sigma Aldrich, Dorset UK	CLS430639-200EA		
Corning 50mL Centrifuge	Sigma Aldrich, Dorset UK	CLS4558		
tubes				
Nalgene™ General Long-	Thermo Scientific™	5005-0015		
Term Storage Cryogenic				
Tubes				
MSE Micro Centaur	DJB Labcare	-		
Heraeus™ Labofuge™ 400	Thermo Fisher Scientific	75008164		
Centrifuge				
Sigma [®] cell culture plate	Sigma Aldrich	SIAL0516		
Secuflow Fume Cupboard	Waldner, Oxford UK	-		
Microscopic Slides	Sailing Boat, China	7101		
Stuart [™] Scientific Roller	Sigma Aldrich, Dorset UK	Z316474		
Mixer				
Nikon Eclipse e600	SpachOptics	-		
Microscope				
Nunc™ Cell Scrapers	Thermo Scientific™	179693		
4-20% gradient Mini-	Bio-Rad Laboratories	456-1093		
PROTEAN TGX Precast Gels				
Nitrocellulose/Filter Paper	Bio-Rad Laboratories	1620214		
Sandwiches 0.45µm				
Mini-PROTEAN Tetra Cell	Bio-Rad Laboratories	-		

Mini Trans-Blot	Bio-Rad Laboratories	-
Electrophoretic Transfer Cell		
CL-XPosure™ Film	Thermo Scientific™	34090
Hypercassette, neutral	GE Life Sciences	RPN11642
(standard), 18 × 24 cm		
Automatic X-Ray Film	-	-

Processor

Cells & Solutions	Supplier	Catalogue/Model Number		
SH-SY5Y (ATCC [®] CRL-	ATCC	-		
2266™)				
pSpCas9(BB)-2A-Puro	Addgene	62988		
(PX459) V2.0 CRISPR				
Plasmid				
Bpil (Bbsl) restriction enzyme	Thermo Fisher Scientific	ER1011		
T4 DNA Ligase	Thermo Fisher Scientific	EL0011		
Isolate Plasmid II Minikit	Bio-Rad Laboratories, Perth	-		
	Scotland			
Anza [™] 27 Pvul restriction	Invitrogen™	IVGN0274		
enzyme				
UltraPure [™] Agarose	Invitrogen™	16500500		
Pierce™ 10X TBE Buffer	Thermo Fisher Scientific	28355		
SYBR Safe DNA Gel Stain	Invitrogen™	S33102		
HyperLadder™ 1Kb	Bioline, London UK	BIO-33053		
DMEM/F-12, GlutaMAX™	Gibco™ 10565018			
supplement				
Fetal Bovine Serum	Biosera	FB-1090/500		
Penicillin Streptomycin	Sigma Aldrich, Dorset UK	P4458-100ML		
TrypLE Express 1x	Gibco™	12604-013		
Dimethyl Sulfoxide	Sigma Aldrich, Dorset UK	D4540		

Lipofectamine 2000 Reagent	Invitrogen™	11668019
Opti-MEM 1X reduced serum	Gibco™	31985070
media		
Puromycin (10mg/mL)	Sigma Aldrich, Dorset UK	P9620
Paraformaldehyde, 97%	Alfa Aesar	A11313
Methanol	Fisher Scientific	-
Phosphate Buffered Saline	Oxoid, Basingstoke UK	BR0014G
(Dulbecco A)		
Tlen [®] 20	Sigma Aldrich, Dorset UK	93773
HI Horse-Serum	Gibco™	26050-088
Sample Buffer, Laemmli 2X	Sigma Aldrich, Dorset UK	S3401-1VL
Concentrate		
2-Mercaptoethanol	Sigma Aldrich, Dorset UK	M6250
Prestained Molecular light	Sigma Aldrich, Dorset UK	SDS7B2
Marker (26,600-180,000 Da)		
Cell lytic solution	Sigma Aldrich, Dorset UK	C2978
Protease Inhibitor cocktails	Sigma Aldrich, Dorset UK	P8340-205

Table 2.1 List of materials used.

Name of solution	Constituent parts
Freezing medium	90% FBS
	10% Dimethyl sulfoxide (DMSO)
Transfer buffer	78.6% ddH ₂ O
	19.7% methanol
	1.4% glycine
	0.3% TRIS base
1% agarose gel	99% Tris-borate-EDTA
	0.99% agarose
	0.01% Cybrsafe
Laemelli lysis buffer	20% glycerol
	4% SDS

	0.004% bromophenol blue
	0.125M TRIS
	400mM DTT
Phosphate-buffered saline (PBS)	PBS tablets (OXOID cat. BR0014G). One tablet
	dissolved in 100mLs H ₂ O.
5 x CSK buffer	95% CSK buffer (PIPES/KOH (1 M, pH 6.8), NaCl
	(5 M), Sucrose, EGTA (250 mM) MgCl ₂ (1 M),
	DTT (1 M) Protease inhibitor cocktail (e.g.,
	Roche 05056489001)
	5% complete mini cocktail tablets (Roche, cat.
	11836153001)
Paraformaldehyde in CSK buffer	80% CSK buffer
	(663% ddH ₂ O
	30% 1M sucrose
	2% 5M NaCl
	2% 0.5M PIPES)
	25% paraformaldehyde (1.8g (3.6%) paraformaldehyde dissolved in 35 mL water (made alkaline with NaOH) at 65°CMade neutral, made up to 40 mL with water then 10 mLs of 5xCSK buffer added. (CSK recipe). Cooled on ice or frozen and used within 3 days.
PBS/ TIEN	99.9% PBS
	0.1% Tlen [®] 20 Detergent

 Table 2.2 List of solutions used.

• fc	or WB /a	Oncogene	number	headquarters
00 n,	/a	Oncogene	0000	
			CP06-	La Jolla, United
		Research	100UG	States
		Produce		
) 1:	:1333	Abcam	ab118918	Cambridge, United
				Kingdom
00 1:	:500	Abcam	Ab122149	Cambridge, United
				Kingdom
) 1:	:2000	Abcam	Ab183045	Cambridge, United
				Kingdom
00 1:	:3333	Vector	B-1355	Burlingame, United
		Laboratories		States
		Inc.		
00 n,	/a	Vector	FL-1351	Burlingame, United
		Laboratories		States
		Inc.		
00 n,	/a	Invitrogen by	A-11005	Waltham, United
		ThermoFisher		States
		Scientific		
00 n,	/a	Invitrogen by	A-21206	Waltham, United
		ThermoFisher		States
		Scientific		
00 n,	/a	Invitrogen by		Waltham, United
		ThermoFisher Scientific	S32356	States
	0 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1	0 1:1333 00 1:500 00 1:2000 00 1:3333 00 n/a 00 n/a	Nooch Sin Produce01:1333Abcam001:500Abcam001:2000Abcam01:3333Vector Laboratories Inc.00n/aVector Laboratories Inc.00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific00n/aInvitrogen by ThermoFisher Scientific	Notice in ProduceProduce01:1333Abcamab118918001:500AbcamAb12214901:2000AbcamAb18304501:2000AbcamB-1355001:3333Vector Laboratories Inc.B-135500n/aVector Laboratories Inc.FL-135100n/aInvitrogen by ThermoFisher ScientificA-1100500n/aInvitrogen by ThermoFisher ScientificA-2120600n/aInvitrogen by ThermoFisher ScientificA-2120600n/aInvitrogen by ThermoFisher ScientificS32356

Goat anti-Mouse IgG	1:2000	n/a	Invitrogen by	A-11001	Waltham, United
(H+L) Cross-Adsorbed			ThermoFisher		States
Secondary Antibody,			Scientific		
Alexa Fluor 488					
β-Actin Loading Control	n/a	1:2000	Invitrogen by	MA5-	Waltham, United
Monoclonal Antibody			ThermoFisher	15739	States
			Scientific		
Streptavidin HRPO	n/a	1:3333	Invitrogen by	SA1007	Waltham, United
conjugate			ThermoFisher		States
			Scientific		

Table 2.3 List of antibodies used.

2.1 Gene Trap Screen to identify WFA expression mutants.

2.1 Cell culture

SH-SY5Y is a human-derived cell line sub-cloned from an original cell line (SK-N-SH) that was isolated from a bone marrow biopsy taken from a four-year-old female neuroblastoma patient (Kovalevich and Langford, 2016).

Cell culture conditions

SH-SY5Y neuroblastoma cells (passage 21) were obtained originally from European Collection of Authenticated Cell Cultures (ECACC) and subsequently propagated and archived in the Pickard lab. Lines HEK293T, Lan 5 and A549were also Pickard lab stocks. Cells were grown in 1:1 of DMEM and Ham's F12 medium supplemented with 10 % foetal bovine serum (Kovalevich and Langford, 2016) and 1% penicillin/streptomycin. Cells were cultured at 37 °C with 95 % air and 5 % carbon dioxide (Kovalevich and Langford, 2016) in a humidified incubator. Once confluent, cells were trypsinised (TrypLExpress), centrifuged at 12,000 rpm for 5 minutes, resuspended in 8.5 ml fresh media and plated at various densities to allow mutant colonies to grow sparsely.

Recovery of frozen cells

Frozen cell lines at -80 °C were thawed by the pipetting of warm Dulbecco's Modified Eagle Medium (DMEM)/F-12, glutamax (Thermo-Fisher Scientific, UK) supplemented with 10 % FBS and 1 % Penicillin/Streptomycin over the frozen cells. Cells were then centrifuged at 12,000 rpm for 5 minutes. Cell pellets were resuspended in 10 ml fresh media, pipetted into culture vessel (flask/plate) and allowed to grow for a period until 70% confluent growth (2-5 days).

Freezing down cells

Once relevant colonies had reached confluence, cells were frozen down as a backup and stored for molecular analysis. For freezing down, cells were trypsinised, centrifuged at 1,200 g for 5 minutes. Subsequently, media was removed, and 1 mL freezing mix (stock composed of 90 % FCS and 10 % DMSO) was added and pipetted up and down to resuspend the cells. These cells were stored in 2 mL Cryotubes at -80 °C for future use.

Gene trap library creation

A pre-existing gene trap mutant library in SH-SY-5Y cells was available in the Pickard lab. This library had been generated through electroporation of cells with a linearised pGTIV3 gene trap plasmid (fig. 2.1 and (Tsakiridis *et al.*, 2009) and subsequent selection for cells ls with productive mutational events using G418/Neomycin.

Figure 2.1. The pGTIV3 gene trap plasmid used in the creation of the mutant SH-SY5Y gene trap library (map created in SnapGene). Schematic representation of the Poly A trap constructs employed. SA, splice acceptor; pA, polyadenylation signal; P, promoter; neo, neomycin phosohotransferase gene; SD, splice donor; ARE, AU-rich element; Gtx, synthetic sequencing

containing Gtx motifs; HA 3/5. Human adenovirus type 3/5; β hygro, fusion between β -galactosidase and hygromycin resistance genes.

2.1.2 Live cell staining for PNN expression with WFA

The purpose of live cell staining was to determine which mutant colonies were failing to produce a PNN or displaying reduced staining levels. SH-SY5Y mutant cells were grown to confluence and plated out in 6 well plates and these were then allowed to grow to approximately 80 % confluence. The purpose was to ensure that cells were able to be stained with WFA and identification could occur. Once confluent, cells were treated with 2 µl WFA/Biotin and 2 µl Streptavidin conjugated to fluorophore Alexa594 complex in the dark. Cells were then incubated at 37 °C for approximately 1 hour in the dark. Following incubation, cells were washed twice with fresh media and immediately analysed under an epifluorescent Inverted Microscope (Nikon Eclipse TE300). Colonies failing to produce any signal or a dim signal with WFA staining were marked on the plate lid with a pen and were then subjected to isolation.

Isolation of mutant colonies

Cells under the pen marks were plucked and isolated to grow in firstly 24 well plates followed by further WFA staining. Once cells had been screened again with WFA/Biotin Streptavidin complex, these were then plucked using sterile tweezers and isolated into 6 well plates and allowed to grow until confluent. 6 well plates were then further analysed for WFA staining and relevant mutant colonies were grown in T75 flasks until fully confluent. Once fully confluent, cells were frozen down in freezing medium as archived stocks, frozen at -80 °C as pellets for future molecular analysis and plated on coverslips for immunofluorescence microscopy.

2.1.3 Immunofluorescence Microscopy

Fixation of cells for immunofluorescence

Cells grown on coverslips were fixed using 3.6% w/v paraformaldehyde (PFA) fix (Table 2.2) within a fume hood. 1.8g of powdered PFA (Alfa Aesar, Lancashire, UK) was added to 35ml of distilled water. 1M sodium hydroxide was then added in a dropwise manner until pH 10 was obtained. This solution was warmed to approximately 65°C. Subsequent to PFA dissolving, 1M hydrochloric acid

was added in a dropwise fashion until a neutral pH was obtained. Water was added to take the volume to 40 mL and then 10 mLs of 5x CSK buffer was added to create the final fix.

Living cells on coverslips were washed once with ice-cold PBS and then fixed in PFA on ice for 10 minutes. Three PBS washes were undertaken followed by fixation at -20°C in methanol for 20 minutes followed by another three PBS washes. Following fixation, cells were either subjected to further staining or stored for a maximum of one week submerged in PBS in the cold room (4°C).

Cells were then subjected to PBS + 0.1% Tween20 (PBS-T) (Alfa Aesar, UK) and incubated on ice for 10 minutes to permit cell permeabilization. Cells were blocked for 1 hour at room temperature 1ml PBS-T + 1% donkey serum (DS). Subsequently, primary antibodies (Table 2.3) (1:1000 diluted in PBS-T/1% DS) were added to the cells and left overnight at 4°C. Three x 5-minute washes were carried out using PBS-T. Addition of secondary antibodies in PBS-T then occurred with incubation for 1 hour with plates wrapped in foil to prevent light-induced degradation of the fluorophore. Three x PBS-T washes were then undertaken before mounting. Coverslips, cell side down, were directly mounted onto microscope slides on which 15 µL antifade mountant containing DAPI (Invitrogen, UK) had been spotted. Coverslips were then lightly blotted dry with cartridge paper and sealed with superglue. Once prepared, slides were stored in the refrigerator prior to imaging. All slides were examined under an epifluorescent upright microscope (Nikon Eclipse 600), and relevant images were obtained. Analysis of raw immunofluorescence data was undertaken using the Image J processing and analysis software. Cellular area, mean grey value, and integrated density was measured on Image TM (Schneider et al., 2012). An average was taken of background readings and WFA intensity. Immunofluorescence data was expressed as mean ± SEM. Two-tailed student's t-test was used for determining statistical significance and data was then analysed using Microsoft Excel. A pvalue of less than 0.05 was considered to be statistically significant.

Mouse Brain staining with WFA

Once mounted on 3-amino-propyl-tri-ethoxy-silane (APES)-coated slides, sections were immediately frozen and stored at -80 °C. Sections when required were left to warm at room temperature for 5 minutes. Acetone fixative was added to a glass tank in an ice bucket and sections in a rack lowered in with fixation time of 15 minutes. Sections were then rinsed 3-4 times in PBS and air dried completely for 30 minutes under airflow. Sections were blocked with donkey serum as previously

described and stained overnight (4 °C) with biotinylated WFA and, subsequently, with streptavidin conjugated to a red fluorophore, and then mounted/sealed under a coverslip with DAPI counterstain and antifade solution. Images were taken with an epifluorescence microscope (as above) and were processed, and colour composites created using ImageJ.

2.1.4 Mutant gene identification

SH-SY5Y cells had been previously inserted with a gene trap vector (pGTIV3) during the gene trap process to induce mutations within the cell line. Those colonies which failed to produce a mature PNN – as described above -were then subjected to RNA isolation to allow the identification of the mutated gene. Total RNA from each mutant colony was purified using the BIOLINE ISOLATE II RNA mini kit (Bioline, London, UK). This kit purifies RNA from various sample types via a simple, column-based method. Steps were undertaken as stated in the manual (<u>https://www.bioline.com/isolate-ii-rna-mini-kit.html</u>). Gel electrophoresis was then undertaken to determine whether successful, high quality RNA Isolation had occurred.

Reverse transcription to produce cDNA

To create cDNA from the RNA, 5µl of RNA was mixed with 1µl of dNTPs, 1 µl of RACE oligo dT and 5.5µl dH2O and incubated at 65°C for 5 minutes. Subsequently this was placed on ice to prevent reformation of the secondary structure. 4 µl of FS Buffer, 2µl of DTT, 0.5µl of RNase inhibitor and 1µl of Superscript RTII (Life Technologies) was added to the linearized RNA solution. This was then placed in the thermocycler and held at 42°C for 50 minutes to create cDNA and then at 70°C for 15 minutes to inactivate the enzyme.

RACE PCR

Following cDNA synthesis, the resulting cDNA was amplified using a Rapid Amplification of cDNA Ends (RACE) protocol in order to amplify fusion transcripts between neomycin resistance and the trapped/mutated gene. In the RACE 1 protocol, 3µl of the cDNA was combined with 0.5 µl of RACE1 Primers, 18.8µl of dH2O, 0.4µl of MyTaq DNA Polymerase and 5µl of 5 x MyTaq PCR Buffer (Bioline). The parameters for the PCR machine were: 94 °C 2 min, 5 cycles of (94 °C 30 sec, 70 °C 30 sec, 72 °C 3 min) followed by 30 cycles of (94 °C 30 sec, 68 °C 30 sec, 72 °C 3 min) followed by 30 cycles of (94 °C 30 sec, 72 °C 3 min) followed by the final extension which was 72 °C for 5 minutes.

For the second, nested PCR step (RACE2), 2.5µl of the RACE1 products were added to 122.5µl of dH2O and mixed thoroughly to dilute the RACE1 DNA and primers. To specifically amplify the products of interest, RACE 2 PCR was then undertaken on these diluted products from RACE1. 0.3µl of the diluted RACE1 products were combined with 0.5 µl of RACE2 Primers (18.8µl of dH2O, 0.4µl of MyTaq DNA Polymerase and 5µl of 5 x MyTaq PCR Buffer. RACE 2 conditions were as follows: 94 °C 2 min, 5 cycles of (94 °C 30 sec, 70 °C 30 sec, 72 °C 3 min) followed by 25 cycles of (94 °C 30 sec, 68 °C 30 sec, 72 °C 3 min) followed by the final extension which was 72 °C for 5 minutes. To confirm presence of PCR products, 5µl of the RACE2 products were run on a 1% agarose gel at 60 volts for 45 minutes.

Gel Electrophoresis

PCR products sizes were quantified using gel electrophoresis. Samples were prepared using PCR products, 5x blue loading dye (Bioline, London, UK) and ethidium bromide (5µl/50ml) (Sigma-Aldrich, Dorset, UK). Samples were then run on a 1 % agarose gel with Tris/Borate/EDTA (TBE) running buffer. 1 kb ladder (Bioline, London, UK) was used to estimate product size after images were captured on a UV transluminator using Genesnap software (Syngene, UK). Successfully amplified PCR products were subjected to the PCR product purification process using Thermo Scientific GeneJET PCR purification kit (Thermoscientific K0701) prior to cloning and sequencing.

Cloning and Sequencing of RACE PCR products

PCR products were purified and then ligated into the pGEM-T Vector (Promega) (See figure 2.2) using Quick Stick Ligase (Promega). A forward primer (5') and a reverse (5') primer was used for the amplification of the PCR product. Both primers were dissolved in ultrapure water at a stock concentration of 20 pmol/µl. The template plasmid was diluted in ultrapure water at a stock concentration of 50 ng/µl and made up with water to a total volume of 50 µl: 1 µl plasmid DNA (1 ng/µl final concentration), 1.25 µl of each primer (0.5 pmol/µl final concentration for each primer), 1 µL dNTP (10 mM each). 1 µl of vector (50 ng/µl), 50 ng/µl of the PCR product, and 10 µl of 2X reaction buffer were mixed and filled with water to a total volume of 20 µl. 1 µl of T4 DNA ligase (5 U/µl) was added to the mixture, mixed, and incubated at room temperature for 30 minutes. For bacterial transfection, 10 µl of the mixture was mixed with 100 µl of DH5 alpha *E. coli* competent cells and incubated on ice for 45 minutes. The mixture was then heat-shocked at 42°C for 2 minutes

placed on ice again for 5 minutes and mixed with 1 ml LB medium and incubated in a thermomixer (Eppendorf) for 45 minutes at 37°C at 450G. The bacteria were then spun down for 4 minutes and the pellet was cultured overnight at 37°C on an agarose Petri dish containing 100 µg/mL of Ampicillin. Colonies were selected and cultured overnight in 3 ml LB containing 100 µg/mL of ampicillin. Following overnight incubation, the plasmid was isolated from the cultured bacteria using the Isolate Plasmid II minikit (Bioline) according to the manufacturer's instructions. Following this, restriction digest of the plasmid colonies occurred with the EcoRI to determine which plasmid colonies contained both the vector and insert. 800 ng of plasmid DNA in a total of 10 µl water were sent for sequencing (Source Bioscience) in Eppendorf tubes. The sequencing primers forward and reverse were generated by the company. Sequence results were analysed using NCBI Blast.

Figure 2.2 pGEM T Easy Vector. *pGEM T Easy Vector above represents the restriction map of the vector used in the PCR cloning process to determine the identification of the mutated gene in colonies with reduced WFA staining.*

2.2 Creation of CRISPR constructs

sgRNA oligonucleotide preparation

10 μ L of each complementary pair of oligonucleotides (e.g., *top1/*bot1) were mixed with 5 μ L of 5x annealing buffer (50 mM Tris-HCL, pH 8.0, 100 mM NaCl, 5 mM EDTA. Oligonucleotide solutions were then placed in a water bath at 100 °C and allowed to cool down slowly for 2 hours.

Primer sequences

[Phos]CACCTTGAAGATGCGCGCTGAACA [Phos]AAACTGTTCAGCGCGCATCTTCAA [Phos]CACCGATGCCGTCACAATGCGGGG
[Phos]AAACCCCCGCATTGTGACGGCATC
[Phos]CACCTGTTACCATTTGCAATGAAG
[Phos]AAACCTTCATTGCAAATGGTAACA
[Phos]CACCCTATGAAAGCATTCAGAAAG
[Phos]AAACCTTTCTGAATGCTTTCATAG
[Phos]CACCGGACCGGGAGATGATCCTGG
[Phos]AAACCCAGGATCATCTCCCGGTCC
[Phos]CACCCTGCAAACAAGAAACAGAGA
[Phos]AAACTCTCTGTTTCTTGTTTGCAG

Cloning of the annealed sgRNA sequences into the CRISPR plasmid

Plasmid pU6-(BbsI)_CBh-Cas9-T2A-mCherry (Addgene) was provided as an agar stab. Bacteria were streaked onto agar plates, and colonies picked and incubated in liquid LB media overnight. The following day plasmid DNA was isolated using Isolate Plasmid II minikit (Bioline). Following this, plasmid DNA was digested with BbSI, purified using Thermo Scientific GeneJET PCR purification kit (Thermoscientific K0701), and then the ligation reaction was set up using 1 μ L quick stick DNA ligase, 5 μ L DNA ligase buffer, 2 μ L long oligonucleotide, 2 μ L short guide oligonucleotide and 1 μ L digested plasmid gRNA and incubated at room temperature for 5 minutes. Digested plasmid was ligated with the annealed oligonucleotides. The annealed oligonucleotides had overhangs which were complementary to BbsI. Three μ L of the ligation products were added to 100 μ L of chemically competent *E. coli* cells and incubated on ice for 30 minutes and then subsequently heat shocked for 45 seconds at 42 °C. 300 μ L of LB broth was then added and the mixed solution was then incubated at 37 °C on a rotating incubator for one hour. The mixture was then spread on agar plates containing

μg/μL Ampicillin. Plasmid colonies were, grown overnight in liquid culture, as before, to generate purified plasmids.

Gel electrophoresis of uncut plasmid and sequencing to confirm successful ligation

Agarose gel electrophoresis was employed to confirm the presence of plentiful plasmid DNA before it was sent for sequencing (Source Bioscience, Nottingham, UK). The plasmid was also run on a 1% agarose gel at 70mV for 40 minutes. Returned sequences (Figure 2.3,2.4,2.7) were then analysed using FinchTV[™] software (Geospiza, Inc.) to determine if successful ligation of gRNAs into the plasmid vector had taken place.

2.3 Production of stable cell line mutant KOs

Cell Transfection with CRISPR Plasmids

<u>FAF1</u>

For cellular transfection, two cell transfections were undertaken. One transfection utilised an uncut form of the mixed CRISPR plasmids whereas the other utilised a linearized form. Cells were grown until 90 % confluence, washed, and incubated in Opti-MEM[™] media. Lipofectamine 2000® DNA Transfection reagent was diluted in Opti-MEM[™] media to a dilution ratio of 1:15, producing a mixture of Lipofectamine 2000® (6.25%)/Opti-MEM[™] media. Mixed CRISPR plasmid constructs were both added to Opti-MEM[™] media to produce a F1A (1.3%)/F2A (1.3%)/Opti-MEM[™] media mixture. Both mixtures were incubated at RT for 5 minutes, then combined and incubated for 20 minutes at RT. Following this, Lipofectamine 2000®/F1A/F2A/Opti-MEM[™] media solution was then added to SH-SY5Y cells and incubated at 37C for a few hours. Media was then replaced with DMEM/F-12 GlutaMAX[™] media (10%) per well.

GALNTL6

pSpCas9 (BB)-2A-Puro (PX459) V2.0 CRISPR plasmid with guide RNA (gRNA) was designed. Grna's were annealed and ligated into separate sets of CRISPR plasmids at the BbsI restriction site using BbsI restriction enzyme and ligase to produce two sets of *GALNTL6*-targeting CRISPR-gRNA plasmids. Heat shock transformation was undertaken for CRISPR-gRNA plasmid into competent *Escherichia coli* cells at 42°C for 45 secs, stored on ice for 2 min and broth media added for 1 hr at 37°C. Subsequently this was plated onto ampicillin-treated agar for selective amplification overnight. Isolation of CRISPR-gRNA plasmid was undertaken using Isolate Plasmid II minikit according to manufacturer's protocol with centrifugation (6'700 G). To linearise the CRISPR-gRNA plasmid they were treated with Pvu1 restriction enzymes and incubated at 37°C overnight.

Figure 2.4- Sequencing results to confirm successful cloning of Galntl6 targeting gRNAs into CRISPR plasmids.

SH-SY5Y cells were grown to 80% confluence and Lipofectamine 2000 Reagent was utilised according to manufacturer's protocol, for transfection of CRISPR-gRNA plasmid or the original CRISPR plasmid as an empty vector control, in Opti-MEM 1X reduced serum media. Only one cloned non-linear CRISPR-gRNA plasmid was ready for use for the first sample of cell transfection and two cloned linear CRISPR-gRNA plasmids were co-transfected for the second sample of cells. Transfected cells were then incubated for 5 hr at 37°C. Selection of stable transfects of sham (empty vector control) and CRISPR-gRNA plasmid-treated SH-SY5Y cells were carried out using puromycin (1.5-3.5 µg/mL) for a maximum of 12 days. Non-linear or linear CRISPR-gRNA plasmid transfected SH-SY5Y cells were cultured for colony growth. Sham or pooled mutant *GALNTL6* cell colonies were grown after subculture by trypsinisation when individual colonies were observed, incubated for 5 min at 37°C and 5% CO2.Cells were centrifuged at 1200 g for 5 minutes. Cells were resuspended in DMEM/20% FBS/1% p/s and cultured as NP/LP-sham or CRISPR-treated-NP/LP cells in T25 flasks. Single mutant *GALNTL6* cell colonies were isolated by scraping and slowly pipetting up cell colony solution, or trypsinised if only one colony presents on the plate, then transferred for growth in DMEM/20% FBS/1% p/s as CRISPR-treated-N1 or L1 and L2 cells.

DCC

The CRISPR/Cas9 system was utilised to disrupt the expression of the DCC gene, with p5pCas9 (BB)-2A-Puro (Addgene) (PX459) (Figure 2.6). Two pairs of oligonucleotide sequences were designed (D1A and D2A) to target *DCC* were ordered and annealed. The gRNAs were designed to target DCC at an early exon in the upstream promoter region to resulting in DCC knockout. Two pairs of optimised gRNAs rather than one were utilised to essentially create a double knockout effect. PX459 was digested with *Bbs1* enzyme, and the gRNA oligonucleotide pairs were ligated into the Bbs1 sites to create a plasmid expressing Cas9 and DCC gRNA (DCC/PX459). SH-SY5Y cells were 80% confluent at time of transfection. For each transfection, media was removed from each well of the 6-ell plates in which SH-SY5Y cells were growing. Cells were gently washed in media in preparation for the addition of DNA-lipid complexes. DNA-lipid complexes were prepared using both CRISPR constructs and Lipofectamine[®] 2000 DNA Transfection Reagent and were diluted separately with Opti-MEM[®] Medium and incubated for 5 minutes at room temperature (RT). Both solutions were then mixed in a 1:1 ratio and incubated for a further 20 minutes at room temperature to permit formation of complexes. Subsequently, DNA-lipid complexes were added to cells and incubated for a few hours at 37°C, 5% CO₂. Opti-MEM[®] / Lipofectamine[®] medium was then removed and replaced with DMEM/F-12/Glutamax growth medium supplemented with 10% FBS and 1% penicillin/streptomycin and left for overnight incubation. Transfected cells were visualised immunofluorescence microscopy and identified via western blotting. PX459 void of DCC gRNA was also transfected into SH-SY5Y cells in order to produce empty vector control cells, hereafter "sham" or "sham control" cells.

Puromycin Selection of Transfected Cells

Puromycin selections of each transfection was then undertaken in parallel. A "sham" control was utilised composed of SH-SY5Y cells treated with the original CRISPR plasmid (Figure 2.5). This was to generate a 'control CRISPR cell line' that had undergone the transfection process but did not have a sgRNA. Therefore, I was controlling for the effects of expressing CAS9. Through use of puromycin, identification of mutant SH-SY5Y cells successfully transfected with each relevant CRISPR plasmid constructs occurred. Wild type SH-SY5Y cells were also treated with puromycin. Both transfections were treated initially with media containing 1.5µg/ml puromycin, which was increased to 3.5µg/ml puromycin upon observation of insufficient selection until all wild type cells had been killed off

indicating that any surviving cells in the transfection groups were puromycin resistance and therefore possessed the CRISPR construct. Through use of puromycin, identification of mutant SH-SY5Y cells successfully transfected with each relevant CRISPR plasmid constructs occurred.

Figure 2.5 pU6-(Bbsl) _CBh-Cas9-T2A-mCherry CRISPR construct plasmid. Figure 2.5 above represents the CRISPR construct plasmid used to create CRISPR KOs of each of the identified mutant colonies via sequencing such as FAF1, DCC and GALNTL6. This plasmid contains an expression vector for sgRNAs cloned into the BbsI sites and for expression of Cas9 linked to mCherry via a T2A peptide.

Figure 2.6 p5pCas9(BB)-2A-Puro (PX459) CRISPR construct plasmid. *Figure 2.6 above represents the CRISPR construct plasmid used to create CRISPR KOs of each of the identified mutant colonies via sequencing such as FAF1, DCC and GALNTL6.*

Figure 2.7. Sequencing results to confirm successful cloning of DCC targeting gRNAs into CRISPR plasmids.

2.4 CRISPR Validation

Western blotting

Cells were grown to confluence in 6-well plates and were treated as required. Following incubation at 37°C, media was removed via an aspirator, cells were scraped using cell lysis/scraping method and an equal volume of 2 x Laemmli sample buffer was added into the cells immediately. Cells were then harvested, and the mixture transferred to labelled micro centrifuge tubes and samples stored at -20 °C for Western blotting.

Cell lysates were thawed on ice and prepared for Western blotting. Equivalent loadings (determined by Bradford Assay) of each protein sample were loaded onto 10 % polyacrylamide gels and were electrophoresed at 120 V for 90 minutes. Proteins were transferred to the nitrocellulose membrane at 100 V for 60 minutes at 4°C. Pierce ™ Fast Western blot kit, ECL substrate (Catalog number: 35055) was then utilised and the blot was removed from the transfer apparatus and placed in a clean incubation tray. Blots were stained with respective primary antibodies such as anti-*DCC* (1:500) anti-

FAF1 (1:1,000) anti-*GaIntl6* (1: 1,000). With regards to blots examining WFA staining, primary was biotinylated WFA (1: 1,000) and secondary instead of using generic secondary present in fast western blot kit, streptavidin conjugated horse radish peroxidase (following manufacturer's protocol) was utilised. Steps were undertaken as detailed in the kit manual and blots were subsequently developed on X-OMAT operating system. Bands were photographed, membrane was stripped and re stained with beta actin loading control and entire lanes were analysed and quantified using Image J TM software and Microsoft excel. The relative densities of protein of interest divided by beta actin loading control normalised the data and produced relative protein levels. Band sizes were calculated from their migration distance using a standard curve of migration ratio (distance over full length) versus known molecular size of a ladder.

2.5 Drug inhibitor effect on WFA staining

Wild type cells and *FAF1* pool cells were grown to confluence in two T25 flasks each respectively. One of each flask was extracted using cell scraping and lysis. The other flasks were digested for 15 minutes at 37 degrees Celsius with trypsin to remove the perineuronal net. Flasks were then washed with PBS and cell lysis was undertaken. For the second experiment, a 1000-x stock of the KR-33493 *FAF1* inhibitor was produced in DMSO. Two plates labelled A and B were used seeded with SH-SY5Y cells followed immediately by the drug dilution at 10 micro molar concentrations. This was to ensure that the cells were not allowed to attach overnight to hinder the production of the perineuronal net. Plates were then incubated for 72 hours at 37 degrees Celsius.

2.6 siRNA knockdown of GALNTL6

25% confluent cells were plated in 6 well plates with or without coverslips and then left overnight. Following overnight growth, each Well was treated respectively with either 0 μ L, 100 μ L or 300 μ L of *GALNTL6* in 1 ml of serum-free media for 6 hours and then 2 ml full media was added. Cells were then left for 48 hours. Cells were seeded to 60-80 % confluence ready for transfection. Transfection was undertaken using Lipofectamine® RNAiMAX Reagent. Firstly, Lipofectamine® RNAiMAX Reagent was diluted in Opti-MEM® Medium. The siRNA was then diluted in Opti-MEM® Medium the diluted siRNA was added to the diluted Lipofectamine® RNAiMAX Reagent (1:1 ratio) Cells were then incubated at 37°C and siRNA-lipid complex was added to the cells. The cells were then

incubated for 3 days at 37°C and analysis of the transfected cells was then undertaken. Cells were subsequently lysed for either protein analysis or placed on coverslips fixed in paraformaldehyde /methanol. Adherent cell layers were fixed to cover slips using 3.6% w/v paraformaldehyde (PFA) fix within a fume hood. Where cells were cultured, they were fixed in the wells of plates. 3x PBS washes occurred and then fixed in PFA on ice for 30 minutes. Further PBS washes were undertaken followed by fixation at -18°C in methanol for 20 minutes. Following fixation, cells were either subjected to further staining or stored overnight submerged in PBS. Cells were then further subjected to PBS + 0.1% Tlen20 (PBS-T) (Alfa Aesar, UK) and incubated on ice for 10 minutes to permit cell permeabilization. Cells were blocked for 1 hour at room temperature 1ml PBS-T + 1% donkey serum (DS). Subsequently, primary antibodies (1:1000 diluted in PBS-T/1% DS). 3 x 5 minutes' washes then occurring PBS-T. Secondary antibodies were also diluted in a mixture of PBS/0.1% TIEN-20 to a dilution ratio of 1:2000. Biotinylated WFA was paired with a Streptavidin, Alexa Fluor® 594 conjugate and fluorescent red. Plates were then wrapped in foil in dark conditions to prevent light induced degradation.3 x PBS-T washes were then undertaken before the mounting process. Cover slips were directly mounted onto microscope slides which were compared with antifade mountant containing DAPI (Invitrogen, UK). Coverslips were prepared so that for each round of microscopy there was (i) cytoskeletal & WFA-stained cells and (ii) cytoskeletal and FAF1 stained cells. Coverslips were then mounted on glass slides with SlowFade™ Diamond Antifade Mountant with DAPI. Once prepared, slides were stored in the refrigerator prior to imaging. All slides were examined under an epifluorescent upright microscope (Nikon Eclipse 600), and relevant images were obtained. Analysis of raw immunofluorescence data was undertaken using the Image J processing and analysis software at 100 x magnification of 400 x magnification.

2.7 Pull-down Assay.

Two T75 flasks of SH-SY5Y cells were grown to confluence and then lysed for protein extraction in exactly the same way as for the preparation of protein for SDS-polyacrylamide gel electrophoresis/Western analysis (CelLytic/protease inhibitor cocktail to a total volume of 700 µL per flask). The combined extract was added to 49 mL PBS and 50 µL Biotinylated WFA (B-1355 Vector Laboratories, CA, USA) in a 50 mL Corning tube and incubated overnight at 4°C on a roller (Fisher Scientific, Model 11676251). The following morning, 100 µL Pierce Streptavidin Ultra Link Resin was added and the suspension left rolling at 4°C for an additional 2 hours.

Meanwhile a column was prepared using a 10 mL syringe cylinder with plunger removed. This was clamped vertically in a retort stand in the cold room (4°C). Deactivated glass wool (Restek US/EN) was packed into the bottom of the syringe using forceps. The column was washed with 2 x 10 mL PBS. The PNN protein-WFA-biotin-streptavidin-resin suspension was loaded onto the column in 10 mL batches, ensuring that no cloudiness was seen in the flow through (the glass wool plug was working to retain/trap the resin). The plunger was used if flow rates decreased. After the column had been completely loaded, it was washed by 3 x 10 mL PBS which was fully removed after the last wash by applying plunger pressure. 500 μ L of CelLytic extraction buffer was heated to 80°C and pipetted directly onto the column. After 1 minute this was eluted using the plunger into microfuge tube. This was mixed with an equal volume of 2 x Laemmli buffer and loaded into several wells of a pre-cast SDS-polyacrylamide gel. After 3 minutes' electrophoresis another loading was carried out and the procedure repeated until all protein had been loaded into the top portion of the gel. This process was carried out to maximise the concentration of the eluted PNN component in the gel prior to slice excision and downstream mass spectrometry analysis.

The top ~0.5 cM of the gel under each well used was removed using a scalpel and then fixed for one hour in 45% methanol:45% H₂O:10% acetic acid at room temperature. The gel pieces were extensively air dried to remove traces of fix and then sent to The University of Dundee 'FingerPrints' Proteomics Facility for their in-house protein fragment identification pipeline:

- 1. In-gel processing
- 2. In-gel reduction/alkylation
- 3. In-gel trypsin digestion
- 4. Peptide extraction and dry down
- 5. MS Analysis (Thermo Fisher Scientific Q Exactive Plus)
- 6. Database searching for protein ID (Human)

CHAPTER 3

Characterisation of the Perineuronal Net (PNN) in human *SH-SY5Y* neuroblastoma cells
3.1 SH-SY5Y cells express PNNs

I chose SH-SY5Y cells to identify genes which, when mutated, fail to produce a perineuronal net. A neuroblastoma cell line SK-N-SH cell line was produced in 1960 from metastatic cells located in the bone marrow aspirate of a four-year-old female (Kovalevich & Langford, 2013). SK-N-SH was then sub cloned three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y (Kovalevich & Langford, 2013). This cell line has served as a model for neurodegenerative disorders as well as neuropsychiatric disorders because it can be differentiated to different types of functional neurons via the addition of specific compounds (Lopes *et al.*, 2010). In addition, the SH-SY5Y cell line has been used in experimental neurological studies for analysis of neuronal metabolism and neurodegenerative processes including neurotoxicity and neuroprotection (Lopes et al., 2010). The SH-SY5Y neuroblastoma cell line is the most cited in vitro model in neuropsychiatric research, and has various benefits including low cost, ease of culture, reproducibility, and available literature (Kovalevich & Langford, 2013). This cell line has been shown to display neuronal properties such as neurite outgrowth, neuro-transmitter synthesis, and receptor expression (Kovalevich & Langford, 2013). Previous studies using these cells have demonstrated that the first DNA variant displaying genome wide significant association with psychosis modifies the binding of a transcription factor, which controls expression of the ZNF04A gene emphasising their use as a functional model of CNS disease (Lopes et al., 2010).

SH-SY5Y cells have similarities to immature neurons and the cell lineage has been shown to possess dopaminergic and adrenergic properties as well as proliferative markers such as proliferating cell nuclear antigen (PCNA) and immature neuronal markers such as nestin (NES) (Kovalevich & Langford, 2013).Differentiation of *SH-SY5Y* can be promoted using retinoic acid and neurobasal medium supplemented with B-27 and BDNF (Kovalevich & Langford, 2013).This differentiation also results in upregulation of the axonal guidance signalling pathway, growth of neurites and conversion into a neuron-like phenotype. Both undifferentiated and differentiated *SH-SY5Y* cells possess dopamine, GABA, acetylcholine, and glutamate receptors (Kovalevich & Langford, 2013). Dopaminergic markers expressed by *SH-SY5Y* also include tyrosine hydroxylase (TH) which is an enzyme required for catalysis of dopamine as well as noradrenaline and adrenaline (Encinas *et al.*, 2002) Furthermore, muscarinic, and nicotinic acetylcholine receptors have also been reported in *SH-SY5Y* cells (Encinas *et al.*, 2002).

SH-SY5Y cells have been previously shown to express perineuronal nets using the widely recognised marker Wisteria floribunda agglutinin (WFA) which binds to either an unidentified sulphation motif of chondroitin sulphate proteoglycans or the N-acetyl galactosamine residues of chondroitin sulphate proteoglycans (Kovalevich & Langford, 2013). Importantly, in brain tissue sections, WFA has been shown to recognise a specific type of perineuronal net which resides on parvalbumin-positive GABAergic interneurons, suggesting that SH-SY5Y cells may also have an overlapping phenotype with these neurons.

To confirm our protocol for staining the PNN with WFA, I carried out staining on mouse brain sections. Frozen 12-micron mouse brain sections were sourced from previously prepared laboratory stocks (B. Pickard). After acetone fixation, sections were stained overnight (4°C) with biotinylated WFA and, subsequently, with streptavidin conjugated to a red fluorophore, and then mounted under a coverslip with DAPI counterstain and antifade solution. Images taken with an epifluorescence microscope were processed and colour composites created using ImageJ (Fig.3.1).

Mouse Brain

hippocampus)

Figure 3.1 Successful staining of PNN-positive neurons in the mouse brain using WFA. In this figure, the dentate gyrus region of the hippocampus is shown with its granule cell layer displaying the typical '>' anatomy visible in coronal sections. The majority of staining is shown in the projections towards the CA3 region and in isolated neurons, predominantly within the sub granular region. X40 *magnification,* Scale bar=100µm

To determine whether SH-SY5Y cells express WFA-interacting proteins/modification, I carried out WFA staining of paraformaldehyde-fixed SH-SY5Y cells. SH-SY5Y cells were sourced from previously prepared laboratory stocks (B. Pickard). Cells were recovered and grown to 50% confluence and then fixed. Fixed cells were stained overnight (4°C) with biotinylated WFA, then

streptavidin conjugated to a red fluorophore, and mounted under a coverslip with DAPI counterstain and antifade solution and imaged using an epifluorescence microscope and camera. Images were processed and colour composites created using ImageJ (Fig.3.2, Fig 3:3).

Figure 3.2 No WFA staining of SH-SY5Y cells (Negative control). Figure 3.2 shows the results obtained when SH-SY5Y cells are stained with WFA but no secondary (Streptavidin-fluorophore) which is part of the WFA biotin/Streptavidin system. As can be seen above, no red staining is observed in this negative in comparison with the positive control below (See figure 3.3). X40 magnification, Scale bar=100µm

Figure 3.3 Successful staining of SH-SY5Y cells with WFA. SH-SY5Y wild type cells were stained with WFA.WFA staining can be seen with the red and the blue (DAPI) indicating cell nuclei. In comparison with the negative control (no streptavidin-fluorophore), staining is strong and discrete, indicating the presence of perineuronal nets. X40 magnification, Scale bar=100µm

The results obtained above indicate that the WFA staining is working and that *SH-SY5Y* cells do indeed express perineuronal nets. *SH-SY5Y* cells are a secondary cell line, and the results show that perineuronal nets are also expressed on secondary cell lines with neuronal properties. It is important note here that no primary antibody control was utilised, and the signal could potentially be as a result of non-specific binding of secondary antibody. The appearance of the perineuronal net is not a typical honeycomb-like structure as described in the literature. However, the results above

show that SH-SY5Y cells are a viable cell line for perineuronal net expression and can be further utilised to investigate the function and structure of perineuronal nets.

3.2 HEK293 and LAN5 cells lines, but not A549 cells, show positive staining with WFA

I determined whether perineuronal nets were also expressed on three other laboratory cell lines, *LAN 5, HEK293*, and *A549*. By undertaking this, it would further validate the use of *SH-SY5Y* cells as the best neuronal cell line for the subsequent experiments and also show that WFA staining is specific for neuronal cell lines. *LAN 5* is a human neuroblastoma cell line derived from the brain. *HEK293* (human embryonic kidney 293) is an immortalised cell line derived by viral transformation of kidney cells taken from an aborted foetus in 1973 (Shaw *et al.*, 2002). Despite being a kidney cell line, it has been shown to have properties of immature neurons, as shown by the expression of multiple neuronal markers (Shaw *et al.*, 2002). On the other hand, *A549* is an adenocarcinoma cell line derived human alveolar basal epithelial cell lines (including in the literature it has been suggested that *HEK293* cells are derived from the peripheral nervous system though this is disputed (Madhusudana *et al.*, 2010). Since *A549* is definitively non-neuronal, it is reassuring to see that there is no WFA staining. Taking into consideration all the above, this shows that WFA staining is specific to 'neuronal' cell lines.

To further confirm that WFA staining was specific to neuronal cell lines, SDS-polyacrylamide gel electrophoresis and Western blotting were employed. *A549* cells were grown to confluence. Protein was extracted using cell lysis, scraping method, and then run on a 10 % percent gel. Samples were transferred to a nitrocellulose membrane using standard blotting and then incubated with biotinylated WFA and then secondary detection stain (streptavidin conjugated to horse radish peroxidase enzyme) using conventional antibody treatment protocols. Images were developed using ECL and exposure to X-ray film and scanned (See figure 3.4)

Figure 3.4 WFA-binding glycoprotein is expressed in SH-SY5Y, LAN5 HEK293, but not A549, cells. Figure 3.4 shows the results obtained when various secondary cell lines were stained with WFA. All cell lines except A549 show WFA staining and therefore have potential perineuronal nets. A549 is a lung epithelial cell line used to contrast the expression of WFA targets within brain cell lines. The WFA-stained band size is ~90 kDa but it is unknown which specific component of the

perineuronal net this corresponds to; an issue pursued later in this thesis. Beta actin, the loading control, is appearing at its known size of 43 kDa. No statistical analysis was undertaken as N=1.

The purpose of these experiments was to determine whether expression of glycoproteins that bind WFA occurs on other cell lines with neuronal properties such as *HEK-293*, *LAN5* and *A549* (lung epithelial cell line). Cells were monitored for WFA staining, and it was shown that WFA-binding glycoprotein expression occurred in all cell lines apart from *A549*. This is as expected as A549 is a lung epithelial cell line with no neuronal properties. Furthermore, the presence of WFA-binding glycoprotein expression indicates that perineuronal nets are present within the cells. Though our work is based on *SH-SY5Y* cells, there are other cell lines which can be utilised such as *LAN5* or *HEK-293*. Building on this, I have shown that perineuronal nets are not just expressed on *SH-SY5Y* cells but also other cell lines meaning that this is a viable cell line to progress with the studies. *SH-SY5Y* cells, as mentioned above, are the most commonly used secondary cell WFA-binding glycoprotein expression lines in neurological studies. Although other cell lines do indeed express perineuronal nets, the decision was taken to solely progress with *SH-SY5Y* cells though it is important to note that further potential experiments can occur on *LAN-5*, *HEK-293* and *PC12* cells which have also been used for neurological research studies.

3.3 Testing potential protein target(s) of WFA staining

In the previous section, it was demonstrated that *SH-SY5Y* express presumptive perineuronal nets through positive staining by WFA. WFA staining has been suggested to occur through its binding to the N-acetyl galactosamine residue of chondroitin sulphate proteoglycans or an unidentified sulphation motif on chondroitin sulphate proteoglycans. Interestingly, for WFA staining, the usual observation is for one band to be present. Occasionally, some blots would show two or more bands sometimes appearing at 90 kDa or 75 kDa which could be hypothesised as various isoforms of the specific chondroitin sulphate proteoglycans. The presence or absence of the extra bands might be due to cell growth conditions such as confluency. As a result, it was important to try to identify the protein(s) and their glycosylation state represented in Western blots. For example, *Aggrecan* was one candidate target as it is known to be a major component of perineuronal nets and is physically associated within nearly all types of perineuronal net structures located on parvalbumin-positive GABAergic interneurons, cortical neurons, basket cells and others. The band(s) could, alternatively,

represent one of the other common CSPGs such as *Versican* (known to have 4 isoforms: V0, V1, V2 and V3) or *Neurocan*. However, *Neurocan* (143 kDa), *Versican* (373 kDa), *Brevican* (140 kDa), *Aggrecan* (75 kDa), phosph*acan* (250 kDa), and their cross-linking protein, tenascin R (180 kDa), all show molecular weights very different from our observed WFA target and are unlikely to represent the WFA target detected.

To explore these aspects of WFA target characterisation in cell lines I carried out a number of exploratory studies. Firstly, mood stabilisers and anti-depressants such lithium, fluoxetine and venlafaxine previously implicated within the context of perineuronal net research were utilised. Lithium is a well-known drug used in the treatment of bipolar disorder. Fluoxetine has been shown to reduce perineuronal net staining in the brains of deceased patients with bipolar disorder (Ohira *et al.*, 2013) Finally, venlafaxine has been shown to exhibit its effect of degradation of perineuronal net components via MMP-9 proteolysis (Alaiyed *et al.*, 2019). Matrix metalloproteinases have long been implicated in the degradation of perineuronal net components. Protein was extracted using cell lysis, scraping method, and then run on 10 % percent agarose gel (Methods). Samples were transferred using the nitrocellulose method and then incubated with primary antibody (biotinylated WFA) and secondary antibody (streptavidin conjugated horse radish peroxidase). Images were developed using the ECL method and exposed to X-ray film and processed using ImageJ.

Furthermore, staining of *SH-SY5Y* cells with *Neurocan* and *Versican* were undertaken to determine the identity of the sole band appearing on WFA protein analysis. *SH-SY5Y* cells were sourced from previously prepared laboratory stocks (B. Pickard). After fixation sections were stained overnight (4°C) with primary antibodies such *Neurocan* and *Versican* respectively and the following day, washed, then blocked with PBS/Donkey serum and then incubated with secondary antibody (Mouse/Rabbit), then mounted under a coverslip with DAPI counterstain and antifade solution and imaged using epifluorescence microscope. Images were processed and colour composites created using ImageJ (Fig.3.5, Fig 3.6, Fig 3.7)

SH cells (Control)

Figure 3.5. WFA staining of SH-SY5Y cells shows the presence of perineuronal nets. Figure 3.5 shows the results obtained when SH-SY5Y wild-type cells are stained with WFA. As seen above, WFA staining can be seen with the red indicating WFA staining and the blue indicating DAPI. This was done as a positive control on the same biological sample to show with other staining that Neurocan and Versican are also present within perineuronal nets of SH-SY5Y cells. X40 magnification, Scale bar=100µm

Figure 3.6. SH-SY5Y cells express Neurocan. Figure 3.6 shows the results obtained when SH-SY5Y wild type cells are stained with Neurocan. left: DAPI centre: Neurocan right: Composite. As seen above, Neurocan staining can be seen with the red indicating Neurocan staining and the blue indicating DAPI. The fact that I have seen Neurocan staining here confirms that SH-SY5Y cells do express Neurocan. X40 magnification, Scale bar=50µm

Figure 3.7. SH-SY5Y cells express Versican. Figure 3.7 shows the results obtained when SH-SY5Y wild type cells are stained with Versican. left: DAPI centre: Versican right: Composite. As seen above, Versican staining can be seen with the red indicating Versican staining and the blue indicating DAPI. The fact that I have seen Versican staining here confirms that SH-SY5Y cells do express Versican. X100 magnification, Scale bar=50µm

SH cells

3.4 Does the WFA staining on SH-SY5Y cells respond to pharmacological inhibitors of the PNN that have been described in the literature?

Fluoxetine and venlafaxine are anti-depressants (Guirado et al., 2014). Fluoxetine has been previously shown to decrease levels of PNN staining intensity in various brain regions such as the amygdala (Ohira et al., 2013) whereas venlafaxine has been previously suggested to be involved in Matrix Metalloproteinase-9 (MMP-9) PNN proteolysis (Alaiyed et al., 2019). Fundamentally, fluoxetine has been suggested to play a potential role in modulation of perineuronal nets. Moreover, chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gammaaminobutyric acidergic interneurons of the frontal cortex in adult mice (Ohira et al., 2013). Finally, chronic fluoxetine treatment alters the structure, connectivity, and plasticity of cortical interneurons (Guirado et al., 2014). Other pharmacological agents are also candidates for PNN modifiers. Lithium is a mood stabiliser used in the treatment of bipolar disorder and a recent gene trap screen undertaken by Pickard et al., 2017 revealed that mutations in various perineuronal net components offered resistance to lithium treatment. Since lithium is directly and indirectly involved in regulation of Glycogen Synthase Kinase-3 (GSK-3) levels, I also decided to examine the GSK-3 inhibitor, 1-Azakenpaulone.1-Azakenpaullone acts as a potent and ATP-competitive inhibitor of GSK-3β.

SH-SY5Y cells were also treated with inhibitors 10µM fluoxetine and 10 µM venlafaxine for 24 hours. Protein was extracted and run on 10 % percent agarose gel. Samples were transferred using the nitrocellulose method and then incubated with biotinylated WFA and 'secondary' streptavidin conjugated horseradish peroxidase. Images were developed using X ray film and processed using ImageJ (See figure 3.8).

Figure 3.8 No effect on WFA staining using inhibitors fluoxetine and venlafaxine in SH-SY5Y cells. Figure 3.8 above demonstrates the effect of these two anti-depressants on WFA staining.

Through increasing levels of concentrations up to 10 μ M, here the results display that there is no effect of both anti-depressants on WFA staining on the wild type cells. This is in contrast in the literature where WFA staining is reduced in some primary cell lines and other secondary cell lines. No statistical analysis was undertaken as N=1.

The aim of these experiments was to determine whether known inhibitors such as fluoxetine and venlafaxine decrease levels of WFA staining in *SH*-*SY*5*Y* cells. This was done by growing *SH*-*SY*5*Y* cells to confluence and treating them with respective drugs for 24-48 hours. The results above show that there is no change in WFA expression when treated with these drugs.

I next determined whether the cellular staining distribution with WFA was altered by fluoxetine, venlafaxine, lithium or 1-Azakenpaullone. As mentioned above in the literature, primary cell lines and other secondary cell lines had reduced WFA-binding glycoprotein expression and alterations of perineuronal nets when using certain inhibitors. Here, *SH-SY5Y* cells were sourced from previously prepared laboratory stocks (B. Pickard). Cells were recovered and grown to confluence and treated with respective inhibitors such as fluoxetine, venlafaxine, lithium and 1-Azakenpaullone for 24 to 48 hours, sections were stained overnight (4°C) with biotinylated WFA and mounted under a coverslip with DAPI counterstain and antifade solution and imaged using an epifluorescent microscope and camera. images were processed and colour composites created using ImageJ (Fig.3.9, Fig 3.10, Fig 3.11).

Figure 3.9. No effect on WFA staining when SH-SY5Y cells are treated with Fluoxetine. Figure 3.9 shows the results obtained when SH-SY5Y cells are stained with WFA having also been treated with 10 μ M Fluoxetine for 24 hours. As seen above, WFA staining can be seen with the red indicating WFA staining and the blue indicating DAPI. Fluoxetine did not decrease levels of WFA staining. In contrast with other studies, treatment of cells with fluoxetine has not decreased WFA staining. N=81 cells taken over two independent images for SH-SY5Y cells treated with fluoxetine for 24 hours so relevant statistical analysis was undertaken including two tail T-Testing and SEM. Analysis showed P>0.05. x 40 magnification, Scale bar = 100 μ m.

Figure 3.10 No effect on WFA staining when SH-SY5Y cells are treated with venlafaxine. Figure 3.10 shows the results obtained when SH-SY5Y cells are stained with WFA having also been treated with venlafaxine. As seen above, WFA staining can be seen with the red indicating WFA staining and the blue indicating DAPI. Venlafaxine did not decrease levels of WFA staining. N=71 cells taken over two independent images for SH-SY5Y cells treated with Venlafaxine for 24 hours so relevant statistical analysis was undertaken including Two-tailed T-testing and SEM. Analysis showed P>0.05. x 40 magnification, Scale bar = 100 µm.

Figure 3.11 No effect on WFA staining when SH-SY5Y cells are treated with lithium or GSK 3 inhibitor (1-Azakenpaullone). Figure 3.11 shows the results obtained when SH-SY5Y cells are stained with WFA having also been treated with Lithium and GSK 3 inhibitor (1-azakenpaullone) for 24 hours. As seen above, WFA staining can be seen with the red indicating WFA staining and the blue indicating DAPI. Lithium did not decrease levels of WFA staining. 1-Azakenpaullone treatment of SH-SY5Y cells did not decrease levels of WFA staining. N=12 cells for lithium, 63 cells for 1-Azakenpaullone so relevant statistical analysis was undertaken including Two-tailed T-testing and SEM. Analysis showed P>0.05. x 40 magnification, Scale bar = 100 μ m.

The aim of these experiments was to determine whether pharmacological inhibitors influence WFA staining. Here, fluoxetine, Venlafaxine and lithium were utilised. Furthermore, 1-Azakenpaullone was also used as this is a GSK-3 inhibitor. Lithium has been long known to exert its effect via Gsk-3 in a direct or indirect manner. Cells were treated with respective drugs for 24-48 hours and then immunofluorescence microscopy was undertaken and western blotting. The results show that there was no effect on expression of glycoproteins that bind WFA using these inhibitors. Interestingly, the results I obtained here is in contrast to the literature where fluoxetine has been shown to decrease WFA staining in patients with bipolar disorder. However, those studies occurred on a primary cell line whereas the current studies were utilising secondary cell lines. Primary cell lines are more representative of the human body in contrast to secondary cell lines which may lose their neuronal

expression over time. Though there was no direct effect on WFA staining using GSK-3 inhibitor 1-Azakenpaullone as well as lithium.

3.5 Conclusion

In summary, *SH-SY5Y* cells do express a proteoglycan target(s) which can be recognised by WFA staining, and this is consistent with the presence of some form of perineuronal net staining on these cells. The staining appears to be a neuronal feature as it was absent in *A549* cells. However, while WFA staining clearly shows extracellular expression, the precise pattern and distribution of the presumptive PNN on *SH-SY5Y* cells differs from the classic image of PNNs on inhibitory interneurons in that it is not 'net-like' in its morphology. I failed to observe any effect of various pharmacological agents on WFA expression quantity or distribution on *SH-SY5Y* cells.

I still have no idea about the precise molecular target of WFA staining in *SH-SY5Y* cells or even *in vivo*. This prompted a research direction using WFA to 'pull down' potential proteoglycan constituents from lysed *SH-SY5Y* material for molecular analysis. This work is described in Chapter 7. However, the evidence suggests that *SH-SY5Y* cells are a viable cell model for the genetic dissection of perineuronal net formation using a WFA staining assay. The next question is whether the WFA staining protocol can be implemented on live cells to allow a genetic screen for phenotypic changes the PNN to take place. These questions are addressed in the next chapter.

CHAPTER 4

RESULTS: Using a gene trap screen to identify critical genes for PNN formation

4.1 Introduction and screening technology optimisation

In chapter 3, it was demonstrated that SH-SY5Y cells are a potential model cell line to investigate perineuronal nets due to their WFA staining profile. Following on from this, a gene trap screen was undertaken to identify genes critical for perineuronal net formation. For a successful gene trap screen to occur, a high-quality gene trap library must be used which has broad genome coverage. For these experiments, a SH-SY5Y gene trap library was provided by Dr Benjamin Pickard. Gene trap mutagenesis produces random insertional mutations via genomic integration of a gene trap plasmid vector. Originally used to generate mutant embryonic stem cells, gene trap mutagenesis has since undergone substantial development and found its usefulness in identification of novel gene functions and molecular mechanisms (Yap et al., 2021) pGTIV3, an advanced poly(A) trap vector containing a human β -actin promoter upstream of neoR gene and a rabbit β -globin-derived splice donor (SD) sequence was employed (Yap et al., 2021). This vector is unique, with the inclusion of a synthetic intron with a cis-acting mRNA destabilizing AU rich element (ARE) which degrades the transcribed Neomycin resistance (neoR) mRNA if expressed (Tsakiridis et al., 2009). If the gene trap vector nonproductively integrates into the genome outside of a gene, the synthetic intron is not removed resulting in the inclusion of the ARE which disintegrates the resulting neoR mRNA transcript, and the cell does not gain resistance to neomycin selection (Tsakiridis et al., 2009) . Only true SD splicing events resulting from disruptive vector insertion into a gene intron permit the neoR to splice with the 3' end of the endogenous gene (thereby disrupting it) and generating neomycin resistance under selection. The fusion transcript between neoR and the 'trapped' endogenous gene can be analysed to identify it. To generate the library, pGTIV3 was introduced into the SH-SY5Y neuroblastoma cell line genome using electroporation to produce a library of cells which collectively represented approximately 15,000 different heterozygote gene mutations.

Figure 4.1 The pGTIV3 gene trap plasmid used in the creation of the mutant SH-SY5Y gene trap library (map created in SnapGene) as illustrated in Figure 2.1. For detailed explanation, please refer back to figure 2.1

One of the fundamental techniques required for the intended gene trap screen was live cell staining with WFA. This would allow the library cells to be kept alive and examined under the microscope to determine which colonies had WFA staining and which were showing reduced WFA staining. These negative colonies would then be picked, grown up to confluence, and RNA extracted, cDNA synthesised, and RACE-PCR performed, leading to mutated gene identification.

4.2 Optimising library plating and live staining procedures

A low plating density of library cells in 6 well plates enabled colonies to grow to a reasonable size for staining and picking purposes. This is illustrated in Figure 4.2 below.

Figure 4.2 Plating out the SH-SY5Y mutant cell library to obtain larger, distinct colonies. Figure 4.2 is a schematic produced in BioRender showing how the mutant gene trap library was plated out to obtain practical mutant colony sizes.

These plates were initially stained with WFA streptavidin-green fluorophore to identify which colonies were producing a perineuronal net and which had no staining or reduced staining as examined under an inverted epifluorescence microscope. However, due to the way the gene trap vector was constructed, mutant *SH-SY5Y* cells also expressed Venus yellow fluorescent protein which overlapped in emission parameters with the green fluorophore conjugated to WFA (see figure 4.3).

Figure 4.3 Exogenous venus fluorescent protein expression makes detection of PNN levels with a green probe impossible. Figure 4.3 above represents the live cell staining of SH-SY5Y mutant colonies with WFA conjugated to green fluorescent dye. However, since gene trap mutant colonies also contain a yellow (Venus) fluorescent protein which overlaps in its emission spectrum with the green dye, it was impossible to decipher which mutant colonies had reduced WFA staining.

To counter this issue, I ideally would have used WFA conjugated to a red fluorophore. Unfortunately, there is no commercially available red dye-conjugated WFA, so a composite [WFA-biotin]-[streptavidin-red fluorophore] staining approach was adopted to identify colonies with reduced WFA staining. Streptavidin is a protein that shows considerable affinity for biotin, a co-factor that plays a role in multiple eukaryotic biological processes (see Fig. 4.4).

Figure 4.4 Schematic of the Avidin-biotin interaction. Avidin, Streptavidin or NeutrAvidin proteins can bind up to four biotin molecules, which are normally conjugated to an enzyme, antibody, or target protein to form an Avidin-biotin complex.

The streptavidin-biotin complex is the strongest known non-covalent interaction ($K_{id} = 10^{-15}$ M) between a protein and ligand. The interaction between biotin and streptavidin is very rapid, and once formed, is unaffected by extremes of pH, temperature, organic solvents, and other denaturing agents. These features assisted the rapid live staining of the plated libraries, important as I wished to minimise the time that the cells spent outside of the incubator conditions.

This new live staining approach worked well, showing minimal background fluorescence in control experiments (see fig 4.5).

Figure 4.5 WFA-biotin and streptavidin-red fluorophore complex testing. Live staining was undertaken of SH-SY5Y mutant colonies with the new composite probing protocol. I can clearly distinguish background from genuine PNN staining in the controls. A: No Streptavidin and No WFA. B: Streptavidin only. C: SH-SY5Y cells stained with biotinylated WFA and streptavidin-red. Panel C shows live-cell staining of fairly dense colonies of SHSY5Y with most cells showing reasonable amount of staining (grey), some with higher staining (white) and maybe some regions that are potential mutants with little staining (darker/black regions

4.3 Results of the screen

The live cell screening process of mutant *SH-SY5Y* cells to identify colonies with no or reduced WFA staining was carried out with potentially interesting colonies marked by marker pen on plate lids and then picked in a laminar flow hood. Picked cells were grown up to confluence, taken through a secondary screen to isolate clonal mutants, and then frozen down as archived stocks. There were

nine mutant colonies chosen for analysis as these were deemed to have reduced WFA staining or abnormal shape.

Figure 4.6 Successful WFA staining of SH-SY5Y cells. Figure 4.6 above represents the results obtained during the fixation process with staining using biotinylated WFA. left: DAPI (Control). centre: Biotinylated WFA (Control), right: Composite (Control). As seen above, bright staining occurred identifying PNN's. This was done as a positive control to show that WFA staining of perineuronal nets was occurring in SH-SY5Y cells. x40 magnification, scale bar= 100µm

Cells from the nine isolated colonies were plated out for further validation using a full fixation/immunofluorescence approach. Fixed cells were stained overnight (4°C) with WFA and mounted with DAPI counterstain and antifade solution and imaged using epifluorescence microscope and camera (Methods). Images were processed and colour composites created using ImageJ (Fig 4.7, 4.8, 4.9, 4.10, 4,11, 4.12, 4.13, 4.14)

4.3.1 Mutant colony U4D displays reduced WFA-binding glycoprotein expression

Figure 4.7 Reduced WFA staining seen in mutant colony U4D. SH-SY5Y mutant colony U4D stained with biotinylated WFA. Figure 4.7 above represents the results obtained during the fixation process with staining using biotinylated WFA. left: DAPI (U4D). centre: Biotinylated WFA (U4D). right: Composite (U4D). As seen above, reduced staining has occurred. Reduced staining is attributed to the mutant colony failing to produce a PNN or abnormal staining. Here, reduced staining can be seen and an abnormal perineuronal net shape. N=12 so statistical analysis was undertaken including two tail T-Testing and SEM. *P<0.05. X40 magnification, Scale Bar = 100µm

4.3.2 Mutant colony P38A displays reduced WFA-binding glycoprotein expression.

Figure 4.8 Mutant colony P38A has reduced WFA staining and an abnormal shape compared to wild type. SH-SY5Y mutant colony P38A stained with biotinylated WFA. Figure 4.8 above

represents the results obtained during the fixation process with staining using biotinylated WFA. As seen above, reduced staining has occurred. Reduced staining is attributed to the mutant colony failing to produce a PNN or abnormal staining. N=27 taken over two independent images so relevant statistical analysis was undertaken including two tail T-Testing and SEM *P<0.05. X40 magnification, Scale bar = $100\mu m$.

4.3.3 Mutant colony U1B displays reduced WFA-binding glycoprotein expression

Figure 4.9. Reduced WFA *staining seen in mutant colony* U1B SH-SY5Y *mutant colony*. U1B *stained with biotinylated* WFA. *Figure 4.9 above represents the results obtained during the fixation process with staining using biotinylated* WFA. *As seen above, reduced staining has occurred.*

Reduced staining is attributed to the mutant colony failing to produce a PNN or abnormal staining. N=38 taken over two independent images so relevant statistical analysis was undertaken including two tail T-Testing and SEM **P<0.01. X40 magnification, Scale bar= 100 μ m.

4.3.4 Mutant colony P36b displays no reduced WFA staining.

Figure 4.10 Mutant colony P36 b has no change in WFA staining. SH-SY5Y mutant colony P36B stained with biotinylated WFA. Figure 4.10 above represents the results obtained during the fixation process with staining using biotinylated WFA. As seen above, reduced staining has occurred. Reduced staining is attributed to the mutant colony failing to produce a PNN or abnormal staining. N=12 so relevant statistical analysis was undertaken including two tail T-Testing and SEM. P>0.05. X40 magnification, Scale bar = 100µm

4.3.5 Mutant colony P37b displays reduced WFA staining.

Figure 4.11 Mutant colony P37b has reduced WFA staining. SH-SY5Y mutant colony P37b stained with biotinylated WFA. Figure 4.11 above represents the results obtained during the fixation process with staining using biotinylated WFA. As seen above, reduced staining has occurred. Reduced staining is attributed to the mutant colony failing to produce a PNN or abnormal staining. N=15 so relevant statistical analysis was undertaken including two tail T-Testing and SEM. *P<0.05. X40 magnification, Scale bar = 100µm

4.3.6 Mutant colony P39a displays reduced WFA staining

Figure 4.12 Mutant colony P39a has reduced WFA staining. SH-SY5Y mutant colony P39a stained with biotinylated WFA. Figure 4.12 above represents the results obtained during the fixation process with staining using biotinylated WFA. As seen above, reduced staining has occurred. Reduced staining is attributed to the mutant colony failing to produce a PNN or abnormal staining. 102

N=21 taken over two independent images so relevant statistical analysis was undertaken including two tail T-Testing and SEM. *P<0.05. X40 magnification, Scale bar = $100\mu m$

4.3.7 Mutant colony u6a displays reduced WFA staining

Figure 4.13 Reduced WFA staining seen in mutant colony U6a. SH-SY5Y mutant colony U6A stained with biotinylated WFA. Figure 4.13 above represents the results obtained during the fixation process with staining using biotinylated WFA.As seen above, reduced WFA staining is seen in mutant colony U6A. N=90 cells so relevant statistical analysis was undertaken including two tail T-Testing and SEM *P<0.05. X40 magnification, Scale bar = 100µm

4.3.8 Mutant colony U9B displays no change in WFA staining.

Figure 4.14 No change in WFA staining seen in mutant colony U9B. SH-SY5Y mutant colony U9B stained with biotinylated WFA. Figure 4.14 above represents the results obtained during the fixation process with staining using biotinylated WFA. As seen above, reduced levels of staining are seen in mutant colony U9B. N=114 so relevant statistical analysis was undertaken including two tail T-Testing and SEM. P>0.05. X40 magnification, Scale bar = 100µm

4.3.9 Analysing the expression of *Neurocan* and *Versican* in selected mutant colonies.

Any modification of the PNN by mutation would also be predicted to affect the distribution of known PNN components such as *Neurocan* and *Versican*. Selected mutant colonies P38A, U1B and U4D were chosen for standard immunofluorescence with antibodies against these two proteins. Images were processed, and colour composites created using ImageJ (Figure 4.15, Figure 4.16, Figure 4.17, Figure 4.18, Figure 4.19, Figure 4.20).

Figure 4.15 Reduced Neurocan levels seen in mutant colony P38A. SH-SY5Y mutant (P38A) stained with Neurocan. above displays the results obtained through staining with Neurocan. As seen above, the mutant (P38A) identified earlier as a mutant failing to produce a PNN possessed decreased levels of staining with Neurocan. Neurocan is a component of the perineuronal net and a risk factor for bipolar disorder so it was important to understand how levels of Neurocan may be altered within this mutant. Here, the results indicate that levels of Neurocan staining was significantly reduced in mutant colony P38A. N=10 so relevant statistical analysis was undertaken two tail T-Testing and SEM. **P<0.01. X40 magnification, Scale bar = 100μm

Figure 4.16. Increased Versican expression in mutant colony P38A. SH-SY5Y mutant (P38A) stained with Versican. Figure 4.16 above displays the results obtained through staining with Versican. As seen above, the mutant (P38A) identified earlier as a mutant failing to produce a PNN possessed increased levels of staining with Versican in comparison with wild type cells. Versican is a key component of the perineuronal net so it was important to understand how levels of Versican may be altered within this mutant. Here, the results indicate that Versican staining was slightly increased in mutant colony P38A. N=24 cells so relevant statistical analysis was undertaken including two tail T-Testing and SEM. **P<0.01. X40 magnification, Scale bar = 100µm

Figure 4.17 Reduced levels of Neurocan seen in mutant colony U1B. SH-SY5Y mutant (U1B) stained with Neurocan. Figure 4.17 above displays the results obtained through staining with Neurocan. As seen above, the mutant (U1B) identified earlier as a mutant failing to produce a PNN possessed decreased levels of staining with Neurocan. Neurocan is a component of the perineuronal net and a risk factor for bipolar disorder so it was important to understand how levels of Neurocan may be altered within this mutant. Here, the results indicate that levels of Neurocan staining was significantly reduced in U1B. N=82 so relevant statistical analysis was undertaken including two tail T-Testing and SEM T-testing. *P<0.05. X40 magnification, Scale bar = 100µm

Figure 4.18. No change in Versican levels in mutant colony U1B. SH-SY5Y mutant (U1B) stained with Versican. Figure 4.18 above displays the results obtained through staining with Versican. As seen above, the mutant (U1B) identified earlier as a mutant failing to produce a PNN possessed normal levels of staining with Versican. Versican is a key component of the perineuronal net so it was important to understand how levels of Versican may be altered within this mutant. Here, the results indicate that Versican staining was unaffected in U1B. N=71 so relevant statistical analysis was undertaken including two tail T-Testing and SEM. P>0.05. X40 magnification, Scale bar = 100µm

Figure 4.19 Reduced levels of Neurocan seen in mutant colony U4D. SH-SY5Y mutant (U4D) stained with Neurocan. Figure 4.19 above displays the results obtained through staining with Neurocan. As seen above, the mutant (U4D) identified earlier as a mutant failing to produce a PNN possessed decreased levels of staining with Neurocan. Neurocan is a component of the perineuronal net and a risk factor for bipolar disorder so it was important to understand how levels of Neurocan may be altered within this mutant. Here, the results indicate that levels of Neurocan staining was significantly reduced in U4D. N=37 so relevant statistical analysis was undertaken including two tail T-Testing and SEM **P<0.01 X40 magnification, Scale bar = 100µm

Figure 4.20 No change in Versican levels in mutant colony U4D.SH-SY5Y mutant (U4D) stained with Versican. Figure 4.20 above displays the results obtained through staining with Versican. As seen above, the mutant (U4D) identified earlier as a mutant failing to produce a PNN possessed normal levels of staining with Versican. Versican is a key component of the perineuronal net so it was important to understand how levels of Versican may be altered within this mutant. Here, the results indicate that Versican staining was unaffected in U4D. N=64 so relevant statistical analysis was undertaken including two tail T-Testing and SEM. P>0.05. X40 magnification, Scale bar = 100µm

4.3.10 Analysing the PNN protein expression of selected mutant colonies by Western blotting through staining with anti-*Neurocan* antibodies or WFA.

To verify imaging data at a quantifiable protein level, mutant colonies were analysed for their PNN component expression by WFA staining or use of anti-*Neurocan* antibodies *SH*-*SY5Y* mutant colonies P38A, U1B and U4D were grown to confluence and protein was extracted using the standard cell lysis method and then run on 10 % percent polyacrylamide gel and transferred to nitrocellulose membrane by electro blotting. Primary antibody, or biotinylated WFA, and secondary antibody, (or streptavidin), both conjugated horseradish peroxidase was used. Images were developed using X ray film and processed using ImageJ (Figure 4.21, Figure 4.22).

Figure 4.21 No significant change in Neurocan levels of mutant colonies during protein analysis. Figure 4.21 shows that there is no significant change in Neurocan levels during protein analysis of mutant colonies P38A, U1B, U4D. Western blot analysis of Neurocan expression indicated little difference between wild type and mutant colonies. Beta actin loading control was used to normalise data. N=3, so relevant statistical analysis was undertaken including two tail T-Testing and SEM p>0.05

Figure 4.22. Reduced expression of glycoproteins stained by WFA seen in mutant colonies **P38A**, U1B, U4D compared to wild type. Figure 4.22 shows that there is reduced WFA-binding glycoprotein expression of the mutant colonies during protein analysis. Western blot analysis shows that there is a significant reduction in WFA staining in the mutant colonies compared to wild type. 114

Beta actin loading control was used to normalise the data N=3, so relevant statistical analysis was undertaken including two tail T-Testing and SEM. *P<0.05

The results of the sections above show that quantitative protein analysis appears to confirm that selected mutant colonies have reduced WFA staining (Table 4.1) in comparison with the wild type cells (Figure 4.6) as predicted from the purpose of the initial screen and the later immunofluorescence findings. In some colonies, such as U1B and U4D, levels of *Neurocan* expression were apparently reduced at the level of immunofluorescence, but this was not replicated in the protein analysis results. Finally, there was no change in *Versican* levels observed during immunofluorescence microscopy in mutant colonies U4D and U1B. However, with regards to P38a, there appeared to be a slight increase in Versican expression in comparison with wild type cells. The results above further indicate that *Neurocan* is not the 90 kDa band appearing in Western analysis and is functionally distinct from the PNN components that are altered in these mutant cells.

Colony	WFA	WFA staining using	Neurocan	Versican	Protein	Protein
picked	staining	immunofluorescence	staining	staining	analysis	analysis
	using	microscopy			(Neurocan)	(WFA)
	cell live					
	staining					
P36b	Reduced	No change	N/A	N/A	N/A	N/A
P37b	Reduced	Reduced	N/A	N/A	N/A	N/A
P38A	Reduced	Reduced	Reduced	Increased	No change	Reduced
P39a	Reduced	Reduced	N/A	N/A	N/A	N/A
U1B	Reduced	Reduced	Reduced	No	No change	Reduced
				change		
U4D	Reduced	Reduced	Reduced	No	No change	Reduced
				change		
U6A	Reduced	Reduced	N/A	N/A	N/A	N/A
U9B	Reduced	No change	N/A	N/A	N/A	N/A

Table 4.1 Colonies picked during the mutant gene trap screen with reduced WFA staining. Table 4.1 shows the colonies obtained from the SH-SY5Y mutant gene trap library which have reduced WFA staining. I specifically utilised mutant colonies P38A, U1B and U4D as these had the best reduced WFA staining levels when visualised under the fluorescent microscope.

4.4 Conclusion

In summary, a gene trap screen was undertaken to identify genes encoding proteins which have role in the production of a functional perineuronal net. Firstly, live cell staining was undertaken. Nine clones were noted as having reduced or no live WFA staining and were subsequently picked, isolated, and retested. Following this, immunofluorescence microscopy was undertaken as one validation of the live cell staining. The results suggested that various mutants had reduced WFA staining and some, such as P38A and U1B, had altered distribution of the PNN target(s) of WFA. In comparison with wild type SH-SY5Y perineuronal nets, mutated perineuronal nets often appeared to have reduced staining and altered distribution, which could be a result of protein expression/degradation and/or from mutations affecting the trafficking of WFA protein targets to full display on the cell surface. Furthermore, selected mutant colonies such as P38A, U1B, U4D had reduced WFA staining as indicated by both immunofluorescence and protein analysis. These colonies were also tested for Versican and Neurocan staining to see if their expression levels had been altered during mutation. Despite seeing no change in Versican expression levels in U4D and U1B during immunofluorescence and protein analysis, levels of *Neurocan* staining appeared to be reduced in colonies such as P38A, U1B and U4D. However, this was not verified by Western analysis. It is important to note however, with regards to mutant colony P38a, there was an increase in versican expression in comparison with wild type. Figure 4.23 depicts the potential mechanisms by which gene mutation could affect perineuronal net formation. The next step in the analytical process was to confirm the identity of the mutant genes using RACE-PCR and sequencing and to determine if they fall into any of these hypothetical functional categories.

Figure 4.23 Schematic produced in BioRender depicting the various ways in which perineuronal net synthesis could be altered resulting in abnormal perineuronal nets. The schematic above shows the three different ways in which perineuronal net synthesis could be altered by gene trap mutation, leading to production of abnormal perineuronal nets. Firstly, reduced protein levels or complete knockout could result in direct failure of the protein to be produced thus affecting the subsequent stages resulting in abnormal perineuronal nets. Secondly, the protein could be produced but will not be able be able to be trafficked to the cell meaning a mutational failure in trafficking leading to the subsequent stages being affected and thus affecting formation of the perineuronal net. Finally, the third mutation type would involve the protein being produced correctly but possessing no glycosylation because of a mutational event in a post translational modification enzyme, meaning that WFA would not detect the protein. Mutations along any of these steps would result in no detectable perineuronal net being formed and a positive genetic screen result.

CHAPTER 5

RESULTS: Identification and analysis of the mutant genes from the selected screen colonies

5.1 Using RACE-PCR to determine the identity of mutant genes.

The following section focuses on identification and analysis of the mutant genes, which are failing to produce a functional perineuronal net. As previously described, mutant SH-SY5Y cells were stained with WFA through live staining to detect which cells are failing to produce perineuronal nets. This was then further validated via immunofluorescence microscopy and Western blotting. Here, to identify the mutants, a number of steps were undertaken. Firstly, the process of gene trap mutation generates a fusion mRNA transcript between the neoR gene and the trapped, mutated endogenous gene (Figure 5.1). Analysis consisted of mRNA extraction followed by cDNA synthesis, PCR, cloning, and finally sequencing. Rapid Amplification of cDNA Ends (RACE) is a PCR procedure for amplification of nucleic acid sequences from a messenger RNA template between a defined internal site (in this case, the NeoR gene) and an unknown 3⁻ end of the mRNA (the 3⁻ end of the unknown trapped endogenous gene in this case). PCR requires two sequence-specific primers that flank the sequence to be amplified. However, to amplify and characterize regions of unknown sequences, this requirement imposes a limitation. The first step in RACE solves this by using reverse transcription to produce a cDNA copy of a region of the RNA transcript using a synthetic anchor sequence 5' to the standard oligodT primer. The cDNA is now bounded by known sequences at both ends. Two rounds of nested PCR are then carried out to amplify/capture the unknown 3'-mRNA sequences that lie between the neoR exon and the poly(A) tail.

Figure 5.1 Gene trapping and RACE-PCR. Figure 5.1 is a schematic produced showing how the gene trap vector integrates into a gene during the mutational process as the library is created. Following this, fusion mRNAs are produced and then cDNA is generated via reverse transcription. Two rounds of nested PCR are then undertaken as part of the RACE-PCR process and the PCR product is cloned and sequenced in order to identify the mutated gene in a cell clone of interest.

To confirm the identity of the mutant genes with reduced WFA-binding glycoprotein expression, it was necessary, as described above, to carry out RNA extraction of the mutant colonies, cDNA synthesis and RACE-PCR. These procedures were undertaken and the resulting RACE-PCR products were electrophoresed on a 1% agarose gel (Figure 5.2 and 5.3).

Figure 5.2 Successful RNA extraction of mutant colonies with reduced WFA-binding glycoprotein expression. Gel electrophoresis undertaken at 100 V for 60 minutes on 1 % agarose gel. Figure 5.2 above displays the results obtained from the gel electrophoresis of RNA extraction of colonies, which were failing to produce or resulted in formation of an abnormal PNN. Two principal bands are seen representing undegraded 28S and 18S ribosomal RNA populations.

Figure 5.3. Gel electrophoresis of RACE- PCR products. *Gel electrophoresis undertaken at 100 V for 60 minutes on a 1 % agarose gel. RACE-PCR.* A positive control (+ve) was utilised to show that the RACE-PCR was working. The substrate for this reaction was cDNA from a colony isolated in a previous gene trap screen carried out in the lab. Interestingly, for P38a, there appears to be multiple bands which could indicate degradation, different genes amplified from a poorly isolated colony, or could reveal the presence of alternative splicing or cryptic splice acceptor sites.

5.2 Identification of the mutant genes using plasmid cloning and sequencing of the RACE-PCR products

RACE-PCR products were successfully purified and then ligated into the pGEM-T Vector, designed to efficiently clone PCR products. Ligations were transformed into chemically competent *E. coli* bacteria, plated and colonies grown in liquid broth for plasmid mini-prep purification of the cloned RACE-PCR products. Restriction digests of the plasmids were undertaken using EcoRI to determine which plasmid colonies contained inserts, and the size of the insert. Insert-containing plasmid DNA was then sent for sequencing (Source Bioscience, Nottingham) and Sequence electropherograms were analysed using Finch TV reader, and both NCBI Blast and UCSC Genome Browser BLAT were used for gene sequence identification. Table 5.1 below indicates the sequencing results identifying the 'trapped' genes in the colonies failing to produce a functional perineuronal net. The most 122

important of these are P38A, U4D and U1B due to their large sizes as well as U1B being exonic. The U1B clone sequence being exonic is a key criterion indicating the correct mutagenic event from the gene trap process. After transfection/electroporation of the gene trap construct into a cell, it stably integrates into the nuclear genomic DNA. If integration occurs within a gene intron, then the splice acceptor/donor sequences divert and block the normal processes of exon-exon splicing that create the mature and complete mRNA from the gene's pre-mRNA. This has three consequences. Firstly, mRNA from the trapped allele of the gene is generally truncated or unstable resulting in a loss-offunction mutation. Secondly, the endogenous gene and gene trap sequences produce a stable, hybrid mRNA: Neo^R (Neomycin/G418 resistance) fused to the endogenous gene 3' exons which permits antibiotic selection for productive gene trap events. Thirdly, these hybrid mRNAs comprising gene trap-derived and endogenous sequences can be readily amplified by the rapid amplification of cDNA ends RACE-PCR protocols described above to identify the gene that has been trapped. Taking into consideration the above, the expected observation should be an artificial splice event between Neo^R and exonic sequences of the trapped endogenous gene. U1B fulfilled that criterion and the endogenous gene exons (188 bp) were identified as belonging to the GALNTL6 gene. Other candidate genes also prioritised for further description and analysis were FAF1 (clone P38A) and *DCC* (clone U4D). Many other genes were not taken into consideration due to having incorrect splicing or no significant link with perineuronal nets and neuropsychiatric diseases (Table 5.1).

Colony	Gene	Intronic/Exonic	Plasmid	WFA live	**Effect	**Effect	Comments	Properties
-	name		insert	staining	on	on		
			size	effect?	Neurocan	Versican		
			(bp)					
P36b	ADGRL2	Intronic	108	Decreased	No effect	No		Latrophillin
b						effect		involved in
								cell signal and
								transduction,
								risk factor for
								depression
								and late onset
								Alzheimer's
								disease
P36 b	HBB	Intronic	25	Decreased	No effect	No		Component of
е						effect		Haemoglobin
P37B	PLA2G4	Intronic	27	Decreased	No effect	No		Cell signalling,
						effect		hydrolysis of
								lipids, risk
								factor for
								schizophrenia
								and epilepsy
P38 a	FAF1	Intronic	364	Decreased	Decreased	No	Very low	Parkinson's
						effect	levels of	disease
P38 a	FAF1	Intronic	366	Decreased	Decreased	NO	Neurocan	Parkinson's
C	5454	1.1	600	Deserved	Deserved	effect	staining	disease
P38 a	FAFI	Intronic	680	Decreased	Decreased	NO		Parkinson s
e LI1D	CALNTIC		100	Deerseed	Deerseed	errect		disease
UIB	GALINILO	EXONIC	199	Decreased	Decreased	offoct	Quite dim staining	linkod
						enect	stanning	glycocylation
ПЛРР	DCC	Intronic	244	Decreased	Decreased	No	Very dim	Rick factor for
040 0	Dee	muome	244	Decreased	Decreased	offect	staining	schizophrenia
						enect	with	avonal
							Neurocan	guidance
1164	<i>EV</i> /15	Intronic	61	Decreased	No effect	No	Neurocum	Regulates
			01	Decreased		effect		GTPase
						cheet		activity risk
								factor for
								multiple
								sclerosis and
								schizophrenia
U9b C	SUGCT	Exonic	353	Decreased	No effect	No		Mitochondrial
						effect		enzyme.
								multiple SNPs
								show
								association
								with migraine

Table 5.1 Sequencing of mutant colonies. Table 5.1 above represents the sequencing results obtained for the mutant colonies with reduced WFA staining. The table above indicates the identity of the mutant colonies which were deemed to have reduced WFA staining. Information related to

these genes was obtained from GWAS catalogue as well as Gene Cards and Uniprot. As displayed above, the best candidate genes due to presence of non-intronic sequences are GALNTL6 and SUGCT indicating that the gene trap has worked in the way it is supposed to. GALNTL6 is involved in mucin type O-linked glycosylation and involved in the catalysis of the first step of O-linked glycosylation where it adds an N-Acetyl galactosamine residue to the proteoglycan component. SUGCT has been shown to have multiple SNPs associated with migraine. Other key genes taken forward for further analysis include FAF1 and DCC where FAF1 plays a role in oxidative stress and alpha synuclein regulation in parkinson's disease and DCC plays a role in axonal guidance and is a risk factor schizophrenia. With regards to the other genes identified, EVI5 is a risk factor for multiple sclerosis and schizophrenia. Other genes such as ADGRL2 (Risk factor for depression and late onset Alzheimer's disease) and PLA2G4 (risk factor for schizophrenia and epilepsy) were identified but not taken forward due to their lack of roles involved in extracellular matrix or neurological diseases at the time.

Figure 5.4 Where RACE-PCR products align within the genome and in relation to potentially 'trapped' genes. Sequences from plasmid cloned RACE-PCR products were aligned with the genome using the BLAT tool within the UCSC Genome Browser (<u>https://genome.ucsc.edu/index.html</u>). The orange arrows indicate the location of the matching

sequences. The expectation was that the actual genome insertion site of the gene trap vector would be 5'/upstream (with respect to the gene orientation) of the aligned sequence. Hence, the aligned sequence represents fusion mRNA downstream of the artificial splicing initiated from within the gene trap vector. Of importance is the presence of exonic RACE-PCR sequences within GALNTL6 and SUGCT, entirely as predicted by the model of gene trap action. However, the presence of cryptic splice-acceptors within the intron sequences of several trapped genes may still indicate that the gene trap insertion event could be deleterious by subverting the pattern of splicing across the gene.

5.3 U4D is identified as *DCC* using BLAT.

U4D, was sequenced and identified as *DCC* which is a GWAS risk factor for depression (Figure 5.4). DCC is deleted in colorectal cancer and is expressed throughout most of the nervous system during embryonic development and continues to be expressed in adulthood in various regions including the substantia nigra/ventral tegmental area, striatum, hippocampus, and cortex (Duman-Scheel, 2015). DCC was first identified via human colorectal cancers in which there was loss of heterozygosity at human chromosome 18q leading to the cloning of DCC. DCC encodes a cell surface receptor which was found to be altered in many colorectal cancers (Varadarajan and Butler, 2017). It has thus been hypothesised that DCC may function as a tumour suppressor gene. DCC has been established as a receptor for netrin 1 has been linked previously via GWAS catalogue to psychiatric wellness and a neuronal axon guidance cue which determines the direction and extent of cell migration and axonal outgrowth within the developing central nervous system (Varadarajan and Butler, 2017). Netrin-1 is classified as the founding member of the netrin family and is an axon guidance cue that has been characterized in both invertebrates and vertebrates (Varadarajan and Butler, 2017). This interaction is not only critical for neuronal development but plays a significant role in various cellular processes such as tissue organisation, cell adhesion, motility, proliferation, differentiation, cell survival and cancer (Duman-Scheel, 2015). Also, DCC has been functionally related to the dependence receptor family which are membrane receptors which can mediate or inhibit cellular apoptosis depending on the absence or presence of their corresponding ligand (Varadarajan and Butler, 2017). In the absence of netrin-1, the receptor does not stay inactive but stimulates an apoptotic signal through the activation of caspase-3 (Varadarajan and Butler, 2017). Consequently, cells expressing DCC receptors depend on ligands such as netrin-1 in the extracellular environment for survival. Crucially, when DCC is expressed in circumstances in which netrin-1 is not available, it induces cell death (Varadarajan and Butler, 2017).

Given that *DCC* was identified as the mutant in a cell line with reduced WFA-binding glycoprotein expression (U4D), it is important to examine the role of DCC in psychiatric diseases. DCC has been previously linked to schizophrenia as a genetic risk factor which shares many similar mechanism of pathophysiology with bipolar disorder (Vosberg et al., 2018). Interestingly, chondroitin sulphate proteoglycan components of the perineuronal nets are also axon guidance cues, like DCC, (Vosberg et al., 2018). DCC is a type 1 transmembrane receptor which belongs to the immunoglobulin superfamily (Vosberg et al., 2018). DCC possesses a similar domain to its Drosophila Homologue Frazzled, the C. elegans homologue UNC40 and its vertebrate homologue neogenin (Vosberg et al., 2018). The DCC receptor is composed of four Ig-like domains at its N terminus, followed by six fibronectin type III domains, an approximately 50-residue long membrane proximal stalk and a transmembrane segment (Vosberg et al., 2018). This also possesses a very large cytoplasmic tail of approximately 350 residues without a defined domain structure. During the developing nervous system, guidance cues such as netrin 1 are bifunctional meaning they exhibit both attractive and repulsive effects (Vosberg et al., 2018). Netrin 1 possesses the ability to bind to various cell surface receptors besides DCC (Vosberg et al., 2018). This underlying mechanism of netrin-1 bifunctionality involves netrin-1 clustering different receptors together leading to alternative signalling outcomes. One example of a receptor Is UNC5. Crucially, *DCC* plays a significant role in the molecular switch from attraction to repulsion. DCC is expressed on the axonal surface and netrin-1 binding to DCC stimulates chemo attraction (Vosberg et al., 2018). Association of netrin-1 with the extracellular portion of DCC leads to DCC homodimerization via its C-terminal cytoplasmic P3 motif but not the ecto-domains (Vosberg et al., 2018). This recruits an intracellular signalling complex which leads to Src family kinase activation and eventually cytoskeleton rearrangement thus giving the attraction effect (Vosberg et al., 2018). However, DCC co-expression of UNC5 on growth cones of neurons alters netrin mediated axon attraction to repulsion. Also, another study showed that a monoclonal antibody directed against the extracellular domains of DCC blocks attraction and repulsion thus displaying the critical role of DCC in both responses (Vosberg et al., 2018). In the presence of netrin-1, UNC5 co immunoprecipitates with DCC thus suggesting formation of a ternary complex of netrin-1 with ecto domains of DCC and UNC5 (Vosberg et al., 2018). Interestingly, the ternary complex also positions the cytoplasmic trail of two receptors in close proximity for interaction (Vosberg et al., 2018). In hindsight, Netrin-1 binding to DCC alone results in axon attraction. More importantly, DCC may switch the netrin-1 mediated responses from attraction to repulsion when another receptor UNC5 co-exists (Vosberg et al., 2018).

5.4 P38A is identified as possessing mutated FAF1 using BLAT

The P38A clone contains potential mutation of the *FAF1* gene (Figure 5.4), otherwise known as *Fasassociated factor 1* is a fas-binding protein with a role in apoptosis (Sul *et al.*, 2013). *FAF1* can either stimulate or increase levels of Fas-mediated apoptotic cell death (Sul *et al.*, 2013). *FAF1* has been shown to play a role in various mechanisms which promote cell death and mediates caspase-8 activation via both intrinsic and extrinsic pathways (Yu *et al.*, 2016). Also, this suppresses NF-Kb activation by interrupting the IKK complex assembly(Yu *et al.*, 2016). *FAF1* also arrests the cell cycle by negatively regulating Aurora A thus inducing cell cycle arrest in the G2/M phase and cell death (Yu *et al.*, 2016). It also interacts with poly ubiquitinated proteins and valosin-containing protein thus inhibiting ubiquitin-dependent protein degradation. *FAF1* downregulation has also been shown in cervical and gastric carcinomas (Yu *et al.*, 2016). Finally, *FAF1* possesses domains with high homology to ubiquitin (Yu *et al.*, 2016). Since then, protein aggregation arising from ubiquitination has been implicated in neurodegenerative diseases.

FAF1 has been long known to possess a tumour suppressive role but has also been implicated in the pathogenesis of Parkinson's disease (Buddhala et al., 2015). The human FAF1 gene was localised to chromosome 1p32 at the PARK10 locus recently associated with late-onset Parkinson's disease (Sul et al., 2013). FAF1 expression has been seen to be significantly increased in the frontal cortex and midbrain of Parkinson's disease patients (Buddhala et al., 2015). This potentiates the toxic effects of stressors which are associated with Parkinson's disease such as oxidative stress. Interestingly, perineuronal nets which this study is based on also play a key role in protecting neurons from oxidative stress (Buddhala et al., 2015). FAF1 is classified as a pathogenic substrate of parkin which is an ubiquitin E3 ligase. Inactivation of parkin via Parkinson disease linked mutations or by generic deletions results in FAF1 accumulation and induction of FAF1-mediated biochemical events (Buddhala et al., 2015). These include Caspase-3 activation, c-jun-N-terminal kinase activation and cell death occurring upon oxidative stress. This suggests that FAF1 possesses a significant role in oxidative stress induced cell death and Parkinson's disease pathogenesis via its action on the apoptotic machinery (Sul et al., 2013). As well as necrosis, apoptosis has also been implicated in the pathogenesis of Parkinson's disease. Various death promoting proteins such as p53 and JNK mediate both apoptosis and necrosis upon oxidative stress (Sul et al., 2013). Previous studies have also shown that FAF1 acts as a positive modulator for Parkinson's disease and that FAF1 deficiency disrupted Parkinson disease linked biochemical events such as caspase activation, reactive oxygen species generation (Yu, Kim and Kim, 2016). JNK activation and cell death. Also, FAF1 has been shown to mediate regulated necrosis through PARP1 activation upon oxidative stress resulting in dopaminergic neurodegeneration (Yu, Kim and Kim, 2016). FAF1 also possesses interactions with NGRYL1 which has been linked to congenital disorder of glycosylation thus making it important that I investigate the role of FAF1 in PNNs (Buddhala et al., 2015). FAF1 has been shown to bind to NGLY1 which is an enzyme involved in congenital disorder of glycosylation. *FAF1* plays a regulatory role in NGLY1 function leading to potential removal of glycan groups from CS-GAG side chains on CSPGs, hyaluronan or tenascins resulting from partial regulatory loss due to decreased FAF1 expression. This would then, in turn, alter PNN structural integrity due to deglycosylation of these key components and would reduce PNN density and neural plasticity. In addition to this, it is important to note the role of the ERAD complex which is involved in mediating the endoplasmic reticulum stress response also known as the 'unfolded protein response'. This is stimulated in order to degrade misfolded proteins, preventing their toxic aggregation (Hoozemans et al., 2012). NGLY1 is required for the ERAD complex function and various protein interactions such as between FAF1 and NGLY1 and is required for efficient ERAD processing (Bertozzi et al., 2017). Clinical studies have shown that NGLY1 mutations results in neurological conditions including neurodevelopmental delay and neuropathy of the peripheral nervous system which occurs as a result of increased levels of misfolded proteins within the cell (Caglayan *et al.*,2014). It has been proposed that loss of *FAF1* as a critical factor for NGLY1 function could result in toxic build-up of misfolded proteins in Alzheimer's and Parkinson's diseases (Caglayan et al., 2014).

Furthermore, during Parkinson's disease, build-up of the synaptic protein α -synuclein occurs, forming into aggregates known as Lewy bodies. *FAF1* has been shown to restore autophagic flux for α -synuclein degradation in the brain of a Parkinson's disease mouse model. Moreover, *FAF1* has been known to play a role in oxidative stress and recently it has been shown that PNN populations are unaffected in Parkinson's disease brains but are involved in protecting neurons from developing α -synuclein pathology *in vitro* and in Parkinson diseased brains (Dickens, S.M, 2021).

5.5 U1B is identified as containing a mutation of the GALNTL6 gene

U1B was the only gene trap mutation event which demonstrably occurred within an intron and caused splicing to an exon (Figure 5.4). As mentioned previously, WFA recognises proteoglycans with chains of N-linked glycans and O-linked glycans and so it was entirely logical that an enzyme, GALNTL6, responsible for O-linked glycosylation should emerge from the screen (Bennett et al., 2014). GALNTL6 is known by various names including GALNT17, UDP-N-Acetyl-Alpha-D-Galactosamine: Polypeptide N-Acetylgalactosaminyltransferase 20, GalNAc Transferase 17, and GALNACT20 (Bennett et al., 2014). Though most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for glycosylation initiation, mucin type O-glycosylation is controlled by a large family of up to 20 homologous genes classified as GalNAc-transferases (Bennett et al., 2014). Mucin type O- glycosylation is stimulated by this family and these catalyse the first step in the biosynthesis thus forming the GalNAca1-O-serine/threonine linkage in Oglycoproteins (Bennett et al., 2014). These enzymes controlling the first step renders mucin type Oglycosylation unique compared to other protein glycosylation types (Bennett et al., 2014). O-GalNac residues are processed further by the addition of various monosaccharides which are catalysed by more than 30 distinct glycosyltransferases, and this occurs in the Golgi apparatus after the protein folding stage. GalNac-Ts are classified as a subfamily of the glycosyltransferase family (Bennett et al., 2014). A total of 20 human genes have already been identified with 17 being reported in the literature. This family is highly conserved throughout metazoan evolution and though the members vary, all completed genomes possess large families of highly homologous sequences (Bennett et al., 2014). Members of this family share the common type II membrane structure of Golgi glycosyltransferases with a short N-terminal cytoplasmic tail, a hydrophobic non-cleaved signal sequence serving as a membrane spanning domain, a stem region of variable length and a luminal catalytic domain (Bennett et al., 2014). These are also unique in the sense that they possess a Cterminal ricin-like domain of approximately 120 amino acids in addition to a catalytic unit. Their catalytic domains approximately 230 amino acids in length contain a GT-A structural motif which are characterized by two tightly interacting β - α - β Rossman-like folds (Bennett *et al.*, 2014).

Studies have shown that by blocking and inactivating mutations in the lectin domains, this affects the GalNAc-glycopeptide substrate specificities of the enzymes. These lectin domains function to regulate and enhance the catalytic efficiency of GalNAc-Ts with partially GalNAc-glycosylated substrates possessing a high density of acceptor sites as located within mucin tandem repeat sequences. It has been postulated that lectin domains could potentially enhance binding of GalNAc-

Ts to mucin substrates to stimulate initiation of O-glycosylation before O-glycans are elongated during the processing step. This is important as this would interfere with addition of GalNAc residues. The initiation process occurs simultaneously with the processing step in the Golgi meaning that the combined binding affinities of the catalytic and lectin domains may enhance competition as long as acceptor sites are available (Saito *et al.*, 2015).

GALNTL6 possesses an unusual glycine residue in the Gal/GalNAc-T motif (Bennett *et al.*, 2014). *GALNTL6* possesses a different acceptor substrate specificity from the other members of the family in that it transfers Gal to Xyl which is essential for the production of the link region of proteoglycans (Bennett *et al.*, 2014).

5.6 Conclusion

In this chapter, I identified genes which when mutated appeared to reduce live WFA staining indicating a dysfunctional perineuronal net. The three main genes identified were FAF1, DCC and GALNTL6. Both FAF1 and DCC appeared to be intronic insertions/splicing from the gene trap vector, whereas GALNTL6 demonstrated the expected exonic splicing process. Interestingly, all three have been previously implicated in brains diseases with varying modes and methods of disruption. For example, *FAF1* has been shown to play a key role in Parkinson's disease whereas *DCC* has been described as a risk factor for schizophrenia. However, perhaps, the most intriguing of all is GALNTL6, which is a part of the glycosyl transferases family and a well-known glycosylation enzyme playing a significant role in mucin type O-linked glycosylation. Although various genes were identified, these were considered the three most important candidates due to their roles in neuropsychiatric diseases and or glycosylation. Other genes were not pursued due to have no known link with the extracellular matrix or neuropsychiatric diseases such as ADGRL2 (a latrophilin) or SUGCT (involved in lysine degradation). The gene trap screen has been shown to be relatively successful. However, with caution, the gene trap screen only identifies genes which have introns and will not identify genes which have no introns or very small introns. The next steps to be undertaken relate to validation of these genes - that they are indeed failing to produce a functional perineuronal net when mutated via alternative methods such as CRISPR and RNAi. In the next chapter, I will examine the results of producing FAF1, DCC and GALNTL6 CRISPR knockouts. Furthermore, use of siRNA knockdown and pharmacological inhibition will also be utilised to determine the effect of the mutated genes on WFA-binding glycoprotein expression and hence perineuronal net formation.

CHAPTER 6

RESULTS: Applying CRISPR mutation, siRNA knockdown, and pharmacological inhibition to examine candidate protein function.

6.1 Introduction

In previous chapters, a number of genes were identified which, when mutated, had reduced expression of WFA-binding glycoprotein and therefore were putatively failing to produce a functional perineuronal net. This screen was undertaken using live cell staining, immunofluorescence microscopy followed by RNA extraction, cDNA synthesis, RACE-PCR and sequencing. Candidate prioritisation led to a focus on three candidate genes; *FAF1*, *DCC* and *GALNTL6*. Gene trapping produces heterozygous loss-of-function mutations, rather than completely homozygous deletions. The advantages of this approach are that cellular lethality caused by mutation is less likely, and that many human and mouse mutations have heterozygote phenotypes. However, the full effect of mutations is often only felt in the homozygous state.

Therefore, in this chapter, in order to validate our findings, I explored what happens to WFA staining when a full homozygous knock-out of the genes was attempted. In CRISPR mutagenesis, both copies of the gene will be knocked out. In siRNA interference and pharmacological inhibition, the percentage loss-of-function could be anywhere in a continuous distribution from 0-100%. CRISPR is a cutting-edge technique which permits researchers to alter parts of the genome by removal, addition, or alteration of the DNA sequence. The CRISPR-Cas9 system is composed of two key molecules which introduce mutations into the DNA. This is an enzyme called Cas9 which acts as a pair of molecular scissors which can cut two strands of DNA at a specific location within the genome so that parts of the DNA can be added or removed. The second component is single guide RNA which consists of a small piece of predesigned RNA sequence of up to 20 bases long which is located within a longer RNA scaffold. This sgRNA guides Cas9 to the right part of the genome. This ensures that the Cas9 enzyme cuts at a specific, desired position within the genome. During the particular process of DNA repair that follows this cut (non-homologous end-joining (NHEJ)), deletions or insertions are introduced generally producing a non-functional allele of the gene.

RNA interference is a natural process with a role in the regulation of protein synthesis and in immunity. This is also a key tool for the exploration and manipulation of gene expression. Small pieces of RNA which permit RNA interference come in two forms: small interfering RNA (siRNA) and microRNA (miRNA). Both are approximately 22 nucleotides long but differ in their specificity, role and how they are synthesised. siRNAs are highly specific and are usually synthesised to decrease

the translation of specific messenger RNAs. siRNA molecules connect to and activate protein complexes such as the RNA-induced silencing complex. Once they are bound, they can bind to their target mRNAs and physically hinder ribosome's from continuing to produce the protein and mark that mRNA for destruction. This process is significant in regulating protein synthesis by acting as a layer of control separate and downstream from the various genes which regulate transcription itself. RNA interference prevents mRNAs from outlasting their need by removal before natural degradation.

6.2 Crispr construct design and purchase.

Initially, CRISPR constructs were created using sgRNAs designed in-house using the online resource, CHOPCHOP (https://chopchop.cbu.uib.no/) (see Materials and Methods Chapter). The synthesised sgRNAs were cloned into a plasmid vector allowing co-expression of sgRNA, CAS9, and antibiotic resistance. The last of these gene components allowed us to select for stably transfected *SH-SY5Y* cells expressing the CAS9 system, potentially maximising the chance of target gene disruption at the cellular and population level. Those cells that survived the antibiotic selection process would essentially become a pool of antibiotic resistant and CRISPR-mutated cells. The pools of resistant cells were then sub-cloned to allow growth of single colonies (potentially genetically pure) for further analysis. This led to experiments being conducted with cells *DCC* A, *DCC* B, *FAF1* E, *GALNTL6* E as well as importantly pool cells; *FAF1* pool, *GALNTL6* pool, and *DCC* pool though no s

For protein analysis by western blot and immunofluorescence, all CRISPR cell lines were individually stained with their corresponding anti-protein antibody as well as with biotinylated WFA for PNN level assessment. Live cell staining was also undertaken with all putative CRISPR knockouts. Furthermore, with regards to *FAF1*, two additional experiments were carried out. Firstly, with the hypothesis that *FAF1* disruption might only affect the correct trafficking of PNN proteins to the cell surface rather than reduce the total expression of PNN proteins (and hence produce an apparent PNN deficit only in live staining), enzymatic digestion of external/membrane bound proteins with trypsin was carried out to assess the location of immunoreactivity. Secondly, pharmacological inhibition of *FAF1* was carried out using KR-33493, a known potent *FAF1* inhibitor.

6.3 In-house designed CRISPR construct results.

CRIPSR constructs were designed in house for each candidate protein, and this was then subsequently tested via Western blotting and immunofluorescence to confirm whether gene expression of the candidate proteins had been decreased. Below, *DCC* knockout constructs had been produced and were then analysed for *DCC* expression using protein analysis (Fig 6.1). No *DCC* CRISPR KO's were produced, so I was unable to examine the effect on WFA-binding glycoprotein expression.

Figure 6.1 DCC expression still detected after attempted CRISPR knockout. Figure 6.1 shows that there is of DCC expression detected during protein analysis of mutant gene trap colony U4D. Western blot analysis of DCC expression indicated some difference between wild type and mutant colony U4D. Beta actin loading control was used to normalise data. N=1 so no statistical analysis was undertaken.

CRIPSR constructs were designed in house for each candidate protein, and this was then subsequently tested via Western blotting and immunofluorescence to confirm whether gene expression of the candidate proteins had been decreased. Below, *GALNTL6* knockout constructs had been produced and were then analysed for *GALNTL6* using protein analysis (Fig 6.2). No *GALNTL6* CRISPR KO's had been produced so I was unable to analyse WFA-binding glycoprotein expression.

Figure 6.2 No significant change seen in GALNTL6 expression of attempted CRISPR knockout of GALNTL6 during protein analysis. Figure 6.2 shows that there is no change in GALNTL6 expression levels during protein analysis of GALNTL6 CRISPR mutants. Beta actin loading control was used to normalise data. N=3*. Relevant statistical analysis was undertaken including Two-tailed T-testing and SEM. P*>0.05

CRIPSR constructs were designed in house for each candidate protein, and this was then subsequently tested via western blotting and immunofluorescence to confirm whether gene expression of the candidate proteins had been decreased. *FAF1* mutant knockout constructs had been produced and were then analysed for *FAF1* using protein analysis. Although no successful FAF 1 CRISPR KOs had been produced due to technical issues, I was unable to examine for any subsequent effect on WFA-binding glycoprotein expression. Furthermore, mutant colony P38a was also analysed for *FAF1* expression (Figure 6.3).

Figure 6.3 Reduced FAF1 levels seen in mutant colony P38A during protein analysis. Figure 6.3 shows that there is reduced expression in FAF1 expression levels during protein analysis of mutant colony P38A. Western blot analysis of FAF1 expression indicated significant difference between wild type and mutant colonies. Since P38A is a gene trap mutant colony, it would be expected that it would have 50 % expression in comparison with wild type. Beta actin loading control was used to normalise data N=3. Relevant statistical analysis was undertaken including Two-tailed T-testing and SEM.*p<0.05

A trypsinisation experiment was also undertaken to determine whether any effect of *FAF1* disruption is mediated by a trafficking failure rather than absolute production of the PNN. Trypsin was used to digest and remove the extracellular matrix/PNN from cells before analysis by Western, but would be unable to digest any matrix that was still inside the cell because of a failure to traffick it to the surface. It was predicted that WT cells would lose the majority of PNN/WFA staining on Western blots, whereas a trafficking mutant would still have staining because the PNN components recognised by WFA would have been protected within the cell. Another enzymatic option that could have been used was ChABC or MMP-9. Two flasks each of WT cells and *FAF1* CRISPR pool cells were prepared. One of each had protein extracted using the normal lysis/scraping approach and samples were labelled WT and *FAF1*, respectively. The other two were digested for 15 minutes at 37°C with trypsin

to remove the PNN/ECM then, after washing these suspended cells with PBS and centrifuging, the pelleted cells were lysed to produce sample WT(tryp) and *FAF1*(tryp), respectively. Protein analysis was then undertaken, and Images were developed using X ray film (Methods) and processed using ImageJ (Figure 6.4).

Figure 6.4 No reduced WFA staining seen in wild type or FAF1 pool cells when trypsinised. Figure 6.4 above shows the results of protein analysis of WFA-binding glycoprotein expression of wild type and trypsinised FAF1 pool cells. Western blot analysis of WFA staining indicated little difference between wild type cells and trypsinised FAF1 pool cells. Beta actin loading control was used to normalise data. N=1 so no statistical analysis was undertaken.

If all the PNN proteins in the *FAF1* mutant had been locked up internally because of a trafficking error preventing them from being expressed on the surface, then trypsinisation would have had no effect on the WFA protein quantity in the *FAF1*(tryp) sample because the PNN proteins would not have been exposed to the enzyme. In fact, I can suggest that trypsin is not perhaps the best enzyme for this kind of experiment because I did not see evidence for the WT(tryp) showing reduced WFA staining which *would* have been expected because it has PNN expressed on the surface as demonstrated by the live staining. Better enzymes to have used would have been MMP9 or Chondroitinase.

6.4 siRNA inhibition of GALNTL6

Previously, I utilised CRISPR to knock out the candidate genes and see if there was any reduction in WFA-binding glycoprotein expression. However, despite some extensive research, I was not fully convinced that the CRISPR was working correctly to reduce the expression of the target genes. I then decided to try another alternative approach using siRNA. By transiently downregulating expression by degrading mRNAs, I could then see if there was any reduction in WFA-binding glycoprotein expression. I chose to focus solely on *GALNTL6* since it was the best candidate gene and undertook siRNA interference of the *GALNTL6* gene. Analysis was undertaken using protein analysis (Fig 6.5). The results showed that despite interference and attempted downregulation of the *GALNTL6* gene, there was no reduction in WFA-binding glycoprotein expression.

Figure 6.5 Attempted siRNA silencing of *GALNTL6* did not decrease *GALNTL6* protein expression or alter WFA staining. *Figure 6.5* shows the results obtained when siRNA interference of *GALNTL6* occurs. As you can see above, despite increasing the concentration of *GALNTL6* siRNA to 300 µl, there is no reduction in WFA staining. Here, I utilised protein analysis to determine any alteration in WFA-binding glycoprotein expression. It can be seen that despite there is no reduction in WFA staining but there is no clear evidence of *GALNTL6* being downregulated. N=4 so relevant statistical analysis was undertaken including T testing. Relevant statistical analysis was undertaken including Two-tailed T-testing and SEM. P>0.05

6.5 Pharmacological inhibition of FAF1 protein

Despite seeing reduced WFA staining in the initial gene trap screen, the results here show that there is no reduction in WFA staining when these genes are knocked out or silence via CRISPR or siRNA. Unfortunately, I seen no clear evidence that any of the candidate's protein expression was reduced using CRISPR or siRNA. As a result, I cannot say whether these candidate genes have alterations

in their WFA-binding glycoprotein expression since I have been unable to fully knock out or silence the genes. The biological understanding of the system is hampered by the technological inefficiencies of the genetic ablation techniques I tried to use. Here, I decided to utilise a *FAF1* pharmacological approach which is much more direct because I can say that the drug either inhibits the protein or it doesn't. In the previous results obtained, it was shown that no *FAF1* CRISPR knockouts had been produced and it was difficult to state whether there is any reduced WFA staining in both the pools and mutant cells. Here, I utilised protein analysis and a *FAF1* inhibitor to see whether there was any alteration in WFA-binding glycoprotein expression. Cells were grown to confluence and treated with various concentrations of the *Faf1* protein inhibitor, KR-33493 for 48 hours. Analysis was then undertaken using western blotting. The results show that varying concentration of *FAF1* inhibitor (KR-33493) did not alter WFA-binding glycoprotein expression (Fig 6.6).

KR-33493 FAF1 inhibitor (µM) 10 20 50 75 WT Wfa stain 90 kDa 43 kDa β-actin

Figure 6.6 Use of FAF1 inhibitor KR-33493 does not reduce WFA staining in wild type cells. Figure 6.6 shows the results obtained when wild type cells treated with increasing concentrations of FAF1 inhibitor KR-33493 over a period of 48 hours. Western blot analysis of WFA-binding glycoprotein expression indicated little difference between wild type cells and cells treated with the FAF1 inhibitor. N=3 so relevant statistical analysis was undertaken including Two-tailed T-testing and SEM P>0.05

The results above show that use of *FAF1* inhibitors have no effect on WFA-binding glycoprotein expression. Although I identified *FAF1* in the initial gene trap screen as a mutant gene with reduced WFA staining, the results conclude that inhibition of *FAF1* does not have any effect on WFA-binding glycoprotein expression.

6.6 Conclusion

Chapter 6 focused on producing CRISPR knockouts of the 3 genes identified in the gene trap screen, FAF1, DCC, and GALNTL6, that were considered the strongest candidates for a role in the formation of the PNN. Furthermore, siRNA interference was also undertaken with regards to GALNTL6 and pharmacological inhibition of FAF1 activity as alternative ablation strategies. Protein analysis and immunofluorescence microscopy were undertaken to determine if there were any changes in WFA staining when these genes are either knocked out fully or silenced. The results showed that there was no reduction in WFA staining or any of the candidate genes within the attempted CRISPR KOs suggesting that there has been a failure to knock out the genes. This means that it cannot be confirmed whether there is reduced WFA-binding glycoprotein expression when these genes were knocked out. There was no clear evidence that the genes were fully knocked out during the CRISPR process. With respect to siRNA interference of GALNTL6, it was also shown that there was no reduction in WFA staining but importantly, I failed to downregulate expression of the GALNTL6 gene. This is in contrast to the gene trap screen where there three genes were identified and sequenced as having reduced WFA staining or an abnormal perineuronal net shape. CRISPR is a welldocumented technique which has shown to be effective at knocking out genes homozygous though also known for its off-target effects. The same is also known for siRNA interference in which a gene is essentially silenced heterozygously. Also, a FAF1 Inhibitor (KR-33493) was utilised to see whether inhibiting *FAF1* alters WFA-binding glycoprotein expression. This was also shown to be negative and a trypsinisation experiment of FAF1 was also undertaken to determine whether trypsinising the cells could affect WFA staining. This also yielded no positive change in WFA-binding glycoprotein expression. The results obtained here show that despite identifying three candidate genes which have altered WFA-binding glycoprotein expression or perineuronal nets shapes when mutated during the gene trap screen, this was not reflected in the CRISPR or siRNA process due to the failure to knock out or downregulate GALNTL6. Looking at both the immunofluorescence microscopy and the protein analysis via western blotting, no significant change in WFA-binding glycoprotein expression was seen as no knockouts were produced. However, all 3 genes have been previously implicated in neuropsychiatric disease or processes. For example, FAF1 has been previously implicated in Parkinson's disease, DCC has been identified as risk factor for schizophrenia in conjunction with its binding partner netrin 1. Finally, GALNTL6 has been associated with mucin type O-linked glycosylation and glycosylation is a well-known process in the production of perineuronal nets and chondroitin sulphate proteoglycans. Further examination of these genes is warranted in their potential roles and how they are involved in perineuronal net formation and what role do they play in chondroitin sulphate proteoglycans.

Chapter 7

RESULTS: Identifying the PNN protein component in SH-SH5Y cells which interacts with *Wisteria floribunda* (Japanese wisteria) agglutinin (WFA)

7.1 Introduction

Chapter 3 described the staining pattern in *SH-SY5Y* cells observed with WFA. While WFA cellular immunoreactivity was obtained, and backed up by the detection of a specific reactive band(s) in Western blotting, the distribution of the staining was not directly comparable to the PNN morphology displayed by inhibitory interneurons *post mortem*. Two potential explanations exist: that the *SH-SY5Y* cells are so 'immature' (through ongoing proliferation) and non-neuronal that PNN formation is rudimentary OR that the WFA-reactive protein target is not the same as that observed in brain PNNs.

In this chapter, a pull-down assay was carried out to determine which glycoprotein(s) WFA binds to. Research has shown that all perineuronal nets contain *Aggrecan* even if they do not contain all of the other proteoglycans such as *Neurocan*, *Versican* etc. WFA is believed to bind to an unidentified sulphation motif or the N-acetyl galactosamine residues of chondroitin sulphate proteoglycans. In previous chapters, I have seen in protein analysis with WFA staining that sometimes there are one or two bands of WFA reactivity. The investigation here is to identify it/them to gain a better insight into PNN constitution and to see whether these might represent different isoforms of the same molecular entity.

The full methodology employed is detailed in the Methods Chapter. Briefly, *SH-SY5Y* cells were lysed under standard conditions (including protease inhibitor cocktail) and resulting proteins incubated overnight at 4°C in 50 mLs PBS with biotinylated WFA. Subsequently, streptavidin-conjugated resin beads were added to bind the biotin-WFA-protein target(s), and these were captured, washed with PBS, and finally eluted within a column plugged with glass wool. The resulting purified protein was analysed by Western blotting and by mass spectrometry-based identified at the 'FingerPrints' proteomics laboratory at the University of Dundee.

This process was carried out twice. In the first validation trial, cells from just one T25 flask of confluent *SH-SY5Y* cells were taken through the procedure described in the Materials and Methods Chapter 2 except that elution was either performed with hot CelLytic protein extraction buffer or, alternatively, hot 0.1% Sodium Dodecyl Sulphate (SDS) solution to determine the best elution strategy. Both approaches produced a similar yield of protein as depicted in a WFA-stained Western blot (fig. 7.1). The WFA-reactive band size which usually appears in our Western blotting of *SH-SY5Y* cells is 90 kDa. Two important statements can be made from this figure. Firstly, the lack of actin loading control

detected in the affinity-purified eluates indicates that the purification process has been relatively efficient at removing the majority of irrelevant proteins. Secondly, there is a drop from ~90 to ~30 kDa (figure 7.1) in detected band size after affinity purification. This does not appear to be the result of generalised degradation of the original protein (e.g., through indiscriminate protease action as the protease inhibitor cocktail concentration is reduced in the affinity binding stage) because the detected bands are sharp and discrete in nature. I suggest that this may represent a specific cleavage or dissociation event. For example, one potential PNN protein that might be captured by this protocol might be *Aggrecan*. Two members of the ADAMTS protease family exists called *Aggrecan*ase-1 and -2 are known to cleave this PNN component resulting in smaller polypeptides. I note that the FA binding step will occur in a large liquid volume that will have diluted the active concentration of the protease inhibitors. However, the published molecular light of *Aggrecan* core protein is 210-250 kDa, and much more when glycosylated, making this an unlikely candidate for this hypothesis.

7.2 Pull down assay results and identification of protein band.

Figure 7.1. Successful pull-down of WFA-binding protein from SH-SY5Y cells. Three protein samples were assessed by SDS-PAGE and Western blotting: protein lysate of standard SH-SY5Y cells, SH-SY5Y lysate that has been affinity purified and eluted from WFA/Sepharose beads using CelLytic agent at 60°C (Pur. CelLytic), and SH-SY5Y lysate that has been affinity purified and eluted from WFA/Sepharose beads using 0.1% SDS at 60°C (Pur. SDS). A band of 90 kDa can be seen for the first sample (consistent with previous experiments) but both the purified products show a drop in size of 60 kDa to ~30 kDa. This does not appear to be the result of generalised degradation of the original protein (e.g., through indiscriminate protease action) but may represent a specific cleavage event that occurred during the overnight incubation in PBS. Importantly, there is no Beta-actin visible in the purified samples indicating that the purification process has removed a considerable portion of the total proteome.

In a second, larger-scale (2 x confluent T75 flasks), preparation eluate from the preparative process detailed in the Methods was fully loaded onto a polyacrylamide gel, briefly run into the gel, and a gel slice taken, fixed in methanol/acetic acid, dried, and sent for proteomic analysis at the FingerPrints Proteomics Laboratory at the University of Dundee. Results were returned in a spreadsheet (Appendix 1) in which candidate proteins were ranked according to the cumulative instances of each identified peptide fragment sequence from each protein (the Mascot Score; Mascot being the software package used to convert mass spectrometry m/z values into identified protein fragments). A number of 'FingerPrints' bespoke quality control qualifiers were also applied such that certain proteins were annotated as 'contamination', principally members of the keratin family. As keratin is a skin protein, the assumption made was that this represents handling issues. I am not convinced by this categorisation because PPE usage will have prevented this.

Regardless, the list of identified proteins was surprisingly extensive (803 proteins: approximately 4% of all proteins). However, as can be seen in Fig 7.2, the majority of these may represent rare 'carry-over' from the purification process, determined by the low number of different peptide fragments identified (Y-axis) and their low cumulative abundance (X-axis, Mascot Score). Additionally, a number of high-abundance cellular proteins were identified such as HNRP proteins, ribonucleoproteins, and cytoskeleton components like tubulin. I propose that these failed to be completely washed out of the column during the pull-down, perhaps due to their abundance or non-specific association with WFA or biotin.

I reasoned that the true WFA-binding protein would have several specific properties that might give us confidence of true identification. These were:

- Being a secreted or membrane-bound protein
- Having known or potential glycosylation sites, specifically the O-linked glycosylation sites that form the post-translational modification known to be the target for WFA binding.
- Being of approximately 90 or 30 kDa molecular light as determined by Western blotting.
- Having prior evidence for a role in extracellular matrix formation/function.

In Table 7.1, the top candidates, excluding proteins deemed contamination, are ranked according to the Mascot Score. Vimentin (VIM), in fourth place, is the closest fit to our criteria. If being nominally extracellular is the most important consideration, then Annexin 6 (ANXA67) becomes the most

favourable protein. Both are displayed in a plot of Mascot Score against total number of peptides identified in Figure 7.2. Only ANXA6 (Annexin A6) came somewhat close to fulfilling the criteria as it can be extracellular in some instances but has very low scores in the other molecular criteria as indicated by its position in the scatterplot. Annexin 6 is part of a family of calcium dependent membrane and phospholipid binding proteins (Takagi *et al.*, 2002). Their functions are still not clearly defined and various members of the annexin family are known to be involved in exocytic and endocytic pathways (Takagi *et al.*, 2002). Annexin 6 is a protein involved in mediating the endosome aggregation and vesicle fusion in secreting epithelia during exocytosis (Takagi *et al.*, 2002). Annexin 6 has also been previously reported to be a candidate receptor for chondroitin sulphate chains in chondroitin sulphate proteoglycans (Takagi *et al.*, 2002). Importantly, there are no possible O-linked glycosylation sites on ANXA6 Annexin 6 is not classified as a good candidate because WFA would never be able to bind to it via glycosylation (Takagi *et al.*, 2002).

Score Mascot:						# Unique		мw	
A4 Mascot	Accession	Description	Coverage [%]	# Peptides	# PSMs	Peptides	# AAs	[kDa]	# Peptides
		Heterogeneous nuclear ribonucleoproteins A2/B1							
		OS=Homo sapiens OX=9606 GN=HNRNPA2B1 PE=1							
5149	P22626	SV=2	72	28	87	24	353	37.4	28
		ATP-dependent RNA helicase A OS=Homo sapiens							
3852	Q08211	OX=9606 GN=DHX9 PE=1 SV=4	47	55	92	55	1270	140.9	55
		Heterogeneous nuclear ribonucleoprotein A1							
		OS=Homo sapiens OX=9606 GN=HNRNPA1 PE=1							
3463	P09651	SV=5	63	26	72	13	372	38.7	26
		Vimentin OS=Homo sapiens OX=9606 GN=VIM PE=1							
2957	P08670	SV=4	73	41	74	37	466	53.6	41
		Polypyrimiding tract hinding protain 1 OS-Home							
2042			E A	77	0.4	22	F 0 0	62.4	27
2943	AUAUU1KKIVI4		04	27	04	25	500	02.4	27
		Tubulin beta chain OS=Homo sapiens OX=9606							
2879	P07437	GN=TUBB PE=1 SV=2	72	26	73	5	444	49.6	26
		Heterogeneous nuclear ribonucleoproteins C1/C2							
2617	B2R5W2	OS=Homo sapiens OX=9606 GN=HNRNPC PE=1 SV=1	59	26	67	3	290	31.9	26
		Tubulin beta-4B chain OS=Homo sapiens OX=9606							
2587	P68371	GN=TUBB4B PE=1 SV=1	72	26	68	1	445	49.8	26
		Heterogeneous nuclear ribonucleoprotein L							
2538	P14866	OS=Homo sapiens OX=9606 GN=HNRNPL PE=1 SV=2	52	29	54	5	589	64.1	29
		Interleukin enhancer-binding factor 3 OS=Homo							
2537	Q12906	sapiens OX=9606 GN=ILF3 PE=1 SV=3	59	39	82	34	894	95.3	39

Table 7.1 Top ten proteins identified that were not annotated as 'contaminants' by the FingerPrints Laboratory. The protein which comes out of this pull-down assay with the strongest coverage and match to our criteria is Vimentin. As displayed in the table above, Vimentin has 73 % coverage along its 466 amino acids and a molecular weight of 53.6 kDa.

Figure 7.2 The full list of identified proteins is to be found in Appendix 1, but the top ten proteins (excluding potential contaminants) are shown as above in figure 7.1. Most fall into the highly abundant category and do not meet the criteria listed above, suggesting a failure to wash out of the column. However, in fourth position, vimentin (VIM), an intermediate filament cytoskeletal protein and Annexin A6 (much further down the list of proteins) are perhaps the best candidates identified in the study. These are highlighted in the image as coloured circles.

If Vimentin is the best candidate, then I must address the size difference between the calculated mass of the protein based on sequence (~54 kDa) and the sizes seen in our Western analysis (90 kDa) and ~30 kDa after purification. In Fig 7.3, the sequence of the Vimentin protein is shown, followed by domain and post-translational modification mapping. It can be seen that Vimentin has three N-terminal regions potential O-linked glycosylation sites. This would suggest that the protein has an extracellular role (glycosylation is only found on extracellular proteins). If these sites were to be modified, there is the potential for the observed mass to be increased. As an example of this effect, the growth factor erythropoietin (EPO) has a baseline molecular light of 18 kDa but this

increases to ~30 kDa after glycosylation. By definition, any WFA binding target will be glycosylated and so subject to mass addition.

Length 466 Mass (Da) 5	3,652		Last updated 2007-01-23 v4 Checksum ¹ BAB54026665B015A										
MSTRSVSSSS	20 YRRMFGGPGT	30 ASRPSSSRSY	VTTSTRTYSL	50 GSALRPSTSR	50 SLYASSPGGV	70 YATRSSAVRL	80 RSSVPGVRLL	90 QDSVDFSLAD	100 AINTEFKNTR	TNEKVELQEL	120 NDRFANYIDK	130 VRFLEQQNKI	140 LLAELEQLKG
QGKSRLGDLY	160 EEEMRELRRQ	170 VDQLTNDKAR	180 VEVERDNLAE	190 DIMRLREKLQ	200 EEMLQREEAE	NTLQSFRQDV	220 DNASLARLDL	230 ERKVESLQEE	240 IAFLKKLHEE	250 EIQELQAQIQ	260 EQHVQIDVDV	270 SKPDLTAALR	DVRQQYESVA
290 AKNLQEAEEW	300 YKSKFADLSE	310 AANRNNDALR	QAKQESTEYR	330 RQVQSLTCEV	340 DALKGTNESL	350 ERQMREMEEN	360 FAVEAANYQD	370 TIGRLQDEIQ	380 NMKEEMARHL	390 REYQDLLNVK	400 MALDIEIATY	410 RKLLEGEESR	420 ISLPLPNFSS
430 LNLRETNLDS	440 LPLVDTHSKR	450 TLLIKTVETR	460 DGQVINETSQ	HHDDLE									
466 residue Vimentin polypeptide (P08670)													
1	so	1	0	150	2	0	250	31	00	350	4	00	450 44
Disordered		Intermediate Filament rod structure											

Three O-Linked Glycosylation Sites

Fig 7.3 Protein sequence of Vimentin. Figure 7.3 shows the protein sequence of vimentin followed by domain and post-translational modification mapping. Vimentin appears to have three N-terminal regions potential O-linked glycosylation sites at Ser-7, Thr-33, and Ser-34, a requirement for a protein to be potentially detected by WFA.

7.3 The structure and role of Vimentin

Vimentin is a class III intermediate filament protein with high degree of evolutionary conservation among vertebrates (Ostrowska-Podhorodecka & McCulloch, 2021). All intermediate filament proteins possess a central coiled-coil rod domain of 310 amino acids (Ostrowska-Podhorodecka & McCulloch, 2021). The N-terminal part of the domain is a coil 1A motif (Ostrowska-Podhorodecka & McCulloch, 2021) separated from the coil 1B motif by a rigid alpha helical linker L1 structure which contributes to the final filament structure (Ostrowska-Podhorodecka & McCulloch, 2021). These combined N-terminal and C-terminal domains are produced into dimers which possess coiled-coil 2A and 2B domain regions (Ostrowska-Podhorodecka & McCulloch, 2021). Vimentin dimers are arranged in an anti-parallel manner to produce tetramers (Ostrowska-Podhorodecka & McCulloch, 2021). The formation of vimentin filaments is dynamic which regulates protein-protein interactions and can alter influence certain signalling networks (Ostrowska-Podhorodecka & McCulloch, 2021). The most common post-translational modification of phosphorylation and possesses at least 35 sites phosphorylation sites are in the head and tail domains of vimentin (Ostrowska-Podhorodecka & McCullocka & McCulloch, 2021).

McCulloch, 2021). Intermediate filaments are classified in various types based on similarities in sequence which also display similarities in tissue origin (Ostrowska-Podhorodecka & McCulloch, 2021). Keratin is defined as the main intermediate filament protein which is expressed in epithelial cells whilst vimentin is expressed in mesenchymal cells such as fibroblasts, endothelial cells, and leukocytes (Ostrowska-Podhorodecka & McCulloch, 2021). Whilst vimentin is not expressed fully in epithelial cells, it can be expressed within transformed cells associated with cancer, fibrosis, or immortalized cell lines (Ostrowska-Podhorodecka & McCulloch, 2021).

Vimentin has been expressed in a wide range of mesenchymal cells and tissues of various organisms (Ostrowska-Podhorodecka & McCulloch, 2021). Vimentin has been linked to a small number of pathophysiological conditions. Vimentin has been shown to be linked with various types of cancer invasion and can serve as a potential target for cancer therapy (Ostrowska-Podhorodecka & McCulloch, 2021). Vimentin has also been linked to effective wound healing and tissue regeneration due to contributions to cell motility and adhesion (Ostrowska-Podhorodecka & McCulloch, 2021).

Despite being ostensibly internal in nature (as a cytoskeletal intermediate filament), there is substantial evidence that vimentin can occupy the extracellular space. It has been shown that certain cell types have active mechanisms to release vimentin into the extracellular space such as covalent modification by either phosphorylation or citrullination (Suprewicz *et al.*, 2021). These include neutrophils, macrophages, and endothelial cells to provide positive signals for wound healing and act as a cofactor for pathogen infection (Suprewicz *et al.*, 2021). Studies have shown that cell surface vimentin acts as a biochemical signal between various cell types and also as an attachment factor through which various types of bacteria and viruses infect cells (Suprewicz *et al.*, 2021). As a result of these modifications, cytoskeletal vimentin intermediate filaments are disassembled leading to vimentin release on the external surface of the same cell (Suprewicz *et al.*, 2021). Furthermore, this could occur in soluble form or on the surface of exosomes where it can target cells including epithelial cells or neurons which do not express vimentin endogenously (Suprewicz *et al.*, 2021).

Caspases are known to be key mediators of apoptosis. Vimentin has been shown to be cleaved by multiple caspases at distinct sites *in vitro* such as asparagine 85 by caspases 3 and 7 and Asp 259 by caspase 6 to produce multiple proteolytic fragments (Byun *et al.*, 2001). Vimentin Caspase cleavage of vimentin alters its cytoplasmic network of intermediate filaments and occurs with nuclear

fragmentation (Byun *et al.*, 2001). These studies indicate that caspase proteolysis of vimentin stimulates apoptosis by altering intermediate filaments and by breaking down intermediate filaments and by amplifying the cell death signal via a pro apoptotic cleavage product (Byun *et al.*, 2001).

In the extracellular space, vimentin can bind to surfaces of other cells and the extracellular matrix, and the interaction between extracellular vimentin and other cell types can result in changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype (Bucki *et al.*, 2022). Extracellular vimentin binds external cell membranes, and it is unknown whether vimentin can act as an adhesive anchor independently for cells is largely uncharacterized (Bucki *et al.*, 2022). Some studies have utilised traction force microscopy and spheroid expansion assays to characterize how various cell types respond to extracellular vimentin (Bucki *et al.*, 2022). Attachment of cells and spreading vimentin coated surfaces is decreased by hyaluronic acid, degrading enzymes, hyaluronan synthase inhibitors, soluble heparin and N-acetyl glucosamine that have little or no effect on the similar cell types binding to collagen-coated hydrogels (Bucki *et al.*, 2022). These studies indicate the effectiveness of substrate- bound vimentin as a cell ligand and indicates that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins possess N-acetyl glucosamine which is part of a novel class of adhesion receptors for extracellular vimentin (Bucki *et al.*, 2022).

Vimentin also binds to glycosaminoglycans such as hyaluronic acid and heparin in which one of the two carbohydrate units is either N-acetylglucosamine or another closely related structure (Bucki *et al.*, 2022). Vimentin has a high affinity for N-acetylglucosamine containing cell surface structures and the fact that many or perhaps all of the proposed vimentin binding cell surface proteins are themselves glycosylated, indicates a key role for hyaluronic acid (Bucki *et al.*, 2022). This suggests that either hyaluronic acid and heparin rich like glycocalyx or transmembrane proteins are heavily glycosylated are important elements in the mechanism by which extracellular vimentin binds and stimulates eukaryotic cells (Bucki *et al.*, 2022)

Vimentin has been shown to be overexpressed after spinal cord injury and stroke resulting in glial formation. Various studies have displayed that glial scar formation alters neurogenesis (Menet *et al.*, 2003, Aswendt *et al.*,2022). Vimentin has been shown to play a potential biomarker for stroke progression and brain tumours and as a possible therapeutic target in various nervous system disorders. Vimentin has been reported to be involved in scar formation, axonal regeneration, inflammatory response and apoptosis activation.

In the majority of tumours, vimentin is overexpressed. For instance, in brain tumours, high vimentin expression is regarded as an important marker of poor prognosis (Zhao *et al.*, 2018). Interestingly, brain tumour-related and meningitis-related studies have mostly addressed the functions of cell surface vimentin, while the functions of intracellular or extracellular-associated vimentin remain unclear. Additionally, vimentin not only promotes the migration of SCs but also inhibits myelination. There is a possibility that SC migration might inhibit myelination (Triolo *et al.*, 2012). Therefore, understanding the mechanism of vimentin regulation may contribute to a better understanding of various nervous system injuries and diseases.

Multiple sclerosis (MS) is classified to be an autoimmune disease of CNS in which T lymphocytes cross the BBB leading to demyelination and axonal degeneration (Lassmann, 2018). Vimentin is present in reactive astrocytes located in the demyelinating lesions of MS, and vimentin is one of the 14-3-3 protein-interacting proteins found in cultured human astrocytes (Satoh *et al.*, 2004). With regards to Alzheimer's disease (AD), a neurodegenerative disease, neuronal vimentin expression is positively correlated with amyloid deposition in AD brains. Initially, damage in neurons causes synaptic disruption and dendrite retraction. After several hours or several days, the neuron expresses and transports vimentin to the damaged dendrite where it participates in neuron repair (Levin *et al.*, 2009).

Upregulated vimentin expression increases the ability of Schwann cells to guide and promote axon regeneration after sciatic nerve injury (Perlson *et al.*, 2005; Berg *et al.*, 2013). Schwann cells are the main glial cells of the Peripheral nervous system and play a significant role in guiding peripheral nerve regeneration. Following injury, Schwann cells and macrophages begin to clean debris at the injured site and Schwann cells from distal sites proliferate and migrate to the injured site and form a framework to guide nerve regeneration. The results in the regenerated nerve fibre reinnervating its targets, and Schwann cells remyelinating the regenerated axon (Abe and Cavalli, 2008). Increase in miR-138-5p decreases vimentin expression in Schwann cells and the 3'UTR of vimentin is a defect target of miR-138-5p. One study also found vimentin to be a negative regulator of myelination (Triolo *et al.*, 2012). Further evidence has shown that extracellular vimentin which is secreted by macrophages and reactive astrocytes is a neurotrophic factor which could stimulate axonal regrowth and facilitate motor function rehabilitation following SCI (Shigyo and Tohda, 2016). Denosomin a compound has been shown to increase concentration of astrocyte secreted vimentin which is closely linked to axonal regeneration in spinal cord traumatic mice (Teshigawara *et al.*,2013). Finally, one

study indicated that recombinant vimentin treatment increases axonal growth and enhances performance in motor function in spinal cord injury mice (Shigyo and Tohda, 2016). Recombinant vimentin has also been associated with neurite outgrowth. Interestingly, intracellular and extracellular vimentin have been shown to play alternating roles in axonal regrowth (Shigyo et al., 2015). Further evidence has shown that extracellular vimentin which is secreted by macrophages and reactive astrocytes is a neurotrophic factor which could stimulate axonal regrowth and facilitate motor function rehabilitation following SCI (Shigyo and Tohda, 2016). Denosomin a compound has been shown to increase concentration of astrocyte secreted vimentin which is closely linked to axonal regeneration in spinal cord traumatic mice (Teshigawara et al., 2013). Finally, one study indicated that recombinant vimentin treatment increases axonal growth and enhances performance in motor function in spinal cord injury mice (Shigyo and Tohda, 2016). Recombinant vimentin has also been associated with neurite outgrowth. Interestingly, intracellular and extracellular vimentin have been shown to play alternating roles in axonal regrowth (Shigyo et al., 2015). Further studies have shown that vimentin inhibition along with Chondroitinase ABC plays a significant role in initiating axon regeneration and locomotor function recovery (Xia et al., 2015). Using this combined treatment of targeting vimentin suggested a significant role in SCI repair and the importance of using vimentin inhibition and Chondroitinase ABC in decreased glial scar and degrading chondroitin sulphate proteoglycans which are inhibitory molecules for axonal sprouting.

Vimentin has also been shown to be a central meningitis factors which mediates the penetration and destruction of the BBB and colonization of the brain by multiple bacterial pathogens. Studies have also shown that host cell vimentin interacts with the group B streptococcal surface antigen I/II protein, BspC, to enable colonization in the brain endothelium and CNS inflammation during the pathogenesis of Group B Streptococcus (GBS) meningitis. Studies displayed that in a mouse model of haematogenous meningitis, vimentin knockout mice were significantly less susceptible to GBS infection, resulting in a decreased inflammatory response (Deng *et al.*,2019). Blocking this receptor ligand interaction could provide an effective technique in preventing bacterial meningitis. Further evidence has shown that extracellular vimentin which is secreted by macrophages and reactive astrocytes is a neurotrophic factor which could stimulate axonal regrowth and facilitate motor function rehabilitation following SCI (Shigyo and Tohda, 2016). Denosomin a compound has been shown to increase concentration of astrocyte secreted vimentin which is closely linked to axonal regeneration in spinal cord traumatic mice (Teshigawara *et al.*,2013). Finally, one study indicated that recombinant vimentin treatment increases axonal growth and enhances performance in motor function in spinal

cord injury mice (Shigyo and Tohda, 2016). Recombinant vimentin has also been associated with neurite outgrowth. Interestingly, intracellular and extracellular vimentin have been shown to play alternating roles in axonal regrowth (Shigyo *et al.*, 2015). Further studies have shown that vimentin inhibition along with Chondroitinase ABC plays a significant role in initiating axon regeneration and locomotor function recovery (Xia *et al.*, 2015). Using this combined treatment of targeting vimentin suggested a significant role in SCI repair and the importance of using vimentin inhibition and Chondroitinase ABC in decreased glial scar and degrading chondroitin sulphate proteoglycans which are inhibitory molecules for axonal sprouting. Finally, extracellular vimentin has been shown to be a novel ligand of IGF1R that promotes axonal growth in a similar manner to IGF1 (Shigyo *et al.*, 2015).

7.4 Conclusion

In previous chapters, I have seen in protein analysis of WFA-binding glycoprotein expression that sometimes there are one or two bands of WFA. The investigation here is to see whether these are specific proteoglycans or different isoforms. To determine this, a pull-down assay was conducted to determine what proteins WFA is binding to and to identify these single or double bands which are appearing on WFA-binding glycoprotein expression analysis through Western blotting. The band size which usually appears is 75-90 kDa which is produced on Western blots of *SH-SY5Y* cells. Eluate from the preparative process detailed in the Methods was fully loaded onto a polyacrylamide gel, a gel slice taken, fixed, and sent to the Dundee Fingerprints service for identification. The results of the pulldown assay indicate that the purification technique is working but I also have a lot of other proteins coming through. Looking at the data above, of most interest within the proteins being pulled down was vimentin.

CHAPTER 8

Discussion

8.1 Brief summary of findings

During the work set out in this thesis, it was shown that *SH-SY5Y* cells possess perineuronal nets and have a strong neuronal profile. With regard to perineuronal nets, there is plenty of evidence within the literature that perineuronal nets are important contributors to the function of specific neurons in the brain. The perineuronal net is a specialized form of the extracellular matrix and is composed of various components such as chondroitin sulphate proteoglycans, hyaluronan, hyaluronan synthases and tenascin R. Studies have shown that a malformed perineuronal net is associated with neuropsychiatric disorders. Therefore, my hypothesis was that by understanding the molecular synthesis of the PNN, I might gain further insights into its function and ways in which it might be modulated or repaired in wellness.

I first established the presence of WFA staining in brain tissue indicating the presence of perineuronal nets. WFA staining was detected on SH-SY5Y cells using immunofluorescence microscopy and also by Western blot analysis. Staining was also observed in Lan-5 and Hek-293 cell lines with neuronal properties, but not A549, a lung epithelial cell line. To date, there has been no known literature or research investigating WFA-binding glycoprotein expression on SH-SY5Y cells. Furthermore, to characterize WFA staining, SH-SY5Y cells were treated with fluoxetine and venlafaxine for 48 hours and then WFA staining analysed using Western blotting and immunofluorescence microscopy. The results did not show any significant change in WFA staining despite published studies suggesting that fluoxetine and venlafaxine decrease WFA staining. Based on earlier in-house research findings on the molecular mechanisms of lithium action, cells were also treated with lithium and 1-Azakenpaullone (GSK-3 inhibitor) to determine any changes in WFAbinding glycoprotein expression, but none were observed. However, it was hypothesized that gene trap mutants identified with reduced PNN staining would help us better understand the function and maturation of the perineuronal net and act as potentially important therapeutic targets for neuropsychiatric diseases. Applying gene trapping to SH-SY5Y cells, live cell staining was undertaken using fluorescently labelled WFA to identify which colonies of the mutant gene trap library were failing to produce a functioning perineuronal net. Those colonies with reduced WFA staining as well abnormal shapes were then isolated using picking technique and expanded for analysis.

At this point, I had between 3-7 colonies all with either reduced WFA staining, or abnormal expression patterns as shown in the Results. RACE-PCR revealed the identity of the genes. The genes identified included *FAF1*, *DCC* and *GALNTL6*. *FAF1* has been previously shown to play a key role in the progression of Parkinson's disease. *DCC* has been reported to be a risk factor for

schizophrenia, and GALNTL6 belongs to a family of glycosyl transferases which are involved in mucin-type O-linked glycosylation. CRISPR KO constructs were then attempted to be produced for each of the candidate genes though it is important to note that no sufficient knockout had occurred of any candidate gene and was analysed for downregulated candidate protein expression and effect on WFA-binding glycoprotein expression. Similarly, siRNA interference was also utilised to in essence silence on part of the gene to monitor WFA-binding glycoprotein expression and see if there is any disruption. Unfortunately, technical problems with the CRISPR and siRNA approaches prevented us from creating new mutated cell lines for these genes, and validating their roles in PNN function. It is important to note that other genes were also identified but at the time were not taken forward due to their limited link with the extracellular matrix, perineuronal net or neurological diseases. However, examination of the genes via GWAS catalogue displayed that SUGCT possesses multiple SNPs associated with migraine. Furthermore, EVI5 has recently been associated as a risk factor for multiple sclerosis and schizophrenia (Hoppenbrouwers et al., 2008). ADGRL2 according to the GWAS catalogue has been shown as a risk factor for depression and late onset Alzheimer's disease whereas PLA2G4 is a risk factor for schizophrenia and epilepsy (Tao et al., 2005). EVI5 was one of the genes identified within the gene trap screen and has been shown to be a risk factor for multiple sclerosis. Though no direct link has been revealed between EVI5 and perineuronal nets, the compound Fingolimod has been widely used for the treatment of multiple sclerosis and has also been shown to restore neuroplasticity (Ueno et al., 2022). One recent study showed that use of fingolimod resulted in an increase of parvalbumin positive neurons within various regions of the brain such as the hippocampus and prefrontal cortex (Ueno et al., 2022). An increase in WFA positive PNNs were also confirmed in mice treated with fingolimod within the somatosensory cortex only (Ueno et al., 2022). It was also shown that fingolimod increased the density of PV-positive neurons within the brain of mature mice (Ueno et al., 2022).

As a final piece of work, I further explored the nature of WFA action by identifying a potential target of this stain, vimentin. Future work should test its expression and molecular weight correlation with WFA staining using immunofluorescence and Western blotting.

8.2 Critical analysis of the research: staining pattern

During the studies described here, in *SH*-SY5Y cells, the distribution of the perineuronal net was abnormal compared to *in vivo* cells. The classic publication WFA/PNN staining pattern on parvalbumin positive interneurons is very distinctive and different from the *SH*-SY5Y pattern. Interneurons show an entirely extracellular staining arranged in a 'honeycomb-like' pattern around the cell soma. *SH*-SY5Y cells, by contrast, should a pattern of distribution consistent with some endoplasmic reticulum retention while also having a diffuse extracellular distribution (evident from the live staining in the screen). This incomplete secretion and failure to adopt a precise extracellular pattern is perhaps not surprising when comparing an hours-old proliferating cell which is incompletely differentiated, with a years-old, terminally differentiated neuron. Although not carried out in this investigation, it would be interesting to observe the effects of *SH*-SY5Y differentiation protocols on the WFA/PNN staining pattern and also investigate staining in other, ostensibly more neuronal cell lines.

8.3 Critical analysis of the research: Pharmacological effects contrasted with the literature

With regards to the treatment of the *SH-SY5Y* cells with lithium, 1-azakepaullone, fluoxetine and venlafaxine, there was no observed change in WFA staining. Aside from the laboratory's previous gene trap screen for gene mutations found to be resistant to lithium treatment, other studies have investigated lithium's effect on the perineuronal net. For example, Biphosphate nucleotidase 2 (*BPNT2*) is part of a family of phosphatases which are directly inhibited by lithium and is localized to the Golgi apparatus where it metabolizes the by-products of glycosaminoglycan sulphation reactions (Eisele *et al.*,2022). Recent studies involved production of a conditional neuronal-specific *BPNT2* knockout mice where decrease levels of chondroitin 4-sulphation were seen in these mice but there was no change in the WFA staining of perineuronal nets. Decreased levels of total glycosaminoglycan sulphation across brain regions showed decreases in chondroitin 4-sulphation as well as an increase in chondroitin 6-sulphation (Eisele *et al.*,2022). However, these changes were independent of gross alterations within perineuronal nets (Eisele *et al.*,2022). These studies demonstrated that BPNT2, a known target of lithium, is essential for glycosaminoglycan sulphation within the brain indicating that investigation of BPNT2 effects on the PNN is of the utmost importance (Eisele *et al.*,2022). Furthermore, it also showed that chondroitin-4 sulphate may be associated with

a looser extracellular matrix which does not stain with WFA. With regards to the previous lithium gene trap screen conducted within the laboratory, 35 genes from that previous lithium function screen, six were related to perineuronal net components. SH-SY5Y cells were also treated with fluoxetine and venlafaxine for 48 hours. Other studies have shown that post-natal fluoxetine treatment alters perineuronal net formation and maintenance in the hippocampus (Alaiyed et al., 2019) In addition, chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons (Ohira et al., 2013). Furthermore, studies with mice deficient in MMP-9, a protease known to degrade perineuronal nets, should that venlafaxine enhanced gamma power and increased neuronal population activity dynamics linked to memory processes (Alayed et al., 2019). Similarly, matrix metalloprotease-9 has been shown to increase branching of excitatory neurons and attenuating the perineuronal net to decrease inhibitory input to these neurons (Alayed et al.,2019). They have the potential to increase the overall excitatory, inhibitory balance and neuronal population dynamics which are significant in mood and memory. It is important to note that all these results and studies showing decreased WFA staining and alteration of perineuronal nets were conducted in primary cell lines. Primary cell lines are more representative of the human brain. Also, secondary cell lines will lose their neuronal profile over time. In summary, fluoxetine and venlafaxine treatment do not appear to decrease WFA-binding glycoprotein expression in SH-SY5Y cells.

8.4 Critical analysis of the research

The live cell staining of the *SH*-SY5Y mutant gene trap library displayed various colonies with reduced WFA staining or an altered perineuronal net distribution. However, with the gene trapping screen used here comes several drawbacks. Firstly, this was rather subjective and based on the human eye discernment of reduced staining. Issues can arise when trying to accurately "pick" mutant patches of cells and then running them through all the stages for molecular analysis. Colonies once picked would need to be grown up fully to confluence and in some cases isolated again due to picking multiple mutant patches. A more objective approach that has actually been applied in other in-house screens would have been the use of fluorescence-activated cell sorting (FACS) whereby library cells could have been removed from the culture vessel, stained with WFA, and then sorted at the cellular level according to staining intensity. Low-staining cells would have then been subjected to further rounds of selection or genetic analysis. The issue at the time was that enzymatic or physical removal of these adherent cells from the culture vessel would have destroyed the ECM/PNN and our ability

to detect the very thing I was interested in. However, the later Trypsin experiment suggests that the PNN is quite resilient to digestion.

Gene trapping is defined as a high-throughput approach of producing mutation vectors which can simultaneously disrupt and report the expression of the endogenous gene at the point of insertion. Vectors can be classed as either promoter trap vectors or gene trap vectors depending on the areas they integrate into. Promoter trap vectors possess promoter less reporter regions such as β geo (a fusion of neomycin phosphotransferase and β -galactosidase). Therefore, they must be integrated into an exon of a transcriptionally active locus for the cell to be selected for neomycin resistance or by *LacZ* staining. Gene trap vectors also have the ability to integrate into an intron and these vectors possess a splice acceptor site positioned at the 5'-end of the reporter gene, allowing the vector to be spliced to the endogenous gene to form a fusion transcript (and also disrupting the gene). The advantage of using gene trapping is that a large number of mutations can be produced with relative ease. One drawback of using gene trapping is that some genes (e.g. with small or no introns) will not be captured. Therefore, I may have identified genes which when mutated have reduced WFA staining but there may well be others out there which cannot be mutated but which warrant investigation. A second drawback of gene trapping is that the rarity of the insertion events means that heterozygous gene disruption is only ever possible in a given cell. The particular biological process or pathway affected must be susceptible to 'loss-of-function' effects before a phenotype could be observed. It may well be that some of the gene mutations will not have that severity to be detectable in our phenotypic screen. Some cellular screens have employed CRISPR or siRNA, but these also suffers from drawbacks. siRNA screens can be highly variable and hard to replicate due to each individual siRNA's stochastic effect on expression. CRISPR libraries, like gene trapping create a permanent change in gene function and CAN be homozygous. However, as with animal experiments, there is the possibility that some of these homozygous changes may be incompatible with cell survival, or will have a dramatic effect on proliferation, resulting in loss of representation in the library as culture progresses.

Interestingly, many mutations produced intronic fusion sequences during the analysis, whilst *GALNTL6* produced a true exonic mutation. *GALNTL6* showed the correct pattern of splicing indicating an INTRONIC vector insertion yielding EXONIC trapped sequences as determined by RACE-PCR. The way the gene trap works is that splicing occurs resulting in formation of a truncated protein. Through the mRNA splicing, and insertion of the "fake" exon, I should have only seen fusions between the gene trap and endogenous exon sequences: this unfortunately only occurred rarely,

e.g., with *GALNTL6*, making this the strongest and best possible candidate mutant gene producing reduced WFA staining.

8.5 Critical analysis of the research: Issues with CRISPR validation

Having used gene trapping to identify mutant genes with reduced WFA staining or abnormal perineuronal net distribution, CRISPR validation and siRNA silencing was undertaken. Gene trapping, although effective, produces just one form of mutation as described above. Techniques such as CRISPR can provide further validation in entirely independently generated mutant cell lines. CRISPR KO constructs were produced for *DCC*, *FAF1* and *GALNTL6*. Unfortunately, in comparison with the gene trapping showing reduced WFA staining, the Western blot analysis of cells treated with KO constructs yielded little difference in WFA staining in comparison to wild type. Possibly, this could be due to incorrect picking of the colony when being identified with reduced WFA staining meaning that the colony picked during the live cell staining process was actually showing no reduced WFA staining. Despite colonies being plated out at low densities and the SH-SY5Y mutant gene trap library contains 1000s of mutated genes, they can still be quite close to one another. Puromycin was used to kill all wild type cells which did not possess the antibiotic resistance gene which was present within the CRISPR plasmids for the constructs. Thus, our intention was always to make stable cell lines with candidate gene ablation. It may be that the lower efficiency of stable line Cas9/sgRNA activity compared to high-efficiency transient transfection hindered the effectiveness of the mutation process. Our home-designed sgRNAs may not have been 100 % efficient meaning that even cells which take in the CRISPR/Cas9 may not have the correct genome editing activity. However, commercial CRISPR plasmids (with nominal 'guarantees') were also utilised but still there was no effective gene ablation as determined by Western blotting and immunofluorescence microscopy.

8.6 Critical analysis of the research: Pharmacological downregulation as an alternative

FAF1 appeared to be the strongest candidate gene with one attempted crispr colony showing decreased expression of WFA-binding glycoproteins during the CRISPR process. Therefore, I further utilised a *FAF1* inhibitor KR-33493 to determine whether this may result in reduced WFA staining. Our results showed that there was no reduction in expression of WFA-binding glycoproteins during protein analysis, strongly suggesting that *FAF1* has no simple role in PNN formation.

8.7 Critical analysis of the research: Exploring the functions of the candidates

In the gene trap screen, all three genes which were identified (*FAF1*, *DCC*, *GALNTL6*) named as colonies P38a, U4D and U1B during the screening process, had reduced WFA staining and/or abnormal perineuronal net distributions. These genes also have their respective roles in neuropsychiatric/neurological diseases where *FAF1* is involved in the progression of Parkinson's disease, *DCC* is a risk factor for schizophrenia and *GALNTL6* is involved in a type of O-linked glycosylation known as mucin type O-linked glycosylation. *GALNTL6*, being part of the glycosyl transferases family and having been an exonic mutation, would have been the best candidate to further study. Production of perineuronal net components, chondroitin sulphate proteoglycans, requires O-linked glycosylation reactions where carbohydrate units are added.

8.8 Critical analysis of the research: What does WFA bind to?

Finally, during this research, I observed that WFA-based protein analysis of both wild type cells and *SH-SY5Y* mutant genes, there were sometimes one or two bands on blots. Determining the identity of this band/these bands was key to our studies because it could show us an important component of the perineuronal net and further define the target of WFA staining. For example, it is universally accepted that all perineuronal nets have *Aggrecan*. It might be assumed that this band(s) was *Aggrecan*. However, the sizes of these bands were either 90 kDa or 75 kDa meaning that the larger *Aggrecan* protein should be ruled out.

Our pull-down assay many proteins in the eluted material but the protein that most closely met our criteria for being a WFA target was the intermediate filament component, Vimentin. Intermediate filaments are classified as a major component of the cytoskeleton and are essential for normal cell morphology, motility and signal transduction (Tarbet *et al.*, 2018). Dysregulation of intermediate filaments results in a wide range of human diseases such as skin disorders and neuropathy (Tarbet *et al.*, 2018). For production of an intermediate filament, vimentin molecules produce dimers which then assemble to produce tetramers which then associate laterally and longitudinally to assemble into mature 10 nm-wide filaments of varying lengths (Snider *et al.*, 2018). Many cells possess vimentin, and it is found commonly in cancer cells which have undergone metastasis.

Recent evidence has shown that post-translational modifications are an important mode of intermediate filament regulation, with all intermediate filaments able to undergo phosphorylation, ubiquitination, acetylation and glycosylation (Snider and Omary.,2014). Interestingly, perineuronal nets contain proteins with extensive N-linked and O-linked glycosylation. During glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin (Tarbet *et al.*, 2018). O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. How cells control their vimentin filaments or what role O-GlcNAc plays in this process is currently poorly understood (Tarbet *et al.*, 2018). Vimentin is heavily O-GlcNAcylated on several sites particularly its head domain (Wang *et al.*, 2007).

Vimentin was originally classified as an intracellular intermediate filament protein (Shigyo & Tohda, 2016). This is a problem when I consider it as a component of the ECM and target for WFA binding. However, more recent studies have also reported that vimentin is located in the extracellular space and displays novel protein activity there (Shigyo & Tohda, 2016). Previous studies reported that the drug denosomin improved motor dysfunction in mice with spinal cord injury (Shigyo & Tohda, 2016). At the site of injury, astrocytes which expressed and secreted vimentin were increased in number and axonal growth occurred in an extracellular vimentin-dependent manner in denosomin-treated mice (Shigyo & Tohda, 2016). However, these studies had limitations in the sense that extracellular vimentin was investigated in vitro (Shiqyo & Tohda, 2016). Therefore, further studies sought to explore whether extracellular vimentin stimulates axonal extension related to motor improvement after spinal cord injury in vivo (Shigyo & Tohda, 2016). These studies concluded that extracellular vimentin treatment in spinal cord injury significantly improved motor dysfunction (Shigyo & Tohda, 2016). Furthermore, this should that extracellular vimentin could be a novel neurotrophic factor which stimulates axonal growth activity and motor function recovery after spinal cord injury (Shigyo & Tohda, 2016). Interestingly, during spinal cord injury, other studies have shown that chondroitin sulphate proteoglycans, a key component of perineuronal nets, are also upregulated in spinal cord injury (Shigyo & Tohda, 2016).

In the extracellular space, vimentin can also bind to surfaces of other cells and the extracellular matrix, and the interaction between extracellular vimentin and other cell types can result in changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype (Bucki *et al.*, 2022).

Extracellular vimentin binds external cell membranes, and it is unknown whether vimentin can act as an adhesive anchor independently for cells is largely uncharacterized (Bucki et al., 2022). Some studies have utilized traction force microscopy and spheroid expansion assays to characterize how various cell types respond to extracellular vimentin (Bucki et al., 2022). Attachment of cells and spreading vimentin coated surfaces is decreased by hyaluronic acid, degrading enzymes, hyaluronan synthase inhibitors, soluble heparin and N-acetyl glucosamine that have little or no effect on the similar cell types binding to collagen-coated hydrogels (Bucki et al., 2022). These studies indicate the effectiveness of substrate- bound vimentin as a cell ligand and indicates that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins possess Nacetyl glucosamine which is part of a novel class of adhesion receptors for extracellular vimentin (Bucki et al., 2022). Vimentin does not have a signal peptide or other features of conventionally secreted protein; it has been shown that vimentin has been shown to selectively released into the extracellular by active processes rather than appearing in the extracellular environment solely resulting from mechanical damage to the cell membrane permeability barrier (Bucki et al., 2022). The extracellular expression of vimentin requires at least two active processes. The first is stimulation of protein arginine deaminases or protein kinases which either succinate or phosphorylate key residues which are essential for vimentin to assemble into filaments (Bucki et al., 2022). The activation of these processes results in solubilization of vimentin into small oligometric units (Bucki et al., 2022). The second route in which Vimentin release occurs into the extracellular space or localized to the exterior surface of the cell membrane and involves the unconventional type 3 secretion pathway (Bucki et al., 2022). It has been postulated that vimentin binds the cell surface due to its affinity for polysaccharides (Bucki et al., 2022). One study indicates that vimentin binds selectively to polymers with multiple copies of N-acetylglucosamine but no other sugar types (Bucki et al., 2022). Vimentin also binds to glycosaminoglycans such as hyaluronic acid and heparin in which one of the two carbohydrate units is either N-acetylglucosamine or another closely related structure (Bucki et al., 2022). Vimentin has a high affinity for N-acetylglucosamine containing cell surface structures and the fact that many or perhaps all of the proposed vimentin binding cell surface proteins are themselves glycosylated, indicates a key role for hyaluronic acid (Bucki et al., 2022). This suggests that either hyaluronic acid and heparin rich like glycocalyx or transmembrane proteins are heavily glycosylated are important elements in the mechanism by which extracellular vimentin binds and stimulates eukaryotic cells (Bucki et al., 2022).

The cellular distributions, molecular actions and post-translational modifications described above provide some supportive evidence that vimentin could still be the PNN component that is bound by WFA. There are clearly some key experiments that would need to be conducted to prove this: notably, anti-vimentin antibodies and WFA recognising the same molecular light band on Western blots and co-localising in the extracellular matrix of cells. These experiments were not possible in the time-frame of my studies.

8.9 Future of PNN research and final thoughts

Perineuronal nets control synaptic stabilization in both the developing and adult central nervous system and the disruption of perineuronal nets has been shown to stimulate neuroplasticity. Studies have investigated the possibility of memory prolongation by attenuating perineuronal net formation using 4-methylbelliferone (4-mu), an inhibitor of hyaluronan synthesis (Dubisova *et al.*, 2022). The studies should that oral administration of 4-mu decreased perineuronal net formation and increased memory retention in mice (Dubisova *et al.*, 2022). Their results suggested that 4-mu treatment could potentially offer routes for perineuronal net modulation in memory enhancement (Dubisova *et al.*, 2022). Other studies have also looked at the expression of OTX2, MMP3 and MMP9 in the case of sleep deprivation and trauma (Fang *et al.*, 2020). This has led to researchers targeting these specific perineuronal net components as therapeutic targets (Fang *et al.*, 2020).

Other studies have shown the importance of TrkB dependent plasticity and targeting PTP sigma perineuronal net interactions. This research could lead to the ability of the perineuronal nets to restrict TRKB dependent plasticity (Browne *et al.*, 2022). PTP sigma mimetics have been produced and have displayed efficacy in pre-clinical models of spinal cord injury (Browne *et al.*, 2022). Further research of perineuronal receptor interactions with perineuronal nets in the context of memory should be undertaken to understand these interactions.

Moreover, growing evidence to support alterations in ECM components in the context of multiple sclerosis. It has been shown that oligodendrocyte progenitors are enriched for perineuronal components including *Aggrecan*, *Neurocan*, *Versican*, phosph*acan*, *Brevican* and tenascin R in a pathological state where perineuronal net levels are increased (Browne *et al.*, 2022). Perineuronal nets can also act as a scaffold for inhibitors of synapse formation such as semaphorin 3A (Browne *et al.*, 2022). Interestingly, Semaphorin 3A was one of the genes identified in the earlier lithium gene

trap screen resulting in our research doing a WFA gene trap screen. With regards to therapeutic development, inhibiting Sema3A which is mainly found in the adult cortical perineuronal nets could provide us with the most compelling results in treatment of multiple sclerosis. Semaphorins and Plexin A1 are upregulated in human brains of individuals diagnosed with multiple sclerosis (Browne *et al.*, 2022). These changes are important as sempahorins are known to decrease axonal regeneration, oligodendrocyte progenitor cell differentiation and oligodendrocyte migration (Browne *et al.*, 2022). Further studies also support a role for semaphorins in the pathophysiology of schizophrenia. CSPGs, key components of perineuronal nets, are known to be decreased in schizophrenia subjects (Browne *et al.*, 2022).

Several limitations remain with our understanding of PNN physiology and function. Optimization of PNN visualization remains a concern since not all Aggrecan containing perineuronal nets are labelled with WFA. When designing future experiments for future perineuronal networks, the circadian rhythmicity of perineuronal net density and composition are significant factors which should be taken into consideration. Strategies to degrade perineuronal nets currently rely on Ch-ABC, a polysaccharide lyase derived from the bacterium Proteus vulgaris (Browne et al., 2022). Levels of CSPG degradation is limited by Ch-ABCs profile of thermal instability, short half-life and repeated dosing requirements to maintain therapeutically relevant knockdown of perineuronal nets (Browne et al., 2022). Numerous studies have addressed this issue stabilizing the protein by site-directed mutagenesis or by covalent molecules such as glycerol, sorbitol or polyethene glycol (Browne et al., 2022). Using local delivery of stabilized Ch-ABC has provided the greatest success in pre-clinical models of spinal cord injury (Browne et al., 2022). Viral delivery of Ch-ABC has also been utilised for spinal cord injury associated pathology ex vivo and in vivo (Browne et al., 2022). Other strategies have utilised Ch-ABC with scaffolds to improve long-term targeted knockdown. Furthermore, utilizing tamoxifen-inducible selective Ch-ABC in hippocampal CA2 neurons in a conditional CA2 Creexpressing mouse line resulted in sustained knockdown of perineuronal nets (Browne et al., 2022). The knockdown was more evident in CA1 and CA3 with more widespread knockdown occurring with repeated tamoxifen injections (Browne et al., 2022). Research in the perineuronal net field is moving towards the use of targeted knockdowns of perineuronal components by pharmacological or genetic means and away from the use of non-selective knockdown of perineuronal nets by Ch-ABC administration. By doing this, this will determine the level of contribution, PNN subcomponents have with perineuronal net function and synaptic plasticity in specific disease models and lead to production of small molecule inhibitors or novel drug classes which can be produced clinically.

In summary, the research that has been conducted has started the process of a deeper investigation of the processes and pathways that regulation the perineuronal net. Perineuronal nets develop in the juvenile brain and become stabilized in the adult brain but become dysregulated during periods of mental wellness. Investigating these genes, their binding partners and mechanisms of action in relation to perineuronal nets could unlock a future of potential therapeutic treatment. Though I used gene trapping mainly to identify these genes, this is not always reliable and further research using CRISPR or siRNA libraries in not just SH-SY5Y cells but other secondary and primary cell lines, and within the mouse brain could provide further insight into beneficial therapeutic treatment for perineuronal net-related neuropsychiatric diseases.

Chapter 9

References

A.advancedbrain.com. (2018). *Which Brain Areas Are Most Involved in Music Listening*? [online] Available at: http://a.advancedbrain.com/news/brain_areas.jsp [Accessed 30 Aug. 2018].

Alaiyed, S., Bozzelli, P., Caccavano, A., Wu, J. and Conant, K. (2019). Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma polr; relevance to antidepressant efficacy. *Journal of Neurochemistry*, 148(6), pp.810-821.

Allen, N. J., and Barres, B. A. (2009) Neuroscience: Glia - more than just brain glue. Nature 457, 675–677.

Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell linederived neurotrophic factor) serum levels in bipolar disorder: The role of lithium. Journal of Affective Disorders, 166, pp.193-200.

Alto, L. T. & Terman, J. R. Semaphorins and their Signaling Mechanisms. *Methods Mol Biol* 1493, 1–25 (2017).

Anderson, E., Katunga, L. and Willis, M. (2012). Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. *Clinical and Experimental Pharmacology and Physiology*, 39(2), pp.179-193.

Anlar, B. and Gunel-Ozcan, A. (2012). Tenascin-R: Role in the central nervous system. *The International Journal of Biochemistry & Cell Biology*, 44(9), pp.1385-1389.

Aswendt, M. *et al.* (2022) 'Reactive astrocytes prevent maladaptive plasticity after ischemic stroke', *Progress in Neurobiology*, 209, p. 102199. doi: 10.1016/j.pneurobio.2021.102199.

Airaksinen, M. and Saarma, M. (2002). THE GDNF FAMILY: SIGNALLING, BIOLOGICAL FUNCTIONS AND THERAPEUTIC VALUE. *Nature Reviews Neuroscience*, 3(5), pp.383-394.

Barros, C. S., Franco, S. J. & Müller, U. Extracellular matrix: functions in the nervous system. *Cold Spring Harb. Perspect. Biol.* **3**, a005108 (2011).

Barros, C. S. *et al.* 1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth. *Development* 136, 2717–2724 (2009).

Basselin, M., kim, H. W., Chen, M., Ma, K., Rapoport, S. I., Murphy, R. C., and Farias, S. E. (2010) Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J. Lipid. Res. 51, 1049–1056.

Bayer, T., Buslei, R., Havas, L. and Falkai, P. (1999). Evidence for activation of microglia in patients with psychiatric wellnesses. *Neuroscience Letters*, 271(2), pp.126-128.

Beeson, D., Cossins, J., Rodriguez-Cruz, P., MaxWell, S., Liu, W. and Palace, J. (2018). Myasthenic syndromes due to defects in COL13A1 and in the N-linked glycosylation pathway. *Annals of the New York Academy of Sciences*, 1413(1), pp.163-169.

Bekku, Y. *et al.* Bral2 is Indispensable for the Proper Localization of *Brevican* and the Structural Integrity of the Perineuronal Net in the Brainstem and Cerebellum. *J. Comp. Neurol* 520, 1721–1736 (2012).

Bendz, H., Aurell, M. and Lanke, J. (2001). A historical cohort study of kidney damage in long-term lithium patients: continued survewellance needed. *European Psychiatry*, 16(4), pp.199-206.

Benes, F., Kwok, E., Vincent, S. and Todtenkopf, M. (1998). A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. *Biological Psychiatry*, 44(2), pp.88-97.

Beaulieu, J. (2012). A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. *Journal of Psychiatry & Neuroscience*, 37(1), pp.7-16.

Beaulieu, J. and Caron, M. (2008). Looking at Lithium: Molecular Moods and Complex Behaviour. *Molecular Interventions*, 8(5), pp.230-241.

Beaulieu, J. (2011). Beyond cAMP: the regulation of Akt and GSK3 by dopamine receptors. *Frontiers in Molecular Neuroscience*, 4.

Beaulieu, J., Sotnikova, T., Marion, S., Lefkowitz, R., Gainetdinov, R. and Caron, M. (2005). An Akt/β-Arrestin 2/PP2A Signaling Complex Mediates Dopaminergic Neurotransmission and Behavior. *Cell*, 122(2), pp.261-273.

Beurdeley, M. *et al.* Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. *J. Neurosci.* 32, 9429–37 (2012).

Belmaker, R. H. (2004) Bipolar disorder. N. Engl. J. Med. 351, 476– 486. (4) Gershon, S., Chengappa, K. N., and Malhi, G. S. (2009) Lithium specificity in bipolar wellness: a classic agent for the classic disorder. Bipolar Disord. 11, 34–44.

Berretta, S., Pantazopoulos, H., Markota, M., Brown, C. and Batzianouli, E. (2015). Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia. *Schizophrenia Research*, 167(1-3), pp.18-27.

Benarroch, E. E. Extracellular matrix in the CNS. *Neurology* 85, 1417–1427 (2015).

Bennett, E., Mandel, U., Clausen, H., Gerken, T., Fritz, T. and Tabak, L. (2014). Control of mucin-type O-glycosylation: A classification of the polypeptide GalNActransferase gene family. *Glycobiology*, 22(6), pp.736-756. Beroun, Anna; Mitra, Shiladitya; Michaluk, Piotr; u. a. (2019): "MMPs in learning and memory and neuropsychiatric disorders". In: *Cellular and Molecular Life Sciences*. 76 (16), S. 3207–3228, DOI: 10.1007/s00018-019-03180-8.

Bertozzi, C. et al. (2017) Inhibition of NGLY1 inactivates the transcription factor NRF1 and Potentiates Proteasome inhibitor cytotoxicity [Preprint]. doi:10.26434/chemrxiv.5388046.v1.

Beurdeley, M., Spatazza, J., Lee, H., Sugiyama, S., Bernard, C., Di Nardo, A., Hensch, T. and Prochiantz, A. (2012). Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex. *Journal of Neuroscience*, 32(27), pp.9429-9437.

Beurel, E., and Jope, R. S. (2009) Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J. Neuroinflammation, DOI: 10.1186/1742-2094-6-9

Biscaro, B., Lindvall, O., Tesco, G., Ekdahl, C. and Nitsch, R. (2012). Inhibition of Microglial Activation Protects Hippocampal Neurogenesis and Improves Cognitive Deficits in a Transgenic Mouse Model for Alzheimer's Disease. *Neurodegenerative Diseases*, 9(4), pp.187-198.

Bitanihirwe, Byron K.Y.; Woo, Tsung-Ung W. (2014): "Perineuronal nets and schizophrenia: The importance of neuronal coatings". In: *Neuroscience & amp; Biobehavioral Reviews*. 45, S. 85–99, DOI: 10.1016/j.neubiorev.2014.03.018.

Biunno, I. and Cattaneo, M. (2011). SEL1L (sel-1 suppressor of lin-12-like (C. elegans)). Atlas of Genetics and Cytogenetics in Oncology and Haematology, (2).

Blond, B., Fredericks, C. and Blumberg, H. (2012). Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. *Bipolar Disorders*, 14(4), pp.340-355.

Bonneh-Barkay, D. & Wiley, C. A. Brain extracellular matrix in neurodegeneration. *Brain Pathology* 19, 573–585 (2009) Bosetti, F., Rintala, J., Seemann, R., Rosenberger, T. A., Contreras, M. A., Rapoport, S. I., and Chang, M. C. (2002) Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol. Psychiatry 7, 845–850.

Bosetti, F., Seemann, R., Bell, J., Zahorchak, R., Friedman, E., Rapoport, S. and Manickam, P. (2002). Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. *Brain Research Bulletin*, 57(2), pp.205-209.

Bolr, N. and Johnston, I. (2010). Targeted rapid amplification of cDNA ends (T-RACE)--an improved RACE reaction through degradation of non-target sequences. *Nucleic Acids Research*, 38(21), pp.e194-e194.

Brown, J. M. *et al.* A sulphated carbohydrate epitope inhibits axon regeneration after injury. *Proc. Natl. Acad. Sci.* 109, 4768–4773 (2012).

Browne, C.A. *et al.* (2022) "Perineuronal nets as therapeutic targets for the treatment of neuropsychiatric disorders," Frontiers in Synaptic Neuroscience, 14. Available at: https://doi.org/10.3389/fnsyn.2022.889800.

Bucki, R. (2022) Extracellular vimentin is sufficient to promote cell attachment, spreading, and motility by a mechanism involving N-acetyl glucosamine-containing structures [Preprint]. doi:10.1101/2022.11.28.518249.

Bucki, R. *et al.* (2022) "Extracellular vimentin is sufficient to promote cell attachment, spreading, and motility by a mechanism involving N-acetyl glucosamine-containing structures." Available at: https://doi.org/10.1101/2022.11.28.518249.

Buddhala, C., Campbell, M., Perlmutter, J. and Kotzbauer, P. (2015). Correlation between decreased CSF α -synuclein and A β 1–42 in Parkinson disease. *Neurobiology of Aging*, 36(1), pp.476-484.

180
Burchell, J., Beatson, R., Graham, R., Taylor-Papadimitriou, J. and Tajadura-Ortega, V. (2018). O-linked mucin-type glycosylation in breast cancer. *Biochemical Society Transactions*, 46(4), pp.779-788.

Burgess, N., Maguwere, E. and O'Keefe, J. (2002). The Human Hippocampus and Spatial and Episodic Memory. *Neuron*, 35(4), pp.625-641.

Byun, Y. *et al.* (2001) "Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis," Cell Death & Differentiation, 8(5), pp. 443–450. Available at: <u>https://doi.org/10.1038/sj.cdd.4400840</u>.

Caglayan, S. *et al.* (2014) 'Lysosomal sorting of amyloid-β by the SORLA receptor is impaired by a familial alzheimer's disease mutation', *Science Translational Medicine*, 6(223). doi:10.1126/scitranslmed.3007747.

Calabrese, J., Bowden, C., Sachs, G., Yatham, L., Behnke, K., Mehtonen, O., Montgomery, P., Ascher, J., Paska, W., Earl, N. and DeVeaugh-Geiss, J. (2003).

A Placebo-Controlled 18-Month Trial of Lamotrigine and Lithium Maintenance Treatment in Recently Depressed Patients with Bipolar I Disorder. *The Journal of Clinical Psychiatry*, 64(9), pp.1013-1024.

Calker, D. and Belmaker, R. (2000). The high affinity inositol transport system - implications for the pathophysiology and treatment of bipolar disorder. *Bipolar Disorders*, 2(2), pp.102-107.

Carstens, K. E., Phwellips, M. L., Pozzo-Mweller, L., linberg, R. J. & Dudek, S. M. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. *J. Neurosci.* 36, 6312–6320 (2016).

Carulli, D., de Winter, F. and Verhaagen, J. (2021) 'Semaphorins in adult nervous system plasticity and disease', *Frontiers in Synaptic Neuroscience*, 13. doi:10.3389/fnsyn.2021.672891.

Connell, B. J. & Lortat-Jacob, H. Human Immunodeficiency Virus and Heparan Sulphate: From Attachment to Entry Inhibition. *Front. Immunol.* 4, 385 (2013).

Carulli, D., Foscarin, S., Faralli, A., Pajaj, E. and Rossi, F. (2013). Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. *Molecular and Cellular Neuroscience*, 57, pp.10-22.

Carulli, D., Kwok, J. and Pizzorusso, T. (2016). Perineuronal Nets and CNS Plasticity and Repair. *Neural Plasticity*, 2016, pp.1-2.

Carulli, D., Kwok, J. and Pizzorusso, T. (2016). Perineuronal Nets and CNS Plasticity and Repair. *Neural Plasticity*, 2016, pp.1-2.

Carulli, D. and Verhaagen, J. (2021) 'An extracellular perspective on CNS maturation: Perineuronal nets and the control of plasticity', *International Journal of Molecular Sciences*, 22(5), p. 2434. doi:10.3390/ijms22052434

Cassidy, F. (2016). Antidepressant treatment response in bipolar II disorder. *Bipolar Disorders*, 18(8), pp.706-707.

Chaunsali, Lata; Tewari, Bhanu P.; Sontheimer, Harald (2021): "Perineuronal Net Dynamics in the pathophysiology of epilepsy". In: *Epilepsy Currents*. 21 (4), S. 273–281, DOI: 10.1177/15357597211018688.

Cheung, W.D. and Hart, G.W. (2008) "AMP-activated protein kinase and p38 MAPK activate O-glcnacylation of neuronal proteins during glucose deprivation," Journal of Biological Chemistry, 283(19), pp. 13009–13020. Available at: <u>https://doi.org/10.1074/jbc.m801222200</u>.

Chaunsali, L., Tewari, B.P. and Sontheimer, H. (2021) 'Perineuronal Net Dynamics in the pathophysiology of epilepsy', *Epilepsy Currents*, 21(4), pp. 273–281. doi:10.1177/15357597211018688.

Colla, M., Schubert, F., Bubner, M., Heidenreich, J., Bajbouj, M., Seifert, F., Luborzewski, A., Heuser, I. and Kronenberg, G. (2008). Glutamate as a spectroscopic marker of hippocampal structural plasticity is elevated in long-term euthymic bipolar patients on chronic lithium therapy and correlates inversely with diurnal cortisol. *Molecular Psychiatry*, 14(7), pp.696-704.

Colton, C. (2009). Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain. *Journal of Neuroimmune Pharmacology*, 4(4), pp.399-418.

Condomitti, G. & de Wit, J. Heparan Sulphate Proteoglycans as Emerging Players in Synaptic Specificity. *Front. Mol. Neurosci.* 11, (2018).

Cotter, D., Mackay, D., Landau, S., Kerwin, R., and Everall, I. (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch. Gen. Psychiatry 58, 545–553

Cotter, D., Pariante, C. and Everall, I. (2001). Glial cell abnormalities in major psychiatric disorders: the evidence and implications. *Brain Research Bulletin*, 55(5), pp.585-595.

Coulson-Thomas, V., Lauer, M., Soleman, S., Zhao, C., Hascall, V., Day, A. and Fawcett, J. (2016). Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury. *Journal of Biological Chemistry*, 291(38), pp.19939-19952.

Cowansage, K., LeDoux, J. and Monfils, M. (2010). Brain-Derived Neurotrophic Factor: A Dynamic Gatekeeper of Neural Plasticity. *Current Molecular Pharmacology*, 3(1), pp.12-29.

Cui, H., Freeman, C., Jacobson, G. A. & Small, D. H. Proteoglycans in the Central Nervous System: Role in Development, Neural Repair, and Alzheimer's Disease. *Int. Union Biochem. Mol. Biol.* 65, 108–120 (2013).

David, L. S., Schachner, M. & Saghatelyan, A. The Extracellular Matrix

Glycoprotein Tenascin-R Affects Adult But Not Developmental Neurogenesis in the Olfactory Bulb. *J. Neurosci.* 33, 10324–10339 (2013).

Dear, T. and Boehm, T. (2009). Diverse mRNA exprssion patterns of the mouse calpain genes Capn5, Capn6 and Capn11 during development. *Mechanisms of Development*, 89(1-2), pp.201-209.

de Ramon Francàs, G., Zuñiga, N. R. & Stoeckli, E. T. The spinal cord shows the way – How axons navigate intermediate targets. *Dev. Biol.* 432, 43–52 (2017).

Dick, G., Tan, C., Alves, J., Ehlert, E., Mweller, G., Hsieh-Wilson, L., Sugahara, K., Oosterhof, A., van Kuppevelt, T., Verhaagen, J., Fawcett, J. and Kwok, J. (2013). *Semaphorin 3A* Binds to the Perineuronal Nets via Chondroitin Sulphate Type E Motifs in Rodent Brains. *Journal of Biological Chemistry*, 288(38), pp.27384-27395.

Dick, G. *et al.* Semaphorin 3A binds to the perineuronal nets via chondroitin sulphate type E motifs in rodent brains. *J. Biol. Chem.* 288, 27384–27395 (2013).

Dickens, Stuart-Mark (2021). Establishing the perineuronal net as a neuroprotective barrier in Parkinson's disease, Unpublished PHD thesis, University of Leeds

Dityatev, A., Seidenbecher, C. I. & Schachner, M. Compartmentalization from the outside: The extracellular matrix and functional microdomains in the brain. *Trends in Neurosciences* 33, 503–512 (2010).

Dewald, O. (2005). CCL2/Monocyte Chemoattractant Protein-1 Regulates Inflammatory Responses Critical to Healing Myocardial Infarcts. *Circulation Research*, 96(8), pp.881-889.

184

de Winter, F., Kwok, J., Fawcett, J., Vo, T., Carulli, D. and Verhaagen, J. (2016). The Chemorepulsive Protein *Semaphorin 3A* and Perineuronal Net-Mediated Plasticity. *Neural Plasticity*, 2016, pp.1-14.

Djerbal, L., Lortat-Jacob, H. & Kwok, J. Chondroitin sulphates and their binding molecules in the central nervous system. *Glycoconjugate Journal* 34, 363–376 (2017).

Donegan, J. and Lodge, D. (2016). Hippocampal Perineuronal Nets Are Required for the Sustained Antidepressant Effect of Ketamine. *International Journal of Neuropsychopharmacology*, p.pyw095.

Dubacheva, G. V *et al.* Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin. *J. Am. Chem. Soc.* 139, 4157–4167 (2017).

Dubisova, J. *et al.* (2022) "Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice," Brain Research Bulletin, 181, pp. 144–156. Available at: <u>https://doi.org/10.1016/j.brainresbull.2022.01.011</u>.

Duman-Scheel, M. (2015). Deleted in Colorectal Cancer (*DCC*) Pathfinding: Axon Guidance Gene Finally Turned Tumor Suppressor. *Current Drug Targets*, 13(11), pp.1445-1453.

Drug Treatments for Geriatric Bipolar Disorder: A Perspective from the ISBD Geriatric Bipolar Taskforce. (2015). *Bipolar Disorders*, 17, pp.31-31.

Escudero, D. (2011) 'Has2 (hyaluronan synthase 2)', Atlas of Genetics and Cytogenetics in Oncology and Haematology [Preprint], (2). doi:10.4267/2042/44682.

Eisele, B.S. *et al.* (2022) 'Bisphosphate nucleotidase 2 (BPNT2), a molecular target of lithium, regulates chondroitin sulphation patterns in the cerebral cortex and

Hippocampus', *Advances in Biological Regulation*, 83, p. 100858. doi:10.1016/j.jbior.2021.100858.

Enwright, John F; Sanapala, Sowmya; Foglio, Aaron; u. a. (2016): Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. In: *Neuropsychopharmacology*. 41 (9), S. 2206–2214, DOI: 10.1038/npp.2016.24.

Eskici, N., Erdem-Ozdamar, S. and Dayangac-Erden, D. (2018). The altered expression of perineuronal net elements during neural differentiation. *Cellular & Molecular Biology Letters*, 23(1).

Elvsåshagen, T., Zuzarte, P., Istlye, L., Bøen, E., Josefsen, D., Boye, B., Hol, P., Malt, U., Young, L. and Andreazza, A. (2016). Dentate gyrus-cornu ammonis (CA) 4 volume is decreased and associated with depressive episodes and lipid peroxidation in bipolar II disorder: Longitudinal and cross-sectional analyses. *Bipolar Disorders*, 18(8), pp.657-668.

Fang, X. *et al.* (2020) "Matrix metalloproteinase 9 (MMP9) level and MMP9 - 1562C>T in patients with obstructive sleep apnea: A systematic review and metaanalysis of case-control studies," Sleep Medicine, 67, pp. 110–119. Available at: https://doi.org/10.1016/j.sleep.2019.11.1247.

Farrokhi, M. (2017). Sema3a and multiple sclerosis. Gene, 615, p.41.

Fawcett, James W.; Fyhn, Marianne; Jendelova, Pavla; u. a. (2022): "The extracellular matrix and perineuronal nets in memory". In: *Molecular Psychiatry*. 27 (8), S. 3192–3203, DOI: 10.1038/s41380-022-01634-3.

Femenía, T., Gómez-Galán, M., Lindskog, M. and Magara, S. (2012). Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. *Brain Research*, 1476, pp.58-70.

Fornai, F., Longone, P., Ferrucci, M., Lenzi, P., Isidoro, C., Ruggieri, S. and Paparelli, A. (2008). Autophagy and amyotrophic lateral sclerosis: The multiple roles of lithium. *Autophagy*, 4(4), pp.527-530.

Fausther, M., Lavoie, E., Goree, J., Baldini, G. and Dranoff, J. (2014). NT5E Mutations That Cause Human Disease Are Associated with Intracellular Mistrafficking of NT5E Protein. *PLoS ONE*, 9(6), p.e98568.

Favuzzi, E., Marques-Smith, A., Deogracias, R., Winterflood, C., Sánchez-Aguilera, A., Mantoan, L., Maeso, P., Fernandes, C., Elrs, H. and Rico, B. (2017). Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein *Brevican*. *Neuron*, 95(3), pp.639-655.e10.

Francis, L., Francis, V. and Venuthurupalli, S. (2013). Proliferative glomerulonephritis with monoclonal IGG deposits on a background of chronic lithium nephrotoxicity – a case report. *Pathology*, 45, p.S68.

Freland, L. and Beaulieu, J. (2012). Inhibition of GSK3 by lithium, from single molecules to signaling networks. *Frontiers in Molecular Neuroscience*, 5.

Frischknecht, R. *et al.* (2009) 'Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity', *e-Neuroforum*, 15(3), pp. 94–95. doi:10.1515/nf-2009-0304.

Foscarin, S., Raha-Chowdhury, R., Fawcett, J. W. & Kwok, J. C. F. Brain ageing changes proteoglycan sulphation, rendering perineuronal nets more inhibitory. *Aging (Albany. NY).* 9, 1607–1622 (2017).

Fountoulakis, K., Kontis, D., Gonda, X. and Yatham, L. (2013). A systematic review of the evidence on the treatment of rapid cycling bipolar disorder. *Bipolar Disorders*, 15(2), pp.115-137.

Gama, M., Houle, G., Noreau, A., Dionne-Laporte, A., Dion, P., Rouleau, G., Barsottini, O. and Pedroso, J. (2016). SYNE1 mutations cause autosomal-

recessive ataxia with retained reflexes in Brazilian patients. *Movement Disorders*, 31(11), pp.1754-1756.

Gamboa, N. T. *et al.* Neurovascular patterning cues and implications for central and peripheral neurological disease. *Surg. Neurol. Int.* 8, 208 (2017).

Galtrey, C. M. & Fawcett, J. W. The role of chondroitin sulphate proteoglycans in regeneration and plasticity in the central nervous system. *Brain Res. Rev.* 54, 1–18 (2007).

Garrett, A. and Chang, K. (2008). The role of the amygdala in bipolar disorder development. *Development and Psychopathology*, 20(04), p.1285.

Garrido, J., Simón, D., Varea, O. and Wandosell, F. (2007). GSK3 alpha and GSK3 beta are necessary for axon formation. *FEBS Letters*, 581(8), pp.1579-1586.

Gershon, S., Chengappa, K. and Malhi, G. (2009). Lithium specificity in bipolar wellness: a classic agent for the classic disorder. *Bipolar Disorders*, 11, pp.34-44.

George, N. & Geller, H. M. Extracellular matrix and traumatic brain injury. *J. Neurosci. Res.* 96, 573–588 (2018).

Ghosh, A. and Giese, K. (2015). Calcium/calmodulin-dependent kinase II and Alzheimer's disease. *Molecular Brain*, 8(1).

Giamanco, K., Morawski, M. and Matthews, R. (2010). Perineuronal net formation and structure in *Aggrecan* knockout mice. *Neuroscience*, 170(4), pp.1314-1327.

Gigante, A., Bond, D., Lafer, B., Lam, R., Young, L. and Yatham, L. (2012). Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. *Bipolar Disorders*, 14(5), pp.478-487.

Gitlin, M. (2016). Lithium side effects and toxicity: prevalence and management strategies. *International Journal of Bipolar Disorders*, 4(1).

Gilad, G. M., and Gilad, V. H. (2007) Astroglia growth retardation and increased microglia proliferation by lithium and ornithine decarboxylase inhibitor in rat cerebellar cultures: Cytotoxicity by combined lithium and polyamine inhibition. J. Neurosci. Res. 85, 594–601.

Gow, Matthew; Mirembe, Dora; Longwe, Zaomba; u. a. (2013): "A gene trap mutagenesis screen for genes underlying cellular response to the mood stabilizer lithium". In: *Journal of Cellular and Molecular Medicine*. 17 (5), S. 657–663, DOI: 10.1111/jcmm.12048.

Grover, S., Ghosh, A., Sarkar, S., Chakrabarti, S. and Avasthi, A. (2014). Sexual Dysfunction in Clinically Stable Patients with Bipolar Disorder Receiving Lithium. *Journal of Clinical Psychopharmacology*, 34(4), pp.475-482.

Guloksuz, S., Cetin, E. A., Cetin, T., Deniz, G., Oral, E. T., and Nutt, D. J. (2010) Cytokine levels in euthymic bipolar patients. J. Affective Disord. 126, 458–462

Hariri, A. and Shin, L. (2011). Ilcome to Biology of Mood & Anxiety Disorders. *Biology of Mood & Anxiety Disorders*, 1(1), p.1.

Härtig, Wolfgang; Brückner, Gert; Brauer, Kurt; u. a. (1995): "Allocation of perineuronal nets and parvalbumin-, Calbindin-D28K- and glutamic acid decarboxylase-immunoreactivity in the amygdala of the rhesus monkey". In: *Brain Research*. 698 (1–2), S. 265–269, DOI: 10.1016/0006-8993(95)01016-o.

Hoppenbrouwers, I.A. *et al.* (2008) 'EVI5 is a risk gene for multiple sclerosis', *Genes & amp; Immunity*, 9(4), pp. 334–337. doi:10.1038/gene.2008.22.

Hosp, J., Strüber, M., Yanagawa, Y., Obata, K., Vida, I., Jonas, P. and Bartos, M. (2013). Morpho-physiological criteria divide dentate gyrus interneurons into classes. *Hippocampus*, 24(2), pp.189-203.

Hoozemans, J.J.M. *et al.* (2012) 'Activation of the unfolded protein response is an early event in alzheimer's and parkinson's disease', *Neurodegenerative Diseases*, 10(1–4), pp. 212–215. doi:10.1159/000334536.

Huang, H. and Akbarian, S. (2007). GAD1 mRNA Expression and DNA Methylation in Prefrontal Cortex of Subjects with Schizophrenia. *PLoS ONE*, 2(8), p.e809.

Huang, Y., Coupland, N., Lebel, R., Carter, R., Seres, P., Wilman, A. and Malykhin, N. (2013). Structural Changes in Hippocampal Subfields in Major Depressive Disorder: A High-Field Magnetic Resonance Imaging Study. *Biological Psychiatry*, 74(1), pp.62-68.

Huang, W. C., Lin, Y. S., Wang, C. Y., Tsai, C. C., Tseng, H. C., Chen, C. L., Lu, P. J., Chen, P. S., Qian, L., Hong, J. S., and Lin, C. F. (2008) Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology. 128, e275–286

Hull, M., Lee, E., Lee, T., Anand, N., LaLone, V., and Parameswaran, N. (2014) Lithium chloride induces TNFα in mouse macrophages via MEK-ERK-dependent pathway. J. Cell. Biochem. 115, 71–80.

Hussaini, S., Choi, C., Cho, C., Kim, H., Jun, H. and Jang, M. (2014). Wnt signaling in neuropsychiatric disorders: Ties with adult hippocampal neurogenesis and behavior. *Neuroscience & Biobehavioral Reviews*, 47, pp.369-383.

Irvine, S. F. & Kwok, J. C. F. Perineuronal nets in spinal motoneurones: Chondroitin sulphate proteoglycan around alpha motoneurones. *Int. J. Mol. Sci.* 19, (2018).

Iwashkiw, J., Vozza, N., Kinsella, R. and Feldman, M. (2017). Pour some sugar on it: the expanding world of bacterial proteinO-linked glycosylation. *Molecular Microbiology*, 89(1), pp.14-28.

Jakovcevski, I., Miljkovic, D., Schachner, M. and Andjus, P. (2012). Tenascins and inflammation in disorders of the nervous system. *Amino Acids*, 44(4), pp.1115-1127.

Jacquinet, J.-C. & Lopin-Bon, C. Stereocontrolled preparation of biotinylated chondroitin sulphate E di-, tetra-, and hexasaccharide conjugates. *Carbohydr. Res.* 402, 35–43 (2015).

Janssen, B. J. C. *et al.* Structural basis of semaphorin-plexin signalling. *Nature* 467, (2010).

Jakovljević, A. *et al.* (2021) 'Structural and functional modulation of perineuronal nets: In search of important players with highlight on tenascins', *Cells*, 10(6), p. 1345. doi:10.3390/cells10061345.

Javadapour, A., Malhi, G., Ivanovski, B., Chen, X., In, W. and Sachdev, P. (2010). Hippocampal Volumes in Adults with Bipolar Disorder. *Journal of Neuropsychiatry*, 22(1), pp.55-62.

Jetsonen, E. *et al.* (2023) 'Activation of trkb in parvalbumin interneurons is required for the promotion of reversal learning in spatial and fear memory by antidepressants', *Neuropsychopharmacology*, 48(7), pp. 1021–1030. doi:10.1038/s41386-023-01562-y.

Jia, M., Jiang, L., Wang, Y., Huang, J., Yu, M. and Xue, H. (2016). lincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through Notch signaling-induced epithelial-mesenchymal transition. *Hepatology Research*, 46(11), pp.1137-1144.

Jin, G., Long, C., Liu, W., Tang, Y., Zhu, Y., Zhou, X., Ai, Y., Zhang, Q. and Shen, H. (2013). Identification and characterization of novel alternative splice variants of human SAMD11. *Gene*, 530(2), pp.215-221.

John, Urmwella; Patro, Nisha; Patro, Ishan (2022): "Perineuronal nets: Cruise from a honeycomb to the safety nets". In: *Brain Research Bulletin*. 190, S. 179–194, DOI: 10.1016/j.brainresbull.2022.10.004.

Jun, I., Park, H., Piao, H., Han, J., An, M., Yun, B., Zhang, X., Cha, Y., Shin, Y., Yook, J., Jung, J., Gee, H., Park, J., Yoon, D., Jeung, H. and Lee, M. (2017). ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. *British Journal of Cancer*, 117(12), pp.1798-1809.

Kaidanovich-Beilin, O. and Woodgett, J. (2011). GSK-3: Functional Insights from Cell Biology and Animal Models. *Frontiers in Molecular Neuroscience*, 4.

Kaneda, T., Makino, S., Nishiyama, M., Asaba, K. and Hashimoto, K. (2008). Differential Neuropeptide Responses to Starvation with Ageing. *Journal of Neuroendocrinology*, 13(12), pp.1066-1075.

Kanekiyo, T. *et al.* Heparan Sulphate Proteoglycan and the Low-Density Lipoprotein Receptor-Related Protein 1 Constitute Major Pathways for Neuronal Amyloid- Uptake. *J. Neurosci.* 31, 1644–1651 (2011).

Kang, K., Kim, Y. J., Kim, Y. H., Roh, J. N., Nam, J. M., Kim, P. Y., Ryu, W. S., Lee, S. H., and Yoon, B. W. (2012) Lithium pretreatment reduces brain injury after intracerebral hemorrhage in rats. Neurol. Res. 34, 447–454.

Kele, J. (2006). Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. *Development*, 133(3), pp.495-505.

Keswani, A., Chustz, R., Suh, L., Carter, R., Peters, A., Tan, B., Chandra, R., Kim, S., Azam, T., Dinarello, C., Kern, R., Schleimer, R. and Kato, A. (2011). Differential expression of interleukin-32 in chronic rhinosinusitis with and without nasal polyps. *Allergy*, 67(1), pp.25-32.

Kerner, B. (2014). Genetics of bipolar disorder. *The Application of Clinical Genetics*, p.33.

Khairallah, W., Fawaz, A., Brown, E. and El-Hajj Fuleihan, G. (2007). Hypercalcemia and diabetes insipidus in a patient previously treated with lithium. *Nature Clinical Practice Nephrology*, 3(7), pp.397-404.

Kim, B., Park, Y., Libermann, T. and Cho, J. (2011). PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway. *Journal of Cellular Biochemistry*, 112(8), pp.2051-2061.

Kim, S., Lee, H. and Kim, Y. (2013). Neural stem cell-based treatment for neurodegenerative diseases. *Neuropathology*, p.n/a-n/a.

Knijff, E. M., Breunis, M. N., Kupka, R. W., de Wit, H. J., Ruwhof, C., Akkerhuis, G. W., Nolen, W. A., and Drexhage, H. A. (2007) An imbalance in the production of IL-1beta and IL-6 by monocytes of bipolar patients: restoration by lithium treatment. Bipolar Disord. 9, 743–753

Körner, S., Böselt, S., Wichmann, K., Thau-Habermann, N., Zapf, A., Knippenberg, S., Dengler, R. and Petri, S. (2016). The Axon Guidance Protein *Semaphorin 3A* Is Increased in the Motor Cortex of Patients With Amyotrophic Lateral Sclerosis. *Journal of Neuropathology & Experimental Neurology*, 75(4), pp.326-333.

Kovalevich and Langford (2016). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. *Methods Molecular Biology*, 1078, pp.9-21.

Kovalevich, Jane; Langford, Dianne (2013): "Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology". In: *Neuronal Cell Culture.*, S. 9–21, DOI: 10.1007/978-1-62703-640-5_2.

Kraszewska, A., Chlopocka-Wozniak, M., Abramowicz, M., Sowinski, J. and Rybakowski, J. (2014). A cross-sectional study of thyroid function in 66 patients with bipolar disorder receiving lithium for 10-44 years. *Bipolar Disorders*, 17(4), pp.375-380.

Kremer, A. (2011). GSK3 and Alzheimer's disease: facts and fiction.... *Frontiers in Molecular Neuroscience*, 4.

Kucharz, E. J., Sierakowski, S. J., and Goodwin, J. S. (1993) Lithium *in vitro* enhances interleukin-2 production by T cells from patients with systemic lupus erythematosus. Immunopharmacol. Immunotoxicol. 15, 515–523.

Kurihara, D. & Yamashita, T. Chondroitin sulphate proteoglycans downregulate spine formation in cortical neurons by targeting tropomyosinrelated kinase B (TrkB) protein. *J. Biol. Chem.* 287, 13822–13828 (2012).

Kwok, J., Dick, G., Wang, D. and Fawcett, J. (2011). Extracellular matrix and perineuronal nets in CNS repair. *Developmental Neurobiology*, 71(11), pp.1073-1089.

Kwok, J. C. F., Foscarin, S. & Fawcett, J. W. *Extracellular Matrix, Neuromethods*. 93, (2015).

Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: A new target for remyelination. *Nature Reviews Neuroscience* 14, 722–729 (2013).

Lee, Dongmin; Hyun, Jung Ho; Jung, Kanghoon; u. a. (2017): "A calcium- and lightgated switch to induce gene expression in activated neurons". In: *Nature Biotechnology*. 35 (9), S. 858–863, DOI: 10.1038/nbt.3902.

Lemarchant, S., Wojciechowski, S. and Koistinaho, J. (2016). Perineuronal nets in neurodegeneration. *Oncotarget*, 7(48).

Lendvai, D. *et al.* Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. *Acta Neuropathol* 125, 215–229 (2013).

Lepkifker, E., Sverdlik, A., Iancu, I., Ziv, R., Segev, S. and Kotler, M. (2004). Renal Insufficiency in Long-Term Lithium Treatment. *The Journal of Clinical Psychiatry*, 65(6), pp.850-856.

Logsdon, A.F. *et al.* (2021) 'Decoding perineuronal net glycan sulphation patterns in the alzheimer's disease brain', *Alzheimer's & amp; Dementia*, 18(5), pp. 942–954. doi:10.1002/alz.12451.

Leighton, S.P. *et al.* (2017) 'Chemokines in depression in health and in inflammatory wellness: A systematic review and meta-analysis', *Molecular Psychiatry*, 23(1), pp. 48–58. doi:10.1038/mp.2017.205.

Li, Z., Su, D., Ying, L., Yu, G. and Mao, W. (2017). Study on expression of CDH4 in lung cancer. *World Journal of Surgical Oncology*, 15(1).

Liang, W. G. *et al.* Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. *Proc. Natl. Acad. Sci.* 113, 5000–5005 (2016).

Li, B., Yamamori, H., Tatebayashi, Y., Shafit-Zagardo, B., Tanimukai, H., Chen, S., Iqbal, K. and Grundke-Iqbal, I. (2008). Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus. *Journal of Neuropathology & Experimental Neurology*, 67(1), pp.78-84.

Li, Y., Jin, H., Yan, C., Ren, C., Jiang, C., Jin, C., Seo, K. and Jin, X. (2014). Molecular cloning, sequence identification, and gene expression analysis of bovine ADCY2 gene. *Molecular Biology Reports*, 41(6), pp.3561-3568.

Liberman, Z., Plotkin, B., Tennenbaum, T. and Eldar-Finkelman, H. (2008). Coordinated phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 and protein kinase CβII in the diabetic fat tissue. *American Journal of Physiology-Endocrinology and Metabolism*, 294(6), pp.E1169-E1177.

Licht, R. (2011). Lithium: Still a Major Option in the Management of Bipolar Disorder. *CNS Neuroscience & Therapeutics*, 18(3), pp.219-226.

Lisman, J. (2017). Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1715),

Liu, C. C. *et al.* Neuronal heparan sulphates promote amyloid pathology by modulating brain amyloid- β clearance and aggregation in Alzheimer's disease. *Sci. Transl. Med.* **8**, 332ra44 (2016).

Looyenga, B. and Brundin, P. (2013). Silencing synuclein at the synapse with PLK2. *Proceedings of the National Academy of Sciences*, 110(41), pp.16293-16294.

Luscher, C. and Malenka, R. (2012). NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). *Cold Spring Harbor Perspectives in Biology*, 4(6), pp.a005710-a005710.

Ly, P. and Song, W. (2011). Loss of activated CaMKII at the synapse underlies Alzheimer's disease memory loss. *Journal of Neurochemistry*, 119(4), pp.673-675.

Maeda, N., Ishii, M., Nishimura, K. & Kamimura, K. Functions of chondroitin sulphate and heparan sulphate in the developing brain. *Neurochem. Res.* 36, 1228–1240 (2011).

Malinauskas, T., Janssen, B., Iir, G., Cader, M., Siebold, C. and Jones, E. (2013). Neuropilins Lock Secreted Semaphorins onto Plexins in a Ternary Signalling Complex. *Biophysical Journal*, 104(2), p.613a.

Mann, L., Heldman, E., Bersudsky, Y., Vatner, S., Ishikawa, Y., Almog, O., Belmaker, R. and Agam, G. (2009). Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. *Bipolar Disorders*, 11(8), pp.885-896.

Mann-Wrobel, M., Carreno, J. and Dickinson, D. (2011). Meta-analysis of neuropsychological functioning in euthymic bipolar disorder: an update and investigation of moderator variables. *Bipolar Disorders*, 13(4), pp.334-342.

Massey, J. (2006). Chondroitinase ABC Digestion of the Perineuronal Net Promotes Functional Collateral Sprouting in the Cuneate Nucleus after Cervical Spinal Cord Injury. *Journal of Neuroscience*, 26(16), pp.4406-4414.

Mao, Y., Francis-Ist, P. and Irvine, K. (2015). Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. *Development*, 142(15), pp.2574-2585.

Malhi, G., Ivanovski, B., Hadzi-Pavlovic, D., Mitchell, P., Vieta, E. and Sachdev, P. (2007). Neuropsychological deficits and functional impairment in bipolar depression, hypomania and euthymia. *Bipolar Disorders*, 9(1-2), pp.114-125.

Maki, Y. and Kadara, H. (2013). GPRC5A (G protein-coupled receptor, family C, group 5, member C). *Atlas of Genetics and Cytogenetics in Oncology and Haematology*, (8).

Mao, L. (2002). Glutamate Cascade to cAMP Response Element-Binding Protein Phosphorylation in Cultured Striatal Neurons through Calcium-Coupled Group I Metabotropic Glutamate Receptors. *Molecular Pharmacology*, 62(3), pp.473-484.

Mathivanan, S. (2017). Extracellular Matrix and the Extracellular Environment. *Proteomics*, 17(23-24), p.7700185.

Matsebatlela, T., Gallicchio, V., and Becker, R. (2012) Lithium modulates cancer cell growth, apoptosis, gene expression and cytokine production in HL-60 promyelocytic leukaemia cells and their drugresistant sub-clones. Biol. Trace Elem. Res. 149, 323–330.

McKnight, R., Adida, M., Budge, K., Stockton, S., Goodwin, G. and Geddes, J. (2012). Lithium toxicity profile: a systematic review and meta-analysis. The Lancet, 379(9817), pp.721-728.

197

Ménager, C., Arimura, N., Fukata, Y. and Kaibuchi, K. (2004). PIP3 is involved in neuronal polarization and axon formation. *Journal of Neurochemistry*, 89(1), pp.109-118.

Menko, A.S. *et al.* (2014) "A central role for vimentin in regulating repair function during healing of the lens epithelium," Molecular Biology of the Cell, 25(6), pp. 776–790. Available at: <u>https://doi.org/10.1091/mbc.e12-12-0900</u>.

Merrwell, J. E., Murphy, S. P., Mitrovic, B., Mackenzie-Graham, A., Dopp, J. C., Ding, M., Griscavage, J., Ignarro, L. J., and LoInstein, C. J. (1997) Inducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J. Neurosci. Res. 48, 372–384

Merendino, R. A., Mancuso, G., Tomasello, F., Gazzara, D., Cusumano, V., Chwellemi, S., Spadaro, P., and Mesiti, M. (1994) Effects of lithium carbonate on cytokine production in patients affected by breast cancer. J. Biol. Regul. Homeostatic Agents 8, 88–91

Miranda, J.M. *et al.* (2022) 'Hippocampal parvalbumin interneurons play a critical role in memory development', Cell Reports, 41(7), p. 111643. doi:10.1016/j.celrep.2022.111643.

Monneau, Y., Arenzana-Seisdedos, F. & Lortat-Jacob, H. The slet spot: how GAGs help chemokines guide migrating cells. *J. Leukoc. Biol.* 99, 935– 953 (2016).

Mie Nishimura, Nobuyuki Miyamoto, Jun Nishihira. Daily Oral Chondroitin Sulphate Oligosaccharides for Knee Joint Pain in Healthy Subjects: A Randomized, Blinded, Placebo-Controlled Study. *Open Nutr. J.* 12, (2018).

Mikles, D., Bhat, V., Schuchardt, B., McDonald, C. and Farooq, A. (2014). Enthalpic factors override the polyelectrolyte effect in the binding of EGR1 transcription factor to DNA. *Journal of Molecular Recognition*, 27(2), pp.82-91. Miyata, S., Nadanaka, S., Igarashi, M. and Kitagawa, H. (2018). Structural Variation of Chondroitin Sulphate Chains Contributes to the Molecular Heterogeneity of Perineuronal Nets. *Frontiers in Integrative Neuroscience*, 12.

Miyata, S., Komatsu, Y., Yoshimura, Y., Taya, C. & Kitagawa, H. Persistent cortical plasticity by upregulation of chondroitin 6-sulphation. *Nat. Neurosci.* 15, 414–422 (2012).

Miyata, S., Nishimura, Y. & Nakashima, T. Perineuronal nets protect against amyloid β-protein neurotoxicity in cultured cortical neurons. *Brain Res.* 1150, 200–206 (2007).

Miyata, Shinji; Kitagawa, Hiroshi (2017): "Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan". In: *Biochimica et Biophysica Acta (BBA) - General Subjects*. 1861 (10), S. 2420–2434, DOI: 10.1016/j.bbagen.2017.06.010.

Mjg, R., García Medrano, B. & Bravo, J. The Role of the Basal Lamina in Nerve Regeneration. J Cytol Histol 7, 438 (2016).

Modabbernia, A., Taslimi, S., Brietzke, E., and Ashrafi, M. (2013) Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol. Psychiatry 74, 15–25.

Morton, D. (2014). Id4 acts as a tumor suppressor by inducing apoptosis and senescence in p53-dependent manner. *Cancer Research*, 74(19 Supplement), pp.599-599.

Moncada, S., and Bolanos, J. P. (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 97, 1676–1689

Morikawa, S., Ikegaya, Y., Narita, M. & Tamura, H. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval. *Sci. Rep.* 7, (2017). Morawski, M. *et al.* Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. *Sci. Rep.* 5, 16471 (2015).

Muller, H. (2003). Is lithium still the gold standard in the treatment of bipolar disorders?. *European Archives of Psychiatry and Clinical Neuroscience*, 253(3), pp.113-114.

Munkholm, K., Braüner, J., Kessing, L. and Vinberg, M. (2013). Cytokines in bipolar disorder vs. healthy control subjects: A systematic review and metaanalysis. *Journal of Psychiatric Research*, 47(9), pp.1119-1133.

Munkholm, K., Braü ner, J. V., Kessing, L. V., and Vinberg, M. (2013) Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and metaanalysis. J. Psychiatr. Res. 47, 1119–1133.

Murase, Sachiko; Robertson, Sarah E.; Lantz, Crystal L.; u. a. (2022): "Chronic monocular deprivation reveals MMP9-dependent and -independent aspects of murine visual system plasticity". In: *International Journal of Molecular Sciences*. 23 (5), S. 2438, DOI: 10.3390/ijms23052438.

Nahman, S., Belmaker, R. H., and Azab, A. N. (2012) Effects of lithium on lipopolysaccharide-induced inflammation in rat primary glia cells. Innate Immun. 18, 447–458

Nakamura, Hiroyuki; Fujii, Yutaka; Inoki, Isao; u. a. (2000): *"Brevican* is degraded by matrix metalloproteinases and *Aggrecan*ase-1 (ADAMTS4) at different sites". In: *Journal of Biological Chemistry*. 275 (49), S. 38885–38890, DOI: 10.1074/jbc.m003875200.

National Academy of Sciences. Perineuronal nets and recall of distant fear memories. *PNA* 115, 433–434 (2018).

Nasarre, P., Gemmwell, R. M. & Drabkin, H. A. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. *OncoTargets and* Therapy 7, 1663–1687 (2014).

Natsume, H., Tokuda, H., Adachi, S., Matsushima-Nishiwaki, R., Kato, K., Minamitani, C., Otsuka, T., and Kozawa, O. (2011) Wnt3a regulates tumor necrosis factor- α -stimulated interleukin-6 release in osteoblasts. Mol. Cell. Endocrinol. 331, 66–72

Nery, F., Norris, M., Eliassen, J., Iber, W., Blom, T., Ilge, J., Barzman, D., Strawn, J., Adler, C., Strakowski, S. and DelBello, M. (2017). White matter volumes in youth offspring of bipolar parents. *Journal of Affective Disorders*, 209, pp.246-253.

Netrin-1 overexpression in bone marrow mesenchymal stem cellspromotes functional recovery in a rat model of peripheral nerve injury. (2015). *Journal of Biomedical Research*.

Niisato, K. Age-Dependent Enhancement of Hippocampal Long-Term Potentiation and Impairment of Spatial Learning through the Rho-Associated Kinase Pathway in Protein Tyrosine Phosphatase Receptor Type Z-Deficient Mice. *J. Neurosci.* 25, 1081–1088 (2005).

Nithianantharajah, J. and Hannan, A. (2006). Enriched environments, experiencedependent plasticity and disorders of the nervous system. *Nature Reviews Neuroscience*, 7(9), pp.697-709.

Nolen, W. and lisler, R. (2012). The association of the effect of lithium in the maintenance treatment of bipolar disorder with lithium plasma levels: a post hoc analysis of a double-blind study comparing switching to lithium or placebo in patients who responded to quetiapine (Trial 144). *Bipolar Disorders*, 15(1), pp.100-109.

Nurnberg, H. (2008). Sildenafil as Treatment for Antidepressant-Induced Sexual Dysfunction- A randomized controlled trial. *JAMA*, 300(20), p.2365.

Ohira, K., Takeuchi, R., Iwanaga, T. and Miyakawa, T. (2013). Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice. *Molecular Brain*, 6(1), p.43.

Öngür, D., Jensen, J., Prescot, A., Stork, C., Lundy, M., Cohen, B. and Renshaw, P. (2008). Abnormal Glutamatergic Neurotransmission and Neuronal-Glial Interactions in Acute Mania. *Biological Psychiatry*, 64(8), pp.718-726.

Orrù, G. and Carta, M. (2018). Genetic Variants Involved in Bipolar Disorder, a Rough Road Ahead. *Clinical Practice & Epidemiology in Mental Health*, 14(1), pp.37-45.

Oruč, L., Kapur-Pojskić, L., Ramić, J., Pojskić, N. and Bajrović, K. (2012). Assessment of relatedness between *Neurocan* gene as bipolar disorder susceptibility locus and schizophrenia. *Bosnian Journal of Basic Medical Sciences*, 12(4), p.245.

Ostrowska-Podhorodecka, Z. and McCulloch, C.A. (2021) "Vimentin regulates the assembly and function of matrix adhesions," Wound Repair and Regeneration [Preprint]. Available at: https://doi.org/10.1111/wrr.12920.

Özerdem, A., Tunca, Z., Çımrın, D., Hıdıroğlu, C. and Ergör, G. (2013). Female vulnerability for thyroid function abnormality in bipolar disorder: role of lithium treatment. *Bipolar Disorders*, 16(1), pp.72-82.

Pantazopoulos, H. and Berretta, S. (2016). In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. *Neural Plasticity*, 2016, pp.1-23.

Pantazopoulos, H., Markota, M., Jaquet, F., Ghosh, D., Wallin, A., Santos, A., Caterson, B. and Berretta, S. (2015). *Aggrecan* and chondroitin-6-sulphate

abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. *Translational Psychiatry*, 5(1), pp.e496-e496.

Pantazopoulos, H. *et al.* A Slet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication. *Front. Integr. Neurosci* 11, 33 (2017).

Papaioannou, V. (2014). The T-box gene family: emerging roles in development, stem cells and cancer. *Development*, 141(20), pp.3819-3833.

Pape, H. (2016). Fear and Fear Memory. German Research, 38(2), pp.12-15.

Petersen, J. and Douglas, J. (2013). Tenascin-X, collagen, and Ehlers–Danlos syndrome: Tenascin-X gene defects can protect against adverse cardiovascular events. *Medical Hypotheses*, 81(3), pp.443-447.

Pickard, Benjamin S. (2017): "Genomics of Lithium Action and response". In: *Neurotherapeutics*. 14 (3), S. 582–587, DOI: 10.1007/s13311-017-0554-7.

Pintér, P. and Alpár, A. (2022) 'The role of extracellular matrix in human neurodegenerative diseases', *International Journal of Molecular Sciences*, 23(19), p. 11085. doi:10.3390/ijms231911085

Pomin, V. and Mulloy, B. (2018). Glycosaminoglycans and Proteoglycans. *Pharmaceuticals*, 11(1), p.27.

Pomin, V. and Mulloy, B. (2018). Glycosaminoglycans and Proteoglycans. *Pharmaceuticals*, 11(1), p.27.

Quinn, E., Hwell, M., Anney, R., Gwell, M., Corvin, A. and Morris, D. (2010). Evidence for cis-acting regulation of ANK3 and CACNA1C gene expression. *Bipolar Disorders*, 12(4), pp.440-445.

203

Qureshi, H., Ahmad, R., Sylvester, J. and Zafarullah, M. (2007). Requirement of phosphatidylinositol 3-kinase/Akt signaling pathway for regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF- β in human chondrocytes. *Cellular Signalling*, 19(8), pp.1643-1651.

Rajkowska, G., Halaris, A., and Selemon, L. D. (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol. Psychiatry 49, 741–752.

Rachel K. Okolicsanyi, Lotta E. Oikari, Chieh Yu, L. R. G. and L. M. H. Heparan Sulphate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells. *Front. Neurosci.* 11, (2018).

Rao, J., Harry, G., Rapoport, S. and Kim, H. (2009). Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. *Molecular Psychiatry*, 15(4), pp.384-392.

Rao, J. S., Lee, H. J., Rapoport, S. I., and Bazinet, R. P. (2008) Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol. Psychiatry 13, 585–596.

Reichardt and Prokop. Introduction: The Role of Extracellular Matrix in Nervous System Development and Maintenance. *Dev. Neurobiol.* (2011). doi:10.1002/dneu.20975

Reinhard, J., Roll, L. & Faissner, A. Tenascins in Retinal and Optic Nerve Neurodegeneration. *Front. Integr. Neurosci.* 11, 30 (2017).

Ricken, R., Bopp, S., Schlattmann, P., Himmerich, H., Bschor, T., Richter, C., Stamm, T., Bauer, F., Heinz, A., HellIg, R., Lang, U. and Adli, M. (2016). Leptin serum concentrations are associated with light gain during lithium augmentation. *Psychoneuroendocrinology*, 71, pp.31-35.

Richter, R. P., Baranova, N. S., Day, A. J. & Kwok, J. C. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? *Curr. Opin. Struct. Biol.* 50, 65–74 (2018).

Robert, L. Éditorial Matrix biology: past, present and future. *Pathol Biol* 49, 279–83 (2001).

Rogel, M.R. *et al.* (2011) "Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells," The FASEB Journal, 25(11), pp. 3873–3883. Available at: https://doi.org/10.1096/fj.10-170795.

Romberg, C. *et al.* Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. *J. Neurosci.* 33, 7057–7065 (2013).

Ruzicka, J. *et al.* (2022) 'Perineuronal nets affect memory and learning after synapse withdrawal', *Translational Psychiatry*, 12(1). doi:10.1038/s41398-022-02226-z.

Rybakowski, J. (2013). Genetic Influences on Response to Mood Stabilizers in Bipolar Disorder. *CNS Drugs*, 27(3), pp.165-173.

Rybakowski, J., Permoda-Osip, A., Skibinska, M., Adamski, R. and Bartkowska-Sniatkowska, A. (2012). Single ketamine infusion in bipolar depression resistant to antidepressants: are neurotrophins involved? *Human Psychopharmacology: Clinical and Experimental*, 28(1), pp.87-90.

Sade, Y., Toker, L., Kara, N., Einat, H., Rapoport, S., Moechars, D., Berry, G., Bersudsky, Y. and Agam, G. (2016). IP3 accumulation and/or inositol depletion:

two downstream lithium's effects that may mediate its behavioral and cellular changes. *Translational Psychiatry*, 6(12), pp.e968-e968.

Saito, S., Fujii, K., Ozeki, Y., Ohmori, K., Honda, G., Mori, H., Kato, K., Kuroda, J., Aoki, A., Asahi, H., Sato, H., Shimoda, K. and Akiyama, K. (2017). Cognitive function, treatment response to lithium, and social functioning in Japanese patients with bipolar disorder. *Bipolar Disorders*, 19(7), pp.552-562.

Saito, M., Wu, G., Hui, M., Masiello, K., Dobrenis, K., Ledeen, R. and Saito, M. (2015). Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice. *Journal of Lipid Research*, 56(8), pp.1434-1448.

Sällman Almén, M., Bringeland, N., Fredriksson, R. and Schlöth, H. (2012). The Dispanins: A Novel Gene Family of Ancient Origin That Contains 14 Human Members. *PLoS ONE*, 7(2), p.e31961.

Sánchez-Ventura, J., Lane, M.A. and Udina, E. (2022) 'The role and modulation of spinal perineuronal nets in the healthy and injured spinal cord', *Frontiers in Cellular Neuroscience*, 16. doi:10.3389/fncel.2022.893857.

- Saroukhani, S., Emami-Parsa, M., Modabbernia, A., Ashrafi, M., Farokhnia, M., Hajiaghaee, R. and Akhondzadeh, S. (2013). Aspirin for treatment of lithiumassociated sexual dysfunction in men: randomized double-blind placebocontrolled study. *Bipolar Disorders*, 15(6), pp.650-656.
- Schenkel, L., Ist, A., Jacobs, R., Sleney, J. and Pavuluri, M. (2012). Cognitive dysfunction is worse among pediatric patients with bipolar disorder Type I than Type II. *Journal of Child Psychology and Psychiatry*, 53(7), pp.775-781.
- Schloesser, R., Huang, J., Klein, P. and Manji, H. (2007). Cellular Plasticity Cascades in the Pathophysiology and Treatment of Bipolar Disorder. *Neuropsychopharmacology*, 33(1), pp.110-133.

Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) 'NIH image to imagej: 25 years of image analysis', *Nature Methods*, 9(7), pp. 671–675. doi:10.1038/nmeth.2089.

Schultz, C., Mühleisen, T., Nenadic, I., Koch, K., Wagner, G., Schachtzabel, C., Siedek, F., Nöthen, M., Rietschel, M., Deufel, T., Kiehntopf, M., Cichon, S., Reichenbach, J., Sauer, H. and Schlösser, R. (2013). Common variation in *NCAN*, a risk factor for bipolar disorder and schizophrenia, influences local cortical folding in schizophrenia. *Psychological Medicine*, 44(04), pp.811-820.

Scola, G. and Andreazza, A. (2015). The role of neurotrophins in bipolar disorder. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*, 56, pp.122-128.

Shaw, G. *et al.* (2002) 'Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells', *The FASEB Journal*, 16(8), pp. 869–871. doi:10.1096/fj.01-0995fje.

Shemi, D., Azab, A. N., and Kaplanski, J. (2001) Timedependent effect of LPS on PGE2 and TNF- α production by rat glial brain culture: influence of COX and cytokine inhibitors. J. Endotoxin Res. 6, 377–381.

Shine, B., McKnight, R., Leaver, L. and Geddes, J. (2015). Long-term effects of lithium on renal, thyroid, and parathyroid function: a retrospective analysis of laboratory data. *The Lancet*, 386(9992), pp.461-468.

Shigyo, M. and Tohda, C. (2016) 'Extracellular Vimentin is a novel axonal growth facilitator for functional recovery in spinal cord-injured mice', Scientific Reports, 6(1). doi:10.1038/srep28293.

Shigyo, M. *et al.* (2015) 'Extracellular vimentin interacts with insulin-like growth factor 1 receptor to promote axonal growth', Scientific Reports, 5(1). doi:10.1038/srep12055.

Shi, Q., Liu, H., Han, P., Li, C., Wang, Y., Wu, W., Zhu, D., Amos, C., Fang, S., Lee, J., Han, J. and Ii, Q. (2017). Genetic Variants in WNT2B and BTRC Predict Melanoma Survival. *Journal of Investigative Dermatology*, 137(8), pp.1749-1756.

Shi, X. and Habecker, B. (2011). gp130 cytokines stimulate proteasomal degradation of tyrosine hydroxylase via extracellular signal regulated kinases 1 and 2. *Journal of Neurochemistry*, 120(2), pp.239-247.

Shoeman, R.L. *et al.* (2002) "Deletion mutagenesis of the amino-terminal head domain of vimentin reveals dispensability of large internal regions for intermediate filament assembly and stability," Experimental Cell Research, 279(2), pp. 344–353. Available at: https://doi.org/10.1006/excr.2002.5618.

Siebert, J., Conta Steencken, A. and Osterhout, D. (2014). Chondroitin Sulphate Proteoglycans in the Nervous System: Inhibitors to Repair. *BioMed Research International*, 2014, pp.1-15.

Siebold, C. & Jones, E. Y. Structural insights into semaphorins and their receptors. Semin. Cell Dev. Biol. 24, 139–145 (2013).

Sinha, A. *et al.* (2023) 'Protein–protein interactions between tenascin-R and rptpζ/phosph*ACAN* are critical to maintain the architecture of perineuronal nets', *Journal of Biological Chemistry*, 299(8), p. 104952. doi:10.1016/j.jbc.2023.104952.

Slaker, M., Blacktop, J. and Sorg, B. (2016). Caught in the Net: Perineuronal Nets and Addiction. *Neural Plasticity*, 2016, pp.1-8.

Slaker, M., Harkness, J. and Sorg, B. (2016). A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity. *IBRO Reports*, 1, pp.54-60.

Smith, C. C. *et al.* Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. *Brain Res. Bull.* **111**, 20–26 (2015)

Snider, N.T., Ku, N.-O. and Omary, M.B. (2018) 'The slet side of vimentin', eLife, 7. doi:10.7554/elife.35336.

Soares da Costa, D., Reis, R. L. & Pashkuleva, I. Sulphation of

Glycosaminoglycans and Its Implications in Human Health and Disorders. *Annu. Rev. Biomed. Eng.* 19, annurev–bioeng–071516–044610 (2017).

Sood, D. *et al.* Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue. *ACS Biomater Sci Eng* 2, 131–140 (2016).

Soles, A. *et al.* (2023) 'Extracellular matrix regulation in physiology and in brain disease', *International Journal of Molecular Sciences*, 24(8), p. 7049. doi:10.3390/ijms24087049.

Song, H., Stevens, C. and Gage, F. (2002). Astroglia induce neurogenesis from adult neural stem cells. *Nature*, 417(6884), pp.39-44.

Sheng, M. and Hyoung Lee, S. (2003). AMPA receptor trafficking and synaptic plasticity: major unansWered questions. *Neuroscience Research*, 46(2), pp.127-134.

Sorg, B., Berretta, S., Blacktop, J., Fawcett, J., Kitagawa, H., Kwok, J. and Miquel, M. (2016). Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. *The Journal of Neuroscience*, 36(45), pp.11459-11468.

Steiner, J., Bielau, H., Brisch, R., Danos, P., Ullrich, O., Mawrin, C., Bernstein, H. and Bogerts, B. (2008). Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. *Journal of Psychiatric Research*, 42(2), pp.151-157.

Steullet, P; Cabungcal, J-H; Bukhari, S A; u. a. (2017): "The thalamic reticular nucleus in schizophrenia and bipolar disorder: Role of parvalbumin-expressing neuron networks and oxidative stress". In: *Molecular Psychiatry*. 23 (10), S. 2057–2065, DOI: 10.1038/mp.2017.230.

Stoeckli, E. T. Understanding axon guidance: are I nearly there yet? Development 145, dev151415 (2018).

Study of Various Human Traits in accordance to Hardy-linberg. (2016). *International Journal of Science and Research (IJSR)*, 5(1), pp.166-167.

Sul, J., Park, M., Shin, J., Kim, Y., Yoo, S., Kong, Y., Kwon, K., Lee, Y. and Kim, E. (2013). Accumulation of the parkin substrate, *FAF1*, plays a key role in the dopaminergic neurodegeneration. *Human Molecular Genetics*, 22(8), pp.1558-1573.

Sun, G., Horrocks, L. and Farooqui, A. (2007). The roles of NADPH oxidase and phospholipases A2in oxidative and inflammatory responses in neurodegenerative diseases. *Journal of Neurochemistry*, 0(0), p.070611013409004

Suprewicz, Ł. *et al.* (2021) "Extracellular Vimentin as a target against SARS-COV-2 host cell invasion." Available at: https://doi.org/10.1101/2021.01.08.425793

Suttkus, A. *et al. Aggrecan*, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. 5, (2014).

Suttkus, A., Holzer, M., Morawski, M. & Arendt, T. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein. *Neuroscience* 313, 225–235 (2016).

Suttkus, A., Morawski, M. & Arendt, T. Protective Properties of Neural Extracellular Matrix. *Mol. Neurobiol.* 53, 73–82 (2016).

Swarup, V. P. *et al.* Exploiting Differential Surface Display of Chondroitin Sulphate Variants for Dwerecting Neuronal Outgrowth NIH Public Access. *J Am Chem Soc* 135, 13488–13494 (2013).

Szmulewicz, A., Samamé, C., Caravotta, P., Martino, D., Igoa, A., Hidalgo-Mazzei, D., Colom, F. and Strejilevich, S. (2016). Behavioral and emotional adverse events of drugs frequently used in the treatment of bipolar disorders: clinical and theoretical implications. *International Journal of Bipolar Disorders*, 4(1).

Takeda, A., Shuto, M. & Funakoshi, K. Chondroitin Sulphate Expression in Perineuronal Nets After Goldfish Spinal Cord Lesion. *Front. Cell. Neurosci.* 12, 63 (2018).

Tao, R., Yu, Y., Zhang, Xiaojuan, Shi, J., *et al.* (2005) 'A family based study of the genetic association between the PLA2G4D gene and schizophrenia', *Prostaglandins, Leukotrienes and Essential Fatty Acids*, 73(6), pp. 419–422. doi:10.1016/j.plefa.2005.08.008.

Tao, R., Yu, Y., Zhang, Xiaojuan, Guo, Y., *et al.* (2005) 'Cytosolic PLA2 genes possibly contribute to the etiology of schizophrenia', *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics*, 137B(1), pp. 56–58. doi:10.1002/ajmg.b.30210.

Tansley, S.; Gu, N.; Guzmán, A.U.; Cai, W.; Wong, C.; Lister, K.C.; Muñoz-Pino, E.; Yousefpour, N.; Roome, R.B.; Heal, J.; *et al.* Microglia-mediated degradation of perineuronal nets promotes pain. *Science* **2022**, *377*, 80–86.

Tarbet, H.J. *et al.* (2018) "Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton," eLife, 7. Available at: https://doi.org/10.7554/elife.31807.

Tajtakova, M., Pidanicova, A., Valansky, L., Lachvac, L., Nagy, V., Sivonova, M., Dobrota, D., Kliment, J. and Petrovicova, J. (2010). Serum level of IGFBP3 and IGF1/IGFBP3 molar ratio in addition to PSA and single nucleotide polymorphism in PSA and CYP17 gene may contribute to early diagnostics of prostate cancer. *Neoplasma*, 57(2), pp.118-122.

Themedicalbiochemistrypage.org.(2018). GlycosaminoglycansandProteoglycans.[online]Availableat:https://themedicalbiochemistrypage.org/glycans.php [Accessed 3 Sep. 2018].

Tewari, B.P. *et al.* (2022) 'A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system', *Frontiers in Cellular Neuroscience*, 16. doi:10.3389/fncel.2022.1022754.

Thériault, S., Gaudreault, N., Lamontagne, M., Rosa, M., Boulanger, M., Messika-Zeitoun, D., Clavel, M., Capoulade, R., Dagenais, F., Pibarot, P., Mathieu, P. and Bossé, Y. (2018). A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. *Nature Communications*, 9(1).

Takagi, H. *et al.* (2002) "Annexin 6 is a putative cell surface receptor for chondroitin sulphate chains," Journal of Cell Science, 115(16), pp. 3309–3318. Available at: https://doi.org/10.1242/jcs.115.16.3309.

Thomas, M., Pelleieux, S., Vitale, N. and Olivier, J. (2016). Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. *Biochimie*, 130, pp.168-177.

Tian, N., Kanno, T., Jin, Y. and Nishizaki, T. (2014). Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation. *Biochemical and Biophysical Research Communications*, 450(1), pp.746-749.

Tseng, P., Chen, Y., Tu, K., Wang, H., Chung, W., Wu, C., Hsu, S., Kuo, H. and Lin, P. (2016). State-dependent increase in the levels of neurotrophin-3 and

neurotrophin-4/5 in patients with bipolar disorder: A meta-analysis. *Journal of Psychiatric Research*, 79, pp.86-92.

Tucker, R., Peterson, C., Hendaoui, I., Bichet, S. and Chiquet-Ehrismann, R. (2016). The expression of tenascin-C and tenascin-W in human ossicles. *Journal of Anatomy*, 229(3), pp.416-421.

Tunca, Z., Ozerdem, A., Ceylan, D., Yalçın, Y., Can, G., Resmi, H., Akan, P., Ergör, G., Aydemir, Ö., Cengisiz, C. and Kerim, D. (2014).

Ueno, Hiroshi; Takahashi, Yu; Murakami, Shinji; u. a. (2022): FINGOLIMOD increases parvalbumin-positive neurons in adult mice. In: *IBRO Neuroscience Reports.* 13, S. 96–106, DOI: 10.1016/j.ibneur.2022.06.005.

Varadarajan, S. and Butler, S. (2017). Netrin1 establishes multiple boundaries for axon growth in the developing spinal cord. *Developmental Biology*, 430(1), pp.177-187.

van 't Spijker, H. and Kwok, J. (2017). A Slet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication. *Frontiers in Integrative Neuroscience*, 11.

Végh, M. J. *et al.* Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease. *Acta Neuropathol. Commun.* 2, 76 (2014).

Vitellaro-Zuccarello, L., Bosisio, P., Mazzetti, S., Monti, C. & De Biasi, S. Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord. *Cell Tissue Res.* 327, 433–447 (2007).

Vo, T. *et al.* The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. *Mol. Cell. Neurosci.* 56, 186–200 (2013).

Vosberg, D., Zhang, Y., Menegaux, A., Chalupa, A., Manitt, C., Zehntner, S., Eng, C., DeDuck, K., Allard, D., Durand, F., Dagher, A., Benkelfat, C., Srour, M., Joober, R., Lepore, F., Rouleau, G., Théoret, H., Bedell, B., Flores, C. and Leyton, M. (2018). Mesocorticolimbic Connectivity and Volumetric Alterations in *DCC* Mutation Carriers. *The Journal of Neuroscience*, 38(20), pp.4655-4665.

Voutsinos-Porche, B., Koning, E., Kaplan, H., Ferrandon, A., Guenounou, M., Nehlig, A., and Motte, J. (2004) Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy. Neurobiol. Dis. 17, 385–402

Wang, D. and Fawcett, J. (2012) 'The perineuronal net and the control of CNS plasticity', *Cell and Tissue Research*, 349(1), pp. 147–160. doi:10.1007/s00441-012-1375-y.

Wang, D., Ichiyama, R. M., Zhao, R., Andrews, M. R. & Fawcett, J. W. Chondroitinase Combined with Rehabilitation Promotes Recovery of Forelimb Function in Rats with Chronic Spinal Cord Injury. *J. Neurosci.* 31, 9332–9344 (2011).

Wang, F., McIntosh, A., He, Y., Gelernter, J. and Blumberg, H. (2011). The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. *Bipolar Disorders*, 13(7-8), pp.696-700.

Wang, Z., Pandey, A. and Hart, G.W. (2007) "Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation," Molecular & Cellular Proteomics, 6(8), pp. 1365–1379. Available at: https://doi.org/10.1074/mcp.m600453-mcp200.

Wang, J., Shao, L., Sun, X. and Young, L. (2009). Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. *Bipolar Disorders*, 11(5), pp.523-529.

Wang, H. M., Zhang, T., Li, Q., Huang, J. K., Chen, R. F., and Sun, X. J. (2013) Inhibition of glycogen synthase kinase-3β by lithium chloride suppresses 6hydroxydopamine-induced inflammatory response in primary cultured astrocytes. Neurochem. Int. 63, 345–353

Wang, T. *et al.* (2023) 'Vimentin as a potential target for diverse nervous system diseases', Neural Regeneration Research, 18(5), p. 969. doi:10.4103/1673-5374.355744.

Warren, P.M. et al. (2018) "Regulation of CNS plasticity through the extracellular matrix," The Oxford Handbook of Developmental Neural Plasticity [Preprint]. Available at: https://doi.org/10.1093/oxfordhb/9780190635374.013.11.

Watkins, C. C., Sawa, A., and Pomper, M. G. (2014) Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application. Transl. Psychiatry 4, e350.

Waugh, M. (2012). Phosphatidylinositol 4-kinases, phosphatidylinositol 4-phosphate and cancer. *Cancer Letters*, 325(2), pp.125-131.

Wight, T.N. *et al.* (2020) '*Versican*—a critical extracellular matrix regulator of immunity and inflammation', *Frontiers in Immunology*, 11. doi:10.3389/fimmu.2020.00512.

Weiss, L. and Nieto, M. (2018). The crux of Cux genes in neuronal function and plasticity. *Brain Research*, S0006-8993(18), pp.30114-30118.

Wen, T., Binder, D., Ethell, I. and Razak, K. (2018). The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. *Frontiers in Molecular Neuroscience*, 11.

Welge, J. and DelBello, M. (2013). Treatment of youth with bipolar disorder: long-term versus maintenance. *Bipolar Disorders*, 15(2), pp.150-152.

Wing, W. (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. *Nature Genetics*, 43(10), pp.977-983.

Wöhr, M; Orduz, D; Gregory, P; u. a. (2015): "Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities". In: *Translational Psychiatry*. 5 (3), DOI: 10.1038/tp.2015.19.

Xing, G., Russell, S., Hough, C., O'Grady, J., Zhang, L., Yang, S., Zhang, L. and Post, R. (2002). Decreased prefrontal CaMKII α mRNA in bipolar wellness. *Neuroreport*, 13(4), pp.501-505.

Xu, J.-C. *et al.* (2013) 'The extracellular matrix glycoprotein Tenascin-R regulates neurogenesis during development and in the adult dentate gyrus of Mice', *Journal of Cell Science* [Preprint]. doi:10.1242/jcs.137612.

Yamaguchi, Y. (2000) 'Lecticans: Organizers of the brain extracellular matrix', *Cellular and Molecular Life Sciences*, 57(2), pp. 276–289. doi:10.1007/pl00000690.

Yang, S., Cacquevel, M., Saksida, L., Bussey, T., Schneider, B., Aebischer, P., Melani, R., Pizzorusso, T., Fawcett, J. and Spwellantini, M. (2015). Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. *Experimental Neurology*, 265, pp.48-58.

Yang, L. *et al.* (2023) 'Extracellular matrix and Synapse Formation', *Bioscience Reports*, 43(1). doi:10.1042/bsr20212411.

Yang, S. *et al.* Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. *Exp. Neurol.* 265, 48–58 (2015).

Yang, S. *et al.* An Approach to Synthesize Chondroitin Sulphate-E (CS-E) Oligosaccharide Precursors. *J. Org. Chem.* 83, 5897–5908 (2018).
Yap, C., Digilio, L., McMahon, L. and Winckler, B. (2017). The endosomal neuronal proteins Nsg1/NEEP21 and Nsg2/P19 are itinerant, not resident proteins of dendritic endosomes. *Scientific Reports*, 7(1).

Ye, H., Wang, W., Cao, J. and Hu, X. (2017). SPARCL1 suppresses cell migration and invasion in renal cell carcinoma. *Molecular Medicine Reports*, 16(5), pp.7784-7790.

Yelland, T. & Djordjevic, S. Crystal Structure of the Neuropilin-1 MAM Domain: Completing the Neuropilin-1 Ectodomain Picture. *Structure* 24, 2008–2015 (2016).

Yu, C., Kim, B. and Kim, E. (2016). *FAF1* mediates regulated necrosis through PARP1 activation upon oxidative stress leading to dopaminergic neurodegeneration. *Cell Death & Differentiation*, 23(11), pp.1873-1885.

Yu, F., Wang, Z., Tanaka, M., Chiu, C. T., Leeds, P., Zhang, Y., and Chuang, D. M. (2012) Post trauma treatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. J. Neurosurgeon. 119, 766–773

Zhou, X.-H. *et al.* (2001) '*Neurocan* is dispensable for brain development', *Molecular and Cellular Biology*, 21(17), pp. 5970–5978. doi:10.1128/mcb.21.17.5970-5978.2001.

Zanetti, S. and Canalise, E. (2013). Hairy and Enhancer of Split-related with YRPW Motif (HEY)2 Regulates Bone Remodelling in Mice. *Journal of Biological Chemistry*, 288(30), pp.2154.

Appendix 1

Raw protein identification and quantification data produced from the WFA pulldown experiment described in Chapter 7.

Accession	Description	Coverage [%]	# AAs	MW [kDa]	Score Mascot	# Peptides
P22626	Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens OX=9606 GN=HNRNPA2B1 PE=	72	353	37.4	5149	28
Q08211	ATP-dependent RNA helicase A OS=Homo sapiens OX=9606 GN=DHX9 PE=1 SV=4	47	1270	140.9	3852	55
P09651	Heterogeneous nuclear ribonucleoprotein A1 OS=Homo sapiens OX=9606 GN=HNRNPA1 PE=1 SV=5	63	372	38.7	3463	26
P08670	Vimentin OS=Homo sapiens OX=9606 GN=VIM PE=1 SV=4	73	466	53.6	2957	41
A0A0U1RRM4	Polypyrimidine tract-binding protein 1 OS=Homo sapiens OX=9606 GN=PTBP1 PE=1 SV=1	64	588	62.4	2943	27
P07437	Tubulin beta chain OS=Homo sapiens OX=9606 GN=TUBB PE=1 SV=2	72	444	49.6	2879	26
B2R5W2	Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo sapiens OX=9606 GN=HNRNPC PE=1 SV	59	290	31.9	2617	26
P68371	Tubulin beta-4B chain OS=Homo sapiens OX=9606 GN=TUBB4B PE=1 SV=1	72	445	49.8	2587	26
P14866	Heterogeneous nuclear ribonucleoprotein L OS=Homo sapiens OX=9606 GN=HNRNPL PE=1 SV=2	52	589	64.1	2538	29
Q12906	Interleukin enhancer-binding factor 3 OS=Homo sapiens OX=9606 GN=ILF3 PE=1 SV=3	59	894	95.3	2537	39
A0A3B3ITJ4	Heterogeneous nuclear ribonucleoprotein L (Fragment) OS=Homo sapiens OX=9606 GN=HNRNPL PE	52	537	59.2	2530	26
Q9BVA1	Tubulin beta-2B chain OS=Homo sapiens OX=9606 GN=TUBB2B PE=1 SV=1	70	445	49.9	2465	25
Q13885	Tubulin beta-2A chain OS=Homo sapiens OX=9606 GN=TUBB2A PE=1 SV=1	70	445	49.9	2454	25
Q00839	Heterogeneous nuclear ribonucleoprotein U OS=Homo sapiens OX=9606 GN=HNRNPU PE=1 SV=6	41	825	90.5	2405	32
P78527	DNA-dependent protein kinase catalytic subunit OS=Homo sapiens OX=9606 GN=PRKDC PE=1 SV=3	19	4128	468.8	2401	58
Q6P2Q9	Pre-mRNA-processing-splicing factor 8 OS=Homo sapiens OX=9606 GN=PRPF8 PE=1 SV=2	29	2335	273.4	2401	54
P07910	Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo sapiens OX=9606 GN=HNRNPC PE=1 SV	58	306	33.7	2342	25
075643	U5 small nuclear ribonucleoprotein 200 kDa helicase OS=Homo sapiens OX=9606 GN=SNRNP200 PE	32	2136	244.4	2192	47
Q71U36	Tubulin alpha-1A chain OS=Homo sapiens OX=9606 GN=TUBA1A PE=1 SV=1	63	451	50.1	2135	18
P04350	Tubulin beta-4A chain OS=Homo sapiens OX=9606 GN=TUBB4A PE=1 SV=2	60	444	49.6	2070	20
P68363	Tubulin alpha-1B chain OS=Homo sapiens OX=9606 GN=TUBA1B PE=1 SV=1	63	451	50.1	1985	18
A8MXP9	Matrin-3 OS=Homo sapiens OX=9606 GN=MATR3 PE=1 SV=1	60	895	99.9	1960	37
Q15393	Splicing factor 3B subunit 3 OS=Homo sapiens OX=9606 GN=SF3B3 PE=1 SV=4	38	1217	135.5	1946	34
P51991	Heterogeneous nuclear ribonucleoprotein A3 OS=Homo sapiens OX=9606 GN=HNRNPA3 PE=1 SV=2	49	378	39.6	1885	26
P52272	Heterogeneous nuclear ribonucleoprotein M US=Homo sapiens UX=9606 GN=HNRNPM PE=1 SV=3	53	/30	//.5	1863	3/
P10809	60 kDa neat shock protein, mitochondrial OS=Homo sapiens OX=9606 GN=HSPD1 PE=1 SV=2	52	5/3	61	1858	29
075533	Splicing factor 3B subunit 1 US=Homo sapiens UX=9606 GN=SF3B1 PE=1 SV=3	38	1304	145.7	1853	3/
PU8238	Heat shock protein HSP 90-beta US=Homo sapiens UX=9606 GN=HSP90AB1 PE=1 SV=4	42	122	83.2	1/1/	27
09BOE3	Tubulin alpha-1C chain OS=Homo sapions OY=9606 GN=TURA1C PE=1 SV-1	51	1226	136	1695	30
2502L3 P61978	Heterogeneous nuclear ribonucleonrotein K OS=Homo saniens OY=9606 GN=HNRNDK PE-1 SV-1	58	449 //F2	49.9	1674	20
015029	116 kDa US small nuclear ribonucleoprotein component OS=Homo conjons OV=0606 CM=557UD2 05	10	403	100.9	10/4	20
A0A3R3I1ID7	Programmed cell death 11, isoform CRA a OS=Homo saniens OY=9606 GN=DDCD11 PE=1 SV-1	40	1877	209.4	1500	32
G8ILB6	Heterogeneous nuclear ribonucleonrotein H OS=Homo saniens OX=9000 GN=FDCD11 FE=1 SV=1	25 /0	10/2	51 2	1534	35
P07900	Heat shock protein HSP 90-alpha OS=Homo saniens OX=9606 GN=HSP90AA1 PF=1 SV=5	49 47	4/2	84.6	1202	28
043390	Heterogeneous nuclear ribonucleoprotein R OS=Homo saniens OX=9606 GN=HNRNDR PF=1 SV=1	42	622	70 9	1492	20
013509	Tubulin beta-3 chain OS=Homo saniens OX=9606 GN=TLIBB3 PE=1 SV=2		450	50.4	1400	20
P12270	Nucleoprotein TPR OS=Homo sapiens OX=9606 GN=TPR PE=1 SV=3	17	2363	267.1	1459	27
060506	Heterogeneous nuclear ribonucleoprotein O OS=Homo saniens OX=9606 GN=SYNCRIP PE=1 SV=2	47	623	69.6	1425	25
Q9NR30	Nucleolar RNA helicase 2 OS=Homo sapiens OX=9606 GN=DDX21 PE=1 SV=5	50	783	87.3	1393	30
P02545	Prelamin-A/C OS=Homo sapiens OX=9606 GN=LMNA PE=1 SV=1	48	664	74.1	1392	31
012905	Interleukin enhancer-binding factor 2 OS=Homo sapiens OX=9606 GN=ILF2 PE=1 SV=2	53	390	43	1371	17
Q15233	Non-POU domain-containing octamer-binding protein OS=Homo sapiens OX=9606 GN=NONO PE=1	57	471	54.2	1365	26
Q9BQG0	Myb-binding protein 1A OS=Homo sapiens OX=9606 GN=MYBBP1A PE=1 SV=2	26	1328	148.8	1299	26
P14618	Pyruvate kinase PKM OS=Homo sapiens OX=9606 GN=PKM PE=1 SV=4	56	531	57.9	1299	27
Q5T6W2	Heterogeneous nuclear ribonucleoprotein K (Fragment) OS=Homo sapiens OX=9606 GN=HNRNPK PE	55	379	41.8	1212	16
P38159	RNA-binding motif protein, X chromosome OS=Homo sapiens OX=9606 GN=RBMX PE=1 SV=3	51	391	42.3	1206	24
H0YH80	Heterogeneous nuclear ribonucleoprotein A1 (Fragment) OS=Homo sapiens OX=9606 GN=HNRNPA1	71	191	19.5	1175	10
A0A0G2JIW1	Heat shock 70 kDa protein 1B OS=Homo sapiens OX=9606 GN=HSPA1B PE=1 SV=1	43	642	70.1	1148	20
Q14195	Dihydropyrimidinase-related protein 3 OS=Homo sapiens OX=9606 GN=DPYSL3 PE=1 SV=1	42	570	61.9	1147	19
Q14974	Importin subunit beta-1 OS=Homo sapiens OX=9606 GN=KPNB1 PE=1 SV=2	32	876	97.1	1133	21
Q1KMD3	Heterogeneous nuclear ribonucleoprotein U-like protein 2 OS=Homo sapiens OX=9606 GN=HNRNPU	38	747	85.1	1107	22
Q15424	Scaffold attachment factor B1 OS=Homo sapiens OX=9606 GN=SAFB PE=1 SV=4	21	915	102.6	1087	15
Q3BDU5	Prelamin-A/C OS=Homo sapiens OX=9606 GN=LMNA PE=1 SV=1	51	487	55.6	1083	26
Q7KZ85	Transcription elongation factor SPT6 OS=Homo sapiens OX=9606 GN=SUPT6H PE=1 SV=2	21	1726	198.9	1082	25
000567	Nucleolar protein 56 OS=Homo sapiens OX=9606 GN=NOP56 PE=1 SV=4	53	594	66	1067	25
P13639	Elongation factor 2 OS=Homo sapiens OX=9606 GN=EEF2 PE=1 SV=4	30	858	95.3	1067	21
Q9UKM9	RNA-binding protein Raly OS=Homo sapiens OX=9606 GN=RALY PE=1 SV=1	74	306	32.4	1064	19
043143	Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 OS=Homo sapiens OX=9606 GN=DHX	37	795	90.9	1035	20
P20700	Lamin-B1 OS=Homo sapiens OX=9606 GN=LMNB1 PE=1 SV=2	45	586	66.4	977	25
Q16531	DNA damage-binding protein 1 OS=Homo sapiens OX=9606 GN=DDB1 PE=1 SV=1	28	1140	126.9	960	23
M0QZM1	Heterogeneous nuclear ribonucleoprotein M (Fragment) OS=Homo sapiens OX=9606 GN=HNRNPM	51	383	40	950	19
Q9NVP1	ATP-dependent RNA helicase DDX18 OS=Homo sapiens OX=9606 GN=DDX18 PE=1 SV=2	36	670	75.4	949	17
Q15717	ELAV-like protein 1 OS=Homo sapiens OX=9606 GN=ELAVL1 PE=1 SV=2	52	326	36.1	931	14
P68104	Elongation factor 1-alpha 1 OS=Homo sapiens OX=9606 GN=EEF1A1 PE=1 SV=1	35	462	50.1	921	16
r3259/	neterogeneous nuclear ribonucleoprotein F US=Homo sapiens UX=9606 GN=HNRNPF PE=1 SV=3	42	415	45.6	891	10
Q14103	Heterogeneous nuclear ribonucleoprotein DU OS=Homo sapiens OX=9606 GN=HNRNPD PE=1 SV=1	39	355	38.4	880	15
09Y5R9	FACT complex subunit SPT16 OS=Homo saniens OX=9606 GN=SUIPT16H PF=1 SV=2	40	452	49.5	083 991	21
013435	Splicing factor 3B subunit 2 OS=Homo saniens OX=9606 GN=SF3R2 PF=1 SV=2	2/	2047	100 2	867	16
076021	Ribosomal L1 domain-containing protein 1 OS=Homo saniens OX=9606 GN=RSI 1D1 PF=1 SV=2	38	290 290	54 9	867	17
013151	Heterogeneous nuclear ribonucleoprotein A0 OS=Homo saniens OX=9606 GN=HNRNPA0 PF=1 SV=1	38 49	305	30.8	866	14
P23246	Splicing factor, proline- and glutamine-rich OS=Homo sapiens OX=9606 GN=SFPQ PE=1 SV=2	36	707	76.1	853	21
P11142	Heat shock cognate 71 kDa protein OS=Homo sapiens OX=9606 GN=HSPA8 PE=1 SV=1	35	646	70.9	852	20
P25705	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens OX=9606 GN=ATP5F1A PE=1 SV=1	44	553	59.7	839	18
Q92621	Nuclear pore complex protein Nup205 OS=Homo sapiens OX=9606 GN=NUP205 PE=1 SV=3	12	2012	227.8	802	21
Q09666	Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens OX=9606 GN=AHNAK PE=1	12	5890	628.7	796	20
P04406	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens OX=9606 GN=GAPDH PE=1 SV=3	50	335	36	775	15
Q12874	Splicing factor 3A subunit 3 OS=Homo sapiens OX=9606 GN=SF3A3 PE=1 SV=1	31	501	58.8	773	12
P06748	Nucleophosmin OS=Homo sapiens OX=9606 GN=NPM1 PE=1 SV=2	55	294	32.6	772	13
Q9UNX4	WD repeat-containing protein 3 OS=Homo sapiens OX=9606 GN=WDR3 PE=1 SV=1	28	943	106	767	19
Q8WUM0	Nuclear pore complex protein Nup133 OS=Homo sapiens OX=9606 GN=NUP133 PE=1 SV=2	19	1156	128.9	764	15
P31942	Heterogeneous nuclear ribonucleoprotein H3 OS=Homo sapiens OX=9606 GN=HNRNPH3 PE=1 SV=2	54	346	36.9	763	12
Q96KR1	Zinc Tinger KNA-Dinding protein US=Homo sapiens OX=9606 GN=ZFR PE=1 SV=2	26	1074	116.9	762	18
014979	Heterogeneous nuclear ribonucleoprotein D-like OS=Homo sapiens OX=9606 GN=HNRNPDL PE=1 SV	37	420	46.4	757	12
USN136	WD repeat-containing protein 36 US=Homo sapiens UX=9606 GN=WDR36 PE=1 SV=1	25	951	105.3	755	17
Q9H583	HEAT repeat-containing protein 1 US=Homo sapiens UX=9606 GN=HEATR1 PE=1 SV=3	11	2144	242.2	753	18
QU3252	Lamm-b2 US=Homo sapiens UX=9000 GN=LMNB2 PE=1 SV=4	33	620	69.9	747	19
0011054	NUMBER TOPEDUID SALISING ON-ADD DIVENUART AS 2010 DIVENUART AS 2010 DE-1 2/-1	42	456	50.2	745	15
Q 201VI34	Histone H4 OS=Homo saniens OX=9606 GN=H4C1 PE=1 SV=2	52	102	35.1	743	15
P62873	Guanine nucleotide-hinding protein G/I//G/S//G/T) subunit heta 1 OS-Homo capions OV-0606 CM-0	44 50	2103	27 4	730	10
P06576	ATP synthase subunit beta, mitochondrial OS=Homo saniens OY=0606 GN=ATPSE18 DE=1 SV=2	52 20	540	57.4	734	12
P49327	Fatty acid synthase OS=Homo sapiens OX=9606 GN=FASN PF=1 SV=3	10	2511	273.2	734	18
Q9Y2X3	Nucleolar protein 58 OS=Homo sapiens OX=9606 GN=NOP58 PF=1 SV=1	35	529	59.5	731	14
Q9Y230	RuvB-like 2 OS=Homo sapiens OX=9606 GN=RUVBL2 PE=1 SV=3	41	463	51.1	730	15
Q9HCC0	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial OS=Homo sapiens OX=9606 GN=MCCC	34	563	61.3	709	17
Q96I24	Far upstream element-binding protein 3 OS=Homo sapiens OX=9606 GN=FUBP3 PE=1 SV=2	44	572	61.6	706	19

O8N1E7	Nuclear nore complex protein Nun93 OS-Homo saniens OX-9606 GN-NI IP93 PE-1 SV-2	28	819	93.4	705	17
012010	V rou sopie score complete protein https://www.sociana.com/sociana/soci	20	722	93.4	703	17
P13010	X-ray repair cross-complementing protein 5 US=Homo sapiens UX=9606 GN=XRCC5 PE=1 SV=3	31	/32	82.7	702	1/
Q15365	Poly(rC)-binding protein 1 OS=Homo sapiens OX=9606 GN=PCBP1 PE=1 SV=2	52	356	37.5	701	12
Q96E39	RNA binding motif protein, X-linked-like-1 OS=Homo sapiens OX=9606 GN=RBMXL1 PE=1 SV=1	42	390	42.1	698	17
O8N163	Cell cycle and apoptosis regulator protein 2 QS=Homo sapiens QX=9606 GN=CCAR2 PE=1 SV=2	22	923	102.8	697	14
026579	COS riboromal protain 14 OS-Homo capions OY-0606 GN-DDI 4 DE-1 SV-5	40	427	47.7	602	19
		40	427	47.7	093	10
P29692	Elongation factor 1-delta OS=Homo sapiens OX=9606 GN=EEF1D PE=1 SV=5	46	281	31.1	691	9
Q13263	Transcription intermediary factor 1-beta OS=Homo sapiens OX=9606 GN=TRIM28 PE=1 SV=5	27	835	88.5	691	14
Q8IZL8	Proline-, glutamic acid- and leucine-rich protein 1 OS=Homo sapiens OX=9606 GN=PELP1 PE=1 SV=2	18	1130	119.6	679	12
P12956	X-ray repair cross-complementing protein 6 QS=Homo sapiens QX=9606 GN=XRCC6 PE=1 SV=2	31	609	69.8	679	13
112000		51	005	05.0	675	15
P06899	Histone H2B type 1-J OS=Homo sapiens OX=9606 GN=H2BC11 PE=1 SV=3	36	126	13.9	666	5
Q14151	Scaffold attachment factor B2 OS=Homo sapiens OX=9606 GN=SAFB2 PE=1 SV=1	16	953	107.4	660	12
Q2TAY7	WD40 repeat-containing protein SMU1 OS=Homo sapiens OX=9606 GN=SMU1 PE=1 SV=2	34	513	57.5	653	13
LI3KOKO	Histone H2B OS-Homo saniens OY-9606 GN-H2BC15 PE-1 SV-1	27	166	18.8	652	5
		27	201	10.0	052	11
Q9H004	Ras-related protein Rab-1B US=Homo sapiens UX=9606 GN=RAB1B PE=1 SV=1	67	201	22.2	650	11
P46087	Probable 285 rRNA (cytosine(4447)-C(5))-methyltransferase OS=Homo sapiens OX=9606 GN=NOP2 F	22	812	89.2	647	15
Q96D17	U5 small nuclear ribonucleoprotein 40 kDa protein OS=Homo sapiens OX=9606 GN=SNRNP40 PE=1 S	61	357	39.3	642	12
015459	Splicing factor 3A subunit 1 OS=Homo sapiens OX=9606 GN=SE3A1 PE=1 SV=1	19	793	88.8	634	13
014000		10	2115	220.1	631	10
Q14980	Nuclear mitotic apparatus protein 1 OS=Homo sapiens OX=9606 GN=NOMA1 PE=1 SV=2	10	2115	238.1	623	14
Q10570	Cleavage and polyadenylation specificity factor subunit 1 OS=Homo sapiens OX=9606 GN=CPSF1 PE	15	1443	160.8	615	16
Q9BW27	Nuclear pore complex protein Nup85 OS=Homo sapiens OX=9606 GN=NUP85 PE=1 SV=1	26	656	75	613	13
P04702	Host shock protein beta 1 OS-Homo capions OX-9606 GN-HSDR1 RE-1 SV-2	65	205	22.0	612	11
F04732		03	205	22.8	012	11
P49748	very long-chain specific acyl-coA denydrogenase, mitochondrial OS=Homo sapiens OX=9606 GN=AC	32	655	70.3	606	14
A0A087WVQ6	Clathrin heavy chain OS=Homo sapiens OX=9606 GN=CLTC PE=1 SV=1	11	1679	191.9	603	13
P42285	Exosome RNA helicase MTR4 OS=Homo sapiens OX=9606 GN=MTREX PE=1 SV=3	26	1042	117.7	601	20
09210	Cleavage and polyadenylation specificity factor subunit 2 OS-Homo saniens OX-9606 GN-CDSE2 PE-	20	782	88./	600	13
001210	At the post of the second se	47	262	20.1	500	10
P62701	405 ribosomai protein 54, X isotorm OS=Homo sapiens OX=9606 GN=RP54X PE=1 SV=2	4/	263	29.6	597	14
P55795	Heterogeneous nuclear ribonucleoprotein H2 OS=Homo sapiens OX=9606 GN=HNRNPH2 PE=1 SV=1	33	449	49.2	595	9
Q08945	FACT complex subunit SSRP1 OS=Homo sapiens OX=9606 GN=SSRP1 PE=1 SV=1	20	709	81	592	12
p19338	Nucleolin OS-Homo saniens OX-9606 GN-NCL PE-1 SV-3	22	710	76.6	591	13
F 19338		22	710	70.0	591	13
060832	H/ACA ribonucieoprotein complex subunit DKC1 OS=Homo sapiens OX=9606 GN=DKC1 PE=1 SV=3	30	514	57.6	590	14
P07355	Annexin A2 OS=Homo sapiens OX=9606 GN=ANXA2 PE=1 SV=2	48	339	38.6	585	12
A0A2U3TZH3	Elongation factor 1-alpha OS=Homo sapiens OX=9606 GN=EEF1A2 PE=1 SV=1	27	496	54.3	581	12
404288V6G6	Alpha-enolase OS-Homo sapiens OX-9606 GN-ENO1 PE-1 SV-1	3/	/3/	47.3	564	9
AGAZITOTOGO		54	454	47.5	504	
Q86XP3	ATP-dependent RNA helicase DDX42 OS=Homo sapiens OX=9606 GN=DDX42 PE=1 SV=1	23	938	102.9	559	11
A0A0D9SF53	ATP-dependent RNA helicase DDX3X OS=Homo sapiens OX=9606 GN=DDX3X PE=1 SV=1	27	733	81.4	559	15
015149	Plectin QS=Homo sapiens QX=9606 GN=PLFC PF=1 SV=3	4	4684	531.5	557	14
003400	ATD dependent DNA belieses DDV1 05-Heme enjoys 0X-0606 CN-DDV1 05-1 SV-2		740	92.4	557	16
Q92499		27	740	62.4	557	10
P62879	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 OS=Homo sapiens OX=9606 GN=0	44	340	37.3	556	9
D6RBZ0	Heterogeneous nuclear ribonucleoprotein A/B OS=Homo sapiens OX=9606 GN=HNRNPAB PE=1 SV=	32	327	35.7	553	11
P38919	Eukaryotic initiation factor 4A-III OS=Homo saniens OX=9606 GN=EIE4A3 PE=1 SV=4	35	411	46.8	552	12
00010		55	411	40.0	552	12
P62820	Ras-related protein Rab-1A OS=Homo sapiens OX=9606 GN=RAB1A PE=1 SV=3	63	205	22.7	548	11
J3KTA4	Probable ATP-dependent RNA helicase DDX5 OS=Homo sapiens OX=9606 GN=DDX5 PE=1 SV=1	23	614	69	547	12
P14923	Junction plakoglobin OS=Homo sapiens OX=9606 GN=JUP PE=1 SV=3	25	745	81.7	546	13
P11021	Endonlasmic reticulum chanerone BIP OS-Homo saniens OX-9606 GN-HSPA5 PE-1 SV-2	27	654	72.3	545	13
0011021		27	1244	151.0	545	13
Q9UKV3	Apoptotic chromatin condensation inducer in the nucleus OS=Homo sapiens OX=9606 GN=ACIN1 PE	13	1341	151.8	544	13
	T-complex protein 1 subunit theta OS=Homo sapiens OX=9606 GN=CCT8 PF=1 SV=4	24		E0 6	542	15
P50990		54	548	59.0	512	15
P50990 Q15269	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2	19	548 919	102.4	536	11
P50990 Q15269 P22087	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2/-0-mathyltransferate fibrillarin OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2	19	548 919 321	102.4	536	11
P50990 Q15269 P22087	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2	19 43	548 919 321	39.6 102.4 33.8	536 526	11
P50990 Q15269 P22087 A0A1C7CYX9	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2'-O-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DPYSL2 PE=1 SV=1	19 43 22	548 919 321 677	39.6 102.4 33.8 73.5	536 526 519	11 11 12 9
P50990 Q15269 P22087 A0A1C7CYX9 P12268	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DPYSL2 PE=1 SV=1 Inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2	19 43 22 31	548 919 321 677 514	39.0 102.4 33.8 73.5 55.8	536 526 519 517	13 11 12 9 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2'-O-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DPYSL2 PE=1 SV=1 Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1	19 43 22 31 33	548 919 321 677 514 402	39.0 102.4 33.8 73.5 55.8 44.5	536 536 526 519 517 515	13 11 12 9 11 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dhydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DPVS12 PE=1 SV=1 inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-Ike protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear nore complex protein Nun160 OX=9606 GN=NLP160 PE=1 SV=2	19 43 22 31 33	548 919 321 677 514 402 1436	39.0 102.4 33.8 73.5 55.8 44.5 162	536 536 519 517 515 514	11 11 12 9 11 11 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q1277	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=EBVPSL2 PE=1 SV=1 Inosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=INUP160 PE=1 SV=3 Complexion OX=000 GN=00000000000000000000000000000000	19 43 22 31 33 13	548 919 321 677 514 402 1436	39.6 102.4 33.8 73.5 55.8 44.5 162	536 536 526 519 517 515 514	11 11 12 9 11 11 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2'-O-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DPYSL2 PE=1 SV=1 Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVI4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=SYMPK PE=1 SV=2	19 43 22 31 33 13 15	548 919 321 677 514 402 1436 1274	33.0 102.4 33.8 73.5 55.8 44.5 162 141.1	536 526 519 517 515 514 511	13 11 12 9 11 11 13 15
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DVSL2 PE=1 SV=1 Inosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=STMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=TBL3 PE=1 SV=2	19 43 22 31 33 13 15 18	548 919 321 677 514 402 1436 1274 808	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89	536 536 526 519 517 515 514 511 510	13 11 12 9 11 11 11 13 15 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2'-O-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DPYSL2 PE=1 SV=1 Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=1	19 43 22 31 33 13 15 18 14	548 919 321 677 514 402 1436 1274 808 941	33.6 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9	536 536 526 519 517 515 514 511 510 508	13 11 12 9 11 11 13 15 10 13
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DVFSL2 PE=1 SV=1 linosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=ELSV=1 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=TBL3 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=2	19 19 43 22 31 33 13 15 18 14 23	548 919 321 677 514 402 1436 1274 808 941 679	33.6 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6	536 536 519 517 515 514 514 511 510 508 503	13 11 12 9 11 11 13 15 10 10 13 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R412E6 Q12769 Q92797 Q12788 O94906 P38646 P38646	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2'-O-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=PWPSL2 PE=1 SV=1 Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=2 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=FBA9 PE=1 SV=2 Darelle other adverse transition 40 for the protein of 0X 000 CM 000 PC 1 OX 02 Darelle other adverse transition 40 for the protein of 0X 000 CM 000 PC 1 OX 02 Darelle other adverse transition 40 for the protein of 0X 000 CM 000 PC 1 OX 02 Darelle other adverse transition 40 for the protein of 0X 000 CM 000 PC 1 OX 02 Darelle other adverse transition 40 for the protein of 0X 000 CM 000 PC 1 OX 02 Darelle other adverse transition 40 for the protein of 0X 000 CM 000 PC 1 OX 02 Darelle other adverse transition 40 for the protein of 0X 000 CM 000 PC 1 OX 02 Darelle other	19 19 43 22 31 33 13 15 18 14 25	548 919 321 677 514 402 1436 1274 808 941 679 255	33.6 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6	536 536 526 519 517 515 514 511 510 508 503	11 11 12 9 11 11 13 15 10 13 11 11 13 15 10 13 11 11 13 15 10 13 11 11 12 12 12 11 11 12 12 12
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DVSL2 PE=1 SV=1 linosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=2 VSress-70 protein, mitcohomidal OS=Homo sapiens OX=9606 GN=SNRPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX=9606 GN=SNRPA1 PE=1 SV=2	19 19 22 31 33 13 13 15 18 14 23 35 5	548 919 321 677 514 402 1436 1274 808 941 679 255	33.6 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4	536 536 526 519 517 515 514 514 510 508 503 499	11 11 12 9 11 11 13 15 10 13 11 10 13 11 10 10 13 11 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CY99 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P38646 P99661 Q9BXY0	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Inosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPD12 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=STMPX PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=TBL3 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=2 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=NSPA0 PE=1 SV=2 U2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX=9606 GN=SMPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=MAK16 PE=1 SV=2	19 19 22 31 33 13 15 18 14 23 35 39	548 919 321 677 514 402 1436 1274 8088 941 679 255 300	33.6 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3	536 536 526 519 517 515 514 511 510 508 503 499 499	11 11 12 9 11 11 13 15 10 13 11 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98XY0 P11940	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 linosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 gymplekin OS=Homo sapiens OX=9606 GN=SYMPR PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=PRIPF6 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=PRIPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=MAK16 PE=1 SV=2 Protein In AK16 homolog OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=PRIPC1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 Protein In AK16 homolog OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=PRIPC1 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=PRIPC1 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 POLyadenylate-binding protein	19 19 43 22 31 33 13 15 18 14 23 35 39 30	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636	33.6 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6	536 536 526 519 517 515 514 514 511 510 508 503 499 499 499	11 11 12 9 11 11 13 15 10 13 11 10 10 10 10 15 10 10 10 10 15 10 10 11 11 12 12 12 12 12 12 12 12
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P936646 P936646 P936640 P93661 Q98XY0 P11940 O8WWW3	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Inosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=STMPK PE=1 SV=1 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=SNPF6 PE=1 SV=2 Pro-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=SNPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A*0S=Homo sapiens OX=9606 GN=SNPRA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=NAK16 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=NPAPC1 PE=1 SV=2 Idu/lis small nuclear ribonucleoprotein A*0S=Homo sapiens OX=9606 GN=SNPRA1 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=SNPRA1 PE=1 SV=2 Idu/lis small nuclear ribonucleoprotein A*031 OS=Homo sapiens OX=9606 GN=PAPC1 PE=1 SV=2 Idu/lis small nuclear ribonucleoprotein A*031 OS=Homo sapiens OX=9606 GN=PAPC1 PE=1 SV=2 Idu/lis small nuclear ribonucleoprotein A*031 OS=Homo sapiens OX=9606 GN=PAPC1 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=PAPC1 PE=1 SV=2 Idu/lis small nuclear ribonucleoprotein A*031 OS=Homo sapiens OX=9606 GN=PAPC1 PE=1 SV=2 Protein MAK16 homolog OS=Homo Sapiens OX=9606 GN=PAPC1 PE=1 SV=2 Protein MA	19 19 43 22 31 33 13 13 15 18 14 23 35 39 39 30 31	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636	39.6 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6	536 536 526 519 517 515 514 511 510 508 503 499 499 499 499	111 111 122 99 111 111 113 113 113 110 110 100 110
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q12769 Q32797 Q12788 Q94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 D8cP03 Q8WWY3	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=SVMPK PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=RUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=SVMPK PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=SNRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 Palyade-nylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PTp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein PT	19 19 43 22 31 33 13 13 13 15 18 14 23 35 39 30 30 31	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 636 949	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 73.6 28.4 35.3 70.6 55.4	536 536 526 517 517 515 514 510 500 500 500 500 500 9 499 499 499	13 11 12 9 9 11 11 13 15 10 13 11 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2'-0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=RBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DVFSL2 PE=1 SV=1 linosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX=9606 GN=NPAPA PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=NAR16 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=NAR16 PE=1 SV=2 V2/US small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRPE PE=1 SV=2 V2/US mult nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRPE PE=1 SV=2 V2/US small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 V2/US small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RPRE1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RE1 Sodium/potassium-transporting ATPase subunit alpha-1	19 19 43 22 31 33 13 15 18 14 23 35 39 30 30 31 13	548 919 321 677 514 402 1436 1274 808 941 679 255 3000 636 636 499 1023	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8	536 536 526 519 517 515 514 511 510 508 503 499 499 499 499 499	13 11 11 12 9 9 11 13 15 10 10 13 11 10 10 10 15 11 11 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q80KWY3 P05023 P27824	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 linosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=ENVPSL2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=IMPD12 PE=1 SV=2 Pre-mRNA-procesing factor 6 OS=Homo sapiens OX=9606 GN=RPRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=RPRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=RPRPF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RPRPF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 U2/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9	19 19 43 22 31 33 15 18 14 23 35 39 30 30 31 13 24	548 919 321 6777 514 402 1436 1274 808 941 679 255 300 636 636 636 9499 91023 592	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 141.1 141.1 899 106.9 73.6 28.4 35.3 70.6 55.4 (35.3) 70.6 55.4 (35.3) 70.6 55.5 8 70.6 55.5 8 70.6 70.5 55.8 70.5 70.5 70.5 70.5 70.5 70.5 70.5 70.5	536 536 526 517 517 515 514 514 511 510 508 508 503 499 499 499 499 499 499 499 499 499 49	13 11 12 9 9 11 11 13 15 10 13 11 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q12769 Q12778 Q94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 Inosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 Transducin DS=Homo sapiens OX=9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Tres-RNA-processing factor 6 OS=Homo sapiens OX=9606 GN=FBRPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX=9606 GN=SNRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=FSRPA1 PE=1 SV=2 Plotyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=FSRPA1 PE=1 SV=2 VL/U5 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=FSRPA1 PE=1 SV=2 VL/U5 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=FSRPA1 PE=1 SV=2 VL/U5 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=FSRPA1 PE=1 SV=2 VL/U5 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=FARPA1 PE=1 SV=2 Calmexin OS=Homo sapiens OX=9606 GN=CANX PE	34 19 19 33 33 13 13 13 13 14 23 35 39 300 31 13 14 24 27 27 27 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 636 499 1023 592 711	33.8 102.4 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 495 484	13 11 12 9 9 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4/2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98xY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=PWPSL2 PE=1 SV=2 Inosine-5*monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=TBL3 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=RNPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=SNPF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX=9606 GN=SNPFA PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=NAFF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=NAFF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A*05=Homo sapiens OX=9606 GN=SNRPA1 PE=1 SV=2 V4/U6 small nuclear ribonucleoprotein Pr31 OS=Homo sapiens OX=9606 GN=RAFF1 PE=1 SV=2 Edarwin OS=Homo sapiens OX=9606 GN=RAFF1 PE=1 SV=2 V4/U6 small nuclear ribonucleoprotein Pr31 OS=Homo sapiens OX=9606 GN=RAFF3 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 Club tripter tengeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 Subtream element-binding protein 1 0S=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 Subtream element-binding protein 1 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 Subtream element-binding protein 1 Soform CRA c OS=Homo sapiens OX=9606 GN=CH1F1 PE=1 Subtream element-binding protein 1 Soform CRA c OS=Homo sapiens OX=9606 GN=CH1F1 PE=1 Subtream sapiens OX=9606 GN=CHN PE=1 SV=2	34 19 19 31 33 33 13 15 18 44 23 35 39 30 30 31 13 32 24 27 24 27 24	548 919 321 6777 514 402 1436 1274 808 941 679 255 300 6366 499 1023 592 711	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1	536 536 526 519 517 515 514 514 511 510 508 503 499 499 499 499 499 499 499 499 499 49	13 11 12 9 9 11 11 13 15 10 10 10 10 10 10 10 10 10 11 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q12769 Q32797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 Symplekin OS=Homo sapiens OX=9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=PRJF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=PRJF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX=9606 GN=RSPAP FE=1 SV=2 U4/U6 small nuclear ribonucleoprotein N OS=Homo sapiens OX=9606 GN=RSPAP FE=1 SV=2 U4/U6 small nuclear ribonucleoprotein PP31 OS=Homo sapiens OX=9606 GN=PRJF31 PE=1 SV=2 Calnexin OS=Homo sapiens OX=9606 GN=CANPE1 SV=2 Calnexin OS=Homo sapiens OX=9606 GN=ARAIC PE=1 SV=2 V1/U6 small nuclear ribonucleoprotein PP31 OS=Homo sapiens OX=9606 GN=RBPF31 PE=1 SV=2 Calnexin OS=Homo sapiens OX=9606 GN=CANPE1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=RBPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX=9606 GN=RBPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX=9606 GN=RBPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX=9606 GN=RBPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=HOmo sapiens OX=9606 GN=RBPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=HOmo sapiens OX=9606 GN=RBPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=HOmo sapiens OX=9606 GN=GN=STRPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=HOmo sapiens OX=9606 GN=CHSTP PE=1 SV=1 CUG triplet repeat, RNA binding protein 1 SV=1 CUG triple	34 19 19 19 31 33 33 33 33 33 33 35 18 18 14 23 35 39 30 0 31 13 13 14 24 27 27 24 24 24 25 25 25 25 25 25 25 25 25 25	548 919 3211 677 514 402 1436 941 679 2555 300 636 636 499 1023 592 711 514	33.8 102.4 33.8 73.5 55.8 44.5 1622 141.1 899 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1	536 536 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 495 484	13 11 12 9 9 11 11 11 13 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q88XWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2'-0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=RBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=PWPSL2 PE=1 SV=2 Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=TBL3 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=RPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=NPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX=9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=NARA16 PE=1 SV=2 V2 JU/L6 small nuclear ribonucleoprotein PT91 OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=NPABPC1 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=NARA10 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=NARA10 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=NPABPC1 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=NARA10 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=NARA10 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=RHP31 PE=1 SV=2 U4/L05 small nuclear ribonucleoprotein 1 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 Cols tripter repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 CUG tripter repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=KHSRP PE=1 SV=1 Septin-2 OS=Homo sapiens OX=9606 GN=SEPTIN2 PE=1 SV=1 Set bind to the tot 0.0 S=0000 GN=CEFT PE=1 SV=1 Septin-2 OS=Homos	34 19 19 31 33 33 33 35 38 39 30 31 13 35 39 30 31 13 35 39 30 31 31 35 35 39 30 30 31 31 35 35 35 36 37 37 37 37 37 37 37 37 37 37	548 919 321 677 514 402 1436 1274 808 941 679 2255 3000 636 636 636 499 1023 592 7111 514	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 12.8 14.1 12.8 13.8 15.9 15.9 15.1 15	536 536 526 519 517 515 514 511 510 508 503 499 499 499 499 499 499 499 497 490 485 484 483	13 11 11 12 9 11 11 13 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q32797 Q12769 Q32797 Q12778 Q94906 P38646 P09661 Q988XY0 P11940 Q898XY0 P11940 Q898XY0 P11940 Q898XY0 P11940 Q898XY0 P11940 Q898XY0 Q15019 Q15019 Q96PK6	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=2 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=NRPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A*OS=Homo sapiens OX=9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=MRPF6 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=RPF17 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=RPF17 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=RPF17 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=RPF17 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=RPF731 PE=1 SV=2 Far upstream element-binding protein 2 OS=HOMO sapiens OX=9606 GN=RHSPE1 PE=1 SV=2 Far upstream element-binding protein 1 S=SHOMO sapiens OX=9606 GN=RHSPE1 PE=1 SV=1 CUG triplet repeat, RNA binding protein 1 2 OS=HOMO sapiens OX=9606 GN=KHSRP PE=1 SV=1 CUG triplet repeat, RNA binding protein 1 OS=HOMO sapiens OX=9606 GN=GN=GN=SPE Septin-2 OS=HoMOMO sapiens OX=9606 GN=RBM14 PE=1 SV=2 RNA-binding protein 1 OS=HOMO Sapiens OX=9606 GN=RBM14 PE=1 SV=2	34 19 19 33 33 33 13 15 18 18 14 14 23 35 39 300 311 13 24 44 44 23	548 919 3211 677 514 402 1386 1274 808 941 6799 255 300 636 499 1023 592 711 514 361 669	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 899 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 122.5 69.4	536 536 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 111 122 9 9 111 111 111 113 133 135 100 100 100 100 100 100 100 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P999661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=PWPS12 PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=PWPS12 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=RBPF6 PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=RBPF6 PE=1 SV=2 Yre=mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=RBPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A*0S=Homo sapiens OX=9606 GN=SNRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=NAR16 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=NBPF6 PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=PRPF13 PE=1 SV=2 Sodium/potasium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RFRP3 PE=1 SV=2 Galvestin OS=Homo sapiens OX=9606 GN=CBAPABPC1 PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX=9606 GN=KH5RP PE=1 SV=1 CUG triplet repeat, RNA binding protein 1, isoform CRA_c OS=Homo sapiens OX=9606 GN=CELF1 PE= Septin-2 OS=Homo sapiens OX=9606 GN=RM14 PE=1 SV=2 CCAT/enhancer-binding protein 2 OS=9606 GN=RM14 PE=1 SV=2 Septin-2 OS=Homo sapiens OX=9606 GN=REPT1PE=1 SV=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=REPT1PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS=Homo Sapiens OX=9606 GN=CELF1 PE= Septin-2 OS=Homo sapiens OX=9606 GN=REPT1PE=1 SV=2 SCAT/enhancer-binding protein 2 OS=HOM Sapiens OX=9606 GN=CELF2 PE=1 SV=3	34 19 19 43 22 31 33 13 155 18 14 23 355 399 300 311 33 34 24 24 24 24 23 25	548 919 3211 677 514 402 1326 1274 808 941 679 255 300 6366 9499 1023 592 7111 514 361 669 9 1054	33.8 102.4 33.8 73.5 55.8 73.5 162 141.1 89 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 41.5 69.4 120.9 9 44.5 120.4 1	536 536 526 519 517 515 514 511 510 508 503 499 499 499 499 499 499 499 497 490 495 484 483 478 478	13 11 12 12 12 12 12 12 12 11 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 Q94906 P38646 P09661 Q98XY0 P11940 Q88XY0 P11940 Q898XY0 P11940 Q898XY0 P5023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 Dhydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=PWP2 PE=1 SV=2 Divydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=PWP12 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=SVMPX PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=RUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=SVMPX PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=RPRP6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX=9606 GN=RNPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RMP61 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RMPA1 PE=1 SV=2 Va/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX=9606 GN=RMP731 PE=1 SV=2 Folyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RMP231 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=RMP331 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=RMP331 PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=RMP879 PE=1 SV=1 CUATjehar como sapiens OX=9606 GN=SEPTIN2 PE=1 SV=2 CCAAT/enhancer-binding protein 1 OS=Homo sapiens OX=9606 GN=CEH2 PE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CEH2 PE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CEH2 PE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=RPF34 PE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=PEPE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=PEPE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=PEPE=1 SV=3 CCAAT/enh	34 19 19 43 22 31 13 33 33 15 18 14 14 23 35 39 30 0 31 13 13 24 44 44 44 44 44 23 35 55 27 27 27 27 27 27 27 27 27 27	548 919 3211 6777 514 4022 1436 1274 8088 9411 679 2255 3000 636 636 636 636 636 499 1023 3592 7111 514 3611 669 1054 522	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 899 106.9 73.6 55.4 35.3 70.6 55.4 112.8 67.5 73 55.1 41.5 55.1 41.2 55.1 41.2 55.1 41.2 55.1 55.2	536 536 519 517 515 514 511 510 508 503 499 499 499 499 499 499 499 499 499 49	13 11 11 11 12 12 9 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q8N8S7	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=RBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=DVFSL2 PE=1 SV=1 linosine-5*monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 Transducin beta-like protein 3 OS-9606 GN=SYMPK PE=1 SV=2 Yre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RB4 PE=1 SV=2 Yres-RDA-processing factor 6 OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX-9606 GN=SRPA PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=SRPA PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=SPRAP PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=SPRAP PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=SPRAP PE=1 SV=2 U2 Sodium/potasium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX-9606 GN=SRPAP PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=CANX PE=1 SV=2 For upstream element-binding protein 1, isoform CRA_c OS=Homo sapiens OX=9606 GN=SRPAP PE=1 SV=1 CU6 triplet repeat, RNA binding protein 1, OS=Homo sapiens OX=9606 GN=KSRP PE=1 SV=1 CLAT/enhancer-binding protein 1, esoform CRA_c OS=Homo sapiens OX=9606 GN=CELF1 PE= Septin-2 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 CCAAT/enhancer-binding protein n2 OS=Homo sapiens OX=9606 GN=REPAP PE=1 SV=1 CLAT/enhancer-binding protein rep4 OS=Homo sapiens OX=9606 GN=REP4 PE=1 SV=2 CCAAT/enhancer-binding protein rep4 OS=Homo sapiens OX=9606 GN=REP4 PE=1 SV=2 Protein endbed homolog OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Protein endbed homolog OS=Homo sapiens OX=9606 GN=REP4 PE=1 SV=2 CCAAT/enhancer-binding protein rep4 OS=Homo sapiens OX=9606 GN=CEBP PE=1 SV=2 CCAAT/enhancer-b	34 19 19 43 22 31 33 13 15 18 14 23 33 33 34 35 36 37 38 30 31 33 32 33 33 34 33 36 37 38 39 30 31 33 34 35 36 37 38 39 30 313 33 36 37 37 37	548 919 3211 6777 514 4020 1436 1274 808 941 679 2255 3000 6366 499 1023 7011 5144 361 669 9 1054 522 501	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 163 73.6 28.4 112.8 67.5 73.5 55.1 41.5 55.1 41.5 55.8 44.5 55.8 69.4 120.4	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 497 490 485 5484 484 483 478 477 476 476	13 11 11 12 12 12 11 11 13 15 10 10 13 11 11 10 10 15 11 11 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4/2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q15019 Q96PK6 Q03701 Q43172 Q8W857 O9X40C	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dhydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=1 linosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=ENVPSL2 PE=1 SV=2 ELAV-Ike protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=FBL3 PE=1 SV=2 U2 small nuclear ribonucleoprotein A*OS=Homo sapiens OX=9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=RPRF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RPRF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A*OS=Homo sapiens OX=9606 GN=RPRF6 PE=1 SV=2 Va/Uds small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRF31 PE=1 SV=2 Va/Uds mall nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRF31 PE=1 SV=2 Frotein MAK16 homolog OS=Homo sapiens OX=9606 GN=RPRF31 PE=1 SV=2 Va/Uds mall nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRF31 PE=1 SV=2 Va/Uds mall nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPRF31 PE=1 SV=2 Va/Uds mall nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=KH3PAP PE=1 SV=1 CLG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=KH3PP PE=1 SV=1 CLG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP PE=1 SV=3 VA/UG small nuclear ribonucleoprotein Prp3 OS=HOMO sapiens OX=9606 GN=CEBP PE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP PE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP PE=1 SV=3 Protein enabled homolog OS=Homo sapiens OX=9606 GN=ENAH PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=ENAH PE=1 SV=2 Protein enabl	34 19 19 31 33 33 33 33 33 33 33 34 44 44	548 919 3211 6777 514 4022 1436 799 2555 3000 636 4999 1023 592 7111 514 361 6699 1054 43522 592	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 141.2 89.4 122.8 122.4 123.4 123.4 123.4 124.5 12	536 536 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 12 9 11 13 15 10 13 11 10 10 10 10 10 10 10 11 11
P50990 Q15269 P22087 A0A127CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P93664 P936645 P93661 Q988V0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q8N857 Q9490	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=DWP2 PE=2 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=DVFSL2 PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=SVMPK PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPK PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS-Homo sapiens OX-9606 GN=PRPF8 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NEPKP4 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NEPKP4 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prg31 OS-Homo sapiens OX-9606 GN=PRPF31 PE=1 SV=2 Eanexin OS=Homo sapiens OX-9606 GN=ARVE1 PE=1 SV=2 Eanexin OS=Homo sapiens OX-9606 GN=ARVE1 PE=1 SV=2 Frotein masperting ATPase subunit alpha-1 OS=Homo sapiens OX-9606 GN=ARP11 PE=1 SV=2 Far upstream element-binding protein 1 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Far upstream element-binding protein 1 SM=PTINZ PE=1 SV=2 Far upstream element-binding protein 1 SM=PTINZ PE=1 SV=1 CLG triplet repeat, RNA binding protein 1, Isoform CRA_c OS=Homo sapiens OX=9606 GN=REPT12 PE=1 SV=3 Septin-2 OS=Homo sapiens OX=9606 GN=RM14 PE=1 SV=2 CCAAT/enhancer-binding protein 1 AS=HOmo sapiens OX=9606 GN=REPT4 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr4 OS=Homo sapiens OX=9606 GN=CEEPT PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein PC4 OS=HOmo sapiens OX=9606 GN=RM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RM14 PE=1 SV=2 Talin=1 OS=HOmo sapiens OX=9606 GN=RM14 PE=1 SV=2 Talin=1 OS=HOm	34 19 19 43 22 31 33 13 35 18 14 23 35 38 300 311 331 34 27 27 27 8	548 9199 3211 6777 514 402 1436 1274 808 941 679 2555 3000 636 636 499 1023 592 7111 514 361 6699 1054 522 5911	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 164.5 55.8 44.5 162 162 162 162 164.5 162 164.5 162 164.5 162 164.5 162 164.5 162 164.5 162 164.5	536 536 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q112788 O94906 P38646 P09661 Q98KY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q8W857 Q9Y490 P51149	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=2 Dhydrogyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=FBL PE=1 SV=1 inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX=9606 GN=DPVS12 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo Sapiens OX=9606 GN=IMPD12 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo Sapiens OX=9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=1 Vz small nuclear ribonucleoprotein A*OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=PRPF6 PE=1 SV=2 Vz small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=PRPF31 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=PRPF1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RPRF31 PE=1 SV=2 Val/Us small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPF731 PE=1 SV=2 Val/Us mall nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RPF731 PE=1 SV=2 Val/Us mall nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=CATP1A1 PE Calnexin OS=Homo sapiens OX=9606 GN=SEPT1N2 PE=1 SV=1 RNA-binding protein 1 4 OS=Homo sapiens OX=9606 GN=CEBP2 PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP2 PE=1 SV=2 CAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP2 PE=1 SV=2 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP2 PE=1 SV=3 U/U dS small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=PRPF4 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=ERB74 PE=1 SV=2 Tain-1 OS=Homo sapiens OX=9606 GN=TLN1 P	34 19 19 43 22 31 33 15 18 14 23 14 24 24 24 24 24 23 15 35 36 37 24 24 23 315 32 32 27 8 59	548 919 3211 6777 514 4022 1436 1274 8088 9411 679 9411 679 92555 3000 636 4999 1023 3592 7711 5144 3611 6669 10544 5222 5911 2541 2077	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 41.5 69.4 120.9 58.4 66.5 54.4 120.2 55.8 60.4 120.2 1	536 536 526 517 515 514 511 510 503 499 499 499 499 497 490 485 484 483 478 4776 476 470 467	13 11 12 9 11 13 15 13 13 11 10 10 10 10 10 10 10 10 11 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P93664 P93664 Q9840 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q8WBS7 Q95PK6 Q03701 Q43172 Q8WBS7 Q9490 P51149 A0A1W2PQ51	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=1 linosine-5*monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=SVMPK PE=1 SV=2 Transducin beta-like protein 3 OS+Homo sapiens OX-9606 GN=PRUP160 PE=1 SV=2 Yre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=PRUP6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A' OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein PP31 OS=Homo sapiens OX-9606 GN=PRPF1 PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=CANR PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 V4/U6 small nuclear ribonucleoprotein PP31 OS=Homo sapiens OX-9606 GN=PRPF31 PE=1 SV=2 V2 sprotein, mbcchondrial OS=Homo sapiens OX-9606 GN=PRPF31 PE=1 SV=2 V2 far upstream element-binding protein 1 OS=Homo sapiens OX-9606 GN=PRPF31 PE=1 SV=2 Far upstream element-binding protein 1 OS=HOmo sapiens OX=9606 GN=RMPF1 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=HOmo sapiens OX=9606 GN=RMPF31 PE=1 SV=2 Far upstream element-binding protein 1 SO=FINOR Sapiens OX=9606 GN=RMPF31 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=HOmo sapiens OX=9606 GN=RMPF31 PE=1 SV=2 Far upstream element-binding protein 2 OS=HOmo sapiens OX=9606 GN=CHSP PE=1 SV=1 CCAT/enhancer-binding protein 2 OS=HOmo sapiens OX=9606 GN=CEBP PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr0 S=100R OS=9606 GN=CEBP PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr0 S=100R OS=9606 GN=CEBP PE=1 SV=3 Protein enabled homolog OS=HOmo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS=HOmo sapiens OX=96	34 19 19 43 22 31 33 13 35 18 14 23 33 33 35 360 311 313 34 24 23 27 28 59 59 59	548 9199 3211 6777 514 4022 1436 1274 8088 9411 679 2555 3000 636 636 4999 1023 5922 7111 514 3611 514 3612 592 919 1054 522 5911 2541 2541 2077 7311 7314 7315	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 164.5 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 67.5 713 55.5 102.2 102.4	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q8N857 Q9Y490 P51148	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=RBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=DVFSL2 PE=1 SV=2 Inosine-5* monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=NUPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBPF6 PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBPF6 PE=1 SV=2 Varesn-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=RBPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A*0 S=Homo sapiens OX-9606 GN=RBPA PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RBPA PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN=RPAPA PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN=RPAPA PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN=RPAPA PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein 1, soform CRA_c OS-Homo sapiens OX-9606 GN=RPAP13 PE=1 SV=2 Sodium/potasium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX-9606 GN=EKPF31 PE=1 SV=1 CUG triplet repeat, RNA binding protein 1, isoform CRA_c OS-Homo sapiens OX-9606 GN=CELF1 PE= Septin-2 OS=Homo sapiens OX-9606 GN=EKPT1N2 PE=1 SV=1 CCAAT/enhancer-binding protein zeta OS=Homo sapiens OX-9606 GN=CEBP2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX-9606 GN=ERPF4 PE=1 SV=2 Tain-1 OS=Homo sapiens OX-9606 GN=ENAP14 PE=1 SV=2 Tain-1 OS=Homo sapiens OX-9606 GN=ENAP14 PE=1 SV=2 Tain-1 OS=Homo sapiens OX-9606 GN=ENAP14 PE=1 SV=2 Tain-1 OS=Homo sapiens OX-9606 GN=CEBP2 PE=1 SV=3 Ras-related protein Rab-7a OS=Homo sapiens OX-9606 GN=RAB7A PE=1 SV=1 Ras-related protein Rab-7a OS=Homo sapiens OX-9606 GN=RAB7A PE=1 SV=1 Ras-related p	34 19 19 19 43 31 33 33 33 33 33 33 35 39 30 31 33 35 39 30 31 31 35 39 39 30 31 31 35 35 39 39 30 30 31 31 35 35 35 39 39 30 30 30 30 30 30 30 30 30 30	548 919 3211 677 514 402 1436 1274 8088 941 679 2555 3000 636 636 4999 1023 592 7111 514 4361 669 1054 522 591 2541 207 731	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 162 162	536 536 526 519 517 515 514 511 510 508 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 9 9 11 13 15 100 13 11 100 100 10 9 9 11 11 11 100 100
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q88XY0 P11940 Q898XY0 P11940 Q898XY0 P5023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q8N8S7 Q9Y490 P51149 A0A1W2PQ51 P51148 P15024	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=SMPA PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=RUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SMPA PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RUP6F6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RNPF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A*OS-Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=MRP6 PE=1 SV=2 V4/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=RNPF31 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RMPC1 PE=1 SV=2 EAV-like-binding protein 1 OS=Homo sapiens OX-9606 GN=RMPC1 PE=1 SV=2 Protein MAK16 homolog OS=Homo Sapiens OX-9606 GN=RMPC1 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=Homo sapiens OX=9606 GN=RMPC1 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=Homo sapiens OX=9606 GN=RMSPE1 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=Homo sapiens OX=9606 GN=RMSPE1 PE=1 SV=2 RNA-binding protein 1 4 OS=Homo sapiens OX=9606 GN=RM14 PE=1 SV=2 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=RMP14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RM5A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RM5A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RM5A	34, 199 199 433 222 311 133 333 155 188 184 144 233 355 399 300 311 133 244 247 277 24 444 233 155 599 177 57 6 7 7 7 7 7 7 7 7 7 7 7 7 7	548 9199 321 6777 5144 402 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 941 1274 808 808 941 1274 808 808 941 1274 808 808 941 1274 808 808 941 1274 808 808 941 1274 808 808 941 1274 808 808 902 1275 1274 808 809 1023 1024 1024 1024 1024 1024 1024 1024 1024 1025 1024 1024 1025 1024 1025 1025 1025 1025 1025 1026 1027 10	33.8 102.4 33.8 73.5 55.8 44.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 73 55.1 73 55.1 73 55.2 73 55.2 73 55.3 73 55.3 70.5 73 55.3 70.5 73 55.3 70.5 73 55.3 70.5 80.4 41.5 70.5 80.4 41.5 70.5 80.4 70.5 70.5 80.4 70.5 70.5 80.4 70.5 70.5 80.4 70.5 70.5 70.5 80.4 70.5 7	536 536 526 519 517 515 514 511 510 508 503 499 499 499 499 499 499 499 499 499 49	13 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P999661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q8N857 Q9Y490 P51148 P15924	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=RBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=DVYSL2 PE=1 SV=1 linosine-5* monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBPF6 PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBPF6 PE=1 SV=2 Wersen-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=RBPA PE=1 SV=2 U2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=RBPA PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RBPA PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=RPAPA PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=RPAPA PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=RPAPA PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=CANX PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=CANX PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 CGAT/enhancer-binding protein 1, isoform CRA_c OS=Homo sapiens OX-9606 GN=EELF1 PE= Septin - 2 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 CCAAT/enhancer-binding protein zeta OS=Homo sapiens OX=9606 GN=EEBP PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=EBPF4 PE=1 SV=2 Train-1 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Tain-1 OS=Homo sapiens OX=9606 GN=RABM14 PE=1 SV=2 Tain-1 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Totein enabled homolog OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Totein Rab-7a OS=Homo sapiens OX=9606 GN=RABM14 PE=1 SV=2 Tain-1 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Tain-1 OS=Homo sapiens OX=96	34 19 19 43 22 31 33 13 155 18 14 14 33 35 399 300 311 33 24 24 27 24 32 355 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 33 34 35 36 37 38 39 315 316 317 310 317 <t< td=""><td>548 919 321 677 514 402 1436 1274 808 941 679 2555 3000 636 636 499 91023 592 7711 514 4361 669 1054 43522 591 7711 2541 2541 2541 2541 2541 2541 2541 25</td><td>33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 162 162</td><td>536 536 526 519 517 515 514 511 510 503 503 499 499 499 499 499 499 499 499 499 49</td><td>13 11 11 12 9 9 11 13 15 10 10 10 10 10 10 10 10 11 11</td></t<>	548 919 321 677 514 402 1436 1274 808 941 679 2555 3000 636 636 499 91023 592 7711 514 4361 669 1054 43522 591 7711 2541 2541 2541 2541 2541 2541 2541 25	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 162 162	536 536 526 519 517 515 514 511 510 503 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 9 9 11 13 15 10 10 10 10 10 10 10 10 11 11
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q88XY0 P11940 Q898XY0 P11940 Q898XY0 Q3701 Q5EA30 Q15019 Q36701 Q3701 Q3701 Q38N857 Q3490 P51149 P51149 P51148 P15924 P15924	Periodic tryptophan protein 2 homolog OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS=Homo sapiens OX=9606 GN=PWP2 PE=2 SV=2 Dhydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=EBLPE=1 SV=2 Dhydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS=Homo sapiens OX=9606 GN=SMMP4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX=9606 GN=RUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX=9606 GN=SMMP4 PE=1 SV=2 Pre-mRNA-processing factor 6 OS=Homo sapiens OX=9606 GN=RBPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX=9606 GN=RBP76 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RBP76 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RBP76 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RBP78 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX=9606 GN=RBP21 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RAPP131 PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX=9606 GN=RBP231 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=RHSP31 PE=1 SV=2 Far upstream element-binding protein 1 SO=SP10N ESP2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=REHSP PE=1 SV=1 RNA-binding protein 14 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Protein nab-160 OS=HOM Sapiens OX=9606 GN=RBM14 PE=1 SV=2 Protein nab-160 S=Homo sapiens OX=9606 GN=RAFA PE=1 SV=3 U4/U5 small nuclear ribonucleoprotein PT4 OS=Homo sapiens OX=9606 GN=REFA PE=1 SV=3 Val/U5 undera ribonucleoprotein 14 OS=Homo sapiens OX=9606 GN=RAFA PE=1 SV=2 Protein nab-160 S=Homo sapiens OX=9606 GN=RA	34 19 19 43 22 31 15 18 141 23 13 35 39 300 31 13 24 44 23 27 24 444 23 22 27 8 59 17 57 6 8	548 9199 3211 6777 5144 402 1374 107	33.8 102.4 33.8 73.5 55.8 44.5 55.8 44.5 162 162 162 162 163 164 163 164 164 165 162 163 164 165 166 173 166 197.5 80 4 165 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 167 167 167 167 167 167 167	536 536 526 519 517 515 514 511 503 499 499 499 499 497 485 484 483 477 476 470 470 467 467 467 457 457	13 11 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q3701 Q36701 Q36701 Q36701 Q3701 Q36702 Q3701 Q36702 Q3701 Q3702 Q370	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=RBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=BVPSI2 PE=1 SV=1 linosine-5*monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 Transducin beta-like protein 3 OS-9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBJ PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 Yres-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=PRPF8 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS-Homo sapiens OX-9606 GN=PSPA PE=1 SV=2 U4/U5 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN=PSPA PE=1 SV=2 U4/U5 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN=PSPA PE=1 SV=2 U4/U5 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN=PRP31 PE=1 SV=2 Dilydennylate-binding protein 1 OS=Homo sapiens OX-9606 GN=PABPC1 PE=1 SV=2 Calnexin OS-Homo sapiens OX-9606 GN=CANX PE=1 SV=2 Calnexin OS-Homo sapiens OX-9606 GN=CANX PE=1 SV=1 CIG triplet repeat, RNA binding protein 1 OS=Homo sapiens OX-9606 GN=KHSRP PE=1 SV=1 CUG triplet repeat, RNA binding protein 1, isoform CRA_c OS-Homo sapiens OX-9606 GN=CELF1 PE= Septin-2 OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 CCAAT/enhancer-binding protein zeta OS=Homo sapiens OX-9606 GN=CEBPF4 SV=3 U4/U5 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX-9606 GN=RPF4 PE=1 SV=2 Talin-1 OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 Talin-1 OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 Talin-1 OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 Talin-1 OS=Homo sapiens OX-9606 GN=RAB74 PE=1 SV=1 Probable ATP-dependent RNA helicase DX17 OS=Homo sapiens OX-9606 GN=RDX17 PE=1 SV=1 Probable ATP-dependent RNA helicase DX17 OS=Homo sapiens OX-9606 GN=NDX17 PE=	34 19 19 43 22 31 33 13 35 18 14 23 13 35 36 37 38 39 300 311 33 24 24 24 22 27 8 59 17 57 6 6 8 200	548 919 321 677 514 402 1436 1274 808 941 679 2555 300 636 636 499 1023 592 1023 592 1023 592 1054 514 361 2541 207 7311 22541 207 7311 2166 2871 1817 7922	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 163 73.6 73.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 7	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 12 12 11 11 13 15 10 10 13 11 11 10 10 10 11 11 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4/2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q15019 Q96PK6 Q03701 Q15019 Q95PK6 Q03701 Q9490 P51149 P51148 P51148 P51148 P51924 P51924 P55924 P55924 P55924 P55924 P55924 P55924 P55924 P55924 P55924 P55924 P55925 P52528	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN=PBLPE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=DVPS12 PE=1 SV=2 ELAV-Ike protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-Ike protein OS-Homo sapiens OX-9606 GN=TMVP160 PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SYMPX PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 V2 small nuclear ribonucleoprotein A*OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 Va/Us small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 Va/Us small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RAPC1 PE=1 SV=2 Va/Us small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RAPP31 PE=1 SV=2 Va/Us small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=KHSP PE=1 SV=1 CUG triplet repeat, RNA binding protein 1 OS=Homo sapiens OX=9606 GN=KHSP PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CHSP PE=1 SV=2 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=RAPF4 PE=1 SV=2 Protein nabel homolog OS=Homo sapiens OX=9606 GN=RAPF4 PE=1 SV=2 Protein nabel homolog OS=Homo sapiens OX=9606 GN=RAPA PE=1 SV=2 Protein nabel homolog OS=Homo sapiens OX=9606 GN=RAPA PE=1 SV=2 Protein nabel homolog OS=Homo sapiens OX=9606 GN=RAPA PE=1 SV=2 Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens OX=9606 GN=PCH2 PE=1 SV=2 Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens OX=9606 GN=PCH2 PE	34 19 19 43 22 31 15 18 14 23 13 33 33 34 35 360 311 32 27 24 444 444 444 43 322 27 8 599 177 57 6 8 20 67 67	548 919 3211 6777 514 4022 1436 799 409 400 5255 3300 636 4999 1023 3592 7711 514 361 669 1054 4 499 1023 752 7711 514 361 2541 2077 7311 216 689 1054 4 1255 1057 731 2077 7311 216 2871 11817 732 2077 7311 216 2871 11817 732 2077 731 216 2077 731 20777 731 20777 731 20777 731 731 731 731 731 731 731 731 731	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 141.2 89 40.5 55.4 102.4 66.5 269.6 269.6 23.5 80.4 23.5 80.3 80.4 23.5 80.3 80.5 80.3 80.5 80.3 80.5	536 536 526 519 511 514 511 514 511 514 511 514 511 503 499 499 499 499 499 499 470 476 470 470 477 460 457 457 456	13 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q96PK6 Q03701 Q95PK6 Q03701 Q95PK6 Q03701 Q95PK6 Q03701 Q95PK6 Q03701 Q95PK6 Q03701 P51148 P15124 P52948 P52948 H0YFD6 P23528 P31680	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=SWDP160 GN=PBLP15V=1 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PBL9FE1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=PBL9FE1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=PBPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS-Homo sapiens OX-9606 GN=PBPF8 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NEPR9 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prg31 OS-Homo sapiens OX-9606 GN=PBPF31 PE=1 SV=2 Calnexin OS-Homo sapiens OX-9606 GN=CANX PE=1 SV=2 Far upstream element-binding protein 1 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Septin-2 OS-Homo sapiens OX-9606 GN=RM14 PE=1 SV=2 CCAAT/enhancer-binding protein 1 SO-Homo sapiens OX-9606 GN=CEBP PE=1 SV=1 CUG triplet repeat, RNA binding protein 1 SO-9606 GN=RM14 PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAPA PE=1 SV=2 Protein habled nomolog OS-Homo sapiens OX-9606 GN=RAPA PE=1 SV=2 Protein habled homolog OS-Homo sapiens OX-9606 GN=RAPA PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAPA PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAPA PE=1 SV=2 Protein habled homolog OS-HOMO sapiens OX-9606 GN=RAPA PE=1 SV=2 Protein habled homolog OS-HOMO sapiens OX-9606 GN=RAPA PE=1	34 19 19 19 43 22 31 33 13 35 18 14 23 33 33 33 34 35 36 37 38 59 57 6 8 20 20 67	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 711 514 361 514 361 514 2541 207 7311 216 2871 1877 792 166 2871 216 267 267 267 267 267 267 267 26	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 163 164 164 164 165 162 162 162 162 162 162 162 162	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 9 11 13 15 10 10 13 11 11 10 10 15 11 11 10 10 15 11 11 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 Q94906 P38646 P09661 Q38KY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q36PK6 Q03701 Q43172 Q8MS77 Q9Y490 P51148 P15924 P51148 P15924 P51148 P15924 P5198 P15924 P5198 P15924 P5198 P15924 P5198 P15924 P5198 P	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=FBL PE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=FBL PE=1 SV=1 linosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-Ike protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SYMPX PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX-9606 GN=RPBrF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPBrF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPBrF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPBrF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPBrF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPBrF3 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPBrF3 PE=1 SV=2 Valyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=RPBrF31 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=ABPC1 PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=CANX PE=1 SV=1 Galnexin OS=Homo sapiens OX-9606 GN=CANX PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=KHSPA PE=1 SV=1 CLG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP PE=1 SV=1 CLG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP ZE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=CANA PE=1 SV=2 Protein nabel homolog OS=Homo sapiens OX=9606 GN=CEBP ZE=1 SV=3 Ud/U6 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=CBP ZE=1 SV=3 Nuclear protein Rab-7 a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 DEsmoplakin OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 DEsmoplakin OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 DEsmoplakin OS=Homo sapiens OX=9606 GN=CABP AE=1 SV=2 DEsmoplakin OS=Homo sapiens OX=9606 GN=RAB7	34 19 19 31 33 33 33 33 33 33 33 33 33	548 919 3211 677 514 4022 1436 1274 8088 9411 679 2555 3000 636 499 1023 7010 514 499 1023 7111 514 361 669 1054 435 222 7711 514 361 669 27711 207 731 207 7311 207 731 207 731 207 731 207 731 207 731 207 731 207 731 207 731 207 731 207 731 207 731 207 731 207 731 207 737 737 737 737 737 737 737 737 737 7	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 141.5 73 55.1 41.5 69.4 120.9 58.4 40.5 56.8 80.4 120.9 58.4 120.9	536 536 526 517 515 514 511 515 514 511 510 503 499 499 499 499 499 497 400 485 484 483 477 476 470 467 467 467 467 456 457 456 454	13 11 11 12 9 11 11 13 15 10 13 13 11 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P909661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q96PK6 Q03701 Q96PK6 Q03701 Q96PK6 Q03701 P51148 P51148 P15924 P52948 P52948 H0YFD6 P33528 P33528 P33528 P33689 Q9H0A0	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=1 linosine-5*monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS+Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=RSPAP FE=1 SV=2 U2 small nuclear ribonucleoprotein A*OS=Homo sapiens OX-9606 GN=RSPRP1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NEPKP4 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX-9606 GN=RPRF31 PE=1 SV=2 Edatexin OS+Homo sapiens OX-9606 GN=CANP PE=1 SV=2 Calnexin OS+Homo sapiens OX-9606 GN=RDF1 PE=1 SV=2 Edatexin OS+Homo sapiens OX-9606 GN=RDF1 PE=1 SV=2 Edatexin OS+Homo sapiens OX-9606 GN=RDF1 PE=1 SV=2 Far upstream element-binding protein 1 OS+Homo sapiens OX-9606 GN=RDF1 PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX-9606 GN=RDF1 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=Homo sapiens OX-9606 GN=RDF2 PE=1 SV=1 CLG triplet repeat, RNA binding protein 1 2 OS=Homo sapiens OX-9606 GN=RDF3 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX-9606 GN=RDF2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr0 SS=HOMO sapiens OX-9606 GN=CEBP2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr0 SS=HOMO sapiens OX=9606 GN=RDF1 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens	34 19 19 19 43 22 31 33 13 33 33 33 33 33 34 44 23 300 311 33 34 44 23 35 32 277 8 59 59 57 6 8 200 67 39 14	548 9199 3211 677 514 4022 1436 1274 8088 9411 679 2555 3000 6366 4999 1023 5922 7111 514 3611 514 3611 2541 2077 7311 2166 28711 2166 28711 2166 28711 2166 28711 2166 28711 2166 28711 2166 28711 2166 28711 2166 28711 2166 28711 2167 2174 2167 2167 2167 2174 2167 2174 2167 2174 2174 2167 2174 21	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 164 9 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73.3 55.1 41.5 70.3 65.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 23.5 269.6 26.5 2	536 536 526 519 517 515 514 511 500 503 499 499 499 499 497 498 478 476 476 470 460 467 465 457 455 454	13 11 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q8N857 Q9Y490 P51148 P15924 P5148 P15924 P5148 P15924 P52948 H0YFD6 P23528 P31689 Q9H0A0 P62136	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN-FBL PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN-FBL PE=1 SV=1 inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo Sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX-9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX-9606 GN=RPBFP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPBFP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPBFP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPBFP6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPBFP6 PE=1 SV=2 VPotein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPBFP6 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=RPBFP3 TSV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=RPBFP3 TSV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=RPBFP3 TSV=2 Calim_/ptorasim-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=CATP1A1 PE Calnexin OS=Homo sapiens OX-9606 GN=SEPTIN2 PE=1 SV=1 Culo triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP PE=1 SV=1 CCAAT/rehnace-binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP 2PE=1 SV=2 VI_05 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=CEBP 2PE=1 SV=2 Protein nabled homolog OS=Homo sapiens OX=9606 GN=RBATP1A PE=1 SV=2 Trotein anabled homolog OS=Homo sapiens OX=9606 GN=RBATP1 PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=1 Ras-related protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 DEsmoplakin OS=Ho	34 19 19 43 22 31 33 13 35 18 14 23 13 35 38 393 300 311 33 24 24 24 24 22 215 322 355 32 355 32 355 32 331 331 331 331 332 34 35 36 37 38 39 39 310 311 32 331 331 331 332 333 </td <td>548 919 3211 677 514 402 1436 941 679 2555 3000 636 649 99 1023 552 3000 636 649 99 1023 552 255 310 255 532 7711 514 361 254 277 1125 255 22 207 7731 2166 2871 1216 2871 1216 2871 1216 2871 1216 2871 1216 2871 1216 2871 3300</td> <td>33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 162 162</td> <td>536 536 526 517 515 514 511 510 503 499 499 499 499 497 490 485 484 483 477 476 470 467 467 467 457 455 454 454 454 454 454</td> <td>13 11 11 12 9 11 11 13 15 13 11 10 10 13 11 11 10 10 15 11 11 10 10 10 13 11 11 10 10 13 11 11 10 10 10 13 11 11 10 10 10 10 10 10 10 10</td>	548 919 3211 677 514 402 1436 941 679 2555 3000 636 649 99 1023 552 3000 636 649 99 1023 552 255 310 255 532 7711 514 361 254 277 1125 255 22 207 7731 2166 2871 1216 2871 1216 2871 1216 2871 1216 2871 1216 2871 1216 2871 3300	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 162 162	536 536 526 517 515 514 511 510 503 499 499 499 499 497 490 485 484 483 477 476 470 467 467 467 457 455 454 454 454 454 454	13 11 11 12 9 11 11 13 15 13 11 10 10 13 11 11 10 10 15 11 11 10 10 10 13 11 11 10 10 13 11 11 10 10 10 13 11 11 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A127CYX9 P12268 A0A0R4J226 Q12769 Q92797 Q12788 O94906 P38646 P99661 Q98840 P11940 Q98840 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 P51149 P51149 P51148 P15924 P52948 P15294 P131689 Q9H0A0 P62136 P5740	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=1 linosine-5*monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 Transducin beta-like protein 3 OS+Homo sapiens OX-9606 GN=RBJPE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RBJPF6 PE=1 SV=2 Yre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RBPRF6 PE=1 SV=2 V12 small nuclear ribonucleoprotein A*OS-Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RBPR1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPC6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Calmexin OS+Homo sapiens I OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 1 SO=Homo sapiens OX=9606 GN=RBPC1 PE=1 SV=2 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=RBPC1 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Protein nabled nomolog OS=Homo sapiens OX=9606 GN=RBAPA PE=1 SV=3 U4/UG small nuclear ribonucleoprotein PT4 OS=Homo sapiens OX=9606 GN=RBP74 PE=1 SV=3 RAA-binding protein 24 OS=Homo sapiens OX=9606 GN=RBAPA PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=	34 19 19 43 22 31 15 18 14 23 15 18 14 23 33 35 39 300 311 13 24 44 444 23 22 27 8 59 177 57 6 8 200 67 399 14 38 212	548 9199 3211 6777 5144 4022 14366 1274 8088 9411 6679 2555 3000 6366 4999 1023 5922 7111 5144 3611 5222 5911 2541 2541 2077 7311 2166 2871 1057 7313 2166 2871 1057 7313 2166 2871 2077 7313 2166 2871 2077 7313 2166 2871 2077 7313 2077 7313 2077 7313 2077 7314 2077 7315 2077 7315 2077 7315 2077 7315 2077	33.8 102.4 33.8 73.5 55.8 44.5 55.8 44.5 55.8 44.5 162 162 162 163 164 164 165 162 164 165 162 163 164 165 166 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 155 167 167 167 167 167 167 167 167	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	11 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P999661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WT93 Q55CA30 Q15019 Q96PK6 Q03701 Q35701 Q3574 Q3749 P51148 P15924 P51148 P15924 P51148 P15924 P51148 P15924 P51148 P15924 P51148 P15924 P5118 P15924 P5118 P15924 P5118 P15924 P5118 P15924 P5128 P1689 Q9H0A0 P62136 P57740 P54103	Periodic tryptophan protein 2 homolog OS-Homo sapiens 0X-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens 0X-9606 GN-FBL PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS-Homo sapiens 0X-9606 GN-FBL PE=1 SV=1 inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens 0X-9606 GN-ENVL912 PE=1 SV=2 ELAV-like protein OS-Homo sapiens 0X-9606 GN-ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens 0X-9606 GN-IMPD160 PE=1 SV=3 Symplekin OS-Homo sapiens 0X-9606 GN-SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens 0X-9606 GN-FBRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-FBRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-FBRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-SNRPFA PE=1 SV=2 Protein MAK16 homolog 0S-Homo sapiens 0X-9606 GN-SNRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-SNRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-SNRPFA PE=1 SV=2 Protein MAK16 homolog 0S-Homo sapiens 0X-9606 GN-SNRPF6 PE=1 SV=1 Calinxin OS-Homo sapiens 0X-9606 GN-ENAK16 PE=1 SV=2 Protein MAK16 homolog 0S-Homo sapiens 0X-9606 GN-SNRPF1 PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens 0X-9606 GN-SNRPA1 PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens 0X-9606 GN-SNRPA1 PE=1 SV=2 Calinxin OS-Homo sapiens 0X-9606 GN-ENAK16 PE=1 SV=1 Culo tripter repeat, RNA binding protein 1 2 OS-Homo sapiens 0X-9606 GN-KISRP PE=1 SV=1 Culo tripter repeat, RNA binding protein 1 2 OS-Homo sapiens 0X-9606 GN-SCRPP PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Prp4 OS-Homo sapiens 0X-9606 GN-SCRPP ZPE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS-Homo sapiens 0X-9606 GN-RDRP1 PE=1 SV=2 Protein nabled homolog 0S=Homo sapiens 0X-9606 GN-RAB74 PE=1 SV=1 Probable ATP-dependent SN 0S=9606 GN-SRAB74 PE=1 SV=1 Ras-related protein Rab-7a OS=Homo sapiens 0X-9606 GN-RAB74 PE=1 SV=1 Ras-related prot	34 19 19 19 43 32 31 15 18 18 14 23 33 33 30 30 31 13 33 39 30 31 31 33 24 27 24 44 44 44 23 15 5 39 30 31 31 32 24 27 24 24 24 24 25 39 30 30 31 31 31 32 32 32 32 32 32 32 32 32 32	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 1023 592 1023 592 1023 592 1023 592 1054 499 1054 514 1023 592 1023 592 1023 592 1023 592 1023 591 1054 1056 1	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 73.6 73.5 75.5 73.5 75.5	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 12 12 11 11 13 15 10 10 13 11 11 10 10 10 11 11 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4/2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q36XY0 Q3701 Q35710 Q3701 Q3711 Q38XY7 Q9490 P51149 P51149 P51149 P51148 P51148 P51148 P51148 P51148 P519524 P52948 H0YFD6 P52928 P31689 Q9H0A0 P62136 P57740 P57740 P57740 P57740 P57740 P57740 P54205	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN=PBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=BLPE=1 SV=3 linosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS+Homo sapiens OX-9606 GN=RB13 PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RB76 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RB780 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RB780 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RB781 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RB711 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RB711 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX=9606 GN=RHSRP PE=1 SV=1 CLG triplet repeat, RNA binding protein 1, isoform CRA_C OS=Homo sapiens OX=9606 GN=REFIT PE=1 Septin-2 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RB74 PE=1 SV=3 UQ/UG small nuclear ritonucleoprotein PT4 OS=Homo sapiens OX=9606 GN=REFIT PE=1 SP=1 SV=3 Val/UG small nuclear ritonucleoprotein TP4 OS=Homo sapiens OX=9606 GN=REFIT PE=1 SV=3 RA-binding protein 14 OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein enabled AD=SHOMOS appleNDS OS=9606 GN=RAB7A PE=1 SV=2 Protein Rab-5C OS=Homo	34, 199 199 433 222 311 333 155 188 144 233 355 399 300 311 133 244 247 277 244 444 223 315 557 66 88 200 207 67 89 144 202 207 207 207 207 207 207 207	548 9199 3211 6777 5144 4002 1436 1274 808 9411 6679 2553 3000 636 636 4999 1023 5922 7111 5114 3619 25541 2541 2077 7311 2166 28711 1017 7922 1666 3977 1025 3300 9255 3300 3300 3300 3300 3300 3300 3300 3300 3300 3300 3552 3300 3300 3300 3552 3300 3300 3300 3552 355 355	33.6 102.4 33.8 73.5 55.8 44.5 55.8 44.5 162 141.1 89 106.9 73.6 6.2 84 35.3 70.6 55.4 112.8 67.5 73 75.1 73 55.1 73 55.1 73 55.1 73 55.1 73 55.2 73 55.2 73 55.2 73 55.2 73 55.2 80.4 41.5 80.4 19.5 8.4 41.5 8.8 41.5 8.8 41.5 8.8 19.5 8.8 41.5 8.8 19.5 8.8 19.5 8.8 19.5 8.8 19.5 8.8 19.5 8.8 19.5 8.8 19.5 19.5 8.8 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	536 536 526 519 517 515 514 511 510 508 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 9 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q3701 Q36701 Q36701 Q36701 Q36701 Q36701 Q36701 Q36701 Q3701 Q36701 Q3701 Q3701 Q3701 Q3701 Q3701 Q3701 Q3702 Q3701 Q3702 Q	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBL PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBL PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=SVMPX PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RL3VL4 PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRIP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A* OS-Homo sapiens OX-9606 GN=SNRPA1 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein A*OS-Homo sapiens OX-9606 GN=RPF74 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prg31 OS-Homo sapiens OX-9606 GN=RPF174 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prg31 OS-Homo sapiens OX-9606 GN=RPF174 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prg31 OS-Homo sapiens OX-9606 GN=RPF171 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prg31 OS-Homo sapiens OX-9606 GN=RPF31 PE=1 SV=2 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=RPF31 PE=1 SV=2 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=RPF31 PE=1 SV=2 Septin-2 OS-Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 RAN-binding protein 1 OS-Homo sapiens OX-9606 GN=REM74 PE=1 SV=1 CCAAT/enhancer-binding protein 1, isoform CRA_c OS-Homo sapiens OX-9606 GN=CELF1 PE= Septin-2 OS-Homo sapiens OX-9606 GN=RM14 PE=1 SV=2 Trotein enabled homolog OS-Homo sapiens OX-9606 GN=RAP74 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr4 OS-Homo sapiens OX-9606 GN=PDX17 PE=1 SV=1 Ras-related protein Rab-7a OS-Homo sapiens OX-9606 GN=RAP74 PE=1 SV=2 Protein enabled homolog OS-HOmo sapiens OX-9606 GN=RAP74 PE=1 SV=2 Protein enabled homolog OS-HOmo sapiens OX-9606 GN=RAP74 PE=1 SV=1 Ras-related protein Rab-5C OS=Homo sap	34 19 19 43 22 31 33 13 33 33 33 33 33 33 33 33 34 44 23 24 24 24 23 277 8 59 97 177 57 6 8 200 677 38 200 677 38 212 300 314 38 212 300 5	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 1023 592 1023 592 1023 592 1023 592 1054 2541 2077 7311 2541 2077 7312 266 2871 1817 7922 1023 2541 2744 2755 1817 7922 166 2871 1817 7922 166 2871 1817 7922 166 2871 1817 7922 166 2871 1817 7922 166 2872 1023 2742 1817 7922 166 2772 1025 166 2772 1025 166 2772 1025 166 2772 1025 166 2772 1025 166 2772 1025 166 2772 1025 166 2772 1025 166 2772 1025 166 166 2775 1025 166 166 167 167 167 167 167 167	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 163 164 163 164 164 165 162 162 162 162 162 162 162 162	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 12 12 12 11 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98xY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96K70 Q3701 Q43172 Q8W857 Q97490 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P5132 P15924 P15925 P15955 P15955 P15955 P15955 P15955 P15955 P15955	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN=PBLPE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=BLPE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=MAK16 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=ABPAP I PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=ABPC1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=ARPF31 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=ARPF31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=KHSP PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS-HOmo sapiens OX-9606 GN=CENP PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS-HOmo sapiens OX-9606 GN=CENP PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=ERM1 PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX-9606 GN=CRAP74 PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=2 Pr	34, 199 199 433 222 311 333 155 188 144 233 355 399 300 311 131 132 244 444 233 155 222 277 24 444 233 155 322 277 24 24 237 157 24 24 237 24 24 237 24 24 237 24 24 257 267 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 24 277 277	548 548 9199 3211 6777 5144 402 1374 1374 1361 1361 2371 1374 1374 1374 1374 1374 1377	33.8 102.4 33.8 73.5 55.8 44.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 75.5 69.4 120.9 58.4 41.5 69.4 120.9 58.4 41.5 69.4 120.9 58.4 41.5 69.4 120.9 58.4 41.5 69.4 120.9 58.4 41.5 69.4 120.9 58.4 141.5 69.4 120.9 58.4 141.5 69.4 120.9 58.4 141.5 69.4 120.9 58.4 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 73 73 55.1 141.5 73 73 55.1 141.5 73 155.5 80.4 23.5 20.6 23.5 20.6 23.5 20.6 23.5 20.6 23.5 20.6 23.5 20.5 20.6 20.5	536 536 526 519 511 515 514 511 510 503 499 499 499 499 499 485 484 483 477 476 470 470 460 457 457 455 454 444 443 436 435 434	13 11 11 12 9 11 11 13 15 10 10 13 11 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q15019 Q96PK6 Q03701 Q95PK6 Q03701 Q95PK6 Q95P	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A' OS-Homo sapiens OX-9606 GN=NSPAP PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NEPK5 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein PP31 OS-Homo sapiens OX-9606 GN=APRP1 PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=APRP1 PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=APRP1 PE=1 SV=2 Calnexin OS=Homo sapiens OX-9606 GN=APRP1 PE=1 SV=2 Frotein MAK16 homolog OS-Homo sapiens OX-9606 GN=APRP1 PE=1 SV=2 Sodium/potasium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX-9606 GN=APRP1 PE=1 SV=2 Far upstream element-binding protein 1 SO-Homo sapiens OX-9606 GN=KHSP PE=1 SV=1 CLG triplet repeat, RNA binding protein 1 SO-HOmo sapiens OX-9606 GN=CEF1 PE=1 SV=2 Protein mabled homolog OS-Homo sapiens OX-9606 GN=RM14 PE=1 SV=2 Protein nabled nomolog OS-Homo sapiens OX-9606 GN=RM14 PE=1 SV=2 Trotein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr4 OS=Homo sapiens OX-9606 GN=CEF2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein PC4 OS=Homo sapiens OX-9606 GN=PCH2 PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX-9606 GN=RAB7A PE=1 SV=1 Ras-related protein RAD-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=1 Ras-related	34 19 19 43 22 31 33 13 33 13 34 14 23 15 18 14 23 30 31 13 24 24 23 27 8 59 57 6 8 20 67 38 320 5 20 5 20 5 20	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 7111 514 361 2541 207 7311 2166 2871 1817 792 1666 397 7313 2166 2871 1817 792 1665 397 7313 2166 397 7325 330 925 330 330 330 330 330 330 330 33	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 163 164 164 165 162 162 162 162 162 162 162 162	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	13 11 11 12 9 11 11 13 15 10 10 13 11 11 10 10 15 11 11 10 10 15 11 11 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 Q94906 P38646 P09661 Q986XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q8W857 Q97490 P51149 A0A1W2PQ51 P51149 P51149 P51148 P15924 P15924 P15924 P52948 H0YFD6 P52352 P36893 Q9H0A0 P52352 P31659 P51659 A0A0A0MQWC	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN=PBLPE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=PWPS12 PE=1 SV=2 ELAV-Ike protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPX PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPX PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=ABPC1 PE=1 SV=2 Calmexin OS-Homo sapiens OX-9606 GN=CANX PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=ARPF31 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=CANPPF31 PE=1 SV=2 CUG triplet repeat, RNA binding protein 2 OS-Homo sapiens OX-9606 GN=KHSPP PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS-Homo sapiens OX-9606 GN=CEBP2 PE=1 SV=3 U4/U5 small nuclear ribonucleoprotein Prp 4 OS=Homo sapiens OX-9606 GN=CEBP2 PE=1 SV=3 U4/U5 using protein 14 OS=Homo sapiens OX=9606 GN=RBM34 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=CBP2 PE=1 SV=3 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CBP2 PE=1 SV=3 U4/U5 small nuclear ribonucleoprotein Prp 4 OS=Homo sapiens OX=9606 GN=PRF4 PE=1 SV=2 Protable ATP-dependent RNA helicase DDX17 OS=Homo sapiens OX=9606 GN=NUP398 PE=1 SV=1 Ras-related protein Rab-5C OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protable ATP-dependent RNA hel	34 19 19 43 22 31 13 33 33 15 18 14 23 35 39 30 31 13 14 23 32 27 24 44 44 44 23 15 59 97 17 57 57 57 57 57 57 57 57 57 5	548 9199 3211 6777 5144 402 1374 1374 1361 1374 1361 1374 1361 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 13777 1377 137	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 75.5 69.4 120.9 56.4 120.9 58.4 41.5 69.4 120.9 58.4 41.5 69.4 120.9 58.4 41.5 69.4 120.9 58.4 121.5 69.4 120.9 58.4 125.5 80.4 135.5 106.3 197.5 106.3 197.5 106.3 107.5 10	336 536 526 519 511 515 514 511 510 503 499 499 499 499 499 485 484 483 477 476 470 470 470 470 477 467 467 467 453 454 444 443 443 443 443 443 443 435 434	111 111 12 9 111 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q96PK6 Q03701 Q96PK6 Q03701 Q96PK6 Q03701 Q96PK6 Q03701 Q9490 P51148 P15148 P1524 P52948 P52959 P52059	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS+Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=RSPRP PE=1 SV=2 U2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=RSPRP PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RSPRP PE=1 SV=2 V2 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX-9606 GN=RSPRP1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RSPC1 PE=1 SV=2 V4/U6 small nuclear ribonucleoprotein Prg31 OS=Homo sapiens OX-9606 GN=RSPRP1 PE=1 SV=2 Sodium/potasium-transporting ATPase subunit aliph=1 OS=Homo sapiens OX-9606 GN=RSPR1 PE=1 SV=2 Far upstream element-binding protein 1 OS-Homo sapiens OX-9606 GN=RMSP1 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=Homo sapiens OX-9606 GN=RMSP1 PE=1 SV=2 Far upstream element-binding protein 1 2 OS=Homo sapiens OX-9606 GN=RMSP3 PE=1 SV=1 CLG triplet repeat, RNA binding protein 1 2 OS=Homo sapiens OX-9606 GN=RMSP3 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prg4 OS=HOMO sapiens OX-9606 GN=RMSP3 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prg4 OS=HOMO sapiens OX-9606 GN=CEBP2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prg4 OS=HOMO sapiens OX=9606 GN=RMSP3 PE=1 SV=3 Nucher pore complex protein 2 OS=HOMO sapiens OX=9606 GN=RMSP3 PE=1 SV=3 Protein enabled homolog OS=HOMO sapiens OX=9606 GN=RAB7A PE=1 SV=1 Protein enabled homolog OS=HOMO sapiens OX=9606 GN=RAB7A PE=1	34 19 19 19 43 22 31 33 13 33 33 33 33 33 33 33 33 33 34 23 300 311 33 331 34 27 24 23 32 277 8 200 67 38 200 67 39 14 38 320 55 200 55 200 255 21	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 7111 514 361 514 361 2541 207 7311 216 2871 1054 516 2871 1054 516 2871 207 7312 2541 207 7313 216 2551 2555 2552 2555 2	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 164 164 165 164 165 162 162 162 162 164 164 165 164 165 164 165 164 165 164 165 166 167 166 167 166 167 166 167 166 167 166 167 166 167 166 167 166 167 166 167 166 166	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 499 499 499 499 49	111 111 12 9 111 111 113 155 100 100 100 100 100 100 100
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 Q94906 P38646 P09661 Q984Y0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q8857 Q97490 P51149 A0A1W2PQ51 P51148 P15924 P51148 P15924 P51148 P15924 P5136 P5136 P5136 P5136 P5136 P5136 P5136 P5136 P5136 P5136 P5136 P5136 P5136 P5232 Q9H0A0 P5232 Q15097	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN=PBLPE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=1 linosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX-9606 GN=IMPP12 PE=1 SV=2 ELAV-Ike protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS=Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SYMPX PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX-9606 GN=RB7F6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RB7F6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RB7F6 PE=1 SV=1 V2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=SNRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=MAK16 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=MAK16 PE=1 SV=2 Va/Uds small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RMP21 PE=1 SV=2 Va/Uds mall nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX=9606 GN=RMP21 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=ATP1A1 PE Calnexin OS=Homo sapiens OX=9606 GN=CANX PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX=9606 GN=CEB2 PE=1 SV=3 CUG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEB2 PE=1 SV=3 Ud/UG small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=CEB2 PE=1 SV=3 Ud/UG small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=RB74 PE=1 SV=2 Protein nabled homolog OS=Homo sapiens OX=9606 GN=ERM1 PE=1 SV=2 Protein nabled homolog OS=Homo sapiens OX=9606 GN=RB74 PE=1 SV=2 Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens OX=9606 GN=DDX17 PE=1 SV=1 Ras-related protein Rab-3C OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens OX=9606 GN=NUP398 PE=1 SV=2 Drablomolog subfamily A member 1 OS=Homo sa	34 19 19 43 22 31 15 18 14 23 13 33 33 34 35 360 311 32 27 24 444 444 444 43 322 27 8 59 177 57 6 8 20 66 7 39 14 38 122 300 5 200 25 200 25 21 18	548 9199 321 677 5144 402 13436 1274 808 941 255 300 6366 499 1023 300 1023 300 255 300 1024 1274 1025 591 2551 2077 7311 2116 669 307 7311 2116 307 7311 2166 3977 1025 3300 9255 7366 3376 5299 6488 5299 6488 5298 5300 5298 5300 530	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 75.5 69.4 120.9 55.4 112.8 67.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.5 80.4 23.5 80.5	536 536 526 519 511 515 514 511 510 503 499 499 499 499 499 485 484 483 477 476 470 470 470 477 460 451 453 454 444 443 443 443 443 443 443 443 443 443 431 432 431 428	111 111 12 9 111 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96Pk6 Q03701 Q96Pk6 Q03701 Q96Pk6 Q03701 Q95P148 P51148 P15924 P52948 P51148 P15924 P52948 P52948 P52948 P31689 Q9H0A0 P52136 P52740 P52948 P31689 Q19H0A0 P52949 P52948 P52957 P51659 A0A0A0MQWQ	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=EBLPE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=SWMPX PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SWMPX PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=PRIPF6 PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=NFBAP PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NFBAP PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=APRF31 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=APRF10 PE=1 SV=2 Calnexin OS-Homo sapiens OX-9606 GN=CANP PE=1 SV=2 Calnexin OS-Homo sapiens OX-9606 GN=APRF10 PE=1 SV=2 Calnexin OS-Homo sapiens OX-9606 GN=APRF10 PE=1 SV=2 Far upstream element-binding protein 1 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Far upstream element-binding protein 1 2 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RMF31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RMF32 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr4 OS=Homo sapiens OX-9606 GN=RMF32 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr4 OS=Homo sapiens OX-9606 GN=PRPF4 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX-9606 GN=RMA74 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX-9606 GN=RM374 PE=1	34 19 19 19 43 22 31 33 13 35 18 14 23 33 33 33 34 23 35 360 311 313 24 23 31 24 23 32 277 8 32 277 8 59 59 57 6 8 20 6 6	548 9199 3211 677 514 4022 1436 1274 8088 9411 679 2555 3000 6366 4999 1023 5922 7111 514 3611 514 3611 2541 2077 7311 2166 28711 2176 28711 2166 28711 2176 2971 2077 7311 2166 28711 2176 28711 2176 28711 2176 2971 2077 7311 2176 2971 2077 7311 2176 2077 7315 2077 2077 2077 2077 2077 2075 2076 2077 2077 2075 2076 2077 2077 2075 2076 2077 2077 2075 2076 2077 2077 2075 2076 2076 2077 2076	33.8 102.4 33.8 73.5 55.8 44.5 162 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 111.2 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.16 13.5 13.5 13.16 13.5 13.5 13.5 13.5 13.5 14.5 15.7	536 536 526 519 517 515 514 514 511 510 503 499 499 499 499 499 499 499 499 499 49	111 111 12 9 111 111 133 155 100 100 100 100 100 100 100
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 O43172 Q8N857 Q97490 P51149 A0A1W2PQ51 P51149 P51149 P5149 P5149 P5149 P5148 P15924 P5292 P5148 P15924 P5292 P5148 P15924 P5292 Q9H0A0 P52136 P57740 P84103 O75691 P52292 Q15397 P35579 A0A0590UK80	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN=FBL PE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=FBL PE=1 SV=2 linosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX-9606 GN=DWPSL2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SYMPX PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPRF3 PE=1 SV=2 Callexin OS=Homo sapiens OX-9606 GN=ARPL PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RPRF31 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RPRF31 PE=1 SV=2 CuG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=KHSPA PE=1 SV=1 CUG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=2 (ZuAT/enhance-binding protein 2 OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=2 (ZuAT/enhance-binding protein 2 OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=2 (ZuAT/enhance-binding protein 2 OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=2 (ZuAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=2 (ZuAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=3 Nuclear protein Rab-5C OS=Homo sapiens OX=9606 GN=CHSPT PE=1 SV=2 (ZuAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=DDX17 PE=1 SV=2 (ZuAT/enhancer-binding protein 2 O	34 19 19 43 22 31 33 33 33 33 33 33 33 33 33	548 919 321 677 514 402 1436 1274 408 941 679 255 300 636 499 1023 592 7111 514 3669 1023 592 7111 514 3669 1054 495 522 591 267 711 115 144 361 669 1054 405 1054 1055 105	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 141.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 73.5 73.5 73.5 73.5 73.5 73.5 74.6 73.5 74.6 75.1 73.5 73.5 73.5 73.5 74.6 75.1 73.5 73.5 74.6 75.1 73.5 73.5 74.6 75.1 73.5 74.6 75.1 73.5 73.5 74.6 75.1 73.5 73.5 74.6 75.1 73.5 74.6 75.1 73.5 74.6 75.1 75.1 77.5	536 536 526 517 515 514 511 515 514 511 515 514 511 510 503 9499 499 499 499 485 484 483 476 476 470 467 467 455 454 448 443 443 443 443 443 443 433 431 424	113 111 12 9 111 13 15 10 10 13 111 10 10 10 10 10 10 10 10 1
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 P51148 P15124 P51248 P52948 P52948 P52948 P52948 P52948 P31689 Q9H0A0 P52136 P52740 P51165 P31689 Q9H0A0 P52948 P51659 A0A0A0MQWC P52929 Q15397 P51659 A0A0A0MQWC	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=BLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=BLPE=1 SV=3 linosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBJPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=RBPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=NRPA1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=MRPA9 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Callexin OS-Homo sapiens OX-9606 GN=CANX PE=1 SV=2 Far upstream element-binding protein 1 OS-Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 1 SO-SHOMO sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX-9606 GN=RBM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX-9606 GN=RBP74 PE=1 SV=3 U4/UG small nuclear ribonucleoprotein Pr4 OS-HOMO sapiens OX-9606 GN=RDF4 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX-9606 GN=RBM74 PE=1 SV=2	34 19 19 19 43 22 31 33 13 35 38 14 23 15 38 39 300 311 332 27 24 444 233 22 277 8 59 59 57 6 8 200 66 200 25 21 38 6 6 9 9 9	548 9199 3211 6777 514 402 1436 1274 8088 9411 679 2555 3000 636 4999 1023 5922 7111 514 3611 514 3611 2541 2077 7311 2166 2871 2077 7311 2166 2871 2077 7313 2166 576 576 576 576 576 576 576 5	33.6 102.4 33.8 73.5 55.8 44.5 162 162 162 163 164 163 164 164 164 165 162 164 164 165 162 162 164 162 163 164 165 164 165 166 167 155 162 164 165 166 167 155 162 164 165 166 167 165 166 167 155 167 167 167 167 167 167 167 167	536 536 526 519 517 515 514 514 511 550 503 499 499 499 499 499 497 490 485 484 484 485 485 485 485 485 486 476 476 476 476 476 477 457 457 457 457 457 457 457 455 454 484 443 455 455 455 455 455 455 455 455 45	111 111 12 9 111 11 13 15 100 100 100 100 100 100 100
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q3701 Q3701 Q3701 Q3701 Q38N857 Q9Y490 P51149 A0A1W2PQ51 P51148 P15924 P5149 P5148 P15924 P5149 P5292 P529 P5149 P5292 P5149 P5149 P5292 P5149 P5149 P5292 P5149 P5149 P5292 P5149 P5149 P5149 P5149 P5149 P5292 P5149 P5149 P5149 P5292 P5149 P5292 P5149	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN-PRU PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN-PWSL2 PE=1 SV=1 inosine-5*-monophosphate dehydrogenase 2 OS=Homo sapiens OX-9606 GN-ENVL9160 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN-ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN-NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX-9606 GN=SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=1 V2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=PRPF6 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=PARPF6 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=PARPF1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=PARPF1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=ARP17A1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=CARPT P1 PE=1 SV=1 CLG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CARPT P1 PE=1 SV=1 CLG triplet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP2 PE=1 SV=1 CCAAT/enhance-binding protein 2 OS=Homo sapiens OX=9606 GN=CEBP2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=CEBP2 PE=1 SV=3 U4/U6 small nuclear naborucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=CRP7 PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 DEsmoplakin OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 DEsmoplakin OS=Homo	34 19 19 19 19 13 13 13 13 13 13 15 18 14 14 23 39 30 30 31 13 13 14 23 15 15 16 16 17 27 24 24 23 12 27 27 24 24 23 13 24 24 23 27 27 24 24 23 24 24 23 24 24 23 24 24 23 24 24 24 23 24 24 24 24 23 24 24 24 24 24 24 24 24 24 24	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 591 1054 255 300 669 91 255 300 669 925 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 591 1054 255 300 669 925 591 1054 255 1054 255 1054 255 1054 255 1054 255 1054 255 1054 255 1054 255 1054 255 1054 255 1055 1054 1056	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 141.1 89 106.9 73.5 55.4 141.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 55.1 141.5 73 73.5 269.6 197.5 86.3 118.5 73.5 106.3 118.5 73.5 106.3 118.5 73.5 106.3 118.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5 74.5 75.5 77.5 7	536 536 526 517 515 514 511 510 503 499 499 499 499 499 499 485 484 483 476 476 470 467 460 457 456 454 443 443 443 443 443 443 443 443 444 443 433 431 428 424 424	111 111 12 9 111 113 15 100 133 111 100 100 100 100 100
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 Q43172 Q96PK6 Q03701 P51148 P15124 P51148 P15924 P52948 P52948 P1149 A0A1W2PQ51 P51148 P15924 P52948 P52948 D95248 P52948 D95248 P52948 D95294 P31689 Q9H0A0 P62136 P57740 P81659 A0A0A0MQWQ P52292 Q15397 P35579 A0A590UK80 P62995 Q15061	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=BLPE=1 SV=2 Dihydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBJPE1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RBJPF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RBPRF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A*OS-Homo sapiens OX-9606 GN=SNRPA1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPC6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Protein MAK16 homolog OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Calmexin OS+Homo sapiens OX-9606 GN=CANX PE=1 SV=2 Far upstream element-binding protein 1 OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 Far upstream element-binding protein 2 OS=Homo sapiens OX-9606 GN=RBPC1 PE=1 SV=2 CCAAT/enhancer-binding protein 2 OS=Homo sapiens OX=9606 GN=RBPC1 PE=1 SV=3 U4/UG small nuclear ribonucleoprotein PTM OS=HOmo Sapiens OX=9606 GN=REF1 SV=1 RNA-binding protein 14 OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RBAPC1 PE=1 SV=3 U4/UG small nuclear ribonucleoprotein PTM OS=HOmo Sapiens OX=9606 GN=REF1 SV=3 U4/UG small nuclear ribonucleoprotein PTM OS=HOmo sapiens OX=9606 GN=REF1 SV=3 RNA-binding protein Rab-70 OS=Homo sapiens OX=9606 GN=RBAPC1 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RBAPC1 PE=1 SV=2 Protein enabled ND=05Homo sapiens OX=9606 GN=RBAPC1 PE=1 SV=2 Protein enabled ND=05Homo sapiens OX=9606 GN=RAB7A PE=1 SV=1 Probable ATP-depende	34 19 19 43 22 31 33 13 35 38 14 23 15 380 311 32 27 24 23 27 24 23 22 277 8 59 177 57 6 8 20 20 67 39 14 38 122 300 5 20 25 21 18 6 9 220 27 30 52 200 25 211	548 9199 3211 6777 5144 4022 14366 1274 8088 9411 6799 2555 3000 6366 4999 1023 5922 7111 5144 3611 522 5911 25411 2541 2541 2541 2541 2551 2648 3977 1025 3300 9255 1666 5766 529 6488 1960 5766 529 6488 1960 5766 577 6699 2881 1054 577 1055 1054 1055 1055 1055 1055 1056	33.6 102.4 33.8 73.5 55.8 44.5 162 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 75.5 73 75.5 73 75.5 73 75.5 80.4 41.5 73 75.5 80.4 41.5 73 75.5 80.4 41.5 73 73.5 73 75.5 80.4 41.5 73 73.5 73.5 75.5 75.5 77	536 536 526 519 517 515 514 511 510 503 499 499 499 499 499 497 490 485 484 484 483 485 484 483 485 486 476 476 476 476 476 477 457 457 457 457 457 457 457 457 457	111 111 12 9 111 111 133 155 100 100 100 100 100 100 100
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 Q94906 P38646 P999661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q35701 Q3570 Q3701 Q3570 Q3701 Q3701 Q3701 Q3701 Q3701 Q3701 Q3702 P51148 P15924 P51248 P15924 P51149 A0A1W2PQ51 P51148 P15924 P5148 P15924 P5148 P15924 P52948 H0VFD6 P23528 P31689 Q9H0A0 P62136 P57740 P54103 O75691 P5159 A0A590UK80 P62295 Q115961 P15957 A0A590UK80 P62995 Q115061 P04899	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN-FBL PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN-EPWSL2 PE=1 SV=1 inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN-ENVD120 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN-ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN-NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN-SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN-RPRFP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN-RPRFP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN-SNRPFA1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN-SNRPFA1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN-SNRPFA1 PE=1 SV=2 Polyadenylate-binding protein 1 OS-Homo sapiens OX-9606 GN-SNRPFA1 PE=1 SV=2 Vad/u6 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN-SNRPFA1 PE=1 SV=2 Vad/u5 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN-SNRPFA1 PE=1 SV=2 Vad/u5 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens OX-9606 GN-SNRPFA1 PE=1 SV=2 Calim_vin OS-Homo sapiens OX-9606 GN-SEPTIN2 PE=1 SV=1 Calinexin OS-Homo sapiens OX-9606 GN-SEPTIN2 PE=1 SV=1 Culo triplet repeat, RNA binding protein 2 OS-Homo sapiens OX-9606 GN-CEBP2 PE=1 SV=1 CUG triplet repeat, RNA binding protein Prp4 OS-Homo sapiens OX-9606 GN-CEBP2 PE=1 SV=2 Vad/u5 small nuclear ribonucleoprotein Prp4 OS-Homo sapiens OX-9606 GN-SPRPF4 PE=1 SV=2 Protein nabled homolog OS-Homo sapiens OX-9606 GN-SEBTIP PE=1 SV=2 CAATr/enhance-binding protein Prp4 OS-Homo sapiens OX-9606 GN-SEBT2 PE=1 SV=3 Ras-related protein Rab-7a OS-Homo sapiens OX-9606 GN-RAB7A PE=1 SV=2 Protein Rab-7a OS-Homo sapiens OX-9606 GN-RAB7A PE=1 SV=2 Protein Rab-7a OS-Homo sapiens OX-9606 GN-RAB7A PE=1 SV=2 Protein Rab-7a OS-Homo sapiens OX-9606 GN-RAB7A PE=1 SV=2 Nuclear pore complex pro	34 19 19 19 43 22 311 13 33 13 34 33 33 33 34 33 34 33 34 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 32 27 57 6 8 99 20 57 20 50 20 50 20 50 20 20 212	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1054 255 300 669 207 1054 255 300 255 257 257 257 257 257 257 257	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 163 164 163 164 164 165 162 162 162 162 162 162 162 162	536 536 526 517 515 514 511 510 503 499 499 499 499 499 485 484 483 477 476 470 467 460 457 456 454 444 443 433 431 424 424 424 424 424 420 418	11 11 12 9 11 11 13 15 10 10 13 11 10 10 10 10 10 10 10 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q1779 Q12788 O94906 P38646 P09661 Q8WWY3 P05023 P27824 A0A087VTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q8NS77 Q95PX6 Q3701 Q43172 Q8NS7 Q95PX6 Q3701 Q43172 Q8NS7 Q95PX6 Q3701 Q43172 Q8NS7 Q95PX6 Q3701 P51148 P15924 P5238 P31689 Q9H0A0 P62136 P57740 P51659 A0AA0MQWQ P5292 Q15397 > Q4590UK80	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN=BLPE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN=SVMPR PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RB13 PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RB7PF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=RB7PF6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A*OS-Homo sapiens OX-9606 GN=RB7PA PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RB7PA PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RB7A1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RB7A1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RB7A1 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=ARP131 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=RAFP31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RMF871 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RH571 PE=1 Septin-2 OS-Homo sapiens OX-9606 GN=SEPTIN2 PE=1 SV=2 Protein enabled Nomolog OS-Homo sapiens OX-9606 GN=RB74 PE=1 SV=2 Protein enabled OS-HOmo sapiens OX-9606 GN=RB74 PE=1 SV=2 Protein enabled Nomolog OS-Homo sapiens OX-9606 GN=RAFA7 PE=1 SV=2 Protein enabled Nomol	34 19 19 43 22 31 15 18 14 23 13 35 380 311 132 233 300 311 132 24 444 23 27 24 444 23 22 277 8 59 177 57 6 8 20 277 8 59 177 57 6 8 12 300 5 200 225 221 18 6 9 229 <tr< td=""><td>548 9199 3211 6777 5144 4002 1436 1274 8088 9411 6699 2555 3000 636 636 4999 1023 5922 7111 5114 3611 3619 2551 2541 2541 2541 2551 1025 3300 9255 1666 5779 1025 3300 9255 164 2785 3309 1960 1960 2888 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1970</td><td>33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 73 69.4 102.9 28.4 66.5 209.6 23.5 331.6 331.6 331.8.5 44.8 115.7 37.5 318.5 318.2 79.6 61.9 57.8 73.5 226.4 121 33.6 74.8 40.4 108.5</td><td>536 536 526 519 511 514 511 514 511 514 511 514 511 510 503 499 499 499 497 490 485 484 483 477 476 470 470 460 470 470 470 470 470 470 470 470 470 470 470 470 477 457 457 453 434 433 431 432 428 424 420</td><td>111 111 12 9 111 111 13 15 100 100 100 100 100 100 100</td></tr<>	548 9199 3211 6777 5144 4002 1436 1274 8088 9411 6699 2555 3000 636 636 4999 1023 5922 7111 5114 3611 3619 2551 2541 2541 2541 2551 1025 3300 9255 1666 5779 1025 3300 9255 164 2785 3309 1960 1960 2888 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1970	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 55.1 73 69.4 102.9 28.4 66.5 209.6 23.5 331.6 331.6 331.8.5 44.8 115.7 37.5 318.5 318.2 79.6 61.9 57.8 73.5 226.4 121 33.6 74.8 40.4 108.5	536 536 526 519 511 514 511 514 511 514 511 514 511 510 503 499 499 499 497 490 485 484 483 477 476 470 470 460 470 470 470 470 470 470 470 470 470 470 470 470 477 457 457 453 434 433 431 432 428 424 420	111 111 12 9 111 111 13 15 100 100 100 100 100 100 100
P50990 Q15269 P32087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 P51148 P15924 P51148 P15924 P51148 P15924 P51148 P15924 P51149 A0A1W2PQ51 P51148 P15924 P51289 Q9H0A0 P51169 P31689 Q9H0A0 P52790 P57740 P584103 O75691 P57740 P584103 O75691 P57740 P584103 O75691 P57740 P584103 O75691 P57740 P584103 O75691 P5169 A0A0A0MQWQ P52292 Q15397 P35579 A0A590UK80 P62995 Q15061 P04899 Q3H0D6 Q9H0A6 Q9H0A6 Q9H0A6 Q9H0A6 Q9H0A6 Q15061 P04899 Q115061 P04899 Q9H0D6 Q9H0A6 Q9H0A6 Q9H0A6 Q9H0A6 Q9H0A6 Q9H0A7 Q9H0A6 Q9H0A7 Q9H0A6 Q9H0A7	Periodic tryptophan protein 2 homolog OS-Homo sapiens 0X-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens 0X-9606 GN-PRU PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS-Homo sapiens 0X-9606 GN-ENUP120 PE=1 SV=2 ELAV-like protein OS-Homo sapiens 0X-9606 GN-ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens 0X-9606 GN-INUP160 PE=1 SV=3 Symplekin OS-Homo sapiens 0X-9606 GN-SYMPK PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens 0X-9606 GN-RPRFP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-RPRFP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-RPRFP6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A* OS-Homo sapiens 0X-9606 GN-RPRFP6 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens 0X-9606 GN-RPRFP6 PE=1 SV=2 VProtein MAK16 homolog OS-Homo sapiens 0X-9606 GN-RPRFP6 PE=1 SV=2 Polyadenylate-binding protein 1 OS-Homo sapiens 0X-9606 GN-RPRFP3 I SV=2 Polyadenylate-binding protein 1 OS-Homo sapiens 0X-9606 GN-RPRFP3 I SV=2 Polyadenylate-binding protein 1 OS-Homo sapiens 0X-9606 GN-RPRFP3 I PE=1 SV=2 VLGU triplet repeat, RNA binding protein 1, Isoform CRA_ C 0S-Homo sapiens 0X-9606 GN-CERP PE=1 SV=1 Calnexin OS-Homo sapiens 0X-9606 GN-SEPTIN2 PE=1 SV=2 CAAT/rehnace-binding protein 2 OS-Homo sapiens 0X-9606 GN-CERP PE=1 SV=2 VLGU triplet repeat, RNA binding protein 1 SV=640mo sapiens 0X-9606 GN-CERP PE=1 SV=2 VLGU triplet repeat, RNA binding protein 1 2 0S-Homo sapiens 0X-9606 GN-REMP54 PE=1 SV=2 Protein nabled homolog 0S-Homo sapiens 0X-9606 GN-ERB PE=1 SV=2 Protein nabled homolog 0S-Homo sapiens 0X-9606 GN-ERB PE=1 SV=2 VLGU triplet repeat, RNA binding protein 1 2 0S-Homo sapiens 0X-9606 GN-REMS2 PE=1 SV=2 Protein Rab-7a OS=Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=2 Protein Rab-7a OS=Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=2 National os aplens 0X-9606 GN-ENAU PE=1 SV=3 Nuclear protein Rab-7a OS=Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=1 Nuclear protein Rab-7a OS=Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=1	34 19 19 19 43 22 31 33 13 35 18 14 23 15 18 14 23 300 311 132 320 300 311 32 277 8 59 99 144 23 57 6 8 200 677 38 212 300 55 221 18 6 9 9 229 333 36 16	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 7111 514 361 2541 207 7111 214 2541 207 7313 216 2871 207 7313 216 2871 207 7313 216 2871 207 7313 216 2871 207 7313 216 2871 207 7313 216 2871 207 7313 216 257 300 255 259 257 257 257 257 257 257 257 257	33.8 102.4 33.8 73.5 55.8 44.5 162 162 162 162 162 162 163 164 164 164 165 162 164 165 162 162 162 162 162 162 162 162	336 536 536 526 517 515 514 511 510 503 9499 499 499 499 485 484 483 477 476 4770 467 467 467 467 457 456 454 448 444 443 443 443 445 456 457 456 433 431 428 424 424 424 4220 418 418 415	113 111 112 12 12 11 111 111 111
P50990 Q15269 P32087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 O94906 P38646 P936645 P93664 Q9800 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q03701 Q43172 Q80FK5 Q03701 Q43172 Q80FK5 Q03701 Q43172 Q80FK6 Q03701 Q43172 Q80FK5 Q97490 P51148 P15124 P52948 P1524 P52948 P1524 P52948 P13689 Q9H0A0 P62136 P53740 P51659 P31689 Q9H0A0 P529528 P31689 Q9H0A0 P529528 P31689 Q9H0A0 P529528 P31689 Q9H0A0 P529528 P31689 Q9H0A0 P529528 Q15061 P04899 Q15061 P04899 Q196061 Q98039	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fbrillarin OS-Homo sapiens OX-9606 GN-BLPE=1 SV=2 Dhydropyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN-ERLPE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN-IMPPH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN-SVMPX PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS-Homo sapiens OX-9606 GN-SVMPX PE=1 SV=2 Transducin beta-like protein 3 OS-Homo sapiens OX-9606 GN=RB13 PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RPRP6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens OX-9606 GN=RPRP6 PE=1 SV=2 V2 small nuclear ribonucleoprotein A* OS-Homo sapiens OX-9606 GN=RNPA1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RMPA1 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RMPA1 PE=1 SV=2 Valydae maint-transporting ATPase subunit alpha-1 OS-Homo sapiens OX-9606 GN=RMP31 PE=1 SV=2 Sodium/ptats-binding protein 1 OS-Homo sapiens OX-9606 GN=RMP31 PE=1 SV=2 Sodium/ptats-binding protein 1 OS-Homo sapiens OX-9606 GN=RMP31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=RMP31 PE=1 SV=2 Far upstream element-binding protein 2 OS-Homo sapiens OX-9606 GN=CHXP PE=1 SV=3 Ud/U5 mall nuclear ribonucleoprotein Prg31 OS=HOmo sapiens OX-9606 GN=CH2F1 PE= Septin-2 OS-Homo sapiens OX-9606 GN=SEPTIN2 PE=1 SV=1 RNA-binding protein 1 4 OS=Homo sapiens OX-9606 GN=RBM1 PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=3 Ud/U5 mall nuclear ribonucleoprotein Prg4 OS=Homo sapiens OX-9606 GN=CRAP7A PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 GN=RAB7A PE=1 SV=2 Protein enabled homolog OS-Homo sapiens OX-9606 G	34 19 19 19 43 22 31 15 18 14 23 13 33 333 34 23 35 360 311 312 24 444 23 22 27 8 59 177 6 8 20 66 8 200 677 39 14 38 212 230 5 200 5 200 5 200 5 200 5 200 5 200	548 9199 3211 6777 5144 4002 14366 1274 8088 9411 6679 2555 3000 6366 4099 1023 5922 7111 5114 3619 2551 2541 2541 2541 2077 7311 2166 28711 1017 7922 1666 3977 1025 3300 9255 1644 2785 3300 9255 1644 2785 3300 1026 576 576 577 3027 1025 3020 1054 1055 1055 1055 1055 1056 1057 1055 1057 1055 1057 1055 1057 1055 1057 1055 1056 1057 1057 1055 1056 1057 10	33.6 102.4 33.8 73.5 55.8 44.5 162 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 112.8 67.5 73 75.5 69.4 12.8 67.5 73 75.5 69.4 12.8 67.5 73 75.5 80.4 12.5 80.4 13.5 80.4 19.7 8.6 19.7 8.7 10.6 19.7 8.7 10.6 19.7 8.7 10.6 19.7 8.7 10.6 19.7 19.3 18.2 7.9 6.6 19.7 5.7 10.6 19.7 5.7 10.6 19.7 5.7 10.6 19.7 5.7 10.6 19.7 5.7 10.6 19.7 5.7 10.6 13.1 1.6 1.7 5.7 10.6 13.1 1.6 1.7 5.7 10.6 13.1 1.6 1.7 5.7 10.6 13.3 18.2 5.7 10.6 13.3 18.2 5.7 10.6 13.3 18.2 10.7 13.3 18.2 10.6 13.3 18.2 13.3 10.6 13.3 18.2 15.2 15.	536 536 526 519 511 515 514 511 510 503 499 499 499 499 485 484 483 477 476 470 460 457 457 457 457 457 453 434 433 433 431 428 428 424 420 418 418	111 111 12 9 9 111 11 13 15 10 10 10 10 10 10 10 10 10 10
P50990 Q15269 P32087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12797 Q12788 O94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96PK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q36FK6 Q3701 Q3701 Q3712 Q36FK6 Q3701 Q3712 Q3724 P51288 P51288 P51288 P51659 P51659 P51659 P57740 P52292 Q15397 P51579 A0A590UK80 P62955 Q15061 P64899 Q395Q Q15061 P64899 Q396Q39 Q58K21	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN-PRU PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS-Homo sapiens OX-9606 GN-ENDYSL2 PE=1 SV=1 inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX-9606 GN=SYMPK PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NAK16 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NAK16 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=NAK16 PE=1 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=NRF61 SV=2 Polyadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=RPRF31 PE=1 SV=2 Vad/U6 small nuclear ribonucleoprotein Prp31 OS=Homo sapiens OX-9606 GN=RPRF31 PE=1 SV=2 Calim-yion Sapiens OX-9606 GN=CANX PE=1 SV=1 Calinexin OS=Homo sapiens OX-9606 GN=CANX PE=1 SV=1 Culo triplet repeat, RNA binding protein 1 2 OS=Homo sapiens OX-9606 GN=KBRPF4 PE=1 SV=1 Calinexin OS=Homo sapiens OX=9606 GN=RBM14 PE=1 SV=2 VCAT/rehnace-binding protein 1 2 OS=Homo sapiens OX=9606 GN=RBF4 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX=9606 GN=RBF4 PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RBM24 PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Ras-related protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Nuclear pore complex protein NupB40 S=Homo sapiens OX=9606 GN=NDX17 PE=1 SV=2 Ras-related protein Rab-7a OS=Homo sapiens OX=9606 GN=RAB7A PE=1 SV=2 Serine/threnon sapiens OX=9606 GN=RAB7A PE=1 SV=2	34 19 19 19 43 22 31 33 13 35 18 14 23 33 33 33 33 34 23 35 39 300 311 313 34 23 300 311 32 277 8 200 67 39 144 38 200 55 201 212 300 55 211 38 6 9 9 229 333 36 16 16 <	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 711 514 361 514 361 2541 207 731 216 2871 1877 792 1666 397 731 216 2541 207 731 216 2541 207 731 216 2551 300 925 591 2541 265 307 731 1054 2541 265 307 307 307 307 307 307 307 307	33.8 102.4 33.8 73.5 162 44.5 162 161 89 106.9 73.6 28.4 35.3 70.6 55.8 41.1 89 106.9 73.5 67.5 73.5 269.6 23.5 3316 197.5 86.3 18.5 73.5 73.6 79.6 61.9 73.5 73.6 74.8 40.4 108.5 82.5.6	536 536 526 519 517 515 514 511 500 500 499 499 499 499 499 499 497 490 485 484 483 477 476 470 467 467 451 454 443 433 433 433 433 431 428 424 424 422 428 418 418 414	111 111 12 12 12 11 11 13 15 10 10 13 11 11 10 10 10 10 10 11 11 10 10
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q92797 Q12788 Q94906 P38646 P09661 Q984Y0 P11940 Q80KY0 P11940 Q80KY0 P11940 Q80KY0 P5023 Q72824 A0A087WTP3 G5EA30 Q15019 Q367K3 Q3701 Q43172 Q80K87 Q97490 P51149 A0A1W2PQ51 P51149 A0A1W2PQ51 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P51149 P5136 P5149 P5136 P57740 P84103 Q75691 P52292 Q15397 P36579 A0A0A0MQWC P52292 Q15397 P35579 A0A0590UK80 P62995 Q15061 P04899 Q9H0D6 Q98026 Q15366	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN=PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN=PRU PE=1 SV=2 Dihydropyrlmidinase-related protein 2 OS-Homo sapiens OX-9606 GN=DVPSL2 PE=1 SV=1 Inosine-5'-monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN=NUPD12 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN=ELAVL4 PE=1 SV=1 Nuclear pore complex protein in Nup160 OS-Homo sapiens OX-9606 GN=NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX-9606 GN=SYMPK PE=1 SV=1 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A* OS=Homo sapiens OX-9606 GN=RPRF6 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN=RAPK6 PE=1 SV=2 Ployadenylate-binding protein 1 OS=Homo sapiens OX-9606 GN=RAPK16 PE=1 SV=2 Valuid small nuclear ribonucleoprotein Pr31 OS=Homo Sapiens OX-9606 GN=RAPK1 PE=1 SV=2 Ployadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RAPK1 PE=1 SV=2 Ployadenylate-binding protein 1 OS=Homo sapiens OX=9606 GN=RAPK1 PE=1 SV=2 Colum/potasium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX=9606 GN=RAPK1 PE=1 SV=2 Culo tripiet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEK1 PE=1 SV=1 Culo tripiet repeat, RNA binding protein 2 OS=Homo sapiens OX=9606 GN=CEK1 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=CEK2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Pr4 OS=Homo sapiens OX=9606 GN=CEK2 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=CEM2 PE=1 SV=2 Tridin-1 OS=Homo sapiens OX=9606 GN=CEM2 PE=1 SV=2 Tridin-1 OS=Homo sapiens OX=9606 GN=CEM2 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RAPK7 PE=1 SV=1 Ras-related protein Rab-7a OS=Homo sapiens OX=9606 GN=CEM2 PE=1 SV=2 Protein enabled homolog OS=Homo sapiens OX=9606 GN=RAPK7 PE=1 SV=1 Nuclear pore complex protein Nup38-SUM96 OS=Homo sapiens OX=9606 GN=NUPA1 PE=1 SV=2 Protein enabled ho	34 19 19 43 22 31 15 18 14 23 13 33 33 34 35 380 311 312 44 43 312 444 444 444 322 27 8 322 277 6 8 200 677 399 117 6 8 122 200 59 200 52 200 52 211 188 6 9 229 333 366 16	548 548 9199 321 677 5144 402 1374 808 941 255 300 6366 499 1023 592 711 514 361 669 90 1054 529 1054 529 1054 529 1054 529 1054 529 1054 529 1055 1054 529 1055 1054 529 1055 1056 1057 1	33.8 102.4 33.8 73.5 55.8 44.5 162 141.1 89 106.9 73.6 28.4 35.3 70.6 67.5 73 55.1 73 55.1 41.5 69.4 120.9 58.4 66.5 269.6 23.5 331.6 331.6 197.5 86.3 197.5 86.3 115.7 316.6 197.5 86.3 115.7 318.5 106.3 318.5 22.7.9.6 61.9 57.8 73.5 226.4 1211 33.6 74.8 40.4	336 536 526 519 511 515 514 511 515 514 511 510 503 999 499 499 499 497 400 485 484 483 477 476 470 470 470 470 477 460 451 444 443 443 443 443 443 433 431 428 4224 422 422 424 424 421 411	111 111 12 9 9 111 111 133 155 100 133 111 100 100 100 100 101 101
P50990 Q15269 P32087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 O94906 P38646 P09661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 G5EA30 Q15019 Q96Pk6 Q03701 Q96Pk6 Q03701 Q96Pk6 Q03701 Q96Pk6 Q03701 Q96Pk6 Q03701 Q9490 P51148 P15124 P52948 P51149 A0A1W2PQ51 P51148 P1524 P52948 P5248 P52948 P5248 P52948 P51149 A0A1W2PQ51 P51148 P1524 P52948 P52948 P52948 P52948 P52948 P52948 P52949 P52948 P52949 P52949 P52949 P52949 P52948 P52949 P52949 P52949 P52949 P52949 P52949 P52949 P52949 P52949 P52949 P52949 P52949 P5295 Q15061 P51659 A0A300UK80 P62995 Q15061 P04899 Q38K21 Q1566 P61247	Periodic tryptophan protein 2 homolog OS-Homo sapiens 0X-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens 0X-9606 GN-PRU PE=1 SV=2 Dihydrogyrimidinase-related protein 2 OS-Homo sapiens 0X-9606 GN-ENDYL32 PE=1 SV=2 Inosine-5*-monophosphate dehydrogenase 2 OS-Homo sapiens 0X-9606 GN-ENDYL32 PE=1 SV=2 ELAV-like protein OS-Homo sapiens 0X-9606 GN-ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens 0X-9606 GN-PRUFP GPE=1 SV=3 Symplekin OS=Homo sapiens 0X-9606 GN-SPKP6 PE=1 SV=1 Pre-mRNA-processing factor 6 OS-Homo sapiens 0X-9606 GN-PRUFP GPE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-BRPKF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS-Homo sapiens 0X-9606 GN-BRPKF6 PE=1 SV=2 Protein MAK16 homolog 0D-Homo sapiens 0X-9606 GN-BRMKF6 PE=1 SV=2 Polyadenylate-binding protein 1 OS-Homo sapiens 0X-9606 GN-PRMF71 EV=2 Protein MAK16 homolog 0D-Homo sapiens 0X-9606 GN-BARKF6 IS-V=2 Polyadenylate-binding protein 1 OS-Homo sapiens 0X-9606 GN-BRPKF31 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Prp31 OS-Homo sapiens 0X-9606 GN-BRPKF31 PE=1 SV=2 Vadium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens 0X-9606 GN-BRPKF31 PE=1 SV=2 Far upstream element-binding protein 1 OS-Homo sapiens 0X-9606 GN-BRPKF31 PE=1 SV=2 Galimxin OS-Homo sapiens 0X-9606 GN-ECMX PE=1 SV=1 CLG triplet repeat, RNA binding protein 1 2 OS-Homo sapiens 0X-9606 GN-CEBF2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS-Homo sapiens 0X-9606 GN-ECBF2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS-Homo sapiens 0X-9606 GN-ECBF2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS-Homo sapiens 0X-9606 GN-PCBF2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS-Homo sapiens 0X-9606 GN-DDX17 PE=1 SV=2 Protein Rab-7a OS-Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=1 Trin-1 OS-Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=2 Protein Rab-7a OS-Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=2 Protein Rab-7a OS-Homo sapiens 0X-9606 GN-RAB7A PE=1 SV=2 Protein Rab-7a OS-Homo sapiens 0X-9606 GN-	34 19 19 19 43 22 31 33 33 33 33 33 33 33 34 23 31 35 38 39 300 311 313 24 23 32 27 24 23 32 27 8 59 59 59 59 59 59 57 6 8 200 25 212 300 5 200 25 212 30 30 31	548 9199 3211 6777 514 4022 1436 1274 8088 9411 6799 1023 3000 6366 4999 1023 5922 7111 514 3611 514 3611 2541 2077 7311 2166 2871 2077 7311 2166 2871 2077 7311 2166 2871 2077 7315 3300 9255 1644 2785 7366 576 529 6488 3166 576 529 6688 3300 1023 3300 2551 3300 1054 3377 3375 3355 9500 7373 3552 9500 1054 5778 57778 5	33.0 102.4 33.8 73.5 55.8 44.5 162 162 141.1 89 106.9 73.6 28.4 35.3 70.6 55.4 111.2 89 106.9 73.5 55.4 112.8 67.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.1 41.5 73 55.2 269.6 23.5 80.4 23.5 86.3 31.6 23.5 86.3 31.6 23.5 86.3 31.6 23.5 86.3 31.6 23.5 86.3 31.6 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 86.3 31.6 73.5 73.5 86.3 31.6 73.5 73.5 73.5 86.3 31.6 73.5 73.5 73.5 75.6 75.7 77.5 77.6 77.5	536 536 526 519 517 515 514 511 500 500 499 499 499 499 499 497 485 484 483 477 476 470 467 467 451 452 453 454 443 433 434 433 431 432 424 424 4220 418 415 411	111 111 12 9 9 111 111 133 155 100 100 100 100 100 100 100
P50990 Q15269 P22087 A0A1C7CYX9 P12268 A0A0R4J2E6 Q12769 Q32797 Q12788 Q94906 P38646 P99661 Q98XY0 P11940 Q8WWY3 P05023 P27824 A0A087WTP3 Q55430 Q15019 Q96PK6 Q03701 Q3701 Q3701 Q3701 Q3701 Q3701 Q38N857 Q9Y490 P51149 A0A1W2PQ51 P51148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5148 P15924 P5149 P5149 P5149 P5149 P5149 P51924 P5292 Q15397 P35579 A0A590UK80 P62995 Q15061 P54399 Q15061 P54397 Q15061 P54397 Q15061 P54397 Q1507 Q	Periodic tryptophan protein 2 homolog OS-Homo sapiens OX-9606 GN-PWP2 PE=2 SV=2 rRNA 2*0-methyltransferase fibrillarin OS-Homo sapiens OX-9606 GN-PBL PE=1 SV=1 Inosine-5*monophosphate dehydrogenase 2 OS-Homo sapiens OX-9606 GN-IMPDH2 PE=1 SV=2 ELAV-like protein OS-Homo sapiens OX-9606 GN-ELAVL4 PE=1 SV=1 Nuclear pore complex protein Nup160 OS-Homo sapiens OX-9606 GN-NUP160 PE=1 SV=3 Symplekin OS=Homo sapiens OX-9606 GN=TKL4VL4 PE=1 SV=2 Pre-mRNA-processing factor 6 OS-Homo sapiens OX-9606 GN-RPRF6 PE=1 SV=1 Stress-70 protein, mitochondrial OS=Homo sapiens OX-9606 GN-RPRF6 PE=1 SV=2 U2 small nuclear ribonucleoprotein A*OS=Homo sapiens OX-9606 GN-RPRF6 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN-MAK16 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN-RARF6 PE=1 SV=2 Val/U6 small nuclear ribonucleoprotein Pro31 OS=Homo sapiens OX-9606 GN-RARF6 PE=1 SV=2 U4/U6 small nuclear ribonucleoprotein Pro31 OS=Homo sapiens OX-9606 GN-RARF14 PE=1 SV=2 Protein MAK16 homolog OS-Homo sapiens OX-9606 GN-RARF14 PE=1 SV=2 Colum/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX-9606 GN=RAFF14 PE=1 SV=2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens OX-9606 GN=CELF1 PE= Septin-2 OS=Homo sapiens OX-9606 GN=CELF1 PE=1 SV=1 CLAAT/enhancer-binding protein 2 OS=Homo sapiens OX-9606 GN=CELF1 PE= Septin-2 OS=Homo sapiens OX-9606 GN=ESM14 PE=1 SV=2 CCAAT/enhancer-binding protein zeta OS=Homo sapiens OX-9606 GN=CELF2 PE=1 SV=3 U4/U6 small nuclear ribonucleoprotein Prp4 OS=Homo sapiens OX-9606 GN=CELF2 PE=1 SV=2 Talin-1 OS=Homo sapiens OX-9606 GN=ESM14 PE=1 SV=2 Talin-1 OS=Homo sapiens OX-9606 GN=ESM47 PE=1 SV=1 Protein nabb-5C OS=Homo sapiens OX-9606 GN=ESM47 PE=1 SV=1 Protein nabb-5C OS=Homo sapiens OX-9606 GN=ESM47 PE=1 SV=1 Protein Protein Rab-70 OS=Homo sapiens OX-9606 GN=ESM27 PE=1 SV=2 Protoble ATT	34 194 199 433 222 311 333 333 333 333 333 3	548 919 321 677 514 402 1436 1274 808 941 679 255 300 636 499 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 1023 592 591 1054 255 300 669 99 1054 255 314 265 576 529 1054 277 1025 330 925 531 1054 277 1054 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 300 265 535 330 265 535 330 265 535 330 265 535 330 265 535 330 265 535 330 265 535 330 265 535 330 265 535 330 265 535 330 265 330 275 330 265 330 275 330 265 330 275 330 300 275 330 330 355 355 355 355 355 35	33.8 102.4 33.8 73.5 55.8 162 141.1 89 106.9 73.6 55.8 44.5 162 141.1 89 106.9 73.6 55.8 67.5 73 55.1 41.5 69.4 23.5 331.6 331.6 197.5 86.3 115.7 375.5 44.8 115.7 375.5 266.4 318.5 106.3 318.5 226.4 121 33.6 74.8 73.5 226.4 108.5 82.5 65.6 38.6 38.6 39.9	336 536 526 517 515 514 511 515 514 511 515 514 511 510 503 9499 499 499 485 484 483 476 476 470 467 467 455 454 448 443 443 443 443 443 443 443 443 443 424 424 424 424 424 418 418 411 411 411	111 111 12 9 111 111 133 155 100 133 111 100 100 100 101 101

002809	Procollagen-lysine.2-oxoglutarate 5-dioxygenase 1 QS=Homo sapiens QX=9606 GN=PLQD1 PE=1 SV=	17	727	83.5	409	9
P26641	Elongation factor 1-gamma OS=Homo saniens OX=9606 GN=EFE16 PE=1 SV=3	26	437	50.1	406	10
D16402	Historo H1 2 OS-Homo soniors OY-9606 GN-H1 2 DE-1 SV-2	27	212	21.4	406	
012740		27	213	21.4	400	
Q13740	CD166 antigen US=Homo sapiens UX=9606 GN=ALCAM PE=1 SV=2	26	583	65.1	405	9
060568	Multifunctional procollagen lysine hydroxylase and glycosyltransferase LH3 OS=Homo sapiens OX=9	14	738	84.7	402	7
Q96SI9	Spermatid perinuclear RNA-binding protein OS=Homo sapiens OX=9606 GN=STRBP PE=1 SV=1	11	672	73.6	400	7
P62424	60S ribosomal protein L7a OS=Homo sapiens OX=9606 GN=RPL7A PE=1 SV=2	26	266	30	400	8
P22314	Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens OX=9606 GN=UBA1 PE=1 SV=3	11	1058	117.8	398	8
P78371	T-complex protein 1 subunit beta QS=Homo sapiens QX=9606 GN=CCT2 PE=1 SV=4	26	535	57.5	391	9
015/98	Synantobrevin bomolog VKT6 OS-Homo saniens OX-9606 GN-VKT6 PE-1 SV-1	33	198	22.4	390	5
015458	Synaptoblevill homolog rk10 03-homo saplens 0x-5000 GN-1kT0 FE-1 3V-1	33	150	22.4	330	
CARA10	US small nucleolar kiva-associated protein 14 nomolog A US=Homo sapiens UX=9606 GN=01P14A P	18	//1	87.9	385	9
Q14684	Ribosomal RNA processing protein 1 homolog B OS=Homo sapiens OX=9606 GN=RRP1B PE=1 SV=3	16	758	84.4	384	8
P62314	Small nuclear ribonucleoprotein Sm D1 OS=Homo sapiens OX=9606 GN=SNRPD1 PE=1 SV=1	38	119	13.3	384	3
P46782	40S ribosomal protein S5 OS=Homo sapiens OX=9606 GN=RPS5 PE=1 SV=4	39	204	22.9	382	6
P61019	Ras-related protein Rab-2A OS=Homo sapiens OX=9606 GN=RAB2A PE=1 SV=1	38	212	23.5	381	6
P23396	40S ribosomal protein S3 OS-Homo saniens OX-9606 GN-RPS3 PE-1 SV-2	/19	2/13	26.7	381	9
014677	Calification approximate the second s	45	245	20.7	301	
Q14677	Clathrin interactor 1 OS=Homo sapiens OX=9606 GN=CLINT1 PE=1 SV=1	16	625	68.2	379	/
Q9NW13	RNA-binding protein 28 OS=Homo sapiens OX=9606 GN=RBM28 PE=1 SV=3	15	759	85.7	377	10
P12004	Proliferating cell nuclear antigen OS=Homo sapiens OX=9606 GN=PCNA PE=1 SV=1	49	261	28.8	377	7
P05388	60S acidic ribosomal protein P0 OS=Homo sapiens OX=9606 GN=RPLP0 PE=1 SV=1	41	317	34.3	371	7
P36873	Serine/threonine-protein phosphatase PP1-gamma catalytic subunit OS=Homo saniens OX=9606 GN	35	323	37	370	9
00013	Schreichten feiter feiter An 100 Hanne ersten OV 0000 GN 51044 DE 4014	35	323	46.4	370	
P60842	Eukaryotic initiation factor 4A-I OS=Homo sapiens OX=9606 GN=EIF4A1 PE=I SV=I	30	406	46.1	369	8
P30153	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform OS=Homo sap	17	589	65.3	368	8
P30050	60S ribosomal protein L12 OS=Homo sapiens OX=9606 GN=RPL12 PE=1 SV=1	47	165	17.8	366	6
P25685	DnaJ homolog subfamily B member 1 OS=Homo sapiens OX=9606 GN=DNAJB1 PE=1 SV=4	35	340	38	365	10
P46777	60S ribosomal protein L5 OS=Homo sapiens OX=9606 GN=RPL5 PE=1 SV=3	32	297	34.3	365	8
022224	Multifunctional protein ADE2 OS-Homo capions OX-9606 GN-PAICS RE-1 SV-2	22	425	47	265	
F22234	Nutriture dispersioners in ADE2 03-1000 Sapers 0X-2000 GN-FAIC3FE-13V-3	23	423	47	303	
Q81DN6	RIDOSOME DIOGENESIS PROTEIN BRX1 NOMOIOG US=HOMO SAPIENS UX=9606 GN=BRIX1 PE=1 SV=2	29	353	41.4	364	8
Q9H8Y8	Golgi reassembly-stacking protein 2 OS=Homo sapiens OX=9606 GN=GORASP2 PE=1 SV=3	29	452	47.1	363	7
A0A0U1RRH7	Histone H2A OS=Homo sapiens OX=9606 PE=3 SV=1	27	170	18.5	361	6
P62316	Small nuclear ribonucleoprotein Sm D2 QS=Homo sapiens QX=9606 GN=SNRPD2 PF=1 SV=1	61	118	13.5	357	g
	Spectrin alpha chain, non anthroadic 1 OS-Homo sanions OX-9606 GN-SPTANI PE-1 SV-1	5	2/09	207.0	257	10
012140	TAB DNA hinding protein 42 OS-Homo capions OV 0000 CAL TABODD DE 4 SV 4	5	2498	207.4	357	10
Q13148	ואיוט אאיט אייט אייט אייט אייט אייט אייט	16	414	44.7	355	4
P48681	Nestin OS=Homo sapiens OX=9606 GN=NES PE=1 SV=2	8	1621	177.3	352	8
Q8WTT2	Nucleolar complex protein 3 homolog OS=Homo sapiens OX=9606 GN=NOC3L PE=1 SV=1	16	800	92.5	352	11
013217	Dnal homolog subfamily C member 3 OS=Homo saniens OX=9606 GN=DNAIC3 PE=1 SV=1	24	504	57.5	351	8
077204		21	E07	57.5	251	0
Q723B4	Nucleoporin p54 OS=Homo sapiens OX=9606 GN=N0P54 PE=1 SV=2	24	507	55.4	351	9
Q9H6R4	Nucleolar protein 6 OS=Homo sapiens OX=9606 GN=NOL6 PE=1 SV=2	12	1146	127.5	348	10
P00558	Phosphoglycerate kinase 1 OS=Homo sapiens OX=9606 GN=PGK1 PE=1 SV=3	20	417	44.6	347	6
P62736	Actin, aortic smooth muscle OS=Homo sapiens OX=9606 GN=ACTA2 PE=1 SV=1	26	377	42	347	11
P39023	60S ribosomal protein L3 OS=Homo saniens OX=9606 GN=RPL3 PE=1 SV=2	27	403	46.1	343	8
00111111		27	550	50.0	242	
QUINT	Poly(0)-binding-spircing factor P0Pod 05-H0110 sapiens 0X-9000 GN-P0P00 PE-1 3V-1	10	559	59.8	542	,
Q9BXP5	Serrate RNA effector molecule homolog OS=Homo sapiens OX=9606 GN=SRRT PE=1 SV=1	16	876	100.6	341	11
Q9Y3T9	Nucleolar complex protein 2 homolog OS=Homo sapiens OX=9606 GN=NOC2L PE=1 SV=4	13	749	84.9	341	8
Q14498	RNA-binding protein 39 OS=Homo sapiens OX=9606 GN=RBM39 PE=1 SV=2	24	530	59.3	340	9
099615	Dnal homolog subfamily C member 7 OS=Homo sapiens OX=9606 GN=DNAIC7 PE=1 SV=2	27	494	56.4	340	g
EQDI 71	Elements of the second se	27	197	20.9	220	5
E9PL/I	Elongation factor 1-delta (raginent) OS-nomo sapiens OX-3000 GN-EEFTD PE-1 3V-1	37	16/	20.8	559	5
H3BPE7	RNA-binding protein FUS OS=Homo sapiens OX=9606 GN=FUS PE=1 SV=1	17	527	53.5	338	7
Q99714	3-hydroxyacyl-CoA dehydrogenase type-2 OS=Homo sapiens OX=9606 GN=HSD17B10 PE=1 SV=3	37	261	26.9	335	5
Q8NFH4	Nucleoporin Nup37 OS=Homo sapiens OX=9606 GN=NUP37 PE=1 SV=1	29	326	36.7	335	7
Q9Y5J1	U3 small nucleolar RNA-associated protein 18 homolog OS=Homo sapiens OX=9606 GN=UTP18 PE=1	17	556	62	335	7
K7EPT8	Glial fibrillary acidic protein (Fragment) OS-Homo sanians OX-9606 GN-GEAP PE-1 SV-2	16	75	8.4	335	1
000754	Shah normally delide protein (Fragment) OS-holmo sapirati OS-Solo Chuckara (1992)	10	(24	72.0	333	
Q9BZE4	Nucleolar GTP-binding protein 1 OS=Homo sapiens OX=9606 GN=GTPBP4 PE=1 SV=3	13	634	/3.9	334	10
095758	Polypyrimidine tract-binding protein 3 OS=Homo sapiens OX=9606 GN=PTBP3 PE=1 SV=2	21	552	59.7	334	8
O43809	Cleavage and polyadenylation specificity factor subunit 5 OS=Homo sapiens OX=9606 GN=NUDT21 P	35	227	26.2	333	7
P09172	Dopamine beta-hydroxylase OS=Homo sapiens OX=9606 GN=DBH PE=1 SV=3	16	617	69	332	8
P55084	Trifunctional enzyme subunit beta, mitochondrial OS=Homo sapiens OX=9606 GN=HADHB PE=1 SV=	29	474	51.3	330	g
042205	14/1/6 small pushops site pushop retain Pro2 OC-Home series OX-0606 CN-DDDC2 DE-1 SV-2	24	693	77 5	220	-
045595		24	005	11.5	550	9
E9PEB5	Far upstream element-binding protein 1 OS=Homo sapiens OX=9606 GN=F0BP1 PE=1 SV=1	16	655	68.9	328	8
Q96EE3	Nucleoporin SEH1 OS=Homo sapiens OX=9606 GN=SEH1L PE=1 SV=3	33	360	39.6	328	9
060341	Lysine-specific histone demethylase 1A OS=Homo sapiens OX=9606 GN=KDM1A PE=1 SV=2	13	852	92.8	327	7
E7ESP4	Integrin alpha-2 QS=Homo sapiens QX=9606 GN=ITGA2 PE=1 SV=1	14	942	102.8	326	7
0001/02	Cupating purple the binding protoin like 2 OS-Mamo coning OV-0606 CN-CNI 2 DE-1 SV-2	10	E 40	62	225	
Q9BVPZ		19	549	62	525	0
QOIEDU	US SITIALI HUCHOVAR KINA-ASSOCIATED PROTEIN 15 NOMOLOG US=HOMO SAPIENS UX=9606 GN=UTP15 PE=1	19	518	58.4	323	6
r21333	Filamin-A US=Homo sapiens UX=9606 GN=FLNA PE=1 SV=4	4	2647	280.6	322	7
A0A5F9ZHM4	L-lactate dehydrogenase OS=Homo sapiens OX=9606 GN=LDHB PE=1 SV=1	24	341	37.4	321	6
P62318	Small nuclear ribonucleoprotein Sm D3 OS=Homo sapiens OX=9606 GN=SNRPD3 PE=1 SV=1	55	126	13.9	321	6
Q07021	Complement component 1 Q subcomponent-binding protein, mitochondrial QS=Homo capiens QX-	27	282	31 3	310	1
O9BW/F3	RNA-hinding protein 4 OS=Homo saniens OY=9606 GN=RRMA PE=1 SV=1	27	264	10.2	210	
	Sering /argining rish splining faster 1 OS-Home springs OV 0000 CNL SPSTA PE 4 SV 1	20	304	+0.5	310	/
JJNILZ	Serine/arginine-frui-splicing lactor 1 OS=HOHO Saplens OX=9606 GIN=SKSF1 PE=1 SV=1	39	253	28.3	318	9
r28070	Proteasome subunit beta type-4 US=Homo sapiens UX=9606 GN=PSMB4 PE=1 SV=4	29	264	29.2	318	5
P55072	Transitional endoplasmic reticulum ATPase OS=Homo sapiens OX=9606 GN=VCP PE=1 SV=4	12	806	89.3	317	7
Q05048	Cleavage stimulation factor subunit 1 OS=Homo sapiens OX=9606 GN=CSTF1 PE=1 SV=1	22	431	48.3	317	6
Q86U42	Polyadenylate-binding protein 2 OS=Homo sapiens OX=9606 GN=PABPN1 PF=1 SV=3	40	306	32.7	316	6
015240	Neurosecretory protein VGE QS=Homo saniens QX=9606 GN=V/GE PF=1 SV=2	16	615	67.7	210	7
	PPD12 like protein OS-Home capions OY-0606 GN-0000 01 VGI 1 C-1 SV-2	10	1207	142 0	315	, ,
000007	Dro mDNA collising factor CVE1 OS-Marris consistent OV 0000 CN V102 25 (1011)	8	129/	145.0	515	
MAHC21	PTE-HINNA-Splicing factor STF1 US=Homo sapiens UX=9606 GN=XAB2 PE=1 SV=2	11	855	99.9	314	7
P57721	Poly(rC)-binding protein 3 OS=Homo sapiens OX=9606 GN=PCBP3 PE=1 SV=2	18	371	39.4	312	5
043707	Alpha-actinin-4 OS=Homo sapiens OX=9606 GN=ACTN4 PE=1 SV=2	7	911	104.8	307	5
P17301	Integrin alpha-2 OS=Homo sapiens OX=9606 GN=ITGA2 PE=1 SV=1	11	1181	129.2	307	7
P1875/	Regulator of chromosome condensation OS-Homo saniens OX-9606 GN-RCC1 PE-1 SV-1	10	/121	11.9	307	5
015050	Ribosome biogenesis regulatory protoin bomolog OS-Homo conjens OV-0606 CN-000111 - 1 SV-1	19	421	44.9	507	
0112020	nibosome biogenesis regulatory protein nomolog US=Momo sapiens UX=9606 GN=KRS1 PE=1 SV=2	21	505	41.2	307	9
Q14576	ELAV-IIKE protein 3 US=Homo sapiens OX=9606 GN=ELAVL3 PE=2 SV=3	29	367	39.5	306	8
Q8NI27	THO complex subunit 2 OS=Homo sapiens OX=9606 GN=THOC2 PE=1 SV=2	6	1593	182.7	305	7
H3BSH7	U3 small nucleolar RNA-associated protein 4 homolog (Fragment) OS=Homo sapiens OX=9606 GN=U	15	700	77.9	305	7
Q96G07	Probable ATP-dependent RNA helicase DDX27 OS=Homo saniens OX=9606 GN=DDX27 PF=1 SV=2	12	796	80 8	305	٥
P98175	RNA-hinding protein 10 OS=Homo saniens OY=9606 GN=RRM10 DE=1 SV=2	10	020	102 5	204	-
1 301/3	Characterized a base base tails 1 OC 11 and 2000 ON 2000 THE TOWN TO THE STORE	12	950	105.5		
r31948	stress-induced-phosphoprotein 1 US=Homo sapiens UX=9606 GN=STIP1 PE=1 SV=1	18	543	62.6	303	8
Q8NFH3	Nucleoporin Nup43 OS=Homo sapiens OX=9606 GN=NUP43 PE=1 SV=1	15	380	42.1	302	4
P05556	Integrin beta-1 OS=Homo sapiens OX=9606 GN=ITGB1 PE=1 SV=2	11	798	88.4	301	6
Q9H0S4	Probable ATP-dependent RNA helicase DDX47 OS=Homo sapiens OX=9606 GN=DDX47 PF=1 SV=1	21	455	50.6	299	6
O9BVG2	MKI67 EHA domain-interacting nucleolar phosphoprotoin OC-Homo conions OV-0605 CN-NUCK DE-	21	100	24.0	200	6
014141	Sontin 6 OS-Homo canions OV-9606 CN-SEPTING PE-4 CV-4	29	293	34.2	299	
Q14141	septimo us=numo sapiens UX=9000 Giv=SEPTINO PE=1 SV=4	24	434	49.7	295	7
P08754	Guanine nucleotide-binding protein G(i) subunit alpha OS=Homo sapiens OX=9606 GN=GNAI3 PE=1	20	354	40.5	294	6
P62241	40S ribosomal protein S8 OS=Homo sapiens OX=9606 GN=RPS8 PE=1 SV=2	38	208	24.2	292	6
043251	RNA binding protein fox-1 homolog 2 OS=Homo sapiens OX=9606 GN=RBFOX2 PE=1 SV=3	25	390	41.3	292	6
Q13838	Spliceosome RNA helicase DDX39B OS=Homo sapiens OX=9606 GN=DDX39B PF=1 SV=1	21	478	49	292	7
F7FPK1	Septin-7 OS=Homo sapiens OX=9606 GN=SEPTIN7 PE=1 SV=2	21	/127	50.7	202	,
DOE144	ADD/ATD translances 2 OF-Home conterner OV 0000 CNL 0102545 25 1 011 2	28	45/	50.7	291	8
r 03141	NORYAIT GAINGUASE 2 USERUINU SAPIERS UXESPOUD GIVESEL25A5 PEET SVE/	30	298	32.8	290	10
ILIXIWA()	IVVD repeat-containing protein 75 US=Homo sapiens OX=9606 GN=WDR75 PE=1 SV=1	16	830	94.4	a 289	1 7

P09874	Poly [ADP-ribose] polymerase 1 OS=Homo sapiens OX=9606 GN=PARP1 PE=1 SV=4	9	1014	113	289	7
P14625	Endoplasmin OS=Homo sapiens OX=9606 GN=HSP90B1 PE=1 SV=1	9	803	92.4	288	8
097258	RNA 3'-terminal phosphate cyclase-like protein OS=Homo saniens OX=9606 GN=RCI 1 PE=1 SV=3	30	373	40.8	284	7
095210	Sorting povin 4 OS-Homo sonions OV-9606 GN-SNIVA RE-1 SV-1	11	450	51.0	201	,
0000210	Transforrin recenter protein 1 OS-Homo sanions OY-0606 GN-TEPC DE-1 SV-2	11	760	0/ 0	204	
P02780	Transferrin receptor protein 1 OS-Homo sapiens OX-9606 GN-1FRC PE-1 SV-2	11	700	04.0	204	6
P61026	Ras-related protein Rab-10 US=Homo sapiens UX=9606 GN=RAB10 PE=1 SV=1	35	200	22.5	282	5
Q9Y3I0	RNA-splicing ligase RtcB homolog OS=Homo sapiens OX=9606 GN=RTCB PE=1 SV=1	16	505	55.2	279	6
Q12907	Vesicular integral-membrane protein VIP36 OS=Homo sapiens OX=9606 GN=LMAN2 PE=1 SV=1	29	356	40.2	279	5
P41219	Peripherin OS=Homo sapiens OX=9606 GN=PRPH PE=1 SV=2	11	470	53.6	279	6
P32969	60S ribosomal protein L9 OS=Homo sapiens OX=9606 GN=RPL9 PE=1 SV=1	48	192	21.9	278	5
000541	Pescadillo homolog OS=Homo sapiens OX=9606 GN=PES1 PE=1 SV=1	14	588	68	278	8
O9NYE8	Bcl-2-associated transcription factor 1 OS=Homo saniens OX=9606 GN=BCLAF1 PE=1 SV=2	9	920	106.1	277	7
062000	Construction of the second sec	50	115	12.0	277	,
02000	Ustana and a second sec	13	115	12.0	273	
Q9B015	Heterogeneous nuclear ribonucleoprotein U-like protein 1 US=Homo sapiens UX=9606 GN=HNRNPU	13	856	95.7	2/2	/
Q02413	Desmoglein-1 OS=Homo sapiens OX=9606 GN=DSG1 PE=1 SV=2	9	1049	113.7	271	6
A0A669KBH5	Alpha-synuclein OS=Homo sapiens OX=9606 GN=SNCA PE=4 SV=1	24	159	16.4	271	3
Q9Y6K1	DNA (cytosine-5)-methyltransferase 3A OS=Homo sapiens OX=9606 GN=DNMT3A PE=1 SV=4	5	912	101.8	270	4
P62269	40S ribosomal protein S18 OS=Homo sapiens OX=9606 GN=RPS18 PE=1 SV=3	42	152	17.7	270	8
P07196	Neurofilament light polypeptide OS=Homo sapiens OX=9606 GN=NEFL PE=1 SV=3	12	543	61.5	269	5
012996	Cleavage stimulation factor subunit 3 OS-Homo saniens OX-9606 GN-CSTE3 PE-1 SV-1	10	717	82.0	269	5
015990	ADE sibes and estate 52 OF-Home sations OX-0606 CN-BBS3 DE-1 SV-2	25	202	21.2	205	7
P15660		25	295	51.5	206	/
Q15907	Ras-related protein Rab-11B OS=Homo sapiens OX=9606 GN=RAB11B PE=1 SV=4	37	218	24.5	268	7
P12277	Creatine kinase B-type OS=Homo sapiens OX=9606 GN=CKB PE=1 SV=1	23	381	42.6	268	5
Q9BSC4	Nucleolar protein 10 OS=Homo sapiens OX=9606 GN=NOL10 PE=1 SV=1	15	688	80.3	267	6
Q6DKI1	60S ribosomal protein L7-like 1 OS=Homo sapiens OX=9606 GN=RPL7L1 PE=1 SV=2	24	255	29.7	266	4
P00338	L-lactate dehydrogenase A chain OS=Homo sapiens OX=9606 GN=LDHA PE=1 SV=2	23	332	36.7	266	6
P14678	Small nuclear ribonucleoprotein-associated proteins B and B' OS=Homo saniens OX=9606 GN=SNRP	19	240	24.6	266	6
00V2P4	Probable ATP dependent PNA beliese DDVS2 05-Home september 20-B606 CN-DDVS2 BE-1 SV-2	23	500	67.5	200	0
012505	Transformer 2 gradein hereiten eleks OS Harre seriers OV 0505 CN TRADA PS 4 SV 4	22	202	07.5	200	5
Q13595	I ransformer-2 protein nomolog alpha US=Homo sapiens UX=9606 GN=1RAZA PE=1 SV=1	23	282	32.7	265	5
000425	Insulin-like growth factor 2 mRNA-binding protein 3 OS=Homo sapiens OX=9606 GN=IGF2BP3 PE=1 9	10	579	63.7	264	4
Q9Y2W1	Thyroid hormone receptor-associated protein 3 OS=Homo sapiens OX=9606 GN=THRAP3 PE=1 SV=2	5	955	108.6	264	6
J3QK89	Calcium homeostasis endoplasmic reticulum protein OS=Homo sapiens OX=9606 GN=CHERP PE=1 S	7	927	104.9	263	4
P04908	Histone H2A type 1-B/E OS=Homo sapiens OX=9606 GN=H2AC4 PE=1 SV=2	35	130	14.1	261	5
F5H2F4	C-1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens OX=9606 GN=MTHFD1 PE=1 SV=2	11	964	104.6	260	8
H3BNC9	Incharacterized protein OS-Homo caniens OX-9606 PE-3 SV-2	10	584	64.5	260	3
012210	Debudgewidte binding protein 4 Ochlam capitol OX=0605 CN=DADDC4 DE=1 SV=1	10	644	70.7	200	7
Q15510	Polyadenylate-binding protein 4 OS=Hollio sapiens OX=9808 GN=PABPC4 PE=1 SV=1	17	044	70.7	259	/
043159	Ribosomal RNA-processing protein 8 OS=Homo sapiens OX=9606 GN=RRP8 PE=1 SV=2	17	456	50.7	259	5
Q9Y224	RNA transcription, translation and transport factor protein OS=Homo sapiens OX=9606 GN=RTRAF P	23	244	28.1	257	4
P55769	NHP2-like protein 1 OS=Homo sapiens OX=9606 GN=SNU13 PE=1 SV=3	38	128	14.2	256	5
Q01780	Exosome component 10 OS=Homo sapiens OX=9606 GN=EXOSC10 PE=1 SV=2	11	885	100.8	255	7
P07237	Protein disulfide-isomerase OS=Homo sapiens OX=9606 GN=P4HB PE=1 SV=3	17	508	57.1	253	8
014204	Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens OX=9606 GN=DYNC1H1 PF=1 SV=5	3	4646	532.1	253	11
LTC209	EPNA1 binding protoin 2 inform CPA d OS-Homo sapings OX-9606 GN-EPNA1922 PE-1 SV-1	17	261	40.7	253	
640250	Leterageneous pueleer zitenueleenzetein K (Fragment) OS-Heme senions OX-9606 CN-HNDNDK D	17 61	100	40.7	232	1
54K359	Heterogeneous nuclear ribonucleoprotein k (Fragment) OS=Homo sapiens OX=9606 GN=HINKINPK PE	61	100	10.7	249	4
A0A286YEZ8	Heterogeneous nuclear ribonucleoprotein R (Fragment) OS=Homo sapiens OX=9606 GN=HNRNPR P	18	141	16.2	248	3
Q92979	Ribosomal RNA small subunit methyltransferase NEP1 OS=Homo sapiens OX=9606 GN=EMG1 PE=1	25	244	26.7	247	5
Q96A72	Protein mago nashi homolog 2 OS=Homo sapiens OX=9606 GN=MAGOHB PE=1 SV=1	45	148	17.3	247	4
P62277	40S ribosomal protein S13 OS=Homo sapiens OX=9606 GN=RPS13 PE=1 SV=2	27	151	17.2	246	4
P17987	T-complex protein 1 subunit alpha OS=Homo sapiens OX=9606 GN=TCP1 PE=1 SV=1	13	556	60.3	246	5
09NW64	Pre-mRNA-splicing factor RBM22 OS=Homo sapiens OX=9606 GN=RBM22 PE=1 SV=1	19	420	46.9	246	6
P13674	Prolyd A-bydroyylasa subunit alpha-1 OS-Homo sanians OX-9606 GN-24HA1 PE-1 SV-2	16	53/	61	244	6
067800	V bev binding protein 1 OS-Home capiens OX-0606 CN-VBV1 DE-1 SV-2	20	224	25.0	244	4
P67809	Y-box-binding protein 1 OS=Homo sapiens OX=9606 GN=YBX1 PE=1 SV=3	23	324	35.9	244	4
Q13283	Ras G Pase-activating protein-binding protein 1 OS=Homo sapiens OX=9606 GN=G3BP1 PE=1 SV=1	18	466	52.1	243	5
Q8WX93	Palladin OS=Homo sapiens OX=9606 GN=PALLD PE=1 SV=3	7	1383	150.5	243	5
Q09161	Nuclear cap-binding protein subunit 1 OS=Homo sapiens OX=9606 GN=NCBP1 PE=1 SV=1	8	790	91.8	242	5
Q14137	Ribosome biogenesis protein BOP1 OS=Homo sapiens OX=9606 GN=BOP1 PE=1 SV=2	13	746	83.6	241	8
Q9Y6D9	Mitotic spindle assembly checkpoint protein MAD1 OS=Homo sapiens OX=9606 GN=MAD1L1 PE=1 S	13	718	83	241	6
Q08170	Serine/arginine-rich splicing factor 4 OS=Homo sapiens OX=9606 GN=SRSF4 PE=1 SV=2	9	494	56.6	240	5
O9NWT1	p21-activated protein kinase-interacting protein 1 OS=Homo sapiens OX=9606 GN=PAK1IP1 PE=1 SV	19	392	43.9	240	5
ETEVAA	Caldermon OS-Homo capions OX-9606 GN-CALD1 BE-1 SV-1	14	557	64.1	220	5
024250	Caldesmon OS-Homo sapiens OX-5000 GN-CAEDTPE-1 SV-1	14	200	44.0	235	5
P31350	Ribonucleoside-oipnosphate reductase subunit M2 OS=Homo sapiens OX=9606 GN=RRM2 PE=1 SV=	18	389	44.8	239	5
P16435	NADPHcytochrome P450 reductase OS=Homo sapiens OX=9606 GN=POR PE=1 SV=2	8	677	76.6	239	4
A0A499FHX9	DNA replication licensing factor MCM3 OS=Homo sapiens OX=9606 GN=MCM3 PE=1 SV=1	8	818	91.9	238	5
Q9BQ04	RNA-binding protein 4B OS=Homo sapiens OX=9606 GN=RBM4B PE=1 SV=1	19	359	40.1	236	6
P42166	Lamina-associated polypeptide 2, isoform alpha OS=Homo sapiens OX=9606 GN=TMPO PE=1 SV=2	11	694	75.4	235	5
Q9NXF1	Testis-expressed protein 10 OS=Homo sapiens OX=9606 GN=TEX10 PE=1 SV=2	10	929	105.6	235	7
P83916	Chromobox protein homolog 1 OS=Homo saniens OX=9606 GN=CRX1 PF=1 SV=1	20	185	21.4	235	2
012805		15	427	40.6	205	5
007666	Bystin 03-nome sapiens 0x-5000 Giv-BISEFE-1 5V-5	15	437	49.0	235	1
00000	Nuclear reporter conditions, NVA-Diffung, signal transduction-dssociated protein 1 OS=R0M0 sapiens OX	9	443	40.2	235	- 4
цэнс05	Nuclear receptor coactivator 5 US=Homo sapiens UX=9606 GN=NCOA5 PE=1 SV=2	15	579	65.5	234	5
P62249	4US ribosomal protein S16 US=Homo sapiens OX=9606 GN=RPS16 PE=1 SV=2	35	146	16.4	233	6
P09382	Galectin-1 US=Homo sapiens OX=9606 GN=LGALS1 PE=1 SV=2	56	135	14.7	233	6
P21796	Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens OX=9606 GN=VDAC1 PE=1 \$	21	283	30.8	233	4
MOR2Z9	SURP and G-patch domain-containing protein 2 OS=Homo sapiens OX=9606 GN=SUGP2 PE=1 SV=1	5	1096	121.5	232	5
P62244	40S ribosomal protein S15a OS=Homo sapiens OX=9606 GN=RPS15A PE=1 SV=2	44	130	14.8	232	6
014813	Paired mesoderm homeobox protein 2A OS=Homo sapiens OX=9606 GN=PHOX2A PE=1 SV=2	27	284	29.6	230	4
P37108	Signal recognition particle 14 kDa protein OS=Homo saniens OX=9606 GN=SRP14 PE=1 SV=2	38	136	14.6	230	4
E00061	THO complex subunit 4 OS-Homo canions OX-8606 GN-ALXREE RE-1 SV-1	21	264	27.5	200	
E9PB01		21	204	27.5	220	3
Q5JWF2	Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas US=Homo sapiens UX=9606 G	8	1037	111	228	6
P52594	Art-GAP domain and FG repeat-containing protein 1 OS=Homo sapiens OX=9606 GN=AGFG1 PE=1 S	13	562	58.2	228	3
060306	RNA helicase aquarius OS=Homo sapiens OX=9606 GN=AQR PE=1 SV=4	5	1485	171.2	227	6
Q9UMX0	Ubiquilin-1 OS=Homo sapiens OX=9606 GN=UBQLN1 PE=1 SV=2	17	589	62.5	227	5
P62906	60S ribosomal protein L10a OS=Homo sapiens OX=9606 GN=RPL10A PE=1 SV=2	29	217	24.8	227	5
P84090	Enhancer of rudimentary homolog OS=Homo sapiens OX=9606 GN=ERH PE=1 SV=1	46	104	12.3	226	5
O43290	U4/U6.U5 tri-snRNP-associated protein 1 OS=Homo sapiens OX=9606 GN=SART1 PF=1 SV=1	9	800	90.2	226	5
09NY61	Protein AATE OS=Homo saniens OX=9606 GN=AATE PE=1 SV=1	0	560	62.1	220	3
D56527	Fukaryotic translation initiation factor 6 OC-Homo conions OV-0606 CN-EIFC DE-1 SV-1	8	245	205.1	225	5
r J0357	Alaba internation OS Users emission OK 0000 CN 1940 DS 1 SV 2	33	245	20.6	225	5
Q10352	Alpha-internexin US=Homo sapiens UX=9606 GN=INA PE=1 SV=2	16	499	55.4	224	7
P11413	Glucose-6-phosphate 1-dehydrogenase OS=Homo sapiens OX=9606 GN=G6PD PE=1 SV=4	13	515	59.2	223	6
P63096	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Homo sapiens OX=9606 GN=GNAI1 PE=	17	354	40.3	223	5
P28289	Tropomodulin-1 OS=Homo sapiens OX=9606 GN=TMOD1 PE=1 SV=1	23	359	40.5	223	5
Q9BZJ0	Crooked neck-like protein 1 OS=Homo sapiens OX=9606 GN=CRNKL1 PE=1 SV=4	7	848	100.4	222	5
Q9UHD8	Septin-9 OS=Homo sapiens OX=9606 GN=SEPTIN9 PE=1 SV=2	16	586	65.4	222	5
Q52LI0	Protein FAM98B OS=Homo sapiens OX=9606 GN=FAM98B PE=1 SV=2	14	433	45.5	221	6
Q9UHG3	Prenvlcvsteine oxidase 1 OS=Homo saniens OX=9606 GN=PCYOX1 PF=1 SV=3	11	505	56.6	221	/
	mRNA turnover protein / homolog OS-Homo capions OX-9606 CN-MPTOA DE-1 SV-3	11	202	JU.0 17 F	221	4
4040871404/24	THO complex subunit 1 OS-Home conjune OX-0600 CNLTUOCO DE 4 CV 4	23	259	27.5	220	-
AUAU8/WWS1	Licenseme membrane protein 3 (Fragment) OS Users proteine OV occes of occessory of the second o	12	657	/5.6	220	- 5
AUA1W2PRS1	Lysosome memorane protein 2 (Fragment) US=Homo sapiens UX=9606 GN=SCARB2 PE=1 SV=1	13	519	58.1	220	5
Q99567	Nuclear pore complex protein Nup88 OS=Homo sapiens OX=9606 GN=NUP88 PE=1 SV=2	13	741	83.5	219	5
A0A2R8Y5A3	Catenin beta-1 OS=Homo sapiens OX=9606 GN=CTNNB1 PE=1 SV=1	7	783	85.6	217	5

P61313	60S ribosomal protein L15 OS=Homo sapiens OX=9606 GN=RPL15 PE=1 SV=2	27	204	24.1	216	5
O00560	Syntenin-1 OS=Homo sapiens OX=9606 GN=SDCBP PE=1 SV=1	23	298	32.4	216	4
Q9C018	pre-mRNA 3' end processing protein WDR33 OS=Homo sapiens OX=9606 GN=WDR33 PE=1 SV=2	7	1336	145.8	215	5
P29401	Transketolase OS=Homo sapiens OX=9606 GN=TKT PE=1 SV=3	9	623	67.8	215	3
Q9BUQ8	Probable ATP-dependent RNA helicase DDX23 OS=Homo sapiens OX=9606 GN=DDX23 PE=1 SV=3	12	820	95.5	214	7
P25398	40S ribosomal protein S12 OS=Homo sapiens OX=9606 GN=RPS12 PE=1 SV=3	39	132	14.5	213	4
Q9NV31	U3 small nucleolar ribonucleoprotein protein IMP3 OS=Homo sapiens OX=9606 GN=IMP3 PE=1 SV=1	40	184	21.8	213	5
P78316	Nucleolar protein 14 OS=Homo sapiens OX=9606 GN=NOP14 PE=1 SV=3	8	857	97.6	211	6
K7EJV9	60S ribosomal protein L23a (Fragment) OS=Homo sapiens OX=9606 GN=RPL23A PE=1 SV=1	35	170	19.4	210	7
P61020	Ras-related protein Rab-5B OS=Homo sapiens OX=9606 GN=RAB5B PE=1 SV=1	32	215	23.7	210	5
P61106	Ras-related protein Rab-14 OS=Homo sapiens OX=9606 GN=RAB14 PE=1 SV=4	19	215	23.9	210	2
P40926	Malate dehydrogenase, mitochondrial OS=Homo sapiens OX=9606 GN=MDH2 PE=1 SV=3	15	338	35.5	209	3
P55/35	Protein SEC13 homolog US=Homo sapiens UX=9606 GN=SEC13 PE=1 SV=3	16	322	35.5	209	
043175	D-3-phosphoglycerate denydrogenase OS=Homo sapiens OX=9606 GN=PHGDH PE=1 SV=4	12	533	56.6	209	
091304	Splicing lactor SB subulifies 0.5=noine sapiens 0.4=9606 GN=5F5B6 PE=1 SV=1	57	1070	124.0	200	
012400	Probable global transcription activator SNF2LL OS=Homo capiens OX=9606 GN=SNARCA1 PE=1 SV=1	12	1070	71.4	200	6
001912	Cycopiasinic dynein 1 interinediate chain 2 OS=Homo sapiens OX=9006 GN=DTNC1/2 PE=1 SV=5	15	794	71.4	206	4
DEE091	Microfibrillar associated protein 1 OS-Home sanions OX-9606 GN-MEAP1 RE-1 SV-2	16	/04	5J.J 51.0	200	
09HDC9	Adjnocyte plasma membrane-associated protein OS-Homo sapiens OX-9606 GN-APMAP PE-1 SV-2	10	435	46.5	200	7
P20340	Ras-related protein Rah-6A OS=Homo sapiens OX=9606 GN=RAR6A PE=1 SV=3	29	208	23.6	203	,
012931	Heat shock protein 75 kDa mitochondrial OS-Homo sanians OX-9606 GN-TRAP1 PE-1 SV-3	23	208	23.0	203	6
075694	Nuclear nore complex protein Nun155 OS=Homo sapiens OX=9606 GN=NLIP155 PE=1 SV=1	6	1391	155.1	203	5
P35221	Catenin alpha-1 OS=Homo saniens OX=9606 GN=CTNNA1 PE=1 SV=1	8	906	100	202	5
P62829	60S ribosomal protein 123 OS=Homo saniens OX=9606 GN=RPI 23 PE=1 SV=1	40	140	1/1 9	202	5
D6RFR5	Septin-11 OS=Homo sapiens OX=9606 GN=SEPTIN11 PF=1 SV=1	15	432	49.8	201	5
015417	Calponin-3 OS=Homo saniens OX=9606 GN=CNN3 PE=1 SV=1	27	329	36.4	201	F
P27694	Replication protein & 70 kDa DNA-binding subunit OS=Homo saniens OX=9606 GN=RPA1 PE=1 SV=2	15	616	68.1	201	F
000566	U3 small nucleolar ribonucleoprotein protein MPP10 OS=Homo sapiens OX 9000 GN=MPHOSPH101	14	681	78.8	201	5
087001	ATP-dependent RNA belicase DDX54 OS=Homo sapiens OX=9606 GN=DDX54 PE=1 SV=2	7	881	98.5	200	4
002543	60S ribosomal protein 18a QS=Homo sapiens QX=9606 GN=RPI 18A PF=1 SV=2	26	176	20.7	198	4
Q15428	Splicing factor 3A subunit 2 OS=Homo sapiens OX=9606 GN=SF3A2 PE=1 SV=2	15	464	49.2	197	5
J3KN66	Torsin-1A-interacting protein 1 OS=Homo sapiens OX=9606 GN=TOR1AIP1 PE=1 SV=1	9	599	67.8	197	4
09Y270	Protein SGT1 homolog OS=Homo sapiens OX=9606 GN=SUGT1 PF=1 SV=3	17	365	41	197	5
G3V3A4	SNW domain-containing protein 1 OS=Homo saniens OX=9606 GN=SNW1 PE=1 SV=1	10	571	65.4	196	5
016629	Serine/arginine-rich splicing factor 7 OS=Homo saniens OX=9606 GN=SRSE7 PE=1 SV=1	13	238	27.4	196	3
060264	Serie/ argume their spinning rectory of them of spinning of sociol of the short in 2 1 5 1 1 2 5		1052	121.8	196	6
P0C055	Histone H2A 7 OS=Homo saniens OX=9606 GN=H2A71 PE=1 SV=2	31	1052	13.5	196	4
P45973	Chromobox protein bomolog 5 OS-Homo saniens OX-9606 GN=CBX5 PE=1 SV=1	27	101	22.2	196	
P62917	60S ribosomal protein 18 OS-Homo saniens OX-9606 GN-RPI 8 PE-1 SV-1	25	257	22.2	195	7
094501	ESE1 homolog OS=Homo saniens OX=9606 GN=ESE1 PE=1 SV=1	7	851	98.7	195	,
P09012	L1 small nuclear ribonucleoprotein & OS=Homo saniens OY=9606 GN=SNRPA PF=1 SV=3	33	282	31.3	194	7
P00387	NADH-outochrome h5 reductase 3 OS=Homo sanians OX=9606 GN=CVB5R3 PE=1 SV=3	18	301	34.2	194	,
P16104	Histone H2AX OS=Homo saniens OX=9606 GN=H2AX PE=1 SV=2	22	143	15.1	194	4
P62280	40S ribosomal protein S11 OS=Homo saniens OX=9606 GN=RPS11 PE=1 SV=3	40	158	18.4	194	F
000267	Transcription elongation factor SPT5 OS=Homo sapiens OX=9606 GN=SUPT5H PF=1 SV=1	7	1087	120.9	193	5
O9UHD9	Ubiguilin-2 OS=Homo sapiens OX=9606 GN=UBOI N2 PE=1 SV=2	11	624	65.7	193	4
O9H307	Pinin QS=Homo saniens QX=9606 GN=PNN PE=1 SV=5	10	717	81.6	193	e
000148	ATP-dependent RNA helicase DDX39A OS=Homo sapiens OX=9606 GN=DDX39A PE=1 SV=2	13	427	49.1	192	5
P35606	Coatomer subunit beta' OS=Homo sapiens OX=9606 GN=COPB2 PE=1 SV=2	9	906	102.4	192	e
Q8NCA5	Protein FAM98A OS=Homo sapiens OX=9606 GN=FAM98A PE=1 SV=2	5	518	55.2	190	3
Q02978	Mitochondrial 2-oxoglutarate/malate carrier protein OS=Homo sapiens OX=9606 GN=SLC25A11 PE=	16	314	34	190	3
P62913	60S ribosomal protein L11 OS=Homo sapiens OX=9606 GN=RPL11 PE=1 SV=2	38	178	20.2	189	6
A0A0A0MRM9	Nucleolar and coiled-body phosphoprotein 1 (Fragment) OS=Homo sapiens OX=9606 GN=NOLC1 PE	9	708	74.6	189	6
095716	Ras-related protein Rab-3D OS=Homo sapiens OX=9606 GN=RAB3D PE=1 SV=1	17	219	24.3	189	3
Q9NWH9	SAFB-like transcription modulator OS=Homo sapiens OX=9606 GN=SLTM PE=1 SV=2	6	1034	117.1	189	5
Q9Y333	U6 snRNA-associated Sm-like protein LSm2 OS=Homo sapiens OX=9606 GN=LSM2 PE=1 SV=1	40	95	10.8	189	2
Q9Y4W2	Ribosomal biogenesis protein LAS1L OS=Homo sapiens OX=9606 GN=LAS1L PE=1 SV=2	8	734	83	188	3
Q9Y3Y2	Chromatin target of PRMT1 protein OS=Homo sapiens OX=9606 GN=CHTOP PE=1 SV=2	21	248	26.4	188	4
O00203	AP-3 complex subunit beta-1 OS=Homo sapiens OX=9606 GN=AP3B1 PE=1 SV=3	7	1094	121.2	187	e
O15042	U2 snRNP-associated SURP motif-containing protein OS=Homo sapiens OX=9606 GN=U2SURP PE=1 S	5	1029	118.2	187	5
Q9GZR7	ATP-dependent RNA helicase DDX24 OS=Homo sapiens OX=9606 GN=DDX24 PE=1 SV=1	12	859	96.3	186	e
Q9NYU2	UDP-glucose:glycoprotein glucosyltransferase 1 OS=Homo sapiens OX=9606 GN=UGGT1 PE=1 SV=3	3	1555	177.1	185	3
Q9NYH9	U3 small nucleolar RNA-associated protein 6 homolog OS=Homo sapiens OX=9606 GN=UTP6 PE=2 S	11	597	70.1	185	5
Q9UIG0	Tyrosine-protein kinase BAZ1B OS=Homo sapiens OX=9606 GN=BAZ1B PE=1 SV=2	4	1483	170.8	185	4
Q96AG4	Leucine-rich repeat-containing protein 59 OS=Homo sapiens OX=9606 GN=LRRC59 PE=1 SV=1	17	307	34.9	184	2
O96019	Actin-like protein 6A OS=Homo sapiens OX=9606 GN=ACTL6A PE=1 SV=1	19	429	47.4	184	5
F8VXC8	SWI/SNF complex subunit SMARCC2 OS=Homo sapiens OX=9606 GN=SMARCC2 PE=1 SV=1	4	1245	136.1	184	4
Q15286	Ras-related protein Rab-35 OS=Homo sapiens OX=9606 GN=RAB35 PE=1 SV=1	18	201	23	182	3
Q9NY93	Probable ATP-dependent RNA helicase DDX56 OS=Homo sapiens OX=9606 GN=DDX56 PE=1 SV=1	15	547	61.6	182	6
095721	Synaptosomal-associated protein 29 OS=Homo sapiens OX=9606 GN=SNAP29 PE=1 SV=1	29	258	29	181	5
r30008	Induced por ecomplex protein Nup214 US=Homo sapiens UX=9606 GN=NUP214 PE=1 SV=2	4	2090	213.5	181	5
A0A0A0MT49	Transcription activator BRG1 OS=Homo sapiens OX=9606 GN=SMARCA4 PE=1 SV=1	3	1681	188.7	180	4
000505	Importin subunit alpha-4 OS=Homo sapiens OX=9606 GN=KPNA3 PE=1 SV=2	15	521	57.8	180	6
P56182	Ribosomai RNA processing protein 1 nomolog A US=Homo sapiens UX=9606 GN=RRP1 PE=1 SV=1	1/	461	52.8	1/9	5
P46/81	405 ribosomai protein 59 OS=Homo sapiens OX=9606 GN=RP59 PE=1 SV=3	30	194	22.6	1/9	8
000038	Lietono hinding protein BBBBA OC-Home conjune OX-0606 CN-0800 GN-ETFB PE-1 SV-3	24	200	27.0	170	3
Q09028	Historie-Diriding protein RBBP4 03=Homo sapiens 0X=9606 GN=RBBP4 PE=1 SV=3	12	425	47.0	170	3
052510	EXOSONNE COMPLEX COMPONENT RKP45 OS=Homo sapiens OX=9606 GN=EXOSC6 PE=1 SV=1	10	620	70.5	170	3
033113	Page related protein Rab EA OS-Homo sanions OY-9606 GN-RABEA RE-1 SV-2	26	215	22.6	178	
P61006	Ras-related protein Rab-SA OS=Homo saniens OX=9606 GN=RABSA PE=1 SV=2	18	215	23.0	178	4
015226	NE-kanna-B-renressing factor OS=Homo sapiens OX=9606 GN=NKRE PE=1 SV=2	10	690	77.6	176	
A0A087\A/1173	Spectrin beta chain OS-Homo canians OX-9606 GN-SPTBN1 PE-1 SV-1	2	2366	274.7	175	
A0A087WV75	Neural cell adhesion molecule 1 OS=Homo sapiens OX=9606 GN=NCAM1 PE=1 SV=1	7	884	97.3	175	4
P07737	Profilin-1 OS=Homo saniens OX=9606 GN=PEN1 PE=1 SV=2	51	140	15	175	
A0A087WY31	YTH domain-containing family protein 3 OS=Homo sapiens OX=9606 GN=YTHDF3 PE=1 SV=1	7	588	64.5	175	3
P48047	ATP synthase subunit O, mitochondrial OS=Homo sapiens OX=9606 GN=ATP5PO PE=1 SV=1	20	213	23.3	174	3
Q8IUH3	RNA-binding protein 45 OS=Homo sapiens OX=9606 GN=RBM45 PE=1 SV=1	13	476	53.5	174	4
Q9H8H0	Nucleolar protein 11 OS=Homo sapiens OX=9606 GN=NOL11 PE=1 SV=1		719	81.1	173	5
Q14157	Ubiquitin-associated protein 2-like OS=Homo sapiens OX=9606 GN=UBAP2L PE=1 SV=2	5	1087	114.5	173	3
Q9H0L4	Cleavage stimulation factor subunit 2 tau variant OS=Homo sapiens OX=9606 GN=CSTF2T PE=1 SV=1	8	616	64.4	173	4
Q6PD62	RNA polymerase-associated protein CTR9 homolog OS=Homo sapiens OX=9606 GN=CTR9 PE=1 SV=1	4	1173	133.4	173	4
G5EA09	Syndecan binding protein (Syntenin), isoform CRA_a OS=Homo sapiens OX=9606 GN=SDCBP PE=1 S	18	318	34.8	172	3
Q8IX12	Cell division cycle and apoptosis regulator protein 1 OS=Homo sapiens OX=9606 GN=CCAR1 PE=1 SV	5	1150	132.7	172	4
P26373	60S ribosomal protein L13 OS=Homo sapiens OX=9606 GN=RPL13 PE=1 SV=4	20	211	24.2	172	4
E7EWR4	Cleavage stimulation factor subunit 2 OS=Homo sapiens OX=9606 GN=CSTF2 PE=1 SV=1	10	597	62.9	172	5
Q14692	Ribosome biogenesis protein BMS1 homolog OS=Homo sapiens OX=9606 GN=BMS1 PE=1 SV=1	5	1282	145.7	171	4
P54289	Voltage-dependent calcium channel subunit alpha-2/delta-1 OS=Homo sapiens OX=9606 GN=CACN	7	1103	124.5	171	5
Q9Y221	60S ribosome subunit biogenesis protein NIP7 homolog OS=Homo sapiens OX=9606 GN=NIP7 PE=1	35	180	20.4	170	4

P62753	40S ribosomal protein S6 OS=Homo sapiens OX=9606 GN=RPS6 PE=1 SV=1	20	249	28.7	170	5
Q15637	Splicing factor 1 OS=Homo sapiens OX=9606 GN=SF1 PE=1 SV=4	12	639	68.3	169	5
043681	ATPase GET3 OS=Homo sapiens OX=9606 GN=GET3 PE=1 SV=2	18	348	38.8	169	5
Q16643	Drebrin OS=Homo sapiens OX=9606 GN=DBN1 PE=1 SV=4	7	649	71.4	169	3
P31040	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial OS=Homo sapiens OX=9	6	664	72.6	168	2
075340	Programmed cell death protein 6 OS=Homo sapiens OX=9606 GN=PDCD6 PE=1 SV=1	16	191	21.9	167	3
BUQY89	Eukaryotic translation initiation factor 3 subunit L US=Homo sapiens UX=9606 GN=HF3L PE=1 SV=1	10	607	70.9	16/	3
045547 M00VS1	60S ribocomal protoin 1120 (Fragment) OS-Home sanions OX-9606 GN-R0112A RE-1 SV-2	21	210	24.2	164	4
075367	Core histone macro-H2A 1 OS=Homo saniens OX=9606 GN=MACROH2A1 PE=1 SV=2	14	372	39.6	163	4
P42704	Leucine-rich PPR motif-containing protein mitochondrial OS=Homo saniens OX=9606 GN=1 RPPRC P	4	1394	157.8	162	- 4
09BV38	WD repeat-containing protein 18 OS=Homo sapiens QX=9606 GN=WDR18 PE=1 SV=2	13	432	47.4	162	5
Q86W42	THO complex subunit 6 homolog OS=Homo sapiens OX=9606 GN=THOC6 PE=1 SV=1	15	341	37.5	162	4
09BS18	Extended synaptotagmin-1 QS=Homo sapiens QX=9606 GN=ESYT1 PE=1 SV=1	5	1104	122.8	161	4
E9PQ57	mRNA export factor OS=Homo sapiens OX=9606 GN=RAE1 PE=1 SV=1	12	437	47.8	161	3
Q96QD9	UAP56-interacting factor OS=Homo sapiens OX=9606 GN=FYTTD1 PE=1 SV=3	13	318	35.8	161	3
Q92769	Histone deacetylase 2 OS=Homo sapiens OX=9606 GN=HDAC2 PE=1 SV=2	12	488	55.3	160	5
Q14697	Neutral alpha-glucosidase AB OS=Homo sapiens OX=9606 GN=GANAB PE=1 SV=3	6	944	106.8	160	4
Q9UJZ1	Stomatin-like protein 2, mitochondrial OS=Homo sapiens OX=9606 GN=STOML2 PE=1 SV=1	14	356	38.5	160	3
A0A3F2YNY6	Pre-mRNA-processing factor 40 homolog A OS=Homo sapiens OX=9606 GN=PRPF40A PE=1 SV=1	5	994	112.3	159	3
I3L1P4	Proline-, glutamic acid- and leucine-rich protein 1 (Fragment) OS=Homo sapiens OX=9606 GN=PELP1	37	148	15.1	159	3
P46940	Ras GTPase-activating-like protein IQGAP1 OS=Homo sapiens OX=9606 GN=IQGAP1 PE=1 SV=1	3	1657	189.1	158	4
P63104	14-3-3 protein zeta/delta OS=Homo sapiens OX=9606 GN=YWHAZ PE=1 SV=1	13	245	27.7	158	2
P20338	Ras-related protein Rab-4A OS=Homo sapiens OX=9606 GN=RAB4A PE=1 SV=3	20	218	24.4	157	4
P50395	Rab GDP dissociation inhibitor beta OS=Homo sapiens OX=9606 GN=GDI2 PE=1 SV=2	12	445	50.6	157	3
P37198	Nuclear pore glycoprotein p62 OS=Homo sapiens OX=9606 GN=NUP62 PE=1 SV=3	8	522	53.2	156	4
A6NMH8	Tetraspanin OS=Homo sapiens OX=9606 GN=CD81 PE=1 SV=1	16	274	29.8	156	2
P50454	Serpin H1 OS=Homo sapiens OX=9606 GN=SERPINH1 PE=1 SV=2	14	418	46.4	155	4
Q01518	Adenylyl cyclase-associated protein 1 OS=Homo sapiens OX=9606 GN=CAP1 PE=1 SV=5	9	475	51.9	155	3
Q13242	Serine/arginine-rich splicing factor 9 OS=Homo sapiens OX=9606 GN=SRSF9 PE=1 SV=1	19	221	25.5	155	4
095639	Cleavage and polyadenylation specificity factor subunit 4 OS=Homo sapiens OX=9606 GN=CPSF4 PE=	13	269	30.2	154	2
Q13492	Phosphatidylinositol-binding clathrin assembly protein OS=Homo sapiens OX=9606 GN=PICALM PE=	7	652	70.7	154	3
Q15084	Protein disulfide-isomerase A6 OS=Homo sapiens OX=9606 GN=PDIA6 PE=1 SV=1	5	440	48.1	153	2
Q99623	Prohibitin-2 OS=Homo sapiens OX=9606 GN=PHB2 PE=1 SV=2	16	299	33.3	153	4
043818	U3 small nucleolar RNA-interacting protein 2 OS=Homo sapiens OX=9606 GN=RRP9 PE=1 SV=1	22	475	51.8	152	5
P31150	Rab GDP dissociation inhibitor alpha OS=Homo sapiens OX=9606 GN=GDI1 PE=1 SV=2	12	447	50.6	152	3
K7ER00	PhenylalaninetRNA ligase alpha subunit OS=Homo sapiens OX=9606 GN=FARSA PE=1 SV=1	5	548	62.4	152	3
Q9BVI4	Nucleolar complex protein 4 homolog OS=Homo sapiens OX=9606 GN=NOC4L PE=1 SV=1	10	516	58.4	152	5
Q9UKX7	Nuclear pore complex protein Nup50 OS=Homo sapiens OX=9606 GN=NUP50 PE=1 SV=2	12	468	50.1	152	4
Q15007	Pre-mRNA-splicing regulator WTAP OS=Homo sapiens OX=9606 GN=WTAP PE=1 SV=2	10	396	44.2	151	3
Q9Y3F4	Serine-threonine kinase receptor-associated protein OS=Homo sapiens OX=9606 GN=STRAP PE=1 SV	10	350	38.4	151	2
A0A0A6YYL6	Protein RPL17-C18orf32 OS=Homo sapiens OX=9606 GN=RPL17-C18orf32 PE=3 SV=1	11	228	26.4	151	2
P35232	Prohibitin OS=Homo sapiens OX=9606 GN=PHB PE=1 SV=1	16	272	29.8	150	3
P39656	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit OS=Homo sapiens C	10	456	50.8	148	4
Q12800	Alpha-globin transcription factor CP2 OS=Homo sapiens OX=9606 GN=TFCP2 PE=1 SV=2	8	502	57.2	148	3
P34897	Serine hydroxymethyltransferase, mitochondrial OS=Homo sapiens OX=9606 GN=SHMT2 PE=1 SV=3	13	504	56	148	5
A0A286YFF7	Palmitoyl-protein thioesterase 1 OS=Homo sapiens OX=9606 GN=PPT1 PE=1 SV=1	14	335	37.1	148	3
P35611	Alpha-adducin OS=Homo sapiens OX=9606 GN=ADD1 PE=1 SV=2	6	737	80.9	147	3
P62304	Small nuclear ribonucleoprotein E OS=Homo sapiens OX=9606 GN=SNRPE PE=1 SV=1	70	92	10.8	147	4
Q9BZK7	F-box-like/WD repeat-containing protein TBL1XR1 OS=Homo sapiens OX=9606 GN=TBL1XR1 PE=1 SV	7	514	55.6	147	3
P62266	40S ribosomal protein S23 OS=Homo sapiens OX=9606 GN=RPS23 PE=1 SV=3	29	143	15.8	145	4
P49792	E3 SUMO-protein ligase RanBP2 OS=Homo sapiens OX=9606 GN=RANBP2 PE=1 SV=2	2	3224	358	145	4
P61204	ADP-ribosylation factor 3 OS=Homo sapiens OX=9606 GN=ARF3 PE=1 SV=2	28	181	20.6	145	4
Q16630	Cleavage and polyadenylation specificity factor subunit 6 OS=Homo sapiens OX=9606 GN=CPSF6 PE=	8	551	59.2	144	3
E9PI41	Exosome complex component RRP41 (Fragment) OS=Homo sapiens OX=9606 GN=EXOSC4 PE=1 SV=	12	261	28.3	144	2
Q14152	Eukaryotic translation initiation factor 3 subunit A OS=Homo sapiens OX=9606 GN=EIF3A PE=1 SV=1	3	1382	166.5	144	3
Q15738	Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating OS=Homo sapiens OX=9606 GN=NSD	13	373	41.9	143	4
P42696	RNA-binding protein 34 OS=Homo sapiens OX=9606 GN=RBM34 PE=1 SV=2	7	430	48.5	143	3
P49368	I-complex protein 1 subunit gamma OS=Homo sapiens OX=9606 GN=CC13 PE=1 SV=4	10	545	60.5	143	5
075525	RH domain-containing, RNA-binding, signal transduction-associated protein 3 US=Homo sapiens UX	14	346	38.8	143	4
015836	Vesiale associated membrane protein 3 OC-Hemo seniors OX-0606 CN-VAMD3 DE-1 SV-3	/	434	4/	142	2
000709	Vesicle-associated memorale protein 5 OS=Homo sapiens OX=9606 GN=9800 GN=VAIVIPS PE=1 SV=5	40	100	11.5 E0.4	142	2
090106	RNA-billiding protein 42 OS-Hollio Sapiens OX-9000 GN-RBW42 PE-1 SV-1	6	460	75.4	140	2
002022	SWI/SNE complex subunit SMAPCC1 OS-Home conjens OX-9606 GN-SEC01 PE-1 SV-1	5	1105	122.9	133	3
091114	Koratin type II cytockolotal 78 OS-Homo capions OX-9606 GN-KPT78 DE-1 SV-3	7	520	122.0	133	4
P40227	T-complex protein 1 subunit zeta OS=Homo saniens OX=9606 GN=CCT64 DF=1 SV=2	0	520	5.0C 50	139	4
40227	Paraovonase 2 isoform CRA a OS-Homo saniens OX-9606 GN-PON2 PE-1 SV-1	12	375	/1 5	139	3
P84098	60S ribosomal protein L19 OS=Homo sapiens OX=9606 GN=RPL19 PF=1 SV=1	13	196	23.5	138	2
P50914	60S ribosomal protein L14 OS=Homo sapiens OX=9606 GN=RPL14 PE=1 SV=4	14	215	23.4	138	3
P35268	60S ribosomal protein L22 OS=Homo sapiens OX=9606 GN=RPL22 PE=1 SV=2	20	128	14.8	138	3
P46821	Microtubule-associated protein 1B OS=Homo sapiens OX=9606 GN=MAP1B PE=1 SV=2	2	2468	270.5	138	3
Q13330	Metastasis-associated protein MTA1 OS=Homo sapiens OX=9606 GN=MTA1 PE=1 SV=2	5	715	80.7	137	3
P68400	Casein kinase II subunit alpha OS=Homo sapiens OX=9606 GN=CSNK2A1 PE=1 SV=1	8	391	45.1	137	2
O43169	Cytochrome b5 type B OS=Homo sapiens OX=9606 GN=CYB5B PE=1 SV=3	39	150	16.7	137	3
Q9H7B2	Ribosome production factor 2 homolog OS=Homo sapiens OX=9606 GN=RPF2 PE=1 SV=2	15	306	35.6	137	4
Q92733	Proline-rich protein PRCC OS=Homo sapiens OX=9606 GN=PRCC PE=1 SV=1	8	491	52.4	136	2
D6REX3	Protein transport protein Sec31A OS=Homo sapiens OX=9606 GN=SEC31A PE=1 SV=1	4	1251	136.1	136	4
Q68CQ4	Digestive organ expansion factor homolog OS=Homo sapiens OX=9606 GN=DIEXF PE=1 SV=2	6	756	87	136	5
Q01081	Splicing factor U2AF 35 kDa subunit OS=Homo sapiens OX=9606 GN=U2AF1 PE=1 SV=3	13	240	27.9	136	2
P28331	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial OS=Homo sapiens OX=9606 GN=N	6	727	79.4	135	3
043684	Mitotic checkpoint protein BUB3 OS=Homo sapiens OX=9606 GN=BUB3 PE=1 SV=1	20	328	37.1	135	5
Q9NQ29	Putative RNA-binding protein Luc7-like 1 OS=Homo sapiens OX=9606 GN=LUC7L PE=1 SV=1	12	371	43.7	135	4
E9PNQ8	Thy-1 membrane glycoprotein (Fragment) OS=Homo sapiens OX=9606 GN=THY1 PE=1 SV=1	18	165	18.2	133	2
Q8N6H7	ADP-ribosylation factor GTPase-activating protein 2 OS=Homo sapiens OX=9606 GN=ARFGAP2 PE=1	8	521	56.7	133	4
D6W5Y5	Cold inducible RNA binding protein, isoform CRA_c OS=Homo sapiens OX=9606 GN=CIRBP PE=1 SV=	4	297	31.9	133	2
P55060	Exportin-2 US=Homo sapiens UX=9606 GN=CSE1L PE=1 SV=3	3	971	110.3	132	2
075494	serine/arginine-rich splicing factor 10 US=Homo sapiens OX=9606 GN=SRSF10 PE=1 SV=1	9	262	31.3	131	3
Q6RFH5	WD repeat-containing protein 74 US=Homo sapiens OX=9606 GN=WDR74 PE=1 SV=1	11	385	42.4	131	3
043795	Unconventional myosin-ID US=Homo sapiens UX=9606 GN=MY01B PE=1 SV=3	4	1136	131.9	131	3
Q13123	Protein ked US=Homo sapiens UX=9606 GN=IK PE=1 SV=3	8	557	65.6	131	4
นุษพนุ14	IF XUSUUE COMPONENT KKP46 US=HOMO SADIENS UX=9606 GN=EXOSC5 PE=1 SV=1	16	235	25.2	131	2
D/6702	405 ribocomal protoin S10 OS-Homo capions OX-0506 CN-00510 05-1 SV-1	4 -	100	10 0		
P46783	40S ribosomal protein S10 OS=Homo sapiens OX=9606 GN=RPS10 PE=1 SV=1	15	165	18.9	131	-
P46783 P08133 014146	405 ribosomal protein 510 OS=Homo sapiens OX=9606 GN=RPS10 PE=1 SV=1 Annexin A6 OS=Homo sapiens OX=9606 GN=ANXA6 PE=1 SV=3 Unbealthy: Libosome biogenesis anztein 2 Jonacla OX=Homo content OX=0606 CN=1802 05=1 SV=7	15	165 673	18.9 75.8	131	4
P46783 P08133 Q14146 Q13206	405 ribosomal protein S10 OS=Homo sapiens OX=9606 GN=RPS10 PE=1 SV=1 Annexin A6 OS=Homo sapiens OX=9606 GN=ANXA6 PE=1 SV=3 Unhealthy ribosome biogenesis protein 2 homodog OS=Homo sapiens OX=9606 GN=URB2 PE=1 SV=2 Probable ATF_dependent RAA belicase DDX10 OS=Homo sapiens OX=9606 GN=DDX10 PE=1 SV=2	15 7 2	165 673 1524 975	18.9 75.8 170.4	131 131 130	4
P46783 P08133 Q14146 Q13206 Q99733	405 ribosomal protein S10 OS-Homo sapiens OX=9606 GN=RPS10 PE=1 SV=1 Annexin A6 OS-Homo sapiens OX=9606 GN=ANXA6 PE=1 SV=3 Unhealthy ribosome biogenesis protein 2 homolog OS-Homo sapiens OX=9606 GN=URB2 PE=1 SV=2 Probable ATP-dependent RNA helicase DDX10 OS-Homo sapiens OX=9606 GN=DDX10 PE=1 SV=2 Nucleosome assembly protein 1-like 4 OS-Homo sapiens OX=9606 GN=NDP114 PE=1 SV=2	15 7 2 5	165 673 1524 875 375	18.9 75.8 170.4 100.8	131 131 130 130	4
P46783 P08133 Q14146 Q13206 Q99733 Q95208	405 ribosomal protein \$10 OS=Homo sapiens OX=9606 GN=RP\$10 PE=1 SV=1 Annexin A6 OS=Homo sapiens OX=9606 GN=ANXA6 PE=1 SV=3 Unhealthy ribosome biogenesis protein 2 homolog OS=Homo sapiens OX=9606 GN=URB2 PE=1 SV=2 Probable ATP-dependent RNA helicase DDX10 OS=Homo sapiens OX=9606 GN=DDX10 PE=1 SV=2 Nucleosome assembly protein 1-like 4 OS=Homo sapiens OX=9606 GN=NAP1L4 PE=1 SV=1 Espin-2 OS=Homo sapiens OX=9606 GN=PR07 PE=1 SV=3	15 7 2 5 10 4	165 673 1524 875 375 641	18.9 75.8 170.4 100.8 42.8 68 4	131 131 130 130 130 130	4
P46783 P08133 Q14146 Q13206 Q99733 O95208 P49750	405 ribosomal protein 510 OS=Homo sapiens OX=9606 GN=RPS10 PE=1 SV=1 Annexin A6 OS=Homo sapiens OX=9606 GN=ANXA6 PE=1 SV=3 Unhealthy ribosome biogenesis protein 2 homolog OS=Homo sapiens OX=9606 GN=URB2 PE=1 SV=2 Probable ATP-dependent RNA helicase DDX10 OS=Homo sapiens OX=9606 GN=DDX10 PE=1 SV=2 Nucleosome assembly protein 1-like 4 OS=Homo sapiens OX=9606 GN=NAP1L4 PE=1 SV=2 Epsin-2 OS=Homo sapiens OX=9606 GN=EPN2 PE=1 SV=3 VLP motif-containing protein 1 OS=Homo sapiens OX=9606 GN=VLPM1 PE=1 SV=4	15 7 2 5 10 4 3	165 673 1524 875 375 641 2146	18.9 75.8 170.4 100.8 42.8 68.4 241.5	131 131 130 130 130 130 130	4 3 4 3 2 2 4

075915	PRA1 family protein 3 OS=Homo sapiens OX=9606 GN=ARL6IP5 PE=1 SV=1	16	188	21.6	129	2
AUAUB4J2U3 Q99470	Protein kinase domain-containing protein US=Homo sapiens UX=9606 PE=3 SV=1 Stromal cell-derived factor 2 OS=Homo sapiens OX=9606 GN=SDF2 PE=1 SV=2	22	211	94.6	128	2
000629	Importin subunit alpha-3 OS=Homo sapiens OX=9606 GN=KPNA4 PE=1 SV=1	13	521	57.9	128	4
Q16576	Histone-binding protein RBBP7 OS=Homo sapiens OX=9606 GN=RBBP7 PE=1 SV=1	8	425	47.8	128	4
F2Z2X0	Nucleoside diphosphate kinase OS=Homo sapiens OX=9606 GN=NME4 PE=1 SV=1	18	233	25.4	120	3
Q7RTV0	PHD finger-like domain-containing protein 5A OS=Homo sapiens OX=9606 GN=PHF5A PE=1 SV=1	35	110	12.4	127	4
Q9Y5S9	RNA-binding protein L/ OS=Homo sapiens OX=9606 GN=RBM8A PE=1 SV=1	23	248	29.2	127	2
D3DQV9	Eukaryotic translation initiation factor 4 gamma 2 (Fragment) OS=Homo sapiens OX=9606 GN=EIF4G	5	907	102.3	126	3
P25789 060287	Proteasome subunit alpha type-4 OS=Homo sapiens OX=9606 GN=PSMA4 PE=1 SV=1 Nucleolar pre-ribosomal-associated protein 1 OS=Homo sapiens OX=9606 GN=LIRB1 PE=1 SV=4	13	261	29.5	125	3
Q92900	Regulator of nonsense transcripts 1 OS=Homo sapiens OX=9606 GN=UPF1 PE=1 SV=2	5	1129	124.3	123	4
Q99536	Synaptic vesicle membrane protein VAT-1 homolog OS=Homo sapiens OX=9606 GN=VAT1 PE=1 SV=2	10	393	41.9	124	2
P49736 Q9H3N1	DNA replication licensing factor MCM2 OS=Homo sapiens OX=9606 GN=MCM2 PE=1 SV=4 Thioredoxin-related transmembrane protein 1 OS=Homo sapiens OX=9606 GN=TMX1 PE=1 SV=1	13	904 280	101.8	124	3
P62714	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform OS=Homo sapiens OX=960	16	309	35.6	123	3
A0A494C0W0	Poly(A)-specific ribonuclease PARN OS=Homo sapiens OX=9606 GN=PARN PE=1 SV=1	6	664	76.3	123	3
V9GZ56	U6 snRNA-associated Sm-like protein LSm4 (Fragment) OS=Homo sapiens OX=9606 GN=LSM4 PE=1 S	21	238	25.7	123	4
043447	Peptidyl-prolyl cis-trans isomerase H OS=Homo sapiens OX=9606 GN=PPIH PE=1 SV=1	30	177	19.2	122	3
P48449 H0YKD8	Lanosterol synthase OS=Homo sapiens OX=9606 GN=LSS PE=1 SV=1 60S ribosomal protein L28 OS=Homo sapiens OX=9606 GN=RPL28 PE=1 SV=1	4	732	83.3	122	2
Q9UHB6	LIM domain and actin-binding protein 1 OS=Homo sapiens OX=9606 GN=LIMA1 PE=1 SV=1	4	759	85.2	121	2
000264	Membrane-associated progesterone receptor component 1 OS=Homo sapiens OX=9606 GN=PGRMO	19	195	21.7	121	2
Q90HB9 Q14344	Guanine nucleotide-binding protein subunit alpha-13 OS=Homo sapiens OX=9606 GN=SRP68 PE=1 SV=2	9	377	70.7	121	3
Q8NAV1	Pre-mRNA-splicing factor 38A OS=Homo sapiens OX=9606 GN=PRPF38A PE=1 SV=1	12	312	37.5	120	3
A0A0C4DG17	40S ribosomal protein SA OS=Homo sapiens OX=9606 GN=RPSA PE=1 SV=1	14	300	33.3	119	2
Q9UKF6	Cleavage and polyadenylation specificity factor subunit 3 OS=Homo sapiens OX=9606 GN=CPSF3 PE	8	684	77.4	119	4
P50991	T-complex protein 1 subunit delta OS=Homo sapiens OX=9606 GN=CCT4 PE=1 SV=4	8	539	57.9	119	3
P45880 015287	Voltage-dependent anion-selective channel protein 2 OS=Homo sapiens OX=9606 GN=VDAC2 PE=1 S RNA-binding protein with serine-rich domain 1 OS=Homo sapiens OX=9606 GN=RNPS1 PE=1 SV=1	11	294	31.5	118	2
P61254	60S ribosomal protein L26 OS=Homo sapiens OX=9606 GN=RPL26 PE=1 SV=1	21	145	17.2	110	4
P12814	Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=2	3	892	103	116	3
Q96125	265 proteasome non-ATPase regulatory subunit 3 OS=Homo sapiens OX=9606 GN=PSMD3 PE=1 SV= Splicing factor 45 OS=Homo sapiens OX=9606 GN=RBM17 PE=1 SV=1	10	401	44.9	116	3
P49458	Signal recognition particle 9 kDa protein OS=Homo sapiens OX=9606 GN=SRP9 PE=1 SV=2	26	86	10.1	116	2
Q13510	Acid ceramidase OS=Homo sapiens OX=9606 GN=ASAH1 PE=1 SV=5	6	395	44.6	115	2
A0A2R8Y7H4	Ribose-phosphate pyrophosphokinase OS=Homo sapiens OX=9606 GN=PRPS1 PE=1 SV=1	9	321	35.3	115	2
P50502	Hsc70-interacting protein OS=Homo sapiens OX=9606 GN=ST13 PE=1 SV=2	9	369	41.3	114	3
Q71DI3 001130	Histone H3.2 OS=Homo sapiens OX=9606 GN=H3C15 PE=1 SV=3 Serine/arginine-rich splicing factor 2 OS=Homo sapiens OX=9606 GN=SRSE2 PE=1 SV=4	34	221	15.4	113	3
014828	Secretory carrier-associated membrane protein 3 OS=Homo sapiens OX=9606 GN=SCAMP3 PE=1 SV	8	347	38.3	113	2
P62854	40S ribosomal protein S26 OS=Homo sapiens OX=9606 GN=RPS26 PE=1 SV=3	23	115	13	113	2
P08621 P54886	Delta-1-pyrroline-5-carboxylate synthase OS=Homo sapiens OX=9606 GN=ALDH18A1 PE=1 SV=2	4	795	87.2	112	2
P62081	40S ribosomal protein S7 OS=Homo sapiens OX=9606 GN=RPS7 PE=1 SV=1	22	194	22.1	111	4
Q9H8H2 P49755	Probable ATP-dependent RNA helicase DDX31 OS=Homo sapiens OX=9606 GN=DDX31 PE=1 SV=2 Transmembrane emp24 domain-containing protein 10 OS=Homo sapiens OX=9606 GN=TMED10 PE	23	851 219	94	111	3
P62851	40S ribosomal protein S25 OS=Homo sapiens OX=9606 GN=RPS25 PE=1 SV=1	24	125	13.7	111	3
P50402	Emerin OS=Homo sapiens OX=9606 GN=EMD PE=1 SV=1	10	254	29	110	2
Q60208	Eukarvotic translation initiation factor 3 subunit E OS=Homo sapiens OX=9606 GN=WDR82 PE=1 SV=1	10	445	52.2	110	4
P27348	14-3-3 protein theta OS=Homo sapiens OX=9606 GN=YWHAQ PE=1 SV=1	9	245	27.7	110	2
A0A0A6YYJ8	Putative RNA-binding protein Luc7-like 2 OS=Homo sapiens OX=9606 GN=LUC7L2 PE=4 SV=1	7	458	54.2	110	3
Q96AC1	Fermitin family homolog 2 OS=Homo sapiens OX=9606 GN=FERMT2 PE=1 SV=1	4	680	77.8	110	2
Q9H4L4	Sentrin-specific protease 3 OS=Homo sapiens OX=9606 GN=SENP3 PE=1 SV=2	8	574	65	109	3
H0YJ66 Q7Z4W1	Dehydrogenase/reductase SDR family member 7 (Fragment) OS=Homo sapiens OX=9606 GN=DHRS. L-xvlulose reductase OS=Homo sapiens OX=9606 GN=DCXR PE=1 SV=2	7	244	44.8	108	2
A0A0U1RQQ9	SCY1-like protein 2 OS=Homo sapiens OX=9606 GN=SCYL2 PE=1 SV=1	5	933	104	108	3
P56545	C-terminal-binding protein 2 OS=Homo sapiens OX=9606 GN=CTBP2 PE=1 SV=1	8	445	48.9	108	3
P09429 P00505	Aspartate aminotransferase, mitochondrial OS=Homo sapiens OX=9606 GN=HMGB1 PE=1 SV=3	13	430	47.5	108	2
Q5SSJ5	Heterochromatin protein 1-binding protein 3 OS=Homo sapiens OX=9606 GN=HP1BP3 PE=1 SV=1	7	553	61.2	107	3
Q9BPW8	Protein NipSnap homolog 1 OS=Homo sapiens OX=9606 GN=NIPSNAP1 PE=1 SV=1	13	284	33.3	107	2
Q01469	Fatty acid-binding protein 5 OS=Homo sapiens OX=9606 GN=FABP5 PE=1 SV=3	24	135	15.2	107	3
Q13601	KRR1 small subunit processome component homolog OS=Homo sapiens OX=9606 GN=KRR1 PE=1 SV	8	381	43.6	107	3
Q9UI30 P33992	Multifunctional methyltransferase subunit TRM112-like protein OS=Homo sapiens OX=9606 GN=TRI DNA replication licensing factor MCM5 OS=Homo sapiens OX=9606 GN=MCM5 PE=1 SV=5	17	125	14.2	107	2
Q13363	C-terminal-binding protein 1 OS=Homo sapiens OX=9606 GN=CTBP1 PE=1 SV=2	8	440	47.5	107	4
Q99832	T-complex protein 1 subunit eta OS=Homo sapiens OX=9606 GN=CCT7 PE=1 SV=2	7	543	59.3	106	4
Q9UQ80	Proliferation-associated protein 2G4 OS=Homo sapiens OX=9606 GN=PA2G4 PE=1 SV=3	10	394	43.8	100	2
D6RJF2	Polyadenylate-binding protein-interacting protein 1 (Fragment) OS=Homo sapiens OX=9606 GN=PAI	12	200	22.6	106	2
Q7L2E3 Q5SY16	ATP-dependent RNA helicase DHX30 OS=Homo sapiens OX=9606 GN=DHX30 PE=1 SV=1 Polynucleotide 5'-hydroxyl-kinase NOI 9 OS=Homo sapiens OX=9606 GN=NOI 9 PE=1 SV=1	2	1194	133.9	106	3
P53621	Coatomer subunit alpha OS=Homo sapiens OX=9606 GN=COPA PE=1 SV=2	4	1224	138.3	104	3
Q15363	Transmembrane emp24 domain-containing protein 2 OS=Homo sapiens OX=9606 GN=TMED2 PE=1	12	201	22.7	104	2
P55209	Nucleosome assembly protein 1-like 1 OS=Homo sapiens OX=9606 GN=NAP1L1 PE=1 SV=1	9	391	45.3	104	3
Q8TDI0	Chromodomain-helicase-DNA-binding protein 5 OS=Homo sapiens OX=9606 GN=CHD5 PE=1 SV=1	2	1954	222.9	103	2
U60684 013610	Importin subunit alpha-7 US=Homo sapiens OX=9606 GN=KPNA6 PE=1 SV=1 Periodic tryptophan protein 1 homolog OS=Homo sapiens OX=9606 GN=PWP1 PE=1 SV=1	5	536 501	60 55 x	103	2
060701	UDP-glucose 6-dehydrogenase OS=Homo sapiens OX=9606 GN=UGDH PE=1 SV=1	7	494	55	103	2
J3QQ67	605 ribosomal protein L18 (Fragment) OS=Homo sapiens OX=9606 GN=RPL18 PE=1 SV=1	21	190	21.8	102	4
Q13162	Peroxired ocacetylase complex suburnt SAP18 US=Homo sapiens UX=9606 GN=SAP18 PE=1 SV=1 Peroxiredoxin-4 OS=Homo sapiens OX=9606 GN=PRDX4 PE=1 SV=1	17	153	30.5	102	3
P23284	Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens OX=9606 GN=PPIB PE=1 SV=2	13	216	23.7	101	2
P48643 08N684	I-complex protein 1 subunit epsilon OS=Homo sapiens OX=9606 GN=CCT5 PE=1 SV=1 Cleavage and polyadenylation specificity factor subunit 7 OS=Homo sapiens OX=9606 GN=CPSE7 PE-	9	541 471	59.6 57	101	3
060231	Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 OS=Homo sapiens OX=9606 GN=DHX	2	1041	119.2	101	2
Q96DH6	RNA-binding protein Musashi homolog 2 OS=Homo sapiens OX=9606 GN=MSI2 PE=1 SV=1	9	328	35.2	100	2
Q8N7H5	RNA polymerase II-associated factor 1 homolog OS=Homo sapiens OX=9606 GN=PAF1 PE=1 SV=2	6	531	59.9	100	2

4040B411V8	HCG2039996 OS=Homo saniens OX=9606 GN=PPAN-P2RY11 PE=3 SV=1	7	794	87 9
A0A0D4J1V0		,	550	67.5
Q14247	Src substrate cortactin OS=Homo sapiens OX=9606 GN=CTTN PE=1 SV=2	4	550	61.5
Q15942	Zyxin OS=Homo sapiens OX=9606 GN=ZYX PE=1 SV=1	7	572	61.2
001911	Dolichyl diphosphooligosassharido, protoin glysosyltrapsforaso subunit 2 OS-Homo sanions OX-96	0	621	60 7
F 04044		3	031	03.2
P63244	Receptor of activated protein C kinase 1 OS=Homo sapiens OX=9606 GN=RACK1 PE=1 SV=3	9	317	35.1
O9UDY4	Dnal homolog subfamily B member 4 QS=Homo sapiens QX=9606 GN=DNAIB4 PE=1 SV=1	8	337	37.8
			700	00.4
P41250	Givenetriva ligase OS=Homo sapiens OX=9606 GN=GARS1 PE=1 SV=3	4	/39	83.1
P30041	Peroxiredoxin-6 OS=Homo sapiens OX=9606 GN=PRDX6 PE=1 SV=3	18	224	25
012072	Nuclear inhibitor of protein phosphatase 1 OS-Homo saniens OX-9606 GN-PPP188 PE-1 SV-2	10	351	38 5
Q12372		10	351	30.3
A0A1W2PQ47	Squalene synthase OS=Homo sapiens OX=9606 GN=FDFT1 PE=1 SV=1	7	476	53.6
O8IXT5	RNA-hinding protein 12B OS=Homo sanjens OX=9606 GN=RBM12B PE=1 SV=2	4	1001	118
40000			1001	
J3KMZ8	Zinc finger protein ubi-d4 OS=Homo sapiens OX=9606 GN=DPF2 PE=1 SV=1	8	405	45.8
P29558	RNA-binding motif, single-stranded-interacting protein 1 OS=Homo sapiens OX=9606 GN=RBMS1 PE	7	406	44.5
0(2472		26	70	
P631/3	BUS ribosomai protein L38 US=Homo sapiens UX=9606 GN=RPL38 PE=1 SV=2	30	70	8.2
Q9H7Z7	Prostaglandin E synthase 2 OS=Homo sapiens OX=9606 GN=PTGES2 PE=1 SV=1	10	377	41.9
0911805	Eukaryotic translation initiation factor 3 subunit K OS=Homo saniens OX=9606 GN=EIE3K PE=1 SV=1	11	218	25
4,5054,5				
P11387	DNA topoisomerase 1 OS=Homo sapiens OX=9606 GN=TOP1 PE=1 SV=2	4	765	90.7
Q6PJT7	Zinc finger CCCH domain-containing protein 14 OS=Homo sapiens OX=9606 GN=ZC3H14 PE=1 SV=1	3	736	82.8
		-		
P20290	Iranscription factor BTF3 OS=Homo sapiens OX=9606 GN=BTF3 PE=1 SV=1	23	206	22.2
015291	Retinoblastoma-binding protein 5 OS=Homo sapiens OX=9606 GN=RBBP5 PE=1 SV=2	7	538	59.1
MOOVDA	Contraction contraction with an iteration in from CDA a OS Harry and a CON OSC CAL CODE D	10	224	26.0
IVIUQXB4	Coatomer protein complex; subunit epsilon, isoform CRA_g OS=Homo sapiens OX=9606 GN=COPE P	12	331	. 36.5
P18077	60S ribosomal protein L35a OS=Homo sapiens OX=9606 GN=RPL35A PE=1 SV=2	28	110	12.5
OONIDE 2	H/ACA ribonucleoprotoin complex subunit 2 OS-Homo serions OX-9606 GN-NOP10 PE-1 SV-1	20	64	77
Q SINFLS			04	
A0A0A0MSW4	Phosphatidylinositol transfer protein beta isoform OS=Homo sapiens OX=9606 GN=PITPNB PE=1 SV=	16	271	. 31.6
097209	General transcription factor 3C polypentide 3 OS-Homo sapiens OX-9606 GN-GTE3C3 PE-1 SV-1	3	886	101 2
001000			475	101.2
P26368	Splicing factor U2AF 65 kDa subunit OS=Homo sapiens OX=9606 GN=U2AF2 PE=1 SV=4	11	475	53.5
000325	Phosphate carrier protein, mitochondrial OS=Homo sapiens OX=9606 GN=SI C25A3 PF=1 SV=2	9	362	40.1
075300		13	310	25.5
075208	Ubiquinone biosynthesis protein COQ9, mitochondrial OS=Homo sapiens OX=9606 GN=COQ9 PE=1	12	318	3 35.5
Q13200	26S proteasome non-ATPase regulatory subunit 2 OS=Homo sapiens OX=9606 GN=PSMD2 PE=1 SV=	3	908	100.1
006727	PNA binding protoin 15 OS-Home carriers OV-0606 CN-DBM45 PS_4 CV_2			107 -
12121	INVA-DINUM PLOTEIN TO OCEHOMO SADIEUR OYEARON GNEKRW12 KFE1 2AES	4	9/7	10/.1
Q9P035	Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 OS=Homo sapiens OX=9606 GN=HACD3 PE=	10	362	43.1
096621	113 small nucleolar ribonucleoprotein protoin IMP4 OS-Homo conions OX-0006 CM-IMP4 DS 4 SV 4	10	201	22.7
1200621	os smail nucleolar ribonucleoprotein protein nivr4 OS=Homo sapiens OX=9606 Giv=IMP4 PE=1 SV=3	10	291	33./
060716	Catenin delta-1 OS=Homo sapiens OX=9606 GN=CTNND1 PE=1 SV=1	4	968	108.1
O8WYF1	Paraspeckle component 1 OS=Homo saniens OY=9606 GN=DSDC1 DE=1 SV=1	7	E 2 2	E0 7
COMVIL	1 ar aspecific component 1 03-110110 sapiens 0x-3000 01V=PSPC1 PE=1 5V=1	/	523	36./
Q92598	Heat shock protein 105 kDa OS=Homo sapiens OX=9606 GN=HSPH1 PE=1 SV=1	3	858	96.8
F9PH57	Transcription factor 4 OS=Homo sapiens OX=9606 GN=TCF4 PF=1 SV=2	2	772	82 /
LSFIIJ/		3	113	0 05.4
Q53GQ0	Very-long-chain 3-oxoacyl-CoA reductase OS=Homo sapiens OX=9606 GN=HSD17B12 PE=1 SV=2	7	312	34.3
013185	Chromobox protein homolog 3 OS=Homo sapiens OX=9606 GN=CBX3 PE=1 SV=4	14	183	20.8
005640			200	40.0
P35613	Basigin OS=Homo sapiens OX=9606 GN=BSG PE=1 SV=2	8	385	42.2
P39019	40S ribosomal protein S19 OS=Homo sapiens OX=9606 GN=RPS19 PF=1 SV=2	19	145	16.1
00111/01			1070	100.0
Q90K61	Protein TASOR OS=Homo sapiens OX=9606 GN=TASOR PE=1 SV=3	1	1670	188.9
P56199	Integrin alpha-1 OS=Homo sapiens OX=9606 GN=ITGA1 PE=1 SV=2	2	1179	130.8
OODVCC		6	422	40.0
CARX22	AP-1 complex subunit mu-1 OS=Homo sapiens OX=9606 GN=AP1M1 PE=1 SV=3	6	423	48.0
A0A0G2JLB3	Glucosylceramidase OS=Homo sapiens OX=9606 GN=GBA PE=1 SV=1	5	536	59.6
P/19720	Proteasome subunit beta type-3 OS-Homo sanians OX-9606 GN-PSMB3 PE-1 SV-2	16	205	22 0
F49720		10	205	22.5
Q8NDT2	Putative RNA-binding protein 15B OS=Homo sapiens OX=9606 GN=RBM15B PE=1 SV=3	3	890	97.1
P36776	I on protease homolog, mitochondrial QS=Homo saniens QX=9606 GN=I QNP1 PE=1 SV=2	3	959	106.4
				100.1
014980	Exportin-1 OS=Homo sapiens OX=9606 GN=XPO1 PE=1 SV=1	4	1071	123.3
O96008	Mitochondrial import receptor subunit TOM40 homolog OS=Homo sapiens OX=9606 GN=TOMM40	9	361	37.9
00111/70	SURD and C notch domain containing protain 1 OS-Home conjunc OX-0606 CN-SUCD1 DE-1 SV-2	F	CAE	72 4
QOIVVZO	Sow and G-patch domain-containing protein 1 OS-Homo sapiens OX-9606 GN-SOGP1 PE-1 3V-2	5	045	72.4
P00491	Purine nucleoside phosphorylase OS=Homo sapiens OX=9606 GN=PNP PE=1 SV=2	9	289	32.1
013/27	Pentidyl-prolyl cis-trans isomerase G OS-Homo saniens OX-9606 GN-PPIG PE-1 SV-2	4	75/	88.6
Q13427		-	754	00.0
Q9NZZ3	Charged multivesicular body protein 5 OS=Homo sapiens OX=9606 GN=CHMP5 PE=1 SV=1	19	219	24.6
P42766	60S ribosomal protein L35 OS=Homo sapiens QX=9606 GN=RPL35 PE=1 SV=2	19	123	14.5
			764	
P1/480	Nucleolar transcription factor 1 OS=Homo sapiens OX=9606 GN=UBIF PE=1 SV=1	4	/64	89.4
Q9P2J5	LeucinetRNA ligase, cytoplasmic OS=Homo sapiens OX=9606 GN=LARS1 PE=1 SV=2	2	1176	134.4
002070			200	22.7
QU2878	BUS ribosomai protein L6 US=Homo sapiens UX=9606 GN=RPL6 PE=1 SV=3	11	288	5 32.7
Q9BRJ7	Tudor-interacting repair regulator protein OS=Homo sapiens OX=9606 GN=NUDT16L1 PE=1 SV=1	17	211	23.3
012177	Soring /throoping protoin kingso BAK 2 OS-Homo sonings OX-9606 GN-BAK 2 PE-1 SV-2	6	E24	
Q131/7	Set me, the comme-protein kinase rak 2 05-1000 saplens 0x-5000 Giv-rak2 rL-1 3V-3	0	J24	- JC
P04843	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Homo sapiens OX=96	6	607	68.5
G3V577	Proteasome subunit alpha type OS=Homo saniens OX=9606 GN=PSMA6 PF=1 SV=1	8	252	28.1
057527		0	252	20.1
P62306	Small nuclear ribonucleoprotein F OS=Homo sapiens OX=9606 GN=SNRPF PE=1 SV=1	40	86	9.7
A6NKG5	Retrotransposon-like protein 1 OS=Homo sapiens OX=9606 GN=RTL1 PE=3 SV=3	1	1358	155
P05455	Lunus La protein OS-Homo saniens OX-9606 GN-SSP PE-1 SV-7		100	16 16
CC+CO 1	Lupus Lu protein 03-110110 sapiens 0A-9000 019-330 PE-1 3V-2	6	408	40.8
P05386	60S acidic ribosomal protein P1 OS=Homo sapiens OX=9606 GN=RPLP1 PE=1 SV=1	52	114	11.5
P41091	Fukaryotic translation initiation factor 2 subunit 3 OS=Homo saniens OX=9606 GN=FIF2S3 PF-1 SV-9	9	472	51 1
0514/26		°	472	
Q5VW26	NUCLEAR TACTOR 1 US=HOMO SAPIENS UX=9606 GN=NFIB PE=1 SV=1	4	570	63.4
P27708	CAD protein OS=Homo sapiens OX=9606 GN=CAD PE=1 SV=3	1	2225	242.8
013522	Sering /threening-protein kingse PRPA homelag OS-Home capiens OX-0606 CM-DRDEAD DE 14 51/ 3	-	1007	116.0
(13323	Service an commerprotein kinase FKF4 noniolog 05=nonio sapiens 0A=9000 Giv=PKPF4B PE=1 SV=3	2	1007	110.5
Q9BRX8	Peroxiredoxin-like 2A OS=Homo sapiens OX=9606 GN=PRXL2A PE=1 SV=3	12	229	25.7
Q15074	Exosome complex component RRP42 OS=Homo saniens OX=9606 GN=FXOSC7 PF=1 SV=3	٩	291	31 9
D12222	Projectin inducible protein OS-Home continue OV-0606 CNI-DID DE 14 CV 1	4.0	440	40.0
r 122/3	Protactin-inducible brotein O2-noino sabiens OX-2000 GINENIA KEET 2AET	18	146	10.6
P16401	Histone H1.5 OS=Homo sapiens OX=9606 GN=H1-5 PE=1 SV=3	13	226	22.6
P54136	ArgininetRNA ligase, cytoplasmic OS=Homo saniens OX=9606 GN=RARS1 PF=1 SV=2	л	660	75 3
002212			000	/ / /
r62312	UD STIKINA-associated SM-like protein LSm6 US=Homo sapiens OX=9606 GN=LSM6 PE=1 SV=1	38	80	y 9.1
P63010	AP-2 complex subunit beta OS=Homo sapiens OX=9606 GN=AP2B1 PF=1 SV=1	2	937	104 5
D62105	265 protocome regulatory subunit 8 OC-Home content OV-DCCC CN, DCMCC DC, 4 CV 4		400	45 10
r02195	205 proteasome regulatory subunit & US=Homo sapiens UX=9606 GN=PSMC5 PE=1 SV=1	8	406	45.6
O00232	26S proteasome non-ATPase regulatory subunit 12 OS=Homo sapiens OX=9606 GN=PSMD12 PE=1 S	7	456	52.9
097678	Coatomer subunit gamma-1 OS=Homo caniens OY=9606 GN=CODC1 DE=1 SV=1	2	074	077
Q310/0	Contorner Saburnit gamma-1 OS-monto Sapiens OA-3000 Giv=CUPG1 PE=1 SV=1	3	8/4	97.7
Q9H2U1	ATP-dependent DNA/RNA helicase DHX36 OS=Homo sapiens OX=9606 GN=DHX36 PE=1 SV=2	4	1008	114.7
Q9BWJ5	Splicing factor 3B subunit 5 OS=Homo sapiens OX=9606 GN=SF3B5 PF=1 SV=1	33	86	10 1
022002	DNA replication licensing factor MCM2 OS-Home capilons OV-0606 CNI-MCM2 DE-1 CV 4		710	01 7
55555	Diverse represention neeroing ractor intervit Openonito saprens Oxe9006 GNEWLWIT PEEL SVE4	3	/19	81.3
015371	Eukaryotic translation initiation factor 3 subunit D OS=Homo sapiens OX=9606 GN=EIF3D PE=1 SV=1	4	548	63.9
P08579	U2 small nuclear ribonucleoprotein B" OS=Homo saniens OX=9606 GN=SNRPR2 PF=1 SV-1	7	225	25 5
. 005/3	S2 Shidh hadred hoond coprotein 2 OS-Honio Sapiens OX-9000 GN=SNRPD2 PE=1 SV=1	/	225	25.5
J3KR12	Uncharacterized protein US=Homo sapiens OX=9606 PE=4 SV=1	9	359	36.7
Q9ULX3	RNA-binding protein NOB1 OS=Homo sapiens OX=9606 GN=NOB1 PF=1 SV=1	6	412	46 F
411020		-	F20	
AILUZU	NIVA-DITIUTING PROTEIN IVIEX3A US=HOMO SAPIENS UX=9606 GN=MEX3A PE=1 SV=1	6	520	54.1
P62258	14-3-3 protein epsilon OS=Homo sapiens OX=9606 GN=YWHAE PE=1 SV=1	9	255	29.7
014444	Caprin 1 OS-Home capions OV-9606 CN-CAPPINI DE-1 SV-3	-	200	70.2
Q14444	Laprin-1 05-nomo sapiens 0X=9006 GN=CAPKIN1 PE=1 SV=2	3	/09	/8.3
P16949	Stathmin OS=Homo sapiens OX=9606 GN=STMN1 PE=1 SV=3	16	149	17.3
055806	Casein kinase II subunit beta OS-Homo conjons OV-0606 GN-CSNIKAR RE-1 SV-2	10		200
QJJNQ0	Caseni kinase n subunit beta OS-Honio sapiens OA=9000 GN=CSNAZD PE=1 SV=2	12	234	20.5
P62263	40S ribosomal protein S14 OS=Homo sapiens OX=9606 GN=RPS14 PE=1 SV=3	9	151	16.3
Q9Y3B2	Exosome complex component CSL4 QS=Homo saniens QX=9606 GN=EXQSC1 PE=1 SV=1	12	195	
0001522		. 13	1.75	21 /
Q92522				21.4
	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1	13	213	21.4
A0A3B31192	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1 DNA helicase OS=Homo sapiens OX=9606 GN=MCM4 PE=1 SV=1	13	213 904	21.4 22.5 100.7
AUA3B3I192	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1 DNA helicase OS=Homo sapiens OX=9606 GN=MCM4 PE=1 SV=1 Data transposable elements with ZNE domain OS=Homo sequence OX=0606 GN=0067 07=1 CV=2	13 3	213 904	21.4 22.5 100.7
Q7Z3K3	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1 DNA helicase OS=Homo sapiens OX=9606 GN=MCM4 PE=1 SV=1 Pogo transposable element with ZNF domain OS=Homo sapiens OX=9606 GN=POGZ PE=1 SV=2	13 3 2	213 904 1410	21.4 22.5 100.7 155.2
Q7Z3K3 P07197	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1 DNA helicase OS=Homo sapiens OX=9606 GN=MCM4 PE=1 SV=1 Pogo transposable element with ZNF domain OS=Homo sapiens OX=9606 GN=POGZ PE=1 SV=2 Neurofilament medium polypeptide OS=Homo sapiens OX=9606 GN=NEFM PE=1 SV=3	13 3 2 3	213 904 1410 916	21.4 22.5 100.7 155.2 102.4
Q7Z3K3 P07197 Q04837	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1 DNA helicase OS=Homo sapiens OX=9606 GN=MCM4 PE=1 SV=1 Pogo transposable element with ZNF domain OS=Homo sapiens OX=9606 GN=POGZ PE=1 SV=2 Neurofilament medium polypeptide OS=Homo sapiens OX=9606 GN=NEFM PE=1 SV=3 Single-stranded DNA-binding protein, mitrochondrial OS=Homo sapiens OX=9606 GN=SSRP1 PE=1 SV	13 3 2 3 16	213 904 1410 916 148	21.4 22.5 100.7 155.2 102.4 17 2
Q7Z3K3 P07197 Q04837	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1 DNA helicase OS=Homo sapiens OX=9606 GN=MCM4 PE=1 SV=1 Pogo transposable element with ZNF domain OS=Homo sapiens OX=9606 GN=POGZ PE=1 SV=2 Neurofilament medium polypeptide OS=Homo sapiens OX=9606 GN=NEFM PE=1 SV=3 Single=stranded DNA-binding protein, mitochondrial OS=Homo sapiens OX=9606 GN=SSBP1 PE=1 SV Coll divide a partal partale of the partale OX PDF OX DECOMPT Constraints of the partalese of the part	13 3 2 3 16	213 904 1410 916 148	21.4 22.5 100.7 155.2 102.4 17.2
AUA3B31192 Q7Z3K3 P07197 Q04837 P60953	Histone H1.10 OS=Homo sapiens OX=9606 GN=H1-10 PE=1 SV=1 DNA helicase OS=Homo sapiens OX=9606 GN=MCM4 PE=1 SV=1 Pogo transposable element with ZNF domain OS=Homo sapiens OX=9606 GN=POGZ PE=1 SV=2 Neurofilament medium polypeptide OS=Homo sapiens OX=9606 GN=EFM PE=1 SV=3 Single-stranded DNA-binding protein, mitochondrial OS=Homo sapiens OX=9606 GN=25BP1 PE=1 SV Cell division control protein 42 homolog OS=Homo sapiens OX=9606 GN=CDC42 PE=1 SV=2	13 3 2 3 16 12	213 904 1410 916 148 191	21.4 22.5 100.7 5.2 102.4 102.4 17.2 21.2

J3KPS3	Fructose-bisphosphate aldolase OS=Homo sapiens OX=9606 GN=ALDOA PE=1 SV=1	8	368	39.8	75	2
Q9ULR0	Pre-mRNA-splicing factor ISY1 homolog OS=Homo sapiens OX=9606 GN=ISY1 PE=1 SV=3	11	285	33	72	2
H7C561	Splicing factor 1 (Fragment) OS=Homo sapiens OX=9606 GN=SF1 PE=1 SV=8	9	291	30.1	72	2
043148	mRNA cap guanine-N7 methyltransferase OS=Homo sapiens OX=9606 GN=RNMT PE=1 SV=1	6	476	54.8	71	2
Q9UHA3	Probable ribosome biogenesis protein RLP24 OS=Homo sapiens OX=9606 GN=RSL24D1 PE=1 SV=1	12	163	19.6	71	2
P34932	Heat shock 70 kDa protein 4 OS=Homo sapiens OX=9606 GN=HSPA4 PE=1 SV=4	3	840	94.3	71	2
P06756	Integrin alpha-V OS=Homo sapiens OX=9606 GN=ITGAV PE=1 SV=2	5	1048	116	70	2
Q8WVV9	Heterogeneous nuclear ribonucleoprotein L-like OS=Homo sapiens OX=9606 GN=HNRNPLL PE=1 SV=	4	542	60	69	2
095831	Apoptosis-inducing factor 1, mitochondrial OS=Homo sapiens OX=9606 GN=AIFM1 PE=1 SV=1	4	613	66.9	69	2
O95696	Bromodomain-containing protein 1 OS=Homo sapiens OX=9606 GN=BRD1 PE=1 SV=1	2	1058	119.4	67	2
Q9Y5A9	YTH domain-containing family protein 2 OS=Homo sapiens OX=9606 GN=YTHDF2 PE=1 SV=2	4	579	62.3	67	2
P51513	RNA-binding protein Nova-1 OS=Homo sapiens OX=9606 GN=NOVA1 PE=1 SV=2	5	507	51.7	67	2
P23919	Thymidylate kinase OS=Homo sapiens OX=9606 GN=DTYMK PE=1 SV=4	10	212	23.8	67	2
Q15046	LysinetRNA ligase OS=Homo sapiens OX=9606 GN=KARS1 PE=1 SV=3	4	597	68	67	2
Q99575	Ribonucleases P/MRP protein subunit POP1 OS=Homo sapiens OX=9606 GN=POP1 PE=1 SV=2	3	1024	114.6	66	2
Q9BQ67	Glutamate-rich WD repeat-containing protein 1 OS=Homo sapiens OX=9606 GN=GRWD1 PE=1 SV=1	7	446	49.4	66	2
Q9Y3A2	Probable U3 small nucleolar RNA-associated protein 11 OS=Homo sapiens OX=9606 GN=UTP11 PE=1	11	253	30.4	64	2
P18669	Phosphoglycerate mutase 1 OS=Homo sapiens OX=9606 GN=PGAM1 PE=1 SV=2	10	254	28.8	64	2
Q53GS9	U4/U6.U5 tri-snRNP-associated protein 2 OS=Homo sapiens OX=9606 GN=USP39 PE=1 SV=2	4	565	65.3	63	2
Q99497	Parkinson disease protein 7 OS=Homo sapiens OX=9606 GN=PARK7 PE=1 SV=2	7	189	19.9	63	2
F8VRH0	Poly(rC)-binding protein 2 (Fragment) OS=Homo sapiens OX=9606 GN=PCBP2 PE=1 SV=2	17	310	32	63	2
Q92917	G-patch domain and KOW motifs-containing protein OS=Homo sapiens OX=9606 GN=GPKOW PE=1 1	4	476	52.2	63	2
Q99453	Paired mesoderm homeobox protein 2B OS=Homo sapiens OX=9606 GN=PHOX2B PE=1 SV=2	7	314	31.6	63	2
J3KQE5	GTP-binding nuclear protein Ran (Fragment) OS=Homo sapiens OX=9606 GN=RAN PE=1 SV=1	10	234	26.8	60	2
A0A590UJL8	H3.2 histone (putative) (Fragment) OS=Homo sapiens OX=9606 GN=H3-2 PE=1 SV=1	9	79	9.1	57	3
P50570	Dynamin-2 OS=Homo sapiens OX=9606 GN=DNM2 PE=1 SV=2	3	870	98	56	2
P57723	Poly(rC)-binding protein 4 OS=Homo sapiens OX=9606 GN=PCBP4 PE=2 SV=1	5	403	41.5	56	2
Q8NE71	ATP-binding cassette sub-family F member 1 OS=Homo sapiens OX=9606 GN=ABCF1 PE=1 SV=2	2	845	95.9	55	2
O43823	A-kinase anchor protein 8 OS=Homo sapiens OX=9606 GN=AKAP8 PE=1 SV=1	2	692	76.1	55	2
Q8WVM7	Cohesin subunit SA-1 OS=Homo sapiens OX=9606 GN=STAG1 PE=1 SV=3	1	1258	144.3	55	2
P08559	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial OS=Homo sapi	5	390	43.3	54	2
F8W727	60S ribosomal protein L32 OS=Homo sapiens OX=9606 GN=RPL32 PE=1 SV=1	11	153	18	52	2