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Abstract

Constantly increasing experimental possibilities with strongly correlated systems
of ultracold atoms in optical lattices and trapped ions make them one of the most
promising candidates for quantum simulation and quantum computation in the
near future, and open new opportunities for study many-body physics. Out-of-
equilibrium properties of such complex systems present truly fascinating and rich
physics, which is yet to be fully understood.
This thesis studies many-body dynamics of quantum systems with long-range
interactions and addresses a few distinct issues. The first one is related to a
growing interest in the use of ultracold atoms in optical lattices to simulate con-
densed matter systems, in particular to understand their magnetic properties. In
our project on tilted optical lattices we map the dynamics of bosonic particles
with resonantly enhanced long-range tunnelings onto a spin chain with pecu-
liar interaction terms. We study the novel properties of this system in and out
of equilibrium. The second main topic is the dynamical growth of entanglement
and spread of correlations between system partitions in quench experiments. Our
investigation is based on current experiments with trapped ions, where the range
of interactions can be tuned dynamically from almost neighboring to all-to-all.
We analyze the role of this interaction range in non-equilibrium dynamics. The
third topic we address is a new method of quantum state estimation, certified
Matrix Product State (MPS) tomography, which has potential applications in
regimes unreachable by full quantum state tomography.
The investigation of quantum many-body systems often goes beyond analytically
solvable models; that is where numerical simulations become vital. The majority
of results in this thesis were obtained via the Density Matrix Renormalization
Group (DMRG) methods in the context of the MPS and Matrix Product Operator
(MPO) formalism. Further developing and optimizing these methods made it
possible to obtain eigenstates and thermal states as well as to calculate the time-
dependent dynamics in quenches for experimentally relevant regimes.
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1. Introduction
During the last few decades a great interest has developed towards strongly cor-
related quantum many-body systems in the context of atomic, molecular, and
optical (AMO) physics. The main reason for the success of these platforms for
quantum simulations arises from substantial experimental advances allowing us
to control almost every parameter of the system and practically isolate it from the
environment, particularly in systems of ultracold neutral and ionized atoms [1,2].
Consequently it provides an opportunity to dig down to the physics of the under-
lying system dynamics with a minimal number of theoretical assumptions. The
applied interest that we have in investigating these systems is to achieve in exper-
iments regimes where a certified quantum simulation or quantum computation
answers a practical question inaccessible by other means, for instance finding a
new configuration of atoms leading to high-Tc superconductivity [3] or the prime
factorization problem for large numbers via Shor’s algorithm [4].

Cold Atoms

The background of this field is based on the experimental realization of the Bose-
Einstein Condensate (BEC) [5–8], which was first discovered for liquefied 4He,
with dilute cold gases of 87Rb [9], 7Li [10], and 23Na [11]. Shortly after that, a
whole list of successful experiments was performed with other atomic species [8].
In contrast to liquefied helium (with the typical density ∼ 1022 cm−3 and con-
densation temperature of ∼ 2.17 K), dilute gases reach densities of only ∼
1013 − 1015 cm−3 with around 105 atoms in the cloud. As a result they form
the BEC state at much lower temperatures, < 10−5 K. The systematic improve-
ment of experimental techniques such as laser cooling [12] and evaporative cool-
ing [13] has allowed us to obtain BEC clouds of dilute gas with significantly lower
temperatures, below one nanokelvin [14].
The diluteness of gases ensures that the interatomic interactions have a weak
effect on the condensation mechanism. As a result, a much larger fraction of
the matter can be in the BEC state, comparing to strongly interacting liquefied
helium. Another feature of the systems worth noting is that experiments with
cold atomic gases have a large degree of controllability by means of external fields
and electromagnetic radiation. For instance, in the limit of low temperatures
the interatomic interactions in dilute gases can be well explained by low-energy
scattering theory with an effective interaction potential depending on a single
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Chapter 1 Introduction

parameter — the scattering length. By means of magnetic and optical Feshbach
resonances [15–18] it is possible to continuously tune the scattering length in
a wide range with high precision. It is possible within the same experimental
setup, with the same atomic species, to investigate the dynamics of repulsive
and attractive interaction potentials between atoms by simply adjusting their
Feshbach resonances [17, 19, 20]. It is also possible to couple atoms in molecules
and study the BEC of molecular gases [21, 22].
Furthermore, a lot of progress has been made with dilute gases of fermionic
atomic species, which at low temperatures form a Degenerate Fermi Gas (DFG).
In the pioneering experiments with fermionic isotopes 40K [23,24] and 6Li [25,26],
atomic gases were cooled below the Fermi temperature. Elastic scattering of
fermionic atoms behaves differently from bosonic species, due to the antisymmetry
of the wave function the scattering cross section vanishes for a single species
fermions. The evaporative cooling relies on elastic scattering being more efficient
than inelastic, as a result cooling of fermions requires a new approach. As a
solution evaporative cooling was performed with either two species of fermions
or via addition of bosonic species; the latter method is referred as sympathetic
cooling. The efficiency of cooling is also statistic dependent and decreases as
fermions become degenerate [8]. It was shown experimentally [23, 27–30] that a
two-component Fermi gas can be converted to a molecular Bose gas by adiabatic
passage through a Feshbach resonance with typical densities reaching ∼ 1013 −
1014 cm−3. Due to the use of multiple atomic species and the Fermi pressure of the
gas, typical densities reached with fermions are lower than only with bosons. Then
these bosonic molecules can be condensed in the BEC state as well [21,22,29].
To summarize, the experimental progress in laser and evaporative cooling tech-
niques lets us obtain systems of extremely sensitive but yet highly controlled
weakly interacting BECs of atomic and molecular gases, as well as degener-
ate Fermi gases, which have been realized with a large variety of bosonic and
fermionic species. In what follows we will see how on the basis of the BEC with
dilute gases one can engineer highly correlated quantum systems, which have
promising applications for quantum simulations and quantum computations.

Atoms in Optical Lattices

Following the realization of a stable BEC of dilute gases, the idea of its manip-
ulation via electromagnetic radiation was further developed over the next years,
with a practical goal being the use of cold atom systems as a toolbox for reaching
strongly correlated regimes [31]. A major experimental development happened
in 2002 when it was demonstrated [32, 33] that a BEC of dilute gases of bosonic
species could realize a Bose-Hubbard model when confined in periodic 3D optical
potentials. In this case the system can undergo the quantum phase transition
from a superfluid to a Mott insulator state when the ratio of interaction and
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kinetic energies in the system is varied by adjusting the optical potential depth.
Later, more experiments with not only bosonic species, but also with fermions [34]
or mixture of both [35], were realized. Analogous to experiments with the BEC
of free dilute gases the interatomic interactions can be tuned via magnetic and
optical Feshbach resonances [15–18] giving not only one more degree of freedom
in the experiment, but also allowing binding atoms in molecules inside the lattice:
Cs2 [36] and KRb [37].
The geometry of the lattice is defined by the intensity of laser beams generating
the optical potential. Other geometries, besides simple orthogonal ones, can be
achieved by making lasers not collinear (triangular [38], Kagome [39], honeycomb
[40], or quasi-periodic lattices [41]). The addition of extra laser frequencies can
also be used for making a superlattice geometry [42], or quasi-disordered lattices
in the case of an irrational ratio between the lasers wavelengths. A disorder in the
lattice can also be achieved by exposing the periodic laser potential with a speckle
pattern, which provides an experimental sandbox for the study of many-body
localization. The interplay between laser polarizations can provide a species-
dependent lattice [43], where depending on the internal state of the atom it
complies with a different potential.
In addition to having so much flexibility and so many degrees of freedom for
systems of ultracold atoms loaded in optical lattices there is also a wide range
of possible measurements that can be made. For example, there are measure-
ments of the interference pattern of atoms suddenly released from the optical
potential [32,33], or measurements of noise correlations [44]. As a result the mo-
mentum distribution of particles can be obtained. Due to the closeness of the
lattice sites (∼ 500 nm) it was a significant challenge for a long time to obtain
any information about single sites. Only recently with the development of quan-
tum gas microscope techniques [45, 46] did it become possible to directly detect
strongly correlated states of matter via single-atom and single-site-resolved flu-
orescence imaging. This was a truly important achievement as it allows us to
directly trace the dynamics of individual atoms on the lattice in the same way
that we would like to detect spatial correlation functions in solid state devices.
Atoms in the optical lattice, which can be cooled to record temperatures of the
order of 1 nK, have characteristic interaction frequencies 10 − 104 Hz and can
be traced precisely. Besides bosonic species the single-atom-resolved imaging
experiments were recently successfully realized with fermionic species [47–49].
Summarizing everything mentioned above, ultracold atoms in optical lattices pro-
vide an excellent platform for quantum simulations. The level of control and
measurement precision in the experiment allows us to study ground state proper-
ties [50,51] or out-of-equilibrium dynamics following a parameter quench [32,52]
in these quantum many-body systems that would be impossible to control in tra-
ditional condensed matter systems. The high fidelity of the state initialization,
combined with manipulation of single atoms [53] allows us to define the initial
point of the quantum simulation with high fidelity. The high level of isolation
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from the environment allows us to keep atoms for times of the order of seconds,
which in comparison to interaction and tunneling times (of the order of a mil-
lisecond) provides enough possibilities for quantum simulation.
A particular interest in recent years has been the use of optical lattices to per-
form quantum simulation of condensed matter physics. For instance simulations
of the exotic forms of magnetism is one of the central goals towards complete un-
derstanding of high-temperature superconductors, this is a problem of extreme
complexity for modern classical computers. Recent experimental work with Mott
insulator states showed very promising results with simulations of densely loaded
optical lattices in the presence of a tilted potential allowing long-range resonant
tunneling [54–56]. It was found that when the tilt per site is tuned to integer
fractions of the Mott gap, high order tunneling processes over up to five lattice
sites can be observed. The tilt results in coherent oscillations of local occupation
numbers in time detected experimentally via oscillations in the number of doubly
occupied lattice sites. Truly many-body dynamics can be observed, which is far
away from the regime of a simple quantum walk of a single particle [57,58]. Fol-
lowed by preliminary theoretical work [59,60] we can map the dynamics of atoms
with dynamics of spins in a chain. We investigate this issue and discuss our new
understanding in Chap. 5.

Trapped Ions

Manipulation of a BEC of dilute gases or, indeed, a DFG exposed to a periodic
optical potential is not the only possible way to realize strongly correlated quan-
tum systems of many components with cold atoms. A quite different path can
be taken if one uses ionized atoms that, in the presence of the confining exter-
nal fields, self-organize in a quasi-periodic structure due to repulsive Coulomb
interactions. Following previous experimental developments with trapped ions
for atomic clock experiments [61], quantum state tomography [62], and quan-
tum computation [2,63–65], these systems have become one of the most suitable
candidates for quantum simulation as well. A number of experimental groups
have reported successful work with ions of 171Yb+ [66] and 40Ca+ [67] confined
in linear Paul traps, or 9Be+ [68] confined in a Penning trap, in the two dimen-
sional configuration. The internal hyperfine levels of each ion can be interpreted
as spin states [69] and via external fields coupled with transverse phonon modes
of the ion crystal, such that coherent interactions between distant ions can be
established [70–73]. The peculiar property of these ion-ion interactions is that
their range can be continuously varied from almost next-neighbor to the all-to-all
regime. This makes it truly a unique platform for quantum simulations allowing
us to study the effects of long-range interactions on many-body systems. The
long lived hyperfine states (& 1 s) allow us to perform coherent simulations with
short typical interaction times (. 0.1 ms).
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From this, completely new kinds of question can be asked: What sort of non-
equilibrium dynamics should we expect from such systems with explicit long-
range interactions? How does it affect the locality and the information propa-
gation [74]? And how does the entanglement spread in the system? We address
these questions in Chap. 6.
The full quantum state of even a simple qubit has, in principle, an infinite amount
of information, which in principle would require an infinite measurement time
to extract. It is a notoriously difficult task to obtain this information which
is normally achieved by means of full quantum state tomography (QST) [75].
The problem becomes intractably complicated when the number of system con-
stituents grows, then QST just becomes practically inapplicable. In Chap. 7 we
present a conceptually new method of quantum state estimation, Matrix Product
State tomography [76], applied to systems of trapped ions.

Numerical Methods

The investigation of quantum many-body systems is often related to studying
Hamiltonians that do not have known analytical solutions. Whereas the use of
approximate analytical methods allows us to investigate special cases, it is quite
often not enough for gaining a full understanding. That is why an integral part
of most investigations is in numerical simulation for either checking the validity
of approximate solutions or obtaining results in regimes inaccessible by other
methods.
A numerical simulation of a problem is not a trivial task. In the case of a quantum
many-body system just storing the system state in the memory quickly becomes
impossible due to the exponential growth of the Hilbert space with the number of
system constituents. For instance, a simple qubit requires storage of a complex
number on a classical computer, for each one of two possible states. Then two
qubits requires a number for each one of four combinations of states, which leads
to the general case ofM qubits with 2M combinations. This simple mathematical
fact means that the total number of combinations of 300 qubits is comparable
to the number of atoms in the observable part of the universe and so becomes
physically impossible to store. In the case of N bosonic atoms confined on M
discrete sites of an optical lattice, the total number of combinations, (N + M −
1)!/N !(M−1)!, also grows exponentially and all these states have to be taken into
account in order to capture quantum effects due to the superposition principle.
Faced with this problem one can split it into subproblems according to the con-
servation of a certain variable, which implies that the system has a corresponding
symmetry, for instance translational symmetry leads to the conservation of the
momentum. One can also parallelize the calculation, such that the entire state is
stored in separate machines and processed simultaneously. This all forms the ba-
sis of so-called exact diagonalization methods [77], which enables one to calculate
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all desired properties of the quantum system.
However, in the majority of cases we do not need to know all the properties of
the system, but instead just a few. One can use methods that rely on properties
of the system Hamiltonian, for instance its sparseness can be used to obtain cer-
tain system properties iteratively without calculation of all eigenstates [78, 79].
These kinds of approximate method still rely on the full Hilbert space, though,
and inevitably stop being feasible due to exponential growth of the computa-
tional cost. Another approach is to consider only a subspace of the most relevant
states, instead of the entire Hilbert space — the basic idea behind the Density
Matrix Renormalization Group (DMRG) methods [80, 81]. These methods com-
bined together with distributed storage of data in tensor networks become a truly
breakthrough approach for dealing with strongly correlated quantum many-body
systems.
The DMRG started with publications of S. R. White [82, 83] on the time inde-
pendent algorithm, which allowed the ground state calculations of 1D models. It
was later shown [84, 85] that the ground state obtained via DMRG algorithms
can always be written in the Matrix Product State (MPS) form. In [86] it was
quantified how well MPS can approximate exact ground states of one-dimensional
quantum systems, which gave a theoretical justification for the high accuracy of
DMRG algorithms even in the case of critical systems.
In [87–89] it was shown independently that DMRG methods can be used effec-
tively for time evolution calculations. Those methods were referred to by different
names, such as the Time Evolving Block Decimation (TEBD) algorithm or just
t-DMRG to emphasize the time dependence, but they exploited the same idea
of the adaptive change of the Hilbert space basis, DMRG optimizations, and
truncation of the expanding Hilbert space.
A logical extension of MPS followed when the Matrix Product Operators (MPO)
formalism [90,91] was incorporated in new methods, which vastly extended pos-
sibilities. It allowed us to use a wide range of Hamiltonians, for instance with
long-range interactions [90–92] or use MPO for realization of symmetries (see
Sec. 3.1.3). Also, the same MPO description can be used for representation of
density matrices of mixed states, which made it possible to perform calculations
with finite temperatures [93].
Currently DMRGmethods in combination with MPS and MPO representations of
states and operators provide one of the most powerful tools for treating quantum
many-body systems in one dimension. The systems can be treated not only in
complete isolation from the environment, but also coupled to it, for instance,
quantum trajectories methods [94,95].
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Overview

This thesis is arranged in four parts. The last two parts present our original
research results, which are obtained using the theoretical knowledge and methods
presented in the first two parts.
We start in Part I from the fundamental principles of light-matter interactions,
and show how experimental advances with ultracold atomic gases allow us to
construct strongly correlated many-body systems. Two types of system are con-
sidered: neutral atoms confined in periodic optical potentials and ionized atoms
trapped by time-dependent electric fields.
In Part II we cover the numerical techniques that are used for the simulation of
quantum many-body problems, especially out-of-equilibrium dynamics studied in
this thesis. In Chap. 3 we first present exact diagonalization methods that take
into account the entire Hilbert space and hence become exponentially costly as the
number of system constituents grows. We then reveal how using only the relevant
part of the Hilbert space with low entangled states one can obtain the essential
physics (Chap. 4) of any size systems at short times. These DMRG methods with
MPS and MPO are used extensively in our theoretical investigation of quantum
systems in the following chapters.
In Part III we consider the dynamics of bosons confined in a deep 1D optical
lattice. The dynamics can be enhanced via introduction of a tilted potential that
allows atoms to resonantly tunnel over several sites. We present the investigation
of the two particular tilt values facilitating nearest-neighbor and next-nearest-
neighbor tunnelings. In the case of an extra superlattice geometry we map the
dynamics of atoms onto constrained spin chains. This greatly reduces the com-
plexity of the model and allows us to study the nature of the systems. In addition
it demonstrates the possibility of using cold atoms in tilted optical lattices for
studying new types of exotic magnetism.
In Part IV we investigate a system of ions trapped in a linear chain with tun-
able long-range interactions between internal electronic states of each ion. In
Chap. 6 we first investigate global quench dynamics and how they depend on the
effective interaction range between spins. In particular, the questions of entan-
glement growth and correlation spread are investigated in comparison with an
exactly solvable long-range Kitaev chain of fermions. In Chap. 7 we proceed with
presenting a new method for quantum state estimation — the certified Matrix
Product State (MPS) tomography, which is realized in a system of trapped ions.
In the final Chap. 8 we summarize the main results of this thesis and provide an
overview of the future directions that each of the projects can take.
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2. Atomic Physics
In this Chapter we present the background of physical systems that we will study
in this thesis, consisting of two basic components: cold atoms and electromag-
netic waves. Recent experimental developments have given us an opportunity
to manipulate such systems in a way that quantum effects play the leading role
in the nature of the systems. The understanding of the fundamental principles
of atom-atom and atom-light interaction further allows us to use these building
blocks for construction of quantum many-body systems and investigation of their
nature.
We first start with some basic principles of atomic physics, mainly focusing on
alkali atoms. Then we consider the interaction of a single atom with electromag-
netic radiation as well as key elements of the theory of BEC in atomic gases.
Afterwards we combine these components in Sec. 2.3 to discuss interacting atoms
trapped in optical lattices and related theoretical models. In the end we conclude
by providing another example of quantum many-body systems, based on trapped
ions instead of neutral atoms.

2.1. Alkali Atom Physics

Atoms consist of massive nuclei and light electrons orbiting around them. As the
matter of this work we are interested in the electronic states of the atom, which
are described by laws of quantum physics. It means that electrons can occupy
only a discrete set of levels, which can be described by a set of quantum numbers.
We will discuss only the case of alkali atoms, i.e. atoms with only one electron in
the external shell. Alkali atoms are hydrogen-like atoms for which the electronic
state is determined under typical conditions by the state of the outermost shell
electron. All other electrons form closed lower shells and screen out the charge of
the nucleus. Each outer electron has spin ~S, which has a single quantum number
S = 1/2. The state of the electron in the atom is defined by a set of quantum
numbers. The principal quantum number n = 1, 2, 3, ... defines the main energy
level of the electron. The orbital motion of the electron around the nucleus
is described by the angular momentum ~L, which can take one of the quantum
numbers L = 0, 1, 2, 3, ... and are often referred to in spectroscopic notation by
letters, as follows: S, P,D, F, ... . The interaction between both forms the spin-
orbital coupling with the total electronic angular momentum ~J = ~S+~L, which can
take one of the quantum numbers |L−S| ≤ J < L+S. The hyperfine interaction

13



Chapter 2 Atomic Physics

  

Figure 2.1.: Rubidium 87 energy structure reproduced from [96]. The energies
of the outermost electron on the fifth shell split via spin-orbit interactions into
52S1/2, 52P1/2, and 52P3/2 (levels with larger angular momenta are not shown).
The spin-orbit structure is often referred to as the fine structure, the interaction
with the nucleus spin I = 3/2 adds a comparatively weaker hyperfine inter-
action. It leads to splitting of the fine structure levels to hyperfine structure
levels with the same total electronic angular momentum F . The degeneracy of
those levels can be lifted by applying, for instance, the magnetic field B due
to the Zeeman effect. For small magnetic fields, the projection of the total
electronic angular momentum −F ≤ mF ≤ F is a good quantum number with
the shift prefactor proportional to the Landé gF−factor.

originates from the coupling of the nuclear spin ~I with the total electronic angular
momentum ~F = ~J+~I, which can take one of the quantum numbers |J−I| ≤ F <
J + I. A typical spectroscopic notation that describes the state of the electron
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has the following form n2S+1LJ , on the top of that one would define values of the
hyperfine splitting. In Fig. 2.1, we show an example of the energy diagram for
87Rb, one of the most commonly used atomic species in the field of cold atoms.
Besides the spin-orbit and hyperfine structures energy levels can be shifted by
external magnetic fields, which is known as the Zeeman effect, or by application
of an electric field, which is referred to as the Stark effect.
Transitions between different atomic levels can be induced by the electromagnetic
field, the amplitude, polarization, and frequency of which define the effectiveness
of the process. Together with the manipulation of atomic levels by external
fields, mentioned above, we can control motional and internal degrees of freedom
of individual atoms. For instance, in the following sections we will discuss how
by means of a far detuned AC Stark shift one can trap atoms in the periodic
potential created by a pair of counter-propagating laser beams. Then a cloud
of weakly interacting atomic gas can be cooled down and trapped in the optical
potential. By means of a Feshbach resonance the scattering properties of atoms
can be changed allowing us to attain regimes with strong interactions and observe
many-body quantum effects.

2.1.1. An Atom in the Electromagnetic Field

In this section we overview some ideas of confining neutral atoms in the potential
generated by laser fields. A detailed review can be found in [8, 97, 98]. Let
us consider an electron in an atom in the presence of an external electric field
~E(~r, t) in the semi-classical approach. At the moment we are only interested in
the spectral components of the field, not its spatial distribution, so in the most
general way the electric field can be presented as

~E(~r, t) =
[
E0(~r)~̂ε exp(−iωLt) + E∗0(~r)~̂ε∗ exp(iωLt)

]
, (2.1)

where E0(~r) is the spatial dependence of the plane wave amplitude, ~̂ε is the unit
vector of polarization, and ωL is the angular frequency of the laser light. The
energy structure of a typical alkali atom is presented in Fig. 2.1, where we denote
each energy level as En and a corresponding state-vector as |n〉. For simplicity
we assume that all levels are non-degenerate. Exposed to a weak laser field the
atom attains a time-dependent dipole moment

~d(~r, t) =
[
~d0(~r) exp(−iωLt− iφ) + ~d∗0(~r) exp(iωLt+ iφ)

]
,

which in the case of weak driving acquires the same frequency as the driving field
and some phase φ. The interaction with the field can be given as the interaction
Hamiltonian

Hint(~r, t) = −~d(~r, t) · ~E(~r, t). (2.2)
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We would like to consider here the effects of this interaction term on the atom in
the non-degenerate ground state |0〉 with energy E0. In the absence of the field the
dipole moment of the atom also vanishes and the atomic state stays unperturbed.
For a weak field we can use the perturbative approach in the interaction picture.
We first note that the first order correction

∆E(1)(~r) = −〈0|~d0(~r) · E0(~r)~̂ε|0〉 = 0, (2.3)

vanishes due to parity of the atom eigenstates. Hence the first non-vanishing
correction to the energy is at second order, where the ground state interacts
with excited states. The corresponding correction to the energy then takes the
following form

∆E(2)(~r) =
∑
n6=0
〈0|~d0(~r) · E0(~r)~̂ε|n〉 1

E0 − En + ~ωL
〈n|~d0(~r) · E∗0(~r)~̂ε|0〉

+
∑
n6=0
〈0|~d0(~r) · E∗0(~r)~̂ε|n〉 1

E0 − En − ~ωL
〈n|~d0(~r) · E0(~r)~̂ε|0〉, (2.4)

where the first sum corresponds to the interaction with excited states accompa-
nied by the absorption of a single photon with energy ~ωL and the second sum
— emission of a photon. After simplification we obtain

∆E(2)(~r) =
∑
n6=0
|〈0|~d0(~r) · ~̂ε|n〉|2

( 1
E0 − En + ~ωL

+ 1
E0 − En − ~ωL

)
︸ ︷︷ ︸

≡α(ωL)

|E0(~r)|2,

(2.5)

where α(ωL) is the dynamic polarizability. Note that for alkali atoms, the ground
states of which are spherically symmetric S states, the polarizability is a scalar
and does not depend on the direction of the field. In the experiments on BEC,
electric fields are weak enough to consider only the given perturbation corrections.
Eq. (2.5) describes the AC Stark shift — in analogy with the constant field Stark
shift it modifies the energy proportional to the intensity of the field.
In many cases of interest the frequency of the laser field is close to one of the
atomic transitions; then a good approximation is to neglect all other transitions.
Let us denote the ground state of the atom with |0〉 = |g〉 with energy E0 = Eg
and the excited state close to resonance as |n′〉 = |e〉 with energy En′ = Ee.
The angular frequency corresponding to the transition between those two levels
is equal to

ωeg = Ee − Eg

~
, (2.6)

where ~ is the Planck constant. Only the term with the smallest denominator is
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kept in the polarizability then

α(ωL) = 1
~
|〈0|~d0(~r) · ~̂ε|n〉|2

∆ , (2.7)

where

∆ = ωL − ωeg, (2.8)

is the laser detuning, which shows the deviation from the resonance. Here we
should give an important definition for the matrix element of the transition

ΩR(~r) = 〈0|
~d0(~r) · ~̂εE0(~r)|n〉

~
, (2.9)

known as the Rabi frequency. Note that the contributions of the oscillations with
optical frequencies are ignored in this treatment as they will be averaged out at
experimental timescales. The only relevant time dependence can be due to time
dependence of ~E0(~r) in (2.1), which is due to slow variations of the intensity
of the laser. Then the perturbation expansion condition can be rewritten as
ΩR � ∆� ωL.
Then the energy shift takes the following form

∆E(2)(~r) = ~|ΩR(~r)|2
∆ ∝ I(~r)

∆ , (2.10)

where I(~r) is the intensity of the laser field.
This equation is very simple, but yet has a significant meaning: a neutral atom
prepared in the ground state |g〉 effectively stays unexcited by the off resonant
laser light and instead feels an optical potential, which is proportional to the
intensity of the laser light. The contributions of the fast optical oscillations of the
intensity are averaged out in this treatment, so the only relevant time dependence
present in (2.10) can be due to time dependence of ~E0(~r) in (2.1), which is due
to slow variations of the intensity of the laser. Hence the potential to which the
atom is exposed is just

Vopt(~r) ∝
I(~r)
∆ . (2.11)

This equation forms the basis for the manipulation of atoms by an optical po-
tential. Note that if the laser field is red-detuned (∆ < 0), the potential has
a minimum in the regions of high intensity and atoms are attracted there. In
the opposite case of the blue-detuned (∆ > 0), atoms are pushed away from the
regions of the higher light intensity.
By adding a counter-propagating laser beam with the same frequency and polar-
ization, an interference pattern is created in space — the formation of a standing
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wave. Thus atoms will feel this spatially periodic potential as

Vopt(x) = V0 sin2(kLx), (2.12)

where kL = 2π/λ, λ is the wavelength of the laser beams propagating along the x
axis, and V0 is the depth of the optical potential proportional to the intensity. If
three pairs of counter propagating beams are chosen in orthogonal directions then
a 3D optical lattice will be formed. By tuning relative polarizations, wavelengths
(hence resonances), and orientations of the laser beams, one can obtain different
geometries as well as optical lattices that depend on the state of the atom (known
as spin-dependent lattices).

2.2. A Dilute, Ultracold Gas of Atoms

In this section we present the theoretical description of the non-uniform dilute
Bose gas at low temperatures. The purpose is to highlight the most important
part of the formalism, and much more detailed reviews can be found in [7, 8].
Here we will discuss the phenomenon of Bose-Einstein condensation, which occurs
when a dilute gas of bosons is cooled to temperatures near absolute zero. Under
such conditionsa significant portion of bosons occupy the lowest eigenstate, which
leads to the formation of a giant matter wave, the Bose-Einstein condensate
(BEC), and macroscopic effects can be observed.
In the limit of a non-interacting (ideal) gas trapped in a 3D box the critical
temperature for BEC can be obtained as

Tc ≈
2π~2

kBm

(
n

2.612

)2/3
, (2.13)

where kB is the Boltzmann constant, and n is the density of bosons of mass
m. This expression depends on the form of the trapping potential as well as on
dimensionality. Then the number of particles in the condensate will read

N0(T ) = N

[
1−

(
T

Tc

)3/2]
, (2.14)

where N is the total number of particles. As one can see at temperatures close
to zero a large fraction of atoms are in the condensate state. In order to start
the mathematical description, we need to introduce the field operator describing
the state of the gas

Ψ̂(~r) =
∑
i

φi(~r)âi, (2.15)

where âi is the annihilation operator of a single boson in the state φi(~r). As BEC
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is associated with the condition when

N0 ≈ N, (2.16)

a large number of particles occupy the ground state, i.e.

N0 ≡ 〈â†0â0〉 � 1, (2.17)

and creation or annihilation of some extra particles in that state gives a negligible
effect. Then one can perform a transition to the classical field by replacing â0
with

√
N0, then

Ψ̂(~r) =
√
N0φ0(~r)︸ ︷︷ ︸
≡Ψ0(~r)

+
∑
i 6=0

φi(~r)âi︸ ︷︷ ︸
≡δΨ̂(~r)

, (2.18)

where Ψ0(~r) is the classical field, meaning that the system behaves as a classical
object with small quantum fluctuations δΨ̂(~r) in addition. The field Ψ0(~r) also
plays a role of the order parameter as the correctness of the following description
relies on the fact that a significant portion of bosons occupy the ground state.
While the ideal BEC is a very peculiar system by itself we shall proceed to make
things more realistic, i.e. look at the effect of interatomic interactions in BEC.
We focus of the case of a dilute gas, i.e. the density of atoms is low. But how
low? To answer this question we need to clarify what interaction processes we
look at.
We want to have a weakly interacting Bose gas, which has only two-body inter-
actions at most. This requires

raa � n−1/3, (2.19)

where raa is the range of the atom-atom interactions and n = N/V is the average
density ofN particles trapped in a large volume V . At such conditions atom-atom
collisions are so unlikely that simultaneous collision of three and more particles
can be neglected. As a consequence of such low density the separation between
particles is always larger than their physical size and scattering theory can be
used to describe collisions.
Having atoms in the BEC state means that their temperature is below Tc, which
means that the wave functions of individual atoms start overlapping. This leads
to the condition

n−1/3 . λdB = 2π~
p
, (2.20)
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where λdB is the de Broglie wavelength, and

p ∝
√
mkBT , (2.21)

is the momentum of particles, where the prefactor depends on the dimensionality
of the gas. This automatically implies that the momenta of particles p is so low
that the size of atoms is negligible comparing with their thermal wavelengths

raa � λdB, (2.22)

additionally it implies that the physical size of the BEC should be much larger
than the atom-atom interaction range.
Together Eqs. (2.19) and (2.20) are the main conditions for density and temper-
ature, respectively, to have weakly interacting BEC.
In addition, Eq. (2.22) implies that the atom-atom interaction can be described by
s−wave scattering theory, i.e. the scattering amplitude and angle do not depend
on the energy of colliding particles. According to scattering theory this process is
determined only by the scattering length a. Then the diluteness condition (2.19)
can be replaced by

na3 � 1. (2.23)

Note that near Feshbach resonances (see Sec. 2.2.2) the last condition can be
broken, whereas (2.19) is still valid.
Now we will describe the theory that in the limit a� λdB uses the Born approx-
imation to described the interatomic collisions and obtain the Gross-Pitaevskii
Equation.

2.2.1. The Gross-Pitaevskii Equation

The Hamiltonian of the system of interacting bosons reads

Ĥ = ~2

2m

∫
∇Ψ̂†(~r)∇Ψ̂(~r)d3r +

∫
Ψ̂†(~r)Vext(~r, t)Ψ̂(~r)d3r (2.24)

+ 1
2

∫
Ψ̂†(~r)Ψ̂†(~r′)V (~r′ − ~r)Ψ̂(~r)Ψ̂(~r′) d3r d3r′,

where Ψ̂(~r) is the bosonic annihilation operator. The first term describes the
kinetic energy of bosons with mass m, the second term is the interaction of parti-
cles with the external potential, and the last term describes two-body interaction
processes between bosons. The external potential can be an optical potential
as described in Sec. 2.1.1 or a potential created by external magnetic or electric
fields due to the Zeeman or Stark effects respectively.
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In order to obtain the dependence of the field operators on time, i.e. in the
Heisenberg picture one can write down the following equation by simply com-
muting the field operator Ψ̂(~r, t) and the Hamiltonian (2.24) with the potential
term

i~
∂

∂t
Ψ̂(~r, t) = [Ψ̂(~r, t), Ĥ] (2.25)

=
[
−~2∇2

2m + Vext(~r, t) +
∫

Ψ̂†(~r′, t)V (~r′ − ~r)Ψ̂(~r′, t)d3r′
]

Ψ̂(~r, t),

where we have used the commutation relations for bosonic field operators,

[Ψ̂(~r), Ψ̂†(~r′)] = δ(3)(~r′ − ~r). (2.26)

The main difficulty with this equation is in the interaction term. Here we describe
the list of assumptions and requirements leading to the analytical resolution of
this term. Typical BEC experiments fulfill these conditions.
The interaction term can be treated using low energy scattering theory, which in
general considers the behavior of the scattering objects, two particles in our case,
at large distances from the scattering center, i.e. |~r′−~r| � raa. As the scattering
process depends only on the relative motion of the particles it is common to
consider the center of mass reference frame, where the particles approach each
other with the relative wave vector k. The temperature condition (2.22) implies
kraa � 1 so the scattering amplitude becomes independent of the scattering
direction, so-called s−wave regime. One can use the effective pseudo potential
Veff(|~r′ − ~r|) with contact interaction and obtain the same scattering properties
as the original potential V (~r′−~r). In the case of weak interaction potentials, i.e.
ka � 1, the Born approximation also becomes valid. In the case of the pseudo
potential it becomes possible to replace the field operator Ψ̂(~r, t) by the classical
state function Ψ0(~r, t), which varies slowly on the range of interaction. This last
substitution is valid for temperatures below Tc, which is a prerequisite for BEC
in the first place.
Under these conditions the interaction integral can be simplified in Eq. (2.24)
and one obtains the time-dependent Gross-Pitaevskii Equation (GPE),

i~
∂

∂t
Ψ0(~r, t) =

[
−~2∇2

2m + Vext(~r, t) + g |Ψ0(~r, t)|2
]

Ψ0(~r, t), (2.27)

for the order parameter Ψ0(~r, t), where

g = 4π~2a

m
, (2.28)

is the interaction constant. This is an important theoretical tool for understand-
ing the dynamics of a non-uniform dilute Bose gas at low temperatures. As a
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result of the scattering-like interaction between pairs of particles the GPE also
conserves the total number of particles,

N =
∫
|Ψ0(~r, t)|2 d3r. (2.29)

Also, in the case of the time independent external potential Vext(~r) the energy
of the system is conserved. Then one can obtain a time-independent version of
Eq. (2.27) as

E =
∫ [

~2

2m |∇Ψ0(~r)|2 + Vext(~r) |Ψ0(~r)|2 + g

2 |Ψ0(~r)|4
]

d3r. (2.30)

While Eqs. (2.27) and (2.30) contain rich physics because of their non-linear na-
ture and have generated a whole field of study by themselves, we continue to
specialize our considerations and now are going to look at the case of a peri-
odic potential and effective discrete models for strongly interacting systems (see
Sec. 2.3). But before this let us quickly review how one can control the scattering
length via Feshbach resonances.

2.2.2. Feshbach Resonances

Feshbach resonances are essential for the study of ultracold gases as they let
us modify the interaction between particles via tuning of the scattering length
a. A Feshbach resonance occurs due to a resonant coupling of a scattering pair
of atoms with an energetically closed molecular state. This can be controlled
for instance by external magnetic field B [19, 20]. As was mentioned above,
the atom-atom interaction in dilute gases is well understood in terms of low
energy scattering theory with an effective contact pseudo-potential. This effective
potential depends on a single parameter, the scattering length a. When the
molecular state become resonantly coupled with the state of the free moving
scattering particles, they can transfer to this bound state and effectively stick
together and greatly alter the scattering length a. The effectiveness of this process
depends on the relative energies of the states, which can be altered externally. The
s-wave scattering length a in the vicinity of a Feshbach resonance is parameterized
by

a(B) = a0

(
1− ∆B

B −B0

)
, (2.31)

where a0 is the background scattering length in absence of coupling to the molec-
ular state, B0 is the resonance position and ∆B is the magnetic field width of
the resonance.

22



2.3 Optical Lattice Models

2.3. Optical Lattice Models

At this point we have all the necessary components in order to present theoretical
models describing the behavior of cold atoms trapped in an optical lattice. In
the previous sections one can find how cold atoms interact with light and with
each other; in this section we will combine both descriptions in one unified model
describing interacting particles trapped in a periodic optical potential.

2.3.1. Band Structure

As the first step let us consider the coherent dynamics of a single atom in a
one dimensional potential formed by a standing wave. The laser frequency is far
detuned so that, as discussed in Sec. 2.1.1, the Hamiltonian reads

Ĥ0(x) = −~2∇2

2m + V0 sin2(kLx), (2.32)

where kL = π/aL is the wave vector of the laser light and aL is the period of
the optical lattice, aL = λL/2, with λL the laser wavelength, λL ∼ 1 µm. The
potential depth V0 is determined by the atom-light interaction, proportional to
the intensity of the light and the polarizability α(ωL). The eigenstates of this
Hamiltonian can be found via application of Bloch’s theorem to be given by

φ(n)
q (x) = u(n)

q (x)eiqx, (2.33)

where q is the quasimomentum q from the interval (−π/aL, π/aL], which is called
the first Brillouin zone. The functions u(n)

q (x) are called Bloch functions, and are
eigenstates of the Hamiltonian

Hq(x) = (p+ q)2

2m + V0 sin2(kLx), (2.34)

with the same periodicity as the potential, i.e. u(n)
q (x + aL) = u(n)

q (x). Here
we used p̂ = −i~∇. The energy eigenvalues E(n)

q of the Hamiltonian (2.32) are
defined as

Ĥ0 (x)φ(n)
q (x) = E(n)

q φ(n)
q (x), (2.35)

along with one more quantum number of the system, the quasimomentum

Q̂φ(n)
q (x) = qφ(n)

q (x). (2.36)

Together they provide the following equation for orthonormality

2π
aL

∫ aL

0
φ(n)∗
q (x)φ(m)

q′ (x) dx = δnmδqq′ , (2.37)
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where wave functions are orthogonal not only for different energy eigenstates, but
also for the quasimomenta.
One can numerically obtain the band structure of eigenenergies of (2.34) by sub-
stituting the Fourier expansion of the Bloch functions as

u(n)
q (x) = 1√

2π
∑
k

ũ(n)
q (k) exp(−i2kLaLx), (2.38)

and solving the resulting system of linear equations for ũ(n)
q (k). The most natural

energy scale in the lattice is given by the recoil energy

ER = ~2k2
L

2m , (2.39)

which has the meaning of the kinetic energy that one particle in rest obtains by
emitting or absorbing a photon of momentum ~kL. In Fig. 2.2 we show the result
of band structure calculations for different depths of the potential V0 compared to
the recoil energy. One can immediately see that in the absence of the potential,
the band structure is identical to a quadratic dispersion relation folded within the
first Brillouin zone. In that case, the Bloch ansatz is not particularly useful. How-
ever, once the potential rises the low-energy part of the spectrum starts forming
bands, whereas high energy particles move almost freely, i.e. their energies are
just slightly perturbed by a low potential. The higher is the potential, the more
energy bands E(n)

q appear and they become more and more isolated from each
other, i.e. the energy gap between them increases. In the case of deep potentials
the dispersion relation of the lowest energy band approaches that of the standard
tight binding model, E(0)

q ∝ − cos(qaL).
The formalism of Bloch functions is not the only useful basis for solving single
particle problems in the presence of a periodic potential. Quite often, and in
our case also, it is more convenient to consider another set of basis functions —
Wannier functions. These functions in the case of one dimensional lattice are
defined via Bloch functions as

wn(x− xj) ≡
√
a

2π

∫ π/aL

−π/aL
u(n)
q (x)e−iqxj dq, (2.40)

where xj = aLj corresponds to the positions of minima of the periodic potential.
The Bloch function can be analogously defined via the set of Wannier functions.
The Wannier functions are orthonormal∫ +∞

−∞
w∗n(x− xi)wm(x− xj) dx = δnmδij, (2.41)

i.e. they form a basis. Note that the wave function φ(n)
q (x) as well as the Bloch

function u(n)
q (x) are defined only up to their global phase, so the definition of

Wannier function (2.40) is not unique. However, it was shown [99] that there ex-
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Figure 2.2.: Band structure of a particle in the laser optical lattice. Energies of
the Bloch states versus quasimomentum q in the first Brillouin zone plotted for
different lattice depths V0 expressed in units of recoil energy ER. The higher
the potential the more energy bands E(n)

q appear from the spectrum of the free
particle and the separation between them increases as well. In the case of the
deep potential the dispersion relation of the lowest energy band approaches
one of the standard tight binding model results E(0)

q ∝ − cos(qaL). Further
increase of the potential flattens out the bands leaving them equally spaced,
this corresponds to the fact that the deep optical potential resembles a simple
harmonic trap.

ists only one completely real Wannier function for each band that is exponentially
localized. These functions are either symmetric or antisymmetric with respect
to a reflection around either the local maxima or minima of the potential, and
decay exponentially from the center of the site where they are localized. Hence
this form of Wannier function is called maximally localized, and it is the one we
are the most interested in as we are going to build a discrete model for excita-
tions localized on the lattice sites. In Fig. 2.3 one can find a couple of examples
of Wannier functions for the lowest two bands of the optical lattice potentials of
different depths. As the form is chosen to be maximally localized, the imaginary
part of the functions is automatically zero.
An interesting regime can be approached in the limit of the deep lattice, i.e.
V0 � ER, where the potential is so deep that the band structure that can be
seen in Fig. 2.2 flattens out at equaldistantly spaced. In this regime, the Wannier
functions of confined bands can be well approximated by harmonic oscillator
functions. In other words, the lattice potential near local minimum at each site
can be well approximated by the quadratic potential

Vext(x) = V0 sin2(kLx) ≈ V0k
2
Lx

2 =
mω2

trapx
2

2 , (2.42)
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Figure 2.3.: Examples of maximally localized Wannier functions, w0(x) and
w1(x), for the lowest two bands for optical lattices with potential heights in
units of recoil energy V0/ER = 5 and 20. In each plot one can see a sketch of
the potential in arbitrary units to give an intuition of the lattice sites (black
dotted line). The real part of Wannier functions is represented by red solid
lines, and dashed blue line shows the imaginary part always staying at zero.
One can note that in order to minimize the overlap between functions localized
on neighboring site one needs to have relatively deep lattices.

where the trapping frequency is defined as

ωtrap ≡
√

2V0k2
L

m
= 2
√
V0ER

~
. (2.43)

Then the eigenstates will be expressed through Hermite polynomials and the
ground state will read

φho(x) = 1
π1/4√aho

exp
(
− x2

2a2
ho

)
, (2.44)

where

aho =
√√√√ ~
mωtrap

, (2.45)
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is the oscillator characteristic length, i.e. it reflects the typical size of the wave
function. The limit of the deep lattice, when the simple harmonic oscillator
approximation is good, can be rewritten in another form that also finds a wide
application when considering effects related to shallow lattices. The relation

η ≡ kLaho = π
aho

a
� 1, (2.46)

should be satisfied in order to justify this tight binding approximation. The
parameter η is called Lamb-Dicke parameter showing how much smaller is the
oscillator characteristic length comparing to the lattice spacing. Its squared value
is equivalent to the ratio between the recoil energy ER and the energy of the
harmonic oscillator ~ωtrap, which is equivalent to the spacing between energy
bands as well.

2.3.2. Bose-Hubbard Model

Using the basis of single particle wave functions one can now derive the many-
body lattice model for bosons — the Bose-Hubbard model, which will be outlined
in this section. The Hamiltonian can be derived directly from the microscopic
second-quantized Hamiltonian for the cold atomic gas (see Sec. 2.2.1)

Ĥ =
∫ +∞

−∞
Ψ̂†(~r)

[
−~2∇2

2m + Vext (~r)
]

Ψ̂(~r) d3r+ g

2

∫ +∞

−∞
Ψ̂†(~r)Ψ̂†(~r)Ψ̂(~r)Ψ̂(~r) d3r,

(2.47)

where the first term describes the kinetic energy of single particles and their
interactions with the external potential

Vext (~r) = V x
0 sin2(kxLx) + V y

0 sin2(kyLy) + V z
0 sin2(kzLz) + V1(~r), (2.48)

which has the periodic potential of the laser fields along x, y, and z directions
and, some extra non-uniform potential V1(~r) associated with additional external
fields. The second term of (2.47) takes into account interatomic interactions.
Assuming that the non-uniform potential V1(~r) can be factorized as well, we will
factorize the state function as Ψ̂(~r), consider from now on only the x component
Ψ̂(x). The following treatment is also valid for y and z components. We first
expand the field operators in terms of Wannier functions:

Ψ̂(x) =
+∞∑
i=−∞

∞∑
n=0

wn(x− xi)b̂n,i, (2.49)

where b̂n,i is the annihilation operator of a boson in the nth band on the site i.
Note that the Wannier functions we use here now are all real. As one can see, the
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consideration of all possible terms at the same time can be quite messy; that is
why we will consider terms with the most significant contribution first and then
describe why other terms can be neglected under well-controlled approximations.
In what follows we will discuss the single band model, where one has only the
Wannier function of the first band. Hence

Ψ̂(x) =
+∞∑
i=−∞

w0(x− xi)b̂i, (2.50)

where the band index is omitted. The first integral of the Hamiltonian splits up
in three kinds of terms. The first one is

J0 = −
∫ +∞

−∞
w0(x)

[
−~2∇2

2m + V0 sin2(kLx)
]
w0(x) dx, (2.51)

which is just a site-independent constant contribution which has the same origin
as the vacuum energy and hence can be omitted. The second one is

εr =
∫ +∞

−∞
|w0(x− xr)|2V1(x) dx, (2.52)

which gives a non-uniform contribution to energies and has the physical meaning
of the chemical potential. The third kind of terms in the absence of the non-
uniform contribution to the potential V1(x) reads

Jk = −
∫ +∞

−∞
w0(x− ka)

[
−~2∇2

2m + V0 sin2(kLx)
]
w0(x) dx, (2.53)

and has a meaning of the transition amplitude between any two sites separated
by (k− 1) sites. In the presence of the non-uniform contribution to the potential
those transition amplitudes can be site-dependent.
The largest contribution from the second integral of (2.47) is in the case when
all four wave functions are located on the same site, i.e.

U = g
∫ +∞

−∞
|w0(x)|4 dx, (2.54)

which has the physical meaning of the interaction energy between two and more
particles occupying the same site.
The resulting Hamiltonian then is the single-band Bose-Hubbard Hamiltonian
with long range tunnelings

Ĥ lr
BH = −

∑
r,k

Jk(b̂†rb̂r+k + b̂†rb̂r−k) + U

2
∑
r

n̂r (n̂r − 1) +
∑
r

εrn̂r, (2.55)

where n̂r = b̂†rb̂r is the occupation number operator. The first sum describes
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2.3 Optical Lattice Models

tunneling over several sites, the second sum counts the number of interatomic in-
teractions on each site, and the last term can be treated as non-uniform chemical
potential created by non-uniform external fields. The main reason why inter-site
terms were omitted is because of the exponential localization of Wannier func-
tions. Even the tunneling terms Jk are exponentially suppressed with distance.
In Fig. 2.4 one can see how by varying just the depth of the optical potential V0
one can control the tunneling between neighboring sites Jk, on-site interaction U ,
and neighboring site interactionsUn1 = g

∫+∞
−∞ w2

0(x) · w2
0(x− aL) dx

Un2 = g
∫+∞
−∞ w3

0(x) · w0(x− aL) dx
. (2.56)

There are two important messages one can conclude from these dependences. The
first one is that indeed all the terms that have integrals betweenWannier functions
localized on different sites quickly become insignificant with the increase of the
potential height V0. Even for the small potential depths V0/ER the difference
can be of a few orders of magnitude. Besides that by changing the depth of
the potential one can change the ratio Jk/U which plays a significant role in the
behavior of the system.
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(a)
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Figure 2.4.: (a) Dependence of the tunneling amplitudes J1 (solid black line),
J2 (dashed blue line), and J3 (dotted red line) on the depth of the periodic
potential V0. (b) Dependence of the on-site interaction U (solid black line),
neighboring site interactions Un1 (dashed blue line) and Un2 (dotted red line)
on the depth of the periodic potential V0. By varying V0 one can change the
ratio between tunneling and interaction terms.

In the simplest form the Bose-Hubbard Hamiltonian has only the neighboring
tunneling terms

ĤBH = −J1
∑
〈r,k〉

b̂†rb̂k + U

2
∑
r

n̂r (n̂r − 1) +
∑
r

εrn̂r, (2.57)

where 〈r, k〉 means summation only over neighboring sites. Let us call the number
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of sitesM and the number of particles N , which is conserved by the Hamiltonian.
One can confirm it by computing the commutator

[ĤBH ,
∑
r

n̂r] = 0. (2.58)

The ground state of the system can exist in two different phases, depending on
the ratio U/J . For large U/J bosons are exponentially localized on the particular
sites, this state is called Mott insulator (MI), given in the extreme limit U/J →∞
by

|ψMI〉 =
∏
r

|n̄〉r, (2.59)

where n̄ = N/M is the average filling number. On the other hand for small ratios
of U/J bosons are delocalized over the entire lattice, this is the superfluid (SF)
state, given for U/J → 0 by

|ψSF〉 =
(

1√
M

∑
r

b̂†r

)N
|0〉, (2.60)

which in the bulk limit (N/M = const, N,M →∞) becomes

|ψSF〉 =
∏
r

exp
√N

M
b̂†r

 |0〉, (2.61)

with Poisson number statistics on each site. One can think about this state
as localization of bosons, but in momentum space. An analytical solution for
the ground state in 1D case was obtained using the Luttinger liquid field theory
[100] and the phase transition is found to be at (U/J)crit ≈ 3.30 in the case
of the unit filling, i.e. N = M . The same result was also confirmed by DMRG
calculations [101,102]. In should be noted the transition point, a quantum critical
point, depends on the shape of the trapping potential, whether it is just a box
or parabolic potential, as well as the dimensionality of the problem. In the last
case the number of neighboring sites moves the position of the transition.
The single band Hamiltonian presented here can be extended to the case of mul-
tiple dimensions in a similar fashion. One first obtains the solution of the single
particle problem in terms of the Bloch functions. Then configurations of expo-
nentially localized Wannier functions along each directions can be defined. These
multidimensional Wannier functions play a role of the basis states for the many-
body problem. The leading terms of the multidimensional Bose-Hubbard model
will have similar scales between terms. In general one should expect that terms
with integral of Wannier functions localized on different sites will decay exponen-
tially with distance between them, hence the most significant contributions will
be from the on-site interaction U and neighboring tunneling J .
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In a similar fashion, multiple bands can be considered in the model. In that
case one should consider all possible cross-band terms in both integrals of (2.47).
One can think of the resulting Hamiltonian as a combination of terms from the
single band model (2.55), but for each considered band, plus interacting terms
that couple bands.
In certain cases the use of the multi-band model is indeed required, especially if
inter-band interactions are enhanced via Feshbach resonances, and higher bands
can be explicitly populated. However, quite often the single-band model (2.55)
is enough. Let us summarize the main conditions that should be met.
• The diluteness of the gas should be sufficiently low to have only two body

interactions (see Eq. (2.19)).
• The temperature and hence momenta of particles should be sufficiently low

so the collision of particles can be described by the s−wave scattering theory
with a well behaved effective interaction potential that can be treated in
the Born approximation (see Eq. (2.23)).
• The periodic potential applied by the optical lattice should be deep enough

that long range tunneling and inter-site interactions are negligible (see
Fig. 2.4).
• The temperature should be much lower than the inter-band separation in

the lattice, which for deep lattices approaches ~ωtrap (see Fig. 2.2).
Last but not least, the above described procedure can be applied to the cold gas
of fermionic species. In the case of only neighboring tunneling the corresponding
single band model (Fermi-Hubbard model) will read

ĤFH = −J
∑
〈r,k〉,σ

ĉ†r,σ ĉk,σ + U
∑
r

n̂r,↑n̂r,↓ +
∑
r,σ

εr,σn̂r,σ, (2.62)

where one can note the appearance of the spin component σ = {↑, ↓}, which has to
be taken into account due to the Pauli exclusion principle. Here we have ĉr,σ and
n̂r,σ = ĉ†r,σ ĉr,σ corresponding to annihilation and number occupation operators of
the corresponding fermions. Also note that in principle it is possible to create
spin-dependent interactions with the external field εr,σ.
In this section we highlighted the main ideas and requirements behind derivations
of simple lattice models for cold atoms. The validity of many other configurations
has been derived and even tested experimentally, opening a lot of possibilities for
testing our fundamental understanding of light-matter interaction and many-
body physics in highly controlled systems.

2.4. Trapped Ions
Trapped ions have been under a lot of investigation for a number of decades inde-
pendently of the experiments with BEC of dilute gases presented in the previous
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sections. The development of experimental techniques for preparation, control,
and measurement of a single or several trapped ions made it possible to realize
the full state tomography [62] of the quantum system. The high control of laser
driving made it possible to use trapped ions for atomic clock experiments [61]
and quantum computation [2, 63–65]. In the context of this thesis, recent works
have brought a lot of attention to trapped ions as potential candidates for the
quantum simulation and study of many-body physics.
A cold gas of ions confined by external fields can self arrange in a stable crystal-like
configuration, where internal and motional degrees of freedom can be coupled.
A number of experimental groups relatively recently reported successful works
with ions of 171Yb+ [66] and 40Ca+ [67] confined in one dimensional Paul traps,
or 9Be+ [68] confined in the Penning trap in two dimensional configuration. Via
driving lasers a collection of hyperfine levels were singled out, such that the
dynamics among atomic states is confined only within these states. Depending
on the geometry of the experiment those atomic states of different ions were
coupled in a coherent way such that ion-ion coupling was created.
In the rest of the section we will take a look at a couple of examples of such
couplings and obtain theoretical models guiding the dynamics of the systems.

2.4.1. Linear Paul Trap

In recent papers [103,104] it was argued that a one-dimensional system of atomic
ions can be accurately described by a lattice model of interacting spins. The
peculiar thing about such systems is that it was possible to tune the ion–ion
interaction range from almost nearest-neighbour to infinite range, i.e. when all
ions interact with each other in a coherent way. Even though those experiments
were performed with different atomic species and slightly different geometries,
the resulting microscopic models were quite similar, which is why below we will
discuss only one of them.
In [104] a collection of 40Ca+ was trapped in a one-dimensional configuration
at a separation distance of approximately 5 microns. Two Zeeman states were
identified in the experiment: |S1/2,m = +1/2〉, which was associated with a
spin-down | ↓〉 and |D5/2,m

′ = +5/2〉 — a spin-up | ↑〉. The metastable state
D5/2 has a lifetime of the order of a second — sufficiently long for performing
state manipulation and observing coherent dynamics in the experiment. Then
preparation of ions in the state corresponding to |↓〉 can be efficiently done via
optical pumping techniques.
Let us now see how a 1D array ofM trapped ions was experimentally manipulated
in such a way that its dynamics can be described by an effective model for spin
states

H =
M∑
r<l

Jrlσ
x
rσ

x
l +B

M∑
r

σzr , (2.63)
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(~ = 1) where the spin-spin coupling matrix approximately reads

Jrl = J

|r − l|α , (2.64)

where α is the exponent of the algebraic decay, which can be tuned between 0 and
3, and J is the interaction matrix element for neighboring spins. Note that the
Hamiltonian (2.63) is just an extended model of the Ising chain in the transverse
field B in the case of spin-spin interactions decaying algebraically with distance.
Let us overview the way this model can be realized.
One can find the original proposal on creation of variable-range interactions be-
tween spin states of trapped ions in [105]. First ions are trapped in a linear
Paul trap. Then they are globally addressed with a laser beam in the orthogonal
direction to the ion string axis. The proposed idea makes it possible to couple
the spin states with the phonon modes of the string (collective modes of motion)
in the transverse direction to the axis of the chain. In particular, this was re-
alized via a Mølmer-Sørensen type interaction [106], where the laser carries two
frequencies ω± = ω0 ± ∆. Here ∆ denotes the deviation from ω0, which is the
energy difference between |↓〉 and |↑〉 states. It is done by coupling spin states to
all first-order sidebands of the transverse collective modes of motion. In the limit
of weak coupling, the induced effective interaction between the spins is given by

Jrl = ΩrΩl
~2k2

2m

2M∑
n=1

br,nbl,n
∆2 − ν2

n

, (2.65)

where Ωr denotes the Rabi frequency of each component of the bichromatic (ω± =
ω0 ± ∆) beam on the rth ion, k is the wave vector of the laser, m is the ion
mass, νn are the transverse mode frequencies, and br,n are proportional to the
displacement of the rth ion in the nth collective mode. The summation goes over
all 2M transverse phonon modes. When the laser detuning ∆ is set to a value
higher than the frequency of the highest transverse mode νmax

n , the coupling
becomes antiferromagnetic with a range that is described approximately by a
power-law dependence (2.64). By increasing the laser detuning or by bunching
up the transverse modes in frequency space by trapping the ions in a strongly
anisotropic potential, it is possible to make the denominators of different modes
νn more alike. By doing so one can shorten the range of the interaction, i.e. raise
α in Eq. (2.64) to approximately 3. In the opposite limit of small detuning one
can obtain the regime where interactions only slowly decay with distance, i.e.
lower α to approximately 0.
The implementation of the local term in (2.63) can be obtained by shifting both
frequency components of the bichromatic beam by an additional amount δ = 2B,
so ω± = ω0±∆+2B. By doing this one tunes the transition between |↓〉r|↓〉l and
|↑〉r|↑〉l out of resonance whereas the transition between |↓〉r|↑〉l and |↑〉r|↓〉l is not
affected. In the limit of the large field, i.e. B � J , joint spin flips coupling |↓〉r|↓〉l
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to |↑〉r|↑〉l are suppressed. In this regime the number of excited spin-ups and spin-
downs is conserved, as only the spin-exchange transitions between |↓〉r|↑〉l and
|↑〉r|↓〉l are present. Experimentally, this spin–spin dynamics was followed over
timescales of tens of milliseconds, which is significantly shorter than the lifetime of
the excited state |D5/2,m

′ = +5/2〉. This makes it possible to study the coherent
dynamics in the absence of dephasing processes.

2.4.2. Penning Trap

In [68, 107] it was demonstrated that Ising-type spin-spin interactions can also
be achieved in 2D triangular crystal lattice of hundreds of 9Be+ ions stored in
a Penning trap. Similarly to the 1D case, spin states can be encoded in the
hyperfine states of ions, and the range of the interactions can be tuned such
that the spin-spin matrix element follows the power law (2.64) with the exponent
0 < α < 3.
Analogously to the 1D setup, spin states are encoded on a couple of fine electronic
levels of the atom (22S1/2,mJ = ±1/2), and coupling between spins of different
atoms is realized via their coupling with collective motional degrees of freedom —
phonon modes. In the experiment ions are confined in a pancake geometry by a
homogeneous magnetic field. The Penning trap holds ions in a static quadrupole
electric potential and the rotation of the plane of ions with the frequency ωr
produces a radial restoring potential due to the Lorentz force.
By a couple of laser beams with frequency difference ∆ descending on the plane of
ions one generates the spin-dependent optical force, which couples each ion’s spin
to collective motional modes in the normal direction to the plane of confinement.
In the regimes of small displacement the interaction Hamiltonian

ĤI = 1
M

M∑
r<l

Jrlσ̂
z
r σ̂

z
l , (2.66)

can be realized. Similarly to the 1D case the interactions can be tuned closely to
the power-law (2.64) with the exponent 0 < α < 3, which is controlled by detun-
ing of ∆ from the axial trapping frequency. Besides that an effective magnetic
field can be realized by microwave coupling of the spin states, i.e. the Hamiltonian

ĤB =
∑

β=x,y,z

M∑
r

Bβσ̂βr , (2.67)

can be realized, and the global rotation of all spins is implemented. Here we
should emphasize that simulations of both non-commuting Hamiltonians (for
spin-spin interactions ĤI and the field ĤB) will open possibilities for studying
quantum phase transition effects in 2D. However even without this one can ob-
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serve quite interesting effects with just the interaction part, such as spin squeez-
ing.

2.5. Conclusions

In this Chapter we presented the background theory for cold atoms and consid-
ered two methods of atom manipulation via electromagnetic waves and external
electric and magnetic fields. Both of the following methods have been successfully
realized in a number of laboratories.
The first method involves confinement of ultracold gases of atoms in a periodic
optical potential. In the dilute gas regime and low enough temperatures we
showed how one can engineer the discrete model of bosons tunneling between
sites of the lattice — Bose-Hubbard model (2.57). In the regime of deep lattice
potentials the model ground state is in the Mott Insulator (MI) state where
atoms are exponentially localized on the lattice sites. In Chap. 5 we investigate
the dynamics of atoms in the MI state in the presence of a linear external potential
allowing resonant transitions between neighboring sites.
The second method is confining ionized atoms in linear or planar traps via external
fields. In this case, the repulsive Coulomb force keeps the atoms from colliding
so they form a quasi-periodic ion crystal. Internal electronic states of different
atoms are coupled via collective phonon modes of the crystal, which allows one to
tailor variable-range interactions and study the coherent dynamics of the system
governed by (2.63). In Chap. 6 we investigate the spread of correlations and
growth of entanglement after a global parameter quench in a 1D ion crystal. In
Chap. 7 we present a new method of a quantum state measurement — matrix
product state tomography, which in comparison to a conventional quantum state
tomography requires only polynomial growth of the number of measurements.
The method was successfully tested on a 1D ion crystal.
The quantum many-body models derived here (see Eqs. (2.57) and (2.63)) do not
have known analytical solutions and we investigate them via numerical methods.
In Chap. 3 we present general purpose methods, which have found use on rela-
tively small systems. In Chap. 4 we discuss DMRG methods, which have found
a wide application in the investigation of quantum many-body systems.
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3. Full Hilbert Space Methods

In this section we will discuss general numerical methods to solve quantum spin
and lattice models for strongly interacting particles applied to state representa-
tions involving Hilbert space. As the numerical cost of calculations is proportional
to the Hilbert space, the exact methods have a great limitation — the Hilbert
space scales exponentially as the system size grows linearly. Nonetheless, these
relatively simple methods will form a basis for more advanced methods described
in Chap. 4. Good reviews on general numerical methods can be found in [78, 79]
and specifically on quantum systems in [77].
In Sec. 3.1 we will talk about about closed quantum systems, i.e. those for which
the dynamics is described by the Schrödinger equation. In Sec. 3.2 we will talk
about open quantum systems coupled to an environment, i.e. described by the
master equation with dissipative terms.

3.1. Closed Quantum Systems

The central role in the formulation of problems in non-relativistic quantum me-
chanics is taken by the time-dependent Schrödinger equation

i~
d|ψ(t)〉

dt = Ĥ(t)|ψ(t)〉, (3.1)

and the time-independent version

E|ψ〉 = Ĥ|ψ〉, (3.2)

where the Planck constant ~ ≡ 1 is set to the identity for the convenience of
numerical calculations, Ĥ(t) is the Hamiltonian of the system (in general it is
time-dependent), |ψ(t)〉 is the time-dependent state-vector in the Schrödinger
picture, and E is the energy of the system.
There is a large number of methods for solving the eigenvalue problem (3.2).
Exact methods rely on the full diagonalization of the Hamiltonian Ĥ in a matrix
representation with a fixed set of basis states {|φn〉}. This method will produce
the complete set of eigenvalues {En}, which form the spectrum of the system.
The important point is that all possible states of the system can be expanded as
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a sum over basis states

|ψ〉 =
∑
n

|φn〉〈φn|ψ〉 =
∑
n

cn|φn〉, (3.3)

where cn is the contribution of each basis state.
However, quite often the calculation of the whole spectrum is costly or not nec-
essary, i.e. when we are interested only in the states with the lowest or highest
eigenvalues. In this case, there are approximate methods based on the power
expansion (e.g. expansion in Lanczos basis via Arnoldi iteration [77, 79]). This
becomes especially efficient in the case of sparse Hamiltonians, which have only
a small fraction of non-zero elements. In that case, the speed of the algorithm
will be proportional to the number of these non-zero elements, and not the size
of the matrix.
Regarding the calculations of the time-dependent Schrödinger equation (3.1),
one has to propagate the initial state |ψ0〉 at time t = 0. In the case of the
time-independent Hamiltonian Ĥ(t) = Ĥ, the time-evolution operator has the
following form

Û(t) = e−iĤt =
∑
n

e−iEnt|φn〉〈φn|, (3.4)

and the state-vector of the system takes the form

|ψ(t)〉 = Û(t)|ψ0〉 =
∑
n

e−iEnt|φn〉〈φn|ψ0〉 =
∑
n

c0,ne
−iEnt|φn〉, (3.5)

where c0,i is the contribution of each basis state in the initial state. It is an
expensive calculation, as it requires the entire spectrum first and then one needs
to propagate each basis state. Moreover, this expression is not valid for the case
of a time-dependent Hamiltonian, where the eigenbasis changes.
More efficient numerical techniques are based on the discretization of time and
propagation of the state vector between times ti and ti+1 = ti + ∆t using one
of many available algorithms. A great example of such algorithms is the Runge-
Kutta method [108] which is a combination of implicit and explicit iterative meth-
ods, which includes the well-known routine called the Euler Method [108], used
in temporal discretization for the approximate solutions of ordinary differential
equations. A popular example of the method requires the 4th order expansion
of the time-evolution operator and produces the resulting state-vector with error
after each time step of the order O(∆t5).
It also should be noted that the prefactor in front of the error term can vary
quite dramatically depending on the method. All methods of time propagation
can be split in two main groups — explicit and implicit [108]. Explicit methods
calculate the state of a system at a later time |ψi+1〉 = |ψ(ti+1)〉 from the state
of the system at the current time |ψi〉, while implicit methods find a solution by
solving an equation involving both the current state |ψi〉 of the system and the
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later one |ψi+1〉. The main difference between the methods can be seen from the
following example.
The explicit method for the time evolution of a state gives

|ψi+1〉 = e−iĤ∆t|ψi〉 = (I − iĤ∆t)︸ ︷︷ ︸
Ûe(∆t)

|ψi〉+O(∆t2), (3.6)

where besides a large numerical error the time explicit evolution operator Ûe(∆t)
is not unitary. Hence the state has to be renormalized after each time step.
The starting point for the implicit method can be obtained as

|ψi〉 = eiĤ∆t|ψi+1〉 = (I + iĤ∆t)|ψi+1〉+O(∆t2), (3.7)

which one would have to solve for |ψi+1〉, i.e. the method does not give the explicit
expression for the state-vector at the next time step.
It is clear that implicit methods require some extra work to resolve the system of
equations, rather than the explicit methods that give the result explicitly. Implicit
methods are used because many problems arising in practice are stiff. A stiff
differential equation is numerically unstable, unless the step size ∆t is taken to
be extremely small. The main idea is that the equation includes some terms that
can lead to rapid variation in the solution. For such problems, to achieve a given
accuracy, it takes much less computational time to use an implicit method with
larger time steps, even taking into account that one needs to solve an equation of
the form (3.7) at each time step. That said, whether one should use an explicit
or implicit method depends upon the problem to be solved.
It is also common to combine explicit and implicit methods and obtain a semi-
implicit version (Crank-Nicholson method [108]), which is basically the case of
half-evolution of the state forward and backward.|ψi+1/2〉 = e−iĤ∆t/2|ψi〉 = (I − iĤ∆t/2)|ψi〉+O(∆t2),

|ψi+1/2〉 = e+iĤ∆t/2|ψi+1〉 = (I + iĤ∆t/2)|ψi+1〉+O(∆t2),
(3.8)

Here we see the appearance of the intermediate state |ψi+1/2〉 which plays the role
of the connection for both solutions and hence the state at the time ti+1 can be
obtained as

|ψi+1〉 = I − iĤ∆t/2
I + iĤ∆t/2︸ ︷︷ ︸

Ûsi(∆t)

|ψi〉+O(∆t2), (3.9)

where Ûsi(∆t) is a semi-implicit unitary operator and hence preserves the norm
of the state, but it still requires inversion of the Hamiltonian (for instance via
the Gaussian elimination method [109]). It might be profitable to avoid doing it
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in the case of sparse Hamiltonians, as the application of the Hamiltonian on the
state scales as the number of non-zero elements only. A further trick relies on the
fact the intermediate state can be obtained iteratively by iterating the following
expression a few times

|ψi+1/2〉 = |ψi〉 − iĤ
∆t
2 |ψi+1/2〉+O(∆t2). (3.10)

Then the required state-vector at the time ti+1 would read

|ψi+1〉 = 2|ψi+1/2〉 − |ψi〉+O(∆t2). (3.11)

Depending on the problem stiffness, reasonable time steps of the time evolution,
and difficulty of the equations in the explicit method one needs to choose the
appropriate method.
Below we would like to mention two completely different approaches to time
evolution that can produce results where all said above fails.

3.1.1. Krylov Subspace Algorithms

As we could see above, explicit methods of time evolution relies on the Taylor
expansion of the time evolution operator

Û(t) = e−iĤt = I + −iĤt1! + (−iĤt)2

2! + (−iĤt)3

3! + ..., (3.12)

thus the evolution of the initial vector becomes

|ψ(t)〉 = Û(t)|ψ0〉 = |ψ0〉+
−iĤt

1! |ψ0〉+
(−iĤt)2

2! |ψ0〉+
(−iĤt)3

3! |ψ0〉+ ...; (3.13)

it can be truncated after the first m terms, leading to an approximation

|ψ(t)〉 = |ψ0〉+c1Ĥt|ψ0〉+c2(Ĥt)2|ψ0〉+ ...+cm−1(Ĥt)m−1|ψ0〉+O(tm), (3.14)

with coefficients ck = (−i)k/k!. This truncated subspace

Km(Ĥt, |ψ0〉) = Span{|ψ0〉, Ĥt|ψ0〉, (Ĥt)2|ψ0〉, ..., (Ĥt)m−1|ψ0〉}, (3.15)

is called the Krylov subspace of dimension m, and is spanned by non-orthogonal
vectors, in general. For this reason the coefficients ck of the Taylor expansion
are not necessarily the best coefficients and one can search for a better linear
combination of vectors.
Elements of the Krylov subspace are better manipulated via their representation
onto an orthonormal basis. For instance, the Arnoldi procedure [79] constructs
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such a basis. This procedure is mathematically equivalent, but numerically supe-
rior to the Modified Gram-Schmidt procedure [79]. A detailed review and more
efficient implementations of the above algorithm can be found in [110].
The superiority of this method becomes substantially noticeable for sparse matri-
ces and it relies only on the construction of the Krylov subspace. For instance, the
critical transverse Ising chain of 20 spins-1/2 can be time-evolved via the above
method within a several minutes on a modern laptop, with a relative numerical
error ∼ 10−15. This speed becomes more striking when one estimates the size of
the time evolution operator Û(t) as 16TB if stored in double precision. One needs
to understand that even in the case of a sparse Hamiltonian the time-evolution
operator Û(t) will most likely not be sparse.

3.1.2. Suzuki-Trotter Decomposition

As we can see in the previous sections the computational cost comes from several
sources: the efficiency of the algorithm, the number of the computational oper-
ations, and the size of the system. The method described in this section allows
us to push the system sizes to higher values. The idea here is to avoid storing
a large Hamiltonian in memory, which can be large even in the sparse case, but
rather store it by parts. Then a single step of the time evolution will consist of
consequent updates with the Hamiltonian components. The idea of this method
will be further developed in Sec. 4.3.1, where the state vector will be stored in a
new form.
First, we need to introduce some graphical notation, which will be useful in
Chap. 4 as well. Let us consider a one dimensional system constructed of local
constituents with the local Hilbert space dimension d. This could be a spin-1/2
chain with d = 2, for spin up and down. Then the dimension of the Hilbert space
will be equal to the multiplication of local dimensions dim(H) = dM , where M is
the number of local constituents. The state-vector will take the following form

|ψ(t)〉 =
d∑

{rα}=1
cr1,r2,...,rM (t)|r1, r2, ..., rM〉, (3.16)

where {rα} are counters of local dimensions and |rα〉 are state-vectors of the local
constituents. In the case of spin-1/2: |r1〉 = | ↓〉 and |r2〉 = | ↑〉.
A Hamiltonian in general takes an analogous form

Ĥ =
d∑

{rα}=1

d∑
{r′α}=1

dr
′
1,r
′
2,...,r

′
M

r1,r2,...,rM
|r1, r2, ..., rM〉〈r′1, r′2, ..., r′M |. (3.17)

One can see in Fig. 3.1 both tensors of the state and Hamiltonian represented as
diagrams. For operators, in general, it is more convenient to separate input and

43



Chapter 3 Full Hilbert Space Methods

output index groups, which is why we choose to draw input {r′α} at the top and
output {rα} at the bottom.

  

Figure 3.1.: Diagrammatic representation of the state |ψ〉 and Hamiltonian Ĥ
tensors. Note that the number of legs on the diagram is equal to the number
of indices on the tensors.

Let us also consider a Hamiltonian that can be expanded as a sum of local Hamil-
tonians. For the sake of an instructive example we can consider local Hamiltonians
acting on at most 2 neighboring constituents:

Ĥ =
∑
k

ĥk,k+1, (3.18)

which means that ĥr,r+1 only acts on constituents r and r+ 1 (neighboring inter-
actions),

ĥk,k+1 =
d∑

rk,rk+1=1

d∑
r′
k
,r′
k+1=1

f
r′k,r

′
k+1

rk,rk+1 |rk, rk+1〉〈r′k, r′k+1|, (3.19)

and the time evolution operator reads

Û(∆t) = e−iĤ∆t ≈
∏
r

e−iĥr,r+1∆t︸ ︷︷ ︸
Ur,r+1(∆t)

+O(∆t2), (3.20)

where the error is due to the fact that in general local Hamiltonians do not
commute between each other:

[ĥr,r+1, ĥr+1,r+2] 6= 0. (3.21)
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This expansion is just the lowest order expansion of the Baker–Campbell–Hausdorff
formula [111]. The single time-evolution step consists of a consecutive evolution
of all partitions of the state vector |ψ(t)〉, as it is shown in Fig. 3.2.

  

Figure 3.2.: Diagrammatic representation of a single time-evolution step of
the tensor cr1,r2,...,rM (t). After the contraction of all internal legs this scheme
produces cr1,r2,...,rM (t+ ∆t).

At this point one can see that there is no need to store the entire Hamiltonian in
memory. By using this technique one can perform time-evolution of system sizes
unreachable via by methods operating with the whole Hamiltonian. Note that
now it is only the state |ψ(t)〉 which scales exponentially with the system size and
hence will take most of the memory. For instance, a state vector for 28 spins-1/2
will require 4GB of memory in double precision, which makes it tractable for
modern personal computers.
In general, even time-evolution of the Hamiltonian with long-range interactions
can be simulated using Suzuki-Trotter decomposition, via application of swap
gates

Ŝi,i+1|i, i+ 1〉 = |i+ 1, i〉, (3.22)

but it leads to the increase of the decomposition error and hence makes the
simulation more costly.
Besides that, the method described above is not limited to Hamiltonians with
two-body interactions. For instance in the case of three body interactions one
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will use gates ĥ spanning over three sites. This will of course require the expansion
of the Hamiltonian of each particular problem individually.

3.1.3. Symmetries

Lastly, we will consider examples of the methods when the Hamiltonian has a
particular symmetry which leads to the reduction of the computational cost.
Ultimately every symmetry of the Hamiltonian is related to a conservation law,
for instance magnetization, momentum, parity, spin inversion, and/or number of
particles in the system.
Using conservation laws (symmetries) of the Hamiltonian Ĥ we can choose the
basis in such a way that the matrix representation of Ĥ becomes block-diagonal
(Fig. 3.3). Then each block can be diagonalized independently.

  

Figure 3.3.: Block diagonalization of the Hamiltonian allows us to solve each
of the blocks independently and hence reduce the computational cost.

The conservation of the particle number in the Bose-Hubbard model (2.57) means
that from the Hilbert space with an infinite number of possibilities we need to
consider only (N+M−1)!/[N !(M−1)!] states, where N is the number of particles
and M is the number of sites.
For homogeneous systems with periodic boundary conditions we have transla-
tional symmetry associated with the translation operator

T̂ |a, b, c〉 = |b, c, a〉, (3.23)

where a, b, c are local states of the 3 equal constituents of the whole system.
Also homogeneous systems have a reflection symmetry associated with the parity
operator

P̂ |a, b, c〉 = |c, b, a〉. (3.24)

It means that the system Hamiltonian Ĥ commutes with both of these operators
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[Ĥ, T̂ ] = 0,
[Ĥ, P̂ ] = 0,

(3.25)

hence the solutions of the eigenproblem (3.2) for each of the symmetry sectors
can be found independently. The implementation of symmetries requires writing
a completely new set of codes for each particular symmetry and Hamiltonian.

3.1.4. Imaginary Time Evolution

Time evolution algorithms with a minor modification can also be used to obtain
the ground state of the system. In order to do so one evolves an initial state with
imaginary time. As one can see below all components of the state different from
the ground state will have an exponentially small suppression prefactor.
The algorithm starts as one chooses the evolution time t = −iτ , where τ → +∞.
Then

|ψ(τ)〉 = lim
τ→+∞

e−Ĥτ |ψ(0)〉
‖e−Ĥτ |ψ(0)〉‖

→ |φ0〉, (3.26)

where |ψ(0)〉 is the initial state. One needs to renormalizes the state because of
the non-unitary evolution operator. It is easy to see why this indeed gives the
ground state by looking at the expanded expression in the denominator

e−Ĥτ |ψ(0)〉 =
∑
n

e−Enτ |φn〉〈φn|ψ(0)〉

= e−E0τ
(
|φ0〉〈φ0|ψ(0)〉+ e−(E1−E0)τ |φ1〉〈φ1|ψ(0)〉+ ...

)
= e−E0τ

(
|φ0〉〈φ0|ψ(0)〉+O(e−(E1−E0)τ )

)
, (3.27)

where we see that the contribution of all excited state are exponentially sup-
pressed by at least a factor e−τ∆E defined via the energy gap ∆E = E1 − E0.
In principle one can start with any initial state |ψ(0)〉, even with a state com-
pletely orthogonal to the target ground state. The reason for this is in numerical
errors that eventually add up to a small component of the ground state. Having
a finite gap between the ground state and the rest of the spectrum will lead to
the exponential increase of the ground state component and suppression of all
other eigenstates. For exactly this reason it might be practically difficult to use
imaginary time evolution when one wants to preserve a certain symmetry in the
system. For instance, if one desires to obtain the ground state |φ[N ]

0 〉 of the Bose-
Hubbard model (2.57) with a fixed number of bosons N , then a small numerical
error introduces a component of the state |φ[N ′]

0 〉 that is a ground state of the
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system with N ′ bosons. If the corresponding ground state energy E[N ′] < E [N ],
then the algorithm will converge to |φ[N ′]

0 〉 instead of |φ[N ]
0 〉.

One can also obtain the lowest excited states by subtracting the components of
lower eigenstates (found beforehand) after each time step. By choosing t = +iτ ,
where τ → +∞ we can also obtain the highest eigenstates.

3.2. Open Quantum Systems

In the previous section we discussed some numerical techniques that can be imple-
mented for so-called closed systems, i.e. systems for which the whole Hamiltonian
is known. However, in reality quantum many-body systems cannot be truly iso-
lated from the environment. Furthermore, the environment can be quite large
and too complex to be included into the model [112]. That is why approaches
have been developed to treat such systems.
The entire composite system is governed by the Hamiltonian

Ĥ = Ĥsys + Ĥenv + Ĥint, (3.28)

where Ĥsys describes the system of interest, Ĥenv describes the environment, and
Ĥint is for their interaction. Then the pure unentangled state of the composite
system takes form

|ψ〉 = |ψ〉sys ⊗ |ψ〉env, (3.29)

where |ψ〉sys is the partition of the system of interest and |ψ〉env describes the
state of the environment. Here we are genuinely interested in the dynamics of
the system only that is why the environment part of the system is traced out as

ρ̂ ≡ ρ̂sys = trenv (|ψ〉〈ψ|) , (3.30)

i.e. the components of the state-vector representing the environment part are
averaged. Initially ρ̂ is a pure matrix that corresponds to the fact that the
environment has not interacted with the system yet.
After some time evolution the system interacts with the environment and the
total state of the system can not be written as a simple product of the system and
environment part any more. The state of the system becomes mixed, in general,
so is the density matrix of the system. From now on we will omit the subscripts
related to the system of interest, the environment parts leave the consideration of
the problem explicitly and stay in the following equations in the integrated form
of jump operators.
In the case of Markovian dynamics the master equation has the Lindblad form
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System Environment

Figure 3.4.: Diagram of the global system decomposed into the system of inter-
est Ĥsys, environment Ĥenv, and their interaction Ĥint. The system of interest
is made of the degrees of freedom of the atoms of interest and described by the
state ρ̂. The environment can include other atoms’ and electromagnetic field’s
degrees of freedom, which interact with the atoms of the system.

[112]

dρ̂(t)
dt = −i[Ĥ, ρ̂(t)] + L[ρ̂(t)], (3.31)

where ~ ≡ 1, and

L[ρ̂(t)] = 1
2
∑
α

[
2L̂αρ̂(t)L̂†α − L̂†αL̂αρ̂(t)− ρ̂(t)L̂†αL̂α

]
, (3.32)

is the Lindblad term with a set of so-called jump operators {L̂α} that act on the
system coupling it with the environment. Those jump operators can be local or
global, depending on the nature of the interaction between the system and the
bath. A great example of the jump operators is the decay operator that transfers
the population down to lower levels and causes the system to emit a packet of
energy to the environment — photons, in the case of coupling to the radiation
field.
One can note that in the absence of the Lindblad term L[ρ̂(t)] the master equation
(3.31) becomes identical to (3.1) for the density matrix ρ̂(t) = |ψ(t)〉〈ψ(t)|.
An obvious way of numerical implementation of the time evolution is to vectorize
(3.31). For this, one reshapes the density matrix to a vector form

ρ̂(t)→ |ρ(t)〉 (3.33)

by reordering indices. Then the master equation will take the form

d|ρ(t)〉
dt = −i

[
(I ⊗ ĤT )− (Ĥ ⊗ I)

]
|ρ(t)〉+ L̃[|ρ(t)〉], (3.34)
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where

L̃[|ρ(t)〉] = 1
2
∑
α

[
2L̂†α ⊗ L̂Tα − I ⊗ (L̂†αL̂α)T − L̂†αL̂α ⊗ I

]
|ρ(t)〉. (3.35)

One can implement any of the techniques described in Sec. 3.1. This algorithm
is very expensive computationally because of the enormous size of the super
operators contracted here for the time evolution of the vectorized density matrix.
That is why the method of quantum trajectories becomes a favorable choice
when one wants to obtain the time-evolution of an open quantum system. The
method is very flexible in its implementation and can be used for a large variety
of systems in combination with other methods, such as DMRG (see Chap. 4).
Below we introduce the quantum trajectory method, but a more detailed review
can be found in [95].

3.2.1. Quantum Trajectories

The general idea of the quantum trajectory method [94] is that instead of evolv-
ing the density matrix of the system using the master equation (3.31), one writes
down an equivalent set of equations that describe a stochastic process in the open
quantum system, namely all interactions with the environment become probabilis-
tic events.
Then in order to calculate the time-evolution of a certain observable, one considers
the initial states of the system as a pure state |ψ(0)〉. If the initial state ρ̂(0) is not
pure, then the initial state vectors |ψ(0)〉 should be sampled and evolved with the
set of the stochastic equations performing probabilistic events (i.e. interaction
with the environment) according to the predefined rules. For each quantum
trajectory one calculates the required variables as done for standard unitary time
evolution (properly normalizing the state if needed). Then this process is repeated
for a whole set of quantum trajectories and the value of the expectation variable
is averaged over all these trajectories in the end.
Now let us consider a concrete example that will show how the method of quantum
trajectories can be implemented, and that it is indeed equivalent to the evolution
via the master equation.
First, we rewrite (3.31) in the following form

dρ̂(t)
dt = −i[Ĥeff ρ̂(t)− ρ̂(t)Ĥ†eff ] +

∑
α

L̂αρ̂(t)L̂†α, (3.36)

where we refer to

Ĥeff = Ĥ − i

2
∑
α

L̂†αL̂α (3.37)
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as the effective Hamiltonian for the system coupled with environment (note that
it is not Hermitian any more, so the system experiences losses due to coupling to
the environment). The last term of (3.36) is then called the recycling term as it
restores the norm of the state vector due to losses caused by the non-Hermiticity
of the effective Hamiltonian.
The whole evolution of the single trajectory will consist of the following steps.
First, we perform the evolution of the state vector |ψ(t)〉 by time δt, so

|ψ(t+ δt)〉 = (1− iĤeffδt)|ψ(t)〉, (3.38)

and we calculate the norm of the resulting state vector, which will be less than
one because Ĥeff is not Hermitian:

〈ψ(t+ δt)|ψ(t+ δt)〉 = 1− δp+O(δt2). (3.39)

The value δp arises from the non-Hermitian part of the effective Hamiltonian and
can be split in the sum over all possible channels of losses

δp = δt〈ψ(t)|i(Ĥeff − Ĥ†eff)|ψ(t)〉
= δt

∑
α

〈ψ(t)|L̂†αL̂α|ψ(t)〉 ≡
∑
α

δpα. (3.40)

By doing this we can interpret a single δpα as the relative probability of the action
described by the jump operator L̂α that acts on the state vector |ψ(t)〉.
Secondly, we take into account the recycling term in a probabilistic manner. From
the perspective of numerical calculations we choose a random number r1 from the
interval [0, 1], and comparing it with the norm of the state vector 1− δp.
• With probability 1− δp the state vector gets renormalized, i.e.

|ψ(t+ δt)〉 = |ψ(t+ δt)〉√
1− δp (3.41)

• With probability δp the quantum jump happens, i.e.

|ψ(t+ δt)〉 = L̂α|ψ(t)〉√
δpα/δt

, (3.42)

where only one particular jump α occurs. In order to identify which partic-
ular jump happens, one needs to draw another random number r2 from the
interval [0, 1], and compare it with the cumulative distribution function of
all jumps

Πα =
α∑
β=1

δpα
δp

. (3.43)
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The location of r2 will then determine which particular quantum jump
happens.

By following the described procedure, one will obtain the evolution of a single
quantum trajectory. In order to convince ourselves that this stochastic method
is indeed equivalent to the master equation (3.31), we can construct the density
operator and show that after averaging, it produces the exact result up to second
order corrections in the time step.
Without loss of generality, let us consider the case with the initial pure state
|ψ(t)〉, then its density matrix reads

ρ̂qt(t) = |ψ(t)〉〈ψ(t)|. (3.44)

Following the above described procedure we obtain that the averaged value of the
density operator after one time-step reads

〈ρ̂qt(t+ δt)〉avr =(1− δp) |ψ(t+ δt)〉√
1− δp

〈ψ(t+ δt)|√
1− δp

+ δp
∑
α

δpα
δp

L̂α|ψ(t)〉√
δpα/δt

〈ψ(t)|L̂†α√
δpα/δt

+O(δt2). (3.45)

After simplification one can rewrite it as

〈ρ̂qt(t+ δt)〉avr − ρ̂qt(t)
δt

= −i(Ĥeff ρ̂qt(t)− ρ̂qt(t)Ĥ†eff) +
∑
α

L̂αρ̂qt(t)L̂†α +O(δt).

(3.46)

This result is also valid for a mixed state ρ̂qt(t), where one samples among the
initial state vectors as well. Now we can see that the quantum trajectories method
is equivalent to the first order approximation of the master equation.
Note that in order to calculate the expectation values of an operator Ô one needs
to take the ensemble average over the trajectories

〈Ô〉 = tr(Ôρ̂qt(t)) = 1
Nqt

Nqt∑
n

〈ψ[n](t)|Ô|ψ[n](t)〉, (3.47)

where |ψ[n](t)〉 is a single realization of Nqt quantum trajectories. The error
of the expectation value is calculated as the standard deviation of the mean,
equivalent to the standard deviation multiplied by 1/

√
Nqt. Thus, by performing

the procedure described above we have shown that in the case of a large number of
quantum trajectories Nqt →∞ and small time steps δt→ 0, one can numerically
simulate the evolution under the Lindblad master equation (3.31).
Using this first order method relies on small time steps because of two independent
factors. First, the time step should be small as the time evolution is realized via
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the first order expansion in δt. Secondly, this method of quantum trajectories
relies on the fact that within one step at most one quantum jump can happen,
i.e. δp is kept small. There are several techniques [95] that one can implement
to improve the order of the method. For instance one notices that the quantum
jump always occurs at the end of the time step, whereas in reality it happens
within the step. This leads to an underestimation of the emission rate. Another
issue is related to the use of only the first order time evolution in (3.38); an
appropriate evolution using higher order methods can increase the accuracy of
the method.

3.3. Conclusions

In this chapter we considered general numerical methods taking in consideration
the entire Hilbert space of the system. In the case of the closed quantum system
the solution of the problem always comes to solving the time-dependent (3.1) or
time-independent (3.2) Schrödinger equations with a known Hamiltonian. If one
is interested in only a small subsystem it is possible to use the open system ap-
proach and trace out the part of system which forms the environment. Then the
dynamics of the system obeys the master equation (3.31). Among the methods
we mentioned here are various approximate methods of time evolution, the de-
composition of the Hamiltonian, use of symmetries, and the stochastic approach
of quantum trajectories.
In Chap. 4 we will consider advanced methods of dealing with exponential growth
of the Hilbert space via the use of the subspace of only relevant states. On the
top of those methods one can always use methods presented in this chapter.
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4. Reduced Hilbert Space Methods
In this chapter we will focus our attention on one of the most powerful numerical
methods in the area of correlated quantum many-body systems — Density Matrix
Renormalization Group (DMRG) combined with Matrix Product representation
of States and Operators (MPS and MPO). These methods have found a lot of
implementations outside of this area of physics, but we will focus our attention
only on quantum many-body systems. A much more detailed and broad overview
of the methods can be found in the following reviews [80, 81]. The main idea of
those methods is the reformulation of problems of many-body quantum mechanics
in the language of tensor networks (see Fig. 4.1) and the use of ideas based on the
concept of entanglement to extract accurately certified approximate solutions.
The starting point of the method coincides with the development of the time-
independent DMRG algorithm by S. R. White [82, 83], which allowed ground
state calculations of 1D models. In subsequent works [84, 85] it was shown that
the ground state obtained via the DMRG algorithm can be always written as an
MPS. In [86] it was quantified how well MPS approximate exact ground states of
one-dimensional quantum systems, which gave a theoretical justification for the
high accuracy of DMRG algorithms even in the case of critical systems, making
use of entanglement.
The next important development in the field was when time evolution codes using
DMRG methods were developed [87–89]. Those methods were independently
developed by different groups at the same time and were referred to by different
names, such as TEBD and t-DMRG, but exploited the same idea of the adaptive
change of the Hilbert space basis, DMRG optimizations, and truncation of the
expanding Hilbert space.
Later development of the methods made it possible to include matrix product
representation of operators (MPO) and develop algorithms that were more effi-
cient for long-range Hamiltonians [90–92]. Also, the same MPO description was
successfully used for representation of density matrices of thermal states and their
evolution [93].
In addition to these developments for 1D systems, there were also quite successful
attempts to numerically treat 2D and 3D systems with other tensor networks such
as PEPS [80] and MERA [113], but these works are only indirectly related to the
work in this thesis.
In Sec. 4.1 we will discuss the general structure of MPS, the role of entanglement
and area laws in quantum many-body systems. We will then proceed (Sec. 4.2)
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Chapter 4 Reduced Hilbert Space Methods

to MPOs and give some examples of construction of useful operators, such as
Hamiltonians or projectors. In Sec. 4.3 we conclude by giving an overview of
some methods for solving quantum mechanical problems in 1D that are most
relevant for us, such as calculation of eigenstates and thermal states, and time
evolution simulations.

  

Figure 4.1.: Graphical notation we use to represent tensor networks. Each
tensor (shown as a box) has a number of indices, which are represented as
legs coming out of the box. The tensor with zero legs is just a scalar, with
one leg a vector, two legs a matrix, and with three and more a higher-rank
tensor. When two or more tensors are connected, it means that they are to be
contracted (dash boxes show it) with the corresponding indices. A contraction
can be done between indices of the same tensor as well. Then contraction of
multiple tensors can produce tensors of higher rank.

4.1. Matrix Product States (MPS)

The Hilbert space of a quantum mechanical many-body system is exponentially
large in the number of constituents of the system. For example the Hilbert
space of one qubit is two-dimensional, two qubits have 4-dimensional space, and
2M−dimensional for M qubits. In order to store the information of an arbitrary
state vector

|ψ〉 =
dα∑

{rα}=1
cr1,r2,...,rM |r1, r2, ..., rM〉, (4.1)
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4.1 Matrix Product States (MPS)

one needs to store the tensor cr1,r2,...,rM , which is the expansion of the state in
local bases {|rα〉} with dimensions dα (Fig. 4.2). For instance, a system of M
identical qubits will have a Hilbert space of 2M elements, which is the number of
elements in the tensor cr1,r2,...,rM .

  

Figure 4.2.: Graphical representation of the tensor associated with the state
vector |ψ〉 (4.1).

Let us consider an example one dimensional system that consist ofM subsystems
with identical local d-dimensional Hilbert spaces spanned by the set of state
vectors {|rα〉} where α = 1, 2, ...,M is the counter of the subsystems. Then,
instead of storing the state vector in the standard form (4.1) one can use the
following form

|ψMPS〉 =
dα∑

{rα}=1
A[1]r1A[2]r2 ...A[M ]rM |r1, r2, ..., rM〉, (4.2)

where each object A[α]rα is a D[α]
L × D

[α]
R matrix, and [α] denotes the index of

the subsystem. The state can also be graphically illustrated as in Fig. 4.3 where
each element A[α] has three indices, i.e. it is a rank-3 tensor (see Fig. 4.1). One
immediately sees that in order for this expression to be correct for an arbitrary
state vector the dimensions of these matrices should match, i.e. D[α]

R = D
[α+1]
L .

Also, as the result of the contraction of all matrices A[α] for a fixed set of {rα}
should produce a scalar equal to c{rα} the following must be true: D[1]

L = 1 and
D

[M ]
R = 1. From now on we will be calling A[α] local tensors, D[α]

L/R the bond
dimensions, and d the local dimension. This representation of the state vector is
a Matrix Product State (MPS).
Note that the tensor diagrams, the MPS |ψMPS〉 and the definition (4.2) that we
have just considered correspond to the case of open boundary conditions. In the
case of periodic boundary conditions, the first and the last tensor will be also
connected. The best graphical representation of such a tensor network is where
local tensors A[α] are placed on a ring, not on a line. Then

|ψPBC
MPS〉 =

dα∑
{rα}=1

tr
[
A[1]r1A[2]r2 ...A[M ]rM

]
|r1, r2, ..., rM〉, (4.3)

where the requirement that D[1]
L = 1 and D

[M ]
R = 1 is lifted. However both,
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Figure 4.3.: Graphical representation of the tensor network associated with the
state vector |ψMPS〉 (4.2). Each subsystem has a corresponding rank-3 tensor
A[α]. In the case of the first and the last tensor one of their bond dimensions is
equal to one. Each connected link between tensors indicates summation, and
each open link means an open index rα. The representation like this, where
tensors are ordered in a chain is called Matrix Product State (MPS) with Open
Boundary Conditions (OBC).

representations are equivalent with the difference only in algorithms that can
be implemented on them. The form for PBC (4.3) has the advantage in the
case when the Hamiltonian has PBC as well, as |ψPBC

MPS〉 will have smaller bond
dimensions for the same amount of entanglement in the state.
In order to be concrete with definitions let us consider a couple of examples of
such matrix product states:
• The bosonic Gutzwiller state is a very simple state where all bond dimen-

sions D = 1, i.e. all matrices A[α]rα become just scalars. These states are
also called product states as the global state is the direct product of local
states. For instance, a state of 2 spins

|ψprod〉 = |0〉+ |1〉√
2
⊗ |0〉 − |1〉√

2
(4.4)

is a product state with c0,0 = −c0,1 = c1,0 = −c1,1 = 1/2. In an MPS form
for d = 2 this state will be stored asA

[1]0 = 1√
2 , A[2]0 = 1√

2
A[1]1 = 1√

2 , A[2]1 = − 1√
2

. (4.5)

• Now let us look at a different example, a Bell state

|ψBell〉 = |0〉 ⊗ |0〉 − |1〉 ⊗ |1〉√
2

, (4.6)

which has only two non-zero elements c0,0 = −c1,1 = 1/
√

2. In this case
the minimal bond dimension between the spins will be D = 2, and the
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4.1 Matrix Product States (MPS)

corresponding MPS matrices can take the following form
A[1]0 =

(
1 0

)
, A[2]0 =

 0
−1/
√

2


A[1]1 =

(
0 1

)
, A[2]1 =

 1/
√

2
0

 . (4.7)

Note that this state cannot be represented by an MPS with bond dimensions
D = 1. In Sec. 4.1.2 we will connect it with the important concept of spatial
entanglement.

4.1.1. Orthonormal Forms of MPS

As one can see from the definition (4.2) and especially from the two examples
above the definition of MPS does not uniquely specify the local tensors A[α]. For
instance, one can insert I = X−1X on a bond between two local tensors A[β] and
A[β+1]. Then by redefining these tensors as

Ã[β]rβ = A[β]rβX−1, Ã[β+1]rβ+1 = XA[β+1]rβ+1 , (4.8)

one can define a new MPS

|ψ̃MPS〉 =
dα∑

{rα}=1
A[1]r1 ...Ã[β]rβÃ[β+1]rβ+1 ...A[M ]rM |r1, r2, ..., rM〉, (4.9)

which is identical to the original |ψMPS〉. This means that each MPS has gauge
freedom.
However, there is a set of convenient forms of MPS that can greatly reduce
the amount of numerical calculations. Those forms are called, left-, right-, or
mixed-orthonormal. In literature the term “orthonormal” is often substituted by
normalized or canonical.
If all local tensors A[α] satisfy the left gauge condition

dα∑
rα=1

(
A[α]rα

)†
A[α]rα = I, (4.10)

where I is a D[α]
R ×D[α]

R identity matrix, then the state |ψMPS〉 is left-orthonormal.
If all local tensor A[α] satisfy the right gauge condition

dα∑
rα=1

A[α]rα
(
A[α]rα

)†
= I, (4.11)

where I is aD[α]
L ×D[α]

L identity matrix, then the state |ψMPS〉 is right-orthonormal.
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If for a certain site β all local tensors to the left are left-orthonormal and all
local tensors to the right are right-orthonormal, then the MPS is called mixed
orthonormal. We can refer to the site β as the orthonormal center. Then one can
immediately see that left and right orthonormal form are just special cases of the
mixed orthonormal form.
The great advantage of the mixed orthonormal form is that it reduces the com-
putational effort when one wants to calculate an expectation value of a local
operator Ô[β] acting only on the site β. Then all local tensors to the left and
to the right from the orthonormal center will produce identities once they are
contracted in the order starting from the edges of MPS and the calculation will
read

〈ψMPS|Ô[β]|ψMPS〉 =
dβ∑

rβ ,r
′
β

=1

(
A[β]r′β

)†
Or′

β
,rβA

[β]rβ , (4.12)

where O is the matrix representation of Ô[β] in the basis |rβ〉. For this particular
reason we will refer to all other form as mixed forms, i.e. not orthonormal.
In order to perform left orthogonalization of a given mixed orthonormal state, one
should perform consecutive transformation of the local tensors, starting from the
left edge. First one needs to reshape a local tensor A[β]rβ

n,m into a matrix Ā(rβn),m
where the local and left bond indices are combined in one index. The next step
is to perform the singular value decomposition of this matrix

Ā(rβn),m =
∑
q

U(rβn),qSq,q
(
V †
)
q,m

, (4.13)

where U and V † are unitary matrices, and Sq,q is a diagonal matrix of the singular
values λq. Then we redefine the local tensor by reshaping the left unitary matrix

A[β]rβ
n,q = U(rβn),q, (4.14)

so the condition (4.10) is satisfied automatically, and then we absorb the rest in
the local tensor of the next site to the right

Ã[β+1]rβ+1
q,p =

∑
m

λq
(
V †
)
q,m

A[β+1]rβ+1
m,p . (4.15)

After that, one needs to move to the next site to the right and repeat the process.
For this reason this procedure should be performed starting from the left edge of
the MPS.
In order to perform right orthogonalization one needs to perform a mirror imaged
procedure to the one described above, i.e. starting from the right edge. First one
needs to reshape a local tensor A[β]rβ

n,m into a matrix Ān,(rβm) where the local and
right bond indices were combined in one index. Then the next step is to perform
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4.1 Matrix Product States (MPS)

the singular value decomposition of this matrix

Ān,(rβm) =
∑
q

Un,qλq
(
V †
)
q,(rβm)

. (4.16)

Then we redefine the local tensor by reshaping the right unitary matrix

A[β]rβ
q,m =

(
V †
)
q,(rβm)

, (4.17)

so that the condition (4.11) is satisfied automatically, and the rest can be absorbed
in the local tensor of the next site to the left

Ã[β−1]rβ−1
p,q =

∑
n

A[β−1]rβ−1
p,n Un,qλq. (4.18)

If one starts converting the state to an orthonormal form starting from both
edges, then they will inevitably meet at the orthonormal center and the resulting
state will be mixed-orthonormal.

4.1.2. Entanglement

Now we are at the position to introduce one of the most important concepts in
this method, spatial entanglement and its measures. Let us consider a normalized
state in the MPS form, where we split the system in two parts (Fig. 4.4)

|ψ〉 =
∑
q

λ[β]
q |ψ[1,2,...,β]

q 〉|ψ[β+1,...,M ]
q 〉, (4.19)

where λ[β]
q are called Schmidt values. They are all real positive and map each

state from the left-hand side of the system with a corresponding state from the
right-hand side of the system. One can note that if all states |ψ[1,2,...,β]

q 〉 and
|ψ[β+1,...,M ]
q 〉 are orthonormal then from the normalization of |ψ〉 we get∑

q

|λ[β]
q |2 = 1. (4.20)

We say that left-hand side of the system is not entangled with the right-hand
side if and only if there is only one non-zero Schmidt value, which is equal to 1.
If there is more than one such value the two parts of the system are entangled.
There are different measures of entanglement available [114].

4.1.2.1. Von Neumann Entanglement Entropy

If the entire system is split in two parts A and B (not necessary left and right
hand sides), the bipartite von Neumann entanglement entropy of the pure state
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Figure 4.4.: Graphical representation of the tensor network associated with the
state vector |ψ〉 (4.19). Schmidt values λ[β]

q map each state from the left-hand
side of the system with a corresponding state from the right-hand side.

ρ̂ is defined as

SvN(ρ̂A) = −tr [ρ̂A log2 ρ̂A] = −tr [ρ̂B log2 ρ̂B] = SvN(ρ̂B), (4.21)

where

ρ̂A = trBρ̂, ρ̂B = trAρ̂, (4.22)

and trA,B are partial traces over A or B subsystems. Note that the result is equal
for A and B.
Coming back to the above example we have the density matrix in the form

ρ̂ = |ψ〉〈ψ| =
∑
q,q′

λ[β]
q λ

[β]
q′ |ψ[1,2,...,β]

q 〉|ψ[β+1,...,M ]
q 〉〈ψ[1,2,...,β]

q′ |〈ψ[β+1,...,M ]
q′ |, (4.23)

so that after tracing out either left or right hand sides we obtain the same value
of the von Neumann entanglement entropy

SvN = −
D[β]∑
q=1

(
λ[β]
q

)
2 log2

[(
λ[β]
q

)
2
]
, (4.24)

where summation goes over all Schmidt values D[β]. One can see that the max-
imum entanglement entropy is achieved in the case of all λ[β]

q = 1/
√
D[β], which

is Smax
vN = log2D

[β].
For instance, the product state (mean field Gutzwiller ansatz) (4.4) has only one
Schmidt value λ = 1 and SvN = 0, hence its spins are not entangled. On the
other hand the fully entangled Bell state has the maximum number of Schmidt
values and they are equal, λ1 = λ2 = 1/

√
2, so SvN = 1, which is maximum in

this case.
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4.1 Matrix Product States (MPS)

4.1.2.2. Renyi Entanglement Entropies

Another common measure of bipartite entanglement is Renyi entanglement en-
tropies

Sn(ρ̂A) = 1
1− n log2 [trρ̂nA] = 1

1− n log2 [trρ̂nB] = Sn(ρ̂B), (4.25)

where n > 0 and n 6=1. It also relies on splitting of the system into two parts and
it also produces the same result independently of the chosen partition for pure
total states.
Note that in the limit n→ 1 the Renyi entanglement entropy approaches the von
Neumann entropy.

4.1.2.3. Truncation Error

In order to store the entire MPS exactly, one needs to store all Schmidt coefficients
λ[β]
q at each inter-site bond. However, the larger is the Schmidt coefficient, the

larger is its contribution to the total state (4.19).
This is when another important concept needs to be introduced — truncation
of the MPS. We are going to store only the first few largest Schmidt coefficients
of the state (4.19), let us call this number D[β]

trunc. Then the missing part of the
norm is

1− 〈ψ|ψ〉 =
D[β]∑

q=D[β]
trunc+1

(
λ[β]
q

)
2 ≡ ε

[β]
trunc, (4.26)

which can be interpreted as the missing information about the state.
The fundamental difference between states possessing some amount of entangle-
ment and not (independently of the chosen measure as they all are equal to 0
for non-entangled states) is that the parts of the quantum states with spatial
entanglement cannot be described exactly as independent systems. So if some of
the Schmidt coefficients are truncated, then the state loses some information as
well.
Whereas it is difficult to visualize this lost information in the quantum system,
we can take a look at a simple analog from linear algebra. Instead of the quan-
tum density matrix ρ̂ we want to see how a matrix M loses information if some
of its Schmidt coefficients are truncated. We first perform the singular value
decomposition of the matrix

Mik =
∑
j

Uij · Sjj · (V †)jk, (4.27)
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in analogy to Sec. 4.1.1. Now we reconstruct M , but only with Dtrunc largest
singular values

M̃ik =
Dtrunc∑
j=1

Uij · Sjj · (V †)jk, (4.28)

and ask how close M̃ is to the original M .

Figure 4.5.: Example of the truncation of Schmidt coefficients of the Strath-
clyde logo represented as a 1200× 1141 matrix where each element stores the
gray-scale intensity. It was singular value decomposed and then composed 6
times with a different number of the first Dtrunc largest Schmidt coefficients.
The example shows that a “decent” result can be achieved even with a small
fraction of Schmidt coefficients.

In Fig. 4.5 one can see a graphical representation of a 1200×1141 matrixM , where
each element is a number between 0 and 1, indicating the intensity on the gray
scale. If one keeps all 1141 Schmidt coefficients, the matrix M is reconstructed
completely. However, if one truncates the reconstruction worsens, until the image
becomes unrecognizable with just one largest coefficient. The important thing is
that the original image can be reconstructed quite well with only 200 largest
coefficients. This basic principle of keeping only the largest contributions to the
state underlies the idea of truncation of quantum states with low entanglement.
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4.2 Matrix Product Operators (MPO)

4.1.3. Area Law

Now we have approached an important point where we can explain why MPS
is such a success for treating quantum many-body systems. It has been shown
that the bipartite entanglement of the ground state of a gapped 1D system does
not depend on its size [115]. And such a state can be represented in MPS form
with a fixed bond dimension D [86]. This concept is called the area law, which
means that the bipartite entanglement of a system only depends of the size of
the boundary between its partitions and not their volumes. A good review with
many examples can be found in Ref. [116].
Quantitatively it has been shown [117,118] that for gapped 1D quantum systems
at the critical point the von Neumann entanglement entropy of the ground state
scales as

SvN ∼ N
c

6 logL+ c1, (4.29)

where c is the central charge of the corresponding Conformal Field Theory (CFT),
N is the number of boundaries between subsystems, L is the system size, and
c1 is a non-universal constant. For the same system but away from the critical
point

SvN ∼ N
c

6 log ξ + c1, (4.30)

where ξ is the correlation length, which can be large but is always finite. This
means that the fastest growth of the entanglement entropy with the system size
occurs at the critical point. In this case, the MPS bond dimension required to
faithfully store the state will grow only polynomially.

4.2. Matrix Product Operators (MPO)

The next vital step in reformulation of quantum mechanical problems in the
language of tensor networks is finding an appropriate notation for operators. A
natural generalization of MPS described in Sec. 4.1 is given by Matrix Product
Operators (MPO).
A generic operator that one would use for a quantum many-body system will
have the following form

Ô =
dα∑

{rα,r′α}=1
cr
′
1,r
′
2,...,r

′
M

r1,r2,...,rM
|r1, r2, ..., rM〉〈r′1, r′2, ..., r′M |, (4.31)

where analogously to the MPS one needs to store a multidimensional tensor
c
r′1,r
′
2,...,r

′
M

r1,r2,...,rM in the fixed basis {|rα〉}, where each element |rα〉 corresponds to the
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local dα-dimensional Hilbert space for a part of the system, e.g. a spin, a site of
the optical lattice, or a superconducting qubit (Fig. 4.6). For instance, a system
of M identical spins-1/2 will require storage of 22M elements.

  

Figure 4.6.: Graphical representation of the tensor associated with the generic
operator Ô (4.31).

The possibility of using MPO representations is useful because most of the oper-
ators encountered are extremely sparse, hence can be effectively represented as a
product of local tensors, analogous to MPS. Then a generic form of an operator
in MPO representation will read

ÔMPO =
dα∑

{rα,r′α}=1
B

[1]
r1,r′1

B
[2]
r2,r′2

...B
[M ]
rM ,r

′
M
|r1, r2, ..., rM〉〈r′1, r′2, ..., r′M |, (4.32)

where each object B[α]
rα,r′α

is a D[α]
L × D

[α]
R matrix, and [α] is the counter of the

system parts (Fig. 4.7). Analogously to the case of MPS, the dimension of the
first and last tensor are chosen such that multiplication of the matrices with the
fixed set {rα, r′α} will produce a scalar, i.e. D[1]

L = 1 and D[M ]
R = 1. Analogously

to MPS B[α] are called local tensors, D[α]
L/R bond dimensions, and dα = d (for

simplicity) is the local dimension.
The notation (4.32) can be used for storing the density matrix ρ̂ of the system,
instead of the state vector. This allows us to work with mixed states, for instance
for an open quantum system obeying the master equation (3.31). One can also
implement all the ideas of orthogonalization that were described in Sec. 4.1.1. For
this one needs to implement the mapping

|rα〉〈r′α| ↔ |(rα, r′α)〉, (4.33)

which pairs up local input and output indices. In other words the local dimen-
sionality now becomes equal to d2 instead of d and ρ̂ can be written down in a
vectorized form |ρ〉 with the standard MPS form (4.2). The important thing is
that since the state is mixed the meaning of entanglement described in Sec. 4.1.2
is lost. One needs instead to look at another measure suitable for a mixed state,
e.g. the negativity [114].
However, we will take one more step and introduce another form of MPO, which
will be especially useful for construction of operators manually, i.e. Hamiltonian
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and projectors. One can note that the state vector

|r1, r2, ..., rM〉 =
M∏
α=1
|rα〉, (4.34)

is a product state, hence its parts can be absorbed by local tensors B[α], such as

B̂[α]
rα,r′α

≡
d∑

rα,r′α=1
B

[α]
rα,r′α
|rα〉〈r′α|. (4.35)

Then (4.32) can be rewritten as

ÔMPO = B̂[1]
r1,r′1
B̂[2]
r2,r′2

...B̂[M ]
rM ,r

′
M
, (4.36)

where each B̂[α] is a matrix with the same bond dimensions as B[α]
rα,r′α

, but with
operators instead of each element.

  

Figure 4.7.: Graphical representation of the tensor network associated with the
operator ÔMPO (4.32). Each part of the systems has a corresponding rank-4
tensor B[α]. In the case of the first and the last tensor, one of their bond dimen-
sions is equal 1. Each connected link between tensors means the summation
over corresponding indices, and each open link mean an open index rα. The
representation in this form, where tensors are ordered in a chain, is called a
Matrix Product Operator (MPO) with Open Boundary Conditions (OBC).

Note that there is also an alternative way of writing an operator in MPO form

ÔPBC
MPO =

dα∑
{rα,r′α}=1

tr
[
B

[1]
r1,r′1

B
[2]
r2,r′2

...B
[M ]
rM ,r

′
M

]
|r1, r2, ..., rM〉〈r′1, r′2, ..., r′M |, (4.37)

where the requirements for the first and last bond dimensions to be equal unity
are lifted. Such a representation is especially useful for implementation of periodic
boundary conditions, however it will not be used here as PBC can be implemented
in a different way (see examples below).
Let us now consider a number of concrete examples of how one can rewrite an
operator in MPO form. The following examples are also going to be used in sub-
sequent chapters, so it make sense to introduce them here in a more pedagogical
way.
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4.2.1. Examples of Hamiltonians

We start with the transverse field Ising Hamiltonian

ĤTI = −J
∑
r

σ̂zr σ̂
z
r+1 − hx

∑
r

σ̂xr , (4.38)

where σ̂x,z are Pauli matrices. Then local B̂ operators have the following form

B̂[1]
TI =

(
−hxσ̂x −Jσ̂z Î

)
,

B̂[1<α<M ]
TI =

 Î 0 0
σ̂z 0 0
−hxσ̂x −Jσ̂z Î

 , B̂[M ]
TI =

 Î
σ̂z

−hxσ̂x

 , ; (4.39)

as was mentioned before the first and last operators should be modified in order
to satisfy open boundary conditions. Then in order to reproduce the transverse
Ising Hamiltonian one needs to plug the B̂ operators into (4.36).
If one wants to implement PBC with (4.38) then one extra bond dimension should
be used to facilitate the term −Jσ̂z1σ̂zM , describing the interaction of the first and
last spins. Then local B̂ operators have the following form

B̂[1]
TI =

(
−hxσ̂x −Jσ̂z Î −Jσ̂z

)
,

B̂[1<α<M ]
TI =


Î 0 0 0
σ̂z 0 0 0
−hxσ̂x −Jσ̂z Î 0

0 0 0 Î

 , B̂[M ]
TI =


Î
σ̂z

−hxσ̂x
σ̂z

 . (4.40)

In the next example one can consider the case of the Bose-Hubbard model

ĤBH = −J
∑
r

(b̂rb̂†r+1 + b̂†rb̂r+1) + U

2
∑
r

n̂r(n̂r − 1), (4.41)

where b̂r is the annihilation operator on the site r, and n̂r = b̂†rb̂r is the occupation
number operator. Here the hopping between sites is defined via two terms of the
Hamiltonian, hence the local tensors will take the form

B̂[1]
BH =

(
U
2 n̂(n̂− 1) −Jb̂ −Jb̂† 1

)
,

B̂[1<α<M ]
BH =


1 0 0 0
b̂† 0 0 0
b̂ 0 0 0

U
2 n̂(n̂− 1) −Jb̂ −Jb̂† 1

 , B̂[M ]
BH =


1
b̂†

b̂
U
2 n̂(n̂− 1)

 . (4.42)

The implementation of PBC would require two more extra interaction terms
−Jb̂1b̂

†
M and −Jb̂†1b̂M which can be implemented via two extra dimensions, in

analogy to (4.40).
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We can also implement the same idea in the case when hoppings are not only be-
tween neighboring spins, for instance the next-next-nearest neighbor Hamiltonian

ĤNNNTI = −J1
∑
r

σ̂zr σ̂
z
r+1 − J2

∑
r

σ̂zr σ̂
z
r+2 − J3

∑
r

σ̂zr σ̂
z
r+3 − hx

∑
r

σ̂xr , (4.43)

has the following local B̂ operators

B̂[1]
NNNTI =

(
−hxσ̂x −J1σ̂

z −J2σ̂
z −J3σ̂

z Î
)
,

B̂[1<α<M ]
NNNTI =



Î 0 0 0 0
σ̂z 0 0 0 0
0 Î 0 0 0
0 0 Î 0 0

−hxσ̂x −J1σ̂
z −J2σ̂

z −J3σ̂
z Î

 , B̂
[M ]
NNNTI =


Î
σ̂z

0
0

−hxσ̂x

 .

(4.44)

Now we can consider a more exotic transverse field Ising model with exponentially
decaying correlations

ĤexpTI = −J
∑
r>l

exp[−λ(r − l − 1)]σ̂zr σ̂zl − hx
∑
r

σ̂xr , (4.45)

which will have the following local B̂ operators

B̂[1]
expTI =

(
−hxσ̂x −Jσ̂z Î

)
,

B̂[1<α<M ]
expTI =

 Î 0 0
σ̂z e−λÎ 0
−hxσ̂x −Jσ̂z Î

 , B̂[M ]
expTI =

 Î
σ̂z

−hxσ̂x − hzσ̂z

 . (4.46)

A generic monotonically decaying function f(r) can be expanded as a series of
decaying exponents. For this one needs to minimize the following functional

F ({ak}, {bk}) =
∑
k

∑
r

∣∣∣f(r)− akbr−1
k

∣∣∣2 ,
over the set of {ak} and {bk} for a fixed number of elements and maximal range of
interaction (which can alway be bounded by the system size). Then a Hamiltonian
with generic decaying interactions,

ĤdecayTI = −J
∑
r>l

f(r − l)σ̂zr σ̂zl − hx
∑
r

σ̂xr , (4.47)

can be effectively represented in MPO form. For instance, an algebraically de-
caying function f(x) = x−2 can be expanded as a sum of 9 exponential decays
where the error over 100 sites, defined as the functional F above, is below 10−6,
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which is good enough for many practical calculations.

4.2.2. Examples of Projectors

Sometimes it is useful to construct non-local operators to implement some sym-
metries in the system. Each symmetry usually implies a conservation law and
can be implemented explicitly. This might require a lot of work and restructuring
the code completely, or sometimes it is just easier to project out states that do
not satisfy those symmetries.
For instance one might want to have an operator conserving the total number of
particles in the Bose-Hubbard Hamiltonian (4.41). Let us first introduce a local
projector p̂n ≡ |n〉〈n| that selects only the component of the state with n particles
on the site. Then local tensors B̂N for the non-local operator

P̂N =
∑∑
α
nα=N

[
M∏
α=1

p̂[α]
nα

]
(4.48)

takes the form

B̂[1]
N =

(
p̂0 p̂1 p̂2 . . . p̂N

)
,

B̂[1<α<M ]
N =



p̂0 p̂1 p̂2 . . . p̂N
0 p̂0 p̂1 . . . p̂N−1
0 0 p̂0 . . . p̂N−2
... ... ... . . . ...
0 0 0 . . . p̂0

 , B̂
[M ]
N =



p̂N
p̂N−1
p̂N−2
...
p̂0

 .
(4.49)

As one can see the bond dimension of local tensors is equal to N + 1, but the
tensors are sparse and have just a few non-zero elements. This makes it possible
to do the ground state calculations via DMRG or time evolution preserving the
total number of particles, see Sec. 4.3 for more details.
Another practical example is implementation of constraints via MPO projectors.
Say one wants to forbid states that have a pair of spin-ups at a distance l in a spin
chain described by (4.38). Then one needs to implement the following projector

P̂ (l) =
∏
r

P̂r(l) =
∏
r

(1− σ̂↑r σ̂↑r+l), (4.50)

which projects out forbidden configurations between all pairs at distance l. Then
local tensors of P̂r(l) would read

B̂[1≤α<r] = 1, B̂[α=r] =
(
σ̂↑ σ̂↓ σ̂↓

)
,

B̂[r<α<r+l] =

 1 0 0
0 1 0
0 0 1

 , B̂[α=r+l] =

 σ̂↓

σ̂↑

σ̂↓

 , B̂[r+l<α] = 1.
(4.51)
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One can immediately extend this to more complicated configurations of spins or
other operators.

4.3. Methods

In this section we now discuss the algorithms used to compute time evolution of
ground states using MPSs and MPOs.

4.3.1. Time Evolving Block Decimation (TEBD)

In this section we will discuss one of the first methods developed for evolution
of state vectors in MPS form [87]. The main idea of the method was already
highlighted in Sec. 3.1.2 where one decomposes the Hamiltonian in two site oper-
ators and applies them successively (3.20). Exactly the same idea with two-site
updates can be implemented on an MPS (Fig. 4.8).

  

Figure 4.8.: Diagrammatic representation of a single time-evolution step of an
MPS from time t to t+ ∆t via Trotter decomposed evolution operator.

In order to avoid exponential growth of bond dimensions of MPS, one needs to
perform truncation and keep only the largest Schmidt coefficients. Let us take
a close look at a single step of the TEBD algorithm (Fig. 4.9). Initially two
neighboring tensors A[l] and A[l+1] on the sites l and l+ 1 are contracted with the
unitary tensor. The resulting rank-4 tensor T [l,l+1] is then reshaped to a matrix
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T̄ of dimensions dD[l]
L × dD

[l+1]
R , i.e. the left bond index is combined with the

local index of the left tensor, and the right bond index is combined with the local
index of the right tensor. Then one performs a singular value decomposition

T̄ = U · S · V †, (4.52)

which was already explained in Sec. 4.1.1. The matrix of the most interest is
S, which is a diagonal matrix of Schmidt coefficients {λk} in descending order.
In order to stop MPS bond dimensions from uncontrollable growth, one needs to
perform truncation of the Schmidt coefficients. Here one introduces the maximum
bond dimension Dmax for instance and keeps only the first Dmax largest Schmidt
coefficients. The resulting error of truncation is then

εtrunc =
∑

k=Dmax+1
(λk) 2,

where the summation goes up to the last Schmidt coefficient. Then the cor-
responding dimensions of U and V † are also truncated in order to match the
dimension of S after truncation. The matrix S can now be absorbed into either
U or V †. The resulting matrices are reshaped back to local tensors for the site
l and l + 1 (Fig. 4.9). That is a short overview of the TEBD method, which of
course can be modified in order to increase the precision. For instance, one can
use a higher order of Suzuki-Trotter decomposition. It is common to use a fourth
order [119] expansion, where one can achieve numerical error scaling as ∆t5.

  

Figure 4.9.: Diagrammatic representation of a single step of the TEBD algo-
rithm. Initially two neighboring tensors on the sites l and l+ 1 are contracted
with the unitary tensor. The resulting rank-4 tensor T [l,l+1] is then reshaped to
a matrix T̄ of dimensions dD[l]

L × dD[l+1]
R , i.e. the left bond index is combined

with the local index of the left tensor, and the right bond index is combined
with the local index of the right tensor. Then one performs a Singular Value
Decomposition. In order to stop the MPS bond dimensions from uncontrol-
lable growth one needs to perform truncation of the Schmidt coefficients. Then
depending on the desired orthonormal form of MPS one absorbs the Schmidt
coefficients either into the local tensor of the site l or l + 1.
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4.3.2. Variational State Search

In order to find the ground state in MPS form we are first going to take a look
at the variational ansatz [81,120], the idea of which is to minimize the energy of
the system

E = min
|ψ〉

〈ψ|H|ψ〉
〈ψ|ψ〉 , (4.53)

by varying the state vector |ψ〉. The complexity of the problem scales exponen-
tially with the length of the system, as the Hilbert space dimensionality scales
exponentially. However, we would rather try to find the global minimum by do-
ing local optimizations, i.e. variational search. Let us pick an initial guess state
vector |ψ〉 in MPS form. We then fix all parameters in this MPS except for one
tensor A[α].
Then one needs to find the extremum of

∂

∂Arα
[〈ψ|H|ψ〉 − E〈ψ|ψ〉] = 0, (4.54)

which is diagrammatically presented in Fig. 4.10. This tensor network after all
possible internal contractions can be rewritten as

v†Heffv − Ev†Nv = 0, (4.55)

where v is the reshaped tensor Arα of the state |ψ〉. This expression is equivalent
to the generalized eigenproblem

Heffv − ENv = 0, (4.56)

where v is a vector of reshaped parameters of A[α], Heff is a matrix form of
reshaped tensor (in dash black in Fig. 4.10), and N is a matrix formed from the
reshaped tensor (in dash red in Fig. 4.10). The size of the vector v to be found
is dD2 which makes this problem scale linearly with M (number of sites), as the
same algorithm should be run on each site subsequently. If one ensures that the
site α is the center of orthogonality then the normalization of the state is ensured
automatically and (4.56) becomes just an eigenproblem

Heffv − Ev = 0. (4.57)

After one site is optimized (local minimum is found) then we can repeat with
the next one. The global minimum can be reached after a few complete sweeps.
Hence one finds the ground state |ψ0〉 with energy E0.
Note that the presented scheme can be easily extended to an n-site algorithm,
where n sites are optimized simultaneously, so the length of the vector v becomes
equal to dnD2. This makes the computation more costly, but one does not need
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Figure 4.10.: Graphical representation of variational ground state search using
a single-site update algorithm (4.54). Local tensors of the state |ψ〉 and Hamil-
tonian Ĥ drawn with solid lines are fixed and dashed blocks A[α] are reshaped
to a vector v and are being optimized variationally. The dashed black line
denotes the Heff tensor, and the red line denotes the N tensor.

to solve the eigenproblem completely. Since we are interested in only the lowest
state we can use a method based on powers of the Hamiltonian, such as Lanczos
(see Chap. 3). By simultaneously optimizing several sites’ tensors one increases
the dimension of the local Hilbert space used for the search, i.e. it improves the
convergence to the global minimum.
Another advantage of the multi-site algorithm is that the bond dimension of MPS
can be adjusted dynamically, with forced truncation error. By doing this one can
do the initial quick search with an MPS of a low bond dimension and then a more
precise and long search with increased bond dimensions.
One can also use the method described above for finding excited states. The idea
behind this is simple: we still look for local minima, but on top of that we make
sure that the state is orthogonal to the ground state. In the literature there are
several implementations of this algorithm; below we will describe the simplest.
The trick is to replace the effective Hamiltonian Heff from (4.57) with

(1− |ψ0〉〈ψ0|)Heff(1− |ψ0〉〈ψ0|),

then the search of the minimum is going to be in a space orthogonal to the ground
state |ψ0〉. The procedure continues in the same fashion for higher excited states,
i.e. one needs to project out all the previous eigenstates and search for the local
minimum at each optimization steps.

4.3.3. Time Dependent Variational Principle (TDVP)

It was found [92, 121] that with a few modifications the variational principle
method described above can be used for time evolution. This method is called
Time-Dependent Variational Principle (TDVP) and unlike time evolution meth-
ods based on the Suzuki-Trotter decomposition of the Hamiltonian this method
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is based on splitting the projector onto the matrix product state tangent space
as it appears in the Dirac-Frenkel time-dependent variational principle.
In order to evolve an arbitrary state |ψ(t)〉 which belongs to a sub-manifold H1
of the whole Hilbert space H (i.e. H1 ⊂ H), at infinitesimal time δt one obtains
from the Schrödinger equation

|ψ(t+ δt)〉 = |ψ(t)〉 − iδtĤ|ψ(t)〉, (4.58)

where Ĥ|ψ(t)〉, in general, does not belong to H1 any more. The point of the
TDVP method is to project Ĥ|ψ(t)〉 onto H1, so that the evolution never leaves
the manifold H1. This means that one needs to find a tangential vector |φ〉 that
minimizes the functional

F [|φ〉] =
∥∥∥(I − iδtĤ)|ψ(t)〉 − |φ〉

∥∥∥2
, (4.59)

which will produce the state |φ〉 as the closest approximation of (I − iδtĤ)|ψ(t)〉
in the subspace H1. Whereas formal descriptions of the integration schemes
are presented with great details in the above papers, we should note the most
successful one [121]. Here the idea is to define an MPO space projector P̂H1

which will focus on only the subspace H1, then the Lie-Trotter splitting scheme
is used which decomposes P̂H1 and allows us to perform time evolution of only
local block keeping the state in H1. In other words, the algorithm is based
on a Trotter decomposition of the tangent space projector P̂H1 rather than the
Hamiltonian Ĥ, as it was presented in Sec. 4.3.1. In the end it results in local
updates of tensors Arα reshaped to the vector form v (as in Sec. 4.3.2)

(I − iδtHeff)v(t) = v(t+ δt), (4.60)

where the effective matrix Heff is defined in Fig. 4.10.
The evolution of the state is then performed on the site dependent basis, with
one or several sites being updated at the same time. Due to the decomposition
of the projector, the corresponding differential equation for local tensors can be
integrated exactly. For instance, one can use a Lanczos integration scheme in
order to keep computational cost at O(D3), where D is the bond-dimension of
the local tensor. It is also possible to use higher order integrations by applying
schemes with symmetric integrators. One can go a step forward and instead of
a simple first order approximation use exp(−iδtHeff), then the local updates will
take the form

exp(−iδtHeff)v(t) = v(t+ δt), (4.61)

and can be evaluated using the Krylov subspace algorithm (see Sec. 3.1.1).
Another great advantage of this algorithm is that it can deal with arbitrary long-
range Hamiltonians (as in Sec. 4.2.1), unlike the TEBD method that will requires
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the application of swap gates to realize long-range interactions.

4.4. Conclusions

In this chapter we presented an overview of advanced numerical techniques used
for dealing with large many-body systems. The inevitable exponential growth of
the dimensionality of the full Hilbert space with the linear increase of the system
size is dealt with via considering only the relevant subspace with low entangled
states. This approach was first developed as DMRG and later incorporated the
ideas of MPS and MPO representations of states and operators, such that it made
numerically feasible to solve quantum many-body problems [80,81].
Moreover the methods presented in Chap. 3 for the full Hilbert space can be refor-
mulated in the language of MPS. For instance, one finds that the Krylov method
of time evolution (Sec. 3.1.1) can be nicely combined with TDVP (Sec. 4.3.3) in
order to perform efficient evolution of local tensors. Imaginary time evolution
(Sec. 3.1.4) can be used as an alternative method for the ground state search.
Also the whole formalism of quantum trajectories (Sec. 3.2.1) can be translated
to MPS representation of states.
In the following chapters there is a wide range of results obtained via the meth-
ods described in this chapter. For instance in Chap. 6 and Chap. 7 we study
quench dynamics of spin models with long-range interactions. In Chap. 5 we sim-
ulate constrained spin models and obtain lowest eigenvalues, calculate quench
dynamics, and study thermal states. The effective representation of long-range
Hamiltonians and constraining projectors in the MPO form allowed us to obtain
results on chains of a few hundred spins.
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Resonance Tunneling in Tilted
Optical Lattices
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5. Effective Spin Models for
Resonant Tunneling Dynamics of
Bosons in a Tilted Optical
Superlattice

In this chapter we investigate resonant dynamics of bosons in 1D optical lattices,
in the presence of a tilted potential. Bosons in a deep optical potential usually
have weak tunneling rates, which are not substantially changed by a gradient
potential. As a result, they are usually localized at individual sites unless the
field is finely tuned to allow resonant tunneling of atoms to nearby sites. The
resonance occurs when the potential energy change of a particle that tunnels to
a nearby site is compensated by the interaction energy of this particle with a
particle initially on the site to which it tunnels. Here we investigate two cases:
when atoms can resonantly tunnel to the neighboring site, and when atoms tunnel
to the next-neighbor site. We derive effective spin models for each of the cases
and analyze the dynamics of atoms from the perspective of effective spins.

5.1. Introduction

Strongly correlated quantum systems had already generated significant interest
in physics by the middle of the previous century and form an important part
of modern condensed matter physics. The essential feature that defines these
systems is that their behavior cannot be described effectively in terms of non-
interacting entities, hence collective strong effects play the major role. Some
prototypical examples include conventional and high-Tc superconductors [122],
magnetic materials, and quantum Hall systems [123].
One of the central objectives of modern condensed matter physics is the un-
derstanding of materials with exotic forms of magnetism [122]. Such materials
provide a rich phase diagram consisting of magnetically disordered and ordered
states. The simplest example of this is transitions between paramagnetic phases
and ordered ferromagnets and antiferromagnets. The competition between dif-
ferent types of ordering can cause frustration in spin models, which leads to spin
glasses [124] and spin liquids [125]. The interplay of the system geometry and
magnetism can lead to topologically ordered states [126]. Study of these models
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in the vicinity of phase transitions is a problem of high complexity that presents
challenges for most analytical and numerical calculations.
One recent approach to studying such complex systems is to simulate their be-
havior in quantum emulators with a high degree of controllability [1, 2]. Initial
simulation of magnetic systems with trapped ions [71], Rydberg atoms [127], and
polar molecules [128] have shown a lot of promise in this direction. In these meth-
ods the magnetic spin degrees of freedom were mapped onto the internal degrees
of freedom of atoms and molecules.
In this chapter we study an alternative method of mapping between magnetic spin
states and the motional degrees of freedom of individual bosonic atoms loaded
in a tilted optical lattice. Without the tilt the system is prepared in the unit-
filled Mott insulator phase, where the on-site interaction between particles, U ,
is significantly larger than the tunneling rate J . This leads to suppression of
tunneling processes and exponential localization of particles on each site. In the
case of a general linear tilt of the lattice, which creates an energy difference E
between neighboring sites, bosons stay localized. However if the tilt is tuned to
the vicinity of a resonance E = U/n with an integer n, long-range resonantly
enhanced tunnelings of n−th order are observed [54]. Allowed to time evolve, the
system demonstates many-body dynamics [55, 56] far away from the regime of a
simple quantum walk of a single particle [57,58].
In previous theoretical work [59], a mapping scheme was suggested between spa-
tial degrees of freedom of bosons and effective spins in the case of nearest neighbor
resonant tunneling (n = 1). This maps to an antiferromagnetic Ising chain with
a skew field and projective interactions, which constrain the configuration space
of the effective spins. In later works non-equilibrium dynamical properties [129]
and high order corrections [130] were investigated within this n = 1 model.
In this work, we investigate the case of the second neighbor resonant tunneling
(n = 2). In order to map the dynamics to an effective spin chain, a superlattice
geometry was chosen, which further restricts the motional degrees of freedom of
particles. We then investigate the corresponding phases of the model as well as
its behavior near the phase transition.
In the following sections we first derive effective spin models (Sec. 5.2) and con-
sider their extreme limits by means of perturbation theory (Sec. 5.3), studying
the phases of each model. In Sec. 5.4 we focus on the phase transition points and
investigate them from the perspective of symmetries and finite size scaling. After
that we approach the phase transition point for finite temperatures (Sec. 5.5),
which provides a different perspective. Before concluding we consider quench dy-
namics in the E = U/2 regime calculated with the effective spin model (Sec. 5.6)
as a comparison with the experimental dynamics without the superlattice ge-
ometry. The reader can either follow the sections consecutively, or read only
subsections on the model E = U first and then the rest.
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5.2. The Models

In this study we consider ultracold bosonic atoms trapped in an optical lattice.
As was shown in Sec. 2.3, in the case of sufficiently low temperatures, low density
of atoms, and deep optical potentials, the dynamics of atoms obeys the Bose-
Hubbard model (2.57), where tunneling only between neighboring sites is allowed,
and particles interact if they are located on the same site. Here we will consider
a more specialized form of the Hamiltonian

H = −J
∑
〈r,l〉

b†rbl + U

2
∑
r

nr (nr − 1)−
∑
r

Ernr, (5.1)

where J is the hopping matrix element, 〈·, ·〉 implies summation only over neigh-
boring sites, U is the on-site interaction between bosons, and the external poten-
tial

Er = E · r + (−1)rµ2 , (5.2)

which has two contributions. The first is the external linear field E that creates a
constant gradient potential, which can be generated by either a gravitational force
(if the optical lattice sites are oriented vertically) or an external field (electric or
magnetic), which changes in space. The second contribution to Er is the energy
offset µ between even and odd sites, established by a superlattice. We will take
µ = 0 for the E = U case and µ > 0 for E = U/2.
This basic model describes the motion of atoms on the lattice in the presence
of the superlattice and tilted potential. One also should note that the model
preserves the total number of particles. Let us call the number of sites M and
the number of particles N . From now on we will be considering the case of unit
filling,

N = M, (5.3)

i.e., there are as many particles as sites.
We focus on the regime deep in the MI phase J � U . In the presence of the
linear tilt E 6= 0 the energy of the Hamiltonian (5.1) for the infinite lattice is
not bounded from below, so there is no ground state. It means that the really
stationary state is the one in which all particles have left the system falling
towards sites with lower and lower energies. On typical experimental timescales
we can consider those states that are near resonant to the initial state.
The experiment we have in mind thus would start with a MI state with the same
number of particles on each site and E = 0, then we would suddenly switch on a
space dependent field quenching to the Hamiltonian to (5.1) with E 6= 0 (µ is kept
at zero at the moment). This experiment has already been realized in a number
of labs [54–56], and for generic values of the tilt E (due to the strong interactions
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U) the MI phase has been observed to be basically stable during the duration of
the experiments. In other words, despite the tilt, the bosons are “trapped” for
long times at their initial positions. This phenomenon was expected, since as first
discussed in [131], even without interactions a linear tilt produces a localization
of the energy eigenstates on single sites. For specific values of the tilt E, namely
for E = U/n, where n is integer the uniform MI state becomes resonantly coupled
to a subset of other states, which was observed experimentally [54–56].
In Sec. 5.2.1 and Sec. 5.2.2 we consider two special cases, E = U and E = U/2
respectively, and derive their effective spin models. We will see that the model in
the second case takes the form of two subsystems described by the model of the
first case, plus some coupling terms between these two subsystems.

5.2.1. E = U Regime

The first case we consider is when a unit filled MI state is suddenly tilted such
that the potential energy steps between sites are approximately equal to the on-
site interaction, i.e. E ≈ U , and the super-lattice off-set µ is set to zero, so
Eq. (5.1) reads

H = −J
∑
〈r,l〉

b†rbl + U

2
∑
r

nr (nr − 1)− E
∑
r

r · nr, (5.4)

This Hamiltonian was extensively studied in [59, 60] in the case of one and two
dimensions. We will elaborate on this here for comparison with the E = U/2
case, which will be considered later.
From the initial MI state (Fig. 5.1(a)) particles can hop to the nearest site (down
the tilted lattice) lowering the potential energy by E. Since the simultaneous
gain of the interaction energy U exactly compensates this energy change the two
states are degenerate and are connected by the tunneling, as shown in Fig. 5.1(b).
It also should be noted that once a boson has tunneled resonantly to the neigh-
boring site, its neighbors cannot tunnel resonantly any more. In Fig. 5.1(b) it
can be seen that if a particle from the second site tunnels to the third site the
system decreases its energy by E = U . In the regime J � U this transition is
suppressed in perturbation theory by a factor ∝ J/U , and hence the occupation
of such a state is suppressed as ∝ (J/U)2. Exactly the same energy argument can
be considered for other single-tunneling processes between the states, for which
the energy difference is proportional to U .
A small detuning from the resonance condition, i.e. |U − E| � U , does not
qualitatively alter the situation and thus bosons can resonantly tunnel only be-
tween two sites — the initial one and its neighbor. The system dynamics is then
confined to the subspace of states resonantly connected by tunneling of the in-
distinguishable bosons to the initial tilted MI with unit filling. Here we exploit
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this fact and establish the following mapping with a spin-1/2 chain: we associate
a boson in its initial position on the rth site with a spin down |↓〉r, and a boson
that leaves the rth site via resonant tunneling with a spin up |↑〉r. Note, that
following this scheme, |↓〉r can be associated with a site with one or two bosons
on the rth site of the lattice, but due to the constraint forbidding tunneling from
neighboring sites this mapping is actually isomorphic and confusion is always
avoided by checking the occupation of the neighboring sites (see Fig. 5.1(a,b)).

  

(a) (c)

(b) (d)

Figure 5.1.: Schematic representation of the initially unit filled MI states in
the regime E = U (a) and E = U/2 (c) and example states coupled to them
(b,d, respectively). In the regime E = U (a,b) all bosons except the last one
(if the lattice is finite) can resonantly tunnel to the neighboring site, allowing
a mapping to a spin-1/2 model (explained in the main text). Bosons staying at
the initial site are mapped to spin-downs; if a boson resonantly tunnels one site
down the slope it is mapped to a spin-up. Bosons on neighboring sites cannot
both hop down the slope resonantly, which forbids two neighboring spin-ups.
In the regime E = U/2 (c,d) the situation is similar for sites of the same
parity. The bosons staying at the initial sites are mapped to spin-downs, and
if a boson tunnels two sites down the slope it is mapped to a spin-up. Bosons
on next-neighboring sites cannot hop down the slope resonantly, which forbids
two neighboring spin-ups each even/odd sublattice. The corresponding spin
representations of the boson configurations are draws underneath each lattice
configuration.
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Then in the regime of a small detuning

|U − E| , J � E,U, (5.5)

the behavior of bosons at relevant time scales can be mapped to the effective spin
model

HU =
∑
r

[−
√

2σxr + λσ↑r +Wσ↑rσ
↑
r+1], (5.6)

where

λ = U − E
J

(5.7)

denotes the deviation from resonance, σ↑ = (σz + 1)/2 is a projector on spin-up,
and W → +∞ is the constraint term that forbids two neighboring spin-ups. The
energy unit is J . By rewriting (5.6) using only the Pauli matrices we see that

H̃U =
∑
r

[σzrσzr+1 −
4
√

2
W

σxr + 2
(
λ

W
+ 1

)
σzr ] + const., (5.8)

so that it is equivalent to the antiferromagnetic Ising model in a skew field (AF-
ISF).
Note that the prefactor −

√
2 in front of the spin flipping term in (5.6) is due to

the Bose enhancement factor. If we start not from a unit filled MI, but from a MI
with n̄ bosons per site, then the prefactor would be −

√
n̄(n̄+ 1), which would be

the only difference from the model considered here (5.6).

5.2.2. E = U/2 Regime

Analogously to the regime E = U , we now build the effective spin model that
describes the behavior of the unit filled MI state, but tilted such that E = U/2.
For now we will put µ to zero, but in the end we will explain that in order to
obtain an effective spin model µ should be non-zero. We will show that in the
presence of a superlattice the dynamics of bosons will be confined to sites of the
same parity, i.e. bosons from initial odd sites will always move only to odd sites,
and the same for bosons on even sites. Hence the resulting effective model in this
regime will resemble two spin chains E = U that are coupled.
In Fig. 5.1(c) one can see that if a boson moves two sites down the slope, the
new state will be degenerate with the initial MI. Once the tilt is set exactly at
E = U/2 the initial MI state becomes degenerate with a set of other states, i.e.
the contribution of on-site interactions and potential energy of bosons in those
states is equal and of the opposite sign. The tunneling part of the Hamiltonian
(5.1) will play the role of a perturbation that couples the states of this energy
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manifold. The reader can see that in order to go from one state to another in
the energy manifold at least two tunneling processes should happen, which means
that the construction of the effective Hamiltonian [132] will be done via couplings
with other energy manifolds of the Hamiltonian (5.1) separated by energies of the
order U .

5.2.2.1. Allowed Transitions

Only transitions where both bosons start or end up on the same site have non-
trivial matrix elements. All the non-trivial resonant transitions in the energy
manifold of interest can be categorized in three groups.

1. The first type of transitions couple different states via tunneling of a boson
over two sites down the slope of the tilted potential. In this case the am-
plitude of the transition will depend on the occupations of the initial and
final sites as well as the intermediate site. For instance, the initial MI site
is coupled with∏

r

|1〉r ↔ |0〉l |2〉l+2
∏

r 6=l,l+2
|1〉r , (5.9)

where a single boson tunnels twice ending up on a next-neighboring site.
This process can go via two channels: when the boson on site l tunnels to
l+1 and then from l+1 to l+2, or the boson from l+1 first tunnels to l+2
and then the boson from l tunnels to l + 1. The resulting matrix element
of this transition equals 3

√
2J2/U . For each process of this type, there is

the opposite, where a particle from a doubly occupied site tunnels back to
the empty site. Analogous to the regime E = U one can notice that it is
impossible to achieve two doubly occupied sites on next-next-neighboring
sites via this kind of transition (Fig. 5.1(d)), as such states are not in the
same energy manifold with the original MI state, i.e. their occupation scales
only as ∝ (J/U)4 in perturbation theory.

2. The second type of resonant tunneling process is one in which a single boson
hops to a neighboring site and then hops back to the original site. In this
case the configuration of bosons does not change, but each state obtains
an energy shift depending on the occupation the sites. For instance, the
initial MI state obtains obtains the energy shift of −16J2/3U per boson
because each particle can tunnel one site left (right) and then tunnel right
(left) to the initial site. These channels do not cancel each other because
the intermediate state’s energy offset is different in each channel.

3. The third type of process occurs only for certain configurations of bosons
on the lattice. For these processes two bosons from the same site tunnel in
the opposite directions, for instance

|..., 0, 1, 2, 0, 1, 2, ...〉 ↔ |..., 0, 2, 0, 1, 1, 2, ...〉 , (5.10)
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will be a resonant transition, as the energy of the initial and final states are
identical.

The reason why we introduce the superlattice geometry µ > 0 is to restrict the
third type of transitions in order to be able to describe the dynamics of bosons
via an effective spin-1/2 model. For this reason we introduce the offset energy
µ between even and odd sites of the lattice. In order to suppress the transition
amplitudes the superlattice offset should satisfy µ� J . As the result, the energy
difference between states connected by the third type of transitions becomes of
the order µ, which means that the occupation of states achieved only via the third
type of processes will scale as ∝ (J/µ)4. For simplicity, we also assume from now
on that µ� U , which will make the derivation of the effective spin model much
clearer. In principle, the flexible ratio µ/U provides one extra tunable parameter
in the experiment; we will discuss the contribution from it at the end.
The reader might also think that as the states are coupled via two tunneling
processes, then two bosons in different parts of the lattice can tunnel to their
neighboring sites (in the opposite directions) and hence the effective Hamiltonian
will have non-local terms, e.g.

|0
x
1201

y
21〉 ↔ |0210112〉 . (5.11)

However, this process arises from two channels, depending whether it is the boson
from the site l or l′ that tunnels first. Hence, these channels will have different
intermediate states; more precisely the energy difference of these states and the
energy of the MI state will have the same amplitude, but different sign. Hence,
the amplitudes of this channels added together cancel each other. As the result,
all processes of this kind have a zero amplitude.

5.2.2.2. Mapping to Spins

Now we are ready to introduce the mapping between bosons and spins. With
only the first and second types of transition left, the dynamics of each boson is
confined between the initial site of the MI state and the resonantly connected
site. That is why it is enough to consider mapping to spins-1/2, analogously to
the regime E = U . For each particle located on its initial rth site of the MI
state we assign a spin down |↓〉r. Then if a boson from the site r tunnels to
the resonantly connected site two sites down the slope the corresponding spin
becomes |↑〉r. Note that in the case of open boundary conditions the bosons on
the last two sites can resonantly tunnel only via the second type of process, but
not the first one. That is why their corresponding spins always point down and
can be eliminated from the spin model.
With this mapping scheme, the first type of process provides the tunneling part
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of the effective spin Hamiltonian

Htun
U/2 =

√
2 J2

U/2
∑
r

(σxr + 2σzr−1σ
x
r + 2σxrσzr+1), (5.12)

where one can notice the new characteristic energy J2/(U/2) instead of just J as
it was in the regime E = U . Another interesting thing is that besides the first
term corresponding to spin flipping, one can see additional terms that modify
the amplitude of this process depending on the orientation of neighboring spins.
This is directly connected to the fact that tunneling of particles depends on the
occupation of the intermediate site. The constraint part of the Hamiltonian in the
spin language then will forbid two next-neighboring spin-ups, i.e. the constraint
is implemented only between sites of the same parity.
By considering all possible configurations one obtains the contribution of the sec-
ond type of process, namely the interaction part of the effective spin Hamiltonian
reads

H int
U/2 = − 4

15
J2

U/2
∑
r

(
5 + 7σzr + 6σzrσzr+1 + 6σzrσzr+3

)
, (5.13)

where again one can see that spins at distance three become coupled, as a particle
that has tunneled two sites down the lattice can experience an energy shift that
depends on the presence of the neighboring atoms, including one three sites along
from the initial site.

5.2.2.3. Final Effective Model

Adding together (5.12) and (5.13), and rearranging terms in a way resembling
the regime E = U we obtain the effective Hamiltonian

HU/2 =
∑
r

[−
√

2σxr + λσ↑r +Wσ↑rσ
↑
r+2 (5.14)

−2
√

2(σxrσzr+1 + σzrσ
x
r+1)

−8
5(σzrσzr+1 + σzrσ

z
r+3)

+ 4
15(2− 14σ↑r)]

where λ ≡ U/2−E
J2/(U/2) denotes the detuning from the resonance in the regime

|U/2− E| , J � U

J � µ� U
, (5.15)
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(a) (b)

(c)

Figure 5.2.: (a) Schematic representation of the unit filled Mott insulator (MI)
phase (J � U) of bosons on the superlattice geometry with detuning µ between
even and odd sites. (b) After a sudden quench of the lattice to the regime E =
U/2 the MI state is resonantly coupled with manifold states via tunneling of
bosons over two sites and forming a double occupancy. Furthermore transitions
of other bosons to and from the empty or doubly occupied site are not resonant
any more. The superlattice suppresses all transitions that would be resonant if
not for the superlattice. Each boson staying on the initial site is mapped to |↓〉;
each boson that tunneled to its next neighboring site is mapped to |↑〉. The
bosons on the last two sites down the slope are not able to resonantly tunnel
and do not have spins mapped with them. Spins are colored to emphasize their
parity only. (c) The resulting effective spin model of spins can be represented
as two chains of odd (blue) and even (red) spins coupled with each other via
XZ− and ZZ−types of interactions (shown only for one spin).

and the weightW → +∞ implements the constraint. To avoid any confusion, the
energy unit is J2/(U/2). One can notice that terms of the first row alone are iden-
tical to (5.6) for even and odd spins, which would happen if tunneling of bosons
did not depend on the occupation of neighboring sites (Fig. 5.2). The source of
XZ-terms in the second line is tunneling of bosons to next-next-neighboring sites,
the amplitude of which depends on the occupation of the intermediate site. The
ZZ-terms in the third line are energy shifts due to virtual tunneling with the con-
figuration unchanged. The terms of the last row shift the entire energy spectrum
along the energy and detuning λ axes. We can think about the resulting spin
chain (5.14) as a combination of two chains in the regime E = U (5.6) coupled
together via XZ- and ZZ-interactions.
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5.2.3. Benchmarking of the Effective Models

The model (5.1) can also be written as a time-dependent Hamiltonian,

H = −
∑(

Je−iErtb†rbr+1 + h.c.
)

+ U

2
∑
r

nr (nr − 1) , (5.16)

which produces exactly the same dynamics. The main advantage of this form
of the Hamiltonian is that it directly implements periodic boundary conditions
(PBC). The corresponding effective spin models then also have PBC. This fact
makes it possible to perform testing of the effective spin models without dealing
with boundaries. In Fig. 5.3 we present such a comparison for M = 8 bosons and
corresponding effective spin models (for 8 spins since PBC) for both values of
tilts.
In the case E = U the agreement is excellent. In the case of E = U/2 we show
the results without and with a small superlattice energy offset µ. One can see
that data curves agree only in the last case. In all cases the condition J � U is
held, in the case of the superlattice we have J � µ� U . However, due to finite
values of µ, small discrepancies can still be observed.
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Figure 5.3.: Comparison of the boson dynamics on tilted lattices captured via
the Bose-Hubbard model and the effective spin models in the case of periodic
boundary conditions on a lattice of 8 sites. (a) E = U regime: solid line —
simulation of (5.16) with U = 100J and µ = 0. (b) E = U/2 regime: solid
line — simulation of (5.16) with U = 1000J and µ = 0, and dashed line —
with U = 1000J and µ = 30J , i.e. it satisfies Eq. (5.15). The red dots in
(a,b) are results of the effective models (5.6) and (5.14), respectively, for λ = 0.
The results are obtained via numerical exact diagonalization of corresponding
Hamiltonians.

89



Chapter 5
Effective Spin Models for Resonant Tunneling Dynamics of Bosons in a Tilted

Optical Superlattice

5.3. Effective Models in Limiting Cases

Essential points of the spin models (5.6) and (5.14) will become clear if we first
take a look at the extreme cases λ → ±∞. Here we always assume that the
constant term is always larger, i.e. W�|λ|. In these limits one can rewrite
Hamiltonians as the system of equationsH = H0 +H1

Hcon = 0
, (5.17)

where

H0 = λ
∑
r

σ↑r

is always the unperturbed Hamiltonian, H1 is the perturbation, and Hcon is the
constraint forbidding pairs of spin-ups at distance one or two for models (5.6)
and (5.14), respectively. We then proceed with the standard perturbation Hamil-
tonian theory [132], but taking into account the constraint.
The main conclusion of this section is that XZ and ZZ interaction terms of
(5.14) couple elementary excitations of subchains of the opposite parity. These
coupled excitations play the major role near the quantum critical point as their
energy becomes lower than energy of single elementary excitations.
In Sec. 5.4 we will continue the investigation of the model, but near the quantum
critical point, then we will see that the predictions of the effective model are
compatible with the system’s critical behavior.

5.3.1. E = U Regime

We first consider the case of E = U , as it will play the role of a building block
for the regime E = U/2. In the regimes of large longitudinal field |λ| → +∞
spins are aligned along the field. However, due to the constraint, W → +∞,
their configurations are quite different. The perturbative part of the Hamiltonian
takes form

H1 = −
√

2
∑
r

σxr . (5.18)

5.3.1.1. Paramagnetic Phase

In the case of λ→ +∞ the model (5.6) is in the paramagnetic (PM) state, where
its ground state has all spins aligned along the longitudinal field ∏r |↓〉r, i.e. in
the boson language the energy is minimized if all particles stay on their initial
sites.
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(a) (b)

(c) (d)

Figure 5.4.: Illustrations of elementary (a,b) vs coupled (c,d) excitations in the
extreme cases λ→ −∞ (a,c) and λ→ +∞ (b,d). The elementary excitations
are present in both regimes E = U and E = U/2. The coupled excitations are
possible only in the regime E = U/2, where elementary excitations pair up via
the interaction terms between subchains.

The lowest elementary excitations are single spin-up states (Fig. 5.4(b))

|l〉 = |↑〉l
∏
r 6=l
|↓〉r . (5.19)

The degeneracy is lifted only in the second order of the perturbation theory in
1/λ, via spin flipping terms that give rise to nearest-neighbor hopping of the
spin excitations. The higher excited states at large λ consist of two elementary
excitations

|l, l′〉 = |↑〉l |↑〉l′
∏
r 6=l,l′
|↓〉r . (5.20)

By writing the effective Hamiltonian [132] one can derive the second order cor-
rection to the ground state energy

E+
U,0(λ) = −2M

λ
+O

( 1
λ2

)
, (5.21)

where the energy shift occurs due to interactions with the lowest elementary
excitations band. Following the same procedure, one can determine the energy
shift of elementary excitations due to interactions with the ground state and with
the energy manifold of two excitations

E+
U,1(λ, k) = λ+ 2

λ
[4−M + 2 cos(ka)] +O

( 1
λ2

)
, (5.22)
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where k is the single excitation momentum

|k〉 = 1√
M

∑
l

eikla |l〉 , (5.23)

and a is the spatial separation between spins. Higher excited states consist of
multiple bands of elementary excitations with interaction corrections.

5.3.1.2. Antiferromagnetic Phase

In the case of a large negative field λ, system favors to maximize the total number
of spin-ups, however in order to obey the constraint, the spins should be Néel
ordered, i.e., in the state ∏r

(
|↓〉2r−1 |↑〉2r

)
.

Note that for finite-size systems the degeneracy of the ground state depends
on the type of boundary conditions as well as on the parity of the number of
spins. For instance, the ground state is twofold degenerate in the case of an even
number of spins and periodic boundary conditions, and non-degenerate in the
case of odd spins and open boundary conditions (it is Néel ordered with spin-ups
at the edges). For the sake of simplicity, we define the number of spin-ups in the
ground state as M↑

gr, which in the thermodynamic limit will make the boundary
effects and parity irrelevant and approach the value ofM/2, whereM is the total
number of spins. Then the ground state energy reads

E−U,0(λ) = −|λ|M↑
gr −

2M↑
gr

|λ| +O
(

1
|λ|2

)
. (5.24)

The lowest excited states have one fewer spin-up and hence the Néel ordered phase
should be broken somewhere. It can be described in the language of domains,
where each domain is the Néel ordered phase. There are two types of domain,
one with spin-ups on odd sites and the other with spin-ups on even sites. Then
domain walls are places where two different domains meet each other (Fig. 5.4(a)).
Due to the constraints the domain walls can only be formed of two consecutive
spin-downs |w〉 ≡ | ↓〉w| ↓〉w+1 and not consecutive spin-ups. It is important
to note that the state with M↑

gr − 1 spin-ups can have two domain walls, one
of which might coincide with the open boundary. The important part is that
in thermodynamic limit the boundaries will move independently, i.e. without
interaction. For simplicity, we can consider a single domain wall on the infinite
chain first, then obtain the correction to the whole energy manifold assuming
that domain walls do not meet on the infinite chain. Then the lowest band of
domain walls has the following dispersion relation

E−U,1(λ, k) = −|λ|(M↑
gr − 1)− 2

M↑
gr − 1 + 4 cos(2ka)

|λ| +O
(

1
|λ|2

)
, (5.25)

where k is the momentum of a single domain wall. Interactions between domain
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walls and possible open boundaries are of the order of O (1/M |λ|). Note, that
unlike spin-ups in the paramagnetic phase domain walls can only move by two
sites, which correctly reflects periodicity of the AFM phase.
Then the energy gaps between the ground state and lowest excitations in both
limits of λ as M →∞ take the form∆E+

U (λ) = λ+ 8+4 cos(ka)
λ

+O
(

1
λ2

)
, λ→ +∞

∆E−U (λ) = |λ|+ 2−8 cos(2ka)
|λ| +O

(
1
λ2

)
, λ→ −∞ , (5.26)

If one considers only the zeroth order correction (∼ |λ|), the intersections of
lowest excitations (at λ = 0) will show an approximate position of the QCP. The
next non-zero order corrections (∼ 1/|λ|) correctly predicts that the true QCP is
shifted towards negative values of λ, which is compatible with previous numerical
simulations [59] (also see Fig. 5.5).
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Figure 5.5.: Overview of the energy gap (in units of J) of the E = U model
Eq. (5.6) in the case of OBC and an odd number of spins M , so that the
ground state is always non-degenerate. Finite size effects can be seen only in
the vicinity of the transition. The results of the effective theory are presented
for the lowest excitations of (5.26). One can see that the agreement becomes
better as |λ| → ∞. Also, one can see that the effective theory predicts that
the quantum critical point (QCP) is shifted away from λ = 0 towards negative
values.
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5.3.2. E = U/2 Regime

The derivation the effective model is very similar to the regime E = U , just using
a different perturbative part of the Hamiltonian

H1 =
∑
r

[
−
√

2(σxr + 2σxrσzr+1 + 2σzrσxr+1)− 8
5(σzrσzr+1 + σzrσ

z
r+3)

]
. (5.27)

However we will see that the ZZ−interaction terms create first order corrections
to the energy levels, which did not exist in the regime E = U . The role of
XZ−interactions is to alter the second order corrections in a sophisticated way
and this part will be only briefly discussed. Importantly, a qualitative difference
occurs in this model — coupling of elementary excitations on different subchains
lowers their mutual energy. This will lead to formation of excitation pairs — new
lowest energy excitations, which is the first indicator that the critical behavior of
the model may be different from the regime E = U .

5.3.2.1. Paramagnetic Phase

For λ → +∞ the ground state of the system is the non-degenerate paramag-
netic state ∏r |↓〉r where spins are aligned with the strong external field λ. The
corrections to the ground state energy take the form

E+
U/2,0(λ) = −16M

5 − 18M
λ

+O
( 1
λ2

)
, (5.28)

where, in comparison with (5.21), there is a first order correction due to the ZZ
interaction terms between subchains, and the second order correction is altered
by XZ interactions.
The lowest elementary excitations are states with a single spin-up (as in E = U
regime)

|l〉 = |↑〉l
∏
r 6=l
|↓〉r . (5.29)

The energy corrections to the first excited states are

E+
U/2,1(λ) = λ− 16

5 (M − 4) +O
(1
λ

)
, (5.30)

where the first correction is due to the ZZ interactions between subchain. The
degeneracy of levels is lifted by second-order corrections proportional to 1/λ,
but comparing to (5.22) the correction here has a complicated form due to XZ
interactions. We omit it here as the main point can be understood from the first
order corrections (see below).
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The higher excited states at large λ consist of two elementary excitations

|l, l′〉 = |↑〉l |↑〉l′
∏
r 6=l,l′
|↓〉r . (5.31)

Generally, one should expect that their energies are equal to twice the energy
of the elementary excitations, however these excitations can couple with each
other via ZZ interactions and lower their mutual energy. Then the energy of the
coupled excitations will have the following form

E+
U/2,2(λ) = 2λ− 16

5 (M − 6) +O
(1
λ

)
, (5.32)

from where one can immediately see that the binding energy is equal to 32/5
in units of the Hamiltonian HU/2. As the result the energy of elementary and
coupled excitations above the ground state readsε

+
e (λ) = λ+ 64

5 +O
(

1
λ

)
ε+

c (λ) = 2λ+ 96
5 +O

(
1
λ

) , (5.33)

in units of HU/2.

5.3.2.2. Antiferromagnetic Phase

In the case of λ → −∞ the ground state maximizes the total number of spin-
ups in the system, but due to the constraint condition spins on the even or odd
sublattices are Néel ordered, i.e. it is the same as for two spin chains E = U .
It is important to notice that the degeneracy of the ground state depends on
the number of the spins and type of the boundary conditions, as in the E = U
case. For instance, in the case of an even number of spins in each subchain and
periodic boundary conditions the ground state is fourfold degenerate; in the case
of an odd number of spins in both subchains and open boundary conditions the
ground state is non-degenerate.
The corrections to the energy in this regime take the form

E−U/2,0(λ) = −|λ|M↑
gr −

2M↑
gr

|λ| +O
(

1
|λ|2

)
, (5.34)

where M↑
gr denotes the total number of spin-ups in the ground state, which is the

same as for two chains in the regime E = U . We note that the corrections due
to XZ and ZZ interactions cancel out in this case.
The lowest excited states have one extra spin-down compared to the ground state.
In the language of domains, this means that spins on the even or odd sublattices
remain Néel ordered, and spins on the other sublattice have a pair of domain
walls, analogous to elementary excitations in the regime E = U . Then the first
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correction to the energy takes the form

E−U/2,1(λ, q) = −|λ|
(
M↑

gr − 1
)

+ 16
5 f(q) +O

(
1
|λ|

)
, (5.35)

where f(q) is the discrete function that takes one of three values {−1, 0, 1} de-
pending on the relative position of the domain walls. This correction is defined
by ZZ−interactions and the contribution of the XZ−interactions appears in the
next correction, which has an unnecessary complicated form.
The higher energy band has two extra spin-down compared with the ground state,
i.e. the energy gap between these state and the ground state scales ∝ 2|λ|. The
expression for energy up to the first correction reads

E−U/2,2(λ, q) = −|λ|
(
M↑

gr − 2
)

+ 16
5 h(q) +O

(
1
|λ|

)
, (5.36)

where h(q) is a discrete function that takes only integer values in the interval
from -4 to +4, inclusive, depending on the relative position of the domain walls
on spin chains of both parities. The important point is that there are excitations
for which the energy is lower than the energy of two excitations from the first
excited band, i.e. excitations pair up together and lower their mutual energy by
32/5 in units ofHU/2 via ZZ interactions. The contribution of theXZ interaction
appears in second order corrections, which breaks degeneracy of excitations, but
again the key physics can be drawn only from the first order corrections, which
is why higher corrections are omitted.
The energy of the lowest elementary and coupled excitations above the ground
state readsε

−
e (λ) = |λ| − 16

5 +O
(

1
|λ|

)
ε−c (λ) = 2|λ| − 64

5 +O
(

1
|λ|

) , (5.37)

in units of HU/2.

5.3.2.3. Comparison with the Full Model

From scalings (5.33) and (5.37) we see that the ZZ interaction term produces
the leading contribution to the modification of the spectrum of elementary and
coupled excitations (Fig. 5.4) compared to the regime E = U . One can see
that at low values of the field λ, near the phase transition, coupled excitations
have lower energy than elementary excitations, up to first order corrections. This
substitution of the lowest excitations in principle means that the critical behavior
of the system for E = U/2 can belong to a universality class different from the
regime E = U . In Fig. 5.6 one can see the case of the full model (5.14) labeled
as XZ = 1 and the case where XZ interactions are omitted in the Hamiltonian.
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This last case is well approximated by the effective theory results (5.37) and
(5.33), which shows that near the critical point one should expect that coupled
interactions have lower energy that single excitations (see the sharp change of the
energy gap scaling).
The reason why the full model (labeled as XZ = 1) is different from the effective
theory near the phase transition point is the significant contribution of the second
order corrections (simply matrix elements of H1 become an order of magnitude
larger). The role of XZ interactions is to enhance the amplitude of the dispersion
relation of the order 1/|λ|, and becomes important near the phase transition as
well as ZZ interactions.
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XZ = 1
XZ = 0
lowest single domain wall
lowest coupled domain wall pair
lowest single spin-up
lowest coupled spin-ups

Figure 5.6.: Overview of the energy gap (in units J2/(U/2)) in the case of
M = 26 and OBC together with results of the effective theory. For this number
of spins the ground state is always non-degenerate. The curve denoted XZ = 1
represents the full model (5.14); the case XZ = 0 denotes the result for (5.14),
but without XZ interactions. The effective theory results (up to the first order
corrections) are taken from (5.37) for domain walls and from (5.33) for spin-ups.
See the main text for more details.

5.4. Phase Transition Analysis

In the following section we present the results of the phase transition investigation
in the models (5.6) and (5.14). We start by performing a standard finite size
scaling analysis and then support the results we obtain through the analysis of
the symmetries of the models. We start from the regime E = U that we use to
benchmark our numerics and revisit the model in terms of an equivalence with
the antiferromagnetic Ising chain in a skew field (AFISF). The AFISF is known
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to undergo a second order phase transition of the Ising universality class. This
is fully confirmed by our numerical finite-size scaling analysis, which was done
via MPS techniques (Chap. 4). The E = U/2 model also undergoes a phase
transition from an ordered to a disordered state. Here the numerical results are
non conclusive and compatible with a few different scenarios.
We identify the corresponding full symmetry of the E = U/2 system in the
ordered AFM state as the non-Abelian dihedral group D4. Though the finite size
scaling shows different scaling laws with respect to the Ising universality class,
we have not managed yet to identify with certainty which universality class this
transition belongs to. However, we have listed possible scenarios that in our
opinion are the most probable. Critical exponents are compatible with a weakly
first-order transition (with an undetectable order parameter jump) or a second
order transition of Potts critical class. In the last case one more option is possible,
such that the scaling laws have logarithmic corrections as discussed in Ref. [133].

5.4.1. E = U Regime

In this section we would like to summarize the main aspects of the model (5.6)
along with its symmetry content. This goes beyond previous analysis in Ref. [59].
The described model (5.6) is identical to the AF Ising chain in a skew field
(AFISF), i.e. both longitudinal and transverse fields are present. By leaving
the constant part of the Hamiltonian one can rewrite (5.6) (skew field) in the
case of extreme interactions (W →∞), after regrouping the Hamiltonian, up to
constants, reads

H̃U =
∑
r

[
σzrσ

z
r+1 − hxσxr + hzσ

z
r

]
, (5.38)

where hx = 4
√

2
W
→ 0 is the amplitude of the transverse field along the x axis and

hz = 2
(
λ
W

+ 1
)
→ 2 — longitudinal field along the z axis.

A previous numerical study [134] of this model investigates the phase diagram
in great details. The phase diagram is mapped by studying the behavior of the
order parameter

MU = 1
M

M∑
r=1

(−1)r〈σzr〉 (5.39)

representing a staggered magnetization. In Fig. 5.7 we summarize the phase dia-
gram obtained numerically in [134]. It has two phases, a Néel ordered antiferro-
magnetic phase, whereMU 6= 0, and the paramagnetic phase with spins aligned
with the skew field where MU = 0. When the transverse field is exactly zero,
the model becomes classical and the phase transition between the two phases
is of first order. For any other value of the transverse field the two phases are
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separated by a line of second order phase transitions, all in the Ising universality
class.

  

Figure 5.7.: Phase diagram of the model (5.38). For small values of fields
spins are in the ordered antiferromagnetic state (AFM), whereas for large fields
spins are aligned with the skew field ~h = (hx, hz), paramagnetic state (PM).
The point (0, 2) is the classical phase transition point (first order). The point
(1, 0) is the quantum phase transition point (second order), which corresponds
to breaking of the Z2 symmetry generated by operator GTI (5.42). The line
connecting these two points is a second order transition line with the Ising uni-
versality class, however the Hamiltonian (5.38) does not commute with (5.42)
if hz 6= 0. Our conjecture is that this transition is related to the spontaneous
Z2 symmetry breaking associated with parity (see the main text). Thus it is
possible to explain the transition of (5.6): The fine dashed line shows the path
(hx, hz) = (4

√
2

W
,−2( λ

W
+ 1)) that the E = U model undergoes as the longitudi-

nal field λ changes. In the regime when the interaction strength W → ∞ the
value of the transverse field hx becomes infinitesimal but just enough to avoid
the first order transition point (hx, hz) = (0, 2).

We perform a simple test on the well established nature of the quantum critical
point by extracting numerically the dynamical critical exponent z and the corre-
lation length exponent ν. Their values are compatible with ν = 1 and z = 1, as
expected. This agrees very well with previously published results [59] and shows
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that the energy gap obeys

∆E = M−zf [M1/ν(λ− λcrit)], (5.40)

with the critical point at λcrit ≈ −1.85, which is quite close to the asymptotic
prediction ((70) in [134]) λasym

crit = −4
√

2
3 ≈ −1.886. The phase transition indeed

belongs to the Ising universality class. In Fig. 5.8 we present our results on
finite-size scaling of even more sensitive observables: the structure factor Sπ
corresponding to periodicity two and the susceptibility

χU = −∂MU/∂λ, (5.41)

for the staggered magnetizationMU . We see that not only does the scaling of the
structure factor produce the correct Ising exponent η = 1/4, but also the scaling
of the susceptibility agrees with the fluctuation-dissipation theorem which implies
that χU ∝M ·∆E · Sπ ∝M3/4.
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Figure 5.8.: Scaling plots near QCP in the regime E = U for chains of
M spins with OBC. (a) Collapse of scaling plots of the structure factor
Sπ = 1

M
〈(∑r(−1)rσzr )2〉 that according to the standard scaling argument should

scale as M2−z−η = M3/4 for the Ising exponent η = 1/4. (b) Collapse of the
susceptibility χU with the same exponent 3/4. This result agrees well with the
fluctuation-dissipation theorem saying that χU ∝ M · ∆E · Sπ. Calculations
or eigenstates were performed using variational eigenstate search techniques
(Sec. 4.3.2) and converged with MPS bond dimension D = 128.

Despite this numerical evidence it is interesting to understand the nature of the
transition from first principles. Considering again the Hamiltonian (5.38) in the
case where the longitudinal field hz vanishes, the model becomes the standard
transverse Ising model with a second order phase transition between the param-
agnetic and anti-ferromagnetic phases. In this specific case it is easy to identify
the symmetry operator that commutes with the Hamiltonian,

GTI =
∏
r

σxr . (5.42)
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At the phase transition, the ground state of the system spontaneously breaks
the symmetry. As a consequence the ground state is two-fold degenerate and
the symmetry operator (5.42) maps one ground state into another flipping the
value of the order parameter (5.39). On the other side of the transition, in the
symmetric phase, the ground state is unique and is an eigenstate of the symmetry
operator with eigenvalue one.
If hz 6= 0 the operator (5.42) does not commute with the Hamiltonian anymore,
[GTI, HU ] 6= 0. This is why the observation of a line of second order phase
transitions in the same Ising universality class could look surprising. However, by
direct investigation, one can see that there is another possible symmetry operator,
let us call it G, such that [G,HU ] 6= 0. The symmetry of the system is associated
with periodicity two, hence G2 = I. One can define G as a shift operator

G[σr] = σr+1, (5.43)

where in the case of the infinite system the translation is applied on all spins.
Another way to define G is as an operator that inverts the entire spin chain
around the middle of a bond between two neighboring spins (in the limit of the
infinite chain it does not matter which bond, just the parity matters):G[σr] = σM−r, mod (M, 2) = 0

G[σr] = σM−r+1, mod (M, 2) = 1
. (5.44)

Thus G is a Z2 symmetry operator, it commutes with HU and squares to the
identity, i.e. has only eigenvalues ±1. The net effect of G is that even and odd
spins are exchanged. As expected, the G operator also exchanges the two Néel
ordered ground states in the antiferromagnetic phase, and thus is the operator
that is spontaneously broken at the line of second order phase transitions.
Summarizing, both the case with zero parallel field and non-zero transverse field
and the case with non-zero parallel field and transverse field are described by
Z2 invariant theories, however the symmetry operators are different. In the case
without the longitudinal field, the symmetry operator is the standard spin-flip
GTI or a more generic G; in the case of a non-trivial longitudinal field it is only G.
Independently of the specific form of the symmetry operator the two transitions
are second order phase transitions in the Ising universality class.
Despite the infinite interaction term of (5.6) and the equivalent term in (5.38),
it exhibits an order transition due to the non-vanishing value of the transverse
field, which ensures that quantum fluctuations near the phase transition smooth
out the behavior of the order parameter (5.39).

101



Chapter 5
Effective Spin Models for Resonant Tunneling Dynamics of Bosons in a Tilted

Optical Superlattice

5.4.2. E = U/2 Regime

The analysis of the phase transition of (5.14) is a significantly harder task. In
Sec. 5.3.2 we considered the limiting cases of the longitudinal fields and listed the
corresponding ground states. As a reminder: the paramagnetic phase, λ→ +∞,
has a single ground state ∏r |↓〉r, whereas the ordered antiferromagnetic phase,
λ→ −∞, has a fourfold-degenerate ground state in the limit M →∞, and reads


|(↑↑↓↓)〉
|(↓↑↑↓)〉
|(↓↓↑↑)〉
|(↑↓↓↑)〉

, (5.45)

where brackets represent periodic repetition, so the states have periodicity four.
As one tunes the value of the field, λ, the system undergoes the phase transition
associated with breaking of the symmetry. In Sec. 5.4.2.1 we discuss the possible
scenarios of symmetry breaking. In Sec. 5.4.2.2 we show the results of the finite
size scaling, and list possible scenarios which do not contradict the symmetries
and scaling plots.

5.4.2.1. Symmetries

Here we present our considerations regarding the symmetry of (5.14). We split
them into 3 parts with separate conclusions:

1. We identify the corresponding full symmetry of the system in the ordered
AFM state, λ→ −∞, as D4 (D8, in some literature), non-Abelian Dihedral
group. The group D4 has 8 distinguishable elements, which can be reached
from one to another via just two generators. In the case of the spin chain
(5.14) it could be a translation by one site T and any of four possible
reflections R (Fig. 5.9). This means that all four ground states of the AFM
phase can be visited from one another using these two transformations. The
Hamiltonian also commutes with T and R. On the other hand the ground
state from the paramagnetic phase is invariant under application of T and
R. The symmetry D4 is quite complex, and we do not know at the moment
how to test this scenario, i.e. what finite scaling laws and exponents one
should expect.

2. However, the group D4 has an Abelian subgroup Z4, four elements of which
are generated by the single-site translation operator T . There is a possibility
that the phase transition of (5.14) is associated with only this Z4 symmetry
breaking. In this case we know a number of transitions that have the
same symmetry breaking, especially the 4-state Potts and clock models.
According to [133] the 4-state Potts model has a feature of a marginal field,
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which leads to universal multiplicative logarithmic corrections to the scaling
laws.

3. The third way of thinking about the symmetries of the system (5.14) is to
treat the spin chain E = U/2 as two subchains E = U , let us call them
A and B. Without XZ and ZZ interactions the system has a ZA2 ⊗ ZB2
symmetry with symmetry operators GA and GB; acting on the correspond-
ing subchains (G is defined in Sec. 5.4.1), i.e. the transition belongs to the
Ising universality class. Neither XZ nor ZZ terms are preserved under the
symmetry transformations GA and GB, this implies that both XZ and ZZ
interactions of the Hamiltonian HU/2 explicitly break the Z2 ⊗ Z2 symme-
try, which exists for two non-interacting chains E = U . If this is the case,
it must be a first-order phase transition, since in the Ising universality class
there is no second-order phase transition in systems without Z2 symmetry.

  

Figure 5.9.: The four ground states of (5.14) in the AFM regime (λ→ −∞) are
placed in corners of a square to emphasize the symmetries of the system, which
is isomorphic to the symmetries of the square, D4. First, one can translate the
spin chain by 1, 2, and 3 sites (limit on the infinite chain), which is equivalent
to the rotation of the square by π/2, π, and 3π/2 with respect to its center.
The translation by 4 sites is equivalent to identity as well as the rotation of the
square by 2π. Secondly, one can perform two different spin-centered and bond-
centered reflections of the entire chain, which are equivalent to the reflection
of the square with respect to the horizontal, vertical, and diagonal axes.

5.4.2.2. Finite Size Scaling

In Fig. Fig. 5.10(a) the energy gap scaling is presented, which shows the compli-
cated nature of the lowest excitations. Apart from the interval −11 . λ . −4
the energy gap is ∝ |λ| for large values of the field. This regime qualitatively
matches the scaling of the energy gap in the regime E = U , where the QCP is
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Figure 5.10.: (a) Energy gap ∆E as a function of the field λ of Eq. 5.14 for
open boundary conditions and M = 142 spins, i.e. the system always has a
non-degenerate ground state. This energy gap scaling example shows that the
nature of the lowest excitations changes drastically in the interval −11 . λ .
−4, outside of which the gap behavior is described by elementary excitations
identical to those of the regime E = U . Inside the interval, bound excitation
pairs have lower energy, which is also confirmed by the fact that the gap scaling
rapidly changes from ∼ λ to ∼ 2λ (see Fig. 5.6). The red star marks the
position of the QCP in the regime E = U [59]. (b) Close-up of the QCP in
the regime E = U/2 for different system sizes M . The positions of the gap
minima, λ∗M , are shown in (c) to scale with the system size with the correlation
length critical exponent ν = 1/2 towards the QCP at λcrit ≈ −6.67. (d) The
order parameter MU/2 for the same system sizes as in (b). Even though the
order parameter appear to have smooth behavior it does become remarkably
steep at the critical point. Calculations were performed using eMPS method
[120], numerical convergence was achieved for bond dimensions D = 384. The
forbidden spin configurations were excluded from the calculations via MPO
projectors.

located at λ = −1.85 and can still be observed in Fig. 5.10(a) (marked with a red
star).
The scaling of the gap in the interval −11 . λ . −4 becomes ∝ 2|λ − λcrit|,
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bringing further evidence that bounded pairs of elementary excitations have lower
energy than single elementary excitations (see Fig. 5.6). The bounded pairs are
formed when two elementary excitations of different subchains lower their mutual
energy due to XZ- and ZZ-interactions (Fig. 5.4).
Below we first provide the finite size scaling according to the scenario of a weakly
first order transition, and then present some of the scalings as a second order
phase transition of the Potts universality class.
We resolve the position of the quantum critical point by extrapolating the gap
minima λ∗M (Fig. Fig. 5.10(b)) to the critical point λcrit ≈ −6.67. The scaling
for large system sizes (Fig. Fig. 5.10(c)) suggests the correlation length exponent
ν = 1/2, which is distinctly different from the Ising case in the regime E = U .
Note that if approximations of the critical point in the thermodynamic limit is
done with Potts critical exponent ν = 2/3 it produces a similar position of the
critical point.
The insight about the form of these new excitations comes from analyzing the
region where the actual closure of the energy gap happens, where the gap scales
approximately two times faster with the field λ. This points again to existence
of a bound state of two E = U elementary excitations, one in each subchain,
bounded together via interaction terms, as we have already discussed in Sec. 5.3.
We also find that the scaling of the energy gap at the critical point λcrit is com-
patible with the law ∆E − ∆E0 = M−zf [M1/ν(λ − λcrit)], with λcrit ≈ −6.67,
ν = 1/2, z = 2, and ∆E0 ≈ 0.01. In other words there seems to be a finite gap
in the thermodynamic limit ∆E0 even if small and the dispersion relation on the
top of the gap is quadratic. This result seems to suggest that the model with
E = U/2 has a weakly first order phase transition or simply a crossover.
We then move to other physical quantities, such as the scaling of the order pa-
rameter, and its susceptibility. In the regime E = U/2 the order parameter is
given by

MU/2 = 1
M

∑
r

(−1)r〈σz2r + σz2r−1〉, (5.46)

which now has a period four. Even though the order parameter MU/2 appears
to have smooth behavior (Fig. 5.10(d)), it does become remarkably steep at the
critical point, which does not rule out the possibility of the weakly first order
scenario. The smallness of the energy gap makes it extremely difficult to rule out
the possibility of the second order transition with unusual critical exponents.
In Fig. 5.11 we present our results on finite-size scaling of the structure factor
Sπ/2 corresponding to periodicity four and susceptibility χU/2 of the staggered
magnetization MU/2. From the results we appreciate that the scaling unveils
trivial exponents expected in a first order transition Sπ/2 ∝ M and χU/2 ∝ M2.
Moreover, by applying the fluctuation-dissipation theorem we check that χU/2 ∝
M ·∆E · Sπ/2.
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Figure 5.11.: Scaling plots near the QCP in the regime E = U/2 for chains
of M spins with OBC. (a) Collapse of scaling plots of the structure factor
Sπ/2 = 1

M
〈(∑M/2

r=1 (−1)r(σz2r+σz2r−1))2〉. (b) Collapse of the susceptibility χU/2 =
−∂MU/2/∂λ of the staggered magnetizationMU/2. According to the standard
scaling argument in the case of the first order transition Sπ/2 ∝M and χU/2 ∝
M2, which matches extremely well with numerics. This result agrees well with
the fluctuation-dissipation theorem saying that χU/2 ∝ M · ∆E · Sπ/2, where
∆E ∝ ∆E0 + const ·M−2. Calculations of eigenstates were performed with
using DMRG techniques and converged with MPS bond dimension D = 256.

The scaling plots presented above are compatible with the scenario of a weakly
first-order phase transition. However, if one starts making a more detailed anal-
ysis and compare the scaling that are compatible with the Potts model, then the
order of the transition becomes unclear.
It is well established in the literature [133, 135] that a k−state Potts model has
a first order transition for k > 4, and a second order transition if k ≤ 4. The
marginal case k = 4 however has logarithmic corrections to the scaling laws.
In Fig. 5.12 we present all three scenarios side by side. Even though one can
argue that the scaling with the Potts model exponents is better, we shall leave
this question open until it is cross checked via other methods or other scaling
plots. After all it is not clear that if it is the Potts universality class, which
corresponds the Z4 symmetry breaking, why the entire symmetry class D4 does
not matter here. Also the case of the chiral clock model should be included in
the consideration as well.
To summarize, the above numerical results are not conclusive (the gap is very
small and the finite-size scaling very challenging) but we can identify possible
regimes:
• A weakly first order phase transition with a small energy gap and an unde-
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Figure 5.12.: Comparison of the scaling plots for χU/2 near QCP (λc =
−6.6695) in the regime E = U/2 for chains of M spins with OBC. (a) Critical
exponents are compatible with a weakly first-order transition. (b) Critical ex-
ponents are compatible with the second order transition of Potts critical class.
(c) The same as (b) but with logarithmic corrections according to [133].

tectable jump of the order parameter:
ν = 1/2
χU/2 ∝M2

∆E ∝ ∆E0 + const ·M−2
(5.47)

• A second order phase transition of Potts universality class:
ν = 2/3
χU/2 ∝M7/4

∆E ∝M−1
(5.48)
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• A second order phase transition of Potts universality class and logarithmic
corrections to scaling laws according to [133,135].

5.5. Finite Temperature Calculations

In the following section we present results of our investigation of the phase tran-
sition at finite temperatures. We study the specific heat capacity

C(T, λ) = 1
T 2 〈∆H

2(λ)〉T , (5.49)

which is a measure of heat transfer from the ground to higher states. Here
〈∆H2(λ)〉T means the expectation value of the energy fluctuation evaluated for
the thermal state with temperature T . We find that specific heat reflects the
nature of the transition in both regimes E = U and E = U/2. The complicated
energy gap structure of the latter case is correctly reflected in plots of specific heat,
where one can observe contributions from both phase transitions: the suppressed
phase transition of the elementary excitation and the true phase transition of the
coupled excitations.
Quantum systems with phase transitions of second order have a characteristic
energy scale of fluctuations above the ground state that vanishes at the critical
point. Due to finite size effects the actual size of the gap stays finite and inversely
proportional to the system size. Near the critical point the system is especially
sensitive to thermal fluctuations, a good measure of which is the specific heat
capacity.
The simplest example of heat transfer is in a two level system and known as the
Schottky anomaly — the heat capacity has a pronounced peak at a temperature
when the higher energy level becomes available for thermal fluctuations. Further
increase of the system temperature leads to equalizing of the occupation proba-
bilities and decay of heat transfer. Then the temperature Tpeak at which the heat
capacity has the maximum value plays the role of the energy gap probe.
The situation is more complicated in multilevel systems; however, the leading
contribution to the specific heat is still from the energy gap between the ground
and first excited states. Hence, the position of Tpeak as a function of the Hamil-
tonian parameter λ will reflect the energy gap size accordingly. In the case of
second order phase transitions the curvature of the peak temperature line as a
function of detuning from the critical point has the following leading term

Tpeak ∝ |λ− λcrit|α , (5.50)

where the critical exponent α depends on the universality class of the phase
transition. In the case of first order phase transitions the energy gap does not
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Figure 5.13.: Specific heat capacity per spin c(T, λ) = C(T, λ)/M near the
quantum critical points in the regimes (a) E = U for M = 101 spins (b)
E = U/2 for M = 102 spins, both with open boundary conditions. (a) The
convergence of the specific heat peaks matches with the position of QCP at
T = 0 (red star). (b) The complicated structure of the specific heat reflects the
energy gap diagram in Fig. 5.10(a), where one can see the suppressed transition
of elementary excitations and the transition of coupled excitations — the true
quantum phase transition. There are two branches of specific heat peak diverg-
ing from each phase transition point. Presumably, two right branches merge
together and cannot be distinguished, that is why one can observe only three
branches. Two of those branches converge to the critical point of E = U/2
model. The third and fourth branches correspond to the transition of ele-
mentary excitations and vanish at finite temperatures as the corresponding
transition is suppressed and the energy gap minimum stays finite. The results
are obtained via TDVP evolution (see Sec. 4.3.3) of the infinite temperature
density matrix with bond dimension D = 128.

close at the critical point in general, hence the above expression can not be always
used.
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In the regime E = U (Fig. 5.13(a)) one observes that thermal fluctuations wash
out the critical point position (denoted by the red star) in both directions almost
evenly. The asymmetry about the critical point is expected as the phases on the
two sides of the critical point have different symmetries. The important thing is
the scaling of the peak temperature Tpeak with the detuning from the resonance
λ − λcrit. The position of the specific heat peak is very close to the dependence
expected for systems from the Ising universality class, i.e. the critical exponent
is α = 1.
In the regime E = U/2 the nature of the transition seems to be more compli-
cated (Fig. 5.13(b)). The specific heat dependence changed on both sides of the
transition, i.e., it is not as symmetric as in the case E = U . On the right hand
side it now has a different curvature of the peak temperature Tpeak(λ). On the
left hand side two peak temperatures can be distinguished.
This dependence of the specific heat can be explained with help of the energy gap
diagram in Fig. 5.10(a), where one can see the suppressed transition of elementary
excitations and the true transition of coupled excitations.
Each phase transition point has two branches of specific heat peaks diverging from
it as the temperatures increases. We think that Fig. 5.13(b) has four branches
in total, but one can observe only three of them because the two right branches
merge together and cannot be distinguished. Two of those branches converge to
the critical point of E = U/2 model. The third branch and the fourth one, which
is hidden, correspond to the transition of elementary excitations and vanish at
finite temperatures as the corresponding transition is suppressed and the energy
gap minimum stays finite.

5.6. Quench Dynamics

In this section we simulate the dynamics of the system after a parameter quench.
The initially prepared Mott insulator state in the superlattice geometry is allowed
to evolve in time. The dynamics is captured via the effective Hamiltonian (5.14).
The results of the quench dynamics in the spin system (Fig. 5.14) show a very
good agreement with the experimental results in the regime E = U/2 [56] even
though the geometry of the experiment does not have the superlattice. One can
see that the spin model correctly reflects the experimentally detected resonance
(Fig. 5.14(a)) near λ = 0. The peculiar part is that we can indeed see that the
oscillations of magnetization are significantly suppressed at resonance (compare
with Fig. 2 in [56]).
Moreover, the characteristic times of saturation, as well as the maximal density of
doubly occupied sites (Fig. 5.14(b)) also show similar results to the experiment.
It is important to note that the effective spin model was derived for the super
lattice geometry, which was necessary to suppress certain transitions and hence
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confine each bosons only between two resonant sites; the difference in dynamics
can be seen in Fig. 5.3.

Figure 5.14.: Time-dependence of the averaged number of spin-ups P↑ =∑
r〈σ↑r〉/M after instantaneous quenches from the unit filled MI state in the

regime E = U/2. The mapping between spins and bosons means that P↑ = Nd
— the average number of double occupancies. (a) A collection of quenches
with different detuning λ for M = 50 spins. One can observe the emergence
of the resonance near QCP as well as the suppression of fast oscillations. (b)
Results of the time evolution at λ = 0 for a collection of different spin chains
(solid lines) and for an ensemble of spin chains of the mean length 〈M〉 = 40
and normal dispersion σM = 10 (dash line). Calculations were performed using
TDVP method (see Sec. 4.3.3) with MPS of bond dimension D = 96.

We also consider the effects of spontaneous emission in order to make a quanti-
tative comparison with the experiments, for instance [56]. We consider quenches
(Fig. 5.15) from the unit filling state (in the spin representation: all spins down)
to the tilt λ = 0, in the presence of the dissipation. Thus, the dynamics of
the system is described by the master equation in Lindblad form (3.31). The
jump operators represent the spontaneous emission and are equal to the local
occupation operators, i.e. Lr = nr, which in the spin representation equals

Lr = 1 + σ↑r−2 − σ↑r , (5.51)

i.e. one needs to take into account not only the number of particles tunneled
from the site, but also the number of particles tunneled to the site. The jump
operators at the boundaries of the chain are different as particles cannot tunnel
outside of the lattice. The rate of quantum jumps γ corresponds to the sponta-
neous emission rate. In Fig. 5.15 we present the results of the simulation with
the superlattice along with the measurement results from [56] without the su-
perlattice. One can see qualitative agreement between times of saturation in the
experiment and in the calculation as well as the average number of doublons.
The presence of spontaneous emission also leads to the damping of oscillations.
The good agreement that we achieve suggests an insignificant role for the ne-
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glected transitions in the dynamic of the experiment without the superlattice.
However, a more detailed comparison should be made once the experiment with
the superlattice is realized.
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Figure 5.15.: Number of doublons Nd = P↑ per site of the optical lattice of the
lengthM , simulated via the effective spin model in the case of the superlattice.
The results are presented (a) for a range of system sizes M and no dissipation
γ = 0, (b) for M = 30 and a range of emission rates γ. The gray area
corresponds to experimental measurements of Nd [56] without the superlattice.

5.7. Comments on Numerical Techniques

Our analysis of the critical behavior of the spin models heavily relies on the
numerical calculations, as there are no exact analytical solutions. In order to
obtain the system behavior in its pure form, i.e. without finite size or boundary
effects one needs to perform calculations for comparatively large system sizes. In
that case all methods using exact diagonalization (Chap. 3) become inpractical
as they can be used only for a few tens of spins, which is often not enough.
Numerical calculations in this chapter were performed using a number of DMRG
techniques (Chap. 4), which allowed us to go far beyond the ED by focusing only
on the relevant parts of the Hilbert space. We made an extensive use of tensor
networks (MPS/MPO) for dealing with spin chains up to ~200 spins.

5.7.1. Realization of Constraints via Projectors

The implementation of the constraint terms in (5.6) and (5.14) via puttingW to a
large positive number did not prove to be stable enough for DMRG calculations of
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eigenstates. For this reason we implemented the constraints via MPO projectors
of the following form

PU/n =
∏
r

(I − σ↑rσ↑r+n), (5.52)

which explicitly forbids states with spin-ups at distance n equal 1 or 2, for models
in the regime E = U and E = U/2, respectively. Then, instead of Hamiltonians
HU/n we use

H̃U/n = PU/nHU/nPU/n, (5.53)

where the weight terms (the ones with W ) in the models were omitted. Further-
more, one can reduce the bond dimension of H̃U/n in MPO form by performing
a procedure developed for compression of MPS (Sec. 2.2 in [136]) via variational
minimization of the distance between states. For instance, in the case of open
boundary conditions the original bond dimensions of PU/2 and HU/2 are 9 and 6,
respectively, if they are constructed in a sparse way. The resulting bond dimen-
sion of H̃U/n is 9 × 6 × 9 = 486, but it can be compressed down to just 8 with
double machine precision.
Using this approach one obtains an MPO representation of restricted models (5.6)
and (5.14), which can be used for all sorts of calculations in the restricted Hilbert
space, both in statics and dynamics.

5.7.2. T-MPS Calculations

The approach we use involves the evolution of an initial infinite temperature
density matrix to finite temperatures by means of the TDVP method [121]. In the
Hilbert space without any restrictions the infinite-T density matrix is proportional
to the identity, ρ0 ∝ I. However, in the presence of restrictions one must take into
account only allowed states, so ρ0 ∝ PU/nIPU/n = PU/n, where PU/n is defined in
(5.52).
The next step is to evolve the density matrix to finite temperatures, which can
be done according to the following formula ρ(β) ∝ e−βH̃/2ρ0e−βH̃/2, here β = 1/T
and H̃ is the Hamiltonian (5.53) in the subspace of allowed states. In order to
preserve positive semidefiniteness of the density matrix we used the purification
technique [90, 93]. In this case only one side of the density matrix is evolved
ρ̄(β) ≡ e−βH̃/2ρ0, and since ρ2

0 = ρ0 expectation values can be calculated as

〈Ô〉β = tr[Ôρ̄(β)ρ̄†(β)],

where Ô is an arbitrary operator in MPO form.
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5.8. Conclusions

In this work we derived and investigated effective spin models for the unit filled
Bose-Hubbard model with a tilt enabling resonant transitions between neigh-
boring and next-neighboring sites. For the former a superlattice is required to
constrain the motion of atoms and map the dynamics onto effective spins.
The first model (5.6) is derived for tilt values near E = U , i.e. bosons resonantly
tunnel to neighboring sites. This model is equivalent to the antiferromagnetic
Ising chain in skew field (AFISF) with infinite, projective-like interactions. In
this regime tuning of the tilt near the resonance coincides with the tuning near
a quantum critical point from the Ising universality class. It corresponds to Z2
symmetry breaking in the spin chain associated with the parity in the system.
We believe this is the first time that this fact has been pointed out in this form
for the AFISF model.
The second model (5.14) is derived for tilt values near E = U/2 and a superlattice
geometry, i.e., bosons can resonantly tunnel only to next-neighboring sites. This
spin chain is equivalent to a pair of spin chains in regime E = U coupled together
via XZ and ZZ interactions. Analogously to the first model, a quantum critical
point is also located near the resonance of the tilt, but the nature of the phase
transition is different.
We identify the corresponding full symmetry of the system in the ordered AFM
state as the non-Abelian dihedral group D4. Although the finite size scaling
shows different scaling laws with respect to the Ising universality class, we have
not managed yet to identify with certainty which universality class this transition
belongs to. However we have listed three possibilities that in our opinion are the
most probable. Critical exponents are compatible with a weakly first-order tran-
sition (with an undetectable order parameter jump) or a second order transition
of the Potts critical class. In the latter case one more option is possible, such
that the scaling laws have logarithmic corrections according to [133].
Besides the symmetry analyses the difference between models can be pointed out
from the effective models for extreme values of detuning λ. Without interaction
terms the E = U/2 model will be equivalent to two independent E = U chains
with an independent spectrum of elementary excitations in each chain. However,
the ZZ interactions couple these excitations lowering their mutual energy, the
XZ interactions then modify the tunneling amplitudes of such coupled excita-
tions. As a result of both ZZ and XZ terms the role of elementary excitations is
suppressed by coupled excitations which have a different phase transition point.
The original phase transition is observable on the spectrum of elementary exci-
tations (Fig. 5.10(a)).
The results here can be easily extended to the case of not only unit filling, but
any uniform integer filling. Then the main difference in spin models will be due
to the Bose enhancement factor of tunneling and number of two body on-site
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interactions. Also the superlattice offset µ is a free parameter of the model and
hence can be exploited. In the generic case of µ . U matrix elements for even
and odd spins of E = U/2 model will be different and depend on µ. Then (5.14)
will be obtained in the limit µ/U → 0. The study of µ−dependence has potential
interest as it can allow us to continuously modify the phase transition.
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6. Global Quench Dynamics with
Long-Range Interactions

In this chapter1 we will focus on investigating the global quench dynamics for two
1D systems. The exceptional feature of both these systems is that the interactions
have a power-law dependence of 1/dα, with distance d and decay exponent α
which can be varied in a wide range. The first model is a long-range transverse
field Ising model, which has been realized in chains of trapped ions (see Sec. 2.4),
and does not have known analytical solutions in the general case. The second
model is a lattice model for spinless fermions with long-range tunneling. The
Hamiltonian of this model is diagonalizable.
The idea behind looking at both systems together is to gain more understanding
of the spread of correlations and growth of entanglement in the spin system
via comparison with analytical solutions of the fermionic system. The spatial
entanglement plays an important role for numeral methods based on DMRG
methods (see Chap. 4), which we use for the spin system.
We find that for large enough α the correlations in both systems can spread in
a light cone and the spatial entanglement grows linearly as a function of time.
In the case of long-range interactions (small α) there is no light cone effect and
instead correlations spread immediately in both systems.
Moreover, for certain configurations of quench parameters it is also possible to
achieve a sublinear growth of entanglement, instead of the usual linear regime.
This is a very intriguing result, as it allows us to perform DMRG calculations of
quench dynamics for longer times, because of the slower growth of tensor sizes
in the MPS representation of quantum states (see Chap. 4 for an introduction to
this representation).

1This work is taken in part from the publication Entanglement growth and correlation spreading
with variable-range interactions in spin and fermionic tunneling models, A. S. Buyskikh, M.
Fagotti, J. Schachenmayer, F. Essler, and A. J. Daley, Phys. Rev. A 93, 053620 (2016).
The author of this thesis performed all of the analytical and numerical calculations for the
spin model, analytical derivations for the fermionic model, wrote most of the article, and
produced all of the plots.
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6.1. Introduction and Overview

Recently, a large number of quantum spin models with interactions that de-
cay algebraically in distance were realized experimentally. Among the most
significant are experiments with trapped ions [2, 66–68, 73, 137], ultracold po-
lar molecules [138, 139], and Rydberg atoms [140–142]. In particular, experi-
ments with ions in Paul and Penning traps, trapping ions in 1D or 2D respec-
tively, give us a possibility to design spin models with variable range interac-
tions by tuning interactions between internal spin states via phonon modes in
the ion crystal [105, 143]. A high level of parameter control in these experi-
ments allows us to realize time-dependent dynamics in largely closed quantum
systems [68,103,104,144–146].
This opens the question of whether long-range interactions in quantum systems
have an important effect on properties of the system and quench dynamics in
particular. For instance, it is well known that in systems with local interac-
tions (meaning the range of the interaction is independent of the system size) or
interactions exponentially decaying with distance, the spreading of correlations
is limited by the Lieb-Robinson bound [74]. It raises the same question of the
fundamental bound of interactions in the presence of algebraically decaying inter-
actions. Even though progress has been achieved, allowing gradual improvement
of the bound [147–154], it is particularly informative to identify exactly solv-
able models that reproduce and explain the qualitative behavior of the physical
systems being studied. There are a few models with long-range interactions for
which the transitions in behavior are well understood, for instance longitudinal
Ising models [155] and tunneling bosons [156,157].
In this chapter we present our work on the comparative study of correlation
spreading and entanglement growth after global parameter quenches in the long-
range transverse field Ising model for spins and the long-range fermion hopping
model. The model for spins [105, 143] was recently realized in a series of ex-
periments [66, 73, 103, 104], and does not have a general analytical solution. The
model for fermions is the generalized Kitaev chain [158] with long-range tunneling
which is exactly solvable. For the spin model we are able to compute the dynam-
ics numerically in some cases by using Matrix Product State and Operator (MPS
and MPO) techniques [80, 91, 136,159,160] (see Chap. 4). In addition to that we
also make use of the Holstein-Primakoff approximation to gain further insight
into dynamics of spins, which at short times gives particularly good agreement
with the exact evolution.
Previous studies of the long-range transverse field Ising model [104, 145] showed
that we can classify the behavior of correlation spreading into different regimes
as a function of the decay exponent α of power-law interactions, which decay
as 1/dα, where d is the distance between interacting spins. The dynamics can
be divided into three distinct regimes: short-range interactions where α > 2,
mid-range interactions where 1 < α < 2, and long-range interactions where
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α < 1. Light-cone-like behavior can be identified quite strongly in the short-
range regime, becomes somehow vague in the mid-range regime, and completely
disappears when interactions become long-range.
Regarding the entanglement growth after the quench, the dynamics in general
show linear growth as a function of time, which resembles the result for systems
with local interactions. However, the sublinear growth of the entanglement in
time can be obtained for long-range interactions for particular classes of initial
states. We characterize this change in entanglement growth based on the con-
tribution of quasiparticles near k = 0, where the group velocity and dispersion
relation diverge for long-range interactions. These excitations do not provide a
lot of entanglement, as they are responsible only for the collective evolution of all
parts of the system (either spins or fermions). At short times, we similarly see a
suppression of correlation growth at long distances with long-range interactions.
It should also be noted that similar comparative works on entanglement growth
and correlation-spreading have been published recently [161,162] and further sug-
gest our conclusions.
In Sec. 6.2 we first discuss the long-range transverse field Ising and fermionic
hopping models, giving details of the methods we use to solve these. In Sec. 6.3,
we discuss the spread of correlations for each of the models after a global quantum
quench and discuss for each model the different regimes of short, middle, and
long-range interactions. In Sec. 6.4 we discuss the growth of entanglement in
both models and then conclude in Sec. 6.5.

6.2. Models with Long-Range Interactions

We start by defining the models of interest. The first one is the long-range
transverse field Ising model, and the second is an exactly solvable long-range
hopping model for spinless fermions (Fig. 6.1).

6.2.1. Long-Range Transverse Field Ising (LRTI) Model

Let us first introduce the long-range transverse field Ising model of M spins-1/2

confined in a linear trap (~ ≡ 1). The Hamiltonian reads

HLRTI =
M∑
l>j

Jljσ
x
l σ

x
j +B

M∑
l=1

σzl , (6.1)

where

Jlj = J

|l − j|α , (6.2)
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(a)

(b)

Figure 6.1.: Illustration of (a) the long-range transverse field Ising (LRTI) and
(b) long-range fermionic hopping (LRFH) models. LRTI has been experimen-
tally realized with ions in linear traps. Individual spins are encoded on a couple
of hyperfine levels of each ion, then phonon modes mediate their long-range in-
teractions Jlj, and an effective field B can be applied in the transverse direction.
LRFH is a theoretical model for fermions tunnelling between distant sites in
a 1D lattice with amplitudes Jlj; pairing on neighboring sites is induced with
strength ∆.

is the spin-spin interaction matrix, B is the transverse field, and σx,zl denote local
Pauli matrices operating on each spin. This Hamiltonian has been experimen-
tally realized with 1D chains of trapped ions [105] as discussed Sec. 2.4.1. The
dynamics of the spin system is mapped to the dynamics of long-lived internal
states (denoted |↑〉l and |↓〉l for spin l) of ions. The long-range interactions are
generated by coupling spin degrees of freedom through the collective motional
degrees of freedom in the crystal. The exponent of the algebraic decay α of in-
teractions then can be tuned in a wide range between 0 and 3. By shifting the
internal levels of individual ions an effective magnetic field Bl can be realized,
and here we focus on a transverse uniform field.
We will be primarily investigating global quench dynamics, where all spins are
initially prepared in a single state, for instance |↓〉l, and then the Hamiltonian
(6.1) is turned on so the system is allowed to evolve in time. This corresponds
to a global quench from B = ∞, with the ground state |ψ(t = 0)〉 = ⊗l |↓〉l, to
some finite value of the field.
The model (6.1) does not have a known analytical solution in the presence of long-
range interactions, but we approach the problem numerically. For instance, one
can tackle this problem using exact diagonalization methods for chain lengths up
to almost M ∼ 30 spins using numerical methods described in Chap. 3. However,
if one wants to look at the behavior of larger systems (up to several hundred
spins), one has to use techniques on the reduced Hilbert space (see Chap. 4). For
these calculations, the convergence in the MPS bond dimension D and time step
∆t was tested to ensure accuracy of the calculations. The main limitation of this
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method is the growth of entanglement after the quench, which leads to an increase
of the computational cost. We can also qualitatively describe the short-time
dynamics using a mean field approach — the Holstein-Primakoff approximation
(see Sec. 6.3.4).

6.2.2. Long-Range Fermionic Hopping (LRFH) Model

The second model is a 1D lattice with loaded spinless fermions that have long-
range hopping

HLRFH =
M∑

l 6=j=1
J̄ljc

†
l cj + ∆

∑
l

(
c†l c
†
l+1 + h.c.

)
, (6.3)

where cl is a fermionic annihilation operator on site l, and

J̄lj = J∣∣∣M
π

sin
[
π(l−j)
M

]∣∣∣α (6.4)

is the hopping matrix with long-range couplings analogous to those in the spin
model (6.2), but for the case of periodic boundary conditions. Periodicity is
chosen to simplify the analytical results, but for numerical calculations we will
follow the case of the spin model, and choose open boundary conditions with
J̄lj = Jlj. Here, for each variable derived for the open boundary conditions,
there will be an analog for the periodic boundary conditions marked with the
bar over the top. We checked that the behavior in each case agrees well in the
limit of large system sizes where boundary effects become insignificant. The
interactions between fermions are characterized by ∆, which allows the creation
or annihilation of pairs of fermions on neighboring sites. The model (6.3) is a
generalized Kitaev chain model [158] with long-range hopping, and its properties
have been extensively studied as well [162].
Analogously to the spin model, we will consider quantum quenches, typically
starting from the ground state for large values of ∆, and quenching to smaller
values of ∆. The Hamiltonian (6.3) can be diagonalized via Bogoliubov trans-
formations, analogously to the recent results in [162]. In the case of periodic
boundary conditions, the Hamiltonian in momentum space reads

HLRFH =
M/2−1∑
k=0

(
c†k cM−1−k

) J̄ (k) 2i∆ sin
(

2πk
M

)
−2i∆ sin

(
2πk
M

)
−J̄ (k)

( ck
c†M−1−k

)
,

(6.5)

where

ck = 1√
M

M∑
r=1

e−i 2πkr
M cr, (6.6)
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is a fermionic annihilation operator for momentum k, and

J̄ (k) = 2
M−1∑
d=1

J̄l,l+d cos (2πkd/M) , (6.7)

is the spectral decomposition of the hopping matrix.
Note that in the case of open boundary conditions one can obtain an analyt-
ical expression as well, but only via special functions. The analogous spectral
decomposition (for M →∞) then will read

J (k) = J
∞∑

d=−∞
d6=0

e−idk

|d|α = J
[
Liα(eik) + Liα(e−ik)

]
= 2JRe[Liα(eik)] (6.8)

where Lin(z) is the polylogarithm of order n and argument z.
The Bogoliubov transformation for fermions reads

αk
α†M−1−k
α†k

αM−1−k

 =


u v 0 0
−v∗ u∗ 0 0

0 0 u∗ v∗

0 0 −v u




ck
c†M−1−k
c†k

cM−1−k

 ,

where u = cos (θk/2), v = i sin (θk/2) in order to obey the constraint

|u|2 + |v|2 = 1. (6.9)

The Hamiltonian then can be diagonalized by choosing the Bogoliubov angle θk
to satisfy

eiθk =
J̄ (k) + 2i∆ sin

(
2πk
M

)
√
J̄ 2(k) + 4∆2 sin2

(
2πk
M

) , (6.10)

which leads to the dispersion relation of the Bogoliubov particles as

E(k) = ±
√
J̄ 2(k) + 4∆2 sin2 (2πk/M) ≡ ±ε(k). (6.11)

Then we can derive the same expressions, but for the pre-quench Hamiltonian,
which has another value ∆0 instead of ∆. The pre-quench Bogoliubov particles
and angle will be denoted as α0

k and θ0
k respectively. Then the dependence on

time for the original fermionic operators takes the form
(

ck (t)
c†M−1−k (t)

)
=
(

cos (θk/2) −i sin (θk/2)
−i sin (θk/2) cos (θk/2)

)(
e−iε(k)t 0

0 eiε(k)t

)(
αk

α†M−1−k

)
.

(6.12)
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By starting from the vacuum state of the pre-quench Hamiltonian (α0
k|φ0〉 = 0),

one can obtain the dependence of the correlation matrix on time

〈c†l (t)cj(t)〉 =
M−1∑
k=0

e−i
2πk(l−j)

M

2M [1− cos θk cos δθk + sin θk sin δθk cos (2ε(k)t)] ,

(6.13)

where the difference of the Bogoliubov angles before and after the quench reads

δθk = θk − θ0
k. (6.14)

Let us now look at the spreading of correlations and the growth of entanglement
in both the LRTI and LRFH models.

6.3. Spreading of Correlations in Time

In this section we discuss the spread of correlations after a global quench. For this
we look at the absolute value of the characteristic two-site correlation functions
averaged over the system. One should be careful when choosing the correlation
function for investigation, as some of them have trivial dependence on time. For
the LRTI system, we choose

C̃d(t) =
〈∣∣∣〈σ+

l (t)σ−l+d(t)
〉∣∣∣〉

l
(6.15)

and for the LRFH model,

Cd(t) =
〈∣∣∣〈c†l (t)cl+d(t)〉∣∣∣〉l . (6.16)

Here, 〈. . .〉l indicates the average in space over sites l. Note that in the case of
periodic boundary conditions one averages over all M pairs, whereas in the case
of open boundary conditions averaging is done over M − d pairs.
It is known [74] that in quantum systems with finite-range interactions (or in-
teractions exponentially decaying with distance) the information spreads with a
finite group velocity, which is limited by the Lieb-Robinson bound (see Fig. 6.2).
For instance, such light-cone dynamics was observed even in experiments with
the quantum gas microscope [163] and bosonic species of atoms. Note that the
spread of the information outside of the light cone is exponentially suppressed,
i.e. at any fixed time the correlations decay exponentially with distance if one
measures them outside of the light cone. The dynamics of correlations inside of
the light cone is determined by the Hamiltonian parameters as well as the quench.
In this work we are working with Hamiltonians that do not have local interactions,
instead they decay only algebraically with distance. We are going to present here
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Chapter 6 Global Quench Dynamics with Long-Range Interactions

Figure 6.2.: An illustrative example explaining the meaning of the Lieb-
Robinson bound [74]. The initial system of uncorrelated spins at time t0 is
allowed to evolve under a Hamiltonian H to a time t1. If H has only local or
exponentially decaying in distance interactions between spins, then there exists
a maximum group velocity of excitations, vmax. Then any two-point correlation
function calculated at time t1 will be suppressed by a factor of e−µ[d−2vmax

gr (t1−t0)]

if the separation between spins d > 2vmax
gr (t1−t0). The exponent of decay µ > 0

depends on the system parameters, in general. The spread of excitations from
any given point will be bounded by a light cone with a well defined speed.

our investigation of the light cone properties as the function of the interaction
range.

6.3.1. Comparison of the LRTI and LRFH Models

We found that in general one can distinguish three relatively different regimes
of the correlation spread after a quantum quench in each model. In Fig. 6.3, we
show some examples of the LRTI (left column of subfigures) and LRFH models
(right column of subfigures). The first regime of short-range interactions occurs
when α > 2 (Fig. 6.3(a,d)), the second regime of mid-range interactions happens
for 1 < α < 2 (Fig. 6.3(b,e)), and the third one — long-range interactions —
when α < 1 (Fig. 6.3(c,f)). The crucial difference between these regimes is the
shape of the light cone, and the sharpness of its border.

• In the regime of short-range interactions, α > 2, one can see effects re-
sembling a linear light cone. By this we mean that the border of the light
cone is almost independent of the level of the threshold (see Fig. 6.3(a,d) for
detail). One can see a strongly defined edge and correlations outside of the
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.3.: Correlation spreading after global quenches in long-range spin
and fermionic models, respectively. (a-c) log10 |C̃d(t)| for the LRTI model
after the global quench B/J = ∞ → 1 is applied. These results are ob-
tained using TDVP approach with MPOs for chains of M = 100 spins (con-
verged with MPS bond dimension D = 256). (d-f) log10 |Cd(t)| for the LRFH
model after the global quench ∆/J = 10 → 1 is applied. These results
are obtained using exact numerical computations for M = 104 sites. (a,d)
α = 3, short-range interactions with a strongly suppressed leakage of cor-
relations outside of the light cone d/t > vmax

gr are observed for both mod-
els. Markers indicate contour lines at levels log10 |C̃d(t)| = [−4,−31

2 ,−3] for
the LRTI model and log10 |Cd(t)| = [−6,−5,−4,−3] for the LRFH model.
(b,e) α = 3/2, intermediate-range interactions: the light cone is not sharply
defined, but a light-cone effect is observed. Markers indicate averaged con-
tour lines at levels log10 |C̃d(t)| = [−31

4 ,−3,−23
4 ] for the LRTI model and

log10 |Cd(t)| = [−6,−5,−4,−3] for LRFH. (c,f) α = 1/2, no light cone, instant
spread of correlations through the entire system. The suppression of correla-
tions at large distances in (f) is discussed in Sec. 6.3.3.

light cone decay algebraically with distance (as opposed to the exponential
decay for local interactions).
• In the mid-range regime, 1 < α < 2, the edge of the light cone is not so
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Chapter 6 Global Quench Dynamics with Long-Range Interactions

clear any more, i.e. depending on the threshold values the border is defined
differently, as can be seen in Fig. 6.3(b,e). This difference of the quench
dynamics between the two models will be discussed later. In the case of
the fermionic model we find that the maximum group velocity diverges
when α < 2, which will be discussed in Sec. 6.3.3 below. This regime is
intermediate, with features of both the long- and short-range regimes.
• In the long-range regime, α < 1, the light cone effects disappear. The

correlations grow over the entire system right after the quench and no light
cone can be properly defined. Note the different scales on the time axis
in Fig. 6.3(c,f). Again, one can note differences between spin and fermion
models: in the case of Fig. 6.3(f) correlations still seem to be suppressed
with distance, contrary to Fig. 6.3(c). We will discuss this suppression in
more detail in Sec. 6.3.3 below.

The difference between the regimes can be seen more clearly if we take a look at
the dependence of the correlation functions at fixed times. In Fig. 6.4, we plot the
correlation function log10 |Cd(t)| as a function of separation distance for several
fixed times tJ . In the case of short-range interactions, α > 2, one can clearly
see that the connection region between the fast decaying correlation wave and
slowly decaying tail occurs over very short distances. It is opposite to the case
of the mid-range regime, 1 < α < 2, which leads to a very clearly defined light
cone. We also note that for both these regimes (α > 1) the correlations decay
algebraically outside the light cone, as opposed to the exponential decay that
would be expected for initially uncorrelated states in models with finite-range or
exponentially decaying interactions [74].
We should note that similar studies of the LRTI model show qualitatively similar
behavior of the system [144]. Also studies of local quenches in this model identify
the same regimes of the dynamics. For instance in [145] it was studied how a
single spin perturbation propagates in the spin chain.
The behavior of the LRTI model cannot be analyzed as easily as the LRFH model.
In order to better delineate these boundaries, one would need to carry out these
calculations for longer times and larger system sizes. Nonetheless, we find in our
investigation that for given system size there are quite abrupt changes in the
behavior of the LRTI model at α = 1 and α = 2 for system sizes of the order of
M ∼ 100 spins. This agrees well with findings in other papers, e.g. [156]. At this
point we turn to the LRFH model, for which we will discuss analytical results
and find an explanation for the behavior for α > 1 and α < 1 respectively in the
next two sections. An analogy with spins will be drawn then.

6.3.2. Dynamics with Short-Range Interactions α > 2

In this section we will discuss the regime α > 2, in which the boundary of the light
cone is defined clearly (Fig. 6.4). We will use analytical solutions for the LRFH
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Figure 6.4.: Correlation functions at fixed time for the LRFH model show clear
distinction between the regimes. We plot the two-site correlation function
log10 |Cd(t)| after global quenches ∆/J = 10→ 1 in the LRFH model withM =
104 sites at different times tJ : (a) short-range interactions, α = 3; (b) mid-
range interactions, α = 3/2. Dashed lines indicate different threshold levels
δ = [−6,−5,−4,−3] that the correlation function reaches, see the markers in
Fig. 6.3(d,e). Analogous markers for the LRTI model are in Fig. 6.3(a,b). In
each case here, on the right hand side, we reproduce the same plots on a double
logarithmic scale, showing algebraic decay of correlations outside the light cone
as d→∞ in both cases.

model to explain this via analysis of the density of states in velocity and group
velocity. In particular we will see that in order to have such sharp light cone
effects one needs to excite a large portion of excitations with the maximum group
velocity; in that case the wavefront will propagate without significant dispersion.
In Fig. 6.4 we present snapshots of the dynamics at different times tJ , so the
reader can see the difference between the sharp and smooth light cone boundary.
In order to approach this problem analytically, we analyze the analytical expres-
sion for the dispersion relation ε(k) for the LRFH model; in particular, we want
to see the general difference between the regime α > 2 and α < 2. In Fig. 6.5
one can see a general behavior of the dispersion relation ε(k) as well as the group
velocity vgr(k). We see that for α > 2 the dispersion, as well as the group velocity,
are always bounded, i.e.

vmax
gr = max

k
ε′(k) <∞. (6.17)
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From the time-dependent part of the Green’s function (6.13) in the thermody-
namic limit we obtain

F (d, t) = 1
2

∫ π

−π

dk
2π e−ikd sin θk sin δθk cos (2ε(k)t) . (6.18)

The next step is to consider the “space-time scaling limit” [164] of d, t→∞, with
u = d/t fixed, i.e., one chooses the direction on the space-time reference frame
and studies the behavior of the function at the infinite distance from the center
of the axis. The idea behind this scaling is to look at the behavior of the function
at long distances without perturbations caused by the finite size of the source,
in analogy to studying scattering by analyzing the scattering properties only at
long distances.
The resulting integral is, in general, exponentially small, unless u is such that
there is at least one saddle point. Saddle points exist only if

2ε′
(
k∗j
)

+ u = 0, (6.19)

has a solution, which is possible if u is smaller than twice the maximum group
velocity. In this case one uses the stationary phase approximation near each
saddle point. After this Eq. (6.18) can take two possible forms

F (d, t) ≈
O(1/dα+2), u > vmax

gr ,∑
j Aj cos(Bj), u < vmax

gr ,
(6.20)

where Aj =
(
16πε′′

(
k∗j
)
t
)−1/2

sin θk∗j sin δθk∗j , Bj = π/4 + t
(
k∗ju+ 2ε

(
k∗j
))

, and
k∗j are the solutions of the saddle point equation (6.19).
In the case of low speed, u < vmax

gr , we are inside of the light cone. There are
saddle points that give the major contribution to the integral (6.18). Whereas
the analysis of the correlations is a study on its own, we skip it here as we
are interested in the formation of the light cone. The interesting thing though
is that the correlations inside of the light cone decay slowly in time, O(t−1/2),
which corresponds to Fick’s law of diffusion from classical physics. We find that
both approximations agree well with full numerical solutions up to finite size
corrections.
On the other hand outside of the light cone, u > vmax

gr , the usual argument
for the exponential decay of the integral due to the lack of stationary points
does not work here as the integrand is non-analytic at k = 0. In this case,
using 2π-periodicity of the integrand, its non-analytic part was extracted. The
contribution of this part decays only algebraically distance d and prevails over
the exponentially small contribution of the remaining analytical part. Thus, we
obtain the power law exponent of the correlation decay outside of the light cone
(see (6.20)). This result is also as expected, as we are working with a system with
only algebraically decaying interactions.
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Now, let us discuss why the light cone effect is strong only when α > 2. To
understand this we consider both the dispersion relation and the density of states
in velocity as a function of the wave vector (Fig. 6.5),

D (k) = M

π

∣∣∣∣∣dvgr(k)
dk

∣∣∣∣∣
−1

= M

π

∣∣∣∣∣d2ε(k)
dk2

∣∣∣∣∣
−1

. (6.21)

In the case of α > 2, the density of states in velocity diverges exactly at the
value of vgr = vmax

gr , which means that a great number of excitations (for finite
systems) with the maximum group velocity can be created in the system. This,
of course, depends on the type of quench, i.e. quench parameters. If the quench
creates a significant number of excitations propagating with the maximum group
velocity, then a strong light cone effect will be observed, meaning the light cone
boundaries will not experience significant dispersion over time. And as one can
see in Fig. 6.5(b) the maximum group velocity is finite in this regime, vmax

gr <∞,
i.e. the light cone nature is preserved.

0(
k
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)

Figure 6.5.: Characteristic examples of (a) the dispersion relation ε(k) and (b)
density of states in velocity D(k) for the LRFH model for ∆ = J in various
interaction ranges: (i) α > 2, (ii) 1 < α < 2, and (iii) α < 1. In the case
of short-range interactions (α > 2) one can see the smooth behavior of ε(k)
leading to a finite maximum group velocity vmax

gr = ε′(k∗). The corresponding
density of states in velocity D(k∗) diverges, which justifies the strong light cone
effect. In the case α < 2, vgr ∝ kα−2 for k → 0, but the density of states in
velocity is suppressed, D(k) ∝ k3−α. As a result there is no domination of
infinite velocity excitations and the light cone broadens. In the case α < 1, the
quasiexcitation spectrum become unbounded as well.
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6.3.3. Dynamics with Intermediate and Long-Range
Interactions (α < 2) in the LRFH Model

In this section we will discuss the effect of the infinite maximum group velocity
that becomes possible for α < 2. First, in the regime 1 < α < 2 a kink appears
at k = 0 in the dispersion relation, so

ε(k) ∝ ε0 + ckα−1. (6.22)

In this regime the dispersion is still bounded, but the velocity already diverges.
If we increase the range of the interactions even more, i.e. in the case of α < 1
even the dispersion relation diverges for small momenta k

ε(k) ∝ kα−1, k → 0. (6.23)

In other words, for α < 2 there is no longer a finite maximum group velocity and
for α < 1 the spectrum of quasi-excitations becomes unbounded. Note that the
same results can be obtained for both periodic (6.7) and open (6.8) boundary
conditions. As a result the light cone boundary becomes washed out for these
regimes.
However, the density of states in velocity around k = 0 is suppressed,

D(k) ∝ k3−α, for α < 2. (6.24)

Together with the scaling of the group velocity we obtain that the correlations
can build up instantly through the entire system but they grow very slowly,

vgr (k)D (k) ∝ k, for k → 0.

Exactly for this reason, the correlation spread for fermions in Fig. 6.3(f) does not
seem as immediate as in the case of spins in Fig. 6.3(c), which will be discussed
in Sec. 6.3.4.
The equation (6.19) still holds for the case of α > 2, but now there is always
at least one saddle point, because the group velocity is unbounded, vmax

gr = ∞.
Therefore we have only the second part of the solution of (6.20).
Now, as the light cone takes up the entire space-time reference frame we will
consider the leading contribution to the dynamics inside of the light cone. The
leading contribution comes from the saddle point at the smallest velocity u as it
has the slowest decay exponent. We focus on the case d � ut, in this case the
saddle point k∗ occurs close to zero. The result of the saddle point approximation
in this case is

F (d, t) ∝ t3/2

d2

(t/d)
3−α

4−2α , α < 1
(t/d)

3α−1
4−2α , 1 < α < 2

. (6.25)
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Hence, although the entire space-time is occupied by the light cone, long-range
correlations grow slowly (algebraically) in time. This suppression of correlations
in the case of the fermionic model can be understood via the density of states in
velocity and the group velocity. For spins, without an exact analytical solution,
this analysis is impossible. However in the next section we will talk about an
approximate solution for short times that allows us to gain similar insights into
the spin problem as we have for fermions.

6.3.4. Holstein-Primakoff Approximation for the LRTI Model

In this section we consider an analytical treatment of the LRTI model at short
times in the Holstein-Primakoff approximation. This approximation relies on
the initial ordering of the spins; in particular here we will consider the case of
all spins aligned along the z-axis (the initial state we chose previously). As
another example one can also choose the case where spins are Néel ordered, i.e.
odd spins point in the positive z−direction and even spins point in the opposite
direction. In that case one would map all even spins onto effective spins pointing
in the positive z−direction and continue as we will do below, and performing the
opposite transformation once the final expression is obtained.
Regardless of the initial state, the approximation is correct as long as this order
remains at least to some degree. We will quantify it below. We note that this is
expected to be a better approximation for non-zero values of the transverse field
B, as this supports retention of the ordering.
We take the initial state as |ψ0〉 = ⊗l |↓〉l, and writing ~ ≡ 1, we can rewrite (6.1)
using the exact transformation [165]

Szl = ã†l ãl − S
S−l ≡ Sxl − iSyl =

√
2S − ã†l ãl · ãl

S+
l ≡ Sxl + iSyl = ã†l ·

√
2S − ã†l ãl

, (6.26)

where Sx,y,z = σx,y,z/2 are spin operators for spin-1/2 (i.e. S = 1/2) and ãl is
the bosonic annihilation operator on the site l. Starting from the initially fully
polarized state we consider dynamics only on timescales when the initial order is
still preserved, i.e.〈

ã†l ãl
〉

2S � 1, (6.27)

then we can obtain the approximate expressions
Szl = ã†l ãl − S
S−l ≈

√
2S · ãl

S+
l ≈
√

2S · ã†l
. (6.28)
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The LRTI model can be rewritten in this approximation as

HHP = S
∑
l 6=j

Jlj
(
ãlãj + ã†l ãj + h.c.

)
+ 2B

∑
l

ã†l ãl + const., (6.29)

where the constant has no role in the dynamics. Then one can take operators in
the momentum space representation

ak = 1√
M

M∑
l=1

e−i 2πkl
M ãl, (6.30)

and obtain the momentum space version of the Hamiltonian as

HHP = 2
M/2−1∑
k=0

[
SJ (k)

(
aM−1−kak + a†ka

†
M−1−k

)
(6.31)

+ (SJ (k) +B)
(
a†kak + aM−1−ka

†
M−1−k

)]
,

where J (k) is defined in (6.8). It can be diagonalized via the Bogoliubov trans-
formations for the bosonic field(

γk
γ†M−1−k

)
=
(
u v
v∗ u∗

)(
ak

a†M−1−k

)
, (6.32)

where u = cosh (φk/2), v = sinh (φk/2) in order to obey the constraint

|u|2 − |v|2 = 1, (6.33)

with the Bogoliubov angle φk. Note that the Bogoliubov transformations for
fermions (6.9) and bosons (6.33) have different signs, in order to satisfy anticom-
mutation and commutation relations respectively. Eq. (6.31) can be diagonalized
if

e2φk = 1 + 2SJ (k)
B

. (6.34)

From this expression one can obtain the dispersion relation as

ε(k) = 2B
√

1 + 2SJ (k)
B

. (6.35)

Note that in order for ε(k) to be real, the expression under the root can not be
negative. Then, using (6.8), we obtain the following constraint∣∣∣∣BJ

∣∣∣∣ ≥ −2 sign
(
B

J

)
Liα

(
−sign

(
B

J

))
, (6.36)

which sets the limits for B values such that the Holstein-Primakoff transformation
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is stable for all modes k.
In the same fashion as was done for the Bogoliubov transformation for spins,
here we can repeat the derivation for the pre-quench parameters of the Hamil-
tonian. Hence we will denote the angle and annihilation operator as φ0

k and a0
k,

respectively.
Now it is interesting to take a look at the behavior of the dispersion relation.
Using the limiting behavior of the polylogarithm, we then obtain the divergence
of the dispersion relation for α < 1,

ε(k) ∝ k
α−1

2 , (α < 1, k → 0) . (6.37)

We see that the dispersion relation and density of states in velocity have similar
features as for the LRFH model in Fig. 6.5, in particular the dispersion relation
diverges at k = 0 for α < 1.
The difference between the regimes of the long-range (α < 1) interaction from the
other regimes can be observed via looking at the jump of the Bogoliubov angle

δφk = φk − φ0
k, (6.38)

where φ0
k is the pre-quench Bogoliubov angle for the Hamiltonian with the field

B0 =∞.
In the case α < 1, the modes near k = 0 will dominate the spread of correlations,
and we will observe a transition of behavior with respect to α > 1, where the
dispersion relation is regular for k = 0. This explains the transition in behavior
at α = 1.
For further comparison we will consider the correlation matrix for the bosonic
particles

Ĉd(t) =
〈∣∣∣〈a†l (t)al+d(t)〉∣∣∣〉l , (6.39)

after a global quench of the transverse field and compare it with the analogous
correlation function for spins.
It is always interesting to see how well approximate solutions describe the exact
dynamics, which can be accurately evaluated via DMRG methods as the error is
well controlled. For instance in Fig. 6.6 we can see the comparison of correlation
functions for the LRTI model calculated with MPS/MPO methods described
in Chap. 4 and via the Holstein-Primakoff transformation after the system is
quenched from the fully polarized state. The initial order of the state is preserved
only at times of a fraction of tJ for moderate fields B, which does not allow us to
use this approximation for quantitative analysis for longer times. By increasing
the absolute value of the field one can extend the lifetime of the order, and
the Holstein-Primakoff transformation will be valid for longer times. At the
same time, the exchange term becomes stronger for longer range interactions
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and the initial spin order lasts for shorter times. It should be noted, although
the quantitative agreement lasts for short times, key qualitative aspects of the
dynamics are typically captured over longer timescales.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.6.: Correlation spreading in the LRTI model after the global quench
B/J = ∞ → 2 is applied in the system of M = 100 spins. (a-c) log10 |C̃d(t)|
calculated numerically via MPS/MPO methods (as in Fig. 6.3(a-c)), and (d-f)
log10 |Ĉd(t)| calculated analytically via the Holstein-Primakoff approximation.
(a,d) α = 3, short-range interactions case. (b,e) α = 3/2, intermediate-range
interactions. (c,f) α = 1/2, long-range interactions.

6.4. Entanglement Growth

In this section we quantify the time-dependence of another system observable that
heavily relies on the interaction part between different subsystems of the system.
We present here our investigations of the spatial entanglement, and in particular
how fast it grows after global quenches. We are doing to use the bipartite von
Neumann entanglement entropy SvN as a measure of the spatial entanglement
(see Sec. 4.1.2.1 for definitions).
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It is known [166, 167] that in the case of local interactions or interactions that
exponentially decay with distance, the bipartite entanglement entropy grows lin-
early in time after a quench. This is related to a finite speed of excitations
propagating in the system, which leads to a linear rate of quantum information
exchange between partitions and linear growth of entanglement. In this section
we would like to extend our consideration to the case when interactions decay
only algebraically in distance. Another question concerns the rate of growth of
the entanglement in time, whether it stays linear or not.
In the sections below we first consider the entanglement growth for the LRTI
model. Due to the lack of theoretical treatment we do it only numerically using
MPS/MPO techniques. We then analyze the entanglement growth in the LRFH
model, which is done analytically.
We find that for α > 1 the behavior mostly follows the same form as for short
range interactions, i.e. linear growth of entanglement in time. However, in the
case of long-range interactions with α < 1 exceptions are possible if the symme-
try of the initial state and Hamiltonian confine the post-quench dynamics to a
subspace of the Hilbert space. For instance, if one starts with a state with N out
of M spins pointing along the axis of the field and after the quench the field is
turned to large values, then the dynamics will be almost purely confined in the
subspace of all states with N spins along the field, i.e. the total magnetization in
this direction will be preserved. In the same fashion the growth of entanglement
can be suppressed in the case of long-range interactions when all spins are aligned
with the magnetic field.

6.4.1. Entanglement Growth in the LRTI Model

In order to describe the general behavior of the entanglement in the spin model,
let us first take a look at some particular examples that will help us to build
the whole picture. In Fig. 6.7, we present examples of the entanglement entropy
growth in the LRTI model, beginning from a selection of different initial states.
In Fig. 6.7(a) we see clearly the change in characteristic behavior as we go from the
nearest-neighbor interaction limit (α→∞) to long-range interactions, beginning
in a fully polarized state with all spins down. As one reduces α the linear growth
of entanglement first slows down, but stays linear, due to the change of the group
velocity of excitations (compare α = 2 with α → ∞). A qualitative difference
in scaling happens for α < 1 as the growth is notably sublinear. Note that due
to the finite size of the system (M = 20 spins) we observe the saturation of
entanglement for the linear regimes. In Sec. 6.4.1.1 we will discuss the limiting
cases.
In Fig. 6.7(b), we focus on the interesting case of the long-range interaction (α <
1) and compare different initial states. This growth is approximately linear on a
logarithmic scale, but depends strongly on the structure of the initial state, with
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much slower growth at intermediate times for the initially fully polarized state,
compared with other spin configurations or with short-range interactions. The
intuitive explanation for this restriction of entanglement growth at intermediate
times is that the structure of the initial state, when combined with the symmetry
of the Hamiltonian, prevents the system from accessing large sections of the
Hilbert space at short to intermediate times, as it becomes somewhat stuck in
its initial symmetry sector. The ultimate limit of this occurs when α→ 0, where
the Hamiltonian is fully symmetric. In that case, if we begin with a completely
polarized spin state, the system will be at all times restricted to completely
symmetric spin states, substantially limiting the maximum entanglement entropy
that can be reached [144].
In Fig. 6.7(c,d) we look at simple perturbations of the initial fully polarized state.
We locate perturbations at different distances from the middle of the chain. We
see that both the linear behavior for α > 1 and the sublinear behavior for α < 1
are quite robust to small changes in the initial state like this at short times.
However the difference between the two cases is the time of the response. In
the case of short-range interactions the perturbation require some finite time to
reach the middle of the chain (Fig. 6.7(c)). Once this time passes the dynamics is
identical again. On the other hand, in the case of long-range interactions, α < 1,
the response is always immediate (Fig. 6.7(d)).

6.4.1.1. Behavior in Limiting Cases

In this section we will discuss entanglement growth in the extreme cases of the
neighboring interactions (α → ∞) and all-to-all interaction (α = 0). These
analytically approachable cases will help us to develop the intuition for more
general cases.
In the case of the nearest-neighbor interactions (α → ∞) the transverse field
Ising model can be studied analytically and the dynamics after global quantum
quenches has been considered in numerous works, see e.g. [164,168–178]. In this
limit the Ising chain can be mapped onto a model of free fermions, which has the
twofold degenerate dispersion relation

ε(k) = 2

√√√√(J −B)2 + 4JB sin2
(
kλ

2

)
, (6.40)

for k 6= 0, where λ is the distance between spins. The fastest quasiparticles in
this model move at the Lieb-Robinson velocityvLR = vmax

gr = 2λJ, B ≥ J

vLR = vmax
gr = 2λB, B < J

. (6.41)

By performing a global quench of the system parameters we excite counter-
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Figure 6.7.: Examples of bipartite entanglement growth after the global quench
in LRTI model with open boundary conditions. (a) Half-chain entanglement
entropy as a function of time for M = 20 spins beginning in the fully polarized
state |ψ0〉 = |↓↓↓ . . .〉 along the axis of the magnetic field B = J (from exact
diagonalization). (b) The same as (a), but for α = 1/2, and starting from a
selection of initial states (2 fully polarized states in the opposite directions,
Néel ordered state, and a product state with spins down in the left half of
the chain and up in the right half). (c) Linear and (d) sublinear growth of
entanglement entropy (shown on a logarithmic scale) for the LRTI model and
selection of initial states, now for M = 50 spins, computed with MPS methods
(converged with MPS bond dimension D = 256).

propagating entangled pairs of quasiparticles at certain points of the system. The
spatial entanglement between two parts of the system grows as one quasiparticle
of a pair crosses the border. Since the pairs are spreading with a finite maximum
speed the spatial entanglement entropy is limited by the Lieb-Robinson bound,
which leads to a linear growth of the entanglement entropy

SvN ≤ C1vLRt+ C2, (6.42)

where C1 and C2 are constants, as is discussed in more detail in Sec. 6.4.2.1.
In the opposite case of all-to-all interactions with α = 0, the model can also be
analytically solved via mapping to the Lipkin-Meshkov-Glick model, for which
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Chapter 6 Global Quench Dynamics with Long-Range Interactions

entanglement properties have been studied [179, 180]. By starting from a fully
polarized initial state with spins aligned with the external field B, the dynamics
is fully restricted to the subspace of Dicke states with finite well defined maxi-
mum spatial entanglement [181]. Hence, the entanglement entropy will always
be restricted

SvN ≤ log2

(
M

2 + 1
)
, (6.43)

where M is the number of original spins, intuitively explaining the slow and
bounded growth of entanglement in the case of long-range interactions.

6.4.2. Entanglement Growth in the LRFH Model

In this section we discuss analytical results for the growth of the entanglement in
the LRFH model.
The derivation and the use of the method, based the Toeplitz matrix representa-
tion of entanglement entropy, was first presented in [167, 173]. Here we use the
generally derived integral forms and evaluate them numerically with our quench
parameters.
We will see here the same behavior as we saw for the LRTI model: linear growth
for all α for generic initial states, but sublinear behavior for long-range inter-
actions for some initial states. We can understand this analytically from the
behavior of and contribution to the entanglement growth from the quasiparticles
with k → 0.

6.4.2.1. Quench from ∆ = 4J to ∆ = J/5

Here we consider the dependence of the entanglement entropy on the bipartite
splitting as well. We divide the system of M sites in a block of size µ and then
everything else. The analytical approach gives especially good agreement with
the bulk limit, i.e. whenµ/M → 0

µ, M →∞ , (6.44)

the analytical expressions for the entanglement entropy become exact.
In Fig. 6.8 we show numerical results for the growth of the entanglement entropy
in a quench within the LRFH model from ∆ = 4J to ∆ = J/5. The subplot
Fig. 6.8(a) shows the half-chain entanglement entropy µ = M/2 which is closer to
what we expect for spin systems, and in Fig. 6.8(b), we consider uneven splitting
µ�M , where we can approach the bulk prediction. In each case, we see a fairly
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Figure 6.8.: The entanglement entropy in the LRFH model with α = 0.8,
computed using exact numerical techniques for various system sizes M and
subsystem sizes µ after the global quench of ∆/J = 4 → 1/5. (a) Entan-
glement dynamics for the equal partition case with µ = M/2. The circular
markers show the limit described by (6.45) for large subsystems in the bulk
(i.e., µ,M → ∞ and µ � M). (b) Entanglement dynamics for a selection
of system and subsystem sizes, which is shown to converge to the prediction
(6.45) with increasing µ for µ�M = 640. The circular markers again indicate
(6.45) for large subsystems in the bulk.

typical generic form for the entanglement growth, in which it saturates at a value
and time that are proportional to the size of the subsystem, µ.
Let us now take a look at the exact analytical forms of the entanglement entropy
per unit length that one can obtain in the thermodynamic limit, i.e. ignoring
boundary effects. In the case where the pre-quench Hamiltonian is reflection
symmetric and can be diagonalized by the Bogoliubov transformation the time
dependence of the entanglement entropy can be obtained [167,172] as

Sµ
µ
∼
∫ π

0

dk
π

min
(

1, 2 |ε′(k)| t
µ

)
G (cos δθk) , (6.45)

where

G(x) = −1 + x

2 log 1 + x

2 − 1− x
2 log 1− x

2 , (6.46)

plays the role of the density of excitations that contribute to the growth of the
entanglement between partitions A and B. The angle δθk, defined in (6.14), is the
difference of the Bogoliubov angles before and after the quench. In Fig. 6.8(a) one
can see this dependence for equal partition splitting and for the case of uneven
splitting Fig. 6.8(b), which resembles the bulk prediction.
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Figure 6.9.: The entanglement entropy in the LRFH model after global
quenches computed using exact numerical techniques for a selection of inter-
action range exponents α. (a,b) Beginning from the ground state for ∆ = 4J
to ∆ = J/5, and (c,d) beginning from the ground state of a critical Ising
model (as detailed in the text) to ∆ = J/5 as well. Different partition µ is
chosen to emphasize the bulk prediction: (a,c) The half-chain entanglement
entropy µ = M/2 = 40, and (b,d) the subsystem entanglement entropy for
µ = M/8 = 40. Markers denote the bulk prediction from (6.45). (a) One can
see a time window of clean linearity for all α, but it gets shorter as α→ 0. At
short times the leading behavior seems to be linear, but the subleading terms
(in tJ/µ) are also affected by the divergence of the dispersion relation. (b)
The agreement with the bulk prediction is very good, but at sufficiently large
tJ/µ the discrepancy due to the finiteness of M is clearly visible. (c) There are
evident differences with respect to (a) due to the fact that quasiparticles with
momentum close to zero turn out to give a finite contribution to the entropy.
While for α ≥ 2 the entropy seems to grow linearly, for small α the leading
contribution at short time growth logarithmically in time. (d) The agreement
with prediction (6.45) is very good.
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6.4 Entanglement Growth

It is clear that (6.45) can be simply bounded by the velocity term
∫ π

0

dk
π

min
(

1, 2 |ε′(k)| t
µ

)
G (cos δθk) ≤ 2 t

µ

∫ π

0

dk
π
|ε′(k)|G (cos δθk) . (6.47)

This might seem a very simple step, but one can draw interesting conclusions
out of it. Let us look at the long-range case, α < 1, first. The velocity (6.17)
diverges as kα−2 when k → 0 and the short time behavior of the entropy could be
strongly influenced by the modes close to zero momentum if these are affected by
the quench, i.e. if the initial and final parameters of the Hamiltonian are chosen
such that one creates excitations near k = 0.
If now one looks at the quenches we presented in Fig. 6.8, it can be calculated from
(6.14) that the change in the Bogoliubov angle δθk → 0 as k → 0. In other words
the quench does not generate new quasiparticles at k = 0, and existing quasi-
particles just pick up a phase, which does not affect the entanglement between
partitions A and B. Consequently, these play no role in the change of entangle-
ment. Mathematically it means that the density of excitations G approaches 0
faster than the group velocity ε′(k) diverges as k → 0 and the integrand in the
right hand side of (6.47) tends to zero. In Fig. 6.9(a,b) a weak dependence on α
for the qualitative behavior of the entanglement entropy is shown clearly for this
quench. In Fig. 6.9(a) this is shown for µ = M/2, which is the usual case that we
deal with. In Fig. 6.9(b), this is shown for the subsystem in the bulk, µ�M .

6.4.2.2. Quench from Critical Ising to ∆ = J/5

In this section, instead of just quenching the interaction strength ∆ we quench
the interaction range as well. The idea is to excite quasiparticles near k = 0
that on one hand have infinite range, but on the other hand do not give any
contribution to the entanglement growth. As we saw above the divergence of the
group velocity clearly depends on the range of the interactions α, we would like
to see how the contribution of those excitations with k → 0 will affect the growth
of the entanglement as we vary α.
Analogously to what we saw in the previous section for the LRTI model, we need
to consider ground states with a different structure than the ∆ = 4J ground
state, as in that case the density of excitations G was converging to 0 faster than
the divergence of the group velocity. Specifically, we look for situations where
the integrand |ε′(k)|G (cos δθk) in (6.45) diverges as k → 0. It turns out that if
we choose the ground state of the critical transverse field Ising (CTI) chain, the
Hamiltonian of which in fermionic operators reads

HCTI =
∑
l

c†l (c
†
l+1 + cl+1 − cl) + h.c., (6.48)

then then the corresponding Bogoliubov angle will be cos θ0
k ∼ |k|/2 and hence
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G(cos δθk) = log 2. The quasiparticles with momentum close to zero then domi-
nate the dynamics at short times.
In Fig. 6.9(c,d) we show the entropy per unit length for the time evolution under
the long-range Hamiltonian (6.3) with ∆ = J/5, but now starting from the ground
state of (6.48). Again we show the equal partition splitting in Fig. 6.9(c) and the
bulk regime in Fig. 6.9(d). These calculations start from the ground state of the
CTI Hamiltonian (with open boundary conditions).
Whereas the short-range regime is not affected much, as the group velocity is
always finite, the most interesting changes occur for the long-range regime, α < 1.
In that case the dominant contribution to Sµ is not linear any more. If we take
the leading order term of Eq. (6.45) at short times, we find that this behavior is
polynomial, and see that

Sµ ∝ t1/(2−α), (6.49)

at short times.
As one shortens the range of the interactions and α → 1, the timescales over
which the power law (6.49) holds become shorter. Also note that the growth of
entanglement in case α < 1 is faster at very short times, but slower at intermediate
times than the linear behavior of short-range interactions, α > 1.
This counterintuitive result can actually be well explained. In this section we
put a focus on quenching the system in such a way that quasiparticles with zero
momenta are excited as much as possible. These excitations, propagating imme-
diately over the entire system, just slightly entangle it. This is analogous to the
case of all-to-all interactions (see Sec. 6.4.1.1), where the bipartite entanglement
of the system is bounded and reached almost immediately. Other excitations with
momenta away from zero just give corrections at later times as it takes finite time
for them to cross the border between partitions. Hence, we see in Fig. 6.9(c,d)
that the entanglement at short times is larger in the case of long-range interac-
tions, α < 1, than in the case of the short-range interactions, α > 1.
The scaling in the case of the long-range interactions, α < 1, seems to be sublin-
ear, with the leading sublinear term (6.49) extracted analytically.

6.5. Summary and Outlook

In this chapter we presented our work on correlation spreading and entanglement
growth after global parameter quenches in the long-range transverse field Ising
model and a long-range fermion hopping model.
For both models in was found that in the case of short-range interaction the
dynamics closely resembles the case of local (or exponentially decaying with dis-
tance) interactions, such as light cone effects of the correlation spreading and
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linear in time growth of entanglement. The main difference is in the form of
higher order corrections, which decay algebraically now, and not exponentially.
Also for both models we find a clear delineation of long range behavior for α < 1,
and an intermediate regime where the entanglement still shows linear growth on
short time-scales, but correlation spreading does not have a well defined light
cone any more.
We find that for particular classes of initial states, the sublinear time scaling of the
bipartite entanglement growth can be obtained for long-range interactions. We
can characterize this change in entanglement growth based on the contribution
of quasiparticles near k = 0, where the group velocity and dispersion relation
diverge for long-range interactions. These excitations do not provide a lot of
entanglement, as they are performing only collective evolution of all parts of the
system (either spins or fermions). At short times, we similarly see a suppression
of correlation growth at long distances with long-range interactions.
In the future it would be interesting to extend this study in two major directions.
First, the obvious one is to study the correlation spreading and entanglement
growth in higher dimensions. In this case, the numerical methods presented here
are not the most optimal tool, as the amount of spatial entanglement generated
after global quench scales linearly with the system size (here we talk about the
entanglement entropy), hence it requires exponentially large tensors to store the
state.
Secondly, it would be interesting to take advantage of the entanglement suppres-
sion and use this trick for extending the simulation time with DMRG techniques,
which heavily rely on it (see Chap. 4). For this, one needs to perform more sys-
tematic study of symmetries in the system, as the suppression of the entanglement
growth relies on confinement of the system dynamics in a certain symmetry sector
of the Hilbert space.
The results for the long-range transverse field Ising model correspond directly
to dynamics of ongoing experiments with trapped ions highlighted in Sec. 2.4.
The collaboration with an experimental group in Innsbruck on development of a
new method of quantum state characterization for trapped ions is presented in
Chap. 7.

145





7. Certified MPS Tomography of
Quantum States

In this chapter1 we continue the work started in Chap. 6 on a long-range spin
model experimentally realized on trapped ions in one and two dimensions (Sec. 2.4.1).
Rather than purely theoretical investigation, this chapter will focus on the ap-
plication of the model to experiment, in which the first demonstration of a new
method of quantum state estimation, certified Matrix Product State (MPS) to-
mography [182], is given.

7.1. Introduction

Currently, quantum state tomography (QST) is the state of the art method for
determination of states of small quantum systems [75]. This method relies on
the measurement of the system state in all bases, hence it can be efficiently used
only in the case of relatively small systems. The linear growth of the system size
will require an exponential increase of the number of measurements, making it
highly inefficient for larger systems. That is why the development of new efficient
techniques is particularly interesting now, as developing experiments are well
beyond the reach of QST. For instance modern experiments already operate with
up to tens of thousands of neutral atoms in optical lattices (Sec. 2.3) and with a
few hundreds of ions confined in the Penning trap (Sec. 2.4).
Here we present a collaborative work on realization of a recently proposed tech-
nique [76], which is theoretically proven to allow the states of a broad class of
quantum systems to be accurately estimated with an effort that increases only
polynomially with the number of constituents in the system. The method is called
Matrix Product State (MPS) tomography and can be applied to a wide range of
quantum states, in particular those that are well approximated by matrix product
states (see Chap. 4).

1This work is taken in part from the publication Efficient tomography of a quantum many-body
system, B. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand,
A. Buyskikh, A. Daley, M. Cramer, M. Plenio, and R. Blatt, arXiv:1612.08000 (accepted for
publication in Nature Physics). The author of this thesis performed calculations to compare
with experimental time evolution and to analyze the scaling of the measurement scheme,
and wrote the code used for calculation of reduced density matrices.
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The idea behind MPS tomography is essentially the same as the idea of the
MPS representation of quantum states when one wants to treat the problem
numerically. The full QST method is a universal method that works for any type
of state as long as the system size is small enough. MPS tomography is aimed
at states with low entanglement, which can be efficiently represented in the MPS
form [183,184], i.e., represented with a small bond dimension.
In this work we focus on the case of the quench dynamics of spin chains from
initially unentangled pure states, which can be written in the MPS form with
the bond dimension just one, i.e., they are product states. The quench triggers
the spread of correlations in the system and a build up of entanglement (see
Chap. 6). In the case of only local interactions the spread of correlations in the
system follows the light cone dependence [74,163,185], hence only the spins which
were reached by the light cone become entangled with each other. The distance on
which correlations decay exponentially for further spins is called the correlation
length L.
In this work we take this idea that only local spins are entangled after a short-time
evolution following a global quench and reconstruct the state of the system by
measuring only reduced density matrices (reductions) of all blocks of k consecutive
spins. Besides this a certification of the method is provided that produces a lower
bound on the fidelity between the real lab state ρlab and the MPS state estimate
|ψkc 〉.
In the following sections we will first present the model that is experimentally re-
alized in the group of Christian Roos and Rainer Blatt in Innsbruck. The model
has a linear chain of spins with interactions decaying algebraically in distance
with variable exponents. This allows us to test the capabilities of MPS tomog-
raphy beyond local interactions. We then summarize the main methods of state
estimation and present the result with experimentally obtained data. Before con-
cluding we estimate the resource cost of MPS tomography showing its efficiency,
i.e. polynomial growth of the required number of measurements with the system
size.

7.2. Notation

This chapter presents results measured in experiments, calculated for the ideal-
ized time evolution numerically, and obtained from certified MPS tomography.
In order to avoid confusion we find it useful to present here the list of the most
important notation for this chapter, so the reader can always refer to the defini-
tions:
• M — number of sites in the spin chain
• L — correlation length
• |φ〉 — ideal state of the system, calculated numerically
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• ρlab — density matrix of the experimental state, which in general can be
mixed
• k — size of the block of consecutive spins in the spin chain, the reduced

density matrix (reduction) of which is measured via QST
• |ψkc 〉 — certified MPS state, obtained via the MPS tomography method

with reductions of size k.
• Hpar — gapped parent Hamiltonian, constructed as an intermediate tool to

find the best |ψkc 〉, which is its non-degenerate ground state. The energy
gap of Hpar is ∆E = E1 − E0

• F ≡ 〈ψkc |ρlab|ψkc 〉 — actual fidelity of MPS tomography
• F k

c — certified fidelity lower bound for |ψkc 〉, i.e. F ≥ F k
c

7.3. Methods
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Figure 7.1.: Graphical representation of the experimental sequence used for
the Matrix Product State (MPS) tomography. (a) Initially the chain of M
spins is prepared in the Néel ordered pure state, which is not an eigenstate
of the system Hamiltonian. Then the Hamiltonian is suddenly quenched on
and the correlations spread out [103, 104, 163] as shown by arrows (only a few
shown). (b) After some time quantum correlations have reached neighboring
spins as indicated by ellipses (not all shown). (c) MPS tomography requires
only measurements to reconstruct all k−spin reduced density matrices — local
reductions (all necessary reductions for k = 3 are shown). The experimental
effort therefore increases only polynomially in spin number M . This figure was
reproduced from [182].

In this section we present the model Hamiltonian and explain the sequence of the
experiment aimed at using certified MPS tomography. We work with a system
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of 40Ca+ ions trapped in a linear Paul trap, which was already explained in
Sec. 2.4.1. Two long-lived internal states can be singled out in each ion and we
can map them to two states of a single qubit. Then via interaction of these
internal states with the external fields, as well as with the phonon modes of the
ion crystal, the dynamics of the system can be made to obey the long-range
transverse field Ising Hamiltonian

HLRTI =
M∑
r<l

Jrlσ
x
rσ

x
l +

M∑
r

(B + δBr)σzr , (7.1)

where Jrl is the spin-spin coupling matrix, B is the external uniform field, δBr

is the non-uniform component of the field, and σxr and σzr are the Pauli x and z
matrices for spin r. The strength of spin-spin interactions reduces with distance
approximately as

Jrl ≈
J

|r − l|α , (7.2)

where J is the averaged value of the interactions between neighboring spins. In
Chap. 6 we studied the global quench dynamics of this Hamiltonian in the ideal-
ized situation without the non-uniform field δBr, and where interactions decayed
exactly according to the power law. As this chapter is a logical continuation of
the previous one but with a bias towards practical applications, we find it useful
to give more technical details on the system.
The parameters for the two experimental set-ups realized here can be found in
Tab. 7.1. In the case of the large external field B � |Jrl|, δB (which is the case
here), Eq. (7.1) is equivalent to the long-range XY analogue

HLRXY =
M∑
r<l

Jrl(σ+
r σ
−
l + σ−r σ

+
l ) +B

M∑
r

σzr , (7.3)

where the site-dependent perturbation δBr is also omitted. For this situation the
total magnetization along the z−axis is preserved, i.e. if the initial state has N
out of M spin-ups, then the Hamiltonian will preserve this number during the
evolution.
The experiment (sketched in Fig. 7.1) was performed for two sets of spin chains.
First, it was done with 8 spins, which is still accessible via full QST. Secondly, it
was repeated with 14 spins, beyond reasonable length measurements and recon-
struction with QST. In both cases the system was initially prepared in the pure
Néel ordered state

|φ(0)〉 = |↑, ↓, ↑, ↓ ...〉, (7.4)

and then it will be allowed to evolve until a certain time where the MPS tomogra-
phy measurements will be performed. The system at that point will be in some, in
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8 ions 14 ions
maxr,l(Jrl) 2π · 25 Hz 2π · 15 Hz

α 1.58 1.27
B 2π · 3 kHz 2π · 5 kHz

maxr(δBr) 2π · 1 Hz 2π · 1 Hz

Table 7.1.: Approximate experimental parameters of the Hamiltonian (7.1).
Whereas all parameters are mentioned approximately, δBr is only defined up
to an order of magnitude, it was estimated in the experiment as the fluctuation
of the magnetic field.

general mixed, state ρlab. The measurements will be used to reconstruct reduced
density matrices (reductions) of k = 1, 2, or 3 neighboring spins. For each of
these cases the certified MPS state |ψkc 〉 will be obtained, with a lower bound on
fidelity F k

c . We will see that the increase of the reduction size k used in tomogra-
phy significantly improves the state reconstruction and its fidelity bound. Then
we provide the values of fidelity, which can be estimated via the Direct Fidelity
Estimation (DFE) method [186,187].
The interaction decay exponent α in both cases belongs to the interval between
1 and 2. As we saw in our investigation in Chap. 6 this is the transition regime
between long- and short-range interactions. Whereas light cone effects are still
observed in the spread of correlations, the border of the light cone is somehow
poorly defined and the correlation tails outside of the light cone spread at dis-
tances comparable to the system size [104,145,188]. The growth of entanglement
in this regime is still linear. Hence, strictly speaking we are going to use (7.1) in
the regime of non-local interactions.
Below we will first explain how full QST works and why this method becomes
unfeasible for large system sizes (Sec. 7.3.1). Then we will describe the main
principles of the MPS tomography, along with the certification scheme (Sec. 7.3.2).
After that, the results for the two experimental setups will be presented showing
the reconstruction of the laboratory state via MPS tomography (Sec. 7.4). Before
the conclusion we will present extra results on the numerical simulation of MPS
tomography for a various chain lengths to demonstrate efficient (polynomial)
scaling of the number of measurements required for the constant estimation error
in MPS tomography (Sec. 7.5).

7.3.1. Full Quantum State Tomography (QST)

In this section we will give an overview of full quantum state tomography (QST)
and its limitations. For this let us consider a composite quantum system where
each element is a two-level quantum system, e.g., a qubit or spin-1/2. In order to
reconstruct the density matrix of a single spin one needs to perform measurements

151



Chapter 7 Certified MPS Tomography of Quantum States

in 3 bases: σx, σy, and σz. In each basis one has only two distinct outcomes,
i.e. either +1 or -1 for each spin in the chosen basis, however the state is in a
superposition of both of them. After a sufficient number of samples in each basis
one obtains the probability for each projection of the qubit. The next step is
to use a Maximum Likelihood Estimation (MLE) scheme to obtain the density
matrix which is maximally close to the real one. The method guarantees that
the state is properly normalized, its density matrix is positive semi-definite, and
produces the best agreement with the data.
In the case of 2 spins, the number of bases in which the state must be measured
rises to 32 = 9:

[σx ⊗ σx] [σx ⊗ σy] [σx ⊗ σz]
[σy ⊗ σx] [σy ⊗ σy] [σy ⊗ σz]
[σz ⊗ σx] [σz ⊗ σy] [σz ⊗ σz]

,

where the first element shows the measurement operator on the first spin and
the second element shows the measurement operator for the second spin. Each
measurement now has 22 = 4 outcomes.
In the general case of M spins, the measurement should be made in 3M bases.
For a fixed basis one can obtain 2M distinguishable outcomes. This means that
one needs to have sufficiently many samples in each basis to reduce statistical
fluctuations.
The greatest advantage of QST is that the estimation error depends only on
the sample size and experimental noise and the method does not rely on certain
characteristics of the state. This means QST will work both on a product state,
when the system is prepared in a fully polarized state and on a highly entangled
state after quench dynamics (see our investigation of the entanglement growth in
Chap. 6).
The down side of QST is the exponential growth of the number of bases in
which measurements have to be taken. For instance the largest application of
full QST was for 8 qubits, and required measurements in 38 = 6561 different
bases, which took over ten hours [189]. The reconstruction of the state from
these measurements is also a complex computational problem.

7.3.2. Certified MPS Tomography

In this section, we give an overview of certified MPS tomography, which is based
on previous results from [76,190] and is explained in detail in the supplementary
material of [182].
For a given state of the system ρlab, the experimental group measures reduced
density matrices (reductions) of k consecutive spins. This step is done via the
full QST method described above. In total it is performed for all (M − k + 1)
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reductions, whereM is the total number of spins. Each of the reductions requires
measurements in 3k bases with 2k distinct measurement outcomes. It should also
be mentioned that non-overlapping reductions can be measured in parallel, i.e.
for instance 3-spin reductions ρ123 and ρ456 do not have common spins and hence
can be measured simultaneously. In [182] another step forward is taken and the
measurement of all reductions is made simultaneously, which brings the total
number of the measurement bases down to 3k instead of 3k(M − k + 1).
At this point the experimental work is done and the post-processing starts, which
consists of two main parts:
• A search for the MPS estimate |ψkc 〉 of the lab state ρlab. This forms uncer-

tified MPS tomography.
• Finding a lower bound on the fidelity F k

c , such that the actual fidelity
F > F k

c . This is the certification to MPS tomography.
The search for the MPS estimate is based on the combination of two methods:
modified Singular Value Thresholding (SVT) [76] and iterative MLE [190]. The
SVT method produces a first guess of the estimate state |ψest〉, which is passed
to MLE, which iteratively tunes the state and improves the match with data.
Both algorithms scale polynomially with the number of spins M . One could also
consider the possibility of using more advanced versions of MLE, where besides
local expectation values one provides all two-point correlations matrices as input,
but this was not done here.
At this point we have a state estimate |ψest〉, but the convergence of the above
methods is not proven. In what follows in this section we define the general
procedure to obtain a lower bound for the state fidelity.
In order to define the bound we now look for a pure state |ψGS〉, which is the
ground state of some gapped parent Hamiltonian Hpar, i.e. the two lowest eigen-
values of Hpar, E0 < E1, have a gap. The optimal parent Hamiltonian should
satisfy 2 conditions: |ψGS〉 is close to |ψest〉 and the energy gap of Hpar should be
as large as possible.
The optimal Hpar is called the parent Hamiltonian and its ground state becomes
the certified estimate state |ψkc 〉. The fact of the parent Hamiltonian’s existence
allows [76] us to define the lower bound on the fidelity as

F ≡ 〈ψkc |ρlab|ψkc 〉 ≥
E − E0

E1 − E0
≡ F k

c , (7.5)

where

E = tr(ρlabHpar), (7.6)

is the energy of the lab state assuming the parent Hamiltonian interactions, and
is useful for calculating F , but otherwise has no physical meaning. Now one
uses the knowledge about k−site reductions to determine the energy E. In order
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to ensure statistical independence, the measured data is first separated into two
parts: one of them is required to obtain the optimal parent Hamiltonian Hpar
and its ground state |ψkc 〉, and the second part is used for the estimation of E
and its uncertainty, which will produce F k

c and its uncertainty. The splitting of
the data is done to avoid overestimating the fidelity bound by choosing a parent
Hamiltonian tuned to the particular set of statistical fluctuations in a single set
of measurable data.
In the supplementary materials of [182] it was proven that indeed in the case
of a Hamiltonian with local interactions the algorithm of MPS tomography re-
quires polynomial growth of resources in the size M , inverse polynomial with the
tolerated infidelity of characterization, and exponential in the evolution time t.
The last scaling is an expected result taking into account the light cone effects
of the information propagation in systems with finite interactions [74] and reflect
the exponential cost of full QST. The number of locally entangled spins after a
global quench grows linearly in time, so one needs to increase the size of measured
reductions linearly in time as well.

7.4. Experimental Results

In this section we apply the method of MPS tomography on the system of spin
chains realized on linearly trapped ions of 40Ca+. The general scheme of the
experimental sequence was highlighted in Sec. 7.3 and Fig. 7.1, the initially pre-
pared product state will be allowed to propagate for a short period of time obey-
ing interactions described by the Hamiltonian (7.1). Then local reductions of k
consecutive spins are measured. We will show that by increasing k from 1 to
3 one can significantly increase the fidelity of the state obtained via the MPS
tomography. This will also be seen from the calculation of the certified bound.
The increase of the correlation length L in the system after the quench can
also be calculated. In Sec. 4.1.2 we already presented several possible measures of
entanglement for pure states. Here we are interested in the entanglement between
partitions of the system, e.g. the entanglement between two particular spins. The
state of the two spins of interest of the multi-spin system is not pure in general.
In Sec. 7.4.1 we introduce an appropriate measure — the logarithmic negativity.
In the later sections we present the results of the MPS tomography with 8 and
14 spins.

7.4.1. Logarithmic Negativity

For a generic system that consists of two partitions A and B described by the
density matrix ρAB (in general mixed) the bipartite logarithmic negativity [114,
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191] can be defined as

LN2(ρAB) = log2

∥∥∥ρTAAB∥∥∥1
, (7.7)

where ρTAAB defines partial transposition of the partition A and ‖...‖1 denotes
the trace norm. In the case where A and B are not entangled the logarithmic
negativity is equal to zero.
We also introduce the tripartite logarithmic negativity as the geometric mean of
three bipartite logarithmic negativities. For a system of three parts A, B, and
C, described by the state ρABC , it reads

LN3(ρABC) = 3
√
LN2(ρA(BC)) · LN2(ρB(AC)) · LN2(ρC(AB)), (7.8)

where

LN2(ρA(BC)) = log2

∥∥∥ρTAABC∥∥∥1
, (7.9)

i.e. the B and C parts are combined in one.
If A and B are two spin-1/2, as in our case, then

LN2(ρAB) = log2(2|
∑
n

µn|+ 1), (7.10)

where µn are negative eigenvalues of ρTAAB.

7.4.2. Results of MPS Tomography

In this section we use certified MPS tomography on the experimental data for
states of 8 and 14 ions.

7.4.2.1. 8 Ions

In Fig. 7.2 we present the compilation of results on the quench dynamics of the
chain of M = 8 spins. The experiment starts with Néel ordered spins (7.4),
which are allowed to evolve to approximately 10 ms with interactions modeled
by (7.1). In Fig. 7.2(a) one can see the evolution of the magnetization. The
two light cones drawn in the figure are guides for the eye showing an estimate
of group velocity. This is first calculated assuming nearest neighbor interactions
and rescaled accordingly for the long-range interaction (see [182] for more de-
tails). Fig. 7.2(b) shows an example of the two spin reduction (absolute values),
the reconstruction is done using data later used to MPS tomography. As one can
see from Fig. 7.2(c,d), a few milliseconds of evolution time is enough to signifi-
cantly entangle all neighboring spins and Fig. 7.2(c,d) shows the bipartite LN2
and tripartite LN3 logarithmic negativities respectively.
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Figure 7.2.: Results of quench dynamics with the chain of 8 spins. (a) Single
spin magnetization 〈σzi (t)〉 after quench dynamics. Two light cones are shown,
exemplifying an estimate for the group velocity at which correlations spread.
(b) Absolute values of the elements of the local density matrix ρ̂34 at time t = 3
ms, reconstructed via the full QST and standard MLE [192]. The estimation
fidelity against the theoretical model of F = 0.99±0.01. The state is entangled,
with a bipartite logarithmic negativity of LN2 = 0.41 ± 0.01. (c-d) Bipartite
LN2 and tripartite LN3 logarithmic negativities for all neighboring spin pairs
at times t = 0, 3, and 5 ms. This figure was reproduced from [182].

Now it is important to see how well the state |ψkc 〉 estimated via MPS tomography
can capture correlations between spins at long distances, noting that we used
reductions of the size k = 3 to obtain the state estimate. In Fig. 7.3 we show
three types of correlation matrices obtained in three different ways for the system
of 8 ions at time 3 ms. Fig. 7.3(a) is obtained if one evolves the ideal initial state
(7.4) as

|φ(t)〉 = e−itHLRTI|φ(0)〉, (7.11)

i.e. ignoring all imperfections in the system. The case in Fig. 7.3(b) with direct
measurements shows the level of imperfections of measurements in the experiment
with the chosen sampling. The case in Fig. 7.3(c) is the most interesting as it
is obtained from the MPS tomography state |ψ3

c 〉. This case shows that MPS
tomography captures strong spin-spin correlations successfully in this system.
One can also see that correlations between spins at distances larger than k = 3
are captured as well. By this we mean that the majority of the correlation matrix
elements’ signs are captured, as well as their distribution pattern.
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Figure 7.3.: Spin-spin correlation matrices at time t = 3 ms obtained from
(a) the idealized case |φ(t)〉 calculated numerically, (b) the direct experimental
measurements, and (c) the reconstructed MPS state |ψ3

c 〉 (with F 3
c > 0.84 ±

0.05). The legend above each figure identifies the type of the correlations
matrix, X, Y , or Z denote the base of the measurement/calculation so 〈ZZ〉−
〈Z〉〈Z〉 means the correlation matrix Czz

ij = 〈σzi (t)σzj (t)〉 − 〈σzi (t)〉〈σzj (t)〉. The
hatched squares denote correlations that were not measured. This figure was
reproduced from [182].

In Fig. 7.4 we present the certified bounds F k
c for data obtained in the experiment

and two theoretical models:
• The simulation done with the ideal time evolution (7.11) and exact calcu-

lation of reductions as ρA = trB(|φ(t)〉〈φ(t)|) for each block of 3 spins.
• The ideal time evolution (7.11) with 1000 simulated measurements per ob-

servables (as in the lab), which also accounts for the expected statistical
errors of measurements.
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One can see that the second case approaches the experimental results quite closely.
There are two main sources of discrepancy. First, non-ideal measurements in
the experiment are made due to the finite number of samples. Secondly, the
certification of the MPS tomography relies on the fact that the initial state is
pure, which is not necessarily true in the experiment. The mixture happens at
the stage of the state preparation. For instance, the preparation of the initial
state can be estimated via single site MPS tomography, which produces |ψ1

c 〉.
The overlap with the Néel ordered initial state is |〈φ(0)|ψ1

c 〉|2 = 0.98 and the
certified fidelity bound F 1

c = 0.98± 0.01. This shows that the system is initially
well described by the state (7.4).

Time (1/J)

k = 5
k = 4

k = 3

k = 2k = 1

Figure 7.4.: Certified lower bounds on the fidelity F k
c between |ψkc 〉 (the MPS

tomography reconstructed state with k−spin reductions) and the quantum
simulator state ρlab, i.e. obtained experimentally. Shapes shows the MPS
tomography results based on experimental measurements for k = 1, 2, and
3. Dashed lines are obtained if one uses the MPS tomography on idealized
simulator dynamics |φ(t)〉 (i.e. calculated numerically) for k = 1 to 5. Shaded
area: the MPS tomography is done on the ideal |φ(t)〉, but calculations of each
observable is simulated with 1000 samples (as in the lab) for k = 1, 2, and 3.
This figure was reproduced from [182].

As expected, the fidelity lower bound for k = 1 quickly degrades in Fig. 7.4 due
to entangling of neighboring spins, which makes it impossible to estimate the
state with a product state. As one increases the size of reductions k, the certified
fidelity lower bound starts degrading at later and later times.
Note that experimentally this case of 8 spins is still possible for estimation via
the full QST, however it requires measurements in all 38 bases, which was done
in [189] and took over ten hours (this number depends on the number of samples
per each base as well). Here the largest reductions of k = 3 spins each required
measurements in 33 bases and 1000 samples for each basis. This reduced the
experimental measurement time to approximately 10 minutes [182].
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7.4.2.2. 14 Ions

The case of 14 ions is already far beyond capabilities of the full QST, which would
require measurements in 314 bases and hence the method of obtaining the results
presented in this section is unique. A certified MPS estimate is obtained with
measurement of local reductions of all block of k = 3 neighboring spins.
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Figure 7.5.: Results of the quench dynamics with the chain of 14 spins. (a).
Measurements of the single spin magnetization 〈σzi (t)〉 with two estimated light-
like cones as guides of eye. (b). Bipartite LN2 and tripartite LN3 logarithmic
negativities for all neighboring spins at time t = 4 ms. The reductions are
reconstructed via the full QST. (c-e) Comparison of the correlation matrix
Czz
ij , C

xy
ij , and C

yy
ij at t = 3 ms measured on ρlab and derived from |ψ3

c 〉. The
14-spin MPS estimate |ψ3

c 〉 is seen to capture many of the correlations between
spins up to 4 spins apart. The development of weak correlations over greater
distances in the laboratory state is due to the long-range interactions (7.2).
This figure was reproduced from [182].

In Fig. 7.5 one can see the result of the quench dynamics with 14 spins initially
prepared in the Néel ordered pure state (7.4). The decay of the spin-spin interac-
tions in the Hamiltonian (7.1) can be best approximated by the power law (7.2)
with the decay exponent α ≈ 1.27. Comparing to the case of 8 ions we have
longer-range interactions here, hence the spread of the correlations should be
more distinguished from the linear case, e.g., algebraically decaying correlations
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outside of the light cone span over larger distances (see Fig. 6.3(b)).
The values of the bipartite LN2 and tripartite LN3 logarithmic negativities mea-
sured for local reductions at t = 4 ms clearly show the build up of entanglement
after the quench. By looking at Fig. 7.5(c-e) one can see how well various cor-
relations matrices are captured. We first notice that the signs and the general
pattern in near order of correlations obtained via |ψ3

c 〉 matches quite closely with
those obtained in the lab. This also shows evidence of the limitations of MPS
tomography. Since the system Hamiltonian is non-local it leads to long-range
interactions building up between distant spins right after the quench (see Sec. 6.3
where we investigated it in great detail). These correlations are not captured via
measuring reductions of only neighboring spins.
The certified minimum fidelity of the MPS estimated state |ψ3

c 〉 is F 3
c = 0.39±0.08

at t = 4 ms. It is possible to ask for the exact fidelity. In order to obtain it one
needs to calculate the overlap between the lab state ρlab, which in general can be
mixed, and the output of the MPS tomography |ψ3

c 〉, which reads

F (|ψ3
c 〉, ρlab) = 〈ψ3

c |ρlab|ψ3
c 〉. (7.12)

This requires exponentially many measurements (in the number of spins M) and
stumbles over the same experimental problem. That is why this problem was
resolved via the Direct Fidelity Estimation (DFE) method [186,187]. In short the
DFE method estimates the overlap sampling only the most feasible contributions,
for details on the realizations please read the supplementary material of [182]. The
actual overlap from the DFE method gives the fidelity equal F = 0.74 ± 0.05,
which is larger than the certified lower bound F 3

c .
It is clear from our results that certified MPS tomography provides a good esti-
mate of the 14-ion state and that the provided fidelity lower bound F 3

c is correct
as well. However it can be seen from the actual numbers that the bound F 3

c is
quite far from the actual value of the fidelity F . One of the main sources of this
discrepancy is the error of the initial state preparation in the lab, including the
mixture of the state, i.e. the state is not fully pure (|〈φ(0)|ψ1

c 〉|2 = 0.89± 0.01).

7.5. Resource Cost

In this section we will answer the question that naturally comes to mind to
everyone who hears about a new method of state estimation: What is the actually
resource cost? MPS tomography for a system of M spins requires measurement
of M − k + 1 reduced density matrices, each of them requires measurement in
the 3k bases. Measurements in each basis have 2k distinguishable outcomes (see
Sec. 7.3.1). If Nmeas measurements are taken for each basis, then the total number
of the measurements per state is

N total
meas = Nmeas(M − k + 1)3k. (7.13)
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By performing parallel measurements it is possible to reduce it down to

N total
meas = Nmeas3k, (7.14)

where the measurement is done not for k−spin block, but rather for the entire
chain of M spins.
Then MPS tomography is efficient only if the total number of measurements
required for a constant error scales polynomially with M . In other words we
want to know how Nmeas should grow with M in order to contain the error at the
same level.
We quantify the error as the trace distance

D =
√

1− |〈φ|ψest〉|2, (7.15)

where |ψest〉 is the MPS estimated state and |φ〉 is the ideal state that we want
to estimate.

  

Figure 7.6.: Error estimation for MPS tomography. The dependence of the
trace distance D (between the MPS estimated state with k = 3 and the ideal
state) vs the system size M . As long as the number of measurements Nmeas
changes proportional to M2 the error, D, can be bounded by a constant. This
figure was reproduced from [182].

In order to estimate the error, we performed numerical calculations and generated
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the series of ideal states |φ〉 for M = {8, 20, 32, 48, 64} spins at time t = 3 ms.
The Hamiltonian was chosen to be in the nearest-neighbor form, i.e. α→∞ with
parameters taken from the 8-spin case (see Sec. 7.3). The states were obtained
numerically via the TDVP method with MPS [121] (see Sec. 4.3.3 for details).
We then simulated Nmeas measurements in each 3k bases for all M −k+ 1 blocks.
By this we mean that for each local spin block there are 3k different Pauli observ-
ables with 2k distinguishable outcomes each (see Sec. 7.3.1). For each outcome
the exact probability is computed (since we know the exact state). The simu-
lation of measurements means that we draw Nmeas outcomes out of this pool of
2k outputs with appropriate probabilities. In the limit Nmeas → ∞ we find the
exact probabilities, and the expectation values are reconstructed. However the
finite number of samples leads to fluctuations of the expectation values.
Each reconstruction was also repeated 10 times in order to account for fluctuations
in the reconstruction error due to the finite number of measurements. In Fig. 7.6
one can see the results for k = 3, in the case when Nmeas ∝M2 the trace distance
D can be contained at a constant level. This means that the total number of
measurements N total

meas grows polynomially with the system size M as well. This
makes MPS tomography efficient compared to the full QST, which requires an
exponential growth of measurements.

7.6. Conclusions

We have presented here a successful application of a new technique for the quan-
tum state estimation — certified MPS tomography. It allows us to reliably esti-
mate the state of a broad class of many-body quantum systems. In comparison
to QST, certified MPS tomography aims at efficient estimation of only weakly
entangled states. We show that by performing only a polynomial number of mea-
surements one can obtain a certified state estimate in a form of an MPS with a
low bond dimension. This method is particularly useful for large system sizes,
whereas QST is not applicable due to its exponential cost in the number of system
constituents.
We find that MPS tomography is well-suited for characterization of the states
generated at short times of the quench dynamics as the majority of correlations
are short-ranged and can be captured via measurement of local reduced density
matrices. Nonetheless, there is always a potential to extend the idea of MPS
tomography to systems with non-local interactions or state at later times of evo-
lution by using measurement of reductions beyond neighboring spins.
Results presented here are for one dimensional systems for which the accuracy of
the reconstructed pure state is certified by the fidelity lower bound. It is possible
to generalize the method to higher spatial dimensions and to mixed-states via
Matrix Product Operators [190, 193]. However, there is no certification method
for mixed states [194] at the moment.
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The work presented in this thesis illustrates the range of possibilities offered
by cold neutral atoms in optical lattices and trapped ions in terms of quantum
simulation. It was shown that resonant long-range tunneling dynamics of atoms
in a tilted periodic potential can be effectively modeled by a spin chain with
long-range interactions, which causes unusual magnetic ordering in the ground
state. Trapped ions, due to their high degree of experimental control and tunable
range of interactions, have extensive applications from fundamental questions of
entanglement to efficient quantum computation of problems that are intractable
by classical computers. Of course, these topics do not cover all the perspectives
opened by these two systems, but they provide examples of the capabilities that
exist. Below we list a further more detailed outlook for each of the systems.
As was shown in Chap. 5, systems of ultracold atoms loaded into optical lattices
can play a role of quantum simulators of complex strongly-correlated systems, for
instance, systems with exotic magnetically ordered phases. Beyond the character-
ization of the phase transition in the case of the next-next neighboring resonant
tunneling (E = U/2), which will be finalized in [195, 196], this project can take
several possible directions in the future. First, it would be very interesting to
see experimental implementation of the tilted superlattice geometry that is mod-
eled by effective spins in Sec. 5.2.2. This work is already possible in existing
experiments and would provide an opportunity to realize a model with exotic
magnetism in the laboratory. Secondly, the project can progress in the direc-
tion of higher dimensionality and different geometries, as was considered for the
E = U case in Ref. [60]. Then questions of frustration and coexisting phases in
different directions can be studied. This would also extend the range of exotic
magnetic systems simulated via optical lattices. Last, the model in Sec. 5.2.2,
can be studied away from the context of optical lattices. A gradual decrease of
interactions between even and odd spins decouples the subchains; the nature of
this transition can be studied by means of finite-size scaling, and current DMRG
methods.
In the future it would be interesting to extend the study of long-range spin chains
(Chap. 6) in three major directions. First, it would be interesting to take advan-
tage of the slow logarithmic growth of entanglement and use this for extending
the time evolution with DMRG techniques. For this, a more systematic study
of symmetries has to be performed, which in general also depends on the initial
state of the dynamics. Secondly, an analogous study can be performed with two
dimensional spin systems, e.g. 9Be+ ions stored in a Penning trap [68, 107]. The
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potential of finding regimes where the quench dynamics produces slowly grow-
ing or small entanglement makes it suitable for efficient simulations with DMRG
methods. Last, there is growing interest in hybride quantum systems, in particu-
lar with ion chains [197]. This idea is aimed to solving the problem of scalability
of ion chains by connecting small, well controlled, systems via quantum channels
of flying qubits. One can think about the entire system as about coupled ion
chains, which makes the problem quasi two dimensional. Numerical simulations
with existing DMRG methods might lead us to future possibilities and limitations
of such quantum computing architectures.
In Chap. 7 we applied a new quantum state estimation technique (the certified
MPS tomography) on ion chains modeled by the long-range Ising model. We
find that MPS tomography is well-suited for estimation of the states generated at
short times by quench dynamics, as the majority of correlations are short-ranged
and can be captured via measurement of only local reduced density operators.
Nonetheless, there is always a potential to extend the idea of MPS tomography
to systems with non-local interactions or states generated at later times of the
evolution. This could be done via the use of extended maximum likelihood esti-
mation (MLE) techniques with measurements of reductions beyond neighboring
spins [76]. It is also possible to implement an uncertified version of MPS tomog-
raphy for two dimensional spin systems, as well as to include the possibility for
mixed states due to imperfections of the state initialization or coupling with the
environment. This version would be called MPO tomography [190,193].
The work presented in this thesis heavily relies on the efficiency of DMRG meth-
ods combined with matrix product representations of states and operators for 1D
systems. The development of other tensor network techniques, such us PEPS [80]
and MERA [113], might help us in the future to achieve equal success for higher
dimensional quantum systems. In either case more effort should be invented in
these methods and incorporated, for example, with any of the above projects.
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