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SUMMARY 

 

 
The Risk-Based Ship Design (RBD) methodology, advocating the systematic 

integration of risk assessment in the conventional design process so that ship safety is 

treated as an objective rather than a constraint, has swept through a wide spectrum of 

the maritime industry over the past fifteen years. Through this methodology, safety is 

situated at a central position alongside conventional design objectives, so that well-

balanced design effort could be spent and consequently comprehensive design 

optimisation can be performed. Despite the recognition and increasing popularity, 

important factors that could potentially undermine its implementation arise both from 

qualitative and quantitative aspects. This necessitates the development of an 

objective, reliable and efficient methodology for risk-based ship design 

implementation. 

 

The research presented in this thesis proposes a formalised methodological 

framework to fulfil this global objective. It comprises three interrelated stages to be 

performed during risk assessment, namely the development of next generation 

marine accident/incident database, risk modelling in Bayesian networks by deploying 

data mining techniques, and the integration with the framework for risk-based design 

decision making. Working procedures, techniques, methods and algorithms have 

been developed and applied to representative examples and case studies to 

demonstrate the applicability and the potential offered by this framework. 

 

Each stage of the framework is a field with vast potential for further research, 

development and application. The ensuing findings firm the faith that an optimal 

approach towards risk-based design is achievable and extensive applications need to 

be conducted before experience and confidence can be gained. It is believed that this 

research has contributed positively towards the evolvement of risk-based ship design. 
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GLOSSARY 
 
 
 
Accident : A sudden unintended departures from normal 

operating conditions in which some degree of harm is 

caused [HSE, 2001]. 

Incident : Relatively minor accidents, i.e. unintended departures 

from normal operating conditions in which little or no 

harm was caused [HSE, 2001]. 

Risk : The combination of the frequency and the severity of 

the consequence [IMO, 2007b]. 

Risk analysis : The quantification of risks without making judgements 

about their significance. It involves identifying hazards 

and estimating their frequencies and consequences, so 

that the results can be presented as risks [HSE, 2001]. 

Risk assessment : A means of making a systematic evaluation of the risk 

from hazardous activities, and making a rational 

evaluation of their significance, in order to provide 

input to a decision-making process. This may be 

qualitative or quantitative [HSE, 2001]. 

Risk contribution 

tree 

: 

 

The combination of all fault trees and event trees that 

constitute the risk model [IMO, 2007b]. 

Risk control measure : 

 

A means of controlling a single element of risk [IMO, 

2007b]. 

Risk control options : 

 

A combination of risk control measures [IMO, 2007b]. 

Risk management : The making of decisions concerning the risk, and the 

subsequent implementation of the decisions in the 

safety management system [HSE, 2001]. 
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ABBREVIATIONS 
 
 
ABS : American Bureau of Shipping 

AHP : Analytical Hierarchy Process 

AIC : Akaike Information Criterion 

AIS : Automatic Identification System 

BAS : Bridge Alarm System 

BIC : Bayesian Information Criterion 

BN(s) : Bayesian network(s) 

BNWAS : Bridge Navigational Watch Alarm System 

CPDAG : Completed Partially Acyclic Directed Graph 

DAG : Directed Acyclic Graph 

DNV : Det Norske Veritas 

ECDIS : Electronic Chart Display and Information System 

EM : Expectation Maximisation 

EMSA : European Maritime Safety Agency 

GES : Greedy Equivalence Search 

GISIS : Global Integrated Shipping Information System 

GLM : Generalised Linear Model 

ISM code : The International Safety Management Code 

IMO : International Maritime Organisation 

KDD : Knowledge Discovery from Data 

LCM : Loss Causation Model 

LMIU : Lloyd‟s Marine Intelligence Unit 

LR : Lloyd‟s Register 

LSA : Life Saving Appliance 

MAIB : Marine Accident Investigation Branch 

MCMC : Markov Chain Monte Carlo 
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MSC : Maritime Safety Committee 

NN(s) : Artificial neural network(s) / Neural network(s)  

NPV : Net Present Value 

OOW : Officer on watch 

PDAG : Partially Acyclic Directed Graph 

QRA : Quantitative Risk Assessment 

RCO(s) : Risk Control Option(s) 

SAFEDOR : Design, operation and regulation for safety, 

www.safedor.org 

SMS : Safety Management System 

SOLAS : The International Convention for the Safety of Life at 

Sea, 1974, and the 1988 Protocol 

SSRC : The Ship Stability Research Centre, University of 

Strathclyde 

VTS : Vessel Traffic Service 
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Chapter 1  

Introduction 

 

1.1 Preamble 

Ships, one of the oldest forms of transport, have played a significant role in the 

development of human civilisation over thousands of years. From hollowed tree 

trunk ventured by tribes in ancient time to the unprecedented cross-Atlantic 

exploration fleet by Christopher Columbus in the 14
th

 century, and to the recent 

deployment of giant cruise liners with over 6,000 passengers on board, this ancient 

discovery has never been as prosperous and with such profound influence on human 

livelihood, as it is today. It is becoming an essential mode of supplying the ever 

growing demand of every facet of human society. More importantly, globalisation, 

an unparalleled and irreversible momentum, is accelerating this process.   

This consecrated history and its state of affairs have brought naval architects 

crowning pride and tremendous satisfaction. The connotation of naval architecture, 

one of the most fascinating and innovative professions, is also enriching itself over 

thousands of years’ of discovery and accumulation, from initial trial and error on 

floating trunk to Archimedes’ principle, from Newton’s scientific foundation of 

mechanics to advanced computer-aided-design (CAD) software. No doubt huge 

achievement has been made in the longstanding history through the injection of 

experience, good engineering practice and science, however the traceable grievous 

disasters are constantly giving a twinge [Lancaster, 2005], from the loss of 

“unsinkable” Titanic in 1912 [MAIB, 1992], the rapid capsize of Herald of Free 

Enterprise in 1987 [MAIB, 1987], and the massive oil spill of Exxon Valdez in 1989 

[EPA, 2009], etc. Continuous publicised marine tragedies, resulting in catastrophic 
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consequences with respect to human life, property and environment, force society to 

revise the existing approach towards ship design and the attitude towards naval 

architecture. 

Fortunately this situation is gradually changing. Under the philosophy of Design for 

Safety, a formalised methodology, Risk-Based Ship Design (RBD), has found fertile 

ground for the past fifteen years. Through systematic integration of risk assessment 

within conventional ship design process, safety is no longer treated as a constraint 

but an objective. From conceptualisation, instantiation, to preliminary 

implementation, risk-based design has demonstrated its brawny vitality through 

successive large scale research projects: HARDER [HARDER, 2003], SAFER 

EURORO [Vassalos and Konovessis, 2008], SAFEDOR [Barinbridge, et al., 2004] 

and numerous ongoing research projects: FIREPROOF [FIREPROOF, 2009], 

GOALDS [GOALDS, 2009], etc. 

Despite the increasing recognition, important factors that could potentially 

undermine its quality and credibility come from both qualitative and quantitative 

aspects during risk assessment, which can be demonstrated by the continuous usage 

of subjective sources of information (e.g. expert judgement), the independent 

relationships assumed during risk modelling, and time-consuming nature of first-

principles tools for risk quantification, etc. This is inadequate as risk-based design is 

moving towards a more rational approach where the utilisation of objective sources 

should be maximised in an appropriate and effective way so that the confidence of 

the study and the credibility of risk-based design as a design methodology can be 

assured. 

In this thesis, a systematic procedure for the performance of risk assessment that 

incorporates objective sources of information and advanced data analysis techniques 

for risk models elicitation will be developed. Passenger ships have been selected for 

demonstrating the applicability of the proposed methodology due to the large societal 

impact associated with the accidents involving this category of knowledge-intensive 

and safety-critical ships. 
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1.2 The Root Conflicts 

As it is argued in [Rawson and Tupper, 1976], naval architecture is both art and 

science. Laying particular emphasis on any one aspect independently and 

underestimating the other is inappropriate. According to these authors,  

“Basically, naval architecture is concerned with ship safety, ship performance and 

ship geometry, although these are not exclusive divisions.” 

Considering the above, it is apparent that ship design is fundamentally a multi-

objective optimisation process. It is an amazing task to design an extremely complex 

entity like a ship (e.g. a large system, hundreds of subsystems, and hundreds of 

thousands of components) by just knowing a handful of initial high-level measures, 

e.g. payload, speed, service route, and environment, etc. The end product is supposed 

to be a well-balanced compromise among the three aspects, safety, performance, and 

geometry. It seems one can always converge to a satisfactory balance as long as the 

objectives are clearly predefined and proper design procedures are followed to carry 

out an iterative refining process. However, when idealism encounters realism, it will, 

most likely, lead to an endless strives between morality and capital running by 

sacrificing one (e.g. safety) and maximising the others (e.g. profitability). 

Capitalism, one of the most successful and bold invention in the history of 

humankind, has resulted in the unprecedented liberation of labour productivity, 

which has brought us a prosperous planet. Exactly driven by this stimulant ship 

design has made great strides where typical evidence could be found in the 

development of naval architecture in the past centuries through parameterising ship 

principal parameters with economical performance indicators (such as, ship 

resistance estimation, Net Present Value, Required Freight Rate, etc.). Nevertheless, 

it is apparent that capitalism is not a perfect solution: blindfolded chasing of capital 

maximisation has resulted in rapid technological evolution and deployment of 

products without full understanding and justification of the underlying physical 

phenomena that governs shipping operations. 
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The ensuing adverse impact caused by marine disasters leading to serious casualties 

and catastrophic environmental damage has alerted the wider public. Moral censure 

has forced local authorities, governmental, and intergovernmental bodies to step in 

by introducing stringent codes of conduct so that safety can be assured. Certainly 

prescriptive rules are easier to fulfil and facilitate class/flag changes; however, this 

paradigm has also induced inherent challenges. Assuring safety performance through 

rule compliance implies that the development of competitive design relies mainly on 

the designer’s competence rather than a rational and more informed base. Potentially 

good and innovative designs could not progress further and, as a result, the 

realisation that investment in safety compromise returns dominates the industry. 

Moreover, this configuration places absolute trust on the prescriptive rules presuming 

the minimum safety level implicit is deemed appropriate. Unfortunately, this often 

proves to be a conjecture. The key issue here is that knowledge of the actual safety 

level that is provided by prescriptive rules is missing.  

Through rule compliance, safety is no longer a design objective but a constraint 

which implies that obtaining an optimal design, which makes the best compromise 

among the aforementioned constituent elements, is left to chance. Though most rules 

have proved to serve reasonably well, it should be borne in mind that most changes 

have followed major high-profile accidents or significant changes in casualty 

statistics. Precious signals from the vast amount of less serious accidents and 

incidents have been underutilised and neglected. 

In light of this, an important undertaking in the industry is the routine investigation 

of operational accidents and incidents. This is justified as historical investigations 

and research findings, e.g. [ABS, 1999] and [Kristiansen, 2005], always suggest that 

a casualty has never been the result of a single contributing factor and lessons should 

be learned from less severe cases in order to prevent more serious ones from 

occurring. The evidence could be easily traced through codes of conduct in the form 

of either mandatory or recommended documents at international, national, and 

organisational context. Internationally, consecutive resolutions concerning the 

investigation of marine accidents/incidents [IMO, 1997, IMO, 2000, IMO, 2005], 

with the latest Casualty Investigation Code [IMO, 2008a], have spent great effort to 
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collect as many records as possible, with particular emphasis on serious accidents. In 

the UK, the relevant regulations have also been introduced and enforced pertaining to 

accident reporting and investigation [MCA, 1999, MCA, 2005]. Furthermore, ship 

operators, who probably have contributed the largest share, have to constantly update 

their records with respect to accidents/incidents onboard within the Safety 

Management System (SMS) in compliance with the International Safety 

Management (ISM) code [IMO, 1994]. 

The subsequent situation is an ever growing number of accident/incident records 

within each organisation over the past decade, which are of no practical use for 

systematic analysis. This is not surprising as the initial motivation was rule-

orientated and case-specific according to SOLAS regulation I/21, while little 

attention has been paid on how each individual record could benefit the industry in 

terms of design and operational activities. Even with the ISM code section 9, which 

forces organisations to establish the relevant reporting schemes and to implement the 

procedures for adopting corrective actions, the recorded information can be hardly 

utilised by shipyards, designers, and regulators. Furthermore, a framework to guide 

the operators in the investigation procedure and the assessment of the effectiveness 

of the risk control options (RCOs) is currently missing.  

Consequently, the deliverable of an accident/incident investigation is most likely a 

repetition of previous similar studies presented in the form of descriptive reports 

suggesting a number of possible corrective actions without knowing to which extend 

the organisation will benefit and the associated cost. The consequence with this 

open-ended scheme is reluctant implementations by the operators. The lack of 

incentive (i.e. tangible holistic benefits and costs) has turned such a routine into an 

extra load. As a result, normal practice would be periodical revision of the whole 

data set at an abstract level by just deriving high-level pie and bar charts to reveal 

trends, while the “gold” is still hidden in the descriptive text.  
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1.3 Risk-Based Ship Design 

On the other hand, the methodology of risk-based ship design, advocating systematic 

integration of risk assessment in the conventional design process so that ship safety is 

treated as an objective rather than a constraint, has swept through a wide spectrum of 

the maritime industry over the past fifteen years. Through this approach, safety is 

situated at a central position alongside conventional design objectives so that well-

balanced design effort could be taken and consequently comprehensive design 

optimisation can be performed. 

To implement risk-based design, risk assessment needs to be continually deployed in 

order to quantify the risk level of the hazards under consideration. Classical 

techniques for risk assessment (most typically, the fault and event tree techniques) 

have received wide recognition in the field of Quantitative Risk Analysis (QRA), 

[Vose, 2008], as they offer a clear and logical form of presentation. In addition, the 

tree-like topology is suitable for analysing the hazards that arise from a combination 

and sequences of adverse circumstances. On the contrary, the intrinsic characteristics 

of fault and event trees have also incurred challenges, which could significantly 

undermine the quality of the developed risk models, both from qualitative and 

quantitative points of view: 

 Qualitatively, due to the fact that fault and event trees adopt the tree-like 

topology, each branch is entirely isolated from the remaining parameters, except 

the ones directly next to it. For this reason, all events are treated independently, a 

virtue that transpires oversimplification of the approach. Moreover, it soon 

becomes complicated, time-consuming and difficult to follow for larger systems. 

 Quantitatively, large trees could easily lead to situations where detailed 

historical data become unavailable and, as a result, subjective sources have to be 

used constantly. Moreover, in the cases where performance-based first-

principles tools are needed, the iterative process at both local and global levels 

for probabilities derivation can be very time-consuming.    
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Apart from using fault and event trees, it is worth noting a promising candidate for 

risk modelling - Bayesian networks (BNs), [Darwiche, 2009], [Holmes and Jain, 

2008], etc., due to their inherent superiority to capture sophisticated relationships 

among physical events. With BNs, a dependent relationship is represented by a link 

between the concerned parameters, whilst the probabilities are stored in a conditional 

probability table attached to each parameter. The probabilistic inference is governed 

by Bayes’ theorem. Although the technique has a sound mathematical foundation, 

the BN is discredited due to its complexity to manipulate, which is reflected on the 

identification of dependent relationships and the estimation of conditional 

probabilities as insufficient data always leads to subjective judgement. In this respect, 

the field of data mining provides a promising solution.   

1.4 Data Mining 

Data mining, which is also referred to as Knowledge Discovery from Data (KDD), 

can hardly be given a unified definition as its territory is expanding at a fast pace. It 

is a multidisciplinary field drawing work from database technology, machine 

learning, pattern recognition, statistics, visualisation, and information science, in 

order to discover meaningful correlations, patterns and trends out of a data set. The 

typical process is demonstrated in the flowchart of Figure 1.1. Various tasks can be 

carried out by data mining techniques including among others, the identification of 

association between two or more attributes, the classification through prediction of 

the categorical labels, and the cluster of a set of physical objects into similar classes, 

[Han and Kamber, 2006] and [Sumathi and Sivanandam, 2006], etc. Equipped with 

these functionalities the data mining techniques have been employed across a wide 

spectrum of fields and applications: chemical engineering [Anand et al., 2006] and 

aviation industry [Nazeri et al., 2001] concerning safety assessment, retailing 

concerning customer shopping habit [Zheng et al., 2001], financial system 

concerning fraud detection [Bishop, 2006], [Chan et al., 1999], [Guo et al., 2008], etc. 

In contrast, limited literature and applications are observed in the maritime industry 

in the area of data mining. 
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As data mining is evolving, it becomes inevitable that a developed model needs to 

act as an inference platform for providing intelligent information (e.g. given a 

collision, whether the ship can survive), whilst, at the same time, be able to 

accommodate uncertain circumstances (e.g. at the time of collision sea conditions 

may be calm or rough, the location of the ship may be at sea or in port). In this 

respect, the development of data mining bias towards the integration of data analysis 

methods with pertinent uncertainty reasoning techniques, [Chen, 2001], which covers 

BNs, artificial neural networks (NNs), fuzzy logic and genetic algorithms. By doing 

so, the identified uncertain reasoning platform can be deployed for representing the 

underlying characteristic of the data (e.g. one ship collision model contains all the 

relevant information that is stored in the training data set of fire incident) and, in the 

meantime, performing inference in a probabilistic environment (e.g. given a collision, 

the probability that the ship will survive for a given time interval). A key advantage 

of such an approach is attributable to the ability of describing complex correlations 

among various parameters purely on the basis of available data. This implies 

minimised intervention of subjective estimation and no assumption on independent 

relationships. Moreover, if the inference mechanism is based on a probabilistic 

background, it will offer a promising platform for risk assessment in complement to 

the techniques of fault and event trees.  

Figure 1.1: A Flowchart of Data Mining 
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The focus of this research is on the improvement of risk-based design methodology, 

by means of integrating data mining techniques with the state-of-the-art risk 

assessment framework in the context of risk-based ship design.  

1.5 Structure of the Thesis 

The thesis is structured in 10 chapters. A brief outline of the content of each chapter 

is given below: 

 Chapter 1 (Introduction), the current chapter, provides the background to the 

research described in this thesis. 

 Chapter 2 (Aim and Objectives), defines the problems and sets the aims and 

specific objectives of this research. 

 Chapter 3 (Critical Review), reviews the current approach towards the 

implementation of risk-based ship design with particular emphasis on the 

techniques and the sources of information for risk analysis. The field of data 

mining and promising techniques for risk model elicitation are detailed as well. 

 Chapter 4 (Approach Adopted), sets the fundamental assumptions made and 

explains the approach adopted. 

 Chapter 5 (Next Generation Marine Accident/Incident Database), enunciates the 

configuration of the proposed new casualty database.  

 Chapter 6 (Data Mining), details the theory, techniques, and algorithms for 

implementing pertinent data mining process for risk model derivation.  

 Chapter 7 (Risk-Based Ship Design),  elaborates a practical procedure for the 

implementation of risk-based design where the roles of the obtained risk models 

from data mining are described within the context of risk assessment. Ultimately, 

as a means of supplying safety relevant knowledge, the models are integrated 

within the decision support framework. 
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 Chapter 8 (A Case Study), demonstrates the rationality and feasibility of the 

proposed methodology by carrying out the three-stage procedure concerning fire 

safety of passenger ships.  

 Chapter 9 (Discussion), outlines the main contribution to the field, critically 

discusses the outcome of the thesis on the basis of its objectives, outlines the 

difficulties encountered and the way in which these were addressed, and 

provides recommendations for further research. 

 Chapter 10 (Conclusion), summarises the main conclusions of the research 

presented in this thesis. 

The research to be presented in the thesis is founded on the hypothesis that the 

current approach towards the implementation of risk-based ship design has 

significant drawbacks to qualitatively and quantitatively develop interested risk 

models in an efficient manner, which hinder the release of the full potential of risk-

based ship design. In this respect, the thesis develops a systematic and 

comprehensive methodological framework that is based on transparent, objective, 

and well-integrated principles by proposing procedures, methodologies, and 

techniques. The applicability of the proposed framework is demonstrated through a 

comprehensive case study and a number of examples addressing specific constituent 

components. 

The logical sequence and interrelationships among the chapters of the thesis are 

illustrated in Figure 1.2. 

1.6 Closure 

Through tracing the timeline development of naval architecture and the apparent shift 

in the treatment of ship safety, aspects that led to the undertaking of this research has 

been put forward and will be scrutinised and addressed in the chapters to follow. The 

main drawback identified is the lack of a holistic, reliable, and effective approach 
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towards risk assessment within the context of risk-based ship design. In this respect, 

this thesis will focus on the aspects relevant to passenger ship safety. 

 

 

Figure 1.2: Structure of the Thesis 
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Chapter 2  

Aim and Objectives 

 

 

The overall aim of the thesis is to develop a formalised methodological procedure in 

the form of a framework of systematically integrating objective casualty relevant data 

for risk model elicitation within the implementation process of risk-based ship design. 

Specific objectives to realise this concept include: 

 To carry out a critical review of the available literature on the state-of-the-art 

practice for the implementation of risk-based ship design, and to identify possible 

shortcomings of this process. The emphasis will be placed on sequential 

procedures to be followed for risk-based design, techniques for risk modelling, 

sources of information for risk quantification, contemporary regulatory 

developments concerning passenger ship safety, and promising techniques in data 

mining to facilitate risk assessment. 

 To develop an all-embracing accident/incident database platform that is 

configured in such a way that it provides a comprehensive, objective, reliable, 

and technically feasible knowledge base to support every facet of risk assessment 

activities within the context of risk-based ship design. It will focus on the 

identification of dominant variables, which have direct impact on the risk level of 

passenger ships. 

 To collect, assimilate and identify pertinent data mining knowledge regarding the 

development of probabilistic models by utilising the casualty database with 

minimised subjective intervention. The focal point is to qualitatively and 

quantitatively derive the models in the identified risk analysis tool in an objective 

manner. 
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 To propose a practical procedure for the implementation of risk-based design, 

through which the derived risk models can be flexibly integrated within the 

existing framework of risk assessment for risk-based design. The main emphasis 

will be put on its compatibility and the subsequent roles for decision support at 

the design stage. 

 To develop a generic automated environment to facilitate the execution of various 

key components of the methodology. 

 To demonstrate the adequacy of the proposed methodology through conducting a 

comprehensive case study containing casualty database development, data mining 

to derive risk models, and the subsequent decision support on the selection of 

optimal design alternatives. 

 Finally, to offer recommendations for further research required for the realisation 

of a comprehensive methodological framework for implementing risk-based ship 

design.  
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Chapter 3  

Critical Review 

 

 

3.1 Preamble 

The approach towards safety in the maritime industry is in a transitional stage. In 

pursuit of a rational treatment of safety at design stage, the methodology of risk-

based design under the philosophy design for safety has demonstrated its brawny 

vitality through a series of concrete applications since its inception.   

In view of the endeavour towards an effective and reliable means for risk-based 

design implementation, Chapter 3 provides an overview of risk-based design and 

associated methodologies, techniques, and tools. The in-depth consideration of each 

constituent element regarding risk modelling techniques and sources of information 

concludes with their merits and drawbacks. The field of data mining and its potential 

in providing an alternative for risk model derivation is also addressed, with emphasis 

on neural networks and BNs.  

3.2 Design for Safety and Risk-Based Design 

Ship design is both art and science as argued in [Rawson and Tupper, 1976]. 

However, it was more art than science in the past as such profession highly depends 

on the practical experience of naval architects. The successful designs delivered form 

the knowledge base of the design space. Considering the complexity of a ship, its 

subsystems and components, as demonstrated in Figure 3.1, and acknowledging the 

different focus of interests of various stakeholders, it is a difficult multi-objective 

optimisation task to deliver a design that successfully meets numerous 
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requirements/constraints with respect to the expected functionality, the operational 

performance regarding fit for purpose, safety, etc.  

 

Figure 3.1: Ship Functions [Levander, 2003] 

In the context of ship safety, design for safety has received significant attention in the 

past 20 years. The momentum amassed during this period has profoundly re-shaped 

the way that safety should be cognised and treated. The most noticeable distinctions 

between the “conventional” and the “new” approaches towards safety have been 

summaries in Table 3.1.  

Table 3.1: Approaches to Ship Safety [Vassalos, 1999] 

“Conventional” “New” 

Reactive Pro-active 

Regulation Self-regulation 

Deterministic Probabilistic (risk-based) 

Conformance-based Performance-based 

Compulsory Safety Culture 

Discipline-oriented (sectorial) Total (integrated) 

Experiential First-principles (calculation/simulation) 

Hardware focus Balance of safety elements 

Short-term Life-cycle 

Irrational 

(subjective/emotional/political) 

Rational (scientific/cost-benefit 

analysis) 
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To realise the concept of design for safety, a formalised methodology, risk-based 

design, has been developed. A high-level definition of risk-based design is deemed to 

be appropriate: Risk-based design is a formalised methodology that integrates 

systematically risk assessment in the design process with prevention/reduction of risk 

embedded as a design objective, alongside “conventional” design objectives 

[Vassalos, 2006].  

For the implementation of risk-based design methodology, risk assessment, 

particularly for the Quantitative Risk Assessment (QRA), is the premier technique as 

it offers a unified measure of safety and, more importantly, a wide spectrum of 

pertinent techniques, methods and tools are available to ensure the execution under 

various circumstances. With a high-level flow chart depicted in Figure 3.2, key 

drivers for the development of risk-based design methodology and the constituting 

components are contained in Appendix 1. 

 

Figure 3.2: A high-level Framework of Risk-Based Design [Vassalos, 2006] 
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3.3 Risk Analysis Techniques for Risk Assessment 

In the knowledge that fault and event trees are the most typically employed 

techniques for risk modelling, the key features, strength and weakness will be 

detailed next. Apart from the techniques adopting tree-like structures, an alternative - 

BNs, adopting influence network topology will be explored to examine the 

applicability within the context of risk assessment. 

3.3.1 Fault Tree Technique 

The fault tree technique is a logical representation of the failure of events and 

components that jointly could lead to the occurrence of a (normally, critical and 

undesired) top event [HSE, 2001], [Wang and Trbojevic, 2007]. Logic gates (mainly, 

“AND” and “OR” gates) are assigned to describe how basic events combine to cause 

top events. 

The construction of a fault tree usually starts with a top event and works downwards. 

The top event should specify concisely the nature of the event within a specific 

domain. Events that are considered to be necessary to produce the event one level up 

will be included at the next immediate level. “OR” gate will be assigned if one event 

alone may cause the higher event and “AND” gate will be used if two or more events 

have to occur in combination towards the higher event. The downward development 

should stop once all branches have deduced to a stage where all basic events can be 

quantified through appropriate sources and tools. 

The advantage of the fault tree technique is attributed to its clear and logical form of 

presentation. In the case of novel designs it is still capable of producing a systematic 

analysis and plausible frequency estimation. The hazards arising from both hardware 

(e.g. technical fault, etc.) and software (e.g. human error, etc.) aspects concerning 

safety generally can be covered well. This has enabled the fault tree technique to be a 

widely used and well accepted tool for frequency estimation of the hazard under 

consideration. Nevertheless, in the case of a large system it soon becomes 

complicated, time consuming, and difficult to follow. Also, it loses its clarity if the 
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systems do not fall into simple failed or working state (e.g. human factor, weather 

condition, sea state, etc.). Moreover, it is difficult to include conditional 

dependencies (e.g. dependence of the visibility on the weather) and mutually 

exclusive events (e.g. good weather and storm) in fault tree analysis as all events in 

the tree are assumed to be independent, which renders a problem of over-simplifying 

the risk model.  

3.3.2 Event Tree Technique 

The event tree technique is a logical representation of the events that may follow 

from an initiating event, normally, an accident, a system failure, or an unintended 

action. It is mostly used for consequence analysis to logically and numerically 

examine the possible consequences following an initial single event. The branches 

are established at each step to show the various possibilities that may arise.  

The construction of an event tree starts with an initiating event and the branches are 

developed step by step in a way of questioning. The answers could be binary or 

multiple outcomes. Each branch is conditional on the circumstances defined in the 

previous branches. The development of the tree should stop once each path in the 

tree defines a clear scenario and the consequent impact can be quantified using 

appropriate data and tools. Also the probabilistic information (conditional 

probabilities) needs to be assigned for each branch. The tree is calculated on the basis 

of the conditions and circumstances implied in the path linking the initiating event to 

its immediate consequences. 

Similar to a fault tree, an event tree has a clear and logical form of presentation. 

Hence, it is simple and easy to understand. It is widely recognised as a powerful tool 

for consequence analysis. However, in case that many events must occur in 

combination, it may lead to many redundant branches, and it becomes inefficient. 

The size of an event tree also increases exponentially with the number of variables. 

Moreover, it is difficult to include events that the failure states are not clear (e.g. 

human factor, weather condition, sea state, etc.). 
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Both fault trees and event trees are the classical techniques for safety assessment in 

the maritime industry. A study as part of the joint North West European project, 

[DNV Technica, 1996], has developed a comprehensive safety assessment 

methodology, in which fault and event trees are the principal tools for risk modelling. 

The most noteworthy studies carried out recently are a series of formal safety 

assessments submitted to IMO for various types of ships, i.e. cruise ship [Nilsen, 

2005, Nilsen, 2007], Ro-Ro passenger ship [Konovessis, 2007], LNG tanker [Vanem, 

2006], containership [Forsman, et al., 2006], bulk carrier [IMO, 2002b], and tanker 

[Eliopoulou, et al., 2008], where risk modelling relies heavily on fault and event trees. 

3.3.3 Bayesian Networks 

Besides using fault and event trees for risk modelling, attention is also paid to BNs as 

an alternative [Koski and Noble, 2009]. A BN is capable of describing complex 

relationships probabilistically using intuitive visual representations. A BN model is 

normally comprised by: (i) a set of variables making up the nodes in the network, (ii) 

a set of directed links (with arrows) connecting the nodes representing dependencies, 

and (iii) a list of probability distributions (continuous or discrete) associated with 

each node describing the probabilistic influence of its parents on the node. The 

probability distribution can be continuous or discrete in principle. However, due to 

the BN technique is primarily oriented towards variables in discrete states and since 

continuous variables can be discretised easily, their formulation is restricted to the 

discrete case for the rest of this thesis. The key feature of a BN is the ability to form 

a risk knowledge model enabling modelling and reasoning about uncertainty. An 

example of a BN model is illustrated in Figure 3.3. 

In a BN model, a variable, which dependents on other variables, is often referred to 

as a child node. Likewise, the directly preceding variables are called parents. The 

nodes without any parent are root nodes and the nodes without any child node are 

leaf nodes. A BN is also frequently referred to as directed acyclic graph (DAG) 

meaning one must not return to a node by following the direction of the arcs under 

any circumstance. As shown in Figure 3.3, each node denotes an event. The 
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dependency is indicated by an arrow, known as an arc, with conditional distribution 

assigned in a form of conditional probability table to the down-arrow node, 

conditional on the combination of the values of its parents. In the case of root nodes, 

unconditional probability distributions are normally assigned.  

 

Figure 3.3:  A BN Model [Eleye-Datubo, et al., 2006] 

An important advantage of the BN technique is that it allows probabilistic inference 

in the network on the basis of the observed evidence of other nodes using the Bayes’ 

theorem, as illustrated in equation (3.1). In the two-node BN of Figure 3.4, after 

initiation (meaning the probability table for the node   and the conditional 

probability table for the node   are quantified given the current knowledge) and 

assuming that   is observed in state   ,  equation (3.1) will enable the estimation of 

the probability distribution of   given     , as shown in equation (3.2). Likewise, 

the computation can be performed for large networks in a flexible manner. 

Depending on the location of the evidence in the network, there are four types of 

inference that can be performed. That is (i) backward (diagnostic), (ii) forward 

(predictive), (iii) mixed and (iv) combined, as depicted in Figure 3.5.  

       
           

                       
 

(3.1) 

          
              

                          
 

(3.2) 



21 

 

 

Figure 3.4: A Two-Node Bayesian Network 

 

Figure 3.5: Four Types of Inference [Korb & Nicholson, 2004] 

The building of a BN model starts with the qualitative development of the structure 

in a graphical presentation. There is a variety of software available to facilitate this 

process, e.g. Hugin, (http://www.hugin.com/), GeNIe, (http://genie.sis.pitt.edu/), 

Netica, (http://www.norsys.com/), etc. Through the identification of the nodes 

(variables) in the model, the level of detail will be defined. Moreover, the assignment 

of arrows (links with orientation) describes the model qualitatively in a manner of 

dependent relationships, which is often referred to as causality [Pearl, 2000]. This 

inherent property is desirable for pertinent probabilistic model development as 

standard mathematical notation is difficult to possess such characteristic [Wang and 

Trbojevic, 2007]. Following this, the quantification process can be performed by 

embracing every possible source of information to derive probabilities and 

conditional probabilities for each node. 

http://www.hugin.com/
http://genie.sis.pitt.edu/
http://www.norsys.com/
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BNs offer several advantages over conventional risk modelling techniques: 

 It is unnecessary to assume independencies among the variables as this is 

inherently described by the network. 

 The intuitive visual presentation depicting causal relationships facilitates a more 

realistic model, which is easy to interpret and validate.   

 Different sources of information can be employed concurrently in a single model 

with minimised conflict.  

 The information is computed and processed probabilistically, which is consistent 

with risk assessment paradigm. 

 The probabilistic computation can be performed using available software, in 

which the implementation is fast even for large and complex networks. 

 If the variables included are the key indicators/measures of the selected domain, 

it can be regarded as a useful tool for scenario generations and the subsequent 

decision support. 

Disadvantages: 

 The dependent (or conditionally independent) relationships can be difficult to 

identify in a physical environment, where such information is not explicitly 

available.  

 The size of a conditional probability table can become large due to too many 

parents and their states. 

 Large size of conditional probability table implies that more information is 

needed for the quantification of the network. This may lead to the dominance of 

subjective estimation as the most flexible and available sources of information. 

BNs are gradually being recognised as an effective tool for risk modelling and 

decision support in the maritime industry [Norrington, 2008]. Earlier investigations 

in [Friis-Hansen, 2000] confirm their potential as a transparent and consistent 

modelling and decision support tool. [Faber et al., 2002] use BNs to construct a risk 

model of decommission activities for assessing options and identify additional safety 

measures necessary for the operation. From the point of view of regulatory 
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development, MSC69 in 1998 was the first time a risk assessment based on BNs had 

been presented at IMO regarding “Solo watch-keeping during periods of Darkness” 

[Skjong, 2008] and [Denmark, 1998]. Moreover, the technique has been used for 

modelling navigational safety of the Electronic Chart Display and Information 

System (ECDIS) presented by DNV [IMO, 2006b]. A similar study on the ECDIS in 

[Kaneko and Yoshida, 2007] further ascertained the role of BNs not just for risk 

modelling but also for the assessment of RCOs.  

In the recently finished research project SAFEDOR, [GL, 2002], [Breinholt, et al., 

2009], which aimed to treat safety cost-effectively through the adoption of risk-based 

approaches, BNs have received strong attention. For the development of pertinent 

risk models concerning risk contributors, it has been deployed as a risk modelling 

tool to address several important hazards. That is, 

 Concerning the structural integrity, a network model is developed to identify the 

most critical damage scenarios regarding hull girder failure [Friis-Hansen and 

Garre, 2007].  

 For collisions and groundings, various BNs sub-models attempts to depict the 

behaviour of operators [Leva, 2006], to identify key causal factors affecting ship 

collisions both under power [Ravn, 2006a] and due to the failure in propulsion 

systems and steering systems [Ravn, 2006b].  

 Regarding fire safety, BN models were designed to be the tool for fire screening 

of new layouts [Majumder, et al., 2007], and for modelling cargo fire scenarios 

in conjunction with the computational fluid dynamics (CFD) tools [Povel and 

Dausendschon, 2007].  

Although BNs have been recognised as a useful tool for risk modelling, they are also 

blamed for the amount of information needed for establishing dependent 

relationships, and assigning probabilities to each node). This has significantly 

hindered their wider adoption. This drawback can be overcome only if proper 

channels are established that will allow the identification of dependent relationships 

and the derivation of probabilities through an objective and efficient means, as it will 

be described later in this thesis. 
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3.4 Sources of Information for Risk Assessment 

In the process of risk quantification of various hazards, reliability of information 

sources (both qualitative and quantitative in nature) plays an important role. The 

current practice relies mainly on historical accident and incident data, first-principles 

tools, and expert judgement. As it was discussed in Section 3.3, the last approach 

should be deployed with care due to its inherent subjectivity. However, due to 

limited sources available and the lack of proper tools, expert judgement has been 

extensively used in practice. This situation leads to an all-around examination of the 

state-of-the-art sources regarding historical data and first-principles tools.  

3.4.1 Marine Accident and Incident Databases 

A maritime accident, similar to other service failures of engineering products, has 

been recognised as a priceless ground to learn and to improve the safety level of 

ships. This is particularly true for accidents onboard passenger ships as such 

casualties often lead to multiple fatalities and societal outcry. Given that the world 

fleet is far from casualty-free operations, the practice of learning from marine 

accident/incident should be appreciated as it demonstrates the attitude towards the 

accident by striving (both proactively and reactively) to improve safety performance. 

Over the years, various theories have been proposed in order to understand the 

phenomenon of an accident, in which the propositions like epidemiological theory 

and domino theory, have received wide attention and recognition [Brown, 1990]. The 

former considers an accident as the conjunction between the operator (victim), the 

tool (agent) and the working environment (situation), which necessitates the 

realisation that each element, (i.e. individual, technology and working environment), 

is subject to improvement. The latter focuses on the sequential and multi-causal 

nature of an accident [Heinrich, 1980], and has received a considerable acceptance in 

the maritime industry. The underlying philosophy is similar to the widespread Swiss 

cheese model propounded in [Reason, 1990] for human errors analysis, as shown in 

Figure 3.6. On the basis of the precedent work, the Loss Causation Model (LCM) 
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was developed in [Bird and Germain, 1992]. Consequently the application of Marine 

Systematic Cause Analysis Technique (M-SCAT), derived from the LCM, was 

advocated. 

 

 

Figure 3.6: Swiss cheese model [Reason, 1990] 

The fundamental principle is the postulate that the losses and the associated safety 

problems are the result of consecutive failures of both hardware and software 

safeguards, which comprise immediate, intermediate, and root causes. The hardware 

refers to physical equipments and systems, e.g. electronic navigational equipments, 

detection systems, lifeboats, etc., whilst the software is linked to human and 

manageable means, like safety management structures, organisational rules and 

regulations, etc. The difference among these factors is that the superficial ones are 

easy for the public to capture and to blame, e.g. human errors, whilst the remaining 

contributory portion is deeply implanted and difficult to perceive, e.g. management 

culture. 

It is worth noting that great effort has been made in the past to stress the importance 

of correcting human errors. Statistical analysis also suggests that 75 – 85% of marine 

accidents involve human factors [Baker and McCafferty, 2002], [Baker and 

McCafferty, 2005], [Barnett, 2005]. This can be justified by the fact that almost 

every activity onboard needs human interference or is implemented by humans 

(particularly for crews). However, one should always bear in mind that equal 
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attention should be paid to the remaining hardware and software factors as the goal is 

to lower the risk level by reducing the chance of experiencing an accident and 

mitigating the ensuing consequences. 

Apart from accidents, significant effort has been devoted to prove that an accident 

does have precursors, which are popularly referred to as the near-miss or incidents 

[Tye, 1976], [Jones, et al., 1999], [Kirchsteiger, 1997], [Molland, 2008], etc. The 

principal assumption is that an incident is identical to the phenomenon of an accident, 

except that the sequence of the events is interrupted by either latent or physical 

safeguards before the final adverse consequences occur. Direct reference can be 

found in the Star Princess fire accident [MAIB, 2006], where the fire started by a lit 

cigarette butt in a balcony. Through practical experience gained in the course of the 

research project FIREPROOF [SSRC, 2009], the analysis of fire accident/incident 

data onboard passenger ships has shown an iterative nature of such events (fire 

started by lit cigarette in the balcony) and the effects that various safeguards (human 

detection, extinguisher, etc.) have on the outcome. 

A number of investigations have revealed that there is a ratio between losses of 

different severities. [Heinrich, 1980] shows that there are about 300 no-injury 

incidents for every major accident, as shown in Figure 3.7, while [Bird, 1966] 

postulates this ratio is 600:1. In addition, [Ferguson et al., 1999] shows the ratio is 

100:1 and there should be 1000 safety situations for every major accident. Certainly 

the exact figure varies from study to study due to several factors, however, the 

crucial underlying thinking is to admit that each case labelled “incident” could 

potentially become an “accident” and both accidents and incidents do indicate a 

degree of “loss of control”.  Reducing the number of incidents will also decrease the 

absolute number of accidents. Thus, it is paramount to include both valuable 

resources and treat accident/incident reporting and analysis as an integral part. 
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Figure 3.7: Iceberg Theory/Pyramid Model [Heinrich, 1950] 

Historical Background 

Casualty databases vary with respect to the marketing orientation, configuration, size, 

and focus. This is due to complex and mixed interests from various stakeholders, like 

owners, legal advisors, yards, consultants, control agencies, insurance companies, 

and government departments, etc. There are a number of organisations that have 

established casualty-related databases, such as the Lloyd’s Marine Intelligence Unit 

(LMIU), the Marine Accident Investigation Branch (MAIB), the International 

Maritime Organisation (IMO), the European Maritime Safety Agency (EMSA), the 

Nautical Institute, the American Bureau of Shipping (ABS), etc.  

The LMIU is generally recognised as the most successful organisation in 

commercialising and supplying electronic maritime data and information services 

[LMIU, 2007], and covers serious and non-serious casualties occurred after 1990. 

Despite the fact that its primary driver was mainly to meet the needs of insurance 

companies, it is still the largest casualty database in the world to date [LMIU, 2010].  

It was not until the last decade that step change was observed regarding the maritime 

casualty database development. Technological advancement has made electronic 

storage of data feasible at negligible expense. For instance, the Global Integrated 

Shipping Information System (GISIS) – marine casualties and incidents [IMO, 

2010a], was developed at the IMO to accompany a series of newly introduced 
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resolutions [IMO, 2000, IMO, 2005]. The aim was to provide a platform where 

accident investigation findings classified as “serious” and “very serious” could be 

collected in order to facilitate learning. 

The corresponding governmental agencies and flag administrations, in response to 

the aforementioned resolutions, have also launched regulations for accident reporting 

and investigation, such as the UK regulation 2005 No. 881 - the Merchant Shipping 

regulations (Accident reporting and investigation), [MCA, 1999, MCA, 2005], to 

look into casualties that occur either in its territorial waters or onboard British 

flagged vessels. As a result, this exercise soon became an effective means to ensure 

that major accidents could be investigated and stored in a central database system 

within each agency [NUST, 2001], [Kristiansen, 2005], e.g. the British Marine 

Accident Investigation Branch [MAIB, 2005], the Australian Transport Safety 

Bureau (ATSB), the Transportation Safety Board of Canada (TSBC), the United 

States National Transportation Safety Board (NTSB), the Danish Maritime Authority 

(DMA), the Accident Investigation Board of Finland (AIBF), etc. 

As marine casualties will always entail a dimension of responsibility, the recreation 

of accident scenes can receive significant resistance, is treated reluctantly during the 

investigation, and influence the findings negatively. Therefore, various non-

governmental organisations set up anonymous reporting systems, such as the 

Mariners’ Altering and Reporting Scheme (MARS) from the Nautical Institute 

[MARS, 2010], etc., in an attempt to allow full reporting of accidents and free 

information exchange without fear of legal persecution.  

Apart from the databases that have already been established at various organisations, 

several new databases and pertinent platforms are underway. For instance, EMSA is 

presently developing a European Marine Casualty Information Platform (EMCIP), 

[EMSA, 2010], to provide the European Commission and its Member States with 

objective and reliable information on maritime safety as well as to facilitate 

cooperation and analysis [Correia, 2010]. ABS has developed a casualty 

investigation database software (RootCause LEADER) to identify the root-causes of 

various types of accidents/incidents, and it is currently exploiting a new accident 
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database tool to accommodate its latest casualty investigation method – Marine Root 

Cause Analysis Technique (MaRCAT) [ABS, 2010]. 

Even though marine accidents resulting in catastrophic consequences attract major 

attention from the industry and the wider public, the significance of marine incident 

data, which grows at a fast pace with the vast amount of ship operators, should not be 

overlooked. The data is generated primarily through the compliance of the 

mandatory code of conduct (Chapter 9 on reports and analysis of non-conformities, 

accidents and hazardous occurrence) under the SMS originated from the ISM [IMO, 

1994]. For over a decade of data accumulation since the ISM became mandatory, 

ship operators have collected a considerable amount of operational incidental records 

in various formats. In fact, practical experience gained suggests that this has become 

a major source of firsthand and reliable marine accident/incident information, where 

the magnitude of the data generated is fairly comparable with the available accident 

data. 

Characteristics of Current Generation Marine Accident/Incident Databases 

The structure of the maritime industry is characterised by complex interrelationships 

and conflicting interests among the participating parties, e.g. regulatory bodies, class 

societies, shipyards, owners, operators, and insurers, etc. It is important to 

acknowledge that safety will be a lasting issue at the top of IMO’s agenda and the 

occurrence of maritime casualty event is very unlikely to be eliminated in the 

foreseeable future. On this basis, great effort has been spent across the industry to 

address this issue from various perspectives. An important undertaking at IMO is the 

apparent shift from deterministic rule compliance to performance-based and goal-

based approaches. A concurrent move is to stress the importance of casualty 

investigation, particularly for serious accidents in the hope that lessons could be 

learned in order to facilitate necessary regulatory changes. Moreover, the ISM code 

explicitly requires non-conformities, accidents and hazardous occurrences within the 

organisation to be reported and analysed to self-improve safety performance.  
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It is apparent that the aim is to embrace every effort to strive for better safety 

performance, nevertheless, the mixed signals emitted from IMO are rather confusing: 

on one hand, the birth place of deterministic rules has pronounced that the future is 

“Risk-Based” by the Secretary General of IMO, William O’Neil, in 2002 [Vassalos, 

2009], whilst, on the other hand, given the clauses and the current prevailing 

approaches adopted for accident/incident investigation the findings will, most likely, 

identify the loopholes and assist the amendments by further tightening the 

deterministic design envelope. This leads to an ambiguous situation in the sense that 

although the two undertakings appear to move in the same direction, a junction point 

cannot be found easily. 

The key issue here is that current approach concerning marine accident and incident 

investigation and data collection is best described as rule-oriented and case-specific. 

It is rule-oriented in a way that safety enhancement is sought through the legislation 

without clear goals and objectives. Potential revisions are carried forward within the 

regulatory framework itself, whilst findings hardly ever feed back to yards, operators, 

and designers. A similar situation has also been noticed from an organisational 

perspective as the lessons learnt through the SMS compliance can be difficult to 

circulate within the wider maritime community. It is case-specific as experience 

gained in the past suggests that key changes of the existing maritime safety 

framework have been driven by individual high-profile accidents, whilst large 

proportion of records are under-utilised, as it is illustrated in Table 3.2. 

A short summary regarding the application of historical data for the quantification of 

the risk level and its components is provided next. In the case of frequency 

estimation for the flooding due to collisions and groundings, statistical analysis of 

historical accidents has been performed in the project HARDER, [Lützen and 

Clausen, 2001] and [Lützen, 2002], in order to investigate the probabilistic damage 

and collision energy distributions. On the other hand, more sophisticated 

probabilistic models were developed in SAFEDOR for capturing the likelihood of a 

collision and a grounding by taking into account ship systems failure, environmental 

conditions and people as it is reported in [Lepsøe, 2006], [Leva, 2006], [Ravn, 2006a, 

Ravn, 2006b, Ravn, et al., 2006]. A similar approach has been adopted for addressing 



31 

 

fire safety where historical fire incident data were used for quantifying the 

frequencies of 14 SOLAS space categories following fire escalation [Ventikos, et al, 

2010].  

Table 3.2: Recent Maritime Accidents and Responses [Kristiansen, 2005] 

Background Response 

Need to increase maritime safety, 

protection of the marine 

environment, and improve working 

conditions on board vessels. Flag 

state control is not regarded as 

efficient enough. 

Declaration adopted in 1980 by the 

Regional European Conference on 

Maritime Safety that introduced Port state 

control of vessels, known as the Paris 

Memorandum of Understanding (MOU). 

The loss of Ro-Ro passenger ferries 

Herald of Free Enterprise in 1987, 

and Scandinavian Star in 1990. 

IMO adopts the International Management 

Code for the Safe Operation of Ships and 

for Pollution Prevention (ISM Code): Ship 

operators shall apply quality management 

principles throughout their organization. 

Grounding of oil tanker Exxon 

Valdez in Alaska 1989, resulting in 

oil spill and considerable 

environmental damage. 

US Congress passes the Oil Pollution Act 

(OPA „90): Ship operators have unlimited 

liability for the removal of spilled oil and 

compensation for damages. 

The loss of Ro-Ro passenger vessel 

Estonia in 1994. 

Stockholm agreement (1995): North-West 

European countries agree to strengthen 

design requirements that account for water 

on deck. 

A need for greater consistency and 

cost-effectiveness in future revisions 

of safety regulations. 

Interim Guidelines for the Application of 

Formal Safety Assessment (FSA) to the 

IMO Rule-Making Process, 1997. 

[IMO,2007a] 
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The under-utilisation of databases in the industry is mainly attributed to the lack of 

formalised and consistent techniques for data collection due to diverse focus points 

among the interested parties, e.g. root-cause analysis, human factors, hardware 

failures, fire fighting performance evaluations, etc. These databases can be labelled 

as the first generation sources of information, which are characterised by limited 

formatted parameters and the descriptive text still holds key information for risk 

assessment. Direct reference could be given to both LMIU web-based database: the 

Sea-Web, [LMIU, 2010], and the GISIS [IMO, 2010a]. Even with the well published 

serious fire accident onboard Star Princess cruise liner in March 2006, both 

databases provide formatted variables mainly on ship characteristics, general 

information of the event (e.g., time, location, number of passengers, injuries and 

fatalities), whilst more critical information regarding the fire initiation, the 

performance of suppression means, escalation situations, and how the fire was 

eventually extinguished, is not available or it is only partially recorded in the 

descriptive text, as shown in Figure 3.8 and 3.9.  

 

 

Figure 3.8: A Snapshot of Sea-Web Record of Fire Accident Onboard Star Princess 

in March 2006 
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Figure 3.9: A Snapshot of GISIS Database Record of Fire Accident Onboard Star 

Princess in March 2006 

Consequently, one can hardly make use of such databases as a comprehensive and 

standalone source of information to assist the effort in the risk assessment context 

[Schröder, 2005]. The main contribution of first generation database is to provide the 

information of specific high-profile accidents and high-level bar/pie charts that 

reflect the situation at an abstract level. This is inevitable as the databases have never 

been treated as an integral part of through-life considerations of ship safety. 

3.4.2 First-Principles tools 

The development of first-principles and performance-based tools is phenomenal in 

addressing ship safety in recent years. Due to their objectivity by following the 

principles of physics, these tools can be regarded as another reliable source of 

information after proper validation. They generally cover mathematical models, 

methods and numerical tools, as well as scaled model tests. Their applications have 

been found in addressing various phases and aspects of the casualties, in which a list 

of the latest development is summarised next. 
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In the area of consequence analysis due to collisions and groundings, the work 

conducted in HARDER and SAFEDOR has led to the development of an in-house 

simulation software PROTEUS3 at the Ship Stability Research Centre (SSRC), as 

illustrated in Figure 3.10. This is a dedicated tool for modelling damaged ship 

dynamics as it is reported in [Jasionowiski, 2002], [Jasionowiski and Vassalos, 2006], 

etc. In addition, the relevant study is being carried out to develop tools that are 

capable of simulating fire growth within various types of space onboard [Majumder, 

et al, 2007], [SSRC, 2009]. 

 

Figure 3.10: A Snapshot of PROTEUS3 

The assessment of residual functional capacity following an accident that would 

allow a ship to seek safe haven can be achieved by examining the post-accident 

systems availability. This has proven to be a complex problem because it is essential 

to couple spatial locality and historical frequency of damage scenarios. Currently, 

computer software - Systems AVailability ANalysis Tool (SAVANT), is being 

developed to facilitate the probabilistic analysis of systems availability following 

collisions or groundings [Cichowicz, et al., 2009, Cichowicz, 2009], [Vassalos, 

2008b]. 

Although there has been considerable achievement for evacuation analysis of new 

cruise ships and existing passenger ships on the basis of performance-based rationale 

[IMO, 2002a, IMO, 2007c], [Vanem and Skjong, 2006], the latest development 

includes crew performance and their contribution in emergencies to complement the 

existing definition of evacuability, as illustrated in Figure 3.11, in order to offer real 
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“means” for enhancing evacuation performance [Dogliani, et al., 2004]. In addition, 

both the availability of emergency systems and the influence of the floodwater/fire 

must also be included in flooding/fire evacuation models [Vassalos, 2006]. The 

evacuation simulation software being developed at the SSRC - Evacuation model 

environment (Evi), aims to couple the key attributes from preceding probabilistic 

models, such as vessel motions and floodwater movements in the case of flooding 

[Vassalos, et al., 2001], visual obstructive smoke, toxic gases, and heat in the case of 

fire event [Guarin, et al., 2004],  [Majumder, et al., 2007]. 

 

Figure 3.11: Evacuability [Vassalos, 2008b] 

The key to understand the aforementioned approach for risk modelling through the 

deployment of first-principles tools and the risk contribution tree is to link ship 

design parameters with safety performance parameters. That is effectiveness of 

navigation equipment, manoeuvrability, time to flood, time required for 

abandonment, etc. These safety performance parameters play an important role in 

estimating the total risk of a ship. 

However, cost and time consuming features associated with model tests and 

simulations could be a bottleneck, as illustrated in Figure 3.12, which may 

significantly hinder the implementation of risk-based design methodology in the 

early design stage. As indicated in the figure, it illustrates an engineering 

compromising process between the complexity/cost of application of a tool to predict 

a phenomenon and the prediction quality/reliability. Although the difference seems 
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trivial in this graphic representation, one should appreciate the revolutionary 

difference the computer-based simulation software has brought in comparison to the 

model test when it comes to applications in a highly competitive industry. Similarly, 

an optimal approach, as shown in Figure 3.12, allowing fast-and-accurate predictions 

is needed so that the analysis can be performed cost-effectively. 

 

Figure 3.12: Hypothesis on Engineering Compromise between Complexity/Cost of 

Application of a Tool to Predict a Phenomenon and the Prediction Quality/Reliability 

[Castillo & Zamora, 2006] 

3.5 Data Mining 

As far as risk assessment is concerned, the ultimate output from various sources of 

information as described in the previous section will be presented in a data set for the 

derivation of risk models. However, with the ever increased size and number of 

attributes, the deployment of more sophisticated data processing techniques is also 

essential.  

The explosive growth of the data is being collected nowadays facilitated by the 

technological evolution in computer science. It soon leads to a situation of “rich in 

data, poor in knowledge” in which classical statistical analysis techniques are 
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incapable to cope with [Han and Kamber, 2006]. This has driven the birth of a new 

and promising field - data mining, which is also frequently referred to as the 

knowledge discovery from data (KDD). As suggested by the name, the key objective 

of data mining is to derive useful knowledge out of the data. Nevertheless, due to the 

diversity of subjects, data sources, storage means, quality levels, and applications, 

data mining draws works from multidisciplinary fields, (e.g. database technology, 

machine learning, pattern recognition, statistics, data visualisation, etc.). 

A survey of typical data mining applications is contained in Appendix 2. The process 

of knowledge discovery consists of an iterative sequence of the following steps, as 

depicted in Figure 3.13: 

1. Data cleaning (to remove noise and inconsistent data) 

2. Data integration (to combine data from various sources) 

3. Data selection (to select data that is relevant to the analysis) 

4. Data transformation (to transform data into proper forms so as to facilitate the 

mining process, such as coding, summarising, pre-processing, etc.) 

5. Data mining (advanced data analysis methods to process the data) 

6. Pattern evaluation (only truly interested knowledge findings, such as pattern, 

relationships, etc, will be put forward and reported) 

7. Knowledge presentation (to present the knowledge in appropriate manner) 

Though still young, data mining is contributing greatly to business strategies, 

knowledge bases, and scientific and medical research. Nevertheless, considering the 

property of a generic database, tackling uncertainty in a rational manner becomes an 

important issue of the whole process so as to ensure the quality of the analysing 

results.  

Naturally, the integration of data mining techniques with uncertain reasoning 

techniques becomes a viable solution, as illustrated in Figure 3.14. Uncertain 

reasoning promotes effective reasoning involving uncertainty, with particular 

emphasis on the underlying mechanisms for reasoning processes. The popular 

techniques include NNs, BNs, fuzzy logic, and genetic algorithm (GA), etc.  
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Figure 3.13: Data Mining as a Step in the Process of Knowledge Discovery [Han and 

Kamber, 2006] 

 

Figure 3.14: Integration of Data Mining with Uncertain Reasoning Techniques [Chen, 

2001] 
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Data mining is an in-depth explorative analysis of the data aiming to discover 

knowledge patterns hidden in the data and predict future trends. In contrast, uncertain 

reasoning aims at developing effective reasoning methods involving uncertainty. A 

key advantage of integrating data mining and uncertain reasoning techniques is to 

transform the data into a knowledge model presented in a mechanism, which 

provides a platform for uncertain reasoning. By doing so, it establishes a (e.g. 

probabilistic) knowledge base for future application and, at the same time, quantifies 

and minimises the uncertainty arisen from various sources.  

The application of data mining in the maritime industry is very limited comparing 

with the fast developing applications in other fields, e.g. business, biology, and 

information technology, etc. Nevertheless, there is still a few pioneer work deploying 

data mining techniques as will be elaborated in Sections 3.5.1 and 3.5.2. In the 

meantime, a noteworthy application is carried out in [Ravn, 2003], which focuses on 

optimising the layout of the subdivision of Ro-Ro passenger ships by considering 

damage stability probabilistically alongside traditional ship design activities. A Data 

mining technique is deployed for developing a model so that the attained subdivision 

index can be expressed as a function of various variables. By doing so, one can 

estimate the Attained Subdivision Index without detailed subdivision evaluations. 

This is very desirable for optimisations at early design stage.  

Based on the foregoing, special attention has been paid to NNs and BNs as both 

techniques offer promising mechanisms to act as the risk model. They have also 

demonstrated the potential through a number of maritime applications. 

3.5.1 Data Mining in Neural Networks 

The inspiration for NNs was the recognition of complex learning systems in closely 

interconnected sets of neurons in animals. It starts with an input layer, where each 

node corresponds to a predictor variable. Each input node should connect every node 

in the hidden layer. It is up to the user to choose the number of hidden layers. A 

simple NN with a single hidden layer is provided in Figure 3.15.  The nodes in the 

last hidden layer should connect each node in the output layer, where one or more 
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response variables can be presented. Each connection between any two nodes has a 

weighting factor associated with it.  

 

Figure 3.15: An Example of a Neural Network [Larose, 2005] 

To train a NN model is a typical supervised learning method. It requires a large 

training set of complete records, including the target variable(s). Although the 

weights are assigned randomly at initiation stage, it becomes clear that to train the 

model is actually a process of identifying a set of model weights that minimise the 

prediction error, such as the Sum of Squared Errors (SSE, analogous to the residuals 

in regression analysis). Upon finishing the training process, the model can be used 

for estimation and prediction. However, as the input and output variables are always 

normalised to a value between 0 and 1, inversions are needed to transform the results 

into interpretable formats [Two Crows Corporation, 1999].   

There is an increasing amount of research in the maritime industry deploying NNs as 

a decision support tool through training of relevant domain data, e.g. the support of 

steering control [Junaid, et al., 2006], the prediction of the stalling of marine gas 

turbines [Caguiat, et al., 2006], fault diagnosis of steam turbine flow passages [Cao, 

et al., 2009], etc. Nevertheless, as far as risk modelling is concerned, a limited 

reference is available. [Ung, et al., 2006] develops a risk prediction model 

incorporating fuzzy set theory and NNs. This is demonstrated by a test case 

evaluating the navigational safety near the port. Moreover, recent work in the project 

SAFEDOR attempted to use historical data on collisions and groundings to train a 
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NN model to predict the damages. It is concluded that this is a fast and simple 

technique to implement, however, the findings can be discounted if no similar 

training data exists [Ravn, et al., 2006]. 

The advantages of the NN technique: 

 It is robust to deal with noisy data (uninformative or even erroneous data). 

 It can be easily implemented to run on massively parallel computers with each 

node performing its own calculations. 

 Once a model is trained, the prediction can be carried out quickly. 

The disadvantages of the NN technique: 

 It requires an extensive amount of training time and large data set unless the 

problem is very small. 

 All attribute values must be normalised to a value between 0 and 1, which makes 

it difficult for interpretation. The situation is further complicated by too many 

combinations of the links between input layer, invisible layer(s), and output 

layer. Hence, the network serves as a “black box”. 

 As a result, there is no explicit rationale for decision support using NNs. 

3.5.2 Data Mining in Bayesian Networks 

In comparison, the integration of data mining with the BN technique leads to a totally 

different approach, which is also frequently referred to as the Bayesian learning. To 

train a risk model, there are mainly two aspects of learning: (i) structure learning and 

(ii) parameter learning.  

Bayesian structure learning aims to construct the network structure by learning from 

the data. Considering the configuration of a BN, totally different handlings have been 

proposed in the field. The first proposition aims to address the structure construction 

from the point of view of causality discovery. Thus, through iterative dependency 

and conditional independency analysis using dedicated mathematical models, one 
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can identify a diagram that entails all the relationships; on the other hand, 

acknowledging the fact that a BN is essentially a representation of the joint 

probability distribution of the entire variable domain, another strategy advocates 

estimating the conditional probability of how well a diagram (out of a large amount 

of candidate diagrams) describes the dataset. 

The quantification of the network could be a very laborious and difficult process if 

experts’ judgement is used alone. However, this is not the case if the structure is 

identified through Bayesian learning. A formalised method for learning from the data 

has been devised. For instance, the beta density function can be employed to 

compute the conditional probabilities for binary variables using the data alone. 

The application of Bayesian learning in the maritime industry is rare and a few 

applications are summarised next. During the investigation of BNs as a decision 

support tool in marine application in [Friis-Hansen, 2000], one of the five case 

studies regarding preliminary ship design adopts the Bayesian learning algorithm. By 

using the data of main ship particulars of the existing fleet, a BN model is trained and 

used for answering queries. On the other hand, as far as QRA is concerned, [Hu, et 

al., 2007, Hu, et al., 2008] employee Bayesian learning techniques to model ship 

navigation safety, and attempt to analyse the interactions between human 

organisation factors (HOF) and vessel operation systems.     

3.5.3 Comparison between Neural Networks and Bayesian Networks 

Both tools are the popular fields to apply data mining techniques, however, there are 

three key factors affecting the decision on which one to choose for the sake of risk 

modelling: transparency, data treatment, and compatibility.  

 NN is an interpolation tool that heavily depends on quantity and quality of data 

for training. On the other hand, a BN can be established and populated 

“manually”. Also, the latter is solely based on probabilistic theory / concept.    
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 It is desirable to have a transparent risk modelling tool so as to facilitate model 

interpretation and validation. Because of the normalisation process and pure 

numeric information flow (training of weights) between different layers, a NN is 

essentially a “black box”, in comparison, a BN offers a more transparent 

platform by having intuitive graphical representations of causal relationships and 

meaningful information flow (probability distribution). 

 The current trend in risk-based design development is to have a tool that is 

capable of presenting and processing the data probabilistically. Backed up by 

Bayes’ theorem and the subsequent deduced inference techniques, which are 

normally encapsulated in a software package, it is relatively easy for BNs to 

meet the needs; whilst, the supportive rationale for NNs is not designed for such 

purpose as far as the probabilistic framework is concerned, although the 

information is transformed to the values between 0 and 1. 

 Lastly, a BN model is interchangeable with other risk models using classical 

techniques (i.e. fault tree, event tree, etc.) due to its transparent and probabilistic 

treatment of data. In contrast, this would be an extremely difficult task for NNs 

to perform. 

3.6 Closure 

The fundamental concepts, methodologies, techniques and sources of information for 

the implementation of risk-based ship design have been critically reviewed and 

analysed. An introduction of relevant promising data mining techniques has been 

included as well. The following are the main conclusions: 

 In view of the radical shift regarding the fundamental thinking, understanding of 

safety, risk-based design represents a scientifically viable advancement in 

realising a systematic, rational, and holistic treatment of through-life safety of a 

ship. 
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 Risk assessment plays a key role in realising risk-based design, in which the 

techniques/methods/tools developed within the context of QRA can be readily 

deployed. 

 The classical techniques for risk assessment, (most typically, fault and event tree 

techniques), still represents the mainstream in the maritime industry. 

Nevertheless, the inherent characteristics are undermining the quality of the 

study results, which can be complemented by potential techniques, i.e. BNs, 

having more sophisticated features.  

 Both historical casualty information and the data generated through first-

principles tools can be regarded as two major sources of information for risk 

assessment. However, in acknowledging the disorganised accident/incident 

database systems and time-consuming features with first-principles tools, also 

not forgetting that important decisions need to be made under tight schedules at 

early design stage, the effectiveness for the implementation of risk-based design 

need to be further enhanced. 

 The integration of data mining and pertinent uncertain reasoning techniques 

represents an important achievement in developing mathematical models 

containing multiple variables and, at the same time, describing them in an 

uncertain environment. 
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Chapter 4  

Approach Adopted 

 

4.1 Preamble 

In chapter 3 a critical review has been undertaken for the state-of-the-art risk-based 

ship design methodology, and promising data mining techniques for risk modelling. 

The deficient areas within the current techniques for risk modelling and within the 

main sources of information for risk quantification have been highlighted. 

The objective of this chapter is to explain the methodology that will be followed 

throughout this thesis. Following an outline of the approach on the basis of the 

background knowledge reviewed in Chapter 3, the detailed procedures are elaborated 

next.  

4.2 Outline of the Approach 

The key to understand the necessity of this research is to appreciate the difficulties 

that are being experienced for the implementation of risk-based ship design. 

Classical risk modelling techniques (i.e. fault and event trees) assume all events are 

independent. This raises concerns over the quality of the subsequent findings due to 

the potentially over-simplified models. A second observation, closely relevant, is the 

lack of the source of information for risk quantification, which leads to routine 

utilisation of subjective judgement. In cases where the performance-based first-

principles tools are deployed for probability derivation, it can be extremely time-

consuming to perform locally. The situation can be further complicated by the 

globally iterative ship design process. 
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On the other hand, the field of data mining, which is capable of sifting through large 

amount of data and revealing interested domain knowledge, is evolving at a fast pace 

nowadays. Particular attention has been paid to the application of data mining and 

the consequent model learning in both BNs and NNs due to their ability to describe 

complex relationships and present the findings probabilistically. 

On this background, the approach adopted in this thesis has the following principal 

characteristics: 

 Development of a generic framework for the next generation marine 

accident/incident database. Rather than serving the development of deterministic 

rules, this framework is designed to be risk-management-oriented by enabling 

knowledge transfer from the operational phase to the design purposes. It also 

integrates advance first-principles tools, including physical experiments, within 

the database so as to establish an all-embracing casualty-related knowledge base. 

 Employment of advanced data analysis techniques to transform the knowledge 

base into risk models in the selected uncertain reasoning environment. The 

contribution is attributed to the discovery of complex correlations among 

multiple variables and to the derived probabilistic information to quantify the 

models.   

 The developed risk models link directly design parameters with risk indicators 

so that the impact of various design alternatives on the risk level can be assessed 

instantly. 

 Integration of the developed risk models for the implementation of risk-based 

ship design methodology. Particular attention is paid to the role of the models 

for safety performance assessment, its compatibility, and the subsequent 

decision support for alternative selection. 

In so doing, risk assessment can be carried out with minimised intervention of 

subjective sources within the context of risk-based ship design. Rather than 

expensive case-specific analysis, much effort can be saved as the developed risk 
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models contain information at parametric level. These elements will contribute to an 

objective, transparent, efficient, and knowledge-based methodological framework for 

the implementation of risk-based design. 

4.3 Implementation Process 

A three-stage process describing the approach that has been adopted in this thesis is 

summarised in the following lines.  

Stage 1: Development of the Next Generation Marine Accident/Incident 

Database 

The first stage aims at developing a framework for the next generation marine 

casualty database. Compared to the current databases, the proposed concept adopts a 

configuration where coupling between historical records and first-principles tools as 

sources of information for risk assessment takes place. Following the identification 

of principal hazards of the ship type under consideration, a high-level database 

configuration will be established under the concept of total risk. Subsequently a 

detailed list of parameters to be recorded in the database is obtained by using the 

hierarchical decomposition method. By doing so, each parameter finds its 

corresponding place in a structure for the quantification of ship life-cycle risk. 

It is worth noting an important difference between the way that first-principles tools 

are deployed under the risk-based design methodology and how they will be used in 

the proposed framework. The current practice is to iteratively perform assessment on 

a case by case basis so that a specific design/configuration requires extensive 

simulations or experiments to derive probabilistic information. In contrast, the newly 

proposed framework aims to collect the data that is generated from first-principles 

tools and store it in the database. As the data is reusable, the accumulated 

information can be readily extracted to derive pertinent risk models. This will 

facilitate a fast and reliable execution of risk assessment. 
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The output from this stage is an all-embracing casualty-related database that is stored 

in a relational database platform, which is reusable, can be updated and queried. 

Stage 2: Development of Risk Models through Data Mining 

At this stage, data mining techniques are employed for model learning by using the 

data collected at Stage 1. Considering the selection of appropriate platform for risk 

modelling between BNs and NNs, as it has been summarised in Chapter 3, the 

former is a more transparent platform having sound mathematical foundation for 

performing probabilistic inference. Moreover, due to its flexibility and compatibility, 

it is interchangeable with the classical risk modelling techniques (e.g. event trees). 

Hence, BNs will be deployed for assisting further data mining activities. 

Having identified the risk modelling platform, the detailed learning process will be 

presented. Through dependency analysis, a list of dependent and conditionally 

independent relationships can be identified. By following the algorithm of constraint-

based learning, a BN diagram that entails all the discovered relationships is obtained. 

Consequently, the network diagram is quantified using a formalised methodology for 

parameter learning from the data. Apart from constraint-based learning, the score-

based learning algorithm focuses on the joint probability distribution nature of a BN 

model to represent a data set. 

The input required for this stage is a data set of significant size containing sampled 

data of the interested variables. With the developed program to automate the learning 

process, pertinent risk models can be developed in BNs. 

Stage 3: Implementation of Bayesian Networks in the Risk-Based Design 

Methodology 

The last stage focuses on the integration of BNs in the risk-based design 

methodology. Following the proposition of a practical design procedure, BNs are 

treated as an integral part of the whole process for safety performance assessment, 

and the ultimate decision support on design solutions selection.  In the knowledge 

that technical performance, cost and earning potential needs to be considered as well 

to achieve a well-balanced design, the Analytic Hierarchy Process is deployed for 
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such a multi-objective optimisation process. By doing so, the applicability of the 

proposed approach can be demonstrated for the implementation of risk-based ship 

design. 

It has to be appreciated that BNs can be perceived both as high-level risk models and 

domain risk knowledge models. This is attributed to their ability to describe 

sequential events probabilistically as required for the risk model and their flexibility 

to include design and operational parameters for direct risk analysis of various design 

alternatives.  

4.4 Closure 

The approach adopted in this thesis has been outlined. The interrelationships among 

the three stages and their corresponding chapters are depicted in Figure 4.1. Detailed 

working principles, configurations, methodologies, techniques, and illustrative 

applications for each stage will be presented in Chapters 5, 6 and 7 respectively.  

 

Figure 4.1: Structure of the implementation stages 

 

Stage #1: 

Chapter 5 

Stage #2: 

Chapter 6 

Stage #3: 

Chapter 7 
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Chapter 5  

Marine Accident/Incident Database 

 

5.1 Preamble 

Great effort and resources have been spent across the maritime industry to 

investigate past accidents/incidents and to collect relevant information. The goal of 

this undertaking is to improve safety performance of the industry through learning 

from mistakes so as to prevent similar undesirable events from occurring in the 

future. On the other hand, the current approach concerning the investigation of 

marine casualties and the collection of pertinent data is rule-oriented and case-

specific given the existing regulatory framework. This implies that a very limited 

portion of the information contained in the data is being used whilst the rest is left 

underutilised. Moreover, the lessons learnt, which lead to the changes of 

deterministic regulations, will most likely further tighten the design space. Thus, 

rather than a coarse deployment of this valuable resource of knowledge, a 

rationalised alternative utilising marine accident/incident data is needed. 

In the meantime, a concurrent move of the industry is to seek a holistic and rational 

treatment of safety at design stage through risk-based design, by taking safety as an 

add-on objective and systematically integrating risk assessment in the conventional 

ship design process. Unsurprisingly, the ultimate goal is identical with the previous 

undertaking, nevertheless, rather than further reducing the design envelop this 

approach aims at design liberation and facilitation of innovative designs that cannot 

be approved under the deterministic regulatory framework.  
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As risk-based design methodology is still evolving, there are still a few obstacles that 

need to be addressed. With the emergence of an increasing number of first-principles 

tools which address various key issues regarding ship safety performance, the time-

consuming feature has proven to be a drawback hindering risk-based design 

implementation at early design stage.  

Based on the foregoing, this chapter focuses on the establishment of a framework for 

the next generation marine accident/incident database, so that it can be systematically 

integrated within the life-cycle consideration of ship safety. This chapter starts with 

the description of the main sources of information with particular emphasis on their 

configuration within the framework. As the core objective is to enable a reliable and 

objective source of information for supplying both qualitative and quantitative 

knowledge, the identification of dominant variables to be recorded are detailed next. 

Lastly, the chapter concludes with a comprehensive database platform that is 

dedicated for passenger ships.  

5.2 Next Generation Marine Accident/Incident Database 

The underlying philosophy of the proposed next generation database is in line with 

the current maritime accident/incident database: to learn from mistakes and to further 

enhance safety performance. Contrary to the rule-oriented and case-specific feature 

of the current approach, the next generation database will be integrated in the risk 

management process, with particular emphasis on the design stage. In this respect, an 

ideal configuration would be an all-embracing database that can be directly coupled 

with risk analysis and assessment, and provide a comprehensive and reliable source 

of safety-critical information. 

The rationale for such a proposition is that the experience and the knowledge gained 

from operational non-conformities can be transferred and utilised for ship design, as 

illustrated in Figure 5.1. This is important for the maritime industry as such 

knowledge generally comes at a price of life loss, ships worth hundreds of millions, 

and considerable damage to the environment.  
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Figure 5.1: A “Common Sense” Approach to Ship Design [Vassalos, 2008b] 

Moreover, it is indeed the design stage that holds the greatest freedom to make 

important decisions on the selection of key components that influence the ship 

performance, including safety, as illustrated in Figure 5.2. Hence, it has to be 

appreciated that analysing past casualties, deriving pertinent knowledge, and using it 

as early as possible in the design process should be treated as a lifecycle issue. 

 

Figure 5.2: Relationships between Cost and Time in Early Design Phases [Brett, et 

al., 2006] 
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In light of the foregoing, this section focuses on the development of a high-level 

database framework to store casualty-related knowledge that is essential for risk 

assessment. It is important to remember that such source should not only provide 

quantitative information for the derivation of probabilistic information but also 

qualitative knowledge for risk model development. The emphasis is placed on the 

sources of information and their corresponding configurations. 

In pursuit of such a database framework, the key is to identify the fields where the 

information is needed for risk assessment. This in turn leads to the determination of 

the principal hazards that are endangering the safety performance of passenger ships. 

As discussed in Chapter 3, historical data suggests the principal hazards of passenger 

ships are: collision, grounding, and fire.  As a result, the risk components of each 

hazard need to be further investigated in order to determine the information needed.  

Every accident is the result of a set of consecutive failures of both hardware and 

software safeguards, like technical failures, operating errors, design deficiencies, and 

management culture, etc., as illustrated in Figure 5.3. As far as technical safeguards 

are concern, there are mainly two types of them: one focuses on the prevention of 

accidents from happening and the other aims to mitigate the effects of their outcomes.  

 

Figure 5.3: Chain of Events [Vassalos, et al., 2000] 

Considering the safety level of a ship, its quantification relies on both the probability 

of having a certain accident, denoted by    , and the ensuing consequence in a 

quantified manner, denoted by    . The estimation of both probabilities and 

consequences requires relevant data. For instance, the data on accident causes 

contributes to the derivation of accidental probabilities (frequencies); the data on the 
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consequential and evacuation process is essential for estimating the societal 

consequence. In this respect, it is certain that the employment of subjective resources, 

i.e. experts’ opinion, should be minimised to assure an unbiased assessment. 

Fortunately, with great effort that has been devoted to the investigation of past 

maritime casualties, the development of first-principles and performance-based tools 

for analysis of the key areas affecting ship safety, and the exploitation of model 

experiments, the promising sources of information for the next generation maritime 

database with the aim of risk management embedded would be: (i) historical 

maritime accident/incident data, and (ii) first-principles approaches (i.e. computer-

based simulations, experiment results). Both of them will be further analysed next. 

5.2.1 Historical Accident/Incident Data 

This source of information refers mainly to the accident records in the databases of 

various organisations, like international regulatory authorities, regional and national 

authorities, classification societies, maritime professional bodies, etc. In the 

knowledge that the level of detail varies in different databases, such resource should 

be utilised as long as proper processing can be performed for standardisation, which 

will detailed in Section 5.3.  

On the other hand, it has been stressed in Chapter 3 that the data recorded with the 

aforementioned sources are mainly accidents that have significant negative 

consequence and the importance of incident (near-miss) data should never be 

overlooked. The latter source is also included within this framework in order to 

capture a broader picture. Such information is normally available with ship operators 

due to ISM requirements. A summary of the available sources of information is 

tabulated in Table 5.1.  
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Table 5.1: Sources of Historical Marine Accident/Incident Data 

Categories Organisation Systems 

International 

regulatory 

authorities 

International Maritime Organisation, 

(IMO) 

Global Integrated 

Shipping Information 

system (GISIS ) 

Regional/ 

national 

authorities 

Marine Accident Investigation Branch 

(MAIB), UK 

 

Marine Incident 

Database System (MIDS) 

European Maritime Safety Agency, 

(EMSA) 

European Marine 

Casualty Information 

Platform, (EMCIP) 

United States National Transportation 

Safety Board,  (NTSB) 

Web-based platform 

Australian Transport Safety Bureau, 

(ATSB) 

Web-based platform 

Transportation Safety Board of 

Canada, (TSBC) 

Web-based platform 

Danish Maritime Authority,  (DMA) Web-based platform 

Accident Investigation Board of 

Finland, (AIBF) 

Web-based platform 

Classification 

societies 

Lloyds’ Register, (LR) IHS Fairplay Sea-Web 

American Bureau of Shipping, (ABS) RootCause LEADER 

Ship 

operators 

Cruise Liners, Ro-Ro Passenger ships, 

etc. 

In compliance with 

Safety Management 

System (SMS), ISM code 

Maritime 

professional 

body 

Nautical Institute Mariners’ Altering and 

Reporting Scheme, 

(MARS) 

International Association of 

Independent Tanker Owners 

(INTERTANKO) 

Tanker incidents 

database 

5.2.2 First-Principles Approaches 

Besides historical casualty information, it is important to include the data generated 

through computer-based simulations and model experiments. In this respect, it has to 

be appreciated that the key difference between the proposed approach and the usual 

handling. The current practice towards first-principles approaches tends to deploy it 

for “on-site” application on a case-by-case basis, in which the safety performance of 
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a specific design, configuration, or feature requires a dedicated model (physical and 

virtual) to be developed before any computation can be performed. In contrast, the 

proposed approach aims to collect the data generated from first-principles 

approaches in a general manner in advance so that the corresponding data can be 

extracted and utilised directly if risk models need to be developed. In this way, the 

data generated in the previous studies is reusable for the future analysis of similar 

subject. With the progressive accumulation of data from first-principles approaches 

one can bypass their time-consuming features and still achieve an efficient and 

objective analysis.  

As first-principles tools are constantly developed and fine-tuned, information from 

subjective sources progressively acquires a complementary role in the process. This 

method is inherently based on performance assessment. The deployment of properly 

validated first-principles tools has proven to be an important means for risk analysis 

as it has been discussed in Chapter 3. A list of examples of the simulation software 

that is capable of evaluating the performance of several mitigative measures 

influencing the total risk of a design is provided in Table 5.2.  

Table 5.2: Examples of Computer-based Simulation Software, [Mermiris and 

Langbecker, 2006] 

Key issues Engineering analysis First-principles Tools 

Breach of hull following 

collisions/ groundings 

Structural failure ANSYS, LS-DYNA 

Water ingress, flooding, 

capsize, sinking 

Progressive flooding 

simulations in time 

domain/transient stages/in 

waves 

NAUTICUS (DNV), 

WASIM (DNV), 

PROTEUS (SSRC) 

Emergency evacuation 

(escapes, assembly, 

embarkation into LSA) 

Agent-based simulation of 

pedestrian dynamics 

EVI (SSRC), AENEAS 

(GL), EXODUS - 

Maritime (UoG) 

Fire ignition, growth Dispersion rate of smoke, 

oxygen levels and 

visibility as a function of 

time 

Fire Dynamics Simulator 

(FDS), Smokeview, 

CFAST, CFX, Less 

FIRE, MRFC 
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These tools provide a promising environment in the sense that the casualties occurred 

in the past can be studied in detail by modelling and simulation without any 

substantial cost. The data collected through experiments is another credible source of 

information. This can be carried out through testing on scaled model tests in a towing 

tank facility or full scaled models (e.g. cabin fire test).  

5.2.3 Database Configuration 

It is worth noting that different data sources play distinct roles in quantifying various 

constituent elements within the total risk framework, as illustrated in Figure 5.4. Due 

to the nature of maritime accidents, historical data become progressively available in 

the public domain. Disregarding the “ragged” details of each record due to lack of 

standardised accident reporting schemes, it is relatively easy to derive the probability 

(frequency) by considering that the data is virtually “sampled” from the real world. 

However, as maritime accidents are characterised by low frequencies and high 

consequences, and understanding that to record the statuses of various key 

parameters and factors (e.g. water ingress, heeling motion, etc.) in emergency 

situations is a difficult task, historical data will not suffice for the analysis. The 

situation becomes even more difficult when it comes to post-accident system 

availability and evacuation analysis where extremely rare historical information is 

available. In contrast, data generation through first-principles approaches is a 

powerful avenue to complement relevant information.  

 

Figure 5.4: Configuration of Accident/Incident Data Sources  

Accident Causality Analysis

P(i)

Consequence Analysis Mitigation Analysis
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A further elaboration of this situation is provided in Table 5.3. With respect to the 

pre-casualty phase of collisions and groundings, historical accident/incident data 

plays a dominant role. Contrary to the breach sizes and mitigation options, where the 

source of information is obtained mostly by first-principles tools for post-casualty 

phases. A similar situation is encountered for fire events as well. 

Table 5.3: Casualty Types Vs Sources of Information 

Casualty 

type 
Phases Detail fields needs data 

Source of 

information 

Collision & 

Grounding  

Pre-casualty Causation Historical data 

Post-casualty Escalation Historical data 

First-principles 

tools 
Flooding survivability  

System availability after flooding 

Evacuation & Rescue 

Fire Pre-casualty Causation Historical data 

Post-casualty Escalation Historical data 

First-principles 

tools 

System availability after fire 

Evacuation & Rescue 

Having identified the sources of information for various phases of casualties, the 

resulting situation is a set of data collected/generated from various sources, which 

gives rise to the configuration of the next generation database, as depicted in Figure 

5.5. Historical data and first-principles tools are utilised and integrated for supplying 

the information on the three principal hazards concerning both pre-casualty and post-

casualty phases. With respect to the mitigation analysis, such as post-accident system 

availability and evacuation, first-principles tools play the dominant role in providing 

the relevant information.  

The key difference of such database in comparison to the current practice is that it is 

risk-management-oriented in a way that each parameter recorded has its 

corresponding place for risk quantification under the concept of total risk. Thus, 

compared to the descriptive text in the current database, the approach proposed in 

this chapter will be liberation for such precious resource to be utilised for exploring 

its full value and potential. 
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Figure 5.5: High-Level Configuration of the Next Generation Marine 

Accident/Incident Database 

In pursuit of such a framework, the key element would be a list of parameters to be 

recorded in the database and to be used as the input for risk assessment. Certainly, it 

would not be feasible or practical to record hundreds of thousands of elemental 

parameters determining the exact safety level of a passenger ship. In the knowledge 

that the fundamental objective is to provide a transparent and well-informed platform 

for decision making on the selection of feasible solutions at the design stage, it will 

be much more efficient to focus on dominant variables and achieve a fast and 

accurate approximation of the estimated risk level. This will be elaborated in detail in 

the next section of this chapter. 

5.3 Dominant Variables Identification 

“Embedded in the mud, glistening green and gold and black, was a butterfly, very 

beautiful and very dead. It fell to the floor, an exquisite thing, a small thing that 

could upset balances and knock down a line of small dominoes and then big 

dominoes and then gigantic dominoes, all down the years across Time.” [Bradbury, 

1952] 

The butterfly effect was first seen in [Bradbury, 1952] and ever since it is frequently 

used to explain the chaotic phenomenon [Smith, 2007]. A concise summary of the 
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chaos theory is that “everything is linked”, which could also be stated for the subject 

of ship safety. The total risk of a ship is affected by a large amount of factors, which 

can be grossly classified into two layers: visible and invisible, as illustrated in Figure 

5.6. The visible layer refers to those variables that are physically traceable and 

recordable given the state-of-the-art technology. The invisible layer includes the 

variables which are difficult to quantify, e.g. safety culture.  

 

Figure 5.6: An Illustration of Visible and Invisible Layers Influencing Shipboard Fire 

Risk 

The current practice on identifying the variables for risk assessment lies mainly in 

the visible layer, while the remaining factors, which in fact are the main sources of 

chaos, are omitted.  This practice is justifiable as the available resource is always 

limited by a number of physical restrictions, e.g. budget, schedule, technology, etc. 

Moreover, with the development of mathematical theory for uncertainty 

quantification, the chaos can be measured and managed in a scientific manner. For 

instance, confidence intervals can be estimated through statistical analysis and the 

probabilistic distribution of interested variables can be quantified using Bayesian 

statistics. Hence, it is deemed appropriate to claim that any event can be modelled by 

a handful of variables with reasonable accuracy. 
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Stemming from this statement, an important and immediate task is to identify an 

effective means for determining a list of variables concerning the hazard under 

consideration. In principle, sensitivity analysis is needed to identify the variables that 

have more influences on the outcome than others. However, given the state-of-the-art 

mathematical models, which are not mature enough to accommodate smooth 

implementation, an alternative is needed. 

In the knowledge that the up-to-date risk models developed through a number of 

large-scale research projects (e.g. HARDER, SAFEDOR) take the advantage of years 

of continuous effort and knowledge accumulation in understanding the relevant 

phenomena, an important assumption is that the variables included in those risk 

models can be regarded as a credible and well-documented pool of resources 

concerning the key characteristics of the interested hazards.  

It is understood that one may concern the possible overlook of some potentially 

hazardous scenarios that are not encountered before. In this context, it is worth 

mentioning the following safeguards to minimise the chance of possible negligence: 

 The identification of important variables through existing up-to-date risk models 

should be carried out in a conservative manner. This can be achieved by 

including those identified variables in the background material during the course 

of risk model development. It will be further safeguarded as the selected risk 

modeling tool - BNs, as an offshoot of the influence diagram [Kjaerulff and 

Madsen, 2008], is capable of depicting complex relationships among a diverse 

set of variables. This implies that the redundant variables will be excluded from 

the model. 

 As incidents can be regarded as the precursors of similar accidents, maritime 

incident data should also be included so that the chance of missing those less 

frequent but potentially devastating scenarios can be minimized. 

 Due to the flexibility offered by BNs, variables can be easily included at various 

stages as long as it is deemed necessary. 
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Hierarchical Decomposition Process 

In order to facilitate the process of dominant parameters identification, a hierarchical 

decomposition approach is proposed for systematic break down of the total risk and 

its constituent elements up to a level where the physical parameters having 

significant importance to the safety performance of specific issues can be identified.  

Through systematic decomposition of the key risk elements into various safety 

performance aspects and ultimately linking each one with dedicated ship design 

issues which are governed by only a handful of design variables, the basic ship 

design parameters can be linked with both safety performance parameters and the 

total risk, as illustrated in Figure 5.7. A unique advantage of such a structure is that 

the complexity of the problem under consideration can be greatly simplified as one 

can address a single design issue at a time. 

 

Figure 5.7: Links between Design Parameters and Ship Total Risk 

To carry out the hierarchical decomposition process, the emphasis is placed on the 

key risk contributors. In the case of passenger ships, the total risk should be sought 

through analysing the principal hazards: collision, grounding and fire hazards. 

Moreover, on the basis of the definition of the risk, its quantification for a design 

concerning hazards, like collisions, groundings and fires, can be estimated through 

the product of a number of probabilities defining critical scenarios and the ensuing 

societal consequences, as illustrated below [Vassalos, 2004b]. 
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As a result, ship parameters that play important roles in quantifying the 

aforementioned risk components should be identified. In relation to this, it has shown 

that the status (values) of each risk component is dominated by a few performance 

parameters. The identification of pertinent safety performance parameters should be 

considered from the point of view of estimating the effectiveness of various 

preventive and mitigative measures. 

For instance, in the case of collisions and groundings, the preventive measures 

include mainly effective navigation and manoeuvring as far as the design is 

concerned. This is because the performance of navigation, propulsion and 

manoeuvring systems is important to ensure that the action needed can be executed 

in time to avert a collision / grounding. On the other hand, mitigative measures 

include structural capacity, resistance to capsize after flooding, evacuation, etc. An 

example of the links between risk components and safety performance parameters 

concerning collisions and groundings is tabulated in Table 5.4.  

Table 5.4: Links between Risk Components and Examples of Safety Performance 

Parameters concerning Collisions and Groundings 

Risk components Safety performance 

parameters 

           

        

Probability of 

collision/grounding 

Reliability of 

navigation system 

Reliability of 

manoeuvrability 

                         

                      

Probability of water ingress 

due to collision/grounding 

Structural capacity / 

crashworthiness 

                                 

                              

Probability of failure 

(capsize/sinking/collapse) 

due to water ingress and 

collision/grounding 

Time to 

capsize/sink/collapse 
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Consequences 

Post-accident system 

availability 

Time required for 

abandonment 

In comparison, fire onboard is a much more frequent event and its occurrence is 

greatly influenced by local environment and conditions (e.g. usage, fire load, 

occupancy characteristics). In this case, the preventive means is sought through the 

operational aspect. As a result, mitigative measures are the main focus as far as the 

design is concerned. Both manual and automatic detection systems and the 

corresponding suppression systems are the means to contain the fire within the space 

of origin. Local fire containment systems (insulation boundaries, etc.) and evacuation 

means provide additional layers of safeguard that influence the total fire risk. An 

example of the links between risk components and safety performance parameters for 

fire event is illustrated in Table 5.5. 

Table 5.5: Links between Risk Components and Safety Performance Parameters for 

the Fire 

Risk components 
Safety performance 

parameters 

          Probability of ignition 
Space-specific 

ignition frequency 

                 
Probability of fire growth 

due to ignition 

Reliability and 

effectiveness of 

detection and 

suppression systems 

Fire load 

                            
Probability of escalation due 

to growth and ignition 

Effectiveness of 

insulation  

      Severity of consequence 

Post-accident system 

availability 

Time to reach 

untenable conditions 

Time required for 

abandonment 
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As a result, the identification of dominant variables needs to be performed through 

modelling the influence of basic design variables with the safety performance 

parameters. In this respect, a number of models and tools have been developed as it 

is discussed in Chapter 3.  

In the case of collision and grounding safety, from the design point of view the 

reliability of navigation is influenced mainly by the bridge layout design and the 

performance of navigational systems. An example of such link is tabulated in Table 

5.6. 

Table 5.6: Links between Safety Performance Parameters and Detailed Design Issues 

concerning Collisions and Groundings 

Safety performance parameters Design issues 

Reliability of navigation system Bridge layout 

Navigational system 

Manoeuvrability  Hull shape 

Propulsion system 

Steering system 

Structural capacity  Scantlings 

Structural material 

Structural arrangement 

Time to capsize/sink/collapse Watertight subdivision 

Tank arrangement 

Anti-heeling system 

Post-accident system availability Shipboard system arrangement 

Time required for abandonment Escape route 

Internal layout 

LSA 

In the case of fire safety, the automatic detection system for fire hazard is linked with 

the selection of local detection systems (concerning reliability and effectiveness) and 

the layout design (concerning the density and arrangement of detectors within 

specific space). Table 5.7 exhibits such links between safety performance parameters 

and design issues for fire safety. 
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Table 5.7: Links between Safety Performance Parameters and Detailed Design Issues 

for the Fire 

Safety performance parameters Design issues 

Space-specific ignition frequency Fire fuel load and layout 

Heat source and layout 

Reliability and effectiveness of 

detection and suppression systems 

Detection and suppression systems 

selection & layout 

Time to reach untenable condition Fire load 

Ventilation system 

Insulation grade (Boundary classes) 

Post-accident system availability Shipboard system arrangement 

Time required for abandonment Escape route 

Internal layout 

LSA 

The level of detail needed to produce the baseline design at early stage is limited 

when comparing with the detail design stage. Consequently, each design issue can be 

described by a handful of design parameters at a reasonable resolution. For instance, 

the bridge layout includes the installation of the ECDIS system, the AIS system, 

ergonomics, area complexity, number of work stations, and types of alarm 

management systems, etc.; the hull shape is determined by ship length, breadth, 

depth, block coefficient, presence of bulbous bow, type of stern, etc.  

Apart from design parameters, it is also noted that the environmental variables, in the 

wider sense like sea state and traffic characteristics of the operational route, should 

also be included as the scenario-specific variables to assist the risk quantification 

process. The scenario-specific variables may cover the following aspects: 

 Traffic characteristic (e.g. density) 

 Sea area (e.g. depth, topography)  

 Sea state (e.g. wave height, wind, current) 

 Loading conditions 

 Time of day 

 Etc. 
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5.4 A New Database 

In order to demonstrate the applicability of the concept for the next generation 

maritime accident/incident database, a software platform has been developed for 

passenger ships, as illustrated in Figure 5.8, with the aim that the data can be 

collected, stored, retrieved and integrated in the data mining system for the 

implementation of risk-based ship design methodology.  

Considering what influences both the pre-casualty and post-casualty phases of the 

principal hazards of passenger ships, it is essential for the new database system to 

contain key information of the following seven modules: 

 Vessel information 

 Voyage condition 

 Critical systems (Hull/Machinery/Equipment) 

 Collision 

 Grounding 

 Fire 

 Consequence 

 

Figure 5.8: A Snapshot of the Developed Marine Accident/Incident System 
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Moreover, for the sake of database functioning and bearing the specially concerned 

safety issues in mind, another three modules are included in the system: (i) general 

information, (ii) root cause analysis, and (iii) human factor.  A unique advantage of 

such a system is that most of the parameters recorded have their designated places 

for total risk quantification. In the meantime, it is important to ensure that the 

parameters are recorded in a standardised way so that data processing can be carried 

out easily. Due to the categorical nature of the majority of the design variables for 

risk assessment, most of the parameters are encoded into a predefined format where 

users only need to select the most appropriate option rather than to define arbitrarily.  

 

For the functioning of the database and the subsequent data processing, technical 

assistance in the fields of relational database technology and distributed application 

architecture is discussed in Appendix 3. 

The following paragraphs focus on detailed description of the variables to be 

recorded within the proposed framework. Particular emphasis is placed on the 

investigation of the principal hazards (i.e. collision, grounding, and fire) and the 

subsequent analysis of root-causes. Detail description of the variables and their 

corresponding statuses are contained in Appendix 4. 

 General Information 

The first module, as illustrated by the top section of Figure 5.9, is designed to cover 

general information that abstractly describes and classifies a record. Parameters like 

ID, title, etc. will not eventually contribute to the data processing phase. Nevertheless, 

they are included for clarity of the system. 
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Figure 5.9: General Information and Vessel Information Modules 

 Vessel Information 

The vessel information module, as depicted by the bottom section of Figure 5.9, aims 

to record the information about ship particulars that describing the key characteristics. 

It contains classification statuses, physical dimensions, bridge design information, 

etc. This module should provide a throughout scan of the ship so that an overview 

can be gained and important information on ship parameters can be collected. 

 Voyage Condition 

Historical tragedies suggest the environmental conditions play an important role for a 

fully-developed accident, e.g. MV Estonia [Estonia, 1997], Salem Express [BBC, 

2006], and MV al-salam Boccaccio 98 [IMO, 2010b], hence, situation-specific 

variables (e.g. ship location, voyage phase, visibility, sea state, and wind speed) are 

included to describe the conditions of the surrounding environment. 
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Figure 5.10: Voyage Information Module 

 Critical systems (Hull/machinery/equipment) 

As far as passenger ship principal hazards are concerned, the failures of critical 

hull/machinery/equipment can be vital initiating events to their occurrence. In this 

respect, the critical systems, the failure of which could potentially lead to the 

occurrence of the principal accidents, are included. For instance, the failure of 

propulsion systems can lead to a collision within intense traffic waters and the 

grounding in complex areas. Eventually, hull structures, propulsion systems, steering 

systems, navigational systems, and electrical systems are identified, as illustrated in 

Figure 5.11. 
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Figure 5.11: Hull/Machinery/Equipment Failure Module 

 Collision 

Collision is one of the major threats to passenger ships. This module, as shown in 

Figure 5.12, includes both collision and contact events as they share similar 

characteristics except that the ship is struck by another ship for a collision accident 

whilst the ship is struck by an external object for a contact accident. Although the 

contact is not among the principal hazards of passenger ships, it is included for the 

purpose of generalisation of the database system. 

For the prevention of collisions/contacts, great attention has been paid to the bridge 

design. The parameters, tabulated in Table 5.8, distinguish powered collisions and 

drifted collisions as the energy released from the two categories varies dramatically. 

This can potentially influence the ensuing consequences of the accidents. Moreover, 

the sequence of a collision is broken into phases containing event detection, 

manoeuvre planning and manoeuvre execution. For collision detection, the 

information on both human factors and navigational aid equipments is recorded, 

while the manoeuvring phase focuses on the necessary timeframe to be performed.  
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Table 5.8: Important Parameters Recorded for the Collision 

Type 
To identify whether it is a powered collision or drifted collision.  

Complexity, 

Traffic intensity 

It aims to record the area complexity for navigation and the traffic 

intensity as they determine the number of distractions that the 

officer on watch (OOW) needs to be aware of.  

Initial distance, 

speed, angle 

between 

The initial distance that both ships are on collision courses, the 

speed of both ships and the angle between them would directly 

affect the time available for the OOW to react.  

Own ship 
This field indicates whether the own ship is the striking ship or the 

struck ship as the latter is likely to suffer more serious consequence. 

Scenario 
It defines the collision scenario as the own ship may collide with a 

meeting vessel, a crossing vessel, or an overtaking vessel. 

Ship in lane (ship 

type, speed, size) 

Information about the ship in lane, e.g. type, speed, size, which is 

used to record the basic facts of the ship being collided with.  

Contact scenario 
In the case of contacts, the object that the ship contacts with is 

needed, e.g. icebergs, offshore platforms, bridges, etc. 

First detection 
To trace how an emergency situation is firstly detected, either by 

visual means or navigational instruments.  

Manoeuvre (time 

detect, time plan, 

time manoeuvre) 

As time is the crucial factor for collision prevention, the detailed 

manoeuvring operations are recorded. 

Officer on watch, 

officer number 2, 

pilot 

Once detected, the situation is influenced by the actions taken by 

the crews on the bridge. 

 

Navigational aid 

detection (radar 

system, ECDIS, 

AIS, etc.) 

This field concerns the performance of navigational 

instruments/systems.  

Communication 

between two ships 

The communication between two ships is also an important factor 

to minimise misjudgement. 

Clarity give way, 

give way situation, 

give way occur 

According to the International Regulations for Preventing Collision 

at Sea (COLREGS) [Cockcroft and Lameijer, 1996], the give way 

situation is also one of the major concerns for ship collision. 

Steer failure 
The failure of steering systems can be critical when urgent 

manoeuvring operations are needed. 

Tug deployed 
In drifted situations the employment of tugs can be an important 

factor to reduce the chance of collisions. 
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Figure 5.12: Collision and Contact Module 

 Grounding 

Ship grounding shares notable similarities with the collision, where early detection 

plays a significant role on the prevention of its occurrence. Nevertheless, the 

grounding is more sensitive to the safety culture of ship operators regarding route 

planning and updating. Furthermore, one factor needs to be taken into account is the 

obstacle that the ship grounds with, which may be submerge rocks or beaches (sand). 

Different types of obstacles may lead to significantly different damage extent, which 

in turn determines the time needed to sink the ship. Table 5.9 and Figure 5.13 

illustrate the list of variables to be included in this module. 

Table 5.9: Important Parameters Recorded for the Grounding 

Grounding type 
Grounding events can be categorised into powered 

groundings and drifted groundings.  

Grounding with 

The consequence of groundings is influenced by the hardness 

of the object that the ship grounds with, e.g. rocks, sands, 

large and visible obstacles, and unmarked invisible obstacles, 

etc. 

Area complexity, traffic 

intensity 

It records the area complexity for navigation and the traffic 

intensity as they determine the number of distractions that 

officer on watch needs to be aware of. 
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Update routine, passage 

planning 

Proper and frequent update of routine and passage planning is 

critical in avoiding groundings, in which, on another side, it 

also reflects the safety culture of ship operators. 

Initial distance, speed 
They are important in determining the time available for the 

ship to respond prior to groundings. 

Officer on watch, officer 

number 2, pilot 

Once detected, the situation is influenced by the actions taken 

by the crews on the bridge. 

Chart visibility 
The chart visibility aims to record how well the obstacle is 

displayed on the map. 

Light marked 
Indicates whether the obstacle is marked by lights for visual 

detection at night. 

First detect, time detect, 

time plan, time 

manoeuvre 

To trace how the emergency situation is firstly detected, 

either by visual means or navigational instruments. 

Navigational aid 

detection (Radar system, 

echo sounding, AIS 

system, ECDIS, VTS 

system, Bridge 

Navigational Watch 

Alarm System) 

The ECHO system is employed to give an early alarm for a 

potential grounding accident, which is an important 

preventive measure for the avoidance of the grounding. Other 

than the ECHO system, the remaining functions of 

navigational aid systems/instruments are similar to those 

deployed for collision prevention. 

Steer failure, tug 

employed, Start 

(latitude, longitude), end 

(latitude, longitude) 

The failure of steering systems can be critical when urgent 

manoeuvring operations are needed. 

 

Figure 5.13: Grounding Module 
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 Fire 

The fire event module deals with the factors influencing various phases of a fully 

developed fire: ignition, containment, escalation, and evacuation, as illustrated in 

Figure 5.14. The ignition phase addresses the likelihood of fire occurrence; the 

containment phase records the actions that are taken to contain the fire; lastly, the last 

phase contains information about the evacuation operations once the fire escalates 

from the space of origin. Table 5.10 exhibits the important parameters recorded in 

the database concerning the fire event. 

Table 5.10: Important Parameters Recorded for the Fire 

Location The characteristics of local environment determine fire loads, 

possible causations, insulation boundaries, etc. Hence, the usage 

of the space onboard plays an important role. 

Source of ignition, 

ignition mass 

In this case, the source of ignition and ignition mass are useful to 

investigate preventive measures. 

Detection means As time is a crucial factor to mitigate the consequence, this field 

is designed to record by which means the fire was firstly 

detected. This could be fixed detectors, crew members or 

passengers. 

Smoke detector, Heat 

detector (presented, 

activated) 

Fixed detection systems are important for early alert of the 

bridge so that proper actions can be taken in time.  

Suppression means Fire suppression, both with fixed and portable suppression 

systems, is an important safeguard to contain the fire within the 

space of origin.  

Fixed suppression 

system (installed, 

activated, contribute) 

Time to control and 

extinguish 

In the case of a fixed suppression system, these fields are 

designed to records its corresponding reliability and 

effectiveness. 

 

 

Crew presence Crew members are properly trained to handle various shipboard 

emergencies. Hence, their presence in the first place should have 

positive impact to the fire fighting process. 

Boundary cooling Boundary cooling is the last safeguard to prevent the fire 

escalating from the space of origin. 

Fire spread (number 

of adjacent spaces, 

space uses) 

This field records the detail of adjacent spaces in case the fire 

spreads. 

Evacuation zones The number of passengers and crew in various zones and their 

reaction speed could be crucial for the whole evacuation process. 
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Figure 5.14: Fire Event Module 

 Consequence 

The consequence module is designed to capture the damages to the passengers, the 

crews, the environment, and the ship herself. Nevertheless, it is understood that a 

well-organised evacuation is an essential means in minimising the consequences. 

Hence, the timeline information of possible containment endeavour is included as 

well. Consequently, this module contains vessel status, type of flooding, mustering 

status, evacuation, time issues, and the quantified damages, as illustrated in Figure 

5.15. 

 Root-Causes analysis 

In Chapter 3 it was discussed that various theories have been proposed for the root-

causes analysis. These include the loss causation models developed at DNV [Soma 

and Rafn, 2006], the spray diagram method at Lloyd’s Register [Pomeroy and Jones, 

2006], and the marine root cause analysis technique at ABS [McCafferty and Baker, 

2006]. A common agreement among these methods is that every casualty has more 

than one contributing factors and almost every factor can be traced up to the design 

aspect and organisational management level. In this database platform, the marine 
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root cause analysis map developed at ABS has been adopted, where the hierarchical 

structure is demonstrated in Figure 5.16. 

 

Figure 5.15: Consequence Module 
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Figure 5.16: Marine Root Cause Analysis Map [ABS, 2005] 
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 Human-related Information 

In the knowledge that the human factor has been recognised as an important 

contributing factor and it will be a lasting issue to be addressed in order to better 

manage ship safety, this module hosts the information related to human factors. 

Different from classical approaches, this module attempts to record the underlying 

factors that could lead to the underperformance of crews. It includes job titles, 

working experience, ages, duration of rest before work, language, education, etc., as 

shown in Figure 5.17.  

 

Figure 5.17: Human-Related Module 

5.5 Closure 

The sources of information for the next generation marine accident/incident database 

have been elaborated with their configurations. The proposed approach embraces 

major objective data sources, i.e. historical casualties and first-principles approaches. 

The hierarchical decomposition method for dominant variables identification has 

been presented and demonstrated with a newly developed database platform.   
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Chapter 6  

Data Mining  

 

6.1 Preamble 

The need for more sophisticated data analysis techniques is derived from the 

difficulties that classical regression analysis becomes inefficient to cope with a 

mathematical model containing more than a handful of variables at a time. The 

situation is exacerbated by the fact that the parameters related to a physical casualty 

are often presented in discrete rather than continuous format, (e.g. ship types, 

locations, onboard spaces, etc.). This has given rise to the subject of data mining, 

which aims to condense a data set containing many variables into a meaningful and 

interpretable model with multivariate data analysis techniques. 

As it has been noticed in Chapter 3 that the output from data mining can be presented 

in diverse forms, the identification of the most adequate platform and the associated 

“mining” techniques are of great importance. In this respect, BNs offer a unique 

platform for fulfilling the intended goals. This is attributable to its inherently adopted 

probabilistic regime for pertinent probability inference, which is transparent and 

flexible in terms of capturing complex relationships. 

Hence, following a brief discussion of the links between data mining and BNs, this 

chapter focuses on detailing the techniques for training risk models in BNs both from 

qualitative and quantitative points of view. The issues of missing data and the size of 

data set needed will be addressed as well. Lastly, the program designed to automate 

the learning process is briefly highlighted. Its validation will be elaborated in Chapter 

8. In addition, the issues of poor data quality and quantity along the implementation 

of data mining techniques are addressed. 
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6.2 Data Mining and Bayesian Networks 

When an all-embracing database is established and populated with reliable and 

objective data, it is important to ensure that it can be seamlessly integrated in a risk 

analysis process, and in particular for the implementation of risk-based design. In 

this respect, the contribution of the database to this methodology would be the 

derivation of a risk model that is capable of addressing both qualitative and 

quantitative parameters. Moreover, this model will be able to evolve as the dataset is 

constantly updated during the life-cycle of a ship or a fleet with minimum effort as 

the process is automated (i.e. data updating, model updating).  

The fault and event trees are the classical risk modelling techniques to present and 

process safety relevant knowledge probabilistically. They have gained wide 

popularity and acceptance by the industry, but the assumptions needed to keep their 

clarity and simplicity cause concern over the credibility of the estimated risk level. 

This can be demonstrated by independent relationships assumed between different 

events and the exponentially increased computational complexity if more variables 

are included.  

BNs, as an alternative risk modelling technique, have been explored in the maritime 

industry as well. Early applications have demonstrated the potential due to the 

flexibility to describe complex relationships, the robustness to perform probabilistic 

inference, and the transparency. However, questions remained to be answered are 

brought forth: “how to rationally identify the complex causality relationships in the 

case of more than a few variables?” and “how to objectively quantify large 

conditional probability tables?” 

With the progressively increased deployment of BNs, it is found that such trend 

inevitably leads to extensive research activities concerning the influence 

relationships among the variables from observational records. This is due to the 

practice of recording historical operational records of specific domains and 

transforming them into pertinent business intelligence has become an increasingly 

important means for modern business to obtain an informational advantage. As a 
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result, learning techniques are developed so that a network can be constructed with 

minimised subjective intervention, the philosophical term of which is frequently 

referred to as the discovery of causality [Spirtes, et al., 2000]. Apart from eliciting 

the structure of a BN model from the data, formalised methods for learning the 

conditional probabilities have also been developed to quantify the obtained network 

(i.e. allocate probabilities to its nodes).  

A flowchart of the elements for Bayesian network learning and their functionalities 

are depicted in Figure 6.1. The whole approach starts with BN structure elicitation by 

using collected data. This is followed by the derivation of probabilistic information 

for the network, which consequently delivers a specific trained BN model. 

 

Figure 6.1: Flowchart of the Learning of Bayesian Networks 

The current approaches towards the learning of a network structure have been widely 

classified as: constraint-based learning and scoring-based learning, in which distinct 

principles have been adopted. The former aims to identify a list of independent 

relationships from all possible two-variable combinations and conditionally 

independent relationships among three and more variables through statistical data 

analysis. A BN that entails all the discovered independent and conditionally 

independent relationships can then be identified. The latter approach uses a 

Constraint-based 

learning 

Scoring-based 

learning 

Raw Data 

BN skeleton 

BN 

probabilities 

BN model 

Database 

Trained Bayesian 

network 

Parameters 

learning 
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predefined scoring function so that the network structure having the highest score 

can be regarded as the best approximation in describing the joint probability 

distribution implied by the data set. As Scoring-based learning requires quantified 

network structures (using parameter learning techniques) for evaluation, its structure 

and parameters learning can be considered as an integral part. 

The following sections start with a detailed elaboration of the constraint-based 

learning technique, followed by the parameter learning method as the scoring-based 

learning algorithm is carried out on the basis of quantified network structures.   

6.3 Constraint-Based Learning 

The technique of constraint-based learning builds on two core components: (i) 

discovering the skeleton of a BN through dependency tests, and (ii) creating the 

causal network diagram based on the obtained skeleton. With respect to the first 

component, it is important to identify appropriate mathematical models for 

dependency analysis. The hypothesis testing method is one of the major means for 

assisting decision making in this direction [Mendenhall, 2009]. Classical regression 

analysis is inefficient and unsuitable due to the following reasons: it normally applies 

to metric data (i.e. quantitative data), while a large portion of marine casualty data is 

inherently non-metric (e.g. ship types, locations, onboard spaces, etc.); the 

complexity of classical regression models becomes unstable with multiple numbers 

of parameters (e.g. over-fitting, etc.). As a result, the field of multivariate data 

analysis has been identified and explored [Hair, 2006].  

6.3.1 Dependency Test 

The selection of an appropriate mathematical model for multivariate data analysis 

depends on the characteristics of the parameters (e.g. metric, non-metric) and the 

number of dependent parameters. Due to the majority of casualty-related information 

being recorded in categorical (non-metric) formats, and in the knowledge that the 

continuous variables can be easily transformed into categorical presentations through 
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discretisation, the Generalised Linear Model (GLM) can be used for this purpose 

[Dobson and Barnett, 2008]. 

A GLM is comprised by three components: a random component (i.e. response 

variables), a systematic component (i.e. explanatory variables), and a link function. 

An important feature of the GLM is that it contains not only standard models for 

continuous responses but also the models for categorical responses. In the case of 

analysing categorical variables, the logistic regression model and the log-linear 

model are commonly used [Agresti, 2002], [Perroud, et al., 2009].    

For binary response variables,           , with   independent variables    ,   , 

up to   , a typical logistic regression model can be defined in equation (6.1). The 

terms,  ,  
 
 represent the unknown coefficient parameters to be determined using the 

data. In order to assess the goodness-of-fit of the estimated model, the likelihood-

ratio, chi-square test and Pearson chi-square test are used to compare the observed 

counts and the fitted values. The maximum likelihood technique is adopted for the 

model fitting with the estimated coefficients to be used for the examination of the 

significance of association. 

               
    

      
 

 

             
 

(6.1) 

 

The logistic regression model has been extensively applied in the financial sector and 

genetic research [Chen and Wu, 2009], [Kim, 2009], [Perround, et al., 2009]. The 

advantage is that the expression function (e.g.     ) always produces a value 

between zero and one along an S-shaped curve, as illustrated in Figure 6.2, which is 

very desirable for modelling the probabilistic functions, e.g. the cumulative normal 

distribution function. The determination of independent relationship between    and 

     is subject to the mean and the variance of the trained   . However, it should be 

noted that the response variable was originally designed to have binary statues, (True 

or False, Daytime or Night, etc.). Although the generalisation of the logistic 

regression model enables multi-category responses, it is still inconvenient to 

implement. In case of a predictor with more than two statuses, dummy variables need 
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to be introduced and the quality of the trained model may be unnecessarily penalised 

[Kleinbaum and Klein, 2002]. 

 

Figure 6.2: Logistic Regression Function 

On the other hand, the log-linear model is a model commonly used for contingency 

table (i.e. a frequency distribution of the variables in a matrix format, See Table 6.1) 

analysis by modelling cell counts and eventually deriving the association and 

interaction patterns among variables. A typical Poisson log-linear model with 

explanatory variable    is shown in equation (6.2). Considering a contingency table 

with two variables   and  , representing the row and the column respectively, let 

mean      denote the product of the count at a specific cell (row  , column  ) and the 

corresponding proportion of that count to the sum of the whole contingency table. 

The logarithm transformation of the mean leads to equation (6.3). Based on this, the 

saturated model suggesting a dependency relationship between   and   is illustrated 

by equation (6.4), where    
   is the association term reflecting deviance from an 

independent relationship. Identical principle applies to the dependency analysis 

among three variables as illustrated in equation (6.5).  

          (6.2) 

           
    

  (6.3) 

           
    

     
   (6.4) 

            
    

    
     

      
      

   (6.5) 
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As a result, the identification of a dependency relationship is equivalent to the 

identification of the best log-linear model, which should be complex enough to fit the 

data, yet sufficiently simple for interpretation. To assist in this direction, the 

approach of backward elimination is adopted for the identification of an optimal log-

linear model [Goodman, 1971]. It starts with a saturated (complex) model, and 

through systematically and sequentially removing a term that has least damaging 

effect on the model, it stops at a point that any further removal would lead to poor fit 

of the data. Consequently, the dependencies can be summarised when the model 

reaches its limit.  

In order to converge to the most appropriate model, similar to classic statistical 

analysis, the goodness-of-fit measure can be adopted. Let’s assume that the 

observation for a GLM is            . Let         denote the log-likelihood 

function expressed in terms of the means             and          denote the 

maximum of the log-likelihood of the model. When there is a perfect fit,     , it 

indicates a saturated model. Hence, the deviance of the GLM is defined as: 

     
                            

                                      
                    

The term deviance is the likelihood-ratio statistic for testing the null hypothesis that 

the model hold against the saturated model. Thus, the process of comparing two 

models can be simplified to estimate the difference between the deviances of the two 

models, as illustrated below. 

                      

                                           

               

The result of the subtraction of two deviances has an asymptotic   null distribution. 

The residual degree of freedom equals to the number of cells in the contingency table 

minus the number of parameters in the Poisson Log-linear model. In summary, the 

goodness-of-fit test can reveal not only when a fit is inadequate, but also when it is 

better than expected random fluctuations. 
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For the sake of illustration, when examining a dependency relationship between two 

variables, say,   and  , it is necessary to train only two log-linear models: the 

saturated model as illustrated by equation (6.4) and the model illustrated in equation 

(6.3). The latter indicates a lack of dependency between   and  . Similar principles 

apply to three and more variables elimination process. For instance, if the obtained 

model from backwards elimination for  ,  , and  , is              
    

    
  

   
  , it implies a conditional independent relationship that   and   are independent 

given  , which is frequently denoted as         . 

6.3.2 An Example of Dependency Test 

Five variables are extracted from the database developed in Chapter 5 to demonstrate 

the dependency analysis process. Five selected variables are generally considered to 

be important factors affecting the risk level of fire hazard of passenger ships. The 

number of variables is preset at five as the computation complexity increases 

exponentially where the automation will be needed. A total of 576 cases are retrieved 

for the five variables: 

   denotes event time. Time of the day is commonly respected as an important 

factor affecting the severity (in terms of number of fatalities) of fire event onboard 

once it escalates from the space of origin with the smoke propagated. It is 

classified as daytime and night. 

   denotes vessel location. The main concern is that the situation at the evacuation 

stage can vary significantly if the vessel located at harbour or at sea. It is designed 

to have two categories: at sea, in port. 

   denotes whether the crew is present at the scene of the casualty. As the crews 

are regarded as the cluster of people onboard who have been trained to take proper 

actions under emergency circumstances, hence, the chance of putting out a fire 

before it escalates will exaggerate. Binary statuses are assigned for this case: True, 

False. 
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   denotes the presence of human factors. Human error still accounts for about 80% 

of marine accident/incident, hence, it is recorded as True or False. 

   represents the severity of an event. It is classified as minor, moderate and 

serious. 

 

Two-Variable Dependency Analysis 

Dependency analysis between two variables is performed for all possible 

combinations so as to generate a list of dependency relationships. To train the 

logistic regression model for every combination, the corresponding contingency table 

needs to be summarised beforehand. An example of the contingency table for   and 

  is provided in Table 6.1, where the cell count (e.g. 285) indicates that there are 285 

incidents out of 576 records happened at sea during the day time. The numbers in the 

brackets indicate the weights of specific cells to the overall count, for instance, 

   

   
       . 

Table 6.1: Contingency Table for L and T 

 Event time  

Daytime Night Total 

Location 

At sea 
285 115 400 

(49.48) (19.97) (69.44) 

In port 
143 33 176 

(24.83) (5.73) (30.56) 

 
Total 

428 148 576 

(74.31) (25.69) (100.00) 

To train the logistic regression model, the response variable        and the predictor 

variable     are exchangeable for this specific application as the aim is to examine 

the association between L and T. Hence, the model can be presented in the form of 

equation (6.6) with the estimated coefficients tabulated in Table 6.2. More details on 

estimating logistic regression models is summarised in Appendix 5. 

                      
           

             
       (6.6) 
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Table 6.2: Summary of the Estimated Coefficients of the Logistic Regression Model 

Containing L and T 

Parameter Degree of 

freedom 

Estimate Standard 

error 

(SE) 

Chi-

square 

P(null 

hypothesis being 

correct) 

Intercept     1 -1.2484 0.1975 39.96 <0.0001 

  for Time 

             
1 0.5588 0.2225 6.31 0.012 

The significance test focuses on       , representing the hypothesis of 

independence between L and T. This can be achieved by performing the Wald test 

[Fienberg, 2007],           
 

, which is asymptotically   
 , the chi-squared 

distribution. The probability stands at 0.012, which suggests the significance of   in 

the trained model if 95% confidence interval is defined (e.g.           ). This 

implies a dependency relationship between   and  . 

The conclusion can be checked against ordinary dependency tests for two-way 

contingency tables [Fienberg, 2007]. For multinomial sampling with probabilities 

      in a     contingency table, the null hypothesis of statistical independence is 

               for all   and  . The Pearson    statistic equals to    

  
          

 

    
   and the degree of freedom equals to              . The 

current practice is to treat    asymptotically chi-squared. Hence, the statistics of the 

contingency table containing   and   can be found in Table 6.3. The result agrees 

well with the previous finding. 

Table 6.3: Statistics of the Contingency Table Containing L and T 

Parameter Degree of freedom Value Probability 

Pearson Chi-square 1 6.4016 0.0114 

It is important to point out that the confidence interval (CI) plays a crucial role for 

the significance test on the hypothesis of independence. For instance, a 95% 

confidence interval in this specific case requires a set of    for which the test of 

        has a  -value exceeding 0.05. Practical applications suggest that the 
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establishment of appropriate confidence intervals for dependency analysis is mainly 

to achieve a compromise between the size of data set and the quality of the 

estimation. 

On the basis of the foregoing, similar studies can be performed for the remaining 

two-variable combinations. With confidence interval set at 90%, a list of dependency 

relationships is identified and tabulated in Table 6.4. The logistic regression model is 

adopted for binary variables analysis. As the variable   has three states, which is not 

suitable for this application, an ordinary independency test of two-way contingency 

tables is performed.  

Table 6.4: Dependency Relationships Identification between Two Variables 

Combinations P(null hypothesis being 

correct) 

Relationship 

(L, T) 0.0120 Dependent 

(T,H) 0.3305 Independent 

(T, S) 0.0992 Dependent 

(T,C) 0.6690 Independent 

(L,H) 0.6956 Independent 

(L,S) 0.6536 Independent 

(L,C) 0.8782 Independent 

(H,S) 0.0612 Dependent 

(H,C) 0.9497 Independent 

(S,C) 0.1012 Dependent (equivalent) 

 

Three-Variable Conditional Independency Analysis 

The identification of the relationships among three variables is a more complicated 

task due to various possible combinations. As normal dependent relationships can be 

explicitly identified in the previous section, the relationships among three variables 

are reflected through the identifications of conditional independencies. For 

demonstration, a list of possible combinations is examined with the log-linear model. 

Backward eliminations are initiated from the saturated model. For instance, the 
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saturated model for        is             
    

    
     

      
      

   

    
   , which can be denoted as      . 

An initial attempt is made to eliminate the three-variable association term     
   . By 

checking the deviance      between the saturated model and the simplified model, 

the validity of the simplified model to fit the data can be identified. For instance, the 

simplified model could be             
    

    
     

      
      

  , denoted 

as           . As illustrated in Table 6.5, removing the term     
    has limited 

damage effect on the saturated model with  -value stands at 0.8828. 

Table 6.5: Summary Table of Backward Eliminations of the Log-linear Model 

containing       

Combi

nation 
Model DF 

Likelihood 

ratio 
DF    P-value Relationship 

            0 0     

            2 0.25 2 0.25 0.8828  

         4 0.55 2 0.3 0.8607          

         4 4.16 2 3.91 0.1416  

         3 6.03 1 5.78 0.0162  

         7 10.79 5 10.54 0.0613  

Hence, further eliminations can be carried out by removing the two-variable 

association terms one by one. Through eliminating terms    
      

    and    
   one at a 

time, it leads to three distinct models:        ,        , and         respectively.  

The subsequent analysis of the deviance suggests that model         has the least 

damaging effect to the saturated model with  -value equals to 0.8607, as shown in 

Table 6.5.  

In order to ensure that no further simplifications are needed, the model         

representing              
    

    
  is examined. This model marks the end of 

the backward elimination process as it indicates pure independent relationships 

between   and  ,   and  ,   and  . Nevertheless, as illustrated in Table 6.5, this 

model does not fit the data (i.e.         ). Consequently, the process stops at the 
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model        , which indicates a conditionally independent relationship between   

and   given  , denoted as         . 

Similar operations can be performed for the remaining combinations. However, 

considering that the dependent relationships, which have been identified for two-

variable combinations, the number of practically possible combinations is left with 

only four sets:        ,        ,        , and        . Their conditionally 

independent relationships are identified and summarised in Table 6.6. It is worth 

noting that the conclusion of conditional independency is not drawn for        , as 

the deviance between the model            and the saturated one       is 

relatively large compared with the remaining combinations. 

Table 6.6: Summary Table of Conditional Independency Analysis 

Combi

nation 
Model DF 

Likelihood 

ratio 
DF    P-value Relationship 

            0 0     

           2 0.25 2 0.25 0.8828  

        4 0.55 2 0.3 0.8607          

        4 4.16 2 3.91 0.1416  

        3 6.03 1 5.78 0.0162  

        7 10.79 5 10.54 0.0613  

      

 

 

 

 

      0 0     

           2 1.09 2 1.09 0.5810  

        4 5.43 2 4.34 0.1142  

        3 1.63 1 0.54 0.4624          

         4 4.98 2 3.89 0.1430  

            0 0     

           2 0.58 2 0.58 0.7487  

        4 3.82 2 3.24 0.1979  

        3 0.89 1 0.31 0.5777          

        4 4.85 2 4.27 0.1182  

            0 0     

           2 3.14 2 3.14 0.2082  

Apart from three-variable conditional independency analysis, the log-linear model 

containing four and more variables can be trained in a similar manner as well. 
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Nevertheless, such a practice to include more variables in a single analysis will 

destabilise the model, and ultimately jeopardise the findings. Hence, as far as the 

derivation of the BNs skeleton is concerned, the two-variable dependency and three-

variable conditional independency analysis are generally considered to be enough to 

reveal the relationships among a limited amount of parameters, which also reflects 

the common practice for dependency analysis.  

6.3.3 PC Learning Algorithm 

The techniques presented in the previous section lay the foundation for the 

construction of the skeleton of a BN by identifying a list of independent and 

conditionally independent relationships. A formalised procedure needs to be 

followed in order to develop a BN skeleton that entails the discovered relationships. 

In this respect, the PC algorithm, named by its developer in [Spirtes, et al., 2000], has 

been regarded as a representative technique for the implementation of constraint-

based learning [Neapolitan, 2004], [Korb, et al., 2004], [Jensen, et al., 2007]. 

PC Algorithm 

1. Start with the complete graph 

2.     

3. while a node has at least     neighbours  

for all nodes   with at least     neighbours  

for all neighbours   of   

for all neighbour sets   such that       and 

                      

If               then remove the link     and store 

         

      

Where:          represents the discovered relationships through statistical 

analysis. when   is empty, it represents an independent relationship; when   is not 

empty, it indicates conditional independent relationships.  

The algorithm starts with a fully connected network. It then systematically loops 

through the whole network and checks the dependency relationships of the form 

of         , where   is a subset of  ’s or  ’s neighbours. Once such a relationship 
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is valid on the basis of the previous dependency analysis, the link between   and   

will be eliminated. It is important to notice that the subset   can be also empty (i.e. 

     ), which implies two-variable dependency analysis between   and  .  

With   set to be 0, the iteration at first stage focuses on the dependent relationship 

between two variables. Following this, with   increased to 1 and more, the 

conditional independencies among three variables will be included afterwards. 

Consequently, a network skeleton that entails all the identified independent and 

conditionally independent relationships can be constructed. 

Having the network skeleton, it is necessary to add orientations (arrows) to transform 

it into a BN model. With respect to this, there are some rules need to be adhered to: 

Rule 1  -structures, also popular referred to as head-to-head 

orientations        , are to be introduced for       cases 

that are not in the conditional independency list         . 

Rule 2 Apart from  -structures introduced due to Rule 1, no further new 

head-to-head orientation should be created 

Rule 3 As Bayesian network is also known as directed acyclic diagram, the 

orientation should always avoid the formation of any cycle. 

Rule 4 If none of the rules 1 to 3 can be applied in the graph, an arbitrary 

direction can be assigned for every undirected link. 

It has been noted that the assignment of  -structures plays an important role during 

the orientation assignment process. This is because as a BN represents  the joint 

probability distribution of a set of variables, the structure needs to fulfil the Markov 

condition, [Neapolitan, 2004], which implies every conditionally independent 

relationship,                                  , needs to be presented in a 

way that the random variable   and its neighbours are conditional independent given 

its parents in the network. In the case of a conditionally independent relationship, e.g. 

        , if the orientation is assigned to be head-to-head (i.e.       , it will no 

longer admit the conditional independent relationship as the instantiation of the 

variable   will not isolate the link between   and  . 
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Once the  -structures are assigned, the remaining links can be assigned arbitrarily as 

long as no more  -structure is created and no directed cycle is formed. This is 

mathematically valid as it will be elaborated in section 6.4, where the probabilistic 

inference will remain stable with identical input data. Nevertheless, due to the 

causality relationship associated with the assigned orientation, empirical approaches 

can be introduced here when applying rule 4. Regarding the assignment of 

orientations, the PC algorithm also proposes a process for implementation.  

1. for each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are 

each adjacent but the pair X, Z are not adjacent, orient X – Y – Z as X → Y 

← Z if and only if the combination (X, Y, Z) is not in the conditional 

independency list          

2.  repeat 

If A → B, B and C are adjacent, A and C are not adjacent, and there is no 

arrowhead at B, then orient B – C as B → C 

If there is a directed path from A to B, and an edge between A and B, then 

orient A – B as A → B 

6.3.4 A Learning Example of PC Algorithm 

The example presented in Section 6.3.2 with a list of independent and conditionally 

independent relationships summarised in Table 6.7 will be put forward in this 

example. To initiate the algorithm, a fully connected network is constructed as 

illustrated in Figure 6.3. With    , the first node has more than one neighbour can 

be   , whose neighbours are          . From Table 6.7, it is found that the 

independent relationships containing   are         and       , hence, the links 

between     and     can be removed as illustrated in Figure 6.4. Similarly, 

other independent links can be removed accordingly. The subsequent network 

skeleton after the loop for     is shown in Figure 6.5. 

With    , the identified conditionally independent relationships as listed at the 

bottom of Table 6.7 will be utilised, as a result, the links between    ,    , 
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   , need to be eliminated. As these four links have already been removed due to 

the previous operations when    , no further action is needed. Consequently, the 

PC algorithm stops with the skeleton illustrated in Figure 6.5. 

Table 6.7: Summary of Independent and Conditional Independent Relationships 

Combinations Relationship 

       Independent 

       Independent 

       Independent 

       Independent 

       Independent 

       Independent 

         Conditional independent 

         Conditional independent 

         Conditional independent 

 

 
 

Figure 6.3: A Fully-Connected Network 

Skeleton 

Figure 6.4: Network Skeleton (Removing 

the Links between     and    ) 

 

Figure 6.5: Network Skeleton with the Links removed due to Independent and 

Conditional Independent Relationships 
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Immediately following this, the orientations can be assigned for the five-node 

network. As discussed previously, an initial attempt should be made to orient the  -

structures with head-to-head links. On the basis of the conditional independency list 

and the obtained skeleton, it is found that the  -structure       is not in the list. 

Hence, the resultant head-to-head links is shown in Figure 6.6. 

The remaining links can be directed in a flexible way as long as they satisfy Rules 2, 

3 and 4 of the aforementioned principles for orientation assignment. As a result, the 

link between     should be directed towards   to avoid making new  -structure 

with     and    . Similar principles apply to    . Consequently, the five-

node BN structure is shown in Figure 6.7. 

  

Figure 6.6: Assignment of Head-to-Head 

Links 

Figure 6.7: Output Five-node Bayesian 

Network Structure by Following the PC 

Algorithm 

6.4 Parameter Learning 

It has been stressed throughout the thesis that the current practice when employing 

BNs for risk assessment relies heavily on subjective experience for network structure 

derivation and the quantification of the associated large and complex conditional 

probability tables. The constraint-based learning technique is capable of objectively 

and rationally establishing the structure of a BN model. This section focuses on the 

quantification of the identified network structure. 
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The current practice towards the estimation of probabilities and conditional 

probabilities is mainly achieved through the approximation of the limit of its relative 

frequency in a large number of trials. Through repeating the experiment for as many 

times as possible and assigning the ratio between the numbers of events occurred and 

the total number of experiments performed, the relative frequency can be estimated 

using the expected value. Within the engineering context, the number of trials is 

restrained due to many factors, e.g. resource allocation, and characteristics of the 

event. Thus, proper data analysis techniques are essential to assist this transformation. 

6.4.1 Beta and Dirichlet Density Functions 

To express the probability containing both the prior belief and the collected evidence, 

i.e. the data, a properly defined density function is needed. In relation to this, both 

the Beta and Dirichlet density functions provide an effective means for quantifying 

the prior belief about the relative frequencies and updating the beliefs in light of new 

evidence. 

In the case of binary variables, the beta density function with the parameters  ,  , 

and       is illustrated in equation (6.7), where   and   are real and positive 

numbers           . With the updated information   and  , and      , the 

updated distribution function can be written in equation (6.8). An example of the beta 

density function with           is illustrated in Figure 6.8.  

 

     
    

        
                                        (6.7) 

  

            

           
 

      

            
                 (6.8) 
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Figure 6.8: Beta(f;50,50) Density 

Function 
Figure 6.9: Dir(     ;2,2,2) Density Function 

Suppose a dataset of values   concerning the binary random variable   having two 

states:             , with   is the count in   when   is       , and   is the count in 

  when   is        , the probability of generating this data set by assuming the 

statuses are beta-distributed is shown in equation (6.9). 

 

                 
    

      

            

        
 (6.9) 

For illustration purpose, the variables defined in Section 6.3.2 are put forward. As the 

variable   has only two statuses (i.e. at sea and in port), it is reasonable to assume 

that its statuses are beta-distributed. In this case, let   and   be the prior believe of 

the two statuses. For instance, the assignment of     and     indicates that it is 

believed the location of the ship has equal likelihood to be          and          , 

                       , denoted as,              . Moreover, as it 

is revealed from the collected data that the suggested belief is:       and      . 

As a result, the subsequently updated density function will be           

            . This implies                                 . 

In the case of multinomial variables, the Dirichlet density function can be used. A 

Dirichlet density function with equal counts for all three statuses, e.g.         

      , is shown in Figure 6.9. Suppose the parameters are             
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   , and           are integers   , the Dirichlet density function is 

illustrated in equation (6.10). 

 

               
    

      
 
   

  
      

       
                  

 

   

   (6.10) 

Similarly, considering   as the dataset, the probability of having   by assuming all 

statuses are Dirichlet-distributed is shown in equation (6.11). 

 

          
  

 

   
  

    

      
 

        

     

 

   
 (6.11) 

For demonstration, the variable   is considered as it has three statuses (i.e.      , 

        ,        ). Given the defined Dirichlet density function, the Initial priors 

can be assigned as          , and      for the corresponding three statuses to 

reflect equal beliefs due to limited prior information, denoted as             

       . Furthermore, the evidence from the collected data suggests:       , 

     , and     . Consequently, the updated density function will be        

                         .  

6.4.2 Augmented Bayesian Networks 

The augmented Bayesian networks have been propounded in order to facilitate the 

process of transforming the data into probabilities and conditional probabilities 

[Neapolitan, 2004]. It is a BN determined by the following: 

1. A network diagram             where              , each    is a 

random variable, and   denotes a set of ordered arcs, i.e. orientations. 

2. For every  , an auxiliary parent variable    of    and a density function    of   . 

Each    is a root and has no edge to any variable except   . The set of all   s is 

denoted by  . That is, 
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3. For every  , for all values     of the parents     in V of   , and all values    of 

  , a probability distribution of    is conditional on     and   . 

For the sake of illustration, a simple BN structure with three variables   ,   , and    

is illustrated in Figure 6.10. The corresponding augmented network is demonstrated 

in Figure 6.11, where the round shaded nodes are those augmented nodes designated 

to run enquiry from the data for the quantification of the probability tables.     is a 

random variable whose probability distribution represents the beliefs. For instance, 

    represents the belief concerning the relative frequency with which    equals to 1, 

whilst, the probability distribution of      indicates the belief concerning the relative 

frequency with which    equals to 1 given that     . Similarly, the probability 

distribution of     represents the belief concerning the relative frequency with which 

   equals to 1 given that     . 

The assignment of prior beliefs, as it is demonstrated in Figure 6.11, plays an 

important role for quantifying the variables in the network. Due to the additive 

characteristic of both the Beta and Dirichlet distributions, the consequent 

probabilities for each variable can be essentially regarded as the combined output 

from both the prior information (beliefs) and the collected evidence from the data, as 

it is implied in the approximated Bayes’ theorem,                        . In 

this respect, as the prior information is generally not available and not reliable as far 

as risk modelling is concerned, it would be more appropriate to deploy small values 

with equal priors so that the estimations can be more objective. At the same time, this 

will maximise the usage of the evidence from the data.     

 

Figure 6.10: An Embedded Bayesian Network 
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Figure 6.11: A Binomial Augmented Bayesian Network 

Suppose a sample of size M with random vectors: 

      
  
   

 

  
   
             

  
   

 

  
   
               

  
   

 

  
   
  

                    

Such that for every   each   
   

 has the same space and there is an associated 

augmented BN. As a result, an immediate conclusion can be drawn for the 

probability of generating such dataset   given the probability distribution of each 

random variable is illustrated in equation (6.12). 

                  
   
    

   
    

 

   

 

   
 

(6.12) 

Where    
   

 contains the values of the parents of    in the     case. Following the 

defined condition, the probability of having the data set in general is shown in 

equation (6.13). 

             
       

             
 

   

 

  

    
 

   
 (6.13) 

Through employing Bayes’ theorem, the subsequent probability distribution of 

random variables given the dataset   is illustrated in equation (6.14). 

                    
 

   
 

(6.14) 
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Following the previous inference, the      of interest can be further simplified for 

an augmented BN with all binary variables are shown in equation (6.15). 

       
      

          

  

   

 

   

                    

            
 

(6.15) 

With each augmented node, the probability distribution given the data can be 

quantified as: 

         
     

          
   
      

   
  

          
   
 

 

With each variable is beta-distributed: 

                                  

The subsequent probability distribution given the prior belief and the collected 

evidence from the data is illustrated in equation (6.16). 

                                       
(6.16) 

Similarly, in the case of multinomial augmented BNs, it is, 

       
      

          

  

   

 

   
 

            

       

  

   
 

                                                                     

                           

                                                             

With the reviewed equations, an augmented BN can be easily updated, which in turn 

leads to the quantification of all the associated probability and conditional probability 

tables of the embedded network structure. 
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The Assignment of Prior Belief 

During the quantification process of a BN model, it has been found that the total 

prior belief for each variable should be equivalent [Neapolitan, 2004]. If the 

equivalence is not maintained, the probability inference results obtained from 

equivalent network diagrams (e.g. a two-node network with opposite orientation, 

      and      , as illustrated in Figure 6.12) can be different. In order to 

avoid such circumstance, equivalent sample size should be assigned for each node. 

For instance, the sum of prior belief for the node    is      , and the sum of 

prior belief for the node    is           disregarding the number of 

augmented nodes associated. 

 

Figure 6.12: An Example of Equivalent Sample Size 

In addition, during the process of prior belief assignment, the beliefs assigned for 

each augmented node, e.g.                  , does not necessarily have to be equal. 

The main reason for such practice is that no relevant knowledge is available 

concerning the value of the relative frequency. It also aims to achieve objectivity. 

Nevertheless, in a situation that there is clear evidence suggesting unequal prior 

belief for different statuses of a specific augmented node, corresponding adjustment 

can be made accordingly as long as the sum of prior belief of every node is equal. 

6.4.3 A Parameter Learning Example 

The implementation of parameter learning can be achieved in three stages: setting up 

the corresponding augmented network, assigning prior belief, and lastly updating the 
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beliefs. The example takes advantage of the five-node network structure constructed 

in Section 6.3 through constraint-based learning. 

The statuses of the parent nodes play important roles during the set up process of an 

augmented network. As the nodes   and   do not have any parent node, only single 

augmented node is needed (i.e.    ,    ) for each variable, as illustrated in Table 

6.8. The statuses of the augmented nodes should be identical with the variable to 

which it is connected. In the case of the node  , as each parent node has two statuses, 

there are four         augmented nodes associated with each one corresponding 

to a unique combination of the statuses of its parents, (e.g.               

     ). There are three augmented nodes assigned for the variable   as its parent   

has three statuses. Following such a process, the augmented network developed on 

the basis of the five-node network structure is illustrated in Figure 6.13. 

Table 6.8: Set up of the Augmented Network Structure 

Variable Parent Parent status Augmented 

node 

Statuses 

C None                   

H None                   

S {C, H} 

        

        
     

               
       

  

        

       
     

               
       

  

       

        
     

               
       

  

       

       
     

               
       

  

T {S} 

                            

                               

                              

L {T} 
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Figure 6.13: Augmented Network Structure 

Following the elicitation of the augmented network structure, the prior belief can be 

assigned. In order to maintain objectivity, an equal prior belief is adopted to denote 

the probability of having one status instantiated is identical to having any other 

statuses. Nevertheless, in order to maintain an equivalent sample size, a balancing 

process is needed. If the minimum sample size is set to be a unit, denoted as 1, the 

equivalent sample size can be estimated through calculating the Least Common 

Multiple (L.C.M), as illustrated in Table 6.9.  The method takes into account of the 

number of statuses and the number of augmented nodes that associated with every 

variable. As a result, the equivalent sample size for this specific case is 12. 

Table 6.9: Identification of Equivalent Sample Size 

Variable Number of 

statuses 

Number of 

augmented nodes 

Product 

C 2 1 2 

H 2 1 2 

S 3 4 12 

T 2 3 6 

L 2 2 4 

Least Common Multiple 12 

To assign the prior belief, different handling is needed for the variables having 

different statuses. In the case of binary variables, i.e.        , the Beta function, 

                        , is used. For instance, the augmented node     has equal 
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prior belief for both statuses             :              . In contrast, the 

multinomial variables, i.e.  , use the Dirichlet distribution, 

                                                                    . For instance, 

the augmented node     has equal prior belief for all statuses 

                        :                     . Consequently, the augmented 

BN with quantified augmented nodes is illustrated in Figure 6.14. 

 

Figure 6.14:  Assignment of Prior Belief with Equal Sample Size 

With the aforementioned process, the last step is to update the beliefs with the 

collected data. With respect to this, a summary table needs to be produced and the 

evidence is systematically classified. In the case of root nodes, e.g.   and  , the 

count of the occurrence of each status in the database is recorded for each variable 

and tabulated in Table 6.10; whilst, the summary for ordinary nodes having parents 

needs to take into account of various combinations of the statuses of their parents, e.g. 

     .  

The subsequent process is to apply the probability updating principle for both the 

Beta and Dirichlet distribution functions as derived in the previous section:          

and                           . As the computation included is pure addition, this can 

be performed easily with the updated augmented network presented in Figure 6.15. 

The updated beliefs are readily available to be transformed into probabilities and 

conditional probabilities to be stored in the output BN model. For instance, the 
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probability for         is                      and the conditional 

probability                                              . 

Consequently, the five-node BN is constructed with fully quantified probability 

tables. 

Table 6.10: Evidence Collected from the Data for Beliefs Updating 

Variable Parent Statuses 

  False True  

C None 199 377  

  False True  

H None 245 331  

  Minor Moderate Serious 

S                 73 8 4 

                151 7 2 

                110 2 2 

               208 8 1 

  Daytime Night  

T         407 135  

            14 11  

           7 2  

  At sea In port  

L           285 143  

         115 33  

 

 

Figure 6.15: Beliefs Updating 
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6.5 Score-Based Learning 

In contrast to constraint-based learning, score-based learning focuses on the 

identification of a BN structure as an integral unit. The principle of score-based 

learning is to evaluate the superiorities of all possible network skeletons using 

dedicated criterion functions and to select the one receiving the highest score. This 

implies that two components have to be properly addressed: the scoring criteria 

(merit function) and the searching algorithm.  

6.5.1  Merit Functions 

Classical means for judging the goodness-of-fit of a statistical model derived from 

the collected data is mainly through describing the spread (variability) of the data in 

comparison with the values estimated using the trained model, e.g. variance. With 

respect to a BN model, simple variance estimations become infeasible due to the 

complexity involved. Hence, an alternative to measure the quality of the constructed 

BN model in describing the sampled data is needed. 

Due to its probabilistic nature, a BN essentially represents the joint probability 

distribution that is implied in the sampled data. As a result, it is safe to proclaim that 

the model is accurate if and only if its joint probability distribution matches the joint 

probability distribution described by the data. 

Nevertheless, in most cases it is computationally infeasible to determine and use the 

joint probability distribution described by the sampled data. For instance, as 

demonstrated in [Pappas and Gillies, 2002], the matrix of the joint probability 

distribution for a data set containing 9 variables has 14,696,640 elements due to the 

combinatorial explosion, which is virtually impossible to use in practice. In this 

respect, the level of discretization of each variable can play a very important role. 

This is also the motivation for deploying BNs to present the joint probability 

distribution described by the sampled data. 
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On the other hand, considering a multinomial BN model, the joint probability 

distribution can be expressed in equation (6.17). 

             
   

    

  

   

 

  

   

 

   

 (6.17) 

 

Where   represents a specific data set 

G represents a specific BN model 

   denotes the number of variables in the network 

    denotes the number of different instantiations of the parents for 

variable   

    denotes the number of states of variable   

The term     
   

      
     represents the joint probability distribution at each 

augmented node of the variable  . In the meantime, as it has been stressed during the 

network quantification stage, the Dirichlet distribution is assumed for the statuses 

recorded in the augmented node, which implies, 

     
  

 

   

  
    

      
 

        

     

 

   

 

Consequently, the joint probability distribution that represented by a BN model can 

be calculated using equation (6.18). 

         
      

          
 

            

       

 

   

  

   

 

   

 
(6.18) 

On the basis of the foregoing, it is understood that the exact difference between the 

joint probability distributions described by both the BN model and the sampled data 

can be difficult to estimate, but the joint probability distribution represented by a BN 

can be used alone for comparative purposes as the aim to identify an optimal BN 

model that can best describe a data set. The defined joint probability distribution 

       in equation (6.18) is also frequently referred to as the Bayesian scoring 

criterion. Several other well-accepted criteria are summarised in Appendix 6.   
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With the estimated        for each candidate network, further transformation is 

needed by using Bayes’ theorem:                        . Also, it is noticed 

that the Gamma functions within the Bayesian scoring criterion grow very rapidly 

due to the factorial functions. Hence, the natural logarithm of the Gamma function is 

adopted to greatly lower the growth rate.  Moreover, in the case of combinatorial 

calculations, this allows adding and subtracting logs instead of multiplying and 

dividing very large values. 

6.5.2 Heuristic Searching Algorithm 

With the scoring criterion, it is possible to investigate exhaustively all possible 

network diagrams and to select the one that maximises       . Unfortunately, this is 

only applicable when the number of variables is small. The difficulty arises when the 

number of variables increases. It becomes computationally infeasible as the possible 

combinations of directing arcs increases exponentially. For instance, the number of 

possible network diagrams (DAGs) containing   variables is illustrated in equation 

(6.21), [Robinson, 1977].  

              
 

 
                     

 

   

 (6.21) 

This implies that the number of possible diagram candidates can reach 29,000 in the 

case of 5 variables. A similar conclusion has been derived in [Chickering, 1996], 

where the problem of finding the most probable DAG patterns for certain class of 

prior distributions is NP-complete (nondeterministic polynomial time). Therefore, it 

is vital to develop a heuristic searching algorithm so that the optimal one(s) can be 

converged efficiently. 

The prevailing method for the searching algorithm of scoring-based learning was 

proposed in [Chickering, 2002, Chickering, 2003] and [Chickering & Meek, 2002], 

known as greedy equivalence search (GES). Through the introduction of score 

equivalent classes of the structure, the size of the searching space can be significantly 

reduced. Moreover, a list of logical link operations makes it easy to transform from 
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one structural class to all possible neighbouring classes. Lastly, the score fluctuations 

can be calculated locally, a fact that greatly improves the computational efficiency. 

Apart from the directed acyclic graph (DAG), the term acyclic partially directed 

graph (PDAG) was defined to contain both directed and undirected edges. As a result, 

the PDAG could be used to represent equivalent classes of the BN structures. Those 

structures admitting an equivalent class, which is denoted by           , and it is 

true if and only if G and P have the same skeleton and the same set of v-structure.  

The term Completed PDAG (CPDAG) is designed to designate a PDAG that consists 

of directed edges for compelled edges and undirected edges for reversible edges in 

the equivalent class. Hence, each class has a unique CPDAG. 

The CPDAG enables the heuristic searching in the GES algorithm. A searching space 

has three components: a set of states, a representation scheme for the states, and a set 

of operators. A set of states represents the sets of CPDAG that could potentially be 

the final solutions. Representation scheme for the states requires an efficient way to 

represent each state; and a set of operators are the operational procedures to be 

followed to transit one state to another. 

The steps need to be followed is to constantly transit the obtained PDAG to a DAG 

after applying one of the operators. Having the DAG, the score increment can be 

updated easily, after which the DAG needs to be transformed to a CPDAG for the 

next iteration. The process is illustrated in Figure 6.16. 

 

Figure 6.16: Diagram Depicting the Operational Procedure 
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The detailed operations of adding and removing the links are described by the two-

phase GES algorithm, as shown next. For each iteration of both Insert and Delete 

operations, all possible operations are searched and validated through the validity test, 

as illustrated in Table 6.11, so that local score increment could be updated and the 

one giving the highest increment could be adopted for the next iteration. 

              

For non-adjacent nodes   and   in   , and for any subset   of the neighbours of   

that are not adjacent to  , the               operator modifies    by (1) inserting 

the directed edge      , and (2) for each    , directing the previously undirected 

edge between T and Y as      . 

              

For adjacent nodes   and   in    connected either as   –            , and for any 

subset   of the neighbours of Y that are adjacent to  , the               operator 

modifies    by deleting the edge between   and  , and for each    , (1) directing 

the previously undirected edge between   and   as       and (2) directing any 

previously undirected edge between   and   as      . 

Table 6.11: Necessary and Sufficient Validity Conditions and (Local) Change in 

Score for Each Operator 

Operator Validity Tests Change in Score 

              

        is a clique 

Every semi-directed path 

from   to   contains a node 

in         

               
   

                  

                      is a clique 
                 

   

                    

6.5.3 A Score-Based Learning Example 

On the basis of the forgoing, it is clear that the candidate networks should be 

quantified first and a degree of automation is needed to achieve a satisfactory 

convergence. In this respect, a computer program has been developed to automate 
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such a process, as will be detailed in section 6.8. On the other hand, as far as the 

feasibility and rationality of the technique is concerned, manual manipulation is 

carried out in this section with limited addition and removal of links. The emphasis is 

placed on the interaction between the generation of the candidates and their ensuing 

scoring process. 

Due to the flexibility of the algorithm for candidate network generation, the jumping-

off point can be either a fully empty network skeleton without any link in between or 

an ordinary BN model, such as the five-node network delivered through both 

constraint-based learning and parameter learning process as illustrated in Figure 6.15, 

which will be used for demonstration purposes. The process starts with the 

evaluation of the model using the scoring criteria. Following that, the links (e.g. 

   , and    ) can be removed respectively, which is accompanied with re-

quantification of the newly obtained networks due to the changing network skeletons. 

Further scoring of the two network candidates is performed and the consequential 

comparisons can be conducted among the three networks. 

An initial attempt is made to evaluate the score for the BN model obtained in the 

previous section. With      and      are the prior belief and the collected evidence 

for every status of each augmented node,     and     are the summations of the prior 

belief and the collected evidence for each augmented node, the score for each node 

can be obtained first. For instance, on the basis of the probability quantification 

summary table for the node C, as tabulated in Table 6.12, the score for C can be 

calculated using equation (6.22).  

Table 6.12: Summary of Prior Belief and Updated Evidence for the Variable C 

Node C  

False True Summation 

    6     6    12 

    199     377    578 

 

                                                  

                                   
(6.22) 
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Consequently, through estimating the score of each node the total score for the 

original network model is estimated to be             . The links between 

   , and     are then removed one by one with the corresponding augmented 

BNs updated as depicted in Figure 6.17 and 6.18. Similar computations can be 

carried out to estimate the changes of the scores. The subsequent scores are 

             and              for the two models respectively. 

During the estimation process, it is unnecessary to carry out a holistic computation 

for all nodes of the updated network. For instance, removal of the link between     

will affect the augmented nodes T, whilst the statues of the remaining variables are 

unchanged. Similar situation can be observed in Figure 6.18 for the node S. 

Consequently, the obtained score is transformed into the probabilistic format from 

the nature of logarithm form. Furthermore, the obtained probability is equivalent to 

the component         in the Bayes’ theorem, which should be reverted to        , 

the probability of having the BN model given the collected data. As little knowledge 

is available concerning which network diagram is more favourable than the others, 

equal likelihood       is assigned for the three candidates, i.e. 1/3=0.333. Moreover, 

due to the fact that the information about the component      is not known, 

normalisation of the results is performed.  

 

Figure 6.17: Updated Network Model with the Link between T and S Removed 
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Figure 6.18: Updated Network Model with the Link between S and H Removed 

The subsequent         obtained for the three candidates is tabulated in Table 6.13. 

It is apparent that the original model is more favourable than model 2. Model 3 gains 

the highest score among the three candidates. Nevertheless, it is understood that a 

holistic treatment of the searching space is needed in order to identify an optimal 

global solution rather than the local ones.  

Table 6.13: Scores of the Three Networks 

Network 

candidates 
Description 

Normalised 

probability 

Model 1 Original model 0.295 

Model 2 Original model with     removed 0.190 

Model 3 Original model with     removed 0.517 

6.6 Comparisons between Constraint-based and Score-based Learning 

As it was discussed above, the two methods are different regarding the underlying 

principles. Constraint-based learning iteratively performs statistical tests on the data 

to identify a list of conditional independencies and leads to a unique model that 

entails these relationships. Score-based learning computes the joint probabilities of 

different candidate models given the data and ranks the models. Distinct principles 

adopted lead to different advantages and preferences under various circumstances. 

The constraint-based method can be more susceptible to small data set as this may 
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result in incorrect categorical decisions about conditional independencies. However, 

the score-based method may end up with a network model that is difficult for 

interpretation due to little attention being paid to the causality aspect. Hence, the 

constructed BNs should be scrutinised so that an optimal approximation can be 

achieved. 

6.7 Missing Data Treatment 

The ideal situation for data analysis is to possess a complete set of data that is readily 

available for processing. This can be difficult to achieve in practice, particularly so in 

the case of maritime casualty data.  Despite this situation, little attention has been 

paid to the issue of incomplete data for risk assessment. Simple ignorance and 

arbitrary approximation are the standard practice to deal with such circumstances. 

This coarse handling will affect negatively the quality of risk assessment. Moreover, 

every record in the casualty database normally comes with the price of human lives, 

property damages, and environmental pollution. Hence, rather than wasting such 

priceless resource, a scientific treatment of missing data is encouraged. 

Enormous development has been achieved over the last quarter of a century in 

general statistical methods for handling incomplete data. Notably, both the 

Expectation Maximisation (EM) algorithm and the Markov Chain Monte Carlo 

(MCMC) technique provide flexible and reliable means to address the missing-data 

problem [Schafer, 1997]. 

The EM algorithm is a technique for identifying the maximum likelihood estimates 

when the data are not fully observed. It utilises the interdependence between the 

missing data          and the parameters  . As          contains the information for 

estimating  , it helps in turn to identify the likely values of         . On the basis of 

this nature, initial          can be filled up using initial estimate of  , re-estimate   

based on           and the approximated         . This process can be iterated until 

the estimates converge. 
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A short example with a small data set containing five records is tabulated in Table 

6.14. The relationships between the nodes   and   can be constructed as shown in 

Figure 6.19. On this basis, the prior belief for the three augmented nodes can be, 

                  
 

   
 
 

   
 
 

   
   

 

 
 
 

 
 
 

 
  

Where     represents the belief of the augmented node    for node   with 

          

     represents the belief of the augmented node    for node   with 

          and           

     represents the belief of the augmented node    for node   with 

        and           

Table 6.14: A Data Set Containing Two Empty Cells 

Records Time Location 

1 Daytime In port 

2 Daytime ? 

3 Daytime In port 

4 Daytime At sea 

5 Night ? 

 

 

Figure 6.19: Prior Belief Assigned for both T and L 

The prior belief facilitates the estimation of the collected evidence, as illustrated in 

Table 6.15.  
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Table 6.15: Updated Data using Prior Belief 

Records Time Location 
No. of 

occurrence 

1 Daytime In port 1 

2 Daytime In port 1/2 

2 Daytime At sea 1/2 

3 Daytime In port 1 

4 Daytime At sea 1 

5 Night In port 1/2 

5 Night At sea 1/2 

Having this, it can help generate the updated beliefs.  

                
                                  

 

      

 

   
 

 
       

 

 
 

                
                                 

 

      

 

   
 

 
       

 

 
 

                
                                

 

      

 

         
 

 
 
 

 
 

                
                               

 

      

 

         
 

 
 
 

 
 

Where     represents the evidence from the data concerning the augmented 

node     with           and           

     represents the evidence from the data concerning the augmented 

node     with           and          

     represents the evidence from the data concerning the augmented 
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     represents the evidence from the data concerning the augmented 

node     with         and          
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Consequently, the prior belief can be further updated accordingly, 

    
       

               
 

   

       
 
 

 
 

    
       

               
 

  
 
 

  
 
 
   

 
 

 
 

  
 

    
       

               
 

  
 
 

  
 
 
   

 
 

 
 

 
 

Where     represents the prior belief concerning the augmented node     with 

          

     represents the prior belief concerning the augmented node     with 

        

     represents the evidence from the data concerning the augmented 

node     with           

     represents the evidence from the data concerning the augmented 

node     with         

     represents the prior belief concerning the augmented node     with 

          and           

     represents the prior belief concerning the augmented node     with 

          and          

     represents the prior belief concerning the augmented node     with 

        and           

     represents the prior belief concerning the augmented node     with 

        and          

With the updated beliefs, the column “number of occurrence” in Table 6.15 can be 

updated. This in turn leads to the updates of the probabilities estimated for the empty 

cells. Through six iterations, the estimated probabilities converge, as tabulated in 

Table 6.16, with the first empty cells have                 ,             

    and the second empty cell                 ,                . The 

estimated values can be directly used for parameter learning. 

Table 6.16: Six Iterations Performed for Probabilities Updating 

 Number of iterations 

 1 2 3 4 5 6 

    0.5 0.6667 0.6667 0.6667 0.6667 0.6667 

    0.5 0.5833 0.5972 0.5995 0.5999 0.6000 

    0.5 0.5 0.5 0.5 0.5 0.5 
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The computational effort needed to implement the EM algorithm depends mainly on 

the selection of initial priors and the defined precisions. For instance, if four decimal 

places are considered for the initial priors, as tabulated in Table 6.16, it needs 6 

iterations to converge. In contrast, only 4 iterations are required if three decimal 

places are defined. Moreover, as it is depicted in Figure 6.20, the selection of initial 

priors has direct impact on the number of iterations needed to converge. The lowest 

iteration number (i.e. 2) can be achieved if the priors for    ,    ,     are set to be 

0.667 at the beginning. The main reason for such a phenomenon is that such a set of 

initial priors is the closest approximation to the subsequently converged one (i.e. 

0.6667, 0.6000, 0.5), as tabulated in Table 6.16.  

 

Figure 6.20: Relationship between the Selection of Initial Priors and Number of 

Iterations Needed 

Another powerful technique is known as the Markov chain Monte Carlo, which is a 

collection of techniques for creating pseudorandom draws from the probability 

distributions. To address the issue of missing-data problem, a specific methodology 

has been developed in [Schafer, 1997] known as the Bayesian iterative proportional 

fitting (Bayesian IPF). This is a method that also adopts the log-linear model as 
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discussed previously. The key is to train the corresponding log-linear model on the 

basis of the available data so as to predict the cell probabilities of the contingency 

table. During the model training process, a Markov chain of the predicted cell 

probabilities is formed through iteratively correcting the hyper-parameters of the 

constrained Dirichlet posterior distribution function. After a suitably large number of 

iterations (the burn-in period), the estimated probabilities can be regarded as a 

random draw from the correct posterior       . Hence, the subsequent draws for   

represent a dependent sample from       , which can be used for the derivation of 

cell probabilities. 

For instance, in the case of the dataset tabulated in Table 6.14, the estimated cell 

probabilities for the contingency table of    and   through EM algorithm are shown 

in Table 6.17. Such information can be treated as the initial distribution for training 

the log-linear model. The subsequent estimation through the Bayesian IPF is 

tabulated in Table 6.18. Having such information, the statues of the missing data can 

be estimated accordingly for further processing. For instance, the status of   for the 

first empty cell is “Daytime”,             
      

             
       ,     

        
      

             
       . In the case of second empty cell,     

        
      

             
       ,             

      

             
       . 

Table 6.17: Initial Estimation of Cell Probabilities of the Contingency Table for T 

and L through EM algorithm 

 Time 

 Daytime Night 

Location 
In port 0.3 0.25 

At sea 0.2 0.25 

Table 6.18: Updated Estimation of Cell Probabilities that Satisfying the Log-linear 

model of the Contingency Table for T and L through Bayesian IPF 

 Time 

 Daytime Night 

Location 
In port 0.3560 0.2208 

At sea 0.2272 0.1960 
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6.8 The Size of Data Set Needed 

In order to gain better confidence of the developed BN model, a number of 

researchers have investigated the amount of data that is needed for a satisfactory 

analysis. Nevertheless, a definite conclusion has not been achieved and the dispute 

continues. The bounds on the number of records needed are developed in [Zuk, et al., 

2006] to ensure a particular wrong network diagram can be avoided. Moreover, [Dai, 

et al., 1997] suggests a relationship between the number of nodes and the sample size 

needed to learn a correct network diagram, as tabulated in Table 6.19. Nevertheless, 

there are also some conflicting empirical results. For instance, a 37-node network is 

generated from 3000 pertinent records [Cooper and Herskovits, 1992], while 

[Neapolitan and Morris, 2003] uses 9640 cases to train an 8-node network model. 

Table 6.19: Correlations between Number of Nodes and Sample Size Needed, [Dai, 

et al., 1997] 

Number of nodes Sample size needed 

2 10 

3 200 

4 1000-5000 

5 1000-2000 

Despite of the aforementioned empirical findings, it is important to understand the 

current status of the marine casualty database. Due to the negative nature and the 

subsequent confidentiality, the difficulties encountered when approaching ship 

operators can significantly limit the amount of data that can be collected. Hence, as 

the current sample size still stands at a relative low level when considering the 

number of variables that needs to be considered at a time, (e.g. hundreds of records 

versus 10~20 variables, etc.), the emphasis should be placed on collecting as much 

information as possible at this stage.  
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6.9 Automation of Bayesian Learning Algorithms 

As it can be noticed that the amount of computation needed for the implementation 

of key components of the BNs learning, i.e. dependency analysis, the PC algorithm 

implementation, parameter learning, and score-based learning, is tremendous even 

for a simple BN model containing a handful of nodes, hence, a degree of automation 

is needed in order to facilitate a smooth execution of the learning process. 

The classical automation work for BNs focused mainly on the probability processing 

through Bayesian inference. This has now become almost standard functions to be 

equipped by every BN package, like Hugin (http://www.hugin.com/), Netica 

(http://www.norsys.com/), GeNIe (http://genie.sis.pitt.edu/), etc. In contrast, the 

functions allowing both the BN structure learning and the subsequent network 

quantification are very limited. For instance, the TETRAD project 

(http://www.phil.cmu.edu/projects/tetrad/) undertaken at Carnegie Mellon University 

is one of the few important and continuous researches focusing on the development 

of the principles of causality discovery, which can be applied to BN learning due to 

its influence diagram nature, [Spirtes, et al., 2000], [Glymour, 1987, Glymour and 

Cooper, 1999, Glymour, 2002].  

A number of commercial BN software has also embarked on the development of 

relevant functions for learning BNs in recent years, e.g. Hugin. Nevertheless, these 

packages work in a black-box nature, which provides little information of the 

detailed computation process and the quality of the identified network structure. As 

the field of learning BNs from the data is still evolving, the maturity of these 

functions is doubtable. All the aforementioned factors drive the development of an 

independent program, which is tailored for this research and the context of risk-based 

ship design. The architecture of the developed program is illustrated in Figure 6.21.  

Raw data that is recorded in the database system developed in Chapter 5 can be 

selected and exported into text files (Figure 6.22). Having the data, it can be easily 

imported into the code developed in R (http://www.r-project.org/), as depicted in 

Figure 6.23. Adopting R as the platform is attributable to its well-established 

statistical functionality, which allows easy training of the mathematical models, e.g. 

http://www.hugin.com/
http://www.norsys.com/
http://genie.sis.pitt.edu/
http://www.phil.cmu.edu/projects/tetrad/
http://www.r-project.org/
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the log-linear model, the logistic regression model, and scripting flexibly. Both 

constraint-based and score-based learning algorithms are included. The identified BN 

model can be directly exported into GeNIe for facilitating future probabilistic 

inference, (Figure 6.24). In the meantime, the detailed computational process is 

recorded in the log file for further scrutinisation, as shown in Figure 6.25. In order to 

examine the quality of the BN model constructed through data mining, a series of 

investigation will be performed and discussed in Chapter 8. 

 

Figure 6.21: Architecture of the Developed Code for Bayesian Networks Learning 

 

Figure 6.22: A Sample of Raw Data in Notepad 
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Figure 6.23: A Snapshot of R Interface 

 

 

Figure 6.24: A Snapshot of GeNIe Interface 

 

 

Figure 6.25: A Snapshot of a Log File 
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6.10 Closure 

Although data mining is a broad and multidisciplinary subject, as far as the 

elicitation of the BN model is concerned, the two major categories of structure 

learning techniques: constraint-based learning and score-based learning, have been 

elaborated in great details, in parallel with the formalised technique for the 

quantification of the network structure in a scientific manner. The difficulties 

frequently encountered during application stages e.g. missing data, size of data set, 

etc. have also been explicitly addressed. Due to the tremendous computation 

involved, the developed program in R has been presented for facilitating the 

implementation process.  
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Chapter 7  

Risk-Based Ship Design  

 

7.1 Preamble 

The value of risk-based design is attributed to a scientific methodology for the 

quantification of ship life-cycle risk and its constituent components. Through 

systematically performing risk assessment, the risk level can be revealed, when 

compared against pre-defined risk acceptance criteria. Moreover, as Risk-based 

design can offer a transparent and well-informed platform where the knowledge on 

technical performance, cost/earning potential, and safety is readily available for the 

trade-off process, it is crucial to adhere to a properly developed practical ship design 

procedure for the implementation of risk-based design. This entails two sequential 

issues need to be addressed properly: risk assessment and the subsequent decision 

support. 

In light of the foundation that has been laid over the past fifteen years for risk-based 

design and on the basis of the proposed approach for the development of 

probabilistic models in BNs, this chapter starts with a proposition of a practical ship 

design procedure with particular emphasis on the safety aspect. An important feature 

concerns the BNs, which can be integrated with other design components as safety-

relevant knowledge models. Following an elaboration of the framework, the roles of 

BNs will be demonstrated. 

7.2 A Practical Ship Design Procedure 

It can be argued that the initial design stage comprises the most creative part of a 

ship design process and it also possesses the largest freedom to make important 
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decisions that will influence the overall performance of a design. It starts with a few 

basic requirements from the owners (specification), such as range between refuelling, 

payload, and speed, etc. This is accompanied by a list of restrictions arising from port 

approaches and route characteristics. As the design is evolving, it needs to comply 

with classification society’s rules and international and national regulations, all of 

which are mainly concerned with safety features. The output from this process is an 

initial set of principal dimensions and a basic layout of the ship. 

A theoretical presentation of the design process, which demonstrates the inherent 

compromise, this exercise is the well accepted concept of the design spiral, as 

illustrated in Figure 7.1. Nevertheless, considering the high risk associated with huge 

expenditure if a design is developed from scratch, the practice in the day-to-day 

operation of the design office is based on either of the following approaches 

[Konovessis, 2001]: 

  The basis ship approach, through which a proven feasible design is used as the 

template. The principal particulars and layout of the basis ship will be used as 

the basis for deriving the design under consideration using simple geometrical 

projection formulae.  

 A database approach: in which instead of using a single basis design, the main 

features of a series of similar designs on main dimensions, ratios and layout 

characteristics are collected and deployed to determine the properties of the new 

design. 

Clearly, as the procedures of the aforementioned two approaches imply, the aim is to 

speed up the iterative process so that a faster convergence can be achieved, while, at 

the same time, not compromising the techno-economic performance.  However, it 

should be noted that intuitive judgement is playing an important role as the design 

proceeds. Moreover, the two approaches do not offer an alternative nor promote the 

identification of a better solution. An inadequate estimation of one of the design 

elements can subsequently lead to a feasible design but not to an optimal one. This is 

because at each step the designer must satisfy limited criteria, but having them 
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satisfied he proceeds to the next step without knowing how good the design actually 

is [Vassalos, et al, 2005]. 

 

Figure 7.1: Design Spiral [Taggart, 1980] 

In the knowledge that ship design is essentially a multi-objective multi-criteria 

optimisation process, in which technical performance, cost, and earning potential are 

the traditional objectives, diverse practical design approaches coupled with pertinent 

optimisation methodologies have been explored. One of the key features of such 

practice is to take advantage of the computation capability nowadays so as to 

exhaustively search the design space given a list of requirements and constraints. 

Upon completion, a set of feasible designs should be identified and is subject to a 

trade-off process where optimal designs can be selected. This process is illustrated in 

Figure 7.2.  

As the aim of risk-based design is to treat safety as an add-on objective alongside 

conventional ship design objectives (like low resistance, etc), it becomes natural to 

introduce an extra set of constraints during the exploration of design space stage and 

an extra set of criteria for a balancing process. The high-level design concept is 

shown in Figure 7.3. As indicated, designs that successfully satisfy owner’s 

requirements, technical constraints, external restrictions, and risk acceptance criteria 
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should create a design space where a list of feasible designs is located. Having the 

design space, it is necessary to introduce appropriate optimisation methods which 

enable the selection of the favourable designs, with respect to the performance 

expectation of the owners.  

  

Figure 7.2: Flowchart of Design 

Optimisation Process 

Figure 7.3: Updated High-level Flowchart 

of Design Optimisation Process 

The key for implementing this approach is to develop a working procedure for the 

creation of the design space and for the execution of the multi-objective multi-

criteria optimisation. On the basis of the calculation procedure for risk-based design 

propounded in [Konovessis, et al., 2007], a working procedure is proposed as shown 

in Figure 7.4, where the emphasis is placed on integrating BN models within the ship 

design process. The procedure consists of the following steps: 

1. Define design parameters, determine their variations, and generate candidate 

designs. 

2. Select risk acceptance criteria, as well as other design criteria, to be applied. 

3. Use pertinent database and data mining techniques to develop risk models, in the 

form of BNs, for risk level quantification and assessment. 
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4. Evaluate the technical and economic performance of the new design. 

5. Consider RCOs. 

6. Set-up the optimisation problem 

7. Iterate as many times as necessary 

 

Figure 7.4: A Calculation Procedure for Risk-Based Design Implementation using 

the Bayesian Network Models 

Definition of Design Parameters 

At this stage, the dominant parameters should be identified, the variation of which 

need to be estimated as well. It is important to note that the classical approach tends 

to derive a single design out of the first iteration, while the proposed approach 

advocates the utilisation of the computational capability to search the design space 

exhaustively. The aim is to deploy appropriate local iterations and to minimise global 
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iterations so as to achieve a faster convergence to the optimal design, [Cai and 

Konovessis, 2008]. However, the searching algorithm can be defined in a sparse way 

in order not to miss out promising design candidates yet maintain a reasonable 

computational effort.  

To do so, the searching of the values of each parameter can be achieved by the 

expression (7.1). The density of possible values generated depends on the definition 

of the         . In the case of discrete parameters, e.g. presence of a lower hold, 

categorical definitions can be assigned, i.e. true or false. Consequently, the 

generation of possible designs is just a matter of determining various combinations 

of the values/states of the key parameters. 

 

                                           (7.1) 

In the case of passenger Ro-Ro vessels for example, the desired goal is to identify 

appropriate arrangements and layouts. The various characteristics/parameters to be 

considered can be grouped in the following broad categories, [Konovessis, et al., 

2007]: 

 Hull-related parameter, for example, principal dimensions, ratios and 

coefficients, height of the main vehicle deck, etc. 

 Internal layout and arrangement, i.e. possible layouts below (for example, pure 

transverse subdivision, combination of transverse and longitudinal subdivision, 

presence of a lower hold) and above the main vehicle deck (for example, 

presence of centre and/or side casings, transverse or longitudinal bulkheads, 

combinations). 

Selection of Criteria 

For candidate designs with the risk level and the technical performance estimated, it 

is necessary to ensure a set of minimum requirements is met before proceeding to the 

optimisation process (e.g. the risk level of a candidate design must not exceed the 

upper bound of an ALARP region, the probabilistic damage stability requirements 

are met). On the other hand, it is understood that the economic performance 
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indicators, e.g. Net Present Value (NPV), Required Freight Rate (RFR), are generally 

regarded as confidential information with ship operators. In this respect, minimum 

criteria will not be imposed for economic performance at this stage; however, they 

should play an important role at the optimisation stage for measuring the superiority 

of promising designs. 

As far as safety performance is concerned, risk acceptance criteria focus mainly on 

individual risk and societal risk. In this respect, the latest development through 

SAFEDOR can be regarded as the most widely accepted criteria concerning 

passenger ships [IMO, 2008b]. Detailed description is supplied in Appendix 7. 

Furthermore, typical technical design criteria that could be considered: 

 Required payload (number of crew and passengers, private cars and trucks) 

 Minimum operational speed 

 Passenger comfort as expressed by hydrostatic and hydrodynamic properties 

(GM and acceleration) 

 Etc. 

7.3 Bayesian Networks for Risk Assessment 

Through the deployment of the new generation database and the corresponding 

Bayesian learning techniques, one should be able to obtain pertinent BN models. It is 

important to notice that these developed models have two concurrent roles: the risk 

model and risk knowledge model.  

The role of a risk model is to provide a high level risk quantification platform where 

the probabilities of key situation-specific events and their corresponding 

consequences are estimated, whilst, a risk knowledge model stores probabilistic 

information of the influence of ship design parameters, operational variables, and 

situation-specific factors on the components of risk models. 
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7.3.1 Bayesian Network as Generic Risk Models 

An important component for the implementation of the risk-based design 

methodology is the availability of an effective and systematic way to quantify the 

risk level of a specific design. In relation to this, although the absolute value of the 

obtained risk level entails a degree of uncertainty which arises from various aspects 

(e.g. quality of the data input, assumption made, etc.), as far as the identification of 

RCOs and design prioritisations are concerned, the relative risk values provide a 

tangible measure to achieve design objectives optimally.  

In this respect, rather than adopting the classical tools for risk quantification, a BN 

can be used. An important difference between the tree and network techniques is that 

the former adopts the concept of “logic”, meaning the occurrence of one event leads 

to its followers, whilst the latter emphasises the “influence”. That is, the fact that 

physical (steel material, subdivisions, etc.) and qualitative variables (culture, 

management, etc.) can  influence the occurrence of a specific event.  

As the trained BNs accommodate the sequential events that lead to the manifestation 

of a specific hazard (e.g. they contain the occurrence of an event, its escalation, and 

ultimately, the possible consequences), such models can be regarded as generic risk 

models for risk level estimation. From this point of view, a BN model is equivalent 

to a conventional risk contribution tree (i.e. fault and event trees) for risk assessment.  

Exchangeability between Bayesian Networks and Risk Contribution Trees 

Nevertheless, it has to be appreciated that both techniques are interchangeable. The 

risk model developed in fault and event trees can be transformed into a model in BNs, 

and vice versa. This exchange provides a rather flexible way for the development of 

risk models as the tree techniques may encounter difficulties when more than a few 

variables influence the occurrence of an event. In this case, it will be desirable to 

make use of BNs for risk modelling. 
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A generic fire risk model  illustrated in Figure 7.5 demonstrates the 

interchangeability between the two approaches. The tree on the left-hand side 

represents a fault tree showing various spaces of origin that a fire event can occur. 

An “OR” gate should be assigned for the high-level fault tree to indicate an 

independent relationship. The event tree as shown on the right-hand side indicates 

how the situation progresses given a fire event starting in space i with certain 

consequences. 

 

Figure 7.5: A Generic Fire Risk Model [Guarin, et al., 2007] 

An equivalent BN model is illustrated in Figure 7.6, where each event is denoted by 

a node with the arrows showing the influences. For this specific case, the root node 

“fire_location” is equivalent to the fault tree of the fire risk model where detailed 

space information and their relative probability values are stored, as shown in Figure 

7.7. “Fire_growth” is influenced by the location of fire initiation. This is justified as 

fire growth depends on fire load and its distribution in space, which varies for spaces 

of different usages. The conditional probability tables for “fire_growth” and 

“containment_failure” are shown in Figure 7.8 and 7.9 respectively. The outcome 

node, “boundary_failure” is conditional on the states of “fire_location”, 
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“fire_growth”, and “containment_failure”. Its conditional probability table is 

illustrated in Figure 7.10. 

 

Figure 7.6: An Equivalent Fire Risk Model in Bayesian Networks 

 

Figure 7.7: Probability Table for “fire_location” 

 

Figure 7.8: Conditional Probability Table for “fire_growth” Given “fire_location” 
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Figure 7.9: Conditional Probability Table for “containment_failure” Given 

“fire_location” and “fire_growth” 

 

 

Figure 7.10: Conditional Probability Table for “boundary_failure” Given 

“fire_location”, “fire_growth”, and “containment_failure” 

As risk quantification using the risk contribution tree (fault and event trees) is sought 

through the assignment of the frequencies of fault tree components, which lead to the 

frequency estimation of the top event, and through the estimation of the conditional 

probabilities at each branch in an event tree. The product of the frequency of the top 

event with a series of conditional probabilities following a specific branch/path gives 

the frequency of a specific scenario occurring. In the case of the BN model, it works 

in a similar manner. Through the product of probabilities and condition probabilities 

that a series of events occurring, the likelihood of a specific scenario can be 

estimated easily.  

The Issue of Frequency 

Nevertheless, it is noted that the frequency is not the unit for BNs because only the 

probability can be assigned for the sake of probabilistic inference. A solution is to 
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introduce the “frequency” at the last stage for root nodes. For this specific 

application, “fire_location” is the only root node. Hence, it is necessary to identify 

the frequency of fire event only. For instance, suppose a fleet size of 90 ships with a 

reporting period of 3.5 years and 1000 cases of fire event onboard, the estimated fire 

ignition frequency would be 3.175 per ship-year. Consequently, the relative 

probabilities for the root node “fire_location” can be easily transformed into 

frequencies. For instance, the probability of fire occurring in SOLAS space category 

1 is 0.115, then its corresponding frequency is                            

    . Hence, a unique formulation for the frequency estimation of a BN model is 

summarised in equation (7.2). 

 

                                             (7.2) 

The Issue of Consequence 

It is also worth noting that the consequence analysis as a result of a chain of events 

can be addressed in a BN model as well. Conventional treatment is to attach each 

individual consequence to the far end of the branch of an event tree, as illustrated in 

Figure 7.11, where the measure of the consequence is Fatality Rate (%) (number of 

death per 10,000 people per ship year). Once a risk model can be constructed in BNs 

as illustrated in Figure 7.6, it should be relatively easy to tabulate the results in a 

similar manner in a summary table (e.g. probability of occurrence per scenario as 

shown in Figure 7.11). Therefore, the quantification of the consequences can be 

regarded as an independent part.  

On the other hand, an alternative is also available if one is willing to maintain the 

integrity of the model. This can be achieved by simply adding another node in the 

network and directing arrows accordingly, as depicted in Figure 7.12. For this 

specific example, every remaining node plays an important role in influencing the 

final consequence. The conditional probability table for the node “fatality_rate” is 

illustrated in Figure 7.13.  
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Figure 7.11: An Example of Frequencies and Consequences Estimation in an Event 

Tree 

 

Figure 7.12: A Bayesian Network Model with the Consequences Included 

 

Non-fatal impact F1.1.1 0.6359 8.2668E-04 0

0.92

Fatal impact F1.1.2 0.0553 7.1885E-05 0.4

0.08

F1.2 0.0202 2.6208E-05 0.7

F1.3 0.0086 1.1232E-05 0.7

Non-fatal impact F2.1.1 0.0670 8.7048E-05 0

0.93

Fatal impact F2.1.2 0.0050 6.5520E-06 0.4

0.07

F2.2 0.0056 7.2800E-06 36

F2.3 0.0024 3.1200E-06 36

Non-fatal impact F3.1.1 0.0980 1.2745E-04 0

0.57

Fatal impact F3.1.2 0.0740 9.6148E-05 0.4

0.43

F3.2 0.0224 2.9120E-05 8

F3.3 0.0056 7.2800E-06 8

Sum: 1.0000 1.3000E-03

ID Code
Probability per 

fire

Frequency per 

year 

Fatality Rates 

(%)
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Figure 7.13: Conditional Probability Table for the Consequence Node 

Comparing with the column “fatality rate” in the event tree, where the expected or 

averaged single value is normally assigned for each scenario, the corresponding node 

in a BN risk model has a higher resolution by supplying the probability distribution 

of the consequence. This is achieved by discretising the fatality rate into various 

ranges (e.g. 0 – 1, 1 - 10, 10 - 100, 100 – 1000, etc.), in which the estimation of the 

severity of various scenarios can be achieved. In this way, BNs offer more flexibility 

to present consequences in various levels of resolution depending on the analysis, 

and the availability and quality of data. 

7.3.2 Bayesian Network as Risk Knowledge Models 

In case the risk level of a candidate design needs to be reduced, the most promising 

RCOs should be examined. In this case, the emphasis is placed on the identification 

of both preventive (frequency reduction) and mitigative (consequence reduction) 

measures. A high level list of generic RCOs is illustrated in Figure 7.14.   

A broad classification of the listed RCOs suggests that mainly design and operational 

parameters can be targeted. The former group refers to those parameters/features 

(installation of ECDIS system, watertight subdivisions, fire detection systems, 

suppression systems, etc.) that can be controlled at the early design stage. They 

determine the capability of a design to avoid and sustain accidents through 

preventive and/or mitigative means. In other words, there are parameters that are 
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capable of leading to designs which are more tolerable to software (e.g. human error) 

and hardware failures, and more resistive to catastrophic consequences following an 

accident occurrence. On the other hand, operational parameters are procedures that 

need to be followed during the operational stage to reduce the risk exposure of the 

ship. For instance, scheduled maintenance, regular drilling and training of crews, 

establishments of contingency plans, etc., are the typical examples of operational 

means for safety assurance. 

 

Figure 7.14: Generic Risk Control Options [Konovessis, et al., 2007] 

Moreover, it is noted that apart from design and operational parameters there are 

certain environmental variables that are influencing the risk level as well, (traffic 

characteristics, geography, time of the day, sea state, etc). As a combination of 

different states of these parameters will evidently define a unique design scenario, 

they are also referred to as situation-specific parameters [Guarin, 2006]. 

Consequently, if the risk model for a specific hazard is constructed in a BN, its 

probability values are actually conditional on the statuses of these three groups of 

variables: design, operational, and situation-specific parameters. The high level 
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concept is illustrated in Figure 7.15. With these three groups of parameters recorded 

in the database and utilised for data processing, their influences on the scenario-

defining variables in the aforementioned risk models can be established. In this 

respect, the BN model can be regarded as a risk–knowledge model, where the 

knowledge of the interrelationships between manageable (physical) entities and the 

key risk components are stored and expressed probabilistically. In this way, the risk 

level of the interested hazard is ultimate conditional on the statuses of these three 

groups of parameters: ship design, operational, and situation-specific parameters.     

 

Figure 7.15: A Conceptual Bayesian Network Model 

As it has been stressed in Chapter 3, the current approach for the quantification of the 

risk model relies heavily on first-principles tools and it is time-consuming to derive 

the probabilistic values. For instance, in the case of an event tree for collisions, in 

order to quantify the conditional probabilities of the sub-tree following the flooding 

of the struck ship, as indicated by the red box in Figure 7.16, the coupling between 

the Monte Carlo simulation and first-principles tools (e.g. time-domain simulation 

software Proteus 3.1 for modelling the damaged ship dynamic behaviour) can be 

adopted. However, such practice can take weeks to implement for a single design 

configuration, not forgetting this process needs to be performed iteratively at a global 

level during the application stage.  

 

Ship 
parameters 

Operational 
parameters 

Occurrence Escalation Consequence

Risk models

Risk knowledge models

Situation-
specific 

parameters 
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Figure 7.16: A Generic Event Tree for Collision [DNV Technica, 1996] 

In this respect, BNs offer a more efficient way for the quantification of the risk 

models as design parameters are linking with high-level risk components directly. 

The immediate convenience is that there is no need for repetitive simulations on first-

principles tools as the influence of specific parameters on risk components can be 

obtained instantly. 

An example of this application is provided for the probability of fire growth given it 

starts in a space onboard the ship, denoted by “fire_growth”, which is also a 

component of the four-node high-level fire risk model as illustrated in Figure 7.6. It 

is understood that the effectiveness of detection systems plays an important role on 

the status of “fire_growth”, hence, a simple local risk knowledge model is 

constructed in Figure 7.17.  

It takes into account the two main types of detection systems (smoke and heat) are 

installed in a space (e.g. public space). The combined effect of the reliability and the 



145 

 

effectiveness of a smoke detection system is 0.98, while the conditional probability 

for a heat detection system to activate under an identical situation is 0.9, as illustrated 

in Figure 7.18. Nevertheless, the conditional probabilities of fire growth are not 

affected by the types of detectors installed, as shown in Figure 7.19. This is 

justifiable as once a detection system activate, the chance of fire growth mainly 

dependents on the performance of various suppression systems.   

 

Figure 7.17: A Risk Knowledge Model Having Influence on the Risk Model 

Components 

 

Figure 7.18: The Probabilistic Input for “detection_system” 

 

Figure 7.19: The Probabilistic Input for “fire_growth” 
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Through probabilistic inferences, these two types of detection systems are examined 

independently and the results are illustrated in Figure 7.20 and 7.21. The installation 

of the smoke detection system eventually leads to the probability of fire growth 

standing at 0.02% given its occurrence, while this value is about 5 time higher (i.e. 

0.10%) if the heat detection system is installed. Such influence of different design 

solutions should propagate in the high level risk model and ultimately result in 

different risk levels. Although the absolute value may be doubtful, it provides a fast 

and plausible solution so that RCOs can be examined for comparison or prioritisation. 

 

Figure 7.20: Inference Performed when Smoke Detection System is Installed 

 

 

Figure 7.21: Inference Performed when Heat Detection System is Installed 
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The Issue of Sensitivity Analysis  

As it can be seen that the knowledge about the influences of design and operational 

parameters can be probabilistically stored and presented in a BN model, which 

provides a risk knowledge base for evaluating the influence of various variables on 

the corresponding safety performance parameters. However, with an increasing 

number of design and operational parameters to be included in a model, it becomes 

very tedious and time-consuming to examine all possible RCOs and their 

combinations.  

With respect to this, sensitivity analyses can be performed, in which the strength of 

influences of various variables can be identified and prioritised. In general, 

sensitivity analysis is used to determine the sensitivity of a model to changes in the 

states of influencing (input) parameters. This is normally achieved by performing a 

series of tests in which different parameter states are set to find out how a change in 

the input parameters causes a change in the behaviour of the output parameters. By 

doing so, it helps to build confidence of the trained model. 

In this respect, BNs offer a premier platform compared to the classic risk modelling 

techniques (i.e. fault and event trees). In the case of deploying conventional risk 

contribution tree for risk analysis, it is tedious and complex to implement sensitivity 

analysis on existing tree-structured risk models by altering stepwise the states of 

various input parameters individually or in combination. In comparison, due to the 

mathematical background and maturity of BNs software, sensitivity analysis is 

almost a standardised function that every BNs package needs to be equipped with. 

As a result, sensitivity study is truly a matter of “click and go”.    

A sensitivity analysis is performed for the simple fire growth model, as illustrated in 

Figure 7.22. As far as the node “fire_growth” is concerned, “detection_system” plays 

a more important role than “fire_location” does, as highlighted in red. The physical 

meaning of such a finding indicates that as long as an effective detection system is 

installed, the probability of fire growth given it starts can be constrained disregarding 

the types of spaces onboard. 
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Figure 7.22: Sensitivity Analysis of the Fire Growth Model 

7.3.3 Coupling between Risk Models and Risk Knowledge Models 

As it has been noted above, BNs can be a promising technique for suggesting RCOs. 

This is achieved by linking design and operational parameters directly with risk 

components presented in a risk model. In the meantime, BNs can be also regarded as 

an effective tool for developing high-level risk models. Thus, for the sake of integrity, 

both risk knowledge models and risk models can be encapsulated in a single 

Bayesian network.  

Nevertheless, considering the complexity of an overall Bayesian network model and 

the clarity that both fault and event trees offer, a configuration of employing the risk 

contribution tree as a high-level risk model and using Bayesian networks as risk 

knowledge models may be adopted. As Bayesian networks offer such flexibility, it is 

then a matter of coupling between risk knowledge models and risk contribution trees. 

This can be illustrated as shown in Figure 7.23. For the high level risk contribution 

tree, there is a need to assign probabilities at each branch. For instance, to derive the 

conditional probability of fire growth given the ignition as indicated in the red box, 

such information can be easily extracted if a pertinent risk knowledge model in a 

Bayesian network is available.  
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Figure 7.23: The Coupling between Risk Model in Contribution Tree and Risk 

Knowledge Model in Bayesian Network 

By doing so, the quantification of the risk level of a specific hazard can be carried 

out in an efficient manner. If this is feasible for studying the fire hazard, it can be 

extended to other principal hazards of passenger ships as well, i.e. collision, 

grounding. Consequently, the knowledge discovered from the data and presented in 

the mechanism of BNs can be seamlessly integrated with the high-level risk models, 

as illustrated in Figure 7.24. 
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Figure 7.24: A High-level Risk Contribution Tree Model for Risk Quantification and 

Containment [Konovessis, 2001] 

7.4 Decision Support Using Bayesian Networks 

Any design activity is essentially a multi-objective optimisation process. This is 

particularly true for ship design, in which the decision for selecting a design solution 

among many others has to be made on the basis of their performance and 

characteristics in satisfying a set of pre-defined criteria. The emphasis was placed on 

single economic criterion in the past, whilst several other performance indicators, 

including safety, were treated as constraints. This has led to an ill-based design 

concept and a widely recognised perception that safety is expensive and investing on 

safety does not have high economic returns.  

Cost-benefit analysis is one of the most widely accepted and commonly adopted 

approaches for decision support, in which both social costs and benefits are taken 

into account. It compares the benefit gained through implementing the suggested 

alternatives, in monetary terms, with the cost associated with such implementation. 

Nevertheless, it is understood that the decisions to be made at the design stage should 
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consider not only the economic performance, but also the performance in technical 

and safety aspects. Hence, a formalised decision support framework allowing 

effective trade-offs among various performance indicators is an important component 

for the implementation of the risk-based design methodology. 

7.4.1 Decision Support Framework of Risk-Based Design 

In pursuing a rational design process that enables a scientific treatment of every facet 

of a ship’s performance, a transparent and systematic decision support framework 

plays a vital role. In this respect, the approach proposed in [Konovessis, et al., 2007] 

is adopted, in which a structured formulation of criteria, parameters, constraints, 

objective functions, and mathematical models will be developed. Through the 

consideration of pair-wise comparisons using hierarchically decomposed objective 

functions that reflect and combine economic, technical performance, and safety 

aspects, it offers the following features: 

 As one of the main objectives is to deliver optimal design solutions, the criteria 

should be based on performance rather than on conformance. The criteria need 

to be incorporated in the formulation of objective functions. 

 Due to the flexibility of objective function definitions, it allows various 

performance indicators (e.g. economic, technical and safety) to be included in 

the objective function. 

 Due to the performance nature of this approach, the risk model and the risk 

knowledge model developed in BNs can be easily incorporated in the 

optimisation procedure. 

The approach comprises four components: criteria, design parameters, design 

constraints, and objective functions.  A short explanation of each component is 

provided with particular emphasis on the development of the objective functions. 
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Criteria 

The criteria are those entities that are capable of revealing the performances of a 

design solution in specific aspects, which normally cover economic performance, 

technical performance, and safety performance. As the identification of the criteria is 

closely linked with the development of objective functions, it will be considered in 

the last section. 

Design Parameters 

The performance of a ship is governed by a limited number of parameters, especially 

at early design stage.  This is in line with the development of the risk knowledge 

model in BNs, in which the emphasis should be placed on the identification of 

dominant design parameters.  

Design Constraints 

Design constraints are usually requirements that cannot be included in the objective 

function. Such constraints come from physical limitations, regulations, owners’ 

requirements, etc.  

Objective Functions 

The Analytical Hierarchy Process (AHP) will be deployed for the development of the 

objective function [Saaty, 2001]. It is a method developed for a multi-criteria 

decision making process. The key to understand the AHP is to develop a hierarchy of 

characteristics that the decision will be based upon. Design alternatives are compared 

on a pair-wise basis with respect to each specific criterion that listed in the hierarchy 

framework. The priority synthesis, which will be performed at the end, will provide 

an overall prioritisation of the various design alternatives for decision support. 

The AHP starts with the definition of the problem and pertinent domain knowledge. 

A decision hierarchy is then developed with the goal of the decision stated at the top 

and the objectives defined at the intermediate levels. A set of alternatives is provided 
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at the lowest level so that a set of pair-wise comparison matrices can be constructed. 

Each element in an upper level is used as the criterion to compare the elements that is 

immediately below it. The priorities obtained from the comparison are synthesised to 

produce the global priorities of the alternatives. Appendix 8 elaborates briefly on the 

application of the Analytic Hierarchy Process. 

An example has been provided in [Konovessis, 2001], for the development of the 

objective functions.  

  

Level 1 Goal Derive effective subdivision arrangements and 

layouts that maximise safety, whilst minimising 

the incurred costs 

Level 2 Selection Criteria  Income 

 Building cost 

 Operational cost 

 Machinery configuration 

 Performance indicators 

 Safety indicators  

Level 3 Detailed Attributes The attributes to be included and their 

measures are detailed in the following 

Level 4 Merit Function Compose and iterate based on necessary 

improvement 

Design parameters included for this study are: 

 For the arrangement below the main vehicle deck. 

o Transverse subdivision: the number   and location     of the transverse 

bulkheads 

o Longitudinal subdivision: the length    and width   of longitudinal 

bulkheads, if such an arrangement is present. 

o Vertical subdivision: The number   and height    of any immediate decks 

below the main deck. 
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 For the arrangement above the main vehicle deck 

o The presence of side casing (length    and width   ) should be 

considered in during optimisation 

The combinations of various statuses/values of design parameters produce different 

design solutions.  The performances of these designs are then evaluated on the basis 

of the objective functions as illustrated in Figure 7.25. 

 

Figure 7.25: Decomposed Objective Function 

7.4.2 Bayesian Networks for Decision Support 

The framework presented above entails pertinent knowledge on economical, 

technical, and safety aspects for an objective evaluation of the design alternatives. 

Significant effort has been devoted to developing parametric models in the past for 

both economic and technical fields so as to achieve a fast and reasonable 

approximation, e.g. NPV estimation, ship resistance calculation. In comparison, the 

means for evaluating the safety performance of various designs are time-consuming 

and inadequate for the probabilistic inference process (due to independent 

assumptions made during risk modelling). As a result, the risk knowledge models 

developed in BNs can be regarded as unique parametric models, where ship design 
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parameters are linked with safety performance indicators intuitively, objectively, and 

directly. 

An important issue needs to be addressed is to integrate the BN models into the 

decision support process of the highlighted framework. On the basis of the structure 

of the AHP, the key would be to make use of the relevant BN knowledge models to 

systematically quantify pair-wise comparison tables with respect to safety 

performance.  

The Generation of Design Alternatives 

The current approach towards the generation of design alternatives is through the 

modification of design features/characteristics prior to feeding them into first-

principles tools for performance-based evaluations. This could be a very tedious and 

time-consuming task. In the case of risk knowledge models in BNs, it is possible to 

bypass this by encompassing all possible statuses of each variable in a probabilistic 

knowledge base. 

Due to the inherent feature that a parameter is virtually stored and presented in a 

manner of probabilistic distribution, every possible value/state of a parameter is 

captured. If design parameters are included in such a model, the instantiation of a 

number of design parameters will lead a unique design alternative. In the knowledge 

that these parameters ultimately link with safety indicators, the performance of every 

single design alternative can be assessed instantly with the assistance of proper 

Bayesian inference software. Consequently, pair-wise comparisons of various design 

alternatives with respect to safety performance can be carried out easily. 

To demonstrate the process of the generation of design alternatives through BNs, the 

model developed in the SAFEDOR for analysing causal factors of ship collision 

under power is provided [Ravn, et al., 2006]. On the basis of the definition of ship 

collision risk, as illustrated in equation (7.3), [Vassalos, 2004b], this model focuses 

on the component: the probability of collision            for ship under power. An 

overview of the model is provided in Figure 7.26, where each rectangle has its 

corresponding detailed sub-networks. 
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(7.3) 

 

 

Figure 7.26: An Overview of Collision Model with Each Rectangle Representing a 

Sub-Network [Ravn, et al., 2006] 

A list of important design parameters included in the model are summarised and 

tabulated in Table 7.1. In the knowledge that preventive measures of ship collision 

rely mainly on the actions taken on the bridge, its internal design plays an important 

role. In this respect, design alternatives can be generated by simply combining 

different values/statuses of the aforementioned design parameters. For instance, the 

combination of no workstation, no ECDIS installed, no alarm management system, 

poor window layout, no Automatic Identification System (AIS) system, and poor 

ergonomics of the bridge layout produces one design alternative. Conversely, a 

bridge having two workstations, ECDIS installed, Bridge Alarm System (BAS) 

installed, above standard window layout, AIS installed, and good ergonomics of the 

bridge layout produces another design alternative, which theoretically should be 

more effective in preventing ship collision under power. The differences that various 
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design alternatives can make will be ultimately reflected through the output node 

“collision”, as illustrated in Figure 7.27, in which the time for detection, 

interpretation, planning, and execution is subtracted from the time available to react. 

Table 7.1: Design Parameters Included in the Bayesian Network Model of Ship 

Collision under Power 

Design parameters Description 

L own Length of own ship 

Work station The number of work stations on the bridge. {Two, One, No}. 

Support for planning 

provided by the bridge 

The way the bridge layout is organised and the equipment that 

it enables to be accessible can affect the performance of the 

operator both in terms of the time required for him to take 

action and the correctness of the action taken as well. For 

instance, the availability of ECDIS etc. ECDIS present? {True, 

False} 

Alarm management 
Types of alarm management system installed. {BAS, NAS, 

none}. 

Window layout 
{Above, Standard, Below}. A window layout that minimises 

blind sectors is above standard.  

AIS availability and 

graphically displayed 

AIS is onboard of own vessel and the AIS targets are 

graphically displayed. {True, False} 

Ergonomics of the 

bridge layout 

The way the bridge layout is organised, and the equipment that 

it enables to be accessible can affect the performance of the 

operator. A factor from 0 to 0.4 shall be used, where 0.4 

represents the best ergonomics. 

 

 

Figure 7.27: The Output Node of the Developed Bayesian Network Model for Ship 

Collision under Power [Ravn, et al., 2006] 



158 

 

Pair-wise Comparison through Bayesian Networks 

As it has been noted that a BN model can be used for the generation of design 

alternatives, the following task is to integrate such a tool with pair-wise comparison 

tables for the implementation of the AHP. This can be achieved by using a matrix 

table to exhibit the relative superiority of one design alternative over another with 

respect to safety performance. By adopting appropriate scales for this comparison 

process, a summation of the scores obtained for each design through pair-wise 

comparisons produces an overall evaluation, which is referred to as the “priority”. 

Table 7.2 exhibits an example of such comparison process. 

Table 7.2: Pair-wise Comparison among Various Design Alternatives 

 

With the evaluated priorities concerning safety aspect, this piece of information can 

be readily integrated into an overall performance evaluation and trade-off process. 

Other than the performance indicator for safety, a design should be also technically 

sound and cost-effective. Hence, the indicators in technical, cost, earning aspects are 

included as well. In this case, all available resources, including parametric formulae, 

empirical and computational tools, etc., should be embraced together. As the aim is 

to demonstrate the utilisation of pertinent BN models for assisting decision making 

with particular reference to safety aspect, other performance indicators will not be 

elaborated further. A high level summary table for an overall evaluation of various 

design alternatives is provided in Table 7.3. 

The priorities obtained for each design with respect to various performance issues 

(e.g. technical, cost, earning, safety) can be tabulated. The corresponding summation 

Design 1 Design 2 … … Design n Priorities

Design 1 1 … … … … …

Design 2 … 1 … … … …

… … … 1 … … …

… … … … 1 … …

Design n … … … … 1 …

Safety aspect
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produces an overall evaluation. Weighting factors can be assigned as well during the 

trade-off process to emphasise the importance of one or more performance indicators 

over the rest. Consequently, the designs can be ranked on the basis of the estimated 

overall priorities and ultimately assist decision making. 

Table 7.3: Priorities Synthesis for Various Design Alternatives 

 

7.5 Closure 

The implementation of risk-based design entails a practical ship design procedure to 

be followed, where risk assessment can be smoothly integrated. A methodology 

encapsulating the BN models for safety performance evaluation has been presented. 

Particular emphasis has been placed on the multiple roles that BNs can play: the 

high-level risk model, the detailed risk knowledge model. Consequently, the decision 

support framework for risk-based design has been discussed with particular attention 

has been paid to the assessment of safety performance through BNs. 

Technical Cost Earning Safety performance Priorities

Design 1 … … … … …

Design 2 … … … … …

… … … … … …

… … … … … …

Design n … … … … …

Overall evaluation
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Chapter 8  

A Case Study  

 

8.1 Preamble 

Historical statistics suggest that shipboard fire incidents have important contribution 

to the casualties relating to shipping activities. This is attributed to the inherently 

captive nature of a ship’s occupancy and the fact that water accumulated due to fire 

fighting can seriously affect the stability of a ship. The fire incidents comes next to 

flooding when the consequence is concerned, nevertheless, due to its high frequency 

a large number of lives has been lost due to fire incident over the past decades. 

This chapter elaborates on a case study of fire safety of passenger ships by adopting 

the proposed data mining framework. Following the preparation of an 

accident/incident data set of passenger ships for the fire incident database, Bayesian 

learning techniques are deployed to transform the data into domain risk models, 

which are then integrated in the design process for the implementation of risk-based 

design methodology. Particular attention is paid to the decision-support process by 

evaluating specific safety performance parameters of various design alternatives on 

the basis of the developed Bayesian network model. 

8.2 Introduction 

The current approach towards the assurance of fire safety is achieved mainly through 

compliance with prescriptive requirements. However, with more designs of 

passenger ships demand even creative features in order to maintain its 

competitiveness, (e.g. a public space extends to three or more decks on “Sovereign of 

the Seas”; the atrium solution for “Voyager of the Seas” extends to three fire zones), 
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this led to the adoption of the SOLAS II.2, regulation 17 allowing a performance-

based methodology for alternative design and arrangement for fire safety using fire 

engineering methods [IMO, 2001]. A high-level process flowchart is illustrated in 

Figure 8.1. Nevertheless, this regulatory clause can be too open-ended and does not 

provide a clear basis for approval and may result in ambiguity and undefined control 

of safety. Moreover, the methodology highlighted provides little means of linking 

effectively fire safety relevant design parameters with risk performance indicators. 

Thus, this case study aims to embed both design parameters and risk performance 

indicators in a stand-alone BN model, with particular emphasis on the utilisation of 

this approach in decision making. 

Passenger ships are more vulnerable to fire hazards due to that thousands of lives 

onboard could be under threat once the fire escalates from the space of origin. 

Furthermore, the market demands even bigger ships for more passengers. Hence, the 

main focus is placed on passenger ships with particular attention to cruise liners. 

In pursuit of a rational treatment of fire safety at the design stage, the methodology 

proposed in Chapter 7 will be adopted to demonstrate its applicability. The case 

study starts with the development of a fire incident database. Following the 

application of pertinent data mining techniques for risk model developments in BNs, 

the effectiveness of the obtained model for decision support is explored in detail.  
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Figure 8.1: A Flowchart of Alternative Design and Arrangement Process [IMO, 2001] 

8.3 Database Development 

8.3.1 The Identification of Dominant Parameters 

The concept for shipboard fire risk can be defined as a summation of the risk 

contribution from each space onboard, as illustrated in equation (8.1), in which the 

elemental risk can be considered as the product of probability and consequence, as 

illustrated in equation (8.2), [Mermiris and Cai, 2010]. 
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   ∑   

 

   

 (8.1) 

                                                                 (8.2) 

 

Where     is the elemental risk from space  ; 

           denotes the probability (frequency) of fire ignition event in 

space  ; 

                  denotes the conditional probability of fire growth given 

fire ignition in space  ; 

                             denotes the conditional probability of fire 

escalation from space of origin given fire ignition and growth in space  ; 

       denotes the consequence, which was frequently referred to 

probability distribution function of loss of human life injuries/fatalities. 

Theoretical analysis suggests that the instance of ignition is associated with locations, 

fuel type, and spatial distribution of fuel load, overall occupancy, ignition causes, 

and other factors that contribute to the ignition. Available incident data indicates that 

the most significant fuel sources include various pieces of furnishing, floor material, 

wall and ceiling coverings, fittings and other contents (e.g. oil and waste receptacles), 

which have been shown to have a degree of correlation with the floor area of the 

space [Tillander, 2004]. The exposure to a hazardous situation is conditional on the 

exposure to different operational factors such as the level of occupancy, the access 

by public and / or crew, the time of the day, etc. As all these factors are associated 

with the actual “use” of the space, the estimation of the frequency of ignition for a 

specific space type is based on the corresponding historical incidence rate per unit 

area (  ). Thus, the frequency of fire ignition in a specific space type of given area    

and “use” type, is calculable using equation (8.3). 

        (8.3) 

Apart from the usage of a space for          , a list of important physical variables 

influencing the other two risk components, i.e.                  and 

                           , has also been identified and is listed next. The rationale 
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and their corresponding importance are elaborated in Appendix 9, together with 

detailed statuses explained. 

1. On board location (defined according to SOLAS space category, see Appendix 

10) 

2. Date of event 

3. Time of event 

4. Vessel location 

5. Weather contribution 

6. Detection means 

7. Suppression means 

8. Ventilation system status 

9. Fire door status 

10. Space occupancy status 

11. Crew status 

12. Boundary cooling status 

13. Emergency response failure 

14. Containment failure 

15. Ignition in adjacent space 

8.3.2 Data Collection and Processing 

Given a list of variables to be recorded, it is important to ensure a reliable source of 

data, which can be collected in an objective manner. Considering the nature of these 

variables, it is noticed that they cover mainly the early phase of a fully developed fire 

event. Hence, the source of information should be sought through ship operators. To 

comply with the SMS of the ISM code, [IMO, 1994], it is necessary for ship 

operators to report and analyse non-conformities, accidents, and hazardous 

occurrences. Appropriate procedures should also be established for the 

implementation of corrective actions. 

A significant amount of operational fire accident/incident data has been made 

available covering a reporting period of 3-4 years.  
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It is generally agreed that data preparation/pre-processing (e.g. summarisation, 

cleaning, integration, transformation, reduction, etc.) can easily consume 70-80% of 

the time needed for implementing a data mining task, [Han and Kamber, 2006]. 

Hence, significant effort has been put to properly perform data preparation to ensure 

the quality of the processed data. The undertaking also includes the identification of 

duplicated cases and irrelevant cases. The main reason of the duplication comes from 

different casualty reporting schemes and the subsequent merging. In order to assist 

data preparation, the database developed for storing marine accident/incident 

database is deployed. An important advantage of collecting the data and storing it in 

a unified format is to provide a consistent source of information. Moreover, as the 

descriptive text is translated into coded categorical information, it enables further 

mathematical computation. Lastly, it provides a reusable platform that future data 

can be added, in which the output of risk assessment can be further refined easily. A 

snapshot of the coded fire incident information of a record is illustrated in Figure 

5.14 (of Chapter 5). Through the interpretation of each case in the raw data, its 

corresponding fields in the database platform can be identified.  

The fire incident data corresponds to 463 ship-year of operation. The weighted 

average of fire ignition frequency is 3.2/ship-year. The expected frequency per 

SOLAS space category is presented in Table 8.1, in which there is no record for 

SOLAS space categories 1 and 11. 

The derivation of historical ignition frequency is based on the collected incident data. 

In light of this, a comparison is performed for the spaces having the highest ignition 

frequencies between the existing database and the data provided in [Guarin at al., 

2007]. The results are presented in Figure 8.2 and 8.3, respectively. With the 

exception of one case (i.e. “Corridor” and “Public space”) similar conclusions can be 

drawn for the spaces with the highest relative frequency of the occurrence of fire 

incidents. This is particularly true for the spaces, like galley, incinerator room, cabin, 

machinery space, laundry room, etc., despite the small variation which can be 

justified by the inherent data attributes and the size of the sample under consideration.  
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Table 8.1: Fire Ignition Frequency (per ship-year)  

SOLAS space 

category 

Number of 

occurrences 

Frequency of ignition 

/ s-y 

1 0 0.000 

2 23 0.050 

3 52 0.112 

4 11 0.024 

5 72 0.155 

6 315 0.68 

7 19 0.041 

8 192 0.415 

9 55 0.119 

10 10 0.022 

11 0 0.000 

12 642 1.386 

13 126 0.272 

14 4 0.009 

 
Figure 8.2: Top 10 Spaces with the Highest Frequencies of Fire Occurrence Derived 

from Collected Data 

 
Figure 8.3: Relative Frequencies of Occurrence, Reproduced from [Guarin et al., 

2007] 
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8.4 Bayesian Networks Model Generation 

Following the preparation stage, the data is fed into the program developed for 

learning the BN model. In the knowledge that the amount of data is still small 

compared to an ordinary application of data mining, and understanding the number 

of variables and their corresponding states is relatively large, e.g. the ignition space 

originally has more than fifty states, etc., further transformation and simplification 

are performed to assure the quality of the results of Bayesian learning. The variables 

recorded and their corresponding states are tabulated in Table 8.2. 

Table 8.2: Definition of Important Variables and the Corresponding Status 

Variables Notation Status 

Time    
Daytime 

Night 

Vessel location    
Port (in port, at anchor) 

Sea 

Weather contribution    
True 

False 

Ignition space    
SOLAS space category 1 to 

SOLAS space category 14 

Automatic detection 

activated 
   

True 

False 

Manual detection activated    
True 

False 

Automatic suppression 

activated 
   

True 

False 

Manual suppression 

activated 
   

True 

False 

Ventilation status    

Closed 

Fail to close 

No need to close 

Fire door status     
Closed 

Open 

Crew attended     
True 

False 

Guest attended     
True 

False 

Boundary cooling status     

Executed 

Unnecessary 
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Emergency response 

failure 
    

True 

False 

Containment failure     
True 

False 

Ignition in adjacent space     
True 

False 

The data set was imported into the learning program developed in R. Both constraint-

based and score-based learning algorithms are executed to examine and compare the 

results. Considering the size of the data set, the confidence internal was pre-set at 90% 

in order to minimise unnecessary removal of the links due to a relative weaker 

evidence of dependency for constraint-based learning. In contrast, the score-based 

learning approach can be initiated as long as a scoring criterion is defined. 

8.4.1 Learning through the PC Algorithm 

With the PC algorithm, the analyses of two-variable dependent relationships are 

performed first. As there are only two models, e.g. (  ) (   ), for comparison, the 

computation is straightforward. For instance, the comparison between the saturated 

model and the independent model for    and    as illustrated in Figure 8.4 indicates 

that the independent model has significantly damaged the saturated model, which 

implies significant association between the two variables, e.g.             . In 

comparison, the links between      ,       can be removed. Consequently, a 

list of links which have to be removed from the fully connected network can be 

obtained. The computation log is provided in Appendix 11.  

Following this, conditional independency analyses are performed for the 

combinations of three and four variables, which entail that more complicated models 

to be trained. For instance, in the case of         , as depicted in Figure 8.5, the 

simplified models: (     ) (     ) (     ), are compared with the saturated 

model (   ). The subsequent results suggest the link between    and    should be 

removed. Consequently, it completes with a list of links to be removed from the fully 

connected network and the identified conditionally independent relationships, which 

is detailed in Appendix 11. 
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Figure 8.4: A Snapshot of Two-Variable Dependency Analyses 

 

 

Figure 8.5: A Snapshot of Three-Variable Conditional Independency Analyses 

The identified dependent and conditionally independent relationships will enable a 

BN skeleton. The subsequent operation is to add the orientations to the skeleton. As 

stressed in Chapter 6, initial effort should be put to the identification of       

         orientations. This is based on the conditionally independent relationships 

identified. Following that, the orientations for the remaining links can be assigned by 

adhering to the PC algorithm. The detailed operations are provided in Appendix 11. 

Following the aforementioned computations, the obtained BN structure is shown in 

Figure 8.6. It is found that the nodes                      ,       , 

                are isolated from the rest of the nodes in the network. This is 

attributed to little evidence available suggesting a correlation between these variables 

with the rest based on the current data alone. It is also noted that 
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                      and                              both have no link 

directing to the rest. This phenomenon is mainly caused by the limited size of the 

data set, in which only a single fire accident in the collected data failed to contain it 

within the space of origin. Nevertheless, the node                              

is included in the network, which is a good indication of the status of fire growth. 

As far as fire safety is concerned, if                        is the starting point 

of inference,                              can be regarded as the output node. 

It is not surprising to see that the influencing parameters, e.g. detection means, 

suppression means, crew and guest presence, etc. have complex interactions with the 

starting and ending nodes. Most notably, both                         and 

                     have the most important and immediate influence on the 

probability of emergency response failure. 

To examine the quality of the learning results, the influence diagram software Tetrad 

(http://www.phil.cmu.edu/projects/tetrad/) is deployed for similar analysis. Tetrad is 

one of the world’s leading researches for the development of causal/statistical models. 

With identical input data and confidence interval, the obtained influence diagram is 

depicted in Figure 8.7.  

As it can be seen in both Figure 8.6 and 8.7, the two networks match very well. For 

instance, the variables       ,           ,                             , 

                      are all isolated from the rest. Moreover, the remaining 

links and topology of the network are exactly the same. The only exception comes 

from the node                      . This is because Tetrad stops the 

conditionally independent relationship analysis at the stage of three-variable 

combination, whilst, the developed R code takes one step further by analysing the 

conditional independencies of four-variable combinations. 

In addition, it is worthwhile to compare the orientations of the established links 

between the two networks. As can be noted, the orientations connecting: 

                        and                             , 

                        and                      in the two models are 

http://www.phil.cmu.edu/projects/tetrad/
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opposite. Moreover, the links between                      and 

                            ,                    and 

                             have no orientation in the output network from 

Tetrad. 

The main reason for the deviance is that the algorithm for assigning orientations in 

the Tetrad focuses mainly on analysing causalities and plotting a diagram entails 

these relationships. It pays little attention to the directed acyclic feature of Bayesian 

networks and the subsequent probability computation (inference). Furthermore, as it 

is stressed previously for the principle of orientation assignment in Chapter 6, as long 

as the conditional independent relationships are depicted well by the  -structures in 

the network, the remaining orientations will not affect the results of probabilistic 

inference. In this respect, the reversed orientations in the two networks have very 

limited difference. Nevertheless, it would be still very desirable if the adopted 

orientations can reflect true causal relationships in reality for better interpretation. 

All in all, in comparison with the diagram generated in Tetrad, the BN structure 

delivered through the program coded in R adopting constraint-based learning method 

– PC algorithm has very comparable results in terms of the network structure. 
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Figure 8.6: Constructed Bayesian Network Model through Constraint-Based Learning using the PC Algorithm 
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Figure 8.7: Constructed Bayesian Network Model through Constraint-Based Learning using the PC Algorithm in Tetrad 
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8.4.2 Learning through the GES algorithm 

The components of score-based learning are the scoring function and the searching 

algorithm. As the Tetrad adopts a slightly modified version of the Bayesian scoring 

function, called the Bayesian BDeu scoring criterion, as expressed in equation (8.4),  

similar modification has also been made in the program in R. 
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(8.4) 

In contrast to the PC algorithm, the GES starts with a fully disconnected network. At 

the insertion stage, the computation at every iteration is to systematically examine 

every possible link that can be added by calculating the score increment, in which the 

one producing the highest increment will be adopted and taken to the next iteration. 

For instance, during the first iteration by systematically checking all possible links, 

     , the one between       is identified, as illustrated in Figure 8.8. The 

process stops once a link producing positive score increment cannot be found.  

 

 

Figure 8.8: The Learning Results of Loop 1 

At the second phase, similar loops are needed for the edge deletion. In contrast, this 

stage focuses on the systematic removal of links leading to positive score increment.  

The detailed computation log for this specific study is provided in Appendix 12. 

Ultimately, the structure of a BN is identified and presented within a matrix table, as 

illustrated in Figure 8.9. In the matrix, the links and orientations are denoted by      
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and      , which can be transformed into the skeleton of a BN structure in GeNIe as 

depicted in Figure 8.10. 

With respect to        and           , the result obtained from the GES algorithm 

agrees very well with the one delivered through the PC algorithm as both nodes are 

isolated from the rest. Nevertheless, it is found that in terms of identifying the 

sequence of a fire event, the GES performs better as the links follow the logic of an 

ordinary growing fire:                             ,                       , 

                            . Nevertheless, the learning algorithm underperforms 

in describing the interactions between the space of ignition and the remaining 

preventive and mitigative measures as only a single link is identified for 

             .  

Similar GES learning process is performed in Tetrad and the output is illustrated in 

Figure 8.11. It is noted that the learning output in R matches well with the Tetrad 

result with respect to the topology and orientations. With all the remaining links are 

exactly the same, there is an extra link between               and 

                  . Nevertheless, the variable               still lacks of 

interactions with the rest. 
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Figure 8.9: Network Output in Matrix Table 
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Figure 8.10: Constructed Bayesian Network Model through Score-Based Learning 
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Figure 8.11: Constructed Bayesian Network Model through Score-Based Learning in Tetrad 
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8.4.3 Justification of Bayesian Network models  

As it is noted, the topologies of the constructed networks from both constraint and 

score –based learning algorithms vary significantly. This is mainly attributed to 

distinct learning principles. The former focuses on the identification of dependency 

relationships, whilst the latter pays particular attention to the likelihood for the 

network to describe (generate) the collected data set.  

As a result, the outputs from the constraint-based learning algorithm, as shown in 

Figure 8.6 and 8.7, are more capable of describing complex dependent relationships 

between various influencing variables (e.g. detection means, suppression means, and 

human factors). Moreover, it can be observed that the variables with more statuses 

(e.g.                       ) are more likely to have dependent relationships 

with the remaining variables through statistical analysis. On the other hand, the 

networks constructed through score-based learning, as shown in Figure 8.10 and 8.11, 

are more suitable to describe the sequential events of the identified hazard. For 

instance, the information flow as depicted by the two networks starts briefly from 

Ignition spaces, detection means, suppression means, emergency response, up to 

ignition in adjacent spaces.  

It is important to note that the quality and quantity of the collected data set plays a 

vital role on the obtained Bayesian networks models from both techniques. The 

required resolution to describe the interested hazards can be also significant in this 

respect. For instance, different spaces on board will have different typical scenarios 

of fire hazards. All these factors will ultimately affect the topology of the BN models 

and the stored probabilistic information.  

Apart from topological judgement of the goodness of the constructed networks, the 

formal goodness-of-fit criteria are utilised to compare the results obtained from 

different means. Both the Bayesian scoring criterion and the BDeu scoring criterion 

are used for the comparison. The BNs models generated through both the PC and the 
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GES algorithms from the program developed in R and Tetrad are examined, where 

the scores are tabulated in Table 8.3. 

Table 8.3: Goodness-of-fit Comparison Table of the Results Obtained from Various 

Techniques 

Bayesian Network model 

construction means 

Bayesian Scoring 

Criterion 

BDeu scoring 

criterion 

PC algorithm in R -9666.545 -infinity 

PC algorithm in Tetrad -9753.706 -infinity 

GES algorithm in R -9410.066 -9764.864 

GES algorithm in Tetrad -10434.71 -10672.49 

It is noted that the network models delivered through the code developed in R for 

both PC and GES algorithms perform better than the outputs from Tetrad, e.g. 

                   ,                    . It is also found that the 

BDeu scores of the network models generated through the PC algorithms in both R 

code and Tetrad are   . This is mainly caused by one of the component of the 

BDeu scoring criterion,    (     (    )  ). When estimating the score contribution 

from              , which has 7 binary parents,     
      and, consequently, 

   (           )    .  

On the other hand, it is worth noting that the scores of the outputs of PC algorithm 

are comparable with the ones obtained through the GES algorithm. Although the 

results from R code for PC algorithm is lower than the one from R code for GES 

algorithm (e.g.                    ) , the output from Tetrad for the PC 

algorithm actually performs better than the GES algorithm as far as the Bayesian 

scoring criterion is concerned, (e.g.                    ). 

Parameter learning is performed to quantify the networks once its skeleton is 

developed. The outputs from both the PC and the GES algorithms are carried 

forward for probability quantification. As it has been stressed in Chapter 6, the 

conditional probability table of one node is only influenced by the combination of 

different statuses of its parents. Hence, the process is comprised of three steps: 
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construction of the augmented nodes, quantification of the augmented nodes with 

initial prior probabilities, update of the probabilities with the data set. 

Constructing the augmented nodes is essentially equivalent to configuring the 

conditional probability tables. For instance, the parents of 

                        are                       and 

                     in the network obtained through the PC algorithm. Hence, 

the conditional probability table needs the take the four possible combinations of its 

parents’ states into account, e.g. (           ),…, (         ) , as depicted in 

Figure 8.12. This is equivalent to four augmented nodes in the network. 

 

Figure 8.12: An Example of the Conditional Probability Table for 

                        

The following manipulation is to input prior information for all conditional 

probability tables. As little prior information is available, equal prior beliefs are 

assigned. In the meantime, equal sample space is maintained by ensuring the sum of 

the prior beliefs assigned at each node is equal. 

Consequently, all conditional probability tables need to be updated with the 

information stored in the data set by systematically summarising the data set into 

various contingency tables containing a specific node and its parents. Table 8.4 

exhibits an example of a contingency table for                        , whose 

parents are                     and                     . 
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Table 8.4: Updated Contingency Table for                         

                  False True 

                   False True False True 

No_need 316.002 595.002 93.002 317.002 

Activated 33.002 28.002 98.002 41.002 

With the aforementioned process programmed in R, the obtained network can be 

quantified automatically. The results obtained from the developed code can be 

readily checked by similar software using identical data and network skeleton. 

GeNIe is selected for performing the comparison study. 

As far as fire safety is concerned, one of the interesting indicators is to estimate the 

probability of fire growth for a given SOLAS space category. The comparison results 

on the basis of various obtained models are tabulated in Table 8.5. According to the 

skeleton delivered through the PC algorithm, the estimated probabilities from the 

developed R code and GeNIe match extremely well. Similar conclusion can be 

drawn for the network skeleton delivered through the GES algorithm in both R code 

and the GeNIe. Hence, it is believed that the stability of the parameter learning 

algorithm can be assured. 

On the other hand, it is noted that the classical regression analysis provides very poor 

estimation due to small size of the sample space, e.g. 0 occurrence of fire growth for 

SOLAS space category 2, 3, 4, 7, 10, and 14, as illustrated in Figure 8.13. In contrast, 

the BN models produce more realistic estimations. Nevertheless, due to the network 

obtained from the GES algorithm contains only a single link connecting to the node 

              and it has limited influence on                             , 

the latter is not sensitive to the changing states of              .  

Considering all the previous observations, it would be reasonable to employ the 

constructed BN through the PC algorithm and the associated parameters learning 

technique for further analysis. 
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Table 8.5:  (                    ) of the 14 SOLAS Space Categories using 

Various Means 

SOLAS_space 

 (                    ) *100 

PC algorithm GES algorithm 
Regression 

R code GeNIe R code GeNIe 

2 0.64 0.64 0.88 0.88 0.00 

3 0.65 0.65 0.81 0.82 0.00 

4 2.17 2.17 0.83 0.83 0.00 

5 0.44 0.44 0.87 0.87 1.45 

6 0.29 0.29 0.95 0.95 0.32 

7 0.59 0.59 0.93 0.93 0.00 

8 0.53 0.53 0.89 0.89 1.04 

9 0.63 0.63 0.89 0.9 1.82 

10 0.91 0.9 0.95 0.95 0.00 

12 1.54 1.54 0.94 0.94 1.24 

13 0.41 0.41 0.92 0.92 0.79 

14 1.59 1.59 0.9 0.9 0.00 

 

Figure 8.13: Comparison of Estimated  (                    ) through Various 

Techniques 
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8.5 Decision Support for RBD Implementation 

8.5.1 Design Scenario Generation 

On the basis of the model obtained through data mining and in the knowledge that a 

network can serve as a risk model and, at the same time, as a risk knowledge model, 

a broad classification of the variables included is performed. It is worth noting that 

the BN can be regarded as a risk sub-model and a risk knowledge sub-model for this 

specific case depicting certain phases of a fully developed fire sequential scenario, i.e. 

ignition, emergency response, containment, and escalation. With respect to the risk 

knowledge sub-model, it includes design parameters, operational parameters, and 

scenario-specific variables. The detailed classification is tabulated in Table 8.6.  

Table 8.6: Classification of the Variables Included in the Developed Bayesian 

Network Model 

Generic Risk model Variables 

 SOLAS space category 

Emergency response failure 

Containment failure 

Ignition in adjacent space 

Risk knowledge model Variables 

Design parameter SOLAS space category 

Automatic detection 

Automatic suppression 

Ventilation status 

Operational parameter Manual detection 

Manual suppression 

Fire door status 

Crew attendance 

Guest attendance 

Ventilation status 

Boundary cooling 

Scenario-specific parameter Weather contribution 

Time of the day 

Ship location 

Concerning the implementation of risk-based design, the emphasis should be placed 

on the generation of design alternatives. In this respect, design parameters play an 
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important role. In recognising that the risk of having multiple fatalities due to the fire 

occurring in the accommodation spaces is much higher due to large population 

density, SOLAS space category 6, particularly for cabin spaces, is selected for design 

alternatives examination.  

The SOLAS space category in which a space belongs to explicitly determines the 

type of insulation to be installed for the sake of fire integrity. It influences mainly the 

risk component                             through containing the fire within the space 

of origin. With respect to the automatic detection and suppression systems, their 

effectiveness depends on various aspects, which can be grossly classified as the types 

of systems, and their corresponding global and local layouts, etc. An example of the 

factors influencing design parameters are tabulated in Table 8.7, which is not 

exhaustive. 

Table 8.7: Factors Influencing the Identified Key Design Variables 

SOLAS space category Boundary insulation classes 

Automatic detection System monitoring 

Arrangement of power supply 

System arrangement 

Location of control panel 

Indicating units and locations 

Type of detectors 

Choice of Positions for detectors 

Spacing of fire detectors 

Arrangement of electrical wiring 

Etc. 

Automatic suppression Types of suppressing agent 

Basic fire alarm system 

System arrangement (sections, isolating 

values, pressure indicators, etc.) 

Pumps and piping systems 

Automatic suppression system selection 

Power source 

Etc. 

Ventilation status Controls of fans for power ventilation 

Smoke extraction system 

Etc. 
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The current practice for achieving a minimum level of fire safety is sought mainly 

through the compliance with regulations. For instance, apart from the alarm system 

that needs to be equipped when designing the suppression system, it is also required 

to have an independent detection and alarm system to provide another safeguard 

[ABS, 2001]. Nevertheless, having satisfied such requirements, the designers 

actually have little knowledge of how much improvement can be achieved by 

designing a dual alarm arrangement. 

It is apparent that the factors listed in Table 8.7 could generate a huge amount of 

unique design solutions through various combinations. Nevertheless, in the case of 

designing a fire protection system for cabin spaces of passenger ships, the design 

space reduces significantly due to the applicability of certain systems. For instance, 

the carbon dioxide system is unsuitable for the accommodation spaces. Moreover, as 

the aim is to demonstrate how a BN can be used as a source of information for 

decision support, a few design options are generated. The design factors considered 

and the assumptions made are explained as follows. 

Detection system: an important factor affecting the performance of a detection 

system is the types of detectors installed. There are mainly two types of detectors: 

heat and smoke. The heat detector operates by sensing the temperature in the area 

surrounding the alarms, while the smoke detector will be activated once the smoke 

density exceeds a certain level. The heat detector is suitable for fires that involve 

high flames and intense heat. In contrast, the smoke detector functions better in fires 

that the smoke is generated before intense building up of the heat. 

Automatic suppression system: there are numerous types of suppression agent for 

shipboard applications, like low-pressure water sprinkler systems, foam systems, 

carbon dioxide systems, etc. In the case of the accommodation spaces, the common 

practice is to install normal water sprinkler systems. In the meantime, more attention 

is being paid to the fixed high-pressure water mist system to achieve better overall 

performance. Traditional water sprinkler often leads to significant water damage to 

local furnishing and electronic equipments, while the latter uses much less water and 
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is able to suppress the fire efficiently as the water mist can penetrate a fire and cool 

the surrounding environment.  

Consequently, a number of design solutions can be generated for protecting the 

accommodation spaces (i.e. cabin).  Main attention is paid to the detection system 

(smoke and heat) and the suppression system (normal water sprinkler system and 

high pressure water mist system).  The detail of various combinations for design 

solutions generation is tabulated in Table 8.8. 

Table 8.8: Design Solutions for SOLAS Space Category 6 

Design 1 Installed with normal heat detection system and low-pressure water 

sprinkler system 

Design 2 Installed with smoke detection system and low-pressure water 

sprinkler system 

Design 3 Installed with normal heat detection system and high-pressure water-

mist system 

Design 4 Installed with smoke detection system and high-pressure water-mist 

system 

8.5.2 Bayesian Networks for Pair-Wise Comparison 

In order to quantify the influence of various detection and suppression systems on the 

obtained fire risk model in BNs, pertinent comparative information can be obtained 

from the suppliers of individual systems or detailed mathematical models. 

Nevertheless, for the sake of demonstration of decision support using the obtained 

network model, the quantitative estimation is made on the basis of the qualitative 

information collected. It is assumed that smoke detection systems would have 

generally 10% improvement compared with heat detection systems in terms of the 

effectiveness for detecting fire incidents in cabin spaces. In the case of suppression 

systems, high-pressure water-mist systems are estimated to perform 10% better than 

low-pressure water sprinkler systems. 

To take all these information into account, minor modification of the obtained model 

is needed. As the design solutions focus mainly on the modification of automatic 
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detection and suppression systems, their influence to the fire safety performance is 

reflected mainly through the nodes “Automatic_detection” and 

“Automatic_suppression”. As a result, a node “Design_solution” is added to the 

network with arrows directing to the two variables, as illustrated in Figure 8.14. The 

ultimate influences of the various design solutions can be observed through the node 

“Emergency_response_failure”, as shown in Figure 8.15.  

 

Figure 8.14: Integrating Design Solutions within the Constructed Bayesian Network 

Model 

 

 

Figure 8.15: Output Node 

By assuming that the states of all the remaining variables follow their nature 

distributions, instantiations of the design solutions are performed for SOLAS space 

category 6, as illustrated in Figure 8.16. The obtained probabilities of emergency 

response failure for the four design alternatives are tabulated in Table 8.9.  



189 

 

It is found design 1, which is characterised by the heat detection and low-pressure 

water sprinkler systems, has the highest probability of fire growth given ignition. In 

contrast, the modification from the heat detection system to the smoke detection 

system and from the low-pressure water sprinkler system to the high-pressure water 

sprinkler system in design 2 and 3 respectively improve their corresponding 

mitigative performance. It is worth noting that, although both smoke detection 

systems and high-pressure water mist systems have 10% improvement, their impact 

to the output node is different, where Design 3 (with                  = 0.002199) has 

higher impact than design 2 (with                  = 0.002781). Lastly, a combined 

configuration of the smoke detection system and the water mist system produces the 

best performance for this specific study. 

 

 

Figure 8.16: Instantiation of Design Solution 1 for SOLAS Space Category 6 
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Table 8.9: Results Produced by the Updated Bayesian Network Model for Various 

Design Alternatives 

                  

Design 1 0.002928 

Design 2 0.002781 

Design 3 0.002199 

Design 4 0.002107 

In the knowledge that the fire risk of a specific space is the product of various 

scenario-specific probabilities and the subsequent consequences, it is assumed that 

other risk components (e.g.                                            ) remain 

unchanged for the four design solutions. In this case, the pair-wise comparison table 

for fire safety in the accommodation spaces can be obtained, as tabulated in Table 

8.10.  

Table 8.10: Pair-wise Comparison for Fires from Accommodation Spaces 

 

Design 1 Design 2 Design 3 Design 4 Priority 

Design 1 1 0.950 0.751 0.720 0.209 

Design 2 1.053 1 0.791 0.758 0.221 

Design 3 1.332 1.265 1 0.958 0.279 

Design 4 1.390 1.320 1.044 1 0.291 

On the basis of the pair-wise comparison, the priorities of the four design solutions 

can be obtained. Unsurprisingly, the priority of design1 is the lowest, while design 2 

and 3 attain higher priorities. Considering the single system modification adopted by 

design 2 and 3, design 3 achieves better result with respect to fire safety performance 

for accommodation spaces. Design 4 receives a combined positive effect of design 2 

and 3. 

Apart from safety performance, it is also necessary to consider other aspects in 

measuring the merits of various design alternatives. The important indicators could 

be taken into account cover technical, cost and earning aspects. It is understood that 

other measures, such as machinery configuration, could be also important. 
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Nevertheless, considering the configuration difference between smoke and heat 

detection system, minor modification is needed. Similar situation applies to water 

sprinkler and water mist systems. Hence, this study focuses on the evaluation of 

various design alternatives with respect to the performance in safety, technical, and 

cost/earning fields.  

For technical aspect, conventional measures are frequently referred to as: intact and 

damage stability, survivability, seakeeping and manoeuvring performance, structural 

reliability and complexity. For this specific study, the reliabilities of various 

detection and suppression systems are considered. The two detection systems 

perform relatively similar due to the maturity of both heat and smoke detection 

systems. As for suppression systems, it is expected that low-pressure water sprinkler 

systems are 10% more reliable than high-pressure water mist systems as the latter 

works under much severe conditions. At practical application stage, pertinent 

technical specifications can be collected from system suppliers. 

The pair-wise comparison with respect to technical performance is carried out and 

tabulated in Table 8.11. As can be seen, design 1 and 2 adopting conventional low-

pressure water sprinklers have higher priorities over design 3 and 4. This can be 

understood as the working conditions for new suppression system employing much 

higher pressure is more likely to experience system faults. 

Table 8.11: Pair-wise Comparison regarding Technical Performance  

 

Design 1 Design 2 Design 3 Design 4 Priority 

Design 1 1 1 1.1 1.1 0.262 

Design 2 1 1 1.1 1.1 0.262 

Design 3 0.909 0.909 1 1 0.238 

Design 4 0.909 0.909 1 1 0.238 

With respect to the cost, it consists of building and operational costs. Building cost 

covers design, purchasing, and installation, while operational cost includes crew and 

fuel cost associated with different operational systems. Commercial information of 

such is normally with yards, design companies, and operators. Approximations are 
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made to demonstrate the process. Smoke detection systems are estimated to be 10% 

more expensive than heat detection systems. High-pressure water mist systems are 

expected to be 20% more costly than low-pressure water sprinkler systems. The 

subsequent comparison is illustrated in Table 8.12. 

Table 8.12: Pair-wise Comparison regarding Cost Performance  

 
Design 1 Design 2 Design 3 Design 4 Priority 

Design 1 1 1.1 1.2 1.3 0.285 

Design 2 0.909 1 1.091 1.2 0.260 

Design 3 0.833 0.917 1 1.1 0.238 

Design 4 0.769 0.833 0.909 1 0.217 

As far as the earning is concerned, due to the captive nature of both systems for fire 

protection, the selection of different systems has little impact to the earning potential. 

Nevertheless, it can be argued that improved safety record will positively influence 

the earning potential. In this respect, as the link for such influence is weak and too 

vague and difficult to predict in practice, the earning aspect is not taken into account 

in this case. 

Consequently, priorities synthesis can be performed to have an overall evaluation of 

various design alternatives. Initial attempt is made without assigning any weighting 

factor, as tabulated in Table 8.13, so that equal emphasis is placed on the three 

performance indicators, i.e. safety, technical, cost. Figure 8.17 further exhibits the 

performance of the four design solutions in these aspects. The results indicate that 

the performance of design 3 is equivalent to design 1. It suggests high-pressure water 

mist systems do provide much better fire protection, however, their overall 

performance are penalised by their disadvantages in technical and cost aspects. 

Table 8.13: Priority Synthesis with Equal Emphasis on All Performance Indicators 

 

Safety Technical Cost Priority 

Design 1 0.209 0.262 0.285 0.2520 

Design 2 0.221 0.262 0.260 0.2474 

Design 3 0.279 0.238 0.238 0.2517 

Design 4 0.291 0.238 0.217 0.2488 
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Figure 8.17: Design Solutions Evaluation Diagram (without Weighting Factors) 

On the other hand, it can be argued that special attention should be placed on the 

safety aspect as both detection and suppression systems are dedicated to assure fire 

safety. Under this circumstance, weighting factors can be assigned. For illustration, 

the emphasis is placed on safety aspect as illustrated in Table 8.14. Figure 8.18 

exhibits the performance of the four design alternatives with weighting factors 

included. The obtained priorities suggest design 4 is the best solution. It is also 

interesting to note that design 3 have very similar overall priority and its cost 

performance is also better than design 4, hence design 3 can be a promising solution 

as well. 

Table 8.14: Priority Synthesis with the Emphasis on Safety Performance Indicator 

 

Safety Technical Cost Priority 

 

0.5 0.25 0.25  

Design 1 0.209 0.262 0.285 0.2414 

Design 2 0.221 0.262 0.260 0.2407 

Design 3 0.279 0.238 0.238 0.2585 

Design 4 0.291 0.238 0.217 0.2594 
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Figure 8.18: Design Solutions Evaluation Diagram (with Weighting Factors) 

8.6 Closure 

In view of the need to demonstrate the proposed methodological framework for the 

implementation of risk-based ship design, a comprehensive case study has been 

carried out in this chapter concerning fire safety of passenger ships. It starts with the 

development of a fire accident/incident database, which includes a process of 

identifying dominant variables and collecting pertinent data. With the database, data 

mining techniques have been applied for eliciting corresponding BN models. 

Ultimately, the validated models have been embedded into the decision support 

process by supplying objective and tangible safety-relevant information so that a 

transparent and well-balanced decision can be made. Although the exact figures may 

be questionable, the approach presented in this chapter does provide a systematic and 

transparent methodology for decision support. Particular attention has been paid to 

the integration of the BN model within the whole process for supplying factual 

information of the impact of various design alternatives on safety performance. 
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Chapter 9  

Discussion  

 

9.1 Preamble 

In this thesis, a formalised methodology for risk-based ship design implementation 

has been presented. The founding hypothesis of the thesis has been that the current 

practice through deploying fault and event trees undermines the output of risk 

assessment from both qualitative and quantitative aspects. The situation becomes 

even more difficult due to the time-consuming feature of first-principles and 

performance-based tools. Such background calls for the development of a novel 

methodology for the implementation of risk-based design. In this respect, the 

emphasis has been put on the various stages constituting the working procedures and 

methods. The necessity of an integrated environment for data sources and data 

processing has been laid down, supported by an initial development of a stand-alone 

next generation maritime database and a data mining program developed in R. A 

comprehensive case study has been performed to demonstrate the validity of the 

methodology as a whole and its constituting components. Although the estimated 

risk components and figures can be questionable, the methodology presented can be 

regarded as a reliable means for decision support.  

This chapter focuses on a discussion of the major outcomes of the thesis. Following a 

brief summary of the contributions of the thesis, a general discussion is presented 

highlighting the difficulties encountered in the development of the various 

components and concepts, and the manner in which these difficulties were handled. 

It concludes with recommendations for further research. 
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9.2 Contribution to the Field 

This thesis proposes a novel methodology for risk-based design implementation. The 

initial applications demonstrate the potential of the approach to lead to a systematic 

implementation process. In this respect, the thesis has served the principal aim and 

objectives. The contribution in the field of risk-based design is the following: 

1) A principle contribution of this research is a methodological framework for 

risk-based ship design implementation, supported by requisite concepts, tools, 

applicable specifically to passenger ships. In this respect, the formalisation of 

the proposed approach as a whole and its constituent components has been 

achieved. The content covered at each stage of the implementation process is 

believed to be comprehensive and detailed enough for allowing a systematic 

application. 

 

2) A second contribution of the research undertaken is an integrated treatment of 

the objective sources of information, enabling an all-embracing database to 

facilitate the knowledge transfer from the operational phase to support the 

various activities to be carried out at the design stage. The emphasis has been 

placed on the development of a data source that is capable of supplying 

reliable and objective data for risk assessment. Through hierarchical 

decomposition processes, important parameters that are potentially 

influencing the risk level, specifically of passenger ships, have been 

identified and included. In this way, casualty-related information is readily to 

be employed for further risk modelling.  

 

3) A third contribution is the introduction of tailored data mining techniques in 

the maritime industry, particularly within the context of design for safety. 

Through systematically linking the data with the risk modelling process 

through data mining, the underlying mathematical and probabilistic principles 

have been revealed. Although the BN learning algorithms are still evolving at 

a fast pace, the techniques and algorithms introduced in this thesis still 

represent the mainstream in the field. 
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4) A fourth contribution is attributable to the employment of the BN model as a 

robust platform for safety-performance evaluation and, ultimately, for 

decision support. Through the adoption of the framework of analytic 

hierarchy process for decision support, BNs can be easily integrated into the 

whole process for the evaluation of various RCOs from design perspective. In 

the meantime, it is worth noting that as operational parameters are also 

explicitly included for risk model development, the approach can be easily 

extended to the operational aspect for total risk management [Cai, et al., 

2010]. 

9.3 Difficulties Encountered 

The original aim of this research is to establish a methodology that the marine 

accident/incident can be properly utilised for deriving useful information. The initial 

effort was devoted in the promising field of data mining techniques for a generic 

application. However, it was soon realised that such an idea is difficult to find a 

practical application unless a proper framework is established. The conventional 

treatment of accident/incident data has been rule-oriented and case-specific, a tactic 

which hindered the knowledge transfer from the operation to the design phase. In 

direct response, the risk-based approach towards ship design is generating an 

unprecedented momentum in changing the way that safety is treated. With such 

concept, the knowledge transfer from the past experience is important. Under this 

background, it was decided to focus on the development of a methodology that can 

assist in this direction. 

In realising the deficiencies of the current design practice for safety performance 

evaluation with respect to quality, quantity, and efficiency, the skeleton of a novel 

methodology for risk assessment within the context of risk-based design emerges. 

Through systematic processing of the available data and use of the data mining 

techniques, pertinent risk models can be developed, in which design parameters can 

directly link with safety performance measures. In the meantime, it is understood that 

historical data is generally not detailed enough to capture all the activities undertaken 
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and the phenomenon of a casualty event, thus, the properly developed and validated 

first-principles and performance-based tools are the other means of generating 

reliable sources of information. Consequently, the methodology that has been 

presented in this thesis was shaped and materialised.  

It is appreciated that a full verification of the validity of the proposed approach is 

beyond the scope of the present research due to limited resources available. This 

refers to the fact that a large amount of records on principal accidents for passenger 

ships and the corresponding simulations through first-principles tools should 

contribute to such study. However, the limited examples and the case study carried 

out have demonstrated the applicability of the methodology in the risk-based ship 

design context. The following discussion focuses on specific difficulties encountered 

during the course of the research at various stages. 

The Issue of Data 

The situation concerning current generation casualty databases is still characterised 

by segmentation, disorganisation, and un-standardised format. As a result, great 

effort is needed to prepare the data for further analysis. This data pre-processing task 

includes data collection, interpretation, purification and transformation.  

Due to the fact that the maritime industry is a highly competitive and still segmented 

sector, accessing its operational records is difficult. The situation becomes even 

worse if the records contain sensitive information, like casualties, which implicitly 

links to liability and the subsequent insurance claims. Hence, the increased amount 

of casualty records with ship operators due to the enforcement of the ISM code has 

limited positive impact. The main sources of information are widely dispersed 

among classification societies, regional and national agencies, etc. However, it is 

encouraging to note that a number of changes are happening: the IMO developed a 

web-based casualty information platform in recent past [IMO, 2010a], and the 

EMSA is developing a regional centralised maritime casualty database [EMSA, 

2010], etc.  
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On the other hand, it has been presented in Chapter 5 that the standards of the 

information recorded in different databases vary greatly. Even within the same 

company, difference can be observed within the fleet due to inconsistent onboard 

safety culture. The subsequent situation is ragged records in terms of format and 

content in the data set. Moreover, due to a lack of well-designed casualty reporting 

system, important information is generally recorded in the descriptive text. This in 

turn affects negatively the usefulness of historical data. Hence, great effort is spent at 

the initial stage for interpreting each case and identifying the corresponding states of 

the parameters recorded. This practice proves to be an extremely tedious and time-

consuming task. 

With respect to this, a practical solution would be the introduction of a standardised 

accident/reporting scheme with formatted fields to be recorded at a level of each 

individual ship. This could be achieved in a similar way to the casualty investigation 

code introduced by the IMO recently [IMO, 2008a], although the latter focuses 

mainly on the accidents causing serious consequences. By doing so, it is believed 

that this will not only benefit ship designers but also ship operators. The potential 

merits are: 

 The amount of descriptive text can be greatly reduced and the quality and 

credibility of the fields in each record can be assured. 

 Reduction of uncertainties for any further process, e.g. risk assessment at design 

stage, etc. 

 Improved understanding of the sequential activities of an accident/incident. 

 Facilitation of the identification of the root-causes. 

 Fueling safety awareness and safety culture in the maritime community. 

Fortunately, as far as this research is concerned significant assistance has been 

received from ship operators to transform the descriptive data into standardised and 

formatted records. In this way, the quality of the data source can be assured. 

Nevertheless, “empty cells” are still a common phenomenon that needs to be 

addressed properly. Hence, a scientific handling of the missing data has been 

proposed in this thesis so that an appropriate approximation can be achieved. 
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Data Mining 

Similar to other data analysis applications, it is always a challenge to derive 

mathematical models given a limited size of data. This is particularly true for data 

mining as generally much more variables are included in a trained model. Classical 

statistical analysis allows very small number of variables that can be contained in a 

model (e.g.    ), in contrast, data mining can cover much larger number of 

variables in this case (e.g. 10 - 20). The size of the training data plays an important 

role on the quality of the developed BN model. In this respect, it has been discussed 

in Chapter 6 that although the dispute is still ongoing for the relationship between the 

number of variables and the size of data set needed in order to arrive at objective 

conclusions.  

One of the most important components of constraint-based learning is the 

dependency and conditional independency analysis. During the course of the 

identification of these relationships, apart from mathematical model training, an 

important factor that has significant influence is the confidence level, e.g. 90%, 95%, 

97.5%, and 99%. The selection of an appropriate confidence level is determined by 

the quality and quantity of the training data. Generally, with a larger number of 

records and better quality of the data, the confidence level can be increased 

accordingly. For this research, as it is apparent that the size of the data is at a 

relatively low level when considering the number of variables in the BN model and 

their states. Consequently, the confidence interval was set at a relatively low level 

(i.e. 90%) in order to avoid the removal of those links where the evidence of 

dependency is not very strong. 

On the other hand, although the score-based learning algorithm adopts distinct 

principles, the quality and quantity of the data is still critical to the learning process. 

By considering the joint probability distribution of all the variables included, the 

goodness-of-fit of the model in describing the data can be obtained. As it has been 

noted in chapter 6 that various scoring criteria have been proposed, hence the 

selection of an appropriate criterion is an important task. Nevertheless, the 

underlying principle is to achieve a balance between the goodness-of-fit and the 
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complexity of the network. If a faster learning process is needed, it will penalise the 

accuracy of the developed model to describe the data. For this research, the main 

emphasis is placed on the goodness-of-fit. Hence, the computation time increases 

significantly. For instance, the GES learning performed for the case study in Chapter 

8 required approx 25 minutes to implement. Nevertheless, this is still at an acceptable 

level for similar study to be carried out in the context of risk assessment. 

Regarding the parameter learning for network quantification, it has been noted that 

the prior beliefs assigned can be important. According to the Bayes’ Theorem, as 

illustrated in equation (9.1), the prior probability      generally needs to be assigned 

with proper assumptions. For this thesis, equal prior beliefs are considered for each 

state of all the augmented nodes in the network. This is a reasonable approximation 

as little information is known beforehand apart from the evidence from the data. 

However, the magnitude of the equal prior beliefs can be also significant. With the 

evidence from the data contributing towards          , if the magnitude is too big, 

it will overshadow the effect from the data. An initial attempt was made to assign 

one unit to all states of the augmented nodes and it turned out that such an 

approximation is too gross due to the small dataset and the subsequent smaller 

influence from          . Consequently, the equal sample space is divided by 

10,000. This practice leads to much better results.  

                        (9.1) 

Decision Support 

Decision support for ship design has been regarded as a complex field that needs to 

be carefully catered. Considering the complexity of an entity like a ship, a systematic, 

transparent, and well-informed approach is needed. It has to be appreciated that in 

cases that if detailed data of the other performance measures is also available in the 

same way as the developed next generation accident/incident database, pertinent 

technical performance, cost, and earning parameters can then be included 

concurrently in a single BN model. This will facilitate an even faster and realistic 
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design balancing process. Nevertheless, such concept is difficult to be realised given 

the state-of-the-art resources available. 

The decision support framework adopted in this thesis is based on the Analytic 

Hierarchy Process, which was originally designed to assist a transparent decision-

making process using qualitative information.  In the knowledge that the decision 

support technique is still evolving in the context of risk-based design, the tailored 

decision-support framework developed in [Konovessis, et al., 2007] is a simplified 

technique in facilitating the necessary design trade-off. Furthermore, the main 

objective with respect to decision support in the thesis is to demonstrate the 

applicability of deploying the BN models for supplying safety performance 

information to assist the decision making process. Hence, it is believed Chapter 7 

offers a sound basis for further development. 

As it has been noted in the decision support section of the case study in Chapter 8, 

the information on the effective and reliability of fire detection and suppression 

systems is difficult to obtain. This is attributable to the current regulatory system 

where a suppression system is regarded to be acceptable as long as it complies with a 

list of clauses. But having satisfied these requirements, their performance is still 

missing. Hence, assumptions have to be made in the thesis regarding the 

performance of various fire mitigative systems. Such information at practical 

application stage can be sought through individual system suppliers or dedicated 

performance-based evaluation tools/models.   

9.4 Recommendation for Future Research 

The work presented in this thesis represents a formalised approach for the 

implementation of risk-based ship design. The methodologies, tools, and techniques 

as well as application on demonstrators are still evolving. With respect to these, the 

following are some recommendations for further research and development: 
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 Further complement the all-embracing next generation maritime 

accident/incident database, in a manner that the information can be readily 

deployed for design and operation for safety. 

 Development of proper methodologies/techniques for root-cause analysis of the 

casualty information so that equal effort can be put on both preventive and 

mitigative measures for the sake of RCOs identification. 

 Further investigate the latest trend in the Bayesian learning field so as to keep 

fueling the maritime industry with pertinent knowledge to further elevate the 

quality of risk assessment. 

 Development of elemental models for assessing the safety performance of 

individual casualty preventive and mitigative systems.  

 Development of an integrated environment that data storing, data mining, and 

the visualization can be performed in a stand-alone environment.  

 Extensive application of the methodology proposed to gain confidence on the 

application of data mining, and experience on the implication of the developed 

approaches. 
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Chapter 10  

Conclusion  

 

 
 

The main conclusions drawn from the research presented in this thesis can be 

summarised as follows: 

 A methodological framework for risk-based ship design implementation has 

been highlighted, in which risk assessment can be performed flexibility with 

minimized subjective intervention. In contrast to the traditional approaches, this 

approach presented in this thesis has much reduced involvement of subjective 

estimation and be able to make fast prediction when safety assessments of risk 

control options are needed. 

 The structure for next generation maritime accident/incident database is 

presented for facilitating the knowledge transfer from the operational phase to 

the design phase. Moreover, as it is complemented with the data generated from 

first-principles tools, the new database system can be regarded as an all-

embracing database supplying the necessary support for risk assessment. 

 Data mining has proven to be a field that can be explored. The emphasis should 

be put on the probabilistic model development from the data as this resonates 

well with the need for a fast and objective implementation of risk assessment 

within the context of risk-based design. In this thesis, through systematic 

employment of pertinent learning methods and algorithms, the risk models can 

be constructed objectively. 
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 BNs as one of the promising risk analysis techniques are flexibly integrated 

within the design process by supplying safety relevant information in a fast and 

reliable manner.  

 The coupling between the decision support framework and the BN models is 

established. In this research, the Analytic Hierarchy Process has been introduced 

and it was shown that appropriate couplings can be achieved for a transparent 

and well-informed decision making process. 

 Both casualty database and data mining have been developed in the automated 

environment for facilitating data management and the subsequent elicitation of 

risk models. 

 An initial application demonstrates the adequacy of the proposed methodological 

framework. Research work in this area is still at an introductory phase, more 

extensive applications should be conducted before experience and confidence 

can be gained. 
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A1.1 Risk-Based Ship Design  

The approach of risk-based ship design is an evolutionary design paradigm, in which 

safety is treated as an objective rather than a constraint through rule compliance. The 

main driver comes from the continuously elevated society expectation with respect to 

the value of human life and environmental protection. The ever increased market 

demand for larger, faster, more complex and specialised ships implicitly contributes 

to the demand for higher safety. The whole initiative is fuelled by the phenomenal 

progress that has been made in scientific and technological fields, e.g. advance 

marine vehicles (Wing in Ground), advanced simulation and animation software, 

advanced material, and modern shipboard arrangements and layouts, as illustrated in 

Figure A1.1.  

 

 
Figure A1.1: Safety Drivers [Vassalos, 2008a] 

To realise the concept of design for safety, it is necessary to have a formalised 

methodology that is capable of embracing innovation through routine utilisation of 

first-principles tools, thus leading to cost-effective ways of dealing with safety. This 

is popularly referred to as Risk-Based Design methodology. As risk is the typical 

indicator of safety that can be measured, it allows, in turn, a trade-off process to 

balance safety performance with other design objectives. The immediate benefit is an 

Safety 
Need for change 

Shipping Society 

• escalation in size 
• specialization 
• higher speed 
• construction materials 
• over-capacity 
• greater complexity 
• more information 
• less time 
• competition 
• manning 
• ageing fleet 

Science & 
Technology 

• phenomenal progress 
• rapid technological 

change 
• better technical 

capabilities 
• innovation potential 
• cost-effective safety 

• public expectation 
for higher safety 

• increased public 
regard for human 
life and 
environment 

• media coverage 
• political pressures 



229 
 

enlarged design space offering the opportunity that a safe design, which cannot be 

approved under the existing regulatory framework, can be taken forward as long as, 

at least, an equivalent risk level is achieved and presented. Moreover, a design can be 

optimised either to improve safety performance with equivalent cost or to enhance 

earning potential without compromising safety. 

The theoretical development of risk-based design and its materialisation of pertinent 

methods, techniques, and tools have gone through a long way [Vassalos, 1999], 

[Konovessis, 2001], [Oestvik, 2001], [Jasionowski, 2002], [Mermiris, 2010], 

[Vassalos, 2008b], etc. The establishment of a collaboration network under the theme 

“Design for Safety” on a European-wide basis in the late nineties marked the staging 

of risk-based design, although this term was not brought forward at that time. The 

strategic objective through the Thematic Network, SAFER-EURORO [Vassalos and 

Konovessis, 2008], was the development of a formalised design methodology for 

safer ships [Vassalos, 1997]. 

Through more than 25 years of research, learning, and settling, an in-depth 

understanding has been gained with higher resolution. The firsthand experience in 

the field is fuelling the conceptualisation and formalisation of the whole approach. In 

this process, it becomes clear that an explicit, rational and cost-effective treatment of 

safety will be achieved only if some fundamental principles can be adhered to 

[Vassalos, 2006]. 

1. A consistent measure of safety must be employed and a formalised procedure of 

its quantification should be adopted. With risk being the “currency” of safety, 

various risk quantification methods, within the context of risk assessment and 

risk management, can be used. Thus, a high level framework for risk-based 

design can be considered as the integration between conventional ship designs 

procedures with typical risk assessment process. 

2. Such procedure must be integrated in the design process to allow for trade-offs 

between safety and other design factors by utilising the overlaps between 

performance, life-cycle cost considerations, functionality and safety. Ultimately, 
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the information obtained on safety performance through the risk assessment will 

be the basis of design optimisation, decision making, and innovation.  

3. Considering the level of computation that might be needed, the use of parametric 

and knowledge-intensive models to facilitate trade-offs and access to fast and 

accurate first-principles tools are essential. An integrated design environment 

will also be required for the process to be conducted efficiently.  

The key to a successful implementation of risk-based design is to strive for a balance 

between the integration of safety assessment with conventional design process to 

achieve the overall design goals and, at the same time, meeting safety-related goals 

and objectives through iterations. 

The formal risk assessment techniques range from qualitative, semi-quantitative, and 

quantitative approaches as detailed in [HSE, 2001], [ABS, 2000], [Bedford and 

Cooke, 2001], [Mullai, 2006], etc. Selection of the appropriate technique depends on 

several factors: lifecycle stage, major hazard potential, and risk decision context: 

• Design stage: the highly complex activity normally takes months or even years, 

thus the flexibility to change and the knowledge of design details vary along this 

period. Due to limited information is available at conceptual design stage coarser 

methods may be employed.  As the design is progressively refined, risk 

assessment can be further detailed with updated knowledge. 

• Major hazard potential: the potential consequence of hazards (in terms of total 

loss or multiple fatalities) is another important criterion for selection. The 

greater the potential, the less it favours conventional rule-based approach, which 

implicitly entails principal hazards to be the main scope of risk-based design. 

• Risk decision context: as higher elements of novelty, uncertainty or stakeholder 

concern demand more thorough risk assessment, the bias of risk-based design 

towards high-innovation and high-value vessels. 
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In the context of risk-based design methodology, each component of the risk 

assessment process is briefly explained as follows, [DNV Technica, 1996]. 

Definition of Safety Goals 

In parallel to the definitions of other design goals, safety goals are linked with ship’s 

mission and purpose. Explicit safety goals are already part and parcel of the design 

input. Examples of design goals in relation to safety aspect include [Vassalos, 2008b]: 

Generic top-level goals 

• No accidents leading to total ship loss 

• No loss of human life due to shipboard accidents 

• Low impact to the environment 

Specific Technical Goals: 

• Vessel to remain upright and afloat under all feasible operational loading and 

environmental conditions 

• Sufficient residual structural strength in damaged conditions 

• Sufficient power supply to offer safety return to port in damaged conditions 

[IMO, 2006a]  

Hazard Identification 

Events and conditions that may result in the failure or loss of a ship, passenger or 

crew injuries and fatalities, and environmental damage should be identified through 

hazard identification. This is a qualitative exercise based mainly on expert judgement, 

it requires significant experience and, at the same time, creativity in order to 

determine hazards not only experienced in the past but also previously not 

considered. Moreover, a structured approach should be adopted in order to obtain a 

comprehensive coverage of relevant hazards. There are numerous techniques 

available to assist hazard identification, while the popular ones are listed as follows: 

hazard checklists, hazard and operability study (HAZOP), failure modes, effects and 
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criticality analysis (FMECA), structured what-if checklist (SWIFT), etc. [HSE, 2001] 

[BSI, 2002].  

Identification of Critical Design Scenarios 

Considering what constitutes ship safety, it is governed only by a handful of factors 

(undesirable events) which, when considered individually or in combination, define a 

limited set of design scenarios, as illustrated in Figure A1.2. These factors represent 

major accident categories with calculable frequencies and consequences, which 

inherently control the life-cycle risk of a ship at sea. 

 
Figure A1.2: Typical Structural Links of Design Scenarios [Vassalos, 2004a] 

Definition of (Safety-Related) Functional Requirements 

Having identified the principal hazards and relevant design scenarios, specific 

functional requirements and evaluation parameters need to be formulated. Safety 

performance evaluation parameters should cover both preventive and mitigative 

aspects. For instance, in the cases of ship collision and grounding, the effectiveness 

of navigational equipment and proper design of bridge layouts represent preventive 

parameters, while structural integrity, time to flood, time to capsize, etc. denote 

mitigative evaluation parameters. These can be considered as an additional set of 

safety performance requirements. By having a consolidated list of safety-related 

functional requirements, alongside conventional design requirements, a base line 
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design can be produced and disciplines requiring further evaluation will be identified 

(e.g. fire modelling and evacuation simulation).   

Risk Analysis 

The main tasks for risk analysis are root-cause and frequency analysis, consequence 

prediction, risk summation and presentation. These entail specific methods and 

techniques to be used for risk modelling. Classical techniques (most typically, fault 

and event trees) adopt a top-down tree structure for root-cause and frequency 

analysis and a bottom-up tree structure for consequence analysis. A combination of 

these two trees will form a conceptual risk model in a combination tree, as illustrated 

in Figure A1.3.  

 
Figure A1.3: Conceptual Risk Model [IMO, 2007b] 

The sources for the quantification of generic fault and event trees are expert 

judgement, historical data and first-principles tool (e.g. computers simulation and 

model test). Judgement evaluation estimates the frequencies mainly through the 

judgement of experienced personnel. Due to its subjectivity it should be employed 

for simple assessment, for frequent events, and for events where no better approach 

is available. Historical data is generally regarded as a straightforward and reasonable 

source, however, the scale, the size and characteristics of the sample space should be 
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justified as they have significant influence on the quality of the derived frequencies. 

First-principles tools represent a reliable source of information. Nevertheless, the 

theoretical models of computer-based simulation tools have to be properly developed 

and validated.  

Design Decision Making 

In relation to design decision making, it is necessary to produce explicit safety 

performance and risk acceptance criteria, similar to other ship performance criteria 

(weight, energy efficiency, strength, etc.) and economic targets (cost effectiveness). 

As risk acceptance criteria is related to safety, the examination of safety performance 

could be integrated into the design process. By doing so, the quantified ship 

performance concerning technical aspects, cost and earning potential, safety 

performance and risk can be weighted alongside other factors (preferences, company 

policies, etc.) as shown in Figure A1.4. This will enable a well-informed framework 

for design decision making and lead to design concepts that are technically sound, fit 

for purpose, and more likely to meet modern safety expectation. 

 
Figure A1.4: Decision-Making in Risk-Based Design [Vassalos, 2008b] 
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A1.2 Contemporary Developments 

Apart from the methodological development for designing safer ships, the influence 

of the risk-based approach can be also observed in the contemporary regulatory 

developments concerning passenger ship safety. That is the adoption of a new 

“philosophy” and a working approach for developing safety standards for passenger 

ships, as illustrated in Figure A1.5, which is referred to as “safe return to port” [IMO, 

2006a], [GL, 2009] and pertains to “zero tolerance” to loss of life. By doing so, 

modern safety expectations are expressed as a set of specific goals and objectives 

covering design, operation, and emergency situations.  

 

 
Figure A1.5: IMO Framework – Passenger Ship Safety [Vassalos, 2009] 

The new approach entails explicit elements (accident timeline development, 

threshold definition, and system availability, etc.), for which the identified scope of 

work, as listed below, resonates well with the needs to concretise risk-based ship 

design.  

• Flooding survivability analysis 

• Fire safety analysis 

• Post-accident (flooding or fire) system availability analysis 

• Evacuation and rescue analysis 
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In the framework presented in Figure A1.6, the term “total risk” of a ship has been 

put forwarded in [Vassalos, 2008b]. The aim is to quantify the overall through-life 

safety level of a ship so that a tangible safety measure in risk lexicon can be readily 

employed for direct use in risk-based design.  

 
Figure A1.6: Risk-Based Design Implementation [Vassalos, 2008b] 

A common way of presenting graphically the risk (in terms of fatalities) is by using 

the F-N diagram. While this has proven to serve reasonably well and received wide 

recognition, some form of aggregate information deriving from the diagram is 

needed for the purpose of consistent decision making. An attempt in this direction 

was proposed in [Jasionowski and Vassalos, 2006], in which the aggregate expected 

number of fatalities, ����, is used. This is often referred to as the potential loss of 

life, PLL, and it is expressed as follows: 
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where, ������ represents the frequency of having exactly � fatalities per ship-year. 

It is obtained as follows: 

������ ����������� �  ����!����"#$
���  

where, %�� is the number of loss scenarios considered, and  �� denotes the principal 

hazard for a ship. Implementation of the foregoing framework calls for identification 

of the dominant hazards that endanger passenger ships so as to ensure the selected 

corresponding scenarios are representative in terms of operational profile and 

significance.  

An investigation of relevant fields suggests that with passenger ships (Figure A1.7), 

flooding- and fire-related scenarios comprise over 90% of the risk (regarding loss of 

life) and almost 100% of all the events leading to decisions to abandon the ship as it 

is reported in [Vanem and Skjong, 2004a, Vanem and Skjong, 2004b]. Stemming 

from this, it becomes apparent that by addressing collision, grounding, and fire, in a 

consistent manner, the total risk of a passenger ship can be estimated to a large extent.  

 

 
Figure A1.7: Principal Hazards of Cruise Ships – Frequency of Event Occurring 

[Vassalos, 2008b] 
�
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Appendix 2  

 

General Applications of Data Mining  
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Apart from classical statistical analysis techniques where charts and tables are the 

main means of presenting the findings/patterns, there are other techniques associated 

with data mining: 

• Association and correlation: aim to uncover rules for quantifying the relationship 

between two or more attributes. The logic is “if antecedent, then consequent”, 

associated with a measure of support and confidence. An example of such a rule 

is, �%&�'(�'�)* +,-./������� 0 �%&�'(�'�)*/��		
�
��������
	
��� 1�2  3�4 � 567*&3%��8'%&'� 967: ) indicates the variables; 50% support means 50% of the data under analysis has 

the information on ship length and the probability of a collision; while, 80% 

confidence indicates 80% of the supported data indicates increasing ship length 

leads to the increment in the probability of a collision.   

• Classification and prediction: it examines a large set of records containing both 

target categorical variable and a set of predictor variables. The algorithm will 

identify which combinations of variables are associated with the target variable. 

From this, the algorithm could be used to assign classifications to a new record 

based on the classification in the training set. An example of the assignment of 

severity if fire occurs onboard is demonstrated in three different forms: a) IF-

THEN rules; b) a decision tree; c) influence network. 

(a) IF-THEN rules &3%4(�%;'%4<�(�=2�'�(=�'�<>�?<8'4'&4�3%<4�;'�@ 5;�%�� //0 �'A'��4B��'C=�C�D='� &3%4(�%;'%4<�(�=2�'�(=�'�<>�?<8'4'&4�3%<4�;'�@ E5;�%�� //0 �'A'��4B�F �%3�� &3%4(�%;'%4<�(�=2�'�G�2'� /0 �'A'��4B�H�C%���&(%4� 
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(b) Decision tree 

 

(c) Influence network 

 

• Clustering: it refers to the grouping of records, observations, or cases into 

classes of similar objects, as illustrated in Figure A2.1. The clustering differs 

from the classification in that there is no target variable for clustering. The 

clustering task seeks to segment the entire data set into relatively homogeneous 

subgroups or clusters, where the similarity of the records within the cluster is 

maximised.  

 

 

Figure A2.1: An Example of Clustering Algorithm [Han and Kamber, 2006] 
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Appendix 3  

 

Technical Support for Database 

Development  

 

 

 

 

 

 

 

 

 
 

 



242 
 

A database is a collection of records that are organised for a particular purpose. The 

relational database is one of the most commonly adopted configurations to store the 

data. The system manages all data in tables and a typical relational database normally 

consists of a finite collection of tables. Each table stores information about a single 

subject and has fields that record the constituent information for given subject 

[Roman, 2002]. The advantage of a relational database system is that the tables are 

linked by “relations”, often one-to-many relationship, as illustrated in Figure A3.1, 

so that they can connect to bring up a whole new subset of the data without having to 

store redundant information. In this way, data duplication can be avoided and 

integrity can be achieved [Bisset, 2005].  

 

 
Figure A3.1: A One-to-Many Relationship between Table S and T [Roman, 2002] 

In light of the aforementioned relational database, the data collected from various 

sources concerning every facet of the principal hazards should be grouped into 

entities (tables) as demonstrated in Figure A3.2. The data about ship particulars, 

general casualty information, voyage conditions, human factors, consequences, 

details about the phases of fire, collisions, and groundings, are divided into different 

tables and are linked with one-to-many relations through the defined key variables, 

e.g. “Event_ID”, etc. By doing so, setting up of the next generation database can be 

technically achieved.  
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Figure A3.2: Demonstration of Marine Relational Database Structure  

As one of the main goals is to retrieve the data from a database and take it further for 

deriving risk models for risk assessment and ultimately assisting decision making, it 

is crucial to identify a promising technical platform that allows flexible data retrieval, 

mathematical computation, and graphical presentation of the outcome. As a result, 

the distributed application architecture has been identified, which consists of a client 

interface, an intermediate business layer, and a data access layer, as shown in Figure 

A3.3.  

As suggested by its name, the data access/storage module is in charge of data 

accessing and passing queried data to the adjacent layer. It is also equipped with 

commands to update the database with incoming information. The business logic 

layer deals with the workflows allowing further mathematical computation of the 

received data. Moreover, it is designed to pass user input and calculation output to 

the corresponding neighbours. Lastly, the presentation layer is responsible for 

graphical user interface (GUI), which, similarly, is shielded from the rest by the 

business logic layer. The key advantage of adopting such architecture is that the 

components are loosely coupled, so that possible amendments of one module have 

minimum impact to its neighbours, if not eliminated. Also, security, performance, 

and scalability are other benefits of well-designed distributed application architecture.  
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Figure A3.3: A Typical Distributed Application Architecture [Willis, 2006] 

Due to the sensitivity of the information contained in marine accident/incident 

database, it is important to anonymously process the data. In this respect, 

administrative functions have been introduced so that only authorised users could 

access a designated portion of the database. For administrator account, it is capable 

of accessing any designed functions within the system including the governance of 

administration function; while other accounts are only allowed to access the system 

with restrictions, e.g. administration profile definition, etc. The examples of 

authentication user form and the definition of authorisation profile are illustrated in 

Figure A3.4 and A3.5, respectively. 

  

 
Figure A3.4: Authentication Form 
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Figure A3.5: Authorisation Profile Definition  
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Appendix 4 

 

Explanatory Document of Marine 

Accident/Incident Database 
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As it has been introduced in Chapter 5, the developed marine accident/incident 

database platform comprises ten modules: general information, vessel information, 

voyage condition, fire event, collision, grounding, hull/machinery/equipment, 

consequences, analysis, and people. Explanatory supplement to the variables 

recorded in each module is provided next.  

A4.1 General Information 

This module contains general information of an event in an abstract manner.  

Event ID: is the key to access each case in the relational database and link various 

tables. 

Company ID: the unique code assigned for each case by ship operators.  

Event type: has three options: {accident, incident, and others}. The classification of 

accident and incident is judged on the basis of the following definitions [HSE, 2001]. 

• Accidents are sudden unintended departures from normal operating conditions in 

which some degree of harm is caused. 

• Incidents are relatively minor accidents, i.e. unintended departures from normal 

operating conditions in which little or no harm was caused. 

Event date: records the date of which the event occurs. 

Event time: records the time of which the event occurs. 

Time zone: records the time zone of which the event occurs. 

Title: a short summary of the event. 

Sub-event: records the type of the event. {fire/explosion, collision, contact, 

flooding/foundering, machinery breakdown, etc.}  

Severity: classifies the consequence. {negligible, minor, moderate, serious, major} 
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A4.2 Vessel Information 

This module contains information of ship particulars and key design characteristics.  

Vessel code: a unique code assigned to each ship for classification purpose. 

IMO number: is made up of three letters “IMO” followed by the unique seven digits 

number assigned for identification purpose. 

Vessel name: the name of the vessel. 

Flag name: the code of the country whose flag the vessel sails. 

Official number: ship official number. 

Port registration: the name of the port where the ship registered. 

Classification society: the corresponding classification society. 

Registered owner: the registered owner. 

Managing company: the managing company. 

Vessel Types: the type of vessels, such as cruise liner, Ro-Ro passenger ship, etc. 

Builder: the name of the yard that built the ship. 

Delivery date: ship delivery date. 

Conversion date: the date of which the ship underwent major conversions. 

Length Overall: ship overall length. 

Length between PP: the length between perpendiculars. 

Breadth: ship breadth. 

Depth: moulded depth. 

Draught: designed draught. 
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Design Speed: designed service speed. 

Gross Tonnage: gross tonnage. 

Design Deadweight: designed deadweight. 

Number of Crew: the number of crews designed to accommodate. 

Number of Passengers: the number of passengers designed to accommodate. 

Maximum Number persons: the maximum number of persons to accommodate. 

Prime Mover: records the type of prime movers installed. {diesel electric system, gas 

turbine, two stroke diesel engine, etc.} 

Manoeuvring system: records the type of manoeuvring systems installed. {dynamic 

positioning system, steering gear system, tunnel thrusters system, etc.} 

Propulsion system: records the type of propulsion systems installed. {fixed pitch 

propulsion system, controllable pitch propulsion system, etc.} 

Hull material: records the material of the hull. {steel, wood, GRP, composite 

materials, etc.} 

Hull construction: records the configuration of the hull form. {double bottom, double 

ended, double sided, etc.} 

Number of workstation: records the number of workstations installed for traffic 

surveillance, navigation, and manoeuvring. There are three options: 

• No workstation: IMO compliant, but without consistent attention to ergonomics 

• One workstation: workstation for one operator in line with “workstation for 

traffic surveillance, navigation and manoeuvring”.  

• Two workstations: as above, but with one additional workstation in line with 

“Workstation for navigation support”.  

ECDIS presented: indicates the installation status of electronic chart display and 

information system (ECDIS). 
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Alarm management: determines the type of alarm management system installed 

onboard. There are three options: 

• None. 

• BAS: Bridge alarm system. Centralized alarm system including all bridge alarms. 

• NAS: Navigation alarm system. Centralized alarm system including all 

navigation alarms. 

Window layout: a window layout that minimizes blind sectors is above standard. 

Small windows with large frames are below standard. There are three options: {low, 

medium, and high} 

A4.3 Voyage Information 

Scenario-specific variables are included in this module which records mainly 

environmental conditions and ship surrounding conditions. 

Vessel location: specifies the location of the vessel. {In port, at sea} 

Port Name: the port name where the event occurs. 

Country Name: the country name where the event occurs. 

Latitude: the latitude where the event occurs. 

Longitude: the longitude where the event occurs. 

Place: the name of the water where the event occurs. 

Departure date: the departure date.  

Departure time: the departure time. 

Time zone: the time zone where the vessel departs. 

From: the location where the vessel departs. 

To: the destination of the journey. 
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Operational status: indicates the operational status when the event occurs. 

{anchorage, archipelagos, at berth, canal, coastal waters (within 12 miles), inland 

waters, open sea course and speed, port, port approach, river, under tow} 

Voyage phase: records the phase of the voyage. {pre-departure, unmooring, 

departure/pilotage, transit, pre-arrival, arrival/pilotage, loading, discharging, etc.} 

Underway course: the underway course when the event occurs. 

Underway speed: the underway speed when the event occurs. 

Loaded draft (fwd & aft): the forward and aft loaded drafts. 

Visibility level: the visibility level when the event occurs. {good, fair, poor} 

Nautical miles: the nautical miles can be seen.  

Outdoor light: the outdoor light condition. {daylight, twilight, night} 

Sea state: the sea state condition when the event occurs. It includes: 

• None : Sea like a mirror, calm 

• 0 - 0.3 : Smooth sea : Ripples, no foam 

• 0.3 - 1.7 : Slight sea : Small wavelets 

• 1.7 - 4 : Moderate sea : Large wavelets, crests begin to break 

• 4 - 8 : Rough sea : Moderate waves, many crests break, whitecaps 

• 8 - 13 : Very rough sea : waves heap up, forming foam streaks 

• 13 - 20 : High sea : sea begins to roll, forming very definite foams streaks and 

considerable spray 

• 20 - 30 : Very high sea : Very big, steep waves with wind-driven overhanging 

crests, sea surface 

• 30 - 45 : Mountainous seas : Very high rolling breaking waves, sea surface 

foam-covered 

• 45 and Greater : Mountainous seas : Air filled with foam, sea surface with white 

spray 
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Wind speed: the wind speed. It includes: 

• <1 knot : Calm 

• 1 - 3 knots : Light air 

• 4 - 6 knots : Light breeze 

• 7 - 10 knots : Gentle breeze 

• 11 - 16 knots : Moderate breeze 

• 17 - 21 knots : Fresh breeze 

• 22 - 27 knots : Strong breeze 

• 28 - 33 knots : Near gale 

• 34 - 40 knots : Gale 

• 41 - 47 knots : Strong gale 

• 48 - 55 knots : Storm 

• 56 - 63 knots : Violent storm 

• >64 knots : Hurricane  

Wind direction: the wind direction in either true or magnetic form. 

Bottom depth under keel: the depth between the keel and the sea floor.  

Water temperature: records seawater temperature. 

A4.4 Fire Event Information 

It contains detailed information of various phases of a fire event including the 

performance of different preventive and mitigative measures.   

Location: records detailed spaces where fire ignition occurs with its corresponding 

SOLAS space category.  

 

Cabin (crew / 

officer) 

6 Gift shop 7 Sauna / spa / jacuzzi 9 

Cabin (passenger) 6 Guest Disco 8 Solarium 9 
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Cabin Balcony 5 Guest gym 8 Stage / backstage 8 

Café 8 Ice rink 7 Stairs (interior) 2 

Casino 8 Incinerator room 12 Swimming pool 

(area) 

9 

Centrum 8 Laundry room 13 Tender 4 

Children / teen areas 7 Library 7 Theatre 8 

Corridor 3 Lounge / bar 

(public) 

8 Cabin Bath 6 

Crew areas (other) 8 Luggage area 13 Conference Centre 8 

Crew bar 7 Mess (crew / 

officer) 

8 Gangway 4 

Crew gym 6 Muster Station / 

life boats 

4 Golf Course 5 

Deck area (exterior) 5 Other  Medical Facility 14 

Dining room 8 Pantry 13 Office Areas 6 

Electrical room 10 Provision area 13 Specialty Restaurant 8 

Elevator 2 Public Area 

(others) 

8 Sports Deck 5 

Engine / machinery 

space 

12 Restroom (public) 9   

Galley 12 Promenade Deck 5   

Generator room 12 Salon 8   

Source of ignition: the source of ignition. It includes: 

1 
Cigarettes, matches, or similar 

smoking materials 
10 Hot surface (machinery) 

2  Open flames other than 1 and 8 11  Hot surface (galley) 

3  Static generation 12  Overheat (Electrical) 

4  Electrical other than static charges 13  Not on vessel concerned 

5  Spontaneous combustion 14  Auto-ignition (store) 

6  Collision 15  Pyrotechnics 
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7  Mechanical fault or breakdown 16  Other 

8  Burning/welding/cutting 17  Not reported 

9  Hot exhaust pipe or steam line   

Ignition mass: the mass of the combustible. 

Space area: the area of the space of origin. 

Exposed area: the exposed floor area. 

Space height: the height of the space. 

Detected: the means by which the fire is initially detected. 

• Detection system installed and utilized. 

• Detection system installed, but fire detected by personnel. 

• No fire detection system installed, but fire detected by personnel. 

• Not reported. 

Suppression means: the fire suppression means. 

• Fire resisting division 

• Fire main and hydrant 

• Inert gas system 

• Fixed CO2 system 

• Halogenated hydrocarbon system 

• Foam system 

• Other fixed extinguishing system (e.g. automatic sprinkler or steam smothering) 

• Other protection (portable and semi-portable extinguishers) 

• Not reported 

Smoke detector presented: the smoke detector is installed in the space of origin. 

{True, False} 

 

Smoke detector activated: the smoke detector activates in the space of origin. {True, 

False} 
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Smoke detector detected zone: indicates the zone of which the smoke detector 

activates. {zone A, zone B, zone C} 

An illustration of the definition of various zones is illustrated is Figure A4.1. 

• Zone A denotes the space of fire origin. 

• Zone B denotes the adjacent spaces at the same level within the main vertical 

zone (MVZ). 

• Zone C denotes the spaces that above the space of origin within the MVZ. 

 
Figure A4.1 – The Definitions of Fire Zones 

Heat detector presented: indicates whether the heat detector is installed in the space 

of origin. {True, False} 

Head detector activated: indicates whether the heat detector activates in the space of 

origin. {True, False} 

Fixed suppression system installed: records whether the fixed suppression system is 

installed in the space of origin. {True, False} 

Fixed suppression system activated: records whether the fixed suppression system 

activates in the space of origin. {True, False} 
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Fixed suppression system contributed: indicates whether the fixed suppression 

system contributes to the fire fighting. {True, False} 

Time to control: the time taken to control the fire from first alarm. 

Time to extinguish: the time taken to extinguish the fire from the first alarm. 

Crew presented: indicates whether crew members present in the space of origin. 

{True, False} 

Boundary cooling possible: records whether boundary cooling is needed to prevent 

further escalation. {True, False} 

Fire spread: records whether the fire spreads to adjacent spaces. {True, False} 

No. of adjacent spaces fire spread: the number of adjacent spaces that catch fire. 

{0<integer number < 6} 

Spaces uses: the usage of adjacent spaces that catch fire. 

Number of people (zone A): the number of people present in zone A. 

Time taken to start evacuation (zone A): the time taken to initiate evacuation from 

first alarm in zone A. 

The Doorway width (zone A): the width of the doorway.  

Number of people (zone B): the number of people present in zone B. 

Time taken to start evacuation (zone B): the time taken to initiate evacuation from 

first alarm in zone B.  

Number of people (zone C): the number of people present in zone C. 

Time taken to start evacuation (zone C): the time taken to initiate evacuation from 

first alarm in zone C. 
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A4.5 Collision and Contact Event Information 

It contains detailed information of various phases of a collision/contact event by 

following the typical sequence s. 

Type: identifies whether it is a powered or drifted collision. 

Complexity: indicates navigational complexity of the area. Some area regions are 

naturally keen to present more difficulties and hazards for navigation. {high, medium, 

and low} 

Traffic intensity: records traffic intensity. Area with high traffic intensity (e.g. straits, 

channels, etc.) is exposed to higher chance of collisions. 

Initial distance: the initial distance on collision course. 

Speed: the speed of the own vessel. 

Own ship: indicates whether the ship is a striking or struck ship. 

Collision scenario: the scenario of the collision. {collision with a meeting vessel, 

collision with a crossing vessel, collision with an overtaking vessel} 

Angle between: the collision angle. 

Contact scenario: the contact scenario. {iceberg, offshore structure, bridge, harbour 

structure} 

Ship lane type: the type of ship in lane. 

Ship lane size: the size of ship in lane. {high, medium, and low} 

Ship lane speed: the speed of ship in lane. 

First detection: the means that the collision course was first detected. {visual 

detection, navigation detection, both visual and navigational detection} 

Time detect: the time taken for first detection since the ship is on collision course. 
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Officer on watch: the actions taken by the officer on watch. {able to correct, unable 

to correct, not present} 

Officer number 2: the reactions taken by officer number two. {able to correct, unable 

to correct, not present} 

Pilot: the reactions taken by the pilot. {able to correct, unable to correct, not present} 

Radar system: the status of the radar system. {not installed, installed but not function, 

function but not detected, function and detected} 

ECDIS: the status of the electronic chart display and information system (ECDIS). 

{not installed, not function, function but does not provide extra time for detection, 

function and provide extra time for detection} 

AIS system: the status of the automatic identification system (AIS). {not installed, not 

function, function but does not provide extra time for detection, function and provide 

extra time for detection} 

BNWAS: the status of the bridge navigational watch alarm system (BNWAS). {not 

installed, installed but not activate, installed and activate, not applicable} 

VTS system: the status of the vessel traffic services (VTS). {not present, present but 

not vigilant, present and vigilant} 

Collision alarm: the status of the collision alarm system. {not installed, installed but 

not activate, installed and activate, not applicable} 

Time plan: the time taken for planning avoidance actions. 

Communication between: indicates whether there is any communication between the 

collided ships. 

Clarity giveway: the clarity of the give way situation. {clear, unclear} 

Giveway situation: the situation that give-way actions should be taken. {meeting and 

supposed to give way, crossing and supposed to give way, crossing but not supposed 
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to give way, overtaking and supposed to give way, being overtaken but not supposed 

to give way} 

Time manoeuvring: the time taken to execute the planned manoeuvre. 

Giveway occur: the actual give way action taken. {own ship changes course, other 

ship changes course, neither ship changes course, both ships change course} 

Steer failure: indicates whether the steering system fails. {True, False} 

Tug employed: indicates whether tugs are employed in the drifted case. {True, False} 

Start: the latitude and longitude that the ship starts drifting. 

End: the latitude and longitude that the ship stops drifting. 

A4.6 Grounding Event Information 

It contains detailed information of various phases of a grounding event by following 

the typical sequences. 

Grounding type: indicates the types of grounding. {powered grounding into sand, 

powered grounding into rock, drift grounding into sand, drift grounding into rock} 

Grounding with: the object that the vessel collides with. {electronically marked 

underwater obstacle, unmarked underwater obstacle, large and visible obstacle, small 

and visible obstacle} 

Area complexity: identical with the definition in collision module. 

Traffic intensity: identical with the definition in collision module. 

Update routine: indicates the status of updated routines for charts. {good, standard, 

poor} 

Passage planning: the quality of the passage planning. {good, standard, and poor} 

Initial distance: identical with the definition in collision module. 
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Speed: identical with the definition in collision module. 

Officer on watch: identical with the definition in collision module. 

Officer number 2: identical with the definition in collision module. 

Pilot: identical with the definition in collision module. 

Chart visibility: indicates the goodness that the ground is displayed in the map. 

{large, small, and not visible} 

Light marked: indicates whether the ground type is marked by light for visual 

detection at night. {True, False} 

First detected: identical with the definition in collision module. 

Time detection: identical with the definition in collision module. 

Radar system: identical with the definition in collision module. 

Echo sounding alarm: indicates the status of the dedicated grounding detection 

system. {not installed, installed but not activated, installed and activated, not 

applicable} 

AIS system: identical with the definition in collision module. 

ECDIS: identical with the definition in collision module. 

VTS system: identical with the definition in collision module. 

BNWAS: identical with the definition in collision module. 

Time plan: identical with the definition in collision module. 

Time manoeuvre: identical with the definition in collision module. 

Steer failure: identical with the definition in collision module. 

Drift velocity: identical with the definition in collision module. 
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Tug employed: identical with the definition in collision module. 

Start: identical with the definition in collision module. 

End: identical with the definition in collision module. 

A4.7 Hull/Machinery/Equipment Failure Information 

This module covers the failure of critical systems including propulsion, steering, 

electrical, and navigational systems. 

Ship condition: indicates the condition of the ship. {above expected, as expected, 

below expected} 

Maintenance condition: the maintenance condition of the ship. {below requirement, 

fulfil requirement, above requirement} 

Failure situation: the situation in which the ship fails. {heavy traffic, severe 

environment, channel, others} 

Possible to repair: indicates whether it is possible to repair at the scene. {True, False} 

Repair time: the time taken to repair. 

Failure type: the types of failure on board. {structural failure, function system failure} 

Propulsion subsystem: records whether it is the failure of propulsion subsystems. 

{auxiliary boiler, auxiliary engine, main boilers, gearings & clutches, main engine 

control system, main engine cooling system, main engine, main engine fuel system, 

main engine lube oil system, propeller (fixed / controllable pitch), shaft & bearings} 

Propulsion problem: detailed description of the problems of propulsion subsystem. 

Main engine component: indicates which component fails in the case of main engine 

failure. {cylinder and piston, piston rods and crossheads, connecting rods, crankshaft 

and bearings, bedplates and frames, camshaft and valve gear, cylinder-head 

mountings, turbochargers, main governor (speed regulator)} 
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Steering system type: the configuration of the steering system. {electrical steering 

gear, electro-hydraulic steering gear two ram type, electro-hydraulic steering gear 

four ram type, electro-hydraulic steering gear rotary vane type} 

Steering failure part: indicates which part of the steering system fails. {control part, 

power unit part, transmission part, rudder} 

Steering failure type: the failure of the steering subsystem. {steering system, rudder, 

others} 

Steering problem: detailed descriptions of the problem of steering systems. 

Electrical system type: the failure of the electrical system. {distribution, emergency 

systems, generators, lifts & escalators, motors & starters, switchboard, others} 

Electrical problem: detailed descriptions of the problem of electrical systems. 

Navigational system failure: the failure of the bridge navigational system. {bridge 

control equipment, communication/alarm, navigational instruments} 

Navigational problem: detailed description of the problem of navigational systems. 

Structural failure type: the failure of structural integrity. 

• Hull structure, bow - forward of the collision/ forward most bulkhead 

• Inner bottom/tank top 

• Bulkhead(s) longitudinal, inboard of b/5 

• Bulkhead(s), transverse 

• Floor(s), wt/ot 

• Deck, other 

• Deck, vehicle 

• Deck, weather deck 

• Door side access opening 

• Door, bow – inner 

• Door, bow - visor, clam 

• Door, stern 
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• Door(s), weathertight/ watertight 

• Hatch(es)/coamings, access 

• Hatch(es)/coamings, cargo handling 

• HSC - supplementary notes 

• Hull structure, bottom mid-length - between the bow and stern structure 

• Hull structure, complete cross section 

• Hull structure, side mid-length - between the bow and stern structure 

• Hull structure, stern - aft of the aft peak/aftmost bulkhead 

• Inner skin of double hull side structure 

• Tanks, cargo, lose 

• Tanks, non-cargo 

• Window(s) 

Structural problem: detailed description of the causes of structural failures. 

A4.8 Consequences 

It is designed to record the damages to the ship itself, passengers and crews onboard, 

and the environment. 

Vessel status: indicates the final status of the vessel. {flooding, listing, capsize, 

foundering, not applicable} 

Time to sink: records the time it takes to sink the vessel. 

Flooding type: the type of flooding. {flooding – downflooding, flooding – other 

flooding, foundering – massive flooding, foundering – progressive flooding} 

Causes: detailed description of the root-causes. 

Drill status: the status of evacuation drill. {below requirement, fulfil requirement, 

above requirement} 

Muster status: the status of mustering when the event occurs. {below requirement, 

fulfil requirement, above requirement} 
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Evacuation: the status of evacuation. {not initiated, successful, not successful, not 

possible, not applicable} 

Evacuation means: evaluates the standard and location of life-saving equipments. 

{above requirements, fulfil requirements} 

People location: indicates the location of people after the event occurs. {in the water, 

on lifeboat, on liferaft, onboard, not applicable} 

Awareness time: the time it takes for people to react to the situation. It begins upon 

initial notification (e.g. alarm) of an emergency and ends when the passengers have 

accepted the situation and started to move towards and assembly station. 

Travel time: the time it takes for all people on board to move from where they are 

upon notification to the assembly stations and then to the embarkation stations. 

Embarkation/launching time: the sum of which defines the time required to provide 

for abandonment. 

Loss to vessel: indicates whether there is any damage to the vessel. {True, False} 

Loss to labour: indicates whether there is any loss to the crews. {True, False} 

Loss to production: indicates whether there is any loss to the production. {True, 

False} 

Loss to hull/equipment: indicates whether there is any loss to the hull, machineries, 

and equipments. {True, False}  

Loss to legal: indicates whether there is any loss to legal aspects. {True, False} 

Loss to people: indicates whether there is any loss to the passengers on board. {True, 

False} 

Environment: indicates whether there is any loss to the environment. {True, False} 
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A4.9 Event Causes 

This module contains detailed descriptions of the event and methods for root-causes 

analysis, as illustrated in Chapter 5. 

Event description: the full description of the event. 

Principal findings: identifies principle findings from the root-causes analysis of the 

event. 

A4.10 Human Factor 

It is designed to investigate the contributory factors to human errors.  

Number of crew on board: the number of crews on board when the event occurs.  

Number of passengers on board: the number of passengers on board when the event 

occurs. 

Pilot: indicates whether the pilot is onboard. {True, False} 

Role: the role of the interested person. {crew, engineer of the watch, investigation 

team, officer of the watch, passenger, person in charge, pilot, witness only, Others} 

Status: the status of the person. {missing, injury, uninjured, dead} 

Job title: the job title of the person. {chief engineer, chief mate, deck rating, 

engineering rating, first engineer, food service, hotel, inspector, master, other 

engineering officer, other navigating officer, vendor, other} 

License/Certificate: the license/certificate that the person holds. {1st Engineer, 2nd 

Engineer, 2nd Mate/officer, 3rd Engineer, 3rd Mate/officer, 4th Engineer, 4th 

Mate/officer, Chief Engineer, Chief Mate/officer, Master, Ordinary Seaman, QMED, 

Unlicensed} 
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Crew Member: indicates whether the person is a crew. If so, specify whether he is on 

duty or off duty. 

Date of birth: the date of birth. 

Nationality: the nationality. 

Working experience: records the years of working experience in the field. 

Work related: indicates whether it is a work-related injury/fatality. {True, False} 

Health condition: records the health condition.  

Equipment involved: indicates whether any equipment is involved. {True, False} 

Shipboard: indicates whether the injury/fatality occurs on board. {True, False} 

Hours worked: records the duration of working until the event occurs. 

Duration off: records the duration of the rest he has before the shift. 

Statement: the statement made by the person. 
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Estimation of Logistic Regression 

Models 
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Similar to the process of training a generic regression model, the estimation of a 

Logistic Regression Model starts with data collection, transformation, and the 

subsequent estimation of the model coefficients. Such a process will be demonstrated 

by using the data collected for dependency test, as it is presented in Section 6.3.2, 

concerning variables I, denoting vessel location, and G, denoting time of the day. 

The estimated model can be presented in the form of equation (A5.1). 

=3C�41J�I � (4/�'(�: � =3C J�I � (4/�'(�E K J�I � (4/�'(� � L M NG (A5.1) 

Given the collected 576 records, it is noted that the statuses of the interested 

variables are presented in categorical formats (i.e. non-metric). Hence, it is essential 

to transform them into numerical values to facilitate the model training process and 

the ultimate employment. As both I and G have only binary statuses (e.g. >4/�'( or O%/ 3�4 ), the common practice is to transform them into 0 and 1 to represent 

different situations. 

Concerning the assignment of numerical values (i.e. 0, 1) for representation, the 

decision on which status is to be represented by 0 or 1 will affect the numerical 

values of the estimated model coefficients. However, it is important to understand 

that such variations will not affect the subsequent decision making on identifying 

dependent relationships, and also the prediction outcomes. For instance, with P��C�4P and P?(B4�;'P denoted by 0 and 1, respectively for G, and  “>4/�'(P and PO%/ 3�4P  denoted by 0 and 1, respectively for I , the model can be fitted by 

employing the maximum likelihood technique. The coefficients are summarised in 

Table A5.1. 

Table A5.1: Summary of the Estimated Coefficients of the Logistic Regression 

Model Containing L and T 

Parameter Degree of 
freedom 

Estimate Standard 
error 
(SE) 

Chi-
square 

P(null 
hypothesis being 

correct) 
Intercept �L� 1 -1.2484 0.1975 39.96 <0.0001 N  for Time �G� � ?(B4�;'� 1 0.5588 0.2225 6.31 0.012 
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Similarly, if the denotations for P>4/�'(P and PO%/ 3�4P  are changed to 1 and 0, 

respectively for I , while the ones for variable G  remain unchanged, the updated 

estimation is tabulated in Table A5.2. As it can noted, the changes of denotation have 

direct impact on the estimated coefficients, nevertheless, the subsequent significance 

tests are still able to reach identical conclusions as far as dependency test is 

concerned. 

Table A5.2: Summary of the Updated Estimated Coefficients of the Logistic 

Regression Model Containing L and T 

Parameter Degree of 
freedom 

Estimate Standard 
error 
(SE) 

Chi-
square 

P(null 
hypothesis being 

correct) 
Intercept �L� 1 1.2484 0.1975 39.96 <0.0001 N  for Time �G� � ?(B4�;'� 1 -0.5588 0.2225 6.31 0.012 
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Bayesian Network Scoring Criteria 
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The Bayesian scoring criterion provides a computationally traceable method for 

estimating the relative goodness-of-fit of a specific BN model. However, during the 

learning process for identifying the optimal one(s) that produces the highest/J�8!Q�, 
it is found that the complexity of the network structure (model) influences the 

learning efficiency, which is a function of the computation complexity. Hence, 

further modification of the criterion through the Taylor expansion of J�8!Q� was 

made in order to balance the accuracy and the complexity of the structure. 

The Bayesian information criterion (BIC) is one of the techniques aiming to achieve 

such a balance [Schwarz, 1978], as illustrated in the following equation. The first 

term measures how well the data fits the model, while the second term accounts for 

the model complexity. Similar concept has been adopted for the Akaike Information 

Criterion (AIC), [Akaike, 1974]. 

ROS�8* Q� � =%�J�8!Q�� K ���'�Q�T =%�8�  

���'�Q� ��U���� K E�"
���   

 

Where H��'�Q� denotes the size of the structure 

Another formalism that has been developed to examine the accuracy of a BN is 

known as the Minimum Description Length (MDL) [Rissanen, 1987], [Friedman and 

Goldszmidt, 1996], which was originated from the Minimum Message Length 

(MML) developed in [Wallace and Boulton, 1968]. The MDL was inspired by the 

information theory, which aims to minimise the length of a joint description of the 

model and the data. One of the measures propounded by Lam and Bacchus is 

illustrated in equation (6.20) [Korb and Nicholson, 2004] [Lam and Bacchus, 1994].  

 

O
V��� ��W��=3C� M 8��� K E� X ���YZ��� [�
���   
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Where � denotes the number of nodes 

 �� denotes the number of parents the variable � 
 8 denotes the word size of the computer being used in bits 

 �� denotes the number of statuses of the variable � 
It is important to notice that the MDL focuses on the entropy of the data set to 

examine the accuracy of the model rather than on the joint probability distribution. 

With respect to the BIC and the AIC, the term for accounting for the structure 

complexity is merely to reduce the computational effort, which may unnecessarily 

undermine the identified BN model. Hence, the pure joint probability distribution 

criterion - Bayesian scoring criterion, is employed as the criterion of score-based 

learning. 
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Appendix 7  

 

Risk Acceptance Criteria  

 

 

 

 

 

 

 

 

 
 

 

 



274 
 

The risk acceptance criteria to be elaborated draw the latest development through the 

SAFEDOR, which have been submitted and agreed at the IMO [Skjong, et al., 2007]. 

The criteria for both individual risk and societal risk have received wide recognition 

within the maritime industry.  

The purpose of individual risk acceptance criteria is to limit the risks to people due to 

shipping activities. It can be expressed as: 

• A risk of death per year for a specific individual. 

• A Fatal Accident Rate (FAR), which is defined as the number of fatalities per 

100 million person-hours at sea. 

The criteria agreed at IMO are: 

Maximum tolerable risk for crew members 10-3 annually 

Maximum tolerable risk for passengers 10-4 annually 

Maximum tolerable risk for public ashore 10-4 annually 

Negligible risk 10-6 annually 

Nevertheless, as it is noticed that the tolerable risk proposed are not particularly strict, 

more stringent criteria have been proposed in [Norway, 2000] and agreed at IMO. 

 

Target individual risk for crew members 10-4 annually 

Target individual risk for passengers 10-5 annually 

Target individual risk for public ashore 10-5 annually 

In the case of societal risk acceptance criteria is to limit the risk to groups of people 

due to shipping activities, e.g. whole crews, groups of passengers, or the society as a 

whole, etc. It can be expressed as: 

• The Annual Fatality Rate (AFR), which is defined as the long-term average 

number of deaths per ship year. 

• The F-N curve, which relates the frequency and number of fatalities in accidents.  
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The use of F-N curve is proposed. The criteria for passenger cruise ships and Ro-Ro 

ships are illustrated in Figure A7.1 and A7.2, respectively.  

 

 
Figure A7.1: Society Criteria for Cruise Liner [IMO, 2008b] 

 

 
Figure A7.2: Society Criteria for Passenger Ro-Ro ships [IMO, 2008c] 

The candidate designs that satisfying these risk acceptance criteria fulfil global safety 

objectives. It is also necessary to consider specific safety performance parameters. 

For instance, there is a need to demonstrate the design satisfies the required 

subdivision index for passenger and cargo ships, etc.  
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Pair Wise Comparisons using the 

Analytic Hierarchy Process (AHP)  
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Dealing with multiple objectives concurrently when designing a ship in order to 

reach a satisfactory solution is a pervasive challenge needs to be addressed properly.  

The approach through the aggregate objective function (AOF) provides the most 

intuitive means in this direction. Nevertheless, through simple aggregation of more 

than a few objectives’ measure in a single measure-of-merit is not appropriate in 

solving a complex decision problem such as selecting design solutions for a ship due 

to the complex relationships inherent in the situation. 

An alternative method that can be readily deployed is through pair-wise comparison 

of available design solutions employing valid criteria. On this basis, a methodology, 

known as the Analytic Hierarchy Process (AHP), has been developed in [Saaty, 

2008]. Fundamentally, the AHP is a general theory of measurement, which is used to 

derive ratio scales from both discrete and continuous paired comparisons in multi-

level hierarchic structures.  

The key elements for the deployment of the AHP are: 

• Decomposition 

• Comparative judgment 

• Priority synthesis 

The decomposition process aims to structure the decision in a hierarchical form. The 

goal of the decision is stated at the top level, whilst objectives from a broad 

perspective are listed in the next level, and probably, if necessary, a series of 

successive levels can be attached contains more specific criteria. The design 

alternatives are measured by the degree of how they satisfy the goals. The lowest 

level usually contains a set of alternatives.   

Comparative judgement starts with a set of pair wise comparison matrices. The 

relative importance can be established among the elements on a given level with 

respect to the shared criterion in the level immediately above. To assist the 

comparison process, a scale of numbers to reveal the relative importance or 

dominance one element is over another has been proposed, as shown in Table A8.1, 
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where the absolute measurement on a scale of 1 to 9 is used to score the paired 

comparison. 

Table A8.1: The Fundamental Scale of Absolute Numbers 

 

The underlying theory for priority synthesis is to transform the obtained pair wise 

comparison tables into square matrices and employ the characteristic equation for 

matrix algebra. Hence, the problem of prioritisation of design alternatives is 

equivalent to estimate the eigenvalues and the eigenvectors of a matrix, as illustrated 

below: 

\
]]]̂
_�_� _�_`_`_� _`_` a _�_"_`_"b c b_"_� _"_` a _"_"d

eee
fg_�_`b_"h � %g_�_`b_"h 
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Where the first component represents the pair wise comparison values and second 

one indicates the priorities with respect to a single criterion. The solution is generally 

obtained by raising the matrix to a sufficiently large power, and summing over the 

rows, normalising to obtain the priority vector _ � �_� i _"� . Through 

iteratively performing this process until the difference of the priority vectors obtained 

at �th power and at the �� M E�st power is less than some predefined small value. 

Nevertheless, the priority vector can be approximated by normalising the elements in 

each column of the comparison matrix and then averaging over each row. 

The variance of the error incurred for the estimation process is expressed as �jk lmK%�n�% K E�, which is also known as the consistency index (C.I.). jk lm is the largest 

or principal eigenvalue and % is the order of the matrix. On this basis, it is apparent 

that the closer jk lm is to %, the more consistent is the result. It has been proposed to 

compare the C.I. value with the consistency index of the randomly generated 

matrixes of the same size, as illustrated in Table A8.2. The ratio of the C.I. above the 

averaged R.I. is defined as the consistency ratio (C.R.). If the value is less or equals 

to 0.10, it is considered to acceptable. 

 

Table A8.2: Average Random Consistency Index (R.I.) 

N 1 2 3 4 5 6 7 8 

Random consistency index 0 0 0.52 0.89 1.11 1.25 1.35 1.40 

On the basis of the above principles, the priorities of design alternatives can be 

obtained for each criterion. The normalised eigenvectors forms a matrix of local 

priorities, which is subject to further multiplication of the priority vector of one level 

up, i.e. 

1I3&(=/ ��3��4B/;(4��o: p 1J��3��4B/A'&43�: � 1�'�2=4/A'&43�: 
Through repetitively performing such multiplication, the final product is a vector that 

the priorities of various alternatives are ranked. Consequently, proper decisions can 

be made. 
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Explanatory Document of Dominant 

Variables Identification for Fire Safety 

 

 

 

 

 

 

 
 

�

 

�

 

 



281 
 

• On board location 

An important variable influencing the frequency of fire ignition is “on board 

location”. Hence, it is necessary to provide clear definitions of the spaces with their 

corresponding usages, which are tabulated in Table A9.1. It is understood that the 

fifty-three spaces detailed appoints high resolution to the analysis. However, 

considering the applicability and for the sake of consistency, the fourteen spaces 

scheme defined at SOLAS Chapter II-2 regulation 9 for ships carrying more than 36 

passengers is adopted, which is summarised in Table A.2. The detailed definition is 

provided in Appendix 10. 

Table A9.1: “Use” of Spaces onboard Passenger Ships and Corresponding Space 
Category According to SOLAS Chapter II-2 Regulation 9 

Cabin (crew / 

officer) 

6 Gift shop 7 Sauna / spa / jacuzzi 9 

Cabin (passenger) 6 Guest Disco 8 Solarium 9 

Cabin Balcony 5 Guest gym 8 Stage / backstage 8 

Café 8 Ice rink 7 Stairs (interior) 2 

Casino 8 Incinerator room 12 Swimming pool 

(area) 

9 

Centrum 8 Laundry room 13 Tender 4 

Children / teen areas 7 Library 7 Theatre 8 

Corridor 3 Lounge / bar 

(public) 

8 Cabin Bath 6 

Crew areas (other) 8 Luggage area 13 Conference Centre 8 

Crew bar 7 Mess (crew / 

officer) 

8 Gangway 4 

Crew gym 6 Muster Station / 

life boats 

4 Golf Course 5 

Deck area (exterior) 5 Other  Medical Facility 14 

Dining room 8 Pantry 13 Office Areas 6 

Electrical room 10 Provision area 13 Specialty Restaurant 8 

Elevator 2 Public Area 8 Sports Deck 5 
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(others) 

Engine / machinery 

space 

12 Restroom (public) 9   

Galley 12 Promenade Deck 5   

Generator room 12 Salon 8   

 

Table 8.2: Fourteen Spaces Defined in SOLAS Chapter II-2 Regulation 9 for 
Ships Carrying more than 36 Passengers [IMO, 2004] 

Code Space defined 
1 Control station 

2 Stairway 

3 Corridors 

4 Evacuation stations and external escape routes 

5 Open deck spaces 

6 Accommodation spaces for minor fire risk 

7 Accommodation spaces for moderate fire risk 

8 Accommodation spaces for greater fire risk 

9 Sanitary and similar spaces 

10 Tanks, voids and auxiliary machinery spaces having little or no fire risk 

11 Auxiliary machinery spaces, cargo spaces, cargo and other oil tanks 

and other similar spaces of moderate fire risk 

12 Machinery spaces and main galleys 

13 Store-rooms, workshops, pantries, etc. 

14 Other spaces in which flammable liquids are stowed 

�

• Date of event 

It provides basic information of the reporting period, which is important for the 

estimation of frequencies (per ship-year). The date of event is also an interesting 

factor for revealing trends in statistical analyses.  The format of date is: dd/mm/yyyy. 
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• Time of event 

Time is one of the crucial factors having complex links with various types of fire 

event at different spaces. For instance, experience suggests that the chance of fire 

occurring in both passenger and crew cabins at evening times (18:00 – 20:00) is 

much higher than the rest of the day. Similarly, the analysis performed in [Majumder, 

et al., 2007] concerning the impact of time on the consequences (in terms of fatalities) 

due to fire escalation shows significant dependence. The time is categorised as 

daytime (08:00 – 00:00) and night (00:00-08:00) for this study, however, higher 

resolution can be introduced if it is deemed necessary. 

• Vessel location 

Generally vessel location is not of great importance to fire safety as limited evidence 

from historical records supports this argument for cruise liners. However, lessons 

still can be learned from other accident types and ship types. For instance, under 

emergency situations, when abandonment and evacuation is needed, the difference in 

consequences between the fire accidents onboard Sally Star [MAIB, 1995] and Al 

Salam Boccaccio 98 [MSUO et al., 2006], as illustrated in Figure A9.1 and A9.2, is 

tremendous. It is understood that such difference is under the influence of many 

factors; nevertheless, vessel location is still respected as an important variable 

affecting the effectiveness of emergency operations. The statuses are defined as: In 

port and At sea. 

 

� �

Figure A9.1: Fire onboard Sally Star 
Resulting in No Injury and No Loss of 

Life on 25th August 1994 

Figure A9.2: Fire onboard Al Salam 
Boccaccio 98 Claimed over 1,000 Lives 

on 2nd February 2006  
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• Weather contribution 

Severe environmental condition has been regarded as one of the main contributing 

factors to marine disasters. It is included to indicate whether environmental factors, 

e.g. wind, sea state, visibility, etc., influence any stage of a fire accident. The statuses 

are: True, False. 

• Detection means 

As highlighted in [Guarin, et al., 2007], the probability of first-aid failure can be 

estimated through equation (A9.1). J�>� � J�>�� � 1J�>`� M J�>q� K J�>`�J�>q�: (A9.1) 

 

Where J�>��  denotes the probability of failure of the automatic (fixed) 

suppression system 

 J�>`� denotes the probability of failure of manual first-aid 

 J�>q� denotes the probability of failure of first-aid by an on-duty staff 

It is noted that J�>��, J�>`�, and J�>q� imply a two-stage process, that is detection 

and suppression by either hardware or software mitigative defenders. As far as the 

detection means is concerned, it includes automatic detection systems, manual 

detection systems by crews or guests. Hence, statuses of the detection means are 

tabulated in Table A9.3. 

 

Table A9.3: Definition of the Detection Means 

Detection system installed and utilized 

Detection system installed, but fire detected by personnel 

No fire detection system installed, but fire detected by personnel 

Not reported 

Other 

Both automatic and manual detection system detected 

Fail to detect 
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• Suppression means 

On the basis of equation (A9.1) and the previous discussion, definitions of the 

suppression means are similar to the detection means. It can be performed through 

fixed suppression systems and manual extinguishers. This field is designed to specify 

the tools/equipments deployed for fire fighting, as illustrated in Table A9.4. 

 

Table A9.4: Definition of the Suppression Means 

Fire resisting divisions 

Fire main and hydrants 

Inert gas system 

Fixed CO2 system 

Halogenated hydrocarbon system 

Foam Extinguisher 

Other fixed extinguishing system (e.g. automatic sprinkler or steam 

smothering) 

Other protection (portable and semi-portable extinguishers) 

Other 

Not reported 

Powder extinguishers 

CO2 Extinguisher 

Self extinguished 

Water Extinguisher 

Water (Not Extinguisher) 

Fire blanket 

Fixed water mist system 

Both fixed and portable means 

�

• Ventilation system status 

In the case of fire, the ventilation system is supposed to be shut down immediately 

and the fire dampers should be closed to prevent the circulation of smoke within the 
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ventilation system and to reduce the amount of oxygen provided to the space of 

origin. Nevertheless, more often than not, such practice is unnecessary if the fire is 

discovered at an early stage. This field records whether the ventilation is closed: True 

and False. 

• Fire door status 

The fire door refers to an opening connecting the space on fire with an adjacent space, 

as illustrated in Figure A9.3, which does not have to be the fire door defined in 

SOLAS II-2 for a fire zone [IMO, 2004]. Such fire door is one of the primary 

barriers to contain the fire within the origin and to minimise smoke propagation. It is 

designed to indicate whether the fire door is closed: True and False. 

�

�

Figure A9.3: Openings Connecting Different Spaces [Majumder, et al., 2007] 

 

• Space occupancy status 

Historical experience suggests that the severity of a fire event can be significantly 

reduced with the presence of passengers or crews within the space on fire. This is 

because it has crucial impact on the detection time, the response time, and eventually 

the consequences. This field is marked as True and False to denote whether the space 

is occupied by either crews or passengers when the fire happens. 
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• Crew status 

As implied in equation (A9.1), special attention has been paid to on-duty staff 

through /J�>q�, as crews are specifically trained to deal with various emergency 

situations on board including the procedures to be followed when the fire occurs. The 

presence of crew members should have positive impact on the probability of 

extinguishing a fire. In fact, historical data proves that the crew is more likely to take 

appropriate actions when attempting to extinguish a fire and at the same time to alert 

the bridge. It is designed to record whether the crew is present: True and False. 

• Boundary cooling status 

Boundary cooling is one of the last few operations that crews can take to contain the 

fire within the space of origin by lowering the temperature of the boundaries from 

adjacent spaces. Such practice is normally adopted when tackling a fire in machinery 

spaces. Still, it can be used in combination with fixed extinguishers to minimise the 

consequences. The options are: Executed, Impossible, and Unnecessary. 

• Emergency response (first-aid) failure 

Emergency response failure refers to the performance of both fixed automatic and 

manual fire suppression systems. Its status is influenced by many physical 

parameters, e.g. detection means, fire fighting tools, the presence of crews, etc., all of 

which are explicitly recorded so as to capture generic fire escalation characteristics 

within a known space. 

The failure of emergency response is the result of the failure of three components: 

the failure of automatic (fixed) suppression systems, the failure of manual first-aids 

by either passengers or crews, and the failure of manual first-aids by on-duty staffs. 

It should be noted that coincidence may occur for the latter two components. It is 

understood that each component is a function of multiple physical variables; however, 

the failure of any one of the aforementioned systems is mathematically the result of 

the unity minus the combination of their reliabilities and the corresponding 

effectiveness. Hence, a key measure of judging the successfulness of emergency 
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response is time. As presented in Figure A9.4, the failure of any of these systems 

would result in fire growth to flashover situations. Moreover, each space is 

characterised by a unique energy releasing curve, which makes the task of assigning 

a unified criterion of emergency response failure even more difficult. Thus, the 

following definitions for the first-aid failure are deemed to be appropriate:  

(i) The fire lasts for 5 or more minutes (Tfire: the duration before the fire is 

extinguished). In this case, the definition is as follows:  

First-aid failure � TRUE means Tfire � 5 minutes 

First-aid failure � FALSE means Tfire < 5 minutes   

(ii) The fire achieves a stage where other protection means in the vicinity of the 

space of origin start acting (e.g. insulation, boundary cooling).  In this case, the 

definition is as follows:  

First-aid failure � TRUE means insulation or boundary cooling becomes 

active  

First-aid failure � FALSE means insulation or boundary cooling remains 

inactive 

 

 
Figure A9.4: The Impact of Emergency Response on Fire Energy Timeline 
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• Containment failure 

This is evaluated in accordance with the performance criteria implicit in SOLAS 

regulation 3.2, 3.4 and 3.10 for insulation class A, B and C respectively. The 

insulation types are depicted in Table A9.5 and A9.6. These criteria refer to the times 

at which the temperature at the unexposed side of the bulkhead exceeds certain limits. 

If the criteria are exceeded, it is assumed that loss of containment, conditional to 

emergency response failure, will occur. It is understood that the temperature may not 

be recorded in the available data, thus the following definitions are deemed to be 

appropriate:  

(i) Boundary cooling becomes active. In this case the definition is as follows:  

Insulation failure � TRUE means that boundary cooling is active  

Insulation failure � FALSE means that boundary cooling remains inactive 

(ii) Smoke and flame passage of “A” and “B” class divisions. In this case the 

definition is as follows:  

Insulation failure � TRUE means that (a) smoke and flame passes an “A” 

class division sooner than 60 minutes and / or (b) flame passes a “B” class 

division sooner than 30 minutes. 

Insulation failure � FALSE means that (a) smoke and flame does not pass an 

“A” class division sooner than 60 minutes and / or (b) flame does not pass a 

“B” class division sooner than 30 minutes. 

• Ignition in adjacent space 

This field aims to indicate whether the fire escalates from the space of origin if the 

situation reaches such a stage that the insulation fails to contain the fire within the 

original space. It is important as different statuses would lead to distinct scenarios 

and totally different consequences (in terms of fatality).  The statuses are: True and 

False. 

 

 

 



290 
 

 

 

Table A9.5: Bulkheads Not Bounding Either Main Vertical Zones or Horizontal 
Zones [IMO, 2004] 

�

�

Table A9.6: Decks Not Forming Steps in Main Vertical Zones nor Bounding 
Horizontal Zones [IMO, 2004] 

�

�
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Appendix 10  

 

Definitions of the Fourteen SOLAS 

Space Categories  
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For the sake of consistency, the fourteen spaces scheme defined at the SOLAS 

Chapter II-2 regulation 9 concerning “fire integrity of bulkheads and decks in ships 

carrying more than 36 passengers” is adopted in this thesis for the development of 

pertinent fire risk models. Detailed definitions are provided next [IMO, 2004]. 

 

1. Control stations 

Spaces containing emergency sources of power and lighting. 

Wheelhouse and chartroom. 

Spaces containing the ship’s radio equipment. 

Fire control stations. 

Control room for propulsion machinery when located outside the propulsion 

machinery space. 

Spaces containing centralized fire alarm equipment. 

Spaces containing centralized emergency public address system stations and 

equipment. 

 

2. Stairways 

Interior stairways, lifts, totally enclosed emergency escape trunks, and escalators 

(other than those wholly contained within the machinery spaces) for passengers 

and crew and enclosures thereto. 

In this connection, a stairway which is enclosed at only one level shall be 

regarded as part of the space from which it is not separated by a fire door. 

 

3. Corridors 

Passenger and crew corridors and lobbies. 

 

4. Evacuation stations and external escape routes 

Survival craft stowage area. 

Open deck spaces and enclosed promenades forming lifeboat and liferaft 

embarkation and lowering stations. 
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Assembly stations, internal and external. 

External stairs and open decks used for escape routes. 

The ship’s side to the waterline in the lightest seagoing condition, superstructure 

and deckhouse sides situated below and adjacent to the liferaft and evacuation 

slide embarkation areas. 

 

5. Open deck spaces 

Open deck spaces and enclosed promenades clear of lifeboat and liferaft 

embarkation and lowering stations. To be considered in this category, enclosed 

promenades shall have no significant fire risk, meaning that furnishings shall be 

restricted to deck furniture. In addition, such spaces shall be naturally ventilated 

by permanent openings. 

Air spaces (the space outside superstructures and deckhouses). 

 

6. Accommodation spaces of minor fire risk 

Cabins containing furniture and furnishings of restricted fire risk. 

Offices and dispensaries containing furniture and furnishings of restricted fire risk. 

Public spaces containing furniture and furnishings of restricted fire risk and 

having a deck area of less than 50 ;`. 

 

7. Accommodation spaces of moderate fire risk 

Spaces as in category (6) above but containing furniture and furnishings of other 

than restricted fire risk. 

Public spaces containing furniture and furnishings of restricted fire risk and 

having a deck area of 50 ;` or more. 

Isolated lockers and small store-rooms in accommodation spaces having areas less 

than 4 ;` (in which flammable liquids are not stowed). 

Sale shops. Motion picture projection and film stowage rooms. Diet kitchens 

(containing no open flame). 

Cleaning gear lockers (in which flammable liquids are not stowed). 

Laboratories (in which flammable liquids are not stowed). 
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Pharmacies. 

Small drying rooms (having a deck area of 4 ;` or less). 

Specie rooms. 

Operating rooms. 

 

8. Accommodation spaces of greater fire risk 

Public spaces containing furniture and furnishings of other than restricted fire risk 

and having a deck area of 50 ;` or more. 

Barber shops and beauty parlours. 

Saunas. 

9. Sanitary and similar spaces 

Communal sanitary facilities, showers, baths, water closets, etc. 

Small laundry rooms. 

Indoor swimming pool area. 

Isolated pantries containing no cooking appliances in accommodation spaces. 

Private sanitary facilities shall be considered a portion of the space in which they 

are located. 

10. Tanks, voids and auxiliary machinery spaces having little or no fire risk 

Water tanks forming part of the ship�s structure.  

Voids and cofferdams. 

Auxiliary machinery spaces which do not contain machinery having a pressure 

lubrication system and where storage of combustibles is prohibited, such as: 

ventilation and air-conditioning rooms; windlass room; steering gear room; 

stabilizer equipment room; electrical propulsion motor room; rooms 

containing section switchboards and purely electrical equipment other than 

oil-filled electrical transformers (above 10 kVA); shaft alleys and pipe 

tunnels; and spaces for pumps and refrigeration machinery (not handling or 

using flammable liquids). 

Closed trunks serving the spaces listed above. 
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Other closed trunks such as pipe and cable trunks. 

 

11. Auxiliary machinery spaces, cargo spaces, cargo and other oil tanks and other 

similar spaces of moderate fire risk 

Cargo oil tanks. 

Cargo holds, trunkways and hatchways. 

Refrigerated chambers. 

Oil fuel tanks (where installed in a separate space with no machinery). 

Shaft alleys and pipe tunnels allowing storage of combustibles. 

Auxiliary machinery spaces as in category (10) which contain machinery having a 

pressure lubrication system or where storage of combustibles is permitted. 

Oil fuel filling stations. 

Spaces containing oil-filled electrical transformers (above 10 kVA). 

Spaces containing turbine and reciprocating steam engine driven auxiliary 

generators and small internal combustion engines of power output up to 110 kW 

driving generators, sprinkler, drencher or fire pumps, bilge pumps, etc. 

Closed trunks serving the spaces listed above. 

 

12. Machinery spaces and main galleys 

Main propulsion machinery rooms (other than electric propulsion motor rooms) 

and boiler rooms. 

Auxiliary machinery spaces other than those in categories (10) and (11) which 

contain internal combustion machinery or other oil-burning, heating or pumping 

units. 

Main galleys and annexes. 

Trunks and casings to the spaces listed above. 

 

13. Store-rooms, workshops, pantries, etc. 

Main pantries not annexed to galleys. 

Main laundry. 

Large drying rooms (having a deck area of more than 4 ;`). 
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Miscellaneous stores. 

Mail and baggage rooms. 

Garbage rooms. 

Workshops (not part of machinery spaces, galleys, etc.). 

Lockers and store-rooms having areas greater than 4 ;`, other than those spaces 

that have provisions for the storage of flammable liquids. 

 

14. Other spaces in which flammable liquids are stowed 

Paint lockers. 

Store-rooms containing flammable liquids (including dyes, medicines, etc.). 

Laboratories (in which flammable liquids are stowed). 
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Appendix 11  

 

Logbook  of Two-Variable 

Dependency Analysis 
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~~~~~~~~~~~~~~~~~~ 
Variables analysed 
~~~~~~~~~~~~~~~~~~ 
 
N1 Time 
N2 Vessel location 
N3 Weather contribution 
N4 Ignition space 
N5 Automatic detection activated 
N6 Manual detection activated 
N7 Automatic suppression activated 
N8 Manual suppression activated 
N9 Ventilation status 
N10 Fire door status 
N11 Crew attended 
N12 Guest attended 
N13 Boundary cooling status 
N14 Emergency response failure 
N15 Containment failure 
N16 Ignition in adjacent space 

 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Attributes of each variable 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
N1 
 Daytime 
 Night 
N2 
 PORT 
 SEA 
N3 
 False 
 True 
N4 
 SOLAS_10 
 SOLAS_12 
 SOLAS_13 
 SOLAS_14 
 SOLAS_2 
 SOLAS_3 
 SOLAS_4 
 SOLAS_5 
 SOLAS_6 
 SOLAS_7 
 SOLAS_8 
 SOLAS_9 
N5 
 False 
 True 

N6 
 False 
 True 
N7 
 False 
 True 
N8 
 False 
 True 
N9 
 Closed 
 Fail_to_close 
 No_need_to_close 
N10 
 Closed 
 Open 
N11 
 False 
 True 
N12 
 False 
 True 
N13 
 Executed 
 Unnecessary 
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N14 
 False 
 True 
N15 
 False 
 True 

N16 
 False 
 True 
 
 

 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Two variables dependency analysis 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
To investigate the dependent relationships between any two variables, the saturated model 1 
(indicating association) is compared with model 2 (indicating independent relationship). The 
significance of the difference between the two models can be revealed.   
 
Model 1: Twodata$CountNum ~ Twodata$Para1 * Twodata$Para2 
Model 2: Twodata$CountNum ~ Twodata$Para1 + Twodata$Para2 
 
Two Variables: N1 & N2 
Significance of difference is: 0.000269 
Remove link between them ? False 
 
Two Variables: N1 & N3 
Significance of difference is: 0.346 
Remove link between them ? True 
 
Two Variables: N1 & N4 
Significance of difference is: 0.134 
Remove link between them ? True 
 
Two Variables: N1 & N5 
Significance of difference is: 0.0288 
Remove link between them ? False 
 
Two Variables: N1 & N6 
Significance of difference is: 0.049 
Remove link between them ? False 
 
Two Variables: N1 & N7 
Significance of difference is: 0.376 
Remove link between them ? True 
 
Two Variables: N1 & N8 
Significance of difference is: 0.155 
Remove link between them ? True 
 
Two Variables: N1 & N9 
Significance of difference is: 0.322 
Remove link between them ? True 
 
Two Variables: N1 & N10 
Significance of difference is: 0.289 
Remove link between them ? True 
 
Two Variables: N1 & N11 
Significance of difference is: 0.41 
Remove link between them ? True 

Two Variables: N1 & N12 
Significance of difference is: 0.0827 
Remove link between them ? False 
 
Two Variables: N1 & N13 
Significance of difference is: 0.626 
Remove link between them ? True 
 
Two Variables: N1 & N14 
Significance of difference is: 0.423 
Remove link between them ? True 
 
Two Variables: N1 & N15 
Significance of difference is: 0.108 
Remove link between them ? True 
 
Two Variables: N1 & N16 
Significance of difference is: 0.108 
Remove link between them ? True 
 
Two Variables: N2 & N3 
Significance of difference is: 0.258 
Remove link between them ? True 
 
Two Variables: N2 & N4 
Significance of difference is: 0.0121 
Remove link between them ? False 
 
Two Variables: N2 & N5 
Significance of difference is: 0.109 
Remove link between them ? True 
 
Two Variables: N2 & N6 
Significance of difference is: 0.238 
Remove link between them ? True 
 
Two Variables: N2 & N7 
Significance of difference is: 0.674 
Remove link between them ? True 
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Two Variables: N2 & N8 
Significance of difference is: 0.346 
Remove link between them ? True 
 
Two Variables: N2 & N9 
Significance of difference is: 0.23 
Remove link between them ? True 
 
Two Variables: N2 & N10 
Significance of difference is: 0.689 
Remove link between them ? True 
 
Two Variables: N2 & N11 
Significance of difference is: 0.0169 
Remove link between them ? False 
 
Two Variables: N2 & N12 
Significance of difference is: 0.00289 
Remove link between them ? False 
 
Two Variables: N2 & N13 
Significance of difference is: 0.334 
Remove link between them ? True 
 
Two Variables: N2 & N14 
Significance of difference is: 0.102 
Remove link between them ? True 
 
Two Variables: N2 & N15 
Significance of difference is: 0.437 
Remove link between them ? True 
 
Two Variables: N2 & N16 
Significance of difference is: 0.437 
Remove link between them ? True 
 
Two Variables: N3 & N4 
Significance of difference is: 0.000604 
Remove link between them ? False 
 
Two Variables: N3 & N5 
Significance of difference is: 0.13 
Remove link between them ? True 
 
Two Variables: N3 & N6 
Significance of difference is: 0.304 
Remove link between them ? True 
 
Two Variables: N3 & N7 
Significance of difference is: 0.143 
Remove link between them ? True 
 
Two Variables: N3 & N8 
Significance of difference is: 0.139 
Remove link between them ? True 
 

Two Variables: N3 & N9 
Significance of difference is: 0.582 
Remove link between them ? True 
 
Two Variables: N3 & N10 
Significance of difference is: 0.132 
Remove link between them ? True 
 
Two Variables: N3 & N11 
Significance of difference is: 0.236 
Remove link between them ? True 
 
Two Variables: N3 & N12 
Significance of difference is: 0.642 
Remove link between them ? True 
 
Two Variables: N3 & N13 
Significance of difference is: 0.834 
Remove link between them ? True 
 
Two Variables: N3 & N14 
Significance of difference is: 0.766 
Remove link between them ? True 
 
Two Variables: N3 & N15 
Significance of difference is: 0.954 
Remove link between them ? True 
 
Two Variables: N3 & N16 
Significance of difference is: 0.954 
Remove link between them ? True 
 
Two Variables: N4 & N5 
Significance of difference is: 1.14e-18 
Remove link between them ? False 
 
Two Variables: N4 & N6 
Significance of difference is: 2.61e-15 
Remove link between them ? False 
 
Two Variables: N4 & N7 
Significance of difference is: 3.22e-32 
Remove link between them ? False 
 
Two Variables: N4 & N8 
Significance of difference is: 7.01e-08 
Remove link between them ? False 
 
Two Variables: N4 & N9 
Significance of difference is: 0.0927 
Remove link between them ? False 
 
Two Variables: N4 & N10 
Significance of difference is: 1.19e-62 
Remove link between them ? False 
 

 



301 
 

 
Two Variables: N4 & N11 
Significance of difference is: 7.97e-35 
Remove link between them ? False 
 
Two Variables: N4 & N12 
Significance of difference is: 5.21e-31 
Remove link between them ? False 
 
Two Variables: N4 & N13 
Significance of difference is: 0.672 
Remove link between them ? True 
 
Two Variables: N4 & N14 
Significance of difference is: 0.943 
Remove link between them ? True 
 
Two Variables: N4 & N15 
Significance of difference is: 0.891 
Remove link between them ? True 
 
Two Variables: N4 & N16 
Significance of difference is: 0.891 
Remove link between them ? True 
 
Two Variables: N5 & N6 
Significance of difference is: 5.4e-204 
Remove link between them ? False 
 
Two Variables: N5 & N7 
Significance of difference is: 4.72e-25 
Remove link between them ? False 
 
Two Variables: N5 & N8 
Significance of difference is: 0.662 
Remove link between them ? True 
 
Two Variables: N5 & N9 
Significance of difference is: 0.000229 
Remove link between them ? False 
 
Two Variables: N5 & N10 
Significance of difference is: 7.99e-07 
Remove link between them ? False 
 
Two Variables: N5 & N11 
Significance of difference is: 5.52e-80 
Remove link between them ? False 
 
Two Variables: N5 & N12 
Significance of difference is: 0.00011 
Remove link between them ? False 
 
Two Variables: N5 & N13 
Significance of difference is: 0.234 
Remove link between them ? True 

Two Variables: N5 & N14 
Significance of difference is: 0.108 
Remove link between them ? True 
 
Two Variables: N5 & N15 
Significance of difference is: 0.37 
Remove link between them ? True 
 
Two Variables: N5 & N16 
Significance of difference is: 0.37 
Remove link between them ? True 
 
Two Variables: N6 & N7 
Significance of difference is: 3e-18 
Remove link between them ? False 
 
Two Variables: N6 & N8 
Significance of difference is: 0.582 
Remove link between them ? True 
 
Two Variables: N6 & N9 
Significance of difference is: 0.0383 
Remove link between them ? False 
 
Two Variables: N6 & N10 
Significance of difference is: 2.7e-06 
Remove link between them ? False 
 
Two Variables: N6 & N11 
Significance of difference is: 1.22e-104 
Remove link between them ? False 
 
Two Variables: N6 & N12 
Significance of difference is: 4.07e-07 
Remove link between them ? False 
 
Two Variables: N6 & N13 
Significance of difference is: 0.276 
Remove link between them ? True 
 
Two Variables: N6 & N14 
Significance of difference is: 0.0733 
Remove link between them ? False 
 
Two Variables: N6 & N15 
Significance of difference is: 0.456 
Remove link between them ? True 
 
Two Variables: N6 & N16 
Significance of difference is: 0.456 
Remove link between them ? True 
 
Two Variables: N7 & N8 
Significance of difference is: 1.57e-20 
Remove link between them ? False 
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Two Variables: N7 & N9 
Significance of difference is: 2.39e-17 
Remove link between them ? False 
 
Two Variables: N7 & N10 
Significance of difference is: 0.000172 
Remove link between them ? False 
 
Two Variables: N7 & N11 
Significance of difference is: 0.000138 
Remove link between them ? False 
 
Two Variables: N7 & N12 
Significance of difference is: 3.25e-06 
Remove link between them ? False 
 
Two Variables: N7 & N13 
Significance of difference is: 2.33e-07 
Remove link between them ? False 
 
Two Variables: N7 & N14 
Significance of difference is: 5.82e-10 
Remove link between them ? False 
 
Two Variables: N7 & N15 
Significance of difference is: 0.0468 
Remove link between them ? False 
 
Two Variables: N7 & N16 
Significance of difference is: 0.0468 
Remove link between them ? False 
 
Two Variables: N8 & N9 
Significance of difference is: 0.262 
Remove link between them ? True 
 
Two Variables: N8 & N10 
Significance of difference is: 0.0695 
Remove link between them ? False 
 
Two Variables: N8 & N11 
Significance of difference is: 0.557 
Remove link between them ? True 
 
Two Variables: N8 & N12 
Significance of difference is: 0.225 
Remove link between them ? True 
 
Two Variables: N8 & N13 
Significance of difference is: 0.891 
Remove link between them ? True 
 
Two Variables: N8 & N14 
Significance of difference is: 0.987 
Remove link between them ? True 
 

Two Variables: N8 & N15 
Significance of difference is: 0.375 
Remove link between them ? True 
 
Two Variables: N8 & N16 
Significance of difference is: 0.375 
Remove link between them ? True 
 
Two Variables: N9 & N10 
Significance of difference is: 0.0753 
Remove link between them ? False 
 
Two Variables: N9 & N11 
Significance of difference is: 0.795 
Remove link between them ? True 
 
Two Variables: N9 & N12 
Significance of difference is: 0.00269 
Remove link between them ? False 
 
Two Variables: N9 & N13 
Significance of difference is: 2.75e-05 
Remove link between them ? False 
 
Two Variables: N9 & N14 
Significance of difference is: 7e-09 
Remove link between them ? False 
 
Two Variables: N9 & N15 
Significance of difference is: 0.946 
Remove link between them ? True 
 
Two Variables: N9 & N16 
Significance of difference is: 0.946 
Remove link between them ? True 
 
Two Variables: N10 & N11 
Significance of difference is: 0.00123 
Remove link between them ? False 
 
Two Variables: N10 & N12 
Significance of difference is: 0.935 
Remove link between them ? True 
 
Two Variables: N10 & N13 
Significance of difference is: 0.809 
Remove link between them ? True 
 
Two Variables: N10 & N14 
Significance of difference is: 0.43 
Remove link between them ? True 
 
Two Variables: N10 & N15 
Significance of difference is: 0.636 
Remove link between them ? True 
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Two Variables: N10 & N16 
Significance of difference is: 0.636 
Remove link between them ? True 
 
Two Variables: N11 & N12 
Significance of difference is: 1.62e-44 
Remove link between them ? False 
 
Two Variables: N11 & N13 
Significance of difference is: 0.113 
Remove link between them ? True 
 
Two Variables: N11 & N14 
Significance of difference is: 0.0359 
Remove link between them ? False 
 
Two Variables: N11 & N15 
Significance of difference is: 0.13 
Remove link between them ? True 
 
Two Variables: N11 & N16 
Significance of difference is: 0.13 
Remove link between them ? True 
 
Two Variables: N12 & N13 
Significance of difference is: 0.722 
Remove link between them ? True 
 
Two Variables: N12 & N14 
Significance of difference is: 0.93 
Remove link between them ? True 
 
Two Variables: N12 & N15 
Significance of difference is: 0.0252 
Remove link between them ? False 
 
Two Variables: N12 & N16 
Significance of difference is: 0.0252 
Remove link between them ? False 
 
Two Variables: N13 & N14 
Significance of difference is: 9.21e-22 
Remove link between them ? False 
 
Two Variables: N13 & N15 
Significance of difference is: 0.00136 
Remove link between them ? False 
 
Two Variables: N13 & N16 
Significance of difference is: 0.00136 
Remove link between them ? False 
 
Two Variables: N14 & N15 
Significance of difference is: 0.00225 
Remove link between them ? False 
 

Two Variables: N14 & N16 
Significance of difference is: 0.00225 
Remove link between them ? False 
 
Two Variables: N15 & N16 
Significance of difference is: 5.05e-05 
Remove link between them ? False 
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The summarisation of the links to be removed from the fully connected network due to two 
variable dependency analyses is listed as follows. 
 
Table A11.1: Summary of Independent Relationships Identified as a Result of Two variables 

Dependency Analysis 
 

Links to be removed Links to be removed 
N1 N3 N4 N13 
N1 N4 N4 N14 
N1 N7 N4 N15 
N1 N8 N4 N16 
N1 N9 N5 N8 
N1 N10 N5 N13 
N1 N11 N5 N14 
N1 N13 N5 N15 
N1 N14 N5 N16 
N1 N15 N6 N8 
N1 N16 N6 N13 
N2 N3 N6 N15 
N2 N5 N6 N16 
N2 N6 N8 N9 
N2 N7 N8 N11 
N2 N8 N8 N12 
N2 N9 N8 N13 
N2 N10 N8 N14 
N2 N13 N8 N15 
N2 N14 N8 N16 
N2 N15 N9 N11 
N2 N16 N9 N15 
N3 N5 N9 N16 
N3 N6 N10 N12 
N3 N7 N10 N13 
N3 N8 N10 N14 
N3 N9 N10 N15 
N3 N10 N10 N16 
N3 N11 N11 N13 
N3 N12 N11 N15 
N3 N13 N11 N16 
N3 N14 N12 N13 
N3 N15 N12 N14 
N3 N16   

 
Following three variables conditional independency analysis among three variables, the 
overall list of links to be removed from the fully connected network is summarised as follows. 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Summary of links to be removed 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Table A11.2: Summary of Links to be Removed Following Dependency and Conditional 
Independency Analyses 

 
Links to be removed Links to be removed 

N1 N10 N3 N6 
N1 N11 N3 N7 
N1 N12 N3 N8 
N1 N13 N3 N9 
N1 N14 N4 N13 
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N1 N15 N4 N14 
N1 N16 N4 N15 
N1 N3 N4 N16 
N1 N4 N4 N9 
N1 N5 N5 N10 
N1 N6 N5 N12 
N1 N7 N5 N13 
N1 N8 N5 N14 
N1 N9 N5 N15 
N10 N11 N5 N16 
N10 N12 N5 N8 
N10 N13 N5 N9 
N10 N14 N6 N10 
N10 N15 N6 N13 
N10 N16 N6 N14 
N11 N13 N6 N15 
N11 N14 N6 N16 
N11 N15 N6 N7 
N11 N16 N6 N8 
N12 N13 N6 N9 
N12 N14 N8 N10 
N12 N15 N8 N11 
N12 N16 N8 N12 
N2 N10 N8 N13 
N2 N11 N8 N14 
N2 N12 N8 N15 
N2 N13 N8 N16 
N2 N14 N8 N9 
N2 N15 N9 N10 
N2 N16 N9 N11 
N2 N3 N9 N12 
N2 N4 N9 N13 
N2 N5 N9 N15 
N2 N6 N9 N16 
N2 N7 N13 N15 
N2 N8 N13 N16 
N2 N9 N14 N15 
N3 N10 N14 N16 
N3 N11 N7 N10 
N3 N12 N7 N11 
N3 N13 N7 N12 
N3 N14 N7 N13 
N3 N15 N7 N15 
N3 N16 N7 N16 
N3 N4 N15 N16 
N3 N5   
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A list of conditional independent relationships is generated due to three variables analysis. 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Summarisation of three variables conditional independencies: I(X,Y|Z) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
Table A11.3: Summary of Conditional Independencies 

 
X Y Z X Y Z 

N2 N10 N1 N3 N11 N4 
N2 N5 N1 N3 N12 N4 
N2 N6 N1 N3 N14 N4 
N2 N7 N1 N3 N5 N4 
N3 N5 N10 N3 N6 N4 
N4 N9 N10 N3 N7 N4 
N1 N5 N11 N3 N8 N4 
N1 N6 N11 N3 N9 N4 
N10 N12 N11 N5 N10 N4 
N10 N14 N11 N5 N12 N4 
N12 N14 N11 N6 N10 N4 
N2 N10 N11 N6 N7 N4 
N2 N5 N11 N7 N10 N4 
N2 N6 N11 N7 N12 N4 
N2 N7 N11 N8 N10 N4 
N5 N14 N11 N8 N11 N4 
N6 N14 N11 N8 N12 N4 
N7 N10 N11 N8 N9 N4 
N1 N11 N12 N9 N10 N4 
N1 N9 N12 N9 N12 N4 
N11 N14 N12 N1 N10 N5 
N11 N15 N12 N1 N11 N5 
N11 N16 N12 N1 N12 N5 
N2 N10 N12 N1 N6 N5 
N2 N11 N12 N1 N7 N5 
N2 N14 N12 N1 N9 N5 
N2 N15 N12 N10 N11 N5 
N2 N16 N12 N10 N12 N5 
N2 N5 N12 N10 N14 N5 
N2 N6 N12 N11 N14 N5 
N2 N7 N12 N2 N10 N5 
N2 N9 N12 N2 N6 N5 
N4 N9 N12 N2 N7 N5 
N5 N15 N12 N4 N14 N5 
N5 N16 N12 N4 N9 N5 
N5 N9 N12 N6 N10 N5 
N6 N14 N12 N6 N14 N5 
N6 N15 N12 N6 N7 N5 
N6 N16 N12 N6 N9 N5 
N6 N7 N12 N7 N10 N5 
N6 N9 N12 N7 N12 N5 
N7 N11 N12 N9 N10 N5 
N8 N10 N12 N9 N11 N5 
N8 N9 N12 N1 N10 N6 
N9 N10 N12 N1 N12 N6 
N9 N11 N12 N1 N5 N6 
N14 N15 N13 N1 N7 N6 
N14 N16 N13 N10 N11 N6 
N7 N15 N13 N10 N12 N6 
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N7 N16 N13 N11 N14 N6 
N9 N15 N13 N2 N5 N6 
N9 N16 N13 N5 N12 N6 
N11 N13 N14 N7 N11 N6 
N11 N15 N14 N7 N12 N6 
N11 N16 N14 N9 N10 N6 
N12 N13 N14 N9 N11 N6 
N13 N15 N14 N10 N12 N7 
N13 N16 N14 N10 N13 N7 
N4 N13 N14 N10 N14 N7 
N5 N13 N14 N11 N13 N7 
N7 N13 N14 N11 N14 N7 
N7 N15 N14 N11 N15 N7 
N7 N16 N14 N11 N16 N7 
N8 N13 N14 N12 N13 N7 
N9 N13 N14 N12 N14 N7 
N9 N15 N14 N2 N14 N7 
N9 N16 N14 N2 N9 N7 
N12 N13 N15 N3 N14 N7 
N12 N14 N15 N3 N9 N7 
N12 N16 N15 N4 N13 N7 
N13 N16 N15 N4 N14 N7 
N14 N16 N15 N4 N9 N7 
N7 N16 N15 N5 N12 N7 
N9 N16 N15 N5 N13 N7 
N12 N13 N16 N5 N14 N7 
N12 N14 N16 N5 N15 N7 
N12 N15 N16 N5 N16 N7 
N13 N15 N16 N5 N9 N7 
N14 N15 N16 N6 N13 N7 
N1 N10 N2 N6 N14 N7 
N1 N11 N2 N6 N15 N7 
N1 N12 N2 N6 N16 N7 
N1 N3 N2 N6 N9 N7 
N1 N4 N2 N8 N10 N7 
N1 N5 N2 N8 N12 N7 
N1 N6 N2 N8 N13 N7 
N1 N7 N2 N8 N14 N7 
N1 N8 N2 N8 N15 N7 
N1 N9 N2 N8 N16 N7 
N1 N10 N4 N8 N9 N7 
N1 N3 N4 N9 N10 N7 
N1 N7 N4 N9 N11 N7 
N1 N8 N4 N9 N12 N7 
N10 N12 N4 N10 N14 N9 
N10 N14 N4 N11 N14 N9 
N12 N14 N4 N12 N13 N9 
N2 N10 N4 N12 N14 N9 
N2 N12 N4 N2 N14 N9 
N2 N14 N4 N4 N14 N9 
N2 N3 N4 N5 N12 N9 
N2 N5 N4 N5 N13 N9 
N2 N6 N4 N5 N14 N9 
N2 N7 N4 N6 N13 N9 
N2 N8 N4 N6 N14 N9 
N2 N9 N4 N7 N12 N8 

 



308 
 

~~~~~~~~~~~~~~~~~~~~~~~~ 
PC algorithm orientation 
~~~~~~~~~~~~~~~~~~~~~~~~ 
 
By removing the links that have been listed in the summary list, the BN structure can be identified and presented in the following matrix, where T 
denotes a link and F denotes no link. 
 

Table A11.4: Identified Bayesian Network Structure Presented in a Matrix Table 
 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 
N1 F T F F F F F F F F F F F F F F 
N2 T F F F F F F F F F F F F F F F 
N3 F F F F F F F F F F F F F F F F 
N4 F F F F T T T T F T T T F F F F 
N5 F F F T F T T F F F T F F F F F 
N6 F F F T T F F F F F T T F F F F 
N7 F F F T T F F T T F F F F T F F 
N8 F F F T F F T F F F F F F F F F 
N9 F F F F F F T F F F F F F T F F 
N10 F F F T F F F F F F F F F F F F 
N11 F F F T T T F F F F F T F F F F 
N12 F F F T F T F F F F T F F F F F 
N13 F F F F F F F F F F F F F T F F 
N14 F F F F F F T F T F F F T F F F 
N15 F F F F F F F F F F F F F F F F 
N16 F F F F F F F F F F F F F F F F 

 
Following the PC algorithm for orientation, “head-to-head” orientations are assigned on the basis of the list of conditional independent relationships. 
 
Head-to-Head link 
N5  ->  N4  <-  N8 
Head-to-Head link 
N6  ->  N4  <-  N8 
Head-to-Head link 
N7  ->  N4  <-  N11 
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Head-to-Head link 
N10  ->  N4  <-  N11 
Head-to-Head link 
N7  ->  N5  <-  N11 
Head-to-Head link 
N5  ->  N7  <-  N8 
Head-to-Head link 
N5  ->  N11  <-  N12 
 
Hence, the updated matrix with the head-to-head links is shown as follows. 
 

Table A11.5: Identified Bayesian Network Structure Presented in a Matrix Table with Head-to-Head Orientations Assigned 
 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 
N1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N4 NA NA NA NA In In In In NA In In NA NA NA NA NA 
N5 NA NA NA Out NA NA Out NA NA NA Out NA NA NA NA NA 
N6 NA NA NA Out NA NA NA NA NA NA NA NA NA NA NA NA 
N7 NA NA NA Out In NA NA In NA NA NA NA NA NA NA NA 
N8 NA NA NA Out NA NA Out NA NA NA NA NA NA NA NA NA 
N9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N10 NA NA NA Out NA NA NA NA NA NA NA NA NA NA NA NA 
N11 NA NA NA Out In NA NA NA NA NA NA In NA NA NA NA 
N12 NA NA NA NA NA NA NA NA NA NA Out NA NA NA NA NA 
N13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
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The PC Algorithm for the remaining links 
Repeat: 
 (1)for each uncoupled meeting x->Z-Y 
  Orient Z-Y as Z->Y 
 (2)for each X-Y such that there is a direct path from X to Y 
  Orient X-Y as X->Y 
 (3)for each uncoupled meeting X-Z-Y such that X->W,Y->W, and Z-W 
  Orient Z-W as Z->W 
 
Start looping 
 
Loop Number: 1 
Action in (2) solve acyclic case: Add N12 -> N4 
Action in (2): Add N5 -> N6 
Action in (3): Add N6 -> N11 
 
Loop Number: 2 
Action in (2): Add N6 -> N12 
 
Loop Number: 3 
Action in (2): Add N7 -> N9 
Action in (2): Add N7 -> N14 
 
Loop Number: 4 
Action in (2): Add N9 -> N14 
 
Loop Number: 5 
Action in (2): Add N14 -> N13 
 
Loop Number: 6 
Action in (2): Add N1 -> N2 
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The output BN structure can be presented as follows. 
 

Table A11.6: Identified Bayesian Network Structure Presented in a Matrix Table with All Orientations Assigned 
 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 
N1 NA Out NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N2 In NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N4 NA NA NA NA In In In In NA In In In NA NA NA NA 
N5 NA NA NA Out NA Out Out NA NA NA Out NA NA NA NA NA 
N6 NA NA NA Out In NA NA NA NA NA Out Out NA NA NA NA 
N7 NA NA NA Out In NA NA In Out NA NA NA NA Out NA NA 
N8 NA NA NA Out NA NA Out NA NA NA NA NA NA NA NA NA 
N9 NA NA NA NA NA NA In NA NA NA NA NA NA Out NA NA 
N10 NA NA NA Out NA NA NA NA NA NA NA NA NA NA NA NA 
N11 NA NA NA Out In In NA NA NA NA NA In NA NA NA NA 
N12 NA NA NA Out NA In NA NA NA NA Out NA NA NA NA NA 
N13 NA NA NA NA NA NA NA NA NA NA NA NA NA In NA NA 
N14 NA NA NA NA NA NA In NA In NA NA NA Out NA NA NA 
N15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
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Appendix 12  

 

Logbook of the GES Learning Process  
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~~~~~~~~~~~~~~~~~~ 
Variables analysed 
~~~~~~~~~~~~~~~~~~ 
N1 Time 
N2 Vessel location 
N3 Weather contribution 
N4 Ignition space 
N5 Automatic detection activated 
N6 Manual detection activated 
N7 Automatic suppression activated 
N8 Manual suppression activated 
N9 Ventilation status 
N10 Fire door status 
N11 Crew attended 
N12 Guest attended 
N13 Boundary cooling status 
N14 Emergency response failure 
N15 Containment failure 
N16 Ignition in adjacent space 

 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Greedy Equivalent Search (GES) algorithm 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
 
Inserting process starts with a fully disconnected network. By investigating all possible single 
link inserting operations at each loop, the one producing the highest score increment is 
adopted. 
 
Loop 1: 
 
The score increment for every single link is summarised in the following table. 
 
Highest score is: 450.7509 
Between node: N5 & N6 
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Table A12.1: Summary of Score Increment of Each Single Link in Loop 1 

 
 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 

N1 NA -2.90 -7.65 -91.69 -6.89 -7.23 -8.70 -8.37 -14.65 -8.33 -8.91 -7.60 -7.22 -7.15 -5.98 -5.98 
N2  NA -7.64 -87.91 -8.13 -8.66 -8.97 -8.95 -14.47 -8.99 -6.59 -4.97 -6.91 -6.18 -7.16 -7.16 
N3   NA -67.25 -7.40 -7.65 -7.35 -7.43 -9.66 -7.39 -7.62 -5.57 -1.75 -2.57 0.87 0.87 
N4    NA -44.97 -52.61 -7.78 -72.92 -159.91 64.27 -4.95 -8.75 -79.69 -83.09 -75.40 -75.40 
N5     NA 450.75 44.06 -9.33 -7.84 2.53 169.03 -2.01 -6.93 -6.52 -7.32 -7.32 
N6      NA 29.17 -9.17 -12.54 1.19 225.46 2.52 -6.69 -5.82 -7.09 -7.09 
N7       NA 33.90 24.17 -2.94 -1.55 -0.71 6.31 12.03 -4.01 -4.01 
N8        NA -14.86 -7.59 -9.18 -8.01 -7.75 -7.89 -7.31 -7.31 
N9         NA -13.72 -15.89 -10.63 1.94 9.37 -6.66 -6.66 
N10          NA -4.24 -8.49 -7.07 -7.57 -5.99 -5.99 
N11           NA 87.51 -6.17 -5.39 -6.35 -6.35 
N12            NA -5.80 -6.64 -2.35 -2.35 
N13             NA 41.33 5.63 5.63 
N14              NA 4.39 4.39 
N15               NA 9.73 
N16                NA 
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The identified links producing the highest score increment at each loop is summarised as 
follows. 
 
Loop 2: 
Highest score is: 225.4595 
Between edge: 11 & 6 
 
Loop 3: 
Highest score is: 162.1013 
Between edge: 12 & 11 
 
Loop 4: 
Highest score is: 64.2687 
Between edge: 10 & 4 
 
Loop 5: 
Highest score is: 44.0577 
Between edge: 7 & 5 
 
Loop 6: 
Highest score is: 41.3299 
Between edge: 14 & 13 
 
Loop 7: 
Highest score is: 37.0048 
Between edge: 8 & 7 
 
Loop 8: 
Highest score is: 24.167 
Between edge: 9 & 7 
 
Loop 9: 
Highest score is: 12.0333 
Between edge: 14 & 7 
 
Loop 10: 
Highest score is: 9.7261 
Between edge: 16 & 15 
 
Loop 11: 
Highest score is: 5.6305 
Between edge: 15 & 13 
 
Loop 12: 
Highest score is: 2.5255 
Between edge: 10 & 5 
 
Loop 13: 
Highest score is: 2.5245 
Between edge: 12 & 6 
 
Loop 14: 
Highest score is: 0.871 
Between edge: 15 & 3 
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The output BN structure following the insert operations can be presented as follows. 
 

Table A12.2: Obtained Bayesian Network Structure Following Insert Operations Presented in a Matrix Table  
 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 
N1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
N3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA In 
N4 NA NA NA NA NA NA NA NA NA In NA NA NA NA NA 
N5 NA NA NA NA NA Out Out NA NA Out NA NA NA NA NA 
N6 NA NA NA NA In NA NA NA NA NA Out Out NA NA NA 
N7 NA NA NA NA In NA NA In Out NA NA NA NA Out NA 
N8 NA NA NA NA NA NA Out NA NA NA NA NA NA NA NA 
N9 NA NA NA NA NA NA In NA NA NA NA NA NA NA NA 
N10 NA NA NA Out In NA NA NA NA NA NA NA NA NA NA 
N11 NA NA NA NA NA In NA NA NA NA NA In NA NA NA 
N12 NA NA NA NA NA In NA NA NA NA Out NA NA NA NA 
N13 NA NA NA NA NA NA NA NA NA NA NA NA NA In Out 
N14 NA NA NA NA NA NA In NA NA NA NA NA Out NA NA 
N15 NA NA Out NA NA NA NA NA NA NA NA NA In NA NA 
N16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA In 

 
The deleting operation cannot identify any link having positive score increment, hence no further operation is needed. 
 
 

 

 

 


