
University of Strathclyde

Department of Computer

and Information Sciences

A Model and Architecture for

Pervasive Situation Determination

by

Graham R. Thomson

A thesis presented in fulfilment of the requirements for the degree of

Doctor of Philosophy

2010

Copyright Notice

This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms

of the United Kingdom Copyright Acts as qualified by University of

Strathclyde Regulation 3.50. Due acknowledgement must always be

made of the use of any material contained in, or derived from, this

thesis.

Signed:

Date:

Acknowledgements

I would like to thank all those at the University, and in the Smart-

Lab in particular, who made my time there such a pleasure. I would

also like to thank my supervisor, Sotirios, whose tireless enthusiasm

and unceasing inspiration made this a fascinating and enriching ex-

perience. Furthermore, I must thank my family, for their unwavering

support and encouragement. Finally, I would like to thank my wife,

Emma, whose patience and kindness are without bound.

Publications

1. “A Model and Architecture for Situation Determination”, G. R. Thomson,

S. Terzis and P. Nixon. The 16th Annual International Conference on Com-

puter Science and Software Engineering (CASCON). October 2006.

2. “Situation Determination with Reusable Situation Specifications”, G. R.

Thomson, S. Terzis and P. Nixon. Fourth Annual IEEE International

Conference on Pervasive Computer and Communications (PerCom). Pisa,

Italy. March 2006. pp. 620-623.

3. “A Self-Managing Infrastructure for Ad-hoc Situation Determination”, G.

R. Thomson, G. Stevenson, S. Terzis and P. Nixon. Smart Homes and Be-

tond ICOST2006. Assistive Technologies Series. Amsterdam, The Nether-

lands. June 2006. pp. 157-164.

4. “Situation Determination with Distributed Context Histories”, G. R.

Thomson, P. Nixon and S. Terzis. 1st International Workshop on Exploiting

Context Histories in Smart Environments. 3rd International Conference on

Pervasive Computing - Pervasive 2005. Munich, Germany. May 2005.

5. “Towards Ad-hoc Situation Determination”, G. R. Thomson, P. Nixon and

S. Terzis. First International Workshop on Advanced Context Modelling,

Reasoning And Management. UbiComp 2004, The Sixth International Con-

ference on Ubiquitous Computing. Nottingham, England. September 2004.

6. “Towards Dynamic Context Discovery and Composition”, G. R. Thomson,

S. Terzis and P. Nixon. 1st UK-UbiNet Workshop. London, England.

September 2003.

7. “An Approach to Dynamic Context Discovery and Composition”, G. R.

Thomson, M. Richmond, S. Terzis and P. Nixon. Proceedings of UbiSys ’03,

System Support for Ubiquitous Computing Workshop. UbiComp 2003, The

Fifth Annual Conference on Ubiquitous Computing. Seattle, Washington,

USA. October 2003.

Abstract

A situation determination system, at a simplistic level, detects the

situations a user is interested in and reports them to situation-aware

applications. These applications will react to the situations in ways

the user has chosen, in order to achieve a desired set of outcomes.

Ideally, such a system would be pervasive, providing support to users

through the many situations and environments they encounter or are

interested in, in their individual, day-to-day lives.

To realise the benefits of pervasive situation determination, this the-

sis argues that the system must meet a number of key requirements.

These include support for end-user customisation of situations, rich

situation models, adaptable recognition and inter-environment oper-

ation. This thesis addresses the problem of designing a system that

can effectively meet these requirements.

The main outcomes of the resulting approach are an original model

based on the critical idea of separating the description of the features

of a situation from the specification of how to recognise it, and a novel

software architecture that fully supports this model. Both the model

and architecture are evaluated through the development of an exten-

sive number of situations, specifications and customisations, spanning

a range of domains and environments, and a suite of situation-aware

applications. Not only did this provide several corroborative exam-

ples of the observation that customisations form environment-specific

variations of more general situations, but also showed that the appli-

cations developed either relied upon, or could provide greater utility

as a direct consequence of, the improved level of cover, precision, avail-

ability and reach that the approach offers. Furthermore, algorithmic

analysis and performance measurements of a prototype instantiation

confirm that its performance is sufficient for practical use. Overall,

the evaluation shows that the approach presented in this thesis aptly

supports pervasive situation determination.

Contents

1 Introduction 1

1.1 Pervasive situation determination 1

1.2 Problem Statement . 3

1.3 Solution . 6

1.4 Contributions . 8

1.5 Thesis structure . 9

2 Related Work 11

2.1 Introduction . 11

2.2 Modelling aspects . 14

2.2.1 Representing situations . 14

2.2.1.1 Implicit representation 15

2.2.1.2 Logic-based representation 17

2.2.1.3 Ontology-based representation 22

2.2.1.4 Graphical representation 24

2.2.1.5 Role-based representation 26

2.2.1.6 Location representation 27

2.2.2 Recognising situations . 29

2.2.2.1 Novel hardware approaches 29

2.2.2.2 Novel algorithmic approaches 31

2.2.2.3 Application and domain specific approaches . . . 32

2.2.3 Learning situations . 33

2.3 Architectures . 37

2.3.1 Infrastructure-based architectures 37

2.3.2 Infrastructure-free architectures 40

2.3.3 Adaptive architectures . 42

2.3.4 Large-scale architectures 43

2.4 Summary . 45

i

CONTENTS

3 A Model for Pervasive Situation Determination 50

3.1 Introduction . 50

3.2 Overview of the situation model 51

3.3 Situations . 55

3.4 Customisations . 58

3.5 Specifications . 59

3.5.1 Specification structure . 59

3.5.2 Role specifications . 60

3.5.3 Location types . 61

3.5.4 Situation specifications . 62

3.6 Incorporating uncertainty . 63

3.7 Pragmatic aspects . 69

3.7.1 Area of Influence . 70

3.7.2 Situation Index . 70

3.7.3 Resource requirements metrics 71

3.8 Summary . 72

4 A Pervasive Situation Determination Architecture 74

4.1 Introduction . 74

4.2 Scenario . 74

4.3 Overview of the architecture . 78

4.4 Agent architecture . 82

4.5 The Situation-Aware Application Agent 87

4.6 The Index Server Agent . 87

4.7 The Situation Determination Agent Manager 88

4.7.1 Grounded specifications 89

4.7.2 Gathering and preparing specifications 90

4.7.3 Resource requirements estimation 91

4.7.4 Situation Determination Agent selection 95

4.8 The Situation Determination Agent 96

4.8.1 SDA and CEA communication 96

4.8.2 Recognising situations . 99

4.8.3 Aspects of uncertainty . 103

4.8.3.1 Trusting confidence values 103

4.8.3.2 Situation boundaries 104

4.8.3.3 Interpreting situation confidence 106

ii

CONTENTS

4.9 The Index Locator Agent . 106

4.10 Environment and Ad hoc modes 108

4.11 Application interfaces . 112

4.11.1 The SAA interface . 112

4.11.2 The PSA interface . 115

4.12 Summary . 116

5 Evaluation 119

5.1 Introduction . 119

5.2 Instantiating the model and architecture 122

5.3 Developing situation-aware applications 126

5.3.1 Developing CEAs . 127

5.3.2 Developing situations, specifications and customisations . . 128

5.3.3 Developing the applications 135

5.3.3.1 The availability checker application 135

5.3.3.2 The mode manager application 139

5.3.3.3 The situation-enhanced file search application . . 140

5.4 Middleware Performance Analysis 141

5.4.1 Experimental set up . 141

5.4.2 Performance figures . 142

5.4.2.1 Increasing situation size 143

5.4.2.2 Increasing situation recognition load 152

5.4.2.3 Sharing situation recognition load between

multiple SDAs 155

5.4.2.4 Relative resource consumption of situation

recognition . 155

5.4.3 Algorithmic analysis . 156

5.4.3.1 Complexity analysis of the recognition core . . . 156

5.4.3.2 Grounded specification analysis 158

5.4.3.3 Performance measures for JADE and Pastry . . . 159

5.5 Summary . 160

6 Conclusions and Future Work 162

6.1 Summary and Conclusions . 162

6.1.1 Modelling requirements . 163

6.1.2 Architectural requirements 167

iii

CONTENTS

6.1.3 Evaluation . 169

6.1.4 Contributions . 171

6.2 Future Work . 172

6.2.1 Model . 172

6.2.2 Architecture . 175

6.2.3 Evaluation . 179

A Developing Location Awareness 181

A.1 Environments and location models 182

A.2 Implementing location detection 185

A.2.1 Developing sufficient signal detection capability 185

A.2.2 Creating signal to location mappings 191

A.2.3 Improving confidence by exploiting location structure . . . 192

A.2.4 Location detection application 193

A.3 Conclusions . 194

B Additional situation diagrams and ontology 195

B.1 Situation diagrams . 195

B.1.1 Situations concerning the use of devices and applications . 196

B.1.2 Public situations . 196

B.1.3 University situations . 196

B.2 Ontologies and examples . 197

B.2.1 Situation ontology . 197

B.2.2 Example presentation ontology 206

C Implementation issues 211

C.1 Translating situation specifications 211

C.2 Implementation techniques . 215

C.2.1 Application monitoring . 215

C.2.1.1 Monitoring applications on Windows XP 215

C.2.1.2 Monitoring applications on a Pocket PC 218

C.2.2 Detecting input events . 221

C.2.3 Controlling system settings 222

iv

List of Tables

4.1 A key and summary of the agents used in the situation determi-

nation architecture. 83

5.1 A summary of the situations, specifications and customisations

that were developed. 136

5.2 The mean round trip times (RTT) and mean join times for a se-

lection of situations in an environment-based set up, as the size of

the situations increases. All values are shown in milliseconds, and

a 0.95 confidence level was used. 145

5.3 The mean round trip times (RTT) and mean join times for a se-

lection of situations in an ad hoc-based set up, as the size of the

situations increases. All values are shown in milliseconds, and a

0.95 confidence level was used. 149

5.4 The mean round trip times (RTT) and mean join times for the Pre-

sentation situation in an environment-based set up, as the number

of simultaneously recognised situations increases. All values are

shown in milliseconds, and a 0.95 confidence level was used. . . . 153

5.5 The mean round trip times (RTT) for the Presentation situation

in an environment-based set up under heavy load, as the number

of SDAs used to recognise the situations increases. RTT values are

shown in milliseconds. %Prev. shows the RTT reduction over the

previous number of SDAs, while %Orig. shows the RTT reduction

over the original number. 155

5.6 Relative CPU resource consumption of each of the components

involved in the situation recognition process. 156

v

LIST OF TABLES

A.1 Location signatures for the example “Lounge” and room “12.01

Muir Lab” locations from the home and University environments.

BSn refers to the BSSID of particular base stations within each

environment. 191

vi

List of Figures

3.1 A key for the figures included in this section. 52

3.2 An illustration of the structure of the ‘Meeting’ and ‘Group Meet-

ing’ situations, as well as their specifications and customisations. . 52

3.3 An illustration of the structure of the ‘Presentation’ situation, as

well as its specifications and customisations. 56

3.4 An illustration of the structure of the fine-grained location-based

Presentation specification. 60

3.5 An example of determining the confidence value of a consequent

fuzzy set using monotonic selection. 66

3.6 An example of combining confidence values. 67

4.1 This diagram represents the scenario where Angela uses the avail-

ability checker application on her mobile phone to check which

situations John is currently involved in. 79

4.2 This diagram represents the scenario where Angela uses the avail-

ability checker application on her mobile phone to check which

situations John is currently involved in, but this time John is lo-

cated in a café where no dedicated infrastructure is available. . . . 81

4.3 This figure illustrates the different types of agents involved in the

situation determination middleware, as well as the steps involved

in the basic situation recognition process. For clarity, not all agents

that would be hosted on a device are shown, only those that help

illustrate the process. 86

4.4 This figure shows the steps performed in Figure 4.3 represented as

a UML sequence diagram. 86

4.5 This flowchart shows the steps involved in processing a single sit-

uation specification, from an SDA receiving the specification to

sending the situation response. 100

vii

LIST OF FIGURES

4.6 An example network of mobile devices operating in ad hoc mode.

Here, both mobile phones have the laptop listed on their white-list

and offload-list, and so both use the laptop to perform situation

recognition. Lines indicate communication between two agents.

For clarity, not all agents that would be hosted on a device are

shown, only those that help illustrate the devices’

interaction. 111

5.1 Using the Protégé ontology editor to graphically create new

specifications. 124

5.2 Using the customisation creator tool to create a new customisation

on a Pocket PC. 125

5.3 A key for the figures included in this section. 129

5.4 Situations that focus on an individual’s use of devices and appli-

cations. In the interests of space, only a selection of the customi-

sations for each of the different media types is shown. 130

5.5 Domestic situations. 131

5.6 Public situations. In the interests of space, only a selection of the

customisations for dining and shopping situations are shown. . . . 132

5.7 University meeting situations. In the interests of space, only a se-

lection of the customisations for each of the different demonstrator

meetings are shown. 133

5.8 University presentation and lecture situations. In the interests of

space, only a selection of the customisations for each of the different

lectures are shown. 134

5.9 The availability checker application running on a Pocket PC. . . . 137

5.10 The configuration screen of the mode manager application. 139

5.11 Creating search criteria with the situation-enhanced file search ap-

plication (left), and browsing the results (right). 140

5.12 This diagram illustrates the environment-based set up used to mea-

sure the RTT and join times. ‘Test SAA’ indicates the application

used to record the measurements. 144

5.13 A graphical comparison of the mean round trip times (RTT) for a

selection of situations in an environment-based set up, as the size

of the situations increases. 147

viii

LIST OF FIGURES

5.14 A graphical comparison of the mean join times for a selection of

situations in an environment-based set up, as the size of the situ-

ations increases. 148

5.15 This diagram illustrates the ad hoc-based set up used to measure

the RTT and join times. ‘Test SAA’ indicates the application used

to record the measurements. 150

5.16 A graphical comparison of the mean round trip times (RTT) for a

selection of situations in an ad hoc-based set up, as the size of the

situations increases. 150

5.17 A graphical comparison of the mean join times for a selection of

situations in an ad hoc-based set up, as the size of the situations

increases. 151

5.18 A graphical comparison of the mean round trip times (RTT) for

the Presentation situation in an environment-based set up, as the

number of simultaneously recognised situations increases. 154

5.19 A graphical comparison of the mean join times for the Presenta-

tion situation in an environment-based set up, as the number of

simultaneously recognised situations increases. 154

6.1 In this figure, specification A describes situation S. To apply cus-

tomisation C, its interpreter takes customisation C, merges it with

specification A to produce specification A′, which also describes

situation S, and its associated interpreter A′. 173

A.1 A floor plan of the home test bed environment. The bubble with

‘BS’ inside it marks the location of the base station. 183

A.2 A floor plan from the University test bed environment. The bub-

bles with ‘BS’ inside them mark the location of the base stations. 183

A.3 The structure of the location class as defined in the middleware

ontology. 184

A.4 Declarations of some example locations from the University test

bed environment. 184

A.5 These graphs show the raw 802.11 signal strength streams received

by the laptop and Pocket PC devices for the home location. BSn

refers to the BSSID of particular base stations within each envi-

ronment. 187

ix

LIST OF FIGURES

A.6 These graphs show the raw 802.11 signal strength streams received

by the laptop and Pocket PC devices for the University location.

BSn refers to the BSSID of particular base stations within each

environment. 188

A.7 These graphs show the resulting signal streams after applying a

low-pass filter to the raw 802.11 signal strength streams shown in

Figures A.5 and A.6. 189

A.8 These graphs show the resulting signal streams after applying a

low-pass filter and smoothing to the raw 802.11 signal strength

streams shown in Figures A.5 and A.6. 190

A.9 The location model fuses confidence values of several inner loca-

tions to increase the confidence of outer locations. 193

B.1 A key for the figures included in this section. 196

B.2 All customisations for the working with media based situations. . 197

B.3 All customisations for the ‘Dining’ and ‘Shopping’ situations. . . . 198

B.4 Additional University setting situations. 198

B.5 All customisations for the ‘Demonstrator meeting’ situation. . . . 199

B.6 All customisations for the ‘Lecture’ situation. 200

B.7 All customisations for the ‘Lab’ situation. 201

B.8 All customisations for the ‘Tutorial’ situation. 202

C.1 The resulting Jess code of translating the example presentation

specification. In this listing, some comments have been added to

the code to assist the explanation. 212

C.2 The resulting Jess code of translating the example presentation

role specifications. 214

x

Chapter 1

Introduction

1.1 Pervasive situation determination

A situation determination system, at a simplistic level, uses underlying sensor

data gathered from the environment to detect situations a user is interested in

and reports them to situation-aware applications. These applications will react

to the situations in ways the user has chosen, in order to achieve a desired set of

outcomes. For example, a user may wish to have their mobile phone present the

situation a particular friend is currently involved in, before deciding whether to

call their friend or to send a text message. In other occasions, the user may wish

that their mobile phone automatically switch itself into a silent mode of operation

upon detecting that the user is currently in a meeting. Ideally, such a system

would be pervasive, providing support to users through the many situations and

environments they encounter or are interested in, in their individual, day-to-day

lives.

Earlier projects in the literature have focussed on detecting and exploiting in-

dividual pieces of information that characterize some aspect of a situation, such

as the user’s current location. These pieces have been termed ‘context informa-

tion’. The projects explored different ways of incorporating context information

into applications and the avenues that this opened up for the creation of novel

applications [1, 2, 3, 4].

Examples of these context-aware applications include a call-forwarding appli-

cation that detected a user’s identity and location to enable incoming land-line

calls to be forwarded to the room the call’s recipient currently occupied [5], Stick-e

1

Chapter 1. Introduction

Notes [6], which was a software post-it note application that displayed a note only

when triggered by a particular piece of context information such as a user enter-

ing a particular location, and Dummbo [1], an application which used a badge

reader to detect that a number of people were gathered around a whiteboard and

automatically began recording the audio and drawings of the whiteboard session.

However, as the scope and expectation of these applications has grown, re-

searchers have begun to realise that low-level context information is difficult to

utilise within applications [1, 7, 8, 9, 10, 11]. Instead, a higher-level abstraction,

namely a situation, seems to be more appropriate for use within applications as it

provides a more natural point with which to associate an application’s behaviours,

giving rise to situation-aware applications.

Examples of more recent projects that focus on using the higher-level situa-

tion or activity as a basic computational unit include a system which monitors

whether an elderly person can sufficiently perform household and personal hy-

giene activities by analysing their interactions with household objects through a

miniature RFID tag reader worn as a glove [12]. Another is a situation-aware

system that recognises different phases of product construction that a carpenter

is performing by listening to the sounds that are being made by the tools they

are using [13]. There is also a system that assists motorcar production line qual-

ity assurance inspectors by detecting which checkpoints of the quality inspection

procedure have been carried out using data received from special suits replete

with motion detectors that are worn by the inspectors [14].

Situation determination has become a key requirement for infrastructure sup-

porting pervasive computing. Current approaches to situation determination

however, like these examples, are commonly focused on a particular application

area or a specialised environment. For a situation determination system to be

pervasive, it must be capable of widespread operation, incorporating a number

of users, applications and environments. But at the same time, deploying a net-

work of similar environments in a “one-size fits all” approach is not desirable,

as the system is of greater value to its users the more closely it can match their

individual needs.

For example, the set of situations an individual is interested in will not be

fixed. The situations a user is involved in, and so will want the system to recog-

nise, will evolve over time. Additionally, this set may include distinctive situ-

ations that are particular to that individual user or their specific environment.

The system must be able to include these new and custom situations.

2

Chapter 1. Introduction

Similarly, the environment will be dynamic, where the people and devices

within it continually change. As certain devices enter the environment, the avail-

able sensing infrastructure is extended. Here, the system has the opportunity

to recognise both additional situations and a finer level of detail of current sit-

uations, using these new sensors. Similarly, the system must strive to preserve

the recognition of currently active situations when devices and sensors leave the

environment, are switched off, or fail.

Furthermore, the system must be able to operate throughout a network of

different environments. Not only may a user move between environments, but

also the situations that the user requires to be recognised may involve the user

him/herself in the local environment, or may involve a friend or colleague who is

located in an external environment. In the latter case, the system requires some

means of discovering situations that are occurring elsewhere in the network.

The benefits that such a pervasive situation determination system offers in-

clude increased cover of the situations the user is interested in, finer detail in the

situations that are recognised, greater precision in stating how applications react

and what the desired outcomes are, and also a higher level of availability and

reach of both the system and users’ applications. The work set out in this thesis

aims to provide these benefits of a pervasive situation determination approach.

1.2 Problem Statement

To effectively realise the benefits of pervasive situation determination, there are

a number of requirements that a supporting system must satisfy.

As noted above, the evolving set of situations the user may wish to have

recognised by the system will be drawn from the user’s individual, day-to-day

life. The set will include both common, general situations and distinctive, custom

situations that are particular to that individual user or their specific environment.

Herein however, exists a tension, in that it is the end-user who is aware of

the special characteristics of the desired custom situations, but specifying how a

high-level situation is detected from low-level sensor data is a difficult task. To

create this mapping requires skill, as well as intimate knowledge of the situations

that occur within the environment, the available sensing infrastructure, and the

internal operation of the situation recognition process. Some approaches have

addressed this tension by limiting the scope to a fixed set of situations recognised

by a fixed, specific sensing infrastructure, and investing in specialists to create the

3

Chapter 1. Introduction

required mappings. Other approaches have attempted to have the system itself

create these mappings by incorporating learning into the environment, but it is

difficult to fully automate such learning, and attempts to do so have focussed

on very simple situations. While semi-automated learning is also possible, it

still requires a skilled administrator to conduct a training period in which the

situations are learned, during which several examples of each situation would

have to be collected and analysed before being used. These factors impede swift

adaptation to the evolving set of situations that will occur in an environment over

time. To address this tension, the system is required to facilitate customisation

of situations by end-users themselves, empowering them to customise situations

personally and immediately to suit their own individual needs and preferences.

Additionally, the user will have a set of desired outcomes that they will want

to have occur in reaction to the situations they are interested in. For some

outcomes, the user may require application responses that simply react to the

occurrence of a situation, like in the case above of silencing a mobile phone when

a user is in a meeting. For other outcomes, the user will require responses that

react to more subtle elements of the details of a situation, such as the specific

role the user is playing within it. For example, when the user is speaking in a

presentation, they may wish that the laptop they are using to present their slides

automatically disables its screen saver and power saving modes. If they were

part of the audience, they may want their laptop to ready the notes they had

made from previous presentations in the series. Therefore within the system, it

should be possible to represent and react to the features and details of a situa-

tion, including the specific roles that people and devices may play, to allow both

application responses and the resulting outcomes to be precisely defined.

As a user moves between environments, it may not be possible to predict

what sensing infrastructure will be available to detect situations. For example, in

a work environment, there may be powerful, dedicated infrastructure available,

while at a café, it may only be the ad hoc collection of mobile phones at the users’

table that can be used. Similarly, within a single environment, the available

sensing infrastructure will continually change as the people within it, and the

devices they carry, come and go. Yet despite this, achieving the outcomes that the

user desires will depend upon their associated system responses being successfully

performed. To address this, the system must strive to make the capability to

enact these responses available, even though the target environment and precise

configuration of the available sensing infrastructure may not be known initially,

4

Chapter 1. Introduction

and may change throughout the duration of the situation. This requires that the

recognition process must be able to dynamically adapt to the available sensing

infrastructure.

Furthermore, the system is required to support large-scale, inter-environment

operation, as the situations the user is interested in may extend beyond the local

environment. For example, in the scenario where the user wishes their mobile

phone to present the situations a particular friend is currently involved in, their

friend could be in the same building or in another part of the country.

A pervasive situation determination system must address these two dimen-

sions of variability in combination. It must handle the variation in the set of

situations that are recognised, from common, general situations, to the specific,

custom situations of a particular environment. Simultaneously, it must handle

the variation in how the situations are recognised, by transparently adapting to

a dynamically changing sensing infrastructure and/or environment.

The extent to which these requirements can be realised with current state-

of-the-art approaches is limited. Both modelling and infrastructure support are

lacking. The modelling aspects for which current approaches fail to provide sup-

port for include:

Customised situations - The situations that are recognised are typically

general, created externally, and do not capture the distinctive features of situa-

tions that are particular to the individual user or their environment. None offer

the capability for end-users themselves to create their own customised situations.

It should be possible that customisation can be performed by end-users them-

selves, as this provides greater cover of the situations that the user is interested

in without relying on specialist maintenance to achieve it.

Rich situation models - Representations of a situation are commonly coarse-

grained, and lack details or a visible internal structure that can be exploited by

situation-aware applications. Greater detail and specific roles should be captured

in the situation to allow the desired system responses and outcomes to be more

precisely defined and more closely matched to the user’s needs.

Alternative descriptions - A description of how to recognise a situation

generally relies upon particular sensing infrastructure being available and so can-

not be used in its absence. To be more pervasive, the model of a situation should

include multiple, alternative descriptions that specify how the situation can be

recognised from a variety of different forms of sensing infrastructure.

Multiple viewpoints - Typically, a situation focuses exclusively on the view-

5

Chapter 1. Introduction

point of the single, local, current user of a situation-aware application. While

doing so makes the system simpler, it also significantly limits how pervasive the

system can be. The system should be capable of reporting the situations of any

person, device or location to any user in the system.

The aspects of infrastructure support that are currently lacking include:

Adaptable recognition - In addition to the model being able to provide

alternative descriptions of a particular situation, the infrastructure should be able

to provide adaptable recognition for the process as a whole, incorporating new

descriptions and sensing infrastructure as they appear in the environment, as well

as adapting to the loss of existing sources. Enabling the system to fully exploit

the dynamic environment in which it operates can result in greater availability of

both the system and users’ situation-aware applications.

Resource management - Recognising a situation can be a computationally

expensive task, yet it often must be performed by resource-constrained devices.

To mitigate the cost of this, the system should strive to manage the resources

within it, shifting expensive tasks to the devices that can best afford them.

Inter-environment operation - None of the current approaches fully sup-

port inter-environment operation. This restricts the reach and scope of situation-

aware applications as the situations a user is interested in may extend beyond

the local environment.

Situation discovery - When the situations a user is interested in do extend

beyond the local environment, the system must have a means of discovering situa-

tions that are occurring elsewhere within the network of environments. Currently

no approach supports situation discovery.

This thesis addresses the problem of designing a model and a supporting

infrastructure that can effectively meet these requirements and realise the benefits

of pervasive situation determination.

1.3 Solution

The solution is comprised of two main parts. The first part is a model that pro-

vides a means of specifying situations, their customisations, and the mappings

from low-level sensor data that recognise them. This part addresses the mod-

elling goals identified above. The second part is an architecture that describes a

process of recognising the situations and customisations, and addresses each of

the infrastructure goals.

6

Chapter 1. Introduction

The modelling solution presented in this thesis is based on the observation that

many customised situations bespoke to a particular environment may not be en-

tirely distinct from each other, but rather form environment-specific variations

of a more general situation. For example, many Universities will run lectures,

laboratories and tutorials. However, the students and staff of a particular Uni-

versity will be interested in the specific lectures, laboratories and tutorials that

take place there. The structure of these general situations and the information

required by a specification of how to recognise them, are likely to be similar or

follow a set of similar patterns. For example, a lecture would normally have the

lecturer and the students of the same course present in a lecture hall. The varia-

tions at a particular University are likely to differ in the details of the situations,

such as the specific lecturer or course, or the specific location or time.

The difficult part of correlating particular sensor data to a general situation

can then be performed by a skilled administrator or an external source, and the

result can be reused in multiple environments. The general situation can then be

customised to recognise the bespoke variations that occur in a particular envi-

ronment. Then, given that creating customisations is simple enough that it can

be performed successfully by end-users themselves, the approach allows a large

variety of customised situations to be recognised by the situation determination

infrastructure but does not incur the penalty of requiring specialist maintenance.

Critical to achieving the identified goals is the novel idea of separating the de-

scription of the features of a situation from the specification of how to recognise

the situation. The features provide common conceptual structures for situations.

Then, low-level properties of the available sensing infrastructure can be mapped

to these conceptual structures by skilled parties, while end-users can base their

customisations on these structures in conceptual terms meaningful to them. This

allows the features of a situation to be recognised in a number of different ways,

by many different types of sensing infrastructure. As the end-user customisa-

tions are based on the features themselves and not their mappings, both the

customisations and sensing infrastructure mappings applied to a situation can

vary independently. Situations can then be defined with a rich set of features,

and multiple mappings can be created that recognise as many of the features

as possible given certain sensing infrastructure. Also, by incorporating several

alternative mappings, recognition of users’ customisations and situations can be

maintained as the available sensing infrastructure changes due to a shift in the

composition of the current environment or to the user moving to a different en-

7

Chapter 1. Introduction

vironment. Moreover, the user’s situation-aware applications are based upon the

features of situations, and are therefore oblivious to whether situations are de-

tected using mappings from the local environment or from a remote, external

environment. This key idea enables the approach to simultaneously address the

goals of improved cover, precision, availability and reach.

The part of the solution that addresses the architectural goals involves view-

ing the system as a set of cooperating agents, providing an effective means to

realise them. Adaptive recognition benefits from loosely coupled communica-

tion between agents and dynamic selection of information, resource management

can be realised through cooperative recognition, and inter-environment opera-

tion is achieved through common interaction protocols in both local and remote

environments.

Discovering a situation within a network of environments is a difficult task.

Situations may have complex representations and the set of situations that are

occurring will be large and constantly evolving. This creates a lot of information

that the discovery process must cope with, and it may quickly become stale. The

solution presented here addresses this by transforming the problem into a much

simpler one. The transformation is afforded by a novel aspect of the model. As a

situation can be considered from a set of explicit viewpoints, rather than search

for an occurrence of a situation, the system has only to search for the person,

device or location that takes the desired view of the situation. For example, when

a user is interested in the situations of a colleague, the system can first discover

the location of the colleague and then request their situations from the local

environment. Realising this simpler task can then leverage existing discovery

algorithms to create an effective, large-scale solution.

1.4 Contributions

The main contributions of the work presented in this thesis lie in the following

three areas:

• The presentation of an original model that provides support for the goals

of customised situations, rich situation models, alternative descriptions and

multiple viewpoints, which are not addressed by current approaches.

• The development of a novel software architecture that fully supports the

model while additionally addressing the architectural goals of adaptable

8

Chapter 1. Introduction

recognition, resource management, inter-environment operation and situa-

tion discovery, which are currently lacking in existing approaches.

• The evaluation of both the model and architecture through the development

of an extensive number of situations, specifications, and customisations,

spanning a range of domains and environments, and a suite of situation-

aware applications.

The following chapters present the work that supports these contributions,

and detail the novel ideas and techniques that were critical to achieving them.

1.5 Thesis structure

The proceeding chapters of this thesis are as follows:

Chapter 2 presents a review of related work. It includes several context-

aware and situation-aware projects, along with discussion of the ways in which

these existing approaches are limited in their support for pervasive situation

determination.

Chapter 3 describes the situation modelling approach introduced in this work.

Several distinct aspects of the approach are presented. These include the way

in which the model represents a situation as an independent, reusable entity,

where situation descriptions and their mappings from low-level sensor data exist

separately from situation-aware applications. Also presented is how rich situation

descriptions can be created, involving ad hoc groups of people and devices, and

how the precise role a person or artefact is playing within the situation can be

denoted. Also shown is how it is straightforward to incorporate measures of

uncertainty not only about the information used to derive a situation, but also

about the resulting situation itself. Additionally, this chapter presents the critical

idea of separating a situation’s specification from the definition of its features,

and demonstrates how this is used to support end-user customisations which can

be recognised over multiple types of, and possibly dynamically changing, sensing

infrastructure.

The accompanying software architecture to this model is the focus of Chap-

ter 4. Here, the design of the situation recognition process is given, as well as

details of the interaction of the component parts of the system, including the sens-

ing infrastructure, the situation determination middleware, and situation-aware

9

Chapter 1. Introduction

applications. It illustrates several powerful features that the architecture of-

fers. These include simultaneously recognising multiple specifications for a given

situation, allowing the recognition process not only to adapt to the changing

available sensing infrastructure, but also to fuse the results of multiple specifi-

cations together to give a higher overall confidence. Also included are how the

architecture automatically detects and switches between infrastructure-based and

infrastructure-free styles of operation, and how it enables inter-environment sit-

uation determination.

Chapter 5 provides an evaluation of the situation modelling approach and a

prototype middleware implementation of its accompanying situation determina-

tion architecture. The approach is assessed through the construction and use

of several example situation-aware applications as well as the development of a

significant library of situations, specifications and customisations. Each appli-

cation is distinct in style, and together they fully exploit the middleware. The

library of situations spans a range of domains and environments. Furthermore, a

detailed performance analysis is also included in this chapter, which verifies that

the middleware provides adequate performance at realistic deployment sizes.

A summary of the work and the contributions of this thesis is given in Chap-

ter 6, as well as a brief look at potential extensions to the situation determination

middleware and other possible future work.

10

Chapter 2

Related Work

2.1 Introduction

This chapter examines a number of existing works drawn from the literature,

with the aim of identifying the level of support that is currently available for the

requirements identified in the previous chapter as necessary to realise pervasive

situation determination.

These requirements include both modelling and architectural aspects. The

modelling aspect requires support for:

Customised situations - An approach must offer the capability for end-

users themselves to create their own customised situations that capture the dis-

tinctive features of situations that are particular to the individual user or their

environment.

Rich situation models - The system’s representation of a situation should

provide a rich, fine-grained model of a situation. It should be possible to represent

the structure of the situation, such as the specific roles that are played within it

as well as the relationships between them. Furthermore, as the sensor data that

will be used to detect the elements of a situation may suffer problems of accuracy

or staleness that affect the confidence the system can have in that data, the

representation must provide a convenient means of incorporating and handling

measures of confidence.

Alternative descriptions - To allow pervasive recognition, the model of a

situation must include multiple, alternative descriptions that specify how the sit-

uation can be recognised from a variety of different forms of sensing infrastructure

11

Chapter 2. Related Work

in a number of different environments.

Multiple viewpoints - To support pervasive reporting, the system should be

capable of reporting the situations of any person, device or location to any user

in the system. Therefore, the representation must support multiple viewpoints of

a situation, including those from each of the people, devices and locations that

are involved within the situation.

In attempting to model a situation, there are, at a high level, two distinct

styles of approach that can be taken. The first is to have the model of the

situation explicitly designed by one or more of the people who have some stake

in being able to recognise the situation. The other style is to have the system

itself attempt to infer the model.

Moreover, approaches in which the model is explicitly designed can be gener-

ally grouped into one of two broad categories. The first category includes those

approaches that adopt a ‘top-down’ view, where the approach explores the best

ways to model situations and high-level context information, and then how these

relate to methods of detection and sensing infrastructure. These approaches

focus on the representation of situations. The second category includes those

approaches that take a ‘bottom-up’ view, in which the approach first identifies

novel means of sensing some aspect of the environment and then expands upon

the possibilities this creates for modelling the activity or situation that is occur-

ring. These approaches focus on the recognition of situations.

Section 2.2 provides a comprehensive review of the most complete and per-

tinent examples of existing work from each of these styles and categories that

relate to the modelling requirements listed above. Each of these styles and cate-

gories, and the support that currently exists for the modelling requirements, are

explored across three sections.

First, in Section 2.2.1, approaches to representing a situation are presented,

where the support offered for all four modelling requirements is considered. Next,

in Section 2.2.2, approaches that explore novel methods of recognising a situa-

tion are reviewed. These projects give particular focus to practical systems for

situation determination in real world settings, and the level of support for all

four modelling requirements is again considered. Following this, approaches in

which the system attempts to infer the model of a situation are presented in

Section 2.2.3. While these are related to all four of the modelling requirements,

additional focus is given here to the support that such approaches can offer for

customised situations. Learning approaches potentially offer the possibility of

12

Chapter 2. Related Work

automating the customisation process. This section looks at the level of support

that is possible from such approaches and their practical implications.

The architectural aspect requires support for:

Adaptable recognition - The architecture must be able to provide adapt-

able recognition for the process as a whole, incorporating new descriptions and

sensing infrastructure as they appear in the environment, as well as adapting

to the loss of existing sources of context information that are actively used to

recognise situations.

Resource management - Recognising a situation can be a computationally

expensive task, yet it often must be performed by resource-constrained devices.

To mitigate the cost of this, the system should strive to manage the resources

within it, shifting expensive tasks to the devices that can best afford them.

Inter-environment operation - The situations a user is interested in may

extend beyond the local environment, and so too must the reach and scope of

situation-aware applications. Therefore, the architecture must support inter-

environment operation to enable such pervasive situation recognition.

Situation discovery - When the situations a user is interested in do extend

beyond the local environment, the system must have a means of discovering

situations that are occurring elsewhere within the network of environments. The

architecture must provide the capability for situation discovery in order to support

pervasive situation recognition.

A characteristic element of pervasive computing is the use of mobile, personal

devices that assist the user in some way by providing services or information [15,

16, 2, 4]. This has led to the development of two distinct styles of architecture

supporting pervasive computing.

Some approaches attempt to complement the typically limited resources of

these mobile devices by providing additional infrastructure within the environ-

ment. Both the mobile and infrastructure devices are used in concert to provide

user applications. This allows devices to be small enough that they can be em-

bedded in clothing or other physical objects, but also allows the environment as

a whole to be able to provide sophisticated services. This style is referred to as

an infrastructure-based architecture.

Other approaches focus on scenarios where such supporting infrastructure is

not available, and strive to provide the greatest level of support possible within

the constraints of the host devices. In this style, it is solely the mobile devices

that provide user applications. This allows greater flexibility in the types of

13

Chapter 2. Related Work

scenarios in which these approaches can be used. This style is referred to as an

infrastructure-free architecture.

Pervasive situation determination demands support for both of these archi-

tectural styles, as well as fluid transition between them. Adaptation is crucial

not only in supporting changes between infrastructure-based and infrastructure-

free operational modes, but also in large-scale architectures for realising inter-

environment operation and situation discovery.

Section 2.3 reviews the most complete and relevant examples of existing work

that address these four different elements of infrastructure-based and infrastruc-

ture-free modes of operation, adaptation, and large-scale operation, and examines

the level of support that is offered for the architectural requirements across four

separate sections. Section 2.3.1 and Section 2.3.2 look at infrastructure-based

and infrastructure-free architectures respectively, and the support they offer for

situation-aware applications. All four architectural requirements are considered

in both of these sections. Next, in Section 2.3.3, existing works that concen-

trate on methods of infrastructure-supported adaptation of context-information

are presented in relation to their support of the adaptable situation recognition

requirement. Finally, Section 2.3.4 looks at initial large-scale approaches and

considers their support for inter-environment operation and situation discovery.

2.2 Modelling aspects

This section looks at the modelling aspects related to pervasive situation determi-

nation, reviewing existing approaches’ support for end-user customisation, rich

situation models, alternative situation descriptions and incorporating multiple

viewpoints of a situation.

2.2.1 Representing situations

There are many different facets to representing a situation. These include what

the basic elements of the model of the situation are, the way the model is struc-

tured, how the model is specified and the nature of the modelling process itself.

The literature features a number of different styles of representing a situation.

This section provides a comprehensive review of these different styles, covering

each of these facets, that pertain to pervasive situation determination. The ap-

proaches presented include the most complete examples of each style.

14

Chapter 2. Related Work

In several early context-awareness projects, situations were defined implicitly

by the context-aware application developer who was required to state every spe-

cific piece of low-level context information that was required for each situation

in each application. This implicit situation representation style, which has borne

influence on what forms the basic elements of several later situation models, is

presented in Section 2.2.1.1.

Following this, logic-based and ontology-based styles are discussed in Sec-

tion 2.2.1.2 and Section 2.2.1.3 respectively. In the logic-based approaches, sit-

uations are constructed from logical predicates, whereas in the ontology-based

approaches, ontology-defined concepts are used. These styles are not entirely

dissimilar, and ontological elements may feature in a logic-based approach and

vice-versa. These form explicit attempts at defining the basic elements, the struc-

ture, and how to specify a situation model.

A graphical representation style is then presented in Section 2.2.1.4, which

focuses on means of identifying and specifying the context information required by

an application pictorially. This work provides the most fully developed attempt

at defining a situation modelling process.

In Section 2.2.1.5, a role-based style is presented in which the representation

of a situation comprises a number of roles, as well as the entities that play these

roles. This style demonstrates a very natural way to structure a situation.

Finally, location forms the most essential basic element of many situations,

and Section 2.2.1.6 looks at approaches that focus on methods to represent loca-

tion information.

2.2.1.1 Implicit representation

In several approaches, a situation is implicitly represented as an aggregation of

context information. One such approach is the much-referenced work of Daniel

Salber, Anind Dey and Gregory Abowd [17], that laid the foundation on which

a lot of later work on context-aware systems was built. This work includes a

commonly-cited definition of context [18, 19]:

Context is any information that can be used to characterize the sit-

uation of an entity. An entity is a person, place or object that is

considered relevant to the interaction between a user and an applica-

tion, including the user and applications themselves.

15

Chapter 2. Related Work

They also contend that context-aware applications are concerned with the

who, what (that is, what the user is doing), when and where of different entities

and use this information to determine why the situation is occurring. The why

was not actually determined by an application, but rather this was encoded by the

designer of the application. Identity, activity, time and location are proposed as

the primary context types for characterising the situation of a particular entity,

as they relate to the who, what, when and where. A ‘context widget’ is used

to provide an application with each of these context types in a generic manner,

providing a layer of abstraction over how they are actually sensed.

An ‘interpreter’ widget is used to handle uncertain context information. The

particular implementation of an interpreter may vary, depending upon the type

of context information being processed. For example, an interpreter may perform

simple filtering by rejecting any result whose confidence factor is below a given

threshold, or it may consolidate results from multiple sources.

An interpreter provides a straightforward means of handling uncertainty asso-

ciated with a particular piece of context information, providing a ‘black box’ that

transforms uncertain context information into a definite result. When modelling

a situation, other techniques may be more appropriate, as making the source con-

text information definite on a per-piece basis may make it difficult to calculate a

precise confidence factor for the overall situation.

The approach recognises activity as a primary context type in describing a

situation. However, it offers no framework for explicitly describing nor automati-

cally detecting the high-level situation or activity from other pieces of context. It

is left up to the application developer to manually construct each situation their

application requires.

Forcing developers to build their own implicit situation models is undesirable

as the models are created in an ad hoc fashion and the effort to model similar

situations must be repeated in each application. Furthermore, it lacks a common

model of the same situation between different applications and similarly, there

is no guarantee that a situation developed in one environment will be able to

function in another. In addition, it places a heavier burden on the application

developer, who must also put effort into modelling and capturing the situation,

in addition to the work of designing and building the application itself.

These factors limit the level of support implicit representation can provide for

the modelling requirements of pervasive situation determination. As altering the

description of a situation requires skill in application programming, it becomes

16

Chapter 2. Related Work

too specialised to be performed by a typical end-user and essentially prohibits end-

user customisation. As the developer must define their own model implicitly, it

may be possible to build rich models and multiple viewpoints of a situation, but as

noted above, as there is no structure or direct support for this, it must be created

in an ad hoc fashion and requires repeated effort each time. The lack of a common

model for the same situation inhibits the use of multiple, alternative specifications

for adapting to the dynamically changing available sensing infrastructure within

a pervasive computing environment.

The key benefits this approach does offer for pervasive situation determination

are in using abstractions of context information that shield the complexities of

how that context information is detected, and in installing the notion of modelling

a high-level situation as a composition of lower-level pieces of context information.

These concepts have influenced several later works and should be exploited.

2.2.1.2 Logic-based representation

The section presents two logic-based approaches. The first is the Gaia project,

which is the most comprehensive existing approach for specifying higher-level

context information, providing an extensive range of mechanisms and features

that could be employed to describe a situation. The second approach is the work

of Anagnostopoulos et al. which is distinct among current approaches in that it

not only attempts to model situations explicitly, but also in providing a detailed

scheme for combining measures of uncertainty associated with an instance of a

situation. Discussion of the support both lend to the modelling requirements

for pervasive situation determination follow the presentation of the individual

approaches.

The Gaia model

The Gaia project has developed middleware that aims to provide support for

transforming physical spaces into programmable entities [20]. Work within the

Gaia project has proposed a model for context based upon first-order logic [21].

In this model, context information is represented as first-order predicates, for

example:

Location(Chris, Entering, Room 3231)

Temperature(Room 3231, =, 98 F)

17

Chapter 2. Related Work

Here, the name of the predicate is the type of context that is being described,

such as location or temperature. The authors aim to use this as a simple, uniform

representation for different kinds of context. Context-types are defined in an

ontology, and type checking of predicates is performed against this ontology to

ensure that a predicate makes sense.

More complex context expressions can be constructed by using Boolean oper-

ators such as conjunction, disjunction and negation over context predicates. Both

universal and existential quantification over variables are permitted. Quantifica-

tion is performed over the domain of all of the values of a variable the system

is currently aware of, that is, all of the instances described in the ontology. For

example, the set of all people consists of the names of all the people known

to the system. Note that this becomes unmanageable as the system expands

from operating in a single environment to a large, interconnected network of

environments.

The model permits rules to be defined that provide the ability to deduce new

context information based on existing context information. For example, the

following rule infers that there is a party going on in a particular room if the level

of sound in the room is high, stroboscopic lights are on and the number of people

in the room is greater than the specified threshold value:

Sound(Room 3234, >, 40 dB) ∧
Lighting(Room 3234, Stroboscopic) ∧
NumberOfPeople(Room 3234, >, 6)

→ SocialActivity(Room 3234, Party)

The rule mechanism can be used to combine context provided by context

predicates defined in, or sensed by, the system, as well as inferred context from

other rules.

Later extensions to this provide support for handling uncertain context infor-

mation [22], and provides support for probabilistic logic, fuzzy logic and Bayesian

networks. This provides considerable flexibility to a situation modeller as it offers

a variety of options for handling uncertainty. However, it is not clear if it is pos-

sible for pieces of context information that employ different methods of handling

uncertainty to be combined into the same situation description, or if, for example,

a situation includes a piece of context information that is modelled as a Bayesian

network, then the whole situation must be modelled as a Bayesian network. The

inclusion of multiple methods of handling uncertainty also makes the approach

18

Chapter 2. Related Work

more complex, as modelling a situation or working with situation descriptions

requires understanding the predicate-based first-order logic, probabilistic logic,

fuzzy logic, as well as the Bayesian network representations.

Anagnostopoulos et al.

Anagnostopoulos et al. presented an approach which supports situation repre-

sentation and reasoning [11]. The approach permits building up situations as

logically aggregated pieces of context information.

A situation is recognised by a rule that has the following form:∧n
i=1 context(xi, user) → isInvolvedIn(situation, user), n > 0

A situation recognition rule such as this denotes that an isInvolvedIn predicate

is implied by the logical conjunction of the context predicates. When each of the

context predicates hold, it is implied that the user is involved in a certain type

of situation.

Application actions can then be specified as:

isInvolvedIn(situation, user) ∧ specified(situation, user, task)

→ do(execute(task, option), situation)

An application action rule such as this denotes that if a user is involved in a

situation and has specified in an associated profile a task to be executed, then

the system should invoke that specific task.

The scheme this approach provides for estimating the uncertainty of a user’s

involvement in a situation is based on a complex model that uses a pre-defined

set of exemplar situation descriptions and calculates the confidence that a user

is involved in a situation as its distance from these exemplars. The distance

from an exemplar is based on full, fuzzy logic-based, structural analyses of the

current situation to be recognised and each of the exemplars. As the scheme

is complicated, its inclusion makes the overall situation model more difficult to

understand. Furthermore, the repeated structural comparisons and process of

defuzzification [23] upon which they rely may become computationally expensive

as the number and size of the situation specifications in use becomes large. More

critically however, the scheme is not appropriate in the light of situation customi-

sation. As the customisation will add additional constraints to its base situation,

it will move farther away from its exemplar. The scheme would then report that

19

Chapter 2. Related Work

the user is involved in the customised situation at a lower confidence, even if all

of the context information it was recognised from was reported at full confidence.

Discussion

A straightforward way in which both approaches could potentially support end-

user customisation would be to allow a situation predicate to be included in the

left hand side of a customisation rule along with the additional constraints of the

customisation. However, this severely limits the scope of the customisation, as the

entities referenced by the situation rule will not be available to the customisation.

To expand the scope, the situation rule would have to be rewritten to include

the customisation’s constraints directly. However, this then demands that the

customisation author is familiar with the details of the situation rule that they

are expanding. This is a burden which is made even greater when multiple,

alternative rules for the situation exist. Attempting to support customisation in

this manner heads towards specialist situation specification authoring and is not

suitable for use by end-users.

It is in representing rich situation models that the Anagnostopoulos et al.

approach offers its best support. The approach provides a common, general

structure for a situation, and includes a scheme for estimating the uncertainty of

a user’s involvement in a situation based on uncertain context information. In this

regard however, the Gaia model is limited in similar ways to the Dey approach

presented above. This includes the lack of a standard situation structure, which

places a greater burden on the situation-aware application developer as they must

create their own ad hoc models each time.

Whilst both approaches make it easy to build up logic rules to infer higher-level

context information by combining lower-level context using the standard logical

operators, a greater level of expressiveness is required for describing rich situation

models. In particular, the ability to access, count and perform arithmetic on

the entities and properties referenced within a situation is necessary to capture

concisely the dynamic and variable structure of a situation. For example, a ‘group

meeting’ situation defined as a meeting in which 75% or more of the attendees

belong to the same group, is difficult to express in a natural and general way

using only logical operators. Furthermore, both models represent only whether

a user is involved in a situation or not, and do not capture the specific roles the

user or other people and entities may be playing within the situation.

20

Chapter 2. Related Work

It would be possible to provide alternative descriptions for a situation in both

of these approaches by defining multiple rules that lead to the same conclusion.

To use the Gaia example, a specification author could write several rules each

with varying conditions on the left hand side of the implication, but which all

result in the same “SocialActivity(Room 3234, Party)” situation predicate on the

right hand side.

However, it would not be as simple to express multiple viewpoints. In the

Gaia approach, whilst the multiple viewpoints of each of the different people

and entities involved in the situation could be represented by including several

situation predicates on the right hand side of the implication, for example includ-

ing “SocialActivity(John, GroupMeeting)” in addition to “SocialActivity(Room

266, GroupMeeting)”, the required set of conditions on the left hand side may

become very complex. Moreover, note that situation predicates like this make

reference to the class of situation “GroupMeeting” and not a particular instance

of a situation. It is then difficult to relate entities and situation predicates that

are associated with the same situation. For example, if there were also to be a

situation predicate that represented whether John was one of the group member

attendees, there is no direct way to relate this to the predicate that more gener-

ally states that John is involved in a group meeting or to the predicate stating

there is a group meeting occurring in Room 266.

In the approach of Anagnostopoulos et al., expressing multiple viewpoints

would also be difficult as the model is specifically grounded in the single viewpoint

of the current user in the local environment. It is possible that a location or a

device could be the focus of a situation rule in addition to a user, for example the

context predicate could appear as ‘context(xi, location)’ or ‘context(xi, device)’

instead of ‘context(xi, user)’, but each situation rule may have to be rewritten in

each case. Plus, this would also exhibit the problem of detecting whether reports

of a situation from different viewpoints refer to the same instance of a situation

or not.

There are several key advantages offered by a logic-based approach. These

include the simplicity and clarity in combining different pieces of context infor-

mation to make a situation, in a way that is familiar to programmers and is

readily understandable. Furthermore, mature techniques and tool support are

available for modelling, reasoning about and processing logic-based systems.

Both the Anagnostopoulos and the Gaia approaches support fuzzy logic for

handling measures of uncertainty about context information. Though the spe-

21

Chapter 2. Related Work

cific schemes they use are complex, it is possible to derive a simpler and lighter

fuzzy logic-based scheme that can incorporate and combine the certainty factors

of the compositions of context information that comprise a situation. A final

key advantage the Anagnostopoulos approach offers in supporting pervasive sit-

uation determination is that it provides an explicit, common, basic structure for

representing a situation. In conclusion, a logic-based approach, with suitable

extensions, can be an appealing way to model situations.

2.2.1.3 Ontology-based representation

Several efforts have concentrated on attempting to provide a common ontology

for pervasive environments and context-aware applications. In these approaches,

context information is represented as documents containing instances of concepts

that are defined in a standard, shared ontology.

One such effort is the COBRA-ONT ontology, a collection of ontologies for

describing places, agents, events and their associated properties in an intelligent

meeting room domain [24]. Related to this is the SOUPA ontology, which has

been designed to model and support pervasive computing applications and in-

cludes modular component vocabularies to represent intelligent agents with asso-

ciated beliefs, desires and intentions, as well as time, space, events, user profiles,

actions and policies for security and privacy [25]. Together, these form the most

comprehensive ontology project for pervasive computing.

The CONON project [26] provides an upper context ontology that captures

general concepts about basic context, and also provides extensibility for adding

domain-specific ontologies in a hierarchical manner. This project is distinct in

that it attempts to provide explicit support for modelling an activity.

Activity and situation modelling are supported in an abstract manner, that

is, an ‘Activity’ class is defined that has ‘Scheduled Activity’ and ‘Deduced Ac-

tivity’ subclasses. A Scheduled Activity represents an activity that is assumed

to always occur at a known time, while a Deduced Activity represents an activ-

ity that must be detected dynamically from the available context information in

the environment. Although a Deduced Activity concept is provided, it is defined

abstractly - its structure is empty. The structure of any specific subclasses or

instances must be defined by the application developer. This then shares the

drawbacks of forcing an application developer to create his/her own implicit or

ad hoc models of a situation with the logic-based approaches presented earlier,

22

Chapter 2. Related Work

specifically the lack of a common model of the same situation between different

applications and environments, and the greater, perhaps redundant, effort that

is required of the application developer.

The recently proposed Ontonym project [27] provides a modern, comprehen-

sive and integrated set of ontologies that represent core concepts of pervasive

computing. The ontology supports modelling context information as well as as-

sociated uncertainty, provenance, sensor capability and temporal properties. The

ontology includes a broad range of concepts relating to location, people, time,

events and sensing. The approach does not define structures for representing

situations directly, though it is possible that the ‘SpatioInstantEvent’, ‘SpatioIn-

tervalEvent’ and ‘Role’ classes drawn from the events ontology could provide

suitable base concepts upon which general situation structures could be created.

The main achievement of these ontology-based approaches has been in fa-

cilitating the exchange of independent pieces of low-level context information

through a common context model. However, as their focus has not been on com-

posing pieces of context information into situations, the level of support for this

exhibited by these ontology-based approaches is similar to that of the Salber et

al. approach presented earlier. There, the author required skill in programming

to compose pieces of code (‘context widgets’) to describe a situation. Here, the

author must compose concepts from an ontology to create the description. Al-

tering the description of a situation would require skill in ontological modelling

and experience with related languages and tools, and is therefore unsuitable for

use as a means to perform customisation by a typical end-user. Similarly, while

it could be possible to create rich models, multiple viewpoints, and alternative

descriptions, the situation author or application developer must build the support

for this by him/herself in each case.

While neither the SOUPA nor CONON ontologies originally support repre-

senting the confidence factor of a situation, the open nature of the ontological-

based approach allows for straightforward extension to include such a feature.

However, as it is not included as part of the model per se, it may lead to incon-

sistent use across the different sources of context information used to recognise a

situation.

The ways in which the ontology-based approaches support the requirements of

pervasive situation determination lie in the notion of a shared, common represen-

tation of context information between systems and applications, and in represent-

ing context information in high-level terms that are meaningful to the end-user.

23

Chapter 2. Related Work

These are key concepts that can be used to address the inherent open nature

of pervasive situation determination systems, and can assist in making situation

models and end-user customisations easy to comprehend.

2.2.1.4 Graphical representation

Karen Henricksen and Jadwiga Indulska produced a framework for modelling and

building context-aware applications [8, 28, 29, 30]. They were motivated by the

observation that recent research in the field of context-awareness had predom-

inantly adopted an infrastructure-centred approach that had assumed that the

complexity of engineering context-aware applications can be substantially reduced

solely through the use of infrastructure capable of gathering, managing and dis-

seminating context information to applications that require it. They argue that

an infrastructure-centred view leads to abstractions for describing and program-

ming with context that are not the most natural ones, observing that most of

the proposed infrastructures are based on context models that are informal and

lacking in expressive power.

A graphical context modelling approach was developed to provide a tool to

assist context-aware application designers in exploring and specifying the context

information requirements of a context-aware application. It provided modelling

constructs to describe individual types of context information, called ‘fact types’,

classifications of their sources, quality-related metadata, as well as dependencies

and constraints amongst different types of context information.

The modelling approach is presented as an extension to Object-Role Mod-

elling (ORM), which is a method for designing and querying database models

at a conceptual level [31]. Basing the approach on ORM allows adoption of its

greater formality and expressiveness in comparison to other database modelling

techniques, as well as its mapping to the relational model, allowing a straightfor-

ward representation of a context model in terms of a relational database.

The approach includes a ‘situation abstraction’ for modelling higher-level, de-

rived context information. However, this construct does not offer a general struc-

ture for describing and recognising high-level activities that is sought, but rather

offers only a way to express rules within the model, similar to the mechanisms

presented earlier in the Gaia approach. Accordingly, its support for pervasive

situation determination is lacking in similar ways.

In order to accommodate uncertain context information, the model offers sup-

24

Chapter 2. Related Work

port for a three-valued logic. Assertions can either be true, false or possibly true,

where possibly true denotes a value that is unknown or is ambiguous. Addition-

ally, context may be annotated with its source, that is, whether it is a static

fact, taken from a profile, derived from other context or sensed from the environ-

ment. This annotation may be used to infer different aspects of the quality of the

information. The three-valued logic and source annotations provide a discrete

means to incorporate uncertainty into their logic-based model of context. This

provides a convenient and appropriate means to rapidly create high-level context

requirements and identify sources of uncertainty. However, to translate this into

an operational model that can be used to recognise a situation, this approach

would be lacking in that it does not provide a mapping to probability-based un-

certainty measures commonly found in a pervasive environment. Several location

systems for example, report locations with a probability of error [32, 33, 34].

This forces the context-aware application developer to make arbitrary cut-offs for

true, possibly true and false, which could lead to inconsistent behaviour across

applications.

Also, note that although an activity does appear within this model as a fact

type, it is modelled as a user-supplied data type, it is not inferred. Its represen-

tation is simply a string label denoting the activity, say gleaned from a calendar

or personal organiser application, and has no internal structure. However, their

approach focuses on providing a framework to help application designers estab-

lish the requirements for a fixed set of independent pieces of context information

required by a context-aware application they wish to build, rather than modelling

activities and relationships between groups of people and devices. Modelling an

activity as a string label simplifies the process, and so is appropriate in their case.

In a deployed system, the label could be inferred by using a pervasive situation

determination system such as that described in this thesis.

A distinct advantage that Henricksen’s approach offers in supporting pervasive

situation determination, is being able to graphically partition the required context

information into smaller, related subsets, making it more manageable to work

with larger sets of context information. This idea can be built upon to provide

a similar means of partitioning the elements of a situation, to provide a more

manageable means of working with the large amounts of context information

that will be involved in a complex situation description.

25

Chapter 2. Related Work

2.2.1.5 Role-based representation

A high-level context representation was proposed by Crowley et al. [35, 36, 37].

The approach is uncommon not only in that it provides a well-defined structure for

a situation, but also in that it provides some initial work on explicitly modelling

distinct roles within a situation.

The representation involves a user perspective and a system perspective, where

each perspective defines a specialised model of a situation.

The user’s perspective concerns the user’s task and activity. The context for

a user and task is defined as a composition of situations, which all share the same

set of roles and relations to be observed that are relevant to the task.

A role is defined as a potential set of actions within a task. The actions of a

role may be enabled by certain entities whose properties meet a specified set of

constraints. An example given is that an object may serve as a pointer if it is of a

graspable size and appropriately elongated [35]. The system may assign entities

to roles, tagging the assignment with a confidence factor. One or more roles may

be played by an entity, and a role may be played by one or several entities.

In the user’s perspective a situation is a particular assignment of entities to

roles completed by a set of relations between the entities. A situation is viewed

as the ‘state’ of the user with respect to his/her task. The system perspective

extends this such that entities may include internal, observational processes of the

system itself, and the relations may include the connections between processes.

In this model, a context is viewed as a network of situations defined in a

common state space, where a change in the relation between entities, or a change

in the assignment of entities to roles is represented as a change in situation.

This model defines a basic, general structure for a situation. It affords a

richer level of detail by including explicit representation of different, abstract

roles within a situation and the relations that hold between them.

When applied to pervasive situation determination, the Crowley approach

provides a good level of support for creating rich models of situations. However,

creating descriptions that recognise a situation demands a significant level of tech-

nical skill on the part of the author. Situation descriptions are composed from

‘contextors’, which are low-level processing units of individual pieces of context

information and are chained together in a workflow that processes the recogni-

tion of the desired situation. The author is required to be familiar with signal

processing techniques such as Bayesian estimation [38] and Kalman filters [39] to

26

Chapter 2. Related Work

address any uncertainty associated with a situation’s source context information.

Composing descriptions in this manner is akin to programming, and leaves little

scope for end-user customisation.

Whilst the approach provides both a system and a user view of a situation, the

system view is actually an extension of the user view that additionally includes

representations of internal system processes. The approach does not fully support

multiple viewpoints of a situation as is required for pervasive situation determina-

tion. A report of a situation would be produced by the final output contextor of

the description’s workflow and its type is fixed for a particular description. There-

fore, to represent different viewpoints, it may be necessary to create alternative

descriptions with a distinct output type, for example a location or device type

instead of a person. This then may also suffer the same difficulties as presented

earlier in this section of determining whether reports from multiple viewpoints

refer to the same instance of a situation. Moreover, no direct support is given to

representing alternative situation descriptions.

A key advantage of this approach, similar to the graphical approach presented

above, is that a role provides a way to partition the potentially large amount of

context information used to recognise a situation. While a role is given the func-

tional definition of a set of potential actions here, it is possible to generalise the

notion of a role such that it not only provides a means of abstracting over the

detail of the person, device or location playing the role or the sensing infras-

tructure used to detect it, but also provides a very natural way to structure the

characteristic high-level features of a situation in terms that are close to the user

and the real-world entities involved in the situation.

2.2.1.6 Location representation

Location information is commonly regarded as essential for describing situa-

tions [1]. Several location systems exist [40, 41, 42], and location is typically

represented in either a geometric or symbolic co-ordinate based scheme. In ge-

ometric co-ordinate schemes, a location is represented by a single point, or an

area or volume delimited by a set of points, within a multi-dimensional space.

The Global Positioning System (GPS) is an example of a popular geometric co-

ordinate based scheme [43]. In symbolic co-ordinate schemes, a location is defined

by an abstract symbol. Street names are a common example of a symbolic co-

ordinate based scheme.

27

Chapter 2. Related Work

In developing pervasive computing applications, some projects have found that

it is necessary to extend beyond the common capabilities of symbolic schemes,

and introduce higher-level information about a location. This section reviews

three such approaches that provide different styles of extensions that may assist

in modelling situations, where each forms the most fully developed example of

that style.

The first of these is the NEXUS project, which has developed an extended

class schema for describing location and spatial models [44]. The schema includes

classes for representing different kinds of spaces and locations. For example, a

space defined as a building may be further classified as a restaurant or a museum.

The Activity Zones project developed a system that allowed a model of the

areas within a room to be annotated with labels of the activities that commonly

occur within those areas for the particular environment [45]. These areas could

be learnt semi-automatically, and the associated activity labels could be used to

influence the behaviour of a context-aware application. Note that this approach

by itself is not sufficient to detect situations. The labels act only as hints at which

situations might occur within a particular area. Without further detection, it is

not possible to determine which situations are actually occurring.

The Location Awareness Information Representation (LAIR) project per-

mitted locations to be modelled in terms of geographical relationships between

spaces [46]. In addition to modelling common properties such as the name of a

particular space and which other spaces it is contained within, it is also possible

to include a list of paths that the space falls on, as well as a list of other spaces

that can be seen from within the space.

Concerning their support for rich situation models, what is missing from these

approaches is the ability to denote fine-grained types for a particular space. For

example, within a room intended to host presentations, there will commonly be

a speaker area and audience area. In supporting this, the NEXUS schema is too

general. As it associates an activity with a space, the Activity Zones approach is

too coarse-grained. The focus of LAIR is on the relationships between locations,

rather than on the types of the location itself.

Although it does not lend direct support to this itself, the recently proposed

LOC8 location framework [47] allows a developer to incorporate additional seman-

tics into the location model. This presents a straightforward means of introducing

fine-grained location types into an existing location model of the environment.

Providing support for fine-grained location types can offer both greater con-

28

Chapter 2. Related Work

venience and generality in writing rich situation descriptions.

2.2.2 Recognising situations

This section looks at existing projects that focus on the process of recognising

situations and considers their support for pervasive situation determination. The

projects presented here were selected as they all have a strong real world fo-

cus, and are examples of some of the most fully developed practical attempts at

situation determination from the current literature.

Three different styles of approach are explored in this section, covering projects

that focus on using specialised hardware, others that focus on using specialised

algorithms and others still that have developed application or domain specific

capabilities for recognising situations. Each of these styles is reviewed in turn,

examining the level of support offered for all four of the modelling requirements,

including customised situations, rich situation models, alternative descriptions

and multiple viewpoints.

2.2.2.1 Novel hardware approaches

There are several projects that, rather than try to model and detect activities

or situations in general, explore a limited set of activities or physical states that

can be detected using novel hardware or a novel application of particular sensing

infrastructure.

A number of projects have centred around detecting the user’s physical state

with regard to their state of motion. These states typically include sitting, stand-

ing, walking, running, climbing or descending stairs, cycling and riding an eleva-

tor. These works have centred around exploiting novel hardware worn on the

body, and include the work of Lee and Mase [48] in which they use a belt-

attached PDA connected to accelerometers, a digital compass, and an angular

velocity sensor worn on the thigh. The work of Bao and Intille built on this in

their study which involves accelerometers attached to the wrist, elbow, thigh and

shin, and a comparison of the recognition accuracy of different classifier algo-

rithms [49]. Lukowicz et al. demonstrate a system based on force sensors that

are thin enough to be embedded in a wearer’s clothes, that by detecting muscle

activity, can infer the user’s state of motion [50]. Similar results were achieved by

Lester et al., though their project was based on using a single sensor board that

could be embedded in a mobile device, such as a mobile phone, and also showed

29

Chapter 2. Related Work

that similar levels of accuracy for recognising several states of motion could be

achieved irrespectively of whether the device hosting the sensor board was worn

on the wrist, waist or shoulder [51].

Philipose et al. developed a special glove that mounted an RFID reader that

could read RFID tags embedded in a number of household objects [12]. Using

this set-up, they had limited success in detecting activities of the wearer such as

holding a telephone receiver, adjusting a thermostat and washing dishes.

As well as detecting activities through body-worn sensors, there are also hard-

ware projects that have experimented with attaching sensors to physical objects

in the environment. The CapToolKit project has developed a system which al-

lows capacitive sensors to be embedded into objects [52]. Using this toolkit, the

authors were able to construct a table that could detect the position of peoples’

hands above the table, and a kitchen cupboard enhanced such that it could de-

tect which items had been taken out or put back in the cupboard. Nishida et al.

proposed a system that is based on 3D ultrasonic tags [53]. By attaching the tags

to a coffee cup, a stapler and a box of tissues, they could reliably detect when

any of these items were being used. Patel et al. [54] developed a hardware sensor

that detects the electrical noise on residential power lines created by electrical

devices during operation and when being switched on or off. Machine learning

techniques were used to recognize events such as turning on or off a particular

light switch, a television set or an electric oven.

Though the projects presented in this section are concerned with activity

recognition, the activities that are recognised are very specific, quite low-level, and

intimately coupled to the specific hardware that recognises them. As such, they

offer little scope for rich situation modelling, multiple specifications or viewpoints,

and no support for customisation. The limits of the hardware strictly dictate

which and how the activities are recognised.

Where these projects excel, is in recognising the kind of activities that could be

categorised as ‘middle-level’ context information. That is, the resulting activity

is at a higher level than the stream of raw context data that is used to detect it.

For example, taking and returning items from and to a kitchen cupboard presents

a higher-level activity than the signals firing from the switches and sensors fitted

to the cupboard and items. While at the same time, the activity is still too

finely grained to reveal the full, higher-level situation that is being performed.

By considering this wider context, for example, by examining a number of items

that have been taken out together and other information sensed from the kitchen,

30

Chapter 2. Related Work

the system may be able to establish different situations that are occurring, such

as the user is baking a cake, or that they are preparing some drinks. The support

that these approaches offer for pervasive situation determination is to provide

such ‘middle-level’ context information, forming a specialised, component part of

the overall, larger system.

2.2.2.2 Novel algorithmic approaches

Other projects have focussed on novel algorithmic techniques to infer higher-

level context from low-level sensors. These include the work of Lester et al.,

which developed a system that could accurately detect if two devices were being

carried by the same person [55]. The system achieved this by applying a specially

developed correlation algorithm to the devices’ accelerometer data.

Korpipää et al. presented a system that recognises simple situations from a set

of different types of sensors [56]. Data from accelerometers, light, temperature,

humidity and skin conductivity sensors, as well as a microphone, were processed

using algorithms from the recent MPEG-7 standard [57], and combined using a

naive Bayes classifier. Using this system, they had limited success in identifying

simple situations involving the device wearer, such as driving a car, listening to

music, being engaged in conversation, and whether the wearer was indoors or

outdoors.

Fishkin et al. reported a system that could detect the activity of multiple

household objects being moved and rotated within the environment using RFID

readers and tagged objects [58]. The approach is based on a specially developed

object motion algorithm allowing standard protocols and RFID hardware to be

used.

These software-focused activity recognition approaches share similar charac-

teristics with the hardware-focussed projects presented in the previous section.

They are specifically built to recognise particular activities, the activities are

quite low-level, and they assume that particular, though more standard, sens-

ing infrastructure is available. As such, they offer a similar level of support for

pervasive situation determination. They are limited in facilitating rich situation

models, multiple descriptions and viewpoints, or customised situations. How-

ever, they also share the same key advantage, in providing specialised sources

of ‘middle-level’ context information that may be used by a pervasive situation

determination system in recognising high-level situations.

31

Chapter 2. Related Work

2.2.2.3 Application and domain specific approaches

There are several projects that have focussed on attempting to detect situations

and activities within a particular domain or for a particular application. Such

domains include medical, health, office and home settings, as well as different

types of manufacturing.

The work of Vurgun et al. is a project that focuses on the medical domain, and

developed a system that reminds elderly patients to take their medication [59].

The system would only remind the patient however, if certain simple, application-

specific activities had not been detected, such as the patient has indicated that

the medication had previously been taken within a specific time period, or if the

patient is not at home.

Projects that have focussed on health and fitness include a system developed

by Chang et al., that by analysing data collected from accelerometers worn on

the wrists and waist, could recognise nine different weight-lifting activities, which

could then be used in a digital personal trainer application [60]. Also by Chang

is a system that monitors the eating activity of occupants of a home through

tagging food containers with RFID tags, and reading these via an RFID reader

located under the dining table [61].

Several projects have studied the problem of trying to detect situations that

occur in the home. As part of the House n project, a large number of household

objects were attached with reed switches or piezoelectric switches which acted as

movement detectors [62]. Data gathered from the collection of switches was used

with limited success to detect daily household activities of a single resident, such

as preparing a meal, toileting, and washing clothes or dishes. Similar projects

include Georgia Institute of Technology’s Aware Home project [63], Microsoft’s

EasyLiving [64] and the Adaptive House project [65].

In the manufacturing domain, example projects include that of Lukowicz et

al. [13] which mixed audio and motion sensor data to automatically track the

progress of assembly tasks in a carpenter’s workshop, using body-worn sensors.

In this setting, activities such as sawing, drilling and hammering were successfully

detected. Also included, is the project of Stiefmeier et al. [14], in which the check-

points of the quality inspection procedure in a motorcar production line could

be detected, through an array of motion sensors fitted in the quality-assurance

inspector’s suit.

The situations that were recognised in these domain and application specific

32

Chapter 2. Related Work

approaches are at a higher level, and are closer to the high-level situations that

are sought to be detected in a pervasive situation determination system. The

approaches presented here also illustrate the wide applicability and value of sit-

uation determination systems in real world settings.

The systems here have been specifically built to support their particular target

application and situations. Each has relied on a team of skilled researchers to

produce the situation descriptions and the accompanying software to recognise

them. No direct support is given to recognising custom situations, nor to adaptive

recognition through multiple situation descriptions or other means.

It is also worth noting that all of the situations recognised by these approaches

are explicitly single-user. Switching from recognising a situation that centres

around a single user, to recognising a situation that involves many people is

significant, as it makes the situation more complex to model and recognise. The

problem changes from modelling the person to a person, and in doing so changes

the computational class of the problem. The recognition process must shift from

checking simple constraints against the properties of a single entity to trying to

solve an instance of the many pattern/many object problem [66]. This is an

essential capability for supporting rich situation models and multiple viewpoints

of a situation.

2.2.3 Learning situations

A number of works have attempted to automatically learn situation models by

analysing captured context information. Using such techniques has the potential

to provide a means to recognise new and custom situations as well as to adapt

to changes in the available sensing infrastructure in the environment, two nec-

essary capabilities in supporting pervasive situation determination. This section

presents a review of these works and discusses the issues involved in using such

approaches.

The first approach is that of Thomson et al., which presented an approach

to learning situations inspired by information retrieval methods [67]. In this

approach, observable relations between entities in a room are treated as terms

in a document. A document is created by taking a snapshot of all the relations

visible to the system at a given instant in time. A document is labelled with the

high-level situation that is occurring in the room at the time. The system then

analyses collections of such labelled documents using Support Vector Machine

33

Chapter 2. Related Work

techniques [68], to build up situation models that can be used to detect future

instances of the situations. The system was evaluated on situations drawn from

a computer science research department, and required on average at least 30

examples of a situation to achieve a recognition accuracy of 80% or more.

In the project described by Mühlenbrock et al., a Bayesian network was cre-

ated using device location, PC and phone usage, ambient sound, and time of day

context information as inputs, and trained to recognise three office situations la-

belled ‘using PC’, ‘at desk’ and ‘discussing’ [69]. The network was trained using

over sixty examples, and achieved a fair level of recognition accuracy.

Hauptmann et al. report on a system that analysed video streams captured

from nursing home cameras, and used computer vision techniques to try to track

individuals as they moved through the home, and to identify dining and per-

forming personal hygiene situations [70]. Tracking individuals achieved a high

degree of accuracy using over ninety training examples per individual, though

the accuracy of the situation detection was limited.

Oliver et al. created an application that could recognise a small set of six

situations for a single user within a private office, including talking on the phone,

talking to someone else in the room, and whether the user was present in or away

from the office [71]. Example situations were manually collected and annotated,

which combined input from a video camera, room microphones, and a computer’s

keyboard and mouse, and were used to construct layered hidden Markov models

that could recognise future instances of the situations. Using 18 examples drawn

from 3 hours of annotated sensor data, the system achieved an average 99.7%

recognition activity for the small set of situations they studied.

Learning was also explored within the Gaia project, in which one week’s worth

of annotated sensor data from their Active Space research environment, including

computer application state, light and sound levels, and the number of people in

the room, was used to learn Bayesian network models for detecting a small,

fixed set of situations that typically occurred within the active space including

demonstrations, meetings, seminars, and the space being ‘idle’, which achieved

an 84% recognition accuracy [22, 9].

In recent work that also focussed on supervised learning of situations, an

approach was presented that specifically addresses the problem of trying to learn

situations from a small number of examples [72]. A system was developed that

analysed data from the MIT PlaceLab live-in laboratory [73, 74] to recognise a

set of 24 simple, single-person household activities such as cleaning a surface,

34

Chapter 2. Related Work

preparing a meal, sweeping and listening to music. Using an average of 4.5

examples taken from a total of 4 hours annotated activity data, an average of

85% recognition accuracy was achieved.

Another interesting approach, also based on PlaceLab data, is that of Ye et

al. [75]. The approach proposes a ‘situation lattice’ structure that specifies cor-

relations between sensor data and situations, and can be used to infer situations

and analyse the sufficiency of sensor sets. The approach attempts to integrate the

advantages of both learning- and specification-based approaches by allowing en-

vironment experts to express and incorporate the semantics of particular context

information and their domain knowledge, to help improve the learning process.

Based on 40 hours of sensor data annotated with the corresponding household

activities, the approach demonstrated excellent levels of recall, though relatively

lower levels of precision in comparison to Bayesian network and decision tree

based approaches on the same data.

The learning approaches presented above required a reasonable amount of ex-

ample data and achieved a fairly good level of recognition accuracy. However,

each of these are supervised learning approaches, meaning that they require a

skilled administrator to manage a training period in which example data is col-

lected, annotated and processed.

Unsupervised learning is also possible, where the learning process does not

require an expert to manually classify example data according to its associated

situation. For example, Mozer, in the Adaptive Home project, attempted to au-

tomatically regulate the lighting in the home, based on data from a collection of

sensors including light, sound, temperature, and motion sensors, that were fitted

throughout the home [76]. The home starts with default settings for regulating

the lighting that are corrected over time by the home’s inhabitants. With each

correction, the home updates its model of the conditions in the home and their

mapping to the desired light settings. Given enough corrections, the home will

eventually learn the ideal, regular light settings preferred by the home’s inhabi-

tants. The prototype application for this required approximately 2,000 examples

collected over 24 days before stabilising on the desired settings.

Patterson et al. explored a system that learns to infer whether a person

is travelling by foot, by bus or by car, by analysing the raw data provided by a

mobile GPS receiver carried by the person, in an unsupervised manner [77]. After

analysing 29 examples, which collectively totalled 12 hours of data, the system

achieved an estimation accuracy of 84%.

35

Chapter 2. Related Work

Roy et al. created a system which attempted to automatically learn occupancy

patterns of rooms within a house, and adjust the temperature of a room to the

preferred level of the person or group of people that it predicts will soon enter

the room [78]. In this project, it took a period of approximately 60 days to learn

the occupancy patterns with a prediction accuracy of 90%.

In all, the situation learning approaches presented explored a variety of dif-

ferent techniques to try to learn activities and situations from examples of sensor

data, in medical, office and home settings. Some approaches achieved a high

level of recognition accuracy, and the work of Albinali et al. managed a fair

level of accuracy using only a small number of examples for each situation. They

demonstrate that it could be possible to provide support for learning new, custom

situations, and/or adapting current situations to new sensing infrastructure.

However, a common drawback across each of these methods is that the system

is learning only to detect a label, or the category, of the situation. For example,

in the approach of Mühlenbrock et al., a particular situation is represented purely

by the string “discussing”. These approaches lack a structure for the situation.

Though the specific learning algorithm that the approach uses may have some

internal structure, such as a network of floating point variables in a Bayesian

network, or a partitioned, multidimensional space in an SVM, there is no guar-

antee that these structures map to real world entities or are directly useable by

an application.

Learning or adapting situations without any user involvement at all is par-

ticularly difficult as the system itself must identify which data are important or

relevant and which are not, and previously attempted unsupervised approaches

such as those above of Mozer, Roy and Patterson have focussed on very simple

situations and have taken relatively large amounts of time to learn.

Supervised learning approaches have shown promise, though the collection,

annotation and processing of example data that occur throughout the training

period must still be managed by an environment expert.

Another factor of both supervised and unsupervised approaches is that a

time penalty will be incurred as examples of each of the custom situations are

collected. This penalty must be paid again each time a situation is adapted to

new sensing infrastructure. This limits the immediacy with which it is possible to

adapt to new sensing infrastructure. This penalty also prevents being able to use

the custom situations immediately, detecting short-lived situations or reacting to

initial occurrences of a custom situation.

36

Chapter 2. Related Work

These factors restrict the support that learning-based approaches can provide

for pervasive situation determination. Whilst some of the learning approaches

presented were able to classify a situation according to a given label, it is desired

that a situation be represented with a rich, queryable structure that portrays not

only if a person is involved in a situation, but also the specific roles they play. In

addition, whilst the majority of the approaches relied on an environment expert

to manage the learning process, a pervasive approach should facilitate customi-

sation of situations by end-users themselves, in terms of the features and entities

involved in the situation. Learning customised situations and alternative descrip-

tions takes time, yet creating and introducing them are sought to be immediate.

Ideally, the support for customised situations and alternative descriptions should

be orthogonal and complementary. That is, customisations can be created with-

out regard to what future alternative descriptions and sensing infrastructure may

be used to detect them, and when a change in which description is used or the

available sensing infrastructure does occur, it is possible to continue to utilise

the same customised situation without alteration. If a learning approach were to

be used, it would be difficult to make these aspects orthogonal, and may require

that each customisation be re-learnt for each alternative description.

2.3 Architectures

This section looks at the architectural aspects related to pervasive situation de-

termination, covering both infrastructure-based and infrastructure-free architec-

tures in Section 2.3.1 and Section 2.3.2, as well as adaptive and large-scale ar-

chitectures in Section 2.3.3 and Section 2.3.4. It examines the suitability of

existing approaches in supporting adaptable recognition, resource management,

inter-environment operation and situation discovery.

2.3.1 Infrastructure-based architectures

Several context-awareness projects have adopted an infrastructure-based architec-

ture. These approaches contend that providing an infrastructure capable of gath-

ering, managing and disseminating context information can substantially reduce

the complexity of developing context-aware applications. This section includes

some of the most complete examples of these infrastructure-based architectures

from the current literature, and considers their support for the architectural re-

37

Chapter 2. Related Work

quirements of pervasive situation determination.

Solar presents a centralised architecture realised as a graph-based abstrac-

tion for context collection, aggregation and dissemination [79]. In this approach,

context-aware applications issue subscriptions to the context events they are in-

terested in to a central ‘star’ process, which then deploys the necessary context

operators on appropriate ‘planets’ as necessary, where a planet is any device that

can execute an operator. As the number of application subscriptions grows, au-

tomated load balancing is achieved through the system managing the mapping

of the resulting operator graph onto the network of planet devices.

Similar work had been conducted in the Context Tailor project, however this

architecture includes the capability to limit the dissemination of context informa-

tion based on a centrally enforced privacy policy. It also provides the capability to

predict possible values of future contexts based on historical context information,

using an integrated pattern analyser component [80, 81].

The one.world project presents an architecture in which all applications and

components of the system expose all relevant contextual changes by publishing

events to a common event bus [82]. This allows any application or component to

detect these and appropriately adapt to its new operating context. The overall

aim of the architecture is to allow all of the different devices in a pervasive com-

puting environment that run the one.world platform to freely exchange context

information and context-aware application instances between them.

Some projects have experimented with using an agent-based architecture for

context-aware systems. This includes the work of Chen et al. in the CoBrA sys-

tem [83]. In this approach, sensors, devices and applications are all represented

as an agent. All context information is represented as instances of concepts de-

fined in a common ontology. A context broker agent gathers low-level context

information and generates higher-level context and resolves inconsistent context

information via logical inference. Each user in the system is represented by a

personal agent. After negotiation with a context broker agent, a personal agent

may be granted permission to use a particular device or application in the en-

vironment, or perform a particular query on the current context information in

the environment. Similar work is reported by Ranganathan et al. as part of the

Gaia project, which supports agents with pluggable reasoning components [9].

In supporting pervasive situation determination, these projects provide good

support for resource management. Each provide suitable mechanisms for the

dissemination of context information by the system and its acquisition by appli-

38

Chapter 2. Related Work

cations, and the system can optimise this, for example, through Solar’s automated

load balancing mechanisms. The agent approaches are particularly well suited to

this as they provide a common representation of context information through an

ontology, and the agent substrates upon which they are based provide a conve-

nient programmatic means of autonomously discovering and communicating with

other context-producing agents hosted on a variety of devices.

However, none of these approaches feature explicit support for situations, and

consequently no direct support for adaptable recognition of situations. While it is

possible that a situation-aware application could subscribe to multiple, alternative

sources of context information to detect a situation, the onus is then on the

application developer to implement considerable functionality by him/herself.

This would include the recognition of the situation, fusion of the results, as well as

creating multiple descriptions of the situation, potentially for each situation and

application that they wish to develop, and without any guarantee that they could

be recognised in environments other than that for which they were specifically

developed.

The agent-based approaches offer limited support for inter-environment oper-

ation, again due to the agent substrates upon which they are based, that typically

provide agent communication protocols to send and receive messages to and from

other environments. However, none of the approaches offer direct support for

recognising nor discovering situations that are occurring in external or remote

environments.

Also note that each of these approaches utilise a centralised architecture.

To fully support pervasive situation determination, operating exclusively with a

centralised, infrastructure-based architecture is insufficient. Limiting context in-

formation aggregation and situation recognition to a single machine acts not only

as a single point of failure, but also as a bottleneck when operating with a large

number of situations, people and devices, and/or many locations. Furthermore,

situation-aware applications must depend upon the infrastructure to operate, and

so cannot be used in ad hoc, mobile or other resource-constrained settings where

the infrastructure is not available.

The key ideas which can be taken from these projects and built upon in sup-

port of pervasive situation determination include resource management, system

autonomy and open communication.

As in the Solar project, providing resource management capabilities can offer

particular advantages in pervasive situation determination systems, as many de-

39

Chapter 2. Related Work

vices active within the system will be resource-constrained, mobile devices. Sit-

uation determination can involve significant computation and wireless network

communication. The ability to manage where and which situations are recog-

nised can allow not only more complex situations to be recognised than a single

resource-constrained device could process alone, but also to preserve the battery

life of the mobile devices involved.

Agent-based systems provide an appropriate substrate to autonomously man-

age the discovery and interaction of system and application components in col-

laboratively recognising the situations occurring within the environment.

Likewise, open communication, like that achieved by one.world’s common

event bus, can provide particular benefit for pervasive situation determination.

Enabling arbitrary components of the system, perhaps previously unknown to

each other, to communicate with each other, is an essential element in providing

an open, collaborative situation recognition process.

2.3.2 Infrastructure-free architectures

Some projects have explored infrastructure-free architectures that operate inde-

pendently, and perhaps collaboratively, on mobile devices, rather than rely on

an external infrastructure. This section includes some of the most fully devel-

oped examples of these architectures. Provision of both infrastructure-based and

infrastructure-free modes of operation are necessary for pervasive situation deter-

mination, and this section explores the support that current infrastructure-free

architectures can give to each of the four architectural requirements.

The ContextPhone is one such project [84]. In this architecture, mobile phones

are fitted with a variety of software and hardware sensors that can detect infor-

mation such as which applications and features of the phone are being used, the

user’s location, and the identity of other mobile phones within Bluetooth range.

Summaries of this information can then be displayed on the user’s phone, or sent

upon request via GPRS and displayed on other users’ phones. This approach is

almost the antithesis of situation determination as no attempt is made to infer

the user’s situation from the available context information. Instead, it focuses

on gathering and disseminating the summaries, and it is up to the user receiving

the summary to determine which situation, if any, is occurring. Leaving it up to

the user to determine the situation based on a visual log of raw context places a

significant burden on the user, which would only be exacerbated as the amount

40

Chapter 2. Related Work

of context information grows, or if key contexts which the user expects are not

currently available, and precludes the capability of autonomously performing ac-

tions, which is one of the principle goals of situation-aware systems.

An infrastructure-free architecture that does attempt to infer the user’s situa-

tion is the SPECs project [85]. The aim of the project is to identify the situation

of a single user “at large in their world”. It does so through mobile devices

called ‘SPECs’ which are small enough to be attached to personal belongings,

clothing, or worn as a watch or necklace. A SPEC is a basic computing device

that can detect other SPECs in proximity, can switch a visible LED on and off,

and can be loaded with simple controller programs. Though limited, a situation-

aware reminder application was implemented with this architecture. It detected

a schoolboy’s situation as he went to school, that is, it recorded which SPEC-

tagged belongings were in proximity to his personal SPEC between 08:00 and

08:30. Then, it detected his situation on his way home from school, that is,

which SPEC-tagged belongings were in proximity to his personal SPEC between

15:30 and 16:00. If the set of belongings differed on the way home, the LED on

the personal SPEC would be lit, to remind him that some personal belonging had

been left behind.

Interesting work has been reported by Strohbach et al. in which independent,

self-contained devices with sensory capability interact to co-operatively determine

their common situation [86, 87]. This architecture is realised by fitting physical

objects with Smart-It devices, configured with basic sensing capability, wireless

communication, and sufficient computing capability to run rule-inference soft-

ware [88]. Facts generated from sensor readings or inferred by a Smart-It’s rule

engine can be transmitted to other Smart-Its. For a set of Smart-Its, the rule

engine of each can be loaded with different rule sets that recognise fragments

of a situation, which can be combined to determine the whole situation. This

architecture has been used in a domestic setting, where a kitchen table, jug and

two glasses were fitted with Smart-Its and were able to co-operatively determine

simple activities such as placing a glass on the table, and filling a glass with

water [86]. In another deployment, Smart-Its were attached to chemical storage

containers that could co-operatively detect the potentially hazardous situation of

inappropriate chemicals being stored in proximity of one another [87].

The SPECs and Smart-Its projects demonstrate the utility that can be of-

fered by situation determination using only small, embedded, autonomous de-

vices. However, in both these architectures, a situation is not defined as an

41

Chapter 2. Related Work

independent, reusable entity, nor is there support for adaptable recognition or

situation customisation. Programming the original situations in the SPECs and

Smart-Its projects is quite demanding, the former requiring pattern classification

specifications based on the temporal proximity of sightings of the SPEC devices

in range, and distributed logic programs to be written for the latter. In all ap-

proaches, the applications that were written target a specific device, relying on

the fixed sensing infrastructure it provides. In addition, the application developer

must still provide an ad hoc definition for each situation that each application

requires. The latter approaches focus exclusively on the local environment and

do not consider inter-environment operation nor situation discovery.

The work of Strohbach et al. is interesting in that the overall situation is

computed co-operatively by each of the devices involved in the situation. Such co-

operation would be particularly advantageous when attempting to detect multi-

person and/or multi-device situations in environments where no dedicated sensing

infrastructure is available, and the situations must be recognised by an ad hoc

collection of mobile, resource-constrained devices. However, in the Strohbach ap-

proach, many aspects are fixed, allowing the system to operate under a closed,

fully specified model. For example, the number of devices and/or the number of

objects involved in the situation are known and fixed, the specific sensing infras-

tructure is known and fixed, as is the single situation which is to be recognised

and the single application which is run. To adequately support pervasive situ-

ation determination, these ideas of co-operatively recognising a situation must

be extended to operate in a dynamic and open-ended environment, as there are

many aspects that may not be known a-priori and will vary. Such aspects include

the number of people and devices involved in the situations to be recognised, as

well as the particular sensing infrastructure that will be available. In addition,

there is the set of situation-aware applications that may be run, the set of situ-

ations these applications will require, and also the users’ customisations of these

situations.

2.3.3 Adaptive architectures

Adapting to a changing sensing infrastructure is one of the key capabilities re-

quired for pervasive situation determination, and this section looks at projects

which have focussed on methods of context-oriented adaptation and the support

they can lend to adaptable situation recognition.

42

Chapter 2. Related Work

One such project is the work of Huebscher et al. that provides an architecture

for adapting the delivery of context information [89]. In this approach, applica-

tions not only define which context information they require, but also a utility

function based on quality metrics of the required context information. Then,

given multiple alternatives for providing the same type of context, the architec-

ture applies the utility function to each alternative and delivers the one with

maximum utility. Example quality metrics that may be used in a utility function

include precision and freshness.

Dobson et al. [10] provide an architecture that exploits multiple, related forms

of context information to more reliably detect a person’s location. It uses a

voting mechanism that, based on models of the precision, decay and confidence

of each source, combines readings from a location system, door sensors, and

indications that a person is using a computer at a known, fixed location to produce

a composite measure of confidence over a set of possible locations. The system

essentially adapts its recognition of a location given various forms of available

context information.

These works provide examples of how the delivery of context information

can be adapted using multiple, alternative forms of source context information

available in the environment to increase the confidence of the delivered context

information to an application. Both of these approaches focus exclusively on in-

dividual, atomic pieces of context information. To support adaptable recognition

for pervasive situation determination, such approaches must be extended to be

able to incorporate multiple, alternative situation descriptions, each of which may

comprise a complex composition of context information.

2.3.4 Large-scale architectures

A pervasive situation determination system must address the requirements for

inter-environment operation and situation discovery to enable the system to

recognise situations not only in the local environment, but also locate and recog-

nise situations occurring in external and possibly distant environments. This sec-

tion presents preliminary existing work that looks at large-scale, inter-environment

operation of context-aware systems, and what support it provides in these areas.

One such work is the Super Spaces extensions [90] of the Gaia project [20].

Within Gaia, an Active Space represents a physical space, typically a room, that

provides a context-aware infrastructure that allows applications to detect and

43

Chapter 2. Related Work

react to changes in context within the space [20]. A Super Space represents a

linked collection of Active Spaces which permits the management of multiple

spaces using a single interface, allowing applications to perform actions in, or

gather information from, multiple spaces [90]. In this large-scale architecture,

Super Spaces may be composed in a hierarchical manner, allowing operations on

a Super Space to be applied recursively on each of the Active or nested Super

Spaces it contains, or also in a peer-to-peer fashion, allowing applications to

compose services and/or context information from one or more Active Spaces.

However, details of how Active or Super Spaces discover and interact with each

other, or how context information within them is discovered and disseminated

are not given.

The GLOSS project developed the Hearsay architecture to support global-

scale location-aware applications [91]. This approach offers similar capability to

Pascoe’s Stick-e Note architecture developed earlier [6], though at a global scale.

Information with an associated profile can be attached to a physical space in

potentially any geographical location. When a user who has a matching profile

enters that space, the information is delivered to that user. The network of com-

puting nodes that store and deliver the messages form a hybrid hierarchy of peers

architecture. Nodes at a similar level of granularity are linked in a peer-to-peer

network, and these sets of peers are linked hierarchically. For example, countries

form a set of peers, and the regions within a particular country form another

set, and the cities within a region another set, and so on. This architecture is

presented as being well suited to the geo-spatial nature of Hearsay applications,

as it allows peer topologies and protocols to be tailored to exploit locality knowl-

edge, and computing nodes need not be co-located with the geo-spatial region

that they represent, only the peers need know the peering relationships.

Other works that intend to feature large-scale architectures supporting inter-

environment operation include Project Aura [92, 93] and the PICO project [94],

though details of how these architectures are implemented are not given.

The Hearsay architecture, though a global scale system, supports processing

context information (the user’s location, and profile matching) and reacting to it

(displaying information to the user) only locally. In the Super Spaces approach,

inter-environment operation is limited to using different services from multiple

environments, and sending messages or commands to several environments at

once. Pervasive situation determination requires an architecture that enables

applications to query the situations of any person, artefact or location, regardless

44

Chapter 2. Related Work

of whether they happen to be in the same environment or in an external, distant

environment.

A key benefit for supporting pervasive situation determination is demon-

strated by the GLOSS project’s use of a peer-to-peer network. Such a network

has several advantages. It offers simple operation, allows information contained

within it to be found rapidly by the system and applications anywhere in the

network, can scale to very large network sizes, and is robust to changes in the

network, adapting automatically when host machines join and leave. This pro-

vides an appropriate foundation for both the inter-environment operation and

situation discovery requirements. Though to fully support pervasive situation

determination, it is necessary to expand upon profile matching at a fixed lo-

cation, to provide dynamic, inter-environment situation recognition, where the

target environment is discovered at runtime.

2.4 Summary

This chapter has presented a review of existing works with regard to the support

they offer for pervasive situation determination. This is summarised below for

each of the requirements of pervasive situation determination.

First, the modelling requirements:

Customised situations - In order to capture the distinctive features of sit-

uations that are particular to the individual user or their environment, end-users

themselves must be able to create their own customised situations, without rely-

ing on specialist maintenance to achieve it.

Direct support for situation customisation did not feature in any of the pre-

sented approaches. To create a customisation required altering a situation de-

scription directly, which demands skill in application programming, the particular

description approach, correlating the context information into situations, as well

as intimate knowledge of the context information available and the situations

that occur in the environment. This is much too specialised and unsuitable for

use by typical end-users.

Empowering the end-user to customise situations themselves, in terms mean-

ingful to them, as is required to support pervasive situation determination, is not

possible with current approaches.

Rich situation models - Models of a situation must be rich in detail and

structure, allowing the specific roles within the situation to be captured and the

45

Chapter 2. Related Work

system’s and applications’ reactions more precisely defined, so as to more closely

match the user’s needs.

In those approaches that modelled the concept of a situation explicitly, it

would typically be presented to applications merely as a string label, and not

a rich structure detailing the situation’s characteristic elements drawn from the

group of people and devices involved within it.

The approach of Crowley et al. [35, 36, 37] offered the greatest level of sup-

port in this aspect, as it defined a basic, general structure for a situation which

included explicit representation of different, abstract roles within a situation and

the relations that hold between them.

Alternative descriptions - To be pervasive, recognising a situation cannot

rely upon particular sensing infrastructure being available. The model of a situa-

tion must include multiple, alternative descriptions that specify how the situation

can be recognised from a variety of different forms of sensing infrastructure.

There was no approach that offered explicit support for defining and utilising

alternative situation descriptions. In some, it was possible to implicitly define

alternative descriptions by resolving to the same string label, or deducing the same

situation predicate as discussed for the logic-based approaches. However, this

prevents effective management of the multiple descriptions that are used, such as

fusing their results to achieve a greater confidence that the situation is occurring,

or properly integrating and limiting the potential proliferation of descriptions

when combining the multiple descriptions with end-users’ customisations.

Multiple viewpoints - To be fully pervasive, a situation determination sys-

tem must be capable of reporting a situation from the viewpoint of any person,

device or location to any user in the system.

Existing approaches however, are almost exclusively grounded in the single

viewpoint of the current user in the local environment. No approach gives di-

rect support to modelling multiple viewpoints of a situation. Whilst in some

approaches it may be possible to define multiple viewpoints implicitly, this de-

mands that several additional descriptions must be created. Furthermore, in

doing so, it may not be possible to tell which of these alternative viewpoints are

related to the same instance of a situation. Supporting multiple viewpoints in a

situation shifts its recognition into a more complex class of problem, and therefore

requires a different type of recognition process than those that back the existing

approaches.

And also, the architectural requirements:

46

Chapter 2. Related Work

Adaptable recognition - A pervasive situation determination system must

provide adaptable recognition for the situation recognition process as a whole,

incorporating new descriptions and sensing infrastructure as they appear in the

environment, as well as adapting to the loss of existing sources, to obtain a greater

availability of both the system and users’ situation-aware applications.

In both the infrastructure-based and infrastructure-free architectures reviewed,

none provided direct support for adaptable recognition of situations. Whilst in

some approaches it would have been possible for a situation-aware application

to subscribe to multiple, alternative sources of context information to detect a

situation, the onus is then completely on the application developer to implement

the recognition of the situation, as well as its adaptation, by him/herself for

potentially each situation and application that they wish to develop.

The approaches reviewed that focussed on adaptation were concerned ex-

clusively with atomic pieces of context information. None addressed adaptable

recognition of complex, structured compositions of context information that com-

prise a situation.

Resource management - As recognising a situation can be a computation-

ally expensive task, and especially as it must often be performed by resource-

constrained devices, a pervasive situation determination system must strive to

manage the resources within it, shifting expensive tasks to the devices that can

best afford them.

The infrastructure- and agent-based approaches reviewed offered good support

for resource management, providing suitable mechanisms for the dissemination

of context information by the system and its acquisition by applications. What

was lacking however, was the inclusion of the concept of a situation. As without

directly modelling a situation, it is difficult to achieve precise control over how,

where and what situations are recognised and how the results are shared.

Inter-environment operation - To be pervasive, the reach and scope of

situation-aware applications must be able to extend beyond the local environ-

ment, to whichever external or remote environment that hosts the situations a

user is interested in.

Few existing project have addressed inter-environment operation. While some

architectures, such as the agent-based approaches, may provide inter-environment

communication protocols, none of the approaches offer direct support for recog-

nising situations in external environments.

In the two projects that specifically addressed large-scale operation, sufficient

47

Chapter 2. Related Work

support was still lacking. Hearsay, despite having global scope, only supported

processing context information and reacting to it locally, while Super Spaces fo-

cussed not on inter-environment situation determination, but on sending messages

and commands to several smart environments at once.

Situation discovery - When the situations a user is interested in extend

beyond the local environment, a pervasive situation determination system must

have means of discovering situations that are occurring elsewhere within the net-

work of environments.

This aspect of pervasive situation determination received no attention in the

existing approaches.

In summary, it is not currently possible to achieve pervasive situation deter-

mination using existing approaches. Although partial support is given for some

of the requirements by the existing approaches, to fully meet all the requirements

would demand significant additional work to be performed on the part of the ap-

plication developer. The requirements address common, inter-related modelling

and architectural elements that pertain to pervasive situation determination sys-

tems. These can be more appropriately realised in a middleware layer, which

can then be exploited by a wide range of situation-aware applications, as well as

free the situation-aware application developer from the intricacies of developing

pervasive situation determination support.

From the support that is offered by the existing approaches however, there are

a number of ideas and techniques that can be built upon, by extending them and

introducing novel elements where necessary, that can aid in achieving pervasive

situation determination.

It is possible to extend a number of the modelling aspects that have been pre-

sented in this chapter. For example, the idea of supporting annotation of symbolic

locations can be extended to form ‘location types’, to offer greater convenience

and generality in writing rich situation descriptions. Furthermore, a logic-based

approach, similar to those presented earlier, could be extended with additional

modelling constructs to provide greater expressiveness in describing situations.

It is also possible to derive a fuzzy logic scheme which can be used to manage the

uncertainty associated with different sources of context information as well as the

situations based upon them, but that is simpler and lighter than those presented

here. Drawing from the graphical and role-based representation approaches, a

number of techniques can be developed for the model that simplify working with

complex situations and the large amount of context information from which they

48

Chapter 2. Related Work

are recognised, and help partition them into smaller, more manageable and read-

ily understandable sets.

There a number of ideas from the architectural aspects presented here that

can also be built upon. For example, the resource management capabilities that

were covered can be extended to include situations explicitly, allowing control over

where and which situations are recognised, helping to preserve the battery life

of mobile, resource-constrained devices. Moreover, an agent-based substrate can

be used to autonomously manage the discovery and interaction of system and

application components in collaboratively recognising the situations occurring

within the environment. The idea of using an open communication style, enabling

arbitrary, perhaps previously unknown components of the system to communicate

with each other, can be effectively exploited in achieving an open, collaborative

situation recognition process. It is also possible to extend the idea of using

multiple sources of atomic pieces of context information to increase the confidence

of the context information delivered to the system or an application, to apply to

situations and complex compositions of context information. Furthermore, the

use of a peer-to-peer network may be innovatively applied to provide dynamic,

inter-environment situation recognition and real-time situation discovery.

In the following chapters, it is shown how this thesis builds upon these good

ideas from the literature, and also introduces its own novel elements, in addressing

the problem of designing a model and a supporting infrastructure that can fully

provide the necessary support to realise the requirements and benefits of pervasive

situation determination.

49

Chapter 3

A Model for Pervasive Situation

Determination

3.1 Introduction

This chapter presents a novel situation modelling approach developed to meet

the requirements of pervasive situation determination. This includes support for

customised situations, which allow individual users to have situations that are

unique to them and their environment to be recognised, and be created by the

end-users themselves. Also, rich situation models are supported, which capture a

wealth of details about the features and relationships of a situation, allowing the

way in which the system and situation-aware applications react to situations to

more closely match the user’s needs. In addition, alternative situation descrip-

tions are supported, making recognition of a situation robust against changes in

environment and supporting sensing infrastructure. Moreover, multiple situation

viewpoints are supported, making the possibility of recognising a situation of any

person, device, or location, pervade throughout the network of environments and

situation-aware applications.

To begin, an overview of the situation model is presented in Section 3.2.

Following this, each of the different parts that comprise a model of a situation

are looked at in turn in Sections 3.3 through 3.5. Section 3.6 describes how

uncertainty associated with sensor data is naturally incorporated into the model

of a situation, before a summary of the model is given in Section 3.8 highlighting

the ways in which the particular requirements of pervasive situation determination

50

Chapter 3. A Model for Pervasive Situation Determination

are fulfilled.

3.2 Overview of the situation model

Similar to other contemporary definitions of a situation in a pervasive computing

environment [95, 96, 37], this approach considers a situation to be an external,

semantic interpretation of context information that represents the high-level ac-

tivity of an individual or a group of people and the devices they use.

Recognising a situation involves three main types of information - sensor data,

context information and situations themselves. Sensor data represents the raw

data output from a sensor, which may commonly be in a sensor or vendor specific

format. For example, consider a stream of raw signal strength readings produced

by a device with wireless network capability. Context information is a structured

representation of sensor data. In this approach it is a typed relation that repre-

sents some property of an entity. It may be derived from sensor data and/or other

context information. For example, from the stream of signal strength readings

it may be possible to infer the location of device, and if the device represents a

person, then the location of that person too. Such individual pieces of context in-

formation may be interpreted along with several others to deduce that the person

or device is currently involved in a particular situation.

A description of a situation has three parts. First is the situation itself, which

is an abstract description of the features a situation contains. A feature is an

externally observable property that characterises some aspect of the situation.

Then, there are customisations, which detail simple constraints on the features

of a situation, which allow environment administrators and end-users to tailor

the situation to their own environment and preferences. Finally, there are situ-

ation specifications, which are more complex documents describing the entities,

properties, locations and constraints that are used to detect when its associated

situation is occurring. It is a situation specification that provides a mapping from

context information, derived from low-level sensor data available in the environ-

ment, to the high-level features of the situation that is sought to be recognised.

A person or entity is considered to be involved in a situation if they appear or

are included in one or more of the features of a situation, when the situation is

occurring. A situation is considered to be occurring when all of the relations and

constraints included in an associated specification hold.

Below is presented a brief overview of each of these parts. Following this are

51

Chapter 3. A Model for Pervasive Situation Determination

A feature A specification A customisation A situation

This link shows the left hand side situation
extends the right hand side one.

Situation A Situation B

This link shows the left hand side feature
extends the right hand side one.

Feature B Feature A

This link connects a customisation to its
base situation.

Customisation Situation

This link shows the customisation on the left
hand side extends the right hand side one.

Customisation A Customisation B

This link connects a situation and its
specification.

Specification Situation

Figure 3.1: A key for the figures included in this section.

Meeting Time Place
Meeting

Attendees

Group
Meeting

Group
Group Member

Attendees
Other

Attendees

Basic
spec

Calendar
based spec

Basic
spec

Calendar
based spec

Advanced
spec

SmartLab
Group

Meeting

SmartLab
Reading Group

Meeting

SmartLab
Group Progress

Meeting

Figure 3.2: An illustration of the structure of the ‘Meeting’ and ‘Group Meeting’
situations, as well as their specifications and customisations.

sections describing each part in detail.

Examples of each of these three parts are illustrated in Figures 3.2 and 3.3.

Figure 3.1 provides a key for these figures. These examples are taken from an

actual University deployment discussed in Chapter 5.

Let’s first look at Figure 3.2. Presented here are two situations, a ‘Meeting’

situation and a more specific ‘Group Meeting’ situation. It can be seen that

each situation consists of a set of features. For example, a meeting may be

characterised by the time at which it occurs, where it occurs, and the people

52

Chapter 3. A Model for Pervasive Situation Determination

who are attending the meeting. In Figure 3.2, these are represented by the

features ‘Time’, ‘Place’ and ‘Meeting Attendees’ respectively. Each light blue

oval illustrates an individual feature, and these are contained within the darker

blue rectangle, showing that this set of features make up the ‘Meeting’ situation.

Figure 3.2 also includes a ‘Group Meeting’ situation which has the additional

features ‘Group’, ‘Group Member Attendees’ and ‘Other Attendees’. The ar-

row between the ‘Group Meeting’ and ‘Meeting’ situation indicates that a group

meeting is a more specific type of meeting situation, and that it includes all of

the meeting features. The ‘Group’ feature represents the name of the group. The

‘Group Meeting Attendees’ and ‘Other Attendees’ features represent the people

who are attending the meeting, but more specifically, those who are group mem-

bers and those who are not. The dotted arrows from these features to ‘Meeting

Attendees’ show that they are a more specific type of that base feature.

In order to adapt a situation to a particular environment or to an individual’s

preferences, an end-user can create a customisation. A number of customisations

are shown in Figure 3.2 as yellow ovals.

A customisation allows an end-user to place simple constraints upon the fea-

tures of a situation to define a bespoke variation of the situation that is particular

to them or their environment. For example, the ‘SmartLab Group Meeting’ cus-

tomisation can be created by simply adding the constraint that the featured

group of the ‘Group Meeting’ situation should be the SmartLab group. The dot-

ted line connecting the ‘SmartLab Group Meeting’ customisation to the ‘Group

Meeting’ situation indicates that it is a customisation of that situation. Further-

more, the ‘SmartLab Reading Group Meeting’ and ‘SmartLab Group Progress

Meeting’ customisations can be created by further adding the constraints that

the ‘Time’ and ‘Place’ features must match the particular times and places at

which these meetings happen. The dotted arrows from these customisations to

the ‘SmartLab Group Meeting’ customisation show that they are more specific

types of that base customisation. Customisation like this provides the end-user

with a simple and flexible means to tailor the situations that are recognised to

include the ever-evolving set of bespoke situations within their environment.

Figure 3.2 demonstrates that three different types of inheritance are employed

within the model: where a feature inherits from another, where a situation in-

herits from another, and when a customisation inherits from a situation or from

another customisation. Each of these different types of inheritance can be iden-

tified from Meyer’s inheritance taxonomy [97]. When a feature of a situation

53

Chapter 3. A Model for Pervasive Situation Determination

extends another, such as ‘Group Member Attendees’ or ‘Other Attendees’ in the

‘Group Meeting’ situation extending ‘Meeting Attendees’, it is an example of

subtype inheritance. This indicates that the people who are group member at-

tendees form a subset of all the people who are meeting attendees, and that the

set of group member attendees is disjoint from the set of any other subtype heir,

such as the ‘Other Attendees’. When a situation extends a base situation, it is an

example of extension inheritance, as the new situation introduces features that

are not present in the base situation, nor are applicable to direct instances of the

base situation. Whereas, when a customisation extends a situation or another

customisation, it is an example of restriction inheritance, as instances of the new

customisation are those instances of the base situation or customisation that sat-

isfy additional constraints. It is in exhibiting these separate types of inheritance,

in addition to the different forms of content that each of them addresses, that

make features, situations and customisations distinct elements of the model.

A specification describes how a particular situation can be recognised from

context information derived from low-level sensor data. In Figure 3.2, the green

ovals represent specifications of a situation. The line connecting a specification

to a situation shows that the specification recognises that particular situation.

As can be seen from the figure, a situation may be described by more than

one specification, such that each can use its own set of sensor data and context

information to recognise the situation in a different way. Figure 3.2 shows that

the ‘Group Meeting’ situation has three different specifications: ‘Basic spec’,

‘Calendar based spec’ and ‘Advanced spec’. The basic specification simply uses

the time and the location of the attendees to detect the situation. The calendar-

based specification uses calendar or personal organiser information in addition to

the location of the attendees to detect the situation. The advanced specification

more closely examines the structure of the group of attendees to determine who

are the group members and who are the other attendees.

Having multiple specifications allows recognition to dynamically adapt to the

context information that is currently available in the environment, enabling sit-

uations to be detected in the greatest detail possible. Furthermore, different

specifications can be created to suit different modes of operation. For example,

lightweight specifications can be used when resource-constrained mobile devices

are being used to recognise the situation, and more complex, richer specifications

can be used when dedicated infrastructure is available to recognise the situation.

In addition, as will be presented in Section 3.6, it allows the fusion of each of the

54

Chapter 3. A Model for Pervasive Situation Determination

specifications to produce a higher confidence result for the situation overall.

The following sections present each of the three parts of a situation description

in detail, and further discuss their support for pervasive situation determination.

3.3 Situations

As noted in the overview, a situation description comprises a set of features, where

a feature is an externally observable property that characterises some aspect of

the situation.

A situation is an abstract description, as it declares what is recognised for a

given situation, but says nothing about how it is recognised. While a specification

is necessary to recognise a situation and its features from low-level sensor data,

a situation description is separate from any particular specification.

The features of a situation description serve as a common interface to the sit-

uation for customisations, specifications and situation-aware applications. This

allows customisations to be defined solely upon the features of a situation, and

can therefore be applied independently of which particular specification is used to

recognise a situation, and vice-versa. Similarly, behaviours that may be defined

by situation-aware applications are also based solely upon the features of a situ-

ation, and so too can operate without being aware of, or tied to, any particular

specification. This offers a great level of flexibility in dynamically adapting the

recognition and reporting of situations to the continual changes in the available

sensing infrastructure that will occur in a pervasive computing environment.

Part of this flexibility lies in being able to reason about situations abstractly

and to create hierarchies of situations. For example, in Figure 3.2 the inheritance

link connecting the ‘Group Meeting’ to the ‘Meeting’ situation shows that ‘Group

Meeting’ is a more specific type of ‘Meeting’ situation. When a situation inherits

another, its feature set will contain the features of the parent situation, as well

as its own features. So the feature set of a ‘Group Meeting’ situation will contain

the ‘Time’, ‘Place’ and ‘Meeting Attendees’ features from the ‘Meeting’ situation,

as well as its own ‘Group’, ‘Group Member Attendees’ and ‘Other Attendees’

features.

It is inheriting from a base situation like this that allows a descendent sit-

uation and its specification to be reasoned about abstractly. For example, if a

situation-aware application requested notification of the meeting situations a par-

ticular person was involved in, it would receive notification of instances of ‘Group

55

Chapter 3. A Model for Pervasive Situation Determination

Forensics
presentation

Researcher’s
Digest presentation

Departmental
talk

Basic spec
Calendar

based spec
Coarse-grained
location spec

Fine-grained
location spec

Fine-grained
audio spec

Presentation

Time Place
Presentation
Attendees

Display

Speakers
Audience
Members

Presentation
Documents

Presentation
Application

Application
Host

Figure 3.3: An illustration of the structure of the ‘Presentation’ situation, as well
as its specifications and customisations.

Meeting’ situations, as well as the customised situations derived from this, in

addition to Meeting situations. Therefore, even in cases where no direct ‘Meet-

ing’ specifications are available, the request can still be satisfied by using ‘Group

Meeting’ specifications instead.

It is also possible for a feature to subclass another. To illustrate this, consider

the ‘Presentation’ situation presented in Figure 3.3. This situation represents the

time and location the presentation takes place through the ‘Time’ and ‘Place’

features. The people involved in the presentation are represented by the ‘Presen-

tation Attendees’, ‘Speakers’ and ‘Audience Members’ features. The materials

being presented, and the display, application and host machine used to present

them, are represented by the ‘Presentation Documents’, ‘Display’, ‘Presentation

Application’ and ‘Application Host’ features, respectively. There are three cus-

tomisations of the ‘Presentation’ situation defined, which include the presenta-

tions of the Digital Forensics course at the University named ‘Forensics presen-

tation’ in the figure, the post-graduate weekly research seminar presentations

‘Researcher’s Digest presentation’, as well as the more general ‘Departmental

talk’. Five different specifications exist for the ‘Presentation’ situation, ranging

from a basic specification at the left of the figure, to a fine-grained, audio-based

specification at the right.

56

Chapter 3. A Model for Pervasive Situation Determination

In Figure 3.3, the ‘Speakers’ and ‘Audience Members’ features both subclass

the ‘Presentation Attendees’ feature, showing that they are a more specific type

of the base feature. An entity that appears in a subclassed feature will also

appear in the base feature. For example, as ‘Audience Members’ are more specific

‘Presentation Attendees’, any person who features in the situation as an audience

member will also feature as a presentation attendee.

Subclassing features like this allows rich situation descriptions to be created.

It enables the situation author to represent not only whether a person or device

is involved in a situation or not, but also which role they are playing within the

situation, and further still which specific type of role. For example, it is possible

to tell that a particular person is involved in a presentation, that they are an

attendee, and specifically whether they are a speaker or an audience member.

The set of features declared for a situation is intended to be a comprehensive

set for that situation. However, it is not required that a specification recognise

all of the features of a situation. Because the resources that will be available

in an environment will vary and be unpredictable, it cannot be guaranteed that

sufficient information will be available to recognise all of the possible features

of a situation. However, rather than fail to recognise the situation, it may be

possible to recognise a partial version of the situation. That is, a specification

may recognise some, but not all of the features. Any of a situation’s features

may or may not be available in a reported instance of a situation at application

runtime.

Consider again the Presentation situation in Figure 3.3. This situation has

the features ‘Time’, ‘Place’, ‘Presentation Attendees’, ‘Speakers’, ‘Audience Mem-

bers’, ‘Presentation Documents’, ‘Display’, ‘Presentation Application’ and ‘Ap-

plication Host’, where ‘Speakers’ and ‘Audience Members’ subclass ‘Presentation

Attendees’. To detect if a person is a speaker may be more difficult, or demand

more specialised or high-performance sensing capability, than to detect if a per-

son is an attendee. For example, it may be possible to detect that a person is

an attendee in a presentation simply because they are in the room in which the

presentation is occurring. However, to detect if a person is a speaker may re-

quire fine-grained location information, such that it can be detected that they

are standing in the speaker area, or may require advanced audio processing, such

that it can be detected that they have been the only person speaking for most of

a period of time. Where such information is available, it can be exploited, and

the speaker role can be detected. In cases where such information is not available,

57

Chapter 3. A Model for Pervasive Situation Determination

the system is still able to recognise the less specific attendee role.

It is this flexibility that allows the range of specifications of varying granularity

shown in Figure 3.3 to be created for the ‘Presentation’ situation. In addition to

basic and calendar-based specifications, which are computed in a similar fashion

to those for the ‘Group Meeting’ situation, the ‘Presentation’ situation has a

course-grained location-based specification and two fine-grained specifications.

The course-grained location-based specification can detect all of the roles of the

situation, but only to the level of granularity of Presentation attendee. Detecting

whether an attendee is an audience member or a speaker can be achieved using

the fine-grained location-based specification. Alternatively (or additionally), the

audience member and speaker roles can be detected using the fine-grained audio-

based specification.

Declaring a comprehensive set of features for a situation has the advantage of

providing a consistent interface to situation-aware applications, and that the sit-

uation determination system may utilise the finest-grained reports of a situation

that the current environment is capable of providing.

3.4 Customisations

Customisations are used to specify simple constraints on the features of a situ-

ation, in order to customise them to the requirements of a particular user or to

a particular environment. As they are based on the features of a situation de-

scription, they can be applied on top of any situation specification that describes

these features.

As customisations are intended to be created by end-users and environment

administrators, the customisation process is deliberately kept simple, to make it

easy to write customisations. It permits constraints to be defined for features,

where a feature will either be a single entity (such as a person), or a collection of

entities (such as a set of people). For a single entity feature, a customisation will

be a set of simple Boolean expressions based on the properties of the entity, such

as that the time is between 15:00 and 16:00. For a feature that is a collection

of entities, a customisation will either be a set of simple Boolean expressions

based on properties of the collection itself, such as the size of the collection,

or on the members of the collection, such as if the collection contains a person

whose ID property matches a certain value. A complete customisation may define

expressions over one or several features.

58

Chapter 3. A Model for Pervasive Situation Determination

As an example, the ‘Researcher’s Digest presentation’ customisation shown

in Figure 3.3 adds the constraints that the place of the presentation must be

a particular room within the Computer Science Department of the University,

that the time is between 13:00 and 14:00, and that all the audience members are

post-graduate students.

Customisations, like situations and features, may be constructed in hierarchies

and be reasoned about abstractly. For example, in Figure 3.2, the ‘SmartLab

Reading Group Meeting’ is a more specific type of customised situation than

‘SmartLab Group Meeting’, which is a more specific type of customised situation

than the ‘Group Meeting’ situation, which is a more specific type of situation than

‘Meeting’. Note however that a customisation does not introduce any additional

features, but simply further refines or adds additional constraints to the existing

features of its base situation.

3.5 Specifications

The final type of situation description presented here is a situation specification.

A specification provides a mapping from context information, derived from low-

level sensor data available in the environment, to the high-level features of a

situation and is used to recognise that situation.

3.5.1 Specification structure

Figure 3.4 depicts the fine-grained location-based specification for the ‘Presenta-

tion’ situation, previously featured in Figure 3.3. There are two types of speci-

fication used to recognise a situation - a role specification and a situation speci-

fication. A role specification describes the individual role an entity plays in the

situation. That is, it describes a set of constraints and relations that must hold

for a particular entity to be playing the role. For example, in Figure 3.4, the

Speaker role identifies that a particular individual may potentially be a speaker,

and the Audience Member role identifies whether a particular individual is po-

tentially an audience member or not. The situation specification then describes

the situation as a whole. From the point of view of a situation specification, a

situation can be seen as a particular composition of roles. That is, it describes a

set of roles and a set of constraints and relations upon them, which must hold in

order for the situation to be occurring in the environment.

59

Chapter 3. A Model for Pervasive Situation Determination

Presentation
fine-grained location

situation spec

Speaker
fine-grained location

role spec

Audience member
fine-grained location

role spec

Role Type
Speaker

Primary Entity
Name: p

Type: Person

Expression
p’s location has

type “Speaker Area”

Role Type
Audience Member

Primary Entity
Name: p

Type: Person

Expression
p’s location has

type “Audience Area”

Describes
Presentation

Area of Influence
Room

Feature Binding
Feature name: Speakers

Value: spkr

Feature Binding
Feature name: Audience Members

Value: aud

Feature Binding
Other feature

bindings…

Expression
spkr’s location == aud’s location; aud.cardinality >= 3; …

Role
Role type: Speaker

Name: spkr
Type: Person

Role
Role type: Audience Member

Name: aud
Type: Person

Role

Other roles…

Average Resource Requirements
CPU Load: 1500 Memory: 8M

Bandwidth: 100Kb Battery: 5W

Minimum Resource Requirements
CPU Load: 300 Memory: 4M

Bandwidth: 50Kb Battery: 5W

Figure 3.4: An illustration of the structure of the fine-grained location-based
Presentation specification.

This two-tiered structure allows for a simple and natural description of a

situation. In particular, it is easy to express constraints over the set of all of

the entities playing a role and on the properties of the set itself, such as that

there must be at least three audience members in a presentation, that all group

member attendees of a group meeting must belong to the same group, or that

not more than 25% of the total number of attendees of a group meeting are not

members of the group. Such constraints are difficult to express using the strict

logic-based approaches presented in Chapter 2, though they were used extensively

throughout all of the specifications developed in Chapter 5.

3.5.2 Role specifications

Let’s further examine the role specifications depicted in the top half of Figure 3.4.

A role specification may consist of four parts - a role type, a primary entity, auxil-

iary entities and an expression. The role type gives a name to the type of role the

60

Chapter 3. A Model for Pervasive Situation Determination

specification describes. This type information is used to connect compatible role

specifications with situation specifications. The primary entity states the type of

the person or device that will play the role, as well as providing a name for the

primary entity, allowing it to be referenced in the role specification’s expression.

A role specification may define one or more auxiliary entities, providing a type

and name for each. Auxiliary entities may be required when the role of the pri-

mary entity is recognised in relation to them. The expression includes all of the

constraints that must be satisfied by the primary and any auxiliary entities for

the primary entity to be playing the role. Expressions within a role may refer to

the properties of the primary and auxiliary entities. The current date and time

may also be referred to. The expressions can include the standard comparison

operators, the Boolean operators ¬, ∧, ∨, and ⇒, as well as other type specific

operators and relations.

The role specification depicted in the top left of Figure 3.4 recognises a speaker

of a presentation using fine-grained location information. It declares the role type

to be ‘Speaker’, the primary entity to be of type ‘Person’ and named ‘p’, and the

expression to contain a check that the primary entity is currently located within a

speaker area. This role specification does not define any auxiliary entities as the

role can be recognised based solely upon the properties of the primary entity. The

audience member role depicted in the top right of Figure 3.4 is defined similarly,

though the expression in this case checks that the primary entity is within an

audience area.

3.5.3 Location types

The checks on the primary entity’s location made by the role specifications in

Figure 3.4 warrant a little more explanation. Location information is commonly

regarded as essential for describing situations [18]. The modelling approach pre-

sented here assumes that a location property is defined for each physical entity,

including people and devices. This requires that an underlying location infras-

tructure is available. The infrastructure is expected to at least be able to provide

the symbolic co-ordinates of the location of an object, for example ‘Room L10.01’

or ‘Ric’s Desk’. Symbolic co-ordinates are commonly supported by location

systems [40].

The model presented here extends this common notion of a symbolic location

co-ordinate to include a set of location types, similar to those employed by Look

61

Chapter 3. A Model for Pervasive Situation Determination

et al. [46]. These types indicate the category or function of the location. For

example, the symbolic co-ordinate ‘Room L10.01’ may have the types ‘Meeting

Area’ and ‘Room’, while ‘Ric’s Desk’ would have the type ‘Desk Area’. A full

description of the location types and the prototype location detection system that

were developed can be found in Appendix A.

Therefore, in the expressions of the ‘Speaker’ and ‘Audience Member’ role

specifications, the location type ‘Speaker Area’ refers to the space within the

room in which the speaker would typically stand, and the location type ‘Audience

Area’ refers to the space in which the audience would typically sit.

3.5.4 Situation specifications

Now, let us look at the situation specification, which is illustrated in the bottom

half of Figure 3.4. A situation specification has several parts - a ‘Describes’

property, an ‘Area of Influence’, a number of role specifications, an expression,

feature bindings, and two sets of resource requirements metrics.

A situation specification declares the type of the situation that it describes

using the ‘Describes’ property. The specification in Figure 3.4 describes the ‘Pre-

sentation’ situation from Figure 3.3.

A situation specification also includes one or more roles. The example in

Figure 3.4 shows only the ‘Speaker’ and ‘Audience Member’ roles, though all of

the roles defined in the ‘Presentation’ situation, as shown in Figure 3.3, are given

in the full specification listing in Section B.2.2 of the appendices. It is the sets

of entities that play these roles that are referenced in the situation specification’s

expression. Role specifications are matched to a situation specification based

on their role type, and the same role description can be shared among several

situation specifications.

An expression property is also defined for a situation specification, and is de-

clared similarly to the role expression of the role specification. The expression

may include the same set of operators, relations and patterns as a role specifica-

tion. The situation expression may refer to the properties of any of the primary

entities of the roles it contains. When a constraint is made on the properties of

a primary entity of a role, it applies to all of the set of entities that are currently

playing that role. For example, when the presentation specification states that

the person playing the ‘Audience Member’ role must be in the same room as the

display, it applies to all instances of people playing the ‘Audience Member’ role.

62

Chapter 3. A Model for Pervasive Situation Determination

Furthermore, the situation specification’s expression may refer to the size of the

set of entities playing each of the roles it contains. For example, within the pre-

sentation specification’s expression, it is possible to state that there must be at

least three audience members. All of the parts of the expression in the situation

specification hold when the situation is occurring in the environment.

A feature binding simply binds an expression or property referenced in the

specification to a feature of the situation. These can be thought of as the outputs

of the specification. In Figure 3.4, the feature bindings connecting the ‘Speaker’

role specification to the situation’s ‘Speakers’ feature and the ‘Audience Mem-

ber’ role specification to the ‘Audience Members’ feature are shown. Note that

a feature binding respects the structure of the hierarchy between features. For

example, there is no need to bind the ‘Speaker’ or ‘Audience Member’ roles spec-

ifications to the situation’s ‘Presentation Attendees’ feature. This is done auto-

matically, as both the ‘Speakers’ and ‘Audience Members’ features are subclasses

of the ‘Presentation Attendees’ feature.

3.6 Incorporating uncertainty

So far, only expressions that result in crisp Boolean values have been considered

for specifying situations. In a pervasive environment, many properties will be

captured using sensors that may be limited in their accuracy and reliability. This

will affect the level of confidence that can be had that the value of the property

is correct, and whether a situation based on these properties is really occurring.

Even for properties that are not sensed, factors such as the passing of time may

alter the confidence that their value is correct. To effectively incorporate such

properties into situation specifications, their level of confidence must be inter-

preted appropriately.

For properties such as these, an associated confidence value is defined. This is

a real number ranging from 0 to 1, indicating no confidence to complete confidence

that the value is correct. The confidence of a property may be fixed and known

a-priori, for example it may be specified in the manual of the sensing equipment,

or it may be estimated dynamically, which may be based on other factors about

the property such as its freshness or source.

There are two main methods of incorporating uncertainty - probabilistic tech-

niques such as Bayesian networks [22, 71, 77] and fuzzy logic [23]. This work

employs fuzzy logic as an appropriate framework to incorporate and combine

63

Chapter 3. A Model for Pervasive Situation Determination

the confidence values of properties in a situation specification. This method was

chosen in preference to probabilistic techniques for the following practical reasons:

Ease of translation As will be demonstrated later in this section, situation

specifications can be easily translated into a set of fuzzy rules. The result-

ing rule set is of equivalent size to the specification - approximately one

rule per role and one antecedent per expression. The process of translat-

ing a specification into a Bayesian network is difficult as representing ad

hoc groups of people and devices and the relations between them cannot

be accommodated naturally by the fixed topology of a Bayesian network.

Attempts to create a probabilistic representation of situation specifications

result in Bayesian networks whose topology must be restructured at runtime

to incorporate the varying number of people and devices in the environment,

and in which the number of nodes increases exponentially with the number

of people, devices and properties.

Efficient reasoning Situation determination attempts to match descriptions of

several situations against the properties of an arbitrary-sized group of peo-

ple and devices. This is an instance of the many pattern/many object

pattern match problem, for which the Rete algorithm is a very efficient so-

lution [66]. Rete-based fuzzy rule engines have mature tool support and are

freely available [98].

Improved scalability The size of a situation can be measured in terms of both

the structure of its specification as it grows larger and more complex, and

in the number of entities that are involved in the situation. As the num-

ber of elements that feature in a specification grows, the amount of data

required by a probabilistic approach to calculate its full joint probability

distribution becomes impractically large. While it is possible to reduce this

by establishing independence between elements of the specification, this in

itself is a complex process which may require extensive example data and

experimentation to identify correctly [38]. Given these difficulties, practi-

cal approaches have used naive Bayesian classification [59, 22, 69, 62], in

which all of the elements used to recognise a situation are assumed to be

independent. In a situation determination system, the uncertainty associ-

ated with several properties may share the same source. For example, all

objects within an environment may have their location determined by the

64

Chapter 3. A Model for Pervasive Situation Determination

same location system. Assume that a party situation is defined as twenty

or more people gathered in a specific room. Furthermore, assume that the

location of each person is reported by the same location system at a con-

fidence of 0.9, which is the maximum confidence supported by the system.

Treating the locations as independent, under a probabilistic scheme the

confidence value is interpreted as a probability and these are combined for

each person’s location by multiplying the probabilities together. Therefore,

the maximum probability of a party situation occurring is 0.920 ≈ 0.12. If

the party was defined with thirty or more people the maximum probability

would be ≈ 0.04. As the number of people increases, the maximum proba-

bility that can be had in the situation occurring decreases, despite the fact

the uncertainty stems from a single source. Under a fuzzy logic model, as

shall be demonstrated later in this section, the maximum confidence that

the party situation is occurring would be the minimum confidence of a per-

son’s location, which would be 0.9 independently of the number of people at

the party. Furthermore, the same, simple set of combination operators can

be used to recursively calculate the confidence of specifications of arbitrary

size.

To illustrate how fuzzy logic can be incorporated, consider again the presen-

tation example in Figure 3.4. A person can be playing the role of a speaker when

their location contains the type ‘Speaker Area’. This role can be represented as

a fuzzy if / then rule where the expression forms the antecedent or predicate (if

part) and whether the role is occurring or not forms the consequent (then part).

The antecedent and consequent are represented as fuzzy sets. These fuzzy sets

are defined by monotonic functions that map the level of confidence to the degree

of membership in the fuzzy set, and take the form µFS ← (c ∈ C) for the fuzzy

set FS and the confidence value c over the domain C[0, 1]. Each role and each

expression a role contains is represented by its own fuzzy set. For every fuzzy set,

the domain will be confidence and the membership function will be µFS[c] ← c,

that is, the level of confidence is equivalent to the degree of membership.

As all fuzzy sets are defined by monotonic functions, simple monotonic rea-

soning can be used. This has the advantage that a role’s expected confidence

value can be estimated directly from the confidence of its expressions without

employing complex composition and defuzzification methods [23].

If ec is taken to be the confidence that person p’s location contains the type

65

Chapter 3. A Model for Pervasive Situation Determination

1

1

within speaker area

0

1

1

occurring

confidenceconfidence

degree
of

membership

degree
of

membership

0.9

0.9 0.9

0.90

Figure 3.5: An example of determining the confidence value of a consequent fuzzy
set using monotonic selection.

‘Speaker Area’ and rc to be the confidence that person p is playing the speaker

role, and have the expression represented by the fuzzy set ‘within speaker area’

and the role presented by the fuzzy set ‘occurring’, the following fuzzy rule can

be constructed:

if ec is within speaker area then rc is occurring

Given this fuzzy rule and the confidence value of ec, the confidence value of rc

can be inferred by using a method of implication known as monotonic selection.

Under this scheme, µFS[c] is calculated for the antecedent and the consequent

has the confidence value that has the equivalent degree of membership as µFS[c],

that is, cc ← µFSc [µFSa [ca]], where cc and ca are the confidence values and FSc

and FSa are the fuzzy sets of the consequent and antecedent respectively.

An example for the speaker role is shown in Figure 3.5. The confidence

that person p’s location contains the type ‘Speaker Area’ is 0.9. The result

is µ[0.9] = 0.9. This ‘carries over’ to the occurring fuzzy set and is translated to

a confidence value of 0.9.

More complex roles such as the presentation specification in Figure 3.4 that

have several expressions will be represented by a fuzzy rule that has several an-

tecedents. Therefore, it is necessary to have a way to combine multiple degree of

membership values. Antecedents may be combined using the fuzzy intersection

operator (∧) where the minimum degree of membership is selected, or the fuzzy

union operator (∨) where the maximum degree of membership is selected. The

confidence values of each of the expressions in the presentation specification will

66

Chapter 3. A Model for Pervasive Situation Determination

0

1

1

occurring

confidence

degree
of

membership

0.8

0.8

1

1

`Room' of s.p.location = `Room' of a.p.location

confidence

degree
of

membership

0.9

0.9

0

1

1

`Room' of s.p.location = `Room' of e.c.location

confidence

degree
of

membership

0.8

0.8

0

s.cardinality = 1

a.cardinality >= 3

e.cardinality >= 1

1.0

1.0

1.0

min
0.8

Figure 3.6: An example of combining confidence values.

be combined by fuzzy intersection. Expressions that do not involve uncertainty,

such as the cardinality expressions, are treated as having a confidence value of 1

when true and 0 when false. Figure 3.6 illustrates how the confidence values of

the presentation specification are combined.

Note that the meaning of ¬,⇒ and role cardinality also changes when consid-

ering confidence. The ¬ operator returns the complement of a confidence value,

1−c. For a minimum confidence threshold t, a⇒ b is interpreted as “if a has con-

fidence ≥ t, then b”, and role.cardinality ≥ X is interpreted as “role is occurring

X or more times simultaneously, each with a confidence ≥ t”.

The confidence of the whole specification is the confidence assigned to an

instance of the situation as a whole. It is tempting to think that as the properties

or roles that may be mapped to individual features of a situation can have a

higher confidence than the situation as a whole, it would be useful to expose the

individual confidences of each of the features to permit more fine-grained decision

making in situation-aware applications. However, giving this issue a little more

consideration reveals that it does not make sense.

The issue is related to independently detecting occurrences of a role. Take

for example, a situation-aware application that wishes to be notified when a

particular person is the speaker of a presentation with a confidence of 0.9 or

higher. That particular person may be detected as a speaker as the person’s

current properties match the speaker role’s expression, say with a confidence of

0.92. However, at this point, the person is only a speaker in a provisional sense.

If the actual situation is a party, and perhaps many people are standing in a

67

Chapter 3. A Model for Pervasive Situation Determination

speaking area, or have been talking for most of the time, then at this point, there

are several people that are provisionally a speaker. The particular person only

becomes a speaker ‘for real’ in the context of the rest of the situation, when all of

the other expressions of the situation specification also hold. Therefore, when the

expression of the speaker role holds and a presentation is actually occurring, it is

when the speaker role expression is a smaller part of the single, bigger, combined

expression of the full situation, and it is this bigger expression that currently

holds. Assume that the confidence of the overall situation is 0.86. Therefore, the

confidence of the role expression when it holds ‘for real’ is the confidence of the

full situation expression. So in this example, it is 0.86, and not 0.92. This is true

for all roles and features. Therefore, it does not make sense, and is misleading,

to separate out individual feature’s confidences.

Note however, that it is possible to fuse the confidences of separate situation

reports. Suppose that a presentation is recognised using the fine-grained location-

based specification, and it reports a confidence of 0.84. However, the presentation

can simultaneously be recognised using another specification. Suppose that the

presentation is also recognised using the coarse-grained location-based specifica-

tion, and it reports a confidence of 0.96. For the speaker in the presentation,

if an application requires to know that they are the speaker, then the maxi-

mum confidence it can have is 0.84. However, if the application only requires to

know whether the person is an attendee or not, then the maximum confidence

it can have is 0.96. It is by recognising the same situation in different ways us-

ing separate specifications simultaneously, and fusing the results, that the overall

confidence for the situation can be increased.

Just as situations and context information form layers, where a situation is a

higher-level interpretation of the lower-level context information, the uncertainty

associated with situations and context information also form layers, where the un-

certainty associated with situations is a higher-level interpretation of uncertainty

associated with context information.

At the context layer, there may be several context quality parameters that in-

fluence the overall confidence for a particular type of context information [99, 100].

Different quality parameters will be appropriate for different types of context in-

formation. For example, a report of the location of a particular entity may have

accuracy and precision quality parameters associated with it. These would in-

dicate the frequency and range within which the report can be expected to be

correct. However, these parameters may not be appropriate for context informa-

68

Chapter 3. A Model for Pervasive Situation Determination

tion such as whether a particular application is running on a computer, which

can be detected much more reliably. Here, freshness may be a more appropriate

parameter. Note however that the means to reliably calculate a freshness param-

eter may again depend on the particular type of context information. In each

case, the suite of parameters used ultimately pertains to the overall confidence in

the individual piece of context information at a particular point in time [99].

The situation layer focuses on how uncertainty demonstrates itself at this

higher level, which is in the overall confidence an application can have that a

report of a particular instance of a situation is occurring, and for how long that

report can be considered valid. Therefore, when calculating the overall confidence

and validity of a situation, it is based upon the confidence and validity period of

each of the individual pieces of context information that comprise the situation.

This creates an upward connection between the two layers. A suite of context

quality parameters may be used to determine the overall confidence and validity

period of individual pieces of context information. These in turn are used to

determine the overall confidence and validity period of a situation.

This section has shown that in this approach it is straightforward to incorpo-

rate confidence measures into a situation specification, which requires that only

minimum confidence thresholds be additionally stated. It was also shown that

confidence calculation is efficient via monotonic selection, and that the approach

scales easily to large and complex situations through recursive application of the

same, small set of combination operators. In conclusion, the approach provides a

simple, suitable means of incorporating and combining uncertainty measures of

the composition of context information that comprises a situation.

3.7 Pragmatic aspects

There are a number of pragmatic aspects that are important for recognising

situations. These include bounding the amount of context information that is

considered relevant to a situation, locating the situations that are sought to be

recognised and specifying the resource requirements necessary to recognise a sit-

uation. Each of these aspects is explored in turn.

69

Chapter 3. A Model for Pervasive Situation Determination

3.7.1 Area of Influence

A situation specification states an ‘Area of Influence’ (AoI). The AoI describes a

physical boundary around the location of the entities that may have an influence

on the situation. For example, the AoI of the presentation specification shown in

Figure 3.4 is set to ‘Room’, as when a presentation occurs, the entities upon which

the specification will be based–the attendees, the projection screen, a laptop

hosting the slides, etc.–are likely to all be in the same room. The AoI will

commonly be a location type such as ‘Room’, though it may also be set to a

specific location for specifications tailored to a particular environment.

The AoI addresses a practical concern of bounding the amount of context

information that is considered relevant to a situation. If a specification did not

specify an AoI, the recognition process would have to consider every entity within

the environment when attempting to determine the situation. Clearly, this would

be very expensive, and will almost always be unnecessary, as situations are com-

monly confined to much smaller areas. By specifying the AoI, the recognition

process knows that it only need consider entities that are within the AoI, reduc-

ing the computational effort required to recognise a situation.

3.7.2 Situation Index

As the approach to pervasive situation determination presented here supports

inter-environment operation, it is important to be able to locate situations that

are sought to be recognised, whether they may be occurring in the local environ-

ment or in an external environment.

Discovering a situation within a network of environments is a difficult task.

Situations may have complex specifications and the set of situations that are

occurring within the network will be large and constantly evolving. This creates

a lot of information that the discovery process must cope with, and it may quickly

become stale. These difficulties are addressed by transforming the problem into

a much simpler one.

A situation can be considered from a set of explicit viewpoints. For example,

a situation request may be concerned with the situations a particular person

is involved in, that a particular device is involved in or the situations that are

occurring at a particular location. In each of these cases, the viewpoint of the

situation changes. The first takes the viewpoint of a person, such as for a request

to determine if a particular person is currently involved in a meeting or not. The

70

Chapter 3. A Model for Pervasive Situation Determination

second takes the viewpoint of a device, such as for a request that checks if a

particular projector is currently free or if it is being used in a presentation or

other situation. The third takes the viewpoint of a location, which would be

used for requests such as to check whether a particular meeting room is currently

available, or whether it is already occupied by another meeting.

The viewpoint for a situation request is set by selecting a particular person,

device or location as the situation index for the request. Then, rather than search

for an occurrence of a situation, the system has only to search for the person,

device or location that takes the desired view of the situation. For example,

when a user is interested in the situations of a colleague, the system can first

discover the location of the colleague and then request their situations from the

local environment.

The situation index is related to the Area of Influence (AoI), as the AoI of

the specifications used to fulfil a request will be set to the appropriate type of

the current location of the index. For example, if a specification’s AoI had the

location type ‘Room’ and the index were a person or a device, then the AoI would

be set to the particular room that the index currently occupies. If the index were

a location, then the AoI would be set to that location itself.

As the situation index is part of a situation request, rather than part of the

situation, the multiple viewpoints can be supported dynamically and simultane-

ously without requiring any changes to be made to situations, their specifications

or customisations. Furthermore, it is possible to share the results of recognising a

situation request that is made from differing viewpoints, but that share the same

AoI.

Details and examples of how to specify the situation index in a request and

the situation discovery process are covered in Chapter 4.

3.7.3 Resource requirements metrics

In Figure 3.4, two sets of resource requirements metrics are shown, ‘Minimum Re-

source Requirements’ and ‘Average Resource Requirements’. These metrics allow

a variety of resource requirements measures to be expressed for the situation spec-

ification. They are used by the situation determination middleware at runtime

to determine if and where a particular specification can be recognised. The ‘Min-

imum Resource Requirements’ set denotes the limits of the minimum amount of

resources required for a specification and is used to judge if that particular speci-

71

Chapter 3. A Model for Pervasive Situation Determination

fication is suitable for processing on a particular device. For example, a complex

specification that consumes a lot of resources may not be suitable for use when it

is a resource-constrained mobile device that is attempting to use it to recognise

a situation. The ‘Average Resource Requirements’ set denotes average resource

consumption estimates, and these are used to help distribute the recognition load

within larger deployments that have dedicated infrastructure available to process

situation recognition. For example, by using the typical resource requirements

metrics to identify the average expected resources the specification will consume,

the situation determination system can implement a best-fit assignment strategy

with the machines that are used to perform recognition. Further details of these

metrics and mechanisms are given in Chapter 4.

3.8 Summary

The situation modelling approach presented here was developed to fulfil the re-

quirements of pervasive situation determination. Specifically, that the modelling

approach supports:

Customised situations - It was shown how a situation could be customised

to fit the needs of a particular individual or their environment by specifying simple

constraints upon the features of the situation. This provides a straightforward

means to enable end-user customisation, where the customisations are based on

conceptual terms that are meaningful to the user.

Furthermore, as a customisation is based solely on the features of a situation,

they can be applied by any situation-aware application in any environment with-

out concern for which particular specifications are being used to recognise the

base situation.

Rich situation models - It was demonstrated that the situation modelling

constructs support the description and specification of high-level situations fea-

turing ad hoc groups of people and devices. Rich descriptions of a situation can

be created that capture a multitude of roles and features within a situation, at

varying depths of granularity. Having this scope and flexibility allows the re-

actions to situations by the system and applications to more closely match the

end-users needs through the greater precision it affords.

Also shown was how a specification author can exploit the expressiveness

offered by the situation specification constructs, to naturally describe how to

recognise high-level situations given various sets of low-level sensor data, and

72

Chapter 3. A Model for Pervasive Situation Determination

that it was straightforward to incorporate confidence measures and reasoning

about uncertainty into a specification.

Alternative descriptions - It was shown how alternative situation specifi-

cations are supported, and make recognition of a situation robust against changes

in environment as well as the available sensing infrastructure.

The critical idea of separating the description of the features of a situation

from that of how to recognise it, is well illustrated in this respect. Not only

may the number and choice of specifications used to recognise a situation be dy-

namically adapted, but also the customisations applied to the situation may also

change freely. It is this independence that allows the model to provide simulta-

neous support for the two dimensions of variability that will be encountered in a

pervasive computing environment.

Multiple viewpoints - Also illustrated was that the model of a situation

is not anchored to any particular viewpoint. A request for a situation may be

from the perspective of any person, device or location featured within a situa-

tion, without changing the representation of the situation, customisation or its

specifications.

Furthermore, it was demonstrated that situations are described independently

of any particular situation-aware application, and so can be reused between many,

serving as a common model and vocabulary for a situation. Presented later

in Chapter 5 is how this was exploited to build up both general and domain

specific libraries of situations and specifications and how it eases situation-aware

application development, by allowing developers to simply reuse situations rather

than having to re-implement them by themselves.

Each of these aspects combine to produce a situation modelling approach

that is able to support the distinctive requirements of pervasive situation

determination.

73

Chapter 4

A Pervasive Situation

Determination Architecture

4.1 Introduction

This chapter presents the architecture of a middleware for pervasive situation

determination. As well as providing architectural support for the situation mod-

elling approach presented in Chapter 3, the architecture meets the distinct adapt-

able recognition, resource management, inter-environment operation and situa-

tion discovery requirements necessary to realise pervasive situation determination.

The chapter begins by describing a scenario in Section 4.2 that is used to

illustrate various demands upon and features of the architecture throughout. A

brief overview is then given in Section 4.3 of each of the separate parts that

make up the situation determination architecture. Details of how each of the

parts interact and collaborate to recognise situations are given, as well as how

situation-aware applications make use of the architecture. Following this, focus

is given to how each of the individual parts operate in Sections 4.5 through 4.9.

Finally, Section 4.10 presents details of how the architecture supports continuous

situation recognition over changes in location, network and type of environment.

4.2 Scenario

The scenario presented below illustrates some example uses of the pervasive sit-

uation determination architecture:

74

Chapter 4. A Pervasive Situation Determination Architecture

As a computer science researcher, John frequently presents technical

talks. He has been embarrassed in the past by his mobile phone ring-

ing in the middle of a presentation, as well as his screen saver appear-

ing on the projection board and even his laptop computer shutting

down. Still, John often forgets to switch these devices to the appro-

priate mode in the hive of preparation activity just before a talk.

Wishing to avoid such embarrassment in the future, John installed

a situation-aware mode manager application to recognise when he is

the speaker in a presentation and to automatically switch his mobile

phone to a silent mode, and disable the screen-saver and power-saving

modes of his laptop during this time.

On this particular occasion, John had arrived late to give a presenta-

tion. Flustered, John could not remember where on his laptop com-

puter he had stored the copy of the slides that he was to present. He

remembered that they were the same slides that he had presented to

a partner research group at Glasgow University at the start of the

week.

In order to quickly find the slides, John used a situation-enhanced

file search tool to search for the slides. This tool records the situa-

tions that John is involved in and the files he accesses during these

situations. John entered the specific type of situation, location and

approximate time of occurrence as search criteria. The tool quickly

displayed its record of the event, which pointed John to the location

of his slides. Relieved that being unable to remember where his slides

were stored did not further delay the proceedings, John began his

presentation.

Meanwhile, John’s wife Angela was at home and received a call from

a friend, inviting her and John to the theatre that night. Wishing

to call John to see if he would like to go, Angela used the situation-

aware availability checker application on her mobile phone to see what

situations John was currently involved in, and if he was currently

busy or not. The application reported that he was taking part in

a presentation, so Angela set the application to notify her when the

presentation was finished, so that she could call him then without

interrupting him.

75

Chapter 4. A Pervasive Situation Determination Architecture

Not only does this scenario illustrate uses of the pervasive situation determi-

nation middleware, but it also exemplifies the distinct architectural requirements

of pervasive situation determination.

The scenario highlights both general situations such as a presentation, and

also bespoke, user-specific situations such as the research group presentations at

Glasgow University. Chapter 3 presented situation specifications and described

how general specifications may be provided in libraries, targeting wide deployment

across many environments. Situation customisations were also presented as a

means for end-users to create bespoke situations, by setting constraints on the

properties of the features of an existing situation.

In a given environment, many different people and devices may come and go.

Mobile devices such as laptops, music players and mobile phones may carry their

own custom situations and specifications with them, as well as several customi-

sations that many different people have created. The situation determination

middleware should allow this diverse collection of situations, specifications and

customisations to be efficiently integrated and recognised within the environment.

Different devices that enter an environment potentially introduce new data

sources and additional sensing technologies. The situation determination middle-

ware should be able to dynamically incorporate the new information that these

data sources and sensors provide, in order to make the broadest possible range

of specifications available. Where alternative specifications have been provided

that vary in the situation’s granularity, the situation determination middleware

should exploit this new information in an attempt to recognise the highest pos-

sible granularity specification. This should happen not only for new situations

that occur, but also for situations that are already taking place.

The middleware must also handle any uncertainty associated with the data

and inference mechanisms that appear in specifications. That is, it must incorpo-

rate varying levels of confidence of the data it uses to recognise a situation, and

also in reporting situations to applications. Given that several alternative spec-

ifications may exist for the same situation, as well as several alternative means

to compute the same property of a person or a device, the middleware should be

able to capitalise on this, and fuse together the results of the specifications and

multiple sensing technologies, in order to attain the highest confidence possible

for a situation.

The combination of these factors clearly demonstrates the requirement for a

pervasive situation determination system to support adaptable recognition.

76

Chapter 4. A Pervasive Situation Determination Architecture

The scenario above illustrates the use of the situation determination middle-

ware in a work environment and in the home environment. When Angela checked

on John’s situations he was giving a presentation, but he could have equally been

in a more public environment such as a train station or a café.

This simple use of the middleware demonstrates the need for a number of ar-

chitectural requirements. The first is the need to support situation discovery, as

situation-aware applications must be able to discover situations that are occur-

ring at potentially unknown places. It also highlights the need for the middleware

to support use in private, administered environments that may have dedicated

infrastructure to run the middleware, and also in public, non-administered en-

vironments where no dedicated infrastructure is available, as well as supporting

the transitions between the two. The mode-manager application in the scenario

highlights a situation-aware application that is present in the local environment,

and reacts to situations that are occurring there. The situation-aware availability

checker demonstrates an application that involves situations that are happening

elsewhere in the world. The situation determination middleware must be able to

support applications that exploit situations occurring both in the local environ-

ment and in remote environments. That is, it must support inter-environment

operation.

At a more technical level, the design of the middleware must consider that it

will run on resource-constrained, wireless, mobile devices. This impacts the design

in a number of ways. As the devices communicate over wireless networks, the

middleware must handle intermittent connectivity, as well as devices disappearing

from the current network. The middleware must also be able to cope with device

failure, where failure may simply mean that the device’s battery has run dead.

It is well known that wireless communication is the biggest source of battery

drain for mobile devices [101, 102, 103]. Studies have shown that mobile devices

can consume as much as 70% of their battery while connected in idle mode to an

802.11 wireless network [104]. Furthermore, under realistic power consumption

scenarios, the power consumed by wireless transmission can be anywhere from 6

to 50 times that consumed by the CPU or memory [103, 105, 106, 107].

In order to preserve battery power, it is desirable to have the middleware

support resource foraging [108, 109]. That is, to allow devices to offload processing

to other, possibly mains-powered devices. Furthermore, it is also advantageous

that the middleware support placing the recognition of particular situations on

specific devices, in order to reduce the level of wireless communication required.

77

Chapter 4. A Pervasive Situation Determination Architecture

These considerations clearly show the requirement for resource management in a

pervasive situation determination system.

The scenario illustrates not only the individual requirements of adaptable

recognition, resource management, inter-environment operation and situation dis-

covery, but also how these requirements intertwine. This chapter presents an

architecture for pervasive situation determination that is able to provide support

for these requirements in combination.

The architecture is designed to be extensible. It is not intended that it repre-

sents a single, exclusive system used in an environment. It is a pervasive architec-

ture, intended to be used in many and in many different types of environments,

but as noted in Section 1.1, a “one-size fits all” approach is not desirable.

In each of the three layers of a situation determination system – the sensor data

layer, the context layer and the situation layer – an environment may already have

existing systems in place. For example, it may be fitted with particular sensor

infrastructure, it may feature one or more location sensing systems, there could be

an existing context information dissemination system that supports actively used

context-aware applications, there may even be specialised situation recognition

components. The goal would not be to replace these, but to make it possible to

overlay the architecture and integrate these components, in order to provide a

pervasive situation determination system.

4.3 Overview of the architecture

This section presents a general overview the of the pervasive situation determi-

nation architecture by walking through the scenario involving John and Angela

presented above. It introduces the high-level aspects of the architecture that are

involved in each stage.

Figure 4.1 presents the scenario pictorially. Its shows Angela at home and

John at the University. Both of these environments are connected to a network

of pervasive computing environments that support pervasive situation determina-

tion. Both environments have dedicated infrastructure that hosts the pervasive

situation determination middleware and manages this connection.

Let’s first look at the case where Angela uses the situation-aware availabil-

ity checker application from her mobile phone to see what situations John was

currently involved in, and if he was currently busy or not. This will provide

an overview of a single, complete round of the pervasive situation determination

78

Chapter 4. A Pervasive Situation Determination Architecture

Home environment University environment

D
e
d
ica

te
d
 S

e
n
sin

g
 a

n
d

M
id

d
le

w
a
re

 In
fra

stru
ctu

re

Network of
pervasive
situation

determination
environments

Angela’s phone

Availability
checker

application John’s phone

Mode
manager

application

Situation-
enhanced
file search
application

Angela John

John’s laptop

Mode
manager

application

Situation-
enhanced
file search
application

D
e
d
ica

te
d
 S

e
n
sin

g
 a

n
d

M
id

d
le

w
a
re

 In
fra

stru
ctu

re

Figure 4.1: This diagram represents the scenario where Angela uses the avail-
ability checker application on her mobile phone to check which situations John is
currently involved in.

process.

The first step in this process is that Angela uses the application and selects to

check the current situations that John is involved in. The application connects to

the host infrastructure in the home, which then searches the network of environ-

ments to locate John. Specifically, it is John’s mobile phone that will be located,

as this device currently acts as a representative for John. The availability checker

application on Angela’s phone then sends a message to John’s phone, requesting

that it report the situations that John is currently involved in.

Having checked the request, John’s phone will forward the request to the

host infrastructure in the University environment to begin recognising the situa-

tions John is involved in. When a situation is recognised, the host infrastructure

sends the report to John’s phone which in turn sends the report back to Angela’s

application. First sending the report to John’s phone, rather than to Angela’s

application directly, allows John the opportunity to configure the phone to obfus-

cate or otherwise transform the report before sending it back to the application

that issued the request.

It will not be just a single report that is sent to the application, but a stream of

79

Chapter 4. A Pervasive Situation Determination Architecture

reports, for as long as the request is maintained by the application. Recognition

of a situation is based on context information, which in turn is derived from the

sensor data currently available in the environment. The sensor data, context

information and therefore the confidence with which the system can detect which

situations are occurring, will be continually changing. These changes are captured

in the stream of reports.

This highlights the query-based nature of the architecture. That is, the mid-

dleware does not attempt to recognise a situation until an application makes a

request for it. Furthermore, the middleware will cease attempting to recognise a

situation when there is no longer an active request for it.

It is in this respect that it is important that a situation can be recognised

within a short temporal extent. This allows, as in this case, for a request to be

issued in one environment, the index of the situation to be located, recognition of

the situations referenced in the request to be started and performed in the index’s

local environment, and a report sent back to the issuing application, all within a

suitably short time-frame to support fluid, interactive use in applications.

Not all situation requests will span different environments. The mode manager

and situation-enhanced file search applications running on John’s mobile phone

and laptop provide examples of situation requests that are processed locally. The

requests from these applications will be processed in a similar way to the request

made by Angela’s availability checker application, with the exception that the

middleware will not search the network of environments as the middleware will

already be aware of John’s presence locally.

The situation requests issued by the mode manager and situation-enhanced

file search applications John is running will be longer-lived that the request issued

by Angela. These applications continually monitor the situations John is involved

in for as long as John is running the applications. This requires that these requests

persist as John changes location and environment.

The results of recognising situations can be shared between multiple requests

for them. For example, in the scenario, when Angela’s request arrives, the appli-

cations John is running have already requested the situations John is currently

involved in. So when Angela’s request arrives, the middleware does not need to

recognise the situations again, but simply add Angela’s availability checker appli-

cation to the list of recipients of the reports for the situations John is currently

involved in.

As noted above, when Angela checked on John’s situations he was giving

80

Chapter 4. A Pervasive Situation Determination Architecture

Home environment Café environment

D
e
d
ica

te
d
 S

e
n
sin

g
 a

n
d

M
id

d
le

w
a
re

 In
fra

stru
ctu

re

Network of
pervasive
situation

determination
environments

Angela’s phone

Availability
checker

application John’s phone

Mode
manager

application

Situation-
enhanced
file search
application

Angela

John

Colleagues

Phone

Phone

Figure 4.2: This diagram represents the scenario where Angela uses the avail-
ability checker application on her mobile phone to check which situations John is
currently involved in, but this time John is located in a café where no dedicated
infrastructure is available.

a presentation at the University which had dedicated infrastructure available to

host the middleware, but he could have equally been in a more public environment

where such infrastructure is not available.

Imagine a slightly different scenario where rather than being at the Univer-

sity, John was enjoying some discussion with colleagues at a nearby café. This

alternative scenario is illustrated in Figure 4.2.

In the café there is no dedicated infrastructure available to host the pervasive

situation determination middleware. Therefore, situation recognition must be

performed by the ad hoc collection of devices themselves. To do this, the devices

must form a network to allow the context information they can detect to be shared

amongst each other. Using this context information, the devices would then

recognise situations themselves. Note that in Figure 4.2, John’s phone connects

directly to the network of environments, allowing John to be located from external

environments, despite his phone operating in this ad hoc mode.

When operating in ad hoc mode, situation requests are processed as before -

John’s phone would receive the request from Angela’s application, and a stream

of reports would be sent back as the situations referenced in the request are

81

Chapter 4. A Pervasive Situation Determination Architecture

recognised. Furthermore, it is still possible to process local situation requests in

an ad hoc network, as can be seen from Figure 4.2, where John’s phone is still

running the mode manager and situation-enhanced file search applications.

This concludes the brief overview of the high-level pervasive situation determi-

nation architecture and the situation request, recognition and response process,

shown for both infrastructure-based and ad hoc modes of operation. The follow-

ing sections present further detail about how this architecture is realised in the

pervasive situation determination middleware.

4.4 Agent architecture

The situation determination middleware that has been described so far has several

distinct characteristics that must be supported by its architecture. It is an open

system, as it must incorporate a variety of people and heterogeneous devices, the

number and identity of which may not be known in advance and will change over

time. The data describing the properties of people and devices, as well as new

and customised situation specifications, are inherently distributed. Recognition

of situations is a responsive process, as it must continually monitor changes in

the environment and report the situations occurring. Situation-aware applica-

tions are often adaptive, tailoring their behaviour to the current situation. Both

recognition of situations and adaptation of application behaviour must be per-

formed autonomously. Given these characteristics, an agent-based architecture is

appropriate [110].

This section presents a high-level overview of the agent architecture of the

pervasive situation determination middleware. It covers typical set-ups for use

in private, administered environments and briefly introduces the main features of

the architecture (set-ups for public, non-administered environments are covered

later in Section 4.10).

First, let us look at the main function of each of the types of agent used by the

situation determination middleware, before going on to look at how they work

together to recognise situations. As a key and summary, Table 4.1 provides a list

of each of the agents mentioned in this chapter, as well as their acronym and a

brief description of their function.

The situation determination agent (SDA) is the agent that actually performs

situation recognition. It continually attempts to match situation specifications

against the current state of the people and devices in the environment, and report

82

Chapter 4. A Pervasive Situation Determination Architecture

Acronym Name Function

SDA
Situation Determination Performs core recognition of

Agent situation specifications

CEA
Context Entity Provides context information about

Agent people/artefacts in the environment

DCEA
Data Context

A CEA which reports context data
Entity Agent

CCEA
Compute Context A CEA which dynamically

Entity Agent computes context information

CCEAM
Compute Context

Manages requests to CCEAs
Entity Manager

SRA
Specification Stores descriptions of situations,

Repository Agent specifications and customisations

SAA
Situation-aware Base agent from which situation-

Application Agent aware applications are derived

ISA
Index Server Manages situation requests for a

Agent single person/artefact

ILA
Index Locator Locates a particular person/artefact

Agent in the local/remote environment

SDAM
Situation Determination Manages recognition process

Agent Manager between multiple SDAs

EMA
Environment Manager Manages transitions between

Agent environment and ad hoc operation

PSA
Publish/Subscribe Manages subscriptions/notifications

Agent of a publish/subscribe network

Table 4.1: A key and summary of the agents used in the situation determination
architecture.

instances of situations when they occur. In an administered environment, one

or more SDAs may appear and these would typically be hosted on dedicated

infrastructure for providing situation determination functionality. However, as is

shown later in Section 4.10, mobile devices may also host SDAs allowing situation

recognition to be performed in a more ad hoc setting.

The current state of the people and devices in the environment are reflected by

the current values of their properties, which are detected and reported by context

entity agents (CEAs). There are two flavours of CEAs - data CEAs (DCEAs)

and compute CEAs (CCEAs). DCEAs detect and report individual properties.

CCEAs calculate relations between properties, detect patterns occurring in the

values of one or more properties over time, or perform conversion of the value of

a property to a different type. DCEAs and CCEAs can be thought of as signals

83

Chapter 4. A Pervasive Situation Determination Architecture

and signal processors, respectively. CEAs could be hosted on any device. For

example, location, audio, application, and diagnostic sensor CEAs may be hosted

on a mobile phone, and ambient light, temperature, audio, and motion sensors

may form part of the fixtures in a smart environment, with their corresponding

CEAs hosted by the situation determination infrastructure. If there exists several

similar or equivalent CCEAs in the environment, the CCEA Manager (CCEAM)

is used by the SDA to select the best choice of possible CCEAs based on the

current runtime state of the CCEA host device.

Specification repository agents (SRAs) store collections of the specifications

that are used by an SDA to recognise situations. An SRA may store customisa-

tions as well. SRAs would typically be hosted on an environment’s infrastructure

to store the situations, specifications and customisations particular to the en-

vironment, and also on an individual’s personal devices, storing the situations,

specifications and customisations that are particular to them.

A situation-aware application agent (SAA) is the main interface to the situ-

ation determination middleware for situation-aware applications. An SAA man-

ages an application’s situation requests and reports occurrences of the requested

situations back to the application. Any device that runs a situation-aware appli-

cation will host a local instance of its SAA.

An index server agent (ISA) maintains a record of which SAAs currently

have requested situations that involve a particular person, device or location.

That particular person, device or location forms the index of a situation request,

as it is the situations involving that particular person, device or location that

are sought to be reported. For example, if a user requests the situations of a

particular person, then that person forms the index of that request. Likewise, if

an application were to request the situations occurring at a particular location,

then it is that location that forms the index of the request. Each individual

person, device and location will be represented by their own ISA. In the scenario,

when John’s wife requests that she be notified when John is no longer giving

the presentation, the SAA on her phone will request notification of presentation

situations with John as the index. John’s ISA will maintain this request. The

ISA allows subscription requests to persist as the index changes environment

or network. Furthermore, the ISA can be configured to amend the situation

report depending on the particular SAA instance that has requested it. ISAs

that represent locations within a particular environment will typically be hosted

on the environment’s infrastructure. ISAs that represent devices will either be

84

Chapter 4. A Pervasive Situation Determination Architecture

hosted on the device itself, or on the environment’s infrastructure where the device

lacks sufficient capacity. An ISA that represents an individual will typically be

hosted on a personal device belonging to that person, such as a mobile phone.

An index locator agent (ILA) performs the discovery of the index entity of a

situation, whether the index is located within the local environment or a remote,

external environment. As an SAA requires an ILA to issue situation requests, an

ILA instance will be hosted alongside each SAA.

The environment may contain many SDAs and many SRAs. The function of

the SDA Manager (SDAM) is to take situation requests, passed to it from ISAs,

and first gather all specifications that describe the situation from the collection

of SRAs. Then, the SDAM selects the best choice of SDA for each specifica-

tion, based on the performance requirements of the specification, and the current

runtime state of each SDA host machine. Similar to an SDA, an SDAM will typ-

ically be hosted on dedicated infrastructure within an administered environment,

though as is shown later in Section 4.10, mobile devices may also host an SDAM

for ad hoc operation.

The steps involved in how these different types of agents interact to perform

situation recognition are illustrated in Figure 4.3 and represented in a UML se-

quence diagram in Figure 4.4.

First, an SAA will receive a situation request from a situation-aware applica-

tion that states a particular index for the situation. For example, in the scenario,

this is when John’s wife requests which situations John is currently involved in.

This is labelled as step 1 in Figures 4.3 and 4.4.

Next, using the ILA to find the ISA of the index entity in question, the SAA

sends the ISA the situation request. At this point, John’s ISA would have received

the situation request from his wife’s application’s SAA. These steps are labelled

2 and 3 in Figures 4.3 and 4.4.

The ISA then adds the request to the set of active situation requests that it

maintains, and then forwards the request to the SDAM. The SDAM then analyses

the request to determine which situations are being requested, and then contacts

each SRA, asking that it be sent any specifications the SRA has that describe the

particular situations. As the SDAM receives each specification, it passes it to each

of the SDAs in the environment (first contacting dedicated SDAs if they exist),

and requests a resource requirements estimate from the SDA that indicates its

current capacity for performing the recognition of the specification. The SDAM

then selects the SDA that provides the best estimate. These steps are labelled 4

85

Chapter 4. A Pervasive Situation Determination Architecture

Angela’s
mobile phone

Remote environment

SAA

ILA

Application

1

2

John’s mobile phone

DCEA ISA SRA

3

4

5

8 10 11

Environment infrastructure

Host machine Host machine

SRA

CCEA

SDAM

5

SDA

6

CCEAM

8

9

12

7

Figure 4.3: This figure illustrates the different types of agents involved in the
situation determination middleware, as well as the steps involved in the basic
situation recognition process. For clarity, not all agents that would be hosted on
a device are shown, only those that help illustrate the process.

SAA ILA ISA SDAM SRA (John's phone) SRA (Host env.) SDA DCEA CCEAM CCEA

2. Locate index

3. Make situation request

4. Process request, forward to be recognised

5. Request specifications

5. Request specifications

6. Request estimates

8. Subscribe to context

8. Subscribe to context

9. Select

10. Return situation response to index

11. Return situation response

Application

1. Make situation request

7. Assign specification, forward to be recognised

12. Return situation response

Figure 4.4: This figure shows the steps performed in Figure 4.3 represented as a
UML sequence diagram.

86

Chapter 4. A Pervasive Situation Determination Architecture

through 7 in Figures 4.3 and 4.4.

Having been assigned a specification from the SDAM, an SDA analyses the

specification and determines which properties, relations, patterns and conversions

it requires to recognise the situation. DCEAs use a publish / subscribe style of

communication [111] to transmit properties. As such, the SDA sets up subscrip-

tions to the properties it requires. The SDA will also use the CCEAM to employ

the CCEAs it requires. When the SDA detects that a situation is occurring, such

as John’s presentation, it sends a report to the index’s ISA, which then passes

the report back to the SAA, which in turns passes the report to the application.

These steps are labelled 8 through 12 in Figures 4.3 and 4.4.

This completes a single round of the situation determination process. The

description here has been intentionally brief, giving an overall flavour of the com-

plete process. Though many details have been omitted here, each type of agent

is presented in full in the following sections.

4.5 The Situation-Aware Application Agent

The situation-aware application agent (SAA) is the main interface for situation-

aware applications to the pervasive situation determination middleware. Using

the SAA, situation-aware applications can request and receive notifications about

occurring situations. The details of the interface provided by the SAA and the

format of situation requests and responses are given later in Section 4.11.

4.6 The Index Server Agent

The index server agent (ISA) continually maintains a set of active situation re-

quests for a particular person, device or location, which have been made with the

particular entity as the index.

It is assumed that any person who wishes to have the situations they are

involved in recognised by the situation determination middleware, carries with

them a personal device that is capable of hosting an ISA. Most commonly, this

device would be the person’s mobile phone.

An ISA for a particular device will usually be hosted on the device itself.

Devices that have insufficient capacity to host an ISA can be supported by proxy

ISAs that can communicate with the device. The proxy ISA will be hosted

87

Chapter 4. A Pervasive Situation Determination Architecture

on another device that has sufficient capacity. A proxy ISA would typically be

installed in an environment along with the device.

ISAs for locations will also exist within administered environments. When

the middleware is operating in ad hoc mode, the location of detectable situations

is centred around an individual person or a device, and so the index for such sit-

uations is the person or device themselves. Within an administered environment

however, there will exist distinct, absolute locations that can be selected as an

index. An ISA exists for each symbolic location within an environment. A loca-

tion model for the environment will already exist, detailing each of the locations

within the environment. Each ISA can then be created automatically using the

location model.

As the ISA is hosted on a device that is representative of the device itself,

the set of active situation requests can persist throughout intermittent wireless

network connectivity, changes in location, network, and environment, as well

as power and other failures of the ISA host device. The ISA will always have

an up-to-date record of which situations are to be recognised for the particular

index, and which SAAs are to receive notification about them, regardless of their

location.

All situation requests made by a situation-aware application are first delivered

to the index’s ISA. The ISA records the request, and then forwards the request to

the SDAM. Regardless of whether the middleware is operating in an administered

environment, or in ad hoc mode, there will be a single SDAM in the environment

that the ISA discovers through the agent substrate. Details of SDAM discovery

are covered in Section 4.10.

4.7 The Situation Determination Agent

Manager

The situation determination agent manager (SDAM) receives situation requests

from any ISA in the local environment. Its function is to select an available SDA

to recognise a particular specification for a situation request. The selection is

based on a number of resource requirements parameters that reflect the current

capacity of each SDA host and the suitability to the particular specification.

Selecting an SDA in this manner allows the SDAM to control the load on each

SDA host, dynamically adapting each to best meet the demands of the current

88

Chapter 4. A Pervasive Situation Determination Architecture

set of situation requests. Additionally, the recognition of some specifications may

be grounded to a particular SDA. Each of these mechanisms is discussed below.

4.7.1 Grounded specifications

Before going on to look at gathering and preparing specifications in the next

section, the concept of a grounded specification must first be introduced.

Recall from the introduction to this chapter that wireless communication is

the biggest source of battery drain for mobile devices, consuming up to 50 times

as much power than that of the CPU or memory.

Grounded specifications help preserve a mobile device’s battery power by re-

ducing wireless communication for certain specifications. There are situations for

which their specification will be based entirely or largely on properties available

on a single mobile device. Consider the simple situations ‘Making a phone call’

and ‘Editing a document’. For both of these situations, all of the properties

required to recognise the situation may be provided by CEAs hosted on a mo-

bile phone or a laptop, respectively. As these situations are localised to a single

device, it would be unnecessary and wasteful to have to transmit all of the prop-

erties required to recognise the situation to an SDA hosted on an external device.

Instead, it is more appropriate to have these specifications recognised by an SDA

hosted locally. That is, the specifications are grounded to the local device.

An SDA can be configured to recognise a grounded specification by indicating

which specifications are to be grounded and for which indexes they apply. For

example, the ‘Making a phone call’ situation could be grounded to John’s mobile

phone by registering the situation’s specification and John as the index with the

SDA hosted on the phone.

Configuring an SDA like this lets the user select which specifications are regis-

tered for a particular index and on which particular device it is to be recognised.

This allows the user to tune the placement of the specification to their own par-

ticular habits. However, there may be times where the groundings the user has

selected will not be optimal. If all of the pieces of context information required

by the grounded specification are already subscribed to from external sinks, then

recognising the situation locally may not create savings in battery power.

A middleware-controlled scheme could potentially manage such cases auto-

matically. However, detecting whether the best placement of the specification

is local or external is difficult, and may itself be expensive. It is possible that

89

Chapter 4. A Pervasive Situation Determination Architecture

the mobile host could analyse all subscriptions the local PSA currently maintains

and determine if all context information required for a specification is already

subscribed to, and therefore the specification may be best recognised externally.

However, this creates significant extra work for the mobile host to perform, as

all subscriptions and a potentially large set of specifications must be analysed

continuously. Furthermore, the cost of the analysis and performing the recog-

nition locally must be balanced against the additional cost of transmitting the

specification.

In favouring simplicity, this approach allows the user to control which spec-

ifications are grounded to which device (which could be recommended by the

specification authors), which may frequently allow the mobile host to make power

savings, and eliminates the need to perform continuous subscription and specifi-

cation analysis.

4.7.2 Gathering and preparing specifications

In order to select an appropriate SDA, the SDAM must first gather all specifica-

tions and customisations that relate to a situation request. To do so, the SDAM

indicates interest in a particular target by registering the target’s identifier with

each specification repository agent (SRA) in the environment. An SRA will then

send any appropriate specifications and customisations it contains to the SDAM.

An SRA will also send any other appropriate specifications and customisations

that are subsequently added while the SDAM is registered for the particular tar-

get. The SDAM indicates that it is no longer interested in a particular target by

unregistering the target’s identifier.

The SDAM must also handle the special case of grounded specifications. Here,

a specification is tied to a particular SDA instance, and therefore grounded spec-

ifications are not forwarded to the SDAM. In this case, grounded specifications

are registered with the SDAM explicitly by the SDA they are grounded to. The

SDAM then selects this SDA directly when one of its grounded specifications

match the target and index of a request.

Once the SDAM has gathered the specifications, the area of influence (AoI)

for each specification must be checked, and transformed if necessary. First, the

SDAM subscribes to the location property of the specification’s index. The SDAM

then processes each specification in turn. If the specification has an AoI defined

by an absolute location, then the SDAM checks whether the index is within the

90

Chapter 4. A Pervasive Situation Determination Architecture

absolute AoI. If it is not within the absolute AoI, the specification is removed

from consideration. If the AoI is defined by a location type, then the SDAM

transforms the AoI into the symbolic location of the index’s location that matches

the location type. Note that the transformation is dynamic - as the index changes

location, so too will the transformed AoI.

There is a special case for transforming an AoI when the index is a location.

It may be the case that the index location contains more than one instance of

the AoI’s location type. For example, if the AoI is a room and the index location

is a floor of a building, then the floor may contain many rooms. In this case, the

AoI is transformed several times, once for each location of the AoI’s type that is

contained within the index location.

Now that the specifications have been prepared, they are ready to be for-

warded to the available SDAs.

4.7.3 Resource requirements estimation

The SDAM requests resource requirements estimates from each situation deter-

mination agent (SDA) for an individual specification. The SDA that returns the

best estimate is assigned the specification. In this way, the SDAM can manage

the distribution of load between the available SDAs.

When selecting which resource requirements parameters to use, their number

must balance the level of detail required with the increased level of associated

overheads. Dijk et al. demonstrate that a small number of parameters, usually

less than or equal to 5, is sufficient to capture the dominant properties of a

system [112]. Furthermore, Aurrecoechea et al. suggest that parameters should

be declarative in nature. That is, they should specify only what is requested, and

not how the requirements should be implemented by a provider [113].

Influenced by this work, the framework proposed in [114] is extended in this

chapter to include the following resource requirements parameters:

Distance - this parameter indicates the distance from the situation to the

SDA. This parameter allows administrators to assign an SDA to particular areas.

For example, if a particular room plays host to a large number of situations at

once, or to a situation that frequently features a large number of people, then an

administrator may wish to assign an SDA primarily for recognising situations in

this room. The value of this parameter will range from 0.0 (best) to 1.0 (worst).

The administrator can configure coverage areas for an SDA. A coverage area

91

Chapter 4. A Pervasive Situation Determination Architecture

states the locations that an SDA prioritises. A specification’s AoI is within the

coverage area if the AoI’s location is contained completely within the locations

of the coverage area. An administrator will specify a coverage area and a related

distance value. For example, to give a particular room priority for an SDA,

the coverage area would be defined as the room and the distance value of 0.0.

Any other location would receive a distance value of 1.0. A specification whose

AoI’s was contained within the room would have a distance value of 0.0, and

1.0 otherwise. An administrator may define more than one level. For example,

distance values could be configured such that the room has a value of 0.0, the

floor that the room is in has a value of 0.4, and any other location 1.0. Distance

values may be configured on a per-SDA basis.

CPU Load - Choosing a suitable metric to express CPU load is difficult, as

it must provide an estimate of the CPU load of a specification across a range

of processor architectures. The approaches presented in [114, 115] address this

issue by employing measures based on the amount of time consumed by previous

executions of a service on a particular processor. Using such a measure is not

suitable for situation specifications as it ties the estimate to a single processor,

and requires that the execution time of a single service can be isolated. Though

it is possible to learn execution times for pairs of processors and services, and

use predicted execution times as is done in both [114] and [115], it is not feasible

for situation specifications as they may be recognised by a scheme, such as a

Rete network [66], which extracts commonalties from many specifications in order

to optimise their recognition, which makes it difficult to isolate the execution

time of a given individual specification. Instead, an approach similar to that

proposed in [116] is preferred, using a more approximate measure of average

number of clock cycles per second. The advantages that this offers are that

individual specifications can be tested offline in isolation by specification authors

to obtain consumption estimates, which then can be used across a variety of

processors online in an environment.

Customisations will be written by end-users rather than specialised specifica-

tion authors, so it is impractical to assume that they could empirically establish

resource requirements measures for their customisations. Furthermore, as cus-

tomisations are simple constraints on the values within a feature set, it is unlikely

that the additional overhead incurred by processing a customisation significantly

alters the resource requirements of the base specification. Therefore, customisa-

tions do not state resource requirements, and customisations are not considered

92

Chapter 4. A Pervasive Situation Determination Architecture

when calculating the resource requirements estimate for the base specification.

A situation specification will state its CPU Load requirement in average num-

ber of clock cycles per second. The resource requirements estimate for CPU Load

given by an SDA is a percentage, representing the percent of the total available

CPU utilization that the specification would consume, where the available CPU

utilization is measured as maximum clock cycles per second multiplied by the

percent of the current CPU utilization. For example, if the average number of

clock cycles per second consumed by a specification is 200 million cycles, and

the SDA host’s processor has a maximum clock cycle per second rate of 3,000

million cycles and the processor currently has 50% utilisation, then the resulting

estimate for CPU Load for the host is 200 million / (3,000 million * 0.50) ≈ 13%.

Memory - A situation specification states this requirement as the average

maximum amount of physical memory consumed by the specification. An SDA

host’s estimate is calculated as the percent of the remaining available physical

memory of the host that the specification would consume.

Bandwidth - A situation specification states its bandwidth requirement as the

average amount of bandwidth consumed by the specification in bits per second.

An SDA host’s estimate is calculated as the percent of the remaining available

bandwidth of the host that the specification would consume. Note that this single

measurement acts as a summary of the available bandwidth across all active

network types of the host. For example, if the host were a laptop, it may on some

occasions be communicating exclusively via an 802.11 wireless network, while on

other occasions, it may be utilising its Ethernet and Bluetooth connections. It is

necessary to provide an approximate summary as it is impossible to predict ahead

of time exactly which devices will be involved in the recognition of a specification

and on which type of network they will be communicating with the SDA host.

Battery - This requirement is stated in a situation specification as the average

amount of battery consumed by the specification in watts. An SDA host’s esti-

mate is calculated as the percent of the remaining available battery of the host

that the specification would consume. If the host is plugged into the mains, the

remaining amount of battery is taken to be infinite.

The CPU Load, Memory, Bandwidth and Battery parameters were established

in the original framework. The Distance parameter and the modification of the

CPU Load parameter are introduced here.

In a similar approach to [114], each resource requirements parameter is com-

bined to give a single overall value to allow easy comparison with other resource

93

Chapter 4. A Pervasive Situation Determination Architecture

requirements estimates. This is extended to allow the relative weighted impor-

tance of each parameter that the SDA host device places on each to be incorpo-

rated in this calculation. In this way, individual hosts such as a mobile phone

can stress that using the least amount of battery and network is more important

for that particular host than distance or CPU Load, for example. The overall

resource requirements metric is calculated as:

Overall resource requirements =
∑n

i=1(qi ∗ wi)

where each qi represents a resource requirements parameter, and wi is the asso-

ciated host’s weight for that parameter.

A specification contains two sets of resource requirements parameters. The

first is the set that has just been presented, which is used to estimate the average

consumption over the lifetime of the recognition of the specification on a partic-

ular SDA host. The second set describes minimum resource requirements. This

gives the SDAM a means to ignore specifications for which an SDA host cannot

offer the minimum capacity required. In periods of heavy load the SDAM can

relocate a specification to another, less utilised host. Furthermore, the SDAM

is prevented from running a specification on a device that has an inappropriate

capacity. For example, a high consumption specification that is intended to be

run on a dedicated server will be ignored when considering an SDA hosted on a

mobile phone. Similarly, if the middleware were to reach a saturation point where

all available SDAs are fully loaded, no new situation requests would be started.

There may be a large number of SDAs available in the environment, and it

is unnecessary to contact every SDA for a resource requirements estimate for

every specification. For example, if an environment’s dedicated SDA hosts are

lightly loaded, it may not be necessary to contact SDAs hosted on a PDA. The

middleware allows sets of SDAs to be staged, in order to reduce the number of

SDAs that must be contacted for each specification. Each stage specifies a set of

hosts to be contacted, described either by their identifier or by their properties,

and a set of weights and threshold values for resource requirements parameters.

For example, an administrator may configure the middleware such that only

the environment’s dedicated SDA hosts are contacted until the average resource

requirements estimates from each host, weighted only on CPU Load, memory and

bandwidth, exceed the threshold. Then, all mains-powered, fixed-network SDA

hosts are contacted, until the threshold for this stage is exceeded, then any SDA

may be contacted. The SDAM can then distribute load across many hosts in the

94

Chapter 4. A Pervasive Situation Determination Architecture

environment, calling upon additional hosts as necessary.

4.7.4 Situation Determination Agent selection

After a short time interval has passed, the SDAM will compare all of the resource

requirements estimates it has received. The SDA that provided the best estimate

is selected to recognise the specification. The specification is then forwarded to

the SDA, along with any customisations that are required to be recognised in

addition to the specification.

The resource requirements estimates for a specification may change through-

out the time an SDA is attempting to recognise a situation. If the index of the

situation is mobile, then the AoI of the specification will change as the index

changes location. The load on the SDA effecting parameters such as CPU Load,

Memory and Bandwidth will constantly be in flux. If the host is battery powered,

then the remaining power will always be steadily decreasing.

In order to take these changes into consideration, the SDAM periodically

re-evaluates the resource requirements estimates for each specification. If the

estimate from the SDA a specification is hosted on is no longer the best, then

the SDAM may relocate the specification to the host that provided the new best

estimate. However, there will be a cost involved in performing the relocation of

the specification. In addition, thrashing must be avoided - the case when two

or more SDA hosts provide almost equal estimates, and the SDAM continually

transfers the specification from one host to another as their estimates gently fluc-

tuate. The SDAM addresses these aspects by using a delta threshold. That is, the

difference of the specification’s resource requirements estimate from the current

host and the new potential host must differ by more than the delta threshold for

the relocation to occur.

Note that in large environments, a single SDAM may become a bottleneck.

To alleviate this, an environment administrator may deploy an SDAM group.

That is, a group of SDAMs, hosted on different machines, that all share the same

configuration and common group identity. When an ISA connects and there is

more than one member of the SDAM group, it picks an SDAM at random. This

provides a simple means of balancing the load between each of the SDAMs in the

group.

95

Chapter 4. A Pervasive Situation Determination Architecture

4.8 The Situation Determination Agent

The situation determination agent (SDA) is the main reasoning agent in the

situation determination middleware. It is the SDA that takes a specification and

tries to match the data available within the environment against the expressions

in the specification in order to recognise situation occurrences.

The overall operation of the SDA is straightforward. First it receives a spec-

ification and optionally one or more customisations from the SDAM. The SDA

then analyses the specification and updates its set of subscriptions to properties

reported by DCEAs and results computed by CCEAs. It then enters a loop of re-

ceiving notifications, matching this new data against the specification, and again

updating its subscriptions. If a match occurs against a specification, the SDA

then prepares the response and notifies the appropriate ISA. If there are customi-

sations that are associated with the specification, then the SDA first checks the

result against the constraints of these customisations and then sends a response

when appropriate. If instructed by the SDAM, the SDA may also drop a spec-

ification and the associated CEA subscriptions. This will occur as a result of a

situation-aware application cancelling a situation request.

The details of the operation of the SDA are more complex however, and these

are presented below.

4.8.1 SDA and CEA communication

The SDA will communicate with a variety of CEAs in order to establish the prop-

erties, relations, patterns and conversions it requires to recognise specifications.

It must continually interact with new CEAs that have arrived in the environ-

ment, as well as CEAs that are newly required to meet the current demands of

the recognition process.

When the SDA requires a particular property or other information, there may

be more than one CEA that can provide it. For example, a DCEA that represents

a particular person will be centred around providing a number of properties about

that person. Such a DCEA may provide a large amount of personal details

including the person’s name, age, home and work addresses, their location, and so

on. However, other CEAs may be centred around providing a particular property,

relation or patterns about a number of people or other entities. For example,

a meeting room may be fitted with a video-based DCEA that provides high

accuracy room-level location and speaker identification properties for each person

96

Chapter 4. A Pervasive Situation Determination Architecture

in the room. An SDA may require notification of all of these properties, regardless

of the style of CEA that produces it.

Within an environment, the population of available CEAs may be large and

dynamic. CEAs hosted on mobile devices may enter and leave the environment

at unpredictable times. Furthermore, CEAs may fail at any time.

An SDA could discover the available CEAs in the environment using yellow

pages-style lookup [117, 118], and manage registering and unregistering interest

in particular properties and other information with each CEA individually. How-

ever, doing so would not only increase the complexity of the SDA and CEA, but

it may also incur a significant runtime overhead.

Given these characteristics, the use of a more loosely coupled style of commu-

nication is desirable, and make publish / subscribe more appropriate for commu-

nication between SDAs and CEAs [111, 119, 120].

Ideally, a CEA could simply transmit a message, which would then be received

by any other interested agent. Similarly, if an agent is interested in receiving

a particular kind of message, they could simply advertise this, and receive all

messages of that kind. Such runtime flexibility, achieved through loose coupling

of message senders and receivers, is the key benefit of publish / subscribe style

messaging systems.

Using this, SDAs and CEAs communicate based on the content of a message,

rather than the particular destination address of the message’s receiver. A CEA

can publish notifications by connecting to the publish / subscribe substrate and

issuing an advertisement that describes the attributes of the events it publishes.

Details of how an agent discovers and connects to the substrate are given below.

An SDA can receive notifications by attaching to the substrate and issuing a

subscription that describes constraints on the attributes of the events it wishes

to receive. When a publisher generates a new event, it will be delivered to each

subscriber that has at least one matching subscription.

Advertisements, subscriptions and published events all share a similar struc-

ture. Each describes a tuple of the following form:

(<Subject>, <Subject Type>, <Predicate>, <Object>, <Object Type>)

By issuing a series of subscriptions, an SDA can traverse the graph structure

of an entity’s information, and can obtain the value of any desired property.

Furthermore, the subject and object types provide the SDA with a convenient

means of subscribing to a property of all entities of a particular type. For example,

97

Chapter 4. A Pervasive Situation Determination Architecture

it can subscribe to the identifiers of all entities of type Person, whose location is

within a particular room.

While the tuple structure is sufficient to investigate an entity’s properties,

several metadata attributes are defined for a tuple to support further functions.

These attributes include confidence, location and validity period.

The confidence attribute specifies the level of confidence the publisher CEA

has that the information provided by the tuple holds.

The location attribute indicates the area in which the reported property is

supported. For example, for the video-based DCEA above, it may only be able

to report the ‘isSpeaking’ property for people that are within the same meeting

room in which it is installed. As an SDA is only interested in receiving properties

about entities that are within the AoI, the location attribute allows the SDA to

exclude notifications that originate from outside that area.

The validity period attribute states the length of time the publisher CEA

believes the information provided by the tuple will hold. This provides the SDA

with a simple and convenient means to identify and remove stale information

from its internal model of the environment. CEAs may be mobile or battery

powered and so may disappear or fail at any given moment. If this were to

happen just after a CEA had published an event for a particular property, the

CEA has no way to publish further, more up-to-date events for that property or

otherwise indicate that it is no longer valid. An SDA may rely on this property

to recognise a situation, but will never receive external notification that it is

no longer valid. The SDA could use its own models of a property’s validity,

but this would considerably increase the complexity of the SDA as it must store

such a model for every property type, and may not have a model for newly

introduced types. Instead, the publisher CEA provides a validity period estimate

for a published event. This way, accurate, type-specific validity models can be

built into the DCEAs themselves, and the SDA can reliably purge its internal

model of the environment so that it only contains up-to-date information.

A Publish / Subscribe Agent (PSA) was developed to provide the publish /

subscribe substrate. A PSA acts as a single node in a publish / subscribe network.

Client agents connect to a PSA that they can then send subscription requests to

and receive event notifications from. The PSA essentially provides an interface

that allows direct access to the context information layer with an environment.

Section 3.2 noted that three layers of information existed in a pervasive situation

determination environment, where each built on top of the layer below it - sensor

98

Chapter 4. A Pervasive Situation Determination Architecture

data, context information and situations. By sending a situation request, and ap-

plication has access to the situation layer. By sending a subscription to the PSA,

an agent or application has access to the context information layer. Unlike situ-

ations and context information, which have a general, structured form, accessing

sensor data may depend upon device- or sensor-specific details. Therefore, access

to the sensor data layer is achieved through constructing a specific CEA that is

aware of these details.

In larger environments, a network of PSAs may be deployed to avoid a com-

munication bottleneck. Event-producing and event-consuming agents are then

connected to one of several leaf PSAs throughout the network.

4.8.2 Recognising situations

An SDA recognises a situation by matching the expressions of its specifications

against the information it has gathered about the state of the environment. This

chapter assumes that matching is performed by an SDA using a Rete network [66],

enhanced to support fuzzy-logic reasoning [23, 98]. Recognising a specification is

an instance of the many pattern/many object problem [66] as the environment

plays host to a number of instances of different types of entity that must be

matched against many different expressions within a number of specifications.

A Rete network provides an efficient solution to this problem by extracting and

reusing the commonality in a set of patterns. The architecture is not restricted

by this choice however, and another appropriate matching framework could be

used in practice.

Each of the steps an SDA performs in recognising a situation is illustrated in

Figure 4.5. In this figure, red parallelograms denote data, the yellow rectangles

represent individual steps carried out within the process, the light blue diamonds

show decision points within the process and the rounded green rectangle indicates

the terminal state of a request.

Figure 4.5 shows that the situation recognition process starts with a specifi-

cation. The first step to be carried out is to translate this into a form that can

be manipulated by the SDA, which in this case is a Rete network.

An SDA is the most computationally intense agent in the middleware, and it

is desirable to minimise the load on this agent. However, this conflicts with the

intention to recognise as broad a range of alternative specifications as possible, in

order to increase the overall confidence of the situation being recognised, as each

99

Chapter 4. A Pervasive Situation Determination Architecture

Rete network Specification Translate

Active? Put in active set

Put in inactive set

Yes

No

Subscribe to
properties in AoI

New
CCEA

available

Update internal
environment model

Match model
against specification

Match?

No

Yes

Match against
customisation

Match?

No

Yes Terminate
request

Send situation
response

Request
active?

Yes

No

Figure 4.5: This flowchart shows the steps involved in processing a single situation
specification, from an SDA receiving the specification to sending the situation
response.

specification that is added to the Rete network increases the computational load

of the SDA.

In order to balance these contrary goals, the SDA maintains two sets of specifi-

cations, the active set and the inactive set. When the SDA receives a specification

from the SDAM and it has been translated, it checks with the CCEAM that for

each function referenced in the specification, that there is at least one CCEA

available that can compute the required function. If there are sufficient CCEAs

available, then the specification is added to the active set. However, if not all of

the required CCEAs are available, then it is not currently possible to recognise

the specification. In this case, the specification is placed in the inactive set. By

using these two sets of specifications, the SDA maintains and up-to-date record

of which specifications it is currently expected to recognise, and does not waste

computational effort by attempting to recognise specifications that can only be

partially matched. Furthermore, when the outstanding CCEAs of a specification

in the inactive set do become available, the specification can quickly be trans-

100

Chapter 4. A Pervasive Situation Determination Architecture

ferred to the active set. This is the reasoning behind the “Active?” decision

and the “Put in active / inactive set” actions, which are the next steps shown in

Figure 4.5.

When a specification is put in the active set, it is loaded into the Rete net-

work. The SDA has already discovered the CCEAs it requires to compute the

functions referenced in the specification. The next step the SDA performs is to

identify which types of entities are involved in the specification, and discover all

instances that are within the Area of Influence (AoI). To do this, the SDA issues

a number of subscriptions, each matching one type of entity identified and whose

current location is within the AoI. Based on the resulting notifications for this

subscription, the SDA can use the entity identifiers to issue further subscriptions

to obtain the properties required to match the specification. As each piece of in-

formation is delivered through notifications, the SDA updates its internal model

of the state of the AoI. These two steps are shown in Figure 4.5 as “Subscribe to

properties in AoI” and “Update internal environment model” respectively.

Meanwhile, the Rete network attempts to match the expressions of the role

and situation specifications against the SDA’s evolving internal model. First,

the Rete network will attempt to match various combinations of entity instances

against the expressions of a role. When a match is made, the network updates its

internal model by entering the type of role matched into the appropriate slot of

the model’s representation of the primary entity of the role. For instance, when

the example presentation specification is being matched, the model for John may

look like:

id: JohnID

type: Person

...

roles: { (Speaker, 0.89, 13:32:44-13:33:44),

(Speaker, 0.71, 13:32:46-13:33:56),

(Audience Member, 0.12, 13:32:40-13:32:48) }

Note that there are two entries for the Speaker role. This is because the Rete

network may match more than one specification for this role. Note also that each

entry contains a time period. These describe the validity period of the match and

are based on the SDA’s internal clock. Each property that was used to match

the role expression will also have a validity period stored in its metadata. The

overall validity period of the match as a whole spans from the point in time when

101

Chapter 4. A Pervasive Situation Determination Architecture

the match occurred to the nearest expiry time of any of the properties used in

the match. The confidence of a match for a particular entity is then the highest

confidence from all matches for the same type of role, for the length of its validity

period. For example, the confidence that the entity with identifier JohnID is

playing the Speaker role will be 0.89 until 13:33:44, after which it will drop to

0.71.

When an entity has been identified as playing a role, the Rete network will

then use this new information to try to match different combinations of role-

playing entities against the expressions of the situation specification. If the sit-

uation specification is matched, it is checked against any currently requested

customisations. By checking the customisations after the specification has been

recognised, the specification need only be processed once, and the result can

be shared among several customisations, and as is shown later in Chapter 5,

many customisations may exist within the environment. These matching steps

are shown next in Figure 4.5 as “Match model against specification” and “Match

against customisation”.

Recall that a situation-aware application’s request may query if an index

entity appears in a particular specification, a situation or a situation with a set

of customisations applied. Also, that the request may state the reply should be

of short, feature set or full form. The values of these parameters affect what

is sent in reply to the request when a match occurs. When a short reply is

requested, the application wishes to know only whether or not the stated index

appears in a particular specification, a situation or a situation with a set of

customisations applied, and with what confidence. That is, the application does

not care about the contents of the feature set. So when a situation, or a situation

with customisations is requested, there is an opportunity for the SDA to fuse the

results of the several specification matches to increase the confidence of the short

form reply. When a situation is matched by two or more specifications, the SDA

picks the match that has the highest confidence, and uses this confidence value

for the reply.

When a feature set form reply is requested, a reply is sent for each specification

that matches the situation and any customisations. This is because for a feature

set form reply, the application does care about the contents of the feature set. As

each specification may support different features, a reply is sent for each match

with its particular confidence value. This is also the case for full form replies.

A reply is sent as soon as possible. For example, if a request is for a particular

102

Chapter 4. A Pervasive Situation Determination Architecture

specification, the reply is sent as soon as that particular specification is matched.

If a request is for a situation and a set of customisations, the reply is sent as soon

as the last of the customisations is matched. In the case of a short form match for

a situation or customisations, the SDA must wait until all specification matches

have been made, before sending the highest confidence reply.

To summarise, if a particular specification is requested, then the SDA sends

a reply immediately after that the specification is matched, for short, feature set

and full form requests. If a situation or customisation is requested in a short form

request, then the results of all matching specifications are fused by the SDA, and

then the fused report is sent in reply. Finally, if a situation or customisation is

requested in a feature set or full form request, then the SDA sends a reply after

each of the associated specifications are matched, though the receiving SAA may

fuse these reports where appropriate.

Note that a notification is not sent after a role is matched. That is because, as

discussed at the end of Section 3.6, at that point the entity only has the potential

to be playing the role. Only once the entity has been recognised to be playing

the role within the context of the rest of the situation, is the entity then actually

playing the role. Only when all the roles of a situation specification are being

played and all of conditions in its expression are met is a situation occurring.

The final decision step in Figure 4.5, “Request active?”, checks that the re-

quest has not yet expired, nor been explicitly terminated by the issuing appli-

cation. If the request is still active then the recognition process cycles back to

updating its model of the environment and continues the recognition, otherwise

the request is terminated.

4.8.3 Aspects of uncertainty

This section looks at a number of aspects relating to uncertainty that concern

the architecture and the situation recognition process. These include trusting the

confidence values reported by the system, situation boundaries and the benefits

of enabling situation-aware applications themselves to interpret the confidence of

a situation.

4.8.3.1 Trusting confidence values

The Rete-based reasoning component presented in the previous section implic-

itly trusts the confidence values reported for the context information it uses to

103

Chapter 4. A Pervasive Situation Determination Architecture

recognise situations. That is, it treats individual pieces of context information as

facts, where values that are likely to be incorrect are reported at a low confidence,

and those likely to be correct at a high confidence. Therefore, by including all

reports, the recognition component can trust that selecting those with the highest

confidence will lead to the most accurate results being generated.

However, if for some environments or for some particular sensing infrastruc-

ture this level of trust cannot be assumed, such that values reported with high

confidence may be suspected to be potentially incorrect anyway, it is also possible

that uncertainty itself could be reasoned about. That is, the context information

used to recognise a situation is taken to represent only evidence of facts, and not

the facts themselves.

For example, consider a case where the location system reports with high

confidence that a user has suddenly shifted to another room, but at the same

time, a speech CEA reports that that user has been talking continuously. If it is

known that the location of the microphone used to detect that the user is talking

has stayed the same, for example it may be fitted at a fixed position, the system

may be able to infer that the user’s location may not in fact have changed.

This introduces an independent system of reasoning about context informa-

tion, requiring its own specifications and knowledge. This is a complementary

aspect to recognising a situation, in that it is a separate component that could

identify, reason about, and add or remove particular pieces of context from con-

sideration for recognising a situation. It essentially forms an initial, dynamic,

context sanitation phase.

Such a system is outwith the scope of the work presented here. It would

form a specialised, sophisticated element of a more general context-processing

system. However, it would be possible to integrate such a system into both

the context information layer, by constructing appropriate CCEAs, and also the

situation layer, by employing an appropriate variant of recognition algorithm

in the SDA. Applying Dempster-Shafer Theory provides a means of reasoning

about the uncertainty of context information, and has been used to good effect

by McKeever et al. [121].

4.8.3.2 Situation boundaries

A situation specification creates a boundary within the space of the context infor-

mation that is used to recognise the situation. When a specification has a short

104

Chapter 4. A Pervasive Situation Determination Architecture

temporal extent, the SDA can support immediate recognition of its situation.

Furthermore, should any of the expressions or constraints within the specifica-

tion no longer hold, the SDA will immediately cease to recognise the situation.

This quick switching in recognising situations offers two key benefits in both

inter-environment and local usage. The architecture is query-based, and in inter-

environment operation, it allows a situation request to be made, the index to be

located in a remote environment, the recognition to be performed, and the report

sent back to the application, all within a sufficiently short temporal extent to give

responsive feedback to the user and allow interactive use of the application. For

local use, imagine a ‘Confidential presentation’ situation in which confidential

information is displayed in a room to a select set of attendees only. Should

someone else unexpectedly enter the room, the information must be removed

from the display immediately. Being able to quickly detect that the intended

situation is no longer occurring is critical in creating reactive situation-aware

applications such as these.

However, there may be other cases where retrospective, rather than inter-

active, use is desired. For example, for applications that record occurrences of

situations for later use, such as the situation-enhanced file search application

mentioned in Section 4.2, employing a longer temporal extent may help to clarify

which situations occurred over time.

Continuing with the confidential presentation example, imagine the presenta-

tion is taking place, it is interrupted by an unauthorised person entering the room,

and upon them leaving the confidential presentation is resumed. This creates an

uncertainty as to whether two instances of confidential presentation occurred,

separated by another or an unknown situation, or whether a single, interrupted

instance occurred. Once the presentation has finished, it may be possible for the

system to look back over the full period of time and identify that it was in fact

the latter case.

While such retrospective reasoning can help reduce uncertainty in recognising

situations, it comes at the cost of impeding interactive and inter-environment

use, which are critical for pervasive situation-aware applications. It could be

possible that the system would be able to support both styles of reasoning where

each is appropriate. Other possibilities afforded by a longer temporal extent are

discussed in Section 6.2.1.

105

Chapter 4. A Pervasive Situation Determination Architecture

4.8.3.3 Interpreting situation confidence

Interpreting the confidence value associated with a situation report can be an

intricate task. It can incorporate several factors, including the current intent and

context of use, whether it is part or all of the situation that is important, what

actions are intended to be taken as well as the risk involved if these actions are

mis-applied. The combination of factors may be specific to a particular type or

even unique to a particular instance of an application.

To assist in this, the architecture allows a situation-aware application full

control over the interpretation of the confidence of a situation. That is, the

middleware does not attempt to interpret the confidence on the application’s

behalf.

This allows the application designer to fully capture the intricacies of correctly

interpreting the confidence and to obtain the appropriate precision for the partic-

ular application at hand. Their scope would not be limited due to unanticipated

uses or other restrictions that a standard implementation in the middleware may

unintentionally impose.

4.9 The Index Locator Agent

In the opening scenario, Angela used a situation-aware availability checker appli-

cation to see if John was currently busy or not. A situation is recognised in the

local environment of the situation’s index. When Angela ran this application,

she was not aware of the location of John, who was the index of the situation

request. He may have been in the local environment, in the same city or perhaps

in a different country. The purpose of the index locator agent (ILA) is to discover

the ISA of the index of an application’s situation request, wherever in the world

it may be located.

Locating a mobile entity within a network is a problem common to many

systems. A common solution, used by the Mobile IP protocol [122], is to locate

a mobile entity via a home server.

A home server is a host machine that can be reached from a fixed address. As

the mobile entity moves throughout different networks, and as such may change

address, it notifies its home server of the address it currently has, known as its

‘care-of’ address. Any messages that are to be sent to the mobile entity are sent

to the fixed address of the home server, which forwards the message to the mobile

106

Chapter 4. A Pervasive Situation Determination Architecture

entity at its current care-of address.

While the home server approach has been used successfully in other systems,

it is less well suited for use for pervasive situation determination. In particular,

it is undesirable to have to set-up and maintain a home server for every person,

device and location that may feature as an index entity of a situation subscription,

as the total number of such home servers would be large. Furthermore, the home

server introduces an additional component that provides a single point of failure

for determining situations that involve the particular index entity.

Instead, a distributed home server approach is proposed in which each entity

can manage their own home server individually and automatically, that builds on

top of the existing situation determination infrastructure, and does not rely on a

single host machine being operational.

Several distributed hash table (DHT) algorithms have appeared in the liter-

ature in recent years. These include Pastry [123], Chord [124], CAN [125] and

Tapestry [126]. Distributed hash tables provide an appropriate means to imple-

ment a distributed home server, as they are resilient to host machine failures, can

automatically adapt to host machines frequently joining and leaving, can scale

to very large network and hash table sizes, and can locate entries stored in them

very quickly.

A DHT provides a key-based lookup and storage facility (just as a regular

hash table does), distributed across many nodes in a network of such nodes.

The architecture implements a distributed home server on top of a DHT. Each

index entity has a unique, fixed identifier (specifically a UUID [127]). It uses this

identifier as the key to write its current care-of address into the DHT. Conversely,

to locate the entity, an agent can lookup the current care-of address in the DHT

using the entity’s fixed identifier.

A situation-aware application makes a situation request to an SAA in exactly

the same way, regardless of whether the situation it requests is occurring in the

local environment, or in an as yet unknown external environment. The SAA uses

the ILA to manage the detail of locating the index entity and provide transparent

operation to situation-aware applications.

When an SAA receives a situation request from an application, it passes the

identifier of the index to an ILA. The ILA then attempts to discover the index’s

ISA in the local environment, based on the index’s identifier. If the index’s ISA

is found, then the SAA registers with it, and will receive situation notifications

as normal.

107

Chapter 4. A Pervasive Situation Determination Architecture

If the ISA is not found, the ILA looks up the current care-of address of the

index entity in the DHT. If a care-of address is found, the ILA uses this to forward

the situation request to the ISA of the index entity. The remote index entity’s

ISA will issue the request to the SDAM in the remote environment. Similarly,

any situation notification received by the remote index entity’s ISA is sent back

to the application’s SAA in the local environment, as if the notification had been

generated in the local environment.

If no match is found in the DHT, it implies that the index entity cannot be

found on the network, and so the situation request is dropped.

The nodes that make up a DHT form a connected network. In order for

agents to read from or write to the DHT, they must connect to one of its nodes.

A deployment in an administered environment would typically host a DHT node,

which can be used by any ILA within it. As is shown in the next section, the

situation determination middleware also supports an ad hoc mode of operation

that does not rely on fixed infrastructure being available. In this case, an ILA

hosted on a mobile device would connect to a pre-configured DHT node, such as

one hosted in the owner’s home environment, or perhaps even one hosted by the

owner’s Internet Service Provider.

By using a transparent combination of large-scale DHT-based lookup and lo-

calised agent discovery, the situation determination middleware seamlessly sup-

ports inter-environment operation.

4.10 Environment and Ad hoc modes

One of the aims of the design of the situation determination middleware is to

support recognition of situations wherever the situation’s index may be. That

could be in a private, administered environment such as the workplace, where

there may be dedicated infrastructure available for use by the middleware. It

could also be in a more public, non-administered environment such as an open-

air café or a train station, where it is only the collection of devices that a single

person or a group of people carry with them that is available to the middleware.

In order to support continuous recognition of situations, the middleware pro-

vides two modes of operation. One is the environment mode, designed for use in

private, administered environments with dedicated infrastructure available. The

other is the ad hoc mode, designed to be used in public, non-administered envi-

ronments with only an ad hoc collection of (most likely) mobile devices available.

108

Chapter 4. A Pervasive Situation Determination Architecture

Previous sections have presented the environment mode, but this section fo-

cuses on the ad hoc mode and transitions between the two. When operating in

the environment mode, the middleware attempts to incorporate as many devices

and as much information as it can. However, this approach could prove disastrous

when operating in the ad hoc mode. In the ad hoc mode, the devices being used

are most likely to be portable, resource-constrained, battery-powered devices such

as a mobile phone. If a phone were to attempt to discover and connect with all

other devices in range, there may be so many that it would be choked just trying

to connect to the sea of devices within network range. Consider for example,

the case where a user is in a busy train station, and there may be thousands of

other mobile phones. To avoid this problem, when operating in ad hoc mode,

devices will only try to connect to other known devices that have been explicitly

identified to be incorporated. A mobile device will operate in ad hoc mode by

default.

A user may configure a mobile device to either manually or automatically join

a new environment when one is detected. In both cases, it is the responsibility

of the Environment Manager Agent (EMA) to co-ordinate the transition.

There are several details that must be configured when a mobile device enters

a new environment. These include, where appropriate, setting which SDAM the

device’s ISA should use, and likewise which CCEAM the device’s SDA should use,

setting which DHT node the device’s ILA is connected to, and linking together

nodes of the publish / subscribe network.

Each environment advertises itself on the network using an ad hoc discovery

protocol. As with an ISA, an EMA is assigned a UUID. Using the ad hoc discovery

protocol, an environment advertises the UUID of its EMA agent, as well as the

type of environment (administered or ad hoc) that the EMA represents.

When a mobile device enters a new network, its EMA agent can discover all

other EMAs in the network using ad hoc discovery. Through interacting with the

other EMA, the mobile device can join an administered or ad hoc environment.

If the user has the mobile device configured to manually join a network, then

the device may alert the user that new environments are available, and the user

can select which environment they wish to join. The user can also configure the

device to automatically join new environments.

When a mobile device connects to an administered environment, the process

is relatively straightforward. The mobile device’s EMA discovers other environ-

ment EMAs of administered type. The device’s EMA uses the address of the

109

Chapter 4. A Pervasive Situation Determination Architecture

environment’s EMA from the advertisement to send it a request for the addresses

of the environment’s SDAM, CCEAM, DHT node and publish / subscribe node.

The device’s EMA then sets its ISA to use the environment’s SDAM, and the

ISA forwards its current set of situation requests to the environment’s SDAM.

Any active requests that use the device’s local or a previous environment’s SDA

are cancelled. Similarly, the EMA instructs each of the DCEAs hosted on the

mobile device to connect to the environment’s publish / subscribe node, and

cancel the previous connection. The EMA also sets the device’s SDA to use

the environment’s CCEAM, and the device’s ILA to use the environment’s DHT

node, if one is available. When the EMA has completed these steps, the mobile

device will now operate within the new environment, and any active situation

requests will have been transparently transferred over into the new environment.

When a mobile device automatically joins an ad hoc environment, the process

is a little more complicated. This is because of the extra restrictions in place

for ad hoc operation. As noted earlier in the chapter, the set of environments a

device will attempt to join must be restricted, in order to prevent the device from

being flooded with join requests when many ad hoc environments are available,

such as in busy public places like a train station. Figure 4.6 gives an example

of how a number of mobile devices may be connected when operating in ad hoc

mode.

Mobile devices are configured with a user-maintained white-list of ad hoc

environments, which are the only ad hoc environments the device will try to

connect to. The white-list is made up of a ranked set of EMA UUIDs. In the

case where more than one white-listed environment is available, the EMA will

select the one with the highest rank. The user can add and remove new and

known environments to and from the white-list as required.

When joining an ad hoc environment, it may not always be appropriate to

switch to the SDAM and SDAs of the new environment. For example, if the ad hoc

environment consists of a single mobile phone, and then three other mobile phones

join the ad hoc environment, it could turn out that it is the unlucky original

phone’s SDA that would now have to try to recognise all the situations of all four

phones, choking its resources. However, in another case, the ad hoc environment

may first include a single laptop that can happily support the recognition of its

own and the other three phones’ situation requests.

In order to control which devices are used in the foraging of recognition

load within ad hoc environments, mobile devices also employ a user-maintained

110

Chapter 4. A Pervasive Situation Determination Architecture

Mobile phone

EMA DCEA

Mobile phone

SDA

SAA

ISA ILA

EMA DCEA

Laptop

ISA SDAM SDA

EMA

SRA
CCEA CCEAM

DCEA

Figure 4.6: An example network of mobile devices operating in ad hoc mode.
Here, both mobile phones have the laptop listed on their white-list and offload-
list, and so both use the laptop to perform situation recognition. Lines indi-
cate communication between two agents. For clarity, not all agents that would
be hosted on a device are shown, only those that help illustrate the devices’
interaction.

offload-list. The offload-list is also made up of a ranked set of EMA UUIDs.

The environments featured in the offload-list will be a subset of the environments

included in the white-list.

A key advantage of this user-configured scheme is that it puts the user in

control. While a middleware-managed scheme could relieve the user of having to

maintain an off-load list, the current scheme appeals to the user’s self-interest.

In ad hoc mode, devices will be competing to preserve their own battery. The

user-configured scheme allows the user, rather than the middleware, to dictate

which devices are favoured, and so control resource foraging.

When the mobile device discovers an ad hoc environment, it first checks the

UUID of the environment against its white-list and offload-list. If the UUID fea-

tures only on the device’s white list, then the EMA will simply connect the device

to the new environment’s publish / subscribe network. If the UUID features on

the device’s off-load list, then the EMA will perform the same changes for joining

an administered environment, which are to switch to using the off-load host’s

SDAM, CCEAM, DHT and publish / subscribe network. If more than one of the

111

Chapter 4. A Pervasive Situation Determination Architecture

devices present features in the offload-list, the EMA will select the device that

has the highest rank. As the set of devices a user owns and encounters changes

over time, he/she can alter the offload-list to best suit.

By supporting seamless operation for the transition between environment

mode and ad hoc mode operation, the situation determination middleware allows

situation requests for a particular index to transparently persist over changes of

location, network, environment and operational mode.

4.11 Application interfaces

This section describes the application interfaces offered by the pervasive situation

determination middleware to situation-aware applications.

The interfaces are agent-based interfaces in that they build upon the message

passing interface of the underlying agent substrate. Two agents provide an inter-

face to situation-aware applications. The first is the situation-aware application

agent (SAA), which provides an interface to make and receive situation requests

and responses. The second is the Publish/Subscribe Agent (PSA), which provides

an interface that gives situation-aware applications direct access to the context

information layer. Each of these interfaces is presented in turn in the next two

sections.

4.11.1 The SAA interface

The situation-aware application agent (SAA) presents a simple situation query

interface to situation-aware applications. The interface supports three basic oper-

ations. The first operation allows situation-aware applications to discover which

situations, customisations and specifications are supported in the local environ-

ment. This is particularly useful for situation-aware applications that require

to discover situations at runtime, rather than have the situation or specification

identifiers the application requires hardwired at design time. For example, a

situation-aware navigation aid application may present to a user a list of discov-

ered situations that are supported in the environment, and having recognised the

type of situation they are looking for, they can then search for occurrences of

that particular situation. The query is named ‘getSituations’ and can be param-

eterised to return the set of supported situations, customisations, specifications

or any combination of these.

112

Chapter 4. A Pervasive Situation Determination Architecture

In the description of the interface below, the term target is used to refer to

situations, customisations and specifications collectively.

The second operation allows situation-aware applications to request notifica-

tions of occurring situations. This query is named ‘requestSituations’ and takes

the following parameters:

• index - this parameter indicates which situation index is to be used. It re-

flects the principal entity whose situation(s) an SAA wishes to know about.

An index may be a device, a person or a location. When the index is a

person or a device, a SAA is asking either “is person/device X involved in

situation Y?” or “which situations is person/device X involved in?”. When

the index is a location, a SAA may ask “is situation Y occurring at location

X?” or “which situations are occurring at location X?”.

• target - this parameter indicates what is to be recognised. It may specify

the identifier of a situation, a customisation or a particular specification.

When used with an identifier, the SAA is asking “is index involved in target

identifier?”. This parameter may also have the special wildcard value ‘*’

which indicates that the SAA wants to receive notification of all of the

situations or customisations that the index is currently involved in. When

used with the wildcard value, the SAA is asking “which situations is index

involved in?”. This parameter may also specify combinations of targets.

For example, the request could specify a customisation and a number of

specifications, meaning “is index involved in the stated customisation, as

recognised by any of the given specifications?”

• confidence - this parameter specifies a constraint on the confidence of the

situation occurrence. For example, a situation-aware application may set

this to be greater than 0.6, meaning that it only wishes to receive notifi-

cation about situations that have been detected with a confidence greater

than 0.6.

• mode - this parameter specifies the form of the response the situation-aware

application requires. The parameter can be set to the ‘short’, ‘features’ or

‘full’ form. Each of these forms is described below.

• expiry - this parameter specifies the amount of time the request should be

maintained. It indicates to the middleware that after this amount of time

113

Chapter 4. A Pervasive Situation Determination Architecture

has passed, the situation-aware application no longer requires the results

and the request may be safely terminated.

In some cases, an application will not be interested in the features of a situ-

ation, requiring only notification of whether a situation is occurring or not for a

particular index. For example, in the scenario, Angela wished initially to be no-

tified only of which situations John was currently involved in, and not the details

of those situations. The response to this style of query reports only the situation

index, the target identifier and the confidence of the occurrence. To receive this

style of notification, a situation-aware application can specify the ‘short’ form for

the mode parameter.

Some applications will require the full feature set of a situation to be returned.

For example, the situation-enhanced file search tool John used in the scenario

requires this in order to mark-up each file access with as many search criteria as

possible. That is, not only the identifier of the target, but all of the details of the

features as well. The response to this style of query contains the target identifier,

the confidence and the results of each of the features of the situation. For example,

the results of the ‘Audience Members’ feature of the Presentation situation would

contain all of the identifiers representing each of the people who were detected

to be in the audience. To receive this style of notification, a situation-aware

application can specify the ‘features’ form for the mode parameter.

Environment administrators and specification developers may wish to receive

even more information about the matched specifications, to assist them in debug-

ging a deployment or authoring specifications. The mode parameter may also be

set to the ‘full’ form. The response in this case includes the identifier of the spec-

ification that the SDA matched, the identifiers of each entity that was involved

in the match, as well as the values of all of the properties that are referenced in

the specification at the point when the match occurred.

Consider an example query drawn from the scenario presented earlier, where

the situation-aware availability checker Angela used first requested to be notified

of which situations John was involved in. Here, the query would have the following

form:

requestSituations(JohnID, *, > 0.6, short, 60 mins)

indicating that the situation index is to be John, that any situations that John is

involved in are to be included, the confidence must be greater than 0.6, the short

114

Chapter 4. A Pervasive Situation Determination Architecture

form of notification is to be used, and that the request should be maintained for

60 minutes.

Next, Angela sets the availability checker to notify her when John is no longer

taking part in the presentation. Note however, that before issuing this request,

the application must first inform the SDA that it is no longer interested in the

results of the first request. Although the request will be automatically terminated

once its expiry time has passed, an application may also explicitly terminate a

request by calling the third operation supported by the SAA, ‘unregister’. When

the ‘requestSituations’ operation is called, an identifier for that request is returned

to the application. To end a request, the application can pass the request identifier

to the ‘unregister’ operation.

The SAA uses an index locator agent (ILA) to detect if the index of a request

is located in the local or a remote environment. While the details of the ILA are

covered later in Section 4.9, note here that special attention must be given to the

distribution of customisations when the request is for an external environment.

As customisations may be bespoke to an individual situation-aware application,

the SDA that will eventually recognise the customisation must have access to

it. When the index is located in the same environment as the application, the

customisation will be available from the application’s local situation repository

agent (SRA). In the case where the index is located in a remote environment, the

customisation is embedded in the request, in order to make it available to the

local environment of the index.

4.11.2 The PSA interface

The Publish / Subscribe Agent (PSA) interface allows situation-aware applica-

tions to directly query context information that is available in the environment.

For example, this interface may be used to query further information about an

entity that appeared in a feature of a situation report, but the desired additional

information is not relevant to the situation or did not appear in a related feature

in the situation report.

The interface is based on the operation provided by the publish / subscribe

substrate to which the PSA provides access. Applications can register interest in

receiving particular types of context information by sending a subscribe message

to the PSA. Conversely, an application can indicate to the PSA that they are

no longer interested in particular types of context information by sending an

115

Chapter 4. A Pervasive Situation Determination Architecture

unsubscribe message. The PSA publishes context information to all current,

interested subscribers by sending notification messages that contain the desired

context information.

This interface is not only available to situation-aware applications, but also

any other agent in the system. For example, it may be common for a Compute

Context Entity Agent (CCEA) to subscribe to one or more Data Context Entity

Agents (DCEAs) to aggregate or further transform multiple context information

sources.

Subscribe and unsubscribe messages are specified using a template based on

the typed tuple form, shown earlier in Section 4.8.1, to describe the type of

context information they wish to receive. The template may contain matches on

exact values, functions indicating a range of values that could be matched, as

well as wild card or “don’t care” matches where any value will be matched.

As an example, assume an agent or application wanted to determine all of the

people that were currently located within a particular location, room “L10.01”.

This could be achieved by issuing a subscription with the following template:

(*, Person, location, within(L10.01), Location)

This template states that the subscription would match any entity with type

‘Person’ that has a property ‘location’ whose value satisfies the predicate

‘within(L10.01)’ and is of the type ‘Location’.

Notifications deliver context information also in the typed tuple form. How-

ever, rather than being a template which specifies values and ranges to be matched,

the notification contains the actual data that was matched against the subscrip-

tion template. For example, a notification matching the subscription above with

a person represented by the identifier ‘JohnID’ could take the following form:

(JohnID, Person, location, L10.01-speaker-area, Location)

An agent or application may unsubscribe from a previously issued subscription

by sending an unsubscribe message to the PSA with the same template given in

the subscription.

4.12 Summary

This chapter has presented an architecture for pervasive situation determination.

In particular, it was shown how the architecture provides support for the following

requirements:

116

Chapter 4. A Pervasive Situation Determination Architecture

Adaptable recognition - It was shown how the architecture can automati-

cally exploit any new data sources or sensing technologies introduced into the en-

vironment on mobile devices in the form of data context entity agents (DCEAs),

as well as any new computational, pattern recognition or conversion capabili-

ties in the form of compute context entity agents (CCEAs), and how the flow

of information from these was co-ordinated and fused by the compute context

entity manager (CCEAM). Also shown was how specification repository agents

(SRAs) act as dynamic sources of new situations, specifications and customisa-

tions within an environment. The flexibility of the situation recognition pro-

cess used by a situation determination agent (SDA) was demonstrated, including

how each of these sources can be dynamically incorporated to provide recogni-

tion of the broadest range of situations at the highest granularity possible. The

autonomous co-ordination of these agents actions provide an extremely flexible,

extensible and adaptable situation recognition process that can continually adapt

to an environment as it evolves.

Resource management - The architecture employs several techniques to

evenly distribute the load between agents of the system and to strive to preserve

the battery life of mobile devices. These included resource requirements based

assignment of situation specifications to SDAs by the situation determination

agent manager (SDAM), as well as a resource foraging approach to allow the

computationally expensive operation of recognising situation specifications to be

off-loaded from resource-constrained to resource-rich hosts. Also included was the

specification grounding technique that can be used to minimise communication

costs for mobile SDA hosts.

Inter-environment operation - This requirement was supported by the ar-

chitecture in two ways. The first was the ability of the index server agent (ISA)

of an individual person, device or location to receive situation requests from and

send situation reports to a situation-aware application (SAA) anywhere within the

network. The second was by supporting both environment and ad hoc modes of

operation and having an environment manager agent (EMA) autonomously man-

age transitions between the two, allowing the architecture to support continuous

recognition of a person or device’s situations over changes in location, network or

environment, as well as changes in the architecture’s operational mode.

Situation discovery - It was shown how within the architecture, an index

server agent (ISA) and an index locator agent (ILA) co-operate to provide large-

scale discovery of the index of a situation and how this enables situation-aware

117

Chapter 4. A Pervasive Situation Determination Architecture

applications to base their behaviour not only upon situations that are occurring

in the local environment, but also upon those in external, potentially remote

environments elsewhere in the world.

The architecture presented in this chapter provides a comprehensive approach

by both supporting the unique features of the modelling approach presented in

Chapter 3, and also fulfilling the distinct architectural requirements necessary to

achieve pervasive situation determination.

118

Chapter 5

Evaluation

5.1 Introduction

This chapter presents an evaluation of the pervasive situation determination mid-

dleware prototype described in the previous two chapters.

The work presented in this thesis has focussed on providing support for the

distinct modelling and architectural requirements necessary to realise pervasive

situation determination. These include the requirements for end-user customisa-

tion, rich situation models, alternative situation descriptions and multiple view-

points in the model, as well as the particular adaptable recognition, resource

management, inter-environment operation and situation discovery requirements

of the architecture.

This chapter presents an evaluation of how well the situation determination

middleware supports these themes. In particular, the evaluation addresses the

following criteria:

Sufficient expressivity - Establish that the model and architecture are suf-

ficiently expressive to conveniently describe several situations, specifications and

customisations spanning a range of domains and environments, and support a

variety of styles of pervasive situation-aware applications, respectively.

Straightforward instantiation - Demonstrate that situation models, the

architecture and pervasive situation-aware applications afford straightforward

instantiation.

Practical performance - Determine that the middleware provides a suffi-

cient level of performance for the number and size of situations that would be

119

Chapter 5. Evaluation

encountered in real-world settings.

These criteria were chosen as together they broadly cover a number of impor-

tant, high-level qualities of the middleware in use.

First, the effort required to initially instantiate the model and architecture in

a prototype implementation is discussed in Section 5.2. It demonstrates the rich

tool set available to assist in creating situation descriptions and details existing

frameworks that simplify the development of the middleware.

Section 5.3 goes on to explore the ease of instantiation of situation-aware

applications and the level of expressivity offered to them by the middeware. It

shows how simple it is to incorporate the situation determination middleware into

an application, to set up the sensing infrastructure required by an application,

and to create situations, specifications and their customisations.

In exploring expressivity, the aim is to determine if the prototype middleware

has the capability to support the description and recognition of a range of situa-

tions and customisations across a number of domains and different environments.

Four different domains are explored, including the use of devices and applica-

tions, a domestic setting, a public setting and a University setting. While the

University setting is slightly specialised, it suggests the kind of situations that

could be recognised in an office environment too. These domains reflect settings

that would commonly be encountered by a large number of users, and the sit-

uations developed for each cover a broad range of different styles of situation

that would commonly be encountered within that domain, demonstrating that

the middleware would be widely applicable.

Furthermore, this section presents a case study of the development of not only

this collection of situations, specifications, customisations, and their required con-

text sensing and processing agents, but also a suite of applications, each drawn

from a different class of situation-aware application and distinct in purpose. This

suite includes an availability checker application, which is an example of an appli-

cation that performs ad hoc situation queries about a person, device or location

in real time, whether the target may be in the local environment or in an un-

known remote environment; a mode manager application, which is an example of

an application that continuously monitors and autonomously reacts to particular

local situations in real time, constantly adapting to changes in sensing infrastruc-

ture and environment as the user travels from place to place throughout their

day; and also, a situation-enhanced file search application, which is an example

of an archival application that detects and records all of the situations the user

120

Chapter 5. Evaluation

is involved in and allows later searching and analysis of those situations for infor-

mation and artefacts associated with them. These particular applications were

chosen as together, the suite of applications exercise the full functionality of the

middleware, as well as being fun and appealing applications in themselves.

This part aims not only to show that the situation determination middleware

satisfies the main goals set out in this thesis, but also to demonstrate its utility

in a realistic deployment. Through developing a range of styles of application,

this part attempts to illustrate that the middleware supports a sufficient level of

coverage of the situation-aware application domain, in addition to making it easy

to create powerful situation-aware applications.

The next section looks at practical performance. It first describes the ex-

perimental set up in a University environment that was used to conduct the

performance assessments in Section 5.4.1. The University environment was cho-

sen as it played host to the largest and most complex situations, and so represents

the system under the greatest load.

The purpose of Section 5.4.2 is to show that the pervasive situation determi-

nation middleware is suitable for use by interactive situation-aware applications

as it scales to realistically-sized deployments, for both infrastructure-based and

ad hoc environments. Therefore, two measurement criteria have been chosen that

are important for interactive use: round trip time and join time. The load in-

curred in recognising situations can scale in two ways. The first is in the size of

the situation itself, that is, the number of people, devices and other artefacts that

are involved in a single instance of a situation. The second is the number of types

and instances of situations that are recognised at the same time. This section re-

ports a series of measurements that capture both of these cases. Moreover, these

measurements are repeated for both infrastructure-based and ad hoc modes of

operation. This section also examines the efficiency of the additional technique

of sharing the recognition load between multiple hosts in further addressing scale

in infrastructure-based environments. This section closes by providing relative

resource consumption rates, to give an impression of how the different parts of

the system contribute to the overall system load.

Section 5.4.3 presents an algorithmic analysis of the Rete-based recognition

core to indicate how the overall complexity grows in relation to the different

elements that comprise a situation specification. An analysis of grounded specifi-

cations is also given, providing an example quantification of the savings afforded

by this technique. This section closes by summarising the performance charac-

121

Chapter 5. Evaluation

teristics of the agent substrate and the distributed hash table implementation

employed by the middleware.

The focus of the evaluation is on the novel aspects of the pervasive situation

determination middleware presented in this thesis. In this respect, assessing the

accuracy of the recognition algorithm is outwith the scope of this evaluation. As

noted in Section 4.2, the middleware does not represent a single, stand-alone sys-

tem that is to be used exclusively within an environment. Is it an adaptable and

extensible middleware that can be overlaid and integrated with existing systems

within the environment at the sensing infrastructure, context and/or situation

layers, allowing specialised components to be used where necessary. Recognition

accuracy is a property of the recognition algorithm itself. The Rete algorithm

has been used in this approach to provide a default implementation. As the

Rete algorithm is not part of the contribution of this work, assessing its accuracy

lies outwith this evaluation. (It is possible to note anecdotally however, that

as location gave the greatest source of uncertainty in most of the specifications

developed in this chapter, that recognition accuracies were similar to that for the

location system itself, which are reported in Section A.2.4.)

However, performance measures of the default Rete-based implementation

are included here to show that the novel aspects of the approach can be fully

supported, and that in doing so it is possible to achieve sufficient performance.

Similarly, as the middleware employs the agent substrate and distributed hash

table implementations in their standard, intended ways, including the authors’

own assessment of these frameworks is appropriate.

5.2 Instantiating the model and architecture

To begin, the instantiation of the model and architecture is presented. This

is to assess, under the complexity criterion, if it is possible to instantiate and

use the model and architecture easily. The specific technologies that were used

to represent situation descriptions and realise the model, as well as the specific

technologies that were used to instantiate the architecture are discussed.

Each of the three flavours of situation description–situations, customisations

and specifications–is represented by an OWL document. The Web Ontology Lan-

guage (OWL) is a language for creating ontologies [128] and allows for the rich

description of semantic models. The entities within a situation, their properties

and relations, the environment, and the situations, specifications and customisa-

122

Chapter 5. Evaluation

tions themselves can all be semantically described.

There are several factors that make OWL an appropriate choice of language for

situation descriptions. First, it allows rich, semantic models to be constructed

to represent the environment, entities and situations. Elements of the model

can be reasoned about abstractly, allowing greater flexibility and generality in

writing situation specifications. The collection of situation descriptions within an

environment may come from several different sources, and so make use of their

own ontology or extensions. Tool support exists to automatically infer equality

between the concepts and relations of two different OWL ontologies [129, 130,

131]. Furthermore, tool support exists to automatically check the validity and

consistency of situation descriptions [132, 129]. Additionally, there are tools

available for graphically creating and manipulating situation descriptions [133].

As situation descriptions are formalised in an OWL ontology, it is also possible

to define translations between OWL and other ontology languages, increasing

the situation descriptions’ interoperability and availability. OWL is an open

standard, and is freely available [128]. Also, the language is XML-based, making

it accessible to, and interoperable between, many platforms and programming

languages.

The situation ontology defines the structures of a situation, a customisation,

as well as a specification. In addition, more general concepts and relations are also

defined which model the entities that may appear in the environment. These in-

clude people, devices, software artefacts, as well as some domain-specific concepts

such as classes, lectures, labs, etc.

Defining a suitable and complete ontology for situation-aware computing is

not the focus of this work. Works that do strive to provide this include COBRA-

ONT [134], CONON [26] and Ontonym [27].

Unfortunately, there were several factors that prevented one of these ontolo-

gies being used in the implementation of the situation determination middleware.

One of which was availability, only the CORBA-ONT ontology was publicly avail-

able at the time of development. Another factor was coverage, despite aiming to

be general, COBRA-ONT did not include key concepts and relations required for

the applications developed. Conversely, the ontology included several concepts

that were not required by the middleware or applications, and so would have

introduced extra overhead to support. A further factor was novelty, the loca-

tion model introduces the notion of location types, which were not supported by

existing ontologies.

123

Chapter 5. Evaluation

Figure 5.1: Using the Protégé ontology editor to graphically create new
specifications.

It was therefore necessary to develop a custom ontology for use by the situ-

ation determination middleware and the situation-aware applications that were

developed. In addition, using a concise, tailored ontology helped in quickly pro-

ducing a prototype system. The full listing of the situation ontology can be found

in the appendices in Section B.2.

Writing a situation specification can involve detailed work. While it is possi-

ble for a developer to write specifications in OWL XML directly, this is a tedious

and error-prone process. Fortunately, tool support exists for editing OWL docu-

ments graphically, such as the Protégé Ontology Editor [133], which reduces the

effort required to produce, and also checks the validity of, the documents cre-

ated. Figure 5.1 shows a snapshot of an alternative, coarse-grained Presentation

specification being created using Protégé.

Similarly, it is desirable to be able to create customisations quickly and simply,

perhaps even for situations in which the user is currently involved in. It is possible

to create a customisation with a graphical ontology editor such as Protégé [133],

but this is not the most convenient way. For example, it may only be run from a

laptop or PC, and not a PDA or mobile phone.

124

Chapter 5. Evaluation

Figure 5.2: Using the customisation creator tool to create a new customisation
on a Pocket PC.

To facilitate such quick and simple creation of customisations, a dedicated

tool was developed. A snapshot of the tool is shown in Figure 5.2. By analysing

the structure of a situation description, it dynamically provides drop-down boxes

for each of the features of a situation and possible constraints that may be placed

upon them, assisting the user at each stage when creating a customisation’s con-

straints. Once created, the customisations will be stored by the user’s situation

specification repository agent and accessed and applied when appropriate when

situation recognition is performed.

Instantiation of the architecture was made swift by the availability of several

appropriate frameworks that could be used to construct the non-exclusive parts

of the prototype implementation. For example, the agent implementation for

the pervasive situation determination middleware prototype was based upon the

Java Agent DEvelopment Framework (JADE) [118]. This framework was chosen

as it was freely available, open-source, mature and in active development, and

well documented. It provided many of the features required by the pervasive sit-

uation determination architecture, including suitable abstractions for agents and

agent behaviours, agent discovery, agent messaging including inter-environment

agent messaging, support for wired and wireless networks, was able to handle in-

termittent connectivity through automated store and forward techniques, as well

as support for multiple device platforms, from server-class machines to mobile

phones.

Similarly, the Situation Determination Agent (SDA) implementation is based

on the Jess Rule Engine realisation of the Rete network algorithm [135]. The Pub-

125

Chapter 5. Evaluation

lish / Subscribe Agent (PSA) implementation employs Sienna-like attribute-based

publish / subscribe communication which provides a sufficient level of expressiv-

ity while offering good performance [119, 136]. The Environment Manager Agent

(EMA) implementation uses the Service Location Protocol (SLP) for ad hoc

agent discovery [137]. SLP was chosen as it is a simple protocol that can be used

in either small or large networks, and is supported by mature, freely available

implementations in several programming languages [138]. The particular SLP

implementation that was used was jSLP, a lightweight Java SLP implementation

that is in active development [139]. While the implementation of the situation

discovery parts of the pervasive situation determination middleware made use of

FreePastry for DHT support [123, 140].

This allowed the effort involved in the instantiation to focus on the original

parts of the architecture. In addition to the development of the inter-agent proto-

cols, these also included the mechanism to translate situation specifications into

a form that can be processed by the Rete network (the full details of this trans-

lation process are included in the appendices in Section C.1). Furthermore, there

were the adaptable recognition techniques, the resource management capabilities,

as well as inter-environment operation and situation discovery facilities.

5.3 Developing situation-aware applications

This section presents a number of applications that were developed using the per-

vasive situation determination middleware. First, the agents that were created to

supply information about different entities in the environment to the middleware

are presented. Following this, a survey of the different situations, specifications

and customisations that were created is given, before detailing each application

individually.

The expressivity of the approach in this regard is assessed by presenting

the wide range of situations, customisations and specifications that were cre-

ated across a number of domains and for a variety of sensing infrastructure and

environments, as well as their use in a suite of situation-aware applications, where

each exploits the middleware in a different way and for its own distinct purpose.

The complexity of the approach is assessed by illustrating the effort involved

across the full extent of the development lifecycle, following the development

from scratch of the necessary ontology and CEAs, through building the situation

descriptions, to constructing the situation-aware application code.

126

Chapter 5. Evaluation

5.3.1 Developing CEAs

A total of thirteen context entity agents (CEA) were developed. These included

eight Data-CEAs (DCEA) that produced data about the properties of entities in

the environment, and five Compute-CEAs (CCEA) that provided functions for

that data.

Two of the eight DCEAs provided fixed properties about a person and a device

respectively. The person DCEA provided properties such as the person’s name,

date of birth, the groups they belong to, which office they work in, etc. While the

device DCEA provided properties about a particular device such as its identity,

the type of device it is, who owns the device, its operating specifications, etc. Both

of these DCEAs can be easily configured to report new, additional properties.

The other six DCEAs were built to detect more dynamic properties. These

included the location DCEA which embedded an instance of the location detector

described in Appendix A, a calendar DCEA that reported entries from a person’s

calendar or planner, an application monitor DCEA which reported properties

about the applications that were running on a particular device, a mouse monitor

DCEA and a keyboard monitor DCEA that detected keyboard and mouse activity

on a host device, and a DCEA that reported whether a particular person was

speaking or not.

The calendar DCEA was based on the Google Calendar Data API using the

provided what, when and where tags, to allow real calendars to be used without

special extension. For details on the Google Calendar Data API, see [141].

The application monitor DCEA reported the window ID of an application, the

host machine ID (these combined give a unique ID for the application instance),

the text of the application’s title bar, the name of the executable of the appli-

cation, whether the application was the active application on the host machine

(the application that currently has input focus), and where possible, the active

file (extracted from the title bar text). If an application has multiple windows,

an event is emitted for each. The design here assumes that an application will

have at least one window, which is reasonable given that it is this element of a

user’s interaction with the application that the DCEA is trying to detect. Further

details for this DCEA are provided in the appendices in Section C.2.

The keyboard and mouse DCEAs detected whether a key had been pressed,

and whether the mouse had been moved or a button had been pressed, respec-

tively. Again, further details of these DCEAs can be found in Section C.2.

127

Chapter 5. Evaluation

The DCEA to detect whether a person was speaking or not was implemented

as a small application that could simulate Boolean values, reported at a variable

confidence, via graphical control. The DCEA was implemented this way to allow

a convenient means to test situation specifications that incorporated this property

as it did not require the actual speakers to be present. Given the availability of

a suitable speaker recognition component, a version that reacted to a speaker’s

voice could be implemented by embedding an instance of the component in the

DCEA.

The five Compute-CEAs (CCEA) all acted as history functions over a given

property. Each of them reported whether a particular property held for a certain

amount of time over a given period. For example, one CCEA could report for how

long a particular application had been the active application on its host machine

over a given period, while another could report how long a person had (or had

not) been talking for, a location history reported how long an entity had been

at a particular location, and a keyboard input CCEA and a mouse input CCEA

could report how much input activity had occurred over a given period, based on

counts of the number of keyboard and mouse events that occurred.

This small set of CEAs was enough to provide all of the properties required by

the large set of situations developed for each of the situation-aware applications.

5.3.2 Developing situations, specifications and

customisations

A total of thirty-two different situations were developed, with many having several

alternative specifications and customisations. These included situations based on

the use of devices and applications, as well as situations from a domestic setting,

a public setting and a University work environment. Customisations were created

using the specially developed graphical tool described in Section 5.2.

The first set of situations focussed on a particular individual’s use of devices

and applications. These situations could be applied anywhere the devices and

applications could be used. In this category, it was sought to capture situations

such as ‘Viewing a document’ and ‘Editing a spreadsheet’. In fact, this style

of situation, where a user is primarily working with a particular type of media,

appeared several times. For each type of media, three situations were created - a

general ‘Working with media’, and inheriting from this the more specific ‘Viewing

media’ and ‘Editing media’.

128

Chapter 5. Evaluation

A feature A specification A customisation A situation

This link shows the left hand side situation
extends the right hand side one.

Situation A Situation B

This link shows the left hand side feature
extends the right hand side one.

Feature B Feature A

This link connects a customisation to its
base situation.

Customisation Situation

This link shows the customisation on the left
hand side extends the right hand side one.

Customisation A Customisation B

This link connects a situation and its
specification.

Specification Situation

Figure 5.3: A key for the figures included in this section.

Customisations based on this set of situations were created for a variety of

media types. For example, taking the word-processor document type specifically,

three customisations were created to represent the ‘Working with a document’,

‘Viewing a document’, and ‘Editing a document’ situations. The other media

types included spreadsheets, slides, web pages, e-mail, photographs, movies, Go

game records, code and ontologies. These specific media types were chosen as

they are frequently used by the author, but this list could easily be extended to

include almost any media type.

The specifications written for these situations followed a general form. The

‘Working with media’ situation would be recognised by detecting that a particular

application was running on the machine currently in use by the person who is the

situation index, and also that it is the active application on the host machine,

and has a particular document open. The ‘Viewing media’ specifications add to

this the constraints that keyboard and mouse activity is low, while the ‘Editing

media’ specifications add that the keyboard and mouse activity is high.

Other situations in this category include listening to music, making a (VoIP)

phone call, making a video call and chatting (using a chat program). Each of these

situation’s specifications were implemented in a similar way. Figure 5.4 illustrates

each of these situations, specifications, customisations and the relations between

them. A key explaining the different shapes, colours and links used in the figures

in this section is given in Figure 5.3. The omissions that have been made in

the interests of space in the figures in this section, are included in full in the

appendices in Section B.1.

129

Chapter 5. Evaluation

Listening
to music

Spec
P D L AH

Making a
phone call

Spec
P D L AH

Making a
video call

Spec
P D L AH

Chatting

Spec
P D L AH

KH

Working
with media

Editing
media

Viewing
media

Spec
P D L AH

Spec
P D L AH
KH MH

Spec
P D L AH
KH MH

Editing a
document

Editing a
spreadsheet

Editing a
photograph

Editing…

Working with
a document

Working with
a spreadsheet

Working with
a photograph

Working
with…

Viewing a
spreadsheet

Viewing a
document

Viewing a
photograph

Viewing…

Figure 5.4: Situations that focus on an individual’s use of devices and applica-
tions. In the interests of space, only a selection of the customisations for each of
the different media types is shown.

The domestic setting situations that were implemented included a small num-

ber of simple home environment situations, such as a ‘Sleeping’ situation, whose

specification checked that it was after a certain time at night and the user was

in their bedroom. Also, an ‘Entertaining’ situation that detects when the user is

entertaining guests by recognising the presence of a number of people in addition

to the house’s inhabitants. This situation was extended with the more specific

variations ‘Family visit’ and ‘Entertaining friends’. A ‘Studying’ situation was

also implemented that recognised when one of the inhabitants was working on a

computer while in the study room of the house. ‘Watching a movie’ and ‘Making

a video call’ situations were also implemented, that are similar to their coun-

terparts described above for a single user, though this time are based within a

particular room in the house and include all of the people that are watching

the movie or are involved in the video call. These situations are illustrated in

Figure 5.5.

130

Chapter 5. Evaluation

Sleeping

Spec
P L

Studying

Spec
P D L AH

Making a
video call

Spec
P D L AH

Watching
a movie

Spec
P D L AH

Family
visit

Spec
P L

Entertaining

Spec
P L

Entertaining
Friends

Spec
P L

Figure 5.5: Domestic situations.

The situations that were implemented for a public setting were deliberately

kept simple, as they targeted resource-constrained devices, such as mobile phones

and PDAs, operating in an ad hoc environment. Included in these were a ‘Dining’

situation, that reported at which café or restaurant and with whom the user was

dining, a ‘Shopping’ situation that reported where and with whom the user was

shopping, similarly a ‘Swimming’ situation, and situations that detected when the

user was waiting for a train or for a bus. Each of these situations was recognised

by detecting the user’s location and its type, as well as the presence of the other

people in the situation and their relation to the user, using the person and location

history CEAs. Figure 5.6 illustrates these.

It was for the University work environment that the most complex situation

specifications were created. Situations in this category included general work

environment situations, a variety of meeting situations, presentations, as well as

a number of University teaching situations.

The general work situations included ‘Working at desk’ and ‘Working in office’

situations, as well as a number of situations that detect different types of breaks,

including lunch, coffee breaks and bathroom breaks. The specifications for these

were mainly based on the location and person DCEAs and time. Diagrams of

these situations are included in the appendices in Section B.1.3.

A general ‘Meeting’ situation was implemented that was extended by several

131

Chapter 5. Evaluation

Dining

Spec
P LH

Dining at
La Trattoria

Dining at Les
Impressionistes

Dining at
Crêperie
Larcher

Dining at…

Shopping

Spec
P LH

Shopping at
L’Italino deli

Shopping at
Champion

Shopping at
Carrefour

Shopping at…

Swimming

Spec
P LH

Waiting for
a bus

Spec
P LH

Waiting
for the bus to

work

Waiting
for the bus

home

Waiting for
a train

Spec
P LH

Waiting for
the train into

Paris

Waiting for
the train
home

Figure 5.6: Public situations. In the interests of space, only a selection of the
customisations for dining and shopping situations are shown.

more specific variations, including a ‘Group meeting’ situation that recognised

meetings of a particular research group or administrative group, a ‘PhD meeting’

situation that detected a meeting between a PhD student and one or more of

his/her supervisors, as well as a ‘Demonstrator meeting’ situation that recognised

a meeting held with the lecturers and demonstrators of a particular course. The

meeting situations are depicted in Figure 5.7.

Each of the specialised meeting situations had at least three alternative spec-

ifications. One specification was based on recognising the situation as occurring

at a fixed time and place and the location of the attendees, representing a simple

specification that could be authored by a local administrator for convenience. An-

other specification was based on the location of the attendees, matched against a

calendar entry stating that the particular type of meeting should be taking place

at that time and place. A third specification was tailored to the particular type of

meeting, for example part of this specification for the group meeting required that

more than 75% of the attendees were members of the same group, and similarly

132

Chapter 5. Evaluation

Meeting

Basic spec
P L

Grant proposal
‘frying’ meeting

Calendar
based spec

P L C

Ph.D.
meeting

Ph.D. meeting
with Sotirios

Ph.D. meeting
with Paddy

Basic spec
P L

Calendar
based spec

P L C

Advanced
spec
P L

Group
meeting

Basic spec
P L

SmartLab
meeting

Researcher’s
Digest meeting

Research
Council
meeting

Calendar
based spec

P L C

Advanced
spec
P L

EFoCS
reading group

iLab weekly
meeting

Planning
group meeting

Demonstrator
meeting

Compilers
demonstrator

meeting

System Design
demonstrator

meeting

Programming
Foundations

dem. meeting

Basic spec
P L

Calendar
based spec

P L C

Advanced
spec
P L

Distributed
Programming
dem. meeting

Other
demonstrator
meetings…

Figure 5.7: University meeting situations. In the interests of space, only a se-
lection of the customisations for each of the different demonstrator meetings are
shown.

the part of this specification for the PhD meeting detected the PhD supervisor

and PhD student relations between the two attendees. This offered a large degree

of versatility in detecting these situations, and allowed the overall confidence to

be increased by fusing the results of each of these specifications.

The presentation situation that has served as the running example in this

thesis was implemented with five different specifications. These included two

specifications similar to those described above - one based on a fixed time and

place and attendees’ locations, and another based on attendees’ locations and a

calendar entry. Also implemented were the three specifications featured earlier

- a coarse-grained specification that could only identify presentation attendees,

and two fine-grained specifications that could differentiate between speakers and

audience members at the presentation, one based on fine-grained location infor-

mation, and the other based on detecting whether a person was speaking or not.

These are depicted in Figure 5.8.

133

Chapter 5. Evaluation

Presentation

Basic spec
P L

Forensics
presentation

Researcher’s
Digest presentation

Departmental
talk

Calendar
based spec

P L C

Low-res
location spec

P D L AH

Hi-res
location spec

P D L AH

Hi-res
audio spec

P D L AH SH

Lecture

Basic spec
P L

Compilers
lecture

Programming
Foundations

lecture

Distributed
Programming

lecture

Calendar
based spec

P L C

Low-res
location spec

P D L AH

Hi-res
location spec

P D L AH

Hi-res
audio spec

P D L AH SH

System Design
lecture

Other
lectures…

Figure 5.8: University presentation and lecture situations. In the interests of
space, only a selection of the customisations for each of the different lectures are
shown.

The University teaching situations included situations that recognised lec-

tures, labs and tutorials. The lecture situation is illustrated in Figure 5.8. It

featured a set of five specifications comparable to the Presentation specifications.

For both the ‘Lab’ and ‘Tutorial’ situations, a set of three specifications was cre-

ated similar to the meeting specifications - one based on a fixed time and place

and attendees’ locations, a calendar-based specification, and one that detects that

the supervisors and students related to that particular lab or tutorial are present.

Figures for the labs and tutorials follow a similar structure to the meeting exam-

ple, and so have been omitted here in the interests of space. However, they are

included in the appendices in Section B.1.3.

In addition to these situations, further customisation to the particular envi-

ronment was achieved by creating several customisations for each of the meeting,

presentation and teaching situations. For example, customisations of the group

meeting situation were created for each of the specific research groups and ad-

ministrative groups within the department, as well as customisations for each of

134

Chapter 5. Evaluation

the lectures, labs and tutorials that took place for each course run within the

department. This offered a large degree of flexibility and convenience in tailoring

situations to the particular details of the local environment.

Table 5.1 presents a summary of the situations that were developed, showing

the number of specifications that were written for each, the set of CEAs they

were based on, as well as the number of customisations that were created. It

can be seen that in these deployments, there were both more specifications and

more customisations than there were situations. For customisations, there were

seven times as many. The flexibility that this offers stems directly from the

novel modelling features that the middleware provides. Furthermore, the data

demonstrate that from just a handful of CEAs a large variety of situations can

be created across several domains.

5.3.3 Developing the applications

This section describes three applications that demonstrate a variety of styles of

situation-aware applications the pervasive situation determination middleware

can support. The availability checker, presented in Section 5.3.3.1, is an example

of an application that performs ad hoc situation queries about a person, device or

location in real time, whether the target may be in the local environment or in an

unknown remote environment. The mode manager, presented in Section 5.3.3.2,

is an example of an application that continuously monitors and autonomously

reacts to particular local situations in real time, constantly adapting to changes

in sensing infrastructure and environment as the user travels from place to place

throughout their day. Finally, the situation-enhanced file search application,

which is presented in Section 5.3.3.3, is an example of an archival application that

detects and records all of the situations the user is involved in and allows later

searching and analysis of those situations for information and artefacts associated

with them.

5.3.3.1 The availability checker application

The availability checker application was the simplest of the three applications.

It gives the user the ability to select a particular user, device or location, and

the application will report the situation(s) they are currently involved in. This

application helps the user in planning their actions. For example, a user may

decide not to telephone someone at the current time as the availability checker

135

Chapter 5. Evaluation

Situation Num. Spec. CEAs Num. Cust.
Use of devices and applications
Working with media 1 P, D, L, AH 10
Viewing media 1 P, D, L, AH, KH, MH 10
Editing media 1 P, D, L, AH, KH, MH 10
Listening to music 1 P, D, L, AH 0
Making a phone call 1 P, D, L, AH 0
Making a video call 1 P, D, L, AH 0
Chatting 1 P, D, L, AH, KH 0
Domestic setting
Sleeping 1 P, L 0
Entertaining 1 P, L 0
Family visit 1 P, L 0
Entertaining friends 1 P, L 0
Studying 1 P, D, L, AH 0
Watching a movie 1 P, D, L, AH 0
Making a video call 1 P, D, L, AH 0
Public setting
Dining 1 P, LH 6
Shopping 1 P, LH 8
Swimming 1 P, LH 0
Waiting for a train 1 P, LH 2
Waiting for a bus 1 P, LH 2
University setting
Working at desk 1 P, D, L 0
Working in office 1 P, D, L 0
Private phone call 1 P, D, L, AH 0
Bathroom break 1 P, LH 0
Coffee break 1 P, LH 0
Lunch break 1 P, LH 0
Meeting 2 P, L, C 1
Group meeting 3 P, L, C 8
PhD meeting 3 P, L, C 2
Demonstrator meeting 3 P, L, C 41
Presentation 5 P, D, L, C, AH, SH 3
Lecture 5 P, D, L, C, AH, SH 50
Lab 3 P, L, C 41
Tutorial 3 P, L, C 30
Total
32 53 224

Table 5.1: A summary of the situations, specifications and customisations that
were developed.

136

Chapter 5. Evaluation

Figure 5.9: The availability checker application running on a Pocket PC.

reveals that they are currently in a meeting, or a user may check that there is

currently nothing happening in a particular meeting room, and so it can be used

for a quick, ad hoc meeting.

This application also acted as a useful debugging tool, as it provided a conve-

nient means to check what the situation determination middleware believed the

currently occurring situations were for any given person, device or location.

Figure 5.9 shows the main interface of the availability checker application. It

is the Pocket PC version that is shown, though thanks to having been written in

Java, it could also be run on a laptop or desktop machine.

The availability checker offers several options to the user. First, the user can

select which person, device or location they want as the index of the situation

request. Note that the application allows the user to select a display name for the

index, and stores them for subsequent use, which is more convenient than having

to remember the index’s UUID.

Next, the user can select which specific situation or customisation they wish

to detect, or choose all situations to be detected.

After that, the user can select to be notified if the situation is occurring, or

when the selected situation starts to occur, or when the selected situation ends.

The situation-aware application agent (SAA) already defines default methods

that detect when a situation starts or ends that are available to situation-aware

applications. The use of these methods is optional, and the application can al-

ways infer these transitions themselves by using the stream of situation responses

directly. This provides simplicity in application development when the default

implementation is adequate, as well as the opportunity to more exactly match

137

Chapter 5. Evaluation

the specific needs of the application when required.

The user can also set the length of time the request will remain active through

the duration option. For example, the user may request that the availability

checker notify them if a particular person starts to take a coffee break over the

next hour.

Finally, the user can select whether the situation response is reported in short,

feature set or full form. The short form can be used when the user simply wants

to know what situation(s) are occurring, as in the case mentioned above where

the user checks if a room is vacant. The feature set form is most useful when the

user wants to know about the features of the reported situations. For example, if

a particular person was in the audience of a presentation. The full mode proved

to be useful for debugging, as it reported all of the relevant details of each of the

entities involved in a situation.

It is natural that the user should wish to control the distribution of their

situation information and restrict who may or may not be able to discover where

they are or what situations they are involved in. To revisit the characters from

the opening scenario of Chapter 4, John may wish to temporarily block his wife

Angela from being able to detect his situations while he was surreptitiously buy-

ing an anniversary gift, for example. Within the architecture, it is possible to

implement such blocking as well as several other privacy policies. All situation

requests are sent to an individual’s Index Server Agent (ISA) and all responses to

that request are sent back to the ISA before being forwarded to the application

that originally made the request. Therefore, the ISA may act as a mediator.

This would allow the ISA to block requests based on properties such as whom

the request is from or which particular situations are requested. Furthermore,

it allows the ISA to alter situation reports in the response. For example, a user

could configure the ISA to obfuscate situation reports requested by particular

sources to show their location as only which city they were currently in and not a

specific building or room, or to report meeting situations only at that granularity

and not which particular meetings or with whom they are held. In this manner,

the ISA acts as the user’s personal situation firewall.

Addressing the complete set of privacy concerns that may be encountered in

a pervasive computing environment is beyond the scope of this work. However,

ways in which the implementation of a full suite of privacy principles may be

integrated with the architecture presented here is the subject of the discussion in

Section 6.2.2.

138

Chapter 5. Evaluation

Figure 5.10: The configuration screen of the mode manager application.

Although this application is very simple, it demonstrates the full functionality

of the situation determination middleware - it can interactively detect situations

and customisations for a given person, device or location, either in the local

environment, or in a distant environment.

5.3.3.2 The mode manager application

The mode manager was an interesting application that allowed the user to config-

ure their devices to automatically switch to a particular mode of operation when

an appropriate situation was detected.

Two types of mode manager application were developed. The first was a

Pocket PC-based application that muted the device when any of the appropriate

situations were detected. The second was a Windows-based application that

suspended the system’s screen saver during the selected situations.

Figure 5.10 shows the configuration screen of the Pocket PC version of the

mode manager application. From here, the user can configure which set of situ-

ations the device will react to.

The implementation of this application also relies on the situation starting /

situation ending methods provided by the SAA. Both muting the Pocket PC and

disabling the screen saver were achieved using Windows system calls. Further

details of this are given in the appendices in Section C.2.

This application shows that the situation determination middleware can be

used successfully to realise the notion of a ‘smart device’ - devices that au-

tonomously and continuously adapt their behaviour to that which is most ap-

139

Chapter 5. Evaluation

Figure 5.11: Creating search criteria with the situation-enhanced file search ap-
plication (left), and browsing the results (right).

propriate for the current conditions they operate in.

5.3.3.3 The situation-enhanced file search application

The situation-enhanced file search application is the most complex of the three

applications developed. It allows the user to search for files they have accessed in

the past, using details of the situations in which the files were accessed as search

terms.

There are two parts to this application. One part provides the search interface

and the query results, while the other part runs in the background continually

collecting situation reports for the user and monitoring file access.

The left of Figure 5.11 shows the search interface and query result screens.

Here the user can incrementally build up search criteria for the situation they

wish to find. When the criterion is complete, the application will list any files

that were accessed during matching situations. An example result is shown on

the right of Figure 5.11. The results panel features a ‘Back’ button that allows

the user to return to the search criteria, allowing them to iteratively refine their

search.

The part of the application that monitors file access was based on the freely

available File Watcher Utilities project [142]. This was used to monitor the

local device for files that were opened, changed or renamed. The device requests

notification of any situations that are occurring, using the current user of the

device as the situation index. When any of the file events are detected, they are

140

Chapter 5. Evaluation

paired with each of the situations that are currently occurring, and each pair is

written to a database. This database is then later searched by the interface part.

In this example, detecting the actions involved in using files is performed by

the situation-aware application itself, rather than the middleware. These actions

are detected locally, along with their co-occurrence with one or more situations.

This is appropriate, as simple actions such as a particular person accessing a

particular file during a presentation is an incidental detail of a particular instance

of a situation. There could be any number of such actions. Therefore, it is not

appropriate to explicitly include these in a situation’s features, where the focus

is to capture the essential characteristics of the situation in general.

More complex actions however, such as taking notes, can be modelled as

situations themselves (similar to the “Using devices and applications” situations

presented earlier in this section). Then, a situation-aware application can detect

co-occurrences of the action and main situations, by requesting both for the same

situation index.

This application exemplifies how the situation determination middleware can

be exploited to offer a powerful, high-level search interface in user applications,

as well as utilising an archive of previous situations.

5.4 Middleware Performance Analysis

This section presents a performance evaluation of the pervasive situation deter-

mination middleware. Section 5.4.1 describes the experimental set up that was

used, giving details of the equipment employed and the deployment environment.

Section 5.4.2 reports several performance measurements tested in this environ-

ment, while Section 5.4.3 provides algorithmic analyses of key components of the

middleware.

5.4.1 Experimental set up

The performance measurements presented in the following section were based on

a deployment of the situation determination middleware prototype in a Univer-

sity environment. Specifically, the middleware was deployed within a Computer

Science department, using the actual meeting rooms and laboratories available

there.

Three different classes of computer were used in these measurements. First,

141

Chapter 5. Evaluation

there were desktop PCs with a 3.4 GHz Intel Pentium 4 processor and 1 GB of

RAM, which ran Debian GNU/Linux 3.1. Second, there was a Dell Inspiron 6000

laptop, with a 1.5 GHz Intel Pentium M processor and 1 GB of RAM, which ran

Windows XP. And third, there was a collection of HP Pocket PC h5500 handheld

computers with a 400 MHz Intel XScale processor and 128 MB RAM, running

Windows CE 4.2.

The desktop PCs were connected to the department’s 100 Mbps-BaseT Eth-

ernet network, while the laptop and Pocket PCs connected via a WEP-encrypted

802.11b wireless network. When operating in ad hoc mode, an ad hoc wireless

network was hosted by the laptop, using an Asus SpaceLink 11 Mbps 802.11b

wireless network card.

In order for the middleware to correctly detect locations within the depart-

ment, a location model had to be created for the department, the details of which

are given in Appendix A.

The exact configuration varied for different measurements. Details of the

specific configuration are given for each case below alongside the results.

5.4.2 Performance figures

In considering the performance of the situation determination middleware, the

two following aspects are central to the utilisation of the middleware by situation-

aware applications.

The first is the round trip time of a situation request. That is, the time

it takes from a situation-aware application issuing a situation request, until it

receives the response. This measure is significant as it acts as a summary of the

performance of the system as a whole.

A device hosting a situation-aware application will rarely operate in isolation.

Whether operating with rich infrastructure available or in ad hoc mode, a device

must first discover and join a network of other devices to fully utilise the middle-

ware. The second measure of interest is then the join times of devices connecting

to both infrastructure-based and ad hoc environments.

In this section, a number of performance measures of the situation determina-

tion middleware are presented relating to these aspects. Two measures concern

issues of scale. The first demonstrates that the performance of the middleware

scales well for a set of individual situations as the number of entities involved

in the situations increases from typical to larger sizes. The second shows that

142

Chapter 5. Evaluation

the performance of the middleware also scales well as the number of situations

simultaneously recognised by the middleware increases from light to heavy loads.

The increasing situation size measurements were first conducted using the

environment-based mode of operation, where the situation recognition effort was

offloaded to situation determination agents (SDAs) hosted on desktop machines

in the environment. These measurements were then repeated using the ad hoc

mode of operation, where the mobile devices involved in a situation do not rely

on dedicated infrastructure for its recognition, but form an ad hoc network and

recognise the situation themselves.

Also demonstrated are the gains in performance offered by the situation de-

termination middleware as the configuration is altered from using a single SDA

to sharing the recognition load between multiple SDAs.

In addition, a breakdown of the computational resources consumed by the

middleware is presented, detailing the relative amounts of each component part

for the situation recognition process.

5.4.2.1 Increasing situation size

This section looks at round trip time (RTT) and join time measurements of both

environment-based and ad hoc modes of operation.

A special tool was developed to collect these measurements. The tool was

a situation-aware application that could record the times that events such as

joining the agent substrate, sending situation requests and receiving situation

reports occur.

The round trip time measurement captured by the tool represents the amount

of time between the application sending a situation request and receiving a situa-

tion report in response. The measure incorporates the time consumed by sending

the situation request out, the system gathering the necessary information it re-

quires to recognise the situation(s) that has been published by the hardware and

software sensing infrastructure within the environment, the cost of performing

the recognition itself, and the delivery of the results back to the application. The

join time measurement captured by the tool represents the length of time it takes

from a device first discovering the address of the Environment Manager Agent

(EMA) in the current environment, until it has connected to the agent substrate,

interacted with the EMA to appropriately join the situation recognition environ-

ment, and is ready to send a situation request. The components of both of these

143

Chapter 5. Evaluation

Pocket PC

Test SAA

ISA ILA

x8

Environment infrastructure

Host PC

SDA

Host PC

CCEAs CCEAM DCEAs

PSA

SRA SDAM EMA PSA

EMA

CCEAs

PSA

DCEAs

Figure 5.12: This diagram illustrates the environment-based set up used to mea-
sure the RTT and join times. ‘Test SAA’ indicates the application used to record
the measurements.

measurements are summarised below, where TX indicates the time taken for the

individual component X:

TRTT = TSend request+TGather sensor data+TRecognise situation+TDeliver response

TJoin = TDiscover EMA+TJoin agent substrate+TJoin environment+TPrepare request

Environment mode measurements

This section presents measurements from a deployment using the environment-

based mode of operation. That is, dedicated infrastructure is available that hosts

the SDAs, and mobile devices can offload situation recognition effort to them.

An SDA was run on a desktop PC (specifications were given in Section 5.4.1),

and another desktop PC hosted the other infrastructure agents, such as the EMA

and the Situation Repository Agent (SRA). Pocket PCs were used to represent a

person, and hosted the Context Entity Agents (CEAs) that reported the person’s

location and personal profile information, as well as each person’s Index Server

Agent (ISA). The special measurement application was also run on a Pocket PC.

This set up is illustrated in Figure 5.12.

Table 5.2 presents the performance measurements of increasing the size of a

set of situations. The table shows the average RTT and the average join time for

a set of four different situations as the number of people involved in each situation

increases. These situations were the ‘Group Meeting’, ‘Presentation’, ‘Lab’ and

144

Chapter 5. Evaluation

Group meeting
Size Mean RTT RTT CI Mean Join Join CI

2 9.114 ±0.184 3392 ±165
4 9.236 ±0.187 3626 ±218
8 9.675 ±0.181 3583 ±149

16 10.074 ±0.309 3385 ±101
32 11.512 ±0.315 4063 ±133
64 13.666 ±0.359 4275 ±349

Presentation
Size Mean RTT RTT CI Mean Join Join CI

2 9.336 ±0.242 3574 ±124
4 9.468 ±0.230 3485 ±103
8 9.766 ±0.204 3164 ±287

16 10.909 ±0.267 3187 ±148
32 13.846 ±0.313 3532 ±121
64 18.739 ±0.479 3490 ±160

Lab
Size Mean RTT RTT CI Mean Join Join CI

2 8.434 ±0.179 3702 ±193
4 8.700 ±0.213 3542 ±232
8 9.012 ±0.159 3362 ±163

16 9.740 ±0.246 3575 ±155
32 10.710 ±0.217 4124 ±144
64 12.114 ±0.185 4187 ±125

Researcher’s digest meeting
Size Mean RTT RTT CI Mean Join Join CI

2 9.959 ±0.223 3378 ±167
4 10.604 ±0.294 3655 ±184
8 11.375 ±0.318 3516 ±200

16 12.289 ±0.205 3775 ±131
32 13.455 ±0.305 3876 ±193
64 15.061 ±0.438 4173 ±122

Table 5.2: The mean round trip times (RTT) and mean join times for a selection
of situations in an environment-based set up, as the size of the situations increases.
All values are shown in milliseconds, and a 0.95 confidence level was used.

145

Chapter 5. Evaluation

the customised ‘Researcher’s Digest Meeting’ as described earlier in Section 5.3.2.

These four were chosen as their specifications provide a variety of different forms.

For ‘Group Meeting’, the specification must recognise each individual in the situ-

ation, but also match on membership of a common group. ‘Presentation’ involves

fine-grained location information. The ‘Lab’ situation combines person, calendar,

location and time information. While the ‘Researcher’s Digest Meeting’ customi-

sation of the ‘Group Meeting’ situation requires calculating the percentage of

people present that are playing the attendee role, and incurs the additional pro-

cessing of the customisation itself. All of the specifications that were developed

for each of these situations, as described in Section 5.3.2 were used, as would be

done in a real deployment to support dynamic adaptation to changing sensing

infrastructure.

In Table 5.2, and in the following tables, each RTT measurement represents

the mean value of 300 samples, and each join measurement the mean of 30 sam-

ples. These numbers were chosen to reflect a single situation recognition session

that would be performed by a situation-aware application. That is, it first joins

the network, issues a situation request, and then receives 10 situation reports

during which the application would react to the situation or otherwise use the

information. A total of 30 sessions were collected for each configuration, which

was the largest number of samples that could practically be collected within the

time available. The table also includes the confidence intervals for both of the

measurements. The size values, listed in the leftmost column, represent the num-

ber of people that were involved in the situation. For example, a value of two

represents that were two people involved, and therefore two Pocket PCs were

running in the environment, each reporting location and personal properties for

their respective user. For larger sizes the number appears in italics. This in-

dicates that a single Pocket PC represented more than one person. A total of

eight Pocket PCs were available to conduct these measurements, so in order to

simulate larger situation sizes, a single Pocket PC had to represent more than

one user. For example, an italicised value of sixteen indicates that sixteen people

were involved in the situation, and that eight Pocket PCs were running in the

environment, each reporting location and personal properties for two respective

users.

The RTT measurements for each situation shown in Table 5.2 can be compared

graphically in Figure 5.13. Overall, each of the situations shows an acceptable

round trip time. Even at the largest situation size, all response times are under

146

Chapter 5. Evaluation

Environment RTT

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 64

Size

M
ill

is
ec

on
ds Group meeting

Presentation
Lab
RD meeting

Figure 5.13: A graphical comparison of the mean round trip times (RTT) for a
selection of situations in an environment-based set up, as the size of the situations
increases.

nineteen milliseconds. For each doubling in situation size, the round trip time

increases by only ten percent on average. Such low round trip times make the

situation determination middleware suitable for use in interactive applications.

The join time measurements shown in Table 5.2 can be compared graphically

in Figure 5.14. Join times are long and variable, but are not significantly impacted

by increased situation sizes. The join times have a high base limit, the average

minimum join time across all situations and sizes is 3,322 milliseconds. This is

due to delays introduced by the JADE [118] and jSLP [139] implementations

upon which the middleware is based. However, for each doubling in situation

size, the join time increases by only three percent on average.

Ad hoc mode measurements

This section presents performance measurements for the same set of situations

shown in the previous section, though this time they were collected from a de-

ployment using the ad hoc mode of operation. That is, there is no dedicated

infrastructure available that hosts SDAs and other agents, the collection of de-

vices must recognise the situations themselves. This deployment featured the set

147

Chapter 5. Evaluation

Environment Join Time

0

1000

2000

3000

4000

5000

2 4 8 16 32 64

Size

M
ill

is
ec

on
ds Group meeting

Presentation
Lab
RD meeting

Figure 5.14: A graphical comparison of the mean join times for a selection of
situations in an environment-based set up, as the size of the situations increases.

of eight Pocket PCs and the laptop computer (the specifications of these machines

are given in Section 5.4.1). The laptop hosted an ad hoc wireless network, which

each of the Pocket PCs connected to. This set up is illustrated in Figure 5.15.

Using the offload list mechanism described in Chapter 4, the Pocket PCs detect

the laptop as being a more powerful host which they are authorised to use, and

so forward their situation requests to the SDA Manager (SDAM) agent hosted

on the laptop, which uses the laptop’s SDA. Other than this, the same set-up

was used as before - a Pocket PC represents a single person and reports that per-

son’s location and personal profile information, except for the italicised sizes in

Table 5.3 where more than one person would be represented by the same Pocket

PC.

The round trip times and join times for the ad hoc mode deployment are

shown in Table 5.3. Graphical comparisons of these measurements can be made

in Figures 5.16 and 5.17 respectively. Notice that the round trip times for ad hoc

mode deployment slightly improve on the environment-based deployment round

trip times. Despite the situation recognition being performed on a slower CPU

(the laptop CPU ran at approximately half that of the desktop machines), this has

been offset by the smaller network size. At the largest situation size, all response

148

Chapter 5. Evaluation

Group meeting
Size Mean RTT RTT CI Mean Join Join CI

2 8.069 ±0.208 4601 ±120
4 8.750 ±0.232 4544 ±100
8 9.528 ±0.262 4678 ±142

16 9.817 ±0.217 4880 ±142
32 11.279 ±0.353 4683 ±216
64 13.472 ±0.495 4777 ±174

Presentation
Size Mean RTT RTT CI Mean Join Join CI

2 8.133 ±0.283 4435 ±138
4 9.378 ±0.394 4766 ±117
8 9.974 ±0.235 4486 ±135

16 11.081 ±0.547 5085 ±247
32 11.919 ±0.268 4511 ±135
64 16.626 ±0.355 4818 ±86

Lab
Size Mean RTT RTT CI Mean Join Join CI

2 7.854 ±0.220 4634 ±147
4 8.351 ±0.195 4476 ±127
8 8.910 ±0.229 4569 ±127

16 9.631 ±0.329 4612 ±150
32 10.607 ±0.256 4955 ±110
64 11.657 ±0.356 4886 ±112

Researcher’s digest meeting
Size Mean RTT RTT CI Mean Join Join CI

2 8.782 ±0.276 4568 ±139
4 9.305 ±0.274 4486 ±239
8 10.329 ±0.202 4537 ±173

16 11.416 ±0.278 4704 ±163
32 12.704 ±0.211 4598 ±204
64 14.964 ±0.426 4789 ±188

Table 5.3: The mean round trip times (RTT) and mean join times for a selection
of situations in an ad hoc-based set up, as the size of the situations increases. All
values are shown in milliseconds, and a 0.95 confidence level was used.

149

Chapter 5. Evaluation

Pocket PC

Test SAA

ISA ILA

x8
Laptop

SDA

CCEAs CCEAM DCEAs

SRA SDAM

EMA PSA
EMA

CCEAs

PSA

DCEAs

Figure 5.15: This diagram illustrates the ad hoc-based set up used to measure
the RTT and join times. ‘Test SAA’ indicates the application used to record the
measurements.

Ad hoc RTT

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 64

Size

M
ill

is
ec

on
ds Group meeting

Presentation
Lab
RD meeting

Figure 5.16: A graphical comparison of the mean round trip times (RTT) for
a selection of situations in an ad hoc-based set up, as the size of the situations
increases.

150

Chapter 5. Evaluation

Ad Hoc Join Time

0

1000

2000

3000

4000

5000

2 4 8 16 32 64

Size

M
ill

is
ec

on
ds Group meeting

Presentation
Lab
RD meeting

Figure 5.17: A graphical comparison of the mean join times for a selection of
situations in an ad hoc-based set up, as the size of the situations increases.

times are under seventeen milliseconds. For each doubling in situation size, the

round trip time increases by only 11.6 percent on average, just slightly more

than the environment-based case. These low round trip times make the situation

determination middleware also suitable for use for interactive applications in an

ad hoc setting.

The join times for the ad hoc deployment are slightly higher than for the

environment-based case, which is to be expected given the reduced network ca-

pacity. They also exhibit a similar pattern in being long and variable. This is

again due to delays introduced by the JADE [118] and jSLP [139] frameworks

which the middleware relies upon. However, they are also similar in that they

are not significantly impacted by increased situation sizes. The average minimum

join time across all situations and sizes is 4,485 milliseconds.

While this number is too high to satisfactorily support spontaneous inter-

operation [143], it is acceptable for the situation determination middleware. It

is comparable to the time the user would expect their mobile phone to take to

connect a call, and the wait is only incurred once when the user connects their

device to the network, not each time a situation is requested. Furthermore, the

situations that were developed naturally last in the order of minutes or hours,

151

Chapter 5. Evaluation

making the average join time only a small fraction of a typical duration.

5.4.2.2 Increasing situation recognition load

In this section, a set of measurements are presented that describe the change in

round trip times and join times as the number of situations that are recognised

simultaneously by the situation determination middleware is increased.

For these measurements, a slightly different set up was used. Here, the change

in round trip times and join times was measured for a particular situation, while

the number of instances of other situations being recognised in the environment

increased. For this, the Presentation situation was chosen to be measured as this

demonstrated the steepest round trip time scaling in the previous measurements

shown in Table 5.4. This was due to the Presentation situation having the greatest

number of distinct roles that must be matched against.

Typically, a user’s personal device will represent that user, and for the mea-

surements presented in this section, a Pocket PC has been employed as the per-

sonal device. Due to the limited number of Pocket PCs available, it was impossible

to have a single Pocket PC represent a single person exclusively for higher num-

bers of situations, where the total number of people involved exceeded the total

number of Pocket PCs available. Therefore, simulation was necessary for these

higher numbers of situations. The strategy that was chosen was to have the situ-

ation for which the measurements were being made be as realistic as possible, and

simulate the increasing load of the other situations. This was realised by fixing

the number of people involved in a situation at eight, and using all eight Pocket

PCs to represent the people involved in the situation being measured. Agents rep-

resenting the people and artefacts involved in the other situations were deployed

on desktop PCs (the specifications of the machines are given in Section 5.4.1).

The physical set up was the same as that shown in Figure 5.12, but with the

addition of these PCs.

Table 5.4 shows the results of these measurements taken in the same environ-

ment-based deployment as before. Mean round trip time, mean join time, and the

confidence interval for each are given. The ‘Scale’ column indicates the number

of situations that were occurring. At the lowest level of scale 1, there was a single

instance of a number of group situations that were defined for the Computer Sci-

ence department domain. These included the ‘Lunch’, ‘Meeting’, ‘Group Meet-

ing’, ‘Demonstrator Meeting’, ‘Lecture’, ‘Lab’ and ‘Tutorial’ situations. Each

152

Chapter 5. Evaluation

Presentation
Scale Mean RTT RTT CI Mean Join Join CI

1 16.792 ±0.288 3660 ±230
2 17.769 ±0.181 4358 ±366
3 57.235 ±4.923 4285 ±322
4 152.817 ±14.525 4425 ±289
5 386.747 ±60.375 4506 ±238

Table 5.4: The mean round trip times (RTT) and mean join times for the Presen-
tation situation in an environment-based set up, as the number of simultaneously
recognised situations increases. All values are shown in milliseconds, and a 0.95
confidence level was used.

instance included eight people, matching the size of the Presentation instance.

Again, all of the specifications that were developed for each of these situations,

as described in Section 5.3.2, were used.

At scale 1, there was a total of eight situations occurring, which included the

instance of the Presentation situation that was being measured. Then, each scale

number reflects a multiple of this set of situations. So at scale 2, there were

sixteen situations occurring, with two instances of each type. At scale 5, forty

situations were occurring with five instances of each type. At each scale, the

single, realistic instance of the Presentation situation was measured.

The data from Table 5.4 are depicted in Figures 5.18 and 5.19. It can be seen

from Figure 5.18 that the round trip times increase more steeply as the number

of simultaneously recognised situations increases, than when the size of the situ-

ation is increased. For each doubling in the number of situations simultaneously

recognised, the round trip time increased by 137 percent on average. However

this level of performance is still acceptable - at the heaviest load, while recog-

nising forty situations simultaneously with a single SDA, the average round trip

time was just 387 milliseconds. Furthermore, as is demonstrated in the next sec-

tion, these times can be reduced by sharing the recognition load between multiple

SDAs. Figure 5.19 shows that the join times were similar to what has been seen

before, having a high base limit, with average times ranging from 3,660 to 4,506

milliseconds.

153

Chapter 5. Evaluation

RTT

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

Scale

M
ill

is
ec

on
ds

RTT

Figure 5.18: A graphical comparison of the mean round trip times (RTT) for
the Presentation situation in an environment-based set up, as the number of
simultaneously recognised situations increases.

Join Time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5

Scale

M
ill

is
ec

on
ds

Join

Figure 5.19: A graphical comparison of the mean join times for the Presenta-
tion situation in an environment-based set up, as the number of simultaneously
recognised situations increases.

154

Chapter 5. Evaluation

Presentation
SDAs Mean RTT % Prev. % Orig.

1 386.747
2 231.829 59.943
4 144.112 62.163 37.263

Table 5.5: The mean round trip times (RTT) for the Presentation situation in
an environment-based set up under heavy load, as the number of SDAs used to
recognise the situations increases. RTT values are shown in milliseconds. %Prev.
shows the RTT reduction over the previous number of SDAs, while %Orig. shows
the RTT reduction over the original number.

5.4.2.3 Sharing situation recognition load between multiple SDAs

The situation determination middleware makes it easy to deploy multiple SDAs

in environments or particular locations that experience heavy load. The load

distribution is automatically managed by the middleware.

To demonstrate the benefit of this, the largest scale set up from the pre-

vious section was redeployed, though this time the number of available SDAs

was increased, and the reduction in the round trip times was measured. The

environment-based deployment was similar to that used before, where a dedi-

cated desktop PC hosted infrastructure agents including the EMA, SRA, and

ILA, and a separate desktop PC hosted each individual SDA (specifications of

the machines were given in Section 5.4.1). Each SDA was assigned to a partic-

ular area such that all SDAs processed an equal share of the total number of

situations.

The results of these measurements are shown in Table 5.5. For each doubling

of the number of available SDAs, the round trip time decreased to 61 percent of

the previous time on average.

While Figure 5.18 showed that mean RTT could increase steeply when large

numbers of situations were recognised simultaneously by a single SDA, it is

demonstrated here that employing multiple SDAs can help to maintain a low

RTT under periods of heavy load.

5.4.2.4 Relative resource consumption of situation recognition

Table 5.6 presents the relative resource consumption of the various parts involved

in the situation recognition process. For these measurements, the same scale 5

155

Chapter 5. Evaluation

Relative resource consumption
Component % Consumed
Jess 40%
Jade 35%
Sitdet 16%
Pub/sub 9%

Table 5.6: Relative CPU resource consumption of each of the components involved
in the situation recognition process.

set up described in Section 5.4.2.2 was used. That is, a single SDA was recog-

nising forty situations simultaneously, comprised of five instances of each of the

eight group situations, using all of the specifications developed for each situation.

The measurements focus on the situation recognition process, and the SDA in

particular, as this is the most resource-intensive element of the middleware, and

this set up was chosen as it shows the SDA under continuous, intensive load.

In Table 5.6, ‘Jess’ is the rule engine component that performs rule-based

matching to detect which situations are currently occurring, and consumed the

largest proportion of CPU time at 40%. ‘Jade’, which sends, receives and decodes

agent messages, consumed 35% CPU time. The custom situation determination

code, ‘Sitdet’, which integrates and co-ordinates each of the other components,

consumed 16% CPU time. While ‘Pub/sub’, which denotes the components that

manage the publish / subscribe messaging, consumed 9% CPU time.

5.4.3 Algorithmic analysis

This section presents an algorithmic analysis of the recognition core, an exami-

nation of the power savings afforded by the situation determination middleware’s

grounding feature, as well as a brief look at the complexity of the agent infrastruc-

ture and distributed hash table implementation the middleware is based upon.

5.4.3.1 Complexity analysis of the recognition core

As was shown in the previous section, the recognition core consumes the largest

share of the computational resources required by the situation determination

middleware. Therefore in this section, a more detailed look at the complexity of

the recognition core is provided.

156

Chapter 5. Evaluation

The recognition core of the situation determination middleware is based on the

Jess implementation [135] of the Rete algorithm [66]. A Rete-based rule engine is

known to have the complexity O(RFP) where R is the number of rules, F is the

number of facts in the knowledge base and P is the average number of patterns

per rule antecedent [66]. From this, it is possible to calculate the complexity of

a set of situation specifications.

The complexity measure given above is based on properties of the rule-based

representation. However, specifications are not written directly in Jess’s rule-

based language, but instead are expressed by their ontology-based OWL descrip-

tion. Therefore, it is necessary to express the complexity measure in terms of

the properties of the OWL description. The full details of how role and situa-

tion specifications are transformed into their rule-based counterparts is given in

the appendices in Section C.1, though the relevant parts are included here for

convenience.

In this analysis, the parameter Ns represents the size of the set of specifica-

tions, that is, the total number of role specifications and situation specifications.

Ns is equivalent to R.

The parameter F represents the number of facts in the knowledge base. A fact

corresponds to an instance of a tuple. A tuple will exist for each relation accessed

for each instance of each type of entity referenced in the specification. Therefore,

the exact number of tuples will depend on the detail of the particular specification

and on the number of entities currently in the environment. However, this can be

estimated by the product Ne ∗ Nr, where Ne represents the expected number of

entities that will appear in the situation, and Nr represents the average number

of relations accessed in the role and situation specifications. Note that for a

situation specification, the total number of relations accessed will include tuples

that represent ‘hasRole’ relations, one for each role included in the specification.

The product Ne ∗Nr is equivalent to F .

Next, we’ll examine the parameter P , which represents the average number of

patterns that appear in the antecedent, or the ‘if’ part, of a rule. There are three

properties of a specification that affect the average number of patterns. First, is

the number of Boolean expressions that appear within the expression property of

the specification. This also includes any comparisons that declare a confidence

threshold. Secondly, there is the number of relations that are accessed within

the specification’s expression. For example, if ‘person.location.type’ appeared,

meaning access the value of the ‘type’ relation of the value of the ‘location’ relation

157

Chapter 5. Evaluation

of the entity named ‘person’, then two relations would be counted. Thirdly, there

is the number of roles that a specification refers to. This is only important for a

situation specification, as for a role specification this count will always be zero, as

a role specification does not refer to further roles. The parameter Np represents

the average of the sum of the number of Boolean expressions, relations and roles

referred to in each specification. Np is equivalent to P .

These parameters can now be combined to derive the complexity metric based

on the properties of role and situation specifications:

O(RFP) = O(Ns ∗ (Ne ∗Nr) ∗Np) = O(NsNeNrNp)

For a given set of situation specifications, the growth in complexity is linear

in relation to the expected number of entities involved in the situation(s).

5.4.3.2 Grounded specification analysis

As reported in Section 4.1, the power consumed by wireless transmission on a

mobile device can be anywhere from 6 to 50 times that consumed by the CPU or

memory, and it is therefore essential that wireless transmission should be limited

where possible, in order to prolong the battery life of the device. This is the

motivation behind the specification grounding mechanism described in Chapter 4,

where situation specifications that are based entirely or largely on properties

available on the device are recognised locally, rather than transmitting all of the

properties to an external Situation Determination Agent (SDA).

In Section 5.3 it was shown that it was the set of situations that focused

on an individual’s use of a particular device or application that exploited the

specification grounding mechanism. Out of these, the ‘Editing media’ situation

was quite common, in that it had a large number of customisations, and it also

employed the largest set of CEAs. Therefore, it is this situation’s specification

that is used here to demonstrate the savings afforded through grounded specifi-

cations. Furthermore, focus will be given to the case where the user is running

the applications on their mobile phone, as in this case the mobile phone’s battery

is commonly small and limited.

This specification requires a number of pieces of context information to recog-

nise the situation. First, it requires the properties of each application. There are

five of these in total, including whether the application is running on the device,

and whether it is the active application or not. Furthermore, a Compute Context

158

Chapter 5. Evaluation

Entity Agent (CCEA) calculates whether an application has been active for a

certain period of time. All of these properties are produced for each application

that is running. Secondly, the CEAs that monitor keyboard and mouse activity

each produce a tuple. Thirdly, the location of the device and the user must be

included, as well as the ‘is being used by’ relation between them. Fourth, there

are three tuples representing the user, device and active application roles. Finally,

the situation response from the SDA must also be included.

This gives a total of six messages for each application that is running, two for

the keyboard and mouse monitors, plus three for the location and ‘is being used

by’ relations, another three for the roles, and one more for the situation response.

The total messages required per clock tick can be calculated as 6A+ 9, where A

represents the average number of applications running on the host device. If A is

taken to be five, and one clock tick per second as an example, a saving of 140,400

messages per hour is achieved from grounding this specification.

5.4.3.3 Performance measures for JADE and Pastry

As described in Chapter 4, the situation determination middleware is based upon

the JADE agent infrastructure [118] and uses the Pastry distributed hash table

implementation to conduct large-scale, inter-environment searches for situation

requests’ indexes. This section briefly mentions some performance characteris-

tics of these components, as they affect the overall performance of the situation

determination middleware.

Within the situation determination middleware, an agent is used as the basic

software representation for all computational components, including applications,

sensors, and context filtering and transformation components, and the agent in-

frastructure manages all communication between them. If it is sought to deploy

the situation determination middleware on a large scale, the performance of the

agent substrate places a limit on the overall situation determination middleware.

Fortunately, the agent discovery time, average messaging round trip time and

memory consumption scale linearly with the number of agents hosted within the

infrastructure [144]. The capability of the desktop PC host machines that were

used in the evaluation, as described in Section 5.4.1, could comfortably host tens

of thousands of agents.

To perform inter-environment situation determination, the index of a situa-

tion must first be located. As the number of environments connected in an inter-

159

Chapter 5. Evaluation

environment network increases, the time spent searching these environments for

a situation index could significantly delay the middleware’s response time. How-

ever, using a distributed hash table to implement inter-environment search guar-

antees that only a small number of environments need to be contacted in order

to locate a situation’s index. When performing such a lookup, the FreePastry /

PAST implementation, which is used by the situation determination middleware

prototype, is known to require a maximum route length of dlog16Ne, where N is

the number of nodes in the network [123, 145]. For example, in a network of one

million environments, at most only five environments would have to be contacted

to locate a situation index.

5.5 Summary

This chapter presented an evaluation of the pervasive situation determination

middleware developed in this thesis, assessing the complexity, expressivity and

performance of the prototype implementation that supports the distinct mod-

elling and architectural requirements of pervasive situation determination.

In addressing both complexity and expressivity, it was first shown that the

model and architecture were straightforward to instantiate and use, with graphi-

cal tools available to create and alter situation descriptions. Following this, that

more than thirty rich situations spanning four different domains were created,

and could be detected from a relatively small set of only thirteen software sen-

sors based on person and device profile information, calendar information, device

input, software application status, and location. Creating customisations was

simple, and could be performed using a dedicated customisation creation tool.

More than two hundred customisations were created for the situations, featuring

thirty of them in the use of personal devices and applications, eighteen for pub-

lic setting situations, and a further one hundred and seventy six customisations

based on University work setting situations. Even with only a small amount of

sensing infrastructure in use, it was possible to create a variety of situation spec-

ifications, with some situations having as many as five different variations, and a

total of fifty three specifications in all, allowing the middleware to appropriately

adapt to changes in the available sensing infrastructure.

In addition to this, a suite of three distinct situation-aware applications was

developed, each of which were simple to construct. They included an availability

checker application that can perform ad hoc situation queries of a person, device

160

Chapter 5. Evaluation

or location, whether the target may be in the local or a distant environment.

In addition, there was a mode manager application that continuously monitors

and autonomously reacts to a user’s situations, constantly adapting to changes in

sensing infrastructure and environment. Also included was a situation-enhanced

file search application that detects and records all of the user’s situations and

allows them to later search through these situations to retrieve documents and

files associated with them. Together, they demonstrate the breadth of styles of

application the middleware can support.

In looking at performance, a number of performance measurements and anal-

yses were presented. These included round trip time and join time measurements

from light through heavy loads, the reductions afforded by sharing the load be-

tween multiple hosts, and algorithmic analyses of key components. Through

these, the pervasive situation determination middleware was shown to be suit-

able for use by interactive situation-aware applications, and that it scales suf-

ficiently to realistic deployment sizes, for both infrastructure-based and ad hoc

environments.

In summary, the evaluation has illustrated that the approach presented in this

thesis satisfies the modelling and architectural requirements of pervasive situation

determination with sufficient expressivity, affording straightforward instantiation

of situation models, of the middleware itself and of situation-aware applications,

as well as offering adequate performance across a variety of settings.

161

Chapter 6

Conclusions and Future Work

This chapter concludes the work presented in this thesis by giving a summary of

both the ways in which it has fulfilled the goals it set out to achieve and the main

contributions of the work. The chapter closes by outlining possible extensions to

the approach and other directions of future work.

6.1 Summary and Conclusions

As identified in Chapter 1, situation determination has become a key requirement

for infrastructures supporting pervasive computing. However, as demonstrated

in Chapter 2, current approaches do not provide sufficient support to fully realise

the benefits of pervasive situation determination. To provide this support has

been the aim of the work presented in this thesis.

In Chapter 1, a number of modelling and architectural requirements were

established that are essential in realising pervasive situation determination. The

modelling requirements included supporting customised situations, rich situation

models, alternative situation descriptions and multiple situation viewpoints. The

architectural requirements stipulated support for adaptable recognition, resource

management, inter-environment operation and situation discovery.

In what follows, each of the original modelling and architectural requirements

are listed in turn, along with a brief summary of how the approach developed in

this thesis fulfils that requirement. Proceeding this, a summary of the evaluation

of the approach is given, detailing each of its aims and how these were satisfied.

162

Chapter 6. Conclusions and Future Work

6.1.1 Modelling requirements

In this section, each of the modelling requirements, accompanied by a brief sum-

mary of how it was met by the modelling approach, is presented in turn:

Customised situations - In current approaches, the situations that are

recognised are typically general, created externally, and do not capture the distinc-

tive features of situations that are particular to the individual user or their envi-

ronment. None offer the capability for end-users themselves to create their own

customised situations. It should be possible that customisation can be performed

by end-users themselves, as this provides greater cover of the situations that the

user is interested in without relying on specialist maintenance to achieve it.

The two critical elements in supporting customised situations were simplicity

and scope. The customisation process had to be simple enough that end-users

could perform it themselves, yet at the same time it had to be sufficiently com-

prehensive to cover the characteristic elements of the bespoke, local situations

that the user seeks to capture.

This balance was addressed through the observation that many customised

situations bespoke to a particular environment may not be entirely distinct from

each other, but rather form environment-specific variations of a more general

situation. The structure of these general situations and the information required

by a specification of how to recognise them, are likely to be similar or follow a set

of similar patterns. In addition, the variations are likely to differ in the details of

the situations. The difficult part of correlating particular sensor data to a general

situation can then be performed by a skilled administrator or an external source,

and the result can be reused in multiple environments. The general situation can

then be customised to recognise the bespoke variations that occur in a particular

environment.

The customisation process itself has been made very simple. To create a cus-

tomisation, the user first selects the general situation they wish to customise. As

shown in Chapter 3, a customisation is based on the features of the situation,

where a feature is an externally observable property that characterises some as-

pect of the situation. The features include the roles that are played within the

situation, as well as the people, devices or locations that play them. Furthermore,

they are described in high-level terms that are meaningful to the user and reflect

the real-world entities they represent.

The user forms the customisation by selecting a number of simple constraints

163

Chapter 6. Conclusions and Future Work

upon a situation’s features. All of the features of a situation are available to

the user, allowing any aspect of the situation to be customised. Furthermore, as

the customisations are based solely upon the features of a situation description,

they may be utilised by any of the user’s situation-aware applications in a given

environment, without concern for which appropriate specifications are being used

to recognise the base situation.

Section 5.2 demonstrated a convenient GUI tool that allowed the user to

graphically construct a customisation from a mobile device. Moreover, Sec-

tion 5.3.2 described how this was used to create a wealth of customisations across

a range of domains, each satisfying the particular needs of the individual user

and/or local environment.

In enabling the recognition of a greater number of situations like this, this ap-

proach presents the user with a wider set of opportunities to tailor the behaviour

of the situation-aware applications they use, which may be essential for them to

function in the way the user wishes.

Rich situation models - Representations of a situation are commonly coarse-

grained, and lack details or a visible internal structure that can be exploited by

situation-aware applications. Greater detail and specific roles should be captured

in the situation to allow the desired system responses and outcomes to be more

precisely defined and more closely matched to the user’s needs.

Chapter 3 introduced a situation representation that includes three main

parts. The first part is the situation description itself, which is the abstract

description of the features a situation contains. The second part is a customisa-

tion, which details simple constraints on the features of a situation, which allow

environment administrators and end-users to tailor the situation to their own

environment and preferences. The third part involves situation specifications,

which are more complex documents describing the entities, properties, locations,

and constraints upon them that must hold for the situation to be occurring. A

specification provides a mapping from the low-level sensor data available in the

environment to the high-level features of a situation and is used to recognise that

situation.

The features included in a situation’s description may cover an extensive set of

details about it. Both situations and the features within them may be modelled

hierarchically and reasoned about abstractly. Moreover, declaring a comprehen-

sive set of features for a situation has the advantage of providing a consistent

interface to situation-aware applications, and that the situation determination

164

Chapter 6. Conclusions and Future Work

system may utilise the finest-grained reports of a situation that the current en-

vironment is capable of providing. All of the features of a situation may be

directly accessed by a situation-aware application, allowing the application to

react precisely to the details of the situation.

The approach provides two types of specification that are used to recognise a

situation - a role specification and a situation specification. A role specification

describes the individual role an entity plays in the situation, describing the set of

constraints and relations that must hold for the particular entity to be playing the

role. The situation specification then describes the situation as a whole, describ-

ing a composition of roles and a set of constraints and relations upon them, which

must hold in order for the situation to be occurring in the environment. This

two-tiered structure allows for a simple and natural description of a situation. In

particular, it is easy to express constraints over the set of all of the entities playing

a role and on the properties of the set itself, in addition to grouping together all

of the entities that relate to the same instance of a situation. Such constraints,

which were used extensively throughout the specifications developed in Chapter 5,

are difficult to express using conventional logic-based approaches. Furthermore,

the set of constructs available to the specification author is extensible, allowing

new entities, properties and relations to be introduced as required.

The specifications make use of location types, allowing fine-grained types for

a particular space to be defined. These offer greater convenience and generality

in writing rich situation descriptions. Furthermore, a situation specification in-

troduces the notion of an ‘area of influence’ of a situation, that not only allows

the specification author to set a physical boundary around the location of the

entities that may have an influence on the situation, but also permits a reduction

the computational effort required to recognise a situation. In addition, the inclu-

sion of the resource requirements metrics in a specification allows the system to

optimise the placement of the recognition of the situation.

As the sensor data that is used to detect the elements of a situation may suffer

problems of accuracy or staleness that affect the confidence the system can have

in that data, the representation had to provide a convenient means of incorpo-

rating and handling measures of confidence. This work developed an approach in

which the system automatically handles the calculation of the confidence of a sit-

uation as a whole, based on the confidence measures of the complex composition

of context information that is used to recognise the situation. The process offers

a fast and efficient means of calculation based on monotonic selection. More-

165

Chapter 6. Conclusions and Future Work

over, the only additional element required from the specification author is to

state a minimum confidence threshold for any roles referenced in the situation’s

specification.

Combined, these offer a rich suite of modelling constructs for representing

situations. Chapter 5 illustrated a number of applications that took advantage of

being able to capture the structure and detail of a situation like this, and how it

allowed the ways in which the applications reacted to a situation to be precisely

defined.

Alternative descriptions - A description of how to recognise a situation

generally relies upon particular sensing infrastructure being available and so can-

not be used in its absence. To be more pervasive, the model of a situation should

include multiple, alternative descriptions that specify how the situation can be

recognised from a variety of different forms of sensing infrastructure.

A situation description is an abstract description, as it declares what is recog-

nised for a given situation, but says nothing about how it is recognised. It is

the mappings from low-level sensor data to high-level features provided by sit-

uation specifications that describe how a situation is recognised. The features

of a situation description serve as a common interface to the situation for cus-

tomisations, specifications and situation-aware applications. As customisations

and the interaction with applications are based solely upon this common inter-

face, the specification used to recognise the situation can be changed at will.

This simple decoupling enables the number and choice of specifications used to

recognise a situation to be dynamically adapted, and makes the recognition of

a situation robust against changes in the environment as well as the available

sensing infrastructure.

The level of independence that this achieves allows the model to provide simul-

taneous support for the two dimensions of variability encountered in a pervasive

computing environment, which were introduced in Chapter 1. The first dimension

concerns what is recognised, which runs down through the hierarchy of situations

and customisations. The second concerns how these are recognised, and spans

across the many different environments and sensing infrastructures that may be

encountered. In the model, these concerns have been made orthogonal, which

allows them to vary dynamically and independently.

Multiple viewpoints - Typically, a situation focuses exclusively on the view-

point of the single, local, current user of a situation-aware application. While

doing so makes the system simpler, it also significantly limits how pervasive the

166

Chapter 6. Conclusions and Future Work

system can be. The system should be capable of reporting the situations of any

person, device or location to any user in the system.

A model of a situation is not anchored to any particular viewpoint. A situation

provides a full representation of all the people and artefacts that are involved

within it. It is only when a situation is requested and a specific index is selected,

that a particular viewpoint is set. A request for a situation may be from the

perspective of any person, device or location featured within a situation, and

requires no changes in the representation of the situation, its customisations or

its specifications.

In conclusion, the modelling approach presented in this thesis aptly fulfils the

modelling requirements necessary for pervasive situation determination.

6.1.2 Architectural requirements

This section presents each of the architectural requirements, along with a brief

summary of how it was fulfilled, in turn:

Adaptable recognition - In addition to the model being able to provide

alternative descriptions of a particular situation, the infrastructure should be able

to provide adaptable recognition for the process as a whole, incorporating new

descriptions and sensing infrastructure as they appear in the environment, as well

as adapting to the loss of existing sources. Enabling the system to fully exploit

the dynamic environment in which it operates can result in greater availability of

both the system and users’ situation-aware applications.

In Chapter 4, it was shown how the architecture can automatically exploit

any new data sources or sensing technologies introduced into the environment

in the form of data context entity agents (DCEAs), as well as any new compu-

tational, pattern recognition or conversion capabilities in the form of compute

context entity agents (CCEAs), and how the flow of information from these was

co-ordinated and fused by the compute context entity manager (CCEAM). Also

shown was how specification repository agents (SRAs) act as dynamic sources

of new situations, specifications and customisations within an environment. The

flexibility of the situation recognition process used by a situation determina-

tion agent (SDA) was demonstrated, including how each of these sources can be

dynamically incorporated to provide recognition of the broadest range of situa-

tions at the highest granularity possible. The autonomous co-ordination of these

agents’ actions provides an extremely flexible, extensible and adaptable situation

167

Chapter 6. Conclusions and Future Work

recognition process that can continually adapt to an environment as it evolves.

In supporting adaptive recognition like this, the architecture affords greater

availability. This is done by being able to recognise the situations to the high-

est granularity and confidence possible, despite changes in the available sensing

infrastructure or as the user changes environment. Providing a greater level of

availability like this creates a wider set of opportunities in which the situation-

aware applications a user wishes to use can function.

Resource management - Recognising a situation can be a computationally

expensive task, yet it often must be performed by resource-constrained devices. To

mitigate the cost of this, the system should strive to manage the resources within

it, shifting expensive tasks to the devices that can best afford them.

Chapter 4 demonstrated how the architecture employs several techniques to

evenly distribute the load between agents of the system and to strive to preserve

the battery life of mobile devices. These included resource requirements based

assignment of situation specifications to SDAs by the situation determination

agent manager (SDAM), as well as a resource foraging approach to allow the

computationally expensive operation of recognising situation specifications to be

off-loaded from resource-constrained to resource-rich hosts, and also the specifica-

tion grounding technique that can be used to minimise communication costs for

mobile SDA hosts. After noting that wireless communication is often the biggest

drain on the battery life of a mobile device, Chapter 5 provided an example of

how the grounding technique can considerably reduce the number of messages

that such a device must send.

Inter-environment operation - Supporting inter-environment operation is

essential to providing the necessary reach and scope of situation-aware applica-

tions, when the situations a user is interested in extend beyond the local

environment.

In Chapter 4, it was shown that this requirement is supported by the architec-

ture in two ways. The first was the ability of the index server agent (ISA) of an

individual person, device or location to receive situation requests from and send

situation reports to a situation-aware application (SAA) anywhere within the

network. The second was by supporting both environment and ad hoc modes of

operation and having an environment manager agent (EMA) autonomously man-

age transitions between the two, allowing the architecture to support continuous

recognition of a person or device’s situations over changes in location, network or

environment, as well as changes in the architecture’s operational mode.

168

Chapter 6. Conclusions and Future Work

Situation discovery - When the situations a user is interested in do ex-

tend beyond the local environment, the system must have a means of discovering

situations that are occurring elsewhere within the network of environments.

In Chapter 4 it was shown that within the architecture, an index server agent

(ISA) and an index locator agent (ILA) make innovative use of distributed hash

table (DHT) techniques in co-operating to provide large-scale situation discovery.

Furthermore, it was illustrated how this enables situation-aware applications to

base their behaviour not only upon situations that are occurring in the local

environment, but also upon those in external, potentially remote environments

elsewhere in the world.

To conclude, the architecture created in this thesis fully satisfies the architec-

tural requirements necessary for pervasive situation determination.

6.1.3 Evaluation

Chapter 5 presented an evaluation of a prototype middleware implementation

that supports the distinct modelling and architectural requirements of pervasive

situation determination. Presented below are the aims of this evaluation along

with a short summary of how each was satisfied.

Sufficient expressivity - Establish that the model and architecture are suf-

ficiently expressive to conveniently describe several situations, specifications and

customisations spanning a range of domains and environments, and support a

variety of styles of pervasive situation-aware applications, respectively.

Section 5.3.2 demonstrated the expressiveness of the modelling approach by

presenting a wide variety of situations that could be developed. A total of thirty-

two situations were created, spanning four different domains. These were detected

from a small set of thirteen software sensors based on person and device profile

information, calendar information, device input, software application status and

location. More than two hundred customisations were created for the situations,

featuring thirty of them in the use of personal devices and applications, eighteen

for public setting situations, and a further one hundred and seventy six customisa-

tions based on University work setting situations. Even with only a small amount

of sensing infrastructure in use, it was possible to create a variety of situation

specifications, with some situations having as many as five different variations,

and a total of fifty-three specifications in all.

The support the architecture offers to pervasive situation-aware applications

169

Chapter 6. Conclusions and Future Work

was demonstrated in Section 5.3.3 through the breadth of styles of application

that could be developed using the prototype. To this end, a suite of three distinct

situation-aware applications was constructed. The first was an availability checker

that can perform ad hoc situation queries of a person, device or location, whether

the target may be in the local or distant environment. The second was a mode

manager application that continuously monitors and autonomously reacts to a

user’s situations, constantly adapting to changes in sensing infrastructure and

environment. The third was a situation-enhanced file search application that

detects and records all of the user’s situations and allows them to later search

through these situations to retrieve documents and files associated with them.

Furthermore, it was shown how modelling, processing and sensing infrastructure

elements could easily be extended to accommodate the specific needs of a new

application.

Straightforward instantiation - Demonstrate that situation models, the

architecture and pervasive situation-aware applications afford straightforward

instantiation.

In Sections 5.2 and 5.3, the simplicity of the modelling approach was illus-

trated by the ease with which situations could be constructed. Situation de-

scriptions, specifications and customisations are represented as Web Ontology

Language (OWL) [128] documents. OWL allows rich, extensible, semantic mod-

els to be constructed to represent the environment, the entities within them as

well as the situations that occur. Broad tool support is available for editing OWL

documents, which makes it easy to construct the situation descriptions. Graphi-

cal tools exist that allow the author to select the desired classes from an ontology

to represent the people and artefacts involved in a situation, and to specify the

appropriate relations and constraints. Furthermore, the validity and consistency

of situation descriptions can be automatically checked.

The middleware prototype that was developed and discussed in Section 5.2,

illustrated that instantiation of the architecture was possible. Furthermore, it

was shown that the development of the prototype was simplified through the use

of appropriate frameworks to implement the more standard elements of the ar-

chitecture. These include the agent substrate that was used, the Rete network

implementation used in recognising a situation, the ad hoc discovery mechanisms,

as well as the distributed hash table implementation used in inter-environment

operation and situation discovery. This reuse allowed the effort involved in pro-

ducing the prototype to focus on the original parts of the architecture.

170

Chapter 6. Conclusions and Future Work

Section 5.3 established that the situation-aware applications that were devel-

oped were simple to construct. It was shown that an application developer need

only include the situation-aware application agent (SAA) in their code to incor-

porate the pervasive situation determination middleware. Furthermore, the SAA

can manage all of the situation reports requested and received by the application.

Practical performance - Determine that the middleware provides a suffi-

cient level of performance for the number and size of situations that would be

encountered in real-world settings.

The performance of the middleware prototype was assessed in Section 5.4,

which presented a number of performance measurements and analyses.

The first of these measured situation request round trip times and join times.

Several measurements were recorded as both the size of a situation was scaled

from small to large instances, and the overall load increased from a few to many

situations and specifications being recognised at the same time. These measure-

ments were repeated for both infrastructure-based and ad hoc modes of opera-

tion. The analysis of the infrastructure-based mode additionally included mea-

surements demonstrating the significant reductions in round trip times afforded

by sharing the recognition load between multiple SDA hosts. In each case, the

prototype middleware implementation was shown to be suitable for use by in-

teractive situation-aware applications, and that it scales sufficiently to realistic

deployment sizes.

Given this evaluation, it can be concluded the approach provides sufficient

expressivity in both the model, to describe a wide variety of situations, specifi-

cations and customisations, and in the architecture, to support many styles of

pervasive situation-aware application. Furthermore, that situation models, the

architecture and applications all afford straightforward instantiation, and that

the middleware provides a sufficient level of performance for interactive use in

real-world settings.

6.1.4 Contributions

In conclusion, the novel aspects of the approach developed in this thesis combine

to achieve the goal originally set out for this work: to effectively meet the re-

quirements, and realise the benefits of, pervasive situation determination. This

has been achieved through the following main contributions of this work:

• The presentation of an original model that provides support for the require-

171

Chapter 6. Conclusions and Future Work

ments concerning customised situations, rich situation models, alternative

descriptions and multiple viewpoints. These are not addressed by current

approaches.

• The development of a novel software architecture that fully supports the

model while additionally addressing the architectural requirements of adapt-

able recognition, resource management, inter-environment operation and

situation discovery. These are currently lacking in existing approaches.

• The evaluation of both the model and architecture through the development

of an extensive number of situations, specifications, and customisations,

spanning a range of domains and environments, and a suite of situation-

aware applications.

6.2 Future Work

Branching from the work presented here, there are several further, exciting av-

enues that could be explored. This section examines some of these avenues con-

cerning the model, architecture and evaluation of the situation determination

middleware and situation-aware systems.

6.2.1 Model

In the current modelling approach, there is an implicit monotonicity constraint

between a customisation and a specification in the case where, in order to recog-

nise the situation, the specification must place constraints upon the members of

the resulting feature set. In this case, the constraints a customisation places upon

the feature set must be more restrictive than those of the specification, in order

for the customisation to be matched. This was never a problem in practice for

any of the situations, specifications or customisations developed in Chapter 5.

There was a natural tendency for customisations to act as a refinement, and

for specifications and customisations to focus on different properties. Typically,

specifications would focus on the structure of the situation, while customisations

would focus on the details of particular instances.

Lifting this constraint frees an end-user customisation from being a refinement,

and allows it to act as a more general transformation. In order to do this, an

interpreter could be associated and distributed with a specification. Then, given

172

Chapter 6. Conclusions and Future Work

Situation
S

Customisation
C

Specification
A

Interpreter
A

Situation
S

Specification
A’

Interpreter
A’

Figure 6.1: In this figure, specification A describes situation S. To apply cus-
tomisation C, its interpreter takes customisation C, merges it with specification
A to produce specification A′, which also describes situation S, and its associated
interpreter A′.

a particular customisation, the interpreter could generate an altered specification

that combines the constraints from the specification and the customisation, and

resolves any conflicts as necessary. In order for further customisations to be

applied to the resulting altered specification, an updated interpreter would also

need to be produced, that was associated with the newly generated specification.

This process is illustrated in Figure 6.1.

An interesting avenue of investigation would be to explore the computational

efficiency of such a mechanism. To construct it, suitable combination operators

would need to be defined, along with conflict resolution policies for each property

type, in addition to the interpreter generation language and mechanism itself. The

increase in the computational load required to recognise a customisation, possibly

incurred at runtime, would include the cost of analysing and verifying the original

specification and customisation, and then generating the new specification via the

interpreter, for each customisation in the series. Also, the process would produce

a larger number of specifications that must be recognised simultaneously, and for

each specification, its associated interpreter must also be stored and distributed

with it. The advantage of this enhancement would be that it could offer greater

freedom of expression by potentially allowing a series of customisations to be

applied to a specification without restraint. The challenge would be to offer full

generality in the customisations, while limiting the additional overheads it incurs.

In this work, the focus has been on recognising situations that are currently

occurring within a short temporal extent. This allowed a situation request to be

173

Chapter 6. Conclusions and Future Work

received, either in the local or a remote environment, processed, recognised, and

the report posted back, all quickly enough to enable situation-aware applications

such as the availability checker application from Chapter 5, to perform dynamic,

interactive situation queries.

However, for other applications, the reports of which situations are occurring

may not be used until later. For example, the situation-enhanced file search ap-

plication from Chapter 5 logged situation occurrences that were later matched

by search criteria for finding particular files. Situation-aware applications such as

this could take advantage of situations that were modelled using explicit tempo-

ral dependencies, and may even require retrospective reasoning to be accurately

identified. This would also allow richer situation queries to be performed, for

example an application may search for ‘the presentation in which John asked a

question just after Beth’.

Another interesting avenue that could be explored is the possibility of learn-

ing customisations for a given environment. For example, the middleware could

monitor the situations that occur in an environment over time, and where regu-

larities exist in the values of a situation’s feature set, the system could present

this as a possible customisation. This would allow the middleware to automati-

cally suggest customisations to the user, in addition to them being able to create

customisations themselves.

In addition to this, allowing the users to give feedback to the pervasive situ-

ation determination middleware would allow the recognition of situations to be

adapted to the local environment in a principled way, similar to that attempted

by Ye et al. [75].

There are several ways that such feedback could be incorporated into the

system. For example, given a set of situations that are currently reported as

occurring, a user could identify any misreported situations and the system could

appropriately adjust the confidence thresholds for these situations.

The user may also wish to adapt confidence thresholds for pairs of situation

descriptions and application behaviours, in order to tailor the confidence thresh-

olds to particular uses of an application. For example, behaviours for which the

user considers the consequences of mis-enactment are low risk, such as a setting

a screen saver on or off, may be set to use a lower confidence threshold, whereas

higher risk behaviours would require a higher threshold.

Furthermore, feedback could be linked in to the interpreter discussed above,

such that it may be possible that more general corrections could be performed by

174

Chapter 6. Conclusions and Future Work

the interpreter. That is, if the user has identified a number of cases of misreported

situations, these could be analysed by the interpreter along with the situations’

original specifications and identify not only where confidence thresholds could be

adjusted, but also constraints and expressions that could be adapted to better

match the expectation of the users in the local environment. Complementary to

learning customisations, which provides the opportunity to automatically learn

new, custom situations that are local to the environment, enabling user-driven

corrections such as these would allow local adaptation of the base situations’

specifications.

Currently, there is no way to define a situation or customisation as a compo-

sition of other situations. For example, a user may wish to define a particular

situation as when they are ‘travelling to work’ and ‘listening to music’. Fur-

thermore, this could be useful for dealing with situations on a larger scale. For

example, within a building, given the situations that are occurring within each

of its rooms, the situation of the building itself could be defined as ‘normal’ or

‘not normal’. It is possible that such situations could also be learnt over time.

6.2.2 Architecture

Privacy will be an important aspect of real-world deployments of pervasive com-

puting systems. The pervasive situation determination approach presented in

this thesis would have an impact on this issue. On one hand, being able to query

the situations of a friend or colleague in whichever environment they currently

happen to be in, significantly extends the scope and utility of situation-aware

applications. On the other hand, unchecked use of such applications could pose

a threat to the privacy of their users. Addressing the privacy issues associated

with pervasive situation determination would form the priority development of

future work, and so is given an extended overview here.

Privacy issues affect not only situation determination systems, but also context-

aware and pervasive computing systems in general. Langheinrich provides a com-

prehensive privacy framework for pervasive computing systems that highlights six

privacy principles [146, 147]. These principles provide a suitable starting point

upon which privacy related extensions to the pervasive situation determination

approach could be based. The six principles can be summarised as follows:

Notice - Any subject that has data collected about them, must be aware of

what and how data is being collected.

175

Chapter 6. Conclusions and Future Work

Choice and consent - A subject must first give their explicit consent before

any data is collected about them, and be able to choose the specific pieces of

information that are collected.

Anonymity and pseudonymity - Anonymity can provide an alternative to

personal data collection, in which data that is collected is not linked in any way

to the identity of an individual. Pseudonymity schemes allow an individual to

use a temporary id as an alias for a certain length of time.

Proximity and locality - An example of this principle would be that if some-

one’s personal device was recording data about the people in the same room, it

would only record data when the owner of the device was present in the room, and

it would not propagate the data beyond the room. Such protection may be de-

sirable in cases where clear notices, explicit consent or untraceable pseudonymity

prove too difficult to implement.

Adequate security - All personal data access should be authenticated, and

all transmission and storage of personal data should be encrypted.

Access and recourse - A subject can access the personal data a body holds

about them, check the purpose for which the data is stored, and that it is retained

only as long as is required for that purpose.

The main aim of these principles is to ensure that anybody that collects

personal information can be made accountable for protecting its privacy. Ideally,

a privacy-aware pervasive computing system would provide facilities to uphold

all of these principles where appropriate.

An interesting area of future work would be to explore means of supporting

these privacy principles within the pervasive situation determination architecture.

Discussed below are the areas of the system that each of these principles affect,

and some initial ways in which support for them could be provided.

Providing sufficient notice requires that every person that is located within the

area of influence of any situation specification that is currently being recognised

within the environment, must be notified of the data that are required by all

of the specifications and any customisations. Furthermore, they must also be

notified of the situations that the data are used to recognise, as well as who has

requested the situations and for what purpose they are being requested.

Within the pervasive situation determination system, it is assumed that users

carry a personal device with them, such as a mobile phone, that hosts their repre-

sentative index server agent (ISA). It is possible that the situation determination

agents (SDAs) operating within the environment could deliver notice to the ISAs

176

Chapter 6. Conclusions and Future Work

of each of the people whose personal data is currently referenced by a specification

that is currently being processed in the SDA’s active set. The personal device

that hosts the ISA could then indicate that the user’s personal data is currently

being used in recognising situations, perhaps by displaying a particular symbol

in the corner of the screen. Then, the user could click on the symbol to show the

full details of the notice.

Choice and consent would be challenging to implement as it demands feedback

from each person involved in a situation, for potentially every request. When a

situation request is received by an ISA, each of the people whose personal data

may be referenced by a specification that would be used to recognise any of the

situations included in the request, would have to be prompted. Each of the

people would then have to review the request, select how their personal data may

be used for this request, and then grant their consent. The user could choose

to be completely excluded, effectively making them invisible to the request, they

may choose to appear anonymously or as their pseudonym, or they may choose

to only permit certain pieces of information to be used. It could even be possible

to choose to have the situation obfuscated in some way. For example, a user’s

index server agent (ISA) may intentionally blur or otherwise modify a situation

report, such as it reveals only that the user is currently involved in a meeting,

but not who the user is in a meeting with.

However, continued interruption from such prompting would quickly prove

frustrating. A way to address this would be to provide user policy files that

specify consent in advance for known situations, purposes and request issuers.

Consent could then be granted automatically by the user’s ISA. Furthermore, a

user’s privacy policy may address information that is produced about the user but

is not under the user’s direct control. A policy may contain stipulations such as

that any location data about the user that is generated by the host environment

itself (for example, by the video-based location system mentioned in Chapter 4)

must be transmitted securely and only to their ISA, or that the identity of the

user must be removed from any situation report that the user is involved in but

is not the index. The challenge here is to provide a means for end-users to create

and alter such policies that can be both sufficiently comprehensive and easy to

use. Ideally, the user would be able to change their policy dynamically, such as

to block current undesired usage of their personal data that is reported in the

notice.

Attempting to support this principle further highlights the benefit of the alter-

177

Chapter 6. Conclusions and Future Work

native specification and adaptable recognition capabilities offered by the pervasive

situation determination system. It may be possible to define alternative specifica-

tions not only for different sensing infrastructures, but also for expected privacy

policy combinations. For example, one specification may assume all of the peo-

ple involved in the situation granted access to the full set of required properties.

Another specification may assume that all but the index will have granted only

anonymous collection. In this way, recognition of situations could then also be

made robust against a shifting sea of changing privacy policies.

Proximity and locality would form part of the stipulations of a user’s privacy

policy file. Proximity is implied for the index of a situation, as the area of influence

of a situation specification is related to the current location of the index. However,

it may be necessary to enforce proximity for the person or application that issues

a situation request. In this case, a user’s ISA may only grant consent if the issuer

is at the same location. This could be made even more stringent by requiring the

issuer to be part of the same situation.

Locality constraints influence which intended uses of a situation report are

permissible, and so would affect the type of applications that could make use

of them. For example, situation-aware applications that make immediate use

of reports of which situations are currently occurring locally, such as the mode

manager application presented in Chapter 5, would be able to make use of sit-

uation reports that are bound by locality agreements. As such reports would

be received, checked and then discarded, the lifecycle of their use will be com-

pletely contained within the locality. Other applications that may intend to keep

a history of situations, such as the situation-enhanced file search application also

presented in Chapter 5, would not be able to make use of such reports, as their

later use in searching through the history of situations may occur outwith the

current locality.

Authentication of a situation request could be performed by the user’s ISA.

For example, a public key cryptography scheme could be used to verify the

claimed identity of the issuer of the request. The ISA also provides an appropriate

point at which to manage encryption, not only of the situation reports, but also of

the individual pieces of context information pertaining to a particular user. The

challenge here would be to retain the flexibility afforded by the openness of the

publish / subscribe style of communication used to transmit a user’s information

within an environment, while being able to appropriately secure the information

for each different type or instance of agent that must receive it, without incurring

178

Chapter 6. Conclusions and Future Work

inflated overheads in communication.

Access and recourse to situations recognised in an infrastructure-based envi-

ronment could be supported by the organisation associated with the environment.

A public, authenticated point of access could be provided, a web page for example,

where a person that was involved in a situation recognised within the environ-

ment could access the data that is stored about them, and verify the purpose and

intended duration for which the data is retained.

Supporting access and recourse for the ad hoc mode of operation may be

more problematic. When operating in ad hoc mode, the onus will commonly be

on the individual user, rather than a public organisation, to maintain a record

of which situations were recognised and which data were used. This is a burden

that many users would not wish to bear, particularly as a user may encounter

many other people, for example in a busy train station or airport. In Chapter 4

it was suggested that a user may have a service provider which provides a fixed

access point to the network of distributed hash table (DHT) nodes used for inter-

environment operation and situation discovery. It may be possible that such a

service provider could also be used to provide a public, authenticated access point

for the personal information held by an individual user.

Another area that could be explored concerning the architecture, lies in further

developing the CPU Load resource requirements measure presented in Chapter 4

to use platform-independent CPU predictors that can be used across processor

architectures. Further exploration of techniques to help preserve the battery life

of mobile devices used within the situation determination middleware, such as

the specification grounding technique also presented in Chapter 4, that operate

at a system-wide level is also possible.

6.2.3 Evaluation

Concerning the evaluation of the situation determination middleware, there are

several further interesting studies that could be performed. These include further

deployment in different environments and domains, exploring a larger variety of

sensing infrastructure, situations and applications. Also, a thorough evaluation

of the interaction between end-users and the situation determination middleware

could be conducted, which explores the use of tools for creating customisations

and managing their deployment, as well as the use of situation-aware applications

in real environments. Additionally, there is the possibility of examining the novel

179

Chapter 6. Conclusions and Future Work

application opportunities that would be created by building up a large record of

situation histories, which might include social networking applications, automatic

diary applications, and stress and health monitoring applications.

Finally, making context and situation data sets publicly available from mul-

tiple environments, in similar spirit to the MIT House n project [74], would help

foster further research into the design and evaluation of situation determination

techniques, inter-environment operation, sensing infrastructure and pervasive en-

vironments themselves.

180

Appendix A

Developing Location Awareness

This appendix presents how the location model was implemented and the devel-

opment of the location detection system that were used by the situation deter-

mination middleware and situation-aware applications presented in Chapter 5.

To be appropriate for use by the pervasive situation determination middleware

prototype, there were a number of requirements that a potential location system

had to meet. First of all, there were several different types of target settings in

which the location system would be used. These included a domestic setting, a

University setting and public settings such as train stations, bus stops, shops and

restaurants. Many of the situations that were developed for these settings had

an Area of Influence (AoI) defined as a room. Therefore, the location system

must have been able to support at least room level granularity. Furthermore,

the location system was intended to be hosted on a user’s personal device, so a

system that could be run on a range of personal devices, including laptops, PDAs

and mobile phones was sought. Finally, the software and data necessary to run

the location system had to be freely available.

The open-source Placelab location system [33] is a software framework that

can approximate the GPS co-ordinates of a host computing device based on 802.11

base station signal strength readings. The Placelab framework initially appeared

to be a suitable choice for use in the middleware prototype due to a number of

factors. It was based on 802.11 wireless networks, which were present in all of

the target settings and available on each of the personal, mobile devices intended

to host the system. It supported several host device platforms, including Win-

dows XP-based laptop computers, and Windows Mobile-based PDAs and mobile

181

Appendix A. Developing Location Awareness

phones. It was also the only high quality software location system that was freely

available.

The requirement the Placelab framework did not meet was in providing indoor,

room level granularity. The level of accuracy that Placelab offered was sufficient to

identify outdoor regions and create symbolic locations for public places. Sufficient

accuracy could not be obtained however, to reliably identify distinct rooms within

the domestic and University settings.

Extending the Placelab framework to be able to support room level granu-

larity gave a means to produce a location system that could provide sufficient

indoor accuracy that would enable testing of the pervasive situation determina-

tion middleware prototype in all of the target test environments, quickly and

with reasonable effort. The development of this extension is presented in this

Appendix.

The following sections look at how the location models and the location detec-

tion system extension were implemented. Section A.1 describes some of the test

environments that were used as well as the location models that were constructed

for them. Section A.2 presents each of the stages of development in implement-

ing the location detection system extension. Finally, Section A.3 concludes this

Appendix.

A.1 Environments and location models

The set of environments encountered in the situations developed in Chapter 5

included a home and a University setting. It was these settings for which the

most complex location models were created, and so make the most interesting

examples for further detailed presentation here. Figures A.1 and A.2 show floor

plans from the home and University test environments, respectively.

In the home environment, both bedrooms and the lounge area were used, and

each room size was approximately 29m2, 10m2, and 8m2, respectively. In the

University environment, a mix of office areas and larger, open areas were used.

The smaller office areas such as 12.05, were approximately 18m2 in size, the larger

office areas such as 12.06, were approximately 35m2 in size, while the larger open

areas such as 12.01, were approximately 94m2. The University environment has

a total of four floors, each with a similar layout to the floor shown in Figure A.2.

In order to implement location detection for a particular environment, a lo-

cation model must be created for it. These are constructed by creating and

182

Appendix A. Developing Location Awareness

Lounge

WC

Kitchen
Bath-
room

Hall

Main bedroom

2nd bedroom
BS

Figure A.1: A floor plan of the home test bed environment. The bubble with
‘BS’ inside it marks the location of the base station.

BS

BS

Figure A.2: A floor plan from the University test bed environment. The bubbles
with ‘BS’ inside them mark the location of the base stations.

connecting instances of a location class, which is provided by the middleware

ontology. Figure A.3 shows the structure of this location class and its properties.

It states that a location may have a symbolic name, a location type, a parent

location and a child location. There are no cardinality constraints on these prop-

erties, meaning that a given location may have any number of names, types, or

parent or child locations. Using this simple structure, it is possible to build large,

rich location graphs for an environment.

Figure A.4 shows some example locations from the location model created for

the University test bed environment. It states that room “L13.18” is a presen-

183

Appendix A. Developing Location Awareness

<!-- Location. -->

<owl:Class rdf:ID="Location" />

<owl:DatatypeProperty rdf:ID="hasSymbolicName">

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasLocationType">

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasParentLocation">

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="#Location" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasChildLocation">

<owl:inverseOf rdf:resource="#hasParentLocation" />

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="#Location" />

</owl:ObjectProperty>

Figure A.3: The structure of the location class as defined in the middleware
ontology.

<!-- University locations. -->

<Location rdf:ID="LivingstoneTower13thFloor">

<hasSymbolicName>L13</hasSymbolicName>

<hasLocationType>Floor</hasLocationType>

<hasParentLocation rdf:resource="#CISDepartment" />

</Location>

<Location rdf:ID="L1318">

<hasSymbolicName>L13.18</hasSymbolicName>

<hasLocationType>Room</hasLocationType>

<hasLocationType>PresentationArea</hasLocationType>

<hasParentLocation rdf:resource="#LivingstoneTower13thFloor" />

</Location>

<Location rdf:ID="L1318SpeakerArea">

<hasSymbolicName>L13.18 Speaker Area</hasSymbolicName>

<hasLocationType>SpeakerArea</hasLocationType>

<hasParentLocation rdf:resource="#L1318" />

</Location>

<Location rdf:ID="L1318AudienceArea">

<hasSymbolicName>L13.18 Audience Area</hasSymbolicName>

<hasLocationType>AudienceArea</hasLocationType>

<hasParentLocation rdf:resource="#L1318" />

</Location>

Figure A.4: Declarations of some example locations from the University test bed
environment.

tation area, and contains two other areas - a speaker area and an audience area.

L13.18 itself is part of floor L13, which is within the CIS Department.

The models for both the University and home environment used the common

symbolic names for each location that already existed in the environment to give

a familiar feel. Each model is defined within its own namespace to avoid name

collisions of the symbolic co-ordinates.

184

Appendix A. Developing Location Awareness

A.2 Implementing location detection

Several phases were involved in implementing the extension to the Placelab loca-

tion detection system. These included first creating a sufficient signal detection

capability, creating mappings from the received signals to known locations, im-

proving confidence in the reported locations through exploiting the structure of

the location model, and finally combining all of these aspects to form the location

detection application itself. Each of these phases is described in turn throughout

the following sections.

A.2.1 Developing sufficient signal detection capability

When working indoors, there are several factors that can affect the accuracy of

802.11 signal strength detection, particularly interference from metal objects such

as filing cabinets and metal girder structures in a building’s support, as well as

interference from moisture in the air and people. For a detailed account, please

refer to [34].

Furthermore, the accuracy of the Placelab framework is affected by the wealth

of stationary, infrastructure-mode base stations available in the environment [33].

The home test bed environment had a single infrastructure-mode base station

within it, its location is marked on Figure A.1, and another eight to ten visible

infrastructure-mode base stations externally located. The University test bed

environment had a total of twelve infrastructure-mode base stations positioned

throughout the environment. See Figure A.2.

Some initial experimentation was performed with an unmodified version of

the Placelab framework. In both the home and University test environments,

the detection granularity was low. At best, the application could detect different

areas of approximately 100m2. In the University environment, this translated to

being able to detect which floor the host device was on, and in which quarter

of the building. In the home environment, it could effectively detect whether

the host device was located within the home or not. Many of the situations

that were to be detected required at least room level granularity. This made the

performance of the unmodified Placelab software insufficient.

While the inferred GPS output of the Placelab software did not provide the

required granularity, the software still provided an effective library for reading

802.11 base station signal strengths. Based upon this, a successful attempt was

made at constructing room level location detection. Moreover, it was also possible

185

Appendix A. Developing Location Awareness

to detect finer-grained areas within larger rooms, such as the speaker and audience

areas within a presentation area. The development of this application involved

several phases - recording signal strength data from multiple points within each

environment, analysis of these data, construction of a suitable location-detection

algorithm and software, and testing in both the home and University environ-

ments. Each phase is discussed below in turn.

Figures A.5 and A.6 give examples of raw signal strength data collected us-

ing the Placelab software on both a Dell Inspiron 6000 laptop using an Intel

PRO/Wireless 2200BG wireless network card, and an Hewlett Packard h5550

Pocket PC using the standard, built-in wireless network card. The specific lo-

cations are the lounge area of the home environment, and “12.01 Muir Lab”, as

shown in Figures A.1 and A.2, respectively. The values shown in the graphs are a

normalised signal strength measure ranging from 100 (strongest) to 0 (weakest).

In both examples, the host device was placed in a central position within the

location, and was stationary for the length of the sample period.

The first observation about these data is that the signal was very noisy, partic-

ularly when using the Pocket PC. The reported signal strength oscillated rapidly

between a range of values. This can be seen for the two specific locations in

Figures A.5 and A.6.

More generally, when using the laptop, the upper and lower bound of this

range shifted according to the distance from a base station. When close to a base

station, the signal strength ranges between approximately 60 to 70, and when

furthest from a base station, between approximately 10 to 20. When using the

Pocket PC, the lower bound of the range would always be between approximately

10 to 30. The upper bound would range from 60 to 80 when close to a base station,

and 10 to 30 when furthest away. This made the Pocket PC much noisier, and

therefore more problematic to use to accurately detect location.

To counteract this noise for both the laptop and Pocket PC, filtering tech-

niques had to be applied to the signal strength data in order to produce a steadier,

consistent signal. In what follows however, focus is given to the noisier Pocket

PC signal, though it was the same filtering techniques that were used in the final

version of the location detector application for both the Pocket PC and laptop

platforms.

Analysing the data from all locations within each environment, showed that

low-strength signals (ranging between 0 to 25) occurred frequently in all location

samples. These were then considered to be noise, and all values reported at 25

186

Appendix A. Developing Location Awareness

Laptop - Home location - Raw signal strength data

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

BS1 BS2 BS3 BS4 BS5

Pocket PC - Home location - Raw signal strength data

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

BS1 BS2 BS3 BS4

Figure A.5: These graphs show the raw 802.11 signal strength streams received
by the laptop and Pocket PC devices for the home location. BSn refers to the
BSSID of particular base stations within each environment.

187

Appendix A. Developing Location Awareness

Laptop - University location - Raw signal strength data

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

BS1 BS2

Pocket PC - University location - Raw signal stream data

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

BS1 BS2

Figure A.6: These graphs show the raw 802.11 signal strength streams received
by the laptop and Pocket PC devices for the University location. BSn refers to
the BSSID of particular base stations within each environment.

188

Appendix A. Developing Location Awareness

Pocket PC - Home location - With low-pass filer applied

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

BS1

Pocket PC - University location - With low-pass filter applied

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

BS1 BS2

Figure A.7: These graphs show the resulting signal streams after applying a
low-pass filter to the raw 802.11 signal strength streams shown in Figures A.5
and A.6.

189

Appendix A. Developing Location Awareness

Pocket PC - Home location - With low-pass filter and smoothing applied

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

BS1

Pocket PC - University location - With low-pass filter and smoothing applied

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

S
ig

n
al

 s
tr

en
g

th

Série1 Série2

Figure A.8: These graphs show the resulting signal streams after applying a low-
pass filter and smoothing to the raw 802.11 signal strength streams shown in
Figures A.5 and A.6.

190

Appendix A. Developing Location Awareness

Location Signature
Lounge 55 <= BS1 < 67
12.01 Muir Lab 50 <= BS1 < 57 ∧ 34 <= BS2 < 45

Table A.1: Location signatures for the example “Lounge” and room “12.01 Muir
Lab” locations from the home and University environments. BSn refers to the
BSSID of particular base stations within each environment.

or below were filtered out. Figure A.7 shows the same readings for the home and

University locations shown in Figures A.5 and A.6, but with the low-value cut-off

applied. While this removes a lot of noise from the signal, it can be seen that it

still exhibits a lot of variability, and that the stream is frequently interrupted.

In a second stage of filtering, a smoothing technique was applied that produces

the average value of a number of readings from the signal’s recent history. When

applying this technique, there was a tension between smoothness versus change

detections. The Placelab software emits a signal strength reading for all visible

base stations each second. A smoother signal can be created by increasing the

length of the history vector, but this also increases the number of seconds until

a change in location can be detected.

Having performed an analysis for all locations in each test environment, eight

was shown to be a good common choice for the length of the history vector, as the

stability of the signal did not improve significantly for vector lengths greater than

eight. Figure A.8 shows the effect of applying smoothing to the signal strength

data shown previously in Figure A.7.

A.2.2 Creating signal to location mappings

Being able to detect a consistent signal strength reading for each visible base

station, a unique ‘location signature’ was created for each location. That is, a

single range or combination of ranges of base station signal strength data were

calculated for each location that uniquely identified the particular location. For

example, Table A.1 shows the location signatures for example locations in the

home and University environments. The table states that only when the host

device is at the particular location, will it see that particular combination of

ranges. That is, only in the lounge area within the home environment will a signal

strength between 55 and 67 for BS1 be received, and only in room 12.01 within

the University environment will the combination of a signal strength between 50

191

Appendix A. Developing Location Awareness

and 57 for BS1 and between 34 and 45 for BS2 be received.

As both test environments had only a small number of locations, it was simple

enough to calculate location signatures by hand. For larger deployments with

many locations, this process could be automated by using a classifier system such

as C5.0 [148].

It was then straightforward to determine the current location of a host device.

The cut-off and smoothing filters were applied to the signal strength readings

supplied by Placelab, and then the result was checked against the known location

signatures.

A.2.3 Improving confidence by exploiting location

structure

With such a location system, there will be a degree of uncertainty in the results

it produces. The system attempts to detect the locations of mobile entities,

whose locations may have changed by the time the previous location reports are

processed. The locations are detected from noisy signal strength data, where

the readings may lie outwith the limits of known location signatures. In order

to help applications cope with such uncertainty, locations were reported with an

associated confidence value.

A simple and convenient means to support location confidence values was to

maintain a history vector of the detected locations. This allowed confidence values

of the reported locations to be calculated as Li/N where Li is the number of times

a location i featured in the history vector, over the sizeN of the vector. The length

of the vector was chosen to match the length of the smoothing history vector.

That way, both vectors worked over the same time span (the previous eight

seconds), and so calculating confidence values did not introduce any additional

time delay in reporting the current location.

The structure present within the location model was exploited to increase

the confidence of reported locations. Within the location model, two different

locations may share the same parent location. When this occurs, the confidence

of the parent location can be calculated, which may result in a higher overall

confidence than for either of the child locations.

In the example given in Figure A.9, the location L10 Speaker Area has a con-

fidence value of 0.875, meaning that it appeared 7 out of 8 times in the confidence

history vector. The location L10 Audience Area has a confidence value of 0.125,

192

Appendix A. Developing Location Awareness

Computer
Science
Department 1.0

conf.

L10

1.0

conf.

L10 Speaker Area

0.875
conf.

L10 Audience Area

0.125
conf.

Figure A.9: The location model fuses confidence values of several inner locations
to increase the confidence of outer locations.

as it appeared once in the confidence history vector. Both of these locations

were within the location L10, meaning that all locations in the history vector are

within L10, giving this location a confidence value of 1.0.

Calculating parent location confidences like this can be applied up through all

parent locations. For example, in Figure A.9, as the location Computer Science

Department contains L10, it also has a 1.0 confidence value.

Using this technique allowed higher confidence reports to be generated for

larger locations, based upon several lower confidence reports detected by the

system for smaller areas.

A.2.4 Location detection application

With a unique location signature for each location of the test environments, it

was simple to construct the location detection application that applied the cut-

off and smoothing filters to the signal strength readings supplied by Placelab,

and check the result against the known location signatures to determine the host

device’s current location, and calculate the confidence values of this location as

well as any parent locations.

The location detection application was tested at both the home and University

test environments. To test the application, it was run continuously on a Pocket

PC that was moved between each location in the environment in turn. The

193

Appendix A. Developing Location Awareness

application logged the current location and confidence values every second. For

each location, several points in the log were recorded - the point at which the

Pocket PC was settled in the new location, the point at which the eight second

length of the history vector had passed, and the point at which a further sixty

seconds had passed. This essentially gives a ‘settling in’ period, while the history

vector is flushed of previous locations’ signals, and then a stationary period, in

which only the current location should have been detected. At both environments,

the tests were repeated on two separate occasions.

In both environments, for each location, the location detection application

had settled on the correct location (the correct current location had the highest

confidence of all locations reported) within the initial settling in period. Within

the home environment, each location was correctly identified with an average

confidence of 99.7%. Each location within the University environment was also

correctly identified, but with a slightly lower average confidence of 91%.

A.3 Conclusions

The aim of the work described in this Appendix was to implement appropriate

location models and a location detection system that would enable testing of the

pervasive situation determination middleware prototype and situation-aware ap-

plications that were developed in this thesis, in all of the target test environments

and on each of the intended host device platforms.

This Appendix has shown how structured, hierarchical location models fea-

turing symbolic locations and their associated location types were created for the

test environments. Furthermore, it was shown how the Placelab location system

was extended to enhance the accuracy of the system for use in the test environ-

ments. The extension applied a sequence of filters that successively refined the

raw 802.11 signal strength data provided by Placelab, which were then mapped to

symbolic location co-ordinates defined in the model. The structure of the model

was then exploited to boost the confidence of the final location reported by the

system.

In conclusion, these resulted in a location detection system that could produce

sufficiently accurate location reports at the required granularity, that it could

be used successfully by the pervasive situation determination middleware and

situation-aware applications.

194

Appendix B

Additional situation diagrams

and ontology

This appendix presents additional materials related to the modelling aspects of

the pervasive situation determination approach, which in the interests of space

were omitted from the main body of the thesis, and are included here for reference.

Additional situation diagrams that were omitted from Chapter 5 are included

in Section B.1. The full OWL listings of the situation ontology used by the situa-

tion determination middleware prototype implementation as well as of the exam-

ple Presentation situation, specification and customisations discussed in Chap-

ter 3 are presented in Section B.2.

B.1 Situation diagrams

This section includes additional situation diagrams drawn from the different set-

tings that were presented in Chapter 5. Additional diagrams concerning the use

of devices and applications are shown in Section B.1.1, additional public setting

diagrams are included in Section B.1.2, and additional University setting dia-

grams are shown in Section B.1.3. A key explaining the different shapes, colours

and links used in the figures in this section is given in Figure B.1.

195

Appendix B. Additional situation diagrams and ontology

A feature A specification A customisation A situation

This link shows the left hand side situation
extends the right hand side one.

Situation A Situation B

This link shows the left hand side feature
extends the right hand side one.

Feature B Feature A

This link connects a customisation to its
base situation.

Customisation Situation

This link shows the customisation on the left
hand side extends the right hand side one.

Customisation A Customisation B

This link connects a situation and its
specification.

Specification Situation

Figure B.1: A key for the figures included in this section.

B.1.1 Situations concerning the use of devices and

applications

Figure B.2 shows the ‘Working with media’, ‘Editing media’ and ‘Viewing media’

situations, which were originally shown in Figure 5.4 in Section 5.3.2, with the

full set of customisations that were developed for them.

B.1.2 Public situations

Figure B.3 shows the full set of customisations that were developed for the ‘Din-

ing’ and ‘Shopping’ situations, which were originally shown in Figure 5.6 in

Section 5.3.2.

B.1.3 University situations

Figure B.4 presents diagrams from the ‘Working at desk’, ‘Working in office’,

‘Private phone call’ and break situations that were omitted from Section 5.3.2.

Figure B.5 shows all of the customisations that were developed for the ‘Demon-

strator meeting’ situation shown previously in Figure 5.7 in Section 5.3.2.

The full set of customisations developed for the ‘Lecture’ situation shown in

Figure 5.8 in Section 5.3.2 are shown in Figure B.6.

The diagrams for the ‘Lab’ and ‘Tutorial’ situations that were omitted from

Section 5.3.2 are shown in Figure B.7 and Figure B.8 respectively.

196

Appendix B. Additional situation diagrams and ontology

Working
with media

Editing
media

Viewing
media

Spec
P D L AH

Spec
P D L AH
KH MH

Spec
P D L AH
KH MH

Working with
a document

Working with
a spreadsheet

Working with
slides

Working with
a web page

Working with
a photograph

Working with
e-mail

Working with
a movie

Working with
a Go game

Working with
code

Working with
an ontology

Editing a
document

Editing a

spreadsheet

Editing
slides

Editing a

web page

Viewing a
document

Viewing a

spreadsheet

Viewing
slides

Viewing a

web page

Editing a
photograph

Writing an
e-mail

Editing a

movie

Editing a
Go game

Editing

code

Editing an
ontology

Viewing a
photograph

Viewing a

movie

Reading
e-mail

Viewing a
Go game

Reading

code

Viewing an
ontology

Figure B.2: All customisations for the working with media based situations.

B.2 Ontologies and examples

This section presents the OWL representation of the ontologies used by the situ-

ation determination middleware and the example Presentation situation, specifi-

cation and customisations discussed in Chapter 3.

B.2.1 Situation ontology

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

]>

<rdf:RDF

xmlns = "http://sitdet.org/sitdet#"

xml:base = "http://sitdet.org/sitdet#"

xmlns:owl = "http://www.w3.org/2002/07/owl#"

xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">

<!-- Situation -->

<owl:DatatypeProperty rdf:ID="feature">

<rdfs:domain rdf:resource="#Situation" />

<rdfs:range rdf:resource="&xsd;anyType"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Situation">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#feature"/>

<owl:minCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!-- Specifications -->

<!-- Role Specifications -->

<owl:Class rdf:ID="EntityDeclaration">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#name"/>

197

Appendix B. Additional situation diagrams and ontology

Dining

Spec
P LH

Shopping

Spec
P LH

Shopping at
Nicolas

Shopping at
La Panetiere

Shopping at
L’Italino deli

Shopping at
Champion

Shopping at
Casino

Shopping at
Carrefour

Shopping at
La Gerbe d’Or

Shopping at
La Patte d’Oie

Dining at
La Trattoria

Dining at Les
Impressionistes

Dining at
Crêperie
Larcher

Dining at
Le Coude Fou

Dining at
Le Mandarin

Dining at
Le Potager
du Marais

Figure B.3: All customisations for the ‘Dining’ and ‘Shopping’ situations.

Working
at desk

Spec
P D L

Working
in office

Spec
P D L

Private
phone call

Spec
P D L AH

Bathroom
break

Spec
P LH

Coffee
break

Spec
P LH

Lunch
break

Spec
P LH

Figure B.4: Additional University setting situations.

198

Appendix B. Additional situation diagrams and ontology

Demonstrator
meeting

Compilers

Dem. mtg.

Programming

Foundations
Dem. mtg.

Distributed

Programming
Dem. mtg.

System Design
Dem. mtg.

Software
Architecture
Dem. mtg.

Multimedia
Info. Access
Dem. mtg.

E-Comm.
Technologies
Dem. mtg.

Embedded
Systems

Dem. mtg.

Enterprise
Networking
Dem. mtg.

Mobile Sw.

and Applications
Dem. mtg.

Dist. Info.

Management
Dem. mtg.

Computer

Security
Dem. mtg.

Special

Topics 1
Dem. mtg.

Special

Topics 2
Dem. mtg.

Info.
Eng. Software

Dem. mtg.

Prog. Lang.
Definition & Impl,

Dem. mtg.

O.S. &
Sys. Software

Dem. mtg.

Computer
Architecture
Dem. mtg.

Foundations
of AI D.M.

Web Apps.
Engineering
Dem. mtg.

High
Integrity Sys.
Dem. mtg.

Comput.
and Complexity

Dem. mtg.

Artificial
Intelligence
Dem. mtg.

Software
Evaluation
Dem. mtg.

Programming
Techniques

Dem. mtg.

Algorithms
and Complexity

Dem. mtg.

Databases
Dem. mtg.

Logic
and Machines

Dem. mtg.

Topics in
Computing 2

Dem. mtg.

Systems
Analysis Dem.

mtg.

Hum. Comp.
Interaction Dem.

mtg.

Group
Project Dem.

mtg.

Communications
Dem. mtg.

Graphics
Dem. mtg.

Information
and Info. Systems

Dem. mtg.

Machines,
Lang. And Comp.

Dem. mtg.

Programming
Project D.M.

Low Level
Programming

Dem. mtg.

Approaches
to Multimedia

Dem. mtg.

Topics in

Computing Dem.
mtg.

Computer

Organisation
Dem. mtg.

Basic spec

P L

Calendar
based spec

P L C

Advanced spec

P L

Figure B.5: All customisations for the ‘Demonstrator meeting’ situation.

199

Appendix B. Additional situation diagrams and ontology

Basic spec
P L

Calendar
based spec

P L C

Low-res
location spec

P D L AH

Hi-res
location spec

P D L AH

Hi-res
audio spec

P D L AH SH

Lecture

Compilers
lecture

Programming
Foundations
lecture

Distributed
Programming
lecture

System Design
lecture

Software
Architecture
lecture

Multimedia
Info. Access
lecture

E-Comm.
Technologies
lecture

Embedded
Systems
lecture

Enterprise
Networking
lecture

Mobile Sw.

and Applications
lecture

Dist. Info.

Management
lecture

Computer

Security
lecture

Special

Topics 1
lecture

Special

Topics 2
lecture

Info.
Eng. Software

lecture

Prog. Lang.
Definition & Impl,

lecture

O.S. &
Sys. Software

lecture

Computer
Architecture
lecture

Foundations
of AI lecture

Web Apps.
Engineering
lecture

High
Integrity Sys.
lecture

Comput.
and Complexity

lecture

Artificial
Intelligence
lecture

Software
Evaluation
lecture

Databases
lecture

Systems
Analysis
lecture

Hum. Comp.
Interaction
lecture

Group
Project

Communications
lecture

Graphics
lecture

Programming
Techniques
lecture

Algorithms
and Complexity

lecture

Logic
and Machines
lecture

Topics in
Computing 2
lecture

Programming
Project

Information
and Info. Systems

lecture

Machines,
Lang. And Comp.

lecture

Low Level
Programming
lecture

Approaches
to Multimedia
lecture

Computer
Organisation
lecture

Topics in

Computing
lecture

Computer
Arch. and Design

lecture

Professional
Issues lecture

Info.
Retrieval
lecture

Web Sys.
Development
lecture

Digital
Libraries
lecture

Designing
Usable Systems

lecture

Research
Methods
lecture

Distributed
Systems
lecture

Personal and
Professional Devel.

lecture

Figure B.6: All customisations for the ‘Lecture’ situation.

200

Appendix B. Additional situation diagrams and ontology

Lab

Compilers

Lab

Programming

Foundations Lab

Distributed

Programming
Lab

System
Design

Lab

Software
Architecture

Lab

Multimedia
Info. Access

Lab

E-Comm.
Technologies

Lab

Embedded
Systems
Lab

Enterprise
Networking

Lab

Mobile Sw.

and Applications
Lab

Dist. Info.

Management
Lab

Computer

Security
Lab

Special

Topics 1
Lab

Special

Topics 2
Lab

Info.
Eng. Software

Lab

Prog. Lang.
Definition & Impl,

Lab

O.S. &
Sys. Software

Lab

Computer
Architecture

Lab

Foundations
of AI Lab

Web Apps.
Engineering

Lab

High
Integrity Sys.

Lab

Comput.
and Complexity

Lab

Artificial
Intelligence

Lab

Software
Evaluation

Lab

Programming
Techniques

Lab

Algorithms
and Complexity

Lab

Databases
Lab

Logic
and Machines

Lab

Topics in
Computing 2

Lab

Systems
Analysis Lab

Hum. Comp.
Interaction Lab

Group
Project
Lab

Communications
Lab

Graphics
Lab

Information
and Info. Systems

Lab

Machines,
Lang. And Comp.

Lab

Programming
Project Lab

Low Level
Programming

Lab

Approaches
to Multimedia

Lab

Topics in

Computing
Lab

Computer

Organisation
Lab

Basic spec

P L

Calendar
based spec

P L C

Advanced spec

P L

Figure B.7: All customisations for the ‘Lab’ situation.

201

Appendix B. Additional situation diagrams and ontology

Tutorial

Distributed
Programming

tutorial

Software
Architecture
tutorial

Multimedia
Info. Access

tutorial

E-Comm.
Technologies

tutorial

Embedded
Systems
tutorial

Mobile Sw.
and Applications

tutorial

Dist. Info.
Management

tutorial

Computer
Security
tutorial

Special
Topics 1
tutorial

Special
Topics 2
tutorial

Info.

Eng. Software
tutorial

Prog. Lang.

Definition & Impl,
tutorial

O.S. &

Sys. Software
tutorial

Computer

Architecture
tutorial

Foundations

of AI tutorial

Web Apps.
Engineering

tutorial

High
Integrity Sys.

tutorial

Comput.
and Complexity

tutorial

Artificial
Intelligence

tutorial

Software
Evaluation

tutorial

Basic spec

P L

Calendar
based spec

P L C

Advanced spec

P L

Group
Project
tutorial

Communications
tutorial

Graphics
tutorial

Designing
Usable Systems

tutorial

Personal and
Professional Devel.

tutorial

Programming

Foundations
tutorial

Topics in

Computing 2
tutorial

Approaches

to Multimedia
tutorial

Distributed
Systems tutorial

Professional
Issues tutorial

Figure B.8: All customisations for the ‘Tutorial’ situation.

202

Appendix B. Additional situation diagrams and ontology

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#type"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="name">

<rdfs:domain rdf:resource="#EntityDeclaration" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="type">

<rdfs:domain rdf:resource="#EntityDeclaration" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="RoleSpecification">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#roleType"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#primaryEntity"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#roleExpression"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="roleType">

<rdfs:domain rdf:resource="#RoleSpecification" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="primaryEntity">

<rdfs:domain rdf:resource="#RoleSpecification" />

<rdfs:range rdf:resource="#EntityDeclaration" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="auxiliaryEntity">

<rdfs:domain rdf:resource="#RoleSpecification" />

<rdfs:range rdf:resource="#EntityDeclaration" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="roleExpression">

<rdfs:domain rdf:resource="#RoleSpecification" />

<rdfs:range rdf:resource="#Expression" />

</owl:ObjectProperty>

<!-- Situation Specifications. -->

<owl:Class rdf:ID="RoleDeclaration">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#declRoleType"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#entityName"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#entityType"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="declRoleType">

<rdfs:domain rdf:resource="#RoleDeclaration" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="entityName">

<rdfs:domain rdf:resource="#RoleDeclaration" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="entityType">

<rdfs:domain rdf:resource="#RoleDeclaration" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Specification">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#describes"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#areaOfInfluence"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#role"/>

<owl:minCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#expression"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="describes">

<rdfs:domain rdf:resource="#Specification" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="areaOfInfluence">

203

Appendix B. Additional situation diagrams and ontology

<rdfs:domain rdf:resource="#Specification" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="role">

<rdfs:domain rdf:resource="#Specification" />

<rdfs:range rdf:resource="#RoleDeclaration"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="expression">

<rdfs:domain rdf:resource="#Specification" />

<rdfs:range rdf:resource="#Expression"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="featureBinding">

<rdfs:domain rdf:resource="#Specification" />

<rdfs:range rdf:resource="#FeatureBinding"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="averageResourceRequirements">

<rdfs:domain rdf:resource="#Specification" />

<rdfs:range rdf:resource="#ResourceRequirementsMetrics"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="minimumResourceRequirements">

<rdfs:domain rdf:resource="#Specification" />

<rdfs:range rdf:resource="#ResourceRequirementsMetrics"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="ResourceRequirementsMetrics" />

<owl:DatatypeProperty rdf:ID="cpuLoad">

<rdfs:domain rdf:resource="#ResourceRequirementsMetrics" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="battery">

<rdfs:domain rdf:resource="#ResourceRequirementsMetrics" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="memory">

<rdfs:domain rdf:resource="#ResourceRequirementsMetrics" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="bandwidth">

<rdfs:domain rdf:resource="#ResourceRequirementsMetrics" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<!-- Customisation. -->

<owl:Class rdf:ID="Customisation">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#extendsSituation"/>

<owl:maxCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#extendsCustomisation"/>

<owl:maxCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#customisationExpression"/>

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="extendsSituation">

<rdfs:domain rdf:resource="#Customisation" />

<rdfs:range rdf:resource="#Situation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="extendsCustomisation">

<rdfs:domain rdf:resource="#Customisation" />

<rdfs:range rdf:resource="#Customisation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="customisationExpression">

<rdfs:domain rdf:resource="#Customisation" />

<rdfs:range rdf:resource="#Expression"/>

</owl:ObjectProperty>

<!-- Expressions -->

<owl:Class rdf:ID="Expression" />

<owl:Class rdf:ID="Literal">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="data">

<rdfs:domain rdf:resource="#Literal" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:Class rdf:ID="BinaryBooleanExpression">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:ObjectProperty rdf:ID="lhs">

<rdfs:domain rdf:resource="#BinaryBooleanExpression" />

<rdfs:range rdf:resource="#Expression" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="rhs">

<rdfs:domain rdf:resource="#BinaryBooleanExpression" />

<rdfs:range rdf:resource="#Expression" />

</owl:ObjectProperty>

<owl:Class rdf:ID="And">

<rdfs:subClassOf rdf:resource="#BinaryBooleanExpression" />

</owl:Class>

<owl:Class rdf:ID="GreaterThanOrEqualTo">

<rdfs:subClassOf rdf:resource="#BinaryBooleanExpression" />

</owl:Class>

<owl:Class rdf:ID="EqualTo">

<rdfs:subClassOf rdf:resource="#BinaryBooleanExpression" />

</owl:Class>

<owl:Class rdf:ID="UnaryBooleanExpression">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:Class rdf:ID="HasLocationType">

<rdfs:subClassOf rdf:resource="#UnaryBooleanExpression" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="location">

<rdfs:domain rdf:resource="#HasLocationType" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

204

Appendix B. Additional situation diagrams and ontology

<owl:DatatypeProperty rdf:ID="locationType">

<rdfs:domain rdf:resource="#HasLocationType" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:Class rdf:ID="GetLocationByType">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="loc">

<rdfs:domain rdf:resource="#GetLocationByTypeRoom" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="locType">

<rdfs:domain rdf:resource="#GetLocationByTypeRoom" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:Class rdf:ID="CurrentTime">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:Class rdf:ID="HasBeenSpeaking">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="person">

<rdfs:domain rdf:resource="#HasBeenSpeaking" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="predicate">

<rdfs:domain rdf:resource="#HasBeenSpeaking" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="percentOfDuration">

<rdfs:domain rdf:resource="#HasBeenSpeaking" />

<rdfs:range rdf:resource="&xsd;double" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="durationInSeconds">

<rdfs:domain rdf:resource="#HasBeenSpeaking" />

<rdfs:range rdf:resource="&xsd;int" />

</owl:DatatypeProperty>

<owl:Class rdf:ID="IsRunningOn">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="iroApplication">

<rdfs:domain rdf:resource="#IsRunningOn" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="iroComputer">

<rdfs:domain rdf:resource="#IsRunningOn" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:Class rdf:ID="IsDisplayedOn">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="idoDocument">

<rdfs:domain rdf:resource="#IsDisplayedOn" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="idoDisplay">

<rdfs:domain rdf:resource="#IsDisplayedOn" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:Class rdf:ID="True">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:Class rdf:ID="False">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:Class rdf:ID="FeatureContains">

<rdfs:subClassOf rdf:resource="#Expression" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="fcName">

<rdfs:domain rdf:resource="#FeatureContains" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="fcValue">

<rdfs:domain rdf:resource="#FeatureContains" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:Class rdf:ID="FeatureBinding" />

<owl:DatatypeProperty rdf:ID="fbName">

<rdfs:domain rdf:resource="#FeatureBinding" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="fbValue">

<rdfs:domain rdf:resource="#FeatureBinding" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<!-- Location. -->

<owl:Class rdf:ID="Location" />

<owl:DatatypeProperty rdf:ID="hasSymbolicName">

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasLocationType">

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasParentLocation">

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="#Location" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasChildLocation">

<owl:inverseOf rdf:resource="#hasParentLocation" />

<rdfs:domain rdf:resource="#Location" />

<rdfs:range rdf:resource="#Location" />

</owl:ObjectProperty>

</rdf:RDF>

205

Appendix B. Additional situation diagrams and ontology

B.2.2 Example presentation ontology

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

]>

<rdf:RDF

xmlns = "http://sitdet.org/sitdet#"

xml:base = "http://sitdet.org/sitdet#"

xmlns:owl = "http://www.w3.org/2002/07/owl#"

xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">

<!-- Presentation situation. -->

<owl:Class rdf:ID="Presentation">

<rdfs:subClassOf rdf:resource="#Situation" />

</owl:Class>

<owl:DatatypeProperty rdf:ID="time">

<rdfs:subPropertOf rdf:resource="#feature" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;dateTime" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="place">

<rdfs:subPropertOf rdf:resource="#feature" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;anyURI" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="presentationAttendee">

<rdfs:subPropertOf rdf:resource="#feature" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="speaker">

<rdfs:subPropertOf rdf:resource="#presentationAttendee" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="audienceMember">

<rdfs:subPropertOf rdf:resource="#presentationAttendee" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="display">

<rdfs:subPropertOf rdf:resource="#feature" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="presentationDocument">

<rdfs:subPropertOf rdf:resource="#feature" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="presentationApplication">

<rdfs:subPropertOf rdf:resource="#feature" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="applicationHost">

<rdfs:subPropertOf rdf:resource="#feature" />

<rdfs:domain rdf:resource="#Presentation" />

<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<!-- Presentation hi-res specification. -->

<!-- Hi-res location-based role specifications. -->

<RoleSpecification rdf:ID="SpeakerHiResLocRoleSpec">

<roleType>Speaker</roleType>

<primaryEntity>

<EntityDeclaration>

<name>p</name>

<type>Person</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<HasLocationType>

<location>p.location</location>

<locationType>SpeakerArea</locationType>

</HasLocationType>

</roleExpression>

</RoleSpecification>

<RoleSpecification rdf:ID="AudienceMemberHiResLocRoleSpec">

<roleType>AudienceMember</roleType>

<primaryEntity>

<EntityDeclaration>

<name>p</name>

<type>Person</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<HasLocationType>

<location>p.location</location>

<locationType>AudienceArea</locationType>

</HasLocationType>

</roleExpression>

</RoleSpecification>

<!-- Hi-res audio-based role specifications. -->

<RoleSpecification rdf:ID="SpeakerIsSpeakingRoleSpec">

<roleType>Speaker</roleType>

<primaryEntity>

<EntityDeclaration>

<name>p</name>

<type>Person</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<And>

<lhs>

<HasLocationType>

<location>p.location</location>

<locationType>PresentationArea</locationType>

</HasLocationType>

</lhs>

<rhs>

<HasBeenSpeaking>

<person>p</person>

<predicate>greaterThanOrEqualTo</predicate>

<percentOfDuration rdf:datatype=

"&xsd;double">0.8</percentOfDuration>

<durationInSeconds rdf:datatype=

"&xsd;int">300</durationInSeconds>

</HasBeenSpeaking>

</rhs>

</And>

206

Appendix B. Additional situation diagrams and ontology

</roleExpression>

</RoleSpecification>

<RoleSpecification rdf:ID="AudienceMemberIsSpeakingRoleSpec">

<roleType>AudienceMember</roleType>

<primaryEntity>

<EntityDeclaration>

<name>p</name>

<type>Person</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<And>

<lhs>

<HasLocationType>

<location>p.location</location>

<locationType>PresentationArea</locationType>

</HasLocationType>

</lhs>

<rhs>

<HasBeenSpeaking>

<person>p</person>

<predicate>lessThanOrEqualTo</predicate>

<percentOfDuration rdf:datatype=

"&xsd;double">0.2</percentOfDuration>

<durationInSeconds rdf:datatype=

"&xsd;int">300</durationInSeconds>

</HasBeenSpeaking>

</rhs>

</And>

</roleExpression>

</RoleSpecification>

<!-- Other role specifications. -->

<RoleSpecification rdf:ID="DisplayRoleSpec">

<roleType>Display</roleType>

<primaryEntity>

<EntityDeclaration>

<name>d</name>

<type>Display</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<HasLocationType>

<location>d.location</location>

<locationType>PresentationArea</locationType>

</HasLocationType>

</roleExpression>

</RoleSpecification>

<RoleSpecification rdf:ID="PresentationDocumentRoleSpec">

<roleType>PresentationDocument</roleType>

<primaryEntity>

<EntityDeclaration>

<name>pd</name>

<type>Document</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<True />

</roleExpression>

</RoleSpecification>

<RoleSpecification rdf:ID="PresentationApplicationRoleSpec">

<roleType>PresentationApplication</roleType>

<primaryEntity>

<EntityDeclaration>

<name>pa</name>

<type>Application</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<True />

</roleExpression>

</RoleSpecification>

<RoleSpecification rdf:ID="ApplicationHostRoleSpec">

<roleType>ApplicationHost</roleType>

<primaryEntity>

<EntityDeclaration>

<name>cmp</name>

<type>Computer</type>

</EntityDeclaration>

</primaryEntity>

<roleExpression>

<HasLocationType>

<location>cmp.location</location>

<locationType>PresentationArea</locationType>

</HasLocationType>

</roleExpression>

</RoleSpecification>

<!-- The Presentation situation specification. -->

<Specification rdf:ID="PresentationHiResSpec">

<describes>Presentation</describes>

<areaOfInfluence>Room</areaOfInfluence>

<role>

<RoleDeclaration>

<declRoleType>Speaker</declRoleType>

<entityName>spkr</entityName>

<entityType>Person</entityType>

</RoleDeclaration>

</role>

<role>

<RoleDeclaration>

<declRoleType>AudienceMember</declRoleType>

<entityName>aud</entityName>

<entityType>Person</entityType>

</RoleDeclaration>

</role>

<role>

<RoleDeclaration>

<declRoleType>Display</declRoleType>

<entityName></entityName>

<entityType></entityType>

</RoleDeclaration>

</role>

<role>

<RoleDeclaration>

<declRoleType>PresentationDocument</declRoleType>

<entityName>doc</entityName>

<entityType>Document</entityType>

</RoleDeclaration>

</role>

<role>

<RoleDeclaration>

<declRoleType>PresentationApplication</declRoleType>

<entityName>app</entityName>

<entityType>Application</entityType>

</RoleDeclaration>

</role>

<role>

<RoleDeclaration>

<declRoleType>ApplicationHost</declRoleType>

<entityName>cmp</entityName>

<entityType>Computer</entityType>

</RoleDeclaration>

</role>

<expression>

<And>

<lhs>

207

Appendix B. Additional situation diagrams and ontology

<And>

<lhs>

<And>

<lhs>

<And>

<lhs>

<GreaterThanOrEqualTo>

<lhs>

<Literal>

<data>spkr.cardinality</data>

</Literal>

</lhs>

<rhs>

<Literal>

<data>1</data>

</Literal>

</rhs>

</GreaterThanOrEqualTo>

</lhs>

<rhs>

<GreaterThanOrEqualTo>

<lhs>

<Literal>

<data>spkr.confidence</data>

</Literal>

</lhs>

<rhs>

<Literal>

<data>0.8</data>

</Literal>

</rhs>

</GreaterThanOrEqualTo>

</rhs>

</And>

</lhs>

<rhs>

<And>

<lhs>

<GreaterThanOrEqualTo>

<lhs>

<Literal>

<data>aud.cardinality</data>

</Literal>

</lhs>

<rhs>

<Literal>

<data>2</data>

</Literal>

</rhs>

</GreaterThanOrEqualTo>

</lhs>

<rhs>

<GreaterThanOrEqualTo>

<lhs>

<Literal>

<data>aud.confidence</data>

</Literal>

</lhs>

<rhs>

<Literal>

<data>0.8</data>

</Literal>

</rhs>

</GreaterThanOrEqualTo>

</rhs>

</And>

</rhs>

</And>

</lhs>

<rhs>

<And>

<lhs>

<EqualTo>

<lhs>

<GetLocationByType>

<loc>spkr.loc</loc>

<locType>Room</locType>

</GetLocationByType>

</lhs>

<rhs>

<GetLocationByType>

<loc>dsp.loc</loc>

<locType>Room</locType>

</GetLocationByType>

</rhs>

</EqualTo>

</lhs>

<rhs>

<EqualTo>

<lhs>

<GetLocationByType>

<loc>aud.loc</loc>

<locType>Room</locType>

</GetLocationByType>

</lhs>

<rhs>

<GetLocationByType>

<loc>dsp.loc</loc>

<locType>Room</locType>

</GetLocationByType>

</rhs>

</EqualTo>

</rhs>

</And>

</rhs>

</And>

</lhs>

<rhs>

<And>

<lhs>

<And>

<lhs>

<IsRunningOn>

<iroApplication>app</iroApplication>

<iroComputer>cmp</iroComputer>

</IsRunningOn>

</lhs>

<rhs>

<IsDisplayedOn>

<idoDocument>doc</idoDocument>

<idoDisplay>dsp</idoDisplay>

</IsDisplayedOn>

</rhs>

</And>

</lhs>

<rhs>

<And>

<lhs>

<EqualTo>

<lhs>

<Literal>

<data>app.mode</data>

</Literal>

</lhs>

<rhs>

<Literal>Slideshow</Literal>

</rhs>

</EqualTo>

</lhs>

<rhs>

<EqualTo>

<lhs>

<Literal>

<data>app.file</data>

</Literal>

</lhs>

208

Appendix B. Additional situation diagrams and ontology

<rhs>

<Literal>

<data>doc</data>

</Literal>

</rhs>

</EqualTo>

</rhs>

</And>

</rhs>

</And>

</rhs>

</And>

</expression>

<featureBinding>

<FeatureBinding>

<fbName>time</fbName>

<fbValue>

<CurrentTime />

</fbValue>

</FeatureBinding>

</featureBinding>

<featureBinding>

<FeatureBinding>

<fbName>place</fbName>

<fbValue>

<GetLocationByType>

<loc>dsp.location</loc>

<locType>Room</locType>

</GetLocationByType>

</fbValue>

</FeatureBinding>

</featureBinding>

<featureBinding>

<FeatureBinding>

<fbName>speaker</fbName>

<fbValue>

<Literal>

<data>spkr</data>

</Literal>

</fbValue>

</FeatureBinding>

</featureBinding>

<featureBinding>

<FeatureBinding>

<fbName>audienceMember</fbName>

<fbValue>

<Literal>

<data>aud</data>

</Literal>

</fbValue>

</FeatureBinding>

</featureBinding>

<featureBinding>

<FeatureBinding>

<fbName>display</fbName>

<fbValue>

<Literal>

<data>dsp</data>

</Literal>

</fbValue>

</FeatureBinding>

</featureBinding>

<featureBinding>

<FeatureBinding>

<fbName>presentationDocument</fbName>

<fbValue>

<Literal>

<data>doc</data>

</Literal>

</fbValue>

</FeatureBinding>

</featureBinding>

<featureBinding>

<FeatureBinding>

<fbName>presentationApplication</fbName>

<fbValue>

<Literal>

<data>app</data>

</Literal>

</fbValue>

</FeatureBinding>

</featureBinding>

<featureBinding>

<FeatureBinding>

<fbName>applicationHost</fbName>

<fbValue>

<Literal>

<data>cmp</data>

</Literal>

</fbValue>

</FeatureBinding>

</featureBinding>

<!-- The expected average resource requirements

that this specification will consume. -->

<averageResourceRequirements>

<ResourceRequirementsMetrics>

<cpuLoad>1500</cpuLoad>

<memory>8M</memory>

<bandwidth>100Kb</bandwidth>

<battery>5W</battery>

</ResourceRequirementsMetrics>

</averageResourceRequirements>

<!-- The minimum resources that must be available

for this specification to run. -->

<minimumResourceRequirements>

<ResourceRequirementsMetrics>

<cpuLoad>300</cpuLoad>

<memory>4M</memory>

<bandwidth>50Kb</bandwidth>

<battery>5W</battery>

</ResourceRequirementsMetrics>

</minimumResourceRequirements>

</Specification>

<!-- Example presentation customisations. -->

<Customisation rdf:ID="JohnAsSpeakerCustomisation">

<extendsSituation rdf:resource="#Presentation" />

<customisationExpression>

<FeatureContains>

<fcName>Speakers</fcName>

<fcValue>johnUUID</fcValue>

</FeatureContains>

</customisationExpression>

</Customisation>

<Customisation rdf:ID="ForensicsPresentation">

<extendsSituation rdf:resource="#Presentation" />

<customisationExpression>

<And>

<lhs>

<IncludesLocation>

<ilName>Place</ilName>

<ilValue>L10.01</ilValue>

</IncludesLocation>

</lhs>

<rhs>

<And>

<lhs>

<TimeIsBetween>

<tibName>Time</tibName>

209

Appendix B. Additional situation diagrams and ontology

<tibValue>15:00,16:00</tibValue>

</TimeIsBetween>

</lhs>

<rhs>

<DayEquals>

<deName>Time</deName>

<deValue>Friday</deValue>

</DayEquals>

</rhs>

</And>

</rhs>

</And>

</customisationExpression>

</Customisation>

</rdf:RDF>

210

Appendix C

Implementation issues

This appendix presents further details about implementation issues concerning

the pervasive situation determination middleware prototype and situation-aware

applications that were developed, but in the interests of space were omitted from

the main body of the thesis, and are included here for reference.

Translation of the Presentation specification into Jess code as discussed in

Chapter 5, is detailed in Section C.1. Following this, Section C.2 highlights

some of the implementation techniques that were used in developing the sensing

infrastructure and situation-aware applications as discussed in Chapter 5.

C.1 Translating situation specifications

When a situation determination agent (SDA) receives a specification to be recog-

nised, it must transform the specification into Jess code in order for it to be incor-

porated into the SDA’s Rete network. This transformation process also identifies

which properties are required to recognise the specification, and to which the

SDA must subscribe.

As an example of this transformation, this section looks at how the SDA would

process the Presentation situation specification presented earlier in Chapter 3 in

Figure 3.4, and listed in full in Section B.2.2 of Appendix B.

There are three main steps to the translation. The first is to identify all the

properties that are referenced in the specification’s expression and feature bind-

ings parts. Note that some properties are identified through a series of relations.

For example, the location of the speaker that has type ‘Room’ must be identified.

211

Appendix C. Implementation issues

(defrule recognise-PresentationHiResSpec

; First, make matches on tuples for each role

(tuple (subject-value ?spkr)

(subject-type Person)

(predicate hasRole)

(object-value Speaker)

(object-type Role)

(confidence ?spkrConf))

(tuple (subject-value ?aud)

(subject-type Person)

(predicate hasRole)

(object-value Audience-member)

(object-type Role)

(confidence ?audConf))

(tuple (subject-value ?dsp)

(subject-type Display)

(predicate hasRole)

(object-value Presentation-display)

(object-type Role)

(confidence ?dspConf))

(tuple (subject-value ?doc)

(subject-type File)

(predicate hasRole)

(object-value Presentation-document)

(object-type Role)

(confidence ?docConf))

(tuple (subject-value ?app)

(subject-type Application)

(predicate hasRole)

(object-value Presentation-application)

(object-type Role)

(confidence ?appConf))

(tuple (subject-value ?cmp)

(subject-type Device)

(predicate hasRole)

(object-value Application-host)

(object-type Role)

(confidence ?hostConf))

; Then, expand all x.x.x forms

(tuple (subject-value ?spkr)

(subject-type Person)

(predicate hasLocation)

(object-value ?spkr-loc)

(object-type Location)

(confidence ?spkrLocConf))

(tuple (subject-value ?spkr-loc)

(subject-type Location)

(predicate hasLocationType)

(object-value Room)

(object-type LocationType))

(tuple (subject-value ?aud)

(subject-type Person)

(predicate hasLocation)

(object-value ?aud-loc)

(object-type Location)

(confidence ?audLocConf))

(tuple (subject-value ?aud-loc)

(subject-type Location)

(predicate hasLocationType)

(object-value Room)

(object-type LocationType))

(tuple (subject-value ?dsp)

(subject-type Display)

(predicate hasLocation)

(object-value ?dsp-loc)

(object-type Location)

(confidence ?dspLocConf))

(tuple (subject-value ?dsp-loc)

(subject-type Location)

(predicate hasLocationType)

(object-value Room)

(object-type LocationType))

(tuple (subject-value ?app)

(subject-type Application)

(predicate hasMode)

(object-value ?app-mode)

(object-type Mode)

(confidence ?appModeConf))

(tuple (subject-value ?app)

(subject-type Application)

(predicate hasActiveFile)

(object-value ?doc)

(object-type File))

; Then, check expressions

(test (>= ?spkrConf 0.8))

(test (>= ?audConf 0.8))

(test (eq ?spkr-loc ?dsp-loc))

(test (eq ?aud-loc ?dsp-loc))

(tuple (subject-value ?app)

(subject-type Application)

(predicate isRunningOn)

(object-value ?cmp)

(object-type Device))

(tuple (subject-value ?app)

(subject-type Application)

(predicate isDisplayedOn)

(object-value ?dsp)

(object-type Display))

(test (eq ?app-mode Slideshow))

=>

(call ?result add "Time" (time))

(call ?result add "Place" ?dsp-loc)

(call ?result add "Speakers" ?spkr)

(call ?result add "Audience Members" ?aud)

(call ?result add "Display" ?dsp)

(call ?result add "Presentation Documents" ?doc)

(call ?result add "Presentation Application" ?app)

(call ?result add "Application Host" ?cmp)

(call ?result add (min ?spkrConf ?audConf ?dspConf

?docConf ?appConf ?hostConf ?spkrLocConf

?audLocConf ?dspLocConf)))

Figure C.1: The resulting Jess code of translating the example presentation spec-
ification. In this listing, some comments have been added to the code to assist
the explanation.

To do this, we must first find out the location of the speaker, and then given that

location, identify whether it or one of its parent locations has the type ‘Room’.

The expanded set of properties enumerates all of the tuples that the SDA must

subscribe to, and therefore which DCEAs and CCEAs are required to recognise

the specification.

The second step of the translation is to identify the roles that appear in the

specification, and extract any cardinality constraints that are placed upon them.

These are stored for later processing, which is described below.

212

Appendix C. Implementation issues

The third step of the translation is to generate Jess code for the specification.

The result of the code generation for the presentation specification is shown in

Figure C.1. The figure shows a single Jess rule. The ‘if’ part of the rule, shown

before the ‘=>’ symbol, lists all of the patterns that must match for the rule to

fire. The ‘then’ part of the rule, shown after the ‘=>’ symbol, lists all of the

actions that are executed when the rule is fired.

The ‘if’ part concatenates three different parts. The first part includes ex-

pressions that match against each of the roles present in the specification. The

second part lists each of the tuples and expansions required to access the necessary

properties. The third part states the expressions of the specification.

Note that the cardinality expressions are missing from the ‘if’ part of the rule.

In the implementation, the Jess code is executed inside a harness written in Java

code. The harness creates the resulting feature set, executes the Jess code that

fills the feature set, and then the harness checks that the final cardinalities of the

features meet the constraints on them stated in the specification. In Figure C.1, in

the ‘then’ part of the rule, the resulting feature set is filled, and the confidence of

the match is added to it. Using a harness like this offers a simpler implementation

than trying to do the cardinality checking with Jess code alone.

This example focused on translating a situation specification. The transfor-

mation of a role specification follows a similar process, though the expressions

of the role specification will refer to the properties of its primary and auxiliary

entities, rather than as here, where the expressions of the situation specification

refer to the properties of the entities playing one of its roles. The Jess code trans-

lations of the role specifications used by the Presentation specification are listed

in Figure C.2.

It is possible to improve execution time by pre-translating the specifications

at design time, and thus saving the SDA from performing this at runtime. For

example, in the University test environment presented in Chapter 5, translation

could take up to 4 seconds (this cost is dominated by the libraries used to process

the OWL descriptions). Doing so however, could limit the availability of the spec-

ification to SDAs that use the specific Rete framework, perhaps even the specific

version, that was the target of the translated specification. Situation specifica-

tions are intended to run on a variety of SDAs in a variety of environments as

they evolve over time. In the implementation, runtime translation was chosen

as this allows the specifications to maintain the full richness of their OWL de-

scription, increase availability, and to automatically take advantage of any future

213

Appendix C. Implementation issues

(defrule recognise-SpeakerHiResLocRoleSpec

(tuple

(subject-value ?p)

(subject-type Person)

(predicate location)

(object-value ?loc)

(object-type Location)

(confidence ?c))

(test (has-location-type

(location ?loc)

(type SpeakerArea)))

=>

(assert (tuple

(subject-value ?p)

(subject-type Person)

(predicate hasRole)

(object-value Speaker)

(object-type Role)

(confidence ?c))))

(defrule recognise-AudienceMemberHiResLocRoleSpec

(tuple

(subject-value ?p)

(subject-type Person)

(predicate location)

(object-value ?loc)

(object-type Location)

(confidence ?c))

(test (has-location-type

(location ?loc)

(type AudienceArea)))

=>

(assert (tuple

(subject-value ?p)

(subject-type Person)

(predicate hasRole)

(object-value AudienceMember)

(object-type Role)

(confidence ?c))))

(defrule recognise-SpeakerIsSpeakingRoleSpec

(tuple

(subject-value ?p)

(subject-type Person)

(predicate location)

(object-value ?loc)

(object-type Location)

(confidence ?c))

(test (has-location-type

(location ?loc)

(type PresentationArea)))

(test (has-been-speaking p >= 0.8 300))

=>

(assert (tuple

(subject-value ?p)

(subject-type Person)

(predicate hasRole)

(object-value Speaker)

(object-type Role)

(confidence ?c))))

(defrule recognise-AudienceMemberIsSpeakingRoleSpec

(tuple

(subject-value ?p)

(subject-type Person)

(predicate location)

(object-value ?loc)

(object-type Location)

(confidence ?c))

(test (has-location-type

(location ?loc)

(type PresentationArea)))

(test (has-been-speaking p <= 0.2 300))

=>

(assert (tuple

(subject-value ?p)

(subject-type Person)

(predicate hasRole)

(object-value AudienceMember)

(object-type Role)

(confidence ?c))))

(defrule recognise-DisplayRoleSpec

(tuple

(subject-value ?d)

(subject-type Display)

(predicate location)

(object-value ?loc)

(object-type Location)

(confidence ?c))

(test (has-location-type

(location ?loc)

(type PresentationArea)))

=>

(assert (tuple

(subject-value ?d)

(subject-type Display)

(predicate hasRole)

(object-value Display)

(object-type Role)

(confidence ?c))))

(defrule recognise-PresentationDocumentRoleSpec

(tuple

(subject-value ?pd)

(subject-type Document)

(predicate ?p)

(object-value ?ov)

(object-type ?ot)

(confidence ?c))

=>

(assert (tuple

(subject-value ?pd)

(subject-type Document)

(predicate hasRole)

(object-value PresentationDocument)

(object-type Role)

(confidence ?c))))

(defrule recognise-PresentationApplicationRoleSpec

(tuple

(subject-value ?pa)

(subject-type Application)

(predicate ?p)

(object-value ?ov)

(object-type ?ot)

(confidence ?c))

=>

(assert (tuple

(subject-value ?pa)

(subject-type Application)

(predicate hasRole)

(object-value PresentationApplication)

(object-type Role)

(confidence ?c))))

(defrule recognise-ApplicationHostRoleSpec

(tuple

(subject-value ?cmp)

(subject-type Computer)

(predicate location)

(object-value ?loc)

(object-type Location)

(confidence ?c))

(test (has-location-type

(location ?loc)

(type PresentationArea)))

=>

(assert (tuple

(subject-value ?cmp)

(subject-type Computer)

(predicate hasRole)

(object-value ApplicationHost)

(object-type Role)

(confidence ?c))))

Figure C.2: The resulting Jess code of translating the example presentation role
specifications.

214

Appendix C. Implementation issues

enhancement of an SDA’s recognition mechanism.

C.2 Implementation techniques

This section includes examples and pointers to further references for some of

the more advanced implementation techniques used in the development of the

pervasive situation determination middleware and example situation-aware ap-

plications that were discussed in Chapter 5. This section covers techniques for

application monitoring and intercepting input events, which were used in imple-

menting data context entity agents (DCEAs), as well as techniques for controlling

system settings that were used in implementing the mode manager application.

C.2.1 Application monitoring

In Chapter 5, the application monitor DCEA reported the window id of an appli-

cation, the host machine id (these combined give a unique id for the application

instance), the text of the application’s title bar, the name of the executable of

the application, whether the application was the active application on the host

machine (the application that currently has input focus), and where possible,

the active file (extracted from the title bar text). The code that detected these

machine properties was implemented using the system diagnostic capabilities of

the .NET platform, as well as Windows systems calls.

The following two sections provide examples of how to monitor applications

on Windows XP and on a Pocket PC, respectively.

C.2.1.1 Monitoring applications on Windows XP

The following C# code can be used to build a log of all applications currently

running on a Windows XP machine. These classes can be used to represent

information about the application id, the executable name, the title bar text and

whether or not it is the active application, for all open applications.

The following class represents an application’s GUI window, and can be used

to access the properties about that window:

public class Window

{

/// <summary>

/// Win32 API Imports

/// </summary>

[DllImport("user32.dll")]

private static extern

bool ShowWindowAsync(

IntPtr hWnd, int nCmdShow);

[DllImport("user32.dll")] private static extern

bool SetForegroundWindow(IntPtr hWnd);

[DllImport("user32.dll")] private static extern

215

Appendix C. Implementation issues

bool IsIconic(IntPtr hWnd);

[DllImport("user32.dll")] private static extern

bool IsZoomed(IntPtr hWnd);

[DllImport("user32.dll")] private static extern

IntPtr GetForegroundWindow();

[DllImport("user32.dll")] private static extern

IntPtr GetWindowThreadProcessId(

IntPtr hWnd, IntPtr ProcessId);

[DllImport("user32.dll")] private static extern

IntPtr AttachThreadInput(IntPtr idAttach,

IntPtr idAttachTo, int fAttach);

/// <summary>

/// Win32 API Constants for ShowWindowAsync()

/// </summary>

private const int SW_HIDE = 0;

private const int SW_SHOWNORMAL = 1;

private const int SW_SHOWMINIMIZED = 2;

private const int SW_SHOWMAXIMIZED = 3;

private const int SW_SHOWNOACTIVATE = 4;

private const int SW_RESTORE = 9;

private const int SW_SHOWDEFAULT = 10;

/// <summary>

/// Private Fields

/// </summary>

private IntPtr m_hWnd;

private string m_Title;

private bool m_Visible = true;

private string m_Process;

private bool m_WasMax = false;

/// <summary>

/// Window Object’s Public Properties

/// </summary>

public IntPtr hWnd

{

get{return m_hWnd;}

}

public string Title

{

get{return m_Title;}

}

public string Process

{

get{return m_Process;}

}

public bool IsForegroundWindow

{

get{return m_hWnd == GetForegroundWindow();}

}

/// <summary>

/// Sets this Window Object’s visibility

/// </summary>

public bool Visible

{

get{return m_Visible;}

set

{

//show the window

if(value == true)

{

if(m_WasMax)

{

if(ShowWindowAsync(

m_hWnd,SW_SHOWMAXIMIZED))

m_Visible = true;

}

else

{

if(ShowWindowAsync(

m_hWnd,SW_SHOWNORMAL))

m_Visible = true;

}

}

//hide the window

if(value == false)

{

m_WasMax = IsZoomed(m_hWnd);

if(ShowWindowAsync(m_hWnd,SW_HIDE))

m_Visible = false;

}

}

}

/// <summary>

/// Constructs a Window Object

/// </summary>

/// <param name="Title">Title Caption</param>

/// <param name="hWnd">Handle</param>

/// <param name="Process">Owning Process</param>

public Window(string Title, IntPtr hWnd, string Process)

{

m_Title = Title;

m_hWnd = hWnd;

m_Process = Process;

}

//Override ToString()

public override string ToString()

{

return m_hWnd + "|" + m_Process + "|" + m_Title +

"|" + IsForegroundWindow;

}

/// <summary>

/// Sets focus to this Window Object

/// </summary>

public void Activate()

{

if(m_hWnd == GetForegroundWindow())

return;

IntPtr ThreadID1 = GetWindowThreadProcessId(

GetForegroundWindow(), IntPtr.Zero);

IntPtr ThreadID2 = GetWindowThreadProcessId(

m_hWnd,IntPtr.Zero);

if (ThreadID1 != ThreadID2)

{

AttachThreadInput(ThreadID1,ThreadID2,1);

SetForegroundWindow(m_hWnd);

AttachThreadInput(ThreadID1,ThreadID2,0);

}

else

{

SetForegroundWindow(m_hWnd);

}

if (IsIconic(m_hWnd))

{

ShowWindowAsync(m_hWnd,SW_RESTORE);

}

else

{

ShowWindowAsync(m_hWnd,SW_SHOWNORMAL);

}

}

}

The Window class relies on the following helper class, which provides wrappers

216

Appendix C. Implementation issues

around the system calls to determine a thread or process id:

public class win32

{

[DllImport("user32")]

private static extern UInt32 GetWindowThreadProcessId(

Int32 hWnd, out Int32 lpdwProcessId);

public static Int32 GetWindowProcessID(Int32 hwnd)

{

Int32 pid = 1;

GetWindowThreadProcessId(hwnd, out pid);

return pid;

}

}

The following class provides a means to access and iterate all of the application

windows that are currently open in the GUI:

public class Windows : IEnumerable, IEnumerator

{

/// <summary>

/// Win32 API Imports

/// </summary>

[DllImport("user32.dll")] private static extern

int GetWindowText(int hWnd, StringBuilder title, int size);

[DllImport("user32.dll")] private static extern

int GetWindowModuleFileName(

int hWnd, StringBuilder title, int size);

[DllImport("user32.dll")] private static extern

int EnumWindows(EnumWindowsProc ewp, int lParam);

[DllImport("user32.dll")] private static extern

bool IsWindowVisible(int hWnd);

[DllImport("user32.dll")] private static extern

IntPtr GetWindowThreadProcessId(

IntPtr hWnd, IntPtr ProcessId);

//delegate used for EnumWindows() callback function

public delegate bool EnumWindowsProc(

int hWnd, int lParam);

// holds current index of wndArray,

// necessary for IEnumerable

private int m_Position = -1;

//array of windows

ArrayList wndArray = new ArrayList();

//Object’s private fields

private bool m_invisible = false;

private bool m_notitle = false;

/// <summary>

/// Collection Constructor with additional options

/// </summary>

/// <param name="Invisible">Include invisible

Windows</param>

/// <param name="Untitled">Include untitled

Windows</param>

public Windows(bool Invisible, bool Untitled)

{

m_invisible = Invisible;

m_notitle = Untitled;

//Declare a callback delegate for

// EnumWindows() API call

EnumWindowsProc ewp = new EnumWindowsProc(

EvalWindow);

//Enumerate all Windows

EnumWindows(ewp, 0);

}

/// <summary>

/// Collection Constructor

/// </summary>

public Windows()

{

//Declare a callback delegate for

//EnumWindows() API call

EnumWindowsProc ewp = new EnumWindowsProc(

EvalWindow);

//Enumerate all Windows

EnumWindows(ewp, 0);

}

//EnumWindows CALLBACK function

private bool EvalWindow(int hWnd, int lParam)

{

if (m_invisible == false && !IsWindowVisible(hWnd))

{

return(true);

}

Int32 pid = win32.GetWindowProcessID(hWnd);

Process p = Process.GetProcessById(pid);

string appName = p.ProcessName;

StringBuilder title = new StringBuilder(256);

GetWindowText(hWnd, title, 256);

if (m_notitle == false && title.Length == 0)

return(true);

wndArray.Add(new Window(

title.ToString(), (IntPtr)hWnd, appName));

return(true);

}

//implement IEnumerable

public IEnumerator GetEnumerator()

{

return (IEnumerator)this;

}

//implement IEnumerator

public bool MoveNext()

{

m_Position++;

if (m_Position < wndArray.Count)

{

return true;

}

else

{

return false;

}

}

public void Reset()

{

m_Position = -1;

}

public object Current

217

Appendix C. Implementation issues

{

get

{

return wndArray[m_Position];

}

}

}

Then, the applications’ window information and name of the host machine on

which the applications are running can be added to the log:

Windows windows = new Windows();

string log = "";

for (IEnumerator e = windows.GetEnumerator();

e.MoveNext();)

{

Window w = (Window) e.Current;

log += w.ToString() + "|" +

System.Environment.MachineName + "\n";

}

C.2.1.2 Monitoring applications on a Pocket PC

The following C# code can be used to detect which applications are running on

a Pocket PC.

The following Process class represents an application process running on the

Pocket PC, and can be used to access properties about the process, including the

process name and its id (handle):

public class Process

{

private string processName;

private IntPtr handle;

private int threadCount;

private int usageCount;

private int baseAddress;

//default constructor

public Process() {}

private Process(IntPtr id, string procname,

int threadcount, int usagecount, int baseaddress)

{

handle = id;

processName = procname;

threadCount = threadcount;

usageCount = usagecount;

baseAddress = baseaddress;

}

public string ToLongString()

{

return "Process name: " + processName +

", Base address: " + baseAddress +

", Thread Count: " + threadCount +

", Usage Count: " + usageCount +

", Handle: " + handle;

}

//ToString implementation for ListBox binding

public override string ToString()

{

return processName;

}

public int BaseAddress

{

get{ return baseAddress; }

}

public int ThreadCount

{

get{ return threadCount; }

}

public int UsageCount

{

get{ return usageCount; }

}

public IntPtr Handle

{

get{ return handle; }

}

public string ProcessName

{

get{ return processName; }

}

public void Kill()

{

IntPtr hProcess;

hProcess = OpenProcess(PROCESS_TERMINATE, false,

(int) handle);

if(hProcess != (IntPtr) INVALID_HANDLE_VALUE)

{

bool bRet;

bRet = TerminateProcess(hProcess, 0);

CloseHandle(hProcess);

}

}

218

Appendix C. Implementation issues

The following static method is used to access and iterate the process informa-

tion of all of the applications running on the Pocket PC:

public static Process[] GetProcesses()

{

ArrayList procList = new ArrayList();

IntPtr handle = CreateToolhelp32Snapshot(

TH32CS_SNAPPROCESS, 0);

if ((int)handle > 0)

{

try

{

PROCESSENTRY32 peCurrent;

PROCESSENTRY32 pe32 = new PROCESSENTRY32();

//Get byte array to pass to the API calls

byte[] peBytes = pe32.ToByteArray();

//Get the first process

int retval = Process32First(handle,

peBytes);

while(retval == 1)

{

//Convert bytes to the class

peCurrent = new PROCESSENTRY32(

peBytes);

//New instance

Process proc = new Process(

new IntPtr((int)peCurrent.PID),

peCurrent.Name,

(int)peCurrent.ThreadCount,

(int)peCurrent.UsageCount,

(int)peCurrent.BaseAddress);

procList.Add(proc);

retval = Process32Next(handle,

peBytes);

}

}

catch(Exception ex)

{

throw new Exception("Exception: " +

ex.Message);

}

//Close handle

CloseToolhelp32Snapshot(handle);

return (Process[])procList.ToArray(

typeof(Process));

}

else

{

throw new Exception(

"Unable to create snapshot");

}

}

The remainder of the class provides wrappers around the system data struc-

tures and calls that are used to determine the process information:

private class PROCESSENTRY32

{

// constants for structure definition

private const int SizeOffset = 0;

private const int UsageOffset = 4;

private const int ProcessIDOffset=8;

private const int DefaultHeapIDOffset = 12;

private const int ModuleIDOffset = 16;

private const int ThreadsOffset = 20;

private const int ParentProcessIDOffset = 24;

private const int PriClassBaseOffset = 28;

private const int dwFlagsOffset = 32;

private const int ExeFileOffset = 36;

private const int MemoryBaseOffset = 556;

private const int AccessKeyOffset = 560;

private const int Size = 564;

private const int MAX_PATH = 260;

// data members

public uint dwSize;

public uint cntUsage;

public uint th32ProcessID;

public uint th32DefaultHeapID;

public uint th32ModuleID;

public uint cntThreads;

public uint th32ParentProcessID;

public long pcPriClassBase;

public uint dwFlags;

public string szExeFile;

public uint th32MemoryBase;

public uint th32AccessKey;

//Default constructor

public PROCESSENTRY32() {}

// create a PROCESSENTRY instance

// based on a byte array

public PROCESSENTRY32(byte[] aData)

{

dwSize = GetUInt(aData, SizeOffset);

cntUsage = GetUInt(aData, UsageOffset);

th32ProcessID = GetUInt(aData,

ProcessIDOffset);

th32DefaultHeapID = GetUInt(aData, DefaultHeapIDOffset);

th32ModuleID = GetUInt(aData, ModuleIDOffset);

cntThreads = GetUInt(aData, ThreadsOffset);

th32ParentProcessID = GetUInt(aData,

ParentProcessIDOffset);

pcPriClassBase = (long) GetUInt(aData,

PriClassBaseOffset);

dwFlags = GetUInt(aData, dwFlagsOffset);

szExeFile = GetString(aData, ExeFileOffset,

MAX_PATH);

th32MemoryBase = GetUInt(aData,

MemoryBaseOffset);

th32AccessKey = GetUInt(aData,

AccessKeyOffset);

}

#region Helper conversion functions

// utility: get a uint from the byte array

private static uint GetUInt(byte[] aData,

int Offset)

{

return BitConverter.ToUInt32(aData, Offset);

}

// utility: set a uint int the byte array

219

Appendix C. Implementation issues

private static void SetUInt(byte[] aData,

int Offset, int Value)

{

byte[] buint = BitConverter.GetBytes(Value);

Buffer.BlockCopy(buint, 0, aData, Offset,

buint.Length);

}

// utility: get a ushort from the byte array

private static ushort GetUShort(byte[] aData,

int Offset)

{

return BitConverter.ToUInt16(aData, Offset);

}

// utility: set a ushort int the byte array

private static void SetUShort(byte[] aData,

int Offset, int Value)

{

byte[] bushort = BitConverter.GetBytes(

(short)Value);

Buffer.BlockCopy(bushort, 0, aData, Offset,

bushort.Length);

}

// utility: get a unicode string

// from the byte array

private static string GetString(byte[] aData,

int Offset, int Length)

{

String sReturn = Encoding.Unicode.GetString(

aData, Offset, Length);

return sReturn;

}

// utility: set a unicode string

// in the byte array

private static void SetString(byte[] aData,

int Offset, string Value)

{

byte[] arr = Encoding.ASCII.GetBytes(Value);

Buffer.BlockCopy(arr, 0, aData, Offset,

arr.Length);

}

#endregion

// create an initialized data array

public byte[] ToByteArray()

{

byte[] aData;

aData = new byte[Size];

//set the Size member

SetUInt(aData, SizeOffset, Size);

return aData;

}

public string Name

{

get

{

return szExeFile.Substring(0,

szExeFile.IndexOf(’\0’));

}

}

public ulong PID

{

get{ return th32ProcessID; }

}

public ulong BaseAddress

{

get{ return th32MemoryBase; }

}

public ulong ThreadCount

{

get{ return cntThreads; }

}

public ulong UsageCount

{

get{ return cntUsage; }

}

}

#region PInvoke declarations

private const int TH32CS_SNAPPROCESS = 0x00000002;

[DllImport("toolhelp.dll")]

public static extern IntPtr CreateToolhelp32Snapshot(

uint flags, uint processid);

[DllImport("toolhelp.dll")]

public static extern int CloseToolhelp32Snapshot(

IntPtr handle);

[DllImport("toolhelp.dll")]

public static extern int Process32First(

IntPtr handle, byte[] pe);

[DllImport("toolhelp.dll")]

public static extern int Process32Next(

IntPtr handle, byte[] pe);

[DllImport("coredll.dll")]

private static extern IntPtr OpenProcess(

int flags, bool fInherit, int PID);

private const int PROCESS_TERMINATE = 1;

[DllImport("coredll.dll")]

private static extern bool TerminateProcess(

IntPtr hProcess, uint ExitCode);

[DllImport("coredll.dll")]

private static extern bool CloseHandle(IntPtr handle);

private const int INVALID_HANDLE_VALUE = -1;

#endregion

}

A log entry can then be written for the Pocket PC with:

string log = "";

foreach (Process p in Process.GetProcesses())

{

log += p.ToLongString() + "\n";

}

Further details of these features can be found in the ‘System.Diagnostics’

and ‘System.Runtime.InteropServices’ sections of the .NET platform documen-

tation [149].

220

Appendix C. Implementation issues

C.2.2 Detecting input events

The keyboard and mouse DCEAs featured in Chapter 5 were implemented using

a feature of the Windows operating system known as ‘hooks’. A hook is a piece of

code that receives and can manipulate system events. Systems events are passed

through each hook installed, before passing the event to its destination applica-

tion. Therefore, each key press and mouse event can be intercepted, recorded and

communicated to the situation determination middleware before passing it on.

Keyboard presses on a Windows XP machine can be intercepted with the

following C++ code:

HINSTANCE hins;

static HHOOK hkb=NULL;

string log;

LRESULT __declspec(dllexport)__stdcall CALLBACK KeyboardProc(

int nCode, WPARAM wParam, LPARAM lParam)

{

char ch;

if (((DWORD)lParam & 0x40000000) &&(HC_ACTION==nCode))

{

if ((wParam==VK_SPACE)

||(wParam==VK_RETURN)

||(wParam>=0x2f)

&&(wParam<=0x100))

{

if (wParam==VK_RETURN)

{

ch=’\n’;

}

else

{

BYTE ks[256];

GetKeyboardState(ks);

WORD w;

UINT scan;

scan=0;

ToAscii(wParam,scan,ks,&w,0);

ch =char(w);

}

SYSTEMTIME st;

GetSystemTime(&st);

stringstream ss;

ss << ch << ’ ’ << st.wYear

<< setfill(’0’) << setw(2) << st.wMonth

<< setw(2) << st.wDay

<< ’T’

<< setw(2) << st.wHour

<< setw(2) << st.wMinute

<< setw(2) << st.wSecond

<< ’.’ << setw(3) << st. wMilliseconds

<< char(255);

log += ss.str();

}

}

LRESULT RetVal = CallNextHookEx(

hkb, nCode, wParam, lParam);

return RetVal;

}

BOOL __declspec(dllexport)__stdcall InstallKeyboardHook()

{

hkb=SetWindowsHookEx(WH_KEYBOARD,

(HOOKPROC) KeyboardProc, hins, 0);

return TRUE;

}

void init()

{

AFX_MANAGE_STATE(AfxGetStaticModuleState());

hins=AfxGetInstanceHandle();

}

Similarly, the time of the last mouse event to occur can be captured with the

following code:

static HHOOK hmouse=NULL;

SYSTEMTIME lastMouseActionTime;

LRESULT CALLBACK MouseProc(int nCode, WPARAM wParam,

LPARAM lParam)

{

LRESULT lResult = CallNextHookEx(

hmouse, nCode, wParam, lParam);

if(HC_ACTION == nCode)

{

GetSystemTime(&lastMouseActionTime);

}

return lResult;

}

BOOL __declspec(dllexport)__stdcall InstallMouseHook()

{

hmouse = SetWindowsHookEx(WH_MOUSE,

(HOOKPROC) MouseProc, hins, 0);

return TRUE;

}

Further details and examples can be found in [150] and [151].

221

Appendix C. Implementation issues

C.2.3 Controlling system settings

Both muting a Pocket PC and disabling the Windows XP screen saver, as used

by the mode manager application presented in Chapter 5, were achieved using

Windows system calls.

Muting a Pocket PC can be done by setting the volume of the ‘wave out’

device to 0, using the following C++ code:

void SetSoundVolume(DWORD dwVolume)

{

WAVEFORMATEX wf;

wf.wFormatTag = WAVE_FORMAT_PCM;

wf.nChannels = 1;

wf.nSamplesPerSec = 8000 * 1000;

wf.wBitsPerSample = 8;

wf.nBlockAlign = wf.nChannels * wf.wBitsPerSample / 8;

wf.nAvgBytesPerSec = wf.nSamplesPerSec * wf.nBlockAlign;

wf.cbSize = 0;

HWAVEOUT hwo;

for (UINT id = 0; id < waveOutGetNumDevs(); id++)

{

if (waveOutOpen(&hwo, id, &wf, 0, 0, CALLBACK_NULL) ==

MMSYSERR_NOERROR)

{

waveOutSetVolume(hwo, dwVolume);

waveOutClose(hwo);

break;

}

}

}

SetSoundVolume((DWORD) 0);

Disabling and re-enabling the screen saver of a Windows XP machine can be

controlled through the following C# code:

public class ScreenSaverController

{

[DllImport("user32.dll", CharSet=CharSet.Auto)]

public static extern int SystemParametersInfo(

int uAction, int uParam, int lpvParam, int fuWinIni);

public const int SPI_SETSCREENSAVEACTIVE = 17;

public static int disableScreenSaver()

{

return SystemParametersInfo(

SPI_SETSCREENSAVEACTIVE, 0, 0, 0);

}

public static int enableScreenSaver()

{

return SystemParametersInfo(

SPI_SETSCREENSAVEACTIVE, 1, 0, 0);

}

}

See [152] and [153] for further details and examples.

222

Bibliography

[1] Daniel Salber Anind K. Dey and Gregory D. Abowd. A conceptual frame-

work and a toolkit for supporting the rapid prototyping of context-aware

applications. HCI Journal, 16(2-4), 2001.

[2] Roy Want, editor. IEEE Pervasive Computing, volume 1(1). IEEE,

January-March 2002.

[3] Roy Want, editor. The Smart Phone, IEEE Pervasive Computing, volume

4(2). IEEE, April-June 2005.

[4] Norbert Streitz and Paddy Nixon, editors. The Disappearing Computer,

Communications of the ACM, volume 48(3). ACM, New York, NY, USA,

March 2005.

[5] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The

active badge location system. ACM Transactions on Information Systems

(TOIS), 10(1):91–102, 1992.

[6] Jason Pascoe. The Stick-e Note Architecture: Extending the Interface

Beyond the User. In Johanna Moore, Ernest Edmonds, and Angel Puerta,

editors, 1997 International Conference on Intelligent User Interfaces, pages

261–264. ACM, January 1997.

[7] Lonnie D. Harvel, Ling Liu, Gregory D. Abowd, Yu-Xi Lim, Chris Scheibe,

and Chris Chatham. Context cube: Flexible and effective manipulation

of sensed context data. In Alois Ferscha and Friedemann Mattern, edi-

tors, Pervasive Computing, Second International Conference, PERVASIVE

2004, pages 51–68, Vienna, Austria, April 18-23 2004. Springer.

[8] Karen Henricksen and Jadwiga Indulska. Developing context-aware perva-

sive computing applications: Models and approach. Pervasive and Mobile

Computing, 2(1):37–64, February 2006.

223

BIBLIOGRAPHY

[9] Anand Ranganathan and Roy H. Campbell. A middleware for context-

aware agents in ubiquitous computing environments. In ACM/I-

FIP/USENIX International Middleware Conference, Rio de Janeiro,

Brazil, June 16-20, 2003.

[10] Simon Dobson, Lorcan Coyle, and Paddy Nixon. Hybridising events and

knowledge as a basis for building autonomic systems. Journal of Trusted

and Autonomic Computing, 2006.

[11] C.B. Anagnostopoulos, Y. Ntarladimas, and S. Hadjiefthymiades. Situ-

ational computing: An innovative architecture with imprecise reasoning.

Journal of Systems and Software, 80(12):1993–2014, December 2007.

[12] Matthai Philipose, Kenneth P. Fishkin, Mike Perkowitz, Donald J. Patter-

son, Dieter Fox, Henry Kautz, and Dirk Hahnel. Inferring activities from

interactions with objects. IEEE Pervasive Computing, 3(4):50–57, 2004.

[13] Paul Lukowicz, Jamie A. Ward, Holger Junker, Mathias Stäger, Gerhard

Tröster, Amin Atrash, and Thad Starner. Recognizing workshop activity

using body worn microphones and accelerometers. In Alois Ferscha and

Friedemann Mattern, editors, Pervasive Computing, Second International

Conference, PERVASIVE 2004, pages 18–32, Vienna, Austria, April 18-23

2004. Springer.

[14] Thomas Stiefmeier, Daniel Roggen, Georg Ogris, Paul Lukowicz, and Ger-

hard Trster. Wearable activity tracking in car manufacturing. IEEE Per-

vasive Computing, 7(2):42–50, 2008.

[15] Mark Weiser. The computer for the 21st century. Scientific American,

pages 94–104, September 1991.

[16] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Jeijten, and J-C. Burgelman.

Scenarios for ambient intelligence in 2010. Technical report, Institute for

Prospective Technological Studies (IPTS), February 2001. Available at:

ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf.

[17] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit:

Aiding the development of context-enabled applications. In CHI ’99: Pro-

ceedings of the SIGCHI conference on Human factors in computing systems,

pages 434–441, New York, NY, USA, 1999. ACM.

224

BIBLIOGRAPHY

[18] Anind K. Dey and Gregory D. Abowd. Towards a better understanding

of context and context-awareness. In Conference on Human Factors in

Computing Systems (CHI 2000), The Hague, The Netherlands, April 2000.

[19] A. K. Dey. Understanding and using context. Personal and Ubiquitous

Computing, 5(1):4–7, 2001.

[20] Manuel Roman, Christopher Hess, Renato Cerqueira, Anand Ranganathan,

Roy H. Campbell, and Klara Nahrstedt. Gaia: A middleware infrastructure

to enable active spaces. IEEE Pervasive Computing, 1(4):74–83, 2002.

[21] Anand Ranganathan and Roy H. Campbell. An infrastructure for context-

awareness based on first order logic. Personal and Ubiquitous Computing,

7(6):353–364, December 2003.

[22] A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell. Reasoning about

uncertain contexts in pervasive computing environments. IEEE Pervasive

Computing, 3(2):62–70, 2004.

[23] Earl Cox. The fuzzy systems handbook: A practitioner’s guide to building,

using, and maintaining fuzzy systems. Academic Press Professional, Inc.,

San Diego, CA, USA, 1994.

[24] Harry Chen, Tim Finin, and Anupam Joshi. An Ontology for Context-

Aware Pervasive Computing Environments. Special Issue on Ontologies for

Distributed Systems, Knowledge Engineering Review, November 2003.

[25] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Stan-

dard Ontology for Ubiquitous and Pervasive Applications. In International

Conference on Mobile and Ubiquitous Systems: Networking and Services,

Boston, MA, August 2004.

[26] X. Wang, T. Gu, D. Zhang, and H. K. Pung. Ontology based context model-

ing and reasoning using owl. In Workshop on Context Modeling and Reason-

ing (CoMoRea) at IEEE International Conference on Pervasive Computing

and Communication (PerCom’04), March 2004.

[27] Graeme Stevenson, Stephen Knox, Simon Dobson, and Paddy Nixon.

Ontonym: a collection of upper ontologies for developing pervasive systems.

In CIAO ’09: Proceedings of the 1st Workshop on Context, Information and

Ontologies, pages 1–8. ACM, 2009.

225

BIBLIOGRAPHY

[28] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling

context information in pervasive computing systems. In Proceedings of the

First International Conference on Pervasive Computing, volume 2414 of

Lecture Notes in Computer Science, pages 167–180, Zurich, August 2002.

Springer-Verlag.

[29] K. Henricksen and J. Indulska. Modelling and using imperfect context

information. In Second IEEE Annual Conference on Pervasive Computing

and Communications Workshops, 2004.

[30] Karen Henricksen and Jadwiga Indulska. A software engineering framework

for context-aware pervasive computing. In PerCom [154], pages 77–86.

[31] Terry Halpin. Information modeling and relational databases: From con-

ceptual analysis to logical design. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2001.

[32] The UbiSense real-time location platform. See: http://www.ubisense.net.

[33] B. Schilit, A. LaMarca, G. Borriello, W. Griswold, D. McDonald, E. La-

zowska, A. Balachandran, J. Hong, and V. Iverson. Challenge: Ubiquitous

location-aware computing and the Place Lab initiative. In Proceedings of

The First ACM International Workshop on Wireless Mobile Applications

and Services on WLAN (WMASH 2003), San Diego, CA, September 2003.

[34] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,

T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge, G. Bor-

riello, and B. Schilit. Place Lab: Device positioning using radio beacons in

the wild. In Proceedings of PERVASIVE 2005, Third International Con-

ference on Pervasive Computing, Munich, Germany, 2005.

[35] James L. Crowley, Joëlle Coutaz, Gaeten Rey, and Patrick Reignier. Per-

ceptual components for context aware computing. In UbiComp ’02: Pro-

ceedings of the 4th international conference on Ubiquitous Computing, pages

117–134, London, UK, 2002. Springer-Verlag.

[36] Joëlle Coutaz and Gaeten Rey. Foundations for a theory of contextors. In

Computer Aided Design of User Interfaces, Springer Verlag, 2002.

[37] Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Con-

text is key. Communications of the ACM, 48(3):49–53, 2005.

226

BIBLIOGRAPHY

[38] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson, 2002.

[39] R. E. Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME, Series D, 82:35–45, 1960.

[40] Christian Becker and Frank Durr. On location models for ubiquitous com-

puting. Personal and Ubiquitous Computing, 9(1):20–31, 2005.

[41] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous

computing. IEEE Computer, 34(8):57–66, 2001.

[42] H. Liu, Houshang Darabi, P. Banerjee, and Jing Liu. Survey of wireless

indoor positioning techniques and systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part C, 37(6):1067–1080, 2007.

[43] Global Positioning System: Serving the World. See: http://www.gps.gov.

[44] Daniela Nicklas and Bernhard Mitschang. The NEXUS augmented world

model: An extensible approach for mobile, spatially aware applications. In

Yingxu Wang, Shushma Patel, and Ronald Johnston, editors, 7th Interna-

tional Conference on Object Oriented Information Systems (OOIS’2001),

pages 392–. Springer, 2001.

[45] Kimberle Koile, Konrad Tollmar, David Demirdjian, Howard E. Shrobe,

and Trevor Darrell. Activity zones for context-aware computing. In Dey

et al. [155], pages 90–106.

[46] Gary Look, Buddhika Kottahachchi, Robert Laddaga, and Howard Shrobe.

A location representation for generating descriptive walking directions. In

Proc. Intelligent User Interfaces, pages 122–129, New York, NY, USA, 2005.

ACM Press.

[47] Graeme Stevenson, Juan Ye, Simon Dobson, and Paddy Nixon. Loc8: A

location model and extensible framework for programming with location.

IEEE Pervasive Computing, 9:28–37, 2010.

[48] Seon-Woo Lee and Kenji Mase. Activity and location recognition using

wearable sensors. IEEE Pervasive Computing, 1(3):24–32, 2002.

227

BIBLIOGRAPHY

[49] Ling Bao and Stephen S. Intille. Activity recognition from user-annotated

acceleration data. In Alois Ferscha and Friedemann Mattern, editors, Per-

vasive Computing, Second International Conference, PERVASIVE 2004,

pages 1–17, Vienna, Austria, April 18-23 2004. Springer.

[50] Paul Lukowicz, Friedrich Hanser, Christoph Szubski, and Wolfgang

Schobersberger. Detecting and interpreting muscle activity with wearable

force sensors. In Fishkin et al. [156], pages 101–116.

[51] Jonathan Lester, Tanzeem Choudhury, and Gaetano Borriello. A practical

approach to recognizing physical activities. In Fishkin et al. [156], pages

1–16.

[52] Raphael Wimmer, Matthias Kranz, Sebastian Boring, and Albrecht

Schmidt. A capacitive sensing toolkit for pervasive activity detection and

recognition. In PERCOM ’07: Proceedings of the Fifth IEEE International

Conference on Pervasive Computing and Communications, pages 171–180,

Washington, DC, USA, 2007. IEEE Computer Society.

[53] Yoshifumi Nishida, Toshio Hori, Takeo Kanade, Koji Kitamura, Akifumi

Nishitani, and Hiroshi Mizoguchi. Quick realization of function for detecting

human activity events by ultrasonic 3D tag and stereo vision. In PerCom

[154], pages 43–54.

[54] Shwetak N. Patel, Thomas Robertson, Julie A. Kientz, Matthew S.

Reynolds, and Gregory D. Abowd. At the flick of a switch: Detecting

and classifying unique electrical events on the residential power line. In

Krumm et al. [157], pages 271–288.

[55] Jonathan Lester, Blake Hannaford, and Gaetano Borriello. “Are You with

Me” - Using Accelerometers to Determine If Two Devices Are Carried by

the Same Person. In Alois Ferscha and Friedemann Mattern, editors, Per-

vasive Computing, Second International Conference, PERVASIVE 2004,

pages 33–50, Vienna, Austria, April 18-23 2004. Springer.

[56] Panu Korpipää, Miika Koskinen, Johannes Peltola, Satu-Marja Mäkelä,

and Tapio Seppänen. Bayesian approach to sensor-based context awareness.

Personal and Ubiquitous Computing, 7(2):113–124, 2003.

228

BIBLIOGRAPHY

[57] MPEG-7 Overview. See: http://www.chiariglione.org/mpeg/standards/

mpeg-7/mpeg-7.htm.

[58] Kenneth P. Fishkin, Bing Jiang, Matthai Philipose, and Sumit Roy. I

Sense a Disturbance in the Force: Unobtrusive Detection of Interactions

with RFID-tagged Objects. In Proceedings of Ubiquitous Computing 6th

International Conference (UbiComp 2004), pages 268–282, 2004.

[59] Sengul Vurgun, Matthai Philipose, and Misha Pavel. A statistical reasoning

system for medication prompting. In Krumm et al. [157], pages 1–18.

[60] Keng hao Chang, Mike Y. Chen, and John Canny. Tracking free-weight

exercises. In Krumm et al. [157], pages 19–37.

[61] Keng hao Chang, Shih yen Liu, Hao-Hua Chu, Jane Yung jen Hsu, Cheryl

Chen, Tung yun Lin, Chieh yu Chen, and Polly Huang. The diet-aware din-

ing table: Observing dietary behaviors over a tabletop surface. In Fishkin

et al. [156], pages 366–382.

[62] Emmanuel Munguia Tapia, Stephen S. Intille, and Kent Larson. Activ-

ity recognition in the home using simple and ubiquitous sensors. In Alois

Ferscha and Friedemann Mattern, editors, Pervasive Computing, Second

International Conference, PERVASIVE 2004, pages 158–175, Vienna, Aus-

tria, April 18-23 2004. Springer.

[63] Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atkeson,

Irfan A. Essa, Blair MacIntyre, Elizabeth D. Mynatt, Thad Starner, and

Wendy Newstetter. The aware home: A living laboratory for ubiquitous

computing research. In CoBuild, volume 1670 of Lecture Notes in Computer

Science, pages 191–198. Springer, 1999.

[64] Easy Living. See: http://research.microsoft.com/easyliving.

[65] The Adaptive House. See: http://www.cs.colorado.edu/∼mozer/house.

[66] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects

match problem. Artifical Intelligence, 19(1):17–37, 1982.

[67] Graham Thomson, Paddy Nixon, and Sotirios Terzis. Towards ad-hoc situ-

ation determination. In First International Workshop on Advanced Context

229

BIBLIOGRAPHY

Modelling, Reasoning And Management, Nottingham, England, September

2004. UbiComp 2004, The Sixth International Conference on Ubiquitous

Computing.

[68] P. H. Chen, C. J. Lin, and B. Schölkopf. A tutorial on ν-support vector

machines. Applied Stochastic Models in Business and Industry, 2004.

[69] Martin Mühlenbrock, Oliver Brdiczka, Dave Snowdon, and Jean-Luc Me-

unier. Learning to detect user activity and availability from a variety of

sensor data. In PerCom [154], pages 13–22.

[70] Alexander G. Hauptmann, Jiang Gao, Rong Yan, Yanjun Qi, Jie Yang,

and Howard D. Wactlar. Automated analysis of nursing home observations.

IEEE Pervasive Computing, 03(2):15–21, 2004.

[71] N. Oliver, A. Garg, and E. Horvitz. Layered representations for learning and

inferring office activity from multiple sensory channels. Computer Vision

and Image Understanding, 96(2):163–180, 2004.

[72] Fahd Albinali, Nigel Davies, and Adrian Friday. Structural learning of

activities from sparse datasets. In Fifth Annual IEEE International Con-

ference on Pervasive Computing and Communications (PerCom’07), pages

221–228. IEEE Computer Society, 2007.

[73] Stephen S. Intille, Kent Larson, J. S. Beaudin, J. Nawyn, E. Munguia

Tapia, and P. Kaushik. A living laboratory for the design and evaluation

of ubiquitous computing technologies. In CHI ’05: Extended Abstracts on

Human Factors in Computing Systems, pages 1941–1944, New York, NY,

USA, 2005. ACM.

[74] The MIT Placelab Datasets. See: http://architecture.mit.edu/house n/

data/PlaceLab/PlaceLab.htm.

[75] Juan Ye, Lorcan Coyle, Simon Dobson, and Paddy Nixon. Using situation

lattices in sensor analysis. In PerCom, pages 1–11. IEEE Computer Society,

2009.

[76] M. C. Mozer. Lessons from an adaptive house. In D. Cook and R. Das, ed-

itors, Smart environments: Technologies, protocols, and applications, pages

273–294. John Wiley & Sons, 2005.

230

BIBLIOGRAPHY

[77] Donald J. Patterson, Lin Liao, Dieter Fox, and Henry A. Kautz. Inferring

high-level behavior from low-level sensors. In Dey et al. [155], pages 73–89.

[78] Nirmalya Roy, Abhishek Roy, and Sajal K. Das. Context-Aware Resource

Management in Multi-Inhabitant Smart Homes: A Nash H-Learning based

Approach. In Proceedings of the Fourth Annual IEEE International Confer-

ence on Pervasive Computing and Communications (PerCom 2006), pages

148–158. IEEE Computer Society, 2006.

[79] Guanling Chen and David Kotz. Solar: An open platform for context-aware

mobile applications. In Proceedings of the First International Conference

on Pervasive Computing (Short paper), pages 41–47, June 2002.

[80] Hui Lei, Daby M. Sow, John S. Davis II, Guruduth Banavar, and Maria R.

Ebling. The design and applications of a context service. ACM SIGMO-

BILE Mobile Computing and Communications, 6(4), 2002.

[81] Davis, Sow, Blount, and Ebling. Context tailor: Towards a programming

model for context-aware computing. In 1st International ACM Workshop

on Middleware for Pervasive and Ad-Hoc Computing. ACM Press, 2003.

[82] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swan-

son, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Gribble,

and David Wetherall. System support for pervasive applications. ACM

Transactions on Computer Systems (TOCS), 22(4):421–486, 2004.

[83] H. Chen, T. Finin, and A. Joshi. A context broker for building smart

meeting rooms. In Proc. Knowledge Representation and Ontology for Au-

tonomous Systems. AAAI, March 2004.

[84] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. Con-

textphone: A prototyping platform for context-aware mobile applications.

IEEE Pervasive Computing, 04(2):51–59, 2005.

[85] Mik Lamming and Denis Bohm. Specx: Another approach to human con-

text and activity sensing research, using tiny peer-to-peer wireless comput-

ers. In Dey et al. [155], pages 192–199.

[86] Martin Strohbach, Gerd Kortuem, Hans-Werner Gellersen, and Christian

Kray. Using cooperative artefacts as basis for activity recognition. In Panos

231

BIBLIOGRAPHY

Markopoulos, Berry Eggen, Emile H. L. Aarts, and James L. Crowley, ed-

itors, EUSAI, volume 3295 of Lecture Notes in Computer Science, pages

49–60. Springer, 2004.

[87] Martin Strohbach, Hans-Werner Gellersen, Gerd Kortuem, and Christian

Kray. Cooperative artefacts: Assessing real world situations with embedded

technology. In Nigel Davies, Elizabeth D. Mynatt, and Itiro Siio, editors,

Ubicomp, volume 3205 of Lecture Notes in Computer Science, pages 250–

267. Springer, 2004.

[88] DIY Smart-its Homepage. See: http://ubicomp.lancs.ac.uk/smart-its.

[89] Markus C. Huebscher and Julie A. McCann. An adaptive middleware frame-

work for context-aware applications. Personal and Ubiquitous Computing,

10(1):12–20, 2006.

[90] Jalal Al-Muhtadi, Shiva Chetan, Anand Ranganathan, and Roy H. Camp-

bell. Super spaces: A middleware for large-scale pervasive computing en-

vironments. In 2nd IEEE Conference on Pervasive Computing and Com-

munications Workshops (PerCom 2004 Workshops), pages 198–202, March

2004.

[91] Alan Dearle, Graham N. C. Kirby, Ronald Morrison, Andrew McCarthy,

Kevin Mullen, Yanyan Yang, Richard C. H. Connor, Paula Welen, and

Andy Wilson. Architectural support for global smart spaces. In Proceedings

of the 4th International Conference on Mobile Data Management, pages

153–164. Springer-Verlag, 2003.

[92] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste.

Project Aura: Toward Distraction-Free Pervasive Computing. IEEE Per-

vasive Computing, 01(2):22–31, 2002.

[93] Glenn Judd and Peter Steenkiste. Providing contextual information to

pervasive computing applications. In First IEEE International Conference

on Pervasive Computing and Communications (PerCom’03), 2003.

[94] Mohan Kumar, Behrooz A. Shirazi, Sajal K. Das, Byung Y. Sung, David

Levine, and Mukesh Singhal. Pico: A middleware framework for pervasive

computing. IEEE Pervasive Computing, 02(3):72–79, 2003.

232

BIBLIOGRAPHY

[95] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,

Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A survey of

context modelling and reasoning techniques. Pervasive and Mobile Com-

puting, 6(2):161–180, 2010.

[96] Simon Dobson and Juan Ye. Using fibrations for situation identification.

In Pervasive 2006 workshop proceedings, pages 645–651. Springer Verlag,

2006.

[97] Bertrand Meyer. The many faces of inheritance: A taxonomy of taxonomy.

IEEE Computer, 29(5):105–108, 1996.

[98] The FuzzyJ Toolkit. See: http://www.nrc-cnrc.gc.ca/eng/projects/iit/

fuzzyj-toolkit.html.

[99] Susan McKeever, Juan Ye, Lorcan Coyle, and Simon Dobson. A context

quality model to support transparent reasoning with uncertain context.

In Kurt Rothermel, Dieter Fritsch, Wolfgang Blochinger, and Frank Dürr,

editors, QuaCon, volume 5786 of Lecture Notes in Computer Science, pages

65–75. Springer, 2009.

[100] Thomas Buchholz and Michael Schiffers. Quality of context: What it is and

why we need it. In In Proceedings of the 10th Workshop of the OpenView

University Association: OVUA03, 2003.

[101] Thad E. Starner. Powerful change part 1: Batteries and possible alter-

natives for the mobile market. IEEE Pervasive Computing, 02(4):86–88,

2003.

[102] Rajesh Krishna Balan. Powerful change part 2: Reducing the power de-

mands of mobile devices. IEEE Pervasive Computing, 03(2):71–73, 2004.

[103] Marc A Viredaz, Lawrence S Brakmo, and William R Hamburgen. Energy

management on handheld devices. ACM Queue, 1(7):44–52, 2003.

[104] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. Coolspots:

Reducing the power consumption of wireless mobile devices with multiple

radio interfaces. In MobiSys ’06: Proceedings of the 4th international con-

ference on Mobile systems, applications and services, pages 220–232, New

York, NY, USA, 2006. ACM.

233

BIBLIOGRAPHY

[105] Marc A. Viredaz and Deborah A. Wallach. Power evaluation of a handheld

computer. IEEE Micro, 23(1):66–74, 2003.

[106] William R. Hamburgen, Deborah A. Wallach, Marc A. Viredaz, Lawrence S.

Brakmo, Carl A. Waldspurger, Joel F. Bartlett, Timothy Mann, and

Keith I. Farkas. Itsy: Stretching the bounds of mobile computing. IEEE

Computer, 34(4):28–36, 2001.

[107] Eugene Shih, Paramvir Bahl, and Michael J. Sinclair. Wake on wireless:

an event driven energy saving strategy for battery operated devices. In

MobiCom ’02: Proceedings of the 8th annual international conference on

Mobile computing and networking, pages 160–171, New York, NY, USA,

2002. ACM.

[108] Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamohideen,

and Hen-I Yang. The case for cyber foraging. In EW10: Proceedings of

the 10th workshop on ACM SIGOPS European Workshop: Beyond the PC,

pages 87–92, New York, NY, USA, 2002. ACM Press.

[109] Sachin Goyal and John Carter. A lightweight secure cyber foraging in-

frastructure for resource-constrained devices. In WMCSA ’04: Proceedings

of the Sixth IEEE Workshop on Mobile Computing Systems and Applica-

tions (WMCSA’04), pages 186–195, Washington, DC, USA, 2004. IEEE

Computer Society.

[110] Nicholas R. Jennings and Michael J. Wooldridge. Applications of intelli-

gent agents. In Agent Technology: Foundations, Applications, and Markets,

pages 3–28. Springer-Verlag: Heidelberg, Germany, 1998.

[111] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,

35(2):114–131, 2003.

[112] H. Van Dijk, K. Langendoen, and H. Sips. ARC: A Bottom-Up Approach to

Negotiated QoS. In WMCSA ’00: Proceedings of the Third IEEE Workshop

on Mobile Computing Systems and Applications (WMCSA’00), page 128,

Washington, DC, USA, 2000. IEEE Computer Society.

[113] Cristina Aurrecoechea, Andrew T. Campbell, and Linda Hauw. A survey

of QoS architectures. Multimedia Systems, 6(3):138–151, 1998.

234

BIBLIOGRAPHY

[114] Jinshan Liu and Valerie Issarny. QoS-Aware Service Location in Mobile Ad-

Hoc Networks. In IEEE International Conference on Mobile Data Manage-

ment (MDM’04), page 224, Los Alamitos, CA, USA, 2004. IEEE Computer

Society.

[115] Selim Gurun, Chandra Krintz, and Rich Wolski. NWSLite: A light-weight

prediction utility for mobile devices. In MobiSys ’04: Proceedings of the

2nd international conference on Mobile systems, applications, and services,

pages 2–11, New York, NY, USA, 2004. ACM Press.

[116] Dushyanth Narayanan and M. Satyanarayanan. Predictive resource man-

agement for wearable computing. In MobiSys ’03: Proceedings of the 1st

international conference on Mobile systems, applications and services, pages

113–128, New York, NY, USA, 2003. ACM Press.

[117] Michael Wooldridge. Introduction to MultiAgent Systems. John Wiley &

Sons, 2002.

[118] JADE - Java Agent DEvelopment Framework. See: http://jade.tilab.com.

[119] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design

and evaluation of a wide-area event notification service. ACM Transactions

on Computer Systems, 19(3):332–383, August 2001.

[120] Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-based

middleware architecture. In ICDCSW ’02: Proceedings of the 22nd In-

ternational Conference on Distributed Computing Systems, pages 611–618,

Washington, DC, USA, 2002. IEEE Computer Society.

[121] Susan McKeever, Juan Ye, Lorcan Coyle, and Simon A. Dobson. Using

dempster-shafer theory of evidence for situation inference. In Payam M.

Barnaghi, Klaus Moessner, Mirko Presser, and Stefan Meissner, editors,

EuroSSC, volume 5741 of Lecture Notes in Computer Science, pages 149–

162. Springer, 2009.

[122] IP Mobility Support for IPv4. See: http://www.ietf.org/rfc/rfc3344.txt?

number=3344.

[123] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems. In IFIP/ACM

235

BIBLIOGRAPHY

International Conference on Distributed Systems Platforms (Middleware),

pages 329–350, November 2001.

[124] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the ACM SIGCOMM ’01 Conference, San

Diego, California, August 2001.

[125] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Schenker. A scalable content-addressable network. In SIGCOMM ’01: Pro-

ceedings of the 2001 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 161–172, New York, NY,

USA, 2001. ACM Press.

[126] B. Y. Zhao, Ling Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.

Kubiatowicz. Tapestry: A resilient global-scale overlay for service deploy-

ment. IEEE Journal on Selected Areas in Communications, 22(1):41–53,

2004.

[127] Generation and registration of Universally Unique Identifiers (UUIDs)

and their use as ASN.1 Object Identifier components. See:

http://www.itu.int/ITU-T/studygroups/com17/oid.html.

[128] OWL Web Ontology Language Overview. See: http://www.w3.org/

TR/2004/REC-owl-features-20040210.

[129] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and

Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Se-

mantics, 5(2), 2007.

[130] The FaCT++ OWL-DL Reasoner. See: http://owl.man.ac.uk/factplusplus.

[131] RacerPro: An OWL reasoner and inference server for the Semantic Web.

See: http://www.racer-systems.com/index.phtml.

[132] Jena: A semantic web framework for Java. http://jena.sourceforge.net.

[133] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso,

Monica Crubézy, Henrik Eriksson, Natalya F. Noy, and Samson W. Tu.

The evolution of Protégé: An environment for knowledge-based systems

236

BIBLIOGRAPHY

development. International Journal of Human-Computer Studies, 58(1):89–

123, 2003.

[134] Cobra-ont. See: http://cobra.umbc.edu/ontologies.html.

[135] Jess, the Rule Engine for the Java Platform. See:

http://herzberg.ca.sandia.gov/jess.

[136] Mauro Caporuscio, Antonio Carzaniga, and Alexander L. Wolf. Design

and evaluation of a support service for mobile, wireless publish/subscribe

applications. Technical Report CU-CS-944-03, Department of Computer

Science, University of Colorado, January 2003.

[137] An Introduction to the Service Location Protocol (SLP). See:

http://openslp.org/doc/html/IntroductionToSLP/index.html.

[138] OpenSLP. See: http://openslp.org.

[139] jSLP. See: http://jslp.sourceforge.net.

[140] FreePastry. See: http://freepastry.rice.edu.

[141] Google Calendar APIs. See: http://code.google.com/apis/calendar.

[142] File watchers utilities. See: http://fwutilities.sourceforge.net.

[143] Tim Kindberg and Armando Fox. System software for ubiquitous comput-

ing. IEEE Pervasive Computing, 1(1):70–81, 2002.

[144] JADE Performance Tests. See: http://jade.tilab.com/papers-2004.htm.

[145] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer

storage utility. In Proceedings of the Eighth Workshop on Hot Topics in

Operating Systems (HotOS VIII), pages 75–80, Schloss Elmau, Germany,

May 2001.

[146] Marc Langheinrich. Privacy by design – principles of privacy-aware ubiqui-

tous systems. In Gregory D. Abowd, Barry Brumitt, and Steven A. Shafer,

editors, Proceedings of the Third International Conference on Ubiquitous

Computing (UbiComp 2001), number 2201 in LNCS, pages 273–291, At-

lanta, USA, 2001. Springer-Verlag.

237

BIBLIOGRAPHY

[147] Marc Langheinrich. A privacy awareness system for ubiquitous comput-

ing environments. In Gaetano Borriello and Lars Erik Holmquist, editors,

4th International Conference on Ubiquitous Computing (Ubicomp 2002),

number 2498 in LNCS, pages 237–245. Springer-Verlag, September 2002.

[148] See5/C5.0. See: http://www.rulequest.com/see5-info.html.

[149] .NET Class Libraries. See: http://msdn2.microsoft.com/en-gb/library/

aa388745.aspx.

[150] Keyboard hooks. See: http://www.codeproject.com/dll/keyboardhook.asp.

[151] Mousey! Roll Over and Park: Controlling the mouse using Windows hooks.

See: http://www.codeproject.com/dll/ParkMouse.asp.

[152] Pocket PC Developer Network: Changing the sound volume from a pro-

gram. See: http://www.pocketpcdn.com/articles/soundvolume.html.

[153] How to Use SystemParametersInfo API for Control Panel Settings. See:

http://support.microsoft.com/kb/97142.

[154] Proceedings of the Second IEEE International Conference on Pervasive

Computing and Communications (PerCom 2004), 14-17 March 2004, Or-

lando, FL, USA. IEEE Computer Society, 2004.

[155] Anind K. Dey, Albrecht Schmidt, and Joseph F. McCarthy, editors. Ubi-

Comp 2003: Ubiquitous Computing, 5th International Conference, Seattle,

WA, USA, October 12-15, 2003, Proceedings, volume 2864 of Lecture Notes

in Computer Science. Springer, 2003.

[156] Kenneth P. Fishkin, Bernt Schiele, Paddy Nixon, and Aaron J. Quigley,

editors. Pervasive Computing, 4th International Conference, PERVASIVE

2006, Dublin, Ireland, May 7-10, 2006, Proceedings, volume 3968 of Lecture

Notes in Computer Science. Springer, 2006.

[157] John Krumm, Gregory D. Abowd, Aruna Seneviratne, and Thomas Strang,

editors. UbiComp 2007: Ubiquitous Computing, 9th International Confer-

ence, UbiComp 2007, Innsbruck, Austria, September 16-19, 2007, Proceed-

ings, volume 4717 of Lecture Notes in Computer Science. Springer, 2007.

238

