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Abstract

Inadequate machinery maintenance and inefficient sailing performance comprise two

major hindrances to vessel operational sustainability and profitability. To ensure that

vessel operation remains competitive while its environmental impact is mitigated, the

development of a systematic approach for vessel monitoring and operational enhance-

ment is required. Currently, the maritime industry predominantly operates on a hybrid-

isation of corrective and preventive maintenance, along with monitoring and decision-

making based on past experience. More intelligent, data-driven approaches are slowly

permeating the industry; these offerings however remain largely rudimentary, retaining

considerable assumptions and data requirements for their application. In this respect,

this thesis aims to enhance operational efficiency in the maritime industry through

the development of an integrated machine learning framework combining efficient and

robust machinery anomaly detection, vessel performance degradation monitoring, and

routing decision support. This is achieved through a number of key objectives, includ-

ing: a) the identification of research gaps; b) the extraction of meaningful information

for available data sources; c) the monitoring of machinery condition and detection of

incipient anomalies; d) the identification of optimal data-driven Fuel Oil Consumption

(FOC) modelling architectures; e) the monitoring of vessel performance based on FOC

modelling; the facilitation of optimal routing through a suitable Decision Support Sys-

tem (DSS); and f) the demonstration and validation of the above through appropriate

case studies. The proposed aim and objectives are accomplished through the combin-

ation of a robust pre-processing methodology with a number of data-driven modelling
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Abbreviations

methods (e.g. One-Class Support Vector Classifiers (OCSVCs), Deep Neural Networks

(DNNs)), and a novel modification of Dijkstra’s algorithm. A key novelty aspect of

this proposed framework is derived by the development and combination of a number

of data-driven methodologies for the operational efficiency enhancement of a vessel.

Moreover, a novelty of the approach lies upon the minimisation of the inherent as-

sumptions required, streamlining its use in a diverse set of applications. In the same

vein, a novel aspect of the proposed framework concerns its flexibility to operate using

datasets from different sources, exhibiting different levels of granularity and frequency.

This framework is applied to a number of case studies, covering data pre-processing,

engine condition monitoring, a FOC modelling comparison, FOC-based performance

monitoring, and optimal routing. This helps verify the framework’s robustness in a

range of realistic scenarios applicable to a variety of vessel types (e.g. reefer, container-

ship, bulk carrier). These case studies, among others, demonstrated the robustness of

the anomaly detection methodology when examining different parameters and systems,

the accuracy deviation when predicting a vessel’s FOC using Automated Data Logging

& Monitoring (ADLM) or noon-report data and the optimal models for each case, a

successful evaluation of the performance monitoring methodology as a vessel’s fouling

increases; and the identification of optimal routes as a vessel sails from the Gulf of

Guinea to Marseille anchorage.

Keywords: data-driven modelling; fuel oil consumption prediction; condition mon-

itoring; weather routing; anomaly detection

xxix



Chapter 1

Introduction

Background information related to this thesis is presented in this chapter. Initially, an

introduction to the shipping industry is provided, including its current outlook and po-

tential downturn risks. Following this, a short outline of the importance of monitoring,

optimised maintenance and ship optimal routing in the maritime sector is included,

including some crucial challenges. Furthermore, the path that the marine industry is

following towards digitalisation and data-driven decision-making is discussed, includ-

ing requirements, opportunities, and challenges. Finally, an outline of the chapters

comprising the thesis is included, introducing the reader to the core structure of the

thesis.

1.1 Status quo of the maritime industry

Ships are a crucial asset of the global goods transportation system as 85% of mer-

chandise is carried by sea, reaching 11.9 billion tonnes carried during 2018 (Clarkson

PLC, 2018). Currently, the 150,000 vessels that comprise the global fleet are valued at

US$1.2 trillion (Clarkson PLC, 2018). A break-down of the fleet value per ship type

is shown in Figure 1.1. Notably, three-quarters of the global fleet value are attributed

to offshore vessels (22.4%), bulk carriers (18.4%), tankers (13.2%), gas carriers (9.1%)
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and containerships (10.6%) (Clarkson PLC, 2018).

Tankers: 13.2%

Bulkers: 18.4%

Containerships: 10.6%
Gas: 9.1%

Other vessels: 26.3%

Offshore: 22.4%

Figure 1.1: Break-down of global fleet 2018 value per vessel type. Adapted from
Clarkson PLC (2018).

In spite of that, UNCTAD (2018) reports that in terms of deadweight, about three-

quarters of the fleet is represented only by bulk carriers (41.2%) and oil tankers (28.2%).

This is visualised in more depth in Figure 1.2.

Tankers: 28.2%

Bulkers: 41.2%

Containerships: 12.7%
Gas: 3.2% Other vessels: 10.7%

Offshore: 3.9%

Figure 1.2: Break-down of global fleet 2018 deadweight per vessel type. Adapted
from UNCTAD (2018).

Figure 1.3 represents the global fleet distribution in terms of sheer gross tonnage and

type. Specifically, 43% of the global fleet size are of medium (500 ≤ GT < 25,000)

gross tonnage, 37% are of small (GT < 500) gross tonnage, 13% of large (25,000 ≤

GT < 60,000) gross tonnage and 7% are of very large (GT ≥ 60,000) gross tonnage
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(Equasis, 2018). Moreover, more than half of the global fleet in terms of number of

vessels belongs to the “other” category when inspected from a value or deadweight

perspective (Equasis, 2018).

0 2500 5000 7500 10000 12500 15000 17500
Total number of ships

General Cargo Ships

Specialized Cargo Ships

Container Ships

Ro-Ro Cargo Ships

Bulk Carriers

Oil and Chemical Tankers

Gas Tankers

Other Tankers

Passenger Ships

Offshore Vessels

Service Ships

Tugs

Small Medium Large Very Large

Figure 1.3: Global fleet 2018 total number of ships by type and size. Small corres-
ponds to GT < 500, medium to 500 ≤ GT < 25,000, large to 25,000 ≤ GT < 60,000
and very large to GT ≥ 60,000. Adapted from Equasis (2018).

Over the last five years, shipping growth had been decelerating, mostly due to the

Great Recession of the late 2000s and early 2010s that pushed most of the world’s

developed economies into recession. However, over 2017 an improvement in world

fleet expansion was observed, with 42 million gross tonnes being added to the global

tonnage, representing a 3.3% growth rate (UNCTAD, 2018). This growth results from

a combination of increased newbuilding deliveries and declining demolition activity.

At the same time, as seaborne trade volumes increased at a higher pace compared

to global tonnage, freight rates increased notably. Over the next five years, shipping

outlook projections remain promising, with a relatively stable GDP expansion that is

expected to trickle down a similar upswing in merchandise trade volumes (International

Monetary Fund, 2019).
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However, a consolidation currently observed in shipping companies (UNCTAD, 2018)

shows a path where a few large players in the shipping market grow further while

observing increased profitability while smaller players struggle to remain afloat. This

is compounded by crude oil prices that are forecast to increase over the next decade,

as shown in Figure 1.4, putting shipping under further financial strain. Furthermore,

IMO enforced a global 0.50% fuel sulphur content cap regulation from 1 January 2020

(MEPC, 2019). Application of the sulphur content cap is expected to have a significant

additional impact on fuel costs (Moore Stephens LLP, 2018), exacerbating the increase

in bunkering costs. Moreover, other downturn risks appearing on the global horizon

such as the adoption of increasingly inward-looking policies and the rise of trade protec-

tionism may also affect seaborne trade growth over the next several years (UNCTAD,

2018).
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Figure 1.4: Actual and forecast crude oil prices over the 2019–2030 period. Based on
World Bank Group (2019) data.
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1.2 The impact of monitoring, optimised maintenance

and routing

In this context, a new era of shipping is emerging, where technological advancements

become the leading force towards extensive condition monitoring, optimised mainten-

ance intervals, spare parts inventory reduction, increased safety, enhanced performance,

optimised human (marine and maintenance crew) and financial resources, and reduced

environmental impact. This will, in turn, improve the obtainable operational efficiency

and permit operators to remain sustainable and profitable even while the industry’s

profit margins shrink. Two key factors that affect a vessel’s operational efficiency are

its physical condition and its current operational profile and route, considering external

factors such as ambient weather conditions.

The physical condition of a vessel can affect the efficiency of its operations in several

ways such as emergency break-downs, risk of increased environmental impact, increased

Fuel Oil Consumption (FOC), reduced crew morale and increased fatigue, and relevant

safety implications. When the physical condition of a vessel is diminished, maintenance

is considered the mitigative action. A number of high-profile marine accidents and near-

misses have been attributed to inefficient monitoring and maintenance or complete lack

thereof. Such examples include Alexander L. Kielland rig capsize (1980), MTS Oceanos

sinking (1991), MV Erika (1999) and MV Prestige (2002) sinkings – both causing

unprecedented damage to the European marine environment, MSC Opera crashing into

another boat (2019), and the Viking Sky power blackout (2019). At the same time, an

increasing number of maintenance-related accidents are attributed to machinery faults.

Allianz (2019) note that almost 9000 machinery damage incidents have been observed

over the last decade, corresponding to an increase by a third over that period and

responsible for US$1 billion worth of insurance claims in five years.

Unplanned maintenance constitutes almost one-fifth of the overall operating costs of

a vessel and overall maintenance combined with stores and lubricants contributes ap-

proximately one-tenth of the overall running cost of a vessel (Stopford, 2009). Moore
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Stephens LLP (2018) report an expected maintenance costs increase by 2–3% year-

by-year for the next two years. Additionally, maintenance costs of a vessel increase

with its age (Stopford, 2009). As depicted in Figure 1.5, while large and very large

vessels tend to be 0-14 years old, small and medium-sized vessels, i.e. the majority of

the current fleet, tend to be 15+ years old. Furthermore, as shown in Figure 1.6, the

average vessel age has been increasing for the last decade, with over half the global fleet

currently being over 15 years old. This denotes a clear forecast of soaring maintenance

costs over the next years.

0 2000 4000 6000 8000 10000 12000 14000 16000
Total number of ships

0-4 years old

5-14 years old

15-24 years old

25+ years old

Small Medium Large Very Large

Figure 1.5: Global fleet 2018 age distribution by size. Small corresponds to GT < 500,
medium to 500 ≤ GT < 25,000, large to 25,000 ≤ GT < 60,000 and very large to
GT ≥ 60,000. Adapted from Equasis (2018).

In sectors such as defence, aviation, manufacturing, automobile, and nuclear power

generation, maintenance focus has shifted from reactive and preventive towards pre-

dictive. However, in the maritime sector, ship maintenance has been considered an area

of excessive expenditure and advanced monitoring methods have not yet been widely

applied (Lazakis & Ölçer, 2016; Lazakis et al., 2010). Nevertheless, attempts towards

predictive maintenance in shipping have been made in the past years and are rapidly

progressing.
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2006 2008 2010 2012 2014 2016
Total number of ships

0%

20%

40%

60%

80%

100%

0-4 years old 5-14 years old 15-24 years old 25+ years old

Figure 1.6: Global fleet age distribution by year. Based on Equasis (2006, 2009, 2012,
2015, 2018) data.

Besides the physical condition of a vessel and its relevant sailing performance, sailing

efficiency is also an important factor that can affect a vessel’s operating costs. Sailing in

adverse weather conditions can increase FOC and CO2 emissions by over 50% (Prpić-

Oršić et al., 2016). Furthermore, FOC constitutes approximately two-thirds of a vessel’s

voyage costs (Stopford, 2009). Therefore, identifying a ship route that avoids adverse

weather can yield significant benefits in both financial and environmental terms.

Routing has been traditionally performed based on expert judgement, tapping on relev-

ant experience in combination with any available data, such as weather forecast reports.

Due to the effect an optimal route has on a vessel’s operating costs and emissions foot-

print (Zis et al., 2020), it is therefore pursued by a number of maritime industry stake-

holders such as ship operators, maritime regulators, and policy-makers. This makes

it an active research topic where different modelling approaches are combined with

optimisation techniques aiming at different approaches to optimal routing.
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1.3 The path towards digitalisation & data-driven

decision-making

Over the last few years, companies in transport & logistics have started implement-

ing data-driven technologies (commonly known as Internet of Things (IOT)) in diverse

settings, including, inter alia, predictive asset maintenance, and route optimisation

(Deloitte, 2015). Furthermore, a recent study conducted by Inmarsat (2018) found

that three-quarters of shipowners planned to deploy IOT solutions over the next 18

months at an average, per-business, expenditure of US$2.5 million over a three-year

period. Three-quarters of the survey respondents expected to realise or had already

realised savings due to the implementation of IOT solutions. Notably, over half of the

respondents noted that route optimisation constitutes a key reason for the implement-

ation of such solutions.

Digitalisation will be a key driving force for the marine industry over the next years

with autonomous ships, drones, and block-chain applications all appearing on the radar

(UNCTAD, 2018). However, establishing safety, security and reliability remain pivotal

in getting governmental approval – a prerequisite for widespread installation and use.

Due to this, the trend towards data-driven decision-making is expected to continue

over the next years with new policies coming into force, requiring more stringent Data

Acquisition (DAQ) practices. Since the beginning of 2019, vessels of over 5000GT are

required to have a DAQ installed for FOC monitoring as a corollary of the adoption of

amendments to MARPOL Annex VI, Chapter 4 (IMO, 2016). International Maritime

Organisation (IMO) adoption of an initial strategy in 2018 to reduce greenhouse gas

emissions by 50% by 2050 compared to 2008 will have a similar effect as increased

operational efficiency will be pivotal in achieving these goals.

Bearing the above in mind, an effective operational efficiency enhancement framework

should be able to monitor a number of parameters through various data pipelines,

provide an estimation of a vessel’s current condition, issue advanced warnings relat-

ing to incipient faults and degradation, and quantitatively support decision-making
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regarding vessel operations and routing. In this respect, the proposed research frame-

work considers data from sources such as weather forecast reports, IOT sensor data,

and noon-report data and employs a hybrid approach to monitor the condition of ma-

chinery and the vessel’s overall performance to issue warnings regarding incipient faults

and degradation and offer decision support for optimal routing.

1.4 Thesis layout

The thesis layout introduces the reader to the flow and structure of each chapter of the

thesis. The thesis is structured into 7 chapters summarised below.

Chapter 1: Introduction This chapter sets the scene for the thesis. An introduc-

tion to the shipping industry, importance of monitoring, optimised maintenance and

routing, and data-driven decision-making in a maritime context are provided. This

helps deliver the incentive for the proposed research framework.

Chapter 2: Research Aim & Objectives Chapter 2 includes the research ques-

tion, main aim and objectives of this thesis. The included objectives provide an overview

of the critical research challenges to be addressed in order to attain the main aim of

this thesis.

Chapter 3: Critical Literature Review This chapter provides a critical review

of research literature concerning maintenance, condition-monitoring, optimal routing,

and data-driven decision-making. This review will help uncover research gaps and past

trends to define and develop the main research concept of this thesis.

Chapter 4: Methodology & Modelling This chapter describes the considered

and developed framework and methodologies of this thesis, focusing on their model-

ling principles. These methodologies and overall framework stem from the research

gaps identified in the previous chapter. All stages of the proposed operational effi-

ciency enhancement framework are considered, including data pre-processing, condition

9
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monitoring, vessel FOC-based performance monitoring, and optimal routing decision

support.

Chapter 5: Case Studies’ Description Chapter 5 presents the specifications of all

case studies included in this thesis. All stages of the proposed framework are validated

through case studies, including data pre-processing, detection of incipient machinery

faults, vessel sailing performance monitoring, and weather routing.

Chapter 6: Case Studies’ Results & Discussion This chapter presents and

discusses the results of the case studies presented in Chapter 5. The outcomes of

each case study are discussed both individually and as part of the greater framework

presented in Chapter 4. The results and their discussion validate the viability and

applicability of the proposed research framework.

Chapter 7: Discussion & Conclusions Chapter 7 discusses the overall findings

of this thesis along with some concluding remarks. Specifically, key research findings

are summarised and the novelty of the thesis is highlighted. Furthermore, the provided

conclusion summarises the key learning points of the research performed. Finally,

recommendations for future research are provided, taking into consideration the key

outcomes obtained and future research and industry trends.

1.5 Chapter summary

In this chapter, background information on the shipping industry was provided, in-

cluding monitoring, optimised maintenance, and routing. Various requirements, op-

portunities and challenges were described. Moreover, an outline of the chapters form-

ing this thesis was included to introduce the reader to the flow and structure of the

thesis. In the following chapter, the research question, aim, and objectives of this

thesis will be presented, demonstrating the ambitions and expectations of the research

performed.
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Research Aim & Objectives

This chapter formulates the research question posed and describes the main aim and

objectives of this present thesis.

2.1 Research question

The research question of the present thesis is formulated as:

How to develop and implement a realistic strategy to enhance operational efficiency

in the maritime industry utilising data-driven methods for machinery condition mon-

itoring and identification of incipient anomalies, and vessel performance degradation

monitoring, whilst also providing optimal routing decision support?

2.2 Aim & objectives

The main aim of the thesis is to enhance operational efficiency in the maritime in-

dustry through the development of an integrated machine learning framework combin-

ing efficient and robust machinery anomaly detection, vessel performance degradation

monitoring, and routing decision support.

The objectives through which the main aim of this thesis will be achieved are listed
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below:

1. Identify gaps pertinent to the research topic through the critical review of liter-

ature pertinent to data-driven monitoring, optimised maintenance and routing.

2. Consider and address the identified gaps through the development of a stream-

lined methodology that enhances vessel operational efficiency.

3. Extract meaningful information from available data sources through the develop-

ment of a suitable data pre-processing methodology.

4. Monitor the condition of machinery and detect incipient anomalies through the

development of a suitable data-driven methodology, limiting the number of data-

related assumptions.

5. Identify optimal data-driven modelling architectures for the prediction of vessel

Fuel Oil Consumption (FOC) through a formalised, novel methodology.

6. Monitor the performance degradation of vessels based on FOC modelling through

the development of a suitable data-driven methodology.

7. Facilitate optimal routing through the development of a suitable Decision Support

methodology.

8. Demonstrate and validate the performance and applicability of the framework

and methodologies developed through case studies reflecting realistic scenarios

applicable to a variety of vessel types (e.g. reefer, containership, bulk carrier).

2.3 Chapter summary

In this chapter, the research question of the present thesis is formulated and the main

aim and objectives are identified and expressed. In the following chapter, a critical

literature review is presented to identify current approaches applied to maritime main-

tenance, monitoring, and optimal routing, future trends and existing gaps.
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Critical Literature Review

This chapter presents the critical literature review conducted as part of framing the

research methodology elaborated in Chapter 4 and establishing its inherent novelty.

This critical review starts by providing an introduction to the concept of maintenance,

followed by an overview of predominant maintenance strategies, highlighting their sim-

ilarities and differences, and benefits and shortcomings. Following this, condition mon-

itoring applications in the maritime industry are reviewed and critically compared to

contemporary advances of other sectors. As most such advances are based on underly-

ing Machine Learning (ML) model architectures, a high-level description the workings

of these models is provided for the benefit of the reader. Wherever required, further

elaboration on the mathematical foundations and implementation intricacies of these

models will be provided in the Methodology chapter. As a vessel’s Fuel Oil Con-

sumption (FOC) can provide interesting insights in its overall sailing performance, this

metric can be used as a proxy for performance monitoring Key Performance Indicators

(KPIs). Due to this, approaches for the modelling of vessels’ FOC are also critically

reviewed. Finally, weather routing approaches that can utilise the output of the FOC

models are critically reviewed. Existing gaps of the current literature are identified and

utilised for the introduction and development of the novel methodology suggested in

the methodology chapter of this thesis.
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3.1 Maintenance & maintenance strategies

3.1.1 A primer on maintenance

Maintenance in general can be defined as (BS EN 13306, 2017):

[The] combination of all technical, administrative and managerial actions

during the life cycle of an item intended to retain it in, or restore it to, a

state in which it can perform the required function.

Four maintenance strategies are, in general, applicable to machinery applications: re-

active, preventive, predictive (condition-based), and proactive. Reactive maintenance

concerns maintenance that is only performed when a machinery item fails completely.

Preventive maintenance concerns maintenance actions that happen periodically, at a

predefined frequency. Predictive maintenance takes into consideration the condition

of a machinery item and performs maintenance actions accordingly. Finally, proactive

maintenance aims to mitigate against the underlying conditions that lead to failures.

The evolution of maintenance strategies, as described above, is visually depicted in

Figure 3.1.

Figure 3.1: Evolution of maintenance strategies.

Stemming from the definition of maintenance presented above, Mehta and Reddy (2015)

posit that the commonality of all maintenance strategies is that they aim to minimise

(i) component failures; (ii) plant impact from failures; and (iii) overall cost of mainten-

ance.

As multiple decision criteria for the selection of optimal maintenance strategies exist

(e.g. cost, reliability, availability and safety (Emovon et al., 2018)) and not all of them

can be satisfied concurrently, the way different criteria are prioritised leads to the

implementation of a different maintenance strategy. For example, aiming to minimise
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the initial cost of maintenance will lead to the implementation of a reactive maintenance

policy whereas aiming to minimise the overall cost of maintenance through the life of a

system may lead to the implementation of a proactive maintenance policy. In practice,

hybrid strategies considering the criticallity of different components and systems are

applied. The four maintenance strategies discussed above are presented below in detail,

including their inherent trade-offs.

3.1.1.1 Reactive maintenance

Reactive (also known as run-to-failure, breakdown or corrective) maintenance concerns

maintenance that is only performed following the complete failure of a component.

At that point, no repairing is possible and the component is replaced by a new one

(Mohanty, 2017). Nevertheless, Girdhar and Scheffer (2004) and Randall and Ant-

oni (2011) contradict that, stating that repairing is possible, albeit with significantly

increased cost as an extensive spare-parts inventory is required. Additionally, costs

are only incurred when necessary, as no activity is performed prior to an emergency

breakdown.

This method of maintenance provides the longest time between shutdowns, however

failures are catastrophic and can possibly affect multiple components and/or machines

(Randall & Antoni, 2011). Hence, reactive maintenance is mainly applied to relatively

inexpensive and non-critical machines or where redundancies have been implemented

so that production is not interrupted. Otherwise, there is a high risk of the production-

loss cost eventually exceeding that of maintenance. Reactive maintenance is patently

easy to implement, and carries a low initial cost.

Due to the criticality of most systems installed on board a vessel, applications of reactive

maintenance are few and far between. However, systems that do not benefit from an

advanced maintenance strategy are cabling, piping, lighting, and heating, ventilation,

and air conditioning (HVAC) systems along with various redundant components within

systems.
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Application of reactive maintenance usually leads to limited personnel requirements

but high labour costs. This can be justified as immediate and unplanned maintenance

is required to follow the failure of a machine. Unplanned maintenance entails overtime

work for maintenance personnel. Additionally, this can negatively affect personnel

morale as they may become overworked while lacking any predefined work schedule

(Girdhar & Scheffer, 2004). However, in some cases this can be partially mitigated

by reinvesting some of the money that could have been spent in a more advanced

maintenance strategy as an extra payment to the maintenance crew.

Summarising the above comments, the benefits and shortcomings of reactive mainten-

ance are presented in Table 3.1.

Table 3.1: Benefits and shortcomings of reactive maintenance. (Girdhar & Scheffer,
2004; Mohanty, 2017; Randall & Antoni, 2011)

Benefits Shortcomings

• Longest time between shutdowns
as no maintenance is performed in
between breakdowns

• Costs are only incurred when ne-
cessary

• Limited personnel requirement due
to reduced planning

• Easy implementation
• Lower initial cost
• Additional income for maintenance

crew

• More costly in the long term, due
to unplanned downtime overtime
costs, and income loss

• Maintenance can be costly when re-
quired

• High downtime once maintenance
is required

• Large spare-parts inventory re-
quired to cater for emergency re-
placements after breakdowns

• Reduced machinery item lifespan
• Operations unpredictability due to

no scheduled maintenance
• Possible secondary equipment

damage
• Reduced personnel morale

3.1.1.2 Preventive maintenance

Preventive maintenance refers to maintenance that happens at a fixed frequency, usu-

ally following Original Equipment Manufacturers (OEMs), International Association
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of Classification Societies (IACS), or International Safety Management (ISM) code re-

commendations. Guiding principle of reactive maintenance is that if a machinery item

is “well” maintained, no unplanned downtime is to be expected.

Compared to reactive maintenance, preventive maintenance offers significant increase

in machinery item lifespan. This is due to the fact that the probability of catastrophic

failures is diminished. Additionally, preventive maintenance is more cost-effective as the

amount of components or machinery items that need complete replacement is reduced.

Moreover, as a considerable tranche of maintenance is performed as a precaution and

before the perception of any defects, unplanned downtime is reduced.

Preventive maintenance generally aims to provide such maintenance intervals that only

1-2% of machinery experience failures between maintenance intervals (Randall & Ant-

oni, 2011). Thus, the vast majority of machinery items would be able to continue

working without maintenance for two or three maintenance intervals (Neale & Associ-

ates, 1979).

However, this has been shown to cause reduced morale in maintenance workers due to

time-consuming task scheduling and execution (Randall & Antoni, 2011). Addition-

ally, this introduces increased “infant mortality” in machines, due to faults that would

otherwise have been avoided (Randall & Antoni, 2011). Infant mortality concerns both

failures caused by faulty replacements and by general tampering during maintenance

activities. Besides, excessive maintenance causes significant, albeit planned, downtime.

Furthermore, due to the extent of the planned maintenance activities, significant cap-

ital is invested in spare parts inventory leading to an additional cost of money to be

considered. On top of that, unexpected failures may still occur as maintenance hap-

pens at a fixed frequency, without taking into consideration the actual machinery item

condition. The model usually used for component deterioration (colloquially known as

the “bathtub curve” (Nowlan & Heap, 1978)) is presented in Figure 3.2. This figure

demonstrates that the component starts with a relatively high probability of failure

due to the effect of infant mortality. As time progresses, this probability decreases
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Figure 3.2: Visualisation of component deterioration and timing of associated applic-
ation of preventive maintenance. Adapted from (Nowlan & Heap, 1978).

and then plateaus out as the risk of infant mortality diminishes while the component

is well within its expected life range. At the final stage, as the component nears the

end of its expected life range, the probability of failure increases sharply. Application

of preventive maintenance starts near the expected end of the plateau. There, the

probability of failure incipiently increases due to the reappearance of infant mortality

but then decreases back to the levels of the previous plateau.

In the shipping industry, preventive maintenance currently constitutes the maintenance

status quo, mainly due to its lower installation cost compared to predictive mainten-

ance. Based on this strategy, critical components are maintainted and replaced based

on a maintenance schedule. Examples of machinery systems where preventive mainten-

ance is applied are the majority of main engine components, inlcuding cylinder liners,

piston rings, and valves.

Summarising the above comments, the benefits and shortcomings of preventive main-

tenance are presented in Table 3.2.

3.1.1.3 Predictive maintenance

Predictive maintenance (also known as Condition-Based Maintenance (CBM)) provides

a more intelligent method of maintenance planning. There, present and past condition
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Table 3.2: Benefits and shortcomings of preventive maintenance. (Neale & Associates,
1979; Randall & Antoni, 2011)

Benefits Shortcomings

• Machinery item life span increased
• More cost-efficient than reactive

maintenance
• Unplanned downtime reduced

• Time-consuming task scheduling
• Significant planned downtime due

to excessive maintenance
• Unexpected failures can still occur
• machinery item condition not taken

into consideration, leading to ex-
cessive maintenance

• Incidental damage may arise from
unneeded maintenance

• Excessive tied-up capital in spare
parts inventory

of each component is taken into consideration in order to offer bespoke maintenance

scheduling for each system and component.

Predictive maintenance requires a higher expenditure at installation but over an exten-

ded period of time, becomes more economical than preventive or reactive maintenance.

Especially in industries where machinery items are expected to run for long periods

without any shutdowns, it has been shown that predictive maintenance can reduce

relevant costs by up to 65% (Neale & Associates, 1979). Furthermore, in terms of

downtime, planned downtime is minimised to the bare necessary minimum and un-

planned is almost diminished. This optimised maintenance scheduling permits the

maximisation of machinery item lifespan.

In order to estimate past and present condition of components and machines, different

types of measurements are acquired and processed. Girdhar and Scheffer (2004) and

Mohanty (2017) note that, depending on application and data available, main types of

input data comprise:

Vibration measurements constitute the most reliable technique to identify mech-

anical defects in rotating machinery. However, specialised equipment is required
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for Data Acquisition (DAQ) so for most machinery items this is not applied as a

fixed monitoring system but through on-the-spot measurements and analysis of

data from a specialised crew utilising portable equipment.

Acoustic measurements are primarily used for structural monitoring but some ap-

plications for the monitoring of machinery have emerged in recent years.

Oil/debris analysis focuses on analysing the debris detecting in the oil used for the

lubrication of machinery items. This can provide valuable information regarding

the condition of bearings and gears.

Infrared thermography is used to analyse active electrical and mechanical systems.

The identified heat signature can be used to detect defects in systems such as

generators, boilers, and shaft and coupling misalignments.

Motor current-signature analysis is used to detect faults in induction motors the

analysis of the current-signature produced. Recent applications have extended

this analysis and can now also be used in systems such as pumps and gearboxes

by analysing the quality of the current drawn by the electric motor.

Performance monitoring takes advantage of the link between the efficiency of ma-

chinery systems and problems in their operation.

Visual inspection constitutes the simplest method of monitoring a piece of ma-

chinery but benefits from a very low cost of implementation, and benefits from

the knowledge that may be already acquired by the maintenance crew.

In the shipping industry, predictive maintenance is mostly provided as a service by

Main Engine (M/E) and bearings OEMs. The use of such services remains infrequent

and carries a high cost.

Guillén et al. (2016) have produced a list of available International Organization for

Standardization (ISO)-standardised Condition Monitoring (CM) techniques. These

approaches are shown in Table 3.3.
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Table 3.3: ISO CM techniques (Guillén et al., 2016).

CM technique ISO reference
Vibration 13373-1:2002; 13373-2:2016;

16587:2017; 18436-2:2014
Thermography 18434-2:2019; 18436-7:2014
Acoustic emission & ultrasound 22906:2007; 29821-1:2011; 18436-6:2014
Tribology and lubricants 18436-5:2012; 14830-1 (under development)

Still, predictive maintenance requires a high initial spending. Also, while during a

machine’s lifespan predictive maintenance proves to be more economical, results take

years to show. Furthermore, skilled personnel are required to interpret the results

obtained through condition monitoring in order to provide an optimised maintenance

schedule.

Summarising the above comments, the benefits and shortcomings of predictive main-

tenance are presented in Table 3.4.

Table 3.4: Benefits and shortcomings of predictive maintenance. (Girdhar & Scheffer,
2004; Mohanty, 2017; Neale & Associates, 1979)

Benefits Shortcomings

• Reduced maintenance cost over
machinery item lifespan

• Planned downtime only when re-
quired

• Unplanned downtime almost di-
minished

• Machinery item lifespan optimised
• Increased availability and reliabil-

ity

• High installation cost due to need
for specialised equipment

• Skilled personnel required to inter-
pret condition-monitoring results

• Results take time to show

3.1.1.4 Proactive maintenance

Proactive maintenance concerns the identification of any underlying root-causes of a

fault using well-established engineering knowledge and the provision of a maintenance

solution that addresses these latent causes so that the fault is not repeated (Fitch,

21



Chapter 3. Critical Literature Review

1992). In that sense, proactive maintenance can be seen as an extension of predictive

maintenance. Due to this, large-scale commercial applications of proactive maintenance

are not found in the shipping industry.

Proactive maintenance provides the benefit of further extending the machinery item

lifespan by controlling any underlying causes of failure. This reduces maintenance cost

and downtime as faults are being avoided instead of just predicted and mitigated. At the

same time, proactive maintenance dictates a high preliminary cost as for each detected

fault, its root causes have to be identified and analysed (Fedele, 2011). Accordingly,

skilled personnel are required to perform the above tasks. Furthermore, results take

time to show and are difficult to quantify as faults are being avoided.

Summarising the above comments, the benefits and shortcomings of proactive main-

tenance are presented in Table 3.5.

Table 3.5: Benefits and shortcomings of proactive maintenance. (Fedele, 2011; Fitch,
1992)

Benefits Shortcomings

• Maintenance cost reduction
• Downtime minimisation
• Increased availability and reliabil-

ity
• Enhanced income generation

• Requirement for skilled personnel
• High initial cost
• Results take time to show and can-

not easily be quantified
• Requirement and frequent lack of

necessary data

3.2 Condition monitoring applications

Following the overview of maintenance strategies discussed above, it is evident that

for most critical applications, aspects of predictive and proactive maintenance need

to be implemented. An intrinsic requirement for the implementation of a condition-

based maintenance strategy, is the ability to accurately monitor the condition of an

asset.
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In sectors such as defence, aviation, manufacturing, automobile, and nuclear power

generation, this maintenance shift has been observed over the past years, and condition

monitoring applications have evolved accordingly. However, in the maritime sector, ship

maintenance often remains considered an area of needless expenditure and advanced

monitoring methods have not yet been widely applied (Lazakis & Ölçer, 2016; Lazakis

et al., 2010). Nevertheless, attempts towards predictive maintenance in shipping have

been made in the past years and are rapidly progressing.

For the benefit of the reader, prior to the critical review of condition monitoring ap-

plications, an overview of the most prominent modelling algorithms with applications

in condition monitoring are presented in Appendix A.

Some key applications of condition monitoring are reviewed below. Firstly, applications

within the maritime industry are critically reviewed to identify the current state of the

art within the inherent complexities that are present in this sector. Following this, other

comparable sectors are reviewed, in order to identify and understand future trends and

determine relevant research gaps and directions for research.

3.2.1 Maritime industry

A significant number of condition monitoring applications within the maritime industry

focus on the main engine as it constitutes a critical component that is required for the

vessel to be safe, available and profitable, and where in most cases no redundancies

exist. Many such applications utilise first-principle, physics-based models while in

recent years data-driven applications are starting to become more commonplace.

For example, a methodology where vibration data are combined with performance data

(cylinders’ pressure) for the condition monitoring of a main engine has been suggested

(Chandroth, 2004). Accordingly, engine thermodynamic models have been developed

and used to perform condition monitoring. Specifically, Watzenig et al. (2009) de-

veloped thermodynamic models that can be used to detect two common failure models,

i.e., increased blow-by, and compression ratio failures. Lamaris and Hountalas (2010)
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developed a multi-zone thermodynamic model that can be applied to both two-stroke

and four-stroke engines. This offers the ability to operate accurately at different oper-

ating conditions without requiring fine-tuning and can used for the diagnosis of several

power plant faults. Moreover, Hountalas (2000) developed a diesel engine performance

model that can account for both normal and faulty conditions. The key shortcoming of

these methods is their inherent requirement for the development of a complex physics-

based model that still is only pertinent to a single engine model. Moreover, such models

cannot easily incorporate the effects of maintenance and system ageing.

Dikis and Lazakis (2016) presented the framework of the Inspection Capabilities for

Enhanced Ship Safety (INCASS) project that developed tools to enhance machinery

monitoring by combining real time information with machinery risk analysis tools.

In this scope, a machinery risk analysis tool that performs condition monitoring and

maintenance decision support through the combination of Markov Chains (MC) and

Bayesian Belief Networks (BBNs) was developed. Dikis et al. (2017) further elaborated

on this tool by considering and assessing components’ risk of failure and reliability de-

gradation by utilising raw input data. The end output of this study was a maintenance

Decision Support System (DSS) system that was tested in case studies based on data

obtained through a number of vessels (tanker, bulk carrier, and containership). While

interesting, the approach proposed in this work is hard to implement as detailed failure

rates of different components and subcomponents are required.

Coraddu et al. (2016) and Cipollini et al. (2018a) suggested a regression method for

the estimation of component degradation in a marine COmbined Diesel eLectric And

Gas (CODLAG) propulsion plant type in the existence of degradation information in

the model training dataset. Support Vector Machine (SVM) and Least Squares (LS)

models were applied, with both yielding comparable results. In these studies simulated

data were used, therefore decay state information was also explicitly available. Cipollini

et al. (2018b) then utilised the same dataset to compare supervised and unsupervised

algorithms for fault detection. The authors noted that One Class Support Vector Ma-

chine (OC-SVM) and a one-class version of the K-Nearest Neighbours (KNN) algorithm
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yielded comparable results. Raptodimos and Lazakis (2018) investigated the applica-

tion of Self-Organising Maps (SOMs), an unsupervised neural network architecture, for

monitoring the condition of a two stroke marine diesel engine by identifying clusters

containing data representing abnormal engine operating conditions. The authors noted

that the SOM architecture delivered promising results in monitoring the condition of

a M/E and that this work could be extended by the introduction of diagnostic ele-

ments within the proposed framework. Besides, a self-learning (fuzzy Artificial Neural

Network (ANN)) algorithm for fault diagnosis in the combustion system of a marine

diesel engine has been developed (Li et al., 2010). All the approaches reviewed in this

paragraph can effectively identify faults in marine engines through the implementation

of data-driven methods. A key drawback however is that, to train the proposed mod-

els, a dataset that incorporates multiple recorded instances of each identifiable fault of

the examined system are required. Effectively, this means that a significant amount of

time will have to pass between sensor installation and having an operational CM system

based on these approaches. Moreover, the lack of consensus regarding the optimally

performing modelling approach should be noted.

Perera (2016) combined hard measurement thresholds with a Gaussian Mixture Model

(GMM) with an Expectation Maximisation (EM) algorithm to identify sensor faults

in marine engine data. Data points are then examined under Principal Component

Analysis (PCA) to identify sensor faults even in complex situations. The author noted

the proposed approach can by utilised even in cases where multiple sensors have failed

concurrently. Brandsæter et al. (2019) proposed a Auto Associative Kernel Regres-

sion (AAKR)-based signal reconstruction followed by residual analysis for the anomaly

detection of a marine diesel engine. The authors noted that this approach requires a

reduced computational time and that it can be successfully be applied in the presence

of imbalanced datasets.

In this respect, data-driven approaches that can perform engine condition monitor-

ing while minimising the amount of data requirement assumptions should be further

investigated.
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3.2.2 Other industries

Jardine et al. (2006) have provided a review of diagnostic and prognostic implementa-

tions of condition-based maintenance across a number of industries, noting the emerging

trend of using multiple sensors as input to CM systems. Since then, as CM applications

started expanding and becoming the norm in a number of sectors, review papers star-

ted focusing on specific sectors and applications. Along these line, Touret et al. (2018)

have provided an overview of approaches utilising temperature measurements to detect

gearbox failures. The authors note the increased cost of vibrational analysis and that

thermocouple and oil temperature measurements can often be an accurate descriptor of

a system’s condition. Stetco et al. (2019) have accordingly provided a thorough review

of machine learning methods for condition monitoring of wind turbines. They noted

that two-thirds of reviewed models utilise classification techniques while the rest utilise

regression techniques. Furthermore, the authors noted that even within the field of

wind turbine CM there is no single model that outperforms all others in all datasets

and tasks.

Due to the this observation and due to the intrinsic modelling differences of perform-

ing condition monitoring through classification and regression, these applications are

categorised first by the type of the model’s output variable (continuous vs. discrete)

and then based on the sector that each application applied to. Following the review

of regression-based and then classification-based models, one-class classification-based

and unsupervised models are reviewed in the following sections.

3.2.2.1 Regression-based models

Regression-based models aim to predict the normal behaviour of different components

and subcomponents, assumed to be in a healthy state, and compare those predictions

with their actual behaviour to use the obtained similarity index as a proxy for their

condition.
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Wind turbines Faulstich et al. (2011), focusing on the condition monitoring of wind

turbines, have noted that data for normal behaviour models should be obtained while

components remain in the flat area (“random failure zone”) of the “bathtub curve” com-

ponent deterioration model depicted in Figure 3.2. Different input variables have been

considered for regression-based models, with Schlechtingen et al. (2013) noting that

in the case of wind turbine power generation, the use of wind direction and ambient

temperature apart from wind speed yielded more accurate results. Accordingly, regard-

ing the interpretation of results, Kriegel et al. (2010) remarked that while sometimes

assuming a normal distribution and identifying points more than two standard devi-

ations away from the mean as outliers is accurate, this cannot be generalised and often

other approaches need to be investigated. Laouti et al. (2011) applied Support Vector

Reggressors (SVRs) with an Radial Basis Function (RBF) kernel to detect different

faults in wind turbine components. The authors noted that this approached permitted

the detection of converter torque faults within two sample periods but that faults in

the actuators of the pitch systems could not be detected. Orozco et al. (2018) utilised

big-data distributed processing frameworks to identify wind turbine faults. Due to the

large amount of data processed, an automated labelling system was introduced, where

residuals above the 99th percentile were flagged and data points that were followed by

a wind turbine shutdown were labelled as abnormal. It was found that temperature

and power data suffice to identify potential failures. Moreover, in regards to the chosen

metrics, the Linear Regression (LR) and polynomial regression models yielded the best

performance.

L. Wang et al. (2017) built Deep Neural Network (DNN) models for regression purposes,

aiming to predict lubricant pressure based on Supervisory Control and Data Acquisition

(SCADA) data, concluding that in this case DNN models performed better than models

such as Least Absolute Shrinkage and Selection Operator (LASSO) models, Ridge

Regressions (RRs), KNN, SVMs, and shallow ANNs.

Bearings Soualhi et al. (2015) combined the Hilbert-Huang Transform (HHT), i.e. a

signal decomposition method, with an SVM model, and an SVR model to obtain
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a health estimate, classify the degradation, and estimate the Remaining Useful Life

(RUL) of bearings. The authors’ results showed increased performance compared to

alternative methods.

3.2.2.2 Classification-based models

Classification-based models receive a number of variables as input and assign them one

of a number of predefined categories. The number and significance of these categories

depends on the labelling available during the training phase. For condition monitor-

ing purposes, categories will either reflect the degradation of a component or system

(e.g. not degraded, partially degraded, or fully degraded), the RUL of a component

or system (e.g. healthy, 6 months before failure, or 2 weeks before failure), or faults

at specific components (e.g. healthy, decreased Lube Oil (L.O.) pressure, or increased

Exhaust Gas (EG) temperature).

Wind turbines Leahy et al. (2018) applied all three categorisation scenarios for the

fault detection of a wind turbine generator utilising SVM classifiers. Namely, they

performed classification to predict system binary condition (fault or no-fault), fault

diagnosis, and fault prognosis. While their recall was high, precision was exceptionally

low. Santos et al. (2015) applied classification techniques to identify different wind

turbine rotor blade faults (e.g. imbalance and misalignment). They found that SVMs

with a linear kernel performed best, surpassing the performance of SVMs with a non-

linear kernel and ANNs. At the same time, training time was reduced as the amount

of hyperparameters to be optimised is also reduced.

Kusiak and Li (2011) followed a similar approach, applying ensemble ANNs for fault

identification at different granularity levels, noting that different algorithms performed

better at each level. Specifically, ANN ensembles performed best at a high level,

whereas Random Forests (RFs) were the ones performing better at an intermediate

level, followed by Boosting Tree Algorithms (BTAs) at at the most granular level.
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Heat exchangers Casteleiro-Roca et al. (2016) compared Linear Discriminant Ana-

lysis (LDA), Decision Trees (DTs), and ANNs for the fault detection of a heat exchanger,

noting that a ANN with one hidden layer performed best.

Aircraft engines Q. H. Xu and Shi (2006) applied Hierarchical Support Vector Ma-

chine (H-SVM) models for multi-class fault diagnosis in aircraft engines. The authors

highlighted that H-SVM models are faster in both training and classification compared

to other SVM approaches. Xi et al. (2019) applied Least Squares Support Vector

Machines (LLSVMs) models to detect faults in aircraft engines, noting their ineffect-

iveness in imbalanced datasets. For this reason, they proposed a new implementation

of LLSVM called Least Squares Support Vector Machine for Class Imbalance Learning

(LLSVM-CIL) that utilises separate C parameters for each class, noting the method’s

effectiveness in imbalanced datasets. Accordingly, Y.-P. Zhao et al. (2019) evaluated an

Robust Least Squares Support Vector Machine (R-LLSVM) approach to aircraft engine

fault diagnosis noting its computational complexity. Alternatively, they proposed an

improved version of R-LLSVM called Extended Least Squares Support Vector Machine

(E-LLSVM) with a lower computational complexity. The authors successfully applied

the proposed E-LLSVM for fault detection purposes in aircraft engines.

Y. P. Zhao et al. (2017) applied Extreme Learning Machines (ELMs) for fault diagnosis

in aircraft engines. Y. P. Zhao et al. (2019) also applied ELMs for the same problem

and suggested an improved version version of the algorithm based on soft margins, not-

ing that the approach seemed promising for the fault detection of aircraft engines. You

et al. (2016) applied Kernel-based Extreme Learning Machine (K-ELM) on the problem

of aircraft engine fault pattern recognition. Authors noted that K-ELM presents better

generalisation capabilities compared to ELM. Following that, they introduced a novel

recursive reduced (RR) K-ELM that performed better in engine fault pattern recog-

nition. F. Lu et al. (2017) suggest a similar modification on top of K-ELM algorithm

called Dual Reduced (DR) K-ELM algorithm. The authors noted this approach also

yielded better results compared to original K-ELM.
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Gas Turbine Engines (GTEs) Hanachi2018 developed an Adaptive Neuro-Fuzzy

Inference System (ANFIS)-based system for the fault detection and degradation estim-

ation of a GTE. The authors note that this approach accurately estimated degradation

conditions, noting however that accuracy would be increased if data points corres-

ponding to a degraded condition were available during training. ANFIS combines the

benefits of ANNs with fuzzy logic, in a unified framework and is often applied to CM

tasks (J. Jang, 1991; J. S. R. Jang, 1993). Hanachi et al. (2019) built on top of the

aforementioned previous work, combining the ANFIS model with a model-based fault

prediction module. The authors remarked that this approach exhibited a ten-fold in-

crease in achieved accuracy when detecting GTE faults.

Sina Tayarani-Bathaie and Khorasani (2015) proposed an ensemble of dynamic ANN

models to learn GTE dynamics. Then, the authors used the residuals of these networks

as an input to a ANN for GTE fault detection. Simulations performed validated that

the proposed approach represents a promising tool. Amozegar and Khorasani (2016)

trained ANN and SVM architectures for fault detection and isolation in GTEs. These

architectures were combined with ensemble-based techniques, with the authors noting

a tangible accuracy increase as a product of this. The models were tested against a

simulated GTE dataset and obtained good results.

Automotive Theissler (2017) used a ensemble of two-class classifiers, namely GMM

classifiers, Naive Bayes, RFs, and Support Vector Classifiers (SVCs), combined with

several one-class approaches to identify known and unknown faults in automotive sys-

tems. The ensemble approach performed best, followed by one-class approaches. Wong

et al. (2016) proposed an alternative probabilistic ensemble approach, based on Sparse

Bayesian ELMs. Authors noted that the results they obtained were improved over the

single-classifier baseline. Moreover, the ensemble system was able to detect both single

and simultaneous faults while the training set only contained single faults.
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3.2.2.3 One-class classification-based models

One-class classification-based models operate based on the same principle as classifica-

tion models with the caveat that only a minimum amount of data points corresponding

to the faulty class are required. Generally, the model draws a boundary that en-

compasses all points used at training and then evaluates any new point against that

boundary. If the new points lie within the boundary they are assigned the same class as

the training set, whereas if the new points lie outwith the boundary, they are labelled

as anomalous.

Internal Combustion Engines (ICEs) Jung (2019) combined an RF classifier

for fault classification with a set of One-Class Support Vector Classifiers (OCSVCs)

that can individually identify every predefined fault mode. Moreover, this framework

provides a robust method of identifying unknown faults as the OCSVC approach yields

significantly better results when previously unseen faults are introduced to the test set,

compared to RF classifiers.

Automotive Theissler (2017) used a combination of one-class approaches, namely

extreme value, Mahalanobis distance, OCSVC, and Support Vector Data Description

(SVDD) as as an ensemble that also took two-class classifiers as input to identify

known and unknown faults in automotive systems. The ensemble approach performed

best, followed by the OCSVC and SVDD approaches. Two-class classifiers showed

significantly decreased robustness in fault detection.

Smart cities Dai et al. (2019) applied multi-layer ANN-based One-Class Extreme

Learning Machines (OC-ELMs) to an urban acoustic classification dataset, noting that

their proposed algorithm performed better than other representative one-class classifiers

such as OCSVCs, Autoencoders (AEs), and Naive Parzen density estimators.
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3.2.2.4 Unsupervised learning models

Unsupervised models do not require labelled data for training purposes. In terms of

CM and its relevant applications, unsupervised learning is often applied in the form of

cluster analysis, where known points are placed in clusters based on commonalities and

the commonalities of new points against the pre-derived clusters is evaluated.

Stetco et al. (2019) have noted that even in the, more technologically advanced, renew-

ables sector, unsupervised approaches for condition monitoring have not been explored

in depth. Zhang et al. (2019) suggest a combination of subtractive clustering, an one-

pass algorithm that estimates the number of clusters and their centres in a dataset,

with KNN to identify and classify measurements of unsteady operating conditions. Res-

ults showed that this approach performed better in identifying faults in water-source

heat-pump systems than traditional methods, such as PCA. Kwan et al. (2003) applied

Minor Component Analysis (MCA) to detect and identify faults in aircraft hydraulic

pumps. The authors based their fault detection approach on the fact that principal

and minor components of sensor measurements will be altered due to the introduction

of faults. Moreover the fault size may be estimated, providing a useful input for RUL

estimation and fault isolation approaches.

3.2.3 Comparison of data-driven CM approaches

Evaluating the above review of condition monitoring applications, it is clear that CM in

other sectors remains more advanced than in marine industry. This observation leads

to two key takeaways: a) there is no need to invent new technologies as long as the

maritime industry remains a laggard compared to the current state-of-art; and b) the

first step to bringing the maritime industry up to speed with the current state-of-art

of other industries, approaches that align with the peculiarities of this sector need to

be identified.

As a corollary to the above, before the mass deployment of predictive or proactive

maintenance strategies in a turn-key fashion, a robust predictive framework is required

to be developed. In this respect, and contrary to most other maritime condition mon-
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itoring studies reviewed, where either specific dataset requirements have to be satisfied

or a first-principles engine model is required, model training should only assume the

existence of readily available data points.

Another approach that can achieve this same goal and requirements, is the implement-

ation of a performance monitoring system at a system-level. In the case of the maritime

industry, this can be achieved by monitoring the FOC of a vessel while keeping track of

any parameters that can affect this parameter (e.g. speed, load condition, weather con-

ditions). The existence of such a model can provide a valuable baseline against which

future voyages of the ship can be compared to and its performance be evaluated.

3.3 Data-driven prediction of a vessel’s FOC

Bialystocki and Konovessis (2016) performed a statistical analysis of noon-reports of a

Roll-on/Roll-off vessel (Ro-Ro) in order to identify the influence of factors such as ship’s

draft, displacement, weather velocity and direction, and hull and propeller roughness.

Once several corrections suggested are applied to the obtained data along with relevant

filtering, curves for each frequently-observed sea state are fitted. This provides a simple

algorithm that approximates FOC. R. Lu et al. (2015) developed a semi-empirical

method for the prediction of operational performance of ships. This method is based

on modelling still water and added resistance components. Through that, the ship’s

operational performance is modelled, taking into consideration the weather and relevant

sea state. This model is then utilised to optimise the ship’s voyage route.

Beşikçi et al. (2016) suggested the use of ANNs for the prediction of ship fuel oil

consumption at various operational conditions. Additionally, a DSS is elaborated for

real-time, energy efficient operations. The suggested methodology is compared against

Multiple Regression (MR) analysis, displaying superior results. Petersen et al. (2012)

evaluated ferry main engine fuel oil consumption modelling approaches, also based on

ANNs. The output of the derived models were used for trim optimisation purposes.

Meng et al. (2016) suggest a data pre-processing methodology based on outlier-score-
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based data. Following that, two regression models were developed in order to link

available data with the vessel’s fuel oil consumption. The first model connects the

ship’s fuel oil consumption with its speed and displacement. The second model builds

on the first, utilising the information provided by the first while also including weather

conditions. They validated the work performed utilising noon-report data from two

13,000-TEU and two 5000-TEU containerships. Simonsen et al. (2018) proposed a

method of utilising Automatic Identification System (AIS) data to estimate the fuel

oil consumption of cruise ships sailing Norwegian waters. The authors note that the

outcome of this method can be used to also estimate Green House Gas (GHG) emissions.

Lundh et al. (2016) proposed a method to estimate the fuel oil consumption of vessels

equipped with diesel electric propulsion systems. This is used to optimise the use of

individual generators in a multi-generator set-up, offering fuel savings of up to 6% when

applied to a large cruise ship. Moreno-Gutiérrez et al. (2015) provide a comparative

analysis of first-principle approaches to estimating the energy consumption of vessels.

Mao et al. (2016) compared linear regression, first-order autoregressive, and a mixed

effect models for the speed prediction of a container ship. Accordingly, Yao et al.

(2012) investigated the correlation between fuel oil consumption and the ship speed

of containerships of different sizes. Reviewing the above publications, it is clear that

contradicting conclusions have been reached, with different authors noting that their

proposed method performed better than others. Due to this, a thorough review of the

potential methods and evaluation their respective results should be conducted.

Cichowicz et al. (2015) provided a methodology for first-principles, time-domain mod-

elling of main and auxiliary engines for assessment of life-cycle ship performance and

energy efficiency. Speed and draft are taken into consideration, along with hull fouling

and deterioration of engine performance. Sea state is included implicitly by considering

an additional M/E load (sea margin). The methodology was demonstrated using data

from 3700-TEU containership. Coraddu et al. (2017) performed a comparison of white,

grey, and black box models for the estimation of fuel oil consumption of a Handymax

chemical/product tanker, concluding that grey-box models can effectively forecast FOC
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when only limited historical data are available.

Trodden et al. (2015) focused on data pre-processing and suggest a methodology, an-

cillary to the ones elaborated above, for splitting available ship data into steady-state

chunks that can then be used for fuel efficiency monitoring. The authors noted that

steady-state data can be used to identify system degradation over time whilst evaluat-

ing both steady-state and transient data are useful in identifying degradation due to the

way the vessel is operated. Perera and Mo (2018) suggested another ancillary methodo-

logy for the compression of ship performance and navigation data. This is implemented

through an AE system, compressing data before transmission and then expanding them

upon receipt. Such an implementation is extremely beneficial as the amount of data

that can be transferred given any bandwidth and cost constraints is increased, poten-

tially leading to more accurate models. Tsitsilonis and Theotokatos (2018) developed

a systematic methodology for energy management of ship prime movers. A statistical

analysis is combined with energy and exergy analyses to identify key areas were en-

ergy savings can be obtained. This methodology was applied in both Automated Data

Logging & Monitoring (ADLM) and noon-report data. S. Wang et al. (2018) proposed

a LASSO regression model for the estimation of a vessel’s fuel oil consumption. This

model was shown to have optimal performance when compared to ANN, SVR, and

Gaussian Processs (GPs) models in a case study utilising low-frequency data obtained

from a fleet of containerships.

From the above, it can be deduced that modelling of vessels’ FOC is an active research

field with multiple different approaches being realised concurrently. However, up to

the present, most studies utilise different datasets, with different acquisition and mod-

elling particularities hindering any attempts at a comparison. Moreover, the proposed

approaches often require significant data filtering before the application of the relev-

ant models, suggesting models that can only operate in a restricted window of sailing

conditions and operating profiles.

Having built a model that can accurately model a vessel’s FOC over varying sailing and
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operating conditions, the usage of this model can reversed to identify the most favour-

able sailing conditions, i.e. optimal weather routing. Besides, the vast majority of the

reviewed papers investigate FOC prediction models on their own, without considering

the applications for which a FOC prediction model would be useful. In this respect,

applications based on FOC prediction models should be further investigated.

3.4 Weather routing

Walther et al. (2016) provide an overview of state-of-the-art approaches for weather

routing, noting that all approaches present significant benefits and deficiencies and

the weather routing topic remains heavily researched. Veneti et al. (2017) suggest a

detailed framework for weather routing based on a shortest-path algorithm, where ves-

sel’s FOC is a static approximation based on first principles. Accordingly, Vettor and

Guedes Soares (2016) combine a first-principle ship response estimation with a genetic

algorithm approach for the derivation of an optimal vessel route. Lin et al. (2013)

propose a combination of a mathematical model that predicts ship performance with

a three-dimensional modified isochrone (3DMI) method for weather routing. Simil-

arly, Roh (2013) suggests a framework for weather routing based on first principles

resistance-based FOC estimation and the isochrone method for weather routing. R. Lu

et al. (2015) propose another semi-empirical method for the prediction of operational

performance of ships based on modelling ship’ resistance. The ship’s operational per-

formance is then modelled, taking into consideration the weather and relevant sea state

and utilised to optimise the ship’s route.

Moreover, Armstrong and Banks (2015) provide an integrated overview of energy effi-

ciency improvements for vessel sailing, highlighting the necessity of a set of well-defined

KPIs to simplify performance tracking. Acomi and Acomi (2014) suggest the use of

Energy Efficiency Operational Indicator (EEOI) as a KPI for the amelioration of vessel

sailing FOC efficiency.

From the above, it can be deduced that weather routing is an active research field with
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multiple different approaches being realised concurrently. However, up to present,

most studies focus on first-principle methods for the estimation of a vessel’s perform-

ance. Due to this, the approaches suggested do not accurately take into account a

vessel’s current condition and sailing peculiarities, such as hull fouling, degraded engine

performance. More so, the underlying FOC modelling often cannot provide accurate

predictions in the presence of adverse weather conditions.

3.5 Identified gaps

This chapter includes the critical review of publications pertaining to maritime con-

dition monitoring, prediction of a vessel’s FOC, and weather routing. Through this

review, a number of research gaps have been identified along with relevant research

directions. These will play a pivotal role in the justification of the framework proposed

in Chapter 4 and help establish its inherent novelty.

The key gaps identified are discussed below, categorised by application, i.e. maritime

condition monitoring, FOC estimation, and weather routing. Furthermore, some key

remarks are discussed, concluding the conducted review.

Maritime condition monitoring

Reviewing the pertinent literature, it is evident that CM remains an active research

field. This statement is even stronger in the context of the maritime sector, where end-

to-end solutions are rarely available and preventive maintenance is often the preferred

way forward. Due to this, peculiarities of the industry need to be considered to propose

solutions that can transcend the state-of-art and become the state-of-practice.

It is important to note that no one-size-fits-all modelling approach exist as different

monitoring goals and system architectures across various industries lead to different

conclusions regarding optimal modelling approaches. Therefore, in order to obtain

the full benefits of condition monitoring, fault identification, localisation, and RUL

estimation need to be performed. This is clearly a step-by-step process where simpler
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solutions need to be developed and successfully implemented before the introduction of

advanced techniques with increased demands at both the modelling and the deployment

stages.

Reviewing the development of other industries, a frequent first attempt at CM is an-

omaly detection as the data requirements are limited compared to other approaches.

CM has not yet been thoroughly examined and applied in the maritime industry.

FOC prediction

As DAQ systems become commonplace, FOC prediction in the context of the mari-

time sector remains an active research field as more data become available, leading to

more accurate and robust modelling. Past literature has claimed that a number of

regression techniques have performed best on this task based on different datasets and

data acquisition methods but no systematic investigation has been performed so far.

Specifically, it has been noticed that many studies reaching contradicting conclusions

have been published, without a clear indication as to which method should be applied

in order to achieve optimal modelling results. Moreover, FOC prediction models have

been investigated on their own but the investigation of applications based on such mod-

els (e.g. performance monitoring) remains scarce. Especially the use of FOC models

as proxy for either the condition or performance status of a vessel retains untapped

potential and should be further investigated.

Weather routing

Vessel weather routing remains an active research field as there are significant differ-

ences to the predictive systems used in other applications, e.g. vehicle routing. Further-

more, the uncertainty and the short time-frame of the available data poses additional

challenges that need to be overcome before such a solution can be deployed. Vessel

weather routing often applied first-principle vessel models but these models often can-

not take into account performance changes due to fouling or adverse weather. Hence,

Data-driven approaches have not been investigated in depth for route optimisation
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purposes.

General remarks

As a general comment stemming from the review of all studies that relate to data-

driven applications, thorough and accurate data pre-processing is required to achieve

accurate and robust modelling results. Moreover, while individual tools or frameworks

that tackle specific problems exist or are in active development, the integration of such

tools in order to enhance the operational efficiency of vessels in a more holistic approach

is scarce.

Furthermore, while both vessel condition and vessel performance monitoring have been

considered in past literature, a holistic condition and performance monitoring approach

has not yet been investigated. Finally, weather routing that encompasses vessel condi-

tion and performance information should be investigated as a direction towards more

accurate results.

3.6 Chapter summary

In this chapter a thorough review of existing literature was presented. Initially an

overview of maintenance strategies was presented. Following that, focus was shifted

to CM, first discussing CM applications in the maritime industry and then critically

reviewing relevant applications in other industries. Additionally, data-driven methods

for the prediction of FOC were reviewed, followed by methods for weather routing.

Furthermore, ancillary to the above, an high-level description of common modelling

approaches is provided. Finally, by critically identifying gaps in the existing literature,

the thesis framework is proposed and thoroughly presented in the next chapter.
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Methodology & Modelling

Based on the gaps identified through the critical literature review conducted as part

of Chapter 3, this chapter aims to present and elaborate on the proposed modelling

framework oriented towards the improvement of a vessel’s operational efficiency. This

framework utilises ship raw data to monitor the condition of ship systems, identify

optimal Fuel Oil Consumption (FOC) prediction modelling approaches, monitor the

sailing performance of a vessel based on its FOC, and provide optimal routing decision

support.

Initially, Section 4.1 provides an overview of the framework described within this thesis,

before elaborating separately on its each methodological element. Section 4.2 refers

to the process followed for the data collection of all types of data required. Section

4.3 describes the steps applied to different data subsets for them to be modified in the

necessary ways before being used for model training. Section 4.4 discusses best practices

for data-driven model building, as these remain common for all models developed.

Sections 4.5 – 4.9 elaborate on the derivation and development of individual models

along with their integration. These sections include the development of the novel

methodologies that form the backbone of this thesis, namely the condition monitoring

methodology, the FOC modelling comparative methodology, and the weather routing

methodology. Finally, Section 4.10 provides some concluding remarks on the proposed
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framework and an overall summary of this Chapter.

4.1 Overview of proposed methodology framework

This section presents the overall data-driven vessel operational efficiency enhancement

framework, proposed within this thesis. More specifically, the framework aims to

present an integrated method that applies advanced machine learning techniques for

operational efficiency enhancement through: (a) a novel condition monitoring meth-

odology; (b) a novel FOC modelling comparative methodology; (c) a FOC-based per-

formance monitoring methodology; and (d) an optimal routing decision support meth-

odology.

The methodology initially provides a systematic approach to data collection and pre-

processing in order to ensure robustness and repeatability. Following that, while not

explicitly being part of the framework, best practices relevant to model training are

discussed as these constitute a commonality between different models developed for

different purposes. As the next step, models that predict a vessel’s mechanical condi-

tion and FOC-based performance for monitoring purposes are developed. In the case

of condition monitoring of the propulsion system, a One Class Support Vector Machine

(OC-SVM) is developed to identify system states that deviate from normal system

operation, i.e. anomaly detection. Accordingly, in the case of predicting a vessel’s per-

formance based on its FOC, a methodology for the evaluation of individual regression

models is proposed and developed, aiming to identify some of the best-performing ar-

chitectures for this task, under a number of scenarios. Based on the results of this

comparison, a suitable model is derived, able to predict a vessel’s FOC over a specific

route, given a number of ambient weather and voyage-specific operational paramet-

ers. Comparing the results of this model to it’s actual FOC over the same route and

given the same parameters, its current performance deviation can be identified. As

an extension to this task, a number of relevant Key Performance Indicators (KPIs)

are proposed. Last but not least, this model combined with a novel heuristic driving

Dijkstra’s algorithm is used to provide optimal routing decision support, taking all the
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above into consideration. While Figure 4.1 provides an visual overview of the proposed

methodological framework, every element of the framework is elaborated in the Sections

that follow.

Data pre-processing
methodology

Process
data

FOC prediction 
methodology

Novel condition
monitoring methodology

Novel weather
routing

methodology

Optimal routing
decision support

Optimal FOC
model architecture

Anomaly
detection & normality

estimation

Novel FOC modelling
comparative methodology

FOC-based
performance
monitoring

Operational efficiency enhancement

Weather
data

Voyage
data

FOC-based performance
monitoring methodology

Data collection

Figure 4.1: Visual representation of the overall proposed methodological framework.

4.2 Data collection process

The data required for the training of the machinery condition monitoring and vessel

FOC prediction models elaborated in this Chapter can either be acquired through an

Automated Data Logging & Monitoring (ADLM) system, or through the processing of

noon reports depending on relevant availability. While noon reports are traditionally

human-generated documents that record voyage data at a daily frequency, in some of the

datasets used in the case studies of this thesis, the reports provided were augmented
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with information concerning the condition of key machinery or recorded at a higher

frequency. While these reports are technically not noon reports, they will be referred

to as such, to differentiate them from ADLM sources. Compared to parsing noon-

reports, ADLM systems provide higher-frequency data of increased accuracy, albeit at

an elevated cost. The term voyage data refer to data that describe a vessel’s current

or historical voyages. Such data include encountered weather conditions, vessel speed,

drafts, Main Engine (M/E) speed and FOC. Accordingly, the term process data refers

to measurements obtained from the M/E or other critical pieces of machinery. These

data do not directly relate to the vessel’s voyage but that can be used to monitor

machinery condition.

Regarding the data requirements of the condition monitoring methodology, an addi-

tional need arises. As will be discussed in more depth in Section 4.5 where the condition

monitoring methodology is presented and analysed, data points used in this method-

ology for model training purposes need to have their veracity ensured and to conform

to normal operating conditions. This requirement establishes a new, intermediate, step

in the data collection process for this methodology. This dual verification is performed

in tandem through data analysis and through the acknowledgement of expert judge-

ment.

For weather routing, a second dataset containing ocean analysis and forecast data

(summarised as “weather data” in Figure 4.1) for the sailing region is required. This is

obtained through weather providers, such as Copernicus Marine Environment Monit-

oring Service (CMEMS), and depending on provider and attribute characteristics come

with different spatial and temporal resolutions. For example, CMEMS global wave

forecast has a maximum spatial resolution of 1/12 degree and a 3-hourly temporal

resolution, providing 5 days of forecast.

Due to the existence of potential measuring anomalies, lack of data, and undesirable

data points (e.g. engine transients), pre-processing follows the data acquisition phase

for both datasets.
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4.3 Data pre-processing methodology

In the case of data required for the training of the machinery anomaly detection and

vessel FOC prediction models, engine transients and recording anomalies are identified

and rejected. Regarding the weather forecast dataset, instances with missing inform-

ation are additionally imputed to obtain an uninterrupted dataset. Imputation is not

performed for the condition and performance models, as additional dataset noise and

uncertainty would be introduced without a tangible benefit in regards to model ac-

curacy. Following that, existing dataset features are manipulated, utilising domain

knowledge, to produce new features than can increase a model’s accuracy. Finally,

all features are standardised to ensure that all features contribute equally to a model’s

output. In Figure 4.2, the overall methodology relating to this section is presented, elab-

orating how different approaches apply to the three kinds of data inputs considered,

namely: voyage data, process data, and weather data.

Engine transients
rejection

Recording anomalies
rejection Weather data imputation

Feature engineering

Data standardisation

Process
data

Voyage
data

Weather
data

Input to respective
methodologies

Figure 4.2: Visual representation of the proposed pre-processing methodology.
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4.3.1 Engine transients rejection

The goal of the condition monitoring methodology that will be elaborated in Section

4.5 is to identify engine anomalies whilst the engine is operational, i.e. at real-time or

close to it. However, detecting anomalies at a transient engine state exhibits increased

complexity (e.g., the requirement to treat data points strictly as a time-series arises)

without significant added benefits due to the system degradation being a monotonous

phenomenon. For this reason, transient operation is detected and the relevant data

points are discarded.

Accordingly, the derived FOC-based performance monitoring, and optimal routing de-

cision support methodologies aim to provide actionable information that can be used

to enhance a vessel’s operational efficiency. As the underlying phenomena (e.g. hull

fouling, weather deterioration) exhibit gradual transformations, the decision making

itself is performed considering a time-scale in the order of hours, with the predictive

models needing to provide performance and FOC predictions at discretised segments

that, depending on the spatial resolution of the available weather forecast, often span

several hours. Based on that, only steady-state (i.e. continuous) historical sailing data

are used for its training.

In this respect, M/E Original Equipment Manufacturers (OEMs) provide a minimum

engine speed for continuous operation (MAN B&W Diesel A/S, 2004), usually at

15 − 25% of the engine’s nominal maximum continuous (L1) speed. Any observations

corresponding to measured speed below that threshold are then rejected as an engine

transient or manoeuvring. Additionally, observations where the engine power varies

by more than 5% hourly are also discarded as the FOC is only trained on steady-state

data due to the low temporal resolution of the weather forecast provider (Tsitsilonis &

Theotokatos, 2018).

4.3.2 Recording anomalies rejection

Voyage and process data acquisition may potentially introduce inconsistent and/or

faulty data entries (e.g. due to sensor anomalies, or human error) that need to be
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identified and rejected at this stage.

Applying the Central Limit Theorem (CLT) given that sensor data are aggregated

every few seconds or minutes, data can be assumed to follow a normal distribution.

CLT establishes that given a number of independent, random variables, the distribution

of their normalised sum can be approximated by the normal distribution, even if the

original variables do not follow that distribution.

Therefore, 99.7% of normal data can be assumed to lie within µ ± 3σ, where µ cor-

responds to the mean value of each attribute and σ to its standard deviation. Hence,

observations outwith this range can be rejected as anomalous without affecting the vast

majority of normal points.

At the same time, operational and sailing data are scanned and observations where

missing features exist either due to sensor malfunctions or due to a piece of machinery

not operating at a given point are discarded. Missing data points are usually denoted

in the dataset as Not a Number (NaN)).

4.3.3 Weather data imputation

As previously mentioned, in the case of process and voyage data, observations where

missing features exist get discarded to avoid tainting the training dataset. However,

in the case of weather data, data points (i.e. weather information) at every grid point

and at every time-step are necessary input to the routing optimisation algorithm. Con-

versely, lack of weather information at a data point denotes that this grid point is not

a feasible route point (e.g. due to it being part of land) and that a detour has to be

applied.

Therefore, missing weather data values have to be imputed based on the informa-

tion contained in the available weather data. Multiple Imputation (MI) represents

a regression-based imputation approach that provides increased accuracy while con-

trolling the latent bias of the process (Azur et al., 2011). For the weather data im-

putation required as part of the pre-processing methodology, Multiple Imputation by
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Chained Equations (MICE) algorithm was applied as it constitutes one of the most

promising implementations of MI. MICE algorithm can be summarised as an imputa-

tion approach that fits a number of regression models to the dataset in order to infer

missing values (Shah et al., 2014). A brief description of the steps required for the

application of MICE algorithm is as follows:

1. Replace all missing values with the mean value of their attribute as an initialisa-

tion step. Keep track of instances where this has happened.

2. Revert the missing values of a single attribute to missing.

3. Fit a linear regression model to predict missing values of that attribute based on

some (or all) other attributes.

4. Repeat steps 2 and 3 until no attributes have missing points.

5. Repeat steps 1 – 4 for a predetermined number of cycles.

4.3.4 Feature engineering

Feature engineering is the process of applying data mining techniques to a raw dataset

in order to extract insights that can be used to increase the performance of machine

learning models (Domingos, 2012). Depending on the methodology and relevant data

sources, different feature engineering approaches have been applied. These are described

below, on a methodology-by-methodology basis.

4.3.4.1 Condition monitoring methodology, FOC modelling comparative

methodology & FOC prediction methodology

Given domain knowledge of the available parameters for FOC modelling, transforma-

tions can be performed to engineer new features that better capture the information

contained in the raw dataset.

For example, forward and aft draft observations can be transformed into draft amidships

and trim features, as these features can be, potentially, more accurate predictors for
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the FOC of the vessel. Accordingly, in cases where flow meters are installed in both

the inlet and return lines, the difference of the two measurements can be computed to

obtain a single target variable for the model.

Similarly, in the case of condition monitoring data, measurements such as pressure and

temperature before/after a location can be combined in a single feature (e.g. pressure

drop, or temperature differential) that better represent the relevant information.

Furthermore, in order to ensure consistency between data points acquired under dif-

ferent ambient conditions, measured parameters are corrected to International Or-

ganization for Standardization (ISO) ambient conditions (MAN B&W Diesel A/S,

2004).

4.3.4.2 Weather routing methodology

All ocean analysis and forecast data follow a space-fixed frame of reference, i.e. are

either provided in the form of a northward and eastward component or in that of an

angle and a magnitude. As the effect of the weather elements depends on the current

course of the ship, these measurements are transformed into a body-fixed frame of

reference.

To transform measurements that are provided in a northward (nw) and eastward (ew)

component into the vessel body-fixed frame of reference sailing at a bearing br and

obtain a longitudinal (lg) and transverse (tr) component, the following formulas can

be used (Figure 4.3):

lg = nw cos(br) + ew sin(br) (4.1a)

tr = |ew cos(br)|+ nw sin(br) (4.1b)

In the case where the measurements are described by a magnitude M and an angle

α, they can be transformed into the vessel body-fixed frame of reference sailing at a

bearing br and obtain longitudinal (lg) and transverse (tr) components by applying the
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Figure 4.3: Visual representation of weather forces acting on vessel in a space-fixed
frame of reference compared to a body-fixed.

following formulas (Figure 4.4):

lg = M cos(α− br) (4.2a)

tr = |M sin(α− br)| (4.2b)

Figure 4.4: Visual representation of weather forces described in a magnitude, angle
tuple acting on vessel in a space-fixed frame of reference compared to a body-fixed.
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4.3.5 Data standardisation

All numerical attributes in the dataset are standardised by removing the mean and

scaling to unit variance. Therefore, for a numerical attribute x, a standardised attribute

x′ is produced by

x′ =
x− µ

σ
(4.3)

All attributes are standardised so that all attributes can contribute equally to the

objective function that is used for model training.

4.4 Model training best practices

This section elaborates on some key model training principles, such as k-folding, and

hyperparameter optimisation, that apply to all model architectures that are developed

in the following sections. Due to this, these principles are all discussed in depth at this

point and then only briefly discussed in the next sections instead of being repeated at

every point.

4.4.1 K-folding

Training dataset through K-folds cross-validation is used both for model training

(i.e. deriving optimal model parameters) and hyperparameter optimisation (i.e. de-

riving optimal hyperparameter values). Model parameters are learnt during model

training and depend on the training dataset peculiarities. Contrarily, model hyper-

parameters cannot be learnt during training but instead are selected by the user in

order to optimise a selected metric (e.g. accuracy). Hence, while model parameters

vary for distinct training data sets of the same application, hyperparameters tend to

be common for similar models.

K-fold cross validation works by splitting the training dataset X into K roughly equal

parts X1, X2, . . . , XK and using K − 1 of them for training and 1 for validation, going
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through a for-loop to ensure that all K possible combinations are evaluated. Through

K-fold cross validation, the generalisation capabilities of a model can be established as

the model is trained in K different scenarios and the average performance is evaluated.

A visual example of this procedure is presented in Figure 4.5. Additionally, through the

introduction of a second for-loop, different hyperparameter tuples can be evaluated in

order to identify which one optimises model performance. This is presented in pseudo-

code in Algorithm 1. Therefore, for each hyperparameter combination, several results

are obtained and averaged.

Algorithm 1 Model training and hyperparameter optimisation using K-folding
Require: X, Xabn, K, a set of n hyperparameter tuples hi, i ∈ (1, 2, . . . , n)

1: Divide data X into K roughly equal parts
2: for i = 1, 2, …, n do
3: Hyps← hi
4: for k=1, 2, …, K do
5: TrainSet← X \Xk (set subtraction)
6: V alidSet← Xk ∪Xabn

7: Train model M(k,i) using TrainSet and Hyps
8: Evaluate model M(k,i) quality MCC(k,i) on V alidSet
9: end for

10: Calculate mean model quality MCC(µ,i) (Eq. (4.11)) by averaging MCC(k,i)∀ k
11: end for
12: Obtain h∗ = argmax

hi

(MCCµ,i) and use it to train final model M∗ on whole X

13: return M∗

Iteration 
k = 1 V V T T T T T T T T T T

Validation 
data

Training 
data 

Iteration 
k = 2 T T V V T T T T T T T T

Iteration 
k = 6 T T T T T T T T T T V V

. . . 

Figure 4.5: Visual representation of k-folding for 12 data points and k=6. In this
example, the dataset is split in six subsets, and for every value of k, a different subset
is selected for validation whilst the rest are used for model training. This helps prove
the robustness of the model and its hyperparameters.

Finally, a testing sub-dataset is used to evaluate the generalisation capabilities of the
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final selected model (Hastie et al., 2009) using a previously unseen dataset, in order to

yield a more accurate, real-world usage scenario.

4.4.2 Hyperparameter optimisation

As mentioned previously, model hyperparameters refer to parameters that can arbit-

rarily be set before model training and do not directly depend on the training data. As

the optimal hyperparameter values cannot be known a priori, a number of optimisation

techniques can be applied to identify the best hyperparameter values for each model. A

naïve method to do so would imply building a grid containing all possible combinations

of selected hyperparameters and exhaustively evaluating each to select the best combin-

ation. However, this carries a significant cost due to the sheer number of combinations

that are evaluated (especially in the case of multiple tuneable hyperparameters per

model). Another approach is to employ a random search implementation; there, all

hyperparameter ranges are randomly sampled – usually producing more accurate res-

ults given a predefined number of draws (Bergstra et al., 2011). In some cases, more

advanced optimisation methods, such as Bayesian optimisation, are applied. This holds

particularly true in cases where model training is computationally expensive and the

number of optimisation iterations needs to be minimised.

4.5 Novel condition monitoring methodology

This section presents the development of a self-learning model that can estimate whether

a given data point corresponds to a reference (nominal) condition considered dur-

ing model training. As such, a self-learning model can be trained without the need

of obtaining data corresponding to “faulty” conditions. This allows the detection of

anomalous operating conditions of machinery and the estimation of their subsequent

mechanical condition normality. A flowchart of the proposed approach for machinery

anomaly detection is presented in Figure 4.6.

Compared with other relevant methodologies available in pertinent literature, the novel

characteristic of this methodology concerns the modelling of a condition-estimation
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system using only “normal” (i.e. nominal) data and the transformation of its output

to a time-dependent (dynamic) normality metric without the explicit need for any

additional information. Additionally, the developed methodology can be applied for

the establishment of relevant measurement thresholds when such values are not readily

available.

Newly acquired
process data

Nominal process
data

Data pre-processing
framework

OCC SVM model
model
training

Normality
estimation

Anomaly
detection

Normality estimation
mapping

Figure 4.6: Visual representation of proposed condition monitoring methodology.

A one-class Support Vector Machine (SVM) classifier (Cortes & Vapnik, 1995) is used,

as it is one the most commonly chosen algorithms for One Class Classification (OCC)

(Khan & Madden, 2010). Compared to other machine learning tools, SVMs offer

superior generalisation capabilities (Widodo & Yang, 2007). This is a OCC algorithm

that learns a decision boundary using only “normal” data points and then testing the

likelihood of a test instance being within the boundary of the learnt model. Schölkopf et

al. (2001), Schölkopf et al. (2000), Schölkopf et al. (1999) present a method of creating

an OCC by implementing a suitable separating hyperplane of the form:

wTx+ b = 0 (4.4)

where w is the weight vector, always normal to the hyperplane, x is the input vector and
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b is the bias term. This hyperplane aims to separate the surface region containing data

from the region containing no data. This is achieved by “constructing a hyper-plane

which is maximally distant from origin, with all data points lying on the opposite side

from the origin and such that the margin is positive” (Khan & Madden, 2010).

In their ν-SVM implementation (Schölkopf et al., 2000), SVMs utilise the parameter ν

as a degree of freedom in the trade-off between a large margin and a small training error.

Accordingly, the parameter ν is “an upper bound on the fraction of training margin

errors and lower bound on the fraction of support vectors” (Wu & Srihari, 2003). In

more practical terms, ν ∈ (0, 1] represents both an upper limit on the number of mis-

classifications in the training dataset (at the cost of a possibly smaller margin) and a

lower limit in the number of training samples used as support vectors (C.-C. Chang &

Lin, 2001).

Following the formulation suggested by Schölkopf et al. (1999), the objective function

of a SVM OCC can be described as:

min
w, ξi, ρ

[
1

2
∥w∥2 + 1

ν ℓ

l∑
i=1

ξi − ρ

]

subject to: (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

(4.5)

where ℓ is the number of observations, ρ represents the offset, and ξi are slack variables

introduced to allow some points to lie within the margin in order to avoid overfit-

ting.

Solving this minimisation problem using Lagrange multipliers, the decision function

rule for a data point x then becomes:

f(x) = sgn
(∑

i

αiκ(xi,x)− ρ

)
(4.6)
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Coefficients ai can be found as solutions to the dual problem:

min
α

1

2

∑
i,j

αiαjκ (xi,xj)

subject to: 0 ≤ αi ≤
1

νℓ
,
∑
i

αi = 1

(4.7)

where κ refers to the kernel function that will be elaborated in subsection 4.5.1.

In order to calculate the offset ρ, we can exploit the fact that for any αi that is not at

the upper or lower bound, the corresponding pattern xi satisfies:

ρ = (w · Φ(xi)) =
∑
j

αjκ (xi,xj) (4.8)

4.5.1 Kernel functions

A key selection point in a SVM implementation concerns the kernel function κ, that

for two vectors u,v takes the form:

κ (u,v) = Φ(u)TΦ(v) (4.9)

Kernels operate as a similarity function, offering a gauge of similarity between two

inputs and, especially in the case of SVMs, as a transformation that helps to linearly

separate linearly inseparable data. In that case, the kernel function offers a map of the

originally inseparable data to a higher-dimensional space where they can be linearly

separable. While multiple kernel functions can be applied for model training, Radial

Basis Function (RBF) is, in practice, considered to work well as a SVM kernel and is

usually a reasonable first choice (Hsu et al., 2010). As indicated in Equation (4.10), a

significant advantage of RBF compared to other kernel functions is that it can be easily

calibrated as it only depends on one parameter, γ ∈ (0,∞). A reasonable range and

search spacing for γ when used as a SVM kernel, is γ = 2−15, 2−13, . . . , 23 (Hsu et al.,

2010). Parameter γ controls the region that a single training sample can affect, with a

55



Chapter 4. Methodology & Modelling

small value of γ increasing the size of this region; and conversely. In other words, a large

value of γ leads towards over-fitting in the Bias-Variance trade-off (Geman et al., 1992)

whereas selecting a small value risks creating a model too constrained to efficiently

capture the complexity of the training dataset. For two vectors u and v, RBF function

κ (u,v) is determined by Equation (4.10).

κ (u,v) = exp
(
−γ∥u− v∥2

)
(4.10)

4.5.2 Hyperparameter optimisation

Recapping the above, the performance of a one-class SVM classifier utilising RBF as

kernel function and given a specific training dataset depends on the two hyperpara-

meters: γ and ν. The optimal values of these hyperparameters are selected through

random search (Bergstra et al., 2011); a predefined number of ν and γ values are ran-

domly selected from their relevant search space and fed as hyperparameter tuples to

the model optimiser.

Models are trained for each hyperparameter tuple in the two-dimensional grid using

the training sub-dataset through cross-validation. The hyperparameter tuple h∗ that,

on average, achieves the best results (lower error) , are finally selected and a model M∗

is trained based on the whole dataset and h∗.

As previously mentioned, K-fold cross validation is implemented in order to safeguard

a model’s generalisation. However, in the case of OCC, only having validation data

points belonging to one class does not suffice to ensure adequate generalisation. At the

same time, access to abnormal data points at the validation stage cannot be merely

assumed while developing a methodology, as in that case, developing a multi-class

classifier with imbalanced data sets (e.g. Chawla et al. (2004) and Van Hulse et al.

(2007)) would be more appropriate. For this reason, a number of abnormal data points

are algorithmically simulated without any requirements for a priori knowledge of the

physical system. These points are generated by adding 4 or 5 standard deviations to
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the actual values, therefore, the probability that they are normal is in the range of

6× 10−5 to 6× 10−7. The algorithm implemented to produce this simulated abnormal

dataset is shown in Algorithm 2. Having derived the abnormal validation dataset, this

is appended to the “normal” one, i.e. the one derived through K-folding and the two

are concatenated.

Algorithm 2 Algorithmic derivation of abnormal points in array Xabn

Require: X
1: nattr ← number of attributes in X
2: Initialise Xabn with 4× nattr randomly selected observations from X
3: for i = 1, 2, …, nattr do
4: attrmax ← max(X[i])
5: attrmin ← min(X[i])
6: attrstd ← std(X[i])
7: Xabn[4i− 3, i]← attrmax + 4× attrstd
8: Xabn[4i− 2, i]← attrmin − 4× attrstd
9: Xabn[4i− 1, i]← attrmax + 5× attrstd

10: Xabn[4i, i]← attrmin − 5× attrstd
11: end for
12: return Xabn

In order to evaluate the measure of the quality of the derived model, the Matthews

Correlation Coefficient (MCC) of the validation dataset is calculated for each hyper-

parameter tuple. MCC returns the correlation coefficient between actual and predicted

binary classifications and returns values in the range [−1,+1]. MCC can be calculated

by using the following equation (Matthews, 1975):

MCC =
TP/N − S × P√

P × S (1− S) (1− P )

N = TN + TP + FN + FP

S =
TP + FN

N

P =
TP + FP

N

(4.11)

where TP corresponds to true positives, TN to true negatives, FP to false positives

and FN to false negatives.
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4.5.3 Normality estimation mapping

Following the previous steps, a hyperplane that encompasses the original normal points

is derived in order to label accordingly new points as either normal or abnormal. At the

same time, the distance between the hyperplane and each new point can be used as a

normality metric. The further a point is from the hyperplane towards the normal side,

the normality of the system examined increases, and vice versa. This also presents an

inherent limitation of one-class models, i.e. their ability to only identify abnormalities

at system level, without the ability to examine individual components for maintenance

optimisation.

This can then be mapped into a 0-100% semi-qualitative range in order to simplify

evaluation and further processing. The normality assigned to these points can be

altered depending on specific case requirements. This mapping is developed by deriving

a function that performs the non-linear mapping of points presented in Table 4.1.

Table 4.1: Normality mapping control points

Control point description normality assigned (%)
Data point in training set that yields maximum
(positive) distance to hyperplane

100

Data point in training set that yields minimum
(positive) distance to hyperplane

user-selectable α

Data point in simulated abnormal set that yields
minimum (negative) distance to hyperplane

0

Additionally, as every data point is evaluated independently, an Exponential Weighted

Moving Average (EWMA) filter is implemented to smooth-out unnecessary kinks and

make the evaluation of the overall degradation easier. EWMA for a series Y can be

calculated recursively by using the following equation (Croarkin et al., 2018):

St =


Y1, t = 1

a · Yt + (1− α) · St−1, t > 1

(4.12)

where t = 1 refers to the first point, with t increasing for each subsequent point and

parameter α can be calculated from the Centre Of Mass (COM) property through the
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following equation:

α = 1/ (1 + COM) (4.13)

4.6 Novel FOC modelling comparative methodology

The methodology elaborated in this section consists of the following steps: a) the de-

velopment and implementation of multiple models following different modelling ap-

proaches; b) the optimisation of the hyperparameters of these models; and c) the

comparison of these models to identify the modelling techniques that offer the best

performance.

A visual representation of the developed methodology is presented in Figure 4.7, illus-

trating all suggested modules and their relevant interconnections.

4.6.1 Modelling approaches

All modelling approaches presented below are methodologies related to regression ana-

lysis, as regression analysis provides a means for the prediction of a dependent variable

(i.e. FOC) given a number of known, independent variables (e.g. weather conditions,

voyage information). Regression models may be derived with a varying level of com-

plexity and consequently accuracy of results. Therefore, possible methods span a wide

range of options, from closed-form linear models to deep (i.e. multi-layered) neural

networks (Bishop, 2006; Russell & Norvig, 2010).

4.6.1.1 Parametric versus non-parametric modelling

Modelling approaches can be split into two major categories: parametric and non-

parametric. Parametric models assume some finite set of parameters θ that are ob-

tained from the training set during the learning phase (Bishop, 2006). Following that

phase, the training set is discarded and any future predictions x are independent of the

observed dataset D so that:

P (x | θ,D) = P (x | θ) (4.14)
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Figure 4.7: Visual representation of the suggested FOC modelling comparative meth-
odology.
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In other words, θ is assumed to capture all variance contained in the dataset D (Clarke

et al., 2009). Therefore, even if the complexity of a dataset is unbounded (potentially

infinite), the complexity of the model is bounded (Russell & Norvig, 2010). Mod-

els such as linear regression, Artificial Neural Networks (ANNs), and Support Vector

Reggressors (SVRs) with a linear kernel are parametric models.

In contrast to that, non-parametric models assume that the dataset distribution cannot

be defined using any finite number of parameters. For this reason, in non-parametric

models, training data, or at least a subset of them, are kept and utilised during the

prediction phase (Bishop, 2006). Therefore, the amount of information that θ can

capture grows with the number of training data points in dataset D. Decision tree

regressors, random forest regressors and SVRs with a RBF kernel are considered non-

parametric as the number of parameters grows with the size of D.

Following the above, non-parametric modelling approach can potentially provide higher-

performance models due to a reduced number of parameter assumptions. However more

training data are required and the computation cost is increased.

Finding the optimal model-derivation methodology is non-trivial as this is affected,

among others, by the quantity and quality of available data, and the nature (and also

complexity) of the problem at hand.

4.6.1.2 Multiple linear regression

Linear Regression (LR), a parametric model, constitutes the simplest regression al-

gorithm, involving a linear combination of the input variables x = (x1, . . . , xD) (Bishop,

2006):

y(x,w) = w0 + w1 x1 + . . .+ wD xD = w0 +
D∑
j=1

wj xj (4.15)
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Parameters wj , j ∈ (0, . . . , D) of Equation 4.15 can then be estimated using a Least

Squares (LS) approach as:

ŵ = argmin
w


N∑
i=1

yi − w0 −
D∑
j=1

(wj xij)

2 (4.16)

Multiple Linear Regression (MLR) constitutes an extension of LR, in cases where D > 1

(Hastie et al., 2009). LR and MLR models are often used as a baseline, against which

the performance of other models is evaluated.

4.6.1.3 Ridge & LASSO regression

Ridge Regression (RR) follows the concept of MLR but instead of using the parameters

wi derived through LS, in RR these parameters are shrunk by imposing a penalty on

the square of each parameter (Hastie et al., 2009). In this case, Equation 4.16 obtains

an additional regularisation parameter and becomes:

ŵRR = argmin
w


N∑
i=1

yi − w0 −
D∑
j=1

(wj xij)

2

+ λ
D∑
j=1

w2
j

 (4.17)

where hyperparameter λ > 0 is a user-selectable parameter that controls the amount

of shrinkage. This shrinkage helps avoid overfitting the training dataset.

Least Absolute Shrinkage and Selection Operator (LASSO) is another shrinkage method,

similar to RR, with the main difference being that the penalty is imposed on the ab-

solute value of each parameter instead of their squares. Therefore, parameters wi can

now be predicted as

ŵLASSO = argmin
w

1

2

N∑
i=1

yi − w0 −
D∑
j=1

(wj xij)

2

+ λ
D∑
j=1

|wj |

 (4.18)

An extended version of LASSO and RR are Elastic Nets, where both absolute-value

and squared regularisations are implemented concurrently, with the regularisation term
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of Equations 4.17, 4.18 which become

λ1

D∑
j=1

|wj |+ λ2

D∑
j=1

w2
j (4.19)

In the the Scikit-learn implementation (Pedregosa et al., 2011), hyperparameters α and

λ1ratio are used instead. The following equations transform λ1 and λ2 to α and λ1ratio:

α = λ1 + λ2 (4.20a)

λ1ratio =
λ1

λ1 + λ2
(4.20b)

4.6.1.4 Decision tree regressors

Decision Tree Regressors (DTRs) are a non-parametric, regression method. DTR mod-

els partition the feature space into rectangles and learn a simple (e.g. constant) model

in each of those (Hastie et al., 2009).

DTRs do not produce a continuous output in the traditional sense. Instead, these

models are trained on a training set whose outputs lie on a continuous range. Their

output ends up being the mean value of the training set observations that reside in the

same node.

One of the most common methods for tree-based regression is Classification And Re-

gression Trees (CART) (Breiman et al., 1984). In this case, the original feature space

is split into two regions, selecting the split point and dependent variable (feature) to

obtain the best model fit (Hastie et al., 2009). This is performed recursively, until the

activation of a stopping rule.

Assuming that the feature space has been partitioned into M regions, namely R1, . . . , RM ,

and that the model’s prediction at each region is cm, the DTR model will have the fol-
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lowing formulation:

y(x) =
M∑

m=1

cm 1 {x ∈ Rm} (4.21)

where 1 is the indicator function, returning 1 where the condition in brackets is true,

and 0 in any other case. Following the same optimisation problem as with MLR, the

best ĉm can be obtained through the minimisation of the fit’s LS,
∑

(yi − f(xi))
2,

obtaining as value the average of the observations lying in that region (Hastie et al.,

2009):

ĉm = ave (yi|xi ∈ Rm) (4.22)

Whilst the optimal cm values can be easily computed, the same is not true for the region

splitting. For this reason, a greedy algorithm is used recursively to find an optimal

splitting, until the stopping rule is activated. This relates to the size of the tree and is

a user-selectable parameter that relates to the data available and the complexity of the

underlying problem. More specifically, user-selectable parameters are the maximum

depth of the tree (reflecting the number of permitted splits), the minimum amount of

samples required to split an internal node, the minimum amount of samples required to

exist at each leaf , and the maximum amount of features considered when the splitting

optimisation is performed.

4.6.1.5 K-Nearest Neighbours

Nearest Neighbours is one of the simplest non-parametric models. There, given a point

xq, the algorithm identifies the k nearest neighbours distance-wise (Russell & Norvig,

2010), with the parameter k being user-selectable.

Different algorithms exist for the computation of the nearest neighbours but Scikit-

learn selects the most appropriate automatically, based on the input values. If a non-

brute-force approach is used, an algorithm hyperparameter is leaf size that affects the

speed and memory usage of the algorithm and depends on the underlying problem’s

nature.

In order to calculate the distance between xq and any other point xj , usually Minkowski
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distance Lp is used

Lp(xj , xq) =

(∑
i

|xj,i − xq,i|p
)1/p

(4.23)

with p = 1 this corresponds to the Manhattan distance and with p = 2 to the Euclidean

distance (Hu et al., 2016).

Additionally, the weighting function is user-selectable , as all k points can contribute

equally (“uniform” weights) or the weight of each contributing point can be equal to

the inverse of its distance from point xq.

4.6.1.6 Support vector machines

SVMs in their simplest form constitute a two-class classifier in cases where the two

classes are linearly separable. SVMs work by deriving the optimal hyperplane, i.e. the

hyperplane that offers the widest possible margin between instances of the two classes.

Their functionality can be extended by the introduction of a non-linear kernel, allowing

them to learn non-linear mappings, i.e., classify between non-linearly separable classes

(Theodoridis & Koutroumbas, 2009a). Depending on the properties of the selected

kernel, SVMs can either be parametric or non-parametric models.

SVMs can also be built as regressors (Smola & Schölkopf, 2004). Support Vector

Reggressors (SVRs) work in a similar way, this time trying to fit a hyperplane that

accurately predicts the target values of training samples within a margin of tolerance

ϵ. In the simpler case where a linear kernel is used, a SVR model will be of the form

f(x) = xT w + w0 (4.24)

Model parameters w are obtained through the minimisation of the function

H(w, w0) =

N∑
i=1

V (yi − f(xi)) +
λ

2
∥w∥2 (4.25)
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where function V is defined as

Vϵ(r) =


0 if |r| < ϵ

|r| − ϵ otherwise
(4.26)

and λ represents a regularisation term, similarly to, e.g. , LASSO models. This formu-

lation of V allows errors of less than ϵ to be ignored (Hastie et al., 2009).

In the case of non-linear kernels, where the regression function is approximated in terms

of a set of basis functions {hm(x)} where m = 1, . . . ,M , Equation 4.24 becomes of the

form

f(x) =
M∑

m=1

wm hm(x) + w0 (4.27)

and accordingly, Equation 4.25 becomes

H(w, w0) =

N∑
i=1

V (yi − f(xi)) +
λ

2
∥wm∥2 (4.28)

An often-used non-linear kernel is the RBF kernel, formulated as

K
(
x,x′) = exp

(
−γ∥x− x′∥2

)
(4.29)

In the ν-SVM implementation of the LIBSVM library (C. C. Chang & Lin, 2011) used

in Scikit-learn, the penalty parameter of the error term is expressed by a parameter

C, and the upper bound of the fraction of training errors is expressed by a parameter

ν.

4.6.1.7 Shallow & deep neural networks

ANNs are an interconnected assembly of simple processing elements, units or nodes,

whose functionality is loosely based on the animal neuron (Gurney, 1997). Nodes

connect to each other based on inter-unit connection strengths called weights. ANNs

can adopt different architectures that enhance their performance in machine learning
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tasks, including classification and regression. Due to this, they are extremely versatile

and can accurately model complex non-linear behaviours.

Tunable elements of a model can be grouped in two generalised categories, parameters

and hyperparameters. Parameters are elements of the model that are directly learnt

from the training data, whereas hyperparameters cannot be directly estimated from

the training data as there is no analytical formula available to calculate an appropriate

value (Kuhn & Johnson, 2013). Therefore, hyperparameters are specified manually,

often following heuristics. The main hyperparameters that affect the performance of

an ANN are the number of hidden (i.e., between input and output) layers, the number

of nodes per layer, the activation function at each layer, the batch size, and in the case

of deep ANNs the dropout rate.

The number of layers controls the depth of the ANN whilst the number of nodes per

layer controls its width. Increasing the width of a layer increases its memorisation

capabilities whereas increasing the depth of a network increases its capability of learning

features at different levels of abstraction. In both cases, a more-is-better approach is

not sensible as it would cause the model to overfit the training dataset.

Given an ANN regressor with an input layer x, a hidden layer with M nodes Zm, and

an output layer consisting of a single node, each node is of the form (Hastie et al.,

2009)

Zm = σ
(
α0m + aTmx

)
Y = f(x) = g(w0 + wTZ)

(4.30)

where Z = (Z1, Z2, . . . ZM ), σ(·) is the activation function and g(·) is the user-selectable

output function. In the case of regression, the identity function, i.e. g(x) = x, is used

as output function (Hastie et al., 2009). Currently sigmoid or ReLu (Rectified Linear

Units) are the preferred activation function choices. The term sigmoid refers to a family

of functions exhibiting a characteristic “S”-shaped curve. The formulation presented

above can easily be extended for the case of multiple hidden layers by using the output
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of each layer as input for the next, and so forth.

Dropout is applied in deep ANNs to reduce overfitting of models by randomly dropping

nodes (and their connections) from the ANN during training (Srivastava et al., 2014).

Dropout rate controls the probability of this random effect happening at each node.

An ANN with and without dropout is depicted in Figure 4.8.

(a) Standard Neural Network (b) After applying dropout

Figure 4.8: Example of a 2-layer ANN before (a) and after (b) the application of Dro-
pout. Crossed units have been dropped and the dropout rate controls the probability
of each unit dropping. Adapted from (Srivastava et al., 2014).

Batch size defines the number of training examples fed to the model before updating

its parameters. A larger batch size will require a reduced computational cost but may

converge to local minima instead of global (Goodfellow et al., 2016).

4.6.1.8 Random forest regressors

Random forests are based on the bagging meta-algorithm, where a number of de-

correlated decision tree regressors are produced based on the available training set.

Then, the output of the random forest regressor is calculated by averaging the results

of individual decision trees.
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4.6.1.9 Extra trees

Extra (extremely randomised) trees constitute a variation of Random Forest Regressors

(RFRs) where the whole dataset is used at each instance (Breiman, 1998), and where

the tree-splits are chosen completely at random.

4.6.1.10 AdaBoost

AdaBoost (adaptive Boosting) is a boosting meta-algorithm where a number of weak

learners are combined into a weighted sum that represents the final output of the

model.

4.6.2 Selection of optimal models

To test the regression model performance against the testing dataset, a number of

metrics can be employed, each emphasising different model performance aspects. These

will be analysed in the following subsections.

4.6.2.1 Explained variance

EV expresses the amount of variance that a model can capture from a given dataset.

Having the true target output y, the estimated target output may be obtained as

ŷ = f(x), where f(·) refers to any derived model. Then, explained variance EV can be

calculated as

EV (y, ŷ) = 1−
σ2
(y−ŷ)

σ2
y

(4.31)

where σx refers to the standard deviation of parameter x. The best EV score is 1.0,

obtained when σ2
(y−ŷ) → 0, with lower values being worse.

4.6.2.2 Mean Absolute Error

Mean Absolute Error (MAE) corresponds to the expected value of the absolute (L1

norm) error and can be calculated as

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| (4.32)

69



Chapter 4. Methodology & Modelling

where n refers to the number of samples in y, and yi to the I-th sample of y.

A variant of MAE is Mean Absolute Percentage Error (MAPE), expressed in a percent

form, as

MAPE(y, ŷ) =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100% (4.33)

At first glance, MAPE seems to combine the benefits of MAE with an easier inter-

pretation; in practice, a major drawback is that it becomes numerically unstable when

there exists an i such that yi = 0. However, there exists a ceiling of 100% error for

under-estimated outputs, whereas no ceiling exists for overestimation. Due to this, un-

derestimated forecasts are wrongly promoted, when comparing between models. For the

above reasons, MAPE is not a considered model comparison metric in this study.

4.6.2.3 Mean Squared Error

Following the same formulation as above, the Mean Squared Error (MSE) can be cal-

culated as

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (4.34)

MSE corresponds to the expected value of the quadratic error. Omitting the 1
n term,

MSE becomes the L2 loss function. Used as a cost function for optimisation purposes,

both yield similar results.

Comparing to MAE, MSE puts a larger weight on major deviations between true and

estimated targets. For the same reason, however, MAE remains more robust against

outliers.

4.6.2.4 Mean Squared Logarithmic Error (MSLE)

The Mean Squared Logarithmic Error (MSLE) can be calculated as

MSLE(y, ŷ) =
1

n

n∑
i=1

(ln (1 + yi)− ln (1 + ŷi))
2 (4.35)
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MSLE tends to penalise more under-predictions rather than over-predictions. Further-

more, this loss function tends to under-penalise actual-estimated differences when both

take large values; this can be of benefit when some observations momentarily take

larger-than-usual values (e.g. full speed ahead at design draft).

4.6.2.5 Median Absolute Error

The Median Absolute Error (MedAE) can be calculated as

MedAE(y, ŷ) = median (|y1 − ŷ1| , . . . , |yi − ŷi|) (4.36)

MedAE is especially robust to outliers due to only considering median performance.

4.6.2.6 Coefficient of Determination (R2)

The coefficient of determination (R2) can be computed as

R2(y, ŷ) = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(4.37)

where ȳ is the mean value of y, i.e. ȳ = 1
n

∑n
1 yi.

R2 provides a representation of the quality of future model output (predictions). The

best R2 score is 1, with lower values being worse. Furthermore, taking EV equation

(Eq. 4.31), σ2
y−ŷ can be re-written into 1

n

∑n
i=1 ϵ

2 − ϵ̄, where ϵ = y − ŷ. From that, we

observe that when ϵ̄→ 0, EV ’s equation is transformed into Equation 4.37.

4.7 FOC prediction methodology

By applying the FOC modelling comparative methodology described in Section 4.6

Extra Trees Regressors (ETRs), RFRs, SVRs, and ANNs were identified as the models

that yielded the best performance results. This is corroborated by the results of the rel-

evant case study presented and discussed in Section 6.2. Out of those, only ANNs and

SVRs offer the required generalisation capabilities required for weather routing. Com-
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paring ANNs and SVRs, ANNs yielded better results when fed with ADLM-provided

data. Therefore, in the methodology elaborated within this Section, a multi-layer (i.e.,

deep) ANN is developed for the purpose of FOC modelling. A thorough description of

the ANN model derivation is presented in Section 4.6.1.7.

4.8 FOC-based performance monitoring

methodology

Section 4.7 described an approach that, based on past voyages, learns how a vessel’s

FOC fluctuates depending on voyage particularities and ambient weather and predicts

the FOC of future voyages. As a vessel’s FOC is also affected by its hull and machinery

condition, it is sensible to only feed a model with voyages that were made with the ship

at a comparable condition. Therefore, when aiming to predict the FOC of voyages in

the near future, recent data points are used for model training as those correspond to

a relatively similar performance state.

However, if in the described approach, recent data points are substituted with data

points corresponding to optimal performance, e.g. data that were gathered just post

launching or following a hull cleaning and M/E overhaul, the resulting model will

be able to predict the vessel’s FOC assuming optimal performance. Comparing the

observed FOC against the predicted, an estimation of the vessel’s current performance

can be estimated. This approach is visually depicted in Figure 4.9.

Depending on the end goal, a number of KPIs pertinent to vessel performance, efficiency

and condition can be derived. Some of these are presented below, along with their

mathematical formulation and application practicalities.

As the KPIs discussed below are based on the FOC modelling methodology developed

in Section 4.7, a well-validated model is considered a prerequisite. Naturally, these

KPIs are calculated at different points, across multiple routes and then averaged out

over time-windows to create trendline plots of their deviation.
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Figure 4.9: Visual representation of the proposed FOC-based performance monitoring
methodology.

It should be noted that ideally, a separate model should be created for KPI purposes

following the process described in Section 4.7 whilst utilising data of optimal perform-

ance. This is due to an inherent trade-off between the FOC prediction and Route

Optimisation module requiring a FOC model that accurately predict a vessel’s beha-

viour at its current state and the KPIs requiring a model that always reflects a vessel’s

optimal behaviour as a condition/performance baseline.

4.8.1 KPI I: Vessel Sailing Performance

The ratio between measured and expected distance travelled over any amount of fuel

consumed can be used to quantify the sailing performance of a vessel.

Mathematically, this can be formulated as

KPII =
dmf − def

def
(4.38)
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where dmf refers to the measured distance over the specified fuel amount (e.g., 1 tonne)

and def to the model’s estimation.

4.8.2 KPI II: Vessel Efficiency

For the purpose of tracking a vessel’s sailing efficiency, the distance sailed using a

specified amount of energy can be used as a suitable metric.

Mathematically, this can be formulated as

KPIII =
dme − dee

dee
(4.39)

where dme refers to the measured distance over the specified energy amount (e.g. 1

MWh) and dee to the model’s estimation.

4.8.3 KPI III: Vessel Condition

To monitor the condition of the coupled hull and propeller system in the form of a KPI,

the required power can be compared to the model’s estimation. Therefore, this KPI

can be mathematically formulated as

KPIIII =
Pm − Pe

Pe
(4.40)

where Pm refers to the measured propulsion power for any sailing conditions and Pe to

the model’s estimation.

4.8.4 KPI IV: M/E Performance & Condition

In order to monitor the M/E condition and performance, a KPI based on the comparison

between the measured and recorded Specific Fuel Oil Consumption (SFOC) values. This

KPI can be mathematically formulated as

KPIIV =
SFOCm − SFOCe

SFOCe
(4.41)
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where SFOCm refers to the measured SFOC for any sailing conditions and SFOCe to

the model’s estimation.

4.9 Novel weather routing methodology

Sailing in adverse weather conditions can increase FOC and CO2 emissions by over 50%

(Prpić-Oršić et al., 2016). Furthermore, FOC constitutes approximately two-thirds of

a vessel’s voyage costs (Stopford, 2009). Therefore, the provision of optimal routing

decision support, in terms of identifying a ship route that avoids adverse weather, can

yield significant benefits in both financial and environmental terms.

Stemming from the above, the purpose of this section is to present a novel methodology

for vessel weather routing based on historical ship performance and current weather

conditions at a discretised grid of points. For this, a data-driven model that can

predict main engine FOC is developed. Subsequently, a modified version of Dijkstra’s

algorithm that has been fitted with heuristics is applied recursively until an optimal

route is obtained. This allows the creation of a vessel route that is derived based on

the vessel’s actual historical performance, increasing its robustness. The methodology

developed in this section can be used to produce more accurate and robust weather

routes, helping monitor and reduce vessels’ FOC and CO2 emissions. A flowchart

that provides a high-level description of the proposed approach is presented in Figure

4.10.

Dijkstra’s algorithm (Dijkstra, 1959) is an algorithm for identifying the shortest paths

between nodes in a static graph. Dijkstra’s algorithm in pseudocode form is presented

in Algorithm 3.

In the case of vessel weather routing, the graph on which Dijkstra’s algorithm is applied

is dynamic as the cost of moving between nodes depends on the present weather condi-

tions that vary as a function of time. For this reason, the following steps are followed

to use Dijkstra’s algorithm on a dynamic graph for weather routing:
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Algorithm 3 Dijkstra’s algorithm (Dijkstra, 1959)
Require: graph, source, target

1: Q ← [ ]
2: S ← [ ]
3: for vertex v in graph do
4: dist(v) ←∞
5: prev(v) ← NaN
6: Add v to Q
7: end for
8: dist(source) ← 0
9: while Q is not empty and u is not target do

10: u ← vertex in Q that has minimum dist value
11: remove u from Q
12: for each neighbour v of u do
13: if v in Q then
14: alt ← dist(u) + length(u, v)
15: if alt < dist(v) then
16: dist(v) ← alt
17: prev(v) ← u
18: end if
19: end if
20: end for
21: end while
22: if prev(u) is not NaN or u is source then
23: while u is not Nan do
24: Add u at the beginning of S
25: u ← prev(u)
26: end while
27: end if
28: return S
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Figure 4.10: Visual representation of the proposed weather routing methodology.

1. Looping through all graph vertices v, apply Dijkstra’s algorithm on the graph to

identify the shortest path connecting source and target vertices through vi. It

should be noted that at this point, only the shortest distance is considered and

not the vessel’s FOC over the identified paths.

2. Calculate the vessel’s FOC over the shortest paths, retain a user-selectable num-

ber of vertices vopt that yield paths with lowest FOC.

3. Looping through vopt and v, apply Dijkstra’s algorithm on the graph to identify

the shortest path connecting source and target vertices through vopti and vi.

4. Calculate the vessel’s FOC over the shortest paths, retain a user-selectable num-

ber of vertice tuples vopt that yield paths with lowest FOC.

5. Repeat steps 3–4 until no change in vopt is observed.

This is also presented in pseudocode form in Algorithm 4.
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Algorithm 4 Heuristic weather routing
Require: M_FOC, graph, source, target, ni, nl, no

1: all_paths ← [ ]
2: retained_internodes ← [ ]
3: for internode in graph do
4: Apply Dijkstra’s algorithm to identify shortest_path from source to target

through internode
5: if shortest_path is not in all_paths then
6: Add shortest_path to all_paths
7: Calculate its FOC using M_FOC
8: end if
9: end for

10: retained_internodes ← ni internodes yielding lowest FOC
11: for loop in nl do
12: for retained_internode in retained_internodes do
13: for internode in graph do
14: Apply Dijkstra’s algorithm to identify shortest_path from source to

target through retained_internode and internode
15: if shortest_path is not in all_paths then
16: Add shortest_path to all_paths
17: Calculate its FOC using M_FOC
18: end if
19: end for
20: Add ni new internodes yielding lowest FOC to retained_internodes
21: end for
22: end for
23: return no paths yielding lowest FOC
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4.10 Chapter summary

A novel data-driven framework for the enhancement of a vessel’s operational efficiency

was presented in this chapter. As described throughout the chapter, the objective

of this framework is four-pronged: a) provide machinery condition monitoring and

anomaly detection; b) compare and identify optimal FOC modelling approaches; c)

provide FOC-based performance monitoring at a vessel-level; and d) provide optimal

routing decision support. The framework describes the modelling process end-to-end,

from data collection, all the way to a novel heuristic that is proposed as an improvement

over traditional Dijkstra’s algorithm so it can used for optimal routing decision support

purposes. Moreover, special focus is put on the derivation of the necessary models

required for FOC-based performance monitoring of the vessel, and anomaly detection

of individual machinery systems. In the following chapter, case studies are carried out to

demonstrate the applicability, accuracy, and robustness of all individual methodological

elements, and by extension, that of the overall framework.
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Case Studies’ Description

This chapter presents the application of the data-driven framework elaborated in Chapter

4. Briefly recapping the novel operational efficiency enhancement framework presented

in the previous Chapter, this comprises the following key elements: (a) a novel condition

monitoring methodology; (b) a novel Fuel Oil Consumption (FOC) modelling compar-

ative methodology; (c) a FOC-based performance monitoring methodology; and (d) an

optimal routing decision support methodology. Due to the inherent inability of obtain-

ing a single dataset that can be used for all these cases, these elements are presented

and evaluated in separate case studies presented in the following sections.

5.1 Engine Condition Monitoring

The case studies elaborated in this section showcase applications based on the novel

condition monitoring methodology presented in Section 4.5. The methodology is ap-

plied on one two-stroke main engine and a four-stroke engine used for electrical power

generation. The aim of this case study is to evaluate the accuracy of the novel condition

monitoring methodology in identifying incipient machinery anomalies.

These data are obtained from the noon reports of a 439 TEU reefer. The main partic-

ulars of this vessel are presented in Table 5.1. In particular, vessel noon reports of two
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distinct time-periods are made available. One dataset contains both main engine and

auxiliary generator data spanning a two-month period (Dataset AE1) whilst the other

concerns a six-month period where only data of a single auxiliary engine (Dataset AE2)

are made available. Hence, the first dataset contains 372 data points whilst the second

contains 1095. Furthermore, there are minor differences in the sensor readings that

each dataset contains due to changes in the noon-report format. Due to confidentiality

reasons, both datasets are only presented in summarised form within this thesis.

Table 5.1: Main particulars of 439 TEU Reefer used in the Engine Condition Monit-
oring case study

Vessel particulars
Year built 1993
Ship type Reefer
TEU 439
Reefer points 70
Service speed 20.30 kn
Length overall 158.13 m
Beam 24.40 m
Depth moulded 15.37 m
Draft (summer) 10.00 m
Main engine MAN B&W 7L60MC
Engine power 12,150 kW
Number of cylinders 7
Auxiliary power 3 × 1610 kW

A diagram of the main engine and the auxiliary engine systems corresponding to the

AE1 dataset are shown in Figures 5.1 and 5.2 respectively, with the measurements

considered highlighted in bold. Accordingly, the diagram of the auxiliary engine system

contained in the AE2 dataset is depicted in Figure 5.3. It is noteworthy to mention

that in this case, Air Cooler (AC) inlet and outlet temperature measurements are not

available.

In all case studies considered herein, the diverse set of engine load conditions contained

in the relevant datasets are used to train an One Class Classification (OCC) model

capable of evaluating a number of D/Gen performance parameters to predict whether

a given machinery snapshot corresponds to a “normal” or abnormal condition. A
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Figure 5.1: Diagram of the Main Engine (M/E) system used in the main engine
condition monitoring case study. Parameter measurement locations are shown in bold.
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Figure 5.2: Diagram of the Diesel Generator set (D/Gen) system used in the auxiliary
engine AE1 dataset condition monitoring case study. Parameter measurement locations
are shown in bold.

sensitivity analysis is then performed on the model, evaluating model behaviour under

a number of simulated scenarios to ensure its robustness.

Based on the above, three case studies of interest can be identified relating to the novel

condition monitoring methodology proposed within this thesis. These are: (a) main

engine condition monitoring; (b) auxiliary engine condition monitoring based on dataset
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Figure 5.3: Diagram of the D/Gen system used in the auxiliary engine AE1 dataset
condition monitoring case study. Parameter measurement locations are shown in bold.

AE1; and (c) auxiliary engine condition monitoring based on dataset AE2.

5.1.1 Verification

Model verification is a challenging task, especially in cases where modelling is performed

at system-level, as it is generally extremely difficult or outright impossible to model

the entire possible input domain and therefore, a simulation model can only be an

approximation to the actual system regardless of effort spent on the model development

(Law, 2006). Even when a model is considered to be validated against an observable

system, in cases where the model is used for alternative configurations, the underlying

assumptions may no longer be valid (Dinwoodie, 2014).

As accurate raw data are not available, to verify the proposed methodology, sensitivity

analysis is employed, considering multiple sensitivity case scenarios. The sensitivity

analysis process examines the flexibility of the underlying methodology in identifying

dissimilarities between nominal and unclassified observations and consequently increase

the probability of abnormal condition.
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5.1.2 Main engine dataset

The variables considered as input data for this main engine case study are presented in

Table 5.2. In this case, the engine shaft revolutions are recorded, along with the thrust

bearing Lube Oil (L.O.) outlet temperature, the AC inlet and outlet temperature, the

input and output Turbocharger (T/C) air temperature, and the Exhaust Gas (EG)

temperature at each cylinder. In this case, noon reports containing 372 observations

are available, corresponding to 62 days of recording, with a 6 points per day sample

rate.

Table 5.2: Noon-report measurements considered as input for the main engine condi-
tion monitoring case study.

Component description units
Misc. shaft revolutions RPM
Lub. Oil Thrust bearing L.O. outlet temp. ◦C
Receiver scavenge air AC inlet temp. ◦C

AC outlet temp. ◦C
EG T/C inlet temp. ◦C

T/C outlet temp. ◦C
Cyl #1-7 EG temp. ◦C

As part of model training, hyperparameter optimisation is performed through the grid

search optimisation approach. Furthermore, in order to verify algorithm performance,

sensitivity analysis is performed across key variables.

5.1.2.1 Design of synthetic fault data

In order to evaluate model diagnostic performance, the testing dataset is augmented

with simulated faults (i.e. anomalies) in the form of a sensitivity analysis. To achieve

that, for each selected attribute in the testing dataset, the testing dataset is replicated

and then the values of that attribute are linearly altered in order to reach the alarm

or shutdown thresholds set by the Original Equipment Manufacturer (OEM). The two

testing datasets are then concatenated and fed to the trained condition monitoring

model as input with its output being observed. Expected model behaviour is to return

a positive distance from the hyperplane (i.e. normal behaviour) for points belonging to
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the “normal” dataset and then have that distance decrease, cross zero, and eventually

take negative values (i.e. abnormal behaviour) as the manipulated attribute exceeds

the normal range.

Depending on the selected attribute, a different manipulation range is implemented,

to reflect realistic failure conditions. The range selected per parameter are displayed

below, in Table 5.3.

Table 5.3: Deviation-from-norm ranges considered in the production of the synthetic
faults dataset for model evaluation in the main engine condition monitoring case study.

Attribute Range
Max cyl EG temp. +0◦C to +25◦C
Mean cyl EG temp. +0◦C to +25◦C
Mean cyl EG standard deviation (σ) +0◦C to +7◦C
Shaft revolutions -0 RPM to -10 RPM
T/C inlet/outlet temperature ∆ -0◦C to -40◦C
Thrust bearing L.O. outlet temp. +0◦C to +7◦C

5.1.2.2 Model training

The methodology proposed in Section 4.5 is applied in the model training phase of this

case study. Hence, sensor data corresponding to nominal operating conditions are used

for model training. These data are pre-processed by applying the steps discussed in

Section 4.3, namely: a) rejection of transients, and recording anomalies; b) feature en-

gineering (International Organization for Standardization (ISO) correction of necessary

measurements, and derivation of temperature differentials in the case of the T/C); and

c) data standardisation.

In order to evaluate different hyperparameter optimisation approaches, grid search is

applied in this case, evaluating γ and ν in the range (0, 1], and [2−15, 23] respectively,

following the recommendation of Hsu et al. (2010). A 100 × 100 grid is selected,

leading to the evaluation of 10,000 hyperparameter combinations in total. This value

is chosen as 10,000 draws can provide a set within 0.1% of optimal with 99.99% (i.e.

1 − (1 − 0.001)10000 × 100%) confidence, irrespective of grid size. Opting for 3000

combinations, as is the case for the following condition monitoring case studies, would
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have yielded similar model training results.

5.1.3 Auxiliary engine dataset AE1

The variables considered as input data for this case study are presented in Figure 5.4.

Specifically, minimum and maximum EG temperature measurements are provided, inlet

and outlet temperature of the scavenge air receiver, fresh water cooler inlet temperature,

lubricating oil inlet temperature and pressure as well as power output. As previously

mentioned, noon reports containing 372 observations are available, corresponding to

two months of recording, at a 6 points per day sample rate.

Table 5.4: Noon-report measurements considered as input for the auxiliary engine
AE1 dataset condition monitoring case study.

Component description units
Misc. Power output kW
Lub. Oil L.O. inlet temperature ◦C

L.O. inlet pressure (manometric) bar
Fresh Water Cool. Cooling Fresh Water (CFW) inlet temperature ◦C
Cylinder EG Max temperature ◦C

Min temperature ◦C

5.1.3.1 Design of synthetic fault data

Similarly to the previous condition monitoring case study presented above, synthetic

fault data are created in this case study to evaluate the model’s performance. The

same process as above is followed, i.e. the testing dataset is replicated, and augmented

by selecting one attribute each time and linearly manipulating it so that it exceeds

the normal operation limits stipulated by the OEM. In this case, the ranges applied to

each variable are presented in Table 5.5. Parameter range values are selected aiming to

transcend OEM limits in order to test the model’s anomaly detection capabilities.

5.1.3.2 Model training

As discussed in the methodology Section 4.5 to achieve the aim of this methodology,

i.e. detect anomalous machinery operation, an OCC Support Vector Machine (SVM)

model is trained using sensor data corresponding to a nominal engine condition. These
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Table 5.5: Deviation-from-norm ranges considered in the production of the synthetic
faults dataset for model evaluation in the auxiliary engine AE1 dataset condition mon-
itoring case study.

Attribute Range
L.O. inlet temp. 100% – 120%
L.O. inlet press. 75% – 100%
CFW inlet temp 100% – 130%
EG temp max 100% – 160%

data are preprocessed following the methodology outlined in Section 4.3, therefore

the following steps are implemented: a) engine transients are rejected; b) recording

anomalies are rejected; c) feature engineering is applied, namely ISO correction of

pertinent variables; and d) data standardisation is performed.

The parameters considered as input to the model have been presented in Table 5.4.

Moreover, following the formulation discussed in Section 4.5 and Subsection 4.5.1,

hyperparameters γ and ν need to be optimised in the range (0, 1], and (0,∞) re-

spectively. However, Hsu et al. (2010) propose that ν is optimised in the [2−15, 23]

range, significantly simplifying the optimisation problem. Random search is applied

for hyperparameter optimisation, considering 3000 (ν, γ) sets. 3000 iterations are

selected, as 3000 draws can provide a set within 0.5% of optimal with 99.99% (i.e.

1− (1− 0.005)3000 × 100%) confidence, irrespective of grid size.

5.1.4 Auxiliary engine dataset AE2

The variables considered for this two-month auxiliary engine case study are depicted in

tabular form in Table 5.6. This case study considers the following variables: minimum

and maximum EG temperature measurements are provided, inlet and outlet temperat-

ure of the scavenge air receiver, fresh water cooler inlet temperature, lubricating oil inlet

temperature and pressure, AC inlet and outlet temperature, as well as power output.

In this case, noon reports containing 1095 observations are available, corresponding to

182.5 days of recording, with a 6 points per day sample rate.

Following the paradigm of the case study elaborated in Section 5.1.2, grid search is
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Table 5.6: Noon-report measurements considered as input for the auxiliary engine
AE2 dataset condition monitoring case study.

Component description units
Misc. Power output kW
Lub. Oil L.O. inlet temperature ◦C

L.O. inlet pressure (manometric) bar
Fresh Water Cool. CFW inlet temperature ◦C
Cylinder EG Max temperature ◦C

Min temperature ◦C
Receiver scavenge air AC inlet temp. ◦C

AC outlet temp. ◦C

applied for hyperparameter optimisation. Additionally, the algorithm performance and

robustness is evaluated by applying sensitivity analysis across key variables.

5.1.4.1 Design of synthetic fault data

In this case study, the maximum EG temperature observed across all cylinders is linearly

increased to simulate an operating point that exhibits a fault. As in previous case

studies, the original dataset is replicated and augmented by this simulated parameter.

The sensitivity analysis of this parameter is performed following the ranges described

in Table 5.7.

Table 5.7: Deviation-from-norm ranges considered in the production of the synthetic
faults dataset for model evaluation in the auxiliary engine AE2 dataset condition mon-
itoring case study.

Attribute Range
Max cyl EG temp. +0◦C to +30◦C
Thrust bearing L.O. outlet temp. +0◦C to +7◦C

5.1.4.2 Model training

The methodology proposed in Section 4.5 is applied in the model training phase of this

case study, in line with the process performed in the previous Condition Monitoring

(CM) case studies. Sensor data corresponding to nominal operating conditions are used

for model training. These data are pre-processed by applying the steps discussed in

Section 4.3, i.e.: a) rejection of transients; b) rejection of recording anomalies; c) feature
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engineering (i.e., ISO correction of necessary measurements); and d) data standardisa-

tion.

Grid search is applied for the identification of optimal hyperparameters, evaluating γ

and ν in the range (0, 1], and [2−15, 23] respectively (Hsu et al., 2010). A 100 × 100

grid is considered, leading to the evaluation of 10,000 hyperparameter combinations in

total.

5.2 FOC modelling comparison

The two case studies contained within this section prove the applicability of the novel

FOC modelling comparative methodology described in Section 4.6, i.e. the performance

comparison of data-driven regression models in the estimation of a vessel’s FOC under

different circumstances. The aim of this case study is to identify optimal FOC modelling

approaches when different data sources exist, namely noon reports and Automated Data

Logging & Monitoring (ADLM) systems.

The first case study concerns data data acquired from a reefer ship (Vessel 1 – V1)

whilst the second is based on data from a Newcastlemax Bulk carrier (Vessel 2 – V2).

While Vessel 2 is equipped with an ADLM system, in the case of Vessel 1, noon-report

data are used. Similar input parameters are considered for both vessels (Table 5.8),

albeit at different sampling rates. The main particulars of both vessels are presented

in Table 5.9.

To increase the transparency of the included case studies, the exact roadmap followed

to obtain the results is as follows

1. Dataset is loaded.

2. Unneeded features are discarded.

3. Engine transients are identified and discarded.

4. Observations containing Not a Number (NaN) elements are identified and dis-
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Table 5.8: Dataset measurements considered in the FOC modelling comparison case
study. V1 refers to the noon-report dataset and V2 refers to the ADLM dataset.

# Name V1 Units V2 Units
1 Vessel speed knots knots
2 Engine speed rev/min rev/min
3 Sea current i knots knots
4 Wind speed Beauford scale m/s
5 Wind direction i 12 direction bins degrees
6 Daily M/E FOC t/day t/day
7 Daily distance run nm nm
8 Sea state Douglas sea scale mii

9 Sea direction i 12 direction bins degrees
10 Slip % %
11 Draft fore m m
12 Draft aft m m

i relative to vessel ii wave height

carded.

5. Extract additional features (e.g. FOC, current, distance run, slip).

6. Discard points where slip ≤ 0, caused by round-off errors.

7. Split dataset into training and test set.

8. Scale training set and utilise same scaling parameters for test set.

9. Populate list of potential models

10. For every model in list of models implement k-folding cross-validation and

(a) train using default Scikit-learn hyperparameters.

(b) train using hyperparameter optimisation.

i. identify search space for each hyperparameter.

ii. run random search over the search space and evaluate results.

90



Chapter 5. Case Studies’ Description

Table 5.9: Main particulars of two vessels considered in the FOC modelling com-
parison case study. V1 refers to the noon-report dataset and V2 refers to the ADLM
dataset.

Vessel particulars V1 V2
Year built 2016 2016
Ship type Reefer Bulk Carrier
TEU 1100 -
Length overall 147.00 m 299.88 m
Beam 24.00 m 50.00 m
DWT 13,000 tons 208,000 tons

Main engine MAN 6S40ME-B MAN 6G70ME-C
Engine power 6900 kW 17,500 kW
Number of cylinders 6 6
Data source Noon reports ADLM

(c) Using optimal hyperparameters, train a model using the whole training set

(no validation).

(d) Evaluate model results on test set and compute performance metrics.

11. Evaluate all models based on metrics and reach overall conclusions.

Both vessel datasets are filtered to only include observations with the M/E speed being

above the OEM lowest continuous running limit. This filtering is applied in order

to only take into account the data points that correspond to relatively steady state

conditions, without significant transient instances, e.g. manoeuvring.

The datasets are split 80–20% for training and testing data. While this value is different

compared to the 70–30% percent split performed in the case studies of Section 5.1.3,

it remains in line with data science best practices, when applied to relatively small

datasets.

Datasets are then normalised following the steps elaborated in Section 4.3 in order to be

used as training input for all relevant models. Each model are then trained using the

default Scikit-learn (Pedregosa et al., 2011) hyperparameters. Additionally, random

search over hyperparameters pertinent to each model is performed to identify optimal

values.
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5.2.1 Model hyperparameter optimisation & selection of optimal
model

Considering the benefits provided by random search, a random search optimisation loop

is set-up for all models. 1000 iterations are used for the hyperparameter optimisation

of all models.

In order to reasonably ensure that selected hyperparameter values are actually close to

optimal and not merely overfitting the model, cross-validation is implemented in the

form of k-folding. Using the same technique for all models, allows the identification

of a model that performs best while at the same time ensuring good generalisation

capabilities.

In order to identify optimal models and hyperparameters, the coefficient of determ-

ination (R2) (Glantz & Slinker, 2000) is evaluated for each model produced at each

fold. For the evaluation of models post-training, a number of metrics are calculated,

as discussed in Section 4.6.2. The hyperparameters that are considered for each model

and their range of values are presented in Table 5.10.

Moreover, model training is repeated 10 times and timed, so that an estimation of

the training time of each model can be obtained. The times recorded for each model

and dataset are averaged for the two datasets in order to get one common, consistent

result.

The results of this case study will allow the identification of optimal models for the

prediction of vessel FOC depending on the data source. Moreover, model accuracy

differences based on data source will be quantified.

5.3 Vessel FOC prediction & weather routing

This case study concerns a 160,000 tonne DWT crude oil tanker sailing between the

Gulf of Guinea and the Marseille anchorage, and can be extended as-is to any other

ship type and voyage. This above route is selected as it represents a typical voyage
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Table 5.10: Hyperparameters and relevant range considered for each model in the
FOC modelling comparison case study.

Model Hyperparameters
tuned

Least Absolute Shrinkage and Selection Operator (LASSO) λ ∈
[
10−7, 105

]
Ridge Regression (RR) λ ∈

[
10−7, 105

]
Elastic net α ∈

[
10−7, 105

]
,

λ1ratio ∈ [0, 1]
Decision Tree Regressor (DTR) max_tree_depth∈

[
10−7, 105

]
,

min_samples_split∈ [2, 20] ,
min_samples_leaf∈ [3, 20] ,
max_features∈ [3, 10]

Random Forest Regressor (RFR) n_estimators∈ [1, 200] ,
min_samples_split∈ [2, 20]

K-Nearest Neighbours (KNN) n_neighbours∈ [1, 50] ,
weights∈ [uniform,distance] ,
leaf_size∈ [2, 100]

Support Vector Reggressor (SVR) γ ∈ 2[−15,3],

C ∈ 2[−5,5],
ν ∈

[
10−4, 1

]
Extra Trees Regressor (ETR) n_estimators∈ [1, 100] ,

max_features∈
[
10−5, 1

]
,

min_samples_split∈
[
10−5, 1

]
,

max_samples_leaf∈
[
10−5, 0.5

]
Artificial Neural Network (ANN) activation∈ [relu, tanh] ,

alpha∈
[
10−8, 10−1

]
,

hidden_layer_sizes∈ [1, 50] or [1, 50; 1, 50]

of the aforementioned vessel. The aim of this case study is to (a) ascertain that the

FOC of this vessel can be accurately predicted under varying sailing and operational

conditions; and (b) demonstrate that the novel weather routing methodology proposed

in Section 4.9 can accurately identify optimal sailing routes for the investigated voyage.

The principal particulars of the vessel are displayed in Table 5.11.

Data pertaining to 10 ship voyages are provided for FOC model training and testing.

In total, 2713 data points are obtained after merging all provided information. The

parameters obtained are presented in Table 5.12.

The ocean analysis & forecast data used for weather routing contains measurements 7

– 14 of Table 5.12 at 368 ocean locations (Figure 5.4) corresponding to a graph that

encompasses the source and target navigation points at a resolution of 1◦ in both latit-

ude and longitude at a time frequency of 3 hours. Intermediate points are interpolated
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Table 5.11: Main particulars of vessel considered in the vessel FOC prediction and
weather routing case study.

Vessel particulars
Year built 2016
Ship type Crude oil carrier
Length overall 274 m
Beam 48.00 m
DWT 159,000 tons

Main engine MAN 6G70ME-C
Engine power 16,600 kW
Number of cylinders 6
Data source ADLM

in space and time.

The overall architecture of the developed ANN is depicted in Figure 5.5 and the search

space of the model’s hyperparameters in Table 5.13. This model is selected as it is one

of the best performing models for this application, as identified in Section 6.2. Tree-

based models (e.g. ETRs, RFRs) are not considered due to their poor extrapolation

abilities. Moreover, due to the ample number of data points available in this case study,

more complex ANN architectures are investigated. Indicatively, the existence of hidden

layers 3 and 4 depends on the selected value of network depth. Accordingly, the width,

dropout rate, and activation function are considered individually for each layer.

Due to the high computational cost of testing every possible combination of hyper-

parameters to identify the optimal, an optimisation algorithm is used. In this case, a

Tree-structured Parzen Estimators (TPEs) approach is applied (Bergstra et al., 2011)

due to the increased computational cost of model training.

Any number of available measurements xi are used as model input and the model’s

output is the FOC for that route. It should be noted at this point that the same input

measurements used at training must also be available at execution time for the model

to work as expected.

Following FOC model training, the weather routing methodology is applied for two
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Figure 5.4: Visual representation of graph points where weather information is avail-
able in the vessel FOC prediction and weather routing case study.
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Table 5.12: Overview of vessel sailing dataset parameters used for model training in
the vessel FOC prediction and weather routing case study.

Name Units
Draft fore m
Draft aft m
Engine speed rev/min
Engine FOC kg/hr
Engine power kW
Vessel over ground speed knots
Eastward current knots
Northward current knots
Primary swell wave significant height m
Secondary swell wave significant height m
Primary swell wave direction degrees
Secondary swell wave direction degrees
Wave significant height m
Wave direction degrees

Table 5.13: ANN hyperparameter search space for the vessel FOC prediction and
weather routing case study. 2,3 or 4 hidden layers of varying width were considered,
along with different dropout rates, activation functions, and batch sizes.

Hyperparameter Search space
Network depth {2, 3, 4}
Layer width {8, 16, 32, 64, 128, 256, 512}
Dropout rate [ 0, 1)
Activation function {ReLU, Sigmoid}
Batch size {32, 64, 128}

case studies where the vessel is sailing at two speeds, 11 knots and 14.5 knots. The

aforementioned vessel speeds refer to two typical scenarios of vessel speed whilst fully

ladden, and in ballast condition.

5.4 FOC-based performance monitoring

The case study elaborated within this Section stems from the FOC-based performance

monitoring methodology described in Section 4.8. This methodology aims to provide

vessel performance monitoring using readily available data, including noon reports.

Specifically, a data-driven FOC predictive model is built based on data obtained just
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Figure 5.5: Visual representation of the developed ANN architecture for the vessel
FOC prediction and weather routing case study. Coloured boxes represent different
hidden layers, boxes with straight or obtuse-angled lines represent activation functions
and a Σ inscribed in a circle represents the summation function.

after the launching of the investigated vessel and the model results are compared to

the vessel’s actual performance in terms of FOC.

The vessel considered in this case study is a 1100TEU reefer vessel, sister vessel of the

one considered in Section 5.2. Its main particulars are presented in Table 5.14.

Table 5.14: Main particulars of vessel considered in the FOC-based performance
monitoring case study.

Vessel particulars
Year built 2016
Ship type Reefer
TEU 1100
Length overall 147.00 m
Beam 24.00 m
DWT 13,000 tons

Main engine MAN 6S40ME-B
Engine power 6900 kW
Number of cylinders 6
Data source Noon reports

A time period of 27 months is considered at a daily frequency, totalling 823 data

points.

For regression, two models are applied: a Linear Regression (LR) model as a baseline,

and a SVR model including the optimisation of its hyperparameters. These models are
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selected due to their overall simplicity whilst providing good results, as observed in the

case study of Section 5.2. Moreover, as the datasets used in this case study need to be

short in order to reflect the examined vessel’s condition, models that can perform well

using a limited amount of training data points were required.

Hyperparameter optimisation is performed through cross validation, with k = 10 folds

and 1000 iterations per fold. Similarly to previous case studies, the guidelines of Hsu

et al. (2010) are applied, and random search is applied, considering C values in the

range [2−5, 25], γ values in the range [2−15, 23], and ν values in the range [0, 1].

Both models are trained using data from the first six months following the vessel’s

launch and evaluated at three distinct time points: seven months post-launch, i.e. the

time just following the window used for model training; eighteen months post-launch;

and twenty-five months post launch. In all time points, a full month is evaluated by

comparing the model’s output with the actual vessel FOC during the same period.

5.5 Chapter summary

This chapter presented an overview of the case studies considered for the evaluation and

validation of the operational efficiency enhancement framework proposed in Chapter

4. This framework comprises four key methodologies, namely: (a) the novel condi-

tion monitoring methodology; (b) the novel FOC modelling comparative methodology;

(c) the FOC-based performance monitoring methodology; and (d) the optimal rout-

ing decision support methodology. The condition monitoring methodology aims to

provide anomaly detection using machinery process data. Accordingly, the FOC mod-

elling comparative methodology, aims to identify optimal FOC modelling architectures

depending on the available data sources. The weather routing methodology aims to

provide data-driven optimal routing decision support for in a variety of operating con-

ditions. the FOC-based performance monitoring methodology aims to provide vessel

performance monitoring using readily available data, including noon reports. The case

studies elaborated in this section reflect these four case studies and are designed to
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exhibit the capabilities of the underlying framework in realistic operating conditions.

Following the above, the next Chapter presents and discusses the results based on the

case studies of this Chapter.
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Case Studies’ Results &

Discussion

This chapter presents and discusses the results obtained from the case studies elab-

orated in Chapter 5. Initially, the results of the main and auxiliary engine condition

monitoring case study detailed in Section 5.1 are presented in Section 6.1. Following

that, the results obtained from the Fuel Oil Consumption (FOC) modelling comparison

case study of Section 5.2 are demonstrated in Section 6.2. Subsequently, based on the

evaluation of the results of the FOC modelling comparison case study, the results of

the vessel FOC prediction & weather routing case study of 5.3 are presented in Section

6.3. Furthermore, the results of the FOC-based performance monitoring case study

originally presented in Section 5.4 are presented in Section 6.4. Finally, an overall dis-

cussion on the results presented and individually discussed in this chapter is provided

in Section 6.5, followed by the Chapter summary in Section 6.6.

6.1 Engine Condition Monitoring

This section presents and discusses the results obtained for the engine condition monit-

oring case study originally described in Section 5.1. Three subsections will follow, each
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elaborating on one of the three cases considered in this case study, i.e. (a) main engine

condition monitoring; (b) auxiliary engine condition monitoring based on dataset AE1;

and (c) auxiliary engine condition monitoring based on dataset AE2.

When model training is performed using a training dataset that only includes a limited

subset of vessel’s operating conditions, model output given a specific input can be

seen as the probability of this input being identified as abnormal. However, if model

training is performed using a dataset that covers most vessel’s operating conditions and

has been identified by the OEM or operator as satisfactory, model output can be seen

as a metric of system health. In parallel, assuming a dataset that covers satisfactorily

most of the vessel’s operating conditions, the sensitivity analysis performed can be seen

as an indicative tolerance between current conditions and a soft bound of acceptable

performance. In this sense, model provides an estimation of how much a parameter

deviation indicates performance degradation. The probability warning/safety limit,

beyond which maintenance actions are required, is vessel and system specific. This

limit is identified depending on stakeholders’ interpretation and requirements.

Accordingly, a sufficiently large and diverse testing dataset confirms the accuracy of the

trained model. Furthermore, such a dataset confirms that a good fit has been achieved

without the occurrence of over-fitting.

6.1.1 Main engine dataset

Discarding 131 Not a Number (NaN) values and outliers following the process elab-

orated in Section 4.3.2, 243 data points are available. Furthermore, in this case a

70%–10%–20% three-way split between training, validation, and testing is performed.

Validation refers to the part of the dataset used to evaluate the performance of different

hyperparameters while a model is trained using the training dataset. This happens in

order to ensure that the testing dataset remains unseen until the final evaluation of the

model so that its generalisation capabilities can be evaluated. This process produced

a training set containing 170 observations, while the validation and testing datasets

contained 24 and 49 data points respectively.
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The descriptive statistics of the training dataset used in this case study is shown in

Table 6.1, where the mean, minimum and maximum values of each feature are presen-

ted, along with the standard deviation and the values at different quantiles. These

values 1 constitute a factual representation of the dataset used and are presented to

provide key details of the dataset, as the whole dataset cannot be presented due to con-

fidentiality reasons. Statistical calculations such as those contained in this Table only

have descriptive power and cannot be used to make predictions, contrary to Machine

Learning (ML) models developed and presented in this case study.

Table 6.1: Descriptive statistics of the training part of the dataset used in the main
engine condition monitoring case study. 25, 50, and 75% rows correspond to the relevant
percentiles.

Engine Air Cooler (AC) inlet AC outlet Cyl #1 Exhaust Gas (EG) Cyl #2 EG Cyl #3 EG Cyl #4 EG
Speed (RPM) temp. (◦C) temp. (◦C) temp (◦C) temp (◦C) temp (◦C) temp (◦C)

count 243 243 243 243 243 243 243
mean 30.52 44.56 140.58 44.52 360.21 361.28 362.00
std 17.26 3.02 11.24 3.02 8.94 9.08 8.77
min 1.16 40.00 124.00 40.00 335.00 330.00 340.00
25% 18.12 42.00 134.00 42.00 355.00 355.00 355.00
50% 30.91 44.00 137.00 44.00 360.00 360.00 360.00
75% 44.37 45.00 142.00 45.00 365.00 370.00 370.00
max 61.83 56.00 167.00 56.00 380.00 380.00 380.00

Cyl #5 EG Cyl #6 EG Cyl #7 EG Turbocharger (T/C) inlet T/C outlet Thrust bearing Lube Oil (L.O.)
temp (◦C) temp (◦C) temp (◦C) temp (◦C) temp (◦C) temp (◦C)

count 243 243 243 243 243 243
mean 360.68 361.50 363.70 354.94 404.52 2.26
std 8.80 9.53 7.48 8.26 9.68 0.07
min 345.00 338.00 350.00 340.00 385.00 2.00
25% 355.00 355.00 360.00 350.00 395.00 2.20
50% 360.00 360.00 360.00 355.00 400.00 2.30
75% 366.25 365.00 370.00 360.00 410.00 2.30
max 385.00 380.00 380.00 380.00 430.00 2.40

In Figure 6.1, the results of grid search employed to determine the optimal values of

hyperparameters ν and γ is shown. Lighter colours correspond to better performance

and conversely. Values towards the manually-imposed lower bounds of both hyper-

parameters seem to return better results, with optimal performance being obtained

for ν = 0.250 and γ = 0.050. This is justified by the relative lack of complexity in

training data as they all correspond to nominal condition. Meanwhile, this highlights

the importance of setting suitable upper and lower limits during grid search, taking

into consideration the nature of training data.

In Figures 6.2 and 6.3 model performance is presented in cases where the maximum

or mean exhaust gas temperature is increased. In both cases, an increase of over

+15◦C returns a probability of abnormality of about 60%, with a probability of 100%
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Figure 6.1: Contour plot depicting hyperparameter optimisation results for different
combinations of (ν, γ) in the main engine condition monitoring case study. The Mat-
thews Correlation Coefficient (MCC) score achieved in K-folding is depicted by the
colour of the contours.
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Figure 6.2: Max cylinder exhaust gas temperature sensitivity analysis in the main
engine dataset condition monitoring case study. Probability of the measurements being
identified as abnormal for increasing max cylinder exhaust gas temperature measure-
ments is displayed.

Accordingly, in Figure 6.4 model performance in an increase of standard deviation

between exhaust gas temperature measurements of several cylinders is presented. El-

evated exhaust gas temperature deviation is a known abnormality metric. Again, an

increase of standard deviation of over +5◦C returns a probability of abnormality of

about 80%, with a probability of of 100% at +7◦C.
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Figure 6.3: Mean cylinder exhaust gas temperature sensitivity analysis in the main
engine dataset condition monitoring case study. Probability of the measurements being
identified as abnormal for increasing mean cylinder exhaust gas temperature measure-
ments is displayed.

+0 +1 +2 +3 +4 +5 +6 +7
Increase in cylinde  exhaust gas tempe atu e st. dev. ( (C)

0%

20%

40%

60%

80%

100%

Pr
ob

. o
f i

de
nt

ifi
ca

tio
n 

as
 a

bn
or

m
al

Figure 6.4: Cylinder exhaust gas temperature standard deviation sensitivity analysis
in the main engine dataset condition monitoring case study. Probability of the meas-
urements being identified as abnormal for increasing cylinder exhaust gas temperature
measurements standard deviation is displayed.

Figure 6.5 exhibits model performance while shaft RPM are dropping. While on its

own, an RPM drop does not constitute a fault pattern but a mere operating profile

shift, as all other measurements remain as in nominal condition at reduced RPM this

scenario represents an abnormality. This can also be seen as a simulation where all

other measurements are increased for constant RPM.
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Figure 6.5: RPM sensitivity analysis in the main engine dataset condition monitoring
case study. Probability of the measurements being identified as abnormal for decreasing
RPM measurements is displayed.

Figure 6.6 presents model performance as the differential between T/C inlet and outlet

temperature decreases. A decrease in this differential corresponds to a reduction in

T/C performance as less energy is extracted out of exhaust gas.
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Figure 6.6: T/C inlet/outlet temperature differential sensitivity analysis in the main
engine dataset condition monitoring case study. Probability of the measurements being
identified as abnormal for decreasing T/C inlet/outlet temperature differential meas-
urements is displayed.

Figure 6.7 another interesting aspect of modelling at system level. Thrust bearing

temperature measurement value is a variable that denotes abnormalities on its own,

without requirement of modelling at system level. However, even in system-wide mod-
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elling, deviating values are correctly detected, with an increasing probability of abnor-

mality.
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Figure 6.7: Thrust bearing temperature sensitivity analysis in the main engine dataset
condition monitoring case study. Probability of the measurements being identified as
abnormal for decreasing thrust bearing temperature measurements is displayed.

6.1.2 Auxiliary engine dataset AE1

Similarly to the above case studies, the discarding of 88 NaN values and outliers yielded

284 data points. Following the data splitting approach applied in the case study of

Section 5.1.2, 199 observations are used for model training, 28 for validation and 57 for

testing. Accordingly, the descriptive statistics of the training dataset of this case study

is shown in Table 6.2.

Table 6.2: Descriptive statistics of the training part of the dataset used in the auxiliary
engine AE2 dataset condition monitoring case study. 25, 50, and 75% rows correspond
to the relevant percentiles.

Power L.O. inlet L.O. inlet Cooling Fresh Water (CFW) inlet EG temp. EG temp. AC outlet AC inlet
(kW) temp. (◦C) press. (bar) temp (◦C) max (◦C) min (◦C) temp (◦C) temp (◦C)

count 199 199 199 199 199 199 199 199
mean 279.05 660.89 63.85 4.43 73.55 321.20 142.47 43.87
std 6.08 41.25 1.24 0.13 2.47 8.77 12.05 2.51
min 260.00 500.00 61.00 4.20 67.00 300.00 124.00 41.00
25% 280.00 650.00 63.00 4.30 72.50 320.00 134.00 42.00
50% 280.00 650.00 64.00 4.40 75.00 320.00 138.00 43.00
75% 280.00 700.00 65.00 4.50 75.00 330.00 158.00 46.00
max 300.00 750.00 66.00 4.70 77.00 330.00 164.00 49.00

In Figure 6.8, the results of of grid search employed to determine the optimal values of

hyperparameters ν and γ in the case of Diesel Generator is shown. As in the first case
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study, lighter colours correspond to better performance and conversely. Values towards

the manually-imposed lower bounds of both hyperparameters seem to return better

results, with optimal performance being obtained for ν = 0.250 and γ = 0.069.
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Figure 6.8: Contour plot depicting hyperparameter optimisation results for different
combinations of (ν, γ) in the auxiliary engine AE2 dataset condition monitoring case
study. The MCC score achieved in K-folding is depicted by the colour of the contours.

In Figure 6.9 model performance in increasing maximum exhaust gas temperature is

presented. An increase of over +15◦C returns a probability of abnormality of about

60%, with a probability of 100% at +30◦C.
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Figure 6.9: Max exhaust gas temperature sensitivity analysis in the auxiliary engine
AE2 dataset condition monitoring case study. Probability of the measurements being
identified as abnormal for increasing max exhaust gas temperature measurements is
displayed.

In Figure 6.10 model performance at detecting anomalies when increasing L.O. outlet
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temperature is presented. An increase of over +2◦C returns a probability of abnormality

of about 50%, with a probability of 100% at +5◦C.
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Figure 6.10: Thrust bearing LO temperature sensitivity analysis in the auxiliary en-
gine AE2 dataset condition monitoring case study. Probability of the measurements
being identified as abnormal for increasing thrust bearing LO temperature measure-
ments is displayed.

6.1.3 Auxiliary engine dataset AE2

This section presents and discusses the results obtained through the pre-processing,

model training, and relevant case studies introduced in Section 5.1.3.

As the auxiliary engine examined in this case study is not always operational, 291 points

with NaN values are excluded from the analysis carried out, following the pre-processing

methodology, as described in Section 4.3.2. Following that, 804 points remained avail-

able. Next, the outlier rejection step of this pre-processing methodology is applied,

removing an additional 35 data points.

In order to ensure results fairness and avoid the introduction of unnecessary bias in the

case study, the remaining dataset is split into training and testing before the training

part is further examined to make certain that the testing part remains unseen. In this

case, a 70%− 30% dataset split is selected for training and, respectively, testing. This

is chosen arbitrarily, following data science standard practices that apply to relatively

small datasets. In larger datasets, the amount of data points retained purely for testing

purposes is reduced.
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The descriptive statistics of the training dataset is shown in Table 6.3, where the mean,

minimum and maximum values of each feature are presented, along with the standard

deviation and the values at different (25, 50, and 75%) quantiles.

Table 6.3: Descriptive statistics of the training part of the dataset used in the auxiliary
engine AE1 dataset condition monitoring case study. 25, 50, and 75% rows correspond
to the relevant percentiles.

Power L.O. inlet L.O. inlet CFW inlet EG temp. EG temp.
(kW) temp. (◦C) press. (bar) temp (◦C) max (◦C) min (◦C)

count 538 538 538 538 538 538
mean 652.23 64.05 4.50 72.34 305.45 285.69
std 51.94 1.48 0.14 2.92 13.20 12.82
min 500.00 60.00 4.10 64.00 270.00 260.00
25% 600.00 63.00 4.40 69.00 300.00 280.00
50% 650.00 64.00 4.50 73.00 300.00 280.00
75% 700.00 65.00 4.60 75.00 320.00 300.00
max 800.00 68.00 4.90 77.00 330.00 310.00

In Figure 6.11, the results of the random search employed to determine the optimal

values of hyperparameters ν and γ in the model trained on the Diesel Generator set

(D/Gen) dataset is presented, with a heatmap denoting the MCC values obtained in

the validation phase and dots depicting the hyperparameter combinations that are

tested. Darker colours correspond to better MCC performance on the validation data-

set; and conversely. Lower values of ν, especially in the (0, 0.2) range and γ values in

the (10−1, 10−4) range yielded higher MCC values on validation. Higher MCC values

indicate better model performance at accurately classifying data points as normal or

abnormal. In order to obtain this heatmap, the One Class Classification (OCC) Sup-

port Vector Machine (SVM) model is trained for 3000 randomly selected (ν, γ) tuples

from the relevant range discussed in Section 5.1.3. Through that, it is found that the

optimal (ν, γ) tuple is (0.0049, 0.0016) for this case study.

In Figure 6.12, model performance in increasing CFW inlet temperature is presen-

ted. Normal behaviour (approximately first 230 points) of the CFW inlet temperature

are associated within the 68 − 76 ◦C range. Concurrently, the Exponential Weighted

Moving Average (EWMA) of the model output is steadily positive, therefore correctly
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Figure 6.11: Contour plot depicting hyperparameter optimisation results for different
combinations of (ν, γ) in the auxiliary engine AE1 dataset condition monitoring case
study. Tested combinations are shown in dots and the MCC score achieved in K-folding
is depicted by the colour of the contours.

identifying these points as normal.

As the CFW inlet temperature starts to increase, the distance of the relevant points

from the hyperplane defining “normality” starts decreasing, eventually turning neg-

ative (i.e. points being classified as abnormal) slightly before the temperature crosses

the alarm threshold. By the time the CFW inlet temperature reached the Original

Equipment Manufacturer (OEM) shutdown threshold, the distance from hyperplane

has taken a large negative value, with those points being labelled as abnormal with a

high confidence. Based on the above results, it is inferred that the OCC SVM model

implemented can accurately identify deviating patterns in a time-series dataset, and

reflect that in its normality prediction.

In Figure 6.13, the same process is repeated for the L.O. inlet pressure measurement.

Analysing the testing dataset, normal measurement range is within the 4.2 − 4.7 bar

range, with the OEM alarm threshold at 4.0 bar and the shutdown threshold at 3.5

bar.

As the L.O. pressure starts dropping, it is observed that the distance of the relevant

points from the hyperplane decreases, and eventually becomes negative slightly before

the pressure drops beyond the alarm threshold. This manifests the model’s ability to
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Figure 6.12: CFW inlet temperature sensitivity analysis in the auxiliary engine AE1
dataset condition monitoring case study. Actual distance from hyperplane (dark) and
temperature measurements (light) are shown in thin, dotted lines and the EWMA-
filtered values in a thick, solid line. Positive distance from hyperplane signifies points
identified as “normal”; and conversely. A larger distance conveys a higher prediction
confidence.

identify incipient deviations from the “normal” pattern that is learnt during training.

Similarly to the preceding CFW inlet temperature case study, as the pressure reaches

the OEM shutdown threshold, the corresponding points are assigned a large negative

distance value.

0 100 200 300 400
4-hour time steps

0.100
0.075
0.050
0.025
0.000
0.025
0.050
0.075
0.100

di
st

an
ce

 fr
om

 h
yp

er
pl

an
e

3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00

LO
 in

le
t p

re
ss

ur
e 

(b
ar

)

alarm threshold (bar)

shutdown threshold (bar)

Figure 6.13: L.O. inlet pressure sensitivity analysis in the auxiliary engine AE1
dataset condition monitoring case study. Actual distance from hyperplane (dark) and
pressure measurements (light) are shown in thin, dotted lines and the EWMA-filtered
values in thick, solid line. Positive distance from hyperplane signifies points identified
as “normal”; and conversely. A larger distance conveys a higher prediction confidence.

Complimentary to the L.O. inlet pressure sensitivity analysis presented above, the
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same methodology is repeated for the L.O. inlet temperature in Figure 6.14. For this

measurement, the OEM only provides the shutdown threshold, at 75◦C and normal

measurement range at the 62− 66◦C range.

In this case, it can be observed that as the L.O. inlet temperature increases towards the

shutdown threshold, the distance from the separating hyperplane becomes increasingly

negative. Following the results of the previous two case studies where it is observed

that the alarm threshold is crossed at values where the hyperplane distance is approx-

imately zero, a reversed process could be employed to identify an alarm threshold at

approximately 70◦C for L.O. inlet temperature measurements.
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Figure 6.14: L.O. inlet temperature sensitivity analysis in the auxiliary engine AE1
dataset condition monitoring case study. Actual distance from hyperplane (dark) and
temperature measurements (light) are shown in thin, dotted lines and the EWMA-
filtered values in a thick, solid line. Positive distance from hyperplane signifies points
identified as “normal”; and conversely. A larger distance conveys a higher prediction
confidence.

Finally, in Figure 6.15, the sensitivity analysis for the maximum cylinder exhaust

port gas temperature measurement is demonstrated. This measurement is utilised

as the measurements for all cylinders are aggregated on board the vessel and only their

max/min values are transported on shore. OEM provides an overall exhaust gas tem-

perature alarm threshold at 480◦C while measurement range observed in the testing

dataset is at 300− 320◦C.

In this case, it is observed that as the maximum exhaust gas temperature increases, the
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distance from hyperplane decreases and becomes negative. However, at this case study

the deviation that triggers the distance-from-hyperplane drop is detected at approxim-

ately two-thirds of the actual alarm threshold. This presents the main shortcoming of

the proposed methodology, i.e. the fact that the normality predicted by the model is

affected by the range of inputs at the training stage. This effect is mostly present in the

case of the D/Gen exhaust gas temperature, as this measurement correlates majorly

with engine operating conditions whereas all other measurements examined fluctuate

in a OEM preset range through the operation of coolers and pumps. If only a sub-

set of normal operating conditions are provided, the model will focus on that range,

identifying anything beyond that as abnormal. However, this can be easily resolved by

re-training the model when the range of normal operating conditions is modified.
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Figure 6.15: Maximum exhaust gas temperature sensitivity analysis in the auxiliary
engine AE1 dataset condition monitoring case study. Actual distance from hyperplane
(dark) and temperature measurements (light) are shown in thin, dotted lines and the
EWMA-filtered values in a thick, solid line. Positive distance from hyperplane signi-
fies points identified as “normal”; and conversely. A larger distance conveys a higher
prediction confidence.

6.1.4 Key findings

This case study is based on the novel condition monitoring methodology described in

Section 4.5, for the monitoring and detection of operating anomalies in ship machinery

using measured process data. For this, an OCC SVM model is trained using a data-

set corresponding to nominal behaviour of marine machinery under varying operating
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conditions, with modelling selections being extensively discussed. The main findings of

this application are summarised below:

The developed models are able to accurately discern between nominal and abnormal

machinery condition, providing a suitable basis for an incipient-fault detection system.

Furthermore, due to limited amount of assumptions, this methodology can be applied to

a diverse set of machinery. This is corroborated by the fact that in the three applications

presented above, different systems and sensor data are used depending on the inherent

data availability, without affecting the accuracy of the models.

Contrary to other condition monitoring approaches, model training only requires refer-

ence (i.e. “nominal”) data, majorly simplifying the process. Data requirements can be

satisfied from noon-report data, significantly decreasing, or even avoiding, Capital Ex-

penditure (CAPEX) costs traditionally attached to condition monitoring applications.

Moreover, the knowledge and experience accumulated by operators can be leveraged

to ensure the normality of the points fed to the model at training time. In this case,

the term “normal” is situation- and operator-specific as it relates, among others, to

different vessel baseline conditions and maintenance budgets.

Accordingly, comparing the proposed OCC ML methodology with conventional stat-

istical techniques, this approach allows the prediction of the current condition whereas

traditional statistial techniques would only have descriptive power, without the ability

to provide insights. In the same vein, given that this approach is based on the de-

rivation of a suitable hyperplane that encapsules normal data, adapting the model to

account for changes in what is considered normal due to overall vessel deterioration can

be resolved by retraining the model.

Besides, using the EWMA filter, the underlying methodology becomes dynamic as

previous data points are taken into consideration when predicting the normality of new

data points. Through the performed sensitivity analysis, model alarm thresholds can be

obtained. Comparing these values with the ones provided by OEMs, a significant degree

of similarity is observed. Even in cases where only a limited amount of OEM thresholds
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are available, relevant thresholds can be suggested by analysing model output.

6.2 FOC modelling comparison

This section presents and discusses the results obtained from the case study originally

described in Section 5.2. The aim of this case study is the identify optimal FOC model-

ling approaches when different data sources exist, namely noon reports and Automated

Data Logging & Monitoring (ADLM) systems.

The same amount of training points are selected from both datasets, in order to keep

them similar, thus avoiding a biased comparison. Aiming for an approximately 80-

20% split in training and testing data, for both cases 603 training points are retained,

with the remaining 20% being used for testing. Following their pre-processing, the two

datasets are presented below, in Sections 6.2.1 and 6.2.2.

6.2.1 Noon-report (V1) dataset description

In regards to the V1 dataset, 834 data points were originally made available from a

1100TEU reefer vessel, corresponding to approximately 2.5 years of noon-report data.

Following pre-processing, 745 points were contained in the dataset.

Histograms of the measured parameters used for model training are shown in Figure

6.16. Histograms constitute a discretised representation of the distribution of variables

using bars of different sizes. The width of each bar describes the range of each bin. Ac-

cordingly, the horizontal axis of each plot denotes the number of points corresponding

to each histogram bin. For example, in the case of vessel speed, we observe a negat-

ively skewed distribution where most observations lie close to 15 knots with very few

observations having a value below 10 knots.

Furthermore, the descriptive statistics of this dataset are shown in Table 6.4. Con-

sidering the case of Main Engine (M/E) Speed as an example, the 745 measurements

contained in the dataset have a mean value of 110.93RPM with a standard deviation

of 11.71RPM. Moreover, their minimum observed value is at 47.40RPM whilst their
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Figure 6.16: Histogram plots of the training part of the dataset used in the noon-
report (V1) dataset FOC modelling comparison case study. The horizontal axis of each
plot denotes the number of points corresponding to each histogram bin.

maximum observed value is at 126.00RPM. Furthermore, 25% of the speed observa-

tions have a value below 104.70RPM, and 75% of the observations have a value below

120.00RPM. The median value of the dataset, i.e. the value corresponding to the

fiftieth percentile, is at 115.10RPM.

Additionally, as a brief investigation of the available training dataset, a correlation mat-

rix is obtained, focusing on the daily FOC correlation to other measured parameters,

shown in Table 6.5. Correlation matrices express the relationship between available

quantities. As in this case, FOC is the independent variable, the relationship between

all other quantities and FOC is examined. It is important to note that a correlation

matrix, and correlation in general, only expresses the amount of linear relationship

between two variables; any non-linear connection will not be captured by this. In this

case, engine speed and vessel speed exhibit the highest correlation with vessel FOC.

Ambient weather conditions exhibit a limited correlation with vessel FOC. Finally, ves-

116



Chapter 6. Case Studies’ Results & Discussion

Table 6.4: Descriptive statistics of the training part of the dataset used in the noon-
report (V1) dataset FOC modelling comparison case study. 25, 50, and 75% rows
correspond to the relevant percentiles.

Distance
run

(nm)

Draft
aft (m)

Draft
forward

(m)

M/E Speed
(RPM)

M/E
FOC

(tn/day)

Vessel
Speed
(kn)

Propeller
Slip (-)

Sea
Current

(kn)

Sea Direction
(0-12)

Sea Force
(0-12)

Wind
Direction

(0-12)

Beaufort
wind force

(0-12)
count 745 745 745 745 745 745 745 745 745 745 745 745
mean 327.32 7.67 6.38 110.93 21.68 14.56 0.14 0.26 5.06 3.62 4.98 4.53
σ 66.11 0.58 1.03 11.71 6.92 1.82 0.06 0.68 3.07 1.19 3.09 1.21
min 24.00 6.20 3.50 47.40 0.70 1.00 0.00 -4.00 0.00 1.00 0.00 2.00
25% 301.00 7.30 5.85 104.70 15.80 13.87 0.11 0.00 3.00 3.00 3.00 4.00
50% 349.00 7.65 6.48 115.10 23.10 14.88 0.14 0.00 4.00 3.00 4.00 4.00
75% 374.60 8.17 7.10 120.00 27.50 15.75 0.17 0.60 8.00 4.00 7.00 5.00
max 433.00 8.94 8.50 126.00 33.60 18.00 0.71 4.00 12.00 7.00 12.00 12.00

sel drafts do not seem to exhibit a perceivable correlation with vessel FOC. This is due

to the fact that this vessel has relatively limited drafts range due to the inherent voyage

characteristics of containerships. This claim is corroborated by the draft histograms

depicted in Figure 6.16.

Table 6.5: Correlation of FOC to other measured attributes in the training part of the
dataset used in the noon-report (V1) dataset FOC modelling comparison case study.
Positive values denote a positive linear correlation; negative values denote a negative
linear correlation; and very small values denote lack of linear correlation.

Attribute Correlation coefficient (-)

M/E speed (RPM) 0.84
Speed (kn) 0.59
Sea state 0.32

Wind speed (m/s) 0.31
Propeller slip 0.14
Draft aft (m) 0.09

Draft forward (m) -0.03
Sea current (kn) -0.08
Wind direction -0.19
Sea direction -0.19

6.2.2 ADLM (V2) dataset description

In this second data set, 922 hourly-collected data points acquired from a bulk carrier

of approximately 200,000 DWT equipped with an ADLM system are analysed. 768

data points remained in the dataset following the application of the pre-processing

methodology. In this case, while ADLM systems usually provide a wider range of

measured parameters, the same parameters as in the case of the noon-report data are

considered. This decision is made so that the study focuses on the quality benefits of the
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data provided by the different data acquisition strategies. The descriptive statistics of

this dataset are presented in Table 6.6. Following the paradigm set in the description of

dataset V1, the descriptive statistics of the M/E speed will be elaborated as an example.

In this dataset, the mean engine speed value is 62.76RPM with a standard deviation of

6.70RPM. The minimum value observed is 12.90RPM whilst the maximum observed

value is at 68.58RPM. 25% of the speed observations have a value below 58.73RPM,

and 75% of the observations have a value below 67.57RPM. The median value of the

dataset is at 66.99RPM.

However, given that in this case, data are provided at an hourly sampling rate, in

order to retain the same amount of training and testing points so that an unbiased

comparison of the two data acquisition strategies is made, a three-month time window

is selected. Filtering conditions are similar to the ones presented above, without the

need to filter for daily steam hours. Following this filtering process, 603 points are

retained and used for training.

Table 6.6: Descriptive statistics of the training part of the dataset used in the ADLM
(V2) dataset FOC modelling comparison case study. 25, 50, and 75% rows correspond
to the relevant percentiles.

Distance
run

(nm)

Draft
aft (m)

Draft
forward

(m)

M/E Speed
(RPM)

M/E
FOC

(tn/day)

Vessel
Speed
(kn)

Propeller
Slip (-)

Sea
Current

(kn)

Sea Direction
(degrees)

Sea
Force (m)

Wind
Direction
(degrees)

Wind
Speed
(m/s)

count 768 768 768 768 768 768 768 768 768 768 768 768
mean 283.23 14.24 13.67 62.76 38.22 11.80 0.09 -0.46 189.92 0.55 136.38 20.94
σ 43.20 4.46 5.10 6.70 7.86 1.80 0.08 0.77 123.42 0.65 135.03 9.39
min 26.75 7.22 6.73 12.90 5.02 1.11 0.00 -4.85 0.05 0.00 2.24 0.41
25% 268.80 9.00 7.60 58.73 30.74 11.20 0.06 -0.92 64.91 0.00 20.34 13.64
50% 293.64 17.40 17.45 66.99 43.02 12.23 0.08 -0.44 171.68 0.30 49.99 20.76
75% 308.34 18.25 18.20 67.57 44.58 12.85 0.10 0.02 311.73 1.02 298.83 27.58
max 386.05 18.30 18.30 68.58 54.17 16.09 0.70 2.47 359.82 3.05 350.07 52.53

A correlation matrix is also derived for this case, providing insight on how the daily FOC

correlates with the other measured parameters, shown in Table 6.7. Evaluating against

Table 6.5, it is inferred that in both cases the M/E speed (and, therefore, also vessel

speed) is identified as significantly correlated with the FOC of the vessel. However,

whilst in this case, both draft forward and aft have a high increased correlation with

FOC, which is not the case for dataset V1. This is mostly due to the fact that, as can

be seen in Figure 6.17, vessel V2 essentially only takes two draft values: one for ballast

condition and one for laden conditions, whereas vessel V1 operates in a wide range of
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draft values. This is equally reflected in the FOC and engine speed histograms where,

in both cases, a bimodal distribution is observed. This can be explained by the fact that

vessel V1 is a reefer vessel, going from port to port and loading/unloading containers;

rarely being neither at full load nor at ballast condition. At the same time, vessel V2

is a large bulk carrier, always leaving at full load from the departure port, heading to

to destination to unload all cargo, and then moving at ballast condition from that port

to another, where she will load cargo again; essentially alternating between these two

load conditions.

Table 6.7: Correlation of FOC to other measured attributes in the training part of
the dataset used in the ADLM (V2) dataset FOC modelling comparison case study.
Positive values denote a positive linear correlation; negative values denote a negative
linear correlation; and very small values denote lack of linear correlation.

Attribute Correlation coefficient (-)
M/E speed (RPM) 0.89

Draft aft (m) 0.84
Draft forward (m) 0.84

Speed (kn) 0.57
Sea direction -0.05
Propeller Slip 0.00

Wind direction -0.05
Sea state -0.05

Sea current (kn) -0.06
Wind speed (m/s) -0.16
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Figure 6.17: Histogram plots of the training part of the dataset used in the ADLM
(V2) dataset FOC modelling comparison case study. The horizontal axis of each plot
denotes the number of points corresponding to each histogram bin.

6.2.3 Models training

The times that each model took to train with and without hyperparameter optimisation

are presented in Table 6.8. Training is repeated 10 times for each dataset in order to

get consistent results, which are then averaged for the two datasets in order to get

one common, consistent result. Both datasets exhibited similar training times, which

is expected given that both contain the same number of training points. In all cases

where no hyperparameter tuning was applied, a training time of less than 1 minute was

observed. Conversely, when hyperparameter tuning was applied, tree-based methods

and ANNs exhibited increased training times. The training time of SVRs and LR-based

methods was not significantly increased due to hyperparameter optimisation.
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Table 6.8: Model training time with and without hyperparameter optimisation for the
FOC modelling comparison case study. Training is repeated 10 times for each dataset
in order to get consistent results, which are then averaged for the two datasets in order
to get one common, consistent result.

Model Training
time

(min.)

Hyperparameters
optimisation?

Linear Regression (LR) < 1 7

Least Absolute Shrinkage and Selection Operator (LASSO) < 1 7

1 3

Ridge Regression (RR) < 1 7

2 3

Elastic net < 1 7

1 3

Decision Tree Regressor (DTR) < 1 7

8 3

Random Forest Regressor (RFR) < 1 7

34 3

K-Nearest Neighbours (KNN) < 1 7

2 3

Support Vector Reggressor (SVR) < 1 7

2 3

Extra Trees Regressor (ETR) < 1 7

42 3

Artificial Neural Network (ANN) < 1 7

38 3

6.2.4 Noon-report (V1) dataset results

An overview of the obtained results is presented in the box plots of Figure 6.18. The

line inside each box corresponds to the median (second quartile) score of this model

in k-folding, the top and bottom of the box respectively correspond to the first and

third quartiles. The whiskers represent the lowest point of data within 1.5 Interquartile

Range (IQR) of the lowest quartile and the highest point of data within 1.5 IQR of the

upper quartile. Accordingly, the mean of the dataset is noted by a triangle. Data points

beyond the whisker range as shown individually in the form of hollow circles.

This figure shows the extent of the effectiveness of the default hyperparameters included

in Scikit-learn, as in many cases only a minuscule gain in R2 is obtained after the

hyperparameter optimisation loop. Additionally, most modelling attempts delivered

overall good results, with a mean/median R2 of over 85% in most cases. In this case,

RFRs yielded the best results, closely followed by ANNs of 1- and 2-layers and the SVR
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Figure 6.18: Box plot of the R2 obtained from different models and hyperparameters
in K-folding in the noon-report (V1) dataset FOC modelling comparison case study.
The line inside each box corresponds to the median (second quartile) score of this model
in k-folding, the top and bottom of the box respectively correspond to the first and
third quartiles. The whiskers represent the lowest point of data within 1.5 IQR of the
lowest quartile and the highest point of data within 1.5 IQR of the upper quartile.
Accordingly, the mean of the dataset is noted by a triangle. Data points beyond the
whisker range as shown individually in the form of hollow circles.

with the Radial Basis Function (RBF) kernel. Therefore, in this case, the evaluation of

different models should be prioritised against a thorough hyperparameter optimisation.

The only case where this is not true is in the case of regularised LR (i.e. LASSO, Ridge,

and Elastic Net regressors), where the default regularisation term yielded suboptimal

results. At the same time, due to the relatively small dataset size and lack of outliers,

regularisation did not yield any improvement, with the unregularised LR providing

some of the best results for this category of modelling techniques. Regarding ensemble

techniques, in the case of SVRs, bagging provided better results than boosting, but

a single regressor still provided a better mean R2, albeit with a slightly increased

variance.
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Another way of evaluating results is through their achieved R2 when the number of

training points is altered. This is visualised in Figure 6.19, showing both training and

cross-validation R2 along with their respective 95% confidence intervals for the top-six

models derived.
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Figure 6.19: Training curves for the models that achieved best cross-validation R2 in
the noon-report (V1) dataset FOC modelling comparison case study. The lightly tinted
areas denote the 95% confidence interval. In cases where two tinted areas overlap, a
darker shade is displayed. Training curves display the obtained R2 score in training
and cross-validation for increasing number of training points.

95% confidence intervals define the area that the true R2 value will lie with a probability

of 95%. As in training the same dataset is intrinsically used to obtain the model para-

meters and the train R2 score, very small confidence intervals are obtained, i.e. more

precise estimates. In the case of cross-validation, larger confidence intervals are expec-

ted as, in this case, the generalisation capabilities of the model are evaluated.

All six models achieve an R2 of 85 to 90% when approximately 80 points are used,

increasing to over 90% for more points. At the same time, the RFR and ETR models

exhibit significantly reduced uncertainty compared to other models, especially when a

small number of points is used. After approximately 300 points, all models seem to plat-
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eau, without any tangible increase in model performance when additional model points

are included. Nevertheless, the RFR model exhibited high variance that can be seen

in the large gap that is present between the training and cross-validation curves. This

signifies that while RFR presented the best results, there also exist a minor tendency

to model the random noise in the data additionally to the actual features (overfit-

ting).

Having identified that RFR overall exhibited the best R2 in K-folding, the same para-

meters are now tested in the dataset held aside for validation. There, an R2 = 88.5% is

obtained, along with a mean error of 1.45 t/day and a median error of 1.0 t/day.

While normally this would be the only model that would be evaluated against the test-

ing dataset, in the case of this investigation, the performance of all models is included

in Table 6.9. This is due to the fact that the aim of this case study is to investigate the

performance of different models whilst obtaining useful insights and not necessarily to

derive a single model to model the FOC of this specific vessel.

Table 6.9: Testing scores of models considered in the noon-report (V1) dataset FOC
modelling comparison case study. Best-performing models are presented in bold.

Expl.
variance

(%)

MeanAE
(tn/day)

MSLE
(log(tn/day)2)

MSE
((tn/day)2)

MedianAE
(tn/day)

R2

(%)

Linear Regression 87.25 1.674 0.050 6.108 1.217 86.79
LASSO Default 74.94 2.742 0.075 12.544 2.463 72.86

Hyperparameter optim. 87.25 1.674 0.050 6.108 1.217 86.79
Ridge Default 87.22 1.677 0.050 6.125 1.208 86.75

Hyperparameter optim. 87.25 1.674 0.050 6.110 1.216 86.78
Elastic Net Default 71.80 2.888 0.080 13.815 2.676 70.11

Hyperparameter optim. 87.24 1.676 0.050 6.115 1.218 86.77
Decision trees Default 78.35 2.099 0.056 10.174 1.400 77.99

Hyperparameter optim. 84.44 1.836 0.052 7.557 1.271 83.65
Random Forests Default 87.85 1.506 0.049 5.753 0.995 87.55

Hyperparameter optim. 88.75 1.454 0.047 5.297 1.009 88.54
KNN Default 81.42 2.227 0.066 9.834 1.590 78.73

Hyperparameter optim. 77.60 2.419 0.073 12.272 1.862 73.45
SVM Default 88.08 1.521 0.047 5.576 1.025 87.94

Hyperparameter optim. (RBF) 91.52 1.226 0.042 3.950 0.817 91.46
Hyperparameter optim. (linear) 88.44 1.566 0.049 5.506 1.066 88.09

Extra trees Default 89.65 1.405 0.045 4.944 0.840 89.31
Hyperparameter optim. 88.89 1.434 0.047 5.192 1.011 88.77

Boosting SVR ×10 90.77 1.315 0.043 4.311 0.911 90.67
SVR ×20 90.94 1.299 0.042 4.242 0.910 90.82

Bagging KNN 81.62 2.198 0.065 9.996 1.560 78.37
SVR 91.02 1.292 0.043 4.218 0.886 90.87

ANN Default 85.02 1.892 0.054 7.068 1.411 84.71
Hyperparameter optim. (1-layer) 89.52 1.414 0.043 4.869 0.945 89.47
Hyperparameter optim. (2-layer) 88.99 1.432 0.044 5.121 0.926 88.92

Through Table 6.9, it is observed that in the testing dataset ANNs performed slightly

better than RFRs, obtaining an R2 increased by approximately 0.75%. Furthermore,
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the RBF-based SVR obtained an even increased R2 at approximately 91.50%. This

discrepancy can be justified by the increased variance that this model exhibited at the

validation stage.

6.2.5 ADLM (V2) dataset results

Following the model training, the derived R2 coefficient of each model is visualised in

Figure 6.20. From the results presented, it can be deduced that the best performing

model is the ETR, with hyperparameter optimisation through random search, achiev-

ing an average coefficient of determination (R2) of 97.7% and a median of over 98%.

Random forests also yielded a comparable R2, followed by 1-, and 2-layer Neural Net-

works.

The learning curves of this dataset are presented in Figure 6.21. Similarly to the res-

ults of Section 6.2.4, in training very small confidence intervals are obtained, denoting

more precise estimates. In the case of cross-validation, larger confidence intervals are

expected as, in this case, the generalisation capabilities of the model are evaluated.

Even in the second case, high R2 with relatively small confidence intervals are ob-

served, especially in the cases where more than 300 examples are considered for model

training.

ETR, RFR, and 1-layer ANN models performed similarly, with an R2 of approximately

90% when 100 training points are used. As the number of points increases, the cross-

validation R2 is asymptotically approaching 100%. Nevertheless, in the case of the

2-layer ANN a high confidence interval is obtained, coupled with a lacking performance

when a small amount of points is present. At the same time, when a larger number

of points is used for training, a promising slope is present in the cross-validation R2

curve, signifying that the R2 coefficient may be increased for cases where an even larger

number of training points is used.

Following the selection of ETR as optimal model due to providing the highest mean

R2 value, this model is evaluated on the testing dataset to ensure its generalisation
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Figure 6.20: Box plot of the R2 obtained from different models and hyperparameters
in K-folding in the ADLM (V2) dataset FOC modelling comparison case study. The
line inside each box corresponds to the median (second quartile) score of this model
in k-folding, the top and bottom of the box respectively correspond to the first and
third quartiles. The whiskers represent the lowest point of data within 1.5 IQR of the
lowest quartile and the highest point of data within 1.5 IQR of the upper quartile.
Accordingly, the mean of the dataset is noted by a triangle. Data points beyond the
whisker range as shown individually in the form of hollow circles.

capabilities in previously-unseen input. In this case, ETR obtained an R2 of 97.3%,

with a mean error of 0.5 t/day and a median error of 0.2 t/day.

As discussed in the previous subsection, the performance of all models is included in

Table 6.10. Here, is inferred that ETR yielded the best results across all metrics. At the

same time, RFR models also yielded comparable performance. However, the employed

ANN models that performed exceptionally well at validation, did not perform equally

well at the testing stage yielding a mean average error of over 0.9 t/day.
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Figure 6.21: Training curves for the models that achieved the best R2 at training
for dataset V2. The lightly tinted areas denote the 95% confidence interval. In cases
where two tinted areas overlap, a darker shade is displayed. Training curves display
the obtained R2 score in training and cross-validation for increasing number of training
points.

Table 6.10: Testing scores of models considered in the ADLM (V2) dataset FOC
modelling comparison case study. Best-performing models are presented in bold.

Expl.
variance

(%)

MeanAE
(tn/day)

MSLE
(log(tn/day)2)

MSE
((tn/day)2)

MedianAE
(tn/day)

R2

(%)

Linear Regression 94.49 1.409 0.006 3.670 1.106 94.48
LASSO Default 93.77 1.331 0.005 4.151 0.715 93.76

Hyperparameter optim. 94.51 1.410 0.006 3.658 1.134 94.50
Ridge Default 94.48 1.413 0.006 3.671 1.144 94.48

Hyperparameter optim. 94.64 1.404 0.005 3.570 1.203 94.63
Elastic Net Default 89.95 1.732 0.014 6.696 1.091 89.93

Hyperparameter optim. 94.69 1.398 0.005 3.532 1.201 94.69
Decision trees Default 95.13 0.679 0.003 3.255 0.269 95.11

Hyperparameter optim. 94.64 0.844 0.005 3.569 0.318 94.63
Random Forests Default 96.27 0.570 0.003 2.487 0.192 96.26

Hyperparameter optim. 96.38 0.564 0.003 2.405 0.234 96.38
KNN Default 95.83 0.943 0.004 2.802 0.484 95.79

Hyperparameter optim. 95.90 0.675 0.002 2.739 0.242 95.88
SVM Default 73.11 1.843 0.039 18.161 0.809 72.69

Hyperparameter optim. (RBF) 95.98 0.895 0.003 2.713 0.465 95.92
Hyperparameter optim. (linear) 94.49 1.445 0.005 3.672 1.325 94.48

Extra trees Default 96.22 0.756 0.008 2.522 0.311 96.21
Hyperparameter optim. 97.31 0.534 0.002 1.804 0.178 97.29

AdaBoost SVR ×10 95.89 1.142 0.004 2.737 0.740 95.89
SVR ×20 95.23 1.240 0.004 3.171 0.911 95.23

Bagging KNN 95.26 0.966 0.006 3.210 0.454 95.17
SVR 95.94 0.925 0.003 2.751 0.467 95.86

ANN Default 96.96 0.903 0.007 2.035 0.501 96.94
Hyperparameter optim. (1-layer) 90.87 1.314 0.016 6.081 0.699 90.86
Hyperparameter optim. (2-layer) 95.58 0.939 0.006 2.984 0.468 95.51
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6.2.6 Key findings

This case study presents the application of the novel FOC modelling comparison of

Section 4.6. This methodology aims to compare modelling approaches and data sources

to derive an optimal approach for the prediction of M/E FOC of sailing vessels.

Based on the results of this case study, the derived models can accurately predict

the FOC of vessels sailing under different load conditions, weather conditions, speed,

sailing distance, and drafts. Using noon-report data, an R2 of approximately 90% is

obtained through the best performing modelling approaches. However, ADLM systems

can increase modelling R2 by 5 to 7% compared to noon-reports, whilst reducing the

required data acquisition period by up to 90%.

Optimising hyperparameters will increase model’s R2 coefficient, but evaluating several

modelling architectures should be the first step. ETRs, RFRs, SVRs, and ANNs yielded

the best performance results for both datasets, but LR, a significantly simpler model,

attained comparable results.

However, due to the inherent limitations of DTR-based models (e.g. ETRs, RFRs),

these models should only be preferred in cases where no extrapolation is required.

Moreover, the quality of the model output correlates with the quality of its training

input; e.g. different vessel operating profiles affect how the effects of vessel draft are

perceived to affect FOC. Finally, feature extraction did not help attain any perceivable

increase in model performance.

6.3 Vessel FOC prediction & weather routing

This section presents and discusses the results obtained from the vessel FOC prediction

and weather routing case study originally described in Section 5.3. The aim of this case

study is to (a) ascertain that the FOC of this vessel can be accurately predicted under

varying sailing and operational conditions; and (b) demonstrate that the novel weather

routing methodology proposed in Section 4.9 can accurately identify optimal sailing
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routes for the investigated voyage. This is exhibited through a case study concerning

a 160,000 tonne DWT crude oil tanker sailing between the Gulf of Guinea and the

Marseille anchorage.

Following the pre-processing steps described in Section 5.3, 647 points are dropped

after filtering for anomalies and transients, leaving 2066 points in the dataset.

The descriptive statistics of the dataset are presented in Table 6.11, following the

application of the pre-processing and feature engineering process described in Chapter

4, to present the variability of each parameter. This is crucial to ensure the robustness

and usability of the produced model.

Table 6.11: Descriptive statistics of the training part of the dataset used in the vessel
FOC prediction and weather routing case study. 25, 50, and 75% rows correspond to
the relevant percentiles.

mean std min 25% 50% 75% max
Draft fore 14.14 3.18 5.15 13.93 15.59 15.68 16.72
Draft aft 15.39 2.53 8.07 15.05 16.52 16.77 17.01
Engine speed 59.82 3.28 44.00 59.90 59.90 61.00 68.00
Engine FOC 1253.85 187.35 525.75 1228.88 1284.33 1347.70 1990.61
Engine power 7176.90 998.75 3148.50 6849.59 7278.97 7618.12 12580.75
Vessel over ground speed 11.77 0.99 3.95 11.30 11.80 12.40 14.60
long. current -0.04 0.24 -1.07 -0.12 -0.02 0.07 0.67
long. primary swell wave sig-
nificant height

0.02 0.97 -3.35 -0.62 0.07 0.63 3.23

long. secondary swell wave
significant height

0.02 0.43 -1.46 -0.23 0.01 0.27 1.56

long. wave significant height 0.07 1.25 -4.19 -0.83 -0.02 0.98 3.89
trans. current 0.17 0.19 0.00 0.05 0.11 0.22 1.15
trans. primary swell wave sig-
nificant height

0.73 0.54 0.00 0.29 0.63 1.04 3.02

trans. secondary swell wave
significant height

0.32 0.29 0.00 0.11 0.24 0.44 1.33

trans. wave significant height 1.01 0.69 0.00 0.49 0.92 1.41 3.95

6.3.1 FOC model derivation

Applying the FOC modelling methodology discussed in Section 4.6.1.7, the optimal

ANN hyperparameters are identified as shown in Table 6.12.

Testing the model derived on a test set that corresponds to real vessel sailing data,
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Table 6.12: Optimal ANN hyperparameter values for the vessel FOC prediction and
weather routing case study. 2,3 or 4 hidden layers of varying width were considered,
along with different dropout rates, activation functions, and batch sizes.

Hyperparameter Value
Network depth 4
Layer 1 width 256
Layer 2 width 256
Layer 3 width 64
Layer 4 width 512
Layer 1 Dropout rate 0.36
Layer 2 Dropout rate 0.47
Layer 3 Dropout rate 0.04
Layer 4 Dropout rate 0.53
Layer 1 Activation function ReLU
Layer 2 Activation function ReLU
Layer 3 Activation function Sigmoid
Layer 4 Activation function ReLU
Batch size 32

an R2 of 89.4% is obtained. The results obtained are presented in the form of a Y-Y

plot in Figure 6.22. Furthermore, the error between predicted and actual FOC for

the test set is presented in time-series form in Figure 6.23. In this graph, 95.5% of

predicted points are shown to be within 10% of their actual values. A limited number

of outliers cross this value and present increased error values but these values are

only obtained sporadically and can be attributed to discrepancies between the actual

weather conditions observed in the vessel’s ambient space and the weather provider’s

extrapolated data. In practical terms, having a model that can achieve a high R2 on real

vessel sailing data is a practical validation of the model’s fitness for this purpose.
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Figure 6.22: Y-Y plot depicting the FOC modelling results in the vessel FOC predic-
tion and weather routing case study. X axis depicts the actual vessel fuel consumption
and the Y axis depicts the predicted value. the dashed line is the y = x line, i.e. the
line where the predicted FOC value matches the one actually observed.
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Figure 6.23: Timeseries plot depicting the prediction error over time in the vessel
FOC prediction and weather routing case study. Error is presented in percentage form.
The red lines denote the ±2σ range for this graph.
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6.3.2 Weather routing

Following the FOC model validation, the routing methodology of Section 4.9 is applied

to the route described above. As mentioned in Section 5.4, the methodology is applied

for two case studies where the vessel is sailing at two speeds, 11 knots and 14.5 knots.

These vessel speeds refer to two typical scenarios of vessel speed whilst fully laden, and

in ballast condition. Five optimal routes are identified for each case study, presented

in Figures 6.24 and 6.25 accordingly.

In Figure 6.24 where the vessel is sailing at 11 knots, the red (thickest) line corresponds

to the route that minimises FOC followed by the yellow, blue, green, and pink lines

in diminishing order of thickness, and optimality. In this case, all routes suggested

follow the contour of Africa before heading through the strait of Gibraltar and then

contour the Iberian peninsula till Marseille anchorage is reached. In this case, two

paths that yield similar results can be observed: one opts for a straight-line approach

leading to the shortest path whilst the other opts for a longer, lower FOC-per-nm route

that accurately follows the gulf that appears between the Republic of Congo, DRC,

and Angola, balancing the longer distance by the existence of more favourable weather

conditions.

In Figure 6.25 where the case study vessel is sailing at 14.5 knots, with routes similar

to those of Figure 6.24 being identified as optimal. However, in this case the contour of

Africa is followed less strictly, especially in the area around Mauritania. This is mostly

due to weather differences and the vessel’s performance changing under varying speeds,

a different optimal path is identified. Both of the derived routes are in line with the

routes this vessel follows during its normal sailing activities.

In cases where larger route deviations are permitted in order to avoid adverse weather

conditions, such as a crossing of the Atlantic, the weather optimisation module would

return paths with lower overlap levels.

132



Chapter 6. Case Studies’ Results & Discussion

Figure 6.24: Optimal routes identified for the vessel FOC prediction and weather
routing case study when the vessel is sailing at 11 knots. Different colours denote
different identified routes. The gray grid denotes the graph over which weather routing
was applied.
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Figure 6.25: Optimal routes identified for the vessel FOC prediction and weather
routing case study when the vessel is sailing at 14.5 knots. Different colours denote
different identified routes. The gray grid denotes the graph over which weather routing
was applied.
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6.3.3 Key findings

This Section presents the results of a case study based on the novel weather routing

methodology elaborated in Section 4.9, i.e. a data-driven methodology for optimal

routing decision support. This methodology is elaborated and showcased through the

case study of a 160,000 tonne DWT crude oil tanker sailing between the Gulf of Guinea

and the Marseille anchorage.

The initial process of acquiring, pre-processing and analysing a dataset containing raw

sailing measurements from a ship is showcased in detail, elaborating on every required

step. Moreover, the process to derive a data-driven Deep Neural Network (DNN) model

that can adequately represent the FOC of a vessel sailing under varying conditions is

then included. The FOC model is utilised as part of a route optimisation process that

combines the data-driven aspect of the FOC with a modification of Dijkstra’s algorithm

to allow for time-dependent route optimisation.

As this constitutes a data-driven, black-box approach to weather routing, the only re-

quired data are historical vessel sailing data and a suitably spatio-temporal weather

forecast without any additional domain knowledge. Therefore, the proposed methodo-

logy can be applied to any route and vessel type without significant modifications.

6.4 FOC-based performance monitoring

This section presents and discusses the results obtained from the FOC-based perform-

ance monitoring case study originally described in Section 5.4. This methodology aims

to provide vessel performance monitoring using readily available data, including noon

reports. The case study is based on data from a a 1100TEU reefer vessel.

Following the pre-processing steps described in Section 5.4, observations where features

with NaN values are removed, with 671 data points remaining. Following this, outliers

and observations where less than 10 steam hours are also discarded to avoid observations

where mostly transient vessel operation has occurred. The descriptive statistics of this
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dataset are presented in Table 6.13.

Table 6.13: Descriptive statistics of the training part of the dataset used in the FOC-
based performance monitoring case study. 25, 50, and 75% rows correspond to the
relevant percentiles.

Distance
run

(nm)

Vessel
Speed
(kn)

M/E Speed
(RPM)

M/E
FOC

(tn/day)

Sea
Current

(kn)

Wind
Speed
(m/s)

Wind
Direction
(degrees)

Sea
Force (m)

Sea Direction
(degrees)

Draft
forward

(m)

Draft
aft (m)

count 512.00 512.00 512.00 512.00 512.00 512.00 512.00 512.00 512.00 512.00 512.00
mean 321.92 14.62 109.22 20.03 0.22 4.40 5.34 3.52 5.44 6.51 7.69
σ 67.55 1.65 11.62 6.76 0.73 1.23 3.13 1.21 3.09 1.08 0.61
min 134.00 8.21 62.00 6.30 -4.00 2.00 1.00 1.00 1.00 3.50 6.20
25% 282.50 13.75 98.75 14.50 0.00 3.00 3.00 3.00 2.00 5.88 7.26
50% 341.50 14.85 112.00 20.60 0.00 4.00 5.00 3.00 5.00 6.66 7.70
75% 373.92 15.88 119.00 26.00 0.50 5.00 8.00 4.00 8.00 7.30 8.20
max 433.00 18.00 125.20 32.00 4.00 12.00 12.00 7.00 12.00 8.50 8.94

Based on the information depicted in this table, 512 observations were retained in

the dataset following its pre-processing and outlier rejection. Moreover, it can be

seen that the vessel speed in this dataset remained relatively stable with about half

the observations lying within a knot of 14.8 knots. Observed sea current values were

limited, although a maximum value of 4 knots was observed. Furthermore, 95% of

the observed drafts were within two meters of the mean draft, in line with the vessel’s

expected operational profile as a feeder-sized containership.

6.4.1 LR model

An LR model is selected as the first choice for model training as, due to the lack of

hyperparameters, is easy and quick to train and provides a solid baseline. An R2 score

of 78.80% is obtained at training.

The model evaluation on data from the seventh month, eighteenth month, and twenty-

fifth month post-launch are presented in Figures 6.26, 6.27, and 6.28 respectively.

Moreover, Key Performance Indicator (KPI) I of Section 4.8 is calculated and super-

imposed on each graph. This KPI reflects the vessel’s sailing performance, i.e. the ratio

between the measured and the expected distance travelled over a given amount of fuel.

Other KPIs cannot be calculated for this dataset due to the lack of a power/torque

meter.

In the case of the data corresponding to the seventh month, the R2 obtained is 69.54%
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Figure 6.26: Timeseries plot depicting actual against LR-predicted FOC in the FOC-
based performance monitoring case study based on data from the seventh month fol-
lowing the vessel’s launch. The black dashed line represents the actual FOC observed
while the solid black line represents the LR model prediction. The red line displays the
calculated value of KPI I, i.e. vessel sailing performance.
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Figure 6.27: Timeseries plot depicting actual against LR-predicted FOC in the FOC-
based performance monitoring case study based on data from the eighteenth month
following the vessel’s launch. The black dashed line represents the actual FOC observed
while the solid black line represents the LR model prediction. The red line displays the
calculated value of KPI I, i.e. vessel sailing performance.
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Figure 6.28: Timeseries plot depicting actual against LR-predicted FOC in the FOC-
based performance monitoring case study based on data from the twenty-fifth month
following the vessel’s launch. The black dashed line represents the actual FOC observed
while the solid black line represents the LR model prediction. The red line displays the
calculated value of KPI I, i.e. vessel sailing performance.

with a median FOC deviation of 0.0029 tonnes per nautical mile. Evaluating against

the data from the eighteenth month, an R2 of −51.41% is obtained with a median FOC

deviation of 0.0103 tonnes per nautical mile. Finally, in the case of the twenty-fifth

month, an R2 of −57.68% is obtained, with a median FOC deviation of 0.0149 tonnes

per nautical mile.

6.4.2 SVR model

In the case of the SVR model, results are presented in Figures 6.29, 6.30, and 6.31

respectively, for the results corresponding to the seventh, eighteenth, and twenty-fifth

month. An R2 of 87.00% is obtained at training. Furthermore, evaluating the results

of the seventh month, an R2 of 82.27% is obtained, with a median FOC deviation

of 0.0026 tonnes per nautical mile. At the eighteenth month, the R2 obtained is at

−42.05% with a median FOC deviation of 0.0082 tonnes per nautical mile. Finally, at

the twenty-fifth month, the obtained R2 is at −77.00% with a median FOC deviation
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of 0.0123 tonnes per nautical mile.
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Figure 6.29: Timeseries plot depicting actual against SVR-predicted FOC in the
FOC-based performance monitoring case study based on data from the seventh month
following the vessel’s launch. The black dashed line represents the actual FOC observed
while the solid black line represents the SVR model prediction. The red line displays
the calculated value of KPI I, i.e. vessel sailing performance.
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Figure 6.30: Timeseries plot depicting actual against SVR-predicted FOC in the
FOC-based performance monitoring case study based on data from the eighteenth
month following the vessel’s launch. The black dashed line represents the actual FOC
observed while the solid black line represents the SVR model prediction. The red line
displays the calculated value of KPI I, i.e. vessel sailing performance.
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Figure 6.31: Timeseries plot depicting actual against SVR-predicted FOC in the
FOC-based performance monitoring case study based on data from the twenty-fifth
month following the vessel’s launch. The black dashed line represents the actual FOC
observed while the solid black line represents the SVR model prediction. The red line
displays the calculated value of KPI I, i.e. vessel sailing performance.
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6.4.3 Key findings

This Section presents the results of a case study based on the FOC-based performance

monitoring methodology of Section 4.8. This methodology, elaborates a data-driven

approach for the construction of FOC predictive models using data following a vessel’s

launch of major overhaul and comparing their predictions with the vessel’s actual FOC

at later time points to estimate a performance drop. This methodology was elaborated

using data from a 1100 TEU reefer vessel.

Based on the results of this case study, both derived models can accurately predict the

vessel’s FOC when tested against the dataset corresponding to the seventh month post

launch. Accuracy is still lower than what is observed in the FOC prediction case studies

of Sections 5.2 and 5.3 due to the small amount of training data used. As expected

from the results of the case study presented in 5.2, the SVR model performs marginally

better than the LR model.

However, evaluating the models against the dataset corresponding to the eighteenth

month, performance of both models drops significantly. At the same time, the relevant

KPI calculated, increases, denoting a larger degree of dissimilarity between measured

and expected FOC. Model performance drops further when the dataset corresponding

to the twenty-fifth month is considered. At the same time, KPI values increase even

more. This performance degradation was known to the vessel operator and was due

to hull fouling. Underwater hull cleaning was performed shortly after the end of the

provided dataset.

6.5 Overall discussion

This section summarises the discussion and key findings of the results sections above.

Overall, the included case studies demonstrate the applicability and robustness of the

proposed methodologies, unified under the aim of enhancing a vessel’s operational ef-

ficiency. The findings of each case study are summarised below, with each section

corresponding to one of the case studies elaborated in this Section.
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6.5.1 Engine Condition Monitoring

The case studies relating to engine condition monitoring aim to exhibit the novel char-

acteristics of the condition monitoring methodology presented in Section 4.5. The

methodology was applied on one two-stroke main engine and a four-stroke engine used

for electrical power generation. The aim of this case study was to evaluate the accur-

acy of the novel condition monitoring methodology in identifying incipient machinery

anomalies.

The main findings of the case studies can be summarised as follows:

• The developed model can accurately discern between normal and abnormal ma-

chinery condition, providing a suitable basis for an incipient-fault detection sys-

tem.

• Due to limited amount of assumptions, this methodology can be applied to a

diverse set of machinery.

• Contrary to most other condition monitoring approaches, model training only

requires normal data, majorly simplifying the process.

• The data requirements of the proposed methodology can be satisfied from noon-

report data, significantly decreasing, or even avoiding, CAPEX costs traditionally

attached to condition monitoring applications.

• Using the EWMA filter, the proposed methodology becomes dynamic as previous

data points are taken into consideration when predicting the normality of new

data points.

• Through the performed sensitivity analysis, model alarm thresholds were ob-

tained. Comparing these values with the ones provided by OEMs, a significant

degree of similarity was observed.

• Even in cases were only a limited amount of OEM thresholds are available, rel-

evant threshold can be suggested by analysing model output.
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6.5.2 FOC modelling comparison

The two case studies relating to the FOC modelling comparative methodology described

in Section 4.6 aim to compare the performance of data-driven regression models in the

estimation of a vessel’s FOC under different circumstances. The aim of this case study

is to identify optimal FOC modelling approaches when different data sources exist,

namely noon reports and ADLM systems.

The key findings are summarised below.

• The derived models can accurately predict the FOC of vessels sailing under dif-

ferent load conditions, weather conditions, speed, sailing distance, and drafts.

• Using noon-report data, an R2 of approximately 90% was obtained through the

best performing modelling approaches.

• ADLM systems can increase modelling R2 by 5 to 7% compared to noon-reports,

whilst reducing the required data acquisition period by up to 90%.

• Optimising hyperparameters may increase model’s R2 coefficient, but evaluating

several modelling architectures should be the first step.

• ETRs, RFRs, SVRs, and ANNs yielded the best performance results for both

datasets, but LR, a significantly simpler model, attained comparable results.

• Due to the inherent limitations of DTR-based models (e.g. ETRs, RFRs), these

models should only be preferred in cases where no extrapolation is required.

• The quality of the model output correlates with the quality of its training input;

e.g. different vessel operating profiles affect how the effects of vessel draft are

perceived to affect FOC.

• Feature extraction did not help attain any perceivable increase in model perform-

ance.
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6.5.3 Vessel FOC prediction & weather routing

This case study concerned a 160,000 tonne DWT crude oil tanker sailing between the

Gulf of Guinea and the Marseille anchorage. This route is selected as it represents

a typical voyage of the aforementioned vessel. The aim of this case study was to

(a) ascertain that the FOC of this vessel can be accurately predicted under varying

sailing and operational conditions; and (b) demonstrate that the novel weather routing

methodology proposed in Section 4.9 can accurately identify optimal sailing routes for

the investigated voyage.

The main findings of this case study are as follows:

• The initial process of acquiring, pre-processing and analysing a dataset containing

raw sailing measurements from a ship is elaborated.

• The process to derive a data-driven DNN model that can adequately represent

the FOC of a vessel sailing under varying conditions is then included.

• Moreover, the FOC model is utilised as part of a route optimisation process that

combines the data-driven aspect of the FOC with a modification of Dijkstra’s

algorithm to allow for time-dependent route optimisation.

• The above are verified and validated through a case study based on actual ship

data.

6.5.4 FOC-based performance monitoring

This case study stemmed from the FOC-based performance monitoring methodology

described in Section 4.8. The underlying methodology aims to provide vessel per-

formance monitoring using readily available data, including noon reports. Specifically,

a data-driven FOC predictive model is built based on data obtained just after the

launching of the investigated vessel and the model results are compared to the vessel’s

actual performance in terms of FOC.

The key findings of this case study are as follows:
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• Data driven models were trained using data corresponding to a time period just

following a vessel’s launch.

• Both the LR and the SVR models can accurately predict vessel FOC when tested

against data obtained close to the time period of the training dataset.

• The SVR model performed marginally better.

• As model testing is performed using data acquired months after the acquisition

of the training data, model accuracy drops significantly.

• At the same time, the values of the calculated KPI that reflects vessel sailing

performance are increased, denoted degraded performance.

• Therefore, vessel voyage data can be used as input to a FOC predictive model for

performance monitoring purposes.

6.6 Chapter summary

This chapter presented the results of the case studies considered for the evaluation and

validation of the operational efficiency enhancement framework proposed in Chapter

4. This framework comprises four key methodologies, namely: the condition monitor-

ing methodology; the FOC modelling comparative methodology; the weather routing

methodology; and the FOC-based performance monitoring methodology. Accordingly,

the case studies elaborated in Chapter 5 reflect these key methodologies and are are

designed to exhibit the capabilities of the underlying framework in realistic operat-

ing conditions. For this reason, the results of these case studies are presented in this

chapter. First the results of the engine condition monitoring case study were presented,

followed by the case study demonstrating the results of the FOC modelling comparison

case study. These were followed by the results of the vessel FOC prediction and weather

routing case study. Finally, the results of the FOC-based performance monitoring case

study were presented, followed by a Section that provides an overall discussion of the

results obtained.
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Discussion & Conclusions

This Chapter contains the discussion and concluding remarks regarding the operational

efficiency enhancement framework presented and developed in Chapter 4. The research

aim and objectives originally laid out in Chapter 2 are reviewed, and the manner they

were accomplished is analysed. Following that, the novelty of the research contained

within this thesis is summarised and discussed. Furthermore, conclusions to the overall

work presented within this thesis are presented, followed by recommendations for future

research.

7.1 Accomplishment of research aim and objectives

The main purpose of this research is to practically and theoretically contribute to the

enhancement of operational efficiency in the maritime field. This was achieved by

addressing the research question posed in Chapter 2, regarding the development of a

data-driven strategy for machinery condition monitoring and identification of incipient

anomalies, vessel performance degradation monitoring, and routing decision support

through the proposed methodologies. In this respect, this main aim was addressed

overall through the thesis objectives outlined in Chapter 2. These objectives and the

way they were addressed are discussed in more depth in this section.
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Objective 1: Identify gaps pertinent to the research topic through the critical review of lit-

erature pertinent to data-driven monitoring, optimised maintenance and routing.

This objective has been achieved through the critical review of maintenance strategies,

condition monitoring applications, data-driven Fuel Oil Consumption (FOC) model-

ling applications, and weather routing approaches that is part of Chapter 3. Critical

aspects, advantages and shortcomings of relevant methodologies have been identified,

defining the path towards novel research and development activities aiming to enhance

vessel operational efficiency. As part of this mapping, solutions stemming from both

the maritime and other relevant sectors were identified and analysed. This review high-

lighted that the maritime sector is often lagging compared to other sectors. However,

this review also showed that often there no clear path forward, and that instead, ap-

proaches need to be evaluated on a case-by-case basis, ensuring the robustness of each

step. Moreover, the scarcity of integrative approaches was demonstrated, as many of

the identified frameworks and methodologies address a single objective, without be-

ing integrable with other tools to provide an applicable solution towards operational

efficiency enhancement.

Objective 2: Consider and address the identified gaps through the development of a

streamlined methodology that enhances vessel operational efficiency.

This objective has been achieved through the proposal and discussion of the overall

research framework, proposed in Chapter 4, and visually depicted in Figure 4.1. The

overall framework comprises a number of key methodologies, namely: the data pre-

processing methodology, the condition monitoring methodology, the FOC modelling

comparative methodology, the FOC-based performance monitoring methodology, and

the novel weather routing methodology. This framework enables the anomaly detec-

tion in marine machinery systems, the identification of optimal FOC modelling archi-

tectures, FOC-based performance monitoring, and optimal routing decision support.

All these outcomes, which have never before been considered under a single frame-

work within the maritime sector, are summarised under the overall aim of this thesis,
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i.e. that of vessel operational efficiency enhancement. The flexibility and robustness

of the framework and methods proposed within the thesis, allow their application in a

variety of scenarios, relevant both within and outwith the shipping sector.

Objective 3: Extract meaningful information from available data sources through the

development of a suitable data pre-processing methodology.

This objective has been achieved through the elaboration of a suitable data pre-processing

methodology in Section 4.3. This methodology comprises five salient aspects: engine

transients detection, recording anomalies rejection, weather data imputation, feature

engineering, and data standardisation. Process, voyage, and weather data are treated,

with different steps applied to each. The output of this methodology is a cleaned-up,

accurate stream of data that is fed to the remaining methodologies of this research

work.

Objective 4: Monitor the condition of machinery and detect incipient anomalies through

the development of a suitable data-driven methodology, limiting the number of data-

related assumptions.

This objective has been achieved through the novel data-driven Condition Monitor-

ing (CM) methodology proposed in Section 4.5. This methodology takes as input

pre-processed data from a machinery system and uses them to train a One Class Clas-

sification (OCC) model. This model can then evaluate newly acquired data points and

detect machinery system anomalies. The novel aspect of this methodology is that it

constitutes the first time a OCC model is used for anomaly detection in a shipping

context, without any requirement for faulty data. These simplified data requirements

allows the rapid deployment of the model, without requiring that a fault occurs so that

data can be recorded prior to deployment.

Objective 5: Identify optimal data-driven modelling architectures for the prediction of

vessel FOC through a formalised, novel methodology.

This objective has been achieved through the novel FOC modelling comparative meth-
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odology proposed in Section 4.6. This methodology considers data sourced from two

different approaches, namely noon reports and Automated Data Logging & Monitoring

(ADLM) system data, and a number of regression modelling architectures and identifies

best model architectures in each case. Furthermore, the advantages of having data ac-

quired through an ADLM system, are quantified in terms of increased model accuracy.

The novel aspect of this methodology is that it compares both data sources through the

same formalised modelling pipeline, allowing the observation of meaningful conclusions.

This methodology allows downstream methodologies that process FOC data to identify

optimal modelling architectures, increasing their accuracy and robustness.

Objective 6: Monitor the performance degradation of vessels based on FOC modelling

through the development of a suitable data-driven methodology.

This objective has been achieved through the FOC-based performance monitoring

methodology elaborated in Section 4.8. This methodology trains a data-driven re-

gression model using voyage data acquired following a vessel’s launch of major over-

haul aiming to predict its FOC. Given that the model is trained using data reflecting

optimal vessel condition, the FOC predictions will inherently contain the same as-

sumption. Therefore, comparing the predicted FOC with the one actually observed

on a voyage, allows the estimation of performance degradation through the increase of

FOC. This methodology allows the provision of vessel performance degradation mon-

itoring using readily available data, and without the need of explicit vessel-dependent

monitoring.

Objective 7: Facilitate optimal routing through the development of a suitable Decision

Support methodology.

This objective has been achieved through the optimal routing decision support meth-

odology proposed in Section 4.9. This methodology considers historical weather and

voyage data to train a data-driven regression model that predicts vessel FOC under

varying sailing and ambient weather conditions. This is coupled with a novel modi-

fication of Dijkstra’s algorithm to make it dynamic, i.e. consider weather changes at
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different time steps. This methodology allows the identification of overall optimal sail-

ing paths, and therefore offer optimal routing decision support.

Objective 8: Demonstrate and validate the performance and applicability of the frame-

work and methodologies developed through case studies reflecting realistic scenarios

applicable to a variety of vessel types (e.g. reefer, containership, bulk carrier).

This objective has been achieved through the case studies presented and discussed in

Chapters 5 and 6. Case studies relevant to engine condition monitoring, the FOC

modelling comparative methodology, FOC-based performance monitoring, and vessel

FOC prediction and weather routing are presented. These case studies showcase and

validate all key aspects of the overall research framework, and underlying methodologies

summarised in Figure 4.1. Moreover, these case studies present the methodology’s

capabilities in addressing its main targets, namely: anomaly detection, FOC-based

performance monitoring, and optimal routing decision support; all contributing to the

overarching aim of enhancing vessel operational efficiency. The contribution of each

case study in meeting this eighth objective are summarised below.

The engine condition monitoring case study considered three realistic engine scenarios,

all corresponding to a 439 TEU Reefer. Two scenarios relate to the operation of a

four-stroke Diesel Generator set (D/Gen) at different time points and one relates to

the operation of a two-stroke Main Engine (M/E). Training the OCC models using data

corresponding to nominal system operation, sensitivity analysis was performed, evalu-

ating model output in varying input data. In all cases, the developed models accurately

discerned between normal and abnormal system states, with the model identifying an-

omalies at values close to the limits provided by the Original Equipment Manufacturer

(OEM).

The FOC modelling comparison case study considered a 1100 TEU Reefer vessel where

data were obtained through noon reports, and a Newcastlemax Bulk carrier equipped

with an ADLM system. For both vessel datasets, the same number of data points

were selected and used through the same model training pipeline, evaluating a large
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number of data-driven regression models in order to determine which model architecture

performs best in each case. Support Vector Reggressor (SVR) and Artificial Neural

Network (ANN) architectures provided the best results in both cases, with an R2 of

approximately 90% obtained in the case of the dataset considering noon reports. In the

case of the ADLM system, R2 was increased by over 5% whilst reducing the required

data acquisition period by up to 90%.

The FOC-based performance monitoring case study relates to the FOC modelling com-

parative methodology as it also relates to data-driven regression modelling for FOC

prediction. However, in this case, measurements from the first six months post launch

from a 1100 TEU reefer were used to train a regression model predicting its FOC.

When the model was evaluated against data obtained close to the training dataset,

a high level of model accuracy was observed. However, as the model was evaluated

against data corresponding to one year later, and one-and-a-half year later, signific-

ant deviations between predicted and observed FOC was determined. Thus, this case

study validated the proposed case study as an efficient approach to vessel performance

monitoring using readily available data.

Finally, the vessel FOC prediction and weather routing case study evaluated the pro-

posed weather routing methodology through the consideration of a Gulf of Guinea to

Marseille anchorage voyage of a 160,000 tonne DWT crude oil tanker. This case study

showcased that when a FOC regression model is trained using a diverse dataset, a high

model accuracy can be observed in varying operating conditions. Furthermore, optimal

weather routes were obtained for two vessel speeds considered, reflecting its operation

when laden and at ballast. Therefore, this case study showcased the methodology’s

capability in delivering optimal vessel routes, with the validity of the results being

validated by the consultancy company that supported this research.

Summarising, the aforementioned case studies have presented the proposed framework’s

accuracy and robustness in providing anomaly detection, FOC-based performance mon-

itoring, and optimal routing decision support, therefore enhancing a vessel’s operation
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efficiency.

7.2 Novelty of presented research

The novelty of the research presented and discussed within this thesis is derived by the

development and combination of a number of data-driven methodologies for the oper-

ational efficiency enhancement of a vessel. Under the overarching aim of operational

efficiency enhancement, three distinct outcomes are provided: anomaly detection, FOC-

based performance monitoring, and optimal routing decision support. The proposed

and developed operation efficiency enhancement framework introduces novelties in the

fields of machinery condition monitoring, vessel performance monitoring, and optimal

routing decision support in the maritime industry. Thanks to the data-driven nature

of the developed methodologies, these can be applied to a wide number of applications,

and integrated with a number of ancillary methodologies that already exist or will be

developed in the future. Furthermore, due to the methodologies’ flexibility in using

ADLM system or noon report input data, as well as using any number of available

input sources, the methodologies are extremely adaptable to specific vessel considera-

tions and can be implemented without requiring the installation of specialised sensors,

or an a priori knowledge of the inner workings of the examined systems.

A novel aspect of this research is the use of a data-driven OCC model for ship ma-

chinery condition monitoring, without any requirement for abnormal data availability.

The developed methodology takes as input a dataset corresponding to nominal sys-

tem operation and trains an OCC Support Vector Machine (SVM) model based on

that. The trained OCC SVM model can take as input new, unclassified data points

and predict whether they correspond to normal or abnormal operation, thus providing

incipient machinery anomaly detection at a system level. Concurrently, the results of

the applied algorithm are filtered through an Exponential Weighted Moving Average

(EWMA) filter, making model output dynamic, as the output takes into account previ-

ous time points as well as the present. Moreover, model output can be used to propose

operational limits in cases where OEM limits are not available. Furthermore, the sim-
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plified data requirements of the model, allow its rapid deployment, without requiring

that a fault occurs so that data can be recorded prior to deployment. The character-

istics of this methodology make it a beneficial tool to be considered by shipping sector

stakeholders, such as ship owners, operators, and crew. Specifically, given that the

model can be trained through easily obtainable data and without any other assump-

tions or requirements, it can provide a low cost, low implementation complexity, early

warning system, reducing machinery downtime and increasing a vessel’s reliability and

availability.

Moreover, another novel aspect of this research is the FOC modelling comparative

methodology. This methodology considers two data sources, namely noon reports and

ADLM system data, and a number of regression modelling architectures and identifies

best model architectures in each case. While data-driven FOC predictive modelling is

an emerging research topic, the proposed methodology constitutes the first time that

both possible data sources are compared at the same time. This allows the evaluation

of both sources in real terms, highlighting the accuracy gains due to the installation of

an ADLM system. Thus, this methodology provides actionable information pertinent

to any data-driven approach that includes FOC modelling as part of its modelling,

including the weather routing and FOC-based performance monitoring methodologies

presented within this thesis. This also makes this methodology particularly useful

to researchers and developers providing data analytics services to relevant stakehold-

ers.

Accordingly, the proposed weather routing methodology constitutes a novel part of

this research work. This methodology includes a heuristic modification of Dijkstra’s

algorithm, making it dynamic so that changing weather patterns as a function of time.

Furthermore, due to the implementation of suitable modifications in this interpreta-

tion of Dijkstra’s algorithm, optimisation is performed in terms of minimising overall

FOC instead of minimising the route distance, as it the case with the traditional im-

plementation of Dijkstra’s algorithm. Therefore, this methodology provides a purely

data-driven solution to the problem of finding optimal weather. As such, this method-
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ology can provide valuable information to operators and crew in terms of reducing the

vessel’s FOC, and accordingly the vessel’s emissions – a highly coveted achievement,

both for regulatory bodies and the general public.

7.3 Conclusions

The concluding remarks of this research work are presented in the following state-

ments:

• The presentation of the data-driven modelling framework for vessel operational

efficiency enhancement has been enabled through the thorough examination of

pertinent literature and research trends from both the maritime sector and other

industry sectors with a stronger tradition in data-driven methods. The need for

approaches that integrate individual methodologies and tools to provide a more

holistic approach to vessel operational efficiency enhancement solidifies the need

for a framework such as the one introduced within this thesis.

• Along these lines, the proposed data-driven framework has addressed aspects

of machinery condition monitoring, vessel performance monitoring, and optimal

routing decision support. Through the combination of a multitude of data-driven

approaches, a dynamic framework with proven accuracy and robustness is cre-

ated, with methodologies that can both used individually and combined for the

overarching aim of vessel operational efficiency enhancement.

• The data pre-processing methodology constitutes the first step of the overall op-

erational efficiency framework. This methodology incorporates engine transients

and recording anomalies rejection, weather data imputation, feature engineering,

and data standardisation. The aforementioned steps work in tandem to pre-

process different datasets with different needs and provide data in the form re-

quired as input by all downstream methodologies. Combining the remarks of the

critical literature review with observations made through the case studies included

within this thesis, lack of proper pre-processing can significantly taint datasets,
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whilst most industrially-acquired datasets need to be thoroughly cleaned. This il-

lustrates the criticality of an often overlooked part of data-driven methodologies,

that of data pre-processing. This proves to be an actionable insight to relev-

ant stakeholders, such as shipowners and operators, as it highlights the need to

safeguard data accuracy, starting at the data acquisition step.

• The proposed condition monitoring methodology based on the OCC paradigm

provides the benefit of only requiring nominal data to be available at model

training. This is contrasting to other data-driven condition monitoring methods

that employ the traditional classification paradigm. Through the case studies

applying this methodology on data from four-stroke D/Gen and two-stroke M/E,

it was shown that the model can accurately discern between normal and abnor-

mal machinery conditions. Therefore, it provides a suitable basis for incipient

fault detection systems. Furthermore, due to the minimal amount of latent data

assumptions and low data volume requirements, this methodology can be applied

to a diverse set of machinery systems. These methodology particularities make

it a beneficial tool to be considered by shipping sector stakeholders, such as ship

owners, operators, and crew. However, an inherent shortcoming of this method-

ology is that it can only provide anomaly detection at a system level, without

being able to localise anomalies to specific subsystems of components.

• The proposed FOC modelling comparative methodology evaluates different data

sources and data-driven regression architectures for the identification of optimal

modelling approaches. This methodology and the relevant case study, confirmed

that highly accurate FOC predictions can be made even when noon report data

is used. Using noon report data, an accuracy of approximately 90% was ob-

tained, while the use of data sourced from an ADLM system yielded an accuracy

of approximately 97%. Moreover, this comparative study showed that the use of

ADLM systems allows the data acquisition period for model training to be reduced

by up to 90%. These observations provide valuable information to key stakehold-

ers such as researchers and developers as they provide guidance on the modelling
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approaches that should be prioritised when solving similar modelling problems.

In the case of stakeholders such as shipowners and operators, it provides signi-

ficant insights that can be incorporated into an accurate cost-benefit analysis of

the installation of an ADLM system.

• The FOC-based performance monitoring methodology, incorporating aspects of

the FOC prediction methodology, elaborates a data-driven approach to monitor-

ing a vessel’s performance. This methodology uses FOC as a proxy for perform-

ance, identifying instances of unjustifiably increased FOC and flagging them as

of degraded performance. This is done using a data-driven regression model that

predicts FOC based on data corresponding to a time period of optimal perform-

ance, e.g. post the vessel’s launch or following a major overhaul. The comparison

of model FOC predictions with the value actually observed provides a quan-

tification of the vessel performance degradation. This provides a theoretically

sound and easy-to-implement approach, with the results corroborated through

a case study using actual ship data. A number of Key Performance Indicators

(KPIs) have been proposed as part of this methodology, allowing the translation

of the performance degradation into easily understandable, qualitative informa-

tion. This is particularly useful in the case of stakeholders such as shipowners

and operators at it provides useful insights relevant to planning of underwater

cleanings, and other maintenance activities.

• The weather routing methodology provide optimal routing decision support aim-

ing to minimise the FOC of a vessel route between two given points. This is

achieved through a combination of the FOC prediction methodology and a modi-

fication of Dijkstra’s algorithm. This novel modification allows the algorithm

to acquire dynamic elements, taking into consideration time-dependent weather

changes and the derivation of optimal paths based on the minimisation of FOC

instead of overall distance minimisation. This weather routing methodology was

showcased through a case study utilising actual vessel raw data, and verified by

the consultancy company that supported this research work. Based on the above
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remarks, This methodology can provide key insights to operators and crew in

terms of reducing the vessel’s FOC. A corollary of reduced FOC is reduced vessel

emissions, therefore satisfying ever more stringent requirements set by regulatory

bodies and the general public.

7.4 Recommendation for future research

Through the proposal and development of the operational efficiency enhancement frame-

work contained within this thesis, future research areas that can extend the thesis

impact and research scope were identified. These are summarised below:

• Comparison of the OCC SVM model with other emerging OCC classifiers should

be considered to improve the condition monitoring methodology. As shown in

the FOC modelling comparison case study results, different models can signific-

antly increase model accuracy and robustness. Moreover, the derivation of the

algorithmically generated abnormal points for the hyperparameter optimisation

of the OCC model could be improved. Besides, the evaluation of the proposed

CM methodology using a dataset containing actual faults should be considered

to solidify the model’s accuracy and usefulness.

• Evolve the proposed CM methodology through the integration of first-principle

modelling. This hybrid approach is expected to increase model accuracy, and

provide fault localisation and advanced diagnostic capabilities.

• The CM methodology could be extended to obtain forecasting capabilities. This

would allow the estimation of future machinery system states, and the provision

of early warning in the case of anomalies that may develop to an extent that

affects a vessel’s operability.

• The overall proposed framework could be extended to become part of an autonom-

ous shipping operations framework. While all aspects proposed within this thesis

provide substantial benefits on their own, the actionable information they provide

157



Chapter 7. Discussion & Conclusions

will become even more important as autonomously operating vessels become more

prolific. This could point towards the integration of the proposed framework with

tools such as collision avoidance for the provision of a routing framework that

considers both global and local constraints.

• The FOC prediction module that is part of the optimal routing decision support

methodology could be enhanced by considering the M/E condition and vessel

performance estimations, as provided by the CM and FOC-based condition mon-

itoring methodologies. This would improve model accuracy even further, and

accordingly provide optimal routing support that is bespoke to the vessel at each

given time point.

• The implementation of the CM methodology to other systems based on their

criticality and a cost-benefit analysis could be considered. This could be ob-

tained through the integration of Failure Mode and Effect Analysis (FMEA) or

Failure Mode, Effects and Criticality Analysis (FMECA) approaches with the

proposed data-driven methodology. Furthermore, by examining the underlying

causes identifying through this analysis, this methodology could be applied in line

with proactive maintenance requirements.

• The impact of a higher volume data source, e.g. an ADLM system should be

considered for an additional case study based on the FOC-based performance

monitoring methodology presented in Section 4.8. Given a higher volume data

source, more advanced model architectures could be considered to improve model

accuracy and, accordingly, degradation monitoring. If this is coupled with ad-

ditional observed parameters (e.g. power/torque measurements), more complex

KPIs could be developed to better quantify the performance degradation.

• Optimal routing decision support and vessel performance degradation monitoring

through FOC modelling could be improved through the combination of measure-

ments from multiple vessels. This approach would allow the FOC prediction for

vessels where a large amount of training data are not readily available, whilst
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also providing monitoring at a fleet level. This could be achieved through an

implementation of big data principles, including Cloud and Edge computing and

the use of Internet of Things (IOT).

• The CM methodology can be integrated with the optimal routing decision support

methodology to provide maintenance scheduling optimisation. These methodolo-

gies will work in tandem, to identify when a piece of machinery is bound to fail

and predict where the vessel will be located at that time to route spares and plan

maintenance accordingly.

• The optimal routing decision support methodology can be augmented by con-

sidering variable vessel speeds along with weather information. This could be

achieved through the implementation of more advanced path-finding algorithms,

currently used in other sectors. Moreover, the Machine Learning (ML) paradigm

of reinforcement learning could be used, as it is exhibiting promising results in a

variety of relevant scenarios, including autonomous navigation.
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Taxonomy of data-driven

condition monitoring model

algorithms

Depending on the goal at hand, data-driven models can been separated in three main

groups based on how these models “learn”: (i) supervised learning; (ii) unsupervised

learning; and (iii) reinforcement learning.

This classification reflects different requirements regarding the use of labelled data.

Specifically, in the case of unsupervised learning, patterns in the dataset are identified

without the explicit existence of some ground truth. On the other hand, supervised

learning requires that every observation in the training dataset has an explicit target

(i.e. ground truth) value assigned. A sub-category named semi-supervised learning

is often considered to be an extension of supervised learning, combining labelled and

unlabelled data for model training. The final model category refers to reinforcement

learning where, whilst no labelled data is available, the end goal is explicitly described

(often in the form of a cost function), and the algorithm aims to identify the approach

that minimises this cost function. Reinforcement learning, although promising in many
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applications, does not currently have clear applications in condition monitoring, and

therefore will not be considered for the rest of the chapter.

A.1 Unsupervised learning

Unsupervised learning aims to identify some hidden pattern in an unlabelled dataset;

this has either the form of dimensionality reduction, or clustering. Dimensionality

reduction refers to the replacement of the original dataset features with a new set

of features that can describe most of the variance contained in the original dataset

whilst reducing the number of required features, therefore helping combat the “curse

of dimensionality”. “Curse of dimensionality” refers to various undesired phenomena

that appear when analysing data in high-dimensional spaces (Bellman, 2003). On the

other hand, clustering (often called cluster analysis) aims to group observations within

a dataset in different groups based on their similarities.

A breakdown of the most-frequently used algorithms are presented in Figure A.1.

Unsupervised
learning

Clustering
K-means

Dimensionality
reduction

Minor component analysis
Principal Component Analysis (PCA)

Self Organising Maps (SOM)
Gaussian Mixture Model (GMM)

Linear Discriminant Analysis (LDA)

Figure A.1: Taxonomy of unsupervised Machine Learning (ML) algorithms used in
Condition Monitoring (CM) applications.

A.1.1 Dimensionality reduction

Dimensionality reduction aims to reduce the number of features contained within a

dataset (i.e. the dimensionality of the dataset) while retaining most of the variance

(i.e. information) contained within the original dataset. An example of dimensionality

reduction is presented and discussed in Figure A.2.

Reducing the dimensionality of a dataset facilitates data storage and enables accelerated

data analysis as the sheer amount of data decreases. Burges (2010) notes that the
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Figure A.2: illustrative example of dimensionality reduction through the application
of Principal Component Analysis (PCA) algorithm. The length of each principal com-
ponent vector represents the amount of variance that is described within that principal
component. Thus, it is evident that in this example, keeping only the first principal
component (pointing up and to the right) as a dataset feature would still retain most
of the relevant information.

optimal rate of regression convergence of a dataset with 20 features and 10 million

samples can be replicated with only 10,000 samples if features are reduced to 10 in

such a way that the amount of variance contained is not affected. At the same time,

as the end features are uncorrelated, the application of such an algorithm may increase

the accuracy and robustness of a ML algorithm. Finally, reducing the dimensionality of

a dataset facilitates its visualisation. Relevant algorithms found within CM literature

are presented below.

Linear Discriminant Analysis (LDA) is a method that identifies a linear com-

bination of features that distinguishes a dataset, first proposed by Fisher (1936). In

this respect, LDA can be either used as a dimensionality reduction tool, or as a crude

linear classifier (Rao, 1973).

Principal Component Analysis (PCA) is another method used for dimension-

ality reduction that applies an orthogonal transformation that transform potentially

162



Appendix A. Taxonomy of data-driven condition monitoring model algorithms

correlated features to linearly uncorrelated (orthogonal) features called principal com-

ponents (Hotelling, 1936; Pearson, 1901).

Minor Component Analysis (MCA) is a counterpart to PCA, where the aim is

to extract the minor components of a dataset, i.e. the eigenvectors corresponding to

the smallest eigenvalues of the autocorrelation matrix whereas PCA aims to identify

the eigenvectors corresponding to the largest eigenvalues (Luo et al., 1997). MCA has

been proved to be more versatile than PCA in a number of applications (L. Xu et al.,

1992).

A.1.2 Clustering

Clustering can be defined as (Hastie et al., 2009):

[aiming to] partition the observations into groups (“clusters”) so that the

pairwise dissimilarities between those assigned to the same cluster tend to

be smaller than those in different clusters.

An example of clustering is depicted in Figure A.3. There, given a dataset and the

number of end clusters, the dataset points are assigned into clusters based on the

minimisation of their dissimilarities. Some of the most often cited clustering algorithms

in CM applications are presented below.

K-means is a very popular (Hastie et al., 2009) clustering algorithm that is intended

for situations where all dataset features are quantitative, working iteratively. Observa-

tions are assigned to the cluster with the nearest mean.

Gaussian Mixture Model (GMM) is an iterative method that assigns observa-

tions to clusters depending on the probability of an observation belonging to each cluster

as calculated by a probability distribution. The method iteratively aims to maximise

the overall probability of all observations belonging to the respective clusters they have

been assigned to. K-means method operates in a similar way, except that is returns

a “hard” decision where each observation only belongs to one cluster whereas GMM
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Figure A.3: illustrative example of clustering through the application of k-means
algorithm. Given a dataset and the explicit aim to identify 3 clusters, the algorithm
returns a dataset clustering so that the dissimilarity between points belonging to the
same cluster is minimised.

calculates the probability of a model belonging to all possible clusters. Routinely, the

Expectation Maximisation (EM) algorithm is used to obtain the required probability

estimates.

Self-Organising Map (SOM) is a type of Artificial Neural Network (ANN) that

can be used to produce a lower dimension representation (i.e. map) of the input space

(Kaski & Kohonen, 1996). Contrary to most ANN applications, SOM apply competitive

learning. While, SOM applications are usually in dimensionality reduction, in the case

of the identified CM literature, these applications all use SOM models for clustering

purposes.

A.2 Supervised learning

The goal of supervised learning is to predict an output value based on a number of

input values (Hastie et al., 2009). If the output value is quantitative the task is called

regression, whereas if the output value is qualitative, the task is classification. In both
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cases, the model is trained based on past observations where both inputs and outputs

are known. A breakdown of the most-frequently used supervised algorithms are presen-

ted in Figure A.4. Some of the algorithms presented can be used for both classification

and regression tasks, whereas others can only be applied to either classification or re-

gression problems. A special case of classification is one-class classification where all

data points available during model training are assumed to belong to one class and new

observations are classified as either belonging to that class or not.

Supervised
learning

Generative

Discriminative

Continuous
(regression)

Discrete
(classification)

2-class

multi-class

1-class
One Class Extreme Learning Machine (OC-ELM)

One Class Support Vector Machine (OC-SVM)

Auto Encoders (AE)

Least squares
Linear Regression Ridge

Elastic net

Lasso

Decision trees
Random Forests (RF)

Boosting trees

Shallow/Deep Neural Network (NN)

k-nearest neighbours (KNN)

Extreme Learning Machine (ELM)

Support Vector Machine (SVM)

Hierarchical Support Vector Machine (H-SVM)

Least Squares Support Vector Machine (LL-SVM)

Kernel-based Extreme Learning
Machine (K-ELM)

Support Vector Data Description (SVDD)

Linear Discriminant Analysis (LDA)

Auto-Associative Kernel
Regression (AAKR)

Figure A.4: Taxonomy of supervised ML algorithms used in CM applications.

A.2.1 Regression

Regression aims to predict one or more quantitative values given a number of inputs.

An example of regression is depicted in Figure A.5. There, given a number of input

and output pairs, a line that connects the two is calculated, providing a prediction of

output values for previously unseen input values.

Linear Regression (LR) constitutes the simplest regression algorithm, involving a

linear combination of the input (independent) variable (Bishop, 2006). The extension

of LR in cases where more than one dataset feature is used as an input is called multiple

LR (Hastie et al., 2009). Model parameters are usually computed aiming to minimise

the sum of the squares between the observed and predicted dependent (target) variable;

a method called least squares.
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Figure A.5: illustrative example of linear regression. Given a number of input and
output pairs, a line that connects the two is calculated, providing a prediction of output
values for previously unseen input values.

Ridge Regression (RR) is an extension of LR where the cost function that is to be

minimised is similar to that of LR with an additional parameter that imposes a penalty

to the square of each parameter. (Hastie et al., 2009). This shrinkage helps avoid

overfitting the training dataset. RR is also known as the Tikhonov regularisation.

Least Absolute Shrinkage and Selection Operator (LASSO) is similar to RR

but the cost function term imposes a penalty on the absolute value of each parameter

instead of their squares.

Elastic net is a combination of RR and LASSO, where both absolute-value and

squared regularisations are implemented concurrently.

Auto Associative Kernel Regression (AAKR) is a regression method, based on

the multivariate inferential kernel regression (Wand & Jones, 1995). AAKR is often

applied for the development of normal behaviour models.
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A.2.2 Classification

The task of predicting a qualitative (i.e. categorical) value based on a number of inputs

is called classification. An example of classification is presented in Figure A.6. Given

a number of input values and their corresponding class, lines that separate different

classes are calculated on the feature space.
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1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure A.6: illustrative example of linear, multi-class classification. Given a number
of input values and their corresponding class, lines that separate different classes are
calculated on the feature space.

Linear Discriminant Analysis (LDA) , as discussed in the unsupervised learning

section, is a method that identifies a linear combination of features that can be used

to distinguish a dataset. This feature permits the algorithm to be used for linear

classification purposes (Rao, 1973).

A.2.3 Regression & Classification

Algorithms that can be used in both regression and classification tasks are presented

below.

Support Vector Machines (SVMs) in their simplest form constitute a two-class

classifier in cases where the two classes are linearly separable. SVMs work by deriv-
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ing the optimal hyperplane, i.e. the hyperplane that offers the widest possible margin

between instances of the two classes. Their functionality can be extended by the intro-

duction of a non-linear kernel, allowing them to learn non-linear mappings, i.e., classify

between non-linearly separable classes (Theodoridis & Koutroumbas, 2009b). SVMs

can also be built as regressors (Smola & Schölkopf, 2004). Support Vector Reggressors

(SVRs) work in a similar way, this time trying to fit a hyperplane that accurately pre-

dicts the target values of training samples within a margin of tolerance.

Least Squares Support Vector Machine (LLSVM) represents the least-squares

version of SVM where obtaining a model entails solving a set of linear equations, instead

of quadratic programming as is the case for classical SVMs (Suykens & Vandewalle,

1999).

The Artificial Neural Network (ANN) and the Deep Neural Network (DNN)

are computing systems, inspired by the way biological nervous systems work. Various

ANN architectures exist, offering superior performance at many machine learning tasks,

including classification and regression. ANNs are extremely versatile as they can ac-

curately model complex non-linear behaviours. ANNs are based on an interconnected

group of connected units (neurons) where each connection between these units trans-

mits a signal from one to another, when the linear combination of its inputs exceeds

some threshold (Russell & Norvig, 2010). The receiving unit can process that signal

and then pass it on to the next unit.

Consequently, depending on the number of layers implemented, ANNs can be classified

as shallow and deep. Whilst no formal rule exists to separate shallow and deep neural

networks (Schmidhuber, 2015), usually networks that have more than 1 hidden layer are

considered deep. As the number of layers increases, the model can “learn” more non-

linear behaviours. At the same time, training becomes more computationally expensive

and the risk of overfitting the dataset also increases.
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Extreme Learning Machine (ELM) is a type of ANN where the parameters of the

hidden nodes do not require tuning, first proposed by Huang et al. (2006). Due to this,

training ELM is often thousands of times faster than training ANNs using traditional

tuning, i.e. backpropagation.

Kernel-based Extreme Learning Machine (K-ELM) is an extension of ELM,

where a kernel is used to add a non-linearity feature similarly to kernel-based SVM

models (Huang, 2014).

K-Nearest Neighbours (KNN) is a supervised learning method applied to both

classification and regression methods. In classification applications, the input observa-

tion is assigned the most common class observed in the k nearest neighbouring observa-

tions. Accordingly, in regression applications, the average of the k nearest neighbouring

observations is used as the model output.

Decision Tree (DT) models partition the feature space into rectangles and learn a

simple (e.g. constant) model in each of those (Hastie et al., 2009). DTs do not produce

a continuous output in the traditional sense. Instead, these models are trained on a

training set whose outputs lie on a continuous range. Their output ends up being the

mean value of the training set observations that reside in the same node.

One of the most common methods for tree-based regression is Classification And Re-

gression Trees (CART) (Breiman et al., 1984). In this case, the original feature space

is split into two regions, selecting the split point and dependent variable (feature) to

obtain the best model fit (Hastie et al., 2009). This is performed recursively, until the

activation of a stopping rule.

Random Forests (RFs) are based on the bagging (i.e. bootstrap aggregating) meta-

algorithm, where a number of de-correlated decision trees are trained based on the

available training set (Ho, 1995, 1998). Then, the output of the random forest model

is calculated by averaging the results of individual decision trees. Bagging refers to the
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development of homogeneous weak learners that learn independently and in parallel

and then combination of their individual output as model output.

Boosting trees is an equivalent to RFs, where the boosting meta-algorithm is used

(Drucker & Cortes, 1996). In this case, homogeneous weak learners are built sequen-

tially, with each model depending on the performance of previous models, and the

combination of their individual output is returned as model output.

Hierarchical Support Vector Machine (H-SVM) is the hierarchical version of

SVM where a decision tree is trained with individual SVM models as end nodes (Chen

et al., 2004). Applications usually focus on multi-class classification problems but H-

SVM models are also occasionally used for regression (Bellocchio et al., 2013).

A.2.4 1-class Classification

A special case of classification is one-class classification where all data points available

during model training are assumed to belong to one class and new observations are

classified as either belonging to that class or not. An illustrative example of one-class

classification is presented in Figure A.7.

One Class Support Vector Machine (OC-SVM) follow the same working prin-

ciples as normal SVM models derived for classification purposes with the caveat that,

in this case, the model aims to derive the hyperplane that separates all training points

from the origin instead of a hyperplane that separates points belonging to different

classes (Schölkopf et al., 1999). In cases where the hyperplane is spherical instead of

planar, the method is called Support Vector Data Description (SVDD) (Tax & Duin,

2004).

One-Class Extreme Learning Machine (OC-ELM) trains a model that accepts

observations that belong to the original class and rejects all others, based on ELM prin-

ciples. This is achieved through a suitable distance function (Leng et al., 2015).
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4 2 0 2 4

4

2

0

2

4

Novelty Detection
learned frontier
training observations
new regular observations
new abnormal observations

Figure A.7: illustrative example of one-class classification based on a non-linear one-
class SVM model.

Autoencoders (AEs) constitute a special type of ANN, often used for dimension-

ality reduction purposes (Goodfellow et al., 2016; Kramer, 1991). This functionality

can be extended to anomaly detection through the evaluation of the quality of the

developed reconstruction (Sakurada & Yairi, 2014).
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