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Abstract

The explicit solution of stochastic differential equations (SDEs) can be found only

in a few cases. Therefore, there is a need for accurate numerical approximations

that could, for example, enable Monte Carlo Simulations. Convergence and sta-

bility of these methods are well understood for SDEs with Lipschitz continuous

coefficients. Our research focuses on those situations where the coefficients of

the underlying SDEs are non-Lipschitzian. It was demonstrated in the literature,

(Hutzenthaler and Jentzen 2009; Higham, Mao, and Yuan 2008) that in this case

using the classical methods we may fail to obtain numerically computed paths

that are accurate for small step-sizes, or to obtain qualitative information about

the behaviour of numerical methods over long time intervals. This work addresses

both of these issues, giving a customized analysis of the most widely used numer-

ical methods. Motivated by existing work (Higham, Mao, and Stuart 2003b) and

(Hu 1996) we consider implicit schemes. These authors have demonstrated that

a backward Euler-Maruyama method strongly converges to the solution of SDEs

with one-sided Lipschitz drift and linear growth diffusion coefficients. We extend

their work by allowing for a polynomially growing diffusion term. The strong

convergence is valuable as it reveals a pathwise error; new efficient Multi-Level

Monte Carlo simulations (Giles 2008; Pages 2007) rely on strong convergence and

weak convergence. In addition we examine global almost sure asymptotic stabil-

ity in this nonlinear setting. In particular, we present a stochastic counterpart

of the discrete LaSalle principle from which we deduce stability properties of im-

plicit numerical methods.

We also show that an appropriate implicit numerical method preserves positivity.

In addition to being a desirable modelling property, in some cases positivity of the

numerical approximation is required in order for the scheme to be well defined.

Motivation for our work comes from finance and biology where many widely
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applied models do not satisfy a Lipschitz condition. We support our theoreti-

cal results with relevant examples, such as stochastic interest rate models and

stochastic volatility models. Although the considered schemes are implicit we

point out that in many practical situations they do not increase computational

complexity. We provide numerical results in support of our analysis.
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General Notation

nonnegative :≥ 0.

a.s. : Almost surely, or with probability 1.

∅ : The empty set.

A =: B : A is defined to be B or A is denoted by B.

1A : The indicator function of a set A,

i.e. 1A(x) = 1 if x ∈ A or otherwise 0.

AC : The complement of A in Ω, i.e.AC = Ω− A.

A ⊂ B : A ∩BC = ∅.
A ⊂ B a.s. : P (A ∩BC = ∅) = 1.

σ(C) : The σ-algebra generated by C.

a ∨ b : The maximum of a and b.

a ∧ b : The minimum of a and b.

f : A → B : The mapping f from A to B.

R = R1 : The real line.

R+ : The set of all nonnegative real numbers, i.e. R+ = [0,∞).

Bd : The Borel-σ-algebra on Rd.

|x| : The Euclidean norm of a vector x

and the Frobenius matrix norm.

C(D;Rd) : The family of continuous Rd-valued functions defined on D.

〈x, y〉 : scalar product of vectors x, y ∈ Rn.

Cm(D;Rd) : The family of continuously m-times differentiable Rd-valued

functions defined on D.

C2,1(D×R+; R) : The family of all real-valued functions V (x, t) defined on D×R+
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C2,1(D×R+; R) : which are continuously twice differentiable in x ∈ D and

once differentiable in t ∈ R+.

Vx :=

(
∂V

∂x1

, · · · ,
∂V

∂xd

)
.

Vxx :=

(
∂2V

∂xi∂xj

)

d×d

.

‖ ξ ‖L
p := (E|ξ|p)1/p.

Lp(Ω; Rn) : The family of Rn-valued random variables X with

E|X|p < ∞.

Lp
Ft

(Ω; Rn) : The family of Rn-valued Ft-measurable random variables X

with E|X|p < ∞.

Lp([a, b]; Rn) : The family of Borel measurable functions h : [a, b] → Rn

such that

∫ b

a

|h(t)|pdt < ∞.

Lp([a, b]; Rn) : The family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b

such that

∫ b

a

|f(t)|pdt < ∞ a.s.

Mp([a, b]; Rn) : The family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b

in Lp([a, b]; Rn) such that E

∫ b

a

|f(t)|pdt < ∞.

Other notations will be explained where they first appear.
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Chapter 1

Introduction

As far as the laws of mathematics refer to reality,

they are not certain; and as far as they are

certain, they do not refer to reality.

Albert Einstein

In 1827 the botanist Robert Brown noticed that if we look at pollen grains

in water through a microscope, they jiggle about. This very lively and irregular

state of motion is known nowadays as Brownian Motion. However, Brown did not

clarify what was causing it. The first of the three papers that Einstein published

in 1905 (Einstein 1905) and a work by Marian Smoluchowki (Von Smoluchowski

1906) finally came up with an explanation. A major point of their discoveries was

that the motion of water molecules is so complicated that its effect on the pollen

grain can best be described probabilistically in terms of exceedingly frequent sta-

tistically independent impacts. That was a profound discovery that opened the

doors to stochastic differential modeling in science. A mathematically rigorous

description of Brownian Motion was given more than twenty years later, in 1923,

by Norbert Wiener, (Wiener 1923) and since then sometimes it is called a Wiener

process.

Although these discoveries intrigued researchers worldwide, deterministic differ-

ential calculus developed by Newton and Leibnitz remained the main tool for

modelling a wide range of problems in the natural, social, and biological sciences.

Up to the nineteenth century it was commonly thought that if all initial data

could only be collected, one would be able to predict the future behaviour of
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CHAPTER 1. INTRODUCTION

the analyzed system. However, as pointed out by Einstein and Smoluchowki it

might happen that the function which we believe describes the change of the

system under consideration is not completely known. It might be subject to ran-

dom environmental effects called nowadays random noise. It was the fact that

the Brownian sample paths are (almost surely) nowhere differentiable (Paley,

Wiener, and Zygmund 1933), that prevented researchers from including random-

ness in their models. This also explained why stochastic calculus is far more

complex than the deterministic one. Since Brownian Motion is of unbounded

variation on any finite time interval, the ordinary Lebesgue-Stieltjes integral can-

not be defined. Nevertheless, Brownian Motion has finite quadratic variation and

this fact allows one to construct a stochastic integral. The construction is due to

the Japanese mathematician Kiyoshi Itô (Itô 1944), and is now known as the Itô

stochastic integral. In this thesis we always work with stochastic integrals in the

Itô sense. Ordinary differential equations with incorporated noise component are

called Stochastic Differential Equations (SDEs). Two years later Itô (Itô 1946)

proved that once the coefficients of the SDEs are Lipschitz continuous then a

system admits a unique solution. Nowadays these equations are essential in mod-

elling various phenomena in mathematical finance (Karatzas and Shreve 1998),

physics (Gardiner 1985), molecular biology (Gillespie 1992), epidemiology (Tan

and Wai-Yuan 2000), neural networks (Laing and Lord 2009), to mention a few.

For these reasons it is extremely important to study the behaviour of the solu-

tion to SDEs. Since solutions can be found explicitly only in very few cases, there

is a need for development of numerical methods which can give us information

about qualitative behaviour of the underlying stochastic systems. The subject of

this thesis is to extend current knowledge on approximations for these stochastic

systems. We present efficient and accurate approximations for the solutions to a

wide family of stochastic processes encountered in mathematical finance and bio-

mathematics, which have not been treated by numerical analysis so far. In the

remainder of this chapter we survey the relevant research literature and motivate

the research contributions in the thesis.
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CHAPTER 1. INTRODUCTION

1.1 Why Are We Interested in Approximations

of SDEs?

Let w(t) = (w1(t), ..., wd(t))
T be a d-dimensional Brownian motion defined on the

probability space, where T denotes the transpose of a vector or a matrix. In this

thesis we look at Itô SDEs of the form

dx(t) = f(x(t))dt + g(x(t))dw(t). (1.1)

Here x(t) ∈ Rn for each t ≥ 0. Thus, f : Rn → Rn and g : Rn → Rn×d. For

simplicity we assume that initial condition x0 ∈ Rn. It can be shown (Mao 2007)

that this is not restrictive. In order to approximate SDEs (1.1) numerically, for

any step size ∆t, we define the partition P∆t := {tk = k∆t : k = 0, 1, 2, ...} of the

half-line [0,∞). The most basic and intuitive direct discretization method is the

Euler-Maruyama method

Xtk+1
= Xtk + f(Xtk)∆t + g(Xt)∆wtk , (1.2)

where ∆wtk = w(tk+1) − w(tk) are increments of Brownian motion. Maruyama

(Maruyama 1955) showed the mean-square convergence of this method, while

Gihman and Skorohod (Gihman and Skorohod 1972) proved that the strong order

of accuracy of the Euler-Maruyama method is 1/2. These results were derived

for Lipschitz continuous functions f and g.

Definition 1.1.1. Global Lipschitz condition. Assume that there exists a positive

constant K such that for all x, y ∈ Rn

|f(x)− f(y)|2 ∨ |g(x)− g(y)| ≤ K |x− y|2 .

Here, we recall the theorem from (Kloeden and Platen 1992)

Theorem 1.1.2. Under global Lipschitz condition on functions fff and ggg, for

any p ≥ 1 and T ≥ 0, there exists a positive constant K = K(p, T ), independent

of ∆t such that

E
[

sup
0≤tk≤T

|x(tk)−Xtk |p
] ≤ K∆tp/2p/2p/2,

where tk ∈ P∆t.
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CHAPTER 1. INTRODUCTION

There are numerous examples in the literature where authors discretize SDEs,

typically with an Euler-type or Milstein-type schemes. Within applications, there

are three main motivations for such simulations:

• Using a Monte Carlo approach to compute the expected value of a function

of x(t), for example to value a bond or the expected payoff of an option,

(Andersen, Benzoni, and Lund 2002; Broadie and Kaya 2006; Glasserman

2003);

• Generating time series in order to test parameter estimation algorithms

(Duan 2003; Fischer, May, and Walther 2004);

• Approximating the likelihood estimator effectively (Pedersen 1995).

Our research focuses on those situations when the SDEs under consideration are

non-linear and non-Lipschitzian. Here standard convergence theory for numerical

simulations, as typified by Theorem 9.6.2 (see Theorem 1.1.2 above) in (Kloeden

and Platen 1992) or Theorem 1.1 in (Milstein and Tretyakov 2004), cannot be

used to deduce that the numerically computed paths are accurate for small step-

sizes. Nor can stability analysis, such as in (Higham, Mao, and Stuart 2003a;

Higham 2000), be applied to obtain qualitative information about the behaviour

of numerical methods over long time intervals. This work addresses both these

issues, giving a customized analysis of the most widely used numerical methods.

The results obtained justify the type of numerical simulations that are done by

researchers and practitioners. We are interested in relaxation of the condition

for the diffusion coefficient in order to justify Monte Carlo simulations for highly

non-linear systems. Super-linear diffusions

|g(x)| ≤ β |x|ρ , for ρ > 1,

arise in financial mathematics, (Ahn and Gao 1999; Campbell, Lo, MacKinlay,

and Whitelaw 1998; Ait-Sahalia 1996; Chan, Karolyi, Longstaff, and Sanders

1992; Heston 1997; Lewis 2000) , for example

dx(t) = (µ− αxr(t))dt + βxρ(t)dw(t), r, ρ > 1, (1.3)

and stochastic population dynamics (Mao, Marion, and Renshaw 2002; Bahar
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CHAPTER 1. INTRODUCTION

and Mao 2004; Mao, Sabanis, and Renshaw 2003; Pang, Deng, and Mao 2008;

Gard 1988), for example

dx(t) = diag(x1, x2, ..., xn(t))[(b + Ax2(t))dt + g(x(t))dw(t)]. (1.4)

In our research we focus on strong convergence. This form of convergence is

valuable as

• weak convergence (Kloeden and Platen 1992) and pathwise convergence

(Kloeden and Neuenkirch 2007) follow automatically, and

• efficient Multi-Level Monte Carlo (MLMC) simulations rely on both weak

and strong convergence properties (Giles 2008).

Summarizing, direct discretization methods for SDEs (1.1) are important because

• they are widely used in practice;

• even if a transition density is known, it is often computationally faster to

simulate with the direct method in cases where the path must be sampled

at finely spaced points in order to approximate a path-dependent payoff

(Broadie and Kaya 2006; Higham and Mao 2005);

• it is interesting to prove convergence results where there is no global Lips-

chitz condition for the diffusion term (as mentioned, for example, in (Glasser-

man 2003));

• it can be regarded as a contribution to the literature on diffusion limits

of discrete models, for example ARCH, CEVGARCH(1,1), CEVARCH to

mention a few (Nelson 1990; Fornari and Mele 2001).

1.2 Mathematical Finance

In 1900, the mathematician Louis Bachelier in his dissertation “Théorie de la

Spéculation” attempted to describe the random nature of stock price fluctuations

as a Brownian motion with drift. His intuition was outstanding, since a mathe-

matical definition of a Brownian Motion had not been given by that time. More

than sixty years later economist and Nobel prize winner Paul Samuelson, giving
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CHAPTER 1. INTRODUCTION

full recognition to Bachelier’s fundamental contributions, suggested to replace an

arithmetic Brownian Motion by a geometric one

dS(t) = αS(t)dt + σS(t)dw(t),

to account for the fact that stock prices cannot take negative values (Samuelson

1965). Continuing the work of Samuelson in 1973 Black and Scholes (Black

and Scholes 1973) and Merton (Merton 1973) derived the price of European

call options. This development prompted the massive growth in research into

stochastic modelling applied to financial problems, particularly with respect to

valuation of contingent claims on underlying assets, so-called financial deriva-

tives. For their contribution Merton and Scholes received the 1997 Nobel Prize

in Economics. Black died in 1995, but he was mentioned as a contributor by the

Swedish academy. Since the Black-Scholes formula was derived, a number of em-

pirical studies have concluded that the assumption of constant volatility - σ - is

inadequate to describe stock returns, based on two findings (1) volatilities of stock

returns vary over time, but persist at a certain level (mean-reversion property),

these findings can be traced back to the empirical works of (Mandelbrot 1963)

and (Fama 1965) with the result that the distributions of stock returns are more

leptokurtic than normal; (2) volatilities are correlated with stock returns, and

more precisely, they are usually inversely correlated. Furthermore, the volatility

smile provides direct evidence for the inconsistent volatility pattern with money-

ness in the Black-Scholes model. In order to model the variability of volatility

and to capture the volatility smile, several approaches have been suggested. One

of the most general, and widely applied approaches is to model volatility by a

diffusion process and has been, for example, examined by (Johnson and Shanno

1987), (Wiggins 1987), (Scott 1987), (Hull and White 1987), (Stein and Stein

1991), (Heston 1993), and (Lewis 2000). The models following this approach are

the so-called stochastic volatility models. Good examples of stochastic volatility

models which are treated in this thesis are:

Lewis volatility model (Lewis 2000)





dS(t) = (µ− αS(t))dt + σ1V (t)S(t)dw1(t)

dV (t) = (r − βV (t)2)dt + σ2V (t)3/2dw2(t);

7



CHAPTER 1. INTRODUCTION

Transformed Heston model (Zhu 2009)





dS(t) = (µ− αS(t))dt + σ1V (t)S(t)dw1(t)

dV (t) = (γV (t)−1 − βV (t))dt + σ2dw2(t).

Another important class of models are Stochastic interest models. For ex-

ample, a stochastic short rate appears in a risk-neutral stock process as drift.

Therefore, volatility of the risk-less rate is a key variable governing the value

of contingent claims such as interest rate options. In addition, optimal hedging

strategies for risk-averse investors depend critically on the level of term structure

volatility. Nowadays stochastic interest rate models form a much larger theoreti-

cal field than stochastic volatility models, and even have a longer history because

interest rates are the most important factor in economics. Important contribu-

tions to the theory of stochastic interest rates models have been made by (Vasicek

1977), (Cox, Ingersoll Jr, and Ross 1985) and (Longstaff 1989). Later Chan,

Karolyi and Longstaff (Chan, Karolyi, Longstaff, and Sanders 1992) using the

Generalized Method of Moments demonstrated that highly non-linear models

(with super-linear diffusion coefficient) capture the dynamics of the short-term

interest rate better than linear and sub-linear ones. This is because the volatility

of the process is highly sensitive to the level of interest rate. This finding was

confirmed by Ait-Sahalia (Ait-Sahalia 1996) who investigated several continuous-

time interest rate models empirically. He tested parametric models by comparing

their implied densities with the density estimated nonparametrically. This study

led to a new class of highly non-linear SDEs to model interest rates

dr(t) = (α−1r(t)
−1 − α0 + α1r(t) + α2r(t)

2)dt + σr(t)ρdw(t), (1.5)

with ρ > 1. Subsequent studies supported the observations made by Ait-Sahalia.

Stanton (Stanton 1997), using nonparametric kernel regression, also found signif-

icant nonlinearities in spot rate data. Hong and Li (Hong and Li 2005) developed

the so called omnibus nonparametric specification test for continuous-time mod-

els based on the transition density function, which, unlike the marginal density

used by Ait-Sahalia, captures the full dynamics of the continuous process. Their

test rejected all but the Ait-Sahalia and CKLS (Chan, Karolyi, Longstaff, and
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CHAPTER 1. INTRODUCTION

Sanders 1992) models. It is worthwhile to mention the work of Ahn and Gao

(Ahn and Gao 1999) which showed that Inverse Feller Square-Root Process

dr(t) = β(µ− r(t))r(t)dt + σr(t)3/2dw(t)

outperforms affine models in both time-series as well as cross-sectional tests.

Along with Ait-Sahalia, Conley et al. (Conley, Hansen, Luttmer, and Scheinkman

1997) and Gallant et al. (Gallant and Tauchen 2005), have used a variety of

empirical techniques to estimate model parameters; and all have suggested that

the diffusion term in the SDE grows faster than linearly.

Clearly, studies on stochastic volatility models and stochastic interest rate

models have implied that non-linear stochastic models have better ability to fit

financial data than classical models, therefore they are more realistic. However,

such highly nonlinear models are much more difficult to handle for mathemati-

cians. For example, we are not able to find an explicit solution to these stochastic

systems and even probability distribution for the solutions can be found only in

very few cases. This motivates research on efficient and accurate numerical meth-

ods in this non-linear setting. These numerical methods could enable efficient

Monte Carlo simulations to price various financial instruments as well as shed

some light on the complex financial world in order to motivate subsequent stud-

ies.

It is also worth mentioning that many non-linear stochastic differential financial

models may correspond to an econometric counterpart by discretizating them on

time points, and some could be referred to as so-called autoregressive random

variance models (ARV). Nelson and Foster (Nelson and Foster 1994) and Duan

(Duan 1996) showed that some existing stochastic volatility models can be consid-

ered as the weak limits of generalized autoregressive conditional heteroscedasticity

(GARCH) models. The discrete-time versions of stochastic models also play an

important role in empirical tests. For instance, Heston and Nandi (Heston and

Nandi 2000) suggested a GARCH option pricing model and derived a closed-

form solution which allows for correlation between stock returns and variance

and even admits multiple lags in the GARCH process. It is therefore of interest

to investigate diffusion limits of such autoregressive processes.

There is a gap in literature on numerical methods for super-linear stochas-

9



CHAPTER 1. INTRODUCTION

tic systems and we believe that this thesis answers some important questions

as well as raising new problems in stochastic numerical analysis.

1.3 Overview of Stochastic Numerical Analysis

As we have already mentioned, the first result concerning existence and unique-

ness of the solution to the equation (1.1) requires the global Lipschitz condition

on both drift and diffusion coefficients (Itô 1946). This result was generalized to

the local Lipschitz case by applying the Lyapunov function technique.

Theorem 1.3.1 ((Khasminski 1980)). Let D be an open subset of Rn. There

exists a unique, global solution x(t) ∈ D to the equation (1.1) on t ≥ 0 for any

given initial value x(0) = x0 ∈ D if the following conditions hold:

i There exists an increasing sequence of bounded domains {Dm}∞m=1 with⋃∞
m=1 Dm = D such that there exists a positive constant Km > 0 for which

|f(x)− f(y)|+ |g(x)− g(y)| ≤ Km |x− y| for all x, y ∈ Dm. (1.6)

ii There exists a C2-function V : D → R+ such that

LV := Vxf(x) +
1

2
trace[gT (x)Vxxg(x)] ≤ K(1 + V (x))

Vm := inf
x∈∂Dm

V (x) →∞, as m →∞.

This powerful theorem allows, for example, a proof of existence of a unique

solution on the domains. Very often in applications, it needs to be established

that the solution to the SDEs (1.1) stays positive for any t > 0. Although,

Theorem 1.3.1 allows us to show that for a very wide family of SDEs the solution

exists, in general, both the explicit solution and the probability distribution to

the solution of (1.1) are not known. We therefore consider computable discrete

approximations that, for example, could be used in Monte Carlo simulations.

Recently, some authors reported limitations of classical methods in non-linear

settings. It has been shown by Appleby et al. in (Appleby, Kelly, Mao, and

Rodkina 2010), that the classical Euler-Maruyama scheme fails to preserve almost

sure stability for certain highly non-linear SDEs. More specifically, they showed

10
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that Euler-Maruyama explodes to infinity with probability close to one, whereas

the corresponding SDE tends to 0 almost surely. Similar example was given

by Hutzenthaler. et al. in (Hutzenthaler and Jentzen 2009). Those authors

proved that in the case of super-linearly growing coefficients the Euler-Maruyama

approximation may not converge in the strong Lp-sense nor in the numerically

weak sense to the exact solution.

On the other hand, it has been shown in (Higham, Mao, and Stuart 2003b;

Higham, Mao, and Stuart 2003a) that, as in the deterministic case, implicit

schemes offer benefits in terms of linear and non-linear stability. What is more,

Higham at al. in (Higham, Mao, and Stuart 2003b) using an implicit scheme, pre-

sented strong convergence proofs when the drift coefficient is one-sided Lipschitz

and the diffusion coefficient is globally Lipschitz. A similar result was derived by

Hu in (Hu 1996). These results agree with our intuition from studying numerical

approximations for ordinary differential equations where implicit schemes prove

to be useful in analysing the so-called stiff problems (Hairer and Wanner 2010).

All of these results motivate us to work with implicit schemes. The most basic

implicit numerical method is the backward Euler-Maruyama scheme. For the

partition P∆t := {tk = k∆t : k = 0, 1, 2, ...} of the time interval [0,∞), we define

backward Euler-Maruyama as

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆wtk , (1.7)

where Xt0 = x0. In order to guarantee the existence of a unique global solution for

the implicit scheme, we assume that the function f satisfies a one-sided Lipschitz

condition

〈x− y, f(x)− f(y)〉 ≤ L |x− y|2 ∀x, y ∈ Rn. (1.8)

This condition is somehow hard to relax (see discussion in (Jentzen, Kloeden,

and Neuenkirch 2009)). But, having financial and bio-mathematical applications

in mind it is not very restrictive. These models are often of dissipative nature

sometimes called in applied mathematics a mean-reverting property.

Once the diffusion coefficient is no longer Lipschitz, the main difficulty is to

control its super-linear growth utilizing the dissipative nature of the drift term.

Both results of Higham et al. and Hu indicated that once we work only under

local Lipschitz conditions, boundedness of moments of the true solution and its

11
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approximation is a key property to prove strong convergence. What is more, it

was the fact that the Euler-Maruyama scheme does not preserve boundedness of

moments of non-linear SDEs which enabled Hutzenthaler et al. (Hutzenthaler

and Jentzen 2009) to prove a divergence theorem. The boundedness of moments

is also crucial in this thesis. To motivate further the usage of backward schemes

we perform a numerical experiment. We consider a non-linear SDE

dx(t) = −αx(t)3dt + βx(t)2dw(t). (1.9)

the Euler-Maruyama scheme applied to the above equation gives

X̂tk+1
= X̂tk − αX̂3

tk
∆t + βX̂2

tk
∆wtk , (1.10)

with ∆t = T
N

, N ≥ 1, and has the following property (Hutzenthaler and Jentzen

2009)

lim
N→∞

E
∣∣∣X̂tN

∣∣∣
p

= ∞ p ≥ 1.

On the other hand Itô’s Lemma (Mao 2007) with function V (x) = |x|p applied

to (1.9) yields

E |x(t)|p < ∞ for α >
p− 1

2
β2, p ≥ 2 t ≥ 0.

Hence, Hutzenthaler et al. (Hutzenthaler and Jentzen 2009) concluded that for

α > β2

2

lim
N→∞

E
∣∣∣x(T )− X̂tN

∣∣∣
2

= ∞. (1.11)

Therefore, we suggest to approximate (1.9) with

Xtk+1
= Xtk − αX3

tk+1
∆t + βX2

tk
∆wtk . (1.12)

Let us observe that by solving the appropriate cubic equation we can find Xtk+1

explicitly in terms of Xtk and ∆wtk .

In Figure 1.1 we compare the behaviour of second moments of the Euler-

Maruyama and backward Euler-Maruyama schemes applied to (1.9). We take

two different time-steps, ∆t = 2−8 and ∆t = 2−5, and solve (1.10) and (1.12)

12
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Figure 1.1: Comparison of moments for Explicit and Implicit schemes for highly
non-linear SDEs.

respectively. To estimate second moments at time T we average over 105 numer-

ically generated paths. We fix the parameters to α = 6 and β =
√

6 and set the

initial condition x(0) = 1. It is very interesting to notice that once we decrease

the time step second moments of EM scheme explode to infinity even quicker.

This is somehow counterintuitive, since it is typical for a smaller step-size to give

better accuracy. This shows the importance of an appropriate scheme once we

are beyond the global Lipschitz setting.

The above discussion immediately raises the question under what type of con-

ditions we can prove the boundedness of moments for numerical approximations?

It is well known that the classical linear growth condition is sufficient to bound

the moments for both SDE and Euler-Maruyama (Kloeden and Platen 1992;

Mao 2007). Our numerical experiment suggests that EM performs very poorly

in super-linear setting. From stochastic analysis we know, that in the case of a
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continuous solution, a useful first step to relax the linear growth conditions is

to apply the Lyapunov function technique, with V (x) = |x|2, (Mao 2007). This

leads us to the monotone condition (Mao 2007). More precisely, if there exists a

constant K > 0 such that

〈x, f(x)〉+
1

2
|g(x)|2 ≤ K(1 + |x|2) for all x ∈ Rn, (1.13)

then (1.1) has the following property

sup
0≤t≤T

E |x(t)|2 < ∞ ∀T > 0.

However, to the best of our knowledge, there is no result of this type for numeri-

cal approximation of SDEs. Therefore, our goal is to close this gap and to prove

strong convergence under the monotone condition (1.13) for BEM. The monotone

condition allows us to develop bounds for polynomial coefficients, for example for

f = −x3 and g = x2, in (1.9).

Although we are able to prove (3.4.4) strong convergence of implicit Euler-

Maruyama scheme to the exact solution under only the general monotone con-

dition (1.13), we have found this condition to be too weak to derive a rate of

convergence. This agrees with the work of Higham et al. (Higham, Mao, and

Stuart 2003b), where the assumption on boundedness of moments did not lead

to a rate of convergence either. By imposing a further, polynomial-like condi-

tion on the drift, optimal strong convergence rates were established by Higham

et al. in (Higham, Mao, and Stuart 2003b) for backward Euler-Maruyama and

split-step backward schemes. By optimal we mean that the same order arises for

SDEs under global Lipschitz conditions on f and g (Kloeden and Platen 1992;

Müller-Gronbach and Ritter 2008). We will extend their work by changing the

linear growth condition on diffusion coefficients into the polynomial type con-

dition. These additional assumptions allowed us to derive the optimal rate of

convergence of backward Euler-Maryuama scheme in a non-linear setting. We

also would like to comment that our results can be extended to higher order

schemes. We will demonstrate that the same assumptions which were required to

prove the strong convergence theorem with the optimal rate for BEM, are suffi-

cient to prove the fundamental theorem of Milstein (Milstein 1987; Milstein and

14
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Tretyakov 2004).

So far, to the best of our knowledge, existing results about strong convergence

for numerical schemes cover only non-linear SDEs where the diffusion part is of the

form σxρ with ρ ∈ [0.5, 1) (Berkaoui, Bossy, and Diop 2007; Mao, Yuan, and Yin

2007; Higham and Mao 2005). Furthermore, the rate of convergence was derived

only in (Berkaoui, Bossy, and Diop 2007) under very restrictive assumptions on

the parameters. In this thesis we do not treat SDEs with the diffusion term

satisfying Hölder continuous condition with α ∈ [0.5, 1).

In our research we also considered numerical issues arising from SDE models

of Ait-Sahalia type. The SDE that we study, which we refer to as the generalized

Ait-Sahalia model, has the form

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)r)dt + σx(t)ρdw(t), (1.14)

where α−1, α0, α, α1, α2, σ are positive constants and r, ρ > 1. In addition to

super-linear diffusion, a further difficulty in (1.14) is that the drift contains a

term α−1x(t)−1 that does blow up at the origin. It was also indicated in (Zhu

2009) that once we consider the transformed Heston Model





dS(t) = (µ− αS(t))dt + σ1V (t)S(t)dw1(t)

dV (t) = (γV (t)−1 − βV (t))dt + σ2dw2(t),

classical Euler schemes cannot cope with the term x(t)−1. The backward Euler-

Maryuma overcomes this difficulty (we will prove its strong convergence) because

it preserves positivity of the solution in this case.

Preservation of positivity of the solution to equation (1.1) by numerical approx-

imations is an important issue. It may be required for modelling and for the

scheme to be well defined. For example, evaluating the drift coefficient in the

3/2 Heston Volatility model for a negative argument does not make sense. Many

fixes have been proposed in literature, but these can lead to substantial bias in

simulations, (Lord, Koekkoek, and Van Dijk 2009). For more information about

positivity preserving schemes we refer the reader to (Szpruch, Mao, Higham, and

Pan 2010; Schurz 2005; Kahl, Gunther, and Rosberg 2008; Appleby, Guzowska,

and Rodkina 2010).
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After having established a strong convergence result we proceed to stabil-

ity analysis for nonlinear SDEs (1.1) under the monotone condition. The main

problem concerns propagation of errors during the simulation of an approximate

path. If the numerical scheme is not stable, then the simulated path may di-

verge substantially from the exact solution in practical simulations. Similarly,

the expectation of the functional estimated by a Monte Carlo simulation may

be significantly different from that of the expected functional of the underlying

SDE due to numerical instabilities. Our aim here is to investigate almost sure

asymptotic properties of numerical schemes for SDE (1.1) via a stochastic ver-

sion of the LaSalle principle. In (LaSalle 1968) LaSalle improved significantly

the Lyapunov stability method for Ordinary Differential Equations. Namely, he

developed methods for locating limit sets of nonautonomous systems (Hale and

Lunel 1993; LaSalle 1968). The first stochastic counterpart of his great achieve-

ment was established by Mao (Mao 1999) under local Lipschitz and linear growth

conditions. Recently, this result was generalized by Shen et al. in (Shen, Luo,

and Mao 2006) to cover stochastic functional differential equations with local Lip-

schitz coefficients. Furthermore, it is well known that there exist counterparts of

invariant principles for discrete dynamical systems (LaSalle and Artstein 1976).

However, there seems to be no discrete counterpart of Mao’s version of the LaSalle

theorem. In this thesis we investigate a special case of this result with Lyapunov

function V (x) = |x|2. We shall show that almost sure global stability can be

easily deduced from our results. Our primary objectives in stability analysis are

• Ability to cover highly nonlinear cases;

• Mild assumption on the time step - A(α)-stability concept (Higham 2000).

Results which investigate stability analysis for numerical methods can be found

in Higham (Higham 2001; Higham 2000) in the scalar linear case, Baker et al.

(Baker and Buckwar 2005) for global Lipschitz and Higham et al. (Higham,

Mao, and Stuart 2003a) for one-sided Lipschitz drift and linear growth diffusion

coefficients.

It is also interesting to investigate how higher order approximations perform

once coefficients are not globally Lipschitz. In financial applications the Milstein

scheme is usually the method of choice. Recently Giles (Giles 2008; Giles 2006)

demonstrated the superiority of MLMC with Milstein in the scalar case to price
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Asian, lookback, barrier and digital options. To justify the use of MLMC we need

to verify first that the base method converges to the solution of (1.1) in strong

sense. In order to achieve a root-mean-square error O(ε) using a simple Monte

Carlo method with a numerical approximation with first order weak convergence,

would require computational complexity O(ε−3). If, in addition, we know that

the Milstein scheme strongly converges at the optimal rate we can reduce com-

putational complexity to O(ε−2) using MLMC (Giles 2006). Giles’s approach is

very efficient and pricing options using MLMC with Milstein offers big advantages

over the classical approach. This provides an excellent motivation for our work.

Typically, in order to prove convergence of the Milstein scheme, stricter assump-

tions than those for EM are required (Kloeden and Platen 1992). What is more,

it was demonstrated by Higham (Higham 2000) that the Milstein scheme applied

to a linear scalar SDE has much worse stability properties than Euler-Maruyama,

even once we allow for implicitness in the drift. In order to address the issues men-

tioned above, we will introduce a new double implicit Milstein scheme (Szpruch

2010). We will prove that the scheme has remarkable approximation properties

for a rich family of stochastic processes encountered in mathematical finance,

because:

• it preserves positivity of the solution;

• the approximation has very good stability properties as opposed to classical

Milstein scheme (Higham 2000); the stability properties of double-implicit

scheme are as good as backward Euler, that is the double implicit scheme

recovers the entire mean-square stability region of its test SDE without

severe restrictions on the time step.

So far, convergence of the Milstein scheme, to the best of our knowledge, was

analyzed under a global Lipschitz condition only, as in (Kloeden and Platen

1992). By allowing additional implicitness we are able to significantly relax the

conditions required for strong convergence and therefore cover many important

stochastic differential financial models encountered in the literature, such as the

3/2 Heston volatility model

dx(t) = x(t)(µ− αx(t))dt + βx3/2dw(t).
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An appealing feature in this case is that the solution to the scheme can be found

explicitly and, therefore, implicitness does not increase computational complexity.

In order to prove our results new techniques have been developed. We believe

that these techniques can be adapted by other researchers to deepen our knowl-

edge on stochastic numerical integration and can be used in the general theory

of discrete stochastic processes. The most important techniques are:

• We have utilized a stopping time technique for discrete stochastic processes.

It is well known; (Buchmann 2005; Broadie, Glasserman, and Kou 1997;

Mannella 1999), that in discrete time approximations for a stochastic pro-

cess, the problem of overshooting the boundary appears.

• We have introduced a new numerical method, which we have called the

Forward-Backward Euler-Maruyama (FBEM). The FBEM scheme enables

us to overcome some measurability difficulties and avoids using Malliavin

calculus.

1.4 Outline of the Thesis

Our intention is to keep this work relatively self-contained. With this in mind in

Chapter 1 we recall some of the fundamental results from the theory of stochas-

tic processes and Itô stochastic calculus. We also define the implicit numerical

approximations we use in this thesis. Further we introduce the important and

distinct notions of convergence and stability for stochastic processes.

The main body of research is contained in Chapters 3 through 6. In Chapter 3 we

present a proof of the strong convergence for an implicit Euler-Maruyama scheme

under a general monotone condition. We also consider stability of implicit meth-

ods in this non-linear setting via a new discrete stochastic LaSalle principle. This

chapter reveals the methodology we have developed to deal with non-linearities.

First, utilizing the stopping time technique we prove the boundedness of mo-

ments for the numerical method. Then, we introduce a new forward-backward

scheme that allows us to employ continuous time stochastic analysis. In Chapter

4 we extend the analysis from Chapter 3. We impose stronger assumptions on

the coefficients of underlying SDEs. We introduce a dissipative-type condition

on the drift and a polynomial condition on the diffusion coefficients. This en-
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ables us to prove boundedness for higher moments of backward Euler-Maruyama

and a stronger convergence theorem than in chapter 3. Further by introducing

strong monotone and strong polynomial conditions we reveal a rate of conver-

gence for Backward Euler Maruyama which agrees with classical results for EM

in global Lipschitz case. We conclude the chapter with a proof of the Fundamen-

tal Theorem of Milstein (Milstein 1987) under the assumptions required for our

convergence theorem for BEM.

Chapter 5 considers non-linear stochastic differential financial models. We be-

gin with a general SDE which is used in many stochastic volatility and interest

rate models. We demonstrate that the assumptions we introduce in Chapter 4

are satisfied in this case and therefore we can conclude that we can successfully

approximate the model with backward Euler-Maruyama. The second model we

consider in this chapter is an Ait-Sahalia interest rate model. Not only has this

model a super-linear growth in the drift and diffusion, but also an additional term

blows up at the origin. Nevertheless BEM converges to its solution in the strong

sense. What is more we prove that BEM preserves positivity of the solution in

this special case. We confirm our theoretical results with appropriate simulations.

The last of our research chapters, Chapter 6, considers strong convergence and

stability of a numerical scheme with first order of accuracy. In this initial investi-

gation we restrict ourselves to the scalar case. We introduce a new double implicit

Milstein scheme and prove that it has some very desirable properties. Particu-

larly, it preserves positivity for a wide family of SDEs. Adopting methodology

from Chapter 3, we show that the additional implicitness in the second order

term of the approximation enables us to prove a strong convergence theorem and

that the scheme has excellent stability properties.

In the final chapter, we summarize our findings and suggest some possible im-

provements in further research.
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Chapter 2

Mathematical Background

It is remarkable that a science which began with

the consideration of games of chance should have

become the most important object of human

knowledge.

Théorie Analytique des Probabilités,

Pierre Simon Laplace

Before presenting our results, in this chapter we recall some fundamental

results from the theory of probability and the theory of stochastic processes.

We focus only on those facts which are used extensively throughout our study.

Although these results are well known we feel the chapter is useful for the clarity

of the exposition.

We note here that the proofs of the theorems and lemmas that appear in this

section do not comply with the scope of this thesis and therefore are omitted.

There are many excellent books to which the reader may refer, for instance:

• (Feller 1968), (Billingsley 1979), (Kallenberg 2002) (Williams 1991) for

probability theory and the theory of stochastic processes,

• (Oksendal 1998), (Mao 2007), (Protter 2004), (Karatzas and Shreve 1991),

for the theory of stochastic differential equations.
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2.1 Stochastic Processes

A stochastic process is a mathematical model for the occurrence, at each moment

after the initial time, of a random phenomenon. Thus, a stochastic process is

a collection of random variables X = {Xt; 0 ≤ t < ∞} on (Ω,F), which takes

values in a second measurable space (S,S), called the state space. The index

t ∈ [0,∞) of random variable Xt admits a convenient interpretation as time.

For a fixed sample point ω ∈ Ω, the function Xt(ω), t ≥ 0, is a sample path

(realization, trajectory) of the process X associated with ω. Approximations of

these sample paths are a main subject of this thesis. On the other hand, for fixed

t ∈ [0,∞) the function Xt(ω), ω ∈ Ω, is a random variable.

Definition 2.1.1. The stochastic process X is called measurable if, for every A ∈
B(Rd), the set {(t, ω); Xt(ω) ∈ A} belongs to the product σ-field B([0,∞]) ⊗ F ;

in other words, if the mapping

(t, ω) 7→ Xt(ω) : ([0,∞]× Ω,B([0,∞))⊗F) 7→ (Rd,B(Rd))

is measurable.

The temporal feature of a stochastic process suggests a flow of time, in which,

at every moment t ≥ 0, we can talk about the past, present and future and can ask

how much an observer of the process knows about it at the present, as compared

to how much he or she knew at some point in the past or will know at some point

in the future. In order to keep track of this information we equip our sample

space (Ω,F) with a filtration, i.e., a nondecreasing family {F}t≥0 of sub-σ -fields

of F : Fs ⊆ Ft ⊆ F for 0 ≤ s < t < ∞. The filtration is said to be right

continuous if Ft =
⋂

s>tFs for all t ≥ 0. When the probability space is complete,

the filtration is said to satisfy the usual conditions if it is right continuous and

F0 contains all P -null sets.

From now on, unless otherwise specified, we shall always work on a given

complete probability space (Ω,F ,P) with a filtration {F}t≥0 satisfying the usual

conditions. We also define F∞ = σ(
⋃

t≥0Ft
).
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2.1.1 Stopping Times

Let us keep in mind the interpretation of the parameter t as a time. Let us imagine

that we are interested in the occurrence of a certain phenomenon. We are thus

forced to pay particular attention to the instant τ(ω) at which the phenomenon

manifests itself for the first time.

Definition 2.1.2. A random variable τ : Ω → [0,∞] is called an {F}t -stopping

time if {ω : τ(ω) ≤ t} ∈ Ft for any t ≥ 0.

The theory of stopping times is essential for our research. The following two

theorems are useful.

Theorem 2.1.3. If {Xt}t≥0 is a progressively measurable process and τ is a

stopping time, then Xτ1τ<∞ is Fτ -measurable.

Theorem 2.1.4. Let {Xt}t≥0 be an Rd-valued cádlág {Ft} -adapted process and

D an open subset of Rd. Define

τ = inf {t ≥ 0 : Xt /∈ D},

where we use convention inf {∅} = ∞. Then τ is an {Ft}- stopping time.

Lemma 2.1.5 (Fatou). For any non-negative measurable functions {Xk}k≥1 on

(Ω,F ,P), we have

E[lim inf
k→∞

Xk] ≤ lim inf
k→∞

E[Xk].

2.1.2 Conditional Expectation

Conditional expectations play a central role in the modern theory of probability.

It gives a foundation for the martingales which we introduce below. The concept

of conditional expectations was formally introduced by Kolmogorov and it leads

to the measure-theoretic definition of conditional probability.

Let X ∈ L1(Ω;R). Let G ⊂ F be a sub -σ -algebra of F . In general, X is

not G- measurable. We now seek an integrable G -measurable random variable Y

such that it has the same values as X on the average in the sense that

E(1GY ) = E(1GX) i.e.

∫

G

Y (ω)dP (ω) =

∫

G

X(ω)dP (ω) for all G ∈ G.
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By the Radon-Nikodym theorem, there exists unique Y, up to sets of measure 0.

It is called the conditional expectation of X under the condition G, and we write

Y = E(X | G).

2.1.3 Martingales

The concept of a martingale has its origins in betting strategies and was popular

in 18th century France. Martingales were introduced in probability theory by

Paul Pierre Lévy, and the early development of the theory was led by Joseph Leo

Doob.

Definition 2.1.6. An Rd - valued {Ft} -adapted integrable process {Mt}t≥0 is

called a martingale with respect to {Ft} if

E(Mt | Fs) = Ms a.s for all 0 ≤ s < t < ∞.

Theorem 2.1.7. Let {Mt}t≤0 be an Rd -valued martingale with respect to {Ft},
and let θ, ρ be two finite stopping times. Then

E(Mθ | Fρ) = Mθ∧ρ a.s.

Definition 2.1.8. An Rd- valued {Ft} -adapted integrable process {Mt}t≥0 is

called a local martingale if there exists a nondecreasing sequence {τk}k≥1 of stop-

ing times with τk ↑ ∞ a.s such that {Mτk∧t −M0}t≥0 is martingale.

2.2 Stochastic Calculus

Before we introduce stochastic differential equations let us recall some basic prop-

erties of the Itô integral ∫ t

0

f(s)dw(s)

with respect to an m -dimensional Brownian motion {wt} for a class of d ×m -

matrix -valued stochastic processes {f(t)}.

Definition 2.2.1. Let 0 ≤ a < b < ∞. Denote by M2([a, b];R) the space of all
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real -valued measurable {Ft} -adapted processes f = {f(t)}a such that

‖ f ‖2
a,b= E

∫ b

a

|f(t)|2 dt < ∞.

Theorem 2.2.2. Let f ∈ M2([a, b];Rd×m), and let ρ, τ be two stopping times

such that 0 ≤ ρ ≤ τ ≤ T. Then

E(

∫ τ

ρ

f(t)dw(t) | Fρ) = 0,

E(

∣∣∣∣
∫ τ

ρ

f(t)dw(t)

∣∣∣∣
2

| Fρ) = E
(∫ τ

ρ

|f(t)|2 dt | Fa

)
.

Definition 2.2.3. A d -dimensional Itô process is an Rd-valued continuous adapted

process x(t) = (x1(t), . . . , xd(t))
T on t ≥ 0 of the form

x(t) = x(0) +

∫ t

0

f(s)ds +

∫ t

0

g(s)dw(s),

where f = (f1, . . . , fd)
T ∈ L1(R+;Rd) and (g = gij)d×m ∈ L2(R+;Rd×m). We

shall say that x(t) has stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt + g(t)dw(t).

Theorem 2.2.4. Let x(t) be a d-dimensional Itô process on t ≥ 0 with a stochas-

tic differential

dx(t) = f(t)dt + g(t)dw(t),

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd × R+;R). Then

V (x(t), t) is again an Itô process with stochastic differential given by

dV (x(t), t) = [Vt(x(t), t) + Vx(x(t), t)f(t)

+
1

2
trace(gT (t)Vxx(x(t), t)g(t))]dt + Vx(x(t), t)g(t)dw(t) a.s,

and we define a diffusion generator L as

LV (x(t), t) = Vt(x(t), t) + Vx(x(t), t)f(t) +
1

2
trace(gT (t)Vxx(x(t), t)g(t)).
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2.3 Useful Inequalities

In this section we recall some basic inequalities which are extensively used through

our study.

Hölder’s inequality

∣∣E(XT Y )
∣∣ ≤ (E |X|p)1/p(E |Y |q)1/q,

if p > 1, 1/p+1/q = 1, X ∈ Lp and Y ∈ Lq. In case p = q = 2 Hölder’s inequality

is often called Cauchy-Schwarz inequality.

Minkowski’s inequality

(E |X + Y |p)1/p ≤ (E |X|p)1/p + (E |Y |p)1/p,

if p ≥ 1, X, Y ∈ Lp.

Young’s inequality

|a| |b| ≤ ε

r
|a|r +

1

qεq/r
|b|q , where a, b ∈ Rd and ε > 0,

with r−1 + q−1 = 1, r, q > 1.

Theorem 2.3.1 (Burkholder-Davis-Gundy inequality). Let g ∈ L2(R+;Rd×m).

Define, for t ≥ 0,

x(t) =

∫ t

0

g(s)dw(s) and A(t) =

∫ t

0

|g(s)|2 ds.

Then for every p > 0, there exist universal positive constants cp, Cp, such that

cpE |A(t)| p2 ≤ E
(

sup
0≤s≤t

|x(t)|p
)
≤ CpE |A(t)| p2

for all t ≥ 0. In particular, one may take

cp = (p/2)p, Cp = (32/p)p/2 if 0 < p < 2;

cp = 1, Cp = 4 if p = 2;

cp = (2p)−p/2, Cp = [pp+1/2(p− 1)p/2] if p > 2.
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Theorem 2.3.2 (Gronwall’s inequality). Let T > 0 and c ≥ 0. Let u(·) be a Borel

measurable bounded nonnegative function on [0, T ], and let υ be a nonnegative

integrable function on [0, T ]. If

u(t) ≤ c +

∫ t

0

υ(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ c exp

(∫ t

0

υ(s)ds

)
for all 0 ≤ t ≤ T.

Lemma 2.3.3 (Discrete Gronwall’s inequality). Let M be a positive integer. Let

uk and vk be non-negative numbers for k=0,1,...,M. If

uk ≤ u0 +
k−1∑
j=0

vjuj, ∀k = 1, 2, ..., M,

then

uk ≤ u0 exp

(
k−1∑
j=0

vj

)
, ∀k = 1, 2, ...,M.

2.4 Numerical Methods

We study the numerical approximation of the stochastic differential equation

dx(t) = f(x(t))dt + g(x(t))dw(t). (2.1)

In this section we formalize the definitions of the strong convergence and the

stability of the numerical methods. We also demonstrate how implicit schemes

can be derived from the Wagner-Platen (Itô-Taylor) expansion in a very natural

way.

2.4.1 Implicit Schemes

We recall the definition of the backward Euler-Maruyama scheme.

Definition 2.4.1. Given any step size ∆t, we define the partition P∆t := {tk =

k∆t : k = 0, 1, 2, ...} of the time interval [0,∞). The backward Euler-Maruyama
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scheme has the following form:

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆wtk , (2.2)

where ∆wtk = wtk+1
− wtk and Xt0 = x0.

A method of first order strong accuracy was first introduced by Milstein in

(Milshtein 1975). For simplicity we present the Milstein scheme in the scalar case

Xtk+1
= Xtk + f(Xtk)∆t + g(Xtk)∆wtk (2.3)

+
1

2
L1g(Xtk)

∫ tk+1

tk

(w(s)− w(tk)) dw(s). (2.4)

Originally the Milstein scheme was derived using the theory of Markov operator

semigroups. But later W. Wagner and E. Platen (Wagner and Platen 1978),

using the Itô Lemma only, showed how higher order schemes can be obtained

in a very natural way. Their work is consistent with the deterministic numerical

approximation theory, where the Taylor expansion is the main tool. Here we show

how using the Itô-Taylor formula one can derive the implicit schemes considered

in this thesis. Let us look at the scalar Itô type SDE

x(t) = x(0) +

∫ t

0

f(x(s))ds +

∫ t

0

g(x(s))dw(s). (2.5)

The Itô formula applied to (2.5), with s > t, gives

f(x(t)) = f(x(s))−
∫ s

t

L0f(x(z))dz −
∫ s

t

L1f(x(z))dw(z),

where we have introduced operators

L0 = f
∂

∂x
+

1

2
g2 ∂2

∂x2
,

L1 = g
∂

∂x
.

This is the so-called semi-implicit Itô-Taylor expansion. By semi-implicit we
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mean that only the deterministic terms can be made implicit. We have

x(t + ∆t) = x(t) +

∫ t+∆t

t

f(x(s))ds +

∫ t+∆t

t

g(x(s))dw(s) (2.6)

= x(t) +

∫ t+∆t

t

(
f(x(t + ∆t))

−
∫ t+∆t

s

L0f(x(z))dz −
∫ t+∆t

s

L1f(x(z))dw(z)

)
ds

+

∫ t+∆t

t

(
g(x(t)) +

∫ s

t

L0g(x(z))dz +

∫ s

t

L1g(x(z))dW (z)

)
dw(s).

(2.7)

Truncating the reminder term we obtain the implicit Euler-Maruyama scheme

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆wtk .

Now applying the Itô formula to

L1g(x(z)) = L1g(x(t)) +

∫ z

t

L0L1g(x(h))dh +

∫ z

t

L1L1g(x(h))dw(h),

yields

x(t + ∆t) = x(t) +

∫ t+∆t

t

(
f(x(t + ∆t))

−
∫ t+∆t

s

L0f(x(z))dz −
∫ t+∆t

s

L1f(x(z))dw(z)

)
ds

+

∫ t+∆t

t

(
g(x(t)) +

∫ s

t

L0g(x(z))dz

)
dw(s)

+

∫ t+∆t

t

(∫ s

t

(
L1g(x(t))

+

∫ z

t

L0L1g(x(h))dh +

∫ z

t

L1L1g(x(h))dw(h)
)
dw(z)

)
dw(s).
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It can be rewritten in the following way

xt,x(t + ∆t) = x(t) + f(x(t + ∆t))

∫ t+∆t

t

ds + g(x(t))

∫ t+∆t

t

dw(s)

+ L1g(x(t))

∫ t+∆t

t

∫ s

t

dw(z)dw(s)

−
∫ t+∆t

t

(∫ t+∆t

s

L0f(x(z))dz +

∫ t+∆t

s

L1f(x(z))dWz

)
ds

+

∫ t+∆t

t

(∫ s

t

L0g(x(z))dz

)
dw(s)

+

∫ t+∆t

t

(∫ s

t

(∫ z

t

L0L1g(x(h))dh +

∫ z

t

L1L1g(x(h))dw(h)

)
dw(z)

)
dw(s).

Since we are dealing with a scalar case we can show that (Glasserman 2003;

Kloeden and Platen 1992)

∫ t+∆t

t

∫ s

t

dw(z)dw(s) =
1

2
[(w(t + ∆t)− w(t))2 −∆t].

Hence

xt,x(t + ∆t) = x(t) + f(x(t + ∆t))

∫ t+∆t

t

ds + g(x(t))

∫ t+∆t

t

dw(s)

+
1

2
L1g(x(t))[(∆Wt+∆t)

2 −∆t]

−
∫ t+∆t

t

(∫ t+∆t

s

L0f(x(z))dz +

∫ t+∆t

s

L1f(x(z))dWz

)
ds

+

∫ t+∆t

t

(∫ s

t

L0g(x(z))dz

)
dw(s)

+

∫ t+∆t

t

(∫ s

t

(∫ z

t

L0L1g(x(h))dh +

∫ z

t

L1L1g(x(h))dw(h)

)
dw(z)

)
dw(s).

We introduce implicitness in the second order term of the expansion

L1g(x(t)) = L1g(x(t + ∆t))−
∫ t+∆t

t

L0L1g(x(h))dh−
∫ t+∆t

t

L1L1g(x(h))dw(h),
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which leads us to

xt,x(t + ∆t) = x(t) + f(x(t + ∆t))

∫ t+∆t

t

ds + g(x(t))

∫ t+∆t

t

dw(s) +
1

2
L1g(x(t))∆W 2

t+∆t

− 1

2
L1g(x(t + ∆t))∆t

+
1

2
∆t

(∫ t+∆t

t

L0L1g(x(h))dh +

∫ t+∆t

t

L1L1g(x(h))dw(h)

)

−
∫ t+∆t

t

(∫ t+∆t

s

L0f(x(z))dz +

∫ t+∆t

s

L1f(x(z))dWz

)
ds

+

∫ t+∆t

t

(∫ s

t

L0g(x(z))dz

)
dw(s)

+

∫ t+∆t

t

(∫ s

t

(∫ z

t

L0L1g(x(h))dh +

∫ z

t

L1L1g(x(h))dw(h)

)
dw(z)

)
dw(s).

Definition 2.4.2. For partition P∆t := {tk = k∆t : k = 0, 1, 2, ...} of the time

interval [0,∞). The double implicit Milstein scheme has the following form

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆wtk +
1

2
L1g(Xtk)∆w2

tk
− 1

2
L1g(Xtk+1

)∆t.

It is also interesting to note that the scheme may also be obtained from the

implicit Milstein scheme for the Stratanovich SDE. In fact, in the scalar case the

implicit Milstein scheme for the Stratanovich SDE is given by

Xtk+1
= Xtk + f(Xtk+1

)∆t− 1

2
L1g(Xtk)∆t

+ g(Xtk)∆Wtk +
1

2
L1g(Xtk)∆w2

tk
,

where

f = f − 1

2
L1b.

2.4.2 Properties of Approximations

Here we formally define the strong measures of error for numerical approximations

used in this thesis.

Definition 2.4.3. We shall say that a general discrete time approximation Xtk

with a step-size ∆t converges strongly to the solution of the SDEs x(t) at time T
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if

lim
∆t→0

E(|x(T )−XT |) = 0.

Definition 2.4.4. We shall say that a general discrete time approximation Xtk

converges strongly with order δ at time T if there exists a positive constant C,

which does not depend on ∆t, such that

E[|x(T )−XT |] ≤ C∆tδ. (2.8)

We say that it converges strongly with order δ uniformly in time if

E[ sup
0≤tk≤T

|x(tk)−X(tk)|] ≤ C∆tδ. (2.9)

Using the Borel-Cantelli Lemma it is possible to pass from strong convergence

to pathwise error. For example, in (Kloeden and Neuenkirch 2007) it is shown

that given any ε > 0, there exists a path-dependent random variable K = K(ε)

such that, for all sufficiently small ∆t

sup
0≤tk≤T

|x(tk)−X(tk)| ≤ K(ε)∆tδ−ε a.s.

Once we know that the numerical method designed by us strongly converges

to the true solution of a SDE, the second property to be investigated is stability.

Convergence and stability complement each other. Convergence gives us infor-

mation about behaviour of the numerical scheme on a fixed time interval letting

the time-step decrease to zero. Stability analysis, on the other hand, allows us

to analyse behaviour of the approximation for a fixed step-size when the time

interval expands to infinity.

Roughly speaking, we say that the system is stable if the trajectories which

are “close” to each other at a specific instant, remain ”close” to each other at

all subsequent instants. In many cases, to show that the system is stable it is

enough to show that the trivial solution, x(t) = 0, is stable.

Definition 2.4.5. The trivial solution of equation (2.1) is said to be globally

almost surely stable if

lim
t→∞

|x(t)| = 0 a.s.
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Definition 2.4.6. The trivial solution of equation (2.1) is said to be globally pth

moment stable if

lim
t→∞

E |x(t)|p = 0.

Once we deal with the stability of the numerical approximation the key ques-

tion we ask is: For what step-size ∆t does the numerical method share the stability

property of the underlying test problem? This question is related to the concept

of A-stability. We say that the method is A-stable if it can reproduce the stabil-

ity property of its test equation for all ∆t > 0. In case of implicit methods we

need to slightly redefine A-stability property. In order to prove the existence of

a unique solution to the implicit scheme we typically need the step-size to satisfy

∆t < L−1, where L stands for Lipschitz constant from the one-sided Lipschitz

condition. Therefore, in this case we say that the implicit scheme is A-stable if

it is stable for all ∆t where it is well defined.
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Chapter 3

Approximations of Nonlinear

SDEs

Only mathematicians can read “musical scores”

containing many numerical formulae, and play

that “music” in their hearts. Accordingly, I once

believed that without numerical formulae, I could

never communicate the sweet melody played in

my heart.

My Sixty Years in Studies of Probability Theory

Kiyosi Itô

In this chapter we are interested in strong convergence and almost sure sta-

bility of Backward Euler-Maruyama approximation to the solution of stochastic

differential equations with highly nonlinear coefficients. Our goal is to prove

convergence under monotone conditions. This work can be read as generaliza-

tion of the results in (Higham, Mao, and Stuart 2003b), where authors using

implicit schemes derive strong convergence theorems under a one-sided Lipschitz

condition on a drift and a linear growth condition on the diffusion. They have

demonstrated that as in the deterministic setting, drift implicit methods enable

analysis of systems with non-linearities in the drift part. In this chapter we show

that even if the non-linearities appear in the diffusion part of the underlying

SDEs, drift implicit methods still perform very well. In order to prove strong

convergence theorems we introduce a new numerical scheme - Forward-Backward
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Euler Maruyama. In addition, we examine global almost sure asymptotic stabil-

ity in this non-linear setting. We present a stochastic counterpart of the discrete

LaSalle principle from which we deduce stability properties of numerical methods.

The material from this chapter can be found in (Szpruch and Mao 2010).

3.1 Problem Specification

Let w(t) = (w1(t), ..., wd(t))
T be a d-dimensional Brownian motion defined on the

probability space (Ω,F , {Ft}t≥0,P). We study the numerical approximation of

the stochastic differential equations

dx(t) = f(x(t))dt + g(x(t))dw(t). (3.1)

Here x(t) ∈ Rn for each t ≥ 0. Thus, f : Rn → Rn and g : Rn → Rn×d.

3.2 Existence and Uniqueness of Solution

We require the coefficients f and g to be locally Lipschitz continuous and to

satisfy the monotone condition, that is

Assumption 3.2.1. Both functions f and g in (3.1) satisfy the following condi-

tions:

Local Lipschitz condition. For each integer m ≥ 1, there is a positive constant

Km such that

|f(x)− f(y)|+ |g(x)− g(y)| ≤ Km |x− y| , (3.2)

for those x, y ∈ Rn with |x| ∨ |y| ≤ m.

Monotone condition. There exist positive constants α and β such that

〈x, f(x)〉+
1

2
|g(x)|2 ≤ α + β |x|2 , (3.3)

for all x ∈ Rn.

It is a classical result from stochastic analysis that under Assumption 3.2.1,

there exists a unique solution for any given initial value x(0) = x0 ∈ Rn, (Fried-

man 1976; Mao 2007). The reason we present the theorem with the proof here is
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that it reveals the upper bound for the probability that the process x(t) stays on

a compact domain for a finite time T > 0. The bound will be used to derive the

main convergence theorem of this chapter.

Theorem 3.2.2. Let Assumption 3.2.1 hold. Then for any given initial value

x(0) = x0 ∈ Rn, there exists a unique, global solution x(t) to the equation (3.1)

on t ≥ 0. Moreover, the solution has the properties that for any T > 0,

E |x(T )|2 ≤ (|x0|2 + 2αT ) exp(2βT ), (3.4)

and

P(τm ≤ T ) ≤ (|x0|2 + 2αT ) exp(2βT )

|m|2 , (3.5)

where

τm = inf{t ≥ 0 : |x(t)| > m}. (3.6)

Proof. It is well known that under Assumption 3.2.1, for any given initial value

x0 ∈ Rn there exists a unique solution x(t) to the SDEs (3.1), (Friedman 1976;

Mao 2007). Therefore we only need to prove that (3.4) and (3.5) hold. Applying

the Itô formula to the function V (x, t) = |x|2, we obtain

x(t) = x(0) +

∫ t

0

LV (x(s))ds + 2

∫ t

0

〈x(s), g(x(s))〉dw(s),

where the diffusion operator is given by

LV (x(s)) = 2
(
〈x(s), f(x(s))〉+

1

2

∣∣g2(x(s))
∣∣
)
. (3.7)

By Assumption 3.2.1

LV (x, t) ≤ 2α + 2β |x|2 . (3.8)

Therefore

E |x(t ∧ τm)|2 ≤ |x0|2 + 2αT +

∫ t

0

2βE |x(s ∧ τm)|2 ds,

and by utilizing Gronwall’s inequality we obtain

E |x(T ∧ τm)|2 ≤ (|x0|2 + 2αT ) exp(2βT ). (3.9)
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Hence

P(τm ≤ T ) |m|2 ≤ [|x0|2 + 2αT ] exp(2βT ). (3.10)

Next, by (3.9), letting m →∞ and applying Fatou’s lemma, we obtain

E |x(T )|2 ≤ [|x0|2 + 2αT ] exp(2βT ), (3.11)

which gives the other assertion (3.4) and completes the proof.

3.3 Backward Euler-Maruyama Scheme

As indicated in Section 1.3, in order to approximate (3.1) we use backward Euler-

Maruyama

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆wtk , (3.12)

where ∆wtk = wtk+1
− wtk and Xt0 = x0.

3.3.1 Existence and Uniqueness

Since we are dealing with an implicit scheme we need to make sure that it has a

unique solution Xtk+1
given Xtk . The lemma below gives existence and uniqueness

conditions for the solution to the equation F (x) = b. Based on it we prove exis-

tence and uniqueness of the solution to the backward Euler-Maruyama scheme.

Lemma 3.3.1. Let F , F : Rn → Rn, be a vector field on Rn and consider the

equation

F (x) = b, (3.13)

for a given b ∈ Rn. If F is monotone, i.e.,

〈x− y, F (x)− F (y)〉 > 0,

for all x, y ∈ Rn, x 6= y, then equation (3.13) has at most one solution. Further-

more, if F is continuous and it is coercive, i.e.,

lim
|x|→∞

〈x, F (x)〉
|x| = ∞,
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then for every b ∈ Rn, the equation (3.13) has a unique solution x ∈ Rn. More-

over, there exists an inverse operator F−1.

This lemma follows directly from Theorem 26.A in (Zeidler 1985).

To prove the existence and uniqueness of solution to (3.12), in addition to As-

sumption 3.2.1, we ask for the function f to satisfy a one-sided Lipschitz condi-

tion.

Assumption 3.3.2. One-sided Lipschitz condition. There exists a constant L >

0, such that

〈x− y, f(x)− f(y)〉 ≤ L |x− y|2 ∀x, y ∈ Rn. (3.14)

Lemma 3.3.3. Define, for any given ∆t ≤ 1
L
,

F (x) = x− f(x)∆t, x ∈ Rn.

Then under Assumptions 3.2.1 and 3.3.2, for any b ∈ Rn, there exists a unique

x ∈ Rn such that

F (x) = b.

Proof. In view of Lemma 3.3.1 we need to show that the function F is contin-

uous, coercive and strictly monotone. Clearly, F (x) is continuous on Rn due to

Assumption 3.2.1. By Assumption 3.3.2, F (x) is monotone. Indeed

〈x− y, F (x)− F (y)〉 ≥ |x− y|2 − L∆t |x− y|2 = (1− L∆t) |x− y|2 > 0,

for ∆t < 1
L
. Again by Assumption 3.3.2

〈x, f(x)〉 ≤ L |x|2 + 〈x, f(0)〉.

Hence

〈x, F (x)〉 = 〈x, x− f(x)∆t〉 ≥ (1− L∆t) |x|2 − 〈x, f(0)〉∆t,

which shows that the coercivity condition holds on Rn. The proof of Lemma 3.3.3

is complete.

From now on we always assume that ∆t < 1
L
.
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3.3.2 Moment Properties of BEM

In this section we will show that the second moment for the solution of BEM is

bounded; (Theorem 3.3.6). To obtain a bound we employ a stopping time tech-

nique. It is well known, (Buchmann 2005; Broadie, Glasserman, and Kou 1997;

Mannella 1999), that in discrete time approximations for a stochastic process,

the problem of overshooting the level where we would like to stop our process

appears. Nevertheless, Lemma 3.3.4 below shows that the moments for such a

stopped processes can be controlled.

Lemma 3.3.4. Under Assumptions 3.2.1 and 3.3.2 , for any integer p ≥ 2 and

sufficiently large integer m, there exists a constant K = K(p,m), such that

E
[|Xtk |p 1[0,λm](k)

]
< K for any k ≥ 0,

where

λm = inf{k : |Xtk | > m}. (3.15)

Proof. We observe that when k ∈ [0, λm],
∣∣Xtk−1

∣∣ < m, but it might be that

|Xtk | > m, so the lemma is not obvious. By definition of BEM and Young’s

inequality of the form

xy ≤ δ

2
x2 +

1

2δ
y2,

where we choose δ such that δ(5p−6
2p

) = C(δ) < 1− βL−1, we have

|Xtk |2 ≤ δ |Xtk |2 +
1

2δ

∣∣Xtk−1

∣∣2

+ 〈Xtk , f(Xtk)∆t〉
+

1

2δ

∣∣g(Xtk−1
)∆wtk−1

∣∣2

≤ δ |Xtk |2 + β |Xtk |2 ∆t + α∆t +
1

2δ

∣∣Xtk−1

∣∣2

+
1

2δ

∣∣g(Xtk−1
)∆wtk−1

∣∣2 ,

where the last inequality follows from Assumption 3.2.1. Multiplying both sides
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of the above inequality by |Xtk |p−2 leads to

(1− β∆t− δ) |Xtk |p ≤
1

2δ
|Xtk |p−2

∣∣Xtk−1

∣∣2 + α∆t |Xtk |p−2

+
1

2δ
|Xtk |p−2

∣∣g(Xtk−1
)∆wtk−1

∣∣2 .

Applying Young’s inequality in the form

xp−2y2 ≤ δ2p− 2

p
xp +

2

pδp−2
yp,

results in

(
(1− β∆t)− C(δ)

)
|Xtk |p

≤ 1

pδp−1

(∣∣Xtk−1

∣∣p + (2δα∆t)
p
2 +

∣∣g(Xtk−1
)
∣∣p ∣∣∆wtk−1

∣∣p
)

.

Hence by Hölder’s inequality

(
(1− β∆t)− C(δ)

)
E

[|Xtk |p 1[0,λm](k)
]

≤ 1

pδp−1

(
|m|p + (2δα∆t)

p
2

+ (E[
∣∣g(Xtk−1

)
∣∣p 1[0,λm](k)]2)1/2(E

∣∣∆wtk−1

∣∣2p
)1/2

)
.

By Assumption 3.2.1 and the fact that there exists a positive constant C(p), such

that E
∣∣∆wtk−1

∣∣2p
< C(p), we obtain

E
[|Xtk |p 1[0,λm](k)

]
< C(m, p),

as required.

To prove boundedness of the second moment for (3.12), we need an additional

mild assumption on the coefficients f and g.

Assumption 3.3.5. The coefficients of the equation (3.1) satisfy the polynomial

growth condition, that is for some h ≥ 1 there exists a positive constant H > 0,
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such that

|f(x)| ∨ |g(x)| ≤ H(1 + |x|h), ∀x ∈ Rn. (3.16)

Theorem 3.3.6. Let Assumptions 3.2.1, 3.3.2 and 3.3.5 hold. Let T > 0 and

∆t∗ ∈ (0, (max{L, 4β})−1). Then, there exists a constant K > 0, such that

sup
∆t≤∆t∗

sup
0≤tk≤T

E |Xtk |2 < K.

Proof. Let

λm = inf{k : |Xtk | > m}.

Then λm is a stopping time with respect to {Ftk}k≥0. From (3.12) we have the

following inequality

∣∣Xtk+1

∣∣2−|Xtk |2 ≤ 2〈Xtk+1
, f(Xtk+1

)∆t〉+2〈Xtk , g(Xtk)∆wtk〉+ |g(Xtk)|2 |∆wtk |2 .

Let N be any nonnegative integer such that N∆t ≤ T . Summing up the sides of
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the above inequality from k = 0 to N ∧ λm, we get

∣∣XtN∧λm+1

∣∣2 ≤ (|Xt0|2 + 2〈Xt0 , g(Xt0)∆wt0〉+ |g(Xt0)|2 |∆wt0|2
)

(3.17)

+

(N∧λm)+1∑

k=1

2〈Xtk , f(Xtk)〉∆t

+
N∧λm∑

k=1

|g(Xtk)|2 ∆t +
N∧λm∑

k=1

2〈Xtk , g(Xtk)∆wtk〉

+
N∧λm∑

k=1

|g(Xtk)|2
[|∆wtk |2 −∆t

]

=
(|Xt0|2 + 2〈Xt0 , g(Xt0)∆wt0〉+ |g(Xt0)|2 |∆wt0|2

)

+
N∑

k=1

2〈Xtk , f(Xtk)〉1[0,λm](k)∆t (3.18)

+ 2〈Xt(N∧λm)+1
, f(Xt(N∧λm)+1

)〉∆t

+
N∑

k=1

|g(Xtk)|2 1[0,λm](k)∆t

+
N∑

k=1

2〈Xtk , g(Xtk)〉1[0,λm](k)∆wtk

+
N∑

k=1

|g(Xtk)|2 1[0,λm](k)
[|∆wtk |2 −∆t

]
.

Applying Lemma 3.3.4, Assumption 3.3.5 and noting that Xtk and 1[0,λm](k) are

Ftk-measurable while ∆wtk is independent of Ftk , we can take the expectation on

both sides of (3.17) to get

E
∣∣XtN∧λm+1

∣∣2

≤ C1 + E

[
N∑

k=1

(2〈Xtk , f(Xtk)〉

+ |g(Xtk)|2)1[0,λm](k)∆t + 2〈Xt(N∧λm)+1
, f(Xt(N∧λm)+1

)〉∆t

]
,
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where C1 = |Xt0|2 + |g(Xt0)|2 ∆t∗. By Assumption 3.2.1

2〈x, f(x)〉+ |g(x)|2 ≤ 2α + 2β |x|2 , x ∈ Rn.

We hence obtain that

E
∣∣∣Xt(N∧λm)+1

∣∣∣
2

≤ C1 + 2β
[ N∑

k=1

E |Xtk |2 1[0,λm](k)∆t + E
∣∣∣Xt(N∧λm)+1

∣∣∣
2

∆t
]

+ 2α(T + ∆t).

Then

E
∣∣∣Xt(N∧λm)+1

∣∣∣
2

≤ (C1 + 2α(T + ∆t))(1− 2β∆t)−1

+ (1− 2β∆t)−12β
[ N∑

k=1

E |Xtk |2 1[0,λm](k)∆t
]
.

Now we can observe that

E
[∣∣XtN+1

∣∣2 1[0,λm](N)
]
≤ E

∣∣XtN∧λm+1

∣∣2 .

By discrete Gronwall’s inequality and the fact that (1−2β∆t)−1 ≤ 2 for ∆t ≤ ∆t∗

E
[∣∣XtN+1

∣∣2 1[0,λm](N)
]
≤ (C1 + 2α0(T + ∆t))2 exp ((4β)T ) , (3.19)

where we use the fact that N∆t ≤ T . Thus, letting m → ∞ in (3.19) and

applying Fatou’s lemma, we get

E
∣∣XtN+1

∣∣2 ≤ 2(C1 + 2α0(T + ∆t)) exp (4βT ) .

The proof is complete.

3.4 Forward-Backward Euler-Maruyama Scheme

We find in our analysis it is convenient to work with a continuous extension of

a numerical method. This continuous extension enables us to use a powerful

continuous-time stochastic analysis in order to formulate theorems on numerical
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approximations. Let us define

η(t) := tk, for t ∈ [tk, tk+1), k ≥ 0,

η+(t) := tk+1, for t ∈ [tk, tk+1), k ≥ 0.

The continuous version of the BEM is given by

X(t) = Xt0 +

∫ t

0

f(Xη+(s))ds +

∫ t

0

g(Xη(s))dw(s), t ≥ 0. (3.20)

However, in case of the BEM standard measurability conditions are not satisfied.

Indeed, we may notice that X(t), defined by (3.20), is not Ft-measurable. For

this reason we introduce a new numerical scheme. In terms of the general drift

and diffusion coefficients, f and g, once we compute the value Xtk from BEM,

that is

Xtk = Xtk−1
+ f(Xtk)∆t + g(Xtk−1

)∆wtk−1
, (3.21)

we define the Forward-Backward Euler-Maruyama (FBEM) scheme as follows

X̂tk+1
= X̂tk + f(Xtk)∆t + g(Xtk)∆wtk , (3.22)

where X̂t0 = Xt0 = x0. The continuous version of the FBEM is given by

X̂(t) = X̂t0 +

∫ t

0

f(Xη(s))ds +

∫ t

0

g(Xη(s))dw(s), t ≥ 0. (3.23)

Note that the continuous and discrete FBEM coincide at the gridpoints; that is,

X̂(tk) = X̂tk .

3.4.1 Strong Convergence On Compact Domain

It this subsection we prove the strong convergence theorem. We begin by showing

that the FBEM and the BEM schemes stay close to each other on a compact

domain. Then we estimate the probability that BEM (3.12) will not explode on

a finite time interval.

Lemma 3.4.1. Under Assumptions 3.2.1, 3.3.2 and 3.3.5 for any integer p ≥ 2,

T ≥ 0, and ∆t∗ ∈ (0, (max{L, 4β})−1) there exists a constant K = K(m, p, T )
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such that, if ∆t ≤ ∆t∗,

E
[∣∣∣X̂tk −Xtk

∣∣∣
p

1[0,λm](k)
]
≤ K∆tp, ∀tk ∈ [0, T ].

Proof. Summing up forward-backward and backward schemes, respectively, we

obtain

X̂tN = X̂t0 +
N−1∑

k=0

f(Xtk)∆t +
N−1∑

k=0

g(Xtk)∆wtk ,

XtN = Xt0 +
N−1∑

k=0

f(Xtk+1
)∆t +

N−1∑

k=0

g(Xtk)∆wtk .

Now by Hölder’s inequality, Lemma 3.3.4 and Assumption 3.3.5, there exists a

constant C > 0, such that

E
[∣∣∣X̂tN −XtN

∣∣∣
p

1[0,λm](N)
]

(3.24)

= E
[|f(Xt0)∆t− f(XtN )∆t|p 1[0,λm](N)

] ≤ C∆tp, (3.25)

as required.

Theorem 3.4.2. Let Assumptions 3.2.1, 3.3.2, 3.3.5 hold and T > 0 be arbitrary.

Then, for any given ε > 0, there exists an N0 such that for every m ≥ N0, we

can find a ∆t0 = ∆t0(m) so that whenever ∆t ≤ ∆t0,

P(ϑm < T ) ≤ ε,

where ϑm = inf{t > 0 :
∣∣∣X̂(t)

∣∣∣ ≥ m or
∣∣Xη(t)

∣∣ ≥ m}.
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Proof. Let s ∈ [0, T ∧ ϑm). Then by the Itô formula with V (x) = |x|2,

dV (X̂(s)) = 2〈X̂(s), f(Xη(s))〉ds + trace[gT (Xη(s))In×ng(Xη(s))]ds

+ 2〈X̂(s), g(Xη(s))〉dw(s)

≤ 2〈X̂(s)−Xη(s) + Xη(s), f(Xη(s))〉ds

+
∣∣g(Xη(s))

∣∣2 ds

+ 2〈X̂(s), g(Xη(s))dw(s)

= LV (Xη(s)))ds + 2〈X̂(s)−Xη(s), f(Xη(s))〉ds

+ 2〈X̂(s), g(Xη(s))〉dw(s)

≤ LV (Xη(s)))ds + 2
∣∣∣X̂(s)−Xη(s)

∣∣∣
∣∣f(Xη(s))

∣∣ ds

+ 2〈X̂(s), g(Xη(s))〉dw(s),

where the diffusion operator is defined by (3.7). By Assumption 3.2.1, for |x| ≤ m

|f(x)|2 ≤ 2(|f(y)− f(0)|2 + |f(0)|2) ≤ 2(Km |x|2 + |f(0)|2),

and

|g(x)|2 ≤ 2(|g(y)− g(0)|2 + |g(0)|2) ≤ 2(Km |x|2 + |g(0)|2).

Recalling that LV (x) < 2(α + β |x|2), we then have

E
∣∣∣X̂(T ∧ ϑm)

∣∣∣
2

≤
∣∣∣X̂(0)

∣∣∣
2

+ 2αT + 4β

∫ T

0

E
∣∣∣X̂(s ∧ ϑm)

∣∣∣
2

ds

+ C(m)E
∫ T∧ϑm

0

∣∣∣Xη(s) − X̂(s)
∣∣∣ ds.

By Lemma 3.4.1, we obtain

E
∫ T∧ϑm

0

∣∣∣Xη(s) − X̂η(s)

∣∣∣ ds ≤ C(m,T )∆t. (3.26)

To bound the term E
∫ T∧ϑm

0

∣∣∣X̂η(s) − X̂(s)
∣∣∣ ds, given s ∈ [0, T ∧ ϑm), let k be an

integer for which s ∈ [tk, tk+1). Then

∣∣∣X̂η(s) − X̂(s)
∣∣∣ =

∣∣∣∣
∫ s

tk

f(Xtk)ds +

∫ s

tk

g(Xtk)dw(s)

∣∣∣∣ .
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By Hölder’s inequality

E
∫ T∧ϑm

0

∣∣∣X̂η(s) − X̂(s)
∣∣∣ ds ≤ C(m,T )∆t

1
2 ,

where C(m, T ) > 0 is constant. This leads us to

E

∫ T∧ϑm

0

∣∣∣Xη(s) − X̂(s)
∣∣∣ ds ≤ E

∫ T∧ϑm

0

∣∣∣X̂η(s) − X̂(s)
∣∣∣ ds

+ E
∫ T∧ϑm

0

∣∣∣Xη(s) − X̂η(s)

∣∣∣ ds

≤ C(m,T )∆t
1
2 . (3.27)

Therefore

E
∣∣∣X̂(t ∧ ϑm)

∣∣∣
2

≤
∣∣∣X̂(0)

∣∣∣
2

+ 2αT + C(m,T )∆t
1
2 + 4β

∫ T

0

E
∣∣∣X̂(s ∧ ϑm)

∣∣∣
2

ds.

By Gronwall’s inequality

E
∣∣∣X̂(t ∧ ϑm)

∣∣∣
2

≤ [
∣∣∣X̂(0)

∣∣∣
2

+ 2αT + C(m,T )∆t
1
2 ] exp(4βT ), (3.28)

which implies that

P(ϑm < T ) ≤
[
∣∣∣X̂(0)

∣∣∣
2

+ 2αT + C(m,T )∆t1/2] exp(4βT )

|m|2 .

Now, for any given ε > 0, we choose N0 such that for any m ≥ N0

[
∣∣∣X̂(0)

∣∣∣
2

+ 2αT ] exp(4βT )

|m|2 ≤ ε

2
.

Then, we can choose ∆t0 = ∆t0(m), such that for any ∆t ≤ ∆t0

exp(4βT )C(m, T )∆t1/2

|m|2 ≤ ε

2
,

whence P(ϑm < T ) ≤ ε as required.
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3.4.2 Strong Convergence on the Whole Domain

In this section we study the strong convergence of BEM (3.12) to the solution of

(3.1). First, we will show that the continuous extension of FBEM (3.23) converges

to the true solution on a compact domain. This, together with Theorem 3.4.2,

will enable us to extend convergence to the whole domain.

Let us define the stopping time θm as follows

θm = τm ∧ ϑm,

where τm and ϑm are defined in Theorem 3.2.2 and Theorem 3.4.2, respectively.

Lemma 3.4.3. Under Assumptions 3.2.1, 3.3.2 and 3.3.5 for any p ≥ 2, T > 0

and sufficiently large m, there exists a constant K = K(p, T, m), such that

E
[

sup
0≤t≤T

∣∣∣X̂(t ∧ θm)− x(t ∧ θm)
∣∣∣
p
]
≤ K∆t

p
2 .

Proof. For any T1 ∈ [0, T ], by Hölder’s and BDG inequalities

E
[

sup
0≤t≤T1

∣∣∣X̂(t ∧ θm)− x(t ∧ θm)
∣∣∣
p
]

≤ 2p−1

(
T p−1E

∫ T1∧θm

0

[
f(Xη(s))− f(x(s))

]p
ds

+ C(p)E
∫ T1∧θm

0

[
g(Xη(s))− g(x(s))

]p
ds

)
,

where C(p) is a constant. Let s ∈ [0, T1∧θm). Then, the local Lipschitz condition

on f and g implies that

∣∣f(Xη(s))− f(x(s))
∣∣p +

∣∣g(Xη(s))− g(x(s))
∣∣p ≤ C(m, p)

∣∣Xη(s) − x(s)
∣∣p .

47



CHAPTER 3. APPROXIMATIONS OF NONLINEAR SDES

Hence

E
[

sup
0≤t≤T1

∣∣∣X̂(t ∧ θm)− x(t ∧ θm)
∣∣∣
p
]

≤ 2(p−1)C(m, p)

(
T p−1E

∫ T1∧θm

0

∣∣Xη(s) − x(s)
∣∣p ds

+ C(p)E
∫ T1∧θm

0

∣∣Xη(s) − x(s)
∣∣p ds

)

≤ 4(p−1)C(m, p)

(
T p−1E

∫ T1∧θm

0

∣∣∣X̂(s)− x(s)
∣∣∣
p

+
∣∣∣Xη(s)− X̂(s)

∣∣∣
p

ds

+ C(p)E
∫ T1∧θm

0

[
∣∣∣X̂(s)− x(s)

∣∣∣
p

+
∣∣∣Xη(s) − X̂(s)

∣∣∣
p

]ds

)

≤ 4(p−1)C(m, p)(T p−1 + C(p))E
∫ T1

0

∣∣∣X̂(s ∧ θm)− x(s ∧ θm)
∣∣∣
p

ds

+ 4(p−1)C(m, p)(T p−1 + C(p))E
∫ T1∧θm

0

∣∣∣Xη(s) − X̂(s)
∣∣∣
p

ds.

By the same reasoning which gave us (3.27), we can deduce that

E
∫ T1∧θm

0

∣∣∣Xη(s)− X̂(s)
∣∣∣
p

ds ≤ C(m,T, p)∆t
p
2 .

Hence

E
[

sup
0≤t≤T1

∣∣∣X̂(t ∧ θm)− x(t ∧ θm)
∣∣∣
p
]

≤ 4(p−1)C(m, p)(T p−1 + C(p))

×
[
C(m,T, p)∆t

p
2 +

∫ T1

0

E
[

sup
0≤t≤s

∣∣∣X̂(t ∧ θm)− x(t ∧ θm)
∣∣∣
p
]

ds

]
.

By Gronwall’s inequality

E
[

sup
0≤t≤T

|X(t ∧ θm)− x(t ∧ θm)|p
]
≤ C2∆t

p
2 eC1T ,

where C1 = 4(p−1)C(m, p)(T p−1 + C(p)) and C2 = C1C(m,T, p).

Now we are ready to prove the strong convergence theorem.
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Theorem 3.4.4. Under Assumptions 3.2.1, 3.3.2 and 3.3.5 for any given T > 0

and s ∈ [1, 2), we have

lim
∆t→0

E |X(T )− x(T )|s = 0. (3.29)

Proof. Let

e(T ) = X(T )− x(T ).

Applying Young’s inequality

xsy ≤ δs

2
x2 +

2− s

2δ
s

2−s

y
2

2−s , ∀x, y, δ > 0,

leads us to

E |e(T )|s = E
[|e(T )|s 1{τm>T,ϑm>T}

]
+ E

[|e(T )|s 1{τm≤T or ϑm≤T}
]

≤ 2s−1

[
E[

∣∣∣X̂(T )− x(T )
∣∣∣
s

1{τm>T,ϑm>T}] (3.30)

+ E[
∣∣∣X(T )− X̂(T )

∣∣∣
s

1{τm>T,ϑm>T}]

]

+
δs

2
E

[|e(T )|2] +
2− s

2δ
s

2−s

P(τm ≤ T or ϑm ≤ T ).

To complete the proof we need to estimate the expressions on the right hand side

of this inequality. First, let us observe that by Lemma 3.4.1 we obtain

E[
∣∣∣X(T )− X̂(T )

∣∣∣
s

1{τm>T,ϑm>T}] ≤ C(m, s, T )∆ts.

Given any ε > 0, by Hölder’s inequality and Theorems 3.2.2 and 3.3.6 , we choose

δ such that
δs

2
E

[|e(T )|2] ≤ 4
δs

2
E

[|x(T )|2 + |X(T )|2] ≤ ε

3
.

Now by (3.5) there exists N0 such that for m ≥ N0

2− s

2δ
s

2−s

P(τm ≤ T ) ≤ ε

3
,

and finally by Lemma 3.4.3 and Theorem 3.4.2 we choose ∆t sufficiently small,
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such that

2s−1
[
E[

∣∣∣X̂(T )− x(T )
∣∣∣
s

1{τm>T,ϑm>T}] + E[
∣∣∣X(T )− X̂(T )

∣∣∣
s

1{τm>T,ϑm>T}]
]

+
2− s

2δ
s

2−s

P(ϑm ≤ T ) ≤ ε

3
,

which completes the proof.

3.4.3 θ-Euler-Maryuama Scheme

In the stability analysis which will be presented in Section 3.5 we consider a

θ-Euler-Maryuama scheme of the following form

Xtk+1
= Xtk + θf(Xtk+1

)∆t + (1− θ)f(Xtk)∆t + g(Xtk)∆wtk . (3.31)

For ∆t < (max{L, 4β}θ)−1 the scheme is well defined. What is more, all the

previous results hold once we replace condition (3.3) in Assumption 3.2.1 by the

following one

〈x, f(x)〉+
1

2
|g(x)|2

+
(1− 2θ)

2
|f(x)|2 ∆t ≤ α + β |x|2 ∀x ∈ Rn, ∀∆t ∈ (0, (max{L, 4β}θ)−1].

Clearly for θ ≥ 0.5 the above condition does not add any additional restrictions

on the coefficients of SDEs (3.1).

Since Theorem 3.4.4 covers highly nonlinear SDEs it might be computationally

expensive to find the inverse function F−1 to function F defined in the following

way

F (x) = x− θf(x)∆t. (3.32)

In this case, we suggest splitting the drift coefficient in SDEs (3.1) into the sum

of two functions f(x) = f1(x) + f2(x). Due to linearity of the inner product

this does not affect any results for SDEs (3.1), but allows us to introduce partial

implicitness in the numerical scheme. This partially implicit θ-Euler-Maruyama

scheme has the following form

Xtk+1
= Xtk + θf1(Xtk+1

)∆t + (1− θ)f1(Xtk)∆t + f2(Xtk)∆t + g(Xtk)∆wtk .
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Again, all results from previous sections hold, once we replace condition (3.3) in

Assumption 3.2.1 by the following one

〈x, f(x)〉+
1

2
|g(x)|2 +

[
(1− θ)〈f1(x), f2(x)〉

+
1

2
|f2(x)|2 +

1

2
(1− 2θ) |f1(x)|2]∆t

≤ α + β |x|2 ∀x ∈ Rn, ∀∆t ∈ (0, (max{L, 4β}θ)−1].

3.5 Stability Analysis

In this section we examine the global almost sure stability of the θ-EM scheme

(3.31). The stability conditions we derive are related to mean-square stability as

we are interested in results that do not put severe restrictions on the time step.

First, we give some preliminary analysis for SDEs (3.1). We give conditions on the

coefficients of the SDEs (3.1) that are sufficient for a globally almost sure stable

system. Later we prove that the θ-EM scheme (3.31) reproduces this asymptotic

behaviour very well.

3.5.1 Continuous Case

In (Shen, Luo, and Mao 2006), the authors proved a very general Stochastic

LaSalle Theorem. Here we present a simplified version of their theorem, with a

fixed Lyapunov function V (x) = |x|2.

Theorem 3.5.1 (Mao et al. (Shen, Luo, and Mao 2006)). Let Assumption 3.2.1

hold. Assume further that there exists a function z ∈ C(Rn;R+) such that

〈x, f(x)〉+
1

2
|g(x)|2 ≤ −z(x) (3.33)

for all x ∈ Rn. We then have the following assertions:

• Dz := {x ∈ Rn : z(x) = 0} 6= ∅.

• For any x0 ∈ Rn, the solution x(t, x0) of (3.1) has the properties that

∫ ∞

0

E[z(x(t, x0))]dt < ∞ a.s.,
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lim sup
t→∞

|x(t, x0)|2 < ∞ a.s. and

lim
t→∞

d(x(t, x0); Dz) = 0 a.s.,

where d(x; A) = infy∈A |x− y|.

What is more, if the following condition holds

z(x) = 0 iff x = 0,

then

lim
t→∞

x(t, x0) = 0 a.s. ∀ x0 ∈ Rn.

3.5.2 Discrete Case

Recently, it was shown by Appleby et al. (Appleby, Kelly, Mao, and Rodkina

2010), that the classical Euler-Maruyama scheme may fail to preserve almost

sure stability of a test equation. In fact, they considered the following equation

Xk+1 = Xk − βXk |Xk|p ∆t + σk |Xk|ρ
√

∆tξn+1. (3.34)

They concluded that for arbitrary initial data X0 under Assumption p + 1 > 2ρ,

the solution to the equation (3.34) explodes to infinity with positive probability.

This obviously violates the almost sure stability property. On the other hand,

Appleby et al. (Appleby, Mao, and Rodkina 2008) showed that the continuous

counterpart of the equation (3.34) does converge to zero almost surely. This

motivates stability analysis for numerical approximations for highly non-linear

SDEs of this type.

3.5.3 Almost Sure Stability

We begin this section with the following Lemma.

Lemma 3.5.2. Let Z = {Zn}n∈N be a nonnegative stochastic process with Doob

decomposition Zn = Z0 + A1
n − A2

n + Mn, where A1 = {A1
n}n∈N and A1 =

{A1
n}n∈N are a.s. nondecreasing, predictable processes with A1

0 = A2
0 = 0, and
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M = {Mn}n∈N is local {Fn}n∈N-martingale with M0 = 0. Then

{
ω : lim

n→∞
A1

n < ∞
}
⊆

{
ω : lim

n→∞
A2

n < ∞
}
∩

{
lim

n→∞
Znexists and its finite

}
a.s.

The original lemma can be found in Shiryaev (Liptser and Shiryayev 1989).

This result combines Doob’s Decomposition and Martingale Convergence Theo-

rems.

Since we use a Lyapunov function V (x) = |x|2, our results extend mean-square

stability for linear systems, (Higham 2001; Higham 2000), to a highly nonlinear

setting.

Theorem 3.5.3. Let Assumptions 3.2.1, 3.3.2 and 3.3.5 hold. Assume that

there exists a function z ∈ C(Rn;R+) such that for all x ∈ Rn and for all ∆t ∈
(0, (max{L, 2β}θ)−1),

〈x, f(x)〉+
1

2
|g(x)|2 +

(1− 2θ)

2
f 2(x)∆t ≤ −z(x). (3.35)

Then the θ-EM solution defined by (3.31), obeys

lim sup
k→∞

|X(tk)|2 < ∞ a.s., (3.36)

lim
k→∞

z (X(tk)) = 0 a.s. (3.37)

and ∞∑

k=0

E[z(Xtk)]∆t < ∞. (3.38)

If additionally z(x) = 0 iff x = 0

lim
k→∞

X(tk) = 0 a.s.

Proof. By definition of operator F in (3.32), we can represent the θ-EM scheme

(3.31) as

F (Xtk+1
) = F (X(tk)) + f(X(tk))∆t + g(X(tk))∆wk+1.

53



CHAPTER 3. APPROXIMATIONS OF NONLINEAR SDES

Consequently

∣∣F (Xtk+1
)
∣∣2 = |F (X(tk))|2 + |f(X(tk))|2 ∆t2 + |g(X(tk))|2 ∆t (3.39)

+ 2〈F (X(tk)), f(X(tk))〉∆t + ∆Mk+1

= |F (X(tk)|2

+
(
2〈X(tk), f(X(tk))〉+ |g(X(tk))|2

)
∆t

+ (1− 2θ) |f(X(tk))|2 ∆t2 + ∆Mk+1,

where

∆Mk+1 = |g(X(tk))|2 (∆w2
k+1 −∆t) + 2〈F (X(tk)), g(X(tk))〉∆wk+1

+ 2〈f(X(tk))∆t, g(X(tk))〉∆wk+1,

so that
∑N

k=1 ∆Mk is a local martingale due to Assumption 3.3.5 and Lemma

3.3.4. Hence, we have obtained the decomposition required to apply Lemma

3.5.2, that is

∣∣F (Xtk+1
)
∣∣2 = |F (Xtk)|2 − A(Xtk)∆t + ∆Mk+1,

where

A(Xtk) = −
(

(
2〈X(tk), f(X(tk))〉+ |g(X(tk))|2

)
(3.40)

+ (1− 2θ) |f(X(tk))|2 ∆t

)
.

Therefore

∣∣F (XtN+1
)
∣∣2 = |F (Xt0)|2 −

N∑

k=0

A(Xtk)∆t +
N∑

k=0

∆Mk.

Now we are in a position to apply Lemma 3.5.2 to get

lim
k→∞

|F (Xtk)|2 < ∞, (3.41)
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from where, by Assumption 3.2.1, it is easy to show that

lim sup
k→∞

|Xtk |2 < ∞ a.s..

By Lemma 3.5.2,

∞∑

k=0

z(Xtk)∆t ≤
∞∑

k=0

A(Xtk)∆t < ∞ a.s.,

which implies

lim
k→∞

z(Xtk) = 0 a.s..

Summing up the both sides of (3.39) gives us

N∑

k=0

z(Xtk)∆t ≤ |F (Xt0)|2 +
N∑

k=0

∆Mk+1,

taking expectation of both sides of above inequality and application of Fatou

Lemma proves (3.37) and completes the proof of the theorem.
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Chapter 4

Rate of Convergence

A mathematician is a device for turning coffee

into theorems.

Paul Erdos

In this chapter we extend the analysis from Chapter 3. We demonstrate that

once we replace the monotone condition by a dissipative-type condition on the

drift and the polynomial condition on the diffusion terms we are able to prove

stronger versions of Theorem 3.4.4. These stronger assumptions will enable us

to generalize the current theory of strong convergence rates for the backward

Euler-Maruyama scheme for super-linear SDEs. First we obtain an upper-bound

for the pth moments of the solution to (3.1), which is uniform in time. Later on

we show that BEM has an ability to reproduce this feature. Then by imposing a

stronger polynomial condition we reveal the rate of convergence for BEM, which

equals a half. We conclude the chapter with a generalization of the Fundamental

Theorem by Milstein (Milshtein 1975; Milstein and Tretyakov 2004). Indeed, we

show that with the same assumptions required to prove our strong convergence

theorem we can extend the Fundamental Theorem to a non-Lipschitz case.

4.1 Preliminary Analysis

Similarly, like in Assumption 3.2.1, we require the coefficients f and g to be local

Lipschitz continuous. However, in place of the monotone condition we introduce
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the following dissipative-type and polynomial growth conditions on the drift and

diffusion coefficients, respectively.

Assumption 4.1.1. Both functions f and g satisfy the following conditions:

Local Lipschitz condition. For each integer m ≥ 1, there is a positive constant

Km such that

|f(x)− f(y)|+ |g(x)− g(y)| ≤ Km |x− y| , (4.1)

for those x, y ∈ Rn with |x| ∨ |y| ≤ m.

Dissipative condition. For some ρ ≥ 1, and r ∈ N, r ≥ 1, there exist positive

constants α0, α1, β, β0, β1 > 0, such that

−β1 |x|r+1 − β0 ≤ 〈x, f(x)〉 ≤ α0 − α1 |x|r+1 , (4.2)

|g(x)| ≤ β |x|ρ , (4.3)

for all x ∈ Rn.

Further on in this thesis, we demonstrate that Assumption 4.1.1 covers both

a wide family of SDEs applied in Mathematical Finance and Bio-mathematics.

In order to proceed with our analysis, we make an assumption about values of

the parameters. As will become clear from the proofs, this type of assumption

allows us to control the potential growth coming from the diffusion term using

the dissipative nature of the drift.

Assumption 4.1.2. The parameters in Assumption 4.1.1 obey

r + 1 > 2ρ.

From now on, without loss of generality, we assume that through the rest of

this chapter p ∈ N is always an even number. Clearly, Assumptions 4.1.1 and

4.1.2 imply Assumption 3.2.1. Therefore, the statement of Theorem 3.2.2 holds.

However, with these stronger assumptions we are able to obtain sharper bounds.

Theorem 4.1.3. Let Assumptions 4.1.1 and 4.1.2 hold. Then for any given

initial value x(0) = x0 ∈ Rn, there exists a unique, global solution x(t) to the

equation (3.1) for t ≥ 0. Moreover, for any T ≥ 0 and for every p ≥ 2 there
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exists a constant K = K(r, ρ) independent of T , such that

E |x(t)|p ≤ e−T |x0|p + K, ∀t ∈ [0, T ], (4.4)

and for every m > m0, where |x0| < m0,

P(τm ≤ T ) ≤ |m|−p

(
|x0|p + KT

)
, (4.5)

where

τm = inf{t ≥ 0 : |x(t)| > m}. (4.6)

Proof. Existence and uniqueness follow from Theorem 3.2.2. Therefore, we only

need to prove that (4.4) and (4.5) hold. For any p ≥ 2, applying the Itô formula

to the function V (x, t) = et |x|p, we compute the diffusion operator

LV (x, t) ≤ et
(
|x|p + p |x|p−2 〈x, f(x)〉+

1

2
p(p− 1) |x|p−2

∣∣g2(x)
∣∣
)
. (4.7)

By Assumptions 4.1.1 and 4.1.2, there exists a constant C > 0 such that

|x|p + p |x|p−2 (α0 − α1 |x|r+1) +
1

2
βp(p− 1) |x|p−2 |x|2ρ ≤ C, (4.8)

and as consequence

LV (x, t) ≤ Cet.

Therefore

E
[
et∧τm |x(t ∧ τm)|p

]
≤ |x0|p + Cet.

Next, letting m →∞ and applying Fatou’s lemma, we obtain

E |x(t)|p ≤ e−t |x0|p + C.

Now by similar analysis with a function V (x, t) = |x|p we obtain

P(τm ≤ T )[|m|p] ≤ |x0|p + CT.

This implies that limm→∞ P(τm ≤ T ) = 0 as desired and finishes the proof of

Theorem 4.1.3.
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Now we are also able to show that pth-moments are bounded uniformly within

the whole time interval [0, T ].

Lemma 4.1.4. Under Assumptions 4.1.1 and 4.1.2, for any T ≥ 0, we have

E( sup
0≤t≤T

|x(t)|p) < ∞ p ≥ 2. (4.9)

Proof. By the Itô formula applied to a function V (x) = |x|p and Theorem 4.1.3,

we can show that

E[ sup
0≤t≤T

|x(t)|p] ≤ |x0|p + CT (4.10)

+ E
[

sup
0≤t≤T

∫ t

0

p |x(u)|p−2 xT (u)g(x(u))dw(u)
]
,

where C is a positive constant. By Burkholder-Davis-Gundy’s and Jensen’s in-

equality, we can show that

E
[

sup
0≤t≤T

∫ t

0

p |x(u)|p−2 xT (u)g(x(u))dw(u)
]

(4.11)

≤ CE
( ∫ T

0

[
p |x(u)|p−2 xT (u)g(x(u))

]2
du

) 1
2

≤ C
( ∫ T

0

E
[
p |x(u)|p−2 xT (u)g(x(u))

]2
du

) 1
2
,

where C stands for a constant which may vary from line to line. By Theorem

4.1.3, the conclusion follows.

4.2 Backward Euler-Maruyama Scheme

We work here with backward Euler-Maruyama scheme (2.2). From Lemma 3.3.3

we know that it possesses a unique solution as long as ∆t < 1
L
. In this section we

prove a much stronger version of the Theorem 3.3.6, namely we prove uniform

boundedness of the pth-moments of (2.2).
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4.2.1 Moment Estimates

Before we state and prove the boundedness of moments for BEM (2.2) we prove

the following lemma, which gives us an estimate required to prove Theorem 4.2.2.

Lemma 4.2.1. Under Assumption 4.1.1, for any integer s ≥ 1 there exist positive

constants K1 and K2 such that

(−1)s+1(〈x, f(x)〉)s ≤ K1 −K2 |x|s(r+1) . (4.12)

Proof. We prove the lemma by induction. We claim that the following inequalities

hold

−C̃1 |x|s(r+1) − C̃0 ≤ (−1)s+1〈x, f(x)〉s ≤ C0 − C1 |x|s(r+1) , (4.13)

where C0, C1, C̃0 and C̃1 are positive constants, which may depend on α0, α1, β0,

β1, but not on x. From Assumption 4.1.1 the statement (4.13) holds for s = 1.

Now, given that it holds at level s we show that (4.13) holds true for s+1. From

Assumption 4.1.1 suppose first that 〈x, f(x)〉 ≥ 0

(−1)〈x, f(x)〉(−C̃1 |x|s(r+1) − C̃0)

≥ (−1)s+2〈x, f(x)〉s+1 ≥ (C0 − C1 |x|s(r+1))(−1)〈x, f(x)〉.

In the case C0 − C1 |x|s(r+1) > 0

(−1)(α0 − α1 |x|r+1)(−C̃1 |x|s(r+1) − C̃0)

≥ (−1)s+2〈x, f(x)〉s+1 ≥ (C0 − C1 |x|s(r+1))(−1)(α0 − α1 |x|r+1),

and in the case C0 − C1 |x|s(r+1) ≤ 0

(−1)(α0 − α1 |x|r+1)(−C̃1 |x|s(r+1) − C̃0)

≥ (−1)s+2〈x, f(x)〉s+1 ≥ (C0 − C1 |x|s(r+1))(β1 |x|r+1 + β0).
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Alternatively, suppose 〈x, f(x)〉 < 0. By Assumption 4.1.1

(−1)〈x, f(x)〉(−C̃1 |x|s(r+1) − C̃0)

≤ (−1)s+2〈x, f(x)〉s+1 ≤ (C0 − C1 |x|s(r+1))(−1)〈x, f(x)〉.

In the case C0 − C1 |x|s(r+1) > 0 we obtain

(−1)(−β0 − β1 |x|r+1)(−C̃1 |x|s(r+1) − C̃0)

≤ (−1)s+2〈x, f(x)〉s+1 ≤ (C0 − C1 |x|s(r+1))(β0 + β1 |x|r+1),

and in the case C0 − C1 |x|s(r+1) ≤ 0

(−1)(−β0 − β1 |x|r+1)(−C̃1 |x|s(r+1) − C̃0)

≤ (−1)s+2〈x, f(x)〉s+1 ≤ (C0 − C1 |x|s(r+1))(−1)(α0 − α1 |x|r+1).

Now we observe that there exist positive constants Ĉ1, Ĉ2 and Ĉ3, such that

(−1)(α0 − α1 |x|r+1)(−C̃1 |x|s(r+1) − C̃0)

≤ Ĉ1 − α1C̃1

2
|x|(s+1)(r+1) ,

(C0 − C1 |x|s(r+1))(β0 + β1 |x|r+1)

≤ Ĉ2 − C1β1

2
|x|(s+1)(r+1) ,

(C0 − C1 |x|s(r+1))(−1)(α0 − α1 |x|r+1)

≤ Ĉ3 − C1α1

2
|x|(s+1)(r+1) .

Now we define C0 = max{Ĉ1, Ĉ2, Ĉ3} and C1 = min{α1C̃1

2
, C1β1

2
, C1α1

2
}, and the

proof of the upper bound in (4.13) is complete. Similarly, we can find the lower

bound in (4.13). The proof by induction of Lemma 4.2.1 is complete.

Theorem 4.2.2. Let Assumptions 4.1.1, 4.1.2, 3.3.2 and 3.3.5 hold. Let ∆t∗ ∈
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(0, 1/L) be sufficiently small so that whenever ∆t ≤ ∆t∗,

1 ≤
[
e∆t − 1

]

∆t
≤ 2 and e∆t ≤ 2. (4.14)

Then for any integer p ≥ 2

sup
∆t≤∆t∗

sup
k≥0
E |Xtk |p < ∞.

Proof. We begin with the following inequality

∣∣Xtk+1

∣∣2 − |Xtk |2 ≤ 2〈Xtk+1
, f(Xtk+1

)〉∆t (4.15)

+ 2〈Xtk , g(Xtk)〉∆Wtk + |g(Xtk)|2 |∆Wtk |2 .

Recalling Assumption 4.1.1, we note that

0 <
∣∣Xtk+1

∣∣2 − 2〈Xtk+1
, f(Xtk+1

)〉∆t + 2α0∆t

≤ |Xtk |2 + 2〈Xtk , g(Xtk)〉∆Wtk + |g(Xtk)|2 |∆Wtk |2 + 2α0∆t.

Raising the both sides of above inequality to the power p
2

leads us to

(∣∣Xtk+1

∣∣2 − 2〈Xtk+1
, f(Xtk+1

)∆t〉+ 2α0∆t
)p/2

≤ (|Xtk |2 + 2〈Xtk , g(Xtk)∆Wtk〉+ |g(Xtk)|2 |∆Wtk |2 + 2α0∆t
)p/2

.

Now by the binomial theorem we have

p/2∑

l=0

l∑
s=0

(
l

s

)(
p/2

l

)
(−1)s

∣∣Xtk+1

∣∣2( p
2
−l) (

2〈Xtk+1
, f(Xtk+1

)∆t〉)s
(2α0∆t)l−s

≤
p/2∑

l=0

l∑
s=0

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i .
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Hence

∣∣Xtk+1

∣∣p − |Xtk |p

≤
p/2∑

l=1

l∑
s=0

(
l

s

)(
p/2

l

)
(−1)s+1

∣∣Xtk+1

∣∣2( p
2
−l) (

2〈Xtk+1
, f(Xtk+1

)∆t〉)s
(2α0∆t)l−s

+

p/2∑

l=1

l∑
s=0

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i

=

p/2∑

l=1

l∑
s=0

(
l

s

)(
p/2

l

)
(−1)s+1

∣∣Xtk+1

∣∣2( p
2
−l) (

2〈Xtk+1
, f(Xtk+1

)∆t〉)s
(2α0∆t)l−s

+

p/2∑

l=1

l∑
s=0

s−even

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i

+

p/2∑

l=1

l∑
s=0

s−odd

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i .

Note that

etk+1
∣∣Xtk+1

∣∣p − etk |Xtk |p = etk
[∣∣Xtk+1

∣∣p − |Xtk |p
]
+

[
etk+1 − etk

] ∣∣Xtk+1

∣∣p

= etk
[∣∣Xtk+1

∣∣p − |Xtk |p
]
+ etk

[
e∆t − 1

]

∆t
∆t

∣∣Xtk+1

∣∣p ,

and therefore

etk+1
∣∣Xtk+1

∣∣p − etk |Xtk |p ≤ etk
[∣∣Xtk+1

∣∣p − |Xtk |p
]
+ 2etk∆t

∣∣Xtk+1

∣∣p .
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As a consequence we have

etk+1
∣∣Xtk+1

∣∣p − etk |Xtk |p

≤ etk

(
p

2
(−1)

∣∣Xtk+1

∣∣2( p
2
−1)

(2α0∆t)

+
p

2

∣∣Xtk+1

∣∣2( p
2
−1) (

2〈Xtk+1
, f(Xtk+1

)∆t〉) + 2∆t
∣∣Xtk+

∣∣p

+

p/2∑

l=2

l∑
s=0

(
l

s

)(
p/2

l

)
(−1)s+1

∣∣Xtk+1

∣∣2( p
2
−l) (

2〈Xtk+1
, f(Xtk+1

)∆t〉)s
(2α0∆t)l−s

+

p/2∑

l=1

l∑
s=0

s−even

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i

+

p/2∑

l=1

l∑
s=0

s−odd

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i

)
.

For every sufficiently large integer m, we define the stopping time

λm = inf{k : |Xtk | > m}.

Let N be any nonnegative integer such that N∆t ≤ T . Summing up the both
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sides of the inequality from k = 0 to N ∧ λm, we get

etN∧λm+1
∣∣XtN∧λm+1

∣∣p ≤
(
|Xt0|p +

p/2∑

l=1

l∑
s=0

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xt0|2( p

2
−l)

× (2〈Xt0 , g(Xt0)∆Wt0〉)s (|g(Xt0)|2 |∆Wt0|2
)l−s−i

(2α0∆t)i

)

+
N∧λm+1∑

k=1

etk−1

(
−p

2
|Xtk |2( p

2
−1) (2α0∆t)

)

+
N∧λm+1∑

k=1

etk−1

(
p

2
|Xtk |2( p

2
−1) 2〈Xtk , f(Xtk)∆t〉+ 2∆t |Xtk |p

)

+
N∧λm+1∑

k=1

etk−1

(
p/2∑

l=2

l∑
s=0

(
l

s

)(
p/2

l

)
(−1)s+1 |Xtk |2( p

2
−l)

× (2〈Xtk , f(Xtk)∆t〉)s (2α0∆t)l−s

)

+
N∧λm∑

k=1

etk

(
p/2∑

l=1

l∑
s=0

s−even

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i

)

+
N∧λm∑

k=1

etk

(
p/2∑

l=1

l∑
s=0

s−odd

l−s∑
i=0

(
l

s

)(
p/2

l

)(
l − s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)∆Wtk〉)s (|g(Xtk)|2 |∆Wtk |2
)l−s−i

(2α0∆t)i

)
.

65



CHAPTER 4. RATE OF CONVERGENCE

By Lemma 3.3.4, taking expectation of the above inequality leads to

EetN∧λm+1
∣∣XtN∧λm+1

∣∣p

≤ C1 + E
N∑

k=1

etk−1

(
p

2
|Xtk |2( p

2
−1) 2〈Xtk , f(Xtk)∆t〉+ 2∆t |Xtk |p

)
1[0,λm](k)

+ EetN∧λm

(
p

2
|Xtk |2( p

2
−1) 2〈XtN∧λm+1

, f(XtN∧λm+1
)∆t〉+ 2∆t

∣∣XtN∧λm+1

∣∣p
)

+ E
N∑

k=1

etk−1

(
p/2∑

l=2

l∑
s=0

(
l

s

)(
p/2

l

)
(−1)s+1 |Xtk |2( p

2
−l)

× (2〈Xtk , f(Xtk)〉)s (2α0)
l−s ∆tl

)
1[0,λm](k)

+ EetN

(
p/2∑

l=2

l∑
s=0

(
l

s

)(
p/2

l

)
(−1)s+1

∣∣XtN∧λm+1

∣∣2( p
2
−l)

× (
2〈XtN∧λm+1

, f(XtN∧λm+1
)〉)s

(2α0)
l−s ∆tl

)
1[0,λm](k)

+ E
N∑

k=1

etk

(
p/2∑

l=1

l/2∑
s=0

l−s∑
i=0

(
l

2s

)(
p/2

l

)(
l − 2s

i

)
|Xtk |2( p

2
−l)

× (2〈Xtk , g(Xtk)〉)2s (|g(Xtk)|2
)l−2s−i

(2α0)
i ∆tl−2s

)
1[0,λm](k),

where

C1 = |Xt0|p +

p/2∑

l=1

l/2∑
s=0

l−2s∑
i=0

(
l

2s

)(
p/2

l

)(
l − 2s

i

)
|Xt0|2( p

2
−l)

× (2〈Xt0 , g(Xt0)〉)2s (|g(Xt0)|2 |∆|2
)l−2s−i

(2α0)
i ∆tl−s.

is a constant. In order to complete the proof of the theorem we need to show that

the dissipative nature of the drift can prevent potential growth of the diffusion

term. To this end, for any given z, 1 < z < p, we need to find the highest power

q1 of −Xq1
tk

∆tz, from the drift term. Next we need to obtain the highest power

q2 of Xq2
tk

∆tz from the diffusion term. It is useful to notice that we obtain the

highest power of drift and diffusion terms when s = l and i = 0, respectively.
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That is to say, for any given z by Assumption 4.1.1 and Lemma 4.2.1, we have

q1 = 2(
p

2
− z) + (r + 1)z and q2 = 2(

p

2
− z) + 2ρz.

This together with Assumption 4.1.2 clearly implies that

EetN+1
∣∣XtN∧λn+1

∣∣p ≤ C1 + C

N+1∑

k=1

etk−1∆t,

which implies the assertion easily. The proof is complete.

By analogy with Lemma 4.1.4 we can extend the statement of Theorem 4.2.2

to the following one.

Theorem 4.2.3. Under Assumptions 4.1.1, 4.1.2, 3.3.2 and 3.3.5, for any inte-

ger p ≥ 2 and T > 0, there is ∆t∗ ∈ (0, 1/L) and a constant K = K(T, p) such

that

sup
∆t≤∆t∗

E
[

sup
0≤tk≤T

|Xtk |p
]

< K.

Proof. In the following we assume that N and M are positive integers such that

N∆t ≤ M∆t ≤ T. (4.16)

From (4.15) we have

|XtN |2 ≤ |Xt0|2 +
N∑

k=0

2〈Xtk , f(Xtk)〉∆t

+
N−1∑

k=0

|g(Xtk)∆Wtk |2 +
N−1∑

k=0

2〈Xtk , g(Xtk)∆Wtk〉

≤ |Xt0|2 + 2α0(T + ∆t)

+
N−1∑

k=0

|g(Xtk)∆Wtk |2 +
N−1∑

k=0

2〈Xtk , g(Xtk)∆Wtk〉.
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Raising both sides to the power of p/2 we have

|XtN |p ≤ 4
p−2
2

(
|Xt0|p +

(
2α0(T + ∆t)

)p/2

+

(N−1∑

k=0

|g(Xtk)∆Wtk |2
)p/2

+ 2p/2

(N−1∑

k=0

〈Xtk , g(Xtk)∆Wtk〉
)p/2

)
.

Thanks to Theorem 4.2.2, there exists a positive constant C = C(p), such that

E

[
sup

0≤N≤M

(N−1∑

k=0

|g(Xtk)∆Wtk |2
)p/2

]
≤ E

[
M

p−2
2

M−1∑

k=0

|g(Xtk)∆Wtk |p
]

≤ C

[
M

p−2
2

M−1∑

k=0

∆tp/2

]

≤ CT p/2.

Finally, using the BDG inequality

E

[
sup

0≤N≤M

∣∣∣∣∣
N−1∑

k=0

〈Xtk , g(Xtk)∆Wtk〉
∣∣∣∣∣

p/2]
≤ CE

[
M−1∑

k=0

|g(Xtk)|2 ∆t

]p/4

≤ CMp/4−1∆tp/4

M−1∑

k=0

E |g(Xtk)|p/2

≤ CT p/4.

Therefore we obtain

E

[
sup

0≤N≤M
|XtN |p

]
≤ C(p, T ), (4.17)

and the desired result follows.

4.3 Forward-Backward Euler-Maryuama Scheme

Here by analogy with Section 3.4 we work with the Forward-Backward Euler-

Maryuama scheme. Under Assumptions 4.1.1, 4.1.2, 3.3.2, 3.3.5 the statement of

Theorem 3.4.2 holds. We also have the following theorem which shows that both

(2.2) and (3.22) stay close in Lp.
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Theorem 4.3.1. Under Assumptions 4.1.1, 4.1.2, 3.3.2 and 3.3.5, for any p ≥ 2,

there is ∆t∗ ∈ (0, 1/L) and a constant K = K(p, T ) such that

E
[

sup
0≤tk≤T

∣∣∣X̂tk −Xtk

∣∣∣
p
]

< K∆tp,

and

sup
∆t≤∆t∗

E
[

sup
0≤tk≤T

∣∣∣X̂tk

∣∣∣
p
]

< ∞.

Proof. Let N and M be defined in exactly the same way as in (4.16). Summing

up forward-backward and backward schemes, respectively we obtain

X̂tN = X̂t0 +
N−1∑

k=0

f(Xtk)∆t +
N−1∑

k=0

g(Xtk)∆Wtk , (4.18)

XtN = Xt0 +
N−1∑

k=1

f(Xtk+1
)∆t +

N−1∑

k=0

g(Xtk)∆Wtk . (4.19)

Now by the Hölder’s inequality, Assumption 3.3.5 and Theorem 4.2.3 there exists

a constant C > 0, such that

E
[

sup
0≤N≤M

∣∣∣X̂tN −XtN

∣∣∣
p
]

= E
[

sup
0≤N≤M

|f(Xt0)∆t− f(XtN )∆t|p
]
≤ C∆tp,

(4.20)

and

E
[

sup
0≤N≤M

∣∣∣X̂tN

∣∣∣
p
]
≤ 2p−1E

[
sup

0≤N≤M

(∣∣∣X̂tN+1
−XtN

∣∣∣
p

+ |XtN |p
)]
≤ K(1 + ∆tp),

(4.21)

as required.

Having bounded the moments for the discrete FBEM, we can bound the con-

tinuous FBEM in the following sense.

Lemma 4.3.2. Under Assumptions 4.1.1, 4.1.2, 3.3.2 and 3.3.5, for any integer

p ≥ 2,

sup
∆t≤∆t∗

E
(

sup
0≤t≤T

∣∣∣X̂(t)
∣∣∣
p
)

< ∞, ∀T > 0.
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Proof. It follows from (3.23) that

E
(

sup
0≤t≤T

∣∣∣X̂(t)
∣∣∣
p )

≤ 3p−1

[
E

∣∣∣X̂(0)
∣∣∣
p

+ E
∣∣∣∣
∫ T

0

f(Xη(s))ds

∣∣∣∣
p

+ E
(

sup
0≤t≤T

∣∣∣∣
∫ t

0

g(Xη(s))dw(s)

∣∣∣∣
p)]

.

This, together with Theorem 4.2.3 and Assumption 3.3.5, implies the assertion.

Lemma 4.3.3. Under Assumptions 4.1.1, 4.1.2, 3.3.2 and 3.3.5 there exists a

constant C = C(T, p), such that

E
∣∣∣Xη(s) − X̂(s)

∣∣∣
p

≤ K∆tp/2, s ∈ [0, T ]. (4.22)

Proof. By Hölder’s inequality

∣∣∣Xη(s) − X̂(s)
∣∣∣
p

≤ 2p−1(
∣∣∣X̂η(s) − X̂(s)

∣∣∣
p

+
∣∣∣Xη(s) − X̂η(s)

∣∣∣
p

). (4.23)

But by Theorem 4.2.3 we obtain

E
∣∣∣X̂η(s) − X̂(s)

∣∣∣
p

= E
∣∣∣∣
∫ s

tk

f(Xtk)ds +

∫ s

tk

g(Xtk)dw(s)

∣∣∣∣
p

≤ K∆t
p
2 , (4.24)

and by Theorem 4.3.1 we can show that

E
∣∣∣Xη(s) − X̂η(s)

∣∣∣
p

≤ K∆tp. (4.25)

4.4 Strong Convergence

It this section we prove the strong convergence theorems. However, the rate of

convergence is still not revealed. Later, imposing additional conditions we prove

the strong convergence theorem with an optimal rate.
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Theorem 4.4.1. Under Assumptions 4.1.1, 4.1.2, 3.3.2, 3.3.5 for any given

T > 0 and p ≥ 2, we have

lim
∆t→0

E
[

sup
0≤t≤T

|X(t)− x(t)|p
]

= 0. (4.26)

The proof of Theorem 4.4.1 is analogous to the proof of Theorem 3.4.4. How-

ever, the measure of error of the approximation (2.2) to the solution of (3.1) is

stronger. This improvement is possible due to Theorem 4.2.3.

4.4.1 Stochastic Lotka-Voltera System

Applications of stochastic differential equations are a growing interest in bio-

mathematics. We focus here on a Stochastic Lotka-Voltera model, which is well

established in the academic literature (Mao, Marion, and Renshaw 2002; Bahar

and Mao 2004; Mao, Sabanis, and Renshaw 2003; Pang, Deng, and Mao 2008).

However, to the best of our knowledge, there is no theoretical support for numeri-

cal methods which could enable further insight into the problem. We demonstrate

that the coefficients of a fairly general stochastic population dynamics model sat-

isfy the assumptions required in Theorem 4.4.1.

We look at a stochastic extension of the following model

dx(t)

dt
= diag(x1(t), x2(t), ..., xn(t))[b + Ax2(t)], (4.27)

where xs = (xs
1, x

s
2, ..., x

s
n)T for any s ≥ 1, b = (b1, b2, ..., bn)T and A = (Aij)n×n.

We consider state dependent perturbations of (4.27)

dx(t) = diag(x1(t), x2(t), ..., xn(t))[(b + Ax2(t))dt + g(x(t))dB(t)]. (4.28)

The existence and uniqueness of the solution for 4.28 can be found in (Mao 2007).

Assumption 4.4.2. We assume that for the square matrix A in (4.28) we have

λmax(A + AT ) < 0,

where

λmax(A) = sup
x∈Rn,|x|=1

xT Ax.
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In order to demonstrate that BEM (2.2) strongly converges to the solution of

(4.28) we need to check that Assumption 4.1.1 holds.

〈x, f(x)〉 = xT diag(x1, x2, ..., xn)[b + Ax2]

= (x2
1, x

2
2, ..., x

2
n)[b + Ax2]

≤ |b| |x|2 + (x2)T Ax2

= |b| |x|2 +
1

2
(x2)T (A + AT )x2

≤ |b| |x|2 +
1

2
λmax(A + AT )

n∑
i=1

x4
i .

Next we can observe that

1

n2
|x|4 ≤

n∑
i=1

x4
i ≤ |x|4 . (4.29)

We obtain the lower bound in (4.29) by simple manipulation, i.e,

|x|4 = (|x|2)2 ≤ (n max
1≤i≤n

x2
i )

2

≤ n2 max
1≤i≤n

x4
i ≤ n2

n∑
i=1

x4
i ,

and the upper bound is obvious. Therefore

〈x, f(x)〉 ≤ |b| |x|2 +
1

2
λmax(A + AT )n−2 |x|4 ,

and we can deduce that

〈x, f(x)〉 ≥ − |x|2 |b|+ 1

2
λmin(A + AT ) |x|4 . (4.30)

It is clear that all other assumptions required to prove Theorem 4.4.1 hold. This

shows that BEM (2.2) is indeed a good approximation to the solution of (4.28).
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4.5 Rate of Convergence

So far we have proved the strong convergence, but the rate of convergence has not

been revealed. In this section we propose additional assumptions which enable us

to derive the optimal rate for Euler-Maruyama type method, (Hofmann, Muller-

Gronbach, and Ritter 2001). Below, we impose a stronger version of Assumptions

3.3.2 and 3.3.5.

Assumption 4.5.1. Strong Monotone condition. For any constant K1 > 0, there

exists a constant K = K(K1) > 0 such that

〈x− y, f(x)− f(y)〉+ K1 |g(x)− g(y)|2 ≤ K |x− y|2 . (4.31)

Assumption 4.5.2. Strong Polynomial condition. For some h ≥ 1, coefficients

of the equation (3.1) satisfy a polynomial growth condition of the following form

|f(x)− f(y)| ∨ |g(x)− g(y)| ≤ K(1 + |x|h + |y|h) |x− y| . (4.32)

Theorem 4.5.3. Under Assumptions 4.1.1, 4.1.2, 4.5.1 and 4.5.2, there exist a

constant K = K(p, T ) > 0, independent of ∆t, such that, for any p > 2,

E
∣∣∣X̂(t)− x(t)

∣∣∣
p

≤ K∆tp/2 for any t ∈ [0, T ]. (4.33)

Proof. Let t ∈ [0, T ] and let us denote the error by e(t), that is,

e(t) = X̂(t)− x(t).

Hence

e(t) =

∫ t

0

[f(X(η(s)))− f(x(s))] ds +

∫ t

0

[g(X(η(s)))− g(x(s))] dBs. (4.34)
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The Itô formula yields

|e(t)|p =

∫ t

0

p |e(s)|p−2

[
〈(f(X(η(s)))− f(x(s))), e(s)〉+

1

2
|g(X(η(s)))− g(x(s))|2

]
ds

+

∫ t

0

p(p− 2) |e(s)|p−4

× trace[(g(X(η(s)))− g(x(s)))T e(s)(e(s))T (g(X(η(s)))− g(x(s)))]ds

+ M(t),

where

M(t) =

∫ t

0

p |e(s)|p−1 〈e(s), g(X(η(s)))− g(x(s))〉dBs.

But

trace[(g(X(η(s)))− g(x(s)))T e(s)(e(s))T (g(X(η(s)))− g(x(s)))]

= [e(s)]T (g(X(η(s)))− g(x(s)))(g(X(η(s)))− g(x(s)))T e(s)

≤ |e(s)|2 |(g(X(η(s)))− g(x(s)))|2 .

Therefore

|e(t)|p ≤
∫ t

0

p |e(s)|p−2
[
〈(f(X(η(s)))− f(X̂(s)) + f(X̂(s))− f(x(s))), e(s)〉

]
ds

+

∫ t

0

|e(s)|p−2 p(p− 1)

2

∣∣∣g(X(η(s)))− g(X̂(s)) + g(X̂(s))− g(x(s))
∣∣∣
2

ds

+ M(t)

≤
∫ t

0

p |e(s)|p−2
[
〈f(X(η(s)))− f(X̂(s), e(s)〉+ 〈f(X̂(s))− f(x(s)), e(s)〉

]
ds

+

∫ t

0

|e(s)|p−2 p(p− 1)[
∣∣∣g(X(η(s)))− g(X̂(s))

∣∣∣
2

+
∣∣∣g(X̂(s))− g(x(s))

∣∣∣
2

]ds

+ M(t).
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By the Cauchy-Schwarz inequality

|e(t)|p ≤
∫ t

0

p |e(s)|p−2

[
〈f(X̂(s))− f(x(s)), e(s)〉+ (p− 1)

∣∣∣g(X̂(s))− g(x(s))
∣∣∣
2
]
ds

+

∫ t

0

|e(s)|p−2 p(p− 1)

[
(p− 1)−1

∣∣∣〈f(X(η(s)))− f(X̂(s), e(s)〉
∣∣∣

+
∣∣∣g(X(η(s)))− g(X̂(s))

∣∣∣
2
]
ds + M(t)

≤
∫ t

0

p |e(s)|p−2

[
〈f(X̂(s))− f(x(s)), e(s)〉+ (p− 1)

∣∣∣g(X̂(s))− g(x(s))
∣∣∣
2
]
ds

+

∫ t

0

|e(s)|p−2 p(p− 1)

[
(p− 1)−1

∣∣∣f(X(η(s)))− f(X̂(s)
∣∣∣ |e(s)|

+
∣∣∣g(X(η(s)))− g(X̂(s))

∣∣∣
2
]
ds + M(t).

By Young’s inequality

|e(s)|p−1
∣∣∣f(X(η(s)))− f(X̂(s))

∣∣∣ <
p− 1

p
|e(s)|p +

1

p

∣∣∣f(X(η(s)))− f(X̂(s))
∣∣∣
p

,

and

|e(s)|p−2
∣∣∣g(X(η(s)))− g(X̂(s))

∣∣∣
2

<
p− 2

p
|e(s)|p +

2

p

∣∣∣g(X(η(s)))− g(X̂(s))
∣∣∣
p

.

Hence

|e(t)|p ≤
∫ t

0

p |e(s)|p−2

[
〈(f(X̂(s))− f(x(s))), e(s)〉

+ (p− 1)
∣∣∣g(X̂(s))− g(x(s))

∣∣∣
2
]
ds

+

∫ t

0

[
(p− 1) |e(s)|p +

∣∣∣f(X(η(s)))− f(X̂(s))
∣∣∣
p
]
ds

+

∫ t

0

[
(p− 2)(p− 1) |e(s)|p + 2(p− 1)

∣∣∣g(X(η(s)))− g(X̂(s))
∣∣∣
p
]
ds + M(t).
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Now by Assumptions 4.5.1 and 4.5.2, there is a positive constant C = C(p), such

that

|e(t)|p ≤
∫ t

0

C(p) |e(s)|p ds (4.35)

+

∫ t

0

C(p)(1 + |X(η(s))|ph +
∣∣∣X̂(s)

∣∣∣
ph

)
∣∣∣X(η(s))− X̂(s)

∣∣∣
p

ds

+ M(t).

By Hölder’s inequality and Fubini’s Theorem,

E |e(t)|p ≤
∫ t

0

C(p)E |e(s)|p ds

+ p

∫ t

0

K

[
E(1 + |X(η(s))|ph +

∣∣∣X̂(s)
∣∣∣
ph

)2E
∣∣∣X(η(s))− X̂(s)

∣∣∣
2p

]1/2

ds.

Now by Theorem 4.2.2, Lemma 4.3.3 and Gronwall’s inequality, there exists a

positive constant C = C(p, T ), such that

E |e(t)|p ≤ C∆tp/2 for any t ∈ [0, T ]. (4.36)

Now we extend above result to convergence uniformly in time.

Theorem 4.5.4. Under Assumptions 4.1.1, 4.1.2, 4.5.1 and 4.5.2, there exist a

constant C = C(p, T ) > 0, independent of ∆t, such that for any p > 2, Forward-

Backward Euler-Maruyama scheme has the property

E
[

sup
0≤t≤T

∣∣∣X̂(t)− x(t)
∣∣∣
p
]
≤ C∆tp/2. (4.37)
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Proof. From (4.35) we have

sup
0≤t≤T

|e(t)|p ≤
∫ T

0

C(p) |e(s)|p ds

+

∫ T

0

C(p)(1 + |X(η(s))|ph +
∣∣∣X̂(s)

∣∣∣
ph

)
∣∣∣X(η(s))− X̂(s)

∣∣∣
p

ds

+ sup
0≤t≤T

M(t). (4.38)

It is clear that we need to consider the last term on the right hand side of the

above inequality, that is

E
[

sup
0≤t≤T

M(t)

]
= E

[
sup

0≤t≤T

∫ t

0

p |e(s)|p−1 〈e(s), (g(X(η(s)))− g(x(s)))〉dBs

]
.

(4.39)

From Young’s and BDG inequalities,

E
[

sup
0≤t≤T

M(t)

]
≤ C(p)E

[∫ T

0

|e(s)|2(p−1) |g(X(η(s)))− g(x(s))|2 ds

]1/2

≤ C(p)E
[

sup
0≤t≤T

|e(t)|p
∫ T

0

|e(s)|p−2 |g(X(η(s)))− g(x(s))|2 ds

]1/2

≤ 1

2
E

[
sup

0≤t≤T
|e(t)|p

]
+ C(p)E

[∫ T

0

|e(s)|p−2 |g(X(η(s)))− g(x(s))|2 ds

]

≤ 1

2
E

[
sup

0≤t≤T
|e(t)|p

]
+ C(p)E

[∫ T

0

|e(s)|p−2
∣∣∣g(X̂(s))− g(x(s))

∣∣∣
2

ds

]

+ C(p)E
[∫ T

0

|e(s)|p−2
∣∣∣g(X(η(s)))− g(X̂(s))

∣∣∣
2

ds

]

≤ 1

2
E

[
sup

0≤t≤T
|e(t)|p

]
+ C(p)E

[∫ T

0

|e(s)|p−2
∣∣∣g(X̂(s))− g(x(s))

∣∣∣
2

ds

]

+ C(p)E
[∫ T

0

|e(s)|p +
∣∣∣g(X(η(s)))− g(X̂(s))

∣∣∣
p

ds

]
.
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Now by Assumption 4.5.2

E
[

sup
0≤t≤T

M(t)

]
≤ 1

2
E

[
sup

0≤t≤T
|e(t)|p

]

+ C(p)E
[∫ T

0

K(1 + |x(s)|2h +
∣∣∣X̂(s)

∣∣∣
2h

)
∣∣∣x(s)− X̂(s)

∣∣∣
p

ds

]

+ C(p)E
[∫ T

0

[e(s)]pds

]

+ C(p)E
[∫ T

0

K(1 + |X(η(s))|ph +
∣∣∣X̂(s)

∣∣∣
ph

)
∣∣∣X(η(s))− X̂(s)

∣∣∣
p

ds

]
.

By (4.38), Hölder’s inequality and Fubini’s Theorem, we obtain

1

2
E

[
sup

0≤t≤T
|e(t)|p

]
≤

∫ T

0

C(p)E |e(s)|p ds

+ C(p)

∫ T

0

[
EK(1 + |X(η(s))|ph +

∣∣∣X̂(s)
∣∣∣
ph

)2E
∣∣∣X(η(s))− X̂(s)

∣∣∣
2p ] 1

2
ds

+ C(p)

∫ T

0

[
EK(1 + |x(s)|ph +

∣∣∣X̂(s)
∣∣∣
ph

)2E
∣∣∣x(s)− X̂(s)

∣∣∣
2p ] 1

2
ds.

By (4.36), Theorem 4.2.2, Lemma 4.3.3, we get

E
[

sup
0≤t≤T

|e(t)|p
]
≤

∫ T

0

C(p, T )∆tp/2ds

+ C(p, T )∆tp/2.

Hence

E
[

sup
0≤t≤T

|e(t)|p
]

< C(p, T )∆tp/2. (4.40)

The proof is finished.

Now we are ready to formulate the theorem on strong convergence of the

Backward Euler-Maruyama (2.2) scheme to the solution of SDE (3.1).

Theorem 4.5.5. Under Assumptions 4.1.1, 4.1.2, 4.5.1 and 4.5.2, for arbitrary

T > 0 and p > 2, we have

E
[

sup
0≤t≤T

∣∣Xη(t) − x(η(t))
∣∣p

]
≤ K∆p/2, (4.41)
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Proof. By Hölder’s inequality

E
[

sup
0≤t≤T

∣∣Xη(t) − x(η(t))
∣∣p

]
≤ 2p−1

[
E

[
sup

0≤t≤T

∣∣∣Xη(t) − X̂η(t)

∣∣∣
p
]

+ E
[

sup
0≤t≤T

∣∣∣X̂η(t) − x(η(t))
∣∣∣
p
]]

.

Now by Lemma 4.3.1

E
[

sup
0≤t≤T

∣∣∣Xη(t) − X̂η(t)

∣∣∣
p
]
≤ K∆tp.

By Theorem 4.5.4

E
[

sup
0≤t≤T

∣∣∣X̂η(t) − x(η(t))
∣∣∣
p
]
≤ K∆p/2,

as required.

4.6 A Note on Fundamental Theorem

Similarly to the deterministic theory of numerical methods, Milstein (Milstein

1987) showed that it is enough to investigate one-step approximation to the SDEs

(3.1) to state the convergence on the whole time interval. This theorem, often

called the Fundamental Theorem, is very useful in situations where we would like

to verify convergence of less standard schemes, for example (Milstein, Platen, and

Schurz 1998). Nevertheless, to the best of our knowledge, there is no generaliza-

tion of the result to a non-global Lipschitz case. Here, we demonstrate that under

the assumptions we require to derive the convergence rate for BEM we can prove

Fundamental Theorem as well.

For clarity of the exposition we adopt notation from (Milstein and Tretyakov

2004). By xs,z(t) we denote the process x at the time t with an initial condition

x(s) = z. Similarly for the approximation, by Xs,z(tk) we denote a process X at

a time tk with an initial condition X(s) = z. Clearly

Xtk+1
= Xtk,Xtk

(tk+1) = Xt0,Xt0
(tk+1).
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Theorem 4.6.1 (Milstein (Milstein 1987)). Suppose the one-step approximation

Xt,x(t + ∆t) has order of accuracy p1 for the mathematical expectation of devia-

tion and order of accuracy p2 for the mean-square deviation; more precisely, for

arbitrary t0 ≤ t ≤ T −∆t, x ∈ Rd the following inequalities hold:

|E(xt,z(t + ∆t)−Xt,z(t + ∆t))| ≤ K(1 + |z|2)1/2∆tp1 ,

(E |xt,z(t + ∆t)−Xt,z(t + ∆t)|2)1/2 ≤ K(1 + |z|2)1/2∆tp2 .

Also let

p2 ≥ 1

2
, p1 ≥ p2 +

1

2
.

Then for any N and k = 0, 1, ..., N the following inequality holds:

(E |xt0,x0(tk)−Xt0,x0(tk)|2)1/2 ≤ K(1 + |x0|2)1/2∆tp2−1/2,

i.e., the order of accuracy of the method constructed using the one-step approxi-

mation Xt,x(t + ∆t) is p = p2 − 1/2.

The theorem was proved under the global Lipschitz condition in (Milstein and

Tretyakov 2004). The authors demonstrated that the proof of the theorem follows

from the following lemmas, which we derive for Backward Euler-Maruyama.

Lemma 4.6.2. Let Assumptions 4.1.1, 4.1.2, 3.3.2 and 3.3.5 hold. For all nat-

ural N and all k = 0, ..., N there exists a positive constant K > 0 such that

Backward Euler-Maruyama scheme has property

E |Xk|p ≤ K(1 + |X0|p) for p ≥ 2. (4.42)

In (Milstein and Tretyakov 2004) the lemma was proved with p = 2. Lemma

4.6.2 clearly corresponds to our Theorem 4.2.2.

Lemma 4.6.3. Let Assumptions 4.1.1, 4.1.2, 4.5.1 and 4.5.2 hold. For the

solution to the 3.1 there is a representation

xt,x(t + ∆t)− xt,y(t + ∆t) = x− y + Z (4.43)

for which

E |xt,x(t + ∆t)− xt,y(t + ∆t)|2 ≤ |x− y|2 (1 + K∆t), (4.44)
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EZ2 ≤ K |x− y|2 ∆t. (4.45)

Proof. Let p ≥ 2. By the Itô formula for 0 ≤ r ≤ ∆t,

E |x(t + r; z, t)− x(t + r; y, t)|p ≤ |z − y|p

+ pE
∫ t+r

t

|x(s; z, t)− x(s; y, t)|p−2 〈x(s; z, t)− x(s; y, t), f(x(s; z, t))− f(x(s; y, t))〉ds

+
p(p− 1)

2
E

∫ t+r

t

|x(s; z, t)− x(s; y, t)|p−2 |g(x(s; z, t))− g(x(s; y, t))|2 ds.

By the strong monotone condition 4.5.1 we have

E |x(t + r; z, t)− x(t + r; y, t)|p ≤ |z − y|p + K

∫ t+r

t

E |x(s; z, t)− x(s; y, t)|p ds.

(4.46)

Gronwall’s inequality implies

E |x(t + r; z, t)− x(t + r; y, t)|p ≤ |z − y|p eK∆t, 0 ≤ r ≤ ∆t, (4.47)

from which (4.44) follows. Now, writing Z explicitly

Z =

∫ t+∆t

t

f(x(s; z, t))− f(x(s; y, t))ds +

∫ t+∆t

t

g(x(s; z, t))− g(x(s; y, t))dw(s),

squaring and taking expectation, we obtain

E |Z|2 ≤ K

∫ t+∆t

t

E |f(x(s; z, t))− f(x(s; y, t))|2 ds (4.48)

+ K

∫ t+∆t

t

E |g(x(s; z, t))− g(x(s; y, t))|2 ds. (4.49)

Using the strong polynomial growth assumption 4.5.2 along with Lemma 4.6.2

and the Cauchy-Schwarz inequality lead us to

E |Z|2 = K

∫ t+∆t

t

(
E |x(s; z, t)− x(s; y, t)|4

) 1
2

ds, (4.50)

which together with (4.47) gives us (4.45).
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Chapter 5

Financial models

The purpose of models is not to fit the data but

to sharpen the questions.

11th R A Fisher Memorial Lecture, Royal Society.

Samuel Karlin

In this chapter we demonstrate that the methodology developed here enables

us to approximate many non-linear stochastic differential models. First we con-

sider a fairly general SDE which appears in many interest rate and stochastic

volatility models.

Further on, we take a closer look at the Ait-Sahalia interest rate model. The

reason we treat this model separately is twofold. First, it exhibits a very special

case of nonlinearity. A second feature that distinguishes analysis of Ait-Sahalia

model is that in this case the Backward-Euler Maruyama method (2.2) preserves

positivity.

5.1 General Stochastic Differential Financial Model

Consider the stochastic differential equation

dx(t) = f(x(t))dt + g(x(t))dw(t), (5.1)

where

f(x) = µ− αxr and g(x) = βxρ, (5.2)
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with ρ ≥ 1, r > 1, and µ, α, β > 0. Further, assume that r is an odd number and

that r + 1 > 2ρ.

The SDE (5.1) covers the family of highly nonlinear mean reverting models which

play an essential role in the modern theory of interest rates, (Ahn and Gao 1999;

Campbell, Lo, MacKinlay, and Whitelaw 1998; Ait-Sahalia 1996; Chan, Karolyi,

Longstaff, and Sanders 1992).

Although Theorem 4.1.3 shows that the equation (5.1) admits a unique solu-

tion, having financial applications in view, we need to show that the solution of

equation (5.1) stays non-negative.

Theorem 5.1.1. For any given initial value x(0) = x0 > 0, there exists a unique,

non-negative global solution x(t) to the equation (5.1) for t ≥ 0.

Proof. Clearly the coefficients (5.2) are locally Lipschitz continuous in (0,∞).

Following the standard truncation method (see e.g. (Friedman 1976; Mao 2007)

we can show that for any given initial value x0 > 0 there exists a unique maximal

local solution x(t), t ∈ [0, τe), where τe is the stopping time of the explosion or

first zero time. To prove our theorem, we need to show that τe = ∞ a.s.

For every sufficiently large integer m > 0, such that 1/m < x(0) < m, define the

stopping time

τm = inf{t ∈ [0, τe) : x(t) /∈ (1/m,m)}, (5.3)

where throughout this thesis we set inf(∅) = ∞. Obviously τm is increasing as

m → ∞. Set τ∞ = limm→∞ τm, whence τ∞ ≤ τe a.s. If we can prove τm → ∞
a.s. as m →∞, then τe = ∞ a.s. and x(t) ≥ 0 a.s. for all t ≥ 0. In other words,

to complete the proof we may show that τ∞ = ∞ a.s. To prove this, it is enough

to show that P{τm ≤ T} → 0 as m → ∞ for any given constant T > 0. This

immediately implies that P{τ∞ = ∞} = 1 as required.

Let us define a function V ∈ C2(R+,R+) by

V (x) = x0.5 − 1− 0.5 log x. (5.4)

It is easy to see that V (x) →∞ as x →∞ or x → 0. Then, let us compute the
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diffusion operator

LV (x) = Vx(x)f(x) +
1

2
Vxx(x)g(x)2

≤ 0.5

[
(x−0.5 − x−1)(µ− αxr) +

1

2
(−0.5x−1.5 + x−2)(βxρ)2

]
. (5.5)

If x ∈ (0,∞), by similar argument to (4.8) we can find a constant K such that

LV (x) ≤ K. (5.6)

By the Itô formula,

EV (x(T ∧ τm)) ≤ V (x(0)) + KT. (5.7)

Therefore

P(τm ≤ T )[V (1/m) ∧ V (m)] ≤ EV (x(T ∧ τm)) ≤ V (x(0)) + KT. (5.8)

This implies that limm→∞ P(τm ≤ T ) = 0 as desired.

Since BEM scheme does not preserve positivity of the solution we will approx-

imate SDE (5.1) by

Xtk+1
= Xtk + (µ− αXr

tk+1
)∆t + βXρ

tk
1{Xtk

≥0}∆wtk . (5.9)

This fix has been found to be the most efficient among several alternatives (Lord,

Koekkoek, and Van Dijk 2009). Now we show that the general mean reverting

type SDE (5.1) satisfies all the required assumptions of Theorem 4.5.5.

Lemma 5.1.2. Coefficients (5.2) satisfy the strong polynomial growth condition

4.5.2, that is

|f(x)− f(y)| ≤ K(1 + |x|r−1 + |y|r−1) |x− y| , (5.10)

|g(x)− g(y)| ≤ K(1 + |x|ρ−1 + |y|ρ−1) |x− y| . (5.11)

Proof. First let us consider the function f in (5.2), and assume that x < y. By
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the mean-value theorem there exists s ∈ [x, y]

f(x)− f(y) = f ′(s)(x− y),

and by symmetry

|f(x)− f(y)| = |f ′(s)| |x− y| .

Clearly, there exists a constant K such that

|f(x)− f(y)| ≤ K
(
1 + |x|r−1 + |y|r−1) |x− y| .

By the same argument we can show that condition (5.11) holds for the function

g defined in (5.2).

Lemma 5.1.3. For every constant K1 > 0, there exists a constant K = K(K1) >

0, such that coefficients (5.2) satisfy the strong monotone condition in Assumption

4.5.1, i.e.,

(x− y)(f(x)− f(y)) + K1(g(x)− g(y))2 ≤ K(x− y)2. (5.12)

Proof. We present the proof for x > y, since y < x is analogous. Binomial

numbers can be factored algebraically as

xr − yr = (x− y)(xr−1 + xr−2y + ... + xyr−2 + yr−1). (5.13)

By (5.2) and (5.11)

(x− y)(f(x)− f(y)) + K1(g(x)− g(y))2 ≤
α(x− y)2(−xr−1...− yr−1) + K1β

2(x− y)2(x2(ρ−1) + y2(ρ−1)) =
[−αxr−1...− αyr−1 + K1β

2(x2(ρ−1) + y2(ρ−1))
]
(x− y)2.

Now under the assumptions on ρ and r in (5.2) for any K1 there exists a constant

K = K(K1) > 0, such that

−αxr−1 − αyr−1 + K1β
2(x2(ρ−1) + y2(ρ−1)) ≤ K, x, y ∈ R, (5.14)

which completes the proof of the Lemma.
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5.1.1 Numerical Example

We consider the model (5.1) with r = 3 and ρ = 2, that is

dx(t) = (µ− αx(t)3)dt + βx2(t)dw(t), (5.15)

where (µ, α, β) = (0.5, 0.2,
√

0.2). The assumptions of Theorem 4.5.5 hold apart

from condition r + 1 > 2ρ. Nevertheless simulation suggest that strong conver-

gence holds.

By Lemma 3.3.3 there exists a unique solution to (5.9). Since we employ BEM

to approximate (5.15) on each step of the numerical simulation we need to find

the inverse of the function F (x) = αx3∆t + x. In this case we can find the

inverse function explicitly and therefore computational complexity does not in-

crease. Indeed, we observe that it is enough to find the real root of the cubic

equation

αX3
tk+1

∆t + Xtk+1
− (Xtk + µ∆t + βX2

tk
∆wtk) = 0. (5.16)

In our numerical experiment, we focus on the error at the endpoint T = 1, so we

let

estrong
∆t = E |x(T )−XT | .

In Figure 5.1 we plot estrong
∆t against ∆t on log-log scale. Error bars representing

95% confidence intervals are shown by circles.

Although we do not know the explicit form of the solution to (5.15), The-

orem 4.5.5 guarantees that BEM (5.9) strongly converges to the true solution.

Therefore, it is reasonable to take BEM with very small time step, we choose

∆t = 2−15, as a reference solution. We then compare it to BEM evaluated with

(24∆t, 26∆t, 28∆t, 210∆t) in order to estimate the rate of convergence. Since we

are using Monte Carlo method, the sampling error decays like 1/
√

M , M - is a

number of sample paths. We set M = 1000. From the Figure 5.1 we see that

there appears to exist a positive constant such that

estrong
∆t ≤ C∆t

1
2 for sufficiently small ∆t.

A least squares fit for log C and q produced the value 0.5696 for q with a least

square residual of 0.0861. Hence, our results are consistent with strong order of
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Figure 5.1: Strong error plot: dashed black is the reference slope. The straight
black line is the extrapolation of error estimates for BEM.

convergence equal to one-half.

5.2 Ait-Sahalia Model

The SDE that we refer to as the generalized Ait-Sahalia model has the form

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)r)dt + σx(t)ρdw(t), (5.17)

where α−1, α0, α, α1, α2, σ are positive constants and ρ > 1. The model was

introduce in (Ait-Sahalia 1996) with r = 2. In order to show that the model

(5.17) is meaningful, the next theorem guarantees that a unique solution exists,

and remains in R+ := (0,∞).

Theorem 5.2.1. Given any initial value x(0) = x0 > 0, there exists a unique,

positive global solution x(t) to the equation (5.17) on t ≥ 0.
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Proof. Define the coefficients of the equation (5.17) using

f(x) = α−1x
−1 − α0 + α1x− α2x

r and g(x) = σxρ for x > 0. (5.18)

Clearly, f and g are locally Lipschitz continuous in (0,∞). Following the standard

truncation method (see e.g. (Mao 2007; Friedman 1976)), we can show that for

any given initial value x0 > 0 there exists a unique maximal local solution x(t),

t ∈ [0, τe), where τe is the stopping time of the explosion or first zero time. To

prove our theorem, we need to show that τe = ∞ a.s.

For every sufficiently large integer k > 0, such that 1/k < x(0) < k, define the

stopping time

τk = inf{t ∈ [0, τe) : x(t) /∈ (1/k, k)},

where we set inf(∅) = ∞. Obviously τk is increasing as k → ∞. Set τ∞ =

limk→∞ τk, whence τ∞ ≤ τe a.s. If we can prove τk → ∞ a.s as k → ∞, then

τe = ∞ a.s and x(t) ≥ 0 a.s. for all t ≥ 0. In other words, to complete the

proof what we need to show is that τ∞ = ∞ a.s. To prove this, it is enough to

show that P{τk ≤ T} → 0 as k → ∞ for any given constant T > 0, for this

immediately implies that P{τ∞ = ∞} = 1 as required.

Fix two constants γ1 ∈ (0, 1) and γ2 > 1. Let us define a function V ∈ C2(R+,R+)

by

V (x) = xγ1 + x−γ2 . (5.19)

It is easy to see that V (x) → ∞ as x → ∞ or x → 0. Compute the diffusion

operator

LV (x) = Vx(x)f(x) +
1

2
Vxx(x)g(x)2

= (γ1x
γ1−1 − γ2x

−(γ2+1))f(x)

+
1

2
(γ1(γ1 − 1)xγ1−2 + γ2(γ2 + 1)x−(γ2+2))g(x)2

= γ1α−1x
γ1−2 − α0γ1x

γ1−1 + α1γ1x
γ1 − α2γ1x

γ1−1+r

− α−1γ2x
−(γ2+2) + α0γ2x

−(γ2+1) − α1γ2x
−γ2 + γ2x

−(γ2+1)+r

+
σ2

2
(γ1(γ1 − 1)xγ1−2+2ρ + γ2(γ2 + 1)x−(γ2+2)+2ρ).
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Recalling that γ1 ∈ (0, 1) and γ2 > 1, we can find a constant K such that

LV (x) ≤ K. (5.20)

By the Itô formula,

EV (x(T ∧ τk)) ≤ V (x0) + KT. (5.21)

Therefore

P(τk ≤ T )[V (1/k) ∧ V (k)] ≤ EV (x(T ∧ τk)) ≤ V (x(0)) + KT.

This implies that limk→∞ P(τk ≤ T ) = 0 as desired. The proof is complete.

In order to proceed with our analysis, we make an assumption about the

values of the parameters.

Assumption 5.2.2. The parameters in equation (5.17) obey r > 1 and

r + 1 > 2ρ. (5.22)

The following lemma gives moment bounds for the solution of the SDE.

Lemma 5.2.3. Under Assumption 5.2.2, for any p ≥ 2,

sup
0≤t<∞

E |x(t)|p < ∞ (5.23)

and

sup
0≤t<∞

E(
1

|x(t)|p ) < ∞. (5.24)

Proof. For every sufficiently large integer n, define the stopping time

τn = inf{t > 0 : x(t) /∈ (
1

n
, n)}.

Applying the Itô formula to the function V (x, t) = etxp, we compute the diffusion

operator

LV (x, t) = et
(
xp + pxp−1[α−1x

−1 − α0 + α1x− α2x
r]

+
σ2

2
p(p− 1)xp−2+2ρ

)
.
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By Assumption 5.2.2, there exists a constant K > 0 such that

LV (x, t) ≤ Ket.

Therefore

E
[
et∧τnx(t ∧ τn)p

]
≤ xp

0 + Ket.

Letting n →∞ and applying the Fatou lemma, we have

E |x(t)|p ≤ xp
0

et
+ K,

which gives assertion (5.23). In the same way, we can apply the Itô formula to

the function V (x, t) = etx−p to show (5.24).

Lemma 5.2.4. Under Assumption 5.2.2, for any p ≥ 2,

E( sup
0≤t≤T

|x(t)|p) < ∞, ∀T > 0.

Proof. By the Itô formula, we can show that

E[ sup
0≤t≤T

|x(t)|p] ≤ xp
0

+ E
∫ T

0

p
∣∣x(t)p−1(α−1x(t)−1 − α0 + α1x(t)− α2x(t)r) + 0.5(p− 1)σ2x(t)2(ρ−1)+p

∣∣ dt

+ E
[

sup
0≤t≤T

∫ t

0

σpx(u)ρ+p−1dw(u)
]

≤ x(0)p + KT + E
[

sup
0≤t≤T

∫ t

0

σpx(u)ρ+p−1dw(u)
]
,

where K is a constant. By the Hölder and (BDG) inequalities, we can show that

E
[

sup
0≤t≤T

∫ t

0

σpx(u)ρ+p−1dw(u)
]
≤ CE

( ∫ T

0

x(t)2(ρ+p−1)dt
) 1

2

≤ C
( ∫ T

0

E[x(t)2(ρ+p−1)]dt
) 1

2
,

where C stands for a constant which may vary from line to line. By Lemma 5.2.3,

the conclusion follows.
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5.2.1 Backward Euler-Maruyama Scheme

In the previous section we showed the existence of a unique global solution to the

SDE (5.17), but we are not aware of an explicit expression for the solution or its

transition density. We therefore consider computable discrete time approxima-

tions that could be used in Monte Carlo simulations.

Given any step size ∆t, we define the partition P∆t := {tk = k∆t : k = 0, 1, 2, ...}
of the time interval [0,∞), and introduce the backward Euler-Maruyama scheme

Xtk+1
= Xtk +

(
α−1X

−1
tk+1

− α0 + α1Xtk+1
− α2X

r
tk+1

)
∆t + σXρ

tk
∆wtk , (5.25)

where ∆wtk = wtk+1
− wtk and Xt0 = x(0). The following lemma shows that this

implicit method is well defined and preserves positivity of the solution.

Lemma 5.2.5. Define, for any given ∆t ≤ 1/α1,

F (x) = x− α−1x
−1∆t + α0∆t− α1x∆t + α2x

r∆t, x ∈ R+.

Then for any b ∈ R there exists a unique x ∈ R+ such that F (x) = b.

Proof. The lemma follows if we can show that the function F is continuous,

coercive and strictly monotone 3.3.1. Clearly, F (x) is continuous on R+ with

limx→∞ F (x) = ∞ and limx→0+ F (x) = −∞, so the function F is coercive on R+.

Since F ′(x) = 1 + (α−1x
−2 − α1 + rα2x

r−1) ∆t > 1−α1∆t, we see that Ḟ (x) > 0

whenever ∆t ≤ 1/α1, showing strict monotonicity.

From now on we always let ∆t ≤ 1/α1 so that the BEM is well defined and

preserves positivity. In contrast, let us point out that the (standard) Euler-

Maruyama scheme does not preserve the positivity of the solution to equation

(5.17). In fact, recall that the Euler-Maruyama scheme applied to equation (5.17)

has the form

Xtk+1
= Xtk +

(
α−1X

−1
tk
− α0 + α1Xtk − α2X

r
tk

)
∆t + σXρ

tk
∆wtk .

Without loss of generality, we assume that Xtk > 0 is given. Note that Xtk+1
< 0

is equivalent to ∆wtk < − (
Xtk +

(
α−1X

−1
tk
− α0 + α1Xtk − α2X

r
tk

)
∆t

)
/σXρ

tk
:=

K(Xtk), but clearly P(∆wtk < K(Xtk)) > 0.
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5.2.2 Moment Properties of BEM

We will work on the discrete filtration {Ftk}k≥0. By Lemma 5.2.5, Xtk is Ftk-

measurable.

Lemma 5.2.6. Let r > 1, then for any p ≥ 2 and sufficiently large integer n,

there exists a constant K(p, n), such that

sup
∆t≤1/2α1

E |Xtk |p 1[0,λn](k) < K(p, n) for any k ≥ 0,

where

λn = inf{k : Xtk /∈ (
1

n
, n)}. (5.26)

Lemma 5.2.6 follows from Lemma 3.3.4. Similarly to Theorem 4.2.2 we can

demonstrate that the following theorem holds.

Theorem 5.2.7. Under Assumption 5.2.2, for any p > 2, there is a ∆t∗ ∈
(0, 1/2α1) such that

sup
∆t≤∆t∗

sup
k≥0
E |Xtk |p < ∞.

5.2.3 Forward-Backward Euler-Maruyama Scheme

By analogy to Theorem 4.3.1 we have:

Theorem 5.2.8. Under Assumption 5.2.2, for any p > 2, there is a ∆t∗ ∈
(0, 1/2α1) and a constant K = K(p, T ) such that

E
[

sup
0≤tk≤T

∣∣∣X̂tk+1
−Xtk

∣∣∣
p
]

< K∆tp/2,

and

sup
∆t≤∆t∗

E
[

sup
0≤tk≤T

∣∣∣X̂tk

∣∣∣
p
]

< ∞.

Now let us recall that a continuous version of the FBEM is given by

X̂(t) = X̂t0 +

∫ t

0

f(Xη(s))ds +

∫ t

0

g(Xη(s))dw(s), t ≥ 0. (5.27)

In order to proceed with our analysis we need to prove the following lemmas.

92



CHAPTER 5. FINANCIAL MODELS

Lemma 5.2.9. Under Assumption 5.2.2, there is a ∆t∗ > 0 such that for any

p ≥ 2,

sup
∆t≤∆t∗

E
[∫ t

0

1

Xη(s)

ds

]p

< ∞, ∀t > 0.

Proof. We only need to prove the lemma for t = tN for any N ≥ 1. It follows

from (5.27) that

α−1

∫ tN

0

1

Xη(s)

ds = X̂tN −Xt0 + α0tN − α1

∫ tN

0

Xη(s)ds

+ α2

∫ tN

0

Xr
η(s)ds− σ

∫ tN

0

Xρ
η(s)dw(s).

It is then straightforward to show the assertion by Theorem 5.2.7.

Lemma 5.2.10. Under Assumption 5.2.2, there is a ∆t∗ > 0 such that for any

p ≥ 2,

sup
∆t≤∆t∗

E
(

sup
0≤t≤T

∣∣∣X̂(t)
∣∣∣
p )

< ∞, ∀T > 0. (5.28)

Proof. It follows from (5.27) that

E
(

sup
0≤t≤T

∣∣∣X̂(t)
∣∣∣
p )

≤ 3p−1

[
E

(
X̂(0)p

)

+ E
(∫ T

0

(α−1X
−1
η(s) + α0 + α1Xη(s) + α2X

r
η(s))ds

)p

+ E
(

sup
0≤t≤T

∣∣∣∣
∫ t

0

σXρ
η(s)dw(s)

∣∣∣∣
p)]

.

This, together with Theorem 5.2.7 and Lemma 5.2.9, implies the assertion.

Theorem 5.2.11. Let Assumption 5.2.2 hold and T > 0 be fixed. Then, for

any given ε > 0, there exists an N0 such that for every n ≥ N0, we can find a

∆t0 = ∆t0(n) so that whenever ∆t ≤ ∆t0,

P(ϑn < T ) ≤ ε,

where ϑn = inf{t > 0 : X̂(t) /∈ ( 1
n
, n) or Xη(s) /∈ ( 1

n
, n)}.
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Proof. Let s ∈ [0, T ∧ ϑn). Then for the function V (x) defined by (5.19) we have

Vx(X̂(s))
(
f(Xη(s))− f(X̂(s))

)

+ Vxx(X̂(s))
(
g2(Xη(s))− g2(X̂(s))

)
≤ L(n)

∣∣∣Xη(s) − X̂(s)
∣∣∣ ,

where L(n) are local Lipschitz constants. By the Itô formula, we can show that

dV (X̂(s)) =
[
LV (X̂(s)) + Vx(X̂(s))

(
f(Xη(s))− f(X̂(s))

)

+
1

2
Vxx(X̂(s))

(
g2(Xη(s))− g2(X̂(s)

) ]
ds

+ Vx(X̂(s))g(Xη(s))dw(s),

where LV has been defined in the proof of Theorem 5.2.1. Recalling (5.20), we

then have

EV (X̂(T ∧ ϑn)) ≤

V (X̂(0)) + KT + E
∫ T∧ϑn

0

Vx(X̂(s))
(
f(Xη(s))− f(X̂(s))

)
ds

+ E
∫ T∧ϑn

0

Vxx(X̂(s))
(
g2(Xη(s))− g2(X̂(s))

)
ds

≤ V (X̂(0)) + KT + L(n)E
∫ T∧ϑn

0

∣∣∣Xη(s) − X̂(s)
∣∣∣ ds

≤ V (X̂(0)) + KT + L(n)E
∫ T∧ϑn

0

∣∣∣X̂η(s)+∆t − X̂(s)
∣∣∣ ds

+ L(n)

∫ T

0

E
∣∣∣Xη(s) − X̂η(s)+∆t

∣∣∣ ds.

By Theorem 5.2.8

E
∣∣∣Xη(s) − X̂η(s)+∆t

∣∣∣ < K∆t
1
2 . (5.29)

To bound the term E
∫ T∧ϑn

0

∣∣∣X̂η(s)+∆t − X̂(s)
∣∣∣ ds, given s ∈ [0, T ∧ ϑn), let k be

an integer for which s ∈ [tk, tk+1). Then

∣∣∣X̂η(s)+∆t − X̂(s)
∣∣∣ =

∫ tk+1

s

f(Xtk)ds +

∫ tk+1

s

g(Xtk)dw(s).
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By Hölder’s inequality

E
∫ T∧ϑn

0

∣∣∣X̂η(s)+∆t − X̂(s)
∣∣∣ ds ≤ C(n, T )∆t

1
2 , (5.30)

where C(n, T ) > 0 is constant. Therefore

EV (X̂(t ∧ ϑn)) ≤ V (X̂(0)) + KT + (L(n))(K + C(T, n))∆t
1
2 ,

which implies that

P(ϑn < T ) ≤ V (X̂(0)) + KT + (L(n))(K + C(T, n))∆t
1
2

V (1/n) ∧ V (n)
.

Now for any given ε > 0 we choose N0 such that for any n ≥ N0

V (X̂(0)) + KT

V (1/n) ∧ V (n)
≤ ε

2
.

Then we can choose ∆t0 = ∆t0(n), such that for any ∆t ≤ ∆t0

(L(n))(K + C(T, n))∆t
1
2

V (1/n) ∧ V (n)
≤ ε

2
,

whence P(ϑn < T ) ≤ ε as required.

5.2.4 Strong Convergence

In this section, we use the previous results to establish the strong convergence of

BEM.

Theorem 5.2.12. Let p ≤ 1 Under Assumption (5.2.2), we have

lim
∆t→0

E
[

sup
0≤t≤T

∣∣∣X̂(t)− x(t)
∣∣∣
p
]

= 0.

Proof. Let

e(t) = X̂(t)− x(t).
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We have

E
[

sup
0≤t≤T

|e(t)|p
]

= E
[

sup
0≤t≤T

|e(t)|p 1{τn>T,ϑn>T}

]
(5.31)

+ E
[

sup
0≤t≤T

|e(t)|p 1{τn≤T or ϑn≤T}

]

≤ E
[

sup
0≤t≤T

|e(t)|p 1{θn>T}

]
+

δ

2
E

[
sup

0≤t≤T
|e(t)|2p

]

+
1

2δ
P(τn ≤ T or ϑn ≤ T ).

To finish the proof we need to estimate the expressions on the right hand side of

this inequality. By Hölder’s inequality and Lemmas 5.2.10 and 5.2.4, we choose

δ such that

δ

2
E

[
sup

0≤t≤T
|e(t)|2p

]
≤ 22p−1 δ

2
E

[
sup

0≤t≤T
|x(t)|2p + sup

0≤t≤T

∣∣∣X̂(t)
∣∣∣
2p

]
≤ ε

3

Next, by Theorem 5.2.1 there exists N0 such that for n ≥ N0

1

2δ
P(τn ≤ T ) ≤ ε

3
,

and finally by Theorem 5.2.11 and Lemma 3.4.3- we may choose ∆t sufficiently

small such that

E
[

sup
0≤t≤T

|e(t)|p 1{θn>T}

]
+ P(ϑn ≤ T ) ≤ ε

3
.

Now, we will show that the Backward-Euler scheme (5.25) strongly converges

to the solution of (5.17).

Theorem 5.2.13. Under Assumption (5.2.2), we have

lim
∆t→0

E
[

sup
0≤t≤T

∣∣Xη(t) − x(η(t))
∣∣p

]
= 0.
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Proof. By Hölder’s inequality

E
∣∣Xη(t) − x(η(t))

∣∣p ≤ 3p−1
[
E

[
sup

0≤t≤T

∣∣∣Xη(t) − X̂η(t)+1

∣∣∣
]p

+ E
[

sup
0≤t≤T

∣∣∣X̂η(t) − x(η(t))
∣∣∣
]p

+ E
[

sup
0≤t≤T

∣∣∣X̂η(t)+1 − X̂η(t)

∣∣∣
p
] ]

.

Now from Theorem 5.2.8 and Theorem 5.2.8

E
[

sup
0≤t≤T

∣∣∣Xη(t) − X̂η(t)+1

∣∣∣
]p

≤ K∆t
p
2 .

By Theorem 5.2.12

lim
∆t→0

E
[

sup
0≤t≤T

∣∣∣X̂η(t) − x(η(t))
∣∣∣
p
]

= 0.

To finish the proof it is enough to show that

lim
∆t→0

E
[

sup
0≤t≤T

∣∣∣X̂η(t)+1 − X̂η(t)

∣∣∣
p
]

= 0.

By analogy to the proof of Theorem 5.2.12, we have

E
[

sup
0≤t≤T

∣∣∣X̂η(t)+1 − X̂η(t)

∣∣∣
p
]

= E
[

sup
0≤t≤T

∣∣∣X̂η(t)+1 − X̂η(t)

∣∣∣
p

1{ϑn>T}

]

+ E
[

sup
0≤t≤T

∣∣∣X̂η(t)+1 − X̂η(t)

∣∣∣
p

1{ϑn≤T}

]

≤ E
[

sup
0≤t≤T

∣∣∣X̂η(t)+1 − X̂η(t)

∣∣∣
p

1{ϑn>T}

]

+
δ

2
E

[
sup

0≤t≤T

∣∣∣X̂η(t)+1 − X̂η(t)

∣∣∣
2p

]

+
1

2δ
P(ϑn ≤ T ).

By Lemma 5.2.10 and Theorem 5.2.11 it is straightforward to finish the proof.
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5.3 Numerical Example

We consider the original Ait-Sahalia model, that is (1.14) with r = 2 and ρ = 1.5

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)2)dt + σx(t)1.5dw(t), (5.32)

where (α−1, α0, α1, α2, σ) = (0.00107, 0.0517, 0.877, 4.604, 0.64754) are taken from

(Ait-Sahalia 1999). The Assumption 5.2.2 is slightly violated here, but as the

numerical experiment demonstrates strong convergence appears to hold.

According to Lemma 5.2.5, BEM

Xtk+1
= Xtk +

(
α−1X

−1
tk+1

− α0 + α1Xtk+1
− α2X

2
tk+1

)
∆t + σX1.5

tk
∆wtk , (5.33)

admits a unique positive solution. In order to do computer simulations, on each

step of the recurrence (5.33) we need to find the positive root

Xtk+1
− α−1X

−1
tk+1

∆t + α0∆t− α1Xtk+1
∆t + α2X

2
tk+1

∆t−B = 0, (5.34)

where B = σX1.5
tk

∆wtk . In this case, we can find the inverse of the function (3.32)

explicitly. Indeed, we can rewrite (5.34) in the following form

α2X
3
tk+1

∆t + (1− α1∆t)X2
tk+1

+ (α0∆t−B)Xtk+1
− α−1∆t = 0.

Due to Lemma 5.2.5 we choose the real positive solution of the above cubic

equation. This observation demonstrates that implicit schemes do not necessary

increase computational complexity in comparison to classical explicit procedures.

In our numerical experiment, we focus on the error at the endpoint T = 1, so we

let

estrong
∆t = E |x(T )−XT | .

We plot estrong
∆t against ∆t on log-log scale. Error bars representing 95% confidence

intervals are shown by circles, and a reference line of slop 1/2 is also given.

Although we do not know the explicit form of the solution to (5.32), Theo-

rem 5.2.13 guarantees that BEM (5.33) strongly converges to the true solution.

Therefore, it is reasonable to take BEM with very small time step, we choose

∆t = 2−15, as a reference solution. We then compare it with BEM evaluated
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Figure 5.2: Strong error plot backward Euler-Maruyama Scheme applied to Ait-
Sahalia interest rate model.

with (24∆t, 26∆t, 28∆t, 210∆t) in order to estimate the rate of convergence. Since

we are using Monte Carlo method, the sampling error decays like 1/
√

M , M - is

a number of sample paths. We set M = 1000. From the Figure 6.1 we see that

there appears to exist a positive constant such that

estrong
∆t ≤ C∆t

1
2 for sufficiently small ∆t.

A least squares fit for log C and q produced a value of 0.6984 for q with a least

square residual of 0.1732.

5.4 Corollary on Option Valuation

Theorem 5.2.13 is relevant in any context where the SDE (5.17) is to be simulated

numerically. For example, sample paths may be needed within a model calibration

exercise. Furthermore, the SDE may represent an asset on which an option is

to be valued. It is shown in (Higham and Mao 2005; Giles, Higham, and Mao
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2009) that for many path dependent options, strong convergence of the SDE asset

simulation guarantees convergent Monte Carlo simulations for the option value.

For example, an up-and-out call gives a European payoff if the asset never exceeds

the fixed barrier, B, where B > K and K is the exercise price; otherwise it pays

zero. The payoff at the expiry date T thus has the form

P = E
[
(x(T )−K)+1{sup0≤t≤T x(t)<B}

]
.

Accordingly, we may define the approximate payoff based on the numerical method

(5.25), to be

P∆t = E
[
(Xη(T ) −K)+1{sup0≤t≤T Xη(t)<B}

]
.

It then follows from Theorem 5.2.13 that

lim
∆t→0

|P − P∆t| = 0.
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Chapter 6

Double Implicit Milstein Scheme

What we know is not much. What we do not

know is immense.

Pierre Simon Laplace

So far we have only considered numerical approximations with an order of

accuracy one-half. It is very interesting to investigate how higher order approxi-

mations perform in a super-linear setting. In this chapter we consider the strong

convergence and stability of a Milstein type approximation to the solution of

stochastic differential equations with highly nonlinear coefficients. Typically, in

order to prove convergence of the Milstein scheme, stricter assumptions than

those for EM are required (Kloeden and Platen 1992). What is more, it was

demonstrated by Higham (Higham 2000) that the Milstein scheme applied to

a linear scalar SDE has much worse stability properties than Euler-Maruyama,

even once we allow for implicitness in the drift. Similarly to EM, the classical

Milstein scheme does not preserve positivity. In order to address the issues men-

tioned above, we introduce a double implicit Milstein scheme and show that it

possesses some desirable properties. It preserves positivity for a rich family of

financial stochastic differential models and it can reproduce stability behaviour of

the underlying SDEs without severe restriction on the time step. Although drift

implicit Milstein was studied in (Kahl, Gunther, and Rosberg 2008), questions of

convergence and stability remain unanswered. So far, convergence of the Milstein

scheme, to the best of our knowledge, has been analyzed only under a global Lip-

schitz condition (Kloeden and Platen 1992). By allowing additional implicitness
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we are able to significantly relax the conditions required for strong convergence

and therefore cover many important stochastic differential financial models en-

countered in the literature. Although the scheme is implicit in general, we point

out examples of financial models where an explicit formula for the solution to the

scheme can be found. Our results apply directly to the case of Multi-level Monte

Carlo simulations for nonlinear SDEs.

6.1 Problem Specification

In contrast to previous chapters of this thesis, here we consider a scalar stochastic

differential equation

dx(t) = f(x(t))dt + g(x(t))dw(t). (6.1)

Here x(t) ∈ R for each t ≥ 0. We assume that f ∈ C1(R,R) and g ∈ C3(R,R).

The reason we restrict ourselves to the scalar case is that higher order methods

for general SDEs, especially in the strong sense, carry additional difficulties. It is

well known that in the general multidimensional case, such as stochastic volatil-

ity models and correlated multidimensional SDEs, there is no exact solution for

iterated integrals of second order (Lévy Areas) which appear in Itô-Taylor expan-

sions (Kloeden and Platen 1992; Glasserman 2003).

We introduce a new (θ, σ)-Milstein-scheme for a general scalar SDE. Given any

step size ∆t, we define the partition P∆t := {tk = k∆t : k = 0, 1, 2, ...} of the half

line [0,∞). The (θ, σ)-Milstein-scheme then has the following form

Xtk+1
= Xtk + θf(Xtk+1

)∆t + (1− θ)f(Xtk)∆t + g(Xtk)∆Wtk +
1

2
L1g(Xtk)∆W 2

tk

− (1− σ)

2
L1g(Xtk)∆t− σ

2
L1g(Xtk+1

)∆t, (6.2)

where 0 ≤ θ, σ ≤ 1 are free paraments and L1 = g ∂
∂x

. We can notice that the

(0, 0)-Milstein scheme reduces to classical Milstein (Milstein and Tretyakov 2004).

We sometimes refer to (1, 1)-Milstein as a double implicit scheme.
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6.2 Existence of a Solution for the Implicit Schemes

Before we prove the existence of a unique positive solution to (6.2), we demon-

strate how we can prove the existence of a solution (not necessarily positive) to

(6.2). It will be then clear what assumptions will guarantee positivity. In order to

prove that the (θ, σ)-Milstein (6.2) scheme is well defined we impose the following

conditions.

Assumption 6.2.1. Coefficients f and g of the equation (6.1) satisfy the follow-

ing two conditions:

One-sided Lipschitz condition. There exists a constant K > 0, such that

(x− y)(f(x)− f(y)) ≤ K |x− y|2 for all x, y ∈ R. (6.3)

Monotone condition. Operator L1 acting on g satisfies the following property

(x− y)(L1g(x)− L1g(y)) ≥ 0 for all x, y ∈ R. (6.4)

Remark 6.2.2. From Assumption 6.2.1 we immediately have that

xf(x) ≤ K
∣∣x2

∣∣ + xf(0) ≤ 2K + 1

2
|x|2 +

1

2
|f(0)|2

and

xL1g(x) ≥ xL1g(0).

Lemma 6.2.3. Define, for any given ∆t < 2
θ(2K+1)

,

F (x) = x− θf(x)∆t +
σ

2
L1g(x), x ∈ R.

Then under Assumption 6.2.1, for any b ∈ R, there exists a unique x ∈ R such

that

F (x) = b.

Proof. In view of Lemma 3.3.1 it is enough to show that the function F is con-

tinuous, coercive and strictly monotone. Clearly, F (x) is continuous on R. By

Assumption 6.2.1,

(x− y)(F (x)− F (y)) ≥ |x− y|2 − θK∆t |x− y|2 = (1− θK∆t) |x− y|2 > 0,
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for ∆t < 2
θ(2K+1)

. Also, by Assumption 6.2.1

xF (x) = x(x− θf(x)∆t +
σ

2
L1g(x)∆t) (6.5)

≥ |x|2 (1− θ
2K + 1

2
∆t)− θ

2
xf(0)∆t +

σ

2
xL1g(0)∆t

and coercivity follows. The proof is therefore complete.

From now on we always assume that ∆t < 2
θ(2K+1)

.

6.2.1 Existence of a Positive Solution for (θ, σ)-Milstein

Scheme.

In this subsection we introduce assumptions on coefficients f and g of the equation

(6.1) that allow us to prove the existence of a positive solution to (6.2).

Definition 6.2.4. Given x(0) > 0, if the solution of (6.1) satisfies

P ({x(t) > 0 : t > 0}) = 1, (6.6)

then a stochastic integration scheme to compute approximations Xtk = x(tk) pre-

serves positivity if

P ({Xtk+1
> 0|Xtk > 0}) = 1. (6.7)

Let us notice that to prove the existence of positive solution the implicit

scheme we need to assume that the one-sided Lipschitz condition on f and the

monotone condition on L1g hold on positive domain only. This significantly

relaxes the conditions required for the existence and uniqueness of the solution

to the implicit scheme (6.2).

Assumption 6.2.5. Coefficients f and g of the equation (6.1) satisfy the follow-

ing two conditions:

One-sided Lipschitz condition. There exists a constant K > 0, such that

(x− y)(f(x)− f(y)) ≤ K |x− y|2 for all x, y ∈ R+. (6.8)

Monotone condition. Operator L1 acting on g satisfies the following property

(x− y)(L1g(x)− L1g(y)) ≥ 0 for all x, y ∈ R+. (6.9)
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Many mean-reverting models with super- and sup-linear diffusion coefficients

satisfy these conditions. For example, the mean-reverting function

f(x) = (µ− xp) for p > 0, µ ∈ R,

satisfies (6.8), but not (6.3). Condition (6.3) holds only in case when p is an odd

number. The good example of function that satisfies (6.9) is polynomial function

g(x) = xp for p ≥ 0.5, x ≥ 0.

Assumption 6.2.6. The coefficients f and g satisfy the following conditions:

L1g(x) > 0 x > 0, (6.10)

− θf0(0) + L1g(0) ≤ 0. (6.11)

Theorem 6.2.7. Let Assumptions 6.2.5 and 6.2.6 hold. Then there exists a

unique positive solution to (θ, σ)-Milstein scheme (6.2) if

x− g(x)

2g′(x)
+ (1− θ)f(x)∆t− (1− σ)

2
L1g(x)∆t > 0, x > 0. (6.12)

Proof. In view of Lemma 6.2.3 we define an operator F as

F (x) = x− θf(x)∆t +
1

2
σL1g(x)∆t. (6.13)

From (6.5) and Assumption 6.2.6 operator F is monotone on (0,∞), and has a

property

lim
x→∞

F (x) = ∞ and lim
x→0

F (x) ≤ 0. (6.14)

Due to Lemma 3.3.1, to finish the proof we need to show that

b(x) = x+(1−θ)f(x)∆t+g(x)∆Wtk+1
+

1

2
L1g(x)∆W 2

tk+1
− (1− σ)

2
L1g(x)∆t > 0,

(6.15)

from which it follows that there exists a positive solution to

F (Xtk+1
) = b(Xtk). (6.16)
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First, we find the minimum of the function

H(y) = g(x)y +
1

2
L1g(x)y2. (6.17)

Under assumption L1g(x) > 0 this function possesses a global minimum:

H(y) =
1

2
L1g(x)

[
y2 + 2y/g

′
(x)

]

=
1

2
L1g(x)

[
(y + 1/g

′
(x))2 − (1/g

′
(x))2

]
≥ −g(x)

2g′(x)
.

Hence

b(x) ≥ x + (1− θ)f(x)∆t− (1− σ)

2
L1g(x)∆t− g(x)

2g′(x)
> 0, (6.18)

as required.

6.2.2 Positivity Preserving Approximation of Heston Volatil-

ity Model

Here we demonstrate that approximation of the well-known 3/2-Heston volatility

model with the double implicit Milstein scheme preserves positivity. We would

like to point out that implicitness in the numerical approximation does not in-

crease computational cost in this case, since we are able to find an explicit solu-

tion. For the 3/2 model

dx(t) = x(t)(µ− αx(t))dt + βx3/2dw(t),

the (1, 1)-Milstein scheme has the form

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆Wtk

+
1

2
L1g(Xtk)∆W 2

tk
− 1

2
L1g(Xtk+1

)∆t, (6.19)
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with f(x) = µx − αx2 and g(x) = βx3/2. In order to show that the solution to

(6.19) is always positive we need to analyse the functions F (x) and b(x), where

F (x) = (1− µ∆t)x + (α +
3

4
β2)x2∆t,

and

b(x) = x
(
x +

1

2
βx1/2wtk

)2
+ 1/4β2x2w2

tk
> 0.

We can easily verify that the assumptions of Theorem 6.4.2 hold. An explicit for-

mula for Xtk+1
can found by solving the relevant quadratic equation and choosing

the positive solution.

6.3 Moment Bounds for Double Implicit Mil-

stein Scheme

In this section we prove the boundedness of second moments for the double im-

plicit Milstein

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆wtk

+
1

2
L1g(Xtk)∆w2

tk
− 1

2
L1g(Xtk+1

)∆t. (6.20)

As in previous chapters such bounds are necessary for our proof of strong con-

vergence. Having financial applications in mind we derive the strong convergence

result under conditions which guarantee positivity of the process Xtk for all k ≥ 1.

In addition, we assume that the following polynomial growth condition holds.

Assumption 6.3.1. The coefficients of equation (6.1) satisfy a polynomial growth

condition, that is, for some h > 0 there exists a positive constant H > 0 such

that

|f(x)| ∨ |g(x)| ∨ ∣∣L1g(x)
∣∣ ≤ H(1 + |x|h), ∀x ∈ R. (6.21)

Lemma 6.3.2. Under Assumptions 6.2.5, 6.2.6 and 6.3.1, for any integer p ≥ 2

and sufficiently large integer m, there exists a constant C(p,m), such that the

(1, 1)-Milstein scheme has the property

E
[|Xtk |p 1[0,λm](k)

]
< C(p,m) for any k ≥ 0,
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where

λm = inf{k : |Xtk | > m}. (6.22)

Proof. We observe that when k ∈ [0, λm], Xtk−1
∈ (−m,m), but Xtk may not

stay in (−m,m), so the lemma is not obvious. By definition of the (1,1)-Milstein

scheme

|Xtk |2 = XtkXtk−1
+ Xtkf(Xtk)∆t + Xtkg(Xtk−1

)∆wtk−1

+
1

2
XtkL

1g(Xtk−1
)∆w2

tk−1
− 1

2
L1Xtkg(Xtk)∆t.

Utilizing Young’s inequality in the form

xy ≤ δ

2
x2 +

1

2δ
y2,

where δ > 0 is small enough, such that δ(5
4

+ 7(p−2)
4p

) + 2K+1
2

∆t = C(δ, ∆t) < 1,

we have

|Xtk |2 ≤
δ

2
|Xtk |2 +

1

2δ

∣∣Xtk−1

∣∣2

+ Xtkf(Xtk)∆t +
δ

2
|Xtk |2 +

1

2δ

∣∣g(Xtk−1
, tk−1)∆wtk−1

∣∣2

+
δ

4
|Xtk |2 +

1

4δ

∣∣∣L1g(Xtk−1
, tk−1)∆w2

tk−1

∣∣∣
2

− 1

2
XtkL

1g(Xtk)∆t.

Due to Remark 6.2.2 and Assumption 6.2.6

|Xtk |2 ≤ (
5δ

4
+

2K + 1

2
∆t) |Xtk |2 +

1

2δ

∣∣Xtk−1

∣∣2

+
1

2
|f(0)|2 ∆t +

1

2δ

∣∣g(Xtk−1
)∆wtk−1

∣∣2

+
1

4δ

∣∣∣L1g(Xtk−1
)∆w2

tk−1

∣∣∣
2

.
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Multiplying both sides of the above inequality by |Xtk |p−2 leads to

|Xtk |p ≤ (
5δ

4
+

2K + 1

2
∆t) |Xtk |p +

1

2δ

∣∣Xtk−1

∣∣2 |Xtk |p−2

+
1

2
|f(0)|2 ∆t |Xtk |p−2 +

1

2δ

∣∣g(Xtk−1
)∆wtk−1

∣∣2 |Xtk |p−2

+
1

4δ

∣∣∣L1g(Xtk−1
)∆w2

tk−1

∣∣∣
2

|Xtk |p−2 .

Applying Young’s inequality in the form

xp−2y2 < δ2p− 2

p
xp +

2

pδp−2
yp,

results in

|Xtk |p ≤ (
5δ

4
+

2K + 1

2
∆t) |Xtk |p +

1

2δ

(
2

pδp−2

∣∣Xtk−1

∣∣p + δ2p− 2

p
|Xtk |p

)

+
1

2δ

(
2

pδp−2

∣∣(δ∆t)1/2f(0)
∣∣p + δ2p− 2

p
|Xtk |p

)

+
1

2δ

(
2

pδp−2

∣∣g(Xtk−1
)∆wtk−1

∣∣p + δ2p− 2

p
|Xtk |p

)

+
1

4δ

(
2

pδp−2

∣∣∣L1g(Xtk−1
)∆w2

tk−1

∣∣∣
p

+ δ2p− 2

p
|Xtk |p

)
.

Rearranging, we have

|Xtk |p ≤ (
5δ

4
+

2K + 1

2
∆t + δ

7(p− 2)

4p
) |Xtk |p +

1

pδp−1

(
∣∣Xtk−1

∣∣p +
∣∣(δ∆t)1/2f(0)

∣∣p

+
∣∣g(Xtk−1

)∆wtk−1

∣∣p +
1

2

∣∣∣L1g(Xtk−1
)∆w2

tk−1

∣∣∣
p
)

.

Hence

(1− C(δ, ∆t))E
[|Xtk |p 1[0,λm](k)

] ≤ 1

pδp−1
E

(
∣∣Xtk−1

∣∣p +
∣∣(δ∆t)1/2f(0, t)

∣∣p

+
∣∣g(Xtk−1

)∆wtk−1

∣∣p +
1

2

∣∣∣L1g(Xtk−1
)∆w2

tk−1

∣∣∣
p
)

1[0,λm](k),
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where C(δ, ∆t) = 5δ
4

+ 2K+1
2

∆t + δ 7(p−2)
4p

. By Hölder’s inequality,

(1− C(δ, ∆t))E
[|Xtk |p 1[0,λm](k)

] ≤ 1

pδp−1

(
|m|p +

∣∣(δ∆t)1/2f(0)
∣∣p

)

+
1

pδp−1

(
(E(

∣∣g(Xtk−1
)
∣∣p 1[0,λm](k))2)1/2(E

∣∣∆wtk−1

∣∣2p
)1/2

+ (E(
∣∣L1g(Xtk−1

)
∣∣p 1[0,λm](k))2)1/2(E |∆wtk |4p)1/2

)
.

By Assumption 6.3.1 and the fact that there exists a positive constant C(p), such

that E
∣∣∆wtk−1

∣∣4p
< C(p), we obtain

E
[|Xtk |p 1[0,λm](k)

]
< C(m, p),

as required.

Assumption 6.3.3.

2xf(x) + |g(x)|2 ≤ α + β |x|2 , x ∈ R. (6.23)

1

2
L1g(x)(2f(x) + L1g(x))− |f(x)|2 ≤ α + β |x|2 , x ∈ R. (6.24)

Remark 6.3.4. Within financial applications very often we deal with polynomial

coefficients. As an example we consider a general mean-reverting SDE of the

form

dx(t) = (µ− x(t)p)dt + x(t)ρdw(t), p, ρ > 1.

Once p + 1 > 2ρ, condition (6.23) holds. But p + 1 > 2ρ also implies (6.24).

Theorem 6.3.5. Let Assumptions 6.2.5, 6.3.1 and 6.3.3 hold. Let also ∆t∗ ∈
(0, 2K+1

2
∧ (2β)−1). Then there exists a constant C = C(T ) such that for all

∆t < ∆t∗ in the (1, 1)-Milstein scheme we have

sup
0≤tk≤T

E |Xtk |2 < K, T ≥ 0.

Proof. Let

λm(k) = inf{k : |Xtk | > m}.
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Then λm is a stopping time with respect to {Ftk}k≥0. We have the following

equality

Xtk+1
= Xtk + f(Xtk+1

)∆t + g(Xtk)∆wtk

+
1

2
L1g(Xtk)∆w2

tk
− 1

2
L1g(Xtk+1

)∆t.

Squaring both sides leads us to

∣∣Xtk+1

∣∣2 − |Xtk |2 = 2Xtk+1
f(Xtk+1

)∆t + |g(Xtk)|2 |∆wtk |2

+ XtkL
1g(Xtk)∆w2

tk
−Xtk+1

L1g(Xtk+1
)∆t

− 1

4

∣∣L1g(Xtk+1
)
∣∣2 ∆t2 +

1

4

∣∣L1g(Xtk)∆w2
tk

∣∣2

+ f(Xtk+1
)L1g(Xtk+1

)∆t2 −
∣∣f(Xtk+1

)
∣∣2 ∆t2

+ 2Xtkg(Xtk)∆twtk + g(Xtk)L
1g(Xtk)∆w3

tk
.

Let N be any nonnegative integer, such that N∆t ≤ T . Summing up both sides
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of the above equality from k = 0 to N ∧ λm, we get

∣∣XtN∧λm+1

∣∣2 =

(
|Xt0|2 + |g(Xt0)|2 |∆wt0|2 + Xt0L

1g(Xt0)∆w2
t0

+
1

4

∣∣L1g(Xt0)∆wt0

∣∣2 + 2Xt0g(Xt0)∆twt0 + g(Xt0)L
1g(Xt0)∆w3

t0

)

+

(N∧λm)+1∑

k=1

2Xtkf(Xtk)∆t +
N∧λm∑

k=1

|g(Xtk)|2 ∆t

+
N∧λm∑

k=1

XtkL
1g(Xtk)∆t−

(N∧λm)+1∑

k=1

XtkL
1g(Xtk)∆t

−
(N∧λm)+1∑

k=1

1

4

∣∣L1g(Xtk)
∣∣2 ∆t2 +

N∧λm∑

k=1

3

4

∣∣L1g(Xtk)
∣∣2 ∆t2

+

(N∧λm)+1∑

k=1

f(Xtk)L
1g(Xtk)∆t2 −

(N∧λm)+1∑

k=1

|f(Xtk)|2 ∆t2

+ 2
N∧λm∑

k=1

Xtkg(Xtk)∆twtk +
N∧λm∑

k=1

g(Xtk)L
1g(Xtk)∆w3

tk

+
N∧λm∑

k=1

(
|g(Xtk)|2 + Xtk , L

1g(Xtk)

) [|∆wtk |2 −∆t
]

+
N∧λm∑

k=1

1

4

∣∣L1g(Xtk)
∣∣2 [|∆wtk |4 − 3∆t2

]
.
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Hence

∣∣XtN∧λm+1

∣∣2 ≤
(
|Xt0|2 + |g(Xt0)|2 |∆wt0|2 + Xt0L

1g(Xt0)∆w2
t0

+
1

4

∣∣L1g(Xt0)∆wt0

∣∣2 + 2Xt0g(Xt0)∆twt0 + g(Xt0)L
1g(Xt0)∆w3

t0

)

+
N∑

k=1

2Xtkf(Xtk)1[0,λm](k)∆t +
N∑

k=1

|g(Xtk)|2 1[0,λm](k)∆t

+ 2XtN∧λm+1
f(XtN∧λm+1

)∆t

−XtN∧λm+1
L1g(XtN∧λm+1

)(k)∆t

+
N∑

k=1

1

2

∣∣L1g(Xtk)
∣∣2 1[0,λm](k)∆t2

− 1

4

∣∣L1g(XtN∧λm+1
)
∣∣2 ∆t2

+
N∑

k=1

f(Xtk)L
1g(Xtk)1[0,λm](k)∆t2 −

N∑

k=1

|f(Xtk)|2 1[0,λm](k)∆t2

+ f(XtN∧λm+1
)L1g(XtN∧λm+1

)∆t2 −
∣∣f(XtN∧λm+1

)
∣∣2 ∆t2

+ 2
N∑

k=1

〈Xtkg(Xtk)1[0,λm](k)∆twtk +
N∑

k=1

g(Xtk)L
1g(Xtk)1[0,λm](k)∆w3

tk

+
N∑

k=1

(
|g(Xtk)|2 + XtkL

1g(Xtk)

)
1[0,λm](k)

[|∆wtk |2 −∆t
]

+
N∑

k=1

1

4

∣∣L1g(Xtk)
∣∣2 1[0,λm](k)

[|∆wtk |4 − 3∆t2
]
.

By Assumptions 6.3.3, 6.2.6 and Lemma 6.3.2, noting that Xtk and 1[0,λm](k) are

Ftk-measurable while ∆wtk is independent of Ftk , we can take expectation on
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both sides of the above inequality to get

E
[∣∣XtN∧λm+1

∣∣2
]
≤ C1 + E

[ N∑

k=1

(2Xtkf(Xtk) + |g(Xtk)|2)1[0,λm](k)∆t

]

+ E
[
2Xt(N∧λm)+1

f(Xt(N∧λm)+1
)∆t

]

+ E
[ N∑

k=1

(1

2
L1g(Xtk)2f(Xtk) + L1g(Xtk)1[0,λm](k)∆t2

− |f(Xtk)|2 1[0,λm](k)∆t2
)

+ f(XtN∧λm+1
)L1g(XtN∧λm+1

)∆t2

−
∣∣f(XtN∧λm+1

)
∣∣2 ∆t2

]
,

where

C1 = |Xt0|2 +

(
|g(Xt0)|2 + Xt0L

1g(Xt0) +
1

4

∣∣L1g(Xt0)
∣∣2

)
∆t∗.

By Assumption 6.3.3,

E
[∣∣∣Xt(N∧λm)+1

∣∣∣
2
]
≤ C1+β

[ N∑

k=1

E |Xtk |2 1[0,λm](k)∆t+E
∣∣∣Xt(N∧λm)+1

∣∣∣
2

∆t
]
+α(T+∆t).

(6.25)

Then

E
[∣∣∣Xt(N∧λm)+1

∣∣∣
2
]
≤ (C1 + α(T + ∆t))(1− β∆t)−1 (6.26)

+ (1− β∆t)−1β
[ N∑

k=1

E |Xtk |2 1[0,λm](k)∆t
]
.

Now we can observe that

E
[∣∣XtN+1

∣∣2 1[0,λm](N)
]
≤ E

[∣∣XtN∧λm+1

∣∣2
]
.

By the discrete Gronwall inequality

E
[∣∣XtN+1

∣∣2 1[0,λm](N)
]
≤ (C1 + α(T + ∆t))(1− β∆t)−1 exp

(
((1− β∆t)−1β)T

)
,
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where we use the fact that N∆t ≤ T . Thus, letting m → ∞ in (6.26) and

applying Fatou’s lemma, we get

E
∣∣XtN+1

∣∣2 ≤ (C1 + α(T + ∆t))(1− β∆t)−1 exp
(
((1− β∆t)−1β)T

)
.

The proof is complete.

6.4 Strong Convergence

In this section we prove that the double implicit Milstein scheme (6.20) strongly

converges to the solution of the SDE (6.1).

6.4.1 Forward-Backward Milstein Scheme

In our analysis we found it convenient to extend the discrete time Milstein scheme

to a continuous time stochastic process. This extension allows to use stochastic

calculus.

In terms of the general drift and diffusion coefficients f and g, we first compute

the value Xtk from the Milstein scheme (6.20) , that is

Xtk = Xtk−1
+ f(Xtk)∆t + g(Xtk−1

)∆wtk−1

+
1

2
L1g(Xtk−1

)∆w2
tk−1

− 1

2
L1g(Xtk)∆t.

Then we define the Forward-Backward Milstein scheme (FBM) as follows

X̂tk+1
= X̂tk + f(Xtk)∆t + g(Xtk)∆wtk (6.27)

+
1

2
L1g(Xtk)∆w2

tk
− 1

2
L1g(Xtk)∆t

where X̂t0 = Xt0 = x0.
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6.4.2 Continuous Milstein Scheme

In this subsection we define a continuous extension of FBM scheme (6.27). First

we observe that ∫ tk+1

tk

∫ s

tk

dw(z)dw(s) =
1

2
[∆w2

tk
−∆t].

Let us introduce the notation

η(t) := tk, for t ∈ [tk, tk+1), k ≥ 0,

and define the process m(t)

m(t) =

∫ t

0

z(s)dw(s),

with

z(s) = 2(w(s)− w(η(s))).

By the martingale representation theorem m(t) is clearly a martingale. We also

observe that

m(tk+1)−m(tk) = ∆w2
tk
−∆t,

and

E
[∫ t

0

z(s)dw(s)

]
= 0.

Therefore we can define a continuous extension of FBM scheme (6.27) as follows

X̂(t) = X̂(0) +

∫ t

0

f(Xη(s))ds +

∫ t

0

g(Xη(s))dw(s) +
1

2

∫ t

0

L1g(Xη(s))z(s)dw(s).

(6.28)

Note that the continuous and discrete FBM coincide at the grid-points; that is,

X̂(tk) = X̂tk .

6.4.3 Strong Convergence on a Compact Domain

We begin by showing that the FBM (6.27) and Milstein scheme (6.20) stay close

on a compact domain. Then we estimate the probability that CFBM (6.28) will

not explode on a finite time interval.
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Lemma 6.4.1. Let ∆t∗ ∈ (0, 2K+1
2

∧ (2β)−1). Under Assumptions 6.2.5 and

6.3.1, for any integer p ≥ 2 and T ≥ 0, there exists a constant C = C(m, p, T )

such that for all ∆t ≤ ∆t∗,

E
[∣∣∣X̂tk −Xtk

∣∣∣
p

1[0,λm](k)
]
≤ C∆tp, ∀tk ∈ [0, T ].

Proof. Summing up (1, 1)-Milstein and FBM schemes, respectively, we obtain

XtN = Xt0 +
N−1∑

k=0

f(Xtk+1
)∆t +

N−1∑

k=0

g(Xtk)∆wtk

+
N−1∑

k=0

1

2
L1g(Xtk)∆w2

tk
−

N−1∑

k=0

1

2
L1g(Xtk+1

)∆t

and

X̂tN = X̂t0 +
N−1∑

k=0

f(Xtk)∆t +
N−1∑

k=0

g(Xtk)∆wtk

+
N−1∑

k=0

1

2
L1g(Xtk)∆w2

tk
−

N−1∑

k=0

1

2
L1g(Xtk)∆t.

Now by Hölder’s inequality, Lemma 6.3.2 and Assumption 6.3.1, there exists a

constant C = C(m, p, T ) such that

E
[∣∣∣X̂tN −XtN

∣∣∣
p

1[0,λm](N)
]

(6.29)

= E
[∣∣f(Xt0)− f(XtN ) + L1g(Xt0)− L1g(XtN )

∣∣p 1[0,λm](N)
]
∆tp ≤ C∆tp,

as required.

Theorem 6.4.2. Let Assumptions of Theorem and 6.3.1, 6.3.3 hold and T > 0

be arbitrary. Then, for any given ε > 0, there exists an N0 such that for every

m ≥ N0, we can find a ∆t0 = ∆t0(m) so that whenever ∆t ≤ ∆t0,

P(ϑm < T ) ≤ ε,

where ϑm = inf{t > 0 :
∣∣∣X̂(t)

∣∣∣ ≥ m or
∣∣Xη(t)

∣∣ > m}.

117



CHAPTER 6. DOUBLE IMPLICIT MILSTEIN SCHEME

Proof. Let s ∈ [0, T ∧ ϑm). Then by the Itô formula with V (x) = |x|2,

d
∣∣∣X̂(s)

∣∣∣
2

≤ 2X̂(s)f(Xη(s))ds +
∣∣g(Xη(s))

∣∣2 ds +
1

4

∣∣L1g(Xη(s))z(s)
∣∣2 ds

+ 2X̂(s)g(Xη(s))dw(s)

= LV (Xη(s)))ds + 2(X̂(s)−Xη(s))f(Xη(s))ds

+
1

4

∣∣L1g(Xη(s))z(s)
∣∣2 ds + 2X̂(s)g(Xη(s))dw(s)

≤ LV (Xη(s)))ds + 2
∣∣∣X̂(s)−Xη(s)

∣∣∣
∣∣f(Xη(s))

∣∣ ds

+
1

4

∣∣L1g(Xη(s))
∣∣2 |z(s)|2 ds + 2X̂(s)g(Xη(s))dw(s),

where the diffusion operator is defined by LV (x) = 2xf(x) + |g(x)|2. By Local

Lipschitz continuity and Assumptions 6.2.5 and 6.2.6, for |x| ≤ m there exists a

positive constant Km, such that

|f(x)|2 ≤ 2(|f(x)− f(0)|2 + |f(0)|2) ≤ 2Km |x|2

|g(x)|2 ≤ 2(|g(x)− g(0)|2 + |g(0)|2) ≤ 2(Km |x|2 + |g(0)|2)

and ∣∣L1g(x)
∣∣2 ≤ 2(

∣∣L1g(x)− L1g(0)
∣∣2 +

∣∣L1g(0)
∣∣2) ≤ 2Km |x|2 .

By Assumption 6.3.1 and the fact that w(s)− w(η(s)) is a normally distributed

random variable

E
∫ T∧ϑm

0

∣∣L1g(Xη(s))
∣∣2 |z(s)|2 ds = E

∫ T∧ϑm

0

∣∣L1g(Xη(s))
∣∣2 |w(s)− w(η(s))|2 ds

≤ E
∫ T

0

1{s<ϑm}H(1 +
∣∣Xη(s)

∣∣h) |w(s)− w(η(s))|2 ds

≤ C(m)

∫ T

0

E |w(s)− w(η(s))|2 ds

≤ C(m)

∫ T

0

∆tds.
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Recalling that LV (x) < (α + β |x|2), we then have

E
∣∣∣X̂(T ∧ ϑm)

∣∣∣
2

≤
∣∣∣X̂(0)

∣∣∣
2

+ αT + 2β

∫ T

0

E
∣∣∣X̂(s ∧ ϑm)

∣∣∣
2

ds

+ C(m,T )E
∫ T∧ϑm

0

∣∣∣Xη(s) − X̂(s)
∣∣∣ ds + C(m,T )∆tds,

where we use the fact that

2

∫ T∧ϑm

0

∣∣∣Xη(s) − X̂(s)
∣∣∣
2

ds ≤ 2

∫ T∧ϑm

0

∣∣∣Xη(s) + X̂(s)
∣∣∣
∣∣∣Xη(s) − X̂(s)

∣∣∣ ds

≤ C(m)

∫ T∧ϑm

0

∣∣∣Xη(s) − X̂(s)
∣∣∣ ds.

By Lemma 6.4.1, we obtain

E
∫ T∧ϑm

0

∣∣∣Xη(s) − X̂η(s)

∣∣∣ ds ≤ C(m,T )∆t. (6.30)

To bound the term E
∫ T∧ϑm

0

∣∣∣X̂η(s) − X̂(s)
∣∣∣ ds, given s ∈ [0, T ∧ ϑm), let k be an

integer for which s ∈ [tk, tk+1). Then

∣∣∣X̂η(s) − X̂(s)
∣∣∣ =

∣∣∣∣
∫ tk+1

s

f(Xtk)ds +

∫ tk+1

s

g(Xtk)dw(s)

∣∣∣∣ .

By Hölder’s inequality

E
∫ T∧ϑm

0

∣∣∣X̂η(s) − X̂(s)
∣∣∣ ds ≤ C(m,T )∆t

1
2 ,

where C(m, T ) > 0 is constant. This leads us to

E

∫ T∧ϑm

0

∣∣∣Xη(s) − X̂(s)
∣∣∣ ds ≤ E

∫ T∧ϑm

0

∣∣∣X̂η(s) − X̂(s)
∣∣∣ ds

+ E
∫ T∧ϑm

0

∣∣∣Xη(s) − X̂η(s)

∣∣∣ ds

≤ C(m,T )∆t
1
2 . (6.31)
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Therefore

E
∣∣∣X̂(t ∧ ϑm)

∣∣∣
2

≤
∣∣∣X̂(0)

∣∣∣
2

+αT+C(m,T )∆t
1
2 +C(m, T )∆t+2β

∫ T

0

E
∣∣∣X̂(s ∧ ϑm)

∣∣∣
2

ds.

By Gronwall’s inequality

E
∣∣∣X̂(t ∧ ϑm)

∣∣∣
2

≤ [
∣∣∣X̂(0)

∣∣∣
2

+ αT + C(m,T )∆t
1
2 + C(m,T )∆t] exp(2βT ), (6.32)

which implies that

P(ϑm < T ) ≤
[
∣∣∣X̂(0)

∣∣∣
2

+ αT + C(m,T )∆t1/2 + C(m,T )∆t] exp(2βT )

|m|2 .

Now, for any given ε > 0, we choose N0 such that for any m ≥ N0

[
∣∣∣X̂(0)

∣∣∣
2

+ αT ] exp(2βT )

|m|2 ≤ ε

2
.

Then, we can choose ∆t0 = ∆t0(m) such that for any ∆t ≤ ∆t0

exp(βT )

(
C(m, T )∆t1/2 + C(m,T )∆t

)

|m|2 ≤ ε

2
,

whence P(ϑm < T ) ≤ ε as required.

6.4.4 Strong Convergence on the Whole Domain

In this section we present the strong convergence of the (1, 1)-Milstein scheme

(6.20) to the solution of (6.1). First, we will show that CFBM (6.28) converges

to the true solution on a compact domain. This, together with Theorem 6.4.2,

will enable us to extend convergence to the whole domain.

Let us define the stoping time θm as

θm = τm ∧ ϑm.

Lemma 6.4.3. Under Assumptions 6.2.5, 6.2.6 and 6.3.3 for any p ≥ 2, T > 0
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and sufficiently large m, there exists a constant C = C(p, T,m), such that

E
[

sup
0≤t≤T

∣∣∣X̂(t ∧ θm)− x(t ∧ θm)
∣∣∣
p
]
≤ C∆tp.

Let us observe that due to the stopping time technique we have moved our

problem from a local to global Lipschitz setting and therefore the lemma can be

proved exactly in the same manner as in (Milstein and Tretyakov 2004; Kloeden

and Platen 1992). We just need to bear in mind that in our case a constant C

depends on m. Now we are ready to prove a strong convergence theorem.

Theorem 6.4.4. Under Assumptions 6.2.5, 6.2.6 and 6.3.3, for any given T > 0

and s ∈ [1, 2), we have

lim
∆t→0

E |X(T )− x(T )|s = 0. (6.33)

Proof. Let

e(T ) = X(T )− x(T ).

Applying Young’s inequality in the form

xsy ≤ δs

2
x2 +

2− s

2δ
s

2−s

y
2

2−s , ∀x, y, δ > 0,

leads us to

E |e(T )|s = E
[|e(T )|s 1{τm>T,ϑm>T}

]
+ E

[|e(T )|s 1{τm≤T or ϑm≤T}
]

≤ 2s−1
[
E[

∣∣∣X̂(T )− x(T )
∣∣∣
s

1{τm>T,ϑm>T}] + E[
∣∣∣X(T )− X̂(T )

∣∣∣
s

1{τm>T,ϑm>T}]
]

+
δs

2
E

[|e(T )|2] +
2− s

2δ
s

2−s

P(τm ≤ T or ϑm ≤ T ).

To finish the proof we need to estimate the expressions on the right hand side of

this inequality. First, let us observe that by Lemma 6.4.1 we obtain

E[
∣∣∣X(T )− X̂(T )

∣∣∣
s

1{τm>T,ϑm>T}] ≤ C(m, s, T )∆ts.

Given any ε > 0, by Hölder’s inequality and Theorem 2.2 in (Szpruch and Mao
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2010) and Theorem 6.3.5, we choose δ such that

δs

2
E

[|e(T )|2] ≤ 4p−1 δs

2
E

[|x(T )|2 + |X(T )|2] ≤ ε

3
.

Now, again by Theorem 2.2 in (Szpruch and Mao 2010) there exists N0 such that

for m ≥ N0
2− s

2δ
s

2−s

P(τm ≤ T ) ≤ ε

3
,

and finally by Lemma 6.4.3 and Theorem 6.4.2 we may choose ∆t sufficiently

small such that

2s−1
[
E[

∣∣∣X̂(T )− x(T )
∣∣∣
s

1{τm>T,ϑm>T}] + E[
∣∣∣X(T )− X̂(T )

∣∣∣
s

1{τm>T,ϑm>T}]
]

+
2− s

2δ
s

2−s

P(ϑm ≤ T ) ≤ ε

3
,

which completes the proof.

6.4.5 Numerical Experiment

In order to estimate the rate of convergence we proceed with numerical experi-

ments for

dx(t) = x(t)(µ− αx(t))dt + βx3/2(t)dw(t).

We focus on the strong error at the endpoint T ,

estrong
∆t = E |x(T )−XT | ,

with T=1. We plot estrong
∆t against ∆t on a log-log scale. Error bars representing

95% confidence intervals are shown by circles, and a reference line of slop 1 is also

given. Although we do not know the explicit form of the solution, Theorem 6.4.4

guarantees that the (1,1)-Milstein scheme (6.19) strongly converges to the true

solution. Therefore, it is reasonable to take the (1,1)-Milstein scheme with a very

small time step. We choose ∆t = 2−15 as a reference solution. We compare this

to the (1,1)-Milstein scheme evaluated with (24∆t, 26∆t, 28∆t, 210∆t) in order to

estimate the rate of convergence. Since we are using a Monte Carlo method,

the sampling error decays like 1/
√

M , M - is the number of sample paths. We

set M = 1000. From Figure (6.1) we see that there appears to exist a positive
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Figure 6.1: Strong error of double-implicit Milstein scheme applied to Heston 3/2
Stochastic volatility model.

constant C such that

estrong
∆t ≤ C∆t for sufficiently small ∆t.

If this inequality holds with approximate equality then taking logs gives

log estrong
∆t ≈ log C +

1

2
log ∆t. (6.34)

A least squares fit for log C and q produced the value 1.0052 for q with a least

square residual of 0.0565. Hence, our results are consistent with strong order of

convergence equal to one.

Remark 6.4.5. To extend our strong convergence Theorem 6.4.4 to the more

123



CHAPTER 6. DOUBLE IMPLICIT MILSTEIN SCHEME

general (θ, σ)-Milstein Scheme (6.37) we need to replace Assumption 6.3.3 by

2xf(x) + |g(x)|2 + (1− 2θ) |f(x)|2 ∆t

+
∆t

2
L1g(x)(2σf(x) + L1g(x)) ≤ α + β |x|2 x ∈ R.

Clearly for θ ≥ 0.5 and σ = 1 the above condition does not add any additional

restrictions on coefficients of the SDE (6.1).

6.5 Stability Analysis

In this section we examine the global stability of the (σ, θ)-Milstein scheme (6.2).

We prove that the (σ, θ)-Milstein scheme (6.2) reproduces the asymptotic be-

haviour of (6.1) very well.

6.5.1 Mean-Square Stability for Milstein-Type Scheme

Since we use Lyapunov function V (x) = |x|2, our results extend mean-square

stability for linear systems, (Higham 2001; Higham 2000) to a highly nonlinear

setting. It is well known (Kloeden and Platen 1992) that adding a second order

term in a Stochastic Taylor expansion increases the rate of strong convergence

from 0.5 to 1 but affects stability. Higham (Higham 2000), considered the linear

test SDE

dx(t) = αx(t)dt + µx(t)dw(t), (6.35)

with an initial condition x(0) = x0. He showed that for the θ-Milstein scheme

Xtk+1
= Xtk + θαXtk+1

∆t + (1− θ)αXtk∆t + µXtk∆wtk+1

+
1

2
µ2Xtk [∆w2

tk+1
−∆t],

the linear stability region, i.e.,

RMS := {∆tα, ∆tµ2 ∈ R : method mean-square stable on 6.35} (6.36)

is significantly smaller than for the θ-EM scheme. Thus it is natural to ask

if there exists a second order scheme which can preserve stability of its test
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equation for reasonably big step size? The aim of this section is to give a positive

answer to this question. As a motivational example, first we consider the scalar

linear SDE (6.35). In the case of the θ-EM method we are not able to introduce

additional implicitness, since E
∣∣(1− µ∆wtk+1

)−1
∣∣ = ∞, (Milstein and Tretyakov

2004). However, having a second order term from the stochastic Taylor expansion

1

2
µ2Xtk [∆w2

tk+1
−∆t]

and introducing partial implicitness leads to the (θ, σ)-Milstein scheme, i.e.,

Xtk+1
= Xtk + θαXtk+1

∆t + (1− θ)αXtk∆t + µXtk∆wtk+1
(6.37)

+
1

2
µ2Xtk∆w2

tk+1
− (1− σ)

2
µ2Xtk∆t− σ

2
µ2Xtk+1

∆t.

Theorem 6.5.1. The (θ, σ)-Milstein Scheme (6.37) is globally mean square sta-

ble, i.e.

lim
k→∞

E |Xtk |2 = 0, (6.38)

if and only if,

(2α + µ2) + ∆tα2(1− 2θ) +
∆tµ2

2
(2σα + µ2) < 0. (6.39)

Proof. We rewrite (θ, σ)-Milstein Scheme (6.37) as a recurrence of the form

Xtk+1
= Xtk

(
p + qξtk+1

+ rξ2
tk+1

)
,

where ξ ∼ N(0, 1),

p =
1 + (1− θ)α∆t− (1−σ)

2
µ2∆t

1− θα∆t + σ
2
µ2∆t

,

q =
µ
√

∆t

1− θα∆t + σ
2
µ2∆t

,

r =
1
2
µ2∆t

1− θα∆t + σ
2
µ2∆t

.

Then

∣∣Xtk+1

∣∣2 = |Xtk |2
(
p2 + q2ξ2

tk+1
+ r2ξ4

tk+1
+ 2pqξtk+1

+ 2prξ2
tk+1

+ 2qrξ3
tk+1

)
.
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Taking conditional expectation of both sides leads us to

E[
∣∣Xtk+1

∣∣2 |Ftk ] = |Xtk |
(
p2 + q2 + 3r2 + 2pr

)
.

Taking conditional expectation of both sides again we obtain

E
∣∣Xtk+1

∣∣2 = E |Xtk |2
(
p2 + q2 + 3r2 + 2pr

)
. (6.40)

Therefore the condition which characterizes the stability has the form

(p + r)2 + q2 + 2r2 < 1,

This is equivalent to (6.39), as required.

Remark 6.5.2. Let us observe that for θ = 0.5 and σ = 1 we have recovered

exactly the same condition as in the SDE setting

(2α + µ2) < 0, (6.41)

so the method perfectly reproduces stability for any step-size.

Motivated by (Higham 2001) we will draw stability regions for (6.37) in x− y

plane, where x = α∆t and y = µ2∆t. In Figure 6.2 the stability region of

the underlying SDE (6.35) is shown in light grey color. The upper pictures in

Figure 6.2 superimpose the stability region of the (θ, 0)-Milstein scheme with

θ = 0, 0.5, 1 respectively. We see that even in the case of a linear scalar equation

we are not able to reproduce the stability region of the underling test equation

(6.35). However, by introducing additional implicitness we can overcome this

poor performance. The lower pictures in Figure 6.2 superimpose the stability

region of the (θ, σ)-Milstein scheme with (0, 1), (0.5, 1), (1, 1), respectively. As

stated in Remark 6.5.2, we recover exactly the stability region of the underlying

test SDE (6.35) for (0.5, 1).

6.5.2 Almost Sure Stability for Milstein

Here we demonstrate that linear mean-square stability analysis can be extended

to non-linear case. Similarly to Theorem 3.5.3 we prove the stochastic LaSalle
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Figure 6.2: Mean square stability of Implicit Milstein scheme vs. double-implicit
Milstein scheme for linear a SDE.

theorem for (θ, σ)-Milstein scheme 6.2.

Theorem 6.5.3. Let Assumptions 6.2.5 and 6.3.1 hold. Assume that for the

(θ, σ)-Milstein Scheme (6.37) there exists a function z ∈ C(Rn;R+) such that

2xf(x) + |g(x)|2 + (1− 2θ) |f(x)|2 ∆t

+
∆t

2
L1g(x)(2σf(x) + L1g(x)) ≤ −z(x) for all (x, t) ∈ R.

Then

lim sup
k→∞

|X(tk)|2 < ∞ a.s., (6.42)

and

lim
k→∞

z(X(tk)) = 0 a.s. (6.43)
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If additionally z(x) = 0 iff x = 0

lim
k→∞

X(tk) = 0 a.s.

Proof.

F (x) = x− θf(x)∆t +
1

2
σL1g(x)∆t (6.44)

Using the definition of the function F we can rewrite the scheme

Xtk+1
= Xtk + θf(Xtk+1

)∆t + (1− θ)f(Xtk)∆t + g(Xtk)∆wtk+1

+
1

2
L1g(Xtk))∆w2

tk+1
− (1− σ)

2
L1g(Xtk)∆t− σ

2
L1g(Xtk+1

)∆t

as

F (Xtk+1
) = F (Xtk) + f(Xk)∆t + g(Xk)∆wtk+1

+
1

2
L1g(Xtk)∆w2

tk+1
− 1

2
L1g(Xtk)∆t.

Squaring both sides we have

∣∣F (Xtk+1
)
∣∣2 = |F (Xtk)|2 + |f(Xtk)|2 ∆t2 + |g(Xtk)|2 ∆t + 2F (Xtk)f(Xtk)∆t

+
3

4

∣∣L1g(Xtk)
∣∣2 ∆t2 +

1

4
L1 |g(Xtk)|2 ∆t2

+ F (Xtk)L
1g(Xtk)∆t− F (Xtk)L

1g(Xtk)∆t

+ f(Xtk)L
1g(Xtk)∆t2 − f(Xtk)L

1g(Xtk)∆t2

− 1

2

∣∣L1g(Xtk)
∣∣2 ∆t2 + rk+1,
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where

rk+1 = |g(Xtk)|2 [∆W 2
tk+1

−∆t] + 2F (Xtk)g(Xk)∆wtk+1

+
1

4

∣∣L1g(Xtk)
∣∣2 [∆W 4

tk+1
− 3∆t2]

+ F (Xtk)L
1g(Xtk)[∆W 2

tk+1
−∆t]

+ f(Xk)∆tg(Xk, tk)∆wtk+1
+ f(Xtk)L

1g(Xtk)[∆W 2
tk+1

−∆t]

+ g(Xk)∆wtk+1
L1g(Xtk)∆w2

tk+1
− L1g(Xtk)

+
1

2

∣∣L1g(Xtk)
∣∣2 [∆W 2

tk+1
−∆t]∆t.

This implies that

∣∣F (Xtk+1
)
∣∣2 = |F (Xtk)|2 + |f(Xtk)|2 ∆t2

+ |g(Xtk)|2 ∆t + 2F (Xtk)f(Xtk)∆t +
1

2

∣∣L1g(Xtk)
∣∣2 ∆t2 + rk+1

= |F (Xtk)|2 + 2Xtkf(Xtk)∆t + |g(Xtk)|2 ∆t + (1− 2θ) |f(Xtk)|2 ∆t2

+
σ

2
L1g(Xtk)f(Xtk)∆t2 +

1

2

∣∣L1g(Xtk)
∣∣2 ∆t2 + rk+1

= |F (Xtk)|2 + 2Xtkf(Xtk)∆t + |g(Xtk)|2 ∆t + (1− 2θ) |f(Xtk)|2 ∆t2

+
∆t2

2
L1g(Xtk)(2σf(Xtk) + g(Xtk)) + rk+1.

Hence, we have obtained a decomposition that allow us to apply Theorem 3.5.2,

i.e., ∣∣F (Xtk+1
)
∣∣2 = |F (Xtk)|2 − Atk∆t + rk+1,

where

Atk = −
(

2〈x, f(x)〉+ |g(x)|2 + (1− 2θ) |f(x)|2 (6.45)

+
∆t

2
L1g(x)(σf(x) + L1g(x))

)
. (6.46)
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Therefore

∣∣F (XtN+1
, tN+1)

∣∣2 = |F (Xt0 , t0)|2 −
N∑

k=0

Atk∆t +
N∑

k=0

rk+1. (6.47)

Now we are in position to apply Theorem 3.5.2 to get

lim
k→∞

|F (Xtk)|2 < ∞, (6.48)

from which it follows that lim supk→∞ |X(tk)|2 exist and is finite almost surely.

Another implication of Theorem 3.5.2 is

∞∑

k=0

z(Xtk)∆t ≤
∞∑

k=0

Atk∆t < ∞ a.s,

which implies

lim
k→∞

z(Xtk) = 0 a.s. (6.49)

and the final part of the theorem follows immediately.
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Chapter 7

Future Research

In this thesis we answered some important questions on stochastic numerical

analysis. However, there is still an ocean of problems that need to be considered

in future research. Here we point out some of them.

• In this thesis we investigated numerical approximations for SDEs with non-

Lipschitz coefficients. We have demonstrated that implicit methods have

very desirable properties. Nevertheless, having in mind Theorem 1.3.1, nu-

merical methods are still far behind. Lyapunov function techniques enable

us to prove existence and uniqueness of the solution for a very rich family

of SDEs. We demonstrated that employing implicit schemes we are able

to accurately approximate these solutions for which existence follows from

Theorem 1.3.1 once we choose Lyapunov function V (x) = |x|2. Therefore

additional research is needed. Similarly we investigated the very special case

of stability analysis conducted in (Shen, Luo, and Mao 2006). Additional

insight into general almost sure stability properties for numerical schemes

also would be of relevance. It would be also interesting to investigate if

BEM is sufficient to reproduce almost sure stability of the underlying SDE.

• Our analysis of higher order schemes is very promising. In the case of scalar

equations we have developed a second order scheme with superior proper-

ties: strong convergence, stability and preservation of positivity (Chapter:

6). Further research on this topic needs to be done in order to cover stochas-

tic volatility models and correlated multidimensional SDEs. It is well known

that in the general multidimensional case, there is no exact solution for it-
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erated integrals of second order (Lévy Area) (Kloeden and Platen 1992;

Glasserman 2003). Simulations of these are computationally expensive.

Recently it has been demonstrated that with the use of some sophisticated

orthogonal transformations we may avoid simulation of Lévy Areas. This

technique allows maintenance of the higher order of strong convergence,

equal to that of the scalar case, (Cruzeiro, Malliavin, and Thalmaier 2004;

Cruzeiro and Malliavin 2006; Alves and Cruzeiro 2008; Malliavin and Thal-

maier 2003). This is a very promising stream of research of great practical

importance. We are planning to extend current strong convergence the-

orems for non-linear stochastic differential financial models using second

order schemes by utilising the orthogonal transformations.

• Further improvement of stochastic numerical integration can be achieved by

implementing a step-adaptive technique. The superiority of the adaptive

method compared to equidistant discretization has been demonstrated in

(Hofmann, Muller-Gronbach, and Ritter 2000a; Hofmann, Muller-Gronbach,

and Ritter 2000b; Hofmann, Muller-Gronbach, and Ritter 2001; Lamba

2003; Lehn, Rosler, and Schein 2002; Lamba, Mattingly, and Stuart 2007;

Müller-Gronbach and Ritter 2008; Muller-Gronbach and Ritter 2007). The

above papers proved that adaptive methods can achieve the required ac-

curacy with significantly lower cost than standard techniques. However,

the developed theory so far has not been justified by simulations for many

non-linear financial models. The step-adapted techniques have also been

proved to overcome some difficulties when simulating stopped processes

(Dzougoutov, Moon, von Schwerin, Szepessy, and Tempone ). Techniques

we have developed so far to deal with non-linear systems can be applied

in these models. We believe that this approach would lead to fruitful re-

sults. It could be very beneficial to combine the step-adapted methods with

the Multi-Level Monte Carlo technique in order to reduce computational

complexity even further.

• In this thesis we looked at SDEs driven by Brownian motion. Our results

can be extended to incorporate jump processes in the similar fashion as in

(Higham and Kloeden 2005; Higham and Kloeden 2004).

The author is also currently working on extensions of the results in this the-
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sis for stochastic delay differential equations. Having this in mind it is worth

mentioning work on delay stochastic models (Kazmerchuk, Swishchuk, and

Wu 2005; Swishchuk 2005; Kazmerchuk, Swishchuk, and Wu 2007). These

authors have considered the continuous time analog of GARCH(1,1) with

incorporated delays. They idea is related to the famous Hobson and Rogers

model, (Hobson and Rogers 1998), where volatility is expressed in terms

of exponentially weighted moments of historic log-price. The same type

of consideration has led to the derivation of a Delayed Black and Scholes

formula (Arriojas, Hu, Mohammed, and Pap 2007). This motivates us to

research numerical methods for stochastic systems that are not Markovian.

133



References

Ahn, D. and B. Gao (1999). A parametric nonlinear model of term structure

dynamics. Review of Financial Studies 12 (4), 721.

Ait-Sahalia, Y. (1996). Testing continuous-time models of the spot interest

rate. Review of Financial Studies 9 (2), 385–426.

Ait-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear

diffusions. Journal of Finance 54 (4), 1361–1395.

Alves, C. and A. Cruzeiro (2008). Monte-Carlo simulation of stochastic differ-

ential systemsa geometrical approach. Stochastic Processes and their Ap-

plications 118 (3), 346–367.

Andersen, T., L. Benzoni, and J. Lund (2002). An empirical investigation of

continuous-time equity return models. The Journal of Finance 57 (3), 1239–

1284.

Appleby, J., M. Guzowska, and A. Rodkina (2010). Preservation of positivity

in the solution of discretised stochastic differential equation. working paper .

Appleby, J., C. Kelly, X. Mao, and A. Rodkina (2010). On the local dynam-

ics of polynomial differene equations with fading stochastic perturbations.

Dynamics of Continuous, Discrete and Impulsive Systems 17, 401–430.

Appleby, J., X. Mao, and A. Rodkina (2008). Stabilization and destabilization

of nonlinear differential equations by noise. IEEE Transactions on Auto-

matic Control 53 (3), 683–691.

Arriojas, M., Y. Hu, S. Mohammed, and G. Pap (2007). A delayed Black and

Scholes formula. Stochastic Analysis and Applications 25 (2), 471–492.

Bahar, A. and X. Mao (2004). Stochastic delay population dynamics. Interna-

tional Journal of Pure and Applied Mathematics . 11, 377–400.

134



REFERENCES

Baker, C. and E. Buckwar (2005). Exponential stability in p-th mean of solu-

tions, and of convergent Euler-type solutions, of stochastic delay differen-

tial equations. Journal of Computational and Applied Mathematics 184 (2),

404–427.

Berkaoui, A., M. Bossy, and A. Diop (2007). Euler scheme for SDEs with non-

Lipschitz diffusion coefficient: strong convergence. ESAIM: Probability and

Statistics 12, 1–11.

Billingsley, P. (1979). Probability and Measure. John Wiley & Sons.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities.

The Journal of Political Economy 81 (3), 637–654.

Broadie, M., P. Glasserman, and S. Kou (1997). A continuity correction for

discrete barrier options. Mathematical Finance 7 (4), 325–349.

Broadie, M. and O. Kaya (2006). Exact simulation of stochastic volatility and

other affine jump diffusion processes. Operations Research 54 (2), 217–231.

Buchmann, F. (2005). Simulation of stopped diffusions. Journal of Computa-

tional Physics 202 (2), 446–462.

Campbell, J., A. Lo, A. MacKinlay, and R. Whitelaw (1998). The econometrics

of financial markets. Macroeconomic Dynamics 2 (04), 559–562.

Chan, K., G. Karolyi, F. Longstaff, and A. Sanders (1992). An empirical com-

parison of alternative models of the short-term interest rate. The journal

of finance 47 (3), 1209–1227.

Conley, T., L. Hansen, E. Luttmer, and J. Scheinkman (1997). Short-term

interest rates as subordinated diffusions. The Review of Financial Stud-

ies 10 (3), 525–577.

Cox, J., J. Ingersoll Jr, and S. Ross (1985). A theory of the term structure of

interest rates. Econometrica 53 (2), 385–407.

Cruzeiro, A. and P. Malliavin (2006). Numerical approximation of diffusions

in Rd using normal charts of a Riemannian manifold. Stochastic Processes

and their Applications 116 (7), 1088–1095.

Cruzeiro, A., P. Malliavin, and A. Thalmaier (2004). Geometrization of Monte-

Carlo numerical analysis of an elliptic operator: strong approximation.

135



REFERENCES
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