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Abstract 

 

Music Information Retrieval (MIR) is essential for comprehending and analysing 

music, and it has various applications in music education, music creation, music 

recommendation, and other related areas. Conventional music processing techniques 

heavily depend on human derived characteristics and regulations, which hinders the 

comprehensive exploration of the abundant information embedded in music. This 

thesis aims to utilise artificial intelligence approaches, specifically modelling methods 

rooted in music knowledge and cognition, to address three objectives: automatic music 

transcription, predominant instrument detection, and music shape evaluation. 

Automatic music transcription (AMT) is the process of effectively identifying notes 

from audio signals. Predominant musical instrument recognition (PMIR) involves 

determining the dominant instrument in a musical section. Music shape evaluation 

(MSE) shows performance qualities and styles. This thesis introduces a cognition-

guided framework for AMT, achieving F-measures of 76.3% on the MAPS dataset (an 

8% improvement over the baseline), 80.17% on the BACH10 dataset (second-best 

performance), and 67.63% on the TRIOS dataset (leading performance). For PMIR, 

an innovative HHT-DCNN framework is proposed, achieving an 84% F-measure on 

the IRMAS dataset, which represents a 6% improvement over state-of-the-art methods. 

Finally, a new dataset is created for the MSE task, and a novel S-ResNN architecture 

is introduced, achieving an average accuracy of 93.78% across different training ratios. 

The experimental findings indicate that the suggested approaches may greatly improve 

current technical standards and achieve outstanding performance. Moreover, the 

findings of this thesis have the potential to be applied in several aspects of music 

education, such as the creation of curriculum, the development of interactive learning 

tools, and the design of personalised music training programmes. This thesis focuses 

on computational music comprehension and offers substantial contributions to 

automatic music transcription, instrument recognition, and performance analysis. It 
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highlights the importance and potential applications of research in computational 

musicology.
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Chapter 1 

 

1 Introduction 

The major focus of this thesis is on using music cognition and pattern recognition 

to evaluate performance in music instruction. This chapter provides a description of 

the purpose and motivation of the study, which may be found in Section 1.1. Section 

1.2 outlines the structure of the thesis, while Section 1.3 provides a comprehensive 

explanation of the primary contributions made by this research. The publications 

pertaining to the thesis are referenced in Section 1.4. 

The music education industry has experienced substantial expansion in recent years, 

with an annual growth rate ranging from 6% to 8%. The online music education 

business is seeing significant expansion, with an annual growth rate of over 10%, 

highlighting its immense commercial potential. Astute Analytica predicts that the 

worldwide online I examined how  

music education industry will develop at a compound annual growth rate (CAGR) 

of more than 18% between 2021 and 2027 [16]. This substantial expansion highlights 

the growing trend towards digital learning platforms in the field of music education.  

Traditional music education faces several cognitive and practical challenges. 

Unlike other academic subjects, music education heavily relies on developing 

sophisticated cognitive processes, including auditory perception, pattern recognition, 

and musical memory. Students typically practice independently between lessons, 

where they must engage these cognitive skills without expert guidance. This cognitive 

development process requires extensive time for both execution and comprehension, 

resulting in high human resource costs. Moreover, the development of refined auditory 

cognition necessary for perceiving subtle musical nuances demands extensive training, 

further increasing educational expenses. 

A significant challenge lies in the lack of cognitive support during students' practice 

sessions. Without guidance, students may develop incorrect cognitive patterns or fail 
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to properly engage the multiple cognitive processes involved in musical learning. As 

per a research by the Associated Board of the Royal Schools of Music (ABRSM) [17], 

almost 50% of children discontinue their participation in music programmes, while 

over 80% of adults regret discontinuing their musical education in childhood, 

suggesting a need for better cognitive support during crucial learning periods. 

Advanced Music Information Retrieval (MIR) technology provides solutions to 

these difficulties. The integration of capabilities such as audio visualisation, automated 

music transcription, musical performance assessment, and instrument classification 

has the potential to bring about a transformative impact on music education. 

Technologies such as Automatic Music Transcription (AMT) show potential for 

further advancement, particularly in the area of identifying intricate compositions. The 

exponential expansion in online music education, along with swift progressions in 

artificial intelligence, necessitates elevated benchmarks for Music Information 

Retrieval (MIR) technology in the field of music education. 

1.1 Motivation and Aim 

Music evaluation plays a pivotal role in music education's feedback system. While 

automated assessment systems promise to enhance engagement and provide 

immediate feedback, developing accurate and comprehensive evaluation tools remains 

challenging. Recent developments in Music Information Retrieval (MIR) technology 

offer promising solutions to these challenges. However, current technologies still face 

significant obstacles, particularly in automation levels and evaluation accuracy, due to 

lack of reasonable music cognition guidance. Additionally, the absence of 

comprehensive databases poses a substantial barrier to advancement in this field. 

Therefore, when evaluating musical performance, existing commercial software often 

prioritizes pitch accuracy above all else. In practice, musicians interpret pieces 

differently, resulting in varied musical shapes. This diversity becomes even more 

complex in ensemble performances, where both pitch and shape interactions between 

instruments significantly impact the overall musical expression. To achieve a more 
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comprehensive and accurate assessment of musical performance, different instruments 

and evaluate musical shape must be identified in a meaningful way.  

This thesis focuses on addressing these challenges through cognition-guided pattern 

recognition models in computational musicology. My research specifically targets 

three crucial applications: 

1. Automatic Music Transcription (AMT): Focuses on pitch detection and 

melody extraction, addressing the fundamental elements of pitch and timing in 

musical performance. 

2. Predominant Musical Instrument Recognition (PMIR): Enables accurate music 

classification and instrument identification, contributing to the understanding 

of tonal aspects in performance. 

3. Musical Shape Evaluation (MSE): Extends beyond traditional analysis to 

encompass music structure analysis and emotion recognition, enabling 

comprehensive assessment of musical shape and overall performance quality. 

By improving these three areas, I work toward establishing fair evaluation standards 

and consistent support mechanisms in music education. The following chapters will 

detail our innovative approaches in each of these areas, demonstrating how cognition-

guided pattern recognition models can enhance music education through improved 

automation and accuracy in performance evaluation. 

1.2 Thesis Structure 

Chapter 2 offers a thorough examination of the essential components of music and 

their contribution to the advancement of music recognition. 

Chapter 3 provides an overview of the related work for music signal pre-processing, 

machine learning and the related work for MIR. 

Chapter 4 introduces a new pitch estimation method. This involves converting the 

audio to a time-frequency representation (e.g., Constant-Q transform), extracting 

features using shift-invariant probabilistic latent component analysis (SI-PLCA) 

and proposed harmonic structure detection module. The proposed framework 

demonstrates superior performance in multi-pitch estimation. This is evident in 
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experiments using three widely used datasets (MAPS, BACH10, and TRIOS), 

where the framework achieves the highest F-measure (F1) scores. 

Chapter 5 presents a musical instrument recognition method composed by Hilbert-

Huang transform and deep convolutional neural network (DCNN). Through doing 

comprehensive ablation experiments, the best parameter selection for DCNN has 

been determined. In the benchmarking experiments, the proposed model compares 

against several state-of-the-art methods on 6705 musical pieces including 11 

different instruments. And the experimental results show that the proposed 

method can produce reliable performance according to objective and subjective 

assessment. 

Chapter 6 proposes a Siamese residual neural network (S-ResNN) to automatically 

classify the music expressiveness in piano pieces into different musical shape 

categories. In addition, a new musical shape evaluation dataset was created, which 

contains 4116 recordings with 28 different musical shapes generated from 147 

piano notes. The proposed S-ResNN method is benchmarked with several state-

of-the-art techniques on my proposed database. From the analysis, the proposed 

method yields the best performance in terms of precision, recall and F-measure. 

Chapter 7 briefly summarize the contributions of this thesis and discuss some further 

improvement of the proposed methods in the future. 

1.3 Contributions 

In this thesis, three new methods for three different AI-driven music education 

applications are proposed and evaluated. Generally, these methods aim to extract more 

effective patterns for better performance evaluation in music education. A detailed 

summary of these contributions is highlighted in the following: 

1. The methodology proposed for harmonic structure detection aims to extract 

multiple fundamental frequencies, and effective note tracking strategy aims to 

connects individual pitches across time frames to form coherent note tracks, 

better representing the music transcription[164]. 
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2. A new method for recognizing the dominant musical instrument in the music 

pieces is proposed. It combines two powerful techniques: the Hilbert-Huang 

Transform (HHT) and a Deep Convolutional Neural Network (DCNN). The 

classification accuracy of the proposed method outperforms other 

benchmarking methods [152]. 

3. A promising new approach for automatically evaluating the musical shape of 

piano performances along with a new dataset called MSED-4K are proposed. 

This has the potential to be a valuable tool for both piano teachers and students 

[168]. 

The technologies proposed in this thesis collectively form a comprehensive framework 

for advanced music analysis, each enhancing and refining the capabilities of the others 

to provide a robust and detailed understanding of musical content, leading to enhanced 

music teaching, study and education. AMT can convert audio recordings into musical 

notation automatically, helping students analyze their own performances, compare 

their playing with reference recordings and study different interpretations of the same 

piece. It can also assist teachers in documenting student performances, providing 

detailed feedback on pitch and rhythm accuracy, creating teaching materials from 

recordings. PMIR enhances music learning through automatically identifying 

instruments in ensemble recordings and analyzing instrumental timbres and techniques, 

making it a valuable tool for orchestration study. This technology supports students in 

understanding instrumental roles within ensembles, facilitates focused listening 

exercises, and supports instrument-specific pedagogy. MSE advances musical 

interpretation by providing objective feedback on expressive elements, analyzing 

dynamics and temporal variations and comparing different interpretative approaches. 

It supports pedagogical development through assessment of musical expression, 

guidance on phrasing and articulation, and analysis of performance style. While 

significant progress has been made, further research and improvements are needed to 

enhance accuracy, handle complex polyphonic music, and achieve real-time high-

precision analysis. 
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1.4 Publications 

This thesis covers work from October 2016 and November 2022 at the University 

of Strathclyde in Glasgow, UK. Work on music shape analysis (detailed in Chapter 5) 

was performed in Robert Gordon University as a visitor researcher in 2022. The 

majority of my work has been published in international peer-reviewed conferences 

and journals: 

Journal Papers 

1) Li, X., Yan, Y., Soraghan, J., Wang, Z., & Ren, J, "A music cognition–guided framework for 

multi-pitch estimation," Cognitive computation, vol. 15, no. 1, pp. 23-35, 2023. 

Conference Papers 

1) Li, X., Weiss, S., et al. “S-ResNN: siamese residual neural network for musical shape 

evaluation in piano performance assessment.” in 31st European Signal Processing Conference, 

EUSIPCO 2023 (pp. 216-220). Aalto, Finland, September, 2023. 

2) Li, X., Wang, K., et al. “Fusion of Hilbert-Huang transform and deep convolutional neural 

network for predominant musical instruments recognition.” in Proceedings of the 9th 

International Conference on Computational Intelligence in Music, Sound, Art and Design 

(Part of EvoStar), pp. 80-89, Seville, Spain, April, 2020. 

3) Li, X., Yan, Y., et al. “Knowledge based fundamental and harmonic frequency detection in 

polyphonic music analysis.” In International Conference in Communications, Signal 

Processing, and Systems (pp. 591-599), Harbin, China, July 2017. 

In addition to the work described in the above papers, I have engaged in several 

other research projects at the intersection of deep learning and signal processing. My 

contributions to these endeavors have been substantial, leveraging my expertise in the 

wider field. These works are not reported in this thesis, but reflected in the following 

published papers: 
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1) Geng, J., Ma, L.E., Li, X., Zhang, X. and Yan, Y., “Printed Texture Guided Color Feature 

Fusion for Impressionism Style Rendering of Oil Paintings,” Mathematics, 10(19), p.3700, 

2022. 

2) Geng, J., Zhang, X., Yan, Y., Sun, M., Zhang, H., Assaad, M., Ren, J. and Li, X., “MCCFNet: 

multi-channel color fusion network for cognitive classification of traditional chinese paintings,” 

Cognitive Computation, 15(6), pp.2050-2061, 2023. 

3) Gong, M., Soraghan, J., Di Caterina, G., Li, X. and Grose, D., “A boundary optimization 

scheme for liver tumors from CT images.” In 31st European Signal Processing Conference 

(EUSIPCO) (pp. 1135-1139). Helsinki, Finland, September, 2023. 
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Chapter 2 

 

2 Music Cognition  

This thesis aims to enhance music recognition by specifically targeting the essential 

components of music, including pitch, timbre, shape, and music notation tools. Music 

signals, known as audio signals produced by vibrations, possess a distinctive quality 

in that they are subject to both human-imposed regulations and inherent laws of nature. 

This research seeks to contribute to the underexplored topic of automated notation in 

the realm of Music Information Retrieval (MIR) by investigating advanced approaches 

related to key musical characteristics. The thesis will explore the technical components 

of music knowledge and their role in supporting the study aims in sections 2.1 to 2.4. 

These sections will offer a thorough examination of the essential components of music 

and their contribution to the advancement of music recognition. Section 2.1 will 

specifically examine the notion of basic frequency and the theories that support it. 

Section 2.2 will examine how various voice patterns affect timbre and explore 

techniques for identifying these structures from music signals. Section 2.3 will explore 

the concepts of rhythm and beat detection, which are crucial for comprehending the 

time-related elements of music. Section 2.4 will address dynamics, which pertain to 

the volume or strength of music. 

 

2.1 Pitch Perception 

The Standard pitch, a new regulation introduced in 1939 [18], marks a significant 

milestone in the long-term development of music. This regulation has greatly benefited 

music research by establishing a standardized correspondence between pitch 𝑝 and 
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fundamental frequency 𝑓0  as 𝑓0 = 440 × 2(𝑝−69)/12 . Therefore, its inverse can be 

expressed as 𝑝 = 69 + 12 × 𝑙𝑜𝑔2(
𝑓0

440
). 

The pitch-fundamental frequency table, which can be found in Appendix. A, 

prescribes A4 as 440 Hz, serving as a reference point for calculating the frequencies 

of other pitches. For music composed before the introduction of the Standard pitch 

regulation, researchers can still apply the above formulas by adjusting the frequency 

parameter for A4 based on the specific musical reference. 

When a sound or pitch is produced, it generates a fundamental frequency 

accompanied by a series of harmonics or overtones. These harmonics are integer 

multiples of the fundamental frequency. For example, if the fundamental frequency is 

100 Hz, the higher harmonics will be 200 Hz, 300 Hz, 400 Hz, 500 Hz, and so on. 

Similarly, if the fundamental frequency is 220 Hz, the harmonics would be 440 Hz, 

660 Hz, 880 Hz, and so on. In terms of intervals on the musical scale, the harmonics 

correspond to specific notes relative to the base tone. The first harmonic is an octave 

above the base tone, followed by a perfect fifth above the octave, then a note two 

octaves up from the base tone, a major third above that, and so on. For instance, if the 

starting pitch is middle C (C4; 261 Hz), the overtones would be C5 (523 Hz), G5 (764 

Hz), C6 (1046 Hz), E6 (1318 Hz), G6 (1568 Hz), B♭6 (1865 Hz), and so on. It is worth 

noting that there is a slight difference between 'equal temperament' and 'just intonation' 

when tuning an instrument. The Standard pitch equations are based on the 12-tone 

equal temperament system, which divides the octave into 12 equal parts, allowing for 

consistent tuning across different keys. 

Harmonics are an integral part of the sound produced by a human voice or a musical 

instrument, contributing to the richness and complexity of the sound. However, human 

beings usually don't perceive harmonics as separate tones because their amplitude 

decreases as they increase in frequency. The presence of harmonics is what gives a 

voice or an instrument its unique character and timbre. Without harmonics, a voice 

would sound thin and uninteresting. 
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To understand how harmonics are produced, an example of a vibrating string is 

shown in Fig. 2-1. When a string vibrates, it creates a wave that moves from right to 

left. The total vibration is a sum of the right and left moving waves, which is known 

as a standing wave. Every standing wave has nodes (locations of minimum amplitude) 

and anti-nodes (locations of maximum amplitude). The same pitch will produce 

different energy levels for harmonics depending on the voice source. 

While the detection technology for a single pitch is well-established, it is important 

to consider that the sound produced by musical instruments is not strictly harmonic 

due to the different nature of the sound source. The common assumption is that the 

sound is quasi-periodic. In some cases, partials may not be integer multiples of the 

fundamental frequency, such as in the case of Marimba or vibraphone. Additionally, 

vibrato can cause periodic amplitude modulation, which is often heard in the sound of 

a violin, flute, or human voice. 

When detecting pitch, it is crucial to note that the notes emitted by an instrument 

can usually be decomposed into several stages: the attack stage, followed by decay, 

sustain, and release stages. This decomposition is important for accurate pitch 
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Fig. 2-1. Detection of single pitch for C major scale on a piano[1]. 
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detection and analysis. It should be noted that the experimental objects in this chapter 

are definite pitch instruments. The percussion instruments or indefinite pitch 

instruments are not considered.  

The concept of pitch and its relationship to fundamental frequency has numerous 

applications in music research, analysis, and technology. Automatic music 

transcription (AMT) is one of the main applications since it seeks to translate musical 

auditory signals into symbolic representations, including musical scores or MIDI files 

[19]. AMT systems must have accurate pitch detection if they are to recognize the 

notes being performed in a musical composition. 

Pitch is also essential in the development of music recommendation systems. By 

understanding the pitch-related features of musical pieces, such as melody, harmony, 

and key, recommendation algorithms can suggest songs or artists that share similar 

pitch-based characteristics with a user's preferences. Pitch information combined with 

other musical elements has been demonstrated to increase the accuracy and variety of 

song recommendations [20]. 

In the field of music education, pitch plays a vital role in ear training and sight-

singing exercises [21]. Students learn to detect and imitate specific melodies, intervals, 

and harmonies, which is necessary for their musical development. Pitch detection 

algorithms are frequently integrated into computer-assisted music education software 

to offer students feedback and guidance during their practice sessions. Recent research 

has focused on how to use interactive technologies and gamification to improve pitch-

based music instruction [22]. 

2.2 Timbre 

Timbre is a critical component of sound that allows listeners to distinguish between 

two noises that have the same intonation and loudness. The American National 

Standards Institute defines it as a sensory attribute of sound that enables this distinction. 

The vibrations of the sound-emitting object and its components determine the timbre 

of a sound. When an object vibrates to generate sound, it emanates a fundamental tone 

that is accompanied by composite vibrations from the remaining components. The 
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object's distinctive timbre is the result of the harmonics produced by these composite 

vibrations. The perceived timbre is substantially influenced by the proportion of mid-

bass and mid-high tones in the overtone component [23]. A warm, gentle, full, and rich 

sound is produced by a higher proportion of mid-bass harmonics, whereas a frigid, 

tough, narrow, and sharp sound is produced by a larger proportion of mid-high tones. 

 Timbre is also influenced by time envelope parameters, including attack (the 

duration from silence to the initial peak of the sound), decay (the duration from the 

initial peak to a stable level), sustain (the duration of the sound at a stable level), and 

release (the duration from the stable level to silence) [24]. These parameters can be 

adjusted by a sampler to alter the timbre of a sound. For instance, the attack time 

parameter in a piano or trumpet signal can be increased, which can make it challenging 

for listeners to identify the instrument's tone [25]. This is because the initial transient 

sounds, such as the hammer striking the strings in a piano or the breath contacting the 

mouthpiece in a trumpet, are essential features for identifying the timbre of musical 

instruments. 

When analyzing timbre, it is important to consider both the overtone changes in 

each frame and the time envelope of the entire sound production process. The time 

 

Fig. 2-2. The time envelope model ADSR (attack, decay, sustain and release). 
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envelope model, as shown in the Fig. 2-2 [24], illustrates the various stages of a sound's 

evolution over time. 

The timbre of a sound, whether it originates from a human voice, musical 

instrument, natural source, or artificial creation, plays a crucial role in conveying 

emotions and shaping the overall character of a musical piece. In the context of musical 

instruments, each timbre possesses its own unique qualities and associations. For 

instance, when composing a march that aims to portray the image of a masculine hero, 

a composer is unlikely to choose soft-sounding instruments like the violin, flute, or 

oboe. Instead, they would likely opt for powerful and resonant brass instruments, such 

as the trumpet and trombone, to evoke a sense of strength and heroism. Similarly, when 

creating a piece that expresses lingering love, a composer might employ the warm, 

rich tones of the cello or the mellow, soulful sound of the saxophone to convey the 

desired emotional depth. In contrast, when depicting the bulky, lumbering nature of an 

elephant, the low, rough-sounding tones of the double bass or the booming strikes of 

the timpani would be more appropriate choices. The emotional expressions used to 

describe timbre heavily rely on the composer's intentional use of different instrument 

sounds to enhance the melody, harmony, rhythm, and dynamics of a piece, ultimately 

creating a distinct and impactful musical experience.  

Mathematically, timbre can be represented using various techniques, such as the 

Fourier transform, which decomposes a complex sound wave into its constituent 

frequencies and amplitudes [26]. The resulting frequency spectrum provides insights 

into the harmonic content and overtone structure of the sound, which are essential 

factors in determining its timbre. Other mathematical tools, such as wavelet analysis 

and principal component analysis, can also be employed to extract and quantify timbral 

features from audio signals [27]. 

In music education, the concept of timbre is often introduced through listening 

exercises and instrument identification tasks. For example, students might be asked to 

distinguish between the sounds of different instruments playing the same melody, or 

to identify the primary instrument featured in a musical excerpt. By developing an ear 

for timbre and an understanding of how different instruments contribute to the overall 
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sound of a piece, students can gain a deeper appreciation for the expressive 

possibilities of music and make more informed choices when composing or arranging 

their own works [28]. 

2.3 Shape 

Emotions have shapes, and musical emotions mirror those shapes. Any music piece 

can be phrased in different ways rather like words in a sentence can be delivered 

differently, sometimes making the opposite sense from that which the composer 

wanted. So, playing the effectiveness and clarity of phrases in the style of the composer 

is an importance evaluate criteria of music performance.  

The concept of shape is widely used by musicians, yet the mechanism that afford 

links between music and shape are little understood. Due to its abstraction and 

multisensory perception, the musicology study has progressed slowly. In 1963, Langer 

[29] proposed a famous theory of ‘sound the way moods feel’ where musical shape is 

considered as a fundamental unit in music’s intrinsic properties. In 2004, Stern[30] 

[31] sees dynamics of experience as characterized by a sequence of present moments, 

each no more than a few seconds in length, which are shaped by feeling responses to 

incoming perceptions, and which group together to form dynamically shaped mini 

dramas, sensed as a gestalt, through which one lives. In 2006, Eitan and Granot [32] 

discussed the associations of dynamics, pitch, time, and articulation to musical shape 

by comparing the music perception with musicians and non-musicians. The result 

found that time patterns are highly related to the musical shapes. Pitch and dynamics 

patterns are potentially linked with musical shapes, which required further 

investigation. To tackle this issue, Küssner and Leech-Wikinson [33] carried out an 

extensive study in 2014, musicians(those with musical training) and 

nonmusicians(those without) match higher percent of pitch with motion, but they got 

more varies while matching loudness with motion and discovered that pitch contour 

does not closely associate with musical shapes though that too is important for 

musicians. In 2017, Daniel [34] defined that music shape refers to the small dynamics 
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changes in music that can represent feeling and movement states, or any tiny changes 

varying with time, giving life-like qualities to music.  

Generally, shape information does not reflect directly in the music scores. The 

Zygonic theory seeks to structure and form abstract narratives in sound in the absence 

of semantic content [35]. Using ‘zygonic’ theory, showing how different forms of 

mapping between the two may logically occur in cognition. Fig. 2-3 shows a small 

piece of oboe and cor anglaise duet from the third movement of Vaughan Williams’ 

Fifth Symphony. 

The icon, index and symbols are used in this model to show the relationships 

between perspective values. The primary and secondary zygotic relationships can be 

seen in this figure. ‘Z’ represents the main zygotic relationship, and ‘I’ represents the 

"imperfect" zygotic relationship in which the generated values differ slightly from 

those mimicked, indicated by half arrows. Secondary zygons can be seen as connecting 

primary inter-perspective relationships, where one is thought to mimic the other. A 

single letter such as P for pitch, O for onset and T for timbre is used to denote a 

relationship type. As shown in Fig. 2-4, one shape is considered to mimic another 

 

Fig. 2-3. Structure analysis of oboe and cor anglaise duet from the third 

movement of Vaughan Williams’ Fifth Symphony by using Zygonic [35]. 
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shape, which can also be used in the model such as the shape of the beginning of oboe 

and cor anglaise. 

Adam Ockelford [36] proposed there are four types of cross-domain mapping 

between musical sounds and visual images relationship: ‘regular’ ‘indirect  ‘arbitrary’, 

and  ‘synaesthetic’ based on zygonic theory in which qualities of musical sounds and 

shapes (or their tactile equivalents) may be related systematically in cognition. They 

are imitated by ways of iconic, indexical, symbolic.  

It is closely related to other concepts involving real or imagined movement through 

space (including gestures and trajectories) or across terrain (landscapes, silhouettes). 

On a more general level, it conceptualizes change over time. But fundamentally, in all 

of these discourses, shape is the modeling of changing sensations, and it is the mapping 

between the dynamics of musical sound and the dynamics of sensation that makes 

shapes so effective, as A way of thinking and talking about musical expressiveness. 

But the underlying mechanisms need to be teased out through other types of research. 

2.4 Music Notation Tools 

Musical scores can be digitized in various formats, but the most prevalent 

frameworks in computer-based music notation are the Musical Instrument Digital 

Interface (MIDI) and the Music Extensible Markup Language (MusicXML). MIDI 

was standardized in 1983, while MusicXML Version 1.0 was launched in 2004. 

However, it is important to note that both of these notation tools lack the capability to 

represent the 'shape' of music, which is a critical aspect in music perception and 

 

Fig. 2-4. One shape deemed in imitation of another 
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analysis. To address this limitation, these two tools are examined thoroughly and then 

endeavored to enhance them by integrating features that could effectively convey the 

shape information of music. MIDI is a crucial tool for musicians and producers, 

allowing various music gear to communicate using a common language. Rather than 

referring to any specific equipment or machine, "MIDI" is a specification and 

agreement between computer music equipment, a language between digital musical 

instruments, and a score that computers and electronic musical instruments can 

"understand." The major advantages of MIDI are summarized below: 

1) MIDI files have small capacity, as they do not contain sound wave information 

but instead records music playback information, such as when and how long the 

music is played, with what tone, and at what pitch. Therefore, they are easy to 

process, even on the low specification computers. 

2) MIDI files can be played back on various hardware sound sources, making them 

highly compatible and accessible across different platforms and devices. 

3) MIDI files can accurately record the pitch and duration of notes. They are also 

easy to edited, making it a valuable tool for music composition and education 

However, there are still a number of disadvantages of MIDI.  

1) MIDI has a limited ability to capture the subtleties and nuances of human 

performance, such as slight variations in timbre and playing style. Finer details 

of musical scores, such as instrumentation, expression, stem direction, and 

beaming might be missing.  

2) MIDI files rely on specific hardware and software to generate sound. The same 

MIDI played by different sound sources may yield different results, leading to 

inconsistent quality. 

3) Due to missing various musical elements, MIDI files have limitations in 

notation, editing and synchronizaiton. 
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To tackle with MIDI’s limitations, MusicXML was invented. MusicXML is an 

open XML-based file format for recording Western-style musical scores. It was 

designed as an exchange format for notation information, especially between different 

notation software. MIDI files primarily describe musical notes, while MusicXML files 

capture the actual notation and layout. This means you don't have to do all the editing 

work on MIDI files. The creator of MusicXML, Michael Good, explains that 

MusicXML is designed to be useful over a range of music notation applications. Fig. 

2-5(a) shows the original score of the last 4 bars of Schumann's Op.24, No. 4. Fig. 

2-5(b) and (c) represent the MIDI version and MusicXML version of the same music 

piece, respectively. MIDI, primarily focused on recording playback information such 

as timing, tone, and pitch, offers a compact and easily distributable format for music 

sharing and sequence processing. While MIDI files also carry some level of expressive 

 
(a) 

(b) (c) 

Fig. 2-5. (a) the original piece (b) the midi piece and (c) the MusicXML piece of 

Schumann’s Op.24, No. 4. 

https://www.musicxml.com/publications/makemusic-recordare/xml-2001/musicxmls-approach-to-music-interchange/
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details like volume changes and control changes to simulate dynamics, they still fall 

short in capturing the full complexity of musical scores, such as instrumentation, 

expression, stem direction, and beaming. On the other hand, MusicXML, provides a 

much more detailed representation of musical scores, thanks to its XML-based 

structure. It includes elements like pitch, duration, time signature, key signature, and 

lyrics, as well as complex score formatting and voice interactions. But MusicXML 

cannot completely capture the expressive subtleties and special performance qualities 

necessary for in-depth knowledge and study of musical performances. This limitation 

is common in standard notation formats, which struggle to convey the personalized 

expressions of performers. 

In conclusion, while MIDI and MusicXML have played pivotal roles in the 

digitalization and dissemination of music, they both lack the capability to fully capture 

and convey the 'shape' of music. This limitation underscores an ongoing challenge in 

digital music notation: bridging the gap between the precision of written scores and 

the expressive depth of live performances. Addressing this gap remains a crucial area 

for future development in music technology, aiming to more accurately represent the 

full spectrum of musical expression and performance nuances. 

2.5 Chapter Summary 

In this chapter, four fundamental musical elements are explored: pitch, timbre, 

shape and notation tools. The chapter began with pitch perception, introducing the 

Standard pitch regulation and its mathematical relationship with fundamental 

frequency. The ways in which harmonics contribute to sound production and the 

challenges in pitch detection, particularly in the context of different musical 

instruments and their sound stages (attack, decay, sustain, and release), are studied and 

evaluated. Then how timbre is influenced by both overtone composition and time 

envelope parameters, making it essential for instrument recognition and emotional 

expression in music, is explored. Next, the development of musical shape theory is 

introduced. Finally, modern music notation tools are examined, specifically MIDI and 

Music XML. While Chapter 2 established the theoretical foundations of essential 
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musical elements critical to music recognition and analysis. Chapter 3 examines how 

these elements are processed and analyzed using various signal processing techniques 

and machine learning approaches. Chapter 3 also delves into specific methodologies 

for automatic music transcription, instrument recognition, and shape evaluation, 

demonstrating how the theoretical understanding of pitch, timbre, and shape guides 

the development of practical MIR solutions. 
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Chapter 3 
 

3 Related work 

In order to motivate the present thesis, related works in terms of conventional 

feature extraction, machine learning methods and three research topics are reviewed 

in this chapter. Section 3.1 describes the background of music cognition, wherein the 

pitch, timbre, shape and natation tools are highlighted. Section 3.2 surveys the music 

signal pre-processing methods which includes time-frequency representation, 

representative features, and matrix factorization. Section 3.3 describes the machine 

learning used in music information retrieval. Section 3.4 review the related work of 

three research topics. Finally, a brief summary of evaluation metrics is given in Section 

3.5. 

 

3.1 Music Signal Pre-Processing 

Preprocessing is a multifaceted procedure in the field of music detection that 

prepares audio signals for subsequent analysis and classification. The procedure 

includes several critical steps, each contributing to the overall effectiveness of music 

detection algorithms. These steps include signal acquisition, noise reduction and signal 

normalization, time-frequency transformation, feature extraction, feature 

dimensionality reduction, and output. 

 Signal acquisition: The first step involves capturing audio signals using 

sophisticated equipment and converting them into a digital format. This conversion 

process requires selecting appropriate sampling rates and bit depths to ensure a faithful 

digital representation of the audio. The selection of these parameters is critical since 

they directly affect the quality and accuracy of the subsequent preprocessing stages. 
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Noise reduction and signal normalization: After digitising the audio stream, noise 

reduction techniques like spectral gating or Wiener filtering are used to remove 

background noise and improve signal clarity. These techniques help to isolate the 

desired musical components from unwanted artifacts. Following noise reduction, 

signal normalization is applied to adjust the amplitude of the signal to a consistent 

range. Mathematically, this can be expressed as �̃�(𝑡) =
𝑥(𝑡)−𝜇

𝜎
, where �̃�(𝑡)  is the 

normalized signal, 𝑥(𝑡) the original signal, µ the mean, and 𝜎 the standard deviation. 

Time-frequency transformation: To analyze the frequency content of the signal over 

time, a time-frequency transformation is performed. The most common technique is 

the Fourier Transform, which converts the signal from the time domain to the 

frequency domain, revealing its spectral characteristics. Additionally, the Wavelet 

Transform is employed to provide a time-frequency representation that captures non-

stationary aspects of the audio signal. 

Feature extraction is the process of condensing the diverse characteristics of the 

audio signal into a format that is appropriate for analysis. For example, Mel-Frequency 

Cepstral Coefficients (MFCCs) are computed to mirror the human auditory system's 

response [169]. 

Feature dimensionality reduction is a critical stage in the process of simplifying the 

feature set while retaining its most informative aspects. This procedure is 

indispensable for optimising the efficacy and functionality of machine learning 

algorithms. Two other notable techniques employed in this stage are Probabilistic 

Latent Component Analysis (PLCA) and Non-negative Matrix Factorization (NMF), 

in addition to Principal Component Analysis (PCA).  

By employing these techniques, the unprocessed music signals can be converted 

into a format that is more conducive to the processing of machine learning models, 

thereby obtaining feature vectors that accurately represent the music's content. In the 

subsequent sections, a comprehensive overview of these preprocessing methods will 

be presented, then how to employ them to extract a variety of musical features, thereby 
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establishing a strong foundation for the efficient and precise recognition of music 

signals will be demonstrated. 

3.1.1 Time-Frequency Representation 

The Discrete Fourier Transform (DFT) is a technique used to convert a signal from 

the time domain to the frequency domain. However, it encounters limitations when 

applied to signals. The DFT offers a representation of the domain, across the entire 

signal duration assuming that the signal is stationary and that the frequency content 

remains constant. In reality audio signals are dynamic with varying sounds emerging 

and fading over time and their intensity fluctuating continuously. The Fourier 

Transform by itself cannot capture any such transient. 

The Short Time Fourier Transform (STFT) operates on the assumption that a 

signals frequency domain remains stable over time intervals. It segments the signal 

into frames and conducts DFT on each frame individually. This approach yields a time 

frequency representation with time resolution dictated by the frame length. The STFT 

offers reduced computation cost compared to time frequency representations due to 

the efficiency of its DFT algorithm, which reduces time complexity from O(𝑁2) to 

O(𝑁𝑙𝑜𝑔(𝑁)), where N is the number of DFT point(that is, FFT size). 

However, the STFT may suffer from spectral leakage when the frame size is not an 

integer multiple of the signal's period. This leakage introduces frequencies that should 

not be present in the calculated spectrum. To mitigate this issue, a window function is 

applied to each frame, which reduces the amplitude of the signal near the frame 

boundaries. Additionally, overlapping frames are used to ensure that all frequencies 

are analyzed evenly, as the windowing process may cause some frequencies to be 

ignored. 

 The choice of window size in STFT presents a trade-off between time and 

frequency resolution. A smaller window provides higher time resolution but lower 

frequency resolution, while a larger window offers higher frequency resolution but 

lower time resolution. Despite this trade-off, STFT has the advantage of being 

invertible, allowing the reconstruction of the original audio signal. 
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The Constant-Q transform (CQT) is a time-frequency representation that employs 

a filter bank with center frequencies distributed according to an exponential law. In 

contrast to the Fourier Transforms linear frequency axis, the Constant Q Transform 

(CQT) uses a scale with frequencies distributed exponentially. The bandwidth of filters 

varies with frequency. Their ratio of center frequency to bandwidth remains Q). CQT 

suits music signal processing well due to its alignment with scale on the axis. By 

computing the CQT spectrum of a music signal one can directly access amplitude 

values at each note frequency. This characteristic makes CQT more appropriate, for 

analysis compared to STFTs spaced frequencies. 

The Mel spectrogram is a representation of signals optimized for auditory 

perception. The concept is based on transforming the STFT using an adjustment 

according to the Mel scale, which mirrors how the human ear perceives different 

frequencies Compared to the STFT spectrogram, the Mel spectrogram compresses the 

frequency axis, resulting in a more compact representation while preserving 

perceptually important information. However, the Mel spectrogram only contains 

amplitude (energy) information and cannot be inverted back to the original audio 

signal. 

Other perceptually motivated frequency scales similar to the Mel scale include the 

Bark scale, Equivalent Rectangular Bandwidth (ERB), and Gammatone filters. These 

scales are based on the psychology of hearing and aim to provide representations that 

align with human auditory perception.  

A chromatogram, also known as a pitch class profile, shows the distribution of 

energy over a range of pitch classes, typically the twelve-tone class of Western music 

(C C# D D# E E# F G G# A A# B). The chromatogram can be considered as a fold of 

CQT on the rating axis. Given a log frequency spectrum 𝑋𝑙𝑓  (e.g. CQT), the 

chromatogram is calculated by the following formula: 𝐶𝑓(𝑏) = ∑ |𝑋𝑙𝑓(𝑏 + 𝑧𝛽)|𝑍−1
𝑧=0 , 

where z represents the zth octave, b is the index of the sound level, and β typically 

ranges from 0 to 11, encompassing all pitch classes within an octave. Like the Mel-

frequency cepstral coefficients (MFCC), the chromatogram provides a deeper analysis 
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compared to simpler characterization methods and can also be employed directly as a 

feature in various music information retrieval tasks. 

In contrast, CQT demonstrates unique advantages in music signal analysis tasks. 

CQT offers higher frequency resolution in the low-frequency region, which aligns with 

the human ear's higher sensitivity to frequency changes in low-pitched sounds. CQT 

also makes sure that the time quality is the same across all frequencies, enabling it to 

provide detailed information about the temporal evolution and rhythm of music. 

Unlike chromagrams that may lose pitch class data CQT retains all spectrum 

information while allowing for reconstruction of the signal through an inverse 

transformation, a process not possible with chromagrams. Moreover, CQT goes 

beyond pitch analysis. It can be applied to tasks such as chord recognition and pitch 

tracking, making it more versatile than chromagrams. 

3.1.1.1 The Short-Time Fourier Transform (STFT)  

Short Time Fourier Transform (STFT) is an important tool in signal processing 

because it shows how signals change over short periods of time. When working with 

sounds that change frequency over time, like speech or music, it works especially well. 

The spectrograms generated by STFT can show how the parts of a signal change over 

time. These can be used for analysis, speech processing, and sound creation. STFT 

plays a role, in fields including voice recognition, music production and acoustics 

research. Generally, STFT includes five steps, i.e., framing, windowing, Fourier 

transform, time-frequency representation and application. An example of first four 

steps is shown in Fig. 3-1 for better understanding. 

1) Framing: Divide the long signal 𝑥(𝑡) into a series of short segments or frames. 

Given a frame length of 𝑁𝐿  samples, and a frame shift of 𝑁𝑆  samples (where 𝑁𝑆  is 

typically less than 𝑁𝐿 to allow overlap between frames), the 𝑘𝑡ℎ frame 𝑥𝑘(𝑛) can be 

described as: 𝑥𝑘(𝑛) = 𝑥(𝑛 + 𝑘𝑁𝑆),0 ≤ 𝑛 < 𝑁𝐿 − 1. This process involves dividing 

the signal into frames to facilitate the analysis of its time varying characteristics. 

2) Windowing: Apply a window function 𝑤(𝑛) to each frame. The window function 

has the same length as the frame, and its values are maximum at the center of the frame 



44 

 

and gradually decrease to zero at the ends of the frame. The kth windowed frame 

𝑥𝑘,𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑 (𝑛)  can be represented as 𝑥𝑘,𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑(𝑛) = 𝑥𝑘 (𝑛) ⋅ 𝑤(𝑛) . Different 

types of window functions have different characteristics: 

➢ Rectangular Window: All values are one. It provides maximum time resolution 

but poor frequency resolution. 

➢ Hann Window: Has a bell shape, which reduces the side lobes in the frequency 

domain and provides better frequency resolution. 

➢ Hamming Window: Similar to the Hann window but with a slightly different 

shape, providing a compromise between time and frequency resolution. 

➢ Blackman Window: Provides even better frequency resolution at the expense of 

time resolution. 

3) Fourier Transform: Performing a Fast Fourier Transform (FFT) on each windowed 

frame to transform it from the time domain to the frequency domain will improve the 

efficiency for calculating the Discrete Fourier Transform (DFT). If an N-point FFT is 

 
(a) 

 
(b) 

(c) (d) 

Fig. 3-1. Visualization of STFT steps: (a) illustrates a framing example where a 

long signal is divided into two frames; (b) compares the original frame with its 

Hamming-windowed version; (c) displays the frequency spectrum of the frame; (d) 

shows the signal's frequency content over time, with intensity indicating magnitude. 
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used, the frequency-domain representation 𝑋𝑘(𝑓) of the kth frame can be represented 

as 𝑋𝑘(𝑓) = ∑ 𝑥𝑘(𝑛) ∙ 𝑒−𝑗
2𝜋

𝑁
𝑓𝑛𝑁−1

𝑛=0 , where 𝑥𝑘[𝑛] is the windowed signal in the kth frame, 

and f is the frequency index (f = 0, 1, ... , N-1). The resulting 𝑋𝑘(𝑓) represents the 

complex-valued spectrum of the frame, containing information about the magnitude 

and phase of the frequency components. 

4) Constructing Time-Frequency Representation: The frequency-domain results 

obtained from the FFT for all frames are combined to form a time-frequency 

representation. The time-frequency representation, often referred to as a spectrogram, 

can be represented as a matrix 𝑆(𝑘, 𝑓) = |𝑋𝑘(𝑓)|2  or 𝑆(𝑘, 𝑓) = 20𝑙𝑜𝑔10(|𝑋𝑘(𝑓)|). 

The former equation represents the power spectrogram, where the magnitude squared 

of the complex spectrum is used, and the later equation  represents the logarithmic 

spectrogram, where the magnitude of the complex spectrum is converted to a 

logarithmic scale (in dB) for better visualization. The resulting spectrogram is a visual 

representation of how the frequency content of the signal changes over time. 

5) Analysis and Application: By observing the time-frequency representation, the 

time-frequency characteristics of the signal can be analyzed, different frequency 

components and their variations can be identified over time. This analysis is widely 

applied in audio processing, speech recognition, communication, and many other 

fields. 

3.1.1.2 Constant-Q transform 

To perform the time-frequency spectrogram in the MPE area, the Constant-Q 

transform (CQT) is the desirable technique, as it is more efficient in lower frequency 

and there are fewer frequencies required in given range, which testified its usefulness 

when the distribution of frequencies in several octaves is discrete. Meanwhile, its rate 

resolution will decrease with the increasing of the frequency bins, and this is suitable 

for auditory applications. It is linear when using the Fast Fourier Transform (FFT) to 

analyze the frequency. However, as the frequency of human ear perception is 

logarithmically distributed [37] the discrimination of relatively low frequency is 
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relatively high. The CQT is based on the FFT principle but processes a logarithmic 

compression for closing to human’s cochlea helical structure. The Fast Fourier 

transform (FFT) of a discrete signal 𝑥(𝑛) is defined in Eq.(3.1). 

𝑋(𝑓) = ∑ 𝑤(𝑛)𝑥(𝑛)𝑒−
𝑗2𝜋𝜑𝑛

𝑁

𝑁−1

𝑛=0

 (3.1) 

where 𝑤(𝑛) is the window function, 𝑥(𝑛) is the 𝑛𝑡ℎ sample in the time domain, 𝜑 is 

frequency index, the digital frequency is
2𝜋𝜑

𝑁
, and the period of samples is 

𝑁

𝜑
. 

For music analysis, in order to make each bin in each octave equals to 12 semitones, 

the jth frequency is defined by Eq.(3.2). 

𝑓𝑗 = 2
𝑗−1

𝐵𝑜 𝑓𝑚𝑖𝑛 (3.2) 

where 𝐵𝑜 is the number of bins per octave, which equals to 60 as suggested in [38]. 

𝑓𝑚𝑖𝑛 is the lowest frequency, e.g. the minimum frequency on a piano is 27.5 Hz. The 

resolution or bandwidth ∆𝑓 is the ratio of the sampling rate 𝑓𝑠 to the window size N. 

To make the ratio of 𝑓𝑗 to ∆𝑓 to be a constant value 𝑄, the window size must change 

over 𝑓𝑗.  The constant value is given by 𝑄 =
𝑓𝑗

∆𝑓
=

1

2
1

𝐵𝑜−1

 and the length of window at 

𝑓𝑗 is then defined by 𝑁(𝑗) =
𝑓𝑠

∆𝑓
=

𝑓𝑠∙𝑄

𝑓𝑗
=

𝑓𝑠

𝑓𝑗(2
1

𝐵𝑜−1)

 . 

Therefore, by taking account of the above constraints, the digital frequency of the 

𝑗𝑡ℎ  component for the Constant-Q transform is 
2𝜋𝑄

𝑁(𝑗)
. Since the window size is 

determined by 𝑁(𝑗), the window function is related to 𝑗 as well as 𝑛. Meanwhile, as 

𝑁(𝑗) varies with 𝑗, it is also used for normalization. Then Eq. (3.1) becomes: 

𝑋(𝑗, 𝑛) =
1

𝑁(𝑗)
∑ 𝑤(𝑗, 𝑛)𝑥(n)𝑒

−
𝑗2𝜋𝑄𝑛

𝑁(𝑗)

𝑁(𝑗)−1

𝑛=0

 (3.3) 

Suggested by [39], the best window function for music signal processing is Blackman-

Harris window which is defined in Eq.(3.4) 

𝑊(𝑗, 𝑛) = a0 − a1 cos
2𝜋𝑛

𝑁(𝑗) − 1
+ a2 cos

4𝜋𝑛

𝑁(𝑗) − 1
− a3 cos

6𝜋𝑛

𝑁(𝑗) − 1
 (3.4) 
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where a0 = 0.35875; a1 = 0.48829; a2 = 0.14128; a3 = 0.01168 and 0 ≤ n ≤

𝑁(𝑗) − 1 

3.1.1.3 Equivalent Rectangular Bandwidth 

The equivalent rectangular bandwidth (ERB) is a psychoacoustic measure that 

approximates the bandwidths of filters in the human auditory system. It simplifies the 

modeling of these filters as rectangular band-pass or band-stop filters, such as those 

used in tailor-made notched music training (TMNMT)[40].  

For young listeners and moderate sound levels, the bandwidth of human auditory 

filters can be estimated using a polynomial equation (Eq.(3.5)) given by Moore and 

Glasberg [41]. 

𝐸𝑅𝐵(𝑓
𝑐
) = 6.23 × 𝑓2 + 93.39 × 𝑓 + 28.52 (3.5) 

where 𝑓𝑐  represents the center frequency of the filter in kHz, and 𝐸𝑅𝐵(𝑓𝑐) is the 

bandwidth of the filter in Hz. This approximation is derived from the results of various 

simultaneous masking experiments and is valid for center frequencies between 0.1 and 

6.5 kHz. An alternative approximation, also provided by Moore and Glasberg [42],  is 

given by Eq.(3.6).  

𝐸𝑅𝐵(𝑓
𝑐
) = 24.7 × (4.37 × 𝑓

𝑐
+ 1) (3.6) 

This approximation is suitable for moderate sound levels and center frequencies 

between 0.1 and 10 kHz. 

The 𝐸𝑅𝐵-rate scale, also known as the 𝐸𝑅𝐵-number scale, is a function 𝐸𝑅𝐵𝑠(𝑓𝑐) 

that returns the number of equivalent rectangular bandwidths below a given 

frequency 𝑓𝑐 . The units of this scale are called 𝐸𝑅𝐵𝑠  or Cams, as suggested by 

Hartmann. The scale is constructed by solving the following differential system of 

equations (Eq.(3.7)). 

{

𝐸𝑅𝐵(0) = 0
𝑑𝑓

𝑑𝐸𝑅𝐵𝑠(𝑓𝑐)
= 𝐸𝑅𝐵(𝑓𝑐)

 (3.7) 
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The solution for 𝐸𝑅𝐵𝑠(𝑓
𝑐
) is obtained by integrating the reciprocal of 𝐸𝑅𝐵(𝑓

𝑐
) and 

setting the constant of integration such that 𝐸𝑅𝐵𝑠(0) = 0. Using the second order 

polynomial approximation (Eq.(3.5)) for 𝐸𝑅𝐵(𝑓
𝑐
) yields: 

𝐸𝑅𝐵𝑠(𝑓𝑐) = 11.17 × 𝑙𝑛 (
𝑓𝑐 + 0.312

𝑓𝑐 + 14.675
) + 43.0 (3.8) 

The VOICEBOX speech processing toolbox for MATLAB implements the 

conversion and its inverse can be presented as Eq.(3.9). 

𝐸𝑅𝐵𝑠(𝑓𝑐) = 11.17268 × 𝑙𝑛 (1 +
𝑓𝑐 × 46.06538

𝑓𝑐 + 14678.49
) 

𝑓𝑐 =
676170.4

47.06538 − 𝑒0.0895×𝐸𝑅𝐵𝑠(𝑓𝑐)
− 14678.49 

(3.9) 

Using the linear approximation (Eq.(3.6)) for 𝐸𝑅𝐵(𝑓𝑐) yields: 

𝐸𝑅𝐵𝑠(𝑓𝑐) = 21.4 × 𝑙𝑜𝑔10(1 + 0.00437 × 𝑓𝑐) 

where the unit of 𝑓𝑐 is Hz. 
(3.10) 

3.1.1.4 Hilbert-Huang Transform 

Hilbert–Huang transform (HHT) is a signal processing technique that is applicable 

for nonstationary and nonlinear signals [43]. HHT is a combination of two 

methodologies [44], namely, empirical mode decomposition (EMD) and Hilbert 

transform. EMD is used to decompose the input signal into different components 

called intrinsic mode functions (IMFs), while the Hilbert spectrum is obtained by 

applying the Hilbert transform to the IMFs. Compared to other time-frequency analysis 

methods such as the wavelet transform (WT) and short-time Fourier transform (STFT), 

HHT offers adaptive decomposition of IMFs and enhanced time-frequency resolution 

[45, 46].  

The EMD method is a crucial step in the HHT process, as it reduces the given data 

into a set of IMFs, which are suitable for Hilbert spectral analysis. IMFs represent 

simple oscillatory modes, similar to harmonic functions but with variable amplitude 

and frequency along the time axis.  

https://en.wikipedia.org/wiki/Equivalent_rectangular_bandwidth#math_Eq.1
https://en.wikipedia.org/wiki/Equivalent_rectangular_bandwidth#math_Eq.1
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The process of extracting an IMF is called sifting, which involves the following 

steps: 

1. Identify all the local extrema (maxima and minima) in the original signal 𝑥(𝑡). 

2. Connect all the local maxima by a cubic spline line as the upper envelope. 

3. Repeat the procedure for the local minima to produce the lower envelope. 

4. Calculate the mean of the upper and lower envelops, and denote the mean as 𝑚(𝑡) 

5. Subtract the mean from the original signal to obtain the first IMF candidate ℎ(𝑡) 

using Eq. (3.11). 

𝑥(𝑡) − 𝑚(𝑡) = ℎ(𝑡) (3.11) 

6. Check if ℎ(𝑡) satisfies the definition of an IMF, being symmetric and having all 

maxima positive and all minima negative. If not, repeat steps 1-5 with ℎ(𝑡) as the 

new input signal until an IMF is obtained. 

7.  Once the first IMF, denoted as 𝑐1(𝑡), is obtained, subtract it from the original 

signal to get the residual 𝑟1(𝑡) by Eq. (3.12):  

𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡) (3.12) 

8. Continue this process until the residue becomes a monotonic function or has at 

most one extremum. 

At the end of the EMD process, the original signal 𝑥(𝑡) can be represented as the 

sum of the IMFs and the final residue as shown in Eq. (3.13). 

𝑥(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)

𝑛

𝑖=1

 (3.13) 

where n is the total number of IMFs, 𝑐𝑖(𝑡) is the ith IMF, and 𝑟𝑛(𝑡) is the final residue. 

The Hilbert transform is applied to each IMF obtained from the EMD process. The 

Hilbert transform of a real-valued function 𝑐𝑖(𝑡) is given by the Cauchy principal 

value of the convolution with the function 1/𝜋𝑡 : 

𝐻[𝑐𝑖(𝑡)] = (
1

𝜋
) 𝑃. 𝑉. ∫ (

𝑐𝑖(𝑡)

𝑡 − 𝑇
)𝑑𝑇

+∞

−∞

 (3.14) 

https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Spline_(mathematics)
https://en.wikipedia.org/wiki/Maxima_and_minima
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where P.V. denotes the Cauchy principal value of integral.  

The analytic signal 𝑧𝑖(𝑡) associated with each IMF 𝑐𝑖(𝑡) is defined by Eq. (3.15): 

𝑧𝑖(𝑡) = 𝑐𝑖(𝑡) + 𝑗𝐻[𝑐𝑖(𝑡)] = 𝑎𝑖(𝑡)𝑒(𝑗𝜃𝑖(𝑡)) (3.15) 

where 𝑎𝑖(𝑡)  is the instantaneous amplitude, and 𝜃𝑖(𝑡)  is the instantaneous phase, 

given by: 

𝑎𝑖(𝑡) = √(𝑐𝑖
2(𝑡) + 𝐻2[𝑐𝑖(𝑡)]) 

𝜃𝑖(𝑡) = arctan (𝐻[𝑐𝑖(𝑡)]/𝑐𝑖(𝑡)) 
(3.16) 

The instantaneous frequency 𝜔𝑖(𝑡) is then obtained by differentiating the 

instantaneous phase: 

𝜔𝑖(𝑡) = 𝑑𝜃𝑖(𝑡)/𝑑𝑡 (3.17) 

Finally, the Hilbert spectrum 𝐻(𝜔, 𝑡)  is constructed by plotting the instantaneous 

amplitude and frequency of each IMF in the time-frequency plane: 

𝐻(𝜔, 𝑡) = 𝑅𝑒𝑎𝑙 ∑ 𝑎𝑖(𝑡)𝑒𝑗 ∫ 𝑤𝑖(𝑡)𝑑𝑡

𝑛

𝑖=1

 (3.18) 

The Hilbert-Huang transform provides a time-frequency representation of the 

original signal, allowing for the analysis of nonstationary and nonlinear data such as 

those music signals with varying amplitude, dynamic tempo changes, harmonic 

interactions between frequencies and complex resonance behaviors in instruments, etc. 

The EMD breaks down the signal into Intrinsic Mode Functions (IMFs) that synergize 

well with the Hilbert transform resulting in a time distribution referred to as the Hilbert 

spectrum. 

The HHT has been successfully applied in fields such as geophysics, oceanography 

and biomedical engineering for examining nonlinear signals. Its adaptability and 

ability to offer time frequency resolution make it a valuable tool for signal processing 

and data analysis. 
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3.1.2 Matrix factorization 

Matrix factorisations are mathematical techniques that decompose a matrix into a 

product of terms with specific properties, such as diagonality or orthogonality. The 

primary goal of matrix factorization is to uncover hidden structures or patterns within 

the data leading to an interpretable representation of the matrix. By deconstructing the 

matrix into its constituent parts, matrix factorization techniques can reveal concealed 

relationships, reduce dimensionality, and support signal processing tasks. 

Non-negative matrix factorisation techniques are specifically applied in situations 

where the underlying data are inherently non-negative, such as magnitude or intensity 

values. These methods can decompose complex data into positive factors that often 

have clear physical interpretations. In the field of signal processing, non-negative 

matrices are commonly used to represent spectrograms of audio signals. A 

spectrogram is a visual representation of the spectrum of frequencies in a signal as it 

varies with time. Each element of the matrix corresponds to the energy or intensity of 

a specific frequency at a particular point in time. Methods such as non-negative matrix 

factorization (NMF) can effectively analyze these spectrograms by decomposing the 

non-negative matrix into two or more non-negative matrices. This decomposition 

process uncovers underlying spectral patterns and their temporal activations, providing 

a meaningful breakdown of the audio signal. The resulting factors often correspond to 

distinct sound sources or recurring acoustic patterns within the signal. 

Moreover, non-negative matrix factorization techniques tend to produce sparse 

representations, meaning that most of the elements in the factorized matrices are zero 

or close to zero, with only a few significant non-zero values. Sparsity is desirable in 

many signal processing applications as it helps to highlight the most relevant or 

informative features, leading to more efficient storage, transmission, and processing 

of the data. Sparse representations can also enhance the interpretability of the results, 

as they focus on the essential components of the signal while suppressing noise or 

irrelevant information. 
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Furthermore, non-negative matrix factorization techniques have been successfully 

used in signal processing tasks such, as source separation, music transcription, speech 

enhancement and image denoising. By leveraging the non-negative and sparse 

properties of the factorized matrices, these techniques can effectively extract important 

elements from intricate signals enabling, in depth analysis, categorization and 

rebuilding of the information. 

The following sections examine two prominent matrix decomposition methods in 

signal processing: Non-negative Matrix Factorization (NMF) and Probabilistic Latent 

Component Analysis (PLCA). These techniques have been extensively implemented 

across domains showcasing their efficacy in revealing hidden patterns, isolating 

sources, and offering understandable representations of non-negative data matrices. 

3.1.2.1 Non-Negative Matrix Factorization (NMF) 

Non-negative Matrix Factorization (NMF) is an approach for decomposing a non-

negative matrix into a product of two non-negative matrices. It was first introduced by 

Lee and Seung [47] as a tool for estimating the underlying structure of non-negative 

data. The primary goal of NMF is to represent a non-negative matrix X as a product of 

two non-negative matrices W and H, while minimizing errors in reconstruction. 

Mathematically, NMF can be formulated as follows: 

𝑋 ≈ 𝑊𝐻 (3.19) 

where X is an m × n non-negative matrix, W is an m × k non-negative matrix, and H 

is a k × n non-negative matrix where 𝑘 <  𝑚𝑖𝑛(𝑚, 𝑛). The goal is to find the optimal 

matrices W and H that minimize the difference between X and the product WH, subject 

to the non-negativity constraints on W and H. 

NMF has found significant applications in the field of music transcription, where X 

typically represents the spectral information of an audio signal, W corresponds to the 

weightings or basis functions, and H represents the time-varying activations or spectral 

templates. In this context, NMF can be used to decompose the audio spectrogram into 

a set of spectral templates and their corresponding time-varying intensities. This 
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decomposition is particularly useful for analyzing and transcribing instruments with 

distinct spectral profiles, such as piano sounds [47]. 

To minimize the reconstruction error and find the optimal matrices W and H, 

various cost functions can be employed. One common approach is to use a cost 

function that promotes sparsity in the activations matrix H. Sparsity constraints 

encourage the decomposition to represent the data using a minimal number of active 

basis functions, leading to a more compact and interpretable representation. Smaragdis 

and Brown [48] and Bertin et al. [49] have successfully applied NMF with sparsity 

constraints for music transcription tasks. 

NMF shares some similarities with Independent Component Analysis (ICA), 

another popular technique for blind source separation. ICA, introduced by Comon [50], 

aims to express a signal model as x = As, where x and s are n-dimensional vectors, and 

A is a non-singular mixing matrix. ICA seeks to identify the underlying sources by 

finding the latent signals that are maximally independent. The main difference between 

ICA and NMF lies in the constraints imposed on the factorizing matrices. In ICA, the 

rows of the mixing matrix A are required to be maximally statistically independent, 

while in NMF, both matrices W and H are constrained to be non-negative. 

Abdallah and Plumbley [51] conducted a study comparing ICA and NMF for 

polyphonic music transcription. They found that NMF typically delivers superior 

separation results. Virtanen [52] also evaluated the performance of NMF and ICA for 

audio source separation and concluded that NMF outperformed ICA in terms of 

separation quality. 

The success of NMF in music transcription and audio source separation can be 

attributed to its ability to capture the negative structure of audio spectrograms. By 

imposing non-negativity constraints on the basis functions and activations, NMF can 

identify meaningful spectral templates and their time varying contributions resulting 

in a more intuitive and understandable breakdown of the audio signal. 

3.1.2.2 Probabilistic Latent Component Analysis (PLCA) 

PLCA is a technique used for analyzing non-negative data especially in the realms 

of audio signal processing and music information retrieval. It operates on a model that 
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represents observed data as a mixture of latent components. The aim of PLCA is to 

unveil the structure within the data by estimating the parameters of this model. 

PLCA was initially introduced by Smaragdis et al. [53] as a probabilistic extension 

of Non-negative Matrix Factorization (NMF). Unlike NMF, which focuses on the 

factorization of a non-negative matrix into two non-negative matrices, PLCA models 

the data as a probability distribution and aims to estimate the latent components and 

their corresponding weights. 

The generative model of PLCA assumes that each observed data point is generated 

by a mixture of latent components. The probability of observing a particular data point 

is expressed as a weighted sum of the probabilities of the latent components. 

Mathematically, given a non-negative data matrix V of size m × n, where m is the 

number of features and n is the number of observations, PLCA decomposes V into a 

set of latent components and their corresponding weights: 

𝑃(𝑖, 𝑗) ≈ ∑𝑘𝑃(𝑧𝑘)𝑃(𝑓𝑖 ∣ 𝑧𝑘)𝑃(𝑜𝑗 ∣ 𝑧𝑘) (3.20) 

where 𝑃(𝑖, 𝑗) is the probability of observing feature i and observation j, 𝑧𝑘 represents 

the k-th latent component, 𝑃(𝑧𝑘) is the prior probability of latent component k, 𝑃(𝑓𝑖 ∣

𝑧𝑘) is the probability of observing feature i given latent component k, 𝑃(𝑜𝑗 ∣ 𝑧𝑘) is the 

probability of observing observation j given latent component k. 

The parameters of the PLCA model are estimated using the Expectation-

Maximization (EM) algorithm [54]. This algorithm iteratively computes the 

probabilities of the hidden components (E step). Adjusts the model parameters to 

maximize the log likelihood of the observed data (M step). The EM algorithm switches 

between these two steps until convergence, as determined by some appropriate 

criterion. 

PLCA is better than other matrix factorization methods in some ways. Firstly, its 

probabilistic nature allows for an approach, to handling uncertainties and incorporating 

knowledge into the model. Secondly, it's easy to add limits or regularization terms like 

sparsity or temporal continuity to PLCA [55]. Third, PLCA has been shown to be 
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useful for signal processing jobs like separating audio sources [55], music transcription 

[56], and musical instrument recognition [57]. 

3.1.3 Other features 

To process the data more effectively, it is essential to explore features that capture 

the focus of attention. Audio Content Analysis (ACA) is a well-known system [58] 

that utilizes digital signal processing and machine learning techniques to analyze audio 

signals, extracting useful information and features from audio files for further 

processing and analysis. Here is a detailed introduction to ACA systems: 

The primary aim of ACA systems is to recognize, categorize and process content 

within audio signals. It has been used across various fields, including music 

information retrieval, speech recognition, environmental sound analysis, and 

multimedia content management. The main functions of ACA systems include but not 

limited to: 

1. Audio Feature Extraction includes various features such as spectral features, 

rhythm features, and pitch features. 

2. Audio Classification and Recognition involved sorting signals into categories 

based on identified characteristics or recognizing specific content within the audio. 

3. Music Analysis focuses on analysing the structure of music signals, identifying 

elements such as rhythm, tonality, and harmony of tracks. 

4. Speech Processing covers tasks such as speech recognition, emotion analysis and 

speaker identification. 

5. Environmental Sound Analysis is the study of finding and classifying sounds in 

the environment, such as traffic noises and crowd noises. 

ACA system is a powerful tool that can automatically process and analyze audio 

signals, extract valuable information. As technology improves, this system becomes 

more important in many fields because it help us understand and use audio material 
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better. Besides, ACA system can also extract and analyze other important audio 

features, such as: 

1. Mel-Frequency Cepstral Coefficients (MFCC): are widely used spectral features 

that simulate the non-linear auditory characteristics of the human ear and are 

highly effective in speech recognition and music analysis. 

2. Chroma Features: are a representation of the pitch classes in a signal that are 

strongly associated with the tonality and harmony of music. 

3. Zero-Crossing Rate (ZCR): is a measure of the frequency at which a signal passes 

the zero point. It is beneficial for differentiating between spoken and non-spoken 

language, as well as for analysing patterns of rhythm. 

4. Spectral Centroid and Spectral Flux: are used to analyse the structure and 

variations in the spectrum. These attributes are often employed in segmenting 

audio and identifying music genres. 

5. Pitch Features: are crucial for activities such as extracting melodies, tracking pitch, 

and aligning audio to MIDI. 

The selection and combination of these features depend on the specific application 

scenario and task objectives. By thoroughly studying and utilizing these features, ACA 

systems can provide a more comprehensive and accurate analysis and understanding 

of audio content, supporting various fields such as music information retrieval, audio 

classification, and speech recognition. In the future, with the continuous development 

of new technologies like deep learning, ACA systems are expected to achieve higher 

levels of semantic understanding and interactive applications. 

3.2 Machine Learning for Music Information 

Retrieval 

In this section, typical machine learning methods encompassing both shallow and 

deep learning approaches are reviewed. Traditional shallow learning strategies such as 

artificial neural networks (ANNs), have demonstrate fundamental capabilities in music 
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feature extraction and basic classification tasks. However, the emergence of deep 

learning, particularly convolutional neural networks (CNNs), enables more 

sophisticated feature learning and pattern recognition. Three typical CNN 

architectures (i.e., VGG, ResNEt and DenseNet) and reviewed due to their significant 

contributions to MIR. VGG demonstrates the effectiveness of deep, sequential 

architectures and small kernel sizes. ResNet introduces residual learning, crucial for 

training deeper networks. DenseNet provides insights into feature reuse and efficient 

parameter utilization. These fundamental concepts directly inform the design of music-

specific networks. 

3.2.1 Artificial Neural Network 

Artificial Neural Networks (ANNs) are computational models designed to simulate 

the way the human brain processes information. They are widely used in the fields of 

machine learning and artificial intelligence [59]. ANNs consist of a large number of 

interconnected nodes (or "neurons") distributed across various layers, including an 

input layer, one or more hidden layers, and an output layer. The link between each 

layer has a weight that adjusts the strength of the signal passing through it. These 

weights can be adjusted by utilising training data in order to perform intricate nonlinear 

mappings, and thus enabling them to carry out tasks such as classification, regression, 

and clustering. 

ANNs can be used to extract features from music signals, such as spectral features, 

rhythm features, and pitch features [60]. ANNs can be applied to music classification 

tasks, such as genre classification and emotion analysis [61]. They can also be used 

for music generation by training a network to learn the structure and style of music 

[62]. This often involves using more complex network structures such as Recurrent 

Neural Networks (RNNs) or Variational Autoencoders (VAEs) [63]. Additionally, 

ANNs are widely used in music recommendation systems to analyze a user's listening 

history and preferences [64]. 
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3.2.2 CNN 

 Convolutional Neural Networks (CNNs) are a special type of ANN designed for 

processing data with a grid structure, such as images [9]. CNNs utilize convolutional 

layers to establish connections between neurons and distribute weights, resulting in a 

reduction of model parameters and enhancement of computing performance [10]. This 

design allows CNNs to effectively extract features and construct hierarchical 

structures by stacking multiple convolutional layers.  

A conventional CNN model [65] shown in Fig. 3-2 typically consists of the 

following layers: 

1. Input Layer: receives the raw input data, such as an image or a spectrogram. 

2. Convolutional Layer: executes the convolution operation by moving filters across 

the input data. Each filter detects specific features or patterns in the input.  

3. Activation Function: After each convolutional layer, an activation function is 

applied to introduce non-linearity into the model. Common activation functions 

include Rectified Linear Unit (ReLU), Hyperbolic Tangent Activation 

Function(Tanh) and Sigmoid Activation Function. 

4. Pooling Layer: are used to downsample the feature maps obtained from the 

convolutional layers. They reduce the spatial dimensions of the feature maps while 

retaining the most important information. Common pooling operations include 

max pooling and average pooling. 

5. Fully Connected Layer: After several convolutional and pooling layers, the 

extracted features are flattened and passed through one or more fully connected 

layers. These layers learn to combine the extracted features and make predictions 

or classifications based on the input data. 

6. Output Layer: The final layer of the CNN produces the desired output, such as 

class probabilities for classification tasks or continuous values for regression tasks. 
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3.2.3 VGG 

The VGG architecture [66], a convolutional neural network (CNN) developed by 

the Visual Geometry Group at the University of Oxford, is renowned for its 

effectiveness in image recognition tasks. The model is celebrated for its simplicity and 

robust design, achieving impressive results in various image recognition challenges. 

Among the various versions of the VGG model, VGG16 is the most well-known, with 

the numbers indicating the total number of weighted layers. 

As shown in Fig. 3-3, VGG16 consists of a total of 16 weighted layers, including 

13 convolutional layers and 3 fully connected layers. The input to the model is an 

image with dimensions 224 x 224 x 3, indicating that it accepts RGB images of size 

224 x 224 pixels. The convolutional layers are arranged in five blocks, with each block 

followed by a max-pooling layer for downsampling. The number of filters in each 

convolutional layer increases as the network goes deeper (64, 128, 256, 512, 512). All 

convolutional layers use small 3x3 filters, which is a key feature of the VGG 

architecture. By using multiple convolutional layers, the network is able to acquire a 

deeper understanding of intricate aspects. After the convolutional layers, there are 

three fully connected (FC) layers. The initial two fully connected (FC) layers consist 

of 4096 units each, whilst the last FC layer comprises 1000 units. These units 

correspond to the number of classes included in the ImageNet dataset, which was 

utilised to train the original VGG-16 model.  After each convolutional layer and the 

first two fully connected layers, the rectified linear unit (ReLU) activation function is 

applied to introduce non-linearity into the model. The application of the softmax 

 

Fig. 3-2. Architecture of LeNet 
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activation function to the last fully connected layer produces a probability distribution 

across the 1000 classes, hence yielding the ultimate output of the model. 

 VGG16-like models are frequently used for extracting and analysing features, 

expanding their usefulness beyond only image identification. Within the field of Music 

Information Retrieval (MIR), these models may be utilised for tasks such as 

identifying instruments, classifying music genres, and analysing emotions [67]. Within 

the realm of music performance analysis, researchers have investigated the use of 

VGG-style architectures for various purposes, including performance evaluation [68], 

and expressive performance modelling [69]. These studies have demonstrated the 

potential of deep learning techniques in capturing the nuances and complexities of 

musical performances. 

 

 

Fig. 3-3. Architecture of VGG-16  
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3.2.4 ResNet and DenseNet 

ResNet (Residual Network) and DenseNet (Densely Connected Network) are both 

CNN architectures designed to enable the training of deeper neural networks than CNN. 

ResNet is characterized by its use of residual learning (via skip connections) to address 

the problem of vanishing gradients in deep models [70]. ResNet architectures typically 

consist of multiple stacked residual blocks, which allows the network to learn more 

complex features at different scales. ResNet models are known for their depth, with 

successful architectures ranging from 18 to 152 layers or even deeper. The skip 

connections enable the training of these deep networks without suffering from the 

vanishing gradient problem.  

For deeper ResNet models, such as ResNet-50 and ResNet-101 [97], bottleneck 

blocks are used to improve computational efficiency. These blocks consist of three 

convolutional layers which are a 1x1 convolutional layer for reducing the number of 

channels, a 3x3 convolutional layer for learning spatial features, and another 1x1 

convolutional layer for increasing the number of channels back to the original size. 

ResNet models frequently use global average pooling in place of fully linked layers at 

the end of the network. By doing so, overfitting is prevented and the number of 

parameters is decreased. After every convolutional layer, batch normalisation layers 

are frequently included in ResNet models. Batch normalization helps in stabilizing the 

training process, reducing the sensitivity to initialization, and allowing higher learning 

rates. The skip connections in ResNet models can be either identity mappings (when 

the input and output have the same dimensions) or projection mappings (when the 

dimensions differ). These shortcuts allow the network to learn the residual functions 

effectively. 

ResNet is extensively used and has demonstrated state-of-the-art performance in a 

number of computer vision applications, such as semantic segmentation, object 

identification, and image classification. Its success has inspired the development of 

many subsequent architectures, such as DenseNet [71], Squeeze-and-excitation 

network [72], and ResNeXt [73]. 
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DenseNet [71] is a convolutional neural network architecture that enhances layer 

connectivity. Unlike traditional CNNs, DenseNet connects each layer to every other 

layer, enabling direct access to feature maps from all preceding layers. This dense 

connectivity promotes feature reuse and improves gradient flow during 

backpropagation, which mitigates the vanishing gradient problem and results in more 

efficient and compact models. Small (3x3) convolutions are usually used in each layer 

of the architecture, together with batch normalisation and ReLU activation, to preserve 

stability and non-linearity. 

The growth rate, which controls how many feature mappings each layer contributes 

to higher layers, is a crucial component of DenseNet. Bottleneck layers are used to 

save computation and memory without compromising accuracy by using 1x1 

convolutions. Transition layers, comprising batch normalization, 1x1 convolution, and 

2x2 average pooling, are used between dense blocks to downsample feature maps and 

control model complexity. Dense blocks, where layers are densely connected, facilitate 

efficient feature propagation and reuse, contributing to the network’s compactness and 

learning efficiency. 

Both ResNet and DenseNet have been applied to various MIR tasks, such as music 

genre classification [74], and music emotion recognition [75], etc. These architectures 

have demonstrated improved performance compared to traditional CNN models, 

particularly in scenarios where deep networks are required to capture complex musical 

features and patterns. 

3.3 Related work for MIR 

3.3.1 Automatic Music Transcription (AMT) 

Estimation and tracking of multiple Fundamental Frequencies is one of the major 

tasks in Automatic Music Transcription (AMT) of polyphonic music analysis [19] and 

Music Information Retrieval (MIR) [76], which is referred to as a subtask in the Music 

Information Retrieval Evaluation eXchange (MIREX) 1 . Multiple fundamental 

 
1 http://www.music-ir.org/mirex/wiki/MIREX_HOME 
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Frequency Estimation (MFE), also namely Multiple Pitch Estimation (MPE), is 

challenging in processing simultaneous notes from multiple instruments in polyphonic 

music [10, 77]. There is often a trade-off between the robustness and efficiency of 

algorithms that focuses more on complexity rather than single-pitch estimation. 

According to Benetos [78], the MPE approaches are categorised into three types, 

i.e. feature based, spectrogram-factorization based and statistical-model based 

methods. In feature based methods, signal processing techniques such as the pitch 

salience function [79] and pitch candidate set score function [80] are used. In 

spectrogram-factorization methods, both NMF and PLCA approaches have received a 

lot of attention in recent years [79], and numerous improved versions [11, 81, 82] 

based on both methods have been published and are recognised as leading spectrogram 

factorization-based methods in the MPE domain. The statistical model-based methods 

employ the maximum a posteriori [10] estimation, maximum likelihood or Bayesian 

theory [83] to detect the fundamental frequencies. It is worth noting that these three 

distinct types of MPE approaches can be joined or interacted with [79] for a variety of 

applications.  

In recent years, many deep learning (DL) based supervised MPE approaches have 

also been developed. Cheuk, et al., [84] presented a DL model for AMT by combining 

the U-Net and Bidirectional Long Short-Term Memory (BiLSTM) neural network 

modules. He proposed ReconVAT, a semi-supervised AMT framework integrating a 

U-Net with self-attention, spectrogram reconstruction and virtual adversarial training, 

to leverage labeled and unlabeled data in the same year [85]. Mukherjee, et al. [86], 

used statistical characteristics and an extreme learning machine for musical instrument 

segregation, where LSTM and the recurrent neural network (RNN) [87] were 

combined to differentiate the musical chords for AMT. Fan [88] proposed a deep 

neural network to extract the singing voice, followed by a dynamic unbroken pitch 

determination algorithm to track pitches. Sigtia [13] developed a supervised approach 

for polyphonic piano music transcription that included a RNN and a probabilistic 

graphical model. Although DL approaches may provide adequate music transcriptions, 

they often require high performance computers and excellent graphic processing units 
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(GPU) to speed-up the lengthy training process [89]. CNN models are widely used in 

Automatic Music Transcription (AMT). Bittner, et al. [90] apply a CNN model, 

highlighting its instrument-agnostic capabilities. Kong, et al. [91] also employs a 

CNN-based model, specifically tailored for detailed piano transcription, including 

pedal effects. In [92], a comprehensive toolbox that includes various CNN-related 

models was proposed for transcribing a wide range of musical elements across 

different instruments. Thanks to the development of the Transformer framework in the 

NLP, many attention based models have been explored for AMT in the recent year 

[93-96]. In [93], Sony proposed an automatic piano transcription method that uses a 

two-level hierarchical time-frequency transformer architecture. In [94], a transformer 

model has been used to transcribe multiple instruments for a diverse range of styles 

and combinations of musical instruments. In [95] Google research combine a generic 

encoder-decoder transformer with a simply greedy decoding strategy for piano 

transcription. In [96], CNN and Transformer are fused together for AMT where the 

combination of convolutional blocks and Gated Recurrent Unit (GRU) is used to 

extract onset, offset and pitch, the combination of convolutional blocks and 

Transformer is used to extract the velocity. Furthermore, DL algorithms may suffer 

from inaccurately labelled data, and the performance may be susceptible to the training 

samples and the learning procedures used. For the AMT task, acquiring large-scale, 

high-quality labeled data for musical notes can be more challenging [19]. 

Consequently, an unsupervised method is emphasized, wherein prior cognitive 

theories and assumptions from previous studies [23, 97, 98] will be used to guide the 

fundamental pitch detection in polyphonic music pieces.  

To distinguish the pitch using harmonic analysis, two types of statistical models are 

often used. One is the Expectation-maximization (EM)-based algorithms [54], and the 

other is Bayesian-based algorithms [99]. For EM-based methods, Emiya [100] et al., 

proposed a Maximum likelihood based method for multi-pitch estimation. Duan [101] 

proposed a three-stage music transcription system and applied Maximum likelihood 

for final note tracking. Ben and Amit [102] proposed an unsupervised music 

transcription framework using expectation maximization to iteratively align separate-
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sourced musical scores with audio recordings and trained a transcription model using 

convolutional layer and LSTM layer. For Bayesian-based methods, Alvarado [103] et 

al., combined Gaussian processes and Bayesian models for multi-pitch estimation. Ryo 

[104] et al., integrate Hidden Markov Model and Bayesian inference together to 

precisely detect the vocal pitch. Those statistical models can be also considered as 

shallow learning methods, as data should first be observed to gain some prior 

knowledge, based on which the experiments should then be conducted. After constant 

addition of the information of the new samples into prior distribution, the posterior 

inference can be delivered along with the final results. Although the shallow learning 

approaches have been widely investigated [105], they still have much room to improve. 

Apart from the aforementioned issues, most MPE methods are designed from the 

viewpoint of signal processing rather than music cognition, resulting in a lack of 

sufficient underpinning theory and inefficient modelling. To tackle this issue, in 

Chapter 4, a general framework will be proposed, where music cognitions are used to 

guide the entire process of MPE. In the pre-processing, inspired by cognitive 

neuroscience of music [98], the Constant-Q transform (CQT) [38] is employed to 

transfer the audio signal to Time-frequency spectrogram. The pianoroll transcription 

is then generated using a conventional matrix factorization approach, Shift-Invariant 

probabilistic latent component analysis (SI-PLCA) [81]. In the Harmonic structure 

detection (HSD) process, the cognitions of harmonic periodicity and instrument timbre 

[23] are used to guide the extraction of multiple pitch. The efficacy of the suggested 

methodologies has been fully validated by experiments on three publicly available 

datasets.  

3.3.2 Predominant Musical Instrument Recognition (PMIR) 

Music information retrieval (MIR) has drawn significant research attention in the 

last decade and has been used in many applications, such as music retrieval and 

automatic music transcription, etc. [106]. Instead of manually identifying the rhythm, 

genre and timbre by ear, MIR techniques automatically label audio data based on their 

time and frequency information. A sub-task of MIR is predominant musical instrument 
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recognition (PMIR), which enables customers to search music by instruments, as well 

as making music transcription easier and more accurate [107]. However, PMIR is a 

very challenging topic and current PMIR approaches have yet to be commercialised 

due mainly to lack of robust performance. However, it is quite useful in some 

applications such as assisting automatic music transcription (AMT) detection, crude 

instrument classification, and instrument characterization.  

The identification of a musical instrument depends primarily on its timbre [23]. 

From the point of view of physics, the timbre produced from an object is determined 

from its vibrational state, which characterises the object’s waveform and harmonic 

properties. For a specific musical instrument, its spectrum change is very complicated. 

Due to different playing techniques, instrument condition and recording manner, the 

same type of musical instrument will have apparent changes in timbre. For timbre 

analysis, Pons [108] underscores the importance of focusing on timbre as a distinct 

characteristic of sound through a combination of weight decay regularization and the 

use of specific filter shapes. Hernandez [109] introduced the multi-head attention 

mechanism to adaptively highlights the unique and subtle timbral changes among 

various musical instruments in complex sound samples such as tremolo and pizzicato. 

In general, there are two kinds of musical data: monophonic and polyphonic music. 

In monophonic music, the instrument is played independently. Most of the work on 

instrument recognition is done under the assumption of independent performance, 

which simplifies the recognition task. In the case of separate recordings, musical 

instrument digital interface (MIDI) can store each instrument in a channel, making it 

easier for a single instrument to be detected. Bhalke et al. [110] proposed a musical 

instruments classification method based on Mel Frequency Cepstral Coefficient 

(MFCC) features and a Counter Propagation Neural Network. Their method obtained 

an accuracy of 91.84% for recognising 19 instruments. Babak and Marcus [111] used 

frequency domain features with an Artificial Neural Network (ANN) to classify eight 

types of instruments and compared the results against five state-of-the-art methods. 

Anushka et al. [112] proposed an approach for string instrument recognition that gave 

an accuracy of 89.85% using a Support Vector Machine (SVM) and 100% with a 
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Random Forest classifier on the IRCAM dataset which contained only  4 string-family 

instruments. Hernandez [109] took mel spectrograms  as the input and proposed a 

multi-head attention mechanism based deep learning model to effectively extract the 

timbral characteristics from the music recordings and classify musical instruments. 

However, music is more often polyphonic than monophonic, such as in a symphony 

orchestra or recording live scenes. Recognition of a single instrument in a polyphonic 

music recording is therefore much more difficult, and several attempts have been made 

for automatic recognition. Olga Slizovskaia et al. [113] extracted instrument features 

through a standard bag-of-features pipeline and achieved a 67% classification accuracy 

on IRMAS database [114], which includes 11 different instruments in the recordings. 

Han et al. [107] integrated MFCC and CNN together to get a classification accuracy 

of 63.3% on IRMAS dataset. Peter Li et al. [115] achieved 82.74% accuracy on the 

MedleyDB dataset [116] by applying a CNN model on the raw audio data. In 2018, 

Yun-Ning et al. [117] achieved an 81.7% accuracy by using the constant Q-transform 

(CQT) and skip connection methods on MedleyDB and other datasets. In 2019, 

Siddharth et al. [118] proposed an approach for handling weakly labeled data using an 

attention enabled deep learning model on the OpenMIC dataset that contains 20 

instruments [119]. Their method achieved an average F1-score of approx. 81.03%. 

Gururani et al. [120] implements a Convolutional Neural Network (CNN) architecture 

to perform simultaneous tasks, including frame-level instrument identification and 

timbral feature extraction. In 2000, Racharla et al. [121] took Mel-Frequency Cepstral 

Coefficients (MFCC) for feature extraction and applies various machine learning 

models like Support Vector Machines (SVM) and Random Forest for the classification 

of predominant musical instruments in audio samples. Kratimenos et al., [122] 

proposed to combine data augmentation methods such as pitch shifting and time 

stretching with Convolutional Neural Networks (CNNs) together for advanced PMIR. 

In 2021, the method mentioned in [123] involves using hierarchical structures within 

a CNN model even with a limited amount of training data, effectively improving 

performance in few-shot learning scenarios. In 2022, Hsin-Hung at al. [124] combined 

U-net and CNN architectures together for initial data processing, incorporated noise 
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reduction techniques, transformed data into an Abstract Syntax Tree (AST) format, 

and concluded with Fully Connected Layers (FCL) for final instrument classification. 

Existing approaches for identifying instruments in monophonic music have 

achieved relatively satisfied performance. However, there is still a large gap for 

improving the accuracy of instrument recognition in polyphonic music pieces [114]. 

This is the primary motivation of proposing a new framework for PMIR which uses 

the Hilbert-Huang Transform (HHT) to generate a feature matrix from music 

recordings and input these features into a deep learning model for automatically 

learning instrument features from polyphonic music recordings. The implementation 

details will be presented in Chapter 5. 

3.3.3 Musical Shape Evaluation (MSE) 

As a sub-task of music information retrieval (MIR), music performance assessment 

(MPA) has drawn considerable attention [125] [126]. In practical music education, 

MPA helps to improve the candidates’ capability of performing and self-evaluation. 

However, it needs comprehensive music perception and cognition which are mostly 

built up via long-term practice and understanding. Currently, MPA for piano students 

is mostly guided by music trainers, resulting in extensive time and resources needed. 

An AI-driven MPA would be particularly useful for raising the efficacy of music 

education whilst reducing the cost (Fig. 3-4). 

Alignment of score to audio performance is an essential preprocessing step for 

many music analysis tasks. It links descriptive score symbols to audio features derived 

from performance, enables studying performances in musical context, relating score 

semantics to acoustic realizations. In [127], it generated note-level alignments between 

scores (MusicXML files) and performances (audio recordings). A two-stage system 

including dynamic time wrapping (DTW)-based audio-to-score alignment and Hidden 

Markov Model (HMM)-based note transition modelling has been proposed. [128] 

Extracted beat-synchronous and measure-wise audio features aligned to musical score 

according to the sync-toolbox pipeline. [129] extracted the features such as chroma, 

and loudness using some off-the-shelf methods and developed a time-alignment 
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method to automatically compare and align multiple interpretations of classical piano 

works based on DTW. In [130], it first used DTW for alignment, and a convolutional 

neural network architecture was proposed to evaluate student instrumental 

performance compared to reference standard. 

The marking criteria of music scores in some music educational exams, such as the 

Associated Board of the Royal Schools of Music (ABRSM), are determined by five 

elements, i.e., pitch, time, tone, shape and overall performance [17]. Many machine 

learning and deep learning models have been explored to evaluate the pitch, time, 

rhythm and tone in MPA [126]. Typical works include convolutional neural network 

(CNN) for local tempo and tempo stability assessment [131],  support vector regressor 

for assessing rhythmic accuracy and tone quality [132], fusion of CNN and recurrent 

network for pitch extraction [133], and the integration of 2DCNN and 3DCNN for 

overall evaluation of piano skills [134], etc. In [135], a deep neural network was used 

to extract the pitch, onset/offset time of the transcription, followed by the HMM for 

alignment between MIDI data and musical score. In [136], convolutional layer and 

GRU are combined together in an deep neural network to estimate note-level MIDI 

velocity of piano performance. In [137], a contrastive-based network is proposed to 

improve the overall performance assessment where 1-D convolutional layers are 

stacked followed by contrastive loss.   

However, musical shape evaluation (MSE) for MPA remains unaddressed to date. 

Musical shape (MS), as a unit to build a coherent narrative music environment, is one 

of the most evident characteristics, which offers a more ecologically valid way of 

understanding the feeling responses to the music than seeing music as expressive of 

 

Fig. 3-4. Concept of current MPA in music education. 
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particular emotional states [34]. Due to its abstraction and multisensory perception, 

the musicology study has progressed slowly. In 1963, Langer [29] proposed a famous 

theory of ‘sound the way moods feel’ where musical shape is considered as a 

fundamental unit in music’s intrinsic properties. In 2006, Eitan and Granot [32] 

discussed the associations of dynamics, pitch, time, and articulation to musical shape 

by comparing the music perception with musicians and non-musicians. The result 

found that time patterns are highly related to the musical shapes. Pitch and dynamics 

patterns are potentially linked with musical shapes, which required further 

investigation. To tackle this issue, Küssner and Leech-Wikinson [33] carried out an 

extensive study in 2014 and discovered that pitch contour does not closely associate 

with musical shapes though that too is important for musicians. In 2017, Daniel [34] 

defined that music shape refers to the small dynamics changes in music that can 

represent feeling and movement states, or any tiny changes varying with time, giving 

life-like qualities to music. Therefore, the core to MSE is to discriminate the time and 

dynamics patterns in music pieces.  

Alexander Lerch presented a critical review of MPA [125] and pointed out that 

most MIR researchers neglect the difference between score-like and performance 

information. Some scholars analyze MPA by focusing on rhythm and timing [131, 

138]. Basak[138] presents an automatic system for assessing students' rhythmic pattern 

imitation in music education. And this article [131] explored various methods for 

measuring tempo stability. The parameter of playing Techniques has been explored in 

studies like [139] and [140], these studies analyze the recognition and classification of 

different playing techniques such as bowing variations, plucking styles, fingerpicking 

patterns, and other instrumental techniques. Some scholars analyzed Music 

Performance Analysis (MPA) focusing on rhythm and dynamics. In [141], a recurrent 

neural network based model was proposed to classify music performers based on their 

interpretative styles by analyzing timing, dynamics and articulation. In [142], it 

introduced a new dataset where some basic analysis of loudness and timing variations 

across pianists and pieces are carried out for note-level performance analysis. [143] 

focused on the analysis of timing and dynamics as part of evaluating expressive 
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performance in piano music. It specifically looked at how generative models handle 

these aspects and the perceptual impact of any discrepancies or variations in these 

parameters when compared to human performances. In [144], a conditional variational 

autoencoder framework is proposed to predict continuous controllers for dynamics and 

timing. Although many scholars have studied time and dynamics patterns with the 

corresponding datasets reported [125],  they do not intend to evaluate the music’s 

intrinsic properties. Thus, it brings a large barrier for using existing MIR technique to 

interpret the music’s intrinsic properties.  

To advance the field of Music Performance Analysis (MPA), it's imperative to 

incorporate a novel approach that bridges the gap between human perception and the 

inherent characteristics of music. For this purpose, a specific dataset is also needed. 

Consequently, Chapter 5 introduces an innovative MSE dataset, meticulously curated 

to serve this purpose. This dataset is unique in its composition, featuring performances 

from three experienced music trainers and ten young students. The conceptual 

foundation for this dataset, inspired by the illustration in Fig. 3-4, is the differentiation 

between 'normal music shape' and 'specific music shape'. Performances by the music 

trainers, informed by their deep understanding of music cognition and perception, are 

categorized as exhibiting a 'normal music shape.' Conversely, renditions by the 

students, interpreted through their learning and interpretative lens, are deemed to 

embody a 'specific music shape'.  

On a different note, music shape (MS) is an example of how multisensory capacity 

is facilitated by the sensorimotor cortex in the brain [34], and the neocortex is 

organized in a manner to make the underlying processes as efficient as possible. This 

has motivated us to develop a deep neural model for MSE. 

Siamese network is an architecture with two identical branches, where each head 

takes one input data and the weights and bias of any neural network in each branch are 

the same [145]. The advantage of this architecture is that it can learn semantic 

similarity from the two inputs and doesn’t rely on massive data to perform well [146]. 

On the other hand, Residual network [70] has attracted much attention thanks to the 

strong feature representation of residual blocks. As a result, its variants have been 
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widely used for image classification and produce impressive performance [147]. 

Taking the advance of both deep learning frameworks, a Siamese residual neural 

network (S-ResNN) is proposed in Chapter 6. In this model, the music piece played 

by music trainer and the corresponding one played by student are taken as the inputs 

which will be transformed into spectrum before sending to both branches. Then the 

proposed S-ResNN will extract the global spectral feature and identify the musical 

shapes in the piano pieces. Extensive experiments on the proposed MSE dataset have 

shown the superiority of S-ResNN when comparing with the combination of machine 

learning and conventional signal processing methods, and deep learning models such 

as VGG16 [66], ResNet50 [70] and DenseNet161 [71]. 

3.4 Evaluation metrics 

Evaluation metrics play a crucial role in assessing the performance of predictive 

models. This section explores a comprehensive set of metrics, including the Area 

Under the ROC Curve (AUC), Mean Absolute Error (MAE), Maximum F-Measure 

(MaxF), Overall Accuracy (OA), Average Accuracy (AA), Kappa coefficient (KP), 

Precision, Recall (or Sensitivity), F-Measure (or F-Score, F1), Confusion Matrix, and 

Receiver Operating Characteristic (ROC) Curve. These metrics provide a multi-

faceted view of model performance, allowing for a thorough understanding of their 

strengths and weaknesses.  

1. AUC (Area Under the ROC Curve): AUC measures the two-dimensional area under 

the ROC curve, which plots the true positive rate (TPR) against the false positive 

rate (FPR) at various threshold settings. The AUC value ranges from 0 to 1, with 1 

indicating a perfect model and 0.5 suggesting a model no better than random 

guessing. The AUC can be calculated using the following equation: 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0

 (3.21) 

where 𝑇𝑃𝑅(𝐹𝑃𝑅) is the true positive rate as a function of the false positive rate. 



73 

 

2. MAE (Mean Absolute Error): MAE measures the average magnitude of errors in a 

set of predictions, without considering their direction. It is calculated as the mean 

of the absolute differences between the predicted and actual values over the test 

sample: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1
 (3.22) 

where n is the number of samples, 𝑦𝑖 is the actual value, and 𝑦�̂� is the predicted 

value. 

3. Confusion Matrix: The confusion matrix provides an effective way to evaluate and 

analyze the performance of a multi-class classification model like the one proposed 

here. As shown in Fig. 3-5, the confusion matrix aggregates the predictions on the 

test set into a table that compares the true instrument labels to the predicted labels. 

The diagonal cells show results where the prediction matches the ground truth, 

divided into true positives (TP) where the model correctly predicts the positive class, 

and true negatives (TN) where the model correctly identifies negative examples. 

Off-diagonal elements are cases where the prediction was incorrect - false positives 

(FP) when the model mistakenly predicts positive, and false negatives (FN) when 

the model misses a positive example. 

4. OA (Overall Accuracy): OA is the simplest evaluation metric, calculating the 

proportion of all true results (both true positives and true negatives) among the total 

number of cases examined: 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.23) 

5. AA (Average Accuracy): AA computes the accuracy for each class individually and 

then takes the average. This metric is particularly important in imbalanced datasets 

where some classes have significantly fewer samples than others: 
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𝐴𝐴 =
1

𝐶
∑

𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝐶

𝑖=1
 (3.24) 

where C is the number of classes, and 𝑇𝑃𝑖, 𝑇𝑁𝑖, 𝐹𝑃𝑖, and 𝐹𝑁𝑖 are the true positives, 

true negatives, false positives, and false negatives for class i, respectively. 

6. KP (Kappa coefficient): KP is to measure the interrater reliability that represents 

the degree of similarity between the change map and the ground truth defined as 

follows: 

𝐾𝑃 =
𝑂𝐴 − 𝑃𝑅𝐸

1 − 𝑃𝑅𝐸
 

(3.25) 

𝑃𝑅𝐸 =
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
 

7. Precision: Precision is the ratio of correctly predicted positive observations to the 

total predicted positives: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.26) 

8. Recall (or Sensitivity): Recall, also known as sensitivity or true positive rate, is the 

ratio of correctly predicted positive observations to all observations in the actual 

class: 

 

Fig. 3-5. Tidy representation of confusion matrix 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.27) 

9. F-Measure (or F-Score, F1): The F-Measure is the harmonic mean of precision and 

recall, providing a balanced measure of a test’s accuracy: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.28) 

The F-Measure ranges from 0 to 1, with 1 indicating perfect precision and recall. 

10. MaxF (Maximum F-Measure): The MaxF is the maximum value of the F-

Measure across all possible thresholds. 

11. ROC Curve: The ROC Curve is a graphical plot that illustrates the diagnostic 

ability of a binary classifier system as its discrimination threshold is varied. It plots 

the true positive rate (TPR) against the false positive rate (FPR) at different 

threshold settings. The ROC Curve provides a visual representation of the trade-off 

between sensitivity and specificity. 

3.5 Chapter Summary 

This chapter presented a comprehensive review of the technical foundations and 

related work in music information retrieval. It begins with an examination of music 

signal pre-processing techniques, including time-frequency representations such as 

STFT, CQT, and the Hilbert-Huang Transform. These fundamental signal processing 

methods serve as the backbone for musical analysis. 

The chapter then explored matrix factorization techniques, particularly focusing on 

Non-Negative Matrix Factorization (NMF) and Probabilistic Latent Component 

Analysis (PLCA), which have proven effective in decomposing complex musical 

signals. Additionally, the evolution of machine learning approaches in music 

information retrieval is discussed, tracing the progression from traditional artificial 

neural networks to advanced architectures such as CNN, VGG, ResNet, and DenseNet. 

A significant portion of the chapter was dedicated to reviewing related work in three 

key research areas: Automatic Music Transcription (AMT), Predominant Musical 
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Instrument Recognition (PMIR), and Musical Shape Evaluation (MSE). The major 

challenges for three research areas are summarized below 

1. Automatic Music Transcription (AMT): 

– Current methods focus primarily on signal processing rather than music 

cognition; 

– Lack of sufficient underpinning theory in existing approaches;  

– Limited accuracy in polyphonic music transcription. 

2. Predominant Musical Instrument Recognition (PMIR): 

– Significant performance gap between monophonic (91.84%) and polyphonic 

(67%) recognition; 

– Limited ability to handle complex multi-instrument scenarios; 

– Need for more efficient feature extraction methods for polyphonic music. 

3. Musical Shape Evaluation (MSE): 

– Absence of comprehensive frameworks for evaluating musical shape; 

– Limited understanding of the relationship between technical and expressive 

aspects; 

– Lack of standardized datasets for musical shape analysis. 

To tackle those challenges, the following chapters will introduce the proposed 

models. Chapter 4 presents a novel cognitive-guided framework for Multiple Pitch 

Estimation (MPE), uniquely integrating a cognitive understanding of harmonic 

periodicity and instrument timbre to enhance multiple pitch extraction.
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Chapter 4 

 

4 A Music Cognition–guided Framework 

for Multi-pitch Estimation  

 

4.1 Introduction 

This chapter addresses an effective system for multi-pitch estimation (MPE) of 

polyphonic music wherein a novel harmonic structure detection (HSD) method is 

presented. The proposed unsupervised MPE system is based on the Constant-Q 

transform and a state-of-the-art matrix factorization method called Probabilistic Latent 

Component Analysis (PLCA) that resolves the polyphonic short-time magnitude log-

spectra for multiple F0 estimation and source-specific feature extraction. The proposed 

HSD method detects the pitches by analyzing the characteristics of contiguous notes 

and the relationship between fundamental frequency and harmonic frequencies, where 

correlative music knowledge and probability model are used to guide the key process. 

In addition, the performance of this MPE system is compared to a number of existing 

state-of-the-art approaches (seven unsupervised and four supervised) on three widely 

used datasets (i.e. MAPs, BACH10, and TRIOS) in terms of F-measure values. The 

experimental results show that the new MPE method provides the best overall 

performance compared to other existing methods. 

The major contributions of this chapter may be highlighted as follows. First, a new 

HSD model that incorporates music cognition for multiple fundamental frequency 

extraction is proposed. Second, a new note tracking method guided by music 

connectivity and multi-pitch model is proposed. By combining conventional pianoroll 

transcription approaches and the proposed HSD model, a new music cognition guided 
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optimization framework is introduced for MPE. Experimental results on three datasets 

have demonstrated the merits of the proposed approach, when benchmarked with 11 

state-of-the-art methods.  

The rest of the chapter is structured as follows: Section 4.2 describes the 

implementation of the proposed harmonic structure detection method. Section 4.3 

presents the experimental results and performance analysis. Finally, a thorough 

conclusion is drawn in Section 4.4. 

4.2 Cognition guided multiple pitch estimation 

4.2.1 System Overview 

The objective of this work is to detect the multiple pitch from music pieces of mixed 

instruments, where an MPE system is proposed, which contains three key modules, 

i.e., pre-processing, harmonic structure detection and note tracking. Preprocessing 

covers a standard procedure, in which an input music signal needs to go through a 

time-frequency (TF) representation and matrix factorization for feature extraction. The 

overall diagram of the MPE framework is illustrated in Fig. 4-1, where the 

implementation details are presented in the rest sub-sections.  

4.2.2 Pre-Processing 

According to the cognitive neuroscience of music [98, 148], before selectively 

stimulating the auditory cortex, different frequencies within the music need be first 

filtered by the human cochlea. As the frequency of human auditory perception is 

logarithmically distributed [38], there is a greater discrimination when hearing 

relatively lower frequencies. The Constant-Q transform (CQT) [39], based on the FFT 

principle, can process a logarithmic compression similar to that of the human’s cochlea 

helical structure [39]. Therefore, the CQT is employed as the TF representation module 

to derive the TF spectrogram, as it is efficient at lower frequencies. There are fewer 

frequencies required in a given range, which has testified its usefulness when the 

frequency distribution in several octaves is discrete.  
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Fig. 4-1. The overall MPE system. 

Input

Music piece Audio signal

Pre-processing

TF-spectrogram Matrix factorization

Note Tracking

Final resultParameter setting

Guided 

Weight

(f)
Harmonic structure detection

Harmonic Map



80 

 

Meanwhile, an increased frequency bins correlates to a decrease in the temporal 

resolution rate, making it suitable for auditory applications. A spectral resolution of 60 

bins per octave is used as suggested by Brown [38]. The outputs from the TF 

transformation are linear when using the Fast Fourier Transform (FFT) to analyse the 

frequency (Fig. 4-2 (a)).  

 In the matrix factorization module, the CQT spectrogram results are used as the 

input, approximately modelled as a bivariate probability distribution  𝑷(𝑝, 𝑡) . The 

output of this module is a 2-dimensional non-binary representation of pianoroll 

transcription (a pitch vs. time matrix shown in Fig. 4-2 (b)). In this chapter, the fast 

Shift-Invariant probabilistic latent component analysis (SI-PLCA) [48] is used for 

automatic transcription of polyphonic music, as it is extremely useful for log-

frequency spectrogram, due to the same inter-harmonic spacing for all periodic sounds 

[5]. Given an input signal 𝑿𝑡, the output of CQT is a log-frequency spectrogram 𝑽𝑧,𝑡 

that can be considered as a joint time-frequency distribution 𝑷(𝑧, 𝑡) where 𝑧 and 𝑡 

denote the frequency and time, respectively. After applying the SI-PLCA, 𝑷(𝑧, 𝑡) can 

be further decomposed into several components by [48]: 

𝑽𝑧,𝑡 = 𝑷(𝑧, 𝑡) = 𝑷(𝑡) ∑ 𝑷(𝑧 − 𝑓|𝑠, 𝑑)𝑷𝑡(𝑓|𝑑)𝑷𝑡(𝑠|𝑑)𝑷𝑡(𝑑)

𝑑,𝑓,𝑠

 (4.1) 

where 𝑑, 𝑓, 𝑠  are latent variables which denote respectively the pitch index, pitch-

shifting parameter, and instrument source. In Eq. (4.1), 𝑷(𝑡) is the energy distribution 

of the spectrogram, which is known from the input signal. 𝑷(𝑧 − 𝑓|𝑠, 𝑑) denotes the 

spectral templates for a given pitch p and instrument source s with f pitch shifting 

across the log-frequency. 𝑷𝑡(𝑓|𝑑) is the log-frequency shift for each pitch on the time 

frame t, 𝑷𝑡(𝑠|𝑑) represents instrumentation contribution for the pitch in the time frame 

t, and 𝑷𝑡(𝑑) is the pitch contribution which can be considered as transcription matrix 

on the time frame t. Since there are latent variables in this model, the expectation 

maximization (EM) algorithm [54] is often used to iteratively estimate the 

corresponding unknown variables. 
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In the Expectation step, the Bayes’s theorem is adopted to estimate the contribution 

of the latent variables d, f, s for reconstruction of the model: 

 

(a) Result of CQT 

 

(b) Result of PLCA 

Fig. 4-2. Illustration of input music signal TF representation module and 

pianoroll transcription module, the range from 200-300 bins in (a) are 

probably corresponding to 40-60 pitches in (b). 
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𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧) =
𝑷(𝑧 − 𝑓|𝑠, 𝑑)𝑷𝑡(𝑓|𝑑)𝑷𝑡(𝑠|𝑑)𝑷𝑡(𝑑)

∑ 𝑷(𝑧 − 𝑓|𝑠, 𝑑)𝑷𝑡(𝑓|𝑑)𝑷𝑡(𝑠|𝑑)𝑷𝑡(𝑑)𝑑,𝑓,𝑠
 (4.2) 

In the Maximization step, the posterior of Eq. (4.2) is used to maximise the log-

likelihood function in Eq. (4.3), which leads to the update of Eqs. (4.4)-(4.7). As 

suggested in [48], this step can converge after 15-20 iterations. Finally, the pianoroll 

transcription 𝑷(𝑑, 𝑡) = 𝑷(𝑡)𝑷𝑡(𝑑) is calculated by the following equations: 

ℒ = ∑ 𝑽𝑧,𝑡

𝑧,𝑡

log(𝑷(𝑧, 𝑡)) (4.3) 

𝑷𝑡(𝑧|𝑠, 𝑑) =
∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧 + 𝑓)𝑷(𝑧 + 𝑓, 𝑡)𝑓,𝑡

∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧 + 𝑓)𝑷(𝑧 + 𝑓, 𝑡)𝑓,𝑤,𝑡
 (4.4) 

𝑷𝑡(𝑓|𝑑) =
∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧)𝑷(𝑧, 𝑡)𝑧,𝑠

∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧)𝑷(𝑧, 𝑡)𝑓,𝑧,𝑠
 (4.5) 

𝑷𝑡(𝑠|𝑑) =
∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧)𝑷(𝑧, 𝑡)𝑧,𝑓

∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧)𝑷(𝑧, 𝑡)𝑠,𝑧,𝑓
 (4.6) 

𝑷𝑡(𝑑) =
∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧)𝑷(𝑧, 𝑡)𝑧,𝑓,𝑠

∑ 𝑷𝑡(𝑑, 𝑓, 𝑠|𝑧)𝑷(𝑧, 𝑡)𝑑,𝑧,𝑓,𝑠
 (4.7) 

4.2.3 Harmonic Structure Detection 

This section is the core of the proposed MPE system where music theories in terms 

of the pattern of beat length and assumption of equal energy between mixed 

monophonic and polyphonic music pieces are used to guide the model for the 

extraction of the multiple fundamental frequencies from a mixture of music sources.  

For a given piece of music, the time domain representation is illustrated in the input 

module in Fig. 4-1. The results of CQT and SI-PLCA are given in Fig. 4-2 (a) and Fig. 

4-2 (b), respectively. Upon observing Fig. 4-2 (b), the fundamental pitch and its 

harmonics have been highlighted by the shaded black and grey strips. However, there 

is considerable noise and redundant information represented by small and grey dots 

which may be misconstrued for pitches at lower frequencies. Furthermore, the white 

gaps in the black and grey strips indicate frequency information that has been lost in 

the analysis. This suggests that the consistency of fundamental pitch is insufficient if 
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considered frame by frame (each frame was set to 10ms). To address these 

inconsistencies, the HSD method is proposed followed by a note tracking process (Fig. 

4-1).  

The proposed HSD includes two main stages. In the first stage, the pianoroll 

transcription 𝑷(𝑝, 𝑡)  is normalised into [0,1]  by using the following max-mean 

sigmoid activation function [149]: 

𝑷𝑵 =
1

1+𝑒−𝒛  where 𝒛 =
𝑷(𝑝,𝑡)−𝑚𝑒𝑎𝑛(𝑷(𝑝,𝑡))

max(𝑷(𝑝,𝑡))−min(𝑷(𝑝,𝑡))
 (4.8) 

where 𝑷𝑵 represents the normalised 𝑷(𝑝, 𝑡). By applying a mean filter in Eq. (4.8), 

the spectrogram can be smoothed. For extreme values which are too large or too small 

than expected, they can also be rationalised. For any 𝑷𝑵, the value of 𝑷𝑵𝑡 at time t 

can be expressed by Eq. (4.9). 

  

𝑷𝑵𝑡 = (𝑷𝑵𝑡−1 + 𝑷𝑵𝑡 + 𝑷𝑵𝑡+1)/3 
(4.9) 

𝑷𝑭𝑡 = 𝑷𝑵𝑡 ∗ 𝛿;      𝛿 = {
1, 𝑖𝑓 𝑷𝑵 > 𝑇𝐻1

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.10) 

Inspired by the music theory that most high-order harmonic components are in the 

high frequency range with low amplitude [97], a two-step hard constrain is used to 

remove most of the high frequency components, noise and redundancy. First, a fixed 

threshold 𝑇𝐻1  is applied in Eq. (4.10) to remove small values. Based on the 

characteristic of sigmoid function (Eq.(4.8)), 𝑇𝐻1  is set to 0.5. Finally, the filtered 

result 𝑷𝑭 of the whole frames is obtained and shown in Fig. 4-3(a).  

In the second step, the statistics of the beat length is used to guide the removal of 

noise and redundant information. According to the cognition of music perception, most 

notes in musical rhythms have a large number of crotchets and quavers, but fewer 

numbers of semiquavers and demisemiquavers [150].  The rate of occurrence of 

different notes in the BACH10 database were observed and measured according to the 

ground truth. A plot was generated of time vs. rate of occurrence in Fig. 4-4, with the 

labelled fractions (i.e. 
1

2
,

1

4
,

1

8
,

1

16
,

1

32
) denoting minim, crotchet, quaver, semiquaver and 

demisemiquaver, respectively. Fig. 4-4 illustrates that the rate of occurrence of 
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crotchets and quavers is larger than that of the demisemiquavers, semiquavers and 

minims. Especially, the number of demisemiquavers and semiquavers are extremely 

low. Furthermore, if the length of a semibreve is defined as 𝜏 , the length of a 

 

(a) 

 

(b) 

Fig. 4-3 Results from the first step (a) and second step (b) in HSD module. 
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demisemiquaver is 𝜏/32. Any notes shorter than a demisemiquaver will be removed 

in 𝑷𝑭 before any further processing in the second stage.  

In Fig. 4-4, a peak value is identified at the initial time steps of the simulation and 

this may be due to two reasons. Firstly, manually played music may contain some 

timing errors, for example holding a note for its precise duration for every note in the 

piece may be impossible. Secondly, ornaments such as vibrato and glissando may be 

mistakenly performed despite not being present on the music score. The length of such 

vibrato and glissando are equal to a demisemiquaver or lower [151]. To extract more 

of the main body of multiple pitch, factors such as human playing habits or ornaments 

are ignored in the proposed work. Relevant results given in section 3 demonstrate that 

the multiple pitch is highlighted whilst removing most of the unwanted noise.  

After filtering the amplitudes from PLCA, the HSD framework was proposed to 

detect the fundamental pitch in the second stage. The flowchart in Fig. 4-5 outlines the 

process of HSD, and Table 4-I lists the description of each parameter. As described in 

the flowchart in Fig. 4-5, the output from previous steps will be analysed in two 

domains i.e., pitch domain 𝑷𝑫 and energy domain 𝑬𝑫. In this context, each frame of 

𝑷𝑭 is split into two vectors,  𝑷𝑫(𝑛) and 𝑬𝑫(𝑛). 𝑷𝑫(𝑛)𝜖ℝ𝑁0×1  is non-zero notes 

 

Fig. 4-4. The relationship between time (note type) and note appearance number 

extracted from the BACH10 database. 
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index in each frame, 𝑬𝑫(𝑛)𝜖ℝ𝑁0×1 is the amplitude of 𝑷𝑫(𝑛) , 𝑁0is the number of 

non-zero notes. As seen, the process is only applied once on the non-zero notes rather 

than the whole frame, because there is no need to analyse those zero-value notes for 

efficiency. 𝑷𝑪𝑯(𝑛, ℎ) establishes potential relationships between harmonics and their 

corresponding pitches. 𝑷𝑪𝑷(𝑛, ℎ)  refines the relationships by selecting the most 

relevant corresponding pitches. 𝑬𝑫𝑮(𝑛, ℎ)  computes weighted components of the 

selected pitches using instrument-guided weights 𝑾𝑖(ℎ). 𝑬𝑯𝑪(𝑛, ℎ) estimates the 

amplitude of each pitch candidate using the weighted components. 𝑬𝑭𝑭(𝑛) Provides 

the final estimated amplitude of the pitch candidates. The details of pitch domain 

analysis and energy domain analysis are described in Section 4.2.4 and 4.2.5, 

respectively. 

4.2.4 Pitch Domain Analysis 

After that, a matrix of pitch candidates and their corresponding harmonics 

𝑷𝑪𝑯𝜖ℝ𝑁0×𝑁𝐻 can be extended from 𝑷𝑫(𝑛). The first column of this matrix is non-

zero pitch values and the rest columns have the associated harmonic pitches of each 

non-zero pitch, where the harmonic pitch is the corresponding pitch value of the 

harmonic frequency. A harmonic map 𝑯𝑴𝒂𝒑𝜖ℝ𝑀×𝑁𝐻 is employed here to guide the 

extension process, which includes the pianoroll number (m) of the fundamental 

 

Fig. 4-5. Flowchart of the proposed HSD 
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frequency (𝑭𝟎) and the corresponding harmonic frequency for every note. Following 

the MIDI tuning standard, the nth non-zero fundamental frequency is transferred to its 

corresponding pianoroll number using Eq. (4.11). Here, 𝑷𝑫 needs to be subtracted by 

20 due to the difference between the pianoroll and the MIDI number. 

𝑷𝑫(𝑛) = 69 + 12 log2 (
𝑭𝟎(𝑛)

440𝐻𝑧
) 

𝒎(𝑛) = 𝑷𝑫(𝑛) − 20,       |𝒎| 𝜖 [1,88] 

(4.11) 

where 69 and 440 are the values of the MIDI number and frequency for the standard 

A, respectively. 12 is the number of notes in one octave. Given a frequency of the input 

Table 4-I Description of parameters 

Parameters Definition Index/Dimension 

𝑵𝟎 The number of non-zero fundamental-pitch; 𝑛𝜖[1, 𝑁0] 

𝑵𝑯 The number of harmonic-pitch; default is 5 ℎ𝜖[1, 𝑁𝐻] 

𝑵𝑰 The number of the instruments in the music piece. 𝑖𝜖[1, 𝑁𝐼] 

m Vector of pianoroll ℝ𝑁0×1 

PF Spectrogram of SI-PLCA after filtering ℝ88×𝑇𝑖𝑚𝑒 

PD Pitch value of PF ℝ𝑁0×1 

PCH 
Value of pitch candidates and their corresponding 

harmonics 
ℝ𝑁0×𝑁𝐻 

PCP 
Value of harmonics and their potential 

corresponding pitches 
ℝ𝑁0×𝑁𝐻 

PHC Value of harmonics and selected pitches ℝ𝑁0×𝑁𝐻 

ED Energy value of PF ℝ𝑁0×1 

EDG 
Amplitude of fundamental pitch and their 

corresponding harmonic 
ℝ𝑁0×𝑁𝐻 

EHC 
Amplitude of harmonic components presented in the 

pitch n 
ℝ𝑁0×𝑁𝐻 

EFF Final result of pitch amplitude ℝ𝑁0×1 

 

Table 4-II Example of calculating A4 in the 𝑯𝑴𝒂𝒑 

Attribute Fundamental 

frequency 𝐹0 

Harmonic Frequency 𝑘𝐹0 (Hz） 

2𝐹0 3𝐹0 4𝐹0 5𝐹0 

Frequency (Hz) 440 880 1320 1760 2200 

Pianoroll 49 61 68 73 77 

MIDI number 69 81 88 93 97 

Letter name A4 A5 E6 A7 C#7/Db7 
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signal, its harmonic frequencies are multiples of the fundamental frequency. Note that 

concert A is not always the standard A with 440Hz, it depends on the transposing 

instruments such as clarinet and horn, etc. In this study, 440Hz is set to the standard A 

for easy implementation. An example of calculating MIDI number of harmonic 

frequency in 𝑯𝑴𝒂𝒑 is given in Table 4-II 

𝑷𝑪𝑯(𝑛, ℎ) is the ℎ𝑡ℎ harmonic pitch component of the pitch n where n lies within 

[1, N] and h is within [1, 𝑁𝐻]. 𝑁𝐻 is set to 5 in the experiment, 𝑁0 is the number of 

non-zero value in each frame. 

 Let 𝑷𝑪𝑷 be a matrix of the harmonics and their potential corresponding pitches, 

which contains the harmonic components and their associated pitches being calculated 

from the original pitch at a specific value of h as follows:  

𝛿(𝑥 − 𝑦) = {
1,             𝑖𝑓 𝑥 = 𝑦 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4.13) 

𝑷𝑪𝑷(𝑛, ℎ) = 𝑷𝑪𝑯(𝑛, ℎ) ⋅ 𝛿[𝑷𝑪𝑯(𝑛, ℎ) − 𝑷𝑪𝑯(𝑛, 1)],  𝑷𝑪𝑷 𝜖 ℝ𝑁0×𝑁𝐻  (4.14) 

where 𝛿(𝑥 − 𝑦) is a function of the equivalence gate with two inputs. The output of 

the equivalence gate will be 1 if the two inputs equals (i.e., h=1). Otherwise, it will 

become zero. Using Eqs. (4.13-4.14), 𝑷𝑪𝑷(𝑛, ℎ) can be identified for each harmonic 

component. 

Let 𝑷𝑯𝑪(𝑛, 1)  be a harmonic component and 𝑷𝑯𝑪(𝑛, ℎ)  (ℎ =

2, … , 𝑁𝐻) represents the relative associated pitches. 𝑷𝑯𝑪 is the value that correlates 

to 𝑷𝑪𝑷 in identifying potentially the original pitch values. The matrix for all of the 

potentially original pitch values is estimated below. If 𝑷𝑪𝑷(𝑛, ℎ) = 𝑷𝑪𝑷(𝑛, 1), an 

equivalence gate value of 1 is assigned and the output value from the square brackets 

becomes 1 in Eq. (4.15). 

𝑷𝑯𝑪(𝑛, ℎ) = 𝑷𝑪𝑷(𝑛, 1) ⋅ 𝛿[𝑷𝑪𝑷(𝑛, ℎ) − 𝑷𝑪𝑷(𝑛, 1)], 

𝑷𝑯𝑪 𝜖 ℝ𝑁0×𝑁𝐻 , 𝑛 𝜖 [1, 𝑁0], ℎ 𝜖 [1, 𝑁𝐻] 
(4.15) 

𝑷𝑪𝑯(𝑛, ℎ) = 𝑯𝑴𝒂𝒑(𝒎(𝑛), ℎ), 𝑷𝑪𝑯 𝜖 ℝ𝑁0×𝑁𝐻  (4.12) 
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4.2.5 Energy Domain Analysis 

In the energy domain, 𝑬𝑫𝑮(𝑛, ℎ)  is a value generated from 𝑬𝑫𝜖ℝ𝑁0×𝑁𝐻  and 

𝑷𝑯𝑪(𝑛, ℎ) as defined below: 

𝑬𝑫𝑮(𝑛, ℎ) = 𝑬𝑫(𝑛) ⋅ 𝛿[𝑷𝑯𝑪(𝑛, ℎ) − 𝑷𝑯𝑪(𝑛, 1)], 𝑬𝑫𝑮 𝜖 ℝ𝑁0×𝑁𝐻  (4.16) 

The following section describes two cognitive theories that have inspired the guided 

weight mechanism for fundamental frequency detection. First, according to the 

harmonic periodicity and instrument timbre theory [23], the harmonic periodicity of 

different instruments should be the same, although the sound of which varies by their 

timbres as reflected on the ratio of harmonic amplitude to the fundamental amplitude 

[152]. The instruments from different families will have a large ratio, and vice versa. 

For the instrument that produces a sound from strings such as piano, and violin (Fig. 

4-6 (d)), their harmonic amplitudes generally decrease gradually. On a different note, 

for woodwind instruments such as clarinet (Fig. 4-6 (c)) and bassoon (Fig. 4-6 (a)), the 

amplitudes of their first harmonic would be lower than that of their second harmonic. 

Therefore, the energy ratio of the fundamental frequency and harmonic frequency 

energy (timbre) is unaffected by monophonic, or polyphonic textures, but unique in 

individual instruments. Second, according to the acoustic theory [153], when two or 

more sound waves occupy the same space, they move through rather than bounce off 

each other. For example, the result of any combination of sound waves is simply the 

addition of these waves. Theoretically, the energy of the mixed monophonic and 

polyphonic audio should be the same, though there is unavoidable difference in the 

real case. The results of a single frame after step 1 (section 4.2.3) of the Harmonic 

structure detection (HSD) are plotted as profile of pitch values as shown in Fig. 4-6. 

The profiles of four single music sources are shown in Fig. 4-6 (a-d). The profile of 

the mixed monophonic notes is given in Fig. 4-6 (e), which is composed of four single 

music sources, i.e., Notes #1-#4, and the profile of the polyphonic notes shown in Fig. 

4-6 (f) is generated from one mixed channel. Considering that the profile of mixed 

monophonic notes is the ideal value, and the profile of the polyphonic notes is the 

predicted actual value. As seen in Fig. 4-6 (f), there is few amplitude difference 
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between the profiles of the polyphonic and monophonic notes due to the resonance in 

the polyphonic notes and channel distortion during data recording and transmission, 

but the overall trend of the two profiles is very similar.  

Motivated by these, the guided weight mechanism is proposed and denoted as Eq. 

(4.17) in the model for improving the detection of the fundamental frequency. 

(a) Note1, A2=25 

 
(b) Note2, C4=40 

(c) Note3 F#4=46 
(d) Note4 C5=52 

 
(e) 

 
(f) 

Fig. 4-6. Profile of pitch values for monophonic and polyphonic analysis in a single 

frame. Single notes with its MIDI number for Bassoon (a), Saxophone (b), Clarinet 

(c), and Violin (d); (e) is the monophonic learning result when combining the four 

note, (f) is the comparison of real polyphonic value with expected mixed 

monophonic notes 

(e) (f)
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where T is the number of time frames in the monophonic data, the first non-zero value 

of 𝑬𝑫_𝒎𝒐𝒏𝒐𝑡(1) is always the fundamental frequency, and the rest non-zero values 

𝑬𝑫_𝒎𝒐𝒏𝒐𝑡(ℎ) are the harmonic frequencies. The guiding weight is calculated by the 

averaged ratio of the amplitude of harmonic 𝑬𝑫_𝒎𝒐𝒏𝒐(ℎ)  and fundamental 

frequency 𝑬𝑫_𝒎𝒐𝒏𝒐(1)  in the monophonic data, before being applied to the 

polyphonic data. The variable𝑁𝐼  is the number of known instruments that can be 

identified in the music piece.  

In order to estimate the amplitude of the harmonic components (EHC), Eq. (4.18) 

is utilized to calculate how strong each harmonic is for the pitch n by multiplying the 

guided weight of selected instrument with 𝑬𝑫𝑮.  

Theoretically, the amplitude of harmonic should be a portion to the amplitude of 

the fundamental frequencies. It is noted that the fundamental frequencies must occur 

at h = 1, then harmonic frequencies occur at h = 2: 𝑁𝐻. 

Based on the 𝑬𝑯𝑪𝑖  determined from Eq. (4.18), the amplitude of fundamental 

frequency in pitch n after subtracting the summed harmonic components’ amplitude 

will be kept updating until the fundamental frequencies from all instruments are 

estimated as: 

𝑬𝑫(𝑛) =𝑬𝑯𝑪𝑖(𝑛, 1) − ∑ 𝑬𝑯𝑪𝑖(𝑛, ℎ)𝑁𝐻
ℎ=2   (4.19) 

Eventually, the amplitude of fundamental frequency in pitch n, represented a 𝑬𝑭𝑭, 

can be obtained by Eq. (4.20) 

𝑬𝑭𝑭(𝑛) =𝑬𝑫(𝑛) ,      𝑬𝑭𝑭 𝜖 ℝ𝑁0∗1 (4.20) 

For each non-zero pitch n in each frame t, it will have a rank value  𝑹(𝑛) according 

to the 𝑬𝑭𝑭(𝑛), then a 2D rank map 𝑅(𝑛, 𝑡) will be generated for the whole music 

piece, i.e. pitch/pianoroll vs. time frame as shown in Fig. 4-3 (b), which will be used 

𝑾𝑖(ℎ) =
1

𝑇
∑

𝑬𝑫_𝒎𝒐𝒏𝒐𝑡(ℎ)

𝑬𝑫_𝒎𝒐𝒏𝒐𝑡(1)

𝑇

𝑡=1

, ℎ 𝜖 [1, 𝑁𝐻], 𝑖 𝜖 [1, 𝑁𝐼] (4.17) 

𝑬𝑯𝑪𝑖(𝑛, ℎ) = 𝑬𝑫𝑮(𝑛, ℎ) ⋅ 𝑾𝑖(ℎ), 

 𝑬𝑯𝑪𝑖 𝜖 ℝ𝑁0∗𝑁𝐻 , 𝑛 𝜖 [1, 𝑁0], ℎ 𝜖 [1, 𝑁𝐻] 
(4.18) 
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to fully represent detected harmonic structure. A brief implementation of energy 

domain procedure is summarized in Algorithm 1. 

4.2.6 Note Tracking 

As seen in Fig. 4-3 (b), although most fundamental pitch have been extracted, the 

notes still show a poor consistency. To improve this, a note tracking method based on 

the music perception and multi-pitch probability weight was proposed. According to 

the music theory [150], the occurrence of demisemiquaver is generally quite low in 

music pieces. As a result, notes with a length shorter than demisemiquaver are filtered 

out. The averaged rank of the connected pitch group in the rank map is calculated and 

denoted as  �̅�. If �̅� is larger than an adaptive threshold 𝑇𝑟, the pitch group is considered 

a harmonic and will be skipped from the analysis. As the polyphonic music pitches 

vary over time, the 𝑇𝑟  will also change accordingly. To account for this change, a 

fitting function was generated for 𝑇𝑟 (Fig. 4-7 (a)), which is adaptive to the number of 

notes 𝑥 ∈ [1,12] for each frame, as given below. 

𝑇𝑟 = 1.26𝑥0.9 (4.21) 

The fitting curve of  𝑇𝑟 is obtained by minimise the fitting error between grountruth 

and estimation. Fig. 4-7 (b) displays the note tracking results where most of the noise 

Algorithm 1  

Inputs: 𝑬𝑫(𝒏) 

Step 1: Generate a matrix including the amplitude of fundamental pitch and their 

corresponding harmonic pitches using Eq. (4.16) 

Step 2: Calculate the weight for each type of instrument using Eq. (4.17) 

Step 3: Estimate the amplitude of harmonic components (𝑬𝑯𝑪) presented in the 

pitch n using Eq. (4.18) 

Step 4: Update 𝑬𝑫 by Eq. (4.19) 

Step 5: Repeat step 1-4 until the fundamental frequencies from all instruments are 

estimated; 

       Obtain the final estimated amplitude of fundamental frequency in pitch n by Eq. 

(4.20) 
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and the inconsistencies have been filtered out. The result has also achieved a similar 

profile to that of the ground truth data. 

 

(a) 

 

(b) 

Fig. 4-7 Poly function of threshold 𝑻𝒓 (a) and Results from the note tracking in 

comparison to the ground truth (b). 
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4.3 Experimental Results 

4.3.1 Experimental Settings 

To validate the effectiveness of the proposed approach, the first dataset used for 

evaluation is the MIDI Aligned Piano Sounds (MAPs) [154], in which all music pieces 

are recorded in the MIDI format initially and then converted into ‘.wav’ format. MAPS 

also has differently purposed subsets such as monophonic excerpts and chords. For 

this case, only one subset is used which includes polyphonic music pieces. In addition, 

there are several instruments and recording conditions in MAPs. The ‘ENSTDkCI’ is 

chosen as it has been widely used in many studies [3, 7] and the music is played using 

a real piano (i.e., Yamaha Disklavier Mark III (upright)) rather than an acoustic one, 

i.e. a virtual instrument, and recording occurs in soundproofed conditions. The second 

dataset is BACH10 [9], which contains 10 pieces using violin, clarinet, saxophone and 

bassoon from J.S. Bach chorales, where each piece lasts approximately 30 seconds. 

The third dataset is TRIOS [155], which is the most complex one among the three as 

it contains five multitrack chamber music trio pieces. The sampling rate for all music 

pieces is 44100 Hz. 

For objective assessment, the most commonly used frame-based metric, F-measure 

(F1) [14, 15], is adopted. It combines the positive predictive value (PPV, also referred 

to as precision) and the true positive rate (TPR, also labelled recall) for a 

comprehensive evaluation as follows: 

where  𝑇𝑃𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
, 𝑃𝑃𝑉 =

𝑇𝑝

𝑇𝑝+𝐹𝑝
 ,  and 𝑇𝑝 , 𝐹𝑝 , and 𝐹𝑛  refer respectively to the 

number of correctly detected 𝐹0, incorrectly detected 𝐹0, and missing detection of the 

𝐹0. Specifically, these three components can be calculated by comparing the binary 

masks of the detected MPE results and the ground truth.  

𝐹1 =
2 ∙ 𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
 (4.22) 
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4.3.2 Performance Evaluation 

Table 4-III shows the quantitative assessment of 11 benchmarking methods on 

MAPS, BACH10, and TRIOS datasets. All benchmarking methods are divided into 

two categories: Shallow learning method and DL method. Shallow learning methods 

include a traditional machine learning model or a prior knowledge-based model 

whereas DL methods include deep neural networks and deep convolutional neural 

networks.  

Many MPE approaches select a pair of methods from CQT, PLCA, Equivalent 

Rectangular Bandwidth (ERB) and NMF for pianoroll transcription. Therefore, two of 

the most representative methods, i.e. CQT+PLCA proposed by Benotos [5] and 

ERB+NMF proposed by Vincent [7], are chosen for benchmarking. In Table 4-III , 

Benetos [3]  and Vincent [7] can produce the second best performance on the MAPs 

and TRIOS datasets, respectively, which validates the effectiveness of CQT+PLCA 

and ERB+NMF. However, due to the lack of efficient harmonic analysis, the 

performance of both methods is inferior to the proposed HSD method. Unlike the 

methods from Benetos and Vincent, other methods adopt different ideas for MPE. 

SONIC [12] proposed a connectionist approach where an adaptive oscillator network 

was used to track the partials in the music signal. However, without a matrix 

factorization process, its performance is limited on the three datasets. Su [11] proposed 

a combined frequency and periodicity (CFP) method to detect the pitch in both 

frequency domain and lag (frequency) domain. The CFP method in Table 4-III gives 

the best performance on the BACH10 dataset, but relatively poorer results on the other 

two datasets. The main reason here is possibly because the music pieces in the MAPS 

and TRIOS datasets have more short notes than those in the BACH10 dataset, and CFP 

has the limited ability for detecting the short notes but exhibit less errors for continuous 

long notes. Furthermore, the assumption of CFP does not hold for high-pitch notes of 

piano, as both MAPS and TRIOS have many piano music pieces. In addition, the music 

pieces in the MAPS database contain multiple notes in most frames, which has led to 

extra difficulty for polyphonic detection. However, the proposed method can still 
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successfully solve this problem by effectively analysing the relationship of the position 

and energy between the fundamental frequency and harmonic frequencies for the notes. 

As a result, the performance of the proposed method on MAPS is the best, which is 8% 

higher than that of CFP. Klapuri [10] proposed an auditory model based 𝐹0 estimator 

and Duan [9] proposed a maximum-likelihood approach for multiple 𝐹0 estimation but 

both methods result in inferior performance compared to the results achieved by 

Benetos [3, 5], Vincent [7] or CFP [11]. Furthermore, Klapuri’s [10] and Duan’s [9] 

methods lack an effective pre-processing stage (i.e. TF representation and matrix 

factorization) or harmonic analysis, which is the main reason why their overall 

performance is less effective in comparison to ours.  

The proposed method was also compared with four deep-learning based supervised 

approaches on MAPS dataset. Due to lack of publicly available source codes, only the 

data that was reported in the original paper was duplicated for comparison. The first 

two methods are proposed by Sigtia [13], which are mainly based on the music 

language models (MLMs). However, due to insufficiently labelled data in the existing 

polyphonic music databases for training, such limitations have affected further 

analysis of DL-based approaches. Furthermore, the MLM model is not robust to 

ambient noise, whereas music pieces in reality generally contain a lot of ambient noise. 

This has resulted in DL-based methods failing to fully analyse the inner structure of 

the music pieces. As a result, DL-based methods cannot achieve the same performance 

as the HSD method or some of the other unsupervised methods such as Benetos [3] on 

the MAPS dataset. Li [14] and Kelz [15] also proposed DL-based methods for AMT. 

Although better than [13], their performance is still not ideal as there is insufficient 

music knowledge support embedded. To this end, more music theories should be 

introduced for improved AMT.  

In summary, referring to Table 4-III, the proposed method yields the best results on 

both the MAPs and TRIOS datasets, also the second-best in BACH10 according to F1 

value, thanks to the guidance of music cognition. However, the method can still be 

improved, especially for reducing the computation cost. As it takes 2 minutes to 

process a 30-second music piece, this is longer than some other methods. In addition, 
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although the profile of the real polyphonic note is close to the expected mixed 

monophonic note, as shown in Fig. 4-6 (e-f), there are still some differences in the 

final values of the monophonic and polyphonic profiles which can be further improved.  

According to the Table 4-III, the best F1 scores achieved for MAPS, BACH10 and 

TRIOS are 76.30%, 85.51% and 67.63% respectively. These scores are indeed far from 

perfect. The usefulness of these results depends heavily on the specific application. 

Table 4-III Frame-level performance of different methods on three datasets (top two 

methods in each column are highlighted in bold and italic respectively). Results 

marked with * are quoted from their original publications due to unavailability of 

source code. 

Category Methods 
F1 

MAPS BACH10 TRIOS 

Shallow learning 

Benetos* [3] 64.17 68.40 66.46 

Benetos [5] 59.31 70.57 64.93 

Vincent* [7] 72.35 79.78 59.40 

Duan [9] 67.41 70.90 45.80 

Klapuri [10] 60.10 68.30 50.50 

CFP* [11] 68.67 85.51 64.64 

SONIC* [12] 63.60 66.49 56.65 

HSD(proposed) 76.30 80.17 67.63 

Deep learning 

ConvNet* [13] 64.14 -- -- 

RNN* [13] 57.67 -- -- 

Li* [14] 69.42 -- 66.34 

INN* [15] 72.29 -- -- 
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For critical applications requiring high accuracy, such as automated music 

transcription for professional use, these scores might be insufficient. Many such 

applications may require F1 scores of 90% or higher to be considered practically viable. 

However, for less critical applications, these results could still provide valuable 

information. For instance, music recommendation systems or preliminary analysis 

tools for musicians might benefit from this level of accuracy. In many music 

information retrieval tasks, even imperfect results can offer useful insights or serve as 

a starting point for further analysis. 

4.3.3 Key Stage Analysis 

In this section, the contribution of several major stages in the proposed MPE system 

is discussed, where the performance of each stage is evaluated on the MAPS dataset 

in terms of the precision, recall and F1. To calculate these three metrics, the result of 

each stage is normalised by using Eq. (8) and the results are binarized with a fixed 

threshold value of 0.5. 

The proposed MPE system is divided into four key stages detailed as follows:  

• Stage A: The transcription map from SI-PLCA and CQT. 

• Stage B: The result after applying the first-step HSD. 

• Stage C: The result after applying the second-step HSD. 

• Stage D: The result after applying note tracking.  

Table 4-IV illustrates the details of the system configurations. By combination of 

different key stages, the corresponding system is built up for evaluation. Each stage 

has specific components which are indispensable to the results of the system. Stage A 

shows the highest recall and lowest precision after applying CQT and SI-PLCA. The 

Table 4-IV System configuration 

Configurations Precision Recall F-measure 

A 0.408 0.879 0.545 

A+B 0.438 0.876 0.571 

A+B+C 0.747 0.718 0.725 

A+B+C+D 0.753 0.773 0.763 
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presence of 𝐹0  and harmonics are all detected, however, many amplitudes are 

concentrated in higher frequency (harmonic) regions which inhibits the identification 

of 𝐹0 . After combining the stage B, the recall value decreases by 0.03%, but the 

precision value increases by almost 3%. This is mainly due to the removal of noise in 

HSD. In stage C, the core of the MPE system contributes to an increase of nearly 30% 

for precision and 15-18% for F1 compared to previous combinations. Finally, after 

applying the proposed note tracking step (Stage D), the recall value is further improved 

by 5.5% which leads to the final F1 value improved by 3.8% compared to the previous 

stage.   

4.3.4 Assessment of CQT and ERB 

In the proposed MPE system, CQT is employed to model human cochlea perception. 

However, cochlea perception is not always constant in Q. Therefore, apart from CQT, 

the Gammatone filter-bank technique is also widely used for time and frequency 

transform. Gammatone filter-bank is designed to model the human auditory system. It 

can decompose a signal by passing it through a bank of gammatone filters equally 

spaced on the equivalent rectangular bandwidth (ERB) scale.  However, it might not 

be necessary for better performance on MPE problems. To validate this assumption, 

CQT [38], ERB [7], PLCA [3] and NMF [7] are integrated in a pair-wise manner. Four 

methods (i.e. CQT+PLCA, CQT+NMF, ERB+PLCA, ERB+NMF) are then analyzed 

in terms of precision-recall, ROC and F-measure curve (Fig. 4-8), AUC, MAE and 

maxF (Table 4-V). Here AUC is the are under the ROC curve, MAE is the mean 

average error, and maxF is the max value of F-measure curve. These three criteria have 

same importance. From Fig. 4-8(a,b), it can be seen that the ERB+NMF and 

CQT+PLCA show comparable results and better than other two pair-wise methods. 

From Table 4-V, although ERB+NMF gives the best maxF value, CQT+PLCA gives 

the best AUC value and lowest MAE value, which means it has a smaller false alarm. 

Therefore, CQT+PLCA is the best among these four pair-wise methods which are also 

the main reason why it is employed in the proposed MPE system.  
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4.4 Chapter Summary 

In this chapter, a harmonic analysis method is proposed for MPE system, inspired 

by music cognition and perception. CQT and SI-PLCA are employed in the pre-

processing stage for pianoroll transcription in mixture music audio signal, from which 

Table 4-V Time-freqeuncy transform and piano-roll transcription comparison 

Methods AUC MAE maxF 

ERB+PLCA 0.922 0.0403 0.6687 

ERB+CNMF 0.939 0.0487 0.7213 

CQT+PLCA 0.942 0.0390 0.7089 

CQT+CNMF 0.906 0.0411 0.6296 

 

 
(a)                                                              (b) 

 
(c) 

Fig. 4-8. Precision-Recall (a), Receiver 0perating Characteristic (b) and F-

measure (c) curve of four pair-wise methods. 
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the proposed HSD is used to extract the multi-pitch pianorolles. The proposed MPE 

system is not limited by the number of instruments. For multi-instrument cases (i.e. 

symphony in BACH10 and TRIOS datasets), the mixture characteristics of each 

instrument can be extracted for adaptively detection of the fundamental frequencies. 

From the experiment results, the proposed MPE system yields the best performance 

on the MAPS and TRIOS datasets, and the second-best on the BACH10 dataset. 

Through investigation of the performance of key components, the HSD provided the 

greatest contribution to the system, which validates the value of adding an efficient 

harmonic analysis model for improving significantly the performance of the MPE 

system. Furthermore, adding note tracking can further improve the efficacy of the MPE 

system.  

Moving into Chapter 5, another critical technology: predominant musical 

instrument recognition (PMIR) will be discussed. This technology aims to accurately 

identify and classify the sounds of the main instruments within complex musical audio. 

It plays a significant role in automated music annotation and classification, music 

education, and recommendation systems. Predominant instrument recognition 

enhances the accuracy of AMT transcriptions through detailed instrument analysis, 

while AMT provides clear note and timing references for instrument identification. 

However, this technology still needs to address challenges such as distinguishing 

between timbrally similar instruments and achieving high accuracy in complex, multi-

instrument settings. Together, these technologies drive the progress and development 

of music technology, laying the foundation for more intelligent and precise music 

analysis. 

Chapter 6 delves into musical shape evaluation, which builds upon and improves 

the results of Chapters 4 and 5. Musical shape evaluation focuses on identifying and 

comparing various types of musical shapes, providing insights into their compositional 

elements and stylistic features. This technology is crucial for music composition, 

education, and automated music generation, offering a deeper understanding of the 

underlying patterns and structures of music. By leveraging the precise note and 

instrument information provided by AMT and instrument recognition, musical shape 
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evaluation addresses the current limitations in understanding complex musical 

structures and diverse styles.  
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Chapter 5 

 

5 Fusion of Hilbert-Huang Transform and 

Deep Convolutional Neural Network for 

Predominant Musical Instruments 

Recognition 

 

5.1 Introduction 

In the third chapter, automatic music transcription (AMT) and predominant 

instrument recognition techniques were explored. While these technologies have 

shown excellent performance in many applications, challenges remain in handling 

complex polyphonic audio and improving recognition accuracy. This chapter 

continues to advance these technologies, with a particular focus on enhancing the 

precision and efficiency of PMIR. 

As a subset of music information retrieval (MIR), predominant musical instruments 

recognition (PMIR) has attracted substantial interest in recent years due to its 

uniqueness and high commercial value in key areas of music analysis research, such 

as music retrieval and automatic music transcription. While traditionally PMIR has 

been associated with timbre analysis, the approach presented in this chapter goes 

beyond purely timbral characteristics to analyze comprehensive spectral-temporal 

patterns that uniquely identify different instruments. In this chapter, the Hilbert-Huang 

Transform (HHT) is employed to map one-dimensional audio data into a two-

dimensional matrix format, capturing multiple acoustic properties such as spectral 

energy distribution, time-varying amplitude, inter-harmonic relationships and 



104 

 

overtone structures, etc. Subsequently, a deep convolutional neural network (DCNN) 

is developed to learn rich and effective features for PMIR. 

To validate the efficacy of the proposed approach, an experiment is conducted using 

6705 audio pieces, including 11 musical instruments. The results are compared to four 

benchmarking methods and show significant improvements in terms of precision, 

recall, and F-measures.  

5.2 System Overview 

The proposed PMIR system (as shown in Fig. 5-1), designed for MIR, starts by 

selecting the IRMAS database, a mixed collection featuring 11 types of musical 

instruments. The first step involves audio preprocessing, where Hilbert spectrogram 

sampling is employed to analyze the audio data. Next, these preprocessed 

spectrograms are fed into a Convolutional Neural Network (CNN) model for training. 

This training phase is crucial for teaching the system to accurately classify different 

musical instruments. The comprehensive workflow encapsulates the entire journey of 

an MIR system, from the initial database selection and audio processing stages to the 

sophisticated instrument classification via deep learning. This approach showcases the 

integration of advanced audio processing techniques with CNN models to achieve 

effective instrument recognition. 

5.2.1 Hilbert-Huang Transform 

Hilbert-Huang Transform (HHT), introduced by Huang from NASA in 1998 [43], 

has become a powerful tool for analyzing signals from nonlinear systems and non-

 

Fig. 5-1. Workflow of the PMIR system 
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stationary processes, making it particularly suitable for musical instrument 

classification. HHT has seen successful applications across various fields, including 

geophysics and biomedicine, where it has delivered outstanding results [156, 157]. The 

method comprises two primary components: Empirical Mode Decomposition (EMD) 

and Hilbert Spectral Analysis (HSA). 

EMD decomposes given signals into several Intrinsic Mode Functions (IMFs), each 

representing different frequency components. The adaptive nature of EMD allows for 

the precise extraction of these intrinsic modes, making it especially useful for 

analyzing the harmonics of music signals. By capturing the complex features of 

musical instruments, EMD provides a detailed and accurate representation of the 

signal's components. 

Once the signal is decomposed into IMFs, the Hilbert transform is applied to each 

IMF to obtain the corresponding Hilbert spectrum. The Hilbert spectrum of the original 

signal is then derived by summing all the Hilbert spectra of the IMFs. The resulting 

Hilbert spectra for different instruments—such as cello, clarinet, flute, acoustic guitar, 

electric guitar, organ, piano, saxophone, trumpet, violin, and voice—exhibit distinct 

characteristics, as illustrated in Fig. 5-2. These variations highlight HHT's ability to 

capture the unique features of each instrument. 

HHT was first used in PMIR in 2018 by Daeyeol et al. [8], who proposed using 

HHT as a replacement for the Short-Time Fourier Transform (STFT) and Mel-

Frequency Cepstral Coefficients (MFCC). Their performance results demonstrated 

that HHT outperformed these two traditional methods, establishing its effectiveness in 

the PMIR domain.  

The HHT can be expressed as: 

𝐻(𝜔, 𝑡) = 𝑅𝑒𝑎𝑙 ∑ 𝑎𝑖(𝑡)𝑒𝑗 ∫ 𝑤𝑖(𝑡)𝑑𝑡

𝑛

𝑖=1

 (5.1) 

where 𝐻(𝜔, 𝑡) represents the Hilbert spectrum, 𝑎𝑖(𝑡) is the instantaneous amplitude of 

the ith Intrinsic Mode Function (IMF), 𝑤𝑖(𝑡) is the instantaneous frequency of the ith 

IMF, and n is the number of IMFs. The subscript i in 𝑎𝑖(𝑡) denotes the ith IMF obtained 

from the EMD process. 
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In contrast, the Fourier transform can be represented as: 

𝐴(𝜔) = ∑ 𝑥(𝑡)𝑒−𝑗𝜔𝑡

∞

𝑡=−∞

 (5.2) 

 

where 𝐴(𝜔) is the Fourier spectrum, 𝑥(𝑡) is the time-domain signal, and 𝜔  is the 

angular frequency. 

A key difference between the two transforms is that HHT can be thought of as a 

phase shift converter, while traditional Fourier analysis uses a series of triangular basis 

functions to perform orthogonal operations on signals [158]. The resulting Fourier 

spectrum provides only the weighted mean of the frequencies over a certain period and 

cannot accurately describe time-frequency changes. In contrast, HHT's ability to 

   

Cello Clarinet Flute 

   

Acoustic guitar Electric guitar Organ 

   

Piano Saxophone Trumpet 

  

 

Violin Voice  

Fig. 5-2. Example Hilbert spectra for each of the 11 instruments, where the x-

axis represents time (s) and the y-axis represents instantaneous frequency (Hz). 
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define the instantaneous frequency enables it to handle more complex signals, such as 

polyphonic music pieces. It's worth noting that the Short-Time Fourier Transform 

(STFT) addresses some limitations of the standard Fourier transform by applying the 

transform to short segments of the signal, allowing for time-localized frequency 

analysis. However, the HHT still offers advantages in terms of adaptive decomposition 

and higher time-frequency resolution, particularly for complex signals like music. 

HHT's unique advantages in handling music signals lie in its high time-frequency 

resolution, which is essential for identifying the intricate features of musical 

instruments. The adaptive nature of HHT allows for the precise extraction of intrinsic 

modes, representing various frequency components, and effectively captures the 

transient sounds produced by musical instruments. These qualities are crucial for 

accurate classification and significantly enhance feature discrimination, leading to 

more precise identification of different instrument sounds. 

5.2.2 Architecture of DCNN 

 

 In the field of PMIR, the choice of a deep convolutional neural network (DCNN) 

is motivated by the ability of CNNs to effectively capture local patterns and features 

from the spectrogram as it can reflect the melody, harmony and timbre difference 

across different musical instruments. Traditional approaches to PMIR often rely on 

hand-crafted features extracted from the time or frequency domain independently, 

such as zero-crossing rate, spectral centroid, or mel-frequency cepstral coefficients 

 

Fig. 5-3. Flowchart of the proposed DCNN 
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(MFCCs). However, these features may not fully capture the complex interactions and 

dependencies between time and frequency components in music signals. In contrast, 

DCNNs have the ability to learn and extract features that jointly consider both time 

and frequency information, making them well-suited for PMIR tasks.  

In Fig. 5-3, the architecture of the proposed DCNN is illustrated. The specific 

details of the architecture are provided in Table 5-I. The proposed DCNN was inspired 

by the VGG-16 model [66], which contains 9 hidden layers (6 convolutional and 3 

fully connected). Each convolutional layer is followed by a batch normalization layer, 

an activation layer, and a max pooling layer. The feature matrix produced by the 

Hilbert spectrum is size 135 × 240 × 3, where 3 means RGB channels, the size of 

each channel is 135 × 240. A rectified linear unit (ReLU) is selected as the activation 

function for each activation layer due to its popularity and ability to increase the 

learning speed. In the first convolutional layer the stride size is 2 × 2, which is changed 

to  1 × 1 for the rest of the convolutional layers. Both pool size and stride size of each 

Table 5-I. Proposed DCNN structure.  

Layers Output size Description  

HHT (Input) 135 × 240 × 3 Feature matrix from Hilbert spectrum 

Convolution 1 68 × 120 × 32 Filter size: 7 × 7;  Stride size: 2 × 2;  

Max pooling 1 34 × 60 × 32 Pool size : 2 × 2 ;  Stride size: 2 × 2; 

Convolution 2 34 × 60 × 64 Filter size: 5 × 5;  Stride size: 1 × 1; 

Max pooling 2 17 × 30 × 64 Pool size : 2 × 2 ;  Stride size: 2 × 2 

Convolution 3 17 × 30 × 128 Filter size: 3 × 3;  Stride size: 1 × 1; 

Max pooling 3 8 × 15 × 128 Pool size : 2 × 2 ;  Stride size: 2 × 2; 

Convolution 4 8 × 15 × 256 Filter size: 3 × 3;  Stride size: 1 × 1; 

Max pooling 4 4 × 7 × 256 Pool size : 2 × 2 ;  Stride size: 2 × 2 

Convolution 5 4 × 7 × 512 Filter size: 3 × 3;  Stride size: 1 × 1; 

Max pooling 5 2 × 3 × 512 Pool size : 2 × 2 ;  Stride size: 2 × 2; 

Convolution 6 2 × 3 × 1024 Filter size: 3 × 3;  Stride size: 1 × 1; 

Max pooling 6 1 × 1 × 1024 Pool size : 2 × 2 ;  Stride size: 2 × 2 

Dropout 1 1024 Dropout fact : 0.25 

Fully connected 1024 Output size :11  

Dropout 2 1024 Dropout fact : 0.25 

Softmax 11 Softmax function  
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max pooling layer are set to 2 × 2. In addition, the input for each convolutional layer 

is same-padded in order to preserve the spatial resolution. The number of filters for 

each convolution layer is twice that of the previous layer, increasing from 32 to 1024 

at the last layer. After the final max pooling layer, a dropout layer is added before and 

after the fully connected layer to avoid overfitting. At the end of the network, the 

Softmax function is used to classify 11 types of instruments.  

As seen the proposed model has fewer layers compared to VGG16, resulting in less 

parameters. This means that it requires less computational power and memory to train 

and deploy. In scenarios where resources are limited or real-time processing is needed, 

a lightweight model can be more practical and efficient. Due to their smaller size and 

fewer parameters, lightweight models typically have shorter training times and faster 

inference speeds. This is particularly important when dealing with large datasets or 

when the model needs to make predictions quickly, such as in real-time music analysis 

or live performance settings. 

5.3 Experimental Results 

5.3.1 Dataset description 

The IRMAS dataset [114] is used in this work to evaluate predominant musical 

instrument recognition. This dataset contains 6705 annotated musical audio excerpts 

with labels indicating the predominant instrument in each excerpt. The dataset was 

originally compiled for the task of automatic musical instrument recognition. 

Each audio clip is a 16-bit stereo WAV file sampled at 44.1 kHz and 3 seconds in 

length. As shown in Table 5-II, there are 11 predominant instrument categories 

including string instruments like cello and violin, woodwind instruments like clarinet, 

flute and saxophone, brass instrument like trumpet, keyboard instruments like organ 

and piano, plucked string instruments like acoustic guitar and electric guitar, and 

human singing voice.  The second column shows an abbreviation for each instrument 

name that will be used to reference the classes throughout the paper.  The third column 

assigns a numeric label to each instrument, ranging from 1 for cello to 11 for voice. 
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These numeric labels correspond to the output classes used when training the neural 

network models. During the model training, the labels in the IRMAS dataset will be 

converted to one-hot encoded vectors, representing the presence or absence of each 

instrument category in the excerpt. Each label vector has 11 elements, corresponding 

to the 11 instrument categories.  For a given excerpt, the element corresponding to the 

predominant instrument is set to 1, while all other elements are set to 0. Example: If 

an excerpt features a piano as the predominant instrument, the label vector would be 

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], where the 7th element represents the piano category. The 

fourth column indicates the total number of examples available for each instrument. 

Despite the reduction from the full dataset, there is still a reasonable amount of data 

for each class to train deep learning models. 

The IRMAS dataset was selected for this research because it provides polyphonic 

musical mixtures with labeled predominant instruments. This allows training and 

evaluation of multi-instrument recognition models, unlike datasets with only isolated 

note samples. The large dataset size, diversity of musical styles, and focus on 

predominant instrument recognition make IRMAS well-suited for this task. 

Table 5-II. List of instruments in the project with the number of data 

Instruments Abbreviations Number represented Number of data (n) 

Cello cel 1 388 

Clarinet cla 2 505 

Flute flu 3 451 

Acoustic guitar gac 4 637 

Electric guitar gel 5 760 

Organ org 6 682 

Piano pia 7 721 

Saxophone sax 8 626 

Trumpet tru 9 577 

Violin vio 10 580 

Voice voi 11 778 
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Meanwhile, the musical recordings in IRMAS span a wide range of genres and styles 

from the past century. Although there is class imbalance in this dataset, it is not 

necessary to compensate for it due to several reasons: 

1 The IRMAS dataset reflects real-world distribution of instruments in music 

− Class imbalance in IRMAS is relatively moderate:  

− Highest: Voice (778 samples) 

− Lowest: Cello (388 samples) 

2 The ratio between highest and lowest is approximately 2:1 

3 Artificially balancing classes would create unrealistic representations 

4 In real-world music analysis, certain instruments naturally appear more frequently 

Therefore, this dataset aligns with the study’s goal of developing practical, robust 

models for real-world PMIR applications. Furthermore, the dataset’s diversity in terms 

of sound quality, instrumentation, performance styles, and production aesthetics 

ensures that models trained on IRMAS are robust to different musical contexts. In the 

following experiments, 70% data is used for training and the rest data is used for 

evaluation. 

5.3.2 Analysis of HHT spectrogram 

The visualization of Hilbert-Huang Transform (HHT) spectrograms is usually 

affected by pitch, volume, and rhythm. To validate the reliability of HHT, a controlled 

experiment is conducted where musical segments featuring different instruments 

playing the same note (C4) with identical volume and rhythm are selected, and the 

corresponding spectrograms are shown in Fig. 5-4. The bassoon is a double-reed 

woodwind instrument with a deep and expressive tone. Its spectrogram shows strong 

energy in the lower frequency region, with a smooth energy decay curve as the 

frequency increases. Due to its unique reed mechanism, different harmonic 

components appear as specific peaks in the spectrum pattern. The clarinet is also a 

woodwind instrument, but its tone is brighter than that of the bassoon. Its spectrogram 

shows a more balanced spectrum distribution, with relatively strong energy in the 

higher frequencies. Although it shows clear harmonic components, its peak 
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distribution pattern is significantly different from that of the bassoon. The saxophone 

combines the characteristics of woodwind and brass, and its sound exhibits a unique 

"breathing quality". Its spectrogram shows rich harmonic content, especially in the 

mid- and high-frequency ranges, and shows unique spectral characteristics due to its 

reed and mouth resonance, resulting in characteristic peaks and valleys in its frequency 

distribution. The violin is a string instrument that produces a clear, penetrating tone 

with rich harmonic content, especially in the higher frequencies. Its spectrogram shows 

clear, orderly harmonic peaks, reflecting the multiple vibration modes of the strings. 

The violin's spectrogram also contains unique overtones and formants due to bow-

string interaction and body resonances. This comparative analysis shows that even 

when the same note is played under the same conditions, the unique sound-producing 

mechanism of each instrument produces a unique spectral signature. 

 
Bassoon 

 
Clarinet 

 
Saxphone 

 
Violin 

Fig. 5-4. Typical samples of HHT spectrogram. 

s 
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5.3.3 Overview of Audio Content Analysis 

Audio Content Analysis (ACA) is a field that focuses on automatically extracting 

musically meaningful information and metadata from audio signals. The main stages 

in ACA are: 

⚫ Feature Extraction - Obtain descriptive features and statistics that characterize the 

audio signal. The raw audio is reduced to a compact feature representation, which 

captures the essential information while reducing the data size. 

⚫ Classification/Inference - In this stage, machine learning models are used to map 

the extracted feature values to labels, predictions, or other higher-level musical 

concepts. This allows for the automatic identification and classification of various 

aspects of the audio content. 

⚫ Metadata Generation - The final stage involves producing descriptive outputs and 

metadata that summarize the semantic content of the audio. This metadata is 

informed by the results of the classification/inference stage and provides a high-

level understanding of the audio content. 

The first step in developing a machine learning model for instrument recognition is 

extracting meaningful features that represent the acoustic qualities of each instrument. 

In this work, Audio Content Analysis (ACA) is employed to analyze the audio signals 

and obtain descriptive instantaneous features. As shown in Fig. 5-5, ACA extracts 19 

instantaneous features that provide low-level signal statistics, yielding 105 feature 

values per audio example in total. These features serve as the foundation for 

distinguishing between different instruments. Although these features may not be 

directly semantically meaningful, combining them allows machine learning models to 

learn complex acoustic patterns and profiles specific to each instrument type. The 

instantaneous features characterize various aspects of short blocks of audio samples 

and can be categorized into two main domains, i.e., time domain features and 

frequency domain features. 
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Time domain features include Zero crossing rate, Peak envelope, Standard 

deviation (STD), Root mean square (RMS) amplitude, Autocorrelation coefficient, 

Autocorrelation maximum. 

Frequency domain features include Spectral features: Spectral flux, Spectral crest, 

Spectral decrease, Spectral centroid, Spectral rolloff, Spectral skewness, Spectral 

kurtosis, Spectral flatness, Pitch chroma, Spectral slope, Spectral spread, Tonal 

powder ratio, MFCCs. 

Of particular note are the Mel-Frequency Cepstral Coefficients (MFCCs) which 

represent the short-time power spectrum based on perceptually meaningful mel 

frequency bands. MFCCs are commonly used in instrument recognition to mimic 

human auditory properties. 

5.3.4 Selection of Batch Size 

Table 5-III evaluates the model using batch sizes ranging from 50 to 300, measuring 

precision, recall, F1 score, overall accuracy (OA), and Kappa score. The best and the 

worst results are highlighted in green and red, respectively. This also applies for the 

rest of the tables in Chapter 5 and Chapter 6. Several trends emerge: Precision remains 

relatively stable across batch sizes, staying between 86-88%. This indicates the 

 

Fig. 5-5. Instantaneous features in Audio Content Analysis 
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fraction of positive predictions that are correct does not vary much. Recall declines 

steadily from 86% at a batch size of 50 to 84% at a batch size of 300. This suggests 

smaller batch sizes help the model better detect positive examples. F1 score trends 

downward from 87% to 86%, driven by the declining recall. As batch size increases, 

the balance of precision and recall gets slightly worse. Overall accuracy peaks at a 

batch size of 50, and slowly decreases as batch size goes up. The highest OA is 88.54% 

with the smallest batch size. Kappa score shows a similar trend, with the highest score 

of 87.05% occurring at a batch size of 50. Kappa continues decreasing as batch size 

increases. Therefore, a batch size of 50 is selected for the proposed model. 

5.3.5 Selection of Learning Rate 

To select the best learning rate for the proposed CNN model, quantitative 

assessment of learning rate ranging from 0.001 to 0.01 with the interval of 0.001 and 

0.01 to 0.1 with the interval of 0.1, has been carried out. As seen in the Fig. 5-6, the 

proposed model evaluation performance is increasing with the learning rate until it 

reaches a peak at 0.02. After the peak, the CNN model's evaluation performance begins 

to decrease. This suggests that the CNN model is learning well at lower learning rates, 

but it is more likely to overshoot the optimal solution at higher learning rates. In 

addition, there is a small rebound when the learning rate reaches 0.01. However, the 

learning rate was not increased further because the CNN model typically overfits the 

training data at higher learning rates.  

Table 5-III Results for different batch size. 

Batch size 50 100 150 200 250 300 

Precision (%) 87.94 87.93 87.65 87.69 86.96 87.05 

Recall (%) 85.95 85.71 85.78 85.24 84.53 84.03 

F1 (%) 86.93 86.80 86.70 86.45 85.73 85.51 

OA (%) 88.54 88.30 88.16 88.06 87.20 87.15 

KP*100 87.05 86.78 86.63 86.50 85.54 85.46 
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Fig. 5-6. Results for different learning rate 

5.3.6 Selection of Optimizer 

Table 5-IV evaluates model performance using SGD, Adam, and RMSProp 

optimizers. As seen, SGD achieves the highest precision, recall, F1 score, overall 

accuracy, and Kappa. Its scores are 2-3% better across all metrics compared to Adam 

and RMSProp. Adam and RMSProp perform very similarly, with Adam slightly 

outperforming on most metrics. But both lag significantly behind SGD. The strong 

performance of SGD suggests it is well-suited for this instrument recognition model 

and dataset. SGD's simple approach of adjusting weights based on the gradient appears 

to be effective for learning the parameters of the CNN architecture. 

5.3.7 Selection of Dropout Rate 

Dropout is a commonly used regularization technique that can effectively prevent 

overfitting in deep learning networks by randomly shutting off a portion of neurons 

during the training process. It also helps alleviate the problem of vanishing gradients. 

Table 5-V evaluates the impact of using 5 different dropout rates on model 
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performance. With no dropout (0.05), performance is decent but lower than optimal. 

This suggests dropout is helpful for regularization. Increasing dropout from 0.15 to 

0.25 consistently improves all metrics. This indicates additional dropout continues to 

have a positive effect. However, going beyond 0.25 dropout causes the scores to 

decline again. 0.35 dropout sees a noticeable dip, and 0.45 dropout gives the poorest 

performance. Therefore, a dropout rate of 0.25 delivers the best results by balancing 

the benefits of regularization against excessive disruption of learning. 

5.3.8 Comparison with Other Methods 

To further evaluate the effectiveness of the proposed PMIR framework, three 

conventional approaches are used to benchmark in terms of precision, recall and F1-

measurement[159]. Three conventional frameworks are based on Audio Content 

Analysis (ACA) system [58, 160] and three machine learning model (i.e. random forest 

(RF)[6], SVM[2] and shallow neural network (SNN)[4]). The tree number of RF is 

300, the LIBSVM toolbox [2] is selected as SVM learner, and the neuron number of 

hidden layer in SNN is set as 70. For each music piece, ACA system is used to extract 

Table 5-IV Results for three optimizers. 

Optimizer SGD adam rmsprop 

Precision (%) 87.53 84.01 83.96 

Recall (%) 84.65 81.90 80.53 

F1 (%) 86.06 82.94 82.20 

OA (%) 87.50 84.72 84.38 

KP*100 85.87 82.75 82.33 

 

Table 5-V Results for five dropout rates. 

Dropout rate 0.05 0.15 0.25 0.35 0.45 

Precision (%) 84.90  86.39  86.42  84.11  83.81  

Recall (%) 81.79  83.18  83.20  81.66  80.43  

F1 (%) 83.32  84.75  84.78  82.86  82.09  

OA (%) 85.15  86.42  86.48  84.79  84.07  

KP*100 83.20  84.63  84.70  82.80  81.97  
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19 features from both time and frequency domains such as Peak envelop, 

autocorrelation coefficients, MFCCs, pitch chroma etc. Then these features will 

concentrate into a feature vector with the length of 105 and be entered into machine 

learning model for instruments’ classification task. Further, the proposed PMIR 

framework is compared with a new HAS-IMF algorithm proposed in 2018[8], using 

the same dataset and computing environment.  

Results that includes the overall precision, recall and F1-measurement are presented 

in Table 5-VI and the F1-measurement of each instrument is shown in Fig. 5-7. As can 

be seen, the proposed PMIR framework generates the best overall performance and 

outperforms conventional frameworks in classifying individual instruments. In Table 

5-VI, the ACA features are combined in the first three classifiers, i.e. SVM, SNN, and 

Table 5-VI. Overall precision, recall and F1 of five methods. 

Methods Precision Recall F1 

ACA+SVM[2] 0.53 0.54 0.53 

ACA+SNN[4] 0.57 0.56 0.56 

ACA+RF[6] 0.61 0.62 0.61 

HAS-IMF[8] 0.77 0.80 0.78 

Proposed 0.82 0.85 0.84 

 

 

Fig. 5-7. F-measurement (F1) of each instrument of five methods. 
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RF. Among them, RF based method seems the best, yet is significantly poorer than the 

HAS-IMF, due mainly to the integration of the HHT spectrogram and CNN model. 

However, thanks to the improved CNN structure, the proposed model has significantly 

outperformed all others including HAS-IMF, where the precision, recall, and F1 

measures are improved by 5%, 5% and 6%, respectively.  

In the proposed model, the batch normalization and Max pooling are followed by 

each convolutional layer, and the dropout layers are put before and after the fully 

connected layer. However, in HAS-IMF, a dropout layer is followed by every two 

convolutional layers. Although the dropout layer can reduce the training time, too 

many dropout layers may lead to the network not fully trained. Furthermore, it does 

not include a batch normalization layer which may lead the data to be unbalanced. 

Therefore, the proposed CNN model is better than that in HAS-IMF and gives better 

performance.  

In Fig. 5-7 and Fig. 5-8, the classification performance of individual instruments is 

presented. As can be seen that HAS-IMF and the proposed method are significantly 

better than the fusion of traditional features (ACA) and machine learning techniques. 

For the violin, HAS-IMF gives the best result. But with better structure of deep 

learning network, the proposed method produces better performance on the rest 

individual instruments.  

Another finding is the performance of individual instruments is potentially related 

to the types of instruments. For example, as can be seen in Fig. 5-8, a saxophone 

sometimes is misclassified to a clarinet and trumpet. Because both saxophone and 

clarinet belong to the woodwind family, and both saxophone and trumpet belong to 

wind family. In addition, piano is mostly misclassified into violin and flute. The main 

reason is that the pitch of violin and flute is very high, and the piano sometimes 

compose the main melody by high pitch. Therefore, there is the confusion of piano and 

violin and flute.  Human voice is often misclassified into cello, clarinet, piano and 

saxophone, etc., since it is very complicated, and its pitch or timbre may be close to 

some instruments.  
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5.4 Chapter Summary 

In this chapter, a promising framework for predominant musical instrument 

recognition (PMIR) in polyphonic music was introduced. The proposed method 

combines the Hilbert-Huang Transform (HHT) for feature extraction and a deep 

convolutional neural network (DCNN) for classification. The HHT is employed to 

generate the Hilbert spectrum of the audio data, which serves as input to the DCNN. 

The optimal DCNN model is trained on the IRMAS dataset, and objective evaluation 

demonstrates that the proposed method achieves a classification accuracy of 85%, 

outperforming three conventional frameworks. This result highlights the potential of 

image-based deep learning methods for music instrument recognition. 

 

Fig. 5-8. Confusion matrix of proposed methods in 11 instruments. 
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Although a significant progress has been made for predominant musical instrument 

recognition (PMIR), challenges remain in distinguishing between timbrally similar 

instruments and achieving high accuracy in complex, multi-instrument settings. These 

challenges highlight the need for more sophisticated analysis tools that can capture not 

only the identity of the instruments but also their interaction within a musical piece. 

This leads us to the Chapter 6, which extends previous exploration by focusing on 

identifying and comparing various types of musical shapes, providing deeper insights 

into their influence on musical expressiveness and performance. Musical shape 

evaluation aims to address the current limitations in understanding the diverse stylistic 

nuances and expressive qualities of music. This holistic approach will pave the way 

for more advanced music analysis and generation techniques, offering a 

comprehensive framework for intelligent music processing. 
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Chapter 6 

 

6 S-ResNN: Siamese Residual Neural 

Network for Musical Shape Evaluation 

in Piano Performance Assessment 

 

6.1 Introduction 

Music analysis encompasses several interconnected aspects that contribute to a 

comprehensive understanding of musical performances. Chapter 3 focused on AMT, 

which forms the foundation of music analysis by converting audio signals into music 

transcriptions, capturing basic elements such as pitch and harmonics. Chapter 4 

explored PMIR, which evaluates timbral characteristics and identifies primary 

instruments within a music piece. Building on these technical aspects, this chapter aims 

to bridge the gap between sound production and artistic interpretation by focusing on 

musical shape evaluation (MSE). 

Understanding and identifying musical shape plays a crucial role in piano 

performance assessment and education. Traditionally, MSE has relied on extensive 

musical training, resulting in a lengthy learning period and high costs in terms of time 

and resources. However, the potential of artificial intelligence (AI) driven models to 

address this gap has not been sufficiently explored. To tackle this challenge, MSE is 

approached as a classification problem. A Siamese Residual Neural Network (S-

ResNN) is proposed to automatically identify musical shapes. The S-ResNN combines 

the strengths of Siamese networks and residual blocks, taking as input the spectrum 

generated by Constant-Q transform. To assess the performance of the proposed model, 

a new dataset has been created specifically for this task. The dataset contains 4,116 
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music pieces derived from 147 piano preparatory exercises, performed in 28 categories 

of musical shapes. This comprehensive dataset allows for robust testing and validation 

of the proposed approach. The experimental results demonstrate that the S-ResNN 

significantly outperforms other baseline models in terms of precision, recall, and F1 

score. These promising results suggest that the proposed approach has the potential to 

greatly benefit piano performance assessment, offering a more efficient and objective 

method for evaluating musical shape. 

The main contributions of this chapter are highlighted below. 

1) A new dimension of MPA is discovered, which connects the human perception 

with music intrinsic properties; 

2) A new MSE dataset is collected and released, including 4116 high-quality 

piano recordings in 28 classes of MSs; 

3) S-ResNN method is proposed and released to evaluate the musical shape in the 

piano pieces. 

6.2 Dataset Description 

The study of musical shape is a critical aspect of understanding and analyzing 

expressive performance in music. Despite its importance, there is currently a lack of 

comprehensive datasets that focus specifically on musical shape in piano performance. 

Existing datasets often prioritize technical aspects such as note accuracy and timing, 

while neglecting the expressive and interpretive dimensions of performance. To 

address this gap, the Musical Shape Evaluation Dataset (MSED) is introduced as a 

new resource for researchers and musicians to investigate the intricate relationship 

between musical shape, expression, and piano performance. 

6.2.1 Selection of Musical Materials 

Inspired by [126] [161], a well-established educational book on piano finger 

practice needs to be selected to cover the possible correlation of finger strength and 

construct a comprehensive experiment. Schmitt's work [162] is widely regarded as a 

cornerstone of piano pedagogy, offering a rich variety of technical and expressive 
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challenges for pianists of all skill levels. By focusing on Schmitt's exercises, MSED 

provides a musically diverse and pedagogically relevant foundation for the study of 

musical shape. The proposed MSED comprises 147 music pieces which were chosen 

to represent a wide range of musical forms, techniques, and expressive possibilities. 

The breakdown of the selected pieces is as follows: 83 polyphony, 20 scales, 12 

arpeggios, and 32 staccato. The characteristics of each piece can be found in Appendix. 

B. This diverse selection allows for a comprehensive exploration of musical shape 

across different technical and expressive contexts. Polyphonic pieces, which feature 

multiple simultaneous melodic lines, offer rich opportunities for studying the shaping 

of harmonies and textures. Scales and arpeggios present unique challenges for shaping 

melodic contours and dynamic gradations. Staccato pieces, with their short and 

detached articulations, require precise control and expressive timing to effectively 

convey musical shape. 

In curating the dataset, careful attention was given to the pedagogical value and 

technical difficulty of the selected pieces. Schmitt's exercises are known for their 

progressive arrangement, accommodating pianists from beginner to advanced levels. 

MSED reflects this range, ensuring that the dataset is accessible and relevant to a broad 

spectrum of piano students and teachers. 

6.2.2 Musical Shape Categorization 

To establish a systematic framework for studying musical shape, MSED introduces 

a comprehensive categorization scheme based on tempo and dynamics, two 

fundamental aspects of musical expression [34]. The reference point for this 

categorization is the "normal" musical shape, which is defined as a performance at a 

moderate tempo of 60 beats per minute (bpm) with standard dynamics. All other 

musical shape categories are derived from this baseline through systematic variations 

in tempo and dynamics. A single time pattern in terms of faster and slower speed is 

performed as 72 bpm and 50 bpm, which are represented as Adagio and Largo in music 
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theory, respectively. It is worth noticing that the actual performing speed is between 

50 (50 bpm * 1 note) - 288 (72 bpm * 4 notes) notes per minute. Stronger and weaker 

dynamics patterns at 60 bpm are represented as Forte and Piano, respectively. 

Gradually getting louder and gradually getting softer are represented as Cresc. 

(crescendo) and Decresc. (decrescendo), respectively. Gradually slowing down and 

gradually speeding up are represented as Rit. (ritardando) and Accel. (accelerando), 

respectively. These categories capture the essential contrast between loud and soft 

playing, which is a fundamental aspect of musical expression and shape. As shown in 

Table 6-I, MSED defines a set of 8 core musical shapes. These core shapes serve as 

the building blocks for more nuanced and complex expressions. To further enrich the 

dataset, an additional 16 musical shape combinations are included, as detailed in Table 

6-II. These combinations represent more complexed expressive possibilities afforded 

by the tempo and dynamics dimensions. 

Table 6-I. Description of 8 basic shape. 

No. Shape  Description 

1 Forte D
y
n
am

ics 

Strong dynamics and denoted as f on the score 

2 Piano Weak dynamics and denoted as p on the score 

3 Cresc. Gradually increase the dynamics from p to f 

4 Decresc. Gradually reduce the dynamics from f to p 

5 Adagio 

T
im

e 

Perform the score with 72 bpm 

6 Largo Perform the score with 50 bpm 

7 Rit. Gradually reduce the speed from 60 - 50 bpm 

8 Accel. Gradually increase the speed from 60 - 72 bpm 

 

Table 6-II. Description of extended 16 shapes. 

 
Adagio (72 

bpm) 

Largo (50 

bpm) 
Rit. (60→50 bpm) 

Accel. (60→72 

bpm) 

Forte (f) f + 72 bpm f + 50 bpm f + 60→50 bpm f + 60→72 bpm 

Piano (p) p + 72 bpm p + 50 bpm p + 60→50 bpm p + 60→72 bpm 

Cresc. 

(p→f) 

p→f + 72 

bpm 

p→f + 50 

bpm 

p→f + 60→50 

bpm 

p→f + 60→72 

bpm 

Decresc. 

(f→p) 

f→p + 72 

bpm 

f→p + 50 

bpm 

f→p + 60→50 

bpm 

f→p + 60→72 

bpm 

 



126 

 

To enhance the musical and stylistic diversity of the dataset, three supplementary 

musical shape categories are also included: i.e., Swing, Give and Take. Swing is the 

most important feature in Jazz which is a popular music style 20 century [125]. Give 

and Take are advanced and delayed movements of time in the music pieces, 

respectively [34]. In total, 28 categories (normal and 27 MSs) of shape were performed 

on 147 music pieces, resulting in 4116 recordings in WAV format, with a sampling 

rate of 48 KHz and a period of 7 seconds. In this study, music pieces with normal and 

27 MSs were played by music trainers and students, respectively. All categories can 

be clearly separable from listening. Appendix. C shows the relationship between folder 

name and each MS class. To better understand the difference across different MSs, the 

spectrograms generated from CQT are shown in Appendix D. 

6.2.3 Recording Process and Equipment 

In order to ascertain a high standard of audio quality, all recordings in MSED were 

carried out in a professional audio recording environment setting utilizing advanced 

recording equipments.  

The piano made use of for the recordings was a Yamaha U3H. It was thoroughly 

tuned and managed by an expert specialist prior to each recording session to ensure 

optimal tone and playability. 

Sound was captured by a Sony Lavalier (Mode No. ECM-LV1). This microphone 

is renowned for its capacity, openness, and quality to consistently duplicate the 

nuances of acoustic piano sound. The microphone was set up in a coincident ORTF 

stereo arrangement, offering a reasonable and spatially well balanced depiction of the 

piano's audio area. 

Throughout the recording process, strict top quality control actions were applied to 

guarantee uniformity and precision in the efficiencies. Several takes of each piece were 

tape-recorded, and the finest takes were selected for addition in the last dataset based 

on criteria such as note accuracy, balanced accuracy, dynamic control, and general 

music expressiveness. 
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To decrease exhaustion and preserve optimum performance high quality, taping 

sessions were limited to a maximum of two hours per day, with normal breaks. 

Performers were urged to focus on music expressiveness and form over simple 

technological precision, while still adhering to the offered tempo and dynamic 

indications. 

The resulting recordings were saved in an uncompressed, high-resolution WAV 

style to protect the complete integrity and dynamic series of the performances. Each 

audio file was thoroughly annotated with metadata including the item title, music 

shape classification, performer name, and recording date. 

6.2.4 Unique Aspects and Potential Applications 

The Musical Forming Evaluation Dataset (MSED) supplies numerous one-of-a-

kind function that identify it from existing datasets in the area of music efficiency 

analysis. Firstly, MSED is the very first dataset to concentrate especially on the 

principle of music form, offering a extensive and systematic structure for studying the 

meaningful and interpretive dimensions of piano performance. By prioritizing music 

shape over purely technical aspects, MSED allows scientists to delve much deeper into 

the communicative and creative elements of music-making. 

Second of all, MSED includes performances by pianists, using an unusual 

possibility to study the differences in music form implementation and understanding 

across skill levels. This attribute makes MSED particularly valuable for research study 

in music education and learning and rearing, as it can educate the growth of mentor 

techniques and assessment devices that prioritize meaningful abilities alongside 

technical efficiency. 

Third, the inclusion of a varied series of music kinds and forms in MSED allows 

for a nuanced examination of exactly how various musical aspects engage to produce 

meaningful meaning. By covering polyphonic structures, scales, arpeggios, and 

articulation styles, MSED sustains research study into the intricate interplay in 

between melodic, harmonic, and balanced measurements fit musical expressions. 
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The prospective applications of MSED are interdisciplinary and substantial. In 

songs education, MSED can serve as an effective source for making curricula and 

assessments that emphasize meaningful abilities and music understanding. By offering 

concrete examples of musical shapes and their understandings, MSED can assist 

educators and trainees create a common vocabulary and conceptual framework for 

going over and reviewing music expression. 

In the field of music psychology, MSED uses a wealth of data for studying the 

cognitive and perceptual processes included in the interaction and interpretation of 

music meaning. Researchers can use MSED to check out exactly how listeners react 

and regard to different music shapes, and exactly how performers use meaningful 

methods to convey visual and psychological objectives. Such study can drop light on 

the culturally-specific and universal facets of musical experience, and inform theories 

of musical cognition and influence. 

For songs information retrieval (MIR) and expert system (AI) research, MSED 

gives a useful training resource for creating algorithms that can automatically identify, 

identify, and create expressive efficiencies. By gaining from the professional 

comments and performances in MSED, artificial intelligence versions can be trained 

to recognize and forecast music shapes, allowing brand-new applications in 

meaningful performance analysis, automated songs transcription, and computer-

assisted songs make-up and performance. 

In the imaginative markets, MSED can offer as a resource of inspiration and referral 

for songs manufacturers, authors, and performers seeking to develop more mentally 

engaging and expressive music. By researching the meaningful strategies and 

approaches used by the specialist entertainers in MSED, musicians can expand their 

creative scheme and develop new methods to music interpretation and interaction 

To demonstrate the potential of MSED in practice, consider a hypothetical study in 

music education that aims to evaluate the effectiveness of a new teaching method for 

developing expressive performance skills in novice pianists. Using MSED, researchers 

could compare the performances of students trained with the new method against those 

trained with traditional approaches, analyzing differences in musical shape execution 
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and perception. The rich annotations and expert performances in MSED would provide 

a baseline for evaluating student progress and identifying areas for improvement. Such 

a study could have significant implications for piano pedagogy, leading to the 

development of more effective and evidence-based teaching strategies. 

6.2.5 Overview of proposed method 

Fig. 6-1 illustrates the architecture and essential parameters of the proposed method. 

At its core, the system processes paired audio inputs including the music piece with 

specific musical shape and its corresponding one with normal MS. Both inputs 

undergo Constant-Q transform (CQT) [39] to generate the colorful (RGB) spectrogram 

sized 3 × 224 × 224. CQT is specifically chosen due to its widespread application in 

MIR tasks [163] [164] and its ability to provide detailed time-frequency analysis. The 

network features a sophisticated four-stage structure with the kernel number of 64, 128, 

128, and 64. From the first stage to the second stage, the kernel number is increased 

from 64 to 128. This is because the model tries to learn more complex low-level 

features such as edges, textures, and local patterns. From the third stage to the fourth 

stage, the kernel number decreased from 128 to 64. This reduction is because, at higher 

levels, the model needs to integrate and abstract the high-level features learned from 

previous stages, rather than keep increasing the features' diversity. Meanwhile, the 

symmetrical design of the four-stage structure serves multiple purposes. Firstly, it can 

reduce the computational cost by balancing the number of parameters and the 

complexity of computations across different stages. This makes the model more 

efficient and easier to train. Secondly, the symmetrical design helps to maintain the 

effectiveness of the model by ensuring a smooth transition between different stages, 

which facilitates the flow of information and gradients during training. Residual blocks 

were incorporated in each stage to facilitate training of this deep network, allowing for 

better gradient flow and feature reuse. This choice was influenced by the success of 

ResNet architectures in various domains. Furthermore, the trend of gradually reducing 

the convolution kernel size from 7x7 to 5x5, and then to 3x3, is an empirical rule 
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gradually formed through practice in the field of deep learning. Behind this trend lies 

the advantage of using multiple layers of small convolution kernels, which can reduce 

the number of parameters, improve computational efficiency, and introduce more 

nonlinear transformations while maintaining the receptive field. The Siamese 

architecture with shared weights between branches enables the network to learn a 

common feature space for comparing normal and specific musical shapes. This is 

 

Fig. 6-1. System overview. Conv and BN represent the convolutional layer and the 

batch normalization layer, respectively. 
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particularly suitable for MSE task, which aims to identify deviations from normal 

musical shapes.   

6.2.6 Convolutional Layer 

Given an input 𝑋𝑖
𝑠 in each stage, where 𝑠 ∈ [1,2] is the number of input spectral 

feature map and 𝑖 ∈ [1,4] is the number of stages. The output 𝑌𝑖
𝑠of each convolutional 

layer can be expressed as  

𝑌𝑖
𝑠 = 𝜎(𝐵𝑁(𝑐𝑜𝑛𝑣𝑖(𝑋𝑖

𝑠))) (6.1) 

where 𝜎(∙) and 𝐵𝑁(∙) represent the rectified linear unit (ReLU) activation function 

and batch normalization, respectively. The convolutional layer applies a set of 

learnable filters to the input, capturing local patterns and features. The ReLU activation 

function introduces non-linearity, while batch normalization helps in reducing internal 

covariate shift and accelerating the training process. 

6.2.7 Residual Block 

After the convolutional layer, the output 𝑌𝑖
𝑠 is passed through a residual block, which 

is implemented following the standard structure in ResNet50. The residual block 

allows the model to learn residual functions, enabling it to capture more complex 

patterns and mitigate the vanishing gradient problem [70]. The input to the next stage, 

𝑋𝑖+1
𝑠  is updated by Eq. (6.2). 

𝑋𝑖+1
𝑠 = 𝑅𝑒𝑠𝐵𝑙(𝑀𝑃(𝑌𝑖

𝑠)) (6.2) 

where 𝑀𝑃(∙) denotes a 3 × 3 max pooling layer with a stride 2, and 𝑅𝑒𝑠𝐵𝑙 denotes 

the residual block. Max pooling reduces the spatial dimensions of the feature maps, 

helping to capture translation-invariant features and reduce computational complexity. 

The residual block is defined as:  

𝑦 = ℱ(𝑥) + 𝑥 (6.3) 

where x and y are the input and output vectors of the layer considered. Here, x is 

𝑀𝑃(𝑌𝑖
𝑠) and y is 𝑅𝑒𝑠𝐵𝑙(𝑀𝑃(𝑌𝑖

𝑠)). The function ℱ(𝑥)represents the residual mapping 

learned by the network. In the residual block, ℱ = 𝐵𝑁(𝑐𝑜𝑛𝑣𝑖𝜎𝐵𝑁(𝑐𝑜𝑛𝑣𝑖(𝑥))) in 
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which 𝜎  denote ReLU and the biases are omitted for simplifying notations. The 

shortcut connection, which adds the input x to the output of the residual mapping ℱ(𝑥), 

allows the model to learn the identity function if necessary. 

6.2.8 Concatenation and Classification 

The outputs of two branches, 𝐺1 and 𝐺2, are concatenated together, followed by a 

dropout layer 𝐷(∙)  and a flatten layer 𝐹(∙) . Dropout is used as a regularization 

technique to prevent overfitting by randomly dropping out a fraction of the units during 

training. The flatten layer reshapes the feature maps into a one-dimensional vector, 

preparing them for the final classification stage. To accurately evaluate the MSs in the 

piano pieces, MSE is considered as a classification task. The cross-entropy loss 

function ℒ is adopted, which a commonly used loss function for classification tasks. 

The loss function is defined by Eq. (6.4). 

ℒ𝑝,𝑙 =  −
1

𝑡
 ∑(𝑙 ∗ 𝑙𝑜𝑔(𝑝) + (1 − 𝑙) ∗ 𝑙𝑜𝑔(1 − 𝑝))

𝑡

𝑖=1

 
(6.4) 

𝑝 = 𝐹(𝐷(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒[𝐺1, 𝐺2])) 

where 𝑡 , 𝑝  and 𝑙  denote the number of inputs, predicted probability, and the 

classification label, respectively. The loss function measures the dissimilarity between 

the predicted probabilities and the true labels, guiding the model to learn the correct 

mapping from the input spectrograms to the corresponding MS labels. 

6.3 Experimental Setting 

The proposed S-ResNN is trained on NVIDIA Quadro RTX 6000 with 200 epochs 

and a batch size of 32. For fast convergence, stochastic gradient descent is selected as 

the optimizer where the learning rate, momentum and weight decay are set as 1e-3, 0.9 

and 0.0005, respectively. The spatial size of the input spectrogram image is set to 

3 × 224 × 224. 

For quantitative evaluation, three widely used metrics including the precision, recall 

and F1 score are adopted. Each experiment was repeated 10 times, and averaged results 
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are reported in the Section 6.4. Within each repetition, training and testing data are 

randomly selected without overlap. Different training rates ranging from 10% to 70% 

in each class have been used for training. 

To validate the efficacy of the proposed model, comprehensive experiments are 

carried out where conventional audio content analysis (ACA) methods and deep 

learning models are used for benchmarking. For the audio methods, some classic MIR 

techniques including Zero Cross Rate (ZCR), spectral centroid (SpCen), spectral 

rolloff (SpRf), spectral flux (SpFlux), spectral skewness (SpSkew), spectral flatness 

(SpFlat) and Mel-frequency cepstral coefficients (MFCC) are used to extract the audio 

feature followed by a popular classifier i.e., support vector machine (SVM) for the 

decision making. The models of audio feature extraction and SVM is employed from 

ACA system [58] and LIBSVM tool [2], respectively. Deep learning models (e.g., 

VGG16 [66], ResNet50 [70] and DenseNet161 [71].) are employed from 

Openmmlab’s image classification toolbox [165]. 

6.4 Results and Discussions 

6.4.1 Comparison with Benchmarking Methods 

An objective comparison between the proposed method and other benchmarking 

methods is shown in Fig. 6-2. As seen, S-ResNN is comparable with Resnet50 under 

30% and 40% training rates but always leads to a higher recall for the remaining 

training rates. This is due to the fusion of Siamese structure and residual blocks, 

making full use of spectral features to learn the discriminative information from 

various MSs. 

Meanwhile, when the training rate is greater than 20%, the baseline deep learning 

models consistently produce better results than the ACA methods. This is due to the 

fact that deep learning models can extract more representative global features than 

ACA methods with sufficient training data. Thus, the complex time and dynamics 

patterns in music pieces can be better identified. In addition, the features extracted by 

ACA methods consist of numerous local temporal and/or spectral features that are 
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insufficient to characterize the MSs adequately. The parameter selection (i.e., hop and 

block size in ZCR and spectral properties, and number of coefficients in MFCC, etc) 

also affects the classification performance of ACA methods, making them less 

practicability.  

Table 6-III shows the average classification results and standard deviation (STD) 

of 7 training rates, where it is seen that S-ResNN is superior to other baseline deep 

learning models in terms of higher classification accuracy and lower STD. ACA 

methods have generally lower STD, indicating their stability, but their classification 

accuracy is much lower than deep learning models under different training rates. On a 

different point, when the training sample is not sufficient (e.g., 10% training rate as 

seen in Fig. 6-2), the baseline deep learning models produce inferior results than some 

ACA methods such as SpFlux and SpSkew, etc. However, the proposed S-ResNN still 

yields the best accuracy, which further validates its effectiveness when dealing with 

limited training data. 

 

Fig. 6-2. Recall of different approaches with 7 training rates. 
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6.4.2 Parameter Efficiency 

Table 6-IV reveals the efficiency of the proposed method and baseline deep 

learning models. It is observed that the proposed S-ResNN has fewest parameters but 

needs adequate computation cost. The main reason is that S-ResNN has fewer 

weighted layer than baseline deep learning models, but the size of fully connected (FC) 

layer at the end of each branch is 6400 × 2048, leading to higher Flops than ResNet50 

and DenseNet161. This issue can be potentially solved by reducing the kernel size but 

increasing the number of convolutional layers with larger stride. With a deeper 

structure but fewer spatial size of convolutional feature maps, the size of FC layers can 

be much reduced, and the discriminative information of MSs can be well extracted. 

Thus, a much better balance between effectiveness and efficiency can be achieved.  

Table 6-III. Comparison of classification performance with mean value and 

corresponding STD of 7 training rates 

Methods Precision (%) Recall (%) F1 score (%) 

ZCR 32.25± 5.29 32.75± 5.25 32.75± 5.25 

SpCen 73.37± 4.73 74.03± 4.48 73.38± 4.72 

SpRf 66.50± 6.16 67.23± 5.72 66.55± 6.03 

SpFulx 83.01± 3.34 83.30± 3.19 83.03± 3.31 

SpSkew 78.73± 5.42 79.82± 4.67 78.87± 5.26 

SpFlat 70.99± 6.55 71.90± 6.10 71.07± 6.47 

MFCC 59.24± 3.44 70.23± 2.56 62.20± 3.26 

VGG16 86.39± 13.63 87.12± 12.96 86.29± 13.86 

ResNet50 91.13± 9.97 91.26± 9.81 91.06± 10.11 

DenseNet161 86.30± 11.95 87.04± 10.87 86.24± 12.07 

S-ResNN 93.81± 6.60 93.98± 6.43 93.78± 6.67 

 

Table 6-IV. Comparison of proposed method and baseline deep learning models 

on efficiency 

Method VGG16 ResNet50 DenseNet161 S-ResNN 

Params (M) 138.36 25.56 28.68 14.88 

Flops (G) 15.5 4.12 7.82 9.78 
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6.4.3 Selection of Batch Size 

Table 6-V provides a comparison of performance metrics across several batch sizes 

— 8, 16, 32, 48 and 64 — for a deep learning model. When evaluating OA (Eq. (2.24)), 

KP (Eq. (2.26)), precision (Eq. (2.27)), recall (Eq. (2.28)) and F1 score (Eq. (2.29)), a 

batch size of 16 consistently achieves the best results, with over 80% on all metrics. 

Smaller batch sizes like 8 underperform on all evaluation criteria, likely because they 

see limited data for each update. Larger sizes beyond 16 also decline in performance 

somewhat as well, indicating batch statistics and noise reduction diminish after 16. 

Given the goal of maximizing predictive power across many metrics, the analysis 

clearly determines that a batch size of 16 is optimal for this particular deep learning 

architecture and dataset. By properly tuning this hyperparameter and selecting 16, 

model performance reaches peak efficiency based on precision, recall, accuracy and 

other vital measures for employing the model successfully in practice. 

6.4.4 Selection of Learning Rate 

Table 6-VI compares model performance across several learning rate values to 

determine the optimal learning rate hyperparameter for the deep learning model. The 

key observations are: 

1. A learning rate between 0.002-0.005 results in very comparable performance 

across all evaluation metrics, where all these metrics reach their peak values at 

0.003 and highlighted in bold in the table. 

2. When learning is further increased to 0.009 and above, all the evaluation metrics 

Table 6-V Results of different batch size 

Batchsize 8 16 32 48 64 

Precision (%) 77.76 81.95 81.28 78.56 72.71 

Recall (%) 76.6 80.84 80.46 77.40 70.47 

F1 (%) 76.34 80.82 80.34 77.14 70.40 

OA (%) 76.6 80.84 80.46 77.40 70.47 

KP*100 75.76 80.13 79.74 76.56 69.38 
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drop down dramatically. This suggests the learning rate has become far too large, 

causing the training optimization to become unstable and ineffective. Essentially, 

the model parameters are changing too drastically with each update for learning 

to properly occur.  

3. For the rest of learning rate, the model shows degraded performance. This likely 

indicates that the model is slightly underfitting and lose generalization capabilities.  

In summary, 0.003 is the optimal learning rate for performance based on this 

comprehensive evaluation using accuracy, precision, recall, F1, and other metrics. 

6.4.5 Selection of Dropout Rate 

Table 6-VII shows the model performance varying by dropout rate. A dropout rate 

of 0.3 yields the best performance across most evaluation metrics. It achieves the 

highest precision of 86.21%, recall of 85.82%, F1 score of 85.73%, overall accuracy 

of 85.82% and Kappa score of 85.29%. 

Higher dropout rates such as 0.5, 0.6 and especially 0.7 have comparatively poorer 

performance on precision, recall, etc. This is likely caused by too much regularization 

at very high dropout levels. 

Table 6-VI Results of different learning rate (lr) 

lr 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

OA (%) 79.30 85.82 86.90 85.25 85.20 84.28 80.76 76.02 75.07 69.47 

Precision(%) 79.84 86.21 87.40 85.85 85.75 85.62 80.90 78.45 78.33 72.15 

Recall(%) 79.30 85.82 86.90 85.25 85.19 84.28 80.76 76.01 75.08 69.47 

F1(%) 79.22 85.73 86.80 85.13 85.12 84.30 80.53 74.23 73.35 68.63 

KP*100 78.53 85.29 86.42 84.70 84.65 83.69 80.05 75.13 74.15 68.34 

 

Table 6-VII Results of different dropout rates 

Dropout rate 0.2 0.3 0.4 0.5 0.6 0.7 

Precision (%) 73.48 86.21 83.18 81.95 82.10 74.86 

Recall (%) 73.48 85.82 82.60 80.84 80.65 72.18 

F1 (%) 73.48 85.73 82.51 80.82 80.61 71.77 

OA (%) 73.48 85.82 82.60 80.84 80.65 72.18 

KP*100 73.48 85.29 81.95 80.13 79.93 71.15 
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In contrast, lower dropout rates like 0.2 deteriorates performance substantially as 

seen by dramatic reductions in accuracy, F1 and other scores. This indicates model 

generalization suffers greatly due to too little regularization. 

6.4.6 Generalization Experiment 

To further validate the robustness and reliability of the proposed model, a 

generalization experiment is conducted where 10 music pieces selected from Hanon 

[166] were performed, resulting 250 music recordings with 25 classes of musical 

shapes (excluding Swing, Give and Take). Then all models trained on Schmitt music 

pieces will be directly tested on Hanon music pieces. Comparison of various models 

using different training rates is shown in Fig. 6-3. As seen, the proposed S-ResNN has 

much better generalization ability than other benchmark methods though it produces 

comparable accuracy to SpFlux in 10% training rate. This actually motivates us to 

improve the few-shot learning ability of the model by combining data augmentation, 

attention mechanisms and meta-learning strategies in the future. 

 

Fig. 6-3. Comparison of various approaches in dependence of different training rates 

on Hanon music recordings. 
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6.5 Chapter Summary 

This chapter introduces a new insight of MSE into MPA. MSE is a bridge to link 

the human perception with music’s intrinsic properties, which addresses the shortage 

of existing MPA framework. A new architecture S-ResNN2 is proposed for MSE, 

where a new MSE dataset3 is also released as an extra outcome. Experimental results 

have shown the proposed method outperforms not only conventional benchmarking 

approaches but also several deep learning models. Future work will focus on further 

improving and validating the model on wider application scenarios, where the current 

dataset will be extended to include increased categories of music scores and MSs. 

Furthermore, some open-source tools such as MusicXML and MusPy [167] can be 

used to adjust the time and dynamics to various levels that are sometimes hard to adjust 

manually. 

 

  

 
2 https://github.com/lixiaoquan731/ICASSP2023 

3 https://zenodo.org/record/7225090#.Y0_mCXbMKUk 
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Chapter 7 

7 Conclusion 

The present thesis mainly focused on the methodologies of pattern recognition for 

computational musicology. The main contributions cover three different area such as 

Multi-pitch Estimation, Predominant Instrument Recognition, and Music Shape 

Analysis. 

7.1 Thesis Summary 

Chapter 2 covers fundamental concepts of music cognition, including pitch, timbre, 

shape, and music notation tools. It provides the understanding of music knowledge and 

their role in supporting the study aims in this thesis. This theoretical framework 

establishes the essential cognitive and perceptual foundations necessary for 

understanding how humans process and interpret musical information, forming the 

conceptual basis for the advanced music analysis methodologies developed in 

subsequent chapters. 

Chapter 3 then delves into music signal pre-processing techniques, exploring time-

frequency representations like Short-time Fourier Transform (STFT) and Constant-Q 

transform (CQT), as well as matrix factorization methods such as Non-negative Matrix 

Factorization (NMF) and Probabilistic Latent Component Analysis (PLCA). It also 

discusses machine learning approaches for music information retrieval, including 

Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), and 

specific architectures like VGG, ResNet, and DenseNet. Moreover, state-or-the-art 

works for AMT, PMIR and MSE are presented and the challenges and opportunities 

in each field are discussed. Finally, the chapter outlines various evaluation metrics 

used to assess the performance of predictive models in music analysis tasks. This 

comprehensive overview lays a solid foundation for understanding the current state of 
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research in music information retrieval and sets the stage for the novel contributions 

presented in subsequent chapters. 

In Chapter 4, a new multi-pitch estimation model is proposed. For most music 

pieces, pitchs (fundamental frequencies) are their main characteristics. Therefore, by 

taking the advantage of constant-Q transform and SI-PLCA, the pianoroll description 

map can be extracted. Then a harmonic structure detection model is proposed to detect 

and remove the harmonics from the pianoroll description map and only keep the pitch 

(fundamental frequencies). Finally, a simply yet effective note tracking strategy is 

proposed to link the breaking pitches. The proposed MPE model is evaluated on three 

datasets (MAPs, BACH10, and TRIOS) and compared with 11 state-of-the-art 

methods, demonstrating superior performance. This accurate pitch detection forms a 

crucial first step in understanding the complexities of musical compositions. 

In Chapter 5, a promising framework for predominant musical instrument 

recognition (PMIR) in polyphonic music is introduced. This step moves the analysis 

from basic pitch detection to understanding the timbral characteristics of the music. 

Two stages are included in the proposed framework, i.e., Hilbert Huang transform 

(HHT) for spectrogram generation and end-to-end convolutional neural network 

(DCNN) for deep feature extraction and decision making. The Hilbert spectrograms 

generated from audio data serve as input to the DCNN, providing a rich representation 

of the musical signal that captures both pitch and timbral information. The proposed 

system is tested on IRMAS dataset containing 6705 audio clips of 11 instrument 

categories. The classification accuracy reaches 85% which outperforms other three 

conventional frameworks. This high accuracy in instrument recognition, combined 

with the pitch estimation from chapter 3, provides a comprehensive understanding of 

the musical content, setting the stage for more nuanced analysis of musical 

performance. 

Chapter 6 builds on the foundational work of Chapters 4 and 5, moving beyond 

pitch and instrument recognition to assess the expressive qualities of musical 

performances. This chapter introduces a new approach to musical performance 

assessment by focusing on musical shape evaluation is introduced. Leveraging the 
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spectral analysis techniques introduced in previous chapters, a Siamese residual neural 

network (S-ResNN) is proposed to automatically identify musical shapes, treating 

MSE as a classification problem. The input to the S-ResNN is a spectrogram generated 

using the Constant-Q transform (CQT). On the other hand, a new dataset, the Musical 

Shape Evaluation Dataset (MSED), is created to train and evaluate the proposed model. 

The dataset contains 4116 piano recordings derived from 147 piano preparatory 

exercises performed in 28 categories of musical shapes. The dataset is carefully 

curated, considering factors such as musical materials, shape categorization, recording 

process, and equipment. Experimental results demonstrate that the S-ResNN 

outperforms conventional audio content analysis (ACA) methods and other deep 

learning models, such as VGG16, ResNet50, and DenseNet161. This advancement in 

musical shape evaluation represents a significant step towards automated assessment 

of the artistic and expressive aspects of music performance, complementing the 

technical analysis of pitch and instrumentation developed in the previous chapters. 

7.2 Future Work 

Although the contributions in the present thesis have achieved a certain level of 

success, there are still several challenges which can be translated to potential 

improvements and further investigation as summarized below: 

In the multi-pitch estimation system, integrating blind source separation techniques 

would address the assumption of prior knowledge about the instruments present in the 

music piece, thereby enhancing the system's autonomy. To further improve pitch 

estimation accuracy, analyzing beat and chord information and incorporating deep 

learning models such as transformer networks can be explored. Moreover, introducing 

additional music perceptions, such as ornaments and rhythm, into the model can lead 

to a more comprehensive and accurate interpretation of the music pieces. 

For predominant musical instrument recognition, the feature extraction capability 

of the system can be enhanced by fusing multiple spectrogram representations, such 

as the constant-Q transform and MFCC, with the Hilbert-Huang Transform (HHT). 

Incorporating popular deep feature extraction modules, such as multiscale 
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convolutional layers, dynamic convolution, and self-attention mechanisms, can further 

improve the system's feature extraction and decision-making abilities. The 

effectiveness and robustness of the improved model will be validated using additional 

datasets, including MedleyDB and OpenMIC-2018, to ensure its applicability in 

diverse musical contexts. 

Future work in musical shape evaluation will focus on expanding the dataset and 

refining the model. The current dataset will be extended to encompass a wider range 

of music scores and musical shapes, enhancing the model's ability to generalize to 

various musical styles and expressions. Open-source tools, such as MusicXML and 

MusPy, will be employed to adjust time and dynamics to various levels, overcoming 

the limitations of manual performance and enabling the creation of a more 

comprehensive and diverse dataset. To improve the decision-making capability of the 

current model, data augmentation techniques [170], and attention mechanisms [171] 

will be investigated and incorporated. These enhancements aim to enable the model to 

learn effectively from limited examples and focus on the most relevant features for 

accurate musical shape evaluation. 
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Appendix A: Frequencies in Hz of musical 

pitches. 

 

Here is an index table giving the frequencies in Hz of music standard pitches, 

covering the full range of all normal musical instruments. 

Pitch 

number 

Piano-

roll 

Letter 

Name 

Frequency 

(Hz) 

21 1 A0 27.50 

22 2 A#0 29.14 

23 3 B0 30.87 

24 4 C1 32.70 

25 5 C#1 34.65 

26 6 D1 36.71 

27 7 D#1 38.89 

28 8 E1 41.20 

29 9 F1 43.65 

30 10 F#1 46.25 

31 11 G1 49.00 

32 12 G#1 51.91 

33 13 A1 55.00 

34 14 A#1 58.27 

35 15 B1 61.74 

36 16 C2 65.41 

37 17 C#2 69.30 

38 18 D2 73.42 

39 19 D#2 77.78 

40 20 E2 82.41 

41 21 F2 87.31 

42 22 F#2 92.50 

43 23 G2 98.00 

44 24 G#2 103.83 

45 25 A2 110.00 

46 26 A#2 116.54 

47 27 B2 123.47 

48 28 C3 130.81 

49 29 C#3 138.59 

50 30 D3 146.83 

51 31 D#3 155.56 

52 32 E3 164.81 

53 33 F3 174.61 

54 34 F#3 185.00 

55 35 G3 196.00 

56 36 G#3 207.65 

57 37 A3 220.00 

58 38 A#3 233.08 

59 39 B3 246.94 

60 40 C4 261.63 

61 41 C#4 277.18 

62 42 D4 293.66 

63 43 D#4 311.13 

64 44 E4 329.63 
 

65 45 F4 349.23 

66 46 F#4 369.99 

67 47 G4 392.00 

68 48 G#4 415.30 

69 49 A4 440.00 

70 50 A#4 466.16 

71 51 B4 493.88 

72 52 C5 523.25 

73 53 C#5 554.37 

74 54 D5 587.33 

75 55 D#5 622.25 

76 56 E5 659.26 

77 57 F5 698.46 

78 58 F#5 739.99 

79 59 G5 783.99 

80 60 G#5 830.61 

81 61 A5 880.00 

82 62 A#5 932.33 

83 63 B5 987.77 

84 64 C6 1046.50 

85 65 C#6 1108.73 

86 66 D6 1174.66 

87 67 D#6 1244.51 

88 68 E6 1308.51 

89 69 F6 1396.91 

90 70 F#6 1479.98 

91 71 G6 1567.98 

92 72 G#6 1661.22 

93 73 A6 1760.00 

94 74 A#6 1864.66 

95 75 B6 1975.53 

96 76 C7 2093.00 

97 77 C#7 2217.46 

98 78 D7 2349.32 

99 79 D#7 2489.02 

100 80 E7 2637.02 

101 81 F7 2793.83 

102 82 F#7 2959.96 

103 83 G7 3135.96 

104 84 G#7 3322.44 

105 85 A7 3520.00 

106 86 A#7 3729.31 

107 87 B7 3951.07 

108 88 C8 4186.01 
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Appendix B: Schmitt OP. 16 data list 

The Musical Shape Evaluation Dataset (MSED) comprises 147 music pieces 

carefully selected from Aloys Schmitt's "Preparatory Exercises for Piano, Op. 16" 

[162]. This well-established educational book is designed to help pianists develop 

finger independence and evenness, making it an ideal source for studying musical 

shape in the context of piano performance. 

The selected pieces encompass a diverse range of musical forms and techniques, 

ensuring a comprehensive exploration of musical shape across various contexts. The 

breakdown of the 147 pieces is as follows: 

➢ Polyphony: 83 pieces 

➢ Scales: 20 pieces 

➢ Arpeggios: 12 pieces 

➢ Staccato: 32 pieces 

The first column, "MSED No.", indicates the numbering of the music pieces within 

the MSED dataset. The second column, "Schmitt Op. 16 No.", shows the 

corresponding numbering of the polyphonic pieces in the original book. However, it 

is important to note that the scales and arpeggios pieces do not have specific numbers 

in the original book. 

The third column, "Characteristics", highlights the key features of each group of 

music pieces. The polyphonic pieces (1-83) feature multiple simultaneous melodic 

lines, offering rich opportunities for studying the shaping of harmonies and textures. 

The scales (84-103) and arpeggios (104-115) present unique challenges for shaping 

melodic contours and dynamic gradations. Finally, the staccato pieces (116-147) were 

created by performing the scales and arpeggios in a short, detached manner, requiring 

precise control and expressive timing to effectively convey musical shape. 

By including a diverse selection of music pieces with different technical and 

expressive demands, the MSED provides a comprehensive resource for investigating 

musical shape in piano performance.  
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MSED No. 
Schmitt Op. 16 

No. 
Characteristics 

 

1 1 2 stacked notes 

P
o
ly

p
h
o
n
y

 

2 2 2 stacked notes 

3 3 2 stacked notes 

4 4 2 stacked notes 

5 5 2 stacked notes 

6 6 2 stacked notes 

7 7 2 stacked notes 

8 8 2 stacked notes 

9 9 2 stacked notes 

10 10 2 stacked notes 

11 11 2 stacked notes 

12 12 2 stacked notes 

13 13 2 stacked notes 

14 14 2 stacked notes 

15 15 2 stacked notes 

16 16 2 stacked notes 

17 17 2 stacked notes 

18 18 2 stacked notes 

19 19 2 stacked notes 

20 20 2 stacked notes 

21 21 2 stacked notes 

22 22 2 stacked notes 

23 23a 2 stacked notes 

24 23b 2 stacked notes 

25 24a 2 stacked notes 

26 24b 2 stacked notes 

27 25a 2 stacked notes 

28 25b 2 stacked notes 

29 26 2 stacked notes 

30 27 2 stacked notes 

31 28 2 stacked notes 

32 29 2 stacked notes 

33 30 2 stacked notes 

34 31 2 stacked notes 

35 32 2 stacked notes 

36 33 2 stacked notes 

37 34 2 stacked notes, 2 hold notes 
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38 35 2 stacked notes, 2 hold notes 

39 36 2 stacked notes, 2 hold notes 

40 37 2 stacked notes, 2 hold notes 

41 38 2 stacked notes, 2 hold notes 

42 39 2 stacked notes, 2 hold notes 

43 40 2 stacked notes, 2 hold notes 

44 41 2 stacked notes, 2 hold notes 

45 42 2 stacked notes, 2 hold notes 

46 43 2 stacked notes, 2 hold notes 

47 44 2 stacked notes, 2 hold notes 

48 45 2 stacked notes, 2 hold notes 

49 46 2 stacked notes, 2 hold notes 

50 47 2 stacked notes, 2 hold notes 

51 48 2 stacked notes, 2 hold notes 

52 49 2 stacked notes, 2 hold notes 

53 50 2 stacked notes, 2 hold notes 

54 51 2 stacked notes, 2 hold notes 

55 52 2 stacked notes, 2 hold notes 

56 53 2 stacked notes, 2 hold notes 

57 54 2 stacked notes, 2 hold notes 

58 55 2 stacked notes, 2 hold notes 

59 56 2 stacked notes, 2 hold notes 

60 57 2 stacked notes, 2 hold notes 

61 58 2 stacked notes, 2 hold notes 

62 59 2 stacked notes, 2 hold notes 

63 60 2 stacked notes, 2 hold notes 

64 61 2 stacked notes, 2 hold notes 

65 62 2 stacked notes, 2 hold notes 

66 63 2 stacked notes, 2 hold notes 

67 64 2 stacked notes, 2 hold notes 

68 65 2 stacked notes, 4 hold notes 

69 66 2 stacked notes, 4 hold notes 

70 67 2 stacked notes, 4 hold notes 

71 68 2 stacked notes, 4 hold notes 

72 119 4 stacked notes 

73 120 4 stacked notes 

74 121 4 stacked notes 

75 122 4 stacked notes 

76 123 4 stacked notes 
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77 124 4 stacked notes 

78 125 4 stacked notes 

79 126 4 stacked notes 

80 127 4 stacked notes 

81 128 4 stacked notes, 2 hold notes 

82 129 4 stacked notes, 2 hold notes 

83 127 4 stacked notes, 2 hold notes 

84 N/A Major ascending 

S
cales 

85 N/A Major descending 

86 N/A Harmonic minor ascending 

87 N/A Harmonic minor descending 

88 N/A Melodic minor ascending 

89 N/A Melodic minor descending 

90 N/A Contrary motion divergence 

91 N/A Contrary motion close 

92 N/A Minor contrary motion divergence 

93 N/A Minor contrary motion close 

94 N/A Chromatic ascending 

95 N/A Chromatic descending 

96 N/A Major a third apart ascending 

97 N/A Major a third apart descending 

98 N/A Harmonic minor a third apart 

ascending 

99 N/A Harmonic minor a third apart 

descending 

100 N/A Major a sixth apart ascending 

101 N/A Major a sixth apart descending 

102 N/A Harmonic minor a sixth apart 

ascending 

103 N/A Harmonic minor a sixth apart 

descending 

104 N/A Major triads 

A
rp

eg
g
io

s 

105 N/A Minor triads 

106 N/A Dominant 7th 

107 N/A Diminished 7th 

108 N/A Chord passages major triads 

ascending 

109 N/A Chord passages major triads 

descending 

110 N/A Chord passages minor triads 

ascending 

111 N/A Chord passages minor triads 

descending 
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112 N/A Chord passages chord of the 

diminished 7th ascending 

113 N/A Chord passages chord of the 

diminished 7th descending 

114 N/A Chord passages chord of the 

dominant 7th ascending 

115 N/A Chord passages chord of the 

dominant 7th descending 

116 N/A Scales No.84 

S
taccato

 

117 N/A Scales No.85 

118 N/A Scales No.86 

119 N/A Scales No.87 

120 N/A Scales No.88 

121 N/A Scales No.89 

122 N/A Scales No.90 

123 N/A Scales No.91 

124 N/A Scales No.92 

125 N/A Scales No.93 

126 N/A Scales No.94 

127 N/A Scales No.95 

128 N/A Scales No.96 

129 N/A Scales No.97 

130 N/A Scales No.98 

131 N/A Scales No.99 

132 N/A Scales No.100 

133 N/A Scales No.101 

134 N/A Scales No.102 

135 N/A Scales No.103 

136 N/A Arpeggios No.104 

137 N/A Arpeggios No.105 

138 N/A Arpeggios No.106 

139 N/A Arpeggios No.107 

140 N/A Arpeggios No.108 

141 N/A Arpeggios No.109 

142 N/A Arpeggios No.110 

143 N/A Arpeggios No.111 

144 N/A Arpeggios No.112 

145 N/A Arpeggios No.113 

146 N/A Arpeggios No.114 

147 N/A Arpeggios No.115 
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Appendix C: Dataset description 

 

Class 
Folder 

name 
Shape Description 

1 1 Forte 
Strong dynamics and denoted as f on the 

score 

2 2 Piano 
Weak dynamics and denoted as p on the 

score 

3 3 Cresc. 
Gradually increase the dynamics from p 

to f 

4 4 Decresc. Gradually reduce the dynamics from f to p 

5 5 Adagio Perform the score with 72 bpm 

6 6 Largo Perform the score with 50 bpm 

7 7 Rit. 
Gradually reduce the speed from 60 - 50 

bpm 

8 8 Accel. 
Gradually increase the speed from 60 - 72 

bpm 

9 5_1 Forte+adagio f + 72 bpm 

10 5_2 Piano+adagio p + 72 bpm 

11 5_3 Cresc.+adagio p→f + 72 bpm 

12 5_4 Decresc.+adagio f→p + 72 bpm 

13 6_1 Forte+largo f + 50 bpm 

14 6_2 Piano+largo p + 50 bpm 

15 6_3 Cresc.+largo p→f + 50 bpm 

16 6_4 Decresc.+largo f→p + 50 bpm 

17 7_1 Forte+rit. f + 60→50 bpm 

18 7_2 Piano+rit. p + 60→50 bpm 

19 7_3 Cresc.+rit. p→f + 60→50 bpm 

20 7_4 Decresc.+rit. f→p + 60→50 bpm 

21 8_1 Forte+accel. f + 60→72 bpm 

22 8_2 Piano+ accel. p + 60→72 bpm 

23 8_3 Cresc.+ accel. p→f + 60→72 bpm 

24 8_4 Decresc.+ accel. f→p + 60→72 bpm 

25 0_1 Given Play ahead 

26 0_2 Take delay play 

27 27 Jazz syncopation 

28 28 Normal 60 bpm 
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Appendix D: Dataset visualization 

 

 

Fig. 0-1. No.65 music piece in Schmitt OP.16. 

 

To better illustrate the differences between normal and the 27 musical shapes (MSs) 

for the music pieces, let's examine the Constant-Q Transform (CQT) spectrograms of 

a representative music piece selected from Schmitt OP.16.  

Fig. 0-1 shows the musical score of the selected piece, while Fig. 0-2 and Fig. 0-3 

display the CQT spectrograms for the normal performance and the 27 MSs. (Please 

note that the description of the 27 MSs can be found in Appendix C.) 

Upon examining the CQT spectrograms, several key observations can be made 

regarding the impact of tempo and dynamics on the visual representation of musical 

shape: 

Tempo variations:  

• When the tempo becomes faster (e.g., Allegro), the length of the bars in the 

spectrogram appears shorter compared to the normal performance. This is 

because the music is played at a quicker pace, resulting in less time spent on 

each note or phrase. 

• Conversely, when the tempo becomes slower (e.g., Adagio), the length of the 

bars in the spectrogram appears longer. The slower tempo allows for more time 

to be devoted to each musical element, resulting in an extended visual 

representation. 

Dynamic variations:  
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• When the dynamics are softer (e.g., Piano), the intensity of the bars in the 

spectrogram appears lighter or less pronounced. This visual change reflects the 

decreased volume and energy in the musical performance. 

• On the other hand, when the dynamics are louder (e.g., Forte), the intensity of 

the bars in the spectrogram appears darker or more prominent. The increased 

brightness in the visual representation corresponds to the heightened volume 

and energy in the performance. 

Combined tempo and dynamic variations:  

• The CQT spectrograms also showcase the interplay between tempo and 

dynamics in shaping the visual representation of musical shape. For example, 

a piece performed in a fast tempo with soft dynamics (e.g., Allegro Piano) will 

exhibit shorter bar lengths and a lighter intensity compared to the normal 

performance. 

• Similarly, a piece performed in a slow tempo with loud dynamics (e.g., Adagio 

Forte) will display longer bar lengths and a darker intensity, reflecting the 

combined effect of the tempo and dynamic changes. 

These visual variations in the CQT spectrograms demonstrate how different musical 

shapes are characterized by distinct combinations of tempo, dynamics, and other 

expressive elements. By examining the length and intensity of the bars in the 

spectrograms, insights can be gained into the ways in which performers manipulate 

these musical parameters to convey different expressive intentions and create diverse 

musical shapes.
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Fig. 0-2. CQT spectrogram of MSs (1-15), where x-axis and y-axis represent time 

and number of bins, respectively. Detailed description of each MS is given in 

Appendix C 
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16 17 18 

19 20 21 

22 23 24 

25 26 27 

28  

Fig. 0-3. CQT spectrogram of MSs (16-28), where x-axis and y-axis represent time 

and number of bins, respectively. Detailed description of each MS is given in 

Appendix C 


