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Abstract

The first essay (Chapter 1) presents a Variational Bayes (Vb) algorithm for Vector

Autoregression (reduced-form VAR). The algorithm is derived based on the evidence

lower bound, which is demonstrated to be tight, ensuring efficient convergence. The

optimization is carried through the Coordinate descent optimization. To validate the

proposed method, its accuracy and computational costs are compared with existing Vb

approaches that approximate VAR using a one equation at a time technique (Cholesky-

transformed VAR), and a more computationally intensive Markov Chain Monte Carlo

(MCMC) method using Gibbs sampling. In applications using both US macroeconomic

data and artificial data, our Vb for VAR outperforms Vb in Cholesky-transformed VAR

in terms of VAR covariance accuracy. Furthermore, compared to the MCMC method,

our proposed Vb algorithm for reduced-form VAR achieves comparable accuracy while

significantly reducing computation time.

The second essay (Chapter 2) takes the Variational Bayes (Vb) approach to the

next level by extending it to the challenging domain of Mixed Frequency Vector Au-

toregression (MF-VAR) models. These models tackle the complexities of dealing with

multiple frequency data in a single estimation, including the issue of missing lower

frequency observations in a higher frequency system. To overcome these challenges,

we introduce a robust and innovative Vb method known as the Variational Bayes-

Expectation Maximization algorithm (Vb-EM). Our Vb-EM algorithm offers several

key contributions to approximate Bayesian inference in the MF-VAR model. We de-

rive an evidence lower bound to the log marginal likelihood, accounting for missing

observations, and optimize it with respect to the variational parameters. In doing so,
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we surpass existing Vb methods in the literature by achieving a tighter evidence lower

bound, ensuring optimal convergence. To further validate our approach, we compare it

to the more computationally demanding Markov Chain Monte Carlo (MCMC) method

using Gibbs sampling. Through extensive empirical evaluations and out-of-sample fore-

casts of eleven US macroeconomic series, we demonstrate that our Vb-EM algorithm

performs on par with MCMC in terms of point forecasts. Furthermore, when assessing

predictive density, we find no significant empirical evidence to distinguish between the

two methods. Notably, our Vb-EM algorithm offers the distinct advantage of signif-

icantly lower computational costs, making it an appealing choice for researchers and

practitioners alike.

The third essay (Chapter 3) begins by emphasizing that the spike of volatilities of

macroeconomic variables during the surge of Covid-19 pandemic, which led to poor

performance of the workhorse Bayesian VAR with stochastic volatility in terms of

forecasting. This has attracted considerable attention from economists towards alter-

native models, including non-parametric models such as Gaussian process VAR. The

approach to estimate VAR one equation at a time, namely Cholesky-transformed VARs,

enables the application of more advanced regression models in VAR. In this chapter I

explore several advanced Gaussian process VARs, including GP-VAR, GP-DNN-VAR

(which incorporates a deep neural network as the mean function in the GP prior), and

Heteroscedastic-GP-VAR (HGP-VAR) where the likelihood variance is assumed to be

time-varying and parameterized by another latent-GP function. In this chapter the

variational inference is utilized to be the approximating method for HGP-VAR. The

forecasting results suggest that during non-pandemic periods, HGP-VAR and GP-VAR

perform similarly to BVAR-SV. However, during the Covid-19 pandemic, the advantage

of having time-variant likelihood variance in HGP-VAR becomes more pronounced for

predicting macroeconomic variables in a highly turbulent period.
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Chapter 1

Variational Bayes for Bayesian

Vector Autoregression.

1.1 Introduction

In recent years, there has been a growing body of literature on the use of large Bayesian

Vector Autoregressive (VAR) models. These models have been widely used in macroe-

conomics and finance, with many papers published on the subject, for instance Koop

& Korobilis (2013), Carriero et al. (2009, 2012). However, one of the main challenges

with VAR models is their computational complexity, which increases with the number

of variables and lags. To address this issue, some researchers have proposed methods

to estimate VAR models one equation at a time. Carriero et al. (2019, 2021) have

developed Gibbs sampling algorithms to estimate VAR models in this fashion, while

other researchers have used approximating methods such as Variational Bayes (Vb) to

estimate one equation at a time in VAR models. However, these methods have limita-

tions and researchers have started to question the necessity of estimating VAR models

in this way. For example Bognanni (2022) comment on the per equation algorithm

from Carriero et al. (2019) (labelled as CCM algorithm hereafter), proving that such

algorithm is theoretically incorrect but empirically and practically implementable. The

results produced by such algorithm is quite reliable which we will show in one of our

empirical results on artificial data. Then Carriero et al. (2022) response to the com-

2



Chapter 1. Variational Bayes for Bayesian Vector Autoregression.

ment from Bognanni (2022) by providing more theoretical proofs and slightly modify

the position of lower-triangular A.

The Cholesky decomposition method has been criticized by numerous scholars for its

tendency to produce order-dependent results, meaning that posterior inference can be

affected by the ordering of the variables in a VAR model. In a recent study, Arias et al.

(2022) highlight the significance of the ordering issue in Cholesky-transformed VARs

through both theoretical and empirical analysis. Their findings reveal that while point

forecasts are generally robust to variable ordering, predictive standard deviations can be

significantly influenced. Chan et al. (2021) support this notion, demonstrating that the

order invariance problem intensifies with the dimensionality of the VAR, exacerbating

the issue in precisely the situation where the Cholesky transformation is most needed.

In this chapter, a new Vb algorithm for VAR models, called Vb-VAR, is proposed.

The algorithm approximates the parameters of the VAR model by maximizing the

Evidence Lower Bound (ELBO) with respect to an approximate distribution. The

proposed Vb-VAR algorithm is shown to converge by demonstrating an increase in the

ELBO as the number of optimization iterations grows. It is worth nothing that our Vb

algorithm is approximating system-wide VAR, meaning that we do not rely on any per

equation algorithm. In other words our Vb approximate Covariance of VAR entirely.

Not being recovered from lower-triangular A matrix as in Carriero et al. (2019, 2022)

or Gefang et al. (2023, 2020).

To validate our proposed algorithm, we compare it to other methods such as CCM,

Carriero et al. (2019), and CCCM Carriero et al. (2022), using simulated artificial data.

We also investigate how each algorithm performs when the size of VAR covariance

is larger and compare their computational costs. We then evaluate the accuracy of

real-world macroeconomic monthly data out-of-sample forecasts using both point and

density forecasts. We compare our results with other methods such as Ordinary Least

Squares, MCMC, and Vb approximating one equation at a time. We use root mean

square error (RMSE )and cumulative ranked probabilistic scores (CRPS) to evaluate

both point and density forecasts, and compare tail forecasts of our Vb-VAR algorithm

to MCMC using weighted CRPS. The results show that our proposed algorithm is
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accurate relative to MCMC and has better computational efficiency. We conclude

that the proposed algorithm is a promising approach for large-scale macroeconomic

forecasting.

Finally it is noteworthy that the proposed Vb-VAR algorithm will be extended for

MF-VAR in the next chapter. For now the roadmap of this chapter is categorized as

followed: A brief introduction to Vb in section 1.2. Next VAR model and its prior

in section 1.4. Then section 1.5 presents optimal variational parameters for Vb-VAR

algorithm. A simulation study of real macroeconomic data is investigated, which is

presented in section 1.6. section 1.7. Furthermore we also provide the impulse response

analysis in section 1.9. Finally the conclusion is drawn in section 1.10.

1.2 Variational Bayes

In a Bayesian model, the goal of variational Bayes computational methods is to approx-

imate the posterior distribution of the model’s parameters (denoted as p(θ|y) with a

simpler, more manageable distribution from a specified family of distributions (denoted

as q(θ)). This approximation is achieved by minimizing the Kullback-Leibler (KL) di-

vergence between the posterior and the approximating distribution. These methods

have been widely studied in the literature, with references Ormerod & Wand (2010),

Blei et al. (2017) being notable examples and comprehensive reviews. The KL diver-

gence can be simply derived as followed:

log p(y) =

∫
log

(
p(θ)p(y|θ)
q(θ)

)
q(θ)dθ +

∫
log

(
q(θ)

p(θ|y)

)
q(θ)dθ. (1.1)

Or equivalently:

log p(y) ≥
∫
q(θ) log

p(y, θ)

q(θ)
dθ.

The exact KL-divergence is almost always intractable, but with Jensen’s inequality,

it is a fact that maximizing lower bound to the log marginal likelihood is equivalent

to minimizing KL-divergence. From eq. (1.1) above the evidence lower bound can be
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written as:

L =

∫
q(θ) log

p(y, θ)

q(θ)
dθ.

Suppose that the model’s parameters θ can be divided into J sub-vectors θ1, ..., θJ .

The approximating distribution q(θ) for the posterior distribution p(θ|y) is assumed

to factorize as q(θ) =
∏J

j q(θj). To maximize the lower bound on the log marginal

likelihood, each of these sub-vectors is updated in turn, holding the others fixed, using

the following update rule:

q̂(θj) ∝ exp{E−θj [log p(y|θ)p(θ)]}. (1.2)

where E−θj [·] denotes the expectation with respect to the other parameters apart from

θj . Equation (1.2) is the update rule for a block-wise gradient descent algorithm (aka

coordinate gradient descent) that is used to maximize the lower bound on the log

marginal likelihood p(y). In this algorithm, an initial choice for the sub-vectors of the

approximating distribution q(θ) are made, and then each sub-vector is updated in turn,

holding the others fixed at their current values, using the update rule given by eq. (1.2).

This process is repeated until convergence is achieved. For Bayesian linear regression

tutorial, readers are referred to Fox & Roberts (2012).

1.3 Why approximate reduced-form VAR?

It is no surprise that computational complexity of VAR model is massive due to the

requirement of inverse covariance of residual in VAR during the each sampling iteration

in MCMC (Gibbs sampling for instance). In this sub-section we briefly provide details

on computational complexity of VAR scales poorly to both number of variables and

lags. Suppose we are dealing with simple VAR with noisy observations. The system

can be formulated as followed:

yt = xtβ + ϵt, ϵt ∼ N (0,Σ) (1.3)
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where subscription t = 1, ..., T denotes the time index of observations, yt ∈ RN . N

is number of variables in VAR system. If p is number of total lag in VAR then xt

are predictors with K = N × p dimension. The parameters to be estimated are VAR

coefficients β, and covariance Σ. Suppose further that we estimate this system using

sampling-based method (Gibbs sampling) say the very popular among econometricians,

Minnesota prior, the conditional posterior of VAR coefficient is, see Dieppe et al. (2016)

and among others.

p(β|Y ) ∝ exp

[
−1

2

{
(β0 − β)′Ω

−1
(β0 − β)

}]
,

Ω =
[
Ω−1
0 +Σ−1 ⊗X ′X

]−1
,

β = Ω
[
Ω−1
0 β0 + (Σ−1 ⊗X ′)Y

]
.

where Y = {yt}Tt=1, and X = {xt}Tt=1. β0,Ω0 are prior for VAR coefficient and covari-

ance. It is very obvious that the computational complexity of estimating whole VAR

system scales not very well to number of variables N and number of lags p. Here I

break down one by one of very high complexity in table 1.1. Since the number of obser-

vations in macroeconomic literature is quite few so I ignore the number of observations

for simplicity.

terms computational complexity

(Σ−1 ⊗ x′x) O(N2p2 +N3p)

(Ω−1
0 +Σ−1 ⊗ x′x)−1 O(N5p3)

Table 1.1: The computational complexity for a draw of the conditional posterior of VAR coef-
ficients in each MCMC iteration.

The term Ω−1
0 is prior and can be computed preliminarily. In fact the second term

in table 1.1 can be reduced to O(N4p2) if the linear solver is implemented. For example

the backslash operator in Matlab program. The second term also dominates the first

term therefore estimating whole VAR system has complexity scale with both number

of variable and number of lags. To make it crystal, fig. 1.1 illustrates the complexity as

the number of lag increase (left-panel), and number of variables in VAR grows (right-

panel). Such limitation is a main obstacle for econometricians to perform a large VAR.
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Figure 1.1: Computational complexity of VAR models scales with the number of VAR lags
(left) and the number of variables (right).

The examples can be seen by multiple popular literature such as Bańbura et al. (2010),

Carriero et al. (2015), Giannone et al. (2015), Koop & Korobilis (2013), where they

include 20 US macroeconomic variables and has been reused in many papers afterward.

1.4 Normal-Wishart conditional on Horseshoe shrinkage

prior VAR

Let N,T be numbers of equations in VAR and total observations, respectively. K be

dimension of covariate at each time t for t = 1, ..., T . Then Yt = N dimensional vector

of responsive variable at time t, B = N ×K, Xt = K-dimensional covariate vector at

time t. We primarily focus on one of the most famous global-local shrinkage priors,

which do not require predetermined hyperparameters. This prior automatically shrinks

the VAR coefficients towards zero as soon as it is realized that the signal contains no

predictive information and vice versa. Our conjugate normal-Wishart conditional on
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horseshoe shrinkage prior VAR can be expressed as:

Yt|B,Σ ∼ N (BXt,Σ
−1),

B|Σ, λ, τ ∼ N (0, (Σ⊗ λτ)−1),

λ|ϑ ∼ G(1/2, ϑ),

τ |ξ ∼ G(1/2, ξ),

ϑ ∼ G(1/2, 1),

ξ ∼ G(1/2, 1),

Σ ∼ W(S0, ν0).

(1.4)

where∼ N (·, ·′) is multivariate normal distribution with ·mean vector and ·′ covariance.

∼ G(·, ·′) is gamma distribution with shape and rate ·, ·′, respectively. Finally the

∼ W(·, ·′) is wishart distribution with · being scale matrix, and ·′ degree of freedom

(real value). The local shrinkage parameter is λ = diag(λ1, ..., λK), and ϑ = (ϑ1, ..., ϑK).

Such VAR formulation above is equivalent to VAR with normal-Wishart prior with local

shrinkage parameters λ, and global shrinkage parameter τ . The former controls weights

of covariate in each VAR equation that being projected to responsive variables. The

latter, on the other hand, is global shrinkage parameter, controlling how tight overall

VAR coefficients B should be. Finally the probability density function of p(B|Σ, λ, τ) ∼

N (0, (Σ⊗ λτ)−1) takes the form:

p(B|Σ, λ, τ) = (2π)
−NK

2 |Σ|
K
2 |λτ |

N
2 exp

(
Tr

{
−1

2
ΣB(λτ)B′

})
,

= (2π)
−NK

2 |Σ|
K
2 |λτ |

N
2 exp

(
Tr

{
−1

2
(λτ)B′ΣB

})
.

1.5 Optimal variational parameters

We work with model eq. (1.4), and shall begin by denoting the joint distribution as:

p(Y,X,B,Σ, λ, τ) = p(Y |B,Σ)p(B|Σ, λ)p(Σ)p(λ)p(τ). (1.5)
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The approximate distribution is defined as followed:

q(θ) = q(B,Σ)q(λ)q(τ)q(ϑ)q(ξ). (1.6)

With the advantage from conjugate prior of B and Σ (conditional on Horseshoe shrink-

age parameters) to the posterior one can write q(B,Σ) = q(B|Σ)q(Σ). The optimal

variational parameters of q(θ) can be written as followed:

q̂(B|Σ) ∼ NN×K(B̂,Σ−1 ⊗ Φ−1),

q̂(Σ) ∼ W(S, ν),

q̂(λ) ∼ G(a, b),

q̂(τ) ∼ G(c, d),

q̂(ϑ) ∼ G(e, f),

q̂(ξ) ∼ G(g, h).

(1.7)

The mean of each parameters will be denoted as X̂. For example, if X ∼ G(a, b) then

the mean of E[X] = X̂ = a/b. Next is the mean of Wishart distribution, if q̂(Σ) ∼

W(S, ν) then E[Σ] = Sν. The optimal variational parameters of each parameters can
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be described as followed:

B̂ = Φ−1(XY ′),

Φ = λ̂τ̂ +XX ′,

S
−1

= S0 + Y Y ′ − B̂ΦB̂′,

ν = ν0 + T,

a = 1/2 +N/2,

b = ϑ̂+ 1/2τ̂diag(B̂′Σ̂B̂ +NΦ−1),

c = 1/2 +NK/2,

d = ξ̂ + 1/2Tr
{
λ̂
(
NΦ−1 + B̂′Σ̂B̂

)}
,

e = 1,

f = λ̂+ 1,

g = 1,

h = τ̂ + 1.

(1.8)

By iteratively computing the variational parameters of each parameters, the coordinate

descent optimizes evidence lower bound one block at a time while holding other fixed,

thus each parameter’s KL will be minimized. Finally, how these optimal variational

parameters, and evidence lower bound are obtained, can be found in the appendix of

section 1.11.

1.6 A simulation study

To prove that our Vb for VAR algorithm is legitimate, we do provide estimation results

with the artificial data simulated using Matlab toolbox to simulate VAR in eq. (1.4)

with N = 5, T = 754, p = 10 where p is number of lag. Four algorithms are investi-

gated, which are, first our proposed Vb for VAR, Ordinary least square method, Vb for

regression using CCM algorithm (recently proven to be theoretically incorrect but very

appealing and practically accurate which will be shown shortly after, Carriero et al.

(2019)), and Vb for regression using CCCM algorithm (The new proven to be theo-
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retically correct recently, Carriero et al. (2022)), labelled, Vb-VAR, OLS, Vb-CCM,

and Vb-CCCM, respectively. It is noteworthy that the hierarchical horseshoe prior is

employed and derived for optimal variational parameters for the last two algorithms.

We simulate in total of 5000 data sets with code to reproduce the similar results

plotted in fig. 1.2, and fig. 1.2. Our simulation begins by first sample true VAR co-

efficients from NN,K(0, 1), where 30% of which is zero (represent sparsity). Then for

VAR covariance we sample U = UN,N (0, 1), where ∼ U(·, ·′) is standard uniform distri-

bution on the open interval (0, 1). To guarantee the positive definite of covariance we

set Σ = U × U ′. Given those two parameters we leave the rest to Matlab toolbox do

the rest. Two primary functions are being used, which are, varm, and simulate. The

reproducibility is carried by rng function in Matlab.

Figure 1.2: Box plots of Euclidean-norm between true VAR coefficients and approximated ones
from four different algorithms, i.e.∥B̂ −B∥22 (left-panel), and ∥Σ̂− Σ∥22 (right-panel)

We illustrate boxplot of Euclidean-norm (L2-norm) between true VAR coefficients

(left-panel) and covariance (right-panel) between four differen algorithms in fig. 1.2.

With 30% of VAR coefficients being zero (representing sparsity), the OLS method

seems to perform worst with artificial data as described above. VAR covariance, on

the other hand, all algorithms are almost identical, with the exception of Vb-CCCM

approach, where there are some small sample that actually spike up to 100. Despite

some small difference between these four methods, fig. 1.3 suggests that all in-sample

forecast mean are almost indistinguishable.

The findings in fig. 1.2 are intriguing, particularly the precision of the posterior mean

of the VAR covariance estimated using the Vb-CCM and Vb-CCCM algorithms. As a
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Figure 1.3: Box plots of Euclidean-norm between actual observations and in-sample VAR pre-
dictions, ∥Ŷ − Y ∥22.

result, we delve deeper into the accuracy of the VAR covariance estimate in the next

subsection. Since two approaches recovers VAR covariance using lower-triangular A.

However, as the size of the VAR covariance matrix increases, there may be limitations

to such approaches.

Next sub-section we investigate further on how accurate of each algorithm on esti-

mating VAR covariance.

1.6.1 Investigate further on VAR covariance.

In fig. 1.3, we observe that the prediction mean/median from our algorithm and other

methods are quite similar. However, we will now investigate how different algorithms

perform in terms of estimating VAR covariance. Specifically, we want to highlight that

there are certain circumstances in which per equation algorithm (Cholesky-transformed

VARs) appears to perform poorly, especially in terms of Covariance accuracy, see Arias
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et al. (2022), Chan et al. (2021). To begin, we will express the VAR in compact form

when the per equation algorithm is utilized.

yt = B0 +B1yt−1 +B2yt−2 +A−1σ1/2E, where E ∼ N (0, IN ). (1.9)

The notation of the equation above is similar to the one described in eq. (1.4), where

yt is the responsive variable at time t, B0, B1, and B2 are the intercept, coefficient

of lag 1, and lag 2, respectively. The additional σ = diag(σ, ..., σN ) represents the

stacking regression residuals’ variance that arises from estimating VAR one equation

at a time Carriero et al. (2022). The lower triangular element in A−1 is treated as

VAR parameters, so it is necessary to assign a prior. Different priors, such as the

Horseshoe prior or Minnesota prior, can theoretically lead to different results of the

VAR covariance matrix since the covariance is recovered by simply computing Σ =

A−1σA−1′ . To concretely prove this idea, we simulate artificial data and estimate it

using different algorithms, similar to what is described in the beginning of this section.

We simulate VAR data with T = 754, N = 3, and p = 2 with the following coefficients

and covariance.

B0 =


1

.5

−.5

B1 =


.3 −.1 .05

.1 .2 .1

−.1 .2 .4

B2 =


.1 .06 .001

.001 .1 .01

−.01 −.01 .2

 ,

Σ =


.373 .139 .615

.139 1.53 1.123

.615 1.123 1.655

 .
(1.10)

The simulated data according to VAR parameters above eq. (1.10) can be plotted

in fig. 1.4. Since our objective in this subsection is to investigate VAR covariance, we

first illustrate heatmap in fig. 1.5, the figure shows the posterior mean of covariance

produced by proposed VB with Horseshoe prior (top-right), MCMC-CCCM algorithm

with Minnesota prior (bottom-left), and MCMC-CCCM algorithm with Horseshoe prior
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(bottom-right).

To aid interpretation we wish to highlight that our Vb algorithm performs better

than both MCMC-CCCM-Minnesota/Horseshoe prior. This is due to the fact that

the VAR covariance is actually approximated entirely, not being recovered using lower

triangular A−1 from per equation VAR eq. (1.9). The pattern we found from result

from fig. 1.5 is that the per equation algorithm Carriero et al. (2022) both using CCCM-

Minnesota and CCCM-Horseshoe seem to overestimate VAR covariance. If we compare

with the actual Covariance (top-left). Next we illustrate the result of Minnesota prior

VAR but this time it is system-wide estimation, see fig. 1.6. Obviously the system-wide

VAR is able to capture the actual covariance quite well. In fact the results are almost

identical to our system-wide Vb with Horseshoe prior.

The overestimation from per equation algorithm can be larger as size of residual is

increased. In other words the element in VAR covariance is large. To prove such point

we simulate 100 data sets with similar VAR coefficients as described in eq. (1.10) but

this time we time original actual VAR covariance by the following:

loop j = 1, 2, ..., 100,

set Σj = Σ× j

2
.

For clarity we show the matlab code in the box below. Again we compare the posterior

mean results of Euclidean norm (L2-norm) to measure the distance between actual VAR

covariance in each loop. The results are demonstrated in fig. 1.8. According to fig. 1.8, it

is quite obvious that as the actual VAR covariance is larger, the larger distance between

actual covariance and posterior mean of those produced by per equation algorithm.

Our Vb-system-wide algorithm, however, performs as well as MCMC-system-wide with

Minnesota prior. Additionally the slope of Euclidean norm is tremendously lower than

per equation algorithm. This lead us to conclude that although our Vb algorithm has

completely different prior to MCMC, the algorithm is able to manage to be as accurate

as MCMC.
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Figure 1.4: Reproducible artificial data simulated with simulate function from matlab accord-
ing to VAR parameters in eq. (1.10).

Figure 1.5: Heatmap displaying the actual and estimated covariance of a VAR model: Actual
covariance from eq. (1.10) (top-left), our Vb-system-wide with Horseshoe prior (top-right),
MCMC per equation algorithm Carriero et al. (2022) with Minnesota prior (bottom-left), and
MCMC per equation algorithm with Horseshoe prior (bottom-right).

1.6.2 Computational costs

We also examine how the proposed Vb-VAR algorithm performs in terms of computa-

tional costs as the size of cross-section N in the VAR model increases. We simulate the
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Figure 1.6: Heatmap displaying the estimated covariance of a Minnesota prior VAR model
(system-wide estimation) using artificial data simulated from eq. (1.10).

1 for j=1: number_of_test

2 Constant = [1; 0.5; -0.5]; % intercept term

3 AR1 = [0.3 -0.1 0.05; 0.1 0.2 0.1; -0.1 0.2 0.4]; % VAR

coefficient for lag 1

4 AR2 = [0.1 0.05 0.001; 0.001 0.1 0.01; -0.01 -0.01 0.2]; %

VAR coefficient for lag 2

5 Trend = zeros (3,1); % no-trend

6 Sigma = [.373 , .139, .615;

7 .139, 1.53, 1.123;

8 .615, 1.123, 1.655];

9 Sigma = Sigma*j/2; % maniupate the actual VAR covariance.

10 TrueMdl = varm('Constant ',Constant ,'AR',{AR1 AR2},'Trend ',

Trend ,'Covariance ',Sigma); % assemble VAR parameters for

matlab simulate function.

11 rng (1228) % for reproducibility

12 data = simulate(TrueMdl ,n); % simulate data from VAR

parameters above.

13 end

Figure 1.7: Matlab code to simulate artificial data.

VAR model in a similar way to what is described in section 1.6, but with only a single

lag (p = 1) to avoid high-dimensional issues as number of equation in VAR grows.

We compare the computational costs to those of Vb-CCM and Vb-CCCM and plot

the results of total time of three different algorithms, labelled Vb-VAR, Vb-CCM, and

Vb-CCCM in fig. 1.9 (on 4.8 GHz AMD Ryzen 5900x machine). The x-axis represents
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Figure 1.8: Euclidean norm distance between actual VAR covariance and posterior mean of dif-
ferent models and algorithms: x−axis is the number of simulation test, y−axis is the Euclidean
distance (higher means worse in terms of accuracy).

size of cross-section N , and y-axis is time in seconds. As shown in the figure, the pro-

posed algorithm surprisingly scales very well with the number of equations in the VAR

model. In contrast, the computational time of both Vb-CCM and Vb-CCCM increases

quickly as the number of VAR equations increases, while the proposed algorithm’s

computational time remains relatively stable.
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Figure 1.9: Computational costs of three different algorithms, scale with number of equations
in VAR. x−axis is number of equations in VAR, and y−axis is computational time (in seconds).
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1.7 Convergence and in-sample prediction

We demonstrate the proposed variational Bayes for Vector Autoregression via empirical

US monthly macroeconomic applications. The method is tested using small (3 vari-

ables), medium (20 variables), and large (40 variables) datasets, spanning from 1960

to 2022.1 The efficiency of the Vb algorithm is demonstrated by showing the conver-

gence of the evidence lower bound (ELBO), see left-panel of figs. 1.10 to 1.12. The

x−axis is the number of Vb-iterations, and y−axis is the ELBO As expected as the

number of variables in VAR grows the ELBO also decreases. Next we demonstrate

how our Vb-VAR algorithm with Horseshoe prior can effectively shrink the VAR co-

efficients and compare them to those obtained using Ordinary Least Squares (OLS).

The coefficients are plotted in figs. 1.10 and 1.12, and it is evident that the Vb-VAR

algorithm with Horseshoe prior can effectively shrink the VAR coefficients compared

to the OLS estimates (right-panel of figs. 1.10 to 1.12). Additionally, we computed the

Euclidean norm of observed data to in-sample prediction means to test the accuracy

of the VAR parameters obtained from the Vb algorithm, OLS, and MCMC. The re-

sults in table 1.2 indicate that despite the VAR coefficients being shrunk, the Vb-VAR

algorithm maintains the in-sample prediction error well and is as accurate as more

computationally demanding methods such as MCMC. Furthermore, the computational

costs of the proposed algorithm scale well with the number of variables in the VAR.

1Data is collected online via fredapi with the January 2023 vintage date.
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Figure 1.10: Evidence lower bound of the Vb algorithm is shown in the left panel. The vectorized
VAR coefficients estimated using Vb are indicated by the red dashed-dot line, while the OLS
VAR coefficients are represented by the blue dashed-dot line (Small VAR).

Figure 1.11: Evidence lower bound of the Vb algorithm is shown in the left panel. The vectorized
VAR coefficients estimated using Vb are indicated by the red dashed-dot line, while the OLS
VAR coefficients are represented by the blue dashed-dot line (Medium VAR).

Figure 1.12: Evidence lower bound of the Vb algorithm is shown in the left panel. The vectorized
VAR coefficients estimated using Vb are indicated by the red dashed-dot line, while the OLS
VAR coefficients are represented by the blue dashed-dot line (Large VAR).
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Computational costs (seconds) Euclidean norm∥Ŷ − Y ∥22
Number of VAR variables Vb MCMC Vb OLS MCMC

3 0.10 9.4 13.0 13.0 13.0
20 0.18 580.8 15.5 15.0 15.0
40 0.19 3023.6 22.0 21.0 21.5

Table 1.2: Computational costs, Euclidean norm distance between observed data and predicted
values from Vb-VAR, OLS, and MCMC (CCCM algorithm, see Carriero et al. (2022)).

1.8 Forecast Application

In this section, we utilize our proposed approach to large models to demonstrate its

effectiveness. Our objective is to investigate how a large information set can influence

the accuracy of out-of-sample forecasts from Vector Autoregressions (VARs). We con-

duct an out-of-sample exercise recursively, starting with a 20-year monthly data sample

from 1960:1 to 1979:1, and ending with a sample from 1960:1 to 2021:10. We generate

iterative 12-step-ahead forecasts, resulting in a total of 502 sets of forecasts that cover

the period from 1980:1 to 2022:10.

As our algorithm is considerably faster than MCMC, we compare its forecasting

performance to that of a widely-used benchmark: the Minnesota prior VAR. We chose

this prior because it is popular among economists, and recent research Cross et al.

(2019) investigate the recursive out-of-sample forecasts of such prior, compared to mul-

tiple priors, including global-local-prior. The reports from their work show that the

parameters from VARs are dense rather than sparse, resulting in Minnesota prior VAR

outperforms most of competitive models, with only three focused variables: US infla-

tion (∆2 log(CPIAUCSL)), unemployment rate (∆UNRATE ), and industrial produc-

tion (∆ log(INDPRO)). We first compare Vb with exact three variables then gradually

increase the number of variables to 20 and eventually 40 variables. Both point and

density forecasts are evaluated via RMSE and CRPS, with respect to the benchmark

model. This allows us to see the effects of whether increasing variables in VAR im-

prove the forecasts. The macroeconomic variables are listed in table 1.7, and have been

shown to be popular among economists in forecasting purposes in previous studies such

as Bańbura et al. (2010), Koop (2013), Koop & Korobilis (2013), Giannone et al. (2015),
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Carriero et al. (2015). To gauge the statistic test of difference between predictive den-

sity we provide Diebold & Mariano (1995) (two-sided DM-test), representing in color

light green for 1%, yellow for 5%, and orange for 10%.

A priori, we expect the inclusion of more variables in VAR to improve point forecasts

via a better specification of the conditional mean, while the use of a larger data set might

result in slightly worse density forecast because higher probability of error variance.

However, this is not the whole story, as shown in table 1.3, which displays RMSE,

and CRPS relative to the benchmark (3 variables Minnesota VAR using MCMC) of

N = 3, 20, 40 variables in VAR using Vb, so that the value below 1 denotes a model

outperforming the benchmark and vice versa.

For N = 3, point forecast of three selected variables, Vb performs almost identical

to the benchmark at all horizons, proving that our algorithm is competitive to MCMC.

For accuracy of forecast density, at one-step-ahead forecast, we found that Vb is out-

performed by the benchmark 15% in forecasting US industrial production. Nonetheless,

Vb’s accuracy is still competitive with the benchmark for both RMSE and CRPS in

forecasting US inflation and unemployment rate.

Moving to N = 20 VAR results from Vb approach. We start to see point forecast

gain for industrial production at h = 1, 4, 8. As discuss in priori expectation about

larger variable in VAR, the improvement on point forecast is quite obvious for IND-

PRO variable but the CRPS is still identical to the benchmark. For US inflation, we

found that the one-step-ahead forecast performs slightly worse than the benchmark by

approximately 16 percentage points. Additionally, when comparing between N = 20

and N = 3, N = 20 also underperforms by roughly 6 percentage points. We suspect

that such results are from the additional predictors lead to over or under predictive

mean. However predictive density seems to be improved from N = 3 where now at

h = 4, 8, 12 it is able to compete with the benchmark whereas Vb N = 3 moderately

worse than the benchmark approximately 2%.

It appears that the inclusion of more variables in VAR using the Vb approach

provides an advantage, particularly in forecasting US industrial production at N =

40, where the one-step-ahead forecast is improved up to 24%. However, as expected,
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including more variables may result in slightly worse density forecast accuracy, with the

CRPS being 4% outperformed by the benchmark. It is worth noting that the inflation

and unemployment rate forecasts are still identical to the benchmark. Therefore, it can

be concluded that the Vb algorithm is as good as a more computationally demanding

MCMC approach while enjoying exceptionally low computational cost.

N=3

CPIAUCSL UNRATE INDPRO CPIAUCSL UNRATE INDPRO
h=1 1.10 0.99 0.99 h=1 1.09 0.97 1.15
h=4 1.02 0.97 1.00 h=4 1.02 1.03 1.04
h=8 1.02 1.01 1.03 h=8 1.02 1.04 1.05

R
M

S
E

h=12 1.02 1.01 1.03

C
R
P
S

h=12 1.02 1.04 1.06

N=20

CPIAUCSL UNRATE INDPRO CPIAUCSL UNRATE INDPRO
h=1 1.16 0.99 0.81 h=1 1.12 1.11 1.00
h=4 1.00 0.97 0.97 h=4 1.00 0.99 0.99
h=8 1.00 1.00 0.99 h=8 1.00 1.00 1.00

R
M

S
E

h=12 1.00 1.00 1.00

C
R
P
S

h=12 1.00 1.00 1.01

N=40

CPIAUCSL UNRATE INDPRO CPIAUCSL UNRATE INDPRO
h=1 1.11 0.97 0.76 h=1 1.14 1.08 1.04
h=4 1.00 0.96 0.96 h=4 1.02 0.97 0.99
h=8 1.00 1.00 0.99 h=8 1.02 1.00 1.01

R
M

S
E

h=12 1.00 1.00 1.00

C
R
P
S

h=12 1.02 1.00 1.02

Table 1.3: RMSE and CRPS of Vb system-wide VAR relative to benchmark model (Minnesota
prior VAR using MCMC). Color in each block indicate statistical siginificance of the Diebold-
Mariano test (two-side) for equal predictive performance at 1 (light green), 5 (yellow), 10
(orange) percent level.

1.8.1 Investigating the accuracy of tails forecasts

There are concerns in the economics literature that the Vb approach to predictive

forecasts can be weak because the posterior distribution of parameters and forecasts

tends to be centered around the mean and median, which may ignore many possible

parameter and forecast distributions. To address these concerns and demonstrate the

reliability of our Vb approach, we report an emphasized-CRPS score that focuses on

five regions of out-of-sample forecast density: both-sided tails, uniform (no weights

augmented), center (using median/mean as weights), left tail, and right tail. We present

the scores in ratio to the benchmark for inflation, unemployment rate, and industrial

production in table 1.4, table 1.5, and table 1.6, respectively. Specifically, we aimed

to show that our Vb approach produces scores that are as close to one as possible,

23



Chapter 1. Variational Bayes for Bayesian Vector Autoregression.

indicating that the posterior predictive distribution is nearly identical to those produced

by the Minnesota prior VAR using MCMC.

Our study shows that the Vb approach is highly reliable and accurate compared

to the MCMC approach, despite being less computationally demanding. This proves

that Vb is a viable alternative that saves computational resources without sacrificing

accuracy.

N=3

CPIAUCSL tail uniform centre right left
h=1 1.07 1.09 1.09 1.09 1.08
h=4 1.02 1.02 1.03 1.04 1.01
h=8 1.01 1.02 1.02 1.03 1.01
h=12 1.02 1.02 1.03 1.03 1.01

N=20

CPIAUCSL tail uniform centre right left
h=1 1.10 1.12 1.13 1.12 1.12
h=4 1.01 1.01 1.01 1.00 1.01
h=8 1.00 1.01 1.01 1.00 1.01
h=12 1.00 1.01 1.01 1.00 1.01

N=40

CPIAUCSL tail uniform centre right left
h=1 1.10 1.14 1.15 1.12 1.14
h=4 1.03 1.02 1.02 1.01 1.03
h=8 1.03 1.02 1.02 1.01 1.03
h=12 1.03 1.02 1.02 1.02 1.03

Table 1.4: Emphasize of tail, uniform, centre, right, and left of CPIAUCSL predictive distri-
bution obtained from weighted-CRPS, averaged over forecasting evaluation periods of the Vb
system-wide VAR compared to the benchmark model (Minnesota prior VAR using MCMC).
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N=3

UNRATE tail uniform centre right left
h=1 0.96 0.97 0.97 0.99 0.94
h=4 1.02 1.03 1.03 1.01 1.04
h=8 1.04 1.04 1.04 1.01 1.06
h=12 1.04 1.04 1.04 1.02 1.06

N=20

UNRATE tail uniform centre right left
h=1 1.09 1.11 1.12 1.11 1.10
h=4 0.98 0.99 0.99 1.00 0.97
h=8 1.00 1.00 1.00 1.01 1.00
h=12 1.01 1.00 1.00 1.01 1.00

N=40

UNRATE tail uniform centre right left
h=1 1.06 1.08 1.09 1.09 1.06
h=4 0.97 0.97 0.98 0.99 0.95
h=8 1.00 1.00 1.00 1.00 1.00
h=12 1.00 1.00 1.00 1.00 1.00

Table 1.5: Emphasize of tail, uniform, centre, right, and left of UNRATE predictive distribution
obtained from weighted-CRPS, averaged over forecasting evaluation periods of the Vb system-
wide VAR compared to the benchmark model (Minnesota prior VAR using MCMC).

N=3

INDPRO tail uniform centre right left
h=1 1.14 1.15 1.16 1.06 1.24
h=4 1.03 1.04 1.04 1.06 1.03
h=8 1.04 1.05 1.05 1.08 1.02
h=12 1.05 1.06 1.06 1.09 1.02

N=20

INDPRO tail uniform centre right left
h=1 0.94 1.01 1.03 0.95 1.04
h=4 1.00 0.99 0.99 0.98 1.00
h=8 1.01 1.00 1.00 1.00 1.00
h=12 1.02 1.01 1.00 1.01 1.01

N=40

INDPRO tail uniform centre right left
h=1 0.99 1.05 1.06 0.98 1.09
h=4 0.99 0.99 0.99 1.00 0.00
h=8 1.01 1.01 1.02 1.01 0.00
h=12 1.04 1.02 1.01 1.03 1.01

Table 1.6: Emphasize of tail, uniform, centre, right, and left of INDPRO predictive distribution
obtained from weighted-CRPS, averaged over forecasting evaluation periods of the Vb system-
wide VAR compared to the benchmark model (Minnesota prior VAR using MCMC).
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1.9 Impulse response functions comparisons

Figure 1.13: Impulse response (untransformed or cumulated) of selected variables to FED-
FUNDS shocks. Conjugate normal-Wishart VAR (top panel), Minnesota VAR using MCMC
CCCM algorithm (middle panel) and Horseshoe VAR using Vb algorithm (bottom).
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1.10 Conclusion

We have developed a new method called Variational Bayes for Vector Autoregression

(Vb-VAR) which uses a Horseshoe prior, and approximate system-wide VAR (not one

equation at a time). To the best of our knowledge, this method has not been previously

studied in literature. We first investigate our approach with simulated artificial data,

in comparison with per equation algorithm. We found that our Vb approach is better

in terms of in-sample prediction, and is able beat estimating one equation at a time

method in terms of approximating VAR covariance.

Then we also test the method on real-world US macroeconomic data, and found that

it performs well, producing VAR parameters that are as accurate as more demanding

MCMC methods, while also enjoying fast computation. Finally, we demonstrate that

our method converges properly by maximizing the evidence lower bound to the log

marginal likelihood. Our approach scales considerably well with the number of variables

in VAR in terms of computational efficiency.
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1.11 Appendix A: Optimal variational parameters

To begin with the optimal variational parameters of B,Σ. Let Eq[•] denotes the ex-

pectation of [•] with respect to approximate distribution q(θ).

q̂(B,Σ) = Eq [log p(Y |B,Σ) + log p(B|Σ, λ, τ) + log p(Σ)] , (1.11)

We first derive the last term in eq. (1.11).

E[log p(Σ)] =
ν0 −N − 1

2
Eq[log |Σ|]−

1

2
Eq

[
Tr{S−1

0 Σ}
]
.

Next is the middle term.

E[log p(B|Σ, λ, τ)] = K

2
Eq[log |Σ|] +

N

2
Eq[log |λτ |]−

1

2
Eq

[
Tr
{
(λτ)B′ΣB

}]
.

Lastly the term

E[log p(Y |B,Σ)] = T

2
Eq[log |Σ|]−

1

2
Eq

[
Tr{(Y −BX)′Σ(Y −BX)}

]
.

Re-arrange all terms then we have:

log q̂(B,Σ) =

(
ν0 −N − 1 +K + T

2

)
log |Σ| − 1

2
Tr{S−1

0 Σ}

− 1

2
Tr{(λτ)B′ΣB} − 1

2
Tr{(Y −BX)′Σ(Y −BX)}.

After quite a bit of manipulation then we have:

q̂(B,Σ) =

(
ν0 −N − 1 +K + T

2

)
log |Σ| − 1

2
Tr{Σ(B − B̂)Φ(B − B̂)′}

1

2
Tr

{
Σ

(
S0 + Y Y ′ − B̂ΦB̂′

)}
.
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where B̂ = Φ−1(XY ′), and Φ = λ̂τ̂ +XX ′. Such derivation is exactly to the condition

posterior distribution in the case of normal-Wishart VAR in Gibb-sampling algorithm,

see Koop (2003), and Dieppe et al. (2016) eq.3.4.15 for clarity . The above expression

is then recognized as normal-Wishart conjugate posterior distribution with the form of

q(B,Σ) being q(Σ)q(B|Σ).

Next is Horseshoe local shrinkage parameters λ where:

q̂(λ) = Eq[log p(B|Σ, λ, τ) + log p(λ|ϑ)].

First derive the last term of eq above, where the following is up to its additive constant:

Eq[log p(λ|ϑ)] = −1/2 log λ− ϑ̂λ.

Deriving another term where it is up to additive constant apart from λ then we have:

Eq[log p(B|Σ, λ, τ)] = N

2
Eq

 K∑
j=1

log λj

− 1

2
Eq

[
Tr{(λτ)B′ΣB}

]
.

Lemma 1. Suppose that X ∼ NN,K(M,∆⊗ Ω), and let A be N ×N matrix then the

expectation of X follows immediately, see Gupta & Nagar (2018) page 60.

E[X ′AX] = Tr{∆A′}Ω+M ′AM.

Using Lemma 1 and some simple algebra then we have:

q̂(λ) =

(
N

2
+

1

2
− 1

)
log λ− λ

(
τ̂

2
diag

{[
NΦ−1 + B̂′Σ̂B̂

]}
+ ϑ

)
.

The eq above is recognized as Gamma distribution:

q̂(λ) ∼ G(a, b), where,

a =
1 +N

2
,

b = ϑ̂+ 1/2τ̂diag(B̂′Σ̂B̂ +NΦ−1).

29



Chapter 1. Variational Bayes for Bayesian Vector Autoregression.

Next is the global shrinkage parameter τ :

q̂(τ) = Eq [log p(τ |ξ) + log p(B|Σ, λ, τ)] .

Again up to additive constant that is independent from τ we have:

q̂(τ) =

(
NK

2
+

1

2
− 1

)
log τ − τ

(
ξ̂ +

1

2
Tr
{
λ̂
(
NΦ−1 + B̂′Σ̂B̂

)})
.

The eq above is recognized as Gamma distribution:

q̂(τ) ∼ G(c, d), where,

c =
1 +NK

2
,

d = ξ̂ + 1/2Tr

{
λ̂

(
B̂′Σ̂B̂ +NΦ−1

)}
.

Next is hierarchical local and global shrinkage ϑ, ξ.

q̂(ξ) = (1− 1) log ξ − ξ(1 + τ)

q̂(ϑj) = (1− 1) log ϑj − ϑj(1 + λ̂j).

q̂(ϑ) ∼ G(e, f), where,

e = 1,

f = λ̂+ 1.

Finally

q̂(ξ) ∼ G(g, h), where,

g = 1,

h = τ̂ + 1.
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1.12 Appendix B: Evidence Lower Bound

Evidence lower bound

L = Eq

[
log p(Y |B,Σ) + log p(B|Σ, λ) + log p(Σ) + log p(λ)

+ log p(τ)− log q(B,Σ, λ, ϑ)
]
.

(1.12)

The first term of eq. (1.12):

Eq[log p(Y |B,Σ)] = −TN
2

log(2π) +
T

2
Eq[log |Σ|]

− 1

2
Eq

[
Tr
{
(Y −BX)′Σ(Y −BX)

}]
,

= −TN
2

log(2π) +
T

2

(
ψN

(
ν

2

)
+N log(2) + log |S|

)
− 1

2
Tr
{
(Y − B̂X)′Σ̂(Y − B̂X)

}
− 1

2
Tr{NX ′Φ−1X}.

where ψN (X) is multivariate Gamma function. The second term of eq. (1.12):

Eq[log p(B|Σ, λ, τ)] = −NK
2

log(2π) +
K

2
Eq [log |Σ|] +

N

2
Eq [log |λτ |] ,

− 1

2
Eq

[
Tr
{
ΣB(λτ)B′}] .

= −NK
2

log(2π) +
K

2

(
ψN

(
ν

2

)
+N log(2) + log |S|

)
+
NK

2

(
ψ(c)− log(d)

)
+
N

2

(
ψ(a)− log(b)

)
− 1

2
Tr
{
NIK + B̂′Σ̂B̂

}
.

where IK is K ×K dimension of identity matrix. Next the third term of eq. (1.12):

Eq[log p(Σ)] =

(
ν0 −N − 1

2

)
Eq[log |Σ|]−

1

2
Tr{S−1

0 Σ̂} − ν0N

2
− ν0

2
log |S0| − log Γ(ν0/2),

=

(
ν0 −N − 1

2

)(
ψN

(
ν

2

)
+N log(2) + log |S|

)
− 1

2
Tr{S−1

0 Σ̂} − ν0N

2

− ν0
2
log |S0| − log Γ(ν0/2).
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Next is the term log p(λ), log p(τ), log in eq. (1.12):

Eq[log p(λ|ϑ)] = 1/2Eq[log ϑ]− 1/2
(
ψ(a)− log(b)

)
− ϑ̂λ̂− log Γ(1/2).

Eq[log p(τ |ξ)] = 1/2Eq[log ξ]− 1/2
(
ψ(c)− log(d)

)
− ξ̂τ̂ − log Γ(1/2),

Eq[log p(ϑ)] = −1/2
(
ψ(e)− log(f)

)
− ϑ̂− log Γ(1/2).

Eq[log p(ξ)] = −1/2
(
ψ(g)− log(h)

)
− ξ̂ − log Γ(1/2).

Entropy

−E[q(B|Σ)] = NK

2
log(2π)− K

2

(
ψ(ν)

2
+N log(2) + log |S|

)
− N

2

(
ψ(a)− log(b)

)
,

−E[q(Σ)] =
N + 1

2
log |S|+ 1

2
N(N + 1) log(2) + log Γ

(
ν

2

)
− ν −N − 1

2
ψN

(
ν

2

)
+
νN

2
,

−E[q(λ)] = a− log(b) + log Γ(a)− (a− 1)ψ(a),

−E[q(τ)] = c− log(d) + log Γ(c)− (c− 1)ψ(c).
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1.13 Appendix C: Data

no. FRED Acronyms description tcode VAR-3 VAR-20 VAR-40 IrF-analysis

1 FEDFUNDS Federal Funds Effective Rate 2 x x x x
2 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items in U.S. City Average 6 x x x
3 UNRATE Unemployment Rate 2 x x x x
4 M1SL M1 6 x x
5 M2SL M2 6 x x
6 PAYEMS All Employees, Total Nonfarm 5 x x x
7 HOUST New Privately-Owned Housing Units Started: Total Units 4 x x
8 INDPRO Industrial Production: Total Index 5 x x x
9 TB3MS 3-Month Treasury Bill Secondary Market Rate, Discount Basis 2 x x
10 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2 x x
11 PCEPI Personal Consumption Expenditures: Chain-type Price Index 6 x x x
12 GS10 Market Yield on U.S. Treasury Securities at 10-Year Constant Maturity, Quoted on an Investment Basis 2 x x
13 PERMIT New Privately-Owned Housing Units Authorized in Permit-Issuing Places: Total Units 4 x x
14 BAA Moody’s Seasoned Baa Corporate Bond Yield 2 x x
15 BUSLOANS Commercial and Industrial Loans, All Commercial Banks 6 x x
16 M2REAL Real M2 Money Stock 5 x x
17 CLF16OV Civilian Labor Force Level 5 x x
18 MANEMP All Employees, Manufacturing 5 x x
19 TOTRESNS Reserves of Depository Institutions: Total 6 x x
20 CE16OV Employment Level 5 x x
21 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care in U.S. City Average 6 x
22 AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees, Manufacturing 1 x
23 GS1 Market Yield on U.S. Treasury Securities at 1-Year Constant Maturity, Quoted on an Investment Basis 2 x
24 CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel in U.S. City Average 6 x
25 RPI Real Personal Income 5 x x
26 GS5 Market Yield on U.S. Treasury Securities at 5-Year Constant Maturity, Quoted on an Investment Basis 2 x
27 USCONS All Employees, Construction 5 x
28 CES3000000008 Average Hourly Earnings of Production and Nonsupervisory Employees, Manufacturing 6 x x
29 UEMPMEAN Average Weeks Unemployed 2 x
30 W875RX1 Real personal income excluding current transfer receipts 5 x
31 UEMP27OV Number Unemployed for 27 Weeks & over 5 x
32 TB3SMFFM 3-Month Treasury Bill Minus Federal Funds Rate 1 x
33 USGOVT All Employees, Government 5 x
34 REALLN Real Estate Loans, All Commercial Banks 6 x
35 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation in U.S. City Average 6 x
36 CUSR0000SAS Consumer Price Index for All Urban Consumers: Services in U.S. City Average 6 x
37 BAAFFM Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate 1 x
38 USTRADE All Employees, Retail Trade 5 x
39 T10YFFM 10-Year Treasury Constant Maturity Minus Federal Funds Rate 1 x
40 IPMANSICS Industrial Production: Manufacturing (SIC) 5 x
41 CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees, Goods-Producing 1 x
43 CMRMTSPLx Real Manu. and Trade Industries Sales 5 x
44 DPCERA3M086SBEA Real personal consumption expenditures (chain-type quantity index) 5 x
45 PPICMM Producer Price Index by Commodity: Metals and Metal Products: Primary Nonferrous Metals 6 x
46 PPIFGS Producer Price Index by Commodity for Finished Goods 6 x
47 CUMFNS Capacity Utilization: Manufacturing (SIC) 2 x

Table 1.7: Data used for 3/20/40-variables VAR, and impulse response analysis. The column
tcode denotes the following transformation for series y: (1) no transformation; (2) ∆yt; (3)
∆2yt; (4)log(yt); (5)∆ log(yt); (6) ∆

2 log(yt); (7)∆(yt/yt−1 − 1).
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1.14 Appendix D: Additional Results

Figure 1.14: Kernel estimate of posterior distribution from different model.
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Chapter 2

Variational Bayes-Expectation

Maximisation for Mixed

Frequency VAR

2.1 Introduction

Mixed frequency models have been beneficial for economist to do real-time forecast

of future low-frequency observation by utilizing the predictive information of high-

frequency data. From regression point of view the method of mixed-data sampling

(MIDAS) is introduced. For Vector Auto-regression (VAR), on the other hand, the

method to handle different observed data is from state-space model. This chapter of

thesis focuses mainly on the latter model. Through the incorporation of high-frequency

data, such as monthly observations, alongside lower-frequency data (quarterly obser-

vations), MF-VAR models frequently produce forecasts that are not only more precise

but also more timely. This is especially advantageous in the realm of economic policy

makings and decision-makings.

In the original MF-VAR model, as outlined by Schorfheide & Song (2015), the

approach is straightforward: include GDP as the low-frequency data and then add

various monthly macroeconomic variables into the mix. Thanks to the early availability

of these monthly variables, you can create a monthly estimate of GDP. This concept
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gives rise to the idea of real-time nowcasting, allowing us to gauge the current state of

GDP as it unfolds.

Another advantages of MF-VAR model that is worth mentioning is one can also

incorporate data from multiple frequencies (more than two frequencies). The most

common practice in the econometric literature with MF-VAR models involves two fre-

quencies, specifically monthly and quarterly observations.

In practice, the MF-VAR framework can be extended to encompass more than two

frequencies, provided that these mixed frequencies remain consistent. For example, it

is feasible to combine data at the minute, hourly, and daily levels. This flexibility arises

from the constant relationships among these units of time - an hour always consists of 60

minutes, and a day comprises 24 hours. This approach is elucidated in recent research

focused on estimating MF-VAR models using the EM algorithm, as demonstrated by

Brave et al. (2020). However, when mixed-frequency observations lack consistency,

manual data manipulation becomes necessary. For instance, it is impractical to mix

daily, monthly, and quarterly data due to the varying number of days in each month,

not to mention the occurrence of a 29-day February every four years. This serves as

an example of the inconsistency that can arise in mixed-frequency observations. We

highlight that our purposed algorithm can approximate multiple frequencies as long as

it suffices the mentioned conditions above.

Since the pioneer of MF-VAR from Schorfheide & Song (2015), there has been

considerable growth in related studies. Example includes Ghysels & Ozkan (2015),

Wohlrabe (2009), Marcellino et al. (2016), Carriero et al. (2020), Koop, McIntyre &

Mitchell (2020), Huber et al. (2020), Koop, McIntyre, Mitchell & Poon (2020), Clark

et al. (2023), Koop, McIntyre, Mitchell, Poon et al. (2020), Brave et al. (2016). These

growing mentioned mixed frequency articles share two things in common. First is the

method to handle the different frequencies time series data using state-space model and

the global parameters are estimated by Markov Chain Monte Carlo (MCMC) method

(Gibbs sampling). Although Gibbs sampling method has strong statistical guarantee

approximation but the computational cost is often high and sometimes suffer from

the slow convergence even for medium size VAR such as US eleven macroeconomic,
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see Schorfheide & Song (2015). One alternative to Gibbs sampling is to estimate via

EM-algorithm, see Brave et al. (2020). This method is fast since there is no sampling-

involved in the algorithm. The approach is carried through two steps. E-step does exact

posterior (analytical expression is available) of state parameters conditional on global

parameters using Kalman filter and Smoother. Then treating those state variables as

complete data, and maximize likelihood function of VAR using modified ordinary least

square. The modified OLS is the maximum likelihood OLS conditional on estimators

from E-step.

We highlight that this method, EM-algorithm, is not Bayesian inference and may

not be suitable for high-dimensional data, and is unable to provide uncertainty of

forecasts. Another option which is most related to our work is to approximate with

variational Bayes (Vb). There are quite few literature on specific model such as MF-

VAR, to our knowledge Gefang et al. (2020) for example, introduce an algorithm that

modify the M-step. They first generate state variables similarly to the E-step in EM-

algorithm. Then conditional on state variable, they approximate VAR parameters with

Vb. Noteworthy the Vb is performed by per equation algorithm.

This algorithm is computationally cheap with one shortcoming. To be more specific,

the derivation of Vb in their M-step has no expectation with respect to the estimates

produced by the E-step. In other words, an integral of state variables from E-step

are ignored. Consequently the evidence lower bound of the marginal likelihood is not

maximized, which is a crucial key, indicating the convergence of an algorithm for Vb

in any model. Moreover EM-algorithm must yield non-decreasing log-likelihood as the

EM-iteration move forward. We prove that literature algorithm does not satisfy this

property.

This chapter develops an algorithm so-called Variational Bayes-Expectation Maxi-

mization (Vb-EM). It should be pointed out that this is not the first derivation of such

algorithm. The first Vb-EM is introduced date back to Bernardo et al. (2003), where

they develop Vb-EM algorithm for finite mixture of exponential family models such as

scoring discrete directed graphical model structures (Bayesian networks). Our method,

however, is derived specifically for state-space MF-VAR model. The difference between
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our algorithm and Gefang et al. (2020) lies solely on M-step where Vb is derived to

approximate VAR parameters conditional on estimates obtained from the E-step. Thus

yielding a tighter evidence lower bound to log marginal likelihood. The primary con-

tributions are to provide an alternative algorithm to approximate MF-VAR model that

is computationally cheap, more robust relatively to existing literature and as accurate

as a more computational demanding method such as MCMC as possible.

We demonstrate robustness and accuracy of the Vb-EM algorithm by using real

world macroeconomic data application of pseudo real-time out-of-sample forecasts,

compare against MCMC method and possibly EM-algorithm. Out-of-sample forecast-

ing exercises of eleven US macroeconomic variables are evaluated to examine the robust-

ness and accuracy. The data transformation and the series are identical to Schorfheide

& Song (2015). To control the tightness of VAR coefficients, we employ the Horseshoe

prior. It is worth noting that our Vb is not based on per equation algorithm. It is Vb

for system-wide/reduced-form VAR as described in the previous chapter.

Roadmap for this chapter are sectioned as. To clearly show the distinction between

our proposed Vb-EM algorithm, we first demonstrate how EM-algorithm is derived in

section 2.2. Then section 2.3 offers details of proposed Vb-EM method. Section 2.4

details MF-VAR model and prior being implemented. Optimal variational parame-

ters is presented in section 2.5. This section is quite similar to the previous chapter

with slightly modification on optimal variational parameters that involve using state

variables. The approach we employ in this study differs in the sense that it involves in-

tegrating out the state variables. Specifically, we express the integral as an expectation

with respect to the state variables obtained from the Variational Bayes E-step (Vb:E-

step). This integration allows us to account for the uncertainty associated with the state

variables and incorporate their influence on the overall model estimation and inference.

Next is section 2.6, where it shows real-time nowcasting performance, compare against

MF-VAR using Gibbs sampling method, as well as real-world data applications to as-

sess the robustness of Vb-EM in comparison to the literature. Finally the derivation of

evidence lower bound to the log marginal likelihood are given in section 2.10.
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2.2 EM-algorithm

Before we move to explaining how Vb-EM algorithm works for MF-VAR, we first briefly

introduce the EM-algorithm, and some useful notations and symbols. To begin with

y is the observed variables, which apparently not entirely observed since we mixed

between two different frequency of data. Next is z is hidden/state variables, the role of

state variables is to help us impute the missing observation in y so that one can derive

the global parameters, which we denoted by θ.

Expectation-maximization (EM) algorithm is a computational method used to es-

timate the parameters of statistical models when some of the data is missing or incom-

plete, which is precisely the case in the MF-VAR where we are estimating with multiple

different frequencies. It is important to understand the derivation of the EM algorithm

to distinguish it from our proposed Variational Bayes-Expectation Maximization (Vb-

EM) algorithm. EM algorithm or expectation maximization aims to find the maximum

likelihood estimates in a model. The goal of EM-algorithm is to maximize the following,

Dempster et al. (1977):

θ̂ML = argmin
θ

p(y|θ). (2.1)

However the observed data y in eq. (2.1) is not entirely observed. Thus in most problems

where implementing EM-algorithm benefits researcher is when they want to fill those

missing observation with latent variable z. Finding a bridge to connect the model

to incomplete likelihood is the key to overcoming this difficulty. This is why EM-

algorithm is an iterative algorithm that alternates between two steps: the E-step,

which computes the expected values of the missing data given the current estimates of

the global parameters, and after those missing observations in y is filled/imputed, then

the M-step, which updates the estimates of the global parameters given the expected

values of the missing data.

To understand the whole story of EM-algorithm, we first simply derive the evidence

lower bound (shortly labelled as ELBO) to the log-incomplete-likelihood, denoted by

log p(y|θ). It is worth noting that this log-incomplete-likelihood is not to be confused
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with the incomplete likelihood in other econometric literature:

log p(y|θ) =
∫
q(z) log p(y|θ)dz,

=

∫
q(z) log

(
p(y|θ)p(z|y; θ)

p(z|y; θ)

)
dz,

=

∫
q(z) log

(
p(y, z|θ)
p(z|y; θ)

)
dz,

=

∫
q(z) log

(
p(y, z|θ)q(z)
p(z|y; θ)q(z)

)
dz,

=

∫
q(z) log

(
p(y, z|θ)
q(z)

)
dz−

∫
q(z) log

(
p(z|y; θ)
q(z)

)
dz,

= L(q(z), θ) +KL(q||p).

(2.2)

Let q(z) is approximate density for latent parameters (at least for now).1

First term on the RHS L(q(z), θ) is evidence lower bound on log-incomplete-likelihood

log p(y|θ). The second term on RHS KL(q||p) is called Kullback-Leibler divergence

(also known as relative entropy), measuring the distance between true hidden variables

p(z|x; θ) and approximate ones q(z). Most of the time this measurement is intractable.

Therefore EM-algorithm optimize evidence lower bound L(q(z), θ) on log-incomplete-

likelihood by first apply Jensen’s inequality. Since the log-incomplete-likelihood is

concave function then we have:

log p(y|θ) ≥ Eq

[
log

{
p(z|θ)p(y|z; θ)

q(z)

}]
,

≥ Eq [log p(z|θ)] + Eq [p(y|z; θ)]− Eq [q(z)] ,

≥ L(q(z), θ) +KL(q||p).

(2.3)

Jensen’s inequality is applied to demonstrate that maximizing ELBO L(q(z), θ) is equiv-

alent to minimizing the intractable term KL(q||p). Now let’s assume that we can find

1The introduction of the notation q(z) serves to enhance clarity in the subsequent section, where we
demonstrate that this approximate distribution can be replaced with the exact posterior distribution
using the Kalman filter and smoother recursion algorithm.

By representing the latent variables z with the distribution q(z), we can effectively approximate the
true posterior distribution. This approximation allows us to employ the Kalman filter and smoother
recursion algorithm, which enables more accurate inference and estimation.

In the upcoming section, we will delve into the details of this approach and highlight its advantages
in capturing the exact posterior distribution of the latent variables z.
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posterior of latent parameters conditional on global parameter at iteration (t − 1),

p(z|y; θ(t−1)) analytically.2 Then simply substitute q(z) = p(z|y; θ(t−1)) and at the EM

optimizing iteration (t), ELBO for EM algorithm becomes:

L(q(z), θ) =
∫
q(z) log

(
p(y, z; θ)

q(z)

)
dz,

=

∫
q(z) log p(y, z; θ)dz−

∫
q(z) log q(z)dz,

=

∫
p(z|y; θ(t−1)) log p(y, z; θ)dz−

∫
p(z|y; θ(t−1)) log p(z|y; θ(t−1))dz,

= Q(θ(t−1)|θ(t−1)) +H(q).

(2.4)

H(q) is entropy3 of z given observed evidence y and is implicitly function of the pa-

rameter of previous iteration θ(t−1). It should be noted that it is constant with respect

to global-parameter in current iteration θ(t). Therefore it is irrelevant while optimizing

for current θ(t) when proceeding EM-algorithm.

EM proceeds by coordinate descent4 from iteration (t) until the convergence is

detected.

− E-step : compute Q(θ(t−1)|θ(t−1)) = q(z)(t) = p(z|y; θ(t−1)),

− M-step : compute θ(t) = argmax
θ

Q(θ(t−1)|θ(t−1)) = Ez|y;θ(t−1) [log p(y, z; θ)] .

(2.5)

where Ez|y;θ(t−1) [log p(y, z; θ)] is expectation of complete log likelihood conditional on

hidden variable given previous EM iteration of θ(t−1). It is called complete in a sense

2For linear Gaussian state space model for example, this is the forward-backward Kalman filter
and smoother.

3Entropy of a random variable is the average uncertainty inherent in the variable’s possible
outcomes. For instance, factorized Gaussian distribution entropy of variational family H(q) is
1
2
log(2πσ2) + 1

2
, where σ2 is variance.

4Coordinate descent can be viewed as parameter blocks in sampling-based method such as Gibbs
sampling in Markov Chain Monte Carlo but instead of using sampling technique it is an optimization
problem i.e. optimizing one block at a time while holding other block fixed.
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that y, z contain no missing observations since those missing data are already im-

puted with state/hidden variable from E-step. The mentioned expectation is crucial

since it integrates out the state variables so that the M-step actually maximizes the log-

incomplete-likelihood
∫
z log p(y, z; θ)dz. As a result, maximum log likelihood log p(y|θ).

Finally it is now obvious and one can notice that EM algorithm seeks to maximize ev-

idence lower bound on log-incomplete-likelihood while variational inference maximizes

ELBO on log marginal likelihood p(y), which will be demonstrated in the next sec-

tion. Thanks to a tractable mean-field variational family that assume each block is

factorized, Vb is able to maximize ELBO on log marginal likelihood although log p(y)

is intractable.

2.3 Variational Bayes with missing observations.

Similar to Vb in the previous chapter but now there is additional state/latent variables.

The goal of Vb is to maximize evidence lower bound to the log marginal likelihood.

From previous chapter we know that the log marginal likelihood can be bounded by

the following equation, where now the additional hidden/latent variables z is added:

log p(y) ≥
∫
q(z, θ) log

p(y, z, θ)

q(z, θ)
dzdθ. (2.6)

where q(z, θ) is approximate distribution for state variables z and global parameters θ.

The term on r.h.s is Evidence lower bound (ELBO) to the log marginal likelihood (or

log evidence). Some also refer this as functional of the free distributions/free energy,

q(z, q(θ)), where it is denoted:

L(q(z), q(θ)) =
∫
q(z, θ) log

p(y, z, θ)

q(z, θ)
dzdθ. (2.7)

We denote ELBO as L(q(θ), q(z)), where it is a function of those two approximate

distributions. The problem here is that the y is not entirely observed. As a result

optimizing ELBO directly is intractable. To resolve the issue we iteratively maximize

ELBO L above with respect to free distribution (approximate distribution) q(θ) and
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q(z) using variational calculus. To allow such algorithm to succeed one need to define

the approximate distribution. Instead of estimate exact posterior distribution p(z, θ|y),

variational Bayes simplifies the problem by replacing with a more tractable, convenient

factorized approximate distribution to q(z, θ) = q(θ)q(z). Such factorization implies

that we assume the global and latent/hidden variables to be conditionally independent.

This results in iterative algorithm directly analogous to typical EM-algorithm. With

elementary calculus of variations to take functional derivatives of the evidence lower

bound with respect to q(z), and q(θ), each block while holding other fixed, the evidence

lower bound above can be maximized by alternating between these two steps, see

Bernardo et al. (2003):

q̂(zt+1) ∝ exp
[ ∫

log p(z,y|θ)q̂(θt)dθ
]
,

q̂(θ(t+1)) ∝ p(θ) exp
[ ∫

log p(z,y|θ)q̂(z(t+1))dz
]
.

(2.8)

where t denotes the number of Vb optimizing iterations. The first equation in eq. (2.8)

derived from the partial derivative of ELBO w.r.t to latent variables distribution z, i.e.

∂L
∂q(z) = 0. Similarly, the second equation in eq. (2.8) (optimal variational parameters for

global parameters) is derived from partial derivative of ELBO w.r.t. global distribution

and set to zero, ∂L
∂q(θ) = 0.

People who are familiar with EM-algorithm Dempster et al. (1977), which already

described in section 2.2, will notice that eq. (2.8) have something in common to such

algorithm but rather than restricting the global parameters to point estimate (i.e. Dirac

delta function) q(θ) = δ(θ − θ⋆), Vb algorithm assumes it to be a random variables

parameterized by defined parameter density. It is worth noting that Vb algorithm

for missing observations has been developed in machine learning literature, mostly for

graphical models. For example Attias (1999) named it EM-like algorithm with free-

form optimization5, see eq (4)-(5) Attias (1999). Ghahramani & Beal (2000) further

extended for in-complete data (data/evidence are not entirely observed), where they

called Variational Bayesian-Expectation Maximization algorithm. The latter provides

5Free-form optimization is currently known as coordinate descent optimization.
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more on theoretical proofs. Most of the previous work focus on approximating both

state variables and global parameters whereas our work focus more on the latter and

let the Kalman filter recursion algorithm estimate the state variables. This statement

will become clear shortly after.

Alternating between those two equations in eq. (2.8) results in a tighter ELBO.

To be more precise, at Vb optimizing iteration t = 0, Vb:E-step computes q̂(z(1))

with randomly initialized global parameters q̂(θ(0)). Vb:M-step computes q̂(θ(1)) given

estimates produced from the Vb:E-step. These two steps are alternated until converged.

For further details on how both approximate distribution for latent variables q(z) and

global parameters q(θ) are derived, interested reader are referred to Beal & Ghahramani

(2001).

Next sub-section we provide that how our proposed algorithm is slightly modified

and named variational Bayes-expectation maximization.

2.3.1 Variational Bayes-Expectation Maximization

As mentioned earlier, the Vb-EM algorithm has been previously developed for graphical

models in the field of machine learning. However, in this study, we adapt and modify

the Vb-EM algorithm specifically for the MF-VAR model. More specifically, we modify

the structure of the approximate distribution, assuming it to be factorized as:

q(z, θ) = q(θ)p(z|y, θ). (2.9)

This modification allows us to handle the complexities of the MF-VAR model effectively.

The factorized approximate distribution described above implies that we approxi-

mate only the global parameters (θ), while the state variables are computed from the

exact posterior distribution conditioned on the global parameters and observed data.

This exact posterior distribution is known as the Kalman filter and smoother recursion,

which provides optimal estimates of the state/latent variables based on the current state

of the global parameters. These global parameters in the MF-VAR model refer to the

VAR coefficients and covariance, which are utilized in the state transition matrix and
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covariance in the state equation of the normal linear state-space model.

The use of exact posterior for state variables is motivated by the aim to maintain

consistency of the state variables. Wang & Titterington (2004) demonstrate that the

posterior of the state variables obtained from mean-field and variational Bayes ap-

proximation is mostly inconsistent, it is consistent under certain conditions, such as

sufficiently small variances of the noise variables in the state equation. The consistency

of the approximation also may improve as the sample size increases. However, since

macroeconomic data typically has a moderate number of observations, the problem of

inconsistency can arise. Another relevant work by Frazier et al. (2021) shows that in

certain settings, the discrepancies in predictive performance can become significant over

longer out-of-sample periods due to inaccuracies in the state variables. Therefore, to

address these issues and ensure reliable results, we rely on the use of the exact posterior

obtained through the Kalman filter and smoother algorithm.

Now replacing approximate distribution above to ELBO in eq. (2.7), the log marginal

likelihood and ELBO becomes:

log p(y) ≥
∫
q(θ)p(z|y, θ)log p(y, z, θ)

q(θ)p(z|y, θ)
dzdθ (2.10)

Maximizing the ELBO w.r.t the factorized approximate distribution q(θ)p(z|y, θ) re-

sults in q(θ)p(z|y, θ) = p(z, θ|y) (if KL is 0 or else q(θ)p(z|y, θ) ≈ p(z, θ|y)). With

this approximate distribution, the ELBO can be maximized by alternating between

the following equations.

− Vb-E-step: p(z(t+1)|y, θ(t)) via Kalman filter and Smoother recursion,

− Vb-M-step: q̂(θ(t+1)) ∝ p(θ) exp

[∫
log p(z,y|θ(t))p(z(t+1)|y, θ(t))dz

] (2.11)

Where the first equation above is obtained via Kalman filter recursion given the current

global parameters θ(t). For those who are familiar with EM-algorithm, it is noticeable

that the Vb:E-step corresponds to the general E-step of EM-algorithm. However, the

distinction between Vb-EM and the EM-algorithm lies in the second step/equation.

The second equation represents the optimal global parameters conditional on current
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iteration of state latent variables. The derivation above is similar to Bernardo et al.

(2003) eq.(6)-(7), except that in the Vb:E-step, we compute the exact conditional pos-

terior of the state latent variables using the Kalman filter recursion, rather than using

an approximate distribution. In our Vb-EM algorithm for the MF-VAR model, the

approximate distribution is used only for the global parameters q(θ). Now it becomes

evident why the proposed algorithm is named Vb-EM. We borrow the E-step from

the EM-algorithm and modify the maximization steps accordingly. Instead of maxi-

mize the log likelihood log p(y|θ), we maximize the ELBO to log marginal likelihood.

The mean-field approximate distribution can be straightforwardly employed where each

block j of global parameters is factorized, i.e. q(θj) =
∏

j q(θj). Surprisingly this is the

only assumption required to implement the coordinate descent optimisation6. Thus the

optimal global parameters can be expressed:

q̂(θ
(t+1)
j ) ∝ p(θ) exp

{
E−θj

[∫
log p(z,y|θ)p(z(t+1)|y, θ(t))dz

]}
(2.12)

where E−θj denotes expectation with respect to approximate distribution of the rest

of optimal global parameters apart from block-j. Notice further that the expression

above is similar to eq. (1.2) in previous chapter but now there is an integral of state

variables. Such integral of state latent variable are cumbersome to analytically obtained

but fortunately it can be expressed in expectation with respect to state latent variables:

q̂(θ
(t+1)
j ) ∝ p(θ) exp

{
E−θj

[
Ez {log p(z,y|θj)}

]}
(2.13)

Expressing the integral as an expectation will aid in deriving the optimal parameters

for global parameters q̂(θ)7.

6Coordinate descent optimization: it is an optimizing method to maximize function with respect
to each variational parameter one at a time while holding other fixed. There is a very close relationship
between conditional posterior from Gibbs sampling and this method, see Blei et al. (2017) for more
details.

7Here the optimal variational parameters refers to the best parameters parameterizing the approxi-
mation distribution. For instance if approximation distribution is Gaussian then variational parameters
are mean m, and covariance V, q̂(θ) ∼ N (m,V).
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2.3.2 Variational predictive distribution

For Vb-EM algorithm to be practically applicable for forecasting, the generating pro-

cedures should be conditioning on history of observed data. While multi-step forecasts

are also possible, our primary focus is on real-time one-step-ahead forecast.

Let yT+1 be future value of interested variable. Given the observed data up to

time T i.e. y1:T , one-step ahead forecast is fully depicted by the conditional predictive

distribution.

p(yT+1|y1:T ) =
∫
p(yT+1, z1:T+1, θ|y1:T )dθdz1:T+1,

=

∫
p(yT+1|zT+1, y1:T , θ)p(zT+1|zT )p(z1:T , θ|y1:T )dθdz1:T+1,

=

∫
p(yT+1|zT+1, y1:T , θ)p(zT+1|zT )q(θ)p(z1:T |y1:T , θ)dθdz1:T+1.

The exact posterior p(z1:T , θ|y1:T ) is approximated by Vb-EM algorithm and will be

replaced with ≈ q(θ)p(z1:T |y1:T , θ). The predictive distribution is then approximated

as:

q̂(yT+1|y1:T ) ≈
1

S

S∑
s=1

p(yT+1|z(s)T+1, y1:T , θ
(s)). (2.14)

It should be noted we are able to evaluate predictive forecasts from MCMC and Vb-EM

algorithm only, see for MCMC Ankargren & Jonéus (2020). Those forecast produced

by EM algorithm is point estimates. Although linear state space model can simulate

smoothed forecasts using method so-called Simulation Smoothing, see Durbin & Koop-

man (2012). Forecasts from such approach involves generating forecast conditional on

variations of state and measurement covariance but the uncertainty of transition matrix

(VAR-coefficients) are not considered.

2.4 Mixed Frequency VAR

Let N,T be the number of equation in VAR, and total number of observation, respec-

tively. And p be the number of lag in VAR. The conventional VAR form with p lags
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predictors is written as Schorfheide & Song (2015), Ankargren & Yang (2019):

Yt = B1Yt−1 + ...+BpYt−p + ϵt, ϵt ∼ N (0,Σ−1) (2.15)

where Yt is responsive vector withN dimension. Yt−1, .., Yt−p areNp vector of covariates

at time t. The vector Yt can be decomposed into monthly and quarterly variables as

Yt = (Y ′
m,t, Y

′
q,t)

′ of Nm × 1 being number of monthly frequency variables, and Nq × 1

being number of quarterly frequency variables, and N = Nm + Nq. Notice that there

are missing Yq,t in Yt which has never been observed in monthly frequency. As a

result estimating VAR in eq. (2.15) directly is not possible (at least not until those

missing observations are filled). To deal with those missing observations, researchers

assume that the missing Yq,t follows random walk process. Popular algorithm to impute

those missing observations is linear Gaussian state space model where the recursion of

Kalman filter and Smoother algorithm (KFS) are employed. KFS contains two main

equations, which are measurement and state equations. To comprehend how KFS can

be implemented in conjunction with VAR model, first denote zt = (Y ′
t , Y

′
t−1, ..., Y

′
t−p+1),

and zt−1 = (Y ′
t−1, Y

′
t−2, ..., Y

′
t−p), one can write VAR(p) process in state equation form

as followed:

zt = F (B)zt−1 + vt, vt ∼ N (0,Ω(Σ−1)),

zt =

 B1 B2 · · · Bp

IN(p−1) 0N(p−1)×N

 zt−1 +

 vt

0N(p−1)×1

 .
(2.16)

where F (B) is apparently a state transition, which partially contain VAR coefficients

so that the state equation is equivalently formulated as VAR model eq. (2.15). Both

F (B) and Ω(Σ−1) are the corresponding companion form matrices to produce similar

results to eq. (2.15). Equation (2.16) is state equation in state space model. The state

variables zt is then projected through the measurement equation which is given by:

Yt =MtΛzt. (2.17)
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where (again) Yt =
(
Y ′
m,t, Y

′
q,t

)
, and Mt is a time-varying selection matrix selecting

which variable in which at time t observation in Yt is observed. The measurement

equation above, with the state equation in eq. (2.16) can now be seen as a Normal

linear state space model and text book methods exist involving the Kalman filter and

smoother for its estimation can be straightforwardly implemented, see Durbin & Koop-

man (2012).

Finally one may notice that the reduced form VAR can also be written as:

Y = BX + E, Et ∼ N (0,Σ−1) (2.18)

where Y is N × (T − 1) matrix of first N row of posterior mean from state variables

zt, for t = 2, ..., T , and X is K × (T − 1) matrix of zt, for t = 1, 2, ..., T − 1. Readers

might be confused on why Y,X have to be T − 1 despite the fact that total number of

observation is T . The reason behind this is quite simple, during the recursion of KFS

involves computing the state-covariance between zt, and zt−1. Such state-covariance

are required to approximate global parameters, in which our MF-VAR case is VAR

coefficients, VAR-covariance, and the rest of hierarchical shrinkage parameters which

will be defined shortly after. With the state variables in state equation being a random

walk process, the state-covariance exists only a lag of itself. Since the number of

lag in VAR is typically more than one p > 1. Therefore to make VAR(p) process

corresponding with available covariance of state variables, (without loss of generality)

one can use t = 2, .., T in Y , and t = 1, .., T − 1 for X. To make it more crystal, if we

are dealing with a total number of observations 100, two equations in VAR, and 3 lags

i.e. T = 100, N = 2, p = 3 and m = Np then we have:

variables Mathematic dimension notations Dimensions

z (m× T ) (6× 100)

zt (m× 1) (6× 1)

Y (N × T − 1) (2× 99)

X (m× T − 1) (6× 99)

Table 2.1: Dimension of state estimators, and Y,X in eq. (2.18).
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Now it is obvious that doing so allow us to access the variance and covariance of

smoothed state estimators from Vb:E-step which will be crucial to derive the optimal

variational parameters in Vb:M-step. Next we define the prior for VAR parameters:

Y |B,Σ ∼ N (BX,Σ−1),

B|Σ, λ, τ ∼ N (0,Σ−1 ⊗ (λτ)−1),

λ|ϑ ∼ G(1/2, ϑ),

τ |ξ ∼ G(1/2, ξ),

ϑ ∼ G(1/2, 1),

ξ ∼ G(1/2, 1),

Σ ∼ W(S0, ν0).

(2.19)

Similar to the previous chapter this is a conditionally conjugate prior for VAR coeffcient

B and VAR covariance Σ (conditional on global and local shrinkage parameters λτ). It

is noteworthy (again) that the probability density function of p(B|Σ, λ, τ) ∼ N (0, (Σ⊗

λτ)−1) takes the form:

p(B|Σ, λ, τ) = (2π)
−NK

2 |Σ|
K
2 |λτ |

N
2 exp

(
Tr

{
−1

2
ΣB(λτ)B′

})
,

= (2π)
−NK

2 |Σ|
K
2 |λτ |

N
2 exp

(
Tr

{
−1

2
(λτ)B′ΣB

})
.

2.5 Optimal variational parameters in Vb:M-step

As mentioned above that our VB:E-step is equivalent to Expectation step from EM-

algorithm. Therefore we will proceed presenting the VB:M-step, where interested read-

ers are referred to Durbin & Koopman (2012) for Kalman filter and smoother. The

optimal variational parameters for VB-EM algorithm is similar to VB for typical VAR.

The only difference that is while the optimal variational parameters are being derived, it

is still in the expectation with respect to state variables, see eq. (2.13) for clarity. From

previous chapter we know that the optimal variational parameters can be expressed as
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followed:

q̂(B|Σ) ∼ NN×K(B̂,Σ−1 ⊗ Φ−1),

q̂(Σ) ∼ W(S, ν),

q̂(λ) ∼ G(a, b),

q̂(τ) ∼ G(c, d),

q̂(ϑ) ∼ G(e, f),

q̂(ξ) ∼ G(g, h).

(2.20)

where:

B̂ = EY,X

[
Φ−1(XY ′)

]
,

Φ = EX

[
λ̂τ̂ +XX ′

]
,

S
−1

= EY

[
S0 + Y Y ′ − B̂ΦB̂′

]
,

ν = ν0 + T,

a = 1/2 +N/2,

b = ϑ̂+ 1/2τ̂diag(B̂′Σ̂B̂ +NΦ−1),

c = 1/2 +NK/2,

d = ξ̂ + 1/2Tr
{
λ̂
(
NΦ−1 + B̂′Σ̂B̂

)}
,

e = 1,

f = λ̂+ 1,

g = 1,

h = τ̂ + 1.

(2.21)

where we denote q̂(•) as the optimal variational distribution of •. The •̂ denote the

mean of parameters •. For example if X ∼ G(•, •′) with • as shape, and •′ as rate of

Gamma distribution, then E[X] = •
•′ = X̂.

Notice that the optimal variational parameters are exactly as described in previous

Chapter, with slightly difference in any optimal variational parameters that include
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state variables must be integrated out. Again such complex integral is intractable but

the integral can be expressed in expectational form. To make it crystal, the inverse

covariance of VAR coefficient is Φ = EX [λ̂τ̂ + XX ′]. Taking the expectation with

respect to X which is the state variables from Kalman filter and smoother we obtain,

see Lemma 12.2 corollary 2.12.2.1:

Φ = λ̂τ̂ + EX [XX ′],

= λ̂τ̂ + P̂T−1,T−1 +XX ′.
(2.22)

where if we denote P̂t as the covariance of state variables at time t, which obtained

during the Kalman filter and smoother recursion. Then P̂T−1,T−1 =
∑T

t=2 P̂t−1. In

similar fashion the optimal variational mean of VAR coefficient:

B = EY,X [Φ−1XY ′],

= Φ−1
[
P̂T−1,T +XY ′]. (2.23)

where P̂T−1,T =
∑T

t=2 P̂t−1,t is the state-covariance between time t and t − 1 for t =

2, ..., T .

Finally the optimal variational scale for Wishart distribution:

S
−1

= EY,X [S0 + Y Y ′ − B̂ΦB̂′],

= [S0 + (Y Y ′ + P̂T,T )− B̂ΦB̂′].
(2.24)

where P̂T,T =
∑T

t=2 P̂t. The state and measurement equations as described in eqs. (2.16)

and (2.17) are similar to the textbook from Durbin & Koopman (2012). As mentioned

above that the state-covariance of P̂T−1,T , P̂T,T can be obtained during the Kalman

filter and smoother recursion, and the full derivation is explained in section (4.7) of

Durbin & Koopman (2012). For convenience we also provided the derivation of P̂ in

Appendix C section 2.11. In the derivation section we set P̂T−1,T ≡ P̂ ′
T,T−1 ≡ JT for

notational clarity. It is important to note that if we ignore integral of state variable

generated from Kalman filter and smoother, our proposed algorithm is equivalent to

the method described in Gefang et al. (2020). However, in the following section, we
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demonstrate that this choice results in a ELBO to the log marginal likelihood that

poorly converges.

2.6 Empirical applications

The goal of this work is to introduce an algorithm for approximating MF-VAR parame-

ters by comparing Vb-EM and a more computational demanding MCMC methods, with

a focus on measuring their performance in pseudo real-time out-of-sample forecasting,

both point forecasts and density forecasts.8 The study uses eleven macroeconomic series

which is similar to the pioneered paper of MF-VAR model Schorfheide & Song (2015),

see section 2.9 for more details. Computational time is also detailed in a sub-section.

The method for evaluating predictive forecasts is also outlined in a sub-section.

2.6.1 Predictive density evaluation scores

MCMC and variational methods are Bayesian inference. In order to evaluate predic-

tive performance, we provide scores for both point-forecast and predictive distribution

accuracy. The point-forecasts is measured by Root Mean Square Error (RMSE) where

it is formulated as:

RMSE =

√∑
i

∑
t(yi,t − ŷi,t)2

T − T0 + 1
. (2.25)

yi,t is realizes, where subscription t denotes times, i is variable column index in vector

yi,t, i.e. GDPC1, FPIC1, GCEC1, UNRATE, AWHI, CPIAUCSL, INDPRO, PCEC96,

FEDFUNDS, GS10, and SP500. T, T0 is total number of forecast evaluation periods

and number of observation in the first loop of forecast, respectively.

Second measure is to investigate how accurate density forecast is. Some also refer

this to Proper scoring rules. It is designed for evaluating probabilistic forecasts. Scoring

metric in this work focuses on the Continuous Ranked Probability Score (CRPS), see

Gneiting & Raftery (2007), Gneiting et al. (2007), Gneiting & Ranjan (2011).

8It should be noted we are able to evaluate predictive forecasts from MCMC and Vb-EM algorithm
only. Those forecast produced by EM algorithm is point estimates. Although linear state space model
can simulate smoothed forecasts using method so-called Simulation Smoothing, see Durbin & Koopman
(2012). Those forecast involves generating forecast conditional on variations of state and measurement
covariance but the uncertainty of transition matrix is not included.
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Suppose y is realizes, and f is density forecast. Denote F as cumulative density

function (CDF) associated with the density f . One can write F−1(q) for quantile at

level q ∈ (0, 1). Continuous ranked probability score can be equally defined in three

different formulas:

CRPS(f, y) = EF |Y − y| − 1

2
EF |Y − Y ′|, (2.26)

=

∫ ∞

∞
(F (z)− I{y ≤ z})2 dz, (2.27)

= 2

∫ 1

0

(
I{y < F−1(q)} − q

) (
F−1(q)− y

)
dq. (2.28)

where Y, Y ′ are independent random variable with distribution function F . I(·) is Dirac

delta function. Equation (2.27) is cumulative ranked probability scores (CRPS) or Brier

scores, and eq. (2.28) is quantile scores. First score to measure how accurate predictive

forecast is called threshold weighted version of CRPS to which sometimes we refer as

the threshold decomposition of CRPS, is introduced by Gneiting et al. (2007) which is

equivalent eq. (2.27) with a small extension:

S(f, y) =

∫ ∞

−∞
(F (z)− I {y ≤ z})2 u(z)dz, (2.29)

where u is Borel measure of positive weight function on real line. Gneiting & Raftery

(2007) stated that this is augmented to encourage forecasters to be able to concentrate

to specific area of predictive interests. Although we found that threshold decomposition

CRPS is not much different from Brier scores but it is worth mentioning.

In addition to uniform CRPS and threshold decomposition of CRPS, quantile

weighted of continuous ranked probability score is measured.

QSπ(q, y) = (y − q)(π − I {y ≤ q}), (2.30)

where q is quantile forecast, and π is selected quantile.

S(f, y) =
1

J − 1

J−1∑
j=1

v(πj)QSπj (q, y). (2.31)
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where πj = j/J . In this work we implemented 19 of π ∈ .05, .1, ..., .95. The quantile

score can also be extended to quantile weighted scores emphasizing specific region of

forecast density. Table 2.2 shows weighted implemented.

Emphasis Quantile Weight

uniform v(π) = 1
centre v(π) = π(1− π)
tails v(π) = (2π − 1)2

right tail v(π) = π2

left tail v(π) = (1− π)2

Table 2.2: Quantile weights.

To begin with the convergence of proposed Vb-EM algorithm, as mention in previ-

ous section that the objective of any Vb method is to minimize the distance between

approximate distribution and the true one. To minimize KL or maximize evidence lower

bound, in other words. I first prove to readers that the proposed algorithm leads to a

tighter evidence lower bound9 relative to existing literature according to fig. 2.1. The

lower bound to log marginal likelihood increases accordingly to the number of Vb-EM

algorithm iterations. The literature method, however, has looser evidence lower bound.

Figure 2.1: Evidence lower bound to log marginal likelihood, of Vb-EM algorithm (red-dashed-
dot), and literature algorithm (blue-solid-dot), see eq. (2.35) for full derivations

9Derivation of an evidence lower bound to log marginal likelihood can be found in section 2.10.
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2.6.2 Pseudo out-of-sample real-time forecasts

Forecast evaluating periods begins at 2000M1 through 2019M12. Assuming that each

forecasts are proceed at the end of each month. We first illustrate nowcast results in

tables 2.3 and 2.4. The first column, M/Q denotes which month within a quarter the

nowcast is performed. For example M 1/Q is first month of a quarter, implying that

the RMSE is evaluated in January, April, July and October. (+0),(+1),(+2) after

M/Q is number indicating advantages of having additional already observed monthly

observation within the quarter when the nowcasts are constructed. For instance, now-

cast of January M 1/Q (+0) takes place at 31-January where forecaster get access to

the first release of last December monthly observations. Thus no additional informa-

tion from the forecast in first quarter at the end of January. (+1), on the other hand,

implies that forecaster has access first month within a first quarter.

We first present the nowcasts of quarterly variables in tables 2.3 and 2.4. This table

evaluates the nowcast results each month within quarter. According to both RMSE

and CRPS scores, all algorithms are indistinguishable.

The rest of monthly variable forecasts are presented in table 2.5. The table also

includes RMSE, CRPS measurements during forecast evaluating periods plus relative

RMSE, CRPS of proposed VBEM and other methods. Although we expect a higher

forecast error, coming from approximation error by the nature of mean-field assumption

from Vb-EM algorithm, the point-forecasts are almost identical across all macroeco-

nomic series. This is surprisingly interesting, which may indicates that the correlation

between global parameters in MF-VAR is low. As a result mean-field assumption does

not affect the accuracy of posterior distribution. Predictive distribution is thus rela-

tively close to MCMC. It is also important to note that although the relative of CRPS

from VBEM to MCMC, particularly for fixed investment where MCMC performs better

proportionately approximately 17% but CRPS value are already small. Consequently

even if the relative number is large, the actual difference is insignificant.

Moving to quantile weighted of CRPS, the scores emphasizes five regions of forecast

density. First is tails, where both-sided tails are primary focused. Second is uniform
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(no weights augmented), centre (using median/mean as weights), right and left tail.

Both methods are highly accurate.

To visualize how close both algorithms produce predictive density, threshold weighted

version of CRPS is plotted in figs. 2.2 and 2.3 for quarterly and monthly forecasts, re-

spectively. The interpretation is simple, it visualizes threshold weighted version of

CRPS which is again negatively-orientated. Thus the lower the line in figs. 2.2 and 2.3

indicates better forecasts. For example MCMC executes slighly better in centre region

forecasting FPIC1, and GCEC1. VBEM, on the other hand, is more well founded in

centre region in predicting GDPC1 for some unknown reasons. The integrated area

under the curve of figs. 2.2 and 2.3 are presented in table 2.5. There is no evidence

of any difference in forecasting monthly variables, indicating that the approximation

errors from proposed algorithm is small. Finally we conclude that all three algorithms

produce quite similar predictive distributions.

Measurement RMSE
Macro-series GDPC1 FPIC1 GCEC1
algorithm VBEM EM MCMC VBEM EM MCMC VBEM EM MCMC
M 1/Q (+0) 0.023 0.023 0.025 0.039 0.039 0.038 0.031 0.031 0.034
M 2/Q (+1) 0.023 0.023 0.024 0.039 0.04 0.038 0.032 0.031 0.034
M 3/Q (+2) 0.022 0.022 0.023 0.039 0.039 0.038 0.032 0.032 0.034

Table 2.3: RMSE of nowcasting each month within quarter.

Measurement CRPS
Macro-series GDPC1 FPIC1 GCEC1
algorithm VBEM EM MCMC VBEM EM MCMC VBEM EM MCMC
M 1/Q (+0) 0.007 - 0.009 0.017 - 0.016 0.012 - 0.012
M 2/Q (+1) 0.007 - 0.008 0.018 - 0.015 0.012 - 0.011
M 3/Q (+2) 0.007 - 0.008 0.021 - 0.016 0.013 - 0.011

Table 2.4: CRPS of nowcasting each month within quarter.

Figure 2.2: Threshold decomposition mean of CRPS for quarterly one-step-ahead forecast den-
sity for entire evaluation period, MCMC (dash-grey) and Vb-EM(dash-black). The area under
the curve is presented as CRPS in table 2.5.
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Figure 2.3: Threshold decomposition mean of CRPS for monthly variable forecast density,
MCMC (dash-grey) and Vb-EM(dash-black).

Measure RMSE CRPS RMSE CRPS
Algorithms VBEM EM MCMC VBEM MCMC EM VBEM/MCMC VBEM/EM VBEM/MCMC
GDPC1 0.0228 0.0226 0.0241 0.008 0.008 - 0.95 1.01 0.94
FPIC1 0.0389 0.0393 0.0379 0.019 0.016 - 1.03 0.99 1.17
GCEC1 0.0318 0.0314 0.0339 0.013 0.011 - 0.94 1.01 1.11
UNRATE 0.0003 0.0003 0.0003 0.000 0.000 - 1.03 0.97 1.03
AWHI 0.0261 0.0261 0.0261 0.004 0.004 - 1.00 1.00 1.01

CPIAUCSL 0.0031 0.0032 0.0033 0.002 0.002 - 0.94 0.98 0.96
INDPRO 0.0186 0.0188 0.0186 0.006 0.005 - 1.00 0.99 1.02
PCEC96 0.0037 0.0041 0.0038 0.002 0.002 - 0.96 0.90 0.91

FEDFUNDS 0.0014 0.0014 0.0013 0.001 0.001 - 1.01 1.00 1.04
GS10 0.0007 0.0007 0.0007 0.000 0.000 - 1.00 0.98 1.01
SP500 0.0435 0.0491 0.0446 0.024 0.024 - 0.98 0.89 0.98

Table 2.5: RMSE, and CRPS over forecasting periods. The last three columns are RMSE and
CRPS of Vb-EM relative to MCMC and EM-algorithm.

Emphasis tails uniform centre right left

GDPC1 0.99 0.93 0.91 0.98 0.89
FPIC1 1.27 1.16 1.12 1.12 1.26
GCEC1 1.19 1.10 1.07 1.06 1.21
UNRATE 1.04 1.03 1.03 1.03 1.04
AWHI 1.00 1.01 1.02 0.99 1.02
CPIAUCSL 0.97 0.95 0.95 0.95 0.96
INDPRO 1.02 1.02 1.01 1.00 1.03
PCEC96 0.86 0.91 0.93 0.92 0.89
FEDFUNDS 1.05 1.04 1.03 1.04 1.03
GS10 1.04 1.01 1.00 1.01 1.03
SP500 0.98 0.98 0.98 0.97 0.98

Table 2.6: Quantile weighted mean of CRPS of Vb-EM algorithm relative to MCMC (one-step-
ahead) predictive forecast of eleven macroeconomic series.
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2.7 Summary of different algorithms to estimate MF-VAR.

This section offers the differences between approximate algorithm for MF-VAR (apart

from Gibbs sampling). First is proposed Vb-EM algorithm where the goal is to max-

imize evidence lower bound to the log marginal likelihood. Second is EM-algorithm

from Brave et al. (2020) where E-step is similar to our algorithm. M-step, on the other

hand, employ modified-OLS which is performing OLS estimates for VAR inside the

expectation with respect to state estimators from E-step. Finally the literature’s Vb

algorithm for MF-VAR from Gefang et al. (2020) (labelled Vb-DEM hereafter). The

summarization of all three algorithms are provided in tables 2.7 to 2.9.

It is important to note that the Vb-DEM algorithm performs per equation algo-

rithm when approximating VAR parameters, see Carriero et al. (2019) for per equation

algorithm and Gefang et al. (2020) for details of Vb-DEM approach. In table 2.8 we

denote θi where subscription i is parameters of equation i in VAR. Since the per equa-

tion is implemented, we also make clear of the notation of each responsive variables

in VAR i.e. ỹi is each responsive variable in each VAR equation. This is the VAR

is written in structural-form thus the ỹi contains additional parameters arising from

the lower-triangular matrix A. Finally the σ2 = diag(σ21, ..., σ
2
N ) is the diagonal of

residual-variances from all equations.

There are two primary distinctions of our Vb-EM algorithm in comparison to the

literature (apart from using equation). Firstly literature’s Vb-DEM did not perform

expectation with respect to estimates produced from E-step. Consequently the evidence

lower bound never reach its local maximum. As plotted in fig. 2.1, it visualizes ELBO of

proposed Vb-EM algorithm and literature Vb-DEM. Such empirical evidence suggests

that Vb-EM algorithm is able to produce tighter lower bound to the log marginal

likelihood as optimizing iteration proceeds. Vb-DEM, however, converges to some

particular number which is obviously not optimal.
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Variational Bayes-Expectation Maximization algorithm for MF-VAR

Inputs:

observed evidence y,

Initialize:

- initialized variational parameters for any of θ = B,Σ, λ, τ, ϑ, ξ

- set t = 0

While not converged do:

Vb:E-Step:

- p(z(t+1)|y, θ(t)) via Kalman Filter recursion.

Vb:M-Step:

q̂(θ
(t+1)
j ) ∝ p(θj) exp

{
E−θj

[
Ez {log p(z,y|θj)}

]}
.

set t = t+ 1.

end while.

Outputs: optimal approximate distribution of global parameters q(θ) and state variables z.

Table 2.7: Variational Bayes-Expectation Maximization algorithm for MF-VAR.
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Literature algorithm for MF-VAR from Gefang et al. (2020)

Inputs:

observed evidence y,

Initialize:

- initialized variational parameters for any of θi in VAR eq no.i = 1, 2, ...N ,

which are Bi,Σ = A−1σ2A−1′ , λi, τi, ϑi, ξi

- set t = 0

While not converged do:

VB-D:E-Step:

- p(z(t+1)|y, θ(t)) via Kalman Filter recursion.

VB-D:M-Step:

for i = 1 : N

q̂(θ
(t+1)
i,j ) ∝ p(θi,j) exp

{
E−θi,j

[
log p(zi, ỹi|θi,j)

]}
.

end for i

set t = t+ 1.

end while.

Outputs: optimal approximate distribution of global parameters q(θ) and state variables z.

Table 2.8: Literature variational Bayesian (Vb) algorithm for MF-VAR.
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EM-algorithm for MF-VAR from Brave et al. (2020)

Inputs:

observed evidence y,

Initialize:

- initialized global parameters θ = B,Σ

- set t = 0

While not converged do:

E-Step:

- p(z(t+1)|y, θ(t)) via Kalman Filter recursion.

M-Step:

θ
(t+1)
MLE = argminθ Ez

[
log p(z,y|θ(t))

]
.

set t = t+ 1.

end while.

Outputs: Maximum likelihood of (point) global parameters θMLE and state variables z.

Table 2.9: EM-algorithm for MF-VAR.

2.8 Conclusion

In this work we present an alternative algorithm to approximate MF-VAR model,

namely Variational-Bayes Expectation Maximization (Vb-EM). The algorithm bor-

rows the idea from EM-algorithm where the algorithm alternates between two steps

until the convergence is detected. Vb:E-Step performs exact posterior distribution via

the Kalman filter and smoother recursion. Vb:M-step where the global parameters in

MF-VAR is approximated via the variational Bayes. This approach is novel in a sense

that the approximation in second step contains complex integrals which is impossible

to derive since the state estimators from Vb:E-step is multi-dimensional. Instead we

express the integrals in expectation form, which is analytically available during the

routine of Kalman filter and smoother recursions. We also derive the evidence lower

bound for convergence monitoring, which we illustrate is tighter than existing method

for approximating MF-VAR model. The legitimacy of proposed algorithm is evaluated

via pseudo real-time out-of-sample forecasts of eleven US macroeconomic series. The
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empirical result suggests that there is no concrete evidence for Vb-EM algorithm to be

outperformed by a more computational demanding MCMC (Gibbs sampling).
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2.9 Appendix A: Data

No. Macroeconomic Series ALFRED acronyms Date range Transformation

1 Gross Domestic Product GDPC1

1964M1 - 2019M12

log-level
2 Fixed Investment FPIC1 log-level
3 Government Expenditures GCEC1 log-level
4 Unemployment Rate UNRATE log-level/100
5 Hours Worked AWHI log-level
6 Consumer Price Index CPIAUCSL log-level
7 Industrial Production Index INDPRO log-level
8 Personal Consumption Expenditure PCEC96 log-level
9 Federal Fund Rate FEDFUNDS log-level/100
10 Treasury Bond Yield GS10 log-level/100
11 SP500 SP500 log-level

Table 2.10: Macroeconomic series: All observations are obtained through Federal Reserve Bank
of St.Louis via fredapi (Python).

2.10 Appendix B: Derivation of evidence lower bound to

the log marginal likelihood

The evidence lower bound to the log marginal likelihood is the lower bound to the p(y),

see eq. (2.7).

L (q(θ), q(z)) =

∫
q(z, θ) log

p(y, z, θ)

q(z, θ)
dzdθ.
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Replace the approximate distribution q(θ, z) with q(θ)p(z|y, θ), the evidence lower

bound to the log marginal likelihood, we thus have:

L (q(θ), p(z|y, θ)) =
∫
q(θ)p(z|y, θ) log p(y, z, θ)

q(θ)p(z|y, θ)
dθdz,

= Eq(θ),p(z|y,θ)

[
log

p(y, z, θ)

q(θ)p(z|y, θ)

]
,

= Eq(θ),p(z|y,θ) [log p(z|y, θ) + log p(y, θ)− log q(θ)− log p(z|y, θ)] ,

= Eq(θ),p(z|y,θ) [log p(y|θ) + log p(θ)− log q(θ)] ,

=

∫
q(θ) log p(y|θ)dθ +

∫
q(θ) log

p(θ)

q(θ)
dθ,

= Eq(θ) [log p(y|θ)]−KL(q(θ)||p(θ)).

(2.32)

where KL(q(·)||p(·)) is the Kullback-Leibler divergence (relative entropy), measuring

how one distribution q(·) is different from the second distribution p(·). Notice that the

KL term measures the distance between the approximate distribution and the prior

given to the parameters. To derive such term we first show the joint distribution of

approximate distribution and joint prior distribution are formulated:

q(θ) = q(B,Σ)q(ϑ)q(τ)q(ϑ)q(ξ),

= q(B|Σ)q(Σ)q(λ)q(τ)q(ϑ)q(ξ).

p(θ) = p(B|Σ, λ, τ)p(Σ)p(λ|ϑ)p(τ |ξ)p(ϑ)p(ξ).

(2.33)

Replacing two terms of eq. (2.33) into eq. (2.32), suppressing Eq(θ)[·] with Eq[·], where

it denotes the expectation of [·] with respect to all approximate distribution of global
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parameters q(θ) then we have:

KL(q(θ)||p(θ)) = Eq

[
log

q(θ)

p(θ)

]
= Eq [log q(θ)− log p(θ)] ,

= Eq

[
log q(B|Σ) + log q(Σ) + log q(λ) + log q(τ) + log q(ϑ) + log q(ξ)

− log p(B|Σ, λ, τ)− log p(Σ)− log p(λ|ϑ)− log p(τ |ξ)− log p(ϑ)− log p(ξ)
]
,

= Eq

[
log

q(B|Σ)
p(B|Σ, λ, τ)

+ log
q(Σ)

p(Σ)
+ log

q(λ)

p(λ|ϑ)
+ log

q(τ)

p(τ |ξ)
+ log

q(ϑ)

p(ϑ)
+ log

q(ξ)

p(ξ)

]
,

=

∫
τ
dτq(τ)

∫
λ
dλq(λ)

∫
Σ
dΣq(Σ)

∫
B
dBq(B|Σ) log q(B|Σ)

p(B|Σ, λ, τ)

+

∫
Σ
dΣq(Σ) log

q(Σ)

p(Σ)
+

∫
ϑ
dϑq(ϑ)

∫
λ
dλq(λ) log

q(λ)

p(λ|ϑ)

+

∫
ξ
dξq(ξ)

∫
τ
dτq(τ) log

q(τ)

p(τ |ξ)
+

∫
ϑ
dϑq(ϑ) log

q(ϑ)

p(ϑ)
+

∫
ξ
q(ξ) log

q(ξ)

p(ξ)

= KL(q(B|Σ)||p(B|Σ, λ, τ)) + KL(q(Σ)||p(Σ)) + KL(q(λ)||p(λ|ϑ))

+ KL(q(τ)||p(τ |ξ)) + KL(q(ϑ)||p(ϑ)) + KL(q(ξ)||p(ξ)).

(2.34)

The prior of MF-VAR we are employing is conjugate prior for B and Σ conditional

on shrinkage parameters λτ , such prior introduces conditional dependencies between

parameters in some terms of KL above. To prove the point we demonstrate the general

form of KL measurement between two multivariate normal distribution below. For

example let X1 ∼ N1(µ1,Σ1), and X2 ∼ N2(µ2,Σ2), where X1, X2 ∈ Rk, µ1, µ2 ∈ Rk,

and Σ1,Σ2 are multivariate normal distribution’s covariance, then the KL(N1||N2) is

then, see proof Duchi (2007):

KL(N1||N2) =
1

2

{
Tr{Σ−1

2 Σ1}+ (µ2 − µ1)
′Σ−1

2 (µ2 − µ1)− k + log
|Σ2|
|Σ1|

}
.

Such general formulation will not apply to KL(q(B|Σ)||p(B|Σ, λ, τ)),

since q(B|Σ) ∼ N (B̂,Σ−1 ⊗ V −1), and p(B|Σ, λ, τ) ∼ N (0,Σ−1 ⊗ (λτ)−1). Both

probability density function apparently conditionally depends on other parameters.

Fortunately such derivation can be derived by changing integral into expectation with

respect to the approximate distribution. To proof such statement, we shall begin by
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deriving the first term in eq. (2.34). First we write such term as followed:

KL(q(B|Σ)||p(B|Σ, λ, τ)) = Eq [log q(B|Σ)− log p(B|Σ, λ, τ)] ,

=
K

2
log |Σ|+ N

2
log |Φ| − 1

2
Eq

[
Tr
{
Σ(B − B̂)Φ(B − B̂)′

}]
− K

2
log |Σ| − NK

2
log τ − N

2

K∑
j=1

log λj +
1

2
Eq

[
Tr
{
ΣB(λτ)B′}] ,

=
N

2
log |Φ| − NK

2
Eq[log τ ]−

N

2

j=K∑
j=1

Eq [log λj ]

+
1

2
Tr
{
(λ̂τ̂)

[
NΦ−1 + B̂′Σ̂B̂

]}
− NK

2
,

=
N

2
log |Φ| − NK

2

(
1 + ψ(c)− log d

)
− N

2

(
ψ(a)− log b

)
+

1

2
Tr
{
(λ̂τ̂)

[
NΦ−1 + B̂′Σ̂B̂

]}
.

Next is KL of VAR covariance Σ. The simple formulation of KL is applicable, here is

provided for convenience, see Bishop (2006).

KL(q(Σ)||p(Σ)) = N + 1

2
log |S|+ 1

2
N(N + 1) log(2) + log ΓN

(
ν

2

)
−
(
ν −N − 1

2

)
ψN

(
ν

2

)
+
νN

2
.

Next is KL of local shrinkage parameters λ. Recall from optimal variational parameters

that q̂(λ) ∼ G(a, b), where a = 1/2 +N/2, and b = ϑ̂+ 1/2τ̂diag(B̂′Σ̂B̂ +NΦ−1).

KL(q(λ)||p(λ|ϑ)) = a log b− log Γ(a) + (a− 1)Eq[log λ]− bλ̂

− 1

2
Eq[log ϑ] + log Γ(1/2) +

1

2
Eq[log λ] + ϑ̂λ̂,

= a log b− log Γ(a) + (a− 1/2)
[
ψ(a)− log b

]
− λ̂

(
b− ϑ̂

)
− 1

2

(
ψ(e)− log f

)
+ log Γ(1/2).
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Next is KL of global shrinkage parameters τ . Recall from optimal variational parame-

ters that q̂(τ) ∼ G(c, d), where c = 1/2+NK/2, and d = ξ̂+1/2Tr
{
λ̂
(
NΦ−1 + B̂′Σ̂B̂

)}
.

KL(q(τ)||p(τ |ξ)) = c log d− log Γ(c) + (c− 1)Eq[log τ ]− dτ̂

− 1

2
Eq[log ξ] + log Γ(1/2) +

1

2
Eq[log τ ] + ξ̂τ̂ ,

= c log d− log Γ(c) + (c− 1/2)
(
ψ(c)− log d

)
− τ̂

(
d− ξ̂

)
− 1

2

(
ψ(g)− log h

)
+ log Γ(1/2).

Next is KL of hierarchical local, and global shrinkage parameters ϑ, ξ. Now (again) the

typical formulation of distance KL between two distribution is readily applicable. Recall

from optimal variational parameters that q̂(ϑ) ∼ G(e, f), where e, g = 1, f = ϑ̂ + 1,

and h = τ + 1.

KL(q(ϑ)||p(ϑ)) = (e− 1)ψ(e)− log Γ(e) + log Γ(1/2) + 1/2 log f + e

(
1− f

f

)
,

KL(q(ξ)||p(ξ)) = (g − 1)ψ(g)− log Γ(g) + log Γ(1/2) + 1/2 log h+ g

(
1− h

h

)
,

Finally the last term in eq. (2.32) is the term Eq(θ) [log p(y|θ)]. As already described

in section 2.2 that the EM-algorithm maximizes the log p(y|θ), the value is computed

during the Kalman filter recursion, see sec (4.24) of Durbin & Koopman (2012). But

here we provided for convenience.

log p(y|θ) = −TN
2

log 2π − 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
.

where vt is the one-step-ahead forecast error. Ft is assumed to be nonsingular, and are

typically called updating step of Kalman filter. Both are calculated routinely by the

Kalman filter recursion. So the term log p(y|θ) is easily computed from the Kalman

filter output, see eq-(7.2) of Durbin & Koopman (2012). Now taking the expectation

with respect to the approximate distribution of global parameters Eq(θ)[•], the result
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remains unchanged i.e. Eq(θ) [log p(y|θ)] ≡ log p(y|θ) since the we already use the

mean of global parameters. In our next appendix C section 2.11 we briefly provide the

Kalman filter smoother recursion, and how variance and covariance of smoothed state

estimators.

Finally combine everything we have:

L (q(θ), p(z|y, θ)) = −TN
2

log 2π − 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
− N

2
log |Φ|+ NK

2

(
1 + ψ(c)− log d

)
+
N

2

K∑(
ψ(a)− log b

)
− 1

2
Tr
{
(λ̂τ̂)

[
NΦ−1 + B̂′Σ̂B̂

]}
−
(
N + 1

2

)
log |S| − 1

2
N(N + 1) log(2)− log ΓN

(
ν

2

)
+

(
ν −N − 1

2

)
ψN

(
ν

2

)
− νN

2

+
K∑(

−a log b+ log Γ(a)−
K∑

(a− 1/2)
[
ψ(a)− log b

]
+ λ̂

(
b− ϑ̂

)
+

1

2

(
ψ(e)− log f

)
− log Γ(1/2)

)
− c log d+ log Γ(c)− (c− 1/2)

(
ψ(c)− log d

)
+ τ̂

(
d− ξ̂

)
+

1

2

(
ψ(g)− log h

)
− log Γ(1/2)

+

K∑(
−(e− 1)ψ(e) + log Γ(e)− log Γ(1/2)− 1/2 log f − e

(
1− f

f

))
− (g − 1)ψ(g) + log Γ(g)− log Γ(1/2)− 1/2 log h− g

(
1− h

h

)
.

(2.35)
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2.11 Appendix C: Kalman filter and smoother recursion,

Variance and Covariance matrices of smoothed esti-

mators

2.11.1 Kalman filter recursion

First write measurement and state equation from eqs. (2.16) and (2.17) in reduced

form:

yt = Gtzt, (2.36)

zt = Hzt−1 + c+ vt, vt ∼ N (0,Ω(Σ)), (2.37)

z0 ∼ N (a0, P0). (2.38)

whereGt =MtΛ stacks all selection matrix and inter-temporal restriction. H = F (B) is

transition matrix. Denote αt as filtered estimator10 where at = E(zt|yt), Pt = var(zt|yt)

are mean and covariance of filtered estimators conditional on observed data up to time

t. Assuming mean and variance of filter estimators a0, P0 at time t = 0 are known, the

initialized state and covariance of filtered estimators are given by:

a1 = Ha0 + c,

P1 = GtP0G
′
t +Ω(Σ).

Recursion of the following equations for time t = 1, .., T leads to filtered state variables,

see eq.(4.24) Durbin & Koopman (2012).

vt = yt −Gtzt,

at+1 = Hat + c+Ktvt,

Pt+1 = HPtL
′
t +Ω(Σ).

Ft = GtPtG
′
t,

Kt = HPtG
′
tF

−1
t ,

Lt = H −KtGt.

(2.39)

10Notably, the state variables that fills missing observation in y are mean smoothed estimators not
filtered estimators.
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2.11.2 Kalman Smoother recursion

Kalman smoother is different from Kalman filter recursion in the sense that smoother-

latent parameters are generated conditional on whole observed observations rather than

the observation up to time t from Kalman filter, i.e. E(zt|y1, ..., yT ) = ẑt and P̂t =

Var(zt|y1, ..., yT ). The state smoother equations are iteratively formulated backward

for time t = T + 1, ..., 1 as follows, see eq.(4.44) Durbin & Koopman (2012):

rt = G′
tF

−1
t vt + L′

trt+1,

ẑt = at + Ptrt,

ẑ0 = a0 + P0H
′r1,

P̂t = Pt − PtNtP
′
t ,

Nt = G′
tF

−1
t Gt + L′

tNt+1Lt,
(2.40)

where Lt, Ft, vt, Pt are computed during the recursion of Kalman filter eq. (2.39). Initial-

ize rT+1 = 0 and Nt+1 = 0. The smoothing estimates can be obtained straightforwardly

for t = T, ..., 1.

2.11.3 Variance and covariance of smoothed state variables

The full derivation of covariance of smoothed estimators can be found in Durbin &

Koopman (2012) sec 4.7. They stated that the original derivation were developed by

Koopman (1993), and JONG & Mackinnon (1988). Here we provide the final for-

mulation. P̂t = Var(zt|y1, .., yT ) is already computed during smoothing recursion, see

eq. (2.40). For Jt = Cov(zt, zt+1|y1, .., yT ). This covariance of smoothed estimators are

similar in modified OLS for global parameters in EM-algorithm, see Brave et al. (2020)

and proposed Vb-EM algorithm for MF-VAR is formulated as:

Jt = PtLt(Im −Nt+1Pt+1),

Lt = H(Im −Kt+1Gt+1)Im

(2.41)

where Im is m × m dimensional identity matrix. These variance and covariance of

smoothed estimators P̂t, P̂t,t−1, Jt from Kalman filter and smoother algorithm will be

a key feature to approximate optimal variational parameters for global-parameters in
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Vb:M-step, see eqs. (2.22) to (2.24) for clarity i.e. JT =
∑T

t Jt.

2.12 Appendix D: Lemmas

Lemma 2.12.1 Suppose that X ∼ NN,K(M,∆⊗Ω), and let A be N ×N matrix then

the expectation of X follows immediately, see Gupta & Nagar (2018) page 60.

E[X ′AX] = Tr{∆A′}Ω+M ′AM.

Additionally let Ã be K ×K matrix then the expectation of X follows:

E[XÃX ′] = Tr{ΩÃ′}∆+MÃM ′.

Lemma 2.12.2 Let x be D × T matrix with xt being D dimensional vector at time t,

with mean mt, and covariance Vt, i.e. xt ∼ ND(mt,Vt). Then Ex[xtx
′
t] = Vt+mtm

′
t.

Thus it follows immediately that:

Ex

[
xx′] = T∑

t=1

(
Vt +mtm

′
t

)
,

=

T∑
t=1

(Vt) +mm′.

And a consequence of Lemma 12.2 is the statement in the next corollary.

Corollary 2.12.2.1 Again, let x be D × T random matrix with xT being D × T − 1

matrix of x at time t = 2, ..., T , and xT−1 being D × T − 1 matrix of x at time

t = 1, ..., T − 1. Then it follows immediately that:

E
[
xTx

′
T−1

]
=

T∑
t=2

(
Vt,t−1 +mtm

′
t−1

)
.

where Vt,t−1 is covariance between xt,xt−1. Additionally it also follows that:

E
[
xT−1x

′
T−1

]
=

T∑
t=2

(
Vt−1,t−1 +mt−1m

′
t−1

)
.
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Chapter 3

Forecasting macroeconomic

variables with Gaussian process

VAR.

3.1 Introduction

Gaussian process VAR attracts significant attention from economists recently. Partic-

ularly in the context of the COVID-19 pandemic, which has led the macroeconomic

variables’ volatilities to rise or fall to unprecedented levels. As a result, conventional

VAR models may not be suitable, and their parameters can be unreliable Lenza & Prim-

iceri (2020). The development of structural VAR models, such as Cholesky-transformed

VARs, which allow for estimation equation by equation, has enabled economists to ex-

plore more advanced regression models in VARs Clark et al. (2022), Huber et al. (2020),

Hauzenberger et al. (2021).

Gaussian process VAR, a non-parametric model, has shown better ability to handle

outliers that emerged during the pandemic compared to traditional Bayesian VAR

models with stochastic volatility Huber et al. (2020), Clark et al. (2022). In this chapter,

I therefore investigate two additional algorithms base on GP-VAR. Firstly GP-VAR

using Deep neural network (DNN) serving as mean function for GP prior (labelled: GP-

DNN-VAR). Although this algorithm is popular among machine learning researchers
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but as far as the knowledge goes, it has never been explored in economic field yet, see

for instance Fortuin et al. (2019).1 The majority of GP-VAR in economic applications

place more emphasis on learning the GP kernel parameters than on the mean function

in GP prior by simply put zero mean GP prior on top of non-parametric function,

see for examples Clark et al. (2022), Hauzenberger et al. (2021). Employing the mean

function in GP prior is also known as centering Gaussian process. The benefit of having

mean function parameterized by DNN rather than assuming it to be zero, is especially

pronounced when the observed data is away from zeros. We investigate whether this

might improve the out-of-sample forecast performance of key macroeconomic variables

during periods of high volatility. Hence manipulating those mean function is worth

exploring.

Secondly, Heteroscedastic-GP-VAR (HGP-VAR). HGP-VAR differs from GP-VAR

in that GP-VAR models typically assume that the likelihood residual are normally

distributed with constant covariance across all observations. In HGP-VAR applica-

tions, however, has input/predictors-dependent noise (heteroscedastic covariance). This

model is designed to model residuals adequately in the presence of heteroscedasticity.

From macroeconomic point of view, it is often important to allow for error covariance

to change over time. Most common approach is employing stochastic volatility into

Bayesian VAR model (BVAR-SV), which assumes log volatilities to follow a random

walk. HGP-VAR model, on the other hand, assumes the error covariance to be in

non-parametric functional form. In addition to these models, GP-VAR model is also

provided for relative comparisons.

The main contribution of this chapter is to assess whether the forecasting perfor-

mance of these GP-VAR models can be improved as opposed to a traditional workhorse

Bayesian VAR with stochastic volatility model. To investigate this idea, we evaluate

point and predictive densities using metrics such as root mean square error (RMSE),

cumulative ranked probabilistic scores (CRPS), and quantile scores (QS).

The roadmap for this chapter can be categorized as followed: We begin with sec-

tion 3.2, by first briefly introducing Gaussian process model with economic data, types

1Note that it is not the same model where the specific kernel function mimic multi-layer random
neural networks, for examples Lee et al. (2017), Matthews et al. (2018).
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of kernels and how kernels affect the posterior distribution, compositional kernels (com-

bining multiple kernels) and derivation of analytical expression of log marginal likeli-

hood. Section 3.3 shows how VAR is formulated both for parametric model, Bayesian

VAR with SV, and all types of GP-VARs (non-parametric). Section 3.4 shows how

GP-VARs can be estimated by simply perform regression one equation at a time, and

how each Gaussian process parameters are learned. Section 3.5 presents full in-sample

estimations. These include interpreting the meaning of kernel hyper-parameters from

macroeconomic point of views. We are comparing the trade-off between the condi-

tional mean of parametric and non-parametric models. To shed some light on how

different volatilities of heteroscedastic models i.e. BVAR-SV (a random walk SV),

and HGP-VAR (non-parametric functional form Heteroscedastic variance) are, we vi-

sualize volatilities results resulted from both models and HGP-VAR model. Next is

section 3.6, where the forecast performances are evaluated. Finally section 3.7 draws

the conclusions and section 3.8 reports appendices.

3.2 Gaussian process regression

Gaussian Processes (GPs) Rasmussen (2003) are a straightforward approach to gen-

eralise the concept of a multivariate normal distribution. A multivariate normal dis-

tribution defines random variables that are vectors, whereas a GP describes random

variables that are real-valued functions defined over some input domain or covariates.

If the input domain is real numbers, then the random variable described by a GP can

be considered as a vector of an infinite extent and infinite resolution that is indexed

by a real number. GPs are popular tool for regression model, identifying an unknown

real-value function from noisy function observations at some covariates locations.

Let y as targets/outputs (observed data) that we wish to model. We do not know

which distribution targets are distributed but in Gaussian process regression, we assume
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the output y of a function f at covariate x can be written as:

y = f(x) + ϵ,

f(x) ∼ GP(µ(x), k(x,x′)).
(3.1)

with f(x) is a real-value function at input x. A GP represents a distribution de-

noted as GP(•) over real-valued functions f : RM → R that map the vector in

RM to some feature space R. The µ(x) is GP prior mean, µ(x) = E[f(x)], and

k(x,x′) is kernel (covariance) value evaluated at covariate/input x i.e. k(x,x′) =

E [(f(x)− µ(x))(f(x′)− µ(x′))] = cov [f(x), f(x′)].

In particular if the GP is evaluated at any finite subset of x = (x1, ..., xT )
′, the

notation becomes T−dimensional multivariate normal random variables of f :

f ∼ N (µf ,Kff ) (3.2)

where µf , andKff are T -dimensional mean vector and T×T covariance matrix evaluated

at covariates (x1, ..., xT ), i.e. µf (t) = µ(xt), and Kff (t, τ) = k(xt, xτ ), respectively. The

brackets Kff (t, τ) indicates the number of row t and column τ index of covariance Kff ,

in a manner analogous to Matlab matrix notations. From most literature this notation

is unfortunately hidden for notational clarity, which may confuse readers who is new

to the topic. It is noteworthy that if zero mean GP prior is assumed i.e. µf = 0T the

parameters f relies solely on the kernel department.

The error ϵ is scalar i.i.d random variables that represent observation noise. The

distribution of error term is generally assumed to be ϵ ∼ N (0, ITσ
2), where σ2 is error

variance. The GP regression is fully specified if error variance σ2, and kernel hyper-

parameters θ are known.

There are numerous methods for estimating GP-regression, Rasmussen (2003),

Bishop (2006), Williams & Rasmussen (2006) For faster computation plus the availabil-

ity of analytical expression of log-marginal likelihood, throughout the chapter, I will

focus more on maximizing log marginal likelihood with respect to all parameters σ2, θ.

First let y = (y1, .., yT )
′, the joint probability model is p(y, f) = p(y|f)p(f) where
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p(f) is GP prior, and p(y|f) is the likelihood. With Bayes Theorem, the posterior

mean and covariance of latent function at input x, and observed data y is given by, see

Rasmussen (2003):

p(f(x)|y) ∼ N (µ(x), ky(x, x
′)),

µ(x) = Kxf (σ
2I +Kff )

−1y,

ky(x, x
′) = k(x, x′)−Kxf (σ

2I +Kff )
−1Kfx′ .

(3.3)

where Kff is the T × T covariance function evaluated between every observations of

inputs, Kxf is T -dimensional row vector of kernel function values between x and all

inputs, notably, Kfx = K′
xf . The Gaussian process regression is completely specified if

all of these hyper-parameters (σ2, θ) are known. Therefore the posterior GP requisites

estimating of likelihood variance σ2 and kernel hyper-parameters (θ), which can be

obtain by maximizing a log marginal likelihood. Fortunately such objective function is

available in closed form. This will be noted later but now lets introduce to the kernel

department.

Next sub-section provides some examples of kernels, resulting in different kernel

hyper-parameters. Moreover illustrating on how different kernel can be influential to

in-sample predictions and how to manipulate (combine) them.

3.2.1 Kernels

Kernel functions are sometimes also referred to as ”generalised dot products” since they

compute the dot product of two vectors xt and xτ in some (possibly extremely high

dimensional) feature space.

Recall that in order to configure our distribution i.e. f ∼ GP(µf ,Kff ), we must

define µf and Kff . In Gaussian processes, it is commonly assumed that µf = 0T , which

simplifies the conditioning equations. We can always assume such a distribution, even if

the actual µf ̸= 0T , and add mean function back to posterior function values during the

prediction step. This method is also known as data centering. Some literature configure

mean function in GP prior to be parameterized by deep neural networks (Matthews
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et al. (2017), Fortuin et al. (2019)). For now GP prior with zero mean function are

assumed.

There are multiple kernels to choose from. For a very simple example, the radial

basis function, also known as the Quadratic Exponential kernel is in the form:

Kff (t, τ) = k(xt, xτ ) = γ2 exp

(
−∥ xt − xτ ∥2

2l2

)
. (3.4)

where (again) Kff (t, τ) is the covariance of GP prior at row number t, and column

number τ . The symbol ∥ xt − xτ ∥2 is recognized as the squared Euclidean distance

(L2-norm) between time t, and τ of covariates. l, γ2 ∈ R+ are kernel hyper-parameters,

typically called kernel variance γ2, and length parameters l. Each kernel contains

a set of parameters that define the exact shape of the covariance function. These are

frequently referred to as hyper-parameters because they can be thought of as describing

a distribution over function parameters rather than being parameters that directly

specify a function. For example, the length parameter l of kernel above controls the

band of around the conditional mean produced by non-parametric function. As the

length parameter is increased, the banding becomes more pronounced, as points further

apart become more correlated. In the following discussion I will illustrate only the

different kernel, resulting in the posterior only. For textbook treatment of how kernel

hyper-parameters affect the shape of prior function, Duvenaud (2014), Görtler et al.

(2019).

To begin with fig. 3.1 illustrates Gaussian process regression (GPR) with US gross

domestic product data, regressed with its own single lag. Here those figures show

the posterior prediction mean of GPR model with four different kernels, namely Ra-

dial basis function kernel, Linear, Matern52 and Matern32 kernel, respectively. The

grey bar represents 95% confident interval. It is noteworthy that the posterior is ob-

tained by maximizing closed-form log marginal likelihood with respect to kernel hyper-

parameters, and likelihood variance. It is quite obvious that the Matern52/Matern32

kernel outperforms the rest especially when the US GDP is in the COVID-19 pandemic

periods. Linear kernel, on the other hand, inadequately model US GDP. Because GPR
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assumes zero mean function in GP prior, the posterior mean and variance are entirely

dependent to the kernel hyper-parameters. As a result, selecting a proper kernel is im-

portant to the GPR model. Next sub-section briefly introduce how can we manipulate

kernels by either via the addition or multiplication multiple kernels.

Figure 3.1: Gaussian process regression (GPR) with US gross domestic product, regressed with
its own single lag. Each figure illustrate the posterior of GPR with four different kernels. Radial
basis function (also known as Squared Exponential kernel), Linear, Matern52 and Matern32
kernel, respectively. Red-solid line is posterior prediction mean, Grey-band represents 95%
confident interval, and black-solid line illustrates actual observed US GDP.

3.2.2 Compositional kernels.

As discussed above, kernel function determines the efficacy of Gaussian processes. This

property enables specialists to incorporate domain knowledge into the process and gives

Gaussian processes the flexibility to identify trends in observed data. By selecting an

appropriate bandwidth for the RBF kernel, for instance, we regulate the smoothness of

the resulting function. The benefit of using kernel as covariance in GP prior is the abil-

ity to combine together (compositional kernels) Duvenaud et al. (2013), consequently a

more specialised kernel. The most frequent kernel compositions would consist of addi-
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tion and multiplication MacKay et al. (2003). Let’s consider the following two kernels,

Periodic kernel kperiodic(·, ·
′), and Linear kernel klinear(·, ·

′):

kperiodic(·, ·
′) = γ2 exp

(
−2 sin2(π| · − ·′ |/ρ)

l2

)
,

klinear(·, ·
′) = γ2b + γ2a(· − c)(·′ − c).

The multiplication would simply be kcombined(·, ·
′) = kperiodic(·, ·

′) ⊙ klinear(·, ·
′),

where ⊙ is element-wise product.

Figure 3.2: Samples generated from GP prior distribution using different kernels. Top figures
from left to right, is Periodic and Linear kernel, respectively. Bottom figures are the combination
of both kernels, that is, kernel addition (left) and kernel multiplication (right).

Figure 3.2 illustrates the samples generated from GP prior distribution using two

different kernels, and compositional kernels. As the prior distribution does not yet

contain any additional information, the Periodic kernel’s samples are shown as a wave

pattern (top left), suitable to potentially model seasonal observations in economic data.

Linear kernel, however, has negative slope (top right). Bottom left and right figures

demonstrate how the impact of the kernel combination and how it may preserve the

quality features of the individual kernels. Notice that after adding a periodic and a

linear kernel (bottom left), the trend of a linear kernel is integrated into the combined

kernel, resulting in a periodic function that follow linear trend. When the identical ker-
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nels are multiplied together, the outcome is a periodic function with an amplitude that

grows linearly away from the linear kernel parameter c. The advantage of combining

kernels will be discussed empirically in next section.

3.2.3 Marginal likelihood of Gaussian process regression

As discuss in the previous sub-section that the Gaussian process regression is completely

specified by its mean function and covariance function. Let θ stacks all parameters in

kernel department which will be estimated. The log marginal likelihood is in the form:

p(y) =

∫
p(y|f)p(f)df . (3.5)

The marginal likelihood from eq. (3.5) above refers to the marginalization over the

function values f .2 From sampling-based perspective such as MCMC, these parameters

can be estimated by setting prior to kernel hyper-parameters θ, then Bayes’ rule is

readily applied. Most of the time researcher use MCMCmethod such as Gibbs sampling

because the normalizing constant (log marginal likelihood or log evidence) is hard to

obtain or sometime impossible. In Gaussian process regression, however, the marginal

likelihood is available in closed form, Rasmussen (2003), Bishop (2006):

log p(y) = log
[
N (y|0T , σ2IT +Kff )

]
(3.6)

where N (y|0T , V ) is multivariate normal distribution with zero mean and V co-

variance of random variables y. The benefit of maximizing a closed-form log marginal

likelihood w.r.t interested parameters are it is significantly faster than sampling-based

such as MCMC.

2It is important to note that there are no integrals over the likelihood variance σ2 and kernel
hyper-parameters θ, as these are treated as hyper-parameters.
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3.3 VAR models

3.3.1 Bayesian VAR with SV

Our benchmark model is BVAR with stochastic volatility (BVAR-SV). Quite often,

economist found significant improvements in forecast performance from having het-

eroscedastic variance in BVAR model, see for examples, Li & Koopman (2021), Mar-

cellino et al. (2016), Carriero et al. (2015), Kastner & Frühwirth-Schnatter (2014).

Therefore, we select BVAR-SV model as our benchmark, which is in the form:

yt = βxt +Qyt + ϵt, where ϵt ∼ N (0,Σt). (3.7)

where yt = (y1t, ..., yNt)
′ is N × 1 vector of macroeconomic responsive variables, xt

is K-dimensional vector of predictor, K = Np where p is number of lag in VAR. β

represents N ×K VAR coefficients, mapping xt linearly to the endogenous variables.

The N×N lower-triangular matrix Q with zeros on its diagonal, whose role is to define

the contemporaneous relationship across the elements in yt. From eq. (3.7), the VAR

covariance is Σt = diag(eh1t , ..., ehNt) which stack the volatility diagonally at each point

in time. The log-volatility is assumed to follow a stationary AR(1) process:

ht = µ+ ϕ(ht−1 − µ) + νηt,

h0|µ, ϕ, ν ∼ N (µ, ν2/(1− ϕ2)),

µ ∼ N (aµ, bµ),

ϕ ∈ (−1, 1) ∼ U(−1, 1),

ν ∼ IG(aν , bν).

(3.8)

where N (aµ, bµ) denotes normal distribution with mean aµ and variance bµ. The µ, ϕ, ν

parameters are level of log-variance, the persistent of log-variance, and the volatility of

log-variance, respectively. They are assumed to be unknown and will be estimated.3

3Without the stationary control i.e. assume that ϕ = 1 sometime leads to an explosive forecasts
especially at longer horizon, see for example Cogley & Sargent (2005). These results are consistent
with literature, see for examples, Loaiza-Maya et al. (2021), Chan & Yu (2022), Gefang et al. (2022).
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The random walk is stationary in a sense that the prior for persistent of log-variance

ϕ is assumed to be continuous uniform distribution with the lower bound and upper

bound between −1, 1 i.e. ϕ ∼ U(−1, 1). As a result, |ϕ| < 1 control the random walk to

be stationary across observations. The representation of SV model above is also known

as centered parameterization SV, Kastner & Frühwirth-Schnatter (2014).

VAR coefficients in eq. (3.7) are β,Q. To avoid the over-fitting, the Horseshoe prior

distribution Carvalho et al. (2010) is specified.

βj |λ2j , τ2 ∼ N (0, λ2j , τ
2),

λ2j |ψj ∼ IG(1
2
,
1

ψj
),

τ2|ξ ∼ IG(1
2
,
1

ξ
),

ψ1, ..., ψK , ξ ∼ IG(1
2
, 1).

(3.9)

where z ∼ IG(α, β) denotes inverse Gamma distribution with probability density func-

tion p(z|α, β) = βα

Γ(α)z
−α−1 exp

(
−β

z

)
. The λ2j is local shrinkage parameters controlling

the tightness of VAR coefficient individually. The global shrinkage parameters τ2, on

the other hand, controls the overall tightness of coefficients.

From this point of view it is straightforward to obtain the conditional posterior

distribution. Readers are referred to Makalic & Schmidt (2015) for brevity.

After estimating all necessary parameters, the VAR covariance can be obtained by

simply computing the product of Ht = A−1ΣtA
−1′ , where A = Q − IN , and IN is

N ×N identity matrix.

3.3.2 Gaussian process-VARs

This sub-section introduce how Gaussian process regression can be extended to a multi-

variate case (GP-VAR) where each equation in GP-VAR can be estimated one equation

in a time. GP-VAR has been successfully found to be a successful model for forecast-

ing macroeconomic variables particularly during periods of economic turbulence. For

example Huber et al. (2020) employ GP-VAR in Mixed-frequency VAR and found that

To avoid such problem µ, ϕ are treated as unknown parameters.
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forecast performance is improved during the Covid-19 pandemic for European GDP

growth.

While a recent paper Clark et al. (2022) demonstrates that simple GP-regression

accurately predicts US inflation compared to the unbeatable unobserved component

stochastic volatility (UC-SV) model, I investigated GP-VAR model using multiple US-

macroeconomic variables, and found it to be accurate in terms of in-sample predictions.

This leads to the hypothesis that GP-VARs might also potentially perform well in terms

of out-of-sample prediction. To convince readers, I plot fig. 3.3, which illustrate the

posterior GP regression of US GDP data. Each figure in fig. 3.3 has different GP-

regression model configurations, that is, different kernel and covariates (or inputs). In

the following discussion, black-solid line is GPRs conditional mean, red-solid is actual

observed US GDP, and grey-band represents 95% confident interval.

To begin with first figure, fig. 3.3a, the predictor is simply a lag of GDP observa-

tions, notably the squared exponential kernel is employed (labelled: AR(1), squared

exponential). Secondly fig. 3.3b, shows similar model with a lag of additional 7 other

important macroeconomic and financial variables (labelled: AR(1)+other(1), squared

exponential). The third and fourth figs. 3.3c and 3.3d show AR(1), and AR(1)+other(1)

with Matern52 kernel, respectively. Finally, the most crucial one, fig. 3.3e illustrates

model with AR(1)+other(1) setting with two composite kernels (combination), namely

squared exponential and Matern52. Obviously with squared exponential kernel and

Matern52 alone, adding more important predictors/inputs to the GP-regression model

barely makes any difference to the posterior GP-regression, and thus cannot model

US GDP data adequately. With appropriate predictors and some kernel manipula-

tions, GP-regression is able to capture US GDP almost perfectly. The 95% confident

interval is narrower, indicating how confident the GP-regression model is. Those ad-

ditional 7 macroeconomic/financial variables (and possibly more variables) may carry

some predictive information which can potentially improve the out-of-sample predic-

tive performance especially in a long forecast horizon. Therefore, investigating the

use of GP-VARs instead of simple GP regression and conducting iterative forecasts is

worthwhile.
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(a) SE: AR(1) (b) SE: AR(1)+other(1)

(c) Matern52: AR(1) (d) Matern52: AR(1)+other(1)

(e) SE+Matern52: AR(1)+other(1)

Figure 3.3: Gaussian process regression (GPR) of US GDP observation with five different set-
tings.
Note: Figure 3.3a uses only lagged values of US GDP as explanatory variables with Squared
Exponential kernel (labelled SE:AR(1)). Figure 3.3b uses one own lag and a single lag of
other seven important macroeconomic and financial variables (labelled SE: AR(1)+other(1)),
(Also Squared Exponential kernel). Figure 3.3c is AR(1) with Matern52 kernel (labelled:
Matern52: AR(1)). Figure 3.3d is AR(1)+other(1), with Matern52 kernel (labelled: Matern52:
AR(1)+other(1)). Finally and most importantly one, fig. 3.3e (labelled: SE+Matern52:
AR(1)+other(1)) but two kernels are combined, namely Squared exponential and Matern52.

GP-VAR begins by first denote Xt = (xt, ...,xt)
′ with xt as K-dimensional vector of

covariates at time t. yt = (y1t, ..., yNt)
′ as an N×1 macroeconomic responsive variables
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which is similar to previous sub-section. The GP-VAR can be expressed in the form:

yt = F (Xt) +A−1ϵt, ϵt ∼ N (0N ,Σ). (3.10)

where F (Xt) = (f1(xt), ..., fN (xt))
′, with GP prior on top of each function in GP-

VAR, i.e. f1(xt), ..., fN (xt)) ∼ GP(µ1(xt), k1(xt,xτ )), ...,GP(µN (xt), kN (xt,xτ )). ϵt =

(ϵ1t, ..., ϵNt)
′, and Σ = diag(σ21, ..., σ

2
N ) stacking residual variances from each equation

diagonally. The reason to have an additional term A−1 in reduced-form GP-VAR

is to capture the contemporaneous relations between the element in yt, and those

lower elements in squared matrix A−1 will be used to compute GP-VAR covariance.

The idea of expression above is borrowed from a paper Carriero et al. (2022) but

instead of mapping VAR explanatory variables to responsive variables linearly, the

responsive variables are assumed to be in the form of unknown functions F (·) which is

potentially non-linear functions and input-dependent. Formulating such fashion reduces

tremendous computational cost as described in chapter 1.

Centering Gaussian process with feed-forward Deep neural networks

So far we have discussed the f(·) ∼ GP(µ(·), k(·, ·′)) prior with zero mean function

µ(·) = 0, implying that the Gaussian process relies solely on the kernel. This has been

the primary focus on the economic literature related to the GP-VAR, see for examples

Clark et al. (2022), Hauzenberger et al. (2021). As discussed in the section 3.2.1,

manipulating the mean function of GP prior might help us in solving the target more

efficiently. To begin with a very simple linear mean function, when evaluated at input

xt at time t, it is in the form:

µ(xt) =Wxt + b. (3.11)

where W is weight/coefficients/effect size mapping input xt linearly to the target, and

b is referred to bias. Notice that it is exactly similar to the simple linear regression with

OLS weights and constant term. The benefit of doing so help the model to solve the

target more effectively especially when the target is away from zero. Since the µ(·) is

in the GP prior it can be estimated before the kernel hyper-parameters, or even after.
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Moreover it can be extended to nonlinear parameterization such as neural network and

deep neural network. In this sub-section I focus more on the latter, demonstrating how

simple feed-forward deep-neural network (DNN) can be served as a mean function.

Similarly the mean function of GP prior when evaluating at input point xt can then be

written as:

µ(xt) =W3h(W2h(W1h(W0xt + b0) + b1) + b2) + b3. (3.12)

where Wi, bi is weight matrices and biases of DNN layer i, respectively. h(·) represents

an activation function, sigmoid or ReLu for instances.4 The example above shows only

three layers in DNN. However, from a practical standpoint, the number of layers and

weight size can be adjusted as deep as required.

The visualization of GP prior mean function of both examples are shown in figs. 3.4

and 3.5. It is obvious to see that if no activation employed, and only a single layer

is used, the mean function collapses to the simple OLS estimators which is similar to

eq. (3.11).

Each equations in GP-VAR will have individual mean function parameterized by

DNN, with the goal to potentially center GP model according to each characteristic of

responsive variable in GP-VAR.

4Activation functions are required to prevent linearity in the broadest sense. Without them, data
would only go through the nodes and layers of a network with linear functions. In this chapter I employ
a Sigmoid activation function, which is, h(z) = 1

1+e−z .
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Figure 3.4: Visualization of feed-forward Deep neural networks, where three hidden layers are
configured, each has 4 nodes.
Note: The GP prior is f(xt) ∼ GP(µ(xt), k(xt, xτ )), where µ(xt) = W3h(W2h(W1h(W0xt +
b0)+b1)+b2)+b3 with xt = (GDPt−1,CPIt−1,FPIt−1) denote the input/explanatory variables.
GDPt represent the observed target. Each arrow from left to right is (W ), red circle is biases
(b). The rectangle square indicates the activation function before feeding the results from layer
to a next layer. The (·, ·) is number of row and column of Weight and biases matrices.

Figure 3.5: Visualization of linear mean function for GP prior (OLS estimates).
Note: The GP prior is f(xt) ∼ GP(µ(xt), k(xt, xτ )), where µ(xt) = Wxt + b. With
GDPt−1,CPIt−1,FPIt−1, denote explanatory variables. GDPt is an observed target.
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Heteroscedastic Gaussian process-VAR

The previous sub-section provides the details of how GP-VAR and it is noticeable that

a GP-VAR covariance is constant over time (Homoscedastic). In economic modelling,

it is often important to allow the error covariance to vary over time. Most common

approach is to assume the error terms’ log volatility to follow a random walk i.e. adding

stochastic volatility (SV). Several studies suggest that incorporating SV improves fore-

casting performance (Li & Koopman (2021), Marcellino et al. (2016), Carriero et al.

(2015), Kastner & Frühwirth-Schnatter (2014).) In this section, the constant error

variance in GP-VAR assumption is relaxed by allowing the error distribution to be

time-variant and input/predictor-dependent, that is in a non-parametric functional

form. The Heteroscedastic-GP-VAR can be written as:

yt = F1(Xt) +A−1ϵt, ϵt ∼ N (0N ,Σt),

Σt = diag

([
eF2(Xt)

]2)
.

(3.13)

where F1(Xt) = (f11(xt), ..., f1N (xt))
′, and F2(Xt) = (f21(xt), ..., f2N (xt))

′. The

additional subscription in fij(·) is added, where j subscription represents the num-

ber of equation in VAR. The i subscription, on the other hand, refers to number of

GP-latent functions, where i = 1, 2 for conditional mean, and conditional variance

functions, respectively. Both functions satisfy ∀f1j(x), f2j(x) ∈ R, for j = 1, .., N . To

ensure that the conditional variance produced by F2(·) is always positive, the exponen-

tial transformation (e(·)) is employed. The role of inverse square matrix A is similar

to (homoscedastic) GP-VAR case, that is for capturing contemporaneous relations be-

tween each responsive variables, see eq. (3.10).

The error covariance in HGP-VAR, denoted as Σt, is now time-variant across obser-

vations. It is important to note that the error variance is expressed in a non-parametric

functional form within the framework of a Gaussian process. This formulation differs

from the popular stochastic volatility (SV) model, which assumes the log variance fol-

lows a random walk AR(1) process, where the current volatility depends on its own
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lagged value. In contrast, the HGP-VAR model adopts a non-linear functional expres-

sion for the error variance, which is also dependent on covariates/inputs. By changing

the variables and the number of lags in HGP-VAR, different patterns of heteroscedastic

variance can be captured. From a pseudo out-of-sample forecast perspective, allowing

the volatility to be input-dependent in HGP-VAR may offer advantages over a random

walk SV model. The underlying logic is straightforward: in the case of a random walk

SV, there is no observed target for forecasting, meaning the predictive distributions

rely solely on previously estimated parameters. In contrast, HGP-VAR can leverage

the latest observed predictors since its inputs are lagged responsive variables. This

hypothesis will be explored further in Section section 3.6.

Next, the GP prior is specified for each unknown function in the HGP-VAR, similar

to the (homoscedastic) GP-VAR case.

f11(·), ..., f1N (·) ∼ GP(µ(·), k(·, ·′)),

f21(·), ..., f2N (·) ∼ GP(µ(·), k(·, ·′)).

For HGP-VAR model, the mean function in GP prior is assumed to be zero i.e. µ(·) = 0.

Selection of GP-VARs kernels

Although it is worth mentioning that there are automatic algorithm to do so, Duvenaud

et al. (2013), Duvenaud (2014), Hwang et al. (2016), Steinruecken et al. (2019) but

kernels for GP-VAR and GP-DNN-VAR are selected manually by ones that has the

highest values of closed form log marginal likelihood since it is analytically available

for those two models. For HGP-VAR, however, the log marginal likelihood is not

analytically available, it is thereforeselected by the one that has the highest ELBO

instead. After bunches of trails the table below summarizes kernel for GP-VARs models.
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GP-VARs variables GP-VAR GP-DNN-VAR HGP-VAR

GDPC1 Matern12+ RBF + White + Linear Matern12+ RBF + White + Linear RBF + Linear

FPI Matern12 + RBF×Linear + White Matern12 + RBF×Linear + White RBF + Linear

GCEC1 Matern12 + RBF + Linear Matern12 + RBF + Linear RBF + Matern52

INDPRO Matern12 + RBF + White + Linear Matern12 + RBF + White + Linear RBF + Linear

UNRATE Matern12 + RBF + Linear Matern12 + RBF + Linear RBF + Linear

ICSA Matern12 + RBF + White + Linear Matern12 + RBF + White + Linear RBF + Linear

CPIAUCSL Matern12 + RBF×Linear + White Matern12 + RBF×Linear + White RBF + Linear

FEDFUNDS Matern12 + RBF + Linear Matern12 + RBF + Linear RBF + Linear

Table 3.1: Kernel selection for each equation in GP-VARs models.

Kernel types Kernel hyper-parameters

Matern12 k(·, ·′) = γ2 exp (∥ · − ·′ ∥)

Matern52 k(·, ·′) = γ2
(
1 +

√
5 ∥ · − ·′ ∥ +5

3 ∥ · − ·′ ∥2
)
exp (∥ · − ·′ ∥)

Radial Basis Function (RBF) k(·, ·′) = γ2 exp
(
− (·−·′)2

2l2

)
White k(·n, ·m) = δ(n,m)γ2

Linear k(·, ·′) = γ2 · ·′

Table 3.2: Kernels hyper-parameters.

where ∥ · − ·′ ∥ is Euclidean distance between · and ·′. For White kernel, ·n, ·m

denotes input at time n and m, respectively. δ(n,m) represents Kronecker delta i.e.

δ(n,m) = 0 if n ̸= m and δ(n,m) = 1 if n = m.

3.4 Estimation and predictive density of GP-VARs mod-

els

Our GP-VAR models are estimated one equation at a time, utilizing a per equation

algorithm as recently proposed by Carriero et al. (2022). Each sub-section in this

section explains the estimation procedure for each equation in all types of GP-VAR

models, as well as how predictive densities are computed (for h > 1, simulations are

required).
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3.4.1 Learning each equation in GP-VAR

As mention above that GP-VARs will be performed by one equation at a time. There-

fore in the following sub-sections, the notation will be in a regression form similar to

ones already described in section 3.2. Recall that we have data sets of T observations

{xt, yt}Tt=1, where yt, xt is typically called output and input at time t, respectively. Let

x = {xt}Tt ,y = {yt}Tt , the output is assumed to be a noisy realization of GP latent

function f , recall that the likelihood of Gaussian process regression can be written as:

yt|f, xt ∼ N (f(xt), σ
2),

y ∼ N (f , ITσ
2).

Equation above implies that the output observation is assumed to be normally dis-

tributed with a constant variance σ2. The mean of the likelihood is input-dependent and

given a GP prior over latent function i.e. f(x) ∼ GP(µ(x), k(x, x′)), where µ(x), k(x, x′)

are mean and kernel function evaluated at input x, respectively. Similar to previous

section f ∼ GP(µ(x), k(x,x′)). Denote y = (y1, .., yT )
′, the joint probability model is

p(y, f) = p(y|f)p(f) where p(f) is GP prior, and p(y|f) is the likelihood. With Bayes

Theorem, the posterior mean and covariance of latent function at input x, and output

y is easily obtained, see in section 3.2, and Rasmussen (2003).

Predictive density of GP-VAR

Once all hyperparameters and likelihood variance from each equation in GP-VAR are

estimated, one can obtain the forecast density conditional on new input points i.e.

p(yT+1|y,x⋆). To achieve so, we first derive the joint distribution between already

estimated model p(yT+1), where yT+1 denotes vector (y1, ..., yT+1)
′.

p(yT+1) = N (0,CT+1), (3.14)
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where:

CT+1 =

Kff Kff⋆

Kf⋆f Kf⋆f⋆


Another way of writing the forecast density at new input points is:

y
f⋆

 ∼ N

0,

Kff Kff⋆

Kf⋆f Kf⋆f⋆


where Kff = k(x,x′) is kernel values evaluated at every regression input points, Kff⋆ =

k(x,x⋆) is kernel value evaluated between every input points and new/predictive input

points, and lastly Kf⋆f⋆ = k(x⋆,x⋆′) is kernel values evaluated between predictive input

points.

Since the GP is chosen to be a prior on top of unknown function, the forecast density

is also Gaussian and tractable, where it leads to normal distribution that can be fully

described by the mean and covariance as followed: f⋆|x,y,x⋆ ∼ N (f
⋆
, cov(f⋆)), where:

f
⋆
= Kf⋆fK

−1y,

cov(f⋆) = Kf⋆f⋆ −Kf⋆fK
−1Kff⋆ .

(3.15)

Notice from posterior predictive density above is in the regression context. To mea-

sure the uncertainty from GP-VAR context one can recover GP-VAR covariance from

A−1ΣA−1′ where Σ = diag(σ21, ..., σ
2
N ). The GP-VAR forecast density can be summa-

rized in table 3.3 below.

3.4.2 Learning each equation in GP-DNN-VAR.

Given that some macroeconomic observations are away from zero (after stationary

transformation). Assuming zero mean in GP prior may or may not be suitable i.e.

f(x) ∼ GP(m(x), k(x, x′)), where m(x) = 0. Manipulating the mean function in GP

prior might help us in solving the target more efficiently. Even if the OLS weights in

the mean function can improve the accuracy of the GP-models. However, the example
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Predictive density for GP-VAR

one step ahead predictive densities

for s = 1 : S
for j = 1 : N

p(f⋆j |xT+1) ∼ N (f
⋆
j |cov(f⋆j )), eq. (3.15).

-compute A(s),
end for j = 1 : N

end for s = 1 : S

compute GP-VAR covariance:

H(s) = A−1
(s)ΣA

−1′

(s) , where Σ = diag(σ21, ..., σ
2
N )

set FT+1 = (f⋆1 , ..., f
⋆
N )′

GP-VAR covariance: FT+1 = FT+1 +H
1
2 ε, where ε ∼ N (0, 1)

Two-and-more-steps-ahead predictive densities with Monte Carlo Estimates

for h = 2 : 12
for s = 1 : S

for j = 1 : N∫
p(f⋆j |x

(s)
T+h−1, ..,x

(s)
T+h−1)dxT+h−1, ..,x

(s)
T+h−1.

≈
∑S

s=1 p(f
⋆
j |x

(s)
T+h−1, ..,x

(s)
T+h−1).

set FT+h = (f⋆1 , ..., f
⋆
N )′

GP-VAR forecasts: FT+h = FT+h +H
1
2 ε, where ε ∼ N (0, 1).

end for j = 1 : N
end for s = 1 : S

end for h = 2 : 12

Table 3.3: Algorithm to simulate predictive density for GP-VAR.
Note: S is total number of samples, N is total number of equations in VAR, A−1

(s) is inverse of

lower-triangular A at sample number (s).

below demonstrates how the feed-forward deep neural network with three hidden layers

can be employed:

m(x) =W3h(W2h(W1x+ b1) + b2) + b3. (3.16)

where Wi is weight matrices of layer i, the bi is biases, and h(·) is activation function

in neural network, sigmoid or ReLu for instances. For notational clarity I suppress all

weight matrices and biases into vector ϕ i.e. ϕ = (Wi, bi) for i = 1, 2, 3. This kind

of manipulating GP prior has been explored in machine learning field, see for example

Fortuin et al. (2019).

Approximating these weights and biases are uncomplicated because of two following

reasons. First it is still in GPR expression, meaning that the log marginal likelihood

is still available in closed form. Secondly the deep neural network is augmented in GP
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prior i.e. f(·) ∼ GP(m(·), k(·, ·)), implying that it can be approximated simultane-

ously with hyper-parameters, before or even after kernel hyper-parameters are known.

Through multiple tests, I have found that the order of approximation does not signif-

icantly affect the results, but approximating them separately is computationally more

efficient. The GPD-R algorithm is summarized in table 3.4.

Algorithm for Gaussian process regression with Deep neural network mean function

Inputs:

observed evidence, and inputs y,x

While not converged do:

Kernel hyperparameters and likelihood variance:

- maximize log p(y) w.r.t kernel hyperparameters and likelihood variance, θ, σ2, see eq. (3.6)

end while.

Deep mean function:

- maximize a closed form of log p(y) w.r.t mean function of GP prior m(x) , see eq. (3.6)

Outputs: Optimized kernel hyper-parameters θ, likelihood variance σ2, and non-parametric functions f .

Table 3.4: Algorithm for Gaussian process regression with deep neural network mean function.

It is worth noting that with the mean function in GP prior is not zero, the log

marginal likelihood now becomes:

log p(y) = −1

2
(y−m(x))′(K+ σ2I)−1(y−m(x))− 1

2
log |K+ σ2I| − T

2
log 2π. (3.17)

where m(x) is deep neural network mean function evaluated at input x. Additionally

the predictive distribution at new input (predictors) x⋆ is f⋆|x,y,x⋆ ∼ N (f
⋆
, cov(f⋆)),

which is:

f
⋆
= m(x⋆) +Kf⋆f [K]−1 (y −m(x)) . (3.18)

The covariance of predictive distribution is still similar to those in eq. (3.15).
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Predictive density of GP-DNN-VAR

The predictive of GP-DNN-VAR is identical in the case of GP-VAR except the predic-

tive mean in each equation can be expressed as:

p(f⋆|•) ∼ N (f
⋆|cov(f⋆)),

f
⋆
= m(x⋆) +Kf⋆fK

−1(y −m(x)),

cov(f⋆) = Kf⋆f⋆ −Kf⋆fK
−1Kff⋆ .

Therefore predictive densities for GP-DNN-VAR can be obtained by simulating simi-

larly to GP-VAR case except there is additional m(x⋆),m(x) in f
⋆
, see table 3.3.

3.4.3 Learning each equation in HGP-VAR.

Recall from eq. (3.13) that there are two latent-GP functions in HGP-VAR model, an

additional GP function results in the log marginal likelihood is no longer available in a

closed form. Thus an approximation approach is required. However, there are multiple

available options. For sampling-based method such as MCMC, see Goldberg et al.

(1997), variational inference Lázaro-Gredilla & Titsias (2011), Laplace approximation

Jylänki et al. (2011) and expectation propagation Hernández-Lobato et al. (2014).

Despite that, the most recent approximating method enables us to approximate the

model by utilizing the sparse Gaussian process. This is by far the best choice to learn

such model in terms of robustness and computational efficiency, Saul et al. (2016).

Heteroscedastic Gaussian Process (HGP) contains two GP latent functions where first

is parameterizing the mean of the likelihood and second is for the time-varying variance.

In each equation in HGP-VAR, the likelihood can be expressed as follow:

f1(xt) ∼ GP(0, k1(xt, xτ )),

f2(xt) ∼ GP(0, k2(xt, xτ )),

yt|f1, f2, xt ∼ N (f1(xt),
[
ef2(xt)

]2
).

(3.19)
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where ∀f1(·), f2(·) ∈ R. The second GP latent function f2(·) implies that it is input-

dependent. The time-varying standard deviation for likelihood approximated by second

GP latent function is guaranteed to be positive by exponential transformation ef2(·).

Before delving into how Heteroscedastic Gaussian process regression learns the two

GP-latent functions, it is necessary to understand the concept of sparse Gaussian pro-

cess regression (SGPR). As mentioned in Equation (8), learning Gaussian process re-

gression involves inverting the T × T kernel matrix Kff , resulting in a computational

complexity of O(T 3). This becomes computationally challenging when the number of

observations, T , is large. To address this issue, sparse Gaussian process regression

introduces the concept of inducing variables.

The key idea behind SGPR is to use a smaller set of inducing inputs, denoted

as m-dimensional vectors, where m ≪ T , to represent the entire set of T observed

data points. This is based on the rationale that not all observed inputs are equally

informative in mapping to the responsive variable in regression. The formulation of

SGPR is as follows:

f1(xt) ∼ GP(0, k(xt, xτ )),

yt|f1, xt ∼ N (f1(xt), σ
2).

Notice that it is exactly similar to GPR but the way it learns parameter is different.

I will now describe how a single GP-latent function can be approximated from SGPR,

then later on in this section, we will adding another GP-latent functions to parameterize

the time-varying residual standard deviation. For now denote the inducing-inputs z =

{zt}mt=1 and specify zero mean GP prior for the inducing inputs then we have:

p(u) = N (u|0,Kuu) (3.20)

where u = (u(z1), .., u(zm))′ ∈ Rm and Kuu = k(z, z′) is m×m covariance of inducing

function. The joint distribution of p(y, f) with auxiliary inducing-variables u now
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becomes, see Titsias (2009), Hensman et al. (2013), Saul et al. (2016):

p(y, f ,u) = p(y|f)p(f ,u). (3.21)

The joint distribution of second term p(f ,u) in eq. (3.21) is in the form:

f

u

 ∼ N

( µf
µu,

Kff Kfu

Kuf Kuu

) (3.22)

where µf , µu denote the marginal means of function f , and u, respectively. Kff , Kfu,

Kuf , Kuu are (cross) covariance matrices. To be more precise, Kff = k(x,x′) is T × T

covariance evaluated at every inputs. Kfu = Kuf
′, with k(x, z), and finally Kuu =

k(z, z′). The conditional distribution which is also Gaussian can be written as:

p(f ,u) = p(f |u)p(u),

p(f |u) ∼ N (µf +KfuK
−1
uu(u− µu),Kff −KfuK

−1
uuKuf ).

(3.23)

Sparse Gaussian process aims to approximate inducing inputs u. Suppose zero mean

GP prior is employed in f i.e. µf = 0 (see eq. (3.23)) then the distribution of latent

function for likelihood conditional on the inducing variables can be written in similar

fashion:

p(f |u) = N (f |m,S),

m = Φu,

S = Kff −ΦKuuΦ
′.

(3.24)

where Φ ≡ KfuK
−1
uu . According to eq. (3.24), the conditional prior of likelihood latent

function on inducing variables p(f |u) are fully specified if and only if the inducing

variables are known i.e. z = (z1, .., zm)′. Since exact posterior of two latent functions are

intractable p(f ,u). The more convenient and tractable of joint variational distribution

qθ(f ,u) is introduced, which assume to factorize as:

qϕ(f ,u) = p(f |u)qϕ(u). (3.25)
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It is now obvious that SGPR never intends to estimate u function but instead approx-

imate it with normal distribution which can be written as:

qϕ(u) = N (u|b,W). (3.26)

where subscription ϕ = {b,W}, which are variational parameters (mean and covari-

ance) of normal distribution parameterizing inducing inputs. With these variational

parameters in hand, one can obtain the marginal variational distribution over f by in-

tegrating out inducing variables u. Fortunately Hensman et al. (2013), Matthews et al.

(2017) showed that this has analytical expression as follow, see also eq. (3.24):

qϕ(f) =

∫
qϕ(f ,u)du = N (f |µ,Σ),

µ = Φb,

Σ = Kff −Φ(Kuu −W)Φ′.

(3.27)

Next paragraph demonstrates how required parameters in sparse GPR model can be

obtained by maximizing evidence lower bound to the marginal likelihood w.r.t. ϕ =

{b,W}.

Evidence lower bound to the log marginal likelihood This subsection briefly

introduces how to derive the evidence lower bound to the log marginal likelihood for

sparse Gaussian process. The objective is to minimize the Kullback-Leibler (KL) diver-

gence between already defined approximate distribution qϕ(f ,u) to the exact posterior

distribution p(f ,u|y) by first write the KL:

KL
(
qϕ(f ,u)||p(f ,u|y)

)
= Eqϕ(f ,u)

[
log

qϕ(f ,u)

p(f ,u|y)

]
,

= log p(y) + Eqϕ(f ,u)

[
log

qϕ(f ,u)

p(f ,u|y)

]
,

= log p(y)− L(ϕ).

(3.28)

with

L(ϕ) ≡ Eqϕ(f ,u)

[
log

p(f ,u,y)

qϕ(f ,u)

]
. (3.29)
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Titsias (2009), Hensman et al. (2013), Leibfried et al. (2020) provides how the final

formula for this evidence lower bound is derived. Here provide for convenience:

L(ϕ) = log
[
N (y|0, σ2I +KfuK

−1
uuKff )

]
− 1

2σ2
Tr
[
Kff −KfuK

−1
uuKff

]
. (3.30)

Finally the necessary parameters can be approximated by maximizing ELBO above

with respect to variational parameters of inducing variables ϕ = {b,W}, and the rest

of parameters i.e. residual variance, and kernel hyper-parameters (σ2, θ). If ELBO

reaches its maximum if and only if the approximate posterior distribution equals the

true posterior distribution everywhere! i.e. qϕ(f ,u) = p(f ,u). The KL becomes zero,

and as a result the ELBO recovers to the log marginal likelihood exactly.

Now we go back to our HGP-R, instead of only one GP-latent function as in

SGPR case, there are now two latent functions that needs to be approximated i.e.

f1(·), f2(·), eq. (3.19). Adding one or even more should be straightforward as long

as those GP-functions are independent and each function has its own inducing points

i.e. {ui}2i=1. Now denote f1 = f1(x), f2 = f2(x), u1 =
(
u1(z1,1), ..., u1(z1,m)

)′
, u2 =(

u2(z2,1), ..., u2(z2,m)
)′
, where zj,m is m inducing-inputs of latent function j. The joint

distribution of both latent functions factorizes in the form:

p(f1, f2|u1,u2) = p(f1|u1)p(f2|u2). (3.31)

The log marginal likelihood is:

log p(y) = log

∫
p(y|f1, f2)p(f1, f2|u1,u2),

× p(u1)p(u2)df1df2du1du2.

Similar to sparse GPR, the HGP model is fully specified by first defining the approx-

imate distribution for both inducing distributions i.e. u1,u2 which can be written

as:

p(f1, f2,u1,u2|y) ≈ qϕ(f1, f2,u1,u2). (3.32)
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where,

qϕ(f1, f2,u1,u2) = p(f1|u1)p(f2|u2)qϕ1(u1)qϕ2(u2). (3.33)

Notice again that eq. (3.33) above is exactly the same to eq. (3.25) except that there

are now two independent latent functions and two inducing inputs which are approx-

imated by normal distributions qϕ1(u1), qϕ2(u2) parameterized by its own variational

parameters ϕ = (ϕ1, ϕ2). With all these ingredients we are now ready to obtain those

parameters by maximizing the evidence lower bound to the log marginal likelihood:

log p(y) = log

∫
p(y|f1, f2)p(f1|u1)p(f2|u2)p(u1)p(u2)df1df2du1du2,

≥
∫
q(f1)q(f2) log p(y|f1, f2)df1df2 −

[
KL

(
q(f1)||p(u1)

)
+KL

(
q(u1)||p(u2)

)]
.

(3.34)

where q(fj) =
∫
p(fj |uj)q(uj)duj for j = 1, 2, which again similar to eq. (3.27). In fact

one can extend to more than two latent functions by replicating the identical expression

with the assumption that all j latent functions i.e. f1, ..., fj are priori independent.

Thus posterior is variationally factorized. KL
(
q(·)||p(·)

)
denotes the KL divergence

between q(·) and p(·). The variational posterior for inducing distribution are qϕ1(u1) =

N (u1|b1,W1), and qϕ2(u2) = N (u2|b2,W2), respectively. Finally the posterior of

each latent function conditional on inducing distributions are:

qϕ1(f1) = p(f1|u1) = N (f1|µ1,Σ1),

µ1 = Φ1b1,

Σ1 = Kfu1 −Φ1(Ku1u1 −W1)Φ
′
1,

(3.35)

where Φ1 ≡ Kfu1K
−1
u1u1

. The similar fashion applies for qϕ2(f2). This also implies that

two latent functions of heteroscedastic Gaussian process regression are estimated by

finding variational parameters (mean and variance) of inducing distribution i.e. ϕ =

(ϕ1, ϕ2) = {b1,b2,W1,W2} that actually maximize evidence lower bound in eq. (3.34).

The two KL terms in eq. (3.34) are available in closed form since it is KL distance be-
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tween two normal distributions. Finally the term
∫
q(f1)q(f2) log(y|f1, f2)df1df2, which

Lázaro-Gredilla & Titsias (2011), and Saul et al. (2016) already derived a very final

simple form:∫
q(f1)q(f2) log p(y|f1, f2)df1df2 =

∫
N (f1|µ1,Σ1)N (f2|µ2,Σ2) logN

(
y|f1, exp(f2)

)
df1df2,

= logN
(
y|µ1, exp

(
µ2 −

Σ2

2

))
− Σ2

4
−

Σ1 exp(−µ2 + Σ2
2 )

2
.

(3.36)

Predictive density of HGP-VAR.

The forecast density for HGP-VAR begins with the approximate distribution for each

equation in VAR, from eq. (3.33).

qϕ(f1, f2,u1,u2) = p(f1|u1)p(f2|u2)qϕ1(u1)qϕ2(u2).

With the assumption of two independent latent functions f1, f2, the posterior after the

variational lower bound is maximized becomes:

p(f⋆|y,x,x⋆) =

∫
p(f⋆|x, f)p(f |u1)p(u1|y)dfdu1,

≈
∫
p(f⋆|u1)q(u1)du1,

= q(f⋆),

qϕ1(f
⋆
1 ) ∼ N (Kf⋆1u1K

−1
u1u1

b1,Kf⋆1u1 −Kf⋆1u1K
−1
u1u1

(
K−1

u1u1
−W1

)
K−1

u1u1
Kf⋆1u1),

qϕ2(f
⋆
2 ) ∼ N (Kf⋆2u2K

−1
u2u2

b2,Kf⋆2u2 −Kf⋆2u2K
−1
u2u2

(
K−1

u2u2
−W2

)
K−1

u2u2
Kf⋆2u2).

(3.37)

where bj ,Wj are mean and covariance parameterizing approximate distribution of

inducing variables for j latent function, i.e. qϕ1(u1) = N (u1|b1,W1), and qϕ2(u2) =

N (u2|b2,W2). For one-step-ahead forecast, notice that after inducing variables u1,u2,

variational parameters ϕ1, ϕ2 of two GP-latent functions, and kernel hyper-parameters

are approximated. Predictive density is readily to be computed. For two or more-step

ahead it requires Monte Carlo Approximation which the algorithm can be summarized
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in table 3.5.

Predictive density for HGP-VAR

one step ahead predictive densities

for s = 1 : S
for j = 1 : N

-qϕ1(f
⋆
1 ), eq. (3.37),

-eqϕ2 (f
⋆
2 ), eq. (3.37),

-obtain A(s),
end for j = 1 : N

end for s = 1 : S

compute HGP-VAR covariance:

H
(s)
T+1 = A−1

(s)Σ
(s)
T+1A

−1′

(s) , where Σ
(s)
T+1 = diag

([
e
f⋆2jT+1

(s)

]2
, ...,

[
e
f⋆2NT+1

(s)

]2)
set FT+1 = (f⋆1 , ..., f

⋆
N )′

HGP-VAR covariance: FT+1 = FT+1 +H
1
2
T+1ε, where ε ∼ N (0, 1)

Two-and-more-steps-ahead predictive densities with Monte Carlo Estimates

for h = 2 : 12
for s = 1 : S

for j = 1 : N∫
qϕ1(f

⋆
1 |x

(s)
T+h−1, ..,x

(s)
T+h−1)dxT+h−1, ..,x

(s)
T+h−1.∫

eqϕ2 (f
⋆
2 |x

(s)
T+h−1,..,x

(s)
T+h−1)dxT+h−1,..,x

(s)
T+h−1 .

≈
∑S

s=1 qϕ1(f
⋆
1 |x

(s)
T+h−1, ..,x

(s)
T+h−1).

≈
∑S

s=1 e
qϕ2 (f

⋆
2 |x

(s)
T+h−1,..,x

(s)
T+h−1).

set FT+h = (f⋆1 , ..., f
⋆
N )′

set HT+h = A−1
(s)Σ

(s)
T+hA

−1′

(s)

HGP-VAR forecasts: FT+h = FT+h +H
1
2
T+hε, where ε ∼ N (0, 1).

end for j = 1 : N
end for s = 1 : S

end for h = 2 : 12

Table 3.5: Algorithm to simulate predictive density for HGP-VAR.
Note: S is total number of samples, N is total number of equations in VAR, A(s), A−1

(s)

is squared matrix A and inverse of lower-triangular A at sample number (s), respectively.[
e
f⋆2jT+1

(s)

]2
is exponential predictive variance of second latent-GP function of equation j in VAR

at time T + 1

3.4.4 Model summarizations

The goal of this sub-section is to provide an overall picture of included models, esti-

mation method and parameters. As for GP-VARs models, we suppressed all hyper-

parameters in kernel department into θ. The summary of models can be seen from the
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table 3.6 below.

Model Acronyms Model descriptions Estimation method Parameters

BVAR-SV Bayesian VAR with stochastic volatility MCMC (Gibbs sampling) β,A, hTt=0, µ, ϕ, σ
2
h.

GP-VAR Gaussian process VAR maximize closed form
θ,Σ,A

log marginal likelihood

GP-DNN-VAR Gaussian process VAR with Deep- maximize closed form
θ,Σ,W, b,A

neural networks as mean function log marginal likelihood

HGP-VAR Heteroscedastic Gaussian process VAR maximize ELBO (ϕ1 = b1,W1, ϕ2 = b2,W2), θ,Σt,A

Table 3.6: Acronyms of models, model descriptions, approximation method and parameters.

Optimization

The optimization of the evidence lower bound in HGP models and the estimation of

feed-forward neural networks can be computationally challenging. To address this issue,

stochastic gradient descent (SGD) is commonly used to speed up the computation of

ELBO and train deep neural networks. For GP-DNN-VAR, we use the Adam algorithm

Kingma & Welling (2014), while for HGP-VAR, we utilize the Adaptive subgradient

(AdaGrad) Duchi et al. (2011).
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3.5 Full Sample Estimation

Figure 3.6: Data sets after transformation according to McCracken & Ng (2020). Black-solid
line indicates observed data and vertical grey-band represents the US recession periods.

3.5.1 Capture macroeconomic correlations with Radial Basis Func-

tion kernel.

One of many benefits of having Gaussian process kernel as covariance in feature space

is that we are able to explore the meaning behind the hyper-parameters in kernels.

Obviously different kernel hyper-parameters leads to different meaning. In this sub-

section I present the meaning behind hyper-parameters of Radial basis function (RBF)

kernel, where it is able to capture correlation between input and output in Gaussian

process regression. RBF is in the form:

k(x,x′) = exp

(
−∥ x− x′ ∥2

2l2

)
,

Here l is often called (in machine learning field) lengthscale. Recall that in Gaussian

process regression (with zero mean GP prior) we have f ∼ N (0,K), the correlation

between f(x) and f(x′) is exactly k(x,x′). Therefore with a Gaussian RBF kernel, any

two points have a positive correlation, but it quickly approaches zero as the distance

between them increases. For example when x and x′ are l apart, the correlation is

exp
(
− l2

2l2

)
= exp(−1

2) ≈ 0.61 when l is one. We can exploit an advantage of this by
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running Gaussian process regression using RBF kernel. To potentially see the dynamic

of such correlation especially during the recessions, one can run GPR in a loop by

increasing one observation at a time. Here I plot the mentioned correlation results

from GPR with US GDP as endogenous variable, and 8 lags of GDP itself and other

essential macroeconomic variables, such as inflation, unemployment rate, industrial

production, and federal fund rates. The results are visualized in figs. 3.7 to 3.11.

Like mentioning above, that the correlation presented in those figures are approx-

imation, implying that even the computation suggests that there is zero correlation,

does not mean it is exactly zero. Since RBF kernel recognizes zero correlation so quickly

as the distance between input-output is increased. Therefore the correlation represents

for relative purposes over time.

Let’s start with fig. 3.7, which aims to visualize how the correlation between US

GDP and its lagged values changes with different lag lengths over time. It can be

observed that US GDP lagged by one period does not show any significant correlation

with itself until the beginning of the Covid-19 pandemic, where it spikes to nearly one

towards the end of the pandemic. On the other hand, the second and fourth lagged

values appear to be uncorrelated. Interestingly, the sixth lagged value shows a high

correlation of approximately 80 percent before the US sub-prime crisis. However, this

correlation drops dramatically to almost zero afterwards, and then increases to around

35 percent two years before the start of the pandemic.

Next, we examine the correlations between lagged values of US inflation (lag one to

eight) and US GDP, as shown in fig. 3.8. Prior to the Sub-prime crisis, there is a strong

correlation between lag one, two, and three of the inflation rate and US GDP. However,

these correlations abruptly decrease to almost zero immediately after the Sub-prime

crisis, with the exception of the second lagged inflation rate, which remains around

70 percent. Interestingly, during the middle of the Covid pandemic, these correlations

experience a drastic decrease and approach zero. Notably, lag five and six of the US

inflation rate show no correlation with US GDP, which is quite unprecedented.

Another interesting correlation is between Federal fund rate and US GDP, fig. 3.9.

Surprisingly the pattern captured by lengthscale l from RBF kernel indicates that the
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correlation of Federal fund rate and US GDP almost always drops during the crisis

(Covid-19 pandemic included). For example, lag five of federal fund rate (labelled as

FEDFUNDS-lag-5 in fig. 3.9), where the correlation spike to roughly 90 percent then

dropped to the almost zero right before the Covid-pandemic. The similar patterns can

be seen to lag one, two, six, seven and eight, accordingly.

Astoundingly, GCEC1 or government spending expenditures are almost zero-correlated

to US GDP, see fig. 3.11.

Figure 3.7: Correlation computed from lengthscale l in RBF kernel of Gaussian process regres-
sion i.e. y = f(x)+ϵ, where y is US GDP, x is lagged US GDP. The lengthscale l is transformed

into correlation from exp
(
− l2

2l2

)
where it is visualized in black-solid line. The grey vertical bar

refers to US recessions.
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Figure 3.8: Correlation computed from lengthscale l in RBF kernel of Gaussian process regres-
sion i.e. y = f(x) + ϵ, where y is US GDP, x is lagged US inflation rate. The lengthscale l

is transformed into correlation from exp
(
− l2

2l2

)
where it is visualized in black-solid line. The

grey vertical bar refers to US crisis.

Figure 3.9: Correlation computed from lengthscale l in RBF kernel of Gaussian process regres-
sion i.e. y = f(x) + ϵ, where y is US GDP, x is lagged Federal fund rate. The lengthscale l

is transformed into correlation from exp
(
− l2

2l2

)
where it is visualized in black-solid line. The

grey vertical bar refers to US recessions.
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Figure 3.10: Correlation computed from lengthscale l in RBF kernel of Gaussian process re-
gression i.e. y = f(x) + ϵ, where y is US GDP, x is lagged US industrial production. The

lengthscale l is transformed into correlation from exp
(
− l2

2l2

)
where it is visualized in black-solid

line. The grey vertical bar refers to US recessions.

Figure 3.11: Correlation computed from lengthscale l in RBF kernel of Gaussian process regres-
sion i.e. y = f(x) + ϵ, where y is US GDP, x is lagged US government spending expenditures.

The lengthscale l is transformed into correlation from exp
(
− l2

2l2

)
where it is visualized in black-

solid line. The grey vertical bar refers to US recessions.
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3.5.2 Conditional mean

This sub-section, the posterior mean of prediction mean from both parametric, and non-

parametric VARs conditional on the homoskedastic/heteroscedastic residual variance

and lower triangular A, are investigated and illustrated in figs. 3.12 to 3.15,.,. Will be

shortly called conditional mean hereafter. In the following discussion the red-solid lines

indicate the conditional mean of each model, namely GP-VAR, GP-DNN-VAR, HGP-

VAR, and BVAR-SV, respectively. The black-solid lines represent the actual observed

US GDP (fig. 3.12), unemployment rate (fig. 3.13), inflation (fig. 3.14) and industrial

production (fig. 3.15). The vertical grey fills are US recessions according to National

Bureau of Economic Research (NBER).

We can start by examining the US GDP depicted in fig. 3.12. The conditional

means of GP-VAR, GP-DNN-VAR, and HGP-VAR models exhibit remarkable similar-

ity. However, the BVAR-SV model stands out as noticeably distinct. The dominance of

stochastic volatility in parametric models’ conditional mean is a widely recognized phe-

nomenon in econometrics. This issue has been extensively discussed in the literature,

as exemplified by the work of Korobilis (2021) and other related studies.

Looking at the conditional mean of US unemployment rate in fig. 3.13, we observe

that HGP-VAR stands out among the non-parametric VAR models, particularly during

periods of high turbulence such as the Covid-19 pandemic. The conditional mean

represented by the red solid line in the plot exhibits distinct characteristics, capturing

both the spikes and downturns in the US unemployment rate. In contrast, BVAR-SV

appears to overlook the left tail of the distribution. Following the spike in the first

quarter of 2020, the BVAR-SV conditional mean fails to decline in accordance with the

actual observed UNRATE variable.

Next is US inflation fig. 3.14, it is obvious that the posterior conditional mean of

GP-DNN-VAR performs poorest in terms of accuracy relative to the rest of models.

GP-VAR and HGP-VAR are almost identical. For BVAR-SV, again, it ignores the

decline of inflation during the US sub-prime crisis (2008). Such similar pattern also
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happens in US industrial production, see fig. 3.15.

Figure 3.12: US GDP conditional posterior mean of F (X) from GP-VARs models. The ’con-
ditional’ refers to the conditional posterior mean of non-parametric functions F (X) conditional
to the other parameters, namely, lower triangular A, and residual variances in each VAR equa-
tion.
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Figure 3.13: US unemployment rate conditional posterior mean of F (X) from GP-VARs
models. The ’conditional’ refers to the conditional posterior mean of non-parametric functions
F (X) conditional to the other parameters, namely, lower triangular A, and residual variances
in each VAR equation.
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Figure 3.14: US inflation conditional posterior mean of F (X) from GP-VARs models. The
’conditional’ refers to the conditional posterior mean of non-parametric functions F (X) condi-
tional to the other parameters, namely, lower triangular A, and residual variances in each VAR
equation.
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Figure 3.15: US industrial production conditional posterior mean of F (X) from GP-VARs
models. The ’conditional’ refers to the conditional posterior mean of non-parametric functions
F (X) conditional to the other parameters, namely, lower triangular A, and residual variances
in each VAR equation.
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3.5.3 Volatilities

From all models included in the chapter, only two models are able to relax the ho-

moscedastic variance assumption, namely BVAR-SV, and HGP-VAR. In this sub-

section, we compare heteroscedastic variances of those two different models. We begin

by, first visualize the volatility from both models by not recover full time-varying co-

variance from VAR i.e. Σt = eht/2 for BVAR-SV, see eq. (3.7), and Σt = eF2(Xt) for

HGP-VAR eq. (3.13), which are presented in fig. 3.16 (simply denote volatilities here-

after). Then fig. 3.17 shows the VAR-volatility after recover the full TVP-Covariance,

that is diag(Ht)
1/2 from eqs. (3.7) and (3.13) (denote VAR-volatility hereafter). In the

following discussion, the vertical grey bar indicates the US crisis periods. Black and

red-solid-lines refer to volatility produced by HGP-VAR, and BVAR-SV, respectively.

To see which macroeconomic variable have the highest volatility over time, those figures

share similar y-axis value (y-ticks).

In fig. 3.16, the volatilities of most variables in HGP-VAR are generally higher com-

pared to those in BVAR-SV, except for the US unemployment rate and Federal funds

rate. Notably, the spike in volatility of the unemployment rate variable in BVAR-SV is

approximately three times higher than that in HGP-VAR. The significant difference in

volatilities between the two models can be attributed to their distinct formulations. In

BVAR-SV, the volatilities are conditioned on the VAR coefficients, resulting in higher

volatilities when the conditional mean from the VAR model fails to adequately capture

the dynamics of the dependent variables (indicated by larger squared residuals). On

the other hand, HGP-VAR represents volatility as a non-parametric function over time,

rather than assuming a random walk process as in BVAR-SV. Consequently, the two

models exhibit different volatility patterns, as depicted in fig. 3.16. Despite these dis-

parities, both models are effective in capturing the spikes in volatilities during periods

of US economic crises.

Moving to the VAR-volatilities shown in fig. 3.17, it is evident that the US un-

employment rate and Federal funds rate variables exhibit the most notable VAR-
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volatilities. Following the transition from volatilities to VAR-volatilities, both BVAR-

SV and HGP-VAR exhibit higher residual variances, particularly during the periods of

Covid-19 surges. Prior to the recovery, the volatilities of the US unemployment rate

in BVAR-SV and HGP-VAR were approximately 3.0 and 1.0, respectively (refer to

fig. 3.16 for reference). However, these figures significantly rose to around 20.0 dur-

ing the recovery period before experiencing a sudden drop. On the other hand, the

Federal funds rate volatility in BVAR-SV did not exhibit any spike during this period,

whereas HGP-VAR saw a spike of approximately 10.0. For the remaining variables, the

VAR-volatilities are almost indistinguishable from the volatilities.

Due to the expression of volatility, VAR-volatility generated from HGP-VAR model,

which is input/predictors-dependent, the volatility relies also on VAR predictors (we

use exact similar predictors for both non-parametric functions i.e. F1(X), F2(X), see

eq. (3.13)). This means that different covariates in HGP-VAR results in different shapes

of volatilities/VAR-volatilities. Different covariates here refer to both differences in

numbers of variables and lags in HGP-VAR. To prove the point and illustrate that

configure numbers of lag in HGP-VAR is extremely influential to the shape and value

of VAR-volatility over time. the visualization of VAR-volatilities of eight US macroeco-

nomic variables are plotted in fig. 3.18. The figure presents VAR-volatilities with three

different number of lags, one lag (dash-dotted-line), six lags (dashed-line) and nine lags

(solid line). Those sub-figures share x-axis but not y-axis for a clearer understanding

and make it simple to compare.

Over time, it is evident that the HGP-VAR model with nine lags exhibits higher

VAR-volatilities for all macroeconomic variables. The spikes in VAR-volatility corre-

spond to periods of US crises, and models with additional lags in HGP-VAR show

prolonged periods of elevated VAR-volatilities compared to models with fewer lags.

For instance, consider the VAR-volatility of US GDP during the US subprime crisis

between 2007 and 2009 (sub-figure top left of fig. 3.18). The VAR-volatility of US

GDP in the one-lag HGP-VAR model spiked up to 0.15 and rapidly dropped back

to the steady state. In contrast, the VAR-volatility of US GDP in the six-lag HGP-

VAR model gradually increased to around 0.50, then decreased to the steady state
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(similar to the one-lag HGP-VAR but taking more time). The year before the six-lag

HGP-VAR model reached its steady volatility is approximately 2010. A similar con-

sistent pattern can be observed for the nine-lag HGP-VAR model, where it took even

longer for the model to adjust back. This behavior is attributed to the fact that the

conditional VAR-volatilities are dependent on explanatory variables and follow a non-

parametric functional form. Thus, outliers from lagged responsive variables contribute

to the volatility at each point in time.

Figure 3.16: Volatility of eight variables BVAR-SV (red-solid) and HGP-VAR (black-solid).

Figure 3.17: VAR-Volatilities of eight variables BVAR-SV (red-solid) and HGP-VAR (black-
solid).

While the HGP-VAR models may not accurately capture the true macroeconomic
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volatilities, they demonstrate superior performance in terms of out-of-sample forecast-

ing compared to BVAR-SV and other models, as will be discussed in more detail in

Section section 3.6.

Figure 3.18: Conditional volatilities of HGP-VAR model with different number of lag of ex-
planatory variables. Dash-dotted-line (one lag), dash-line (six lags), and solid-line (nine lags).
Grey-vertical-fills (US recession according to NBER).
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3.6 Forecasting Results

Evaluations of forecasting performance are evaluated for 2002-Q2 through 2019-Q1 (la-

belled: non-pandemic) and 2020-Q1 through 2022-Q1 (labelled: pandemic), separately.

Root mean square error (RMSE), Cumulative ranked probabilistic scores (CRPS), and

Quantile scores (QS) are the measuring matrices. Those results are presented in a

relative number to the benchmark model (BVAR-SV). Since all measuring scores are

negatively-orientated, any score less than one indicates a more accurate forecast than

BVAR-SV. We evaluated the 12-steps-ahead pseudo out-of-sample iterated forecasts for

2002Q2 through 2019-Q1, and 4-steps-ahead forecasts during the Covid-19 pandemic

periods which begins at the first quarter of 2020 (2020-Q1) and ends at first quar-

ter of 2022-Q1. We show the forecast results of crucial US macroeconomic variables,

which are gross domestic product (GDPC1), industrial production (INDPRO), unem-

ployment rate (UNRATE) and inflation rate (CPIAUCSL). Notably, GP-DNN-VAR

forecast scores will sometimes have (·) next to the score itself, which is the standard

deviation of 20 RMSE/CRPS/QS with exact model configurations.5 The reasoning

for this is that GP-DNN-VAR model are approximated by stochastic gradient descent,

which is a gradient-based-optimizers. As a result those learned parameters can be

slightly different each time the model is trained, see sections 3.4.2 and 3.4.3 for more

details on how parameters in each model are learned.

3.6.1 During 2002Q2 through 2019Q1

To begin with forecast results during 2002Q2 - 2019Q1, table 3.7 shows the RMSE

scores of h = 1, 2, ..., 12 of all non-parametric models relative to the benchmark. The

models include GP-VAR, HGP-VAR, and GP-DNN-VAR. The bold number denotes

the lowest relative scores at each forecast horizon.

According to the results presented in table 3.7, it is evident that the GP-VAR

5This is due to the number of deep neural network i.e. number of notes and weights and bias are
large, resulting in slightly different in each training. If none is shown, it indicates that those deviations
are very low that it will be omitted for clarity.
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model outperforms the other models in terms of point forecasting for three out of the

four variables of interest. For example, if we look at the fourth column of table 3.7,

we can see that the relative RMSE of the GP-VAR model is the lowest across all

forecast horizons. A similar pattern is observed in the point forecasts of industrial

production and unemployment rate. It is important to note that while some of the

RMSE values for GP-VAR are only slightly lower than the other models, there are

cases where the difference is quite substantial. For instance, when forecasting the

first horizon of industrial production, the GP-VAR model outperforms the HGP-VAR

model by approximately double. This trend is also observed in the predictions of the

unemployment rate, where the HGP-VAR model performs worse than the GP-VAR

model.

When it comes to predicting the US inflation rate, it is noteworthy that the HGP-

VAR model generally outperforms both the GP-VAR and GP-DNN-VAR models. In

terms of point forecasting, both the GP-VAR and HGP-VAR models exhibit better

performance compared to the BVAR-SV model, particularly for the first three-steps-

ahead forecasts. However, it is important to highlight that the majority of the RMSE

values from the GP-DNN-VAR model are worse than those of the benchmark BVAR-SV

model.

The advantage of incorporating heteroscedastic variance in Gaussian process VAR

models becomes particularly pronounced when evaluating the accuracy of forecast den-

sities, as shown in columns 6 to 8 of table 3.7. In this regard, the HGP-VAR model

stands out as it performs exceptionally well compared to the other models in forecast-

ing GDPC1 and UNRATE. Specifically, for GDPC1, HGP-VAR achieves the lowest

relative Continuous Ranked Probability Score (CRPS) compared to the other models

for forecast horizons h = 2, ..., 12, with the exception of h = 1. GP-VAR, on the other

hand, slightly outperforms HGP-VAR in this regard.

Moving to forecasting US inflation rate, it is evident that BVAR-SV model performs

quite well in comparison to GP-VAR and GP-DNN-VAR. Despite that HGP-VAR

performs either equally to the benchmark or always better for all forecasting horizons.

Perhaps this is an another solid empirical result suggesting that heteroscedastic variance
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is an essential assumption in order to forecast inflation well.6

Overall the final verdicts regarding to forecasting four focused US macroeconomic

variables during the non-pandemic periods. Firstly GP-VAR is skilled in terms of point

forecasts especially the very first forecasting horizon. When consider forecast densities,

however, the rest of models are dominated by HGP-VAR, forecasting US inflation rate

in particular. Secondly GP-DNN-VAR (centered-GP-VAR with Deep neural networks)

performs worse to a very simple GP-VAR model. Unfortunately we are unable to know

which predictors that actually cause the point forecast to be over or under-estimated

since it is a deep neural network. This is often considered to be the weakness of all deep

generative models where we are not able to see what happen inside each hidden-state

in the model. That is why it is called Deep-.

6From literature point of view, the unbeatable model to perform best is unobserved component
stochastic volatility (UC-SV) which also happens to have heteroscedastic variance and time-varying
trend.
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RMSE CRPS
HGP-VAR GP-VAR GP-DNN-VAR HGP-VAR GP-VAR GP-DNN-VAR

GDPC1 h = 1 0.55 0.38 0.78 0.37 0.35 0.78
h = 2 0.80 0.77 1.21 0.65 0.70 1.16
h = 3 0.98 0.82 1.46 0.67 0.69 1.40
h = 4 1.01 0.86 1.45 0.67 0.67 1.27
h = 5 1.16 1.05 1.72 0.71 0.73 1.26
h = 6 1.10 0.99 1.56 0.68 0.69 1.13
h = 7 1.15 1.09 1.64 0.66 0.67 1.08
h = 8 1.30 0.97 1.28 0.61 0.66 0.92
h = 9 1.24 1.12 1.38 0.62 0.65 0.87
h = 10 1.18 1.06 1.40 0.59 0.65 0.90
h = 11 1.16 1.06 1.22 0.58 0.61 0.78
h = 12 1.18 1.05 1.24 0.57 0.59 0.76

INDPRO h = 1 0.96 0.43 0.63 0.36 0.31 0.54
h = 2 1.03 1.03 1.32 1.00 1.09 1.53
h = 3 1.05 0.73 0.95 0.69 0.75 1.08
h = 4 1.11 1.03 1.41 0.97 1.04 1.54
h = 5 1.06 1.05 1.47 0.95 1.07 1.51
h = 6 1.11 1.02 1.31 0.91 1.02 1.33
h = 7 1.08 1.08 1.30 0.91 1.04 1.28
h = 8 1.11 1.08 1.26 0.88 1.05 1.18
h = 9 1.08 1.08 1.13 0.86 1.01 1.00
h = 10 1.06 1.08 1.08 0.85 1.01 0.96
h = 11 1.06 1.05 1.08 0.82 0.93 0.95
h = 12 1.06 1.05 1.06 0.81 0.94 0.91

UNRATE h = 1 0.51 0.25 0.34 (.015) 0.24 0.19 0.26 (.012)
h = 2 1.05 0.50 0.68 (.008) 0.44 0.41 0.65 (.009)
h = 3 0.75 0.57 0.70 (.008) 0.46 0.47 0.61 (.010)
h = 4 1.08 0.91 1.24 (.016) 0.54 0.61 0.86 (.018)
h = 5 1.08 0.96 1.22 (.019) 0.54 0.61 0.76 (.017)
h = 6 1.05 0.97 1.38 (.017) 0.51 0.58 0.79 (.014)
h = 7 1.07 0.97 1.35 (.012) 0.50 0.56 0.74 (.014)
h = 8 1.06 1.00 1.21 (.015) 0.47 0.54 0.61 (.007)
h = 9 1.06 1.01 1.02 (.018) 0.45 0.51 0.50 (.010)
h = 10 1.06 1.05 1.15 (.027) 0.44 0.52 0.53 (.015)
h = 11 1.05 1.04 1.00 (.013) 0.42 0.49 0.45 (.007)
h = 12 1.05 1.03 1.02 (.027) 0.40 0.48 0.45 (.017)

CPIAUCSL h = 1 0.44 0.89 1.23 0.87 0.85 1.36
h = 2 0.75 0.99 1.41 1.00 1.12 1.61
h = 3 1.02 0.98 1.36 1.00 1.13 1.57
h = 4 0.65 0.99 1.10 0.99 1.12 1.28
h = 5 0.72 1.03 1.31 1.00 1.19 1.49
h = 6 0.98 1.03 1.33 0.99 1.19 1.38
h = 7 0.90 1.03 1.13 0.97 1.17 1.22
h = 8 1.00 1.04 1.22 0.96 1.16 1.32
h = 9 1.00 1.04 1.23 0.95 1.21 1.27
h = 10 1.01 1.04 1.14 0.94 1.21 1.20
h = 11 1.00 1.03 1.11 0.93 1.17 1.20
h = 12 1.00 1.02 1.06 0.93 1.14 1.10

Table 3.7: RMSE of GP-VAR, HGP-VAR, GP-DNN-VAR models relative to BVAR-SV for
h=1,...,h=12, one to twelve-steps-ahead forecasts during non-pandemic periods.
Note: The number in bracket refers to the standard deviation of 20 RMSE from exact sim-

ilar model configurations. For example RMSEmean =
∑20

i=1
RMSE1,...,RMSE20

20 , RMSEstd =√∑20
i=1

(
RMSEi−RMSE2

mean
)

20 where RMSEmean,RMSEstd is RMSE mean and standard de-

viation, respectively.
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Table 3.8: Quantile Scores during non-pandemic periods (selected variables).
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3.6.2 During pandemic 2020Q1 through 2022Q1

Recently, multiple literatures have suggested that Vector Autoregressive Regression in

a non-parametric form is able to handle outliers exceptionally well in contrast to para-

metric model, Huber et al. (2020), Clark et al. (2023, 2022) . In this sub-section we

provide some empirical results regarding of how accurate Gaussian process VAR fore-

casts essential US macroeconomic variables relative to a BVAR-SV model. Additionally

to investigate if GP-DNN-VAR or relaxing the homoscedastic to Heteroscedastic-GP-

VAR (HGP-VAR) actually improves the out-of-sample forecasts both in point and den-

sity forecasts when macroeconomic variables are experiencing significant fluctuations

or erratic behavior?

The comparison between non-parametric models and the benchmark is in a similar

fashion to the previous sub-section, the point and forecast densities are evaluated with

RMSE, CRPS and Quantile scores, respectively. We first report the point forecasts

during the high turbulence of macroeconomic variables in table 3.9. The numbers in

each column report the forecast results of macroeconomic variables. The bold number

refers to the lowest relative RMSE score to BVAR-SV model. To aid the interpretation,

see one-step-ahead prediction of US unemployment rate for example, the relative RMSE

of HGP-VAR and GP-VAR to the benchmark is 0.89, 0.92, implying that the forecasts

produced by both model is 11 and 8 percent better than BVAR-SV, respectively. From

here if we look at the h = 2, 3 and 4, it is obvious that both homoscedastic and

heteroscedastic GP-VAR models are preferably skilled at longer forecasting horizon

exercises. Such consistent pattern can be seen for other variables as well. For example

at h = 4, relative RMSE of HGP-VAR and GP-VAR are 0.72 in contrast to h = 1

which are 0.96, 0.95. Such improvement is up to about 20 percent.

In contrast to GP-VAR, the forecasting results of GP-DNN-VAR are less satisfactory

for all variables and time horizons. It should also be highlighted that the performance

of GP-DNN-VAR is characterized by high variability and inconsistency.

To summarize, we find that Homoscedastic GP-VAR outperforms Heteroscedastic-

124



Chapter 3. Forecasting macroeconomic variables with Gaussian process VAR.

GP-VAR in terms of point forecasts.

In terms of forecast densities, evaluated with CRPS. I found all four US variables

with at almost every forecasting horizons, HGP-VAR dominates the benchmark and

the rest of the models. Starting with gross domestic product, HGP-VAR outperforms

BVAR-SV at h = 1, 2, 4 (23, 22, 26 percent respectively) but small margin at h = 3

(only 1 percent). With homoscedastic-GP-VAR, there were massive increase at h = 3

(comparatively worse than a benchmark upto 25 percent). Despite that GP-VAR do

quite well at h = 2 and h = 4. GP-DNN-VAR do worse relative to all models, at

h = 3 in particular. Also there is a massive spike in relative-CRPS (4.26 according to

table 3.9). For industrial production, there is a significant difference between BVAR-

SV and HGP-VAR (30 percent) at h = 1, and small margin (11 percent) at h = 4.

Surprisingly GP-DNN-VAR forecasts industrial production well at h = 3. Among non-

parametric models, it is the only model that actually beats the benchmark in terms

of forecast density. Lastly, in the case of unemployment rate and inflation rate, HGP-

VAR stands out as the top-performing non-parametric model. Although this evaluation

focuses on the overall accuracy of the forecast densities during the Covid-19 periods,

a more detailed assessment using Quantile scores to specifically examine accuracy of

different regions of the predictive distribution will be discussed in the following section.

This allows for a more nuanced evaluation of the model’s performance across the entire

distribution of possible outcomes.

Table 3.10 presents the relative QS of various non-parametric models compared to

a benchmark for four-steps-ahead forecasting exercises.

In the case of US GDP forecasts (row 4-6) HGP-VAR consistently outperforms

the benchmark BVAR-SV as well as GP-VAR and GP-DNN-VAR models in terms

of relative QS in both tails regions, center region (for h = 1, 2, 4), right region (for

h = 1, 2), and left region (for all h). The gains in relative QS can be up to 39%

over BVAR-SV, 41% over GP-VAR, and 58% over GP-DNN-VAR in both tails regions.

This indicates that incorporating heteroscedasticity in the model helps improve the

predictive density, especially during turbulent periods.

In the case of industrial production, HGP-VAR is the best-performing non-parametric
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model in most cases, except for the h = 3 forecast horizon where GP-DNN-VAR per-

forms better. At h = 1, HGP-VAR outperforms all models, especially BVAR-SV, in the

both-tails (51%), centre (19%), right (28%) , and left regions (36%) of the predictive

distribution. It totally beats constant variance GP-VAR for across all horizons and all

regions. These results are particularly important during turbulent periods since they

show how well the model adjusts the predictive densities toward extreme values.

When considering the unemployment rate variable, there is a notable increase in the

Quantile scores (QS) for all types of GP-VAR models at the forecast horizon of h = 3,

with the benchmark model performing the best. However, it is important to highlight

that among all the GP-VARmodels, HGP-VAR remains the top performer. For forecast

horizons of h = 1, 2, 4, HGP-VAR outperforms the other models significantly. This

suggests that HGP-VAR has a stronger ability to capture the uncertainty and variability

in the unemployment rate forecasts compared to the other non-parametric models.

When examining the forecasting performance for US inflation rate, it appears that

GP-VAR demonstrates greater skill in predicting inflation compared to linear models,

particularly in the tails region (31%), the right region (35%), and the left region (-2%)

at the forecast horizon of h = 1. However, when compared to HGP-VAR, GP-VAR

still struggles in the left region of the predictive density, where HGP-VAR outperforms

it for h = 2, 3, 4. In terms of other regions and for all forecast horizons, GP-VAR is

not significantly different from time-varying-variance-GP-VAR. At h = 3, 4, HGP-VAR

shows a notably better performance than GP-VAR and GP-DNN-VAR, although not

to the extent of surpassing the benchmark model. Overall, the findings suggest that

BVAR-SV remains a reliable model for accurately forecasting US inflation, particularly

in the left region of the predictive distributions.

For h = 1, 2, 3 GP-VAR forecasts the best for GDP tails forecast (both left and

right tails, labelled: QS (tails)). It can be also seen that HGP-VAR forecast densities

are as superior as GP-VAR for all h = 1, 2, 3, 4 in contrast to BVAR-SV.

For non-weighted QS (QS (uniform)), all three non-parametric models are exactly

to QS-tails. For center region of predictive density, both GP-VAR and HGP-VAR

outperforms the rest.
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Moving to the right region of density (QS right), we found that allowing the variance

in Gaussian process VAR is able to deliver better forecast densities. For example, QS-

right of HGP-VAR at three-steps-ahead prediction is 0.2 which is doubly lower than

GP-VAR at 0.4, as well as, approximately 80 percent relative better than BVAR-SV.

If looking at other QS for the rest of variables, it is apparent that either HGP-VAR

performs better than the rest of models i.e. BVAR-SV, GP-DNN-VAR, GP-VAR or

only slightly beaten. Such identical patterns can be observed for almost all variables.

In addition to mentioned results, I also provide the forecast performance over the

number of lags and variables in GP-VARs in section 3.8.2. The forecast performances

are evaluated during the pandemic periods.

Next section visualizes how predictive densities of each model look like during the

pandemic time.

RMSE CRPS
HGP-VAR GP-VAR GP-DNN-VAR HGP-VAR GP-VAR GP-DNN-VAR

GDPC1 h = 1 0.96 0.95 1.06 0.77 1.04 1.24
h = 2 0.86 0.86 0.92 0.78 0.83 0.91
h = 3 1.42 1.53 4.89 0.99 1.25 4.26
h = 4 0.72 0.72 2.07 0.74 0.86 2.12

INDPRO h = 1 0.94 0.92 1.51 0.70 0.97 1.81
h = 2 0.99 0.99 0.91 0.99 1.05 1.12
h = 3 1.56 1.56 1.40 1.15 1.11 0.98
h = 4 0.93 0.94 5.88 0.89 0.84 4.79

UNRATE h = 1 0.97 0.96 1.19 0.85 1.01 1.40
h = 2 0.86 0.87 1.30 0.83 1.02 1.69
h = 3 1.30 1.40 4.76 1.41 2.04 6.74
h = 4 0.81 0.88 4.11 0.81 1.35 4.35

CPIAUCSL h = 1 0.92 0.89 1.95 0.87 0.88 2.23
h = 2 1.02 1.01 1.92 1.05 1.09 2.27
h = 3 1.05 1.05 3.01 1.06 1.13 3.58
h = 4 0.88 0.91 1.74 0.86 0.92 1.73

Table 3.9: RMSE of GP-VAR, HGP-VAR, GP-DNN-VAR models relative to BVAR-SV for
h=1,...,h=4 during pandemic periods (2020Q1 through 2022Q1).

3.7 Conclusion

The use of non-parametric VAR models, specifically GP-VARs, has gained significant

attention in the field of economics due to their superior out-of-sample forecasting per-

formance, particularly in turbulent macroeconomic data, compared to the traditional

BVAR-SV models. In this study, we have examined more advanced GP-VAR mod-
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Table 3.10: Quantile scores of GP-VAR, HGP-VAR, GP-DNN-VAR models relative to BVAR-
SV for h=1,...,h=4 during pandemic periods (2020Q1 through 2022Q1).

els, namely GP-DNN-VAR and HGP-VAR. The former utilizes a feed-forward neural

network to parameterize the mean in GP prior function, while the latter introduces
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a dynamic covariance structure to the VAR model using another latent-GP function.

In addition, HGP-VAR has a unique feature that utilizes inputs/covariates to perform

out-of-sample forecasts, where the latest observed data contributes to the forecasts.

Our findings show that during non-pandemic periods, HGP-VARs outperform BVAR-

SV models by a significant margin, both in terms of point and density forecasts. More-

over, the HGP-VAR model consistently outperforms other models in specific regions

of the predictive distributions. During the Covid-19 pandemic, the forecasting gains

are less pronounced than non-pandemic periods, but the HGP-VAR model remains the

best-performing model in both point and density forecasts.

For future research, there are several ways to manipulate the HGP-VAR model. One

possible approach is to alter the covariate of the second GP-function that parameterizes

the HGP-VAR covariance. The behavior of the HGP-VAR covariance over time can

be significantly influenced by the covariate/inputs of the second GP-function, which

shapes the posterior predictive density band and the duration of its response to large

changes in covariates. Therefore, changing the covariate for the second GP-function

has the potential to result in further forecast gains.
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3.8 Appendix

3.8.1 Data

Fred-Acronyms Title Units before transformation Transform-code

GDPC1 Real Gross Domestic Product Billions of Chained 2012 Dollars 5

FPI Fixed Private Investment Billions of Dollars 5

GCEC1 Real Government Consumption Expenditures and Gross Investment Billions of Chained 2012 Dollars 5

INDPRO Industrial Production: Total Index Index 2017=100 5

UNRATE Unemployment Rate Percent 2

ICSA Initial Claims Number 5

CPIAUCSL Consumer Price Index for All Urban Consumers: All Items in U.S. City Average Index 1982-1984=100 6

FEDFUNDS Federal Funds Effective Rate percent 2

Table 3.11: US macroeconomic variables: Source: alfred module, a package from python. The
transformation code is according to McCracken & Ng (2020).

3.8.2 Additional Results

Forecast performance over number of lags and variables in GP-VAR.

The goal of this section is to shed light to the question, ”Does increasing the number

of lags and variables in Gaussian process VAR improve forecast performance under

exceptionally high turbulence of four focused US macroeconomic variables?” Based on

the forecast performance in earlier sections, see section 3.6.2, GP-DNN-VAR appears

to perform the poorest among the non-parametric models, and in comparison to the

benchmark (BVAR-SV). As a result, I only test GP-VAR and HGP-VAR models here.

In the following discussion, the figures have two lines, red and black-solid line where

each visualizes RMSE, CRPS, plotted against the number of steadily increasing lags

and variables in non-parametric-VARs. It is worth noting that for black-solid line which

refers to consistently increasing number of variables in VAR all have 6 lags.

To begin with the GP-VAR model where the RMSE results are plotted in fig. 3.19

for h = 1, 2, and fig. 3.20 for h = 3, 4. Those four figures empirically suggest that

increasing number of variables in GP-VAR does not improve the point forecast of all

four US essential macroeconomic variables. It actually is worse in most cases. It is also

obvious that expanding the number of lags in GP-VAR almost has no effects in terms
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of point forecast performance.

The accuracy of forecast density, on the other hand, are plotted in fig. 3.21, and

fig. 3.22 for h = 1, 2, 3, 4. For h = 1 forecasting of US GDP, industrial production

and unemployment rate, increasing the number of variables makes the model worse.

Despite that we found that the CRPS of US inflation at forecasting horizon h = 1 is

lower as the number of variables are added in GP-VAR. CRPS keeps decreasing until

GP-VAR has 48 variables then CRPS bounce back again. It can also be seen that those

improvement seems to be insignificant.

Overall in terms of point forecasts, we found that the best number of variables and

lags in GP-VAR is 8 variables with 6 lags for one-step, three-steps, and four-steps-

ahead forecast of US GDP, industrial production, unemployment rate and inflation.

For h = 2, it is slightly different for inflation, where the best number of variables is

still 8 but the number of lag is 28. The rest of US variables performances remains

unchanged.

For predictive density which is evaluated with CRPS, we found that the best number

of variables in forecasting GDPC1, INDPRO and UNRATE is 8 variables with (again)

six lags. For US inflation, however, adding more lags in GP-VAR actually improves

the accuracy of forecast density. For h = 1 best number of lag to forecast US inflation

is 18, whereas h = 2, 3, 4 is 58.

Moving to HGP-VAR, the RMSE and CRPS with different model configurations

between number of lags and variables in VAR are visualized in figs. 3.23 and 3.24

,figs. 3.25 and 3.26. For one-step-ahead forecast exercise h = 1, HGP-VAR performs

slightly better in terms of point forecasts as the number of variables in VAR increases,

fig. 3.25. Such results can be seen for all four variables. Although the shape of the line

in HGP-VAR looks upward and downward and seems to be varied with number of lags

and variables in VARs but the y-axis number empirically proves that the difference

between point-forecast performances over numbers of lags and variables in HGP-VARs

is unrecognised.

When considering forecast density accuracy over lags and variables configurations

in HGP-VAR at h = 1, it is obvious that CRPS of GDPC1 both lines has positive
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slope thus making it is worsen (roughly -10%) as those lags and variables are increased.

The similar consequences also happen with INDPRO and UNRATE variables. US

inflation, however, CRPS is massively improved (up to approximately 38%). The CRPS

is at its minimum at 18 variables with 6 lags. For h = 2, 3, 4, there is not enough

conclusive results suggesting the difference of forecast density performance over the

model configurations in HGP-VAR model.

Figure 3.19: RMSE of four focused macroeconomic variables during the pandemic, performed
by GP-VAR model at h = 1, h = 2 forecasting horizons, with consistently increasing number of
lags and number of variables in GP-VAR. Red-line denotes RMSE of GP-VAR with increasing
5 GP-VAR lags at a time until 36 lags. Whereas black-line refers to RMSE of GP-VAR with
increasing number of variables (all use 6 lags). Beginning at 8 variables, and steadily add 10
variables at a time until it reaches 68 variables GP-VAR.
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Figure 3.20: RMSE of four focused macroeconomic variables during the pandemic, performed
by GP-VAR model at h = 3, h = 4 forecasting horizons, with consistently increasing number of
lags and number of variables in GP-VAR. Red-line denotes RMSE of GP-VAR with increasing
number of lags 5 at a time until 36 lags. Whereas black-line refers to RMSE of GP-VAR with
increasing number of variables (all use 6 lags). Beginning at 8 variables, and steadily increase
10 variables at a time until it reaches 68 variables GP-VAR.
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Figure 3.21: CRPS of four focused macroeconomic variables during the pandemic, performed
by GP-VAR model at h = 1, h = 2 forecasting horizons, with consistently increasing number of
lags and number of variables in GP-VAR. Red-line denotes CRPS of GP-VAR with increasing
number of lags 5 at a time until 36 lags. Whereas black-line refers to CRPS of GP-VAR with
increasing number of variables (all use 6 lags). Beginning at 8 variables, and steadily increase
10 variables at a time until it reaches 68 variables GP-VAR.
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Figure 3.22: CRPS of four focused macroeconomic variables during the pandemic, performed
by GP-VAR model at h = 3, h = 4 forecasting horizons, with consistently increasing number of
lags and number of variables in GP-VAR. Red-line denotes CRPS of GP-VAR with increasing
number of lags 5 at a time until 36 lags. Whereas black-line refers to CRPS of GP-VAR with
increasing number of variables (all use 6 lags). Beginning at 8 variables, and steadily increase
10 variables at each trial until it reaches 68 variables GP-VAR.
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Figure 3.23: RMSE of four focused macroeconomic variables during the pandemic, performed
by HGP-VAR model at h = 1, h = 2 forecasting horizons, with consistently increasing number
of lags and number of variables in HGP-VAR. Red-line denotes RMSE of HGP-VAR with
increasing number of lags 5 at a time until 36 lags. Whereas black-line refers to RMSE of
HGP-VAR with increasing number of variables (all use 6 lags). Beginning at 8 variables, and
steadily increase 10 variables at each trial until it reaches 68 variables HGP-VAR.
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Figure 3.24: RMSE of four focused macroeconomic variables during the pandemic, performed
by HGP-VAR model at h = 3, h = 4 forecasting horizons, with consistently increasing number
of lags and number of variables in HGP-VAR. Red-line denotes RMSE of HGP-VAR with
increasing number of lags 5 at a time until 36 lags. Whereas black-line refers to RMSE of
HGP-VAR with increasing number of variables (all use 6 lags). Beginning at 8 variables, and
steadily increase 10 variables at a time until it reaches 68 variables HGP-VAR.
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Figure 3.25: CRPS of four focused macroeconomic variables during the pandemic, performed
by HGP-VAR model at h = 1, h = 2 forecasting horizons, with consistently increasing number
of lags and number of variables in HGP-VAR. Red-line denotes CRPS of HGP-VAR with
increasing number of lags 5 at a time until 36 lags. Whereas black-line refers to CRPS of
HGP-VAR with increasing number of variables (all use 6 lags). Beginning at 8 variables, and
steadily increase 10 variables at each trial until it reaches 68 variables HGP-VAR.

138



Chapter 3. Forecasting macroeconomic variables with Gaussian process VAR.

Figure 3.26: CRPS of four focused macroeconomic variables during the pandemic, performed
by HGP-VAR model at h = 3, h = 4 forecasting horizons, with consistently increasing number
of lags and number of variables in HGP-VAR. Red-line denotes CRPS of HGP-VAR with
increasing number of lags 5 at a time until 36 lags. Whereas black-line refers to CRPS of
HGP-VAR with increasing number of variables (all use 6 lags). Beginning at 8 variables, and
steadily increase 10 variables at each trial until it reaches 68 variables HGP-VAR.

Forecast densities
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Figure 3.27: Forecast density of one-step-ahead forecast of 2020Q2.

Figure 3.28: Forecast density (one-step-ahead) of 2020Q3.

Figure 3.29: Forecast density (one-step-ahead) of 2020Q4.

Figure 3.30: Forecast density (one-step-ahead) of 2021Q1.
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Conclusions

This thesis contributes to the literature on forecasting US core macroeconomic variables

by deriving the variational Bayes for reduced-form VARs and Mixed Frequency VARs,

discussing the advantages of several advancements in non-parametric VAR models.

Firstly, the thesis develops a variational Bayes (Vb) approach for system-wide VARs

with Horseshoe shrinkage priors. This methodology improves the estimation and infer-

ence of reduced-form VAR models by incorporating Bayesian techniques and efficient

variable selection while enjoy the very cheap computational costs. Secondly, the thesis

extends the Vb approach to Mixed-Frequency VARs (MF-VARs), which are essential

tools for economists to perform real-time out-of-sample forecasts. This contribution

enhances the accuracy and timeliness of macroeconomic forecasts by effectively com-

bining high-frequency and low-frequency data. Again the estimation is carried through

the variational Bayes. Finally, the thesis explores non-parametric VAR models, specif-

ically Gaussian process VARs (GP-VARs). This approach departs from several as-

sumptions commonly made in GP-VAR literature. Firstly, it relaxes the assumption

of homoscedastic variance by incorporating an additional non-parametric function, al-

lowing for time-varying error covariance. Secondly, it no longer assumes zero mean

function for the GP prior, providing greater flexibility in capturing complex patterns

in the data.

In Chapter 1 of the thesis, a contribution is made to the econometric literature

by developing a variational Bayes (Vb) approach for system-wide VARs, specifically
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reduced-form VARs, with a Horseshoe shrinkage prior. Previous literature on varia-

tional Bayes typically employed the VB approach on a single equation at a time, known

as the Cholesky-transformed VAR. However, it was found that this approach led to in-

adequate estimation of the VAR covariance and inconsistent results. This chapter

addresses this limitation by proposing a novel Vb approach that improves the estima-

tion of the VAR covariance. Additionally, the chapter explores the issue of the prior

specification for the lower triangular elements in the square matrix A, which represents

the contemporaneous relations between the responsive variables in the VAR. By using a

Horseshoe shrinkage prior, the proposed Vb approach addresses the challenge of select-

ing appropriate prior distributions for the VAR covariance. Overall, the contribution

of Chapter 1 lies in developing an improved Vb approach for estimating system-wide

VARs, enhancing the accuracy and consistency of the estimated VAR covariance.

Chapter 2 of the thesis presents the derivation of the variational Bayes method for

the Mixed-Frequency VAR (MF-VAR) model. This method, called ”variational Bayes-

expectation maximization,” utilizes a two-step iterative process involving Vb-E-step

and Vb-M-step to maximize the evidence lower bound. The Vb-E-step updates the

state variables, while the Vb-M-step updates the variational parameters. This process

is performed in each iteration of the Coordinate descent optimization algorithm. The

thesis provides a proof that the evidence lower bound is tight, ensuring that the vari-

ational parameters and state variables generated from the model converge accurately.

The model itself is a Gaussian linear state-space model.

In Chapter 3 of the thesis, the focus is on exploring the advantages of non-parametric

Gaussian process VARs (GP-VARs) compared to traditional approaches in economic

literature. The GP-VARs proposed in the thesis relax multiple assumptions commonly

made in economic models. Firstly, the mean function of the Gaussian process prior

for non-parametric functions is manipulated by parameterizing it with a deep neural

network. This allows for more flexibility and captures complex patterns in the data,

while almost of economic literature assume it to be zeros. Secondly, the thesis in-

troduces a second non-parametric function to model the heteroscedastic covariance in

GP-VARs. This means that the VAR covariance becomes time-varying, which is impor-
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tant from an economic modeling perspective. In contrast to the common assumption

of residual variances being a random walk, the heteroscedastic GP-VARs allow for a

non-parametric and input/predictor-dependent volatility. This introduces nonlinear-

ity and the ability to manipulate VAR predictors to potentially improve out-of-sample

forecasts. The empirical application of the GP-VARs to US macroeconomic variables

in the thesis demonstrates that the GP-VARs with time-varying volatility outperform

other included models. This highlights the advantage of incorporating non-parametric

modeling and time-varying volatility in forecasting macroeconomic variables.
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