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Abstract

We present a model for binding statically typed programs and self-descri-

bing data based on dynamic projections of type assertions, or type projec-

tions. The model exploits the potential for loose coupling which inheres

in self-description in order to endorse a principle of typeful programming

over shared data: the type of the data should vary in accordance with the

processing requirements of individual programs.

Loose coupling is key between programs that execute in cooperating but

autonomous runtimes. Accordingly, type projections may be employed

at the boundary of typed languages to regulate the exchange of untyped

data across the nodes of distributed systems. External type projections

give rise to a class of data binding tools for mainstream languages and

standard self-describing formats, such as XML.

Loose coupling is also desirable between programs that execute within

a single runtime, where conventional typechecking regimes may unduly

constrain the interpretations of shared data. Type projections may then be

employed within typed languages to regulate the exchange of typed data

across local application components. Internal type projections give rise

to a class of metamorphic languages, where an unconventional ‘data-first’

approach to dynamic typechecking extends support for typeful program-

ming beyond the scope of polymorphism and coercions.



Preface

This Dissertation is submitted ‘by portfolio’ which, according to Part 3

of the University of Strathclyde’s Calendar 2009-2010, “may consist in

whole or in part of work previously published by the candidate, provided

the thesis is so composed as to present a connected record of research in

a field of study.”

The Dissertation is structured accordingly in two Parts. Part I contains a

presentation of type projections as a general-purpose model of type-safe

bindings to self-describing data, and it is previously unpublished. It con-

tains the most general and comprehensive account of the concepts, moti-

vations, and applications that are associated with type projections. This

includes an analysis on the role of types in programming languages which

culminates with the identification of the principle of typeful programming,

the motivation that unifies all the applications of type projections. It also

includes a principled account of self-describing data and its implications

for data processing which, to the best of my knowledge, is the first sys-

tematic attempt to analyse self-description within the formal literature.

Part II contains a selection of three publications on type projections. The

selection summarises the main findings of a collaborative research inves-

tigation that spanned the years 2000-2004. It illustrates the evolution of

the themes that are presented in a conclusive form in Part I, and it explores

in more depth the design space defined by type projections. The selection

includes:



• SIMEONI, F., MANGHI, P., LIEVENS, D., CONNOR, R. C. H., AND

NEELY, S. An approach to high-level language bindings to xml. Infor-

mation & Software Technology 44, 4 (2002), 217–228.

• SIMEONI, F., LIEVENS, D., CONNOR, R. C. H., AND MANGHI, P. Lan-

guage bindings to xml. IEEE Internet Computing 7, 1 (2003), 19–27.

• MANGHI, P., SIMEONI, F., LIEVENS, D., AND CONNOR, R. C. H. Hy-

brid applications over xml: integrating the procedural and declarative ap-

proaches. In Fourth ACM CIKM International Workshop on Web Informa-

tion and Data Management (WIDM 2002), pp. 9–14.

The contributions of individual publications to the theme of the Disserta-

tion are discussed in Section 1.4. For convenience, they are also repeated

at the beginning of the corresponding Chapters.
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Concepts, Motivations, and

Applications
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Chapter 1

Type Projections

We present a type-safe model for binding statically typed programs to data whose type

is statically unknown. As such, the model extends the theory and practice of dynamic

typechecking within statically typed languages [1], most noticeably those that deal

with persistent or remotely defined data (e.g. [2, 3, 4]).

The novel assumption is that the data may be completely untyped at the point of

binding. In fact, it may not be a language value at all. It may originate from outside

the language and live in a file system, a database, or a network stream. If the data is a

language value, its type is simply discarded for typechecking purposes.

What we require from the data is for it to be structured and sufficiently self-describing

to enable runtime verification of the type that the program asserts for its input. Pre-

cisely, the data must be isomorphic to a rooted and directed graph in which edges

are labelled with a description of target vertices. Collectively, we think of labels as

metadata and say that the data contains its own metadata.

Dynamic typechecking then takes the form of a direct match between the asserted

type and the metadata embedded in the data. Informally, the match is successful if

the metadata indicates that (part of) the data can be interpreted as the self-describing

representation of some value of the asserted type. By materialisation or through a view,
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Chapter 1. Type Projections

the data can be manipulated thereafter as the value, i.e. with the algebra of the asserted

type and under the full force of a static typechecking regime.

Overall, the model capitalises on self-description to identify interpretations of the

data which remain latent within its structure, and to uphold them in the runtime of the

language. Types convey the required interpretations but no single type must govern

the entire lifetime of the data. Rather, different types may be bound to it on demand

and under a notion of dynamic typechecking which is unconventionally data-first. We

explain these bindings as type projections and describe the binding model as one based

on type projections over self-describing data.

1.1 A First Example

Conceptually, the model is straightforward and may be immediately illustrated with an

example. The pseudo code below defines a procedure print which displays contact

data for a set of employees. For simplicity of context, we assume a block-structured

and lexically scoped procedural language, where blocks are associated with levels of

indentation in the code.

print(x:T)

for e in x

show(e.name)

show(e.salary)

for n in e.numbers

show(n)

print uses the abstractions of the type system to assert that its input has no more

and no less than the properties it needs to output. Assuming that the type system

includes a small number of scalar types and purely structural abstractions for record

and set values, print asserts the following type:

3



Chapter 1. Type Projections

T:=set(record[name:txt,salary:num,numbers:set(txt)])

and annotates accordingly its formal parameter x. Essentially, T describes personnel

data as a set of records with a string field for the name of employees, a numeric field

for their salary, and a set-valued field for their phone numbers, all of which are strings.

At a later time, print is bound to some data d about employees. For the time

being, it is immaterial whether d originates from outside the language or whether it is

already represented in the runtime as one of its values. What does matter is that d may

be mechanically processed as the labelled graph1 in Figure 1.1.

At the point of binding, T is projected over d in an attempt to establish the former

as a valid interpretation of the latter. Again, we abstract away the precise form and

time in which projection occurs, as these depend on whether d is internal or external to

the runtime, as well as on how projections interface with the language (e.g. integrated

in its design or supported by a library).

The projection is successful if there is a subset d′ of d which can be interpreted

as the self-describing representation of a value v of T. Ultimately, this depends on the

definition of precise projection rules for the target type system, and while we expect

different rules for different languages, we do not exclude that multiple sets of rules

may be available for a single language.

For this example we dispense with formal rules and rely on the intuition to identify

d′ as the ‘subtree’ of d whose edges are depicted in bold in Figure 1.1 (see Chapter 4

for the corresponding formal rules). The intuition is the following: the interpretation

of record values is based on the names of their fields (e.g. name); the interpretation of

collection values requires zero or more repeated labels (e.g. employee), possibly the

field names of enclosing records (e.g. number); the interpretation of atomic values is

based on the literals on some manifest syntax (e.g. 20000 for integers) or on standard

1For readability, we draw the graph in a quasi-radial style and mark its root node with a label R.
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Chapter 1. Type Projections
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Figure 1.1: A simple example of type projection

coercions. Depending on the context of application, d′ may be materialised into, or

else viewed as, its typed counterpart v before being bound to x during the execution of

print.

1.2 Motivations

Mechanics aside, the outcome of the projection above is no more and no less than the

following: print can process d under a type that fully aligns with its requirements,
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Chapter 1. Type Projections

and not another. It is because of this alignment that print can be so easily authored,

understood, and maintained; that the typechecker can give some confidence in its cor-

rectness; that the runtime can optimally meet its memory requirements. As we discuss

at length in Chapter 2, these are the implications of a fundamental programming prin-

ciple, namely that the non-functional properties of a program are strongly related to

the type that models its input. No type is intrinsically better than others, but some

types may serve some programs better. This is the principle of typeful programming,

and the ultimate motivation for type projections is to endorse it when conventional

typechecking strategies fail to.

In a conventional strategy, the safety of bindings descends from type inferences:

print can process d only if T can be inferred from the type that describes d at the

point of binding. The inference raises no requirements for self-description and, in

principle, may be carried out before print executes, i.e. statically. There are cases,

however, when relying on type inference is either impossible or undesirable.

The obvious case is when d is created outside the jurisdiction of the type system,

i.e. it is ‘external’ to the language. External data enters the language runtime as the

output of parsers, i.e. under types that describe the generic structures of its represen-

tation format and independently from the requirements of consuming applications. If

the programmer does not take responsibility for remodelling the data, the advantages of

typeful programming are lost. In this sense, conventional typechecking strategies oper-

ate in ‘closed’ worlds and do not serve well application requirements that transcend the

support of a single language or programming system. Extended with type projections,

however, a typechecking strategy can capitalise on global standards for self-describing

data and preserve typeful programming at the boundaries of individual systems. We

discuss external projections and ‘open’ application domains in Section 1.2.1.

The less obvious case is when d is a language value but the programmer deems its

type inadequate to judge the validity of T. We know of no conventional type system,

6



Chapter 1. Type Projections

for example, where T could be inferred as a type for d. A tree type or a finite union type

may be plausible creation types for d, not least because they abstract away differences

across employees. In doing so, however, they also hide their commonalities, including

that they all have the properties predicated by T. Typeful programming may require

multiple interpretations of the same data, yet not all them may be related by type infer-

ence. Like type casts and coercions, type projections can extend conventional strate-

gies to preempt false negatives from the typechecker and adjust the evidence available

for its next inferences. Unlike type casts, projections validate type assertions against

the self-describing data rather than its creation type. Unlike coercions, projections are

not limited to scalars and may preserve identity. The failure of a projection preserves

safety when expectations prove incorrect. Its success marks a true ‘metamorphosis’

of the data in support of typeful programming. We discuss internal projections and

metamorphoses in Section 1.2.2.

1.2.1 External Projections

Type projections befit application systems that require a controlled alternation of typed

and untyped regimes over richly structured data. Somewhere and sometimes – such as

when typechecking the procedure print above – the data may be associated with

types which guide, optimise, and constrain its manipulation. In other places and points

in time, type associations become less convenient and the same data is more easily

managed in untyped forms.

These requirements are increasingly common. Typed regimes are enforced by

mainstream languages and applications systems, sometimes orthogonally to the longevity

and location of the data. Database systems specialise in the handling of long-lived

data (e.g. [5]); programming languages host transient data and export typed values onto

the file system and over the network through proprietary serialisation facilities (e.g. [6,

7]); some experimental languages go one step further and extend the jurisdiction of

7



Chapter 1. Type Projections

the type system over a persistent store (e.g. [4]); some middleware systems bridge the

run-time of heterogeneous languages under a single type system and the transparencies

of remote procedure calls [8, 9]. Upon crossing system boundaries, however, the data

loses its type and is encoded in file or network formats. As an external resource, it may

be manipulated with a variety of tools, undergo further transformations and relocations,

and finally acquire the same or a new type upon entering a different system.

Data escapes the control of a type system because of some source of complexity

within the solution domain. Complexity may lie in data that is too irregular and un-

stable to be conveniently typed. This is the domain of semistructured data [10, 11],

an important theme within this thesis as well as one of its original motivations. We

discuss semistructured data at length in Chapter 3.

Complexity may also arise from the architecture of application systems. In loosely-

coupled distributed systems, for example, individual components retain a significant

degree of local autonomy and differ substantially in tools, means, and purpose. Het-

erogeneity suggests a lightweight approach to interoperability which minimises syn-

chronisation requirements. The implications are non-trivial and the impact poten-

tially endemic within the system. Infrastructures need to be widely deployed (e.g. the

Web); protocols and formats need to be standards with pairwise compatible and open

source implementations (cf. Web Services); interfaces need to be uniform and generic

(cf. SOA architectures and REST architectures). In contrast, exchanging typed data

creates tight coupling within the system because it reveals stronger assumptions on

how the data is consumed. Partly, this raises additional requirements on how the data

should be mechanically accessed, i.e. with which technologies. More significantly, it

curtails the ways in which the data may be interpreted: more or less abstractly; par-

tially or in its entirety; in association with an algebra rather than another; in the form in

which it becomes available or after a number of arbitrary transformations. Exchanging

data is a necessary step for interoperability while exchanging types is not.
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Chapter 1. Type Projections

Moving beyond the constraints of typed regimes may appear liberating, but it risks

losing the advantages of the technologies that enforce them, including familiar pro-

gramming paradigms, complete computational models, rich platforms, and extensive

tool support. Type projections can help avoiding these costs in an opportunistic man-

ner. They can be employed at system boundaries, typically at the end of a pipeline of

arbitrary data transformations, in order to interpret and process the data with the mod-

els and the technologies that are most convenient for local purposes. Projecting partial

models of the data, for example, allows bindings to regular subsets of data which is

otherwise semistructured; this effectively regains for parts of the data and for specific

programs the advantages that could not be extended to the entire data and across all

programs. Partial projections also insulate programs from changes that occur outside

the bound subsets; this increases their resilience to the evolution of the data.

As to self-describing data, this is already commonplace in the domains for which

we advocate type projections. Self-description is preferred for the representation of

semistructured data because it preserves structure without constraining it into regular

forms. It is also preferred for the loosely-coupled exchange of data because it identi-

fies structure without preempting its interpretation. There is in fact a global standard to

which requirements for self-description have rallied for the past ten years, the eXten-

sible Markup Language [12]. XML gives scope to the deployment of type projections

as well as a point of reference for their definition and implementation.

1.2.2 Internal Projections

If type projections give local control over the interpretation of the data, then it is nat-

ural to question whether this control may only be exercised at the language boundary;

whether a controlled alternation of typed and untyped regimes is only beneficial across

the local components of distributed application systems; whether principles of loose-

coupling and open-world assumptions may only be upheld for programs that execute

9



Chapter 1. Type Projections

in different runtimes.

These observations motivate a more radical application of our binding model, one

in which type projections promote typeful programming within the context of a sin-

gle language runtime. In such a language, data would retain its identity but change

structure and behaviour as it percolates through the call stack of a local application.

To a degree, such changes are already supported in mainstream languages. Para-

metric and inclusion polymorphism do allow different interpretations of the same data

under schemes of static type inference. The assumption of static typing, however, lim-

its the possibilities: interpretations may only progressively abstract over structure and

behaviour. More qualitative and dynamic changes are also common, such as those in-

duced by coercions. These however apply mostly to scalars and thus induce copies of

immutable values.

Type projections resort to dynamic typechecking to enable a wider range of inter-

pretations, hence a wide range of structural and behavioural changes. Under a suffi-

ciently eclectic type system, the data may be equally manipulated as, e.g., a graph, a

collection of records, an object encapsulated behind a range of different interfaces, a

heterogeneous array, or a dictionary. Idioms and viewpoints that are normally treated

as mutually exclusive may be unified in the context of a single program. As a graph,

a semistructured dataset may be subjected to declarative querying, rule-based transfor-

mations, or recursive traversal; as a dictionary or heterogeneous array, it may retain

extensibility while supporting efficient lookup; as a sequence of records, a regular

subset of it could be iterated over under a static typechecking regime prior to being

ingested in a relational database.

We refer to such changes as metamorphoses and identify metamorphism as the gen-

eralisation of polymorphism and coercion which is obtained by lifting the assumption

that the changes are statically typechecked, or that they are restricted to scalars, or

that they do not preserve identity. We posit that metamorphoses may play a significant
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role in modern programming, where data is manipulated under an increasing range

of viewpoints and yet within scopes which are increasingly smaller (e.g framework

programming [13]).

1.3 Applications

As with all binding models, applications of type projections have a number of contex-

tual dependencies. Resolving these dependencies means making choices that shape the

design of an application and change how the design may be formalised for proofs of

correctness and completeness. Thus type projections characterise in principle a num-

ber of concrete binding models, each of which reflects a coordinated set of choices

about its dependencies.

The host language is the first dependency. What classes of interpretations can be

described by its type system and instantiated in its value space? How do program-

mers denote type projections? How does the typechecker deal with them? How are

their failures handled? The data-first approach to dynamic typechecking introduces

its own dependencies. The format of the self-describing data becomes an element of

application design rather than a detail of its implementation. How is self-describing

data represented and, vice versa, what data can be represented in self-describing form?

Most importantly, what rules define the self-describing representation of language val-

ues, i.e. determine the outcome of a type projection?

Arguably, the question of most consequence concerns the relationship between

the host language and the self-describing data. In line with the divide between the

deployment scenarios discussed in the previous Section, applications that focus solely

on external projections raise different design issues from those that instead embrace

internal projections.

11
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1.3.1 Data Binding Tools

Applications in the first class serve as data binding tools for existing languages and

self-describing formats. Today tools of this kind enjoy wide application, particularly

in the arena of XML processing [14, 15]. They exist to dispense programmers from the

tedious and error-prone task of modelling XML data in terms of language values and,

vice versa, to convert the generated model back to its self-describing representation.

Differently from parsers, they do not hard-code the model as an implication of the

target format (e.g. the data is a tree or the data is a stream of parsing events [16,

17]). Rather, they can be instructed to generate models that align with application-

specific requirements. Thus data binding tools are motivated by the principle of typeful

programming, and the arguments we set forth in this Dissertation generalise and put

on firmer ground those that populate the literature and other informal fora.

Yet most tools do not follow the principle to its logical conclusion and, ultimately,

curtail the potential of self-describing data. They are engineered under the assumption

that the same interpretation of the data may be prescribed to all its consumers. This in-

terpretation is no longer dictated by its representation format, as with parsers, it is now

dictated by its producers and serves as a shared type. Types still convey the intended

interpretation of the data but do not originate within the host language. Following a

well-known scheme in distributed computing [9], they are defined in language-neutral

type systems (e.g. [18]) and are then translated into language types, e.g. as object types

which encapsulate the binding logic as well as the bound data. The generative approach

offers transparencies but suffers from problems of integration with local type systems

and application design. More problematically, it is indicative of a closed-world ap-

proach to system design which takes control away from consumers and does not con-

cede that their requirements may diverge. For example, consumers cannot bind only

to the parts of the data which are relevant to their requirements. As a result, they must

regenerate types even when the irrelevant parts change, and they cannot conveniently
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bind to regular subsets of semistructured data.

With type projections, data binding tools may follow a different approach. By

projecting rather than generating types, a tool based on type projections does not suffer

from mismatches across type systems and it does not prove intrusive with respect to

application design. Most importantly, it gives control back to consumers and lets them

project the type that best aligns with their requirements, including types that interpret

the data partially. In Chapter 4 we define a framework for the formalisation of type

projections which is appropriate for their use in binding tools. Based on the framework,

we discuss in Chapter 5 the design of a prototype tool for binding Java and XML.

1.3.2 Metamorphic Languages

The second class of applications focuses on internal projections and includes metamor-

phic languages. Self-description enters the value space of the host language and type

projections are expected to preserve identity, at least insofar as identity can be observed

in the programming model. This changes their runtime semantics. The ‘extraction’ se-

mantics naturally associated with binding tools and external data is less desirable, and

projections can define type views over language values.

This raises non-trivial challenges for language design, most noticeably in relation

to the soundness of typechecking in languages with mutable values. When multiple

views are concurrently defined over the same data, updates made under one view may

invalidate the soundness of other views. Adding and removing edges, for example,

are legal changes under a mutable tree view, but they may void the static guarantees

associated with a record view defined in a different scope over the same data.

The problems that arise when integrating static typechecking, type views, and mu-

tability are well-known in languages with subtype polymorphism [19, 20, 21]. In a

metamorphic language the problems generalise and so must solutions, whether these

resort to dynamic typechecks, control mutability, limit projections, or combine a num-
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ber of these approaches [22, 23]. An alternative approach is to introduce metamor-

phoses in a declarative language where, in the lack of update, concurrent interpreta-

tions of the data can never invalidate each other. Even renouncing the assumption that

type projections preserve identity, i.e. induce true metamorphoses, can still deliver the

benefits of typeful programming to a subset of programs (e.g. those that consume but

do not update the data).

Overall, the design space for languages that accommodate internal projections is

rich and virtually uncharted. In Chapter 6, we discuss a point in such space where

metamorphoses coexist with updates under a simple confinement scheme. In partic-

ular, we outline the design of an imperative language with structural typing in which

data changes upon crossing either one of two types of scopes. In declarative scopes, the

data is a labelled tree and can be queried with an algebra of path expressions. In pro-

cedural scopes, the data is instead a recursive composition of mutable records and sets

and can be manipulated with corresponding algebras. Since query evaluation seman-

tics is standard, i.e. constructs new values, a type view that is defined in a procedural

scope may only concur with a tree view defined in a declarative scope, and here the

data is immutable. We then show that under this simple metamorphic scheme typeful

programming supports hybrid applications over XML, integrating within a quasi-static

language the different strengths of models and algebras that are traditionally associated

with competing XML technologies.

1.4 Outline

This Dissertation is structured in two parts. The first part presents type projections

as a general-purpose model of type-safe bindings. In this first Chapter we have intro-

duced concepts, motivations and applications. In the next two Chapters we elaborate

further on the key themes of typeful programming and self-describing data. In the pro-
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cess, we make the presentation self-contained and resolve pointers to related work. In

particular:

• Chapter 2 overviews the rich body of notions that are associated with the use of

types in programming languages, moving from the classic viewpoint of program

correctness to a broader, model-oriented perspective that leads to the principle

of typeful programming.

• Chapter 3 discusses the implications of labelled structures for data processing,

focusing on the role of self-description as an enabler of typeful programming.

The second part of the Dissertation comprises a selection of three published works

on type projections. The ideas set forth in this Chapter appear there still in an embry-

onic form but their implications are investigated in more depth in relation to concrete

applications. In particular:

• Chapter 4 includes An Approach to High-Level Language Bindings to XML by

Simeoni, Manghi, Lievens, Connor, and Neely, published in Elsevier’s Journal

of Software and Technology (44) in 2002. This first publication on type projec-

tions is largely motivated by the reconciliation of mainstream typed technologies

and XML, particularly the type-driven ‘extraction’ of language values from reg-

ular subsets of potentially semistructured datasets. The focus is on the formalisa-

tion of the idea, and the main contribution is a language-independent framework

for the rigorous definition of extraction mechanisms based on external type pro-

jections. The framework is instantiated to yield an extraction mechanism for an

idealised language with a type system of purely structural abstractions, includ-

ing record, collection, union, and recursive types. In applications to concrete

languages, structural abstractions may be derived from abstract data types and

coexist with types that characterise values that we do not expect to be repre-

sented in the data, such as functions. A high-level algorithm implements the
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mechanism and the implementation is shown to be correct and complete with

respect to the formal definitions. The work presents also a simple metric that

quantifies the accuracy with which a type projection matches the bound data. It

then reports on a first application in distributed computing based on a correspon-

dence between the type system of the idealised language and CORBA’s IDL [8].

The application is investigated further in [24].

• Chapter 5 includes Language Bindings for XML by Simeoni, Lievens, Connor,

and Manghi, published in IEEE’s Journal of Internet Computing 7 (1) in 2003.

Here the theme of typeful programming is illustrated in more depth with a sys-

tematic comparison of mainstream approaches to XML parsing [16, 17]. A new

class of data binding tools enters the arena of XML processing and defines an

ideal point of reference for motivating and applying type projections. A deeper

understanding of typeful programming reveals the tight-coupling induced by

models that are dictated by data producers. This forms the basis for discussing

the advantages that type projections retain over mainstream approaches, such

as [15]. The prototypical application of type projections evolves as a general-

purpose data binding tool for Java, and a correspondence between the type sys-

tem of the idealised language and Java’s bridges the design of the tool to the

formal results presented in previous work.

• Chapter 6 includes (an extended version of) Hybrid Applications over XML by

Manghi, Simeoni, Lievens, and Connor, published in the Proceedings of the

Fourth ACM CIKM International Workshop on Web Information and Data Man-

agement (WIDM’02) in 2002. This work embraces the full implications of type-

ful programming and marks a shift from external to internal type projections.

The focus is thus on metamorphic languages, and type projections are employed

to decouple the components of a single program in support of typeful program-
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ming. One such language is proposed which integrates procedural and declara-

tive paradigms for hybrid applications over XML, as anticipated in Section 1.3.2.

Overall, this selection summarises the main findings of a collaborative research

investigation that spanned the years 2000-2004 (see also [25, 26, 24, 27]). In

doing so, it illustrates the evolution of the themes that we elaborate in their most

general and comprehensive form in the first part the Dissertation. Evolution

applies first to concepts: type projections originate as a mechanism to reassert

conventional typechecking regimes over subsets of irregular and external data;

they then evolve to inform general-purpose binding models inspired by the prin-

ciple of typeful programming and the potential for loose-coupling inherent in

self-description. The implications generalise accordingly. Applications are en-

visioned at first at the boundary of mainstream languages, as data binding tools.

They then enter the design of novel languages in order to enable type-safe meta-

morphoses of language values.

We conclude in Chapter 7, where we take stock of the current state of the in-

vestigation, outline directions for further work, and overview less conventional

applications of type projections. In this context, we also discuss relevant devel-

opments in the field which followed the research investigation but are nonethe-

less relevant to its themes.

1.5 Contribution and Thesis

In summary, the main contribution of the Dissertation is the identification a type-safe

model for binding statically typed programs and self-describing data via type projec-

tions. The contribution is primarily analytical, in that we expound the concepts, moti-

vations, and application domains that remain associated with the model. The analysis

includes:
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• an account of typechecking practices which culminates with the identification

of the principle of typeful programming. This qualifies and generalises the role

of types in programming languages beyond the conventional viewpoint of pro-

gram correctness. Most importantly, it offers the motivation that unifies all the

applications of type projections.

• an account of self-describing data and its implications for general-purpose data

processing. To the best of our knowledge, this represents the first systematic

attempt to analyse self-description in the formal literature. Type projections then

emerge as a mechanism to exploit the potential for loose-coupling which inheres

in self-describing data.

• the identification of a new class of tools based on type projections for binding

statically typed languages and self-describing data, and their comparison with

related tools in the mainstream.

• the identification of metamorphism, a novel form of type abstraction that gener-

alises over polymorphism and coercions under a data-first approach to dynamic

typechecking.

The analysis gives rise to a design space that stretches within and across language

runtimes. We illustrate key points in this space with reference to published work, both

in terms of formalisation and concrete applications. This includes:

• a formal framework for the definition of external type projections and its appli-

cation to an idealised language with structural types. This serves a model of

the design and implementation of binding tools for mainstream languages and

standard self-describing formats.

• a report on the design and implementation of prototype binding tool for Java and

XML.
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• a proposal for the design of a metamorphic language that unifies procedural and

declarative paradigms for computing over XML.

Collectively, these contributions form the evidence that supports our thesis, namely

that binding models based on type projections can play a significant role in modern pro-

gramming, both within and across the runtime systems of statically typed languages.
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Typeful Programming

In [28], Cardelli describes typeful programming in the following terms:

There exists an identifiable programming style which is based on the wide-

spread use of type information, and which relies on mechanical and trans-

parent typechecking techniques to handle such information. This typeful

programming style is in a sense independent of the language it is embed-

ded in; it adapts equally well to functional, imperative, object-oriented,

and algebraic programming, and it is not incompatible with relational and

concurrent programming.

In this view, types are partial specifications of the intended behaviour of programs

and typechecking is a tractable and reasonably predictable form of program verifica-

tion. Typeful programming remains thus associated with computational safety, i.e with

guarantees of correctness through error detection.

This types-as-specifications perspective is undoubtedly important and characterises

a large body of research spanning more than three decades [29]. It is also relevant to

the motivations of type projections, encompassing a rich body of notions that form

essential background for their definition. In this Chapter, we give a selective overview
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of such notions, particularly those that revolve around typechecking strategies.

Equally, however, we posit that typed models of program inputs offer little guaran-

tee of safety per se. Useful degrees of error detection may only be attained when the

models are as adequate reflections of program requirements as can be afforded under

the available type system. Most importantly, we argue that the benefits of program-

ming against ‘good’ data models extends well beyond the enforceability of intentions.

Independently of typechecking disciplines, adequate data models promote correctness

by simplifying the way in which programs are written, understood, and maintained.

This is a broader and more qualitative perspective on types which becomes sig-

nificant as soon as the interpretation of data may not be entirely under the control of

its consumers. To emphasise this types-as-models perspective, we recast the style of

typeful programming as a programming principle: programming should be specified

and mechanically verified against input models that are in optimal alignment with pro-

gramming requirements. It is precisely from this perspective that type projections are

seen to promote typeful programming over self-describing data.

We make these arguments in the final part of the Chapter. This leads us to look

beyond existing language support for typeful programming and to propose metamor-

phism as a generalisation of polymorphism and coercions which relies on type projec-

tions over language values.

2.1 Safety

Intuitively, a computation is safe if its errors do not go unnoticed [30]. In particular,

a computation is safe if: (i) it is correct, that is it unfolds according to intentions, or

(ii) its incorrect behaviour is detected by a vigilant runtime. Thus safety approximates

correctness and promotes it through error detection.

The notion can be lifted to programs: a program is safe if it gives rise only to
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safe computations. Attached to a syntactic form, (some aspects of) safety become

statically observable in principle. Through program analysis alone, a guarantee may

be given that executing the program will never raise undetected errors. For reliability

and convenience, the analysis may be automated and the guarantee offered as a system

service. This raises a requirement for safe languages, i.e. languages in which programs

are guaranteed to execute safely.

There are two broad strategies for the design of safe languages, depending on

whether correctness is enforced during or before program execution. In dynamic strate-

gies, program analysis generates runtime checks at points of potential failure. These

points may be automatically identified. Alternatively, programmers may mark them

with specifications of intended behaviour. In this case, the language may offer fa-

cilities for coding ‘defensively’, i.e. writing programs that explicitly check their own

behaviour (e.g. assertions or dynamic contracts [31, 32, 33]). For convenience, we say

that these strategies pursue dynamic safety.

In static strategies, the goal of program analysis is to prove correctness. In partic-

ular, (i) programs are rejected if they are provably incorrect, i.e. may generate at least

one incorrect computation; and (ii) programs are accepted if they are provably correct,

i.e. generate only correct computations. Program analysis becomes program verifica-

tion and employs automated theorem proving techniques to validate formal specifica-

tions of intended behaviour. We say that these strategies pursue static safety.

In principle, static safety is more desirable than dynamic safety because it removes

the burden of exhaustive testing. It also promotes efficiency, for provably correct pro-

grams do not require runtime checks. In practice, however, program verification is

limited. Theorem proving techniques cannot compensate for incorrect, incomplete,

undecidable, or simply intractable specifications [34]. This raises the issue of how

static strategies should handle doubt: whether they should generate runtime checks to

guard the execution of programs that may generate incorrect computations; or whether
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they should be conservative and refuse to execute programs that may still execute cor-

rectly. The first approach falls back to dynamic safety where necessary, reintroducing

a dependency on testing. The second insists on static safety at the cost of false nega-

tives. A static strategy may combine the approaches, showing more or less tolerance

to different forms of potential failure.

2.2 Typechecking

Strategies for static safety continue to improve [35], but deployment is limited by the

complexity of formal specifications and the opacity of automated proofs. In practice,

formal specifications may be adopted but not verified, or they may be verified only in

critical program sections. Alternatively, verification may concern program properties

other than full-blown correctness [36].

As a case in point, static and dynamic strategies are equally pursued in the restricted

context of type safety, the guarantee that operations are applied within their intended

domain of definition. Types here model domains by generalising over some properties

of their values while ignoring others, primarily identity [37].

Type safety is a trivial property of languages defined over a uniform value space.

In the lambda calculus, values are computable mathematical functions defined over the

domain of all such functions, so that any value can be safely applied to any other [38].

Type safety is threatened as soon as functions encode numbers and truth values, that is

when values become partial functions [39].

Languages with heterogeneous value spaces pursue type safety by typechecking the

application of operations, i.e comparing the types of operations and operands. Those

that succeed are strongly typed. Java [6] and ML [40] are two examples of strongly

typed languages in the mainstream. Languages that employ typechecking but still al-

low incorrect applications are weakly typed. C [41] and Pascal [42] are well-known
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examples of weakly typed languages. Languages that do not employ any form of type-

checking are untyped, and they are rarely found among high-level languages. Machine

and assembly languages are prototypical examples of untyped languages.

Typechecking strategies exemplify the approaches outlined in the previous Section.

In dynamic typechecking, types annotate runtime representations of operations and

values, successful type checks are a precondition for the application of operations, and

their failure halts execution.

In static typechecking, types are associated with the denotations of operations and

operands and successful type checks are a precondition to the execution of the entire

program. Typechecking is carried out implicitly in the process of typing the entire

program, i.e. inferring a type for it. The inference starts from its atomic expressions

and proceeds recursively along its syntactic structure according to a set of well-defined

type rules. Inference may be full or partial, depending on whether the type of variables

remains implicit within the program or is explicitly denoted by its programmer [43].

In either case, types form a language of structured expressions, the type language.

Type language and type rules form the backbone of the type system [30]. Typing is the

responsibility of a dedicated language component, the typechecker.

2.3 Typed Languages

Static and dynamic typechecking can both lead to strong typing and usually coexist

within a language (see Section 2.5). Traditionally, however, language design has shown

bias towards either approach. Two strategies, in particular, characterise the majority of

mainstream languages.

The first strategy is entirely based on dynamic typechecking but restricts its scope

to predefined operations. This is the strategy of dynamically typed languages. The sec-

ond strategy is dominated by static typecheking and concedes to dynamic type check-
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ing only when strictly necessary, e.g. to perform range checks and bind to external

data (see Section 2.4.2). This is the strategy of statically typed languages.

Dynamically typed languages take a minimal approach to strong typing and catch

errors as late as possible. Types annotate the runtime representation of values and type

checks are built in the implementation of predefined operations. This can reduce the

number of checks at runtime, putting less burden on the execution of type-correct pro-

grams. It also promotes heterogeneity and dynamism in the value space: generic lists,

associative arrays, extensible objects are commonplace structures in dynamically typed

languages. Unconstrained structures encourage exploratory and prototyping styles of

programming, which befit small-scale development. They also serve well for mid-

dleware and framework programming, where data is manipulated under generic view-

points. The strategy may prove too lazy when programs are in error, however, as incor-

rect invocations of user-defined operations are not detected upfront. Errors may then

propagate through call chains, possibly outside the scope of the offending program.

Statically typed languages offer a different trade-off. Enforcing correctness as early

as possible yields a better error detection tool and a more efficient runtime, as discussed

in Section 2.1. It may also lift the notion of safety further into the application do-

main; for example, some languages compare type expressions by user-defined names

(nominal typechecking) and channel data access through user-defined algebras (data

abstraction). Issues of safety aside, statically typed languages employ types towards

clearer structuring of programs.

The drawbacks are of course in the fallibility of program verification. For a type-

checker, the risk of false negatives arise with programs that manipulate heterogeneous

values, revealing only what is common to all of them. What differs across values is

knowledge that the typechecker loses and for which it may no longer deduce a type.

Such type may only be induced, often on the basis of explicit assertions (e.g. type

casts). Inductive steps avoid false negatives but their validity must be checked at run-
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time, diluting the commitment to static typechecking.

The tension between statically typed languages and heterogeneity accounts for the

regularity of their value spaces; the heterogeneous lists of dynamically typed languages

are often replaced by homogeneous arrays and their associative arrays are constrained

into record-like structures. Heterogeneity arises also with programs that require only

partial knowledge of their inputs, however; lists may be homogeneous, but a program

may wish to reverse any list regardless of the actual type of its elements. Barring such

programs from execution prevents a fundamental form of code reuse and introduces

well-known problems of redundancy and evolution.

Overall, statically typed languages risk a loss of algorithmic expression which does

not surface in dynamically typed languages. To contain the loss, they must increase

the sophistication of their typing inference, typically through type abstraction.

2.4 Type Abstractions

Intuitively, a type T abstracts over another type T’ if T gives a looser description of the

values of T’. As such, T may serve to type programs that are defined over the values

of T’ or any other of its specialisations.

Some type abstractions are ‘transparent’ to the typechecker, i.e. reveal the proper-

ties that are common to the values of all their specialisations. Transparent type abstrac-

tions serve well programs that exhibit the same behaviour across inputs of different

types (generic programs). Statically typed languages that support such abstractions

are polymorphic [44]. Polymorphic languages avoid false negatives with sophisticated

typecheckers, often at the cost of added complexity.

Other type abstractions are instead ‘opaque’ to the typechecker, i.e. reveal no more

of their values than they belong to some of their specialisations. Opaque type abstrac-

tion serve well programs that behave differently across inputs of different types (type-
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driven programs). Statically typed languages that supports such abstractions make use

of union types. Languages with union types avoid false negatives with liberal type-

checkers, i.e. with concessions to dynamic typechecking.

2.4.1 Polymorphism

Polymorphism may take one of two common forms. In the first form, type abstraction

relies on the universal quantification of type variables. Intuitively, a type T abstracts

over a type T’ if: i) T includes (universally quantified) variables X1,X2,. . . ,Xn, and:

ii) the typechecker can infer type parameters T1,T2,. . . ,Tn which reduce T to T’ when

they are bound to the corresponding variables. This is parametric polymorphism and

an operation that reverses arbitrary lists is well served by it [45]1.

In the second form, type abstraction originates in record types [46] . Intuitively,

a record type T (the supertype) abstracts over a record type T’ (the subtype) if T de-

scribes a subset of the fields described by T’, recursively. This is inclusion polymor-

phism and is commonly found in object-oriented languages, often as an implication of

inheritance [47].

Parametric and inclusion polymorphism have different implications and their for-

mal treatments diverge accordingly. Most noticeably, supertypes are implicit abstrac-

tions and the knowledge that the typechecker loses upon inferring them may not be

recovered [46, 48]. This is particularly problematic when values are mutable, as as-

signments to record fields which typecheck against supertypes may invalidate the con-

straints enforced by subtypes [19, 20, 23]. The convergence of parametric and inclu-

sion polymoprhism is one way to address the problem: supertypes become explicit

abstractions by including variables quantified over the range of their subtypes. This is

1Existential quantification of type variables yields another form of parametric polymorphism [37].
We note briefly that existentially quantified type abstractions may be used to hide the instantiations of
their variables as the concrete implementations of abstract data types. This Dissertation, however, bears
no direct relationship to them and we will not mention them further.
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bounded parametric polymorphism [22].

2.4.2 Union Types

Union types are used to reintroduce heterogeneity on top of a regular value space, or

to describe values that originate externally to the program. In either case, their values

remain inaccessible until the typechecker can infer type specialisations for them. The

inference may be automated, based on how the values are used in the program [49, 50].

Alternatively, it may require explicit type assertions, from simple type casts to sophis-

ticated ‘type-case’ constructs based on pattern matching. The inference is inductive in

all cases and may be disproved at runtime.

Union types may be finite or infinite, depending on whether the number of their

specialisations is constrained. Finite union types are ‘ad-hoc’ type abstractions for

case-based programming over data that may take one of a predefined number of forms.

The united modes of Algol-68 [51] and derivatives are examples of finite union types

within full-scale languages.

Infinite union types do not constrain their specialisations and thus serve as the high-

est type abstraction in the type system. They are commonly associated with persistent

and distributed programming, as a trade-off between safety, generality, and resilience.

The type any in CLU [52] and REFANY in Cedar/Mesa [53], Modula-2+ [54], and

Modula-3 [55] are all examples of infinite union types in programming languages.

The roots of type hierarchies in object-oriented language also qualify as infinite union

types within mainstream languages (e.g. Java’s Object type).

Union types often occur in forms that do not relate to type abstraction. A more

mediated approach to typing unknown and possibly unrelated values is to describe

their disjoint union. A disjoint or discriminated union type T describes pairs (l,v)

where l ‘discriminates’ v as a value of one of the type disjuncts of T. In finite unions,

discriminants may be plain labels that are statically associated with the disjuncts. In
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infinite unions, discriminants are representations of the type disjuncts. Discriminated

union types occur in languages such as Pascal [42], Modula-2 [56], and Ada [57], but

only within the context of record types and in association with enumerated (i.e. types

with a finite number of values). They are also available in C [41] and its derivatives,

where they receive dedicated constructors in the type language and value space. In an

infinite form, discriminated union types are discussed in [1, 58] and implemented in

experimental languages such as Amber [59] and Napier88 [4].

2.5 Hybrid Typechecking

With union types, languages concede to dynamic typechecking. An extensive use of

union types, however, marks a ‘dynamic’ use of the language which may stretch be-

yond design intentions. Programs that are dominated by type-driven analyses risk to

lose most of the advantages of static typechecking but little of its added complexity.

As we note in Chapter 3, these programs may be better served by dynamically typed

languages.

Some languages, however, pursue a balance between static and dynamic type-

checking as a core design assumption. In gradual typing, for example, type annotations

on program variables are optional. Programmers may introduce them partially and in-

crementally, progressing from dynamic to static safety across development phases.

The typechecker makes standard use of the types it finds in the program, endorsing

runtime optimisations when they prove compatible and reporting errors when they do

not. Less conventionally, however, it deduces infinite union types when types are omit-

ted and induces more specific types when types are reasserted, tentatively [60, 61]. As

usual, dynamic type checks guard the inductions at runtime in order to preserve safety.

Gradual typing is employed in full-scale languages such as Cecil [62], Dylan [63], and

Python[64].
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In soft typing, programs that can be proved correct execute unguarded, as usual.

Those that cannot be proved correct generate warnings and execute with type checks

at the points of potential failure. Finite union types are induced from the use of the data

when deducing a more precise type proves impossible due to missing or contradictory

information, i.e. when a conventional typechecker would report an error. [65, 66, 67].

2.6 Types as Models

In Section 2.1, we have introduced type safety as an approximation of computational

safety. This served to put into perspective the guarantees that may be associated with its

enforcement. Typechecking ensures that operations are applied within a given domain

but protection from any other form of error rests upon defensive programming and

extensive testing.

Even within this scope, however, guarantees need further qualification. The in-

tended domain of an operation may only be partially modelled within the language.

Typechecking may ensure that an operation is only applied to numbers, but this gives

limited guarantees of correctness if the requirement is to apply it to, say, stock levels.

Requirements of generality and tractability on language design contribute towards a

semantic gap between the intended domains and those that can be typed within the

language. Filling the gap rests again upon defensive programming: operations must

explicitly check that their numeric operands do model stock levels.

Clearly, some types model intentions better than others, i.e. induce narrower gaps

and decrease the need for defensive programming. Consider, for example, the follow-

ing program fragments:

30



Chapter 2. Typeful Programming

type T = set(record[

name:txt,

salary:num,

numbers:set(txt)])

1 rprint(x : T)

2 for employee in x

3 if (employee.salary>1000)

4 show(employee.name)

5 for n in employee.numbers show(n)

1 tprint(x : node)

2 for employee in children(x)

3 flag:bool = false

4 name:txt = null

5 for prop in children(employee)

6 if (label(prop)==’name’) name=value(prop)

7 if (label(prop)==’salary’

8 and (value(prop) as num)>1000)

9 flag=true

10 if (label(prop)==’number’ and flag)

11 show(name)

12 for n in children(prop)

13 show(value(n))

These fragments are meant to be functionally equivalent: both look for employees

that earn above a given threshold and display their name and telephone numbers. They

differ instead for their model of personnel: rprint chooses a set of records and

navigates it with iterators and field dereference; tprint opts for a labelled tree of
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text-valued leaves and inspects the labels of internal nodes as it traverses parent-child

relationships. In particular, tprint loops over employees and their properties, keeps

track of names and matches on salaries, and finally reports upon encountering phone

numbers.

Typechecking gives very different guarantees under the two models. Any attempt

to access non-existing properties of employees is detected in rprint but it is not in

tprint. For example, the typechecker cannot detect the incorrect use of number in

place of numbers in tprint (line 10). Similarly, the typechecker cannot warrant

numeric comparisons on salaries; these require explicit casts (value(prop) as

num on line 8) and their validation must be deferred at runtime.

Similar differences would be observed when constructing employees. Under the

first model, the typechecker can force the existence and uniqueness of names and

salaries; programs need only to contribute with the proper initialisation of their prop-

erties. Under the second model, the typechecker can only impose constraints on the

construction of trees; programs are responsible for enforcing the tree encoding of em-

ployees expected later by tprint. For example, the fact that phone numbers are

grouped under numbers nodes rather than directly under employee nodes remains

an unchecked convention. Similarly, it is up to programs to ensure that salary nodes

contain numbers. Arguably, the implication of the tree model is that tprint forgoes

much of the guarantees of type correctness of the language.

Looking beyond the scope of typechecking, it may not be immediately obvious

that tprint is likely to contain a more insidious error. As it iterates over properties

of employees, the program may encounter phone numbers before names or salaries.

When this is the case, tprint does not display names or, worse, fails altogether to

identify employees that satisfy the required condition. Effectively, the program makes

an assumption on the order of the properties of employees, but it depends on the context

whether this assumption is warranted or not.
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There seems to be a clear relationship between such errors and the programming

idioms used by tprint. While rprint can dereference the properties of interest,

tprint needs to iterate across child nodes, inspect labels, cast values, and keep track

of state it cannot immediately process. This results in a program that is exceedingly

verbose and convoluted, hence more likely to contain logical errors.

2.7 Typeful Programming

The performance of the two models above reflects the different extent to which they

embody program assumptions and requirements.

The record model captures explicitly the constraints associated with employees,

including the existence of given properties, the cardinality with which they may occur,

and the intended semantics of their values. This effectively exposes them to the sys-

tem, which can then guarantee useful degrees of typechecking as well as space-time

optimisations, including dedicated encodings for numeric values and convenient fac-

torisations for employees. The programming algebra can also capitalise on constraints

to simplify the construction and de-construction of employee values. Not only are sim-

pler programs more likely to be correct, they are also easier to understand and thus to

maintain and evolve over time. With the tree model, on the other hand, the constraints

on employees remain implicit within programs, do not reflect on the programming

algebra, and do not give scope to the system to offer useful services.

There is of course nothing inherently wrong with trees. The results of our analysis

could have changed substantially if we had considered a different task or even assumed

a different tree model. Indeed, we show in Chapter 3 that tree and graph models are

preferred structures for semistructured data, and that they are also a common choice

for generic programming over regular data. Similarly, we could have insisted on our

sample task above but considered a different tree model, e.g. one that associates tree
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structures with higher-level algebras based on pattern matching or path expressions.

We would have then found that neither linguistic convenience nor guarantees of safety

are necessarily at odds with trees.

Our sample tree model, for example, may well be the ideal choice for tasks that

require the ‘deep’ traversal of inputs and are less sensitive to their application seman-

tics. Consider the performance of the two models when converting to upper case any

text that occurs within slightly more structured personnel values (here upper is a

pre-defined function):

type T = set(record[

name:record[

firstname:txt,

middlename:txt,

surname:txt]

salary:num,

numbers:set([record[

code:txt,

ext:txt,

num:txt)])
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1 rcapitalise(x:T)

2 for employee in x

3 upper(employee.name.firstname)

4 upper(employee.name.middlename)

5 upper(employee.name.surname)

6 for n in employee.numbers

7 upper(code)

8 upper(ext)

9 upper(num)

1 tcapitalise(x:node)

2 upper(value(x))

3 for n in children(n)

4 tcapitalise(n)

In this case, the algebras of set and record types offer little linguistic advantage,

and in fact give weaker guarantees of safety. The generality of the trees matches

the generality of the task and it is well served by a recursive solution. In addition,

rcapitalise may only be applied to personnel and in fact must be modified as the

model of personnel evolves over time.

These observations indicate that the non-functional properties of a program are

highly sensitive to the model of its inputs, and that the performance of the model is

highly sensitive to requirements, including the characteristics of the target program-

ming environment. While no single model is likely to exhibit optimal performance all

round, some models can significantly outperform others under a given set of program-

ming requirements.

Overall, the evidence points to the identification of an informal principle, namely

that programming ought to occur under input models that are in optimal alignment
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with programming requirements. Generalising over the definition given by Cardelli

in [28] and quoted at the beginning of this Chapter, we refer to it as the principle of

typeful programming. Not only do properties other than correctness depend on typeful

programming, correctness itself rests more directly with typeful programming than

with the sophistication of the typechecker.

Typeful programming is well known in the context of small-scale development,

mainly in relation to the space-time efficiency of programs. The impact of input mod-

els upon storage consumption and performance requirements is at the foundation of

most computer science curricula. Somewhat surprisingly, there seems to be much less

awareness of its relevance to large-scale programming, where the implications extend

to properties that are key in this context. As we discuss in Chapter 3, it is precisely in

this context that the choice of input models is most easily constrained.

2.8 Metamorphoses

We have shown that the adequacy of typed models depends on the operation under

scrutiny. From operation to operation, tree and record types may prove more or less

convenient models of personnel. Typeful programming is then compromised when

personnel is shared across operations, unless this sharing may occur under different

models of the data. This raises a requirement against programming languages and

programming systems, namely to decouple programs in their interpretation of shared

data.

To clarify, this is not a requirement for interpreting trees as records, or viceversa.

Their abstract semantics diverges and mixing them would be unsound. A record is

more than the collection of named properties that it appears to have at any point in

time. It also bears the guarantee that it will never lose any of those properties and that

each property will always be unambiguously named. A tree value may satisfy these
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constraints at a given point in time, but there is no guarantee that it did in the past or

that it will do in the future.

These guarantees, or the lack thereof, may not be found within the structure of

individual records and trees, however. They are revealed by their generalisation into

record and tree types, most noticeably by the associated algebras. While a record is not

a tree and tree is not a record, structure alone may justify interpreting and using either

one according to the type of the other. Any data that is modelled as a record could,

at any point in time, be more conveniently manipulated with a tree algebra. Similarly,

any data that is modelled as a tree may, at some point in time, be more conveniently

manipulated with a record algebra. Typeful programming requires that values may be

susceptible of different interpretations during their lifetime. We refer to such semantic

changes as metamorphoses.

Conventional languages offer limited support for metamorphoses. The first type

that describes a value, its creation type, may not be radically changed thereafter. In

statically typed languages, the creation type is deduced or induced from the first de-

notation of the value within programs. In monomorphic languages it cannot change at

all; in polymorphic languages it may only be abstracted over.

Polymorphism remains thus associated with a class of metamorphoses, those in

which the interpretation of values is generalised to the effect that their structure is

reduced (e.g. a list of integers becomes a list) and their algebra is narrowed (e.g. only

some record fields may be dereferenced). The distinguishing feature of such changes

is that they can be validated by deduction on the current type of the values, i.e. they

can be statically typechecked.

Moving beyond these ‘quantitative’ metamorphoses requires dynamic validation.

In addition, validation must be based on the structure of values rather than the type

that captures their current semantics. Interestingly, metamorphoses of this kind occur

routinely in most programming languages, as coercions between scalars. The intu-
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ition is indeed the same: records are morphed into trees like numbers are coerced into

strings; some trees may be morphed into records like some strings may be coerced into

numbers.

In conclusion, we can view metamorphism as the generalisation of polymorphism

and coercions which is obtained by lifting their basic assumptions: that changes to

values are statically validated; or that they are restricted to scalars; or that they do not

preserve identity.
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Self-Describing Data

The notion of self-describing data surfaces almost ubiquitously in the practice of mod-

ern computing, most noticeably in the context of distributed systems and in relation to

data storage and exchange standards. The obvious point of reference here is XML, a

format that was originally intended for the structured representation of documents but

it is now widely used as a general-purpose format for self-describing representations

of structured data [12].

Its popularity notwithstanding, self-describing data is explained differently in dif-

ferent contexts, with interpretations that range from labelled data to typed represen-

tations of unlabelled data. The formal literature adopts the term in all its ambiguity

but, to the best of our knowledge, contains no dedicated analysis of the notion of self-

description and its implications for data processing. Self-description is framed within

the pragmatics of system design, as a property of data representations used for storage

and exchange. As such, it remains marginal to the academic discourse. The informal

literature is richer in this respect, though analyses are here often narrow in scope. In-

terestingly, views on the role of self-description in modern computing prove invariably

contentious.

In this Chapter, we address this gap and present a principled account of self-

39



Chapter 3. Self-Describing Data

describing data. We start from a general characterisation of self-description and then

consider the implications of a distinguished form of self-describing data, namely la-

belled structures. In the analysis, we draw relationships between self-description and

semistructured data, generic programming, and loose coupling, arguably its strongest

implication for software construction.

With loose coupling, we acknowledge the potential of self-description as an en-

abler of typeful programming and explain type projections as an attempt to exploit

that potential in the context of a statically typed language.

3.1 Self-description

Under assumptions of systematic representation and processing, most data carries evi-

dence of its own structure for the benefit of consuming processors. In natural language

text, punctuation indicates sentence and paragraph structure to the human reader. In

more rigidly formatted data, delimiters allow mechanical processing of structures with

variable-length representations. The data contains some form of metadata and thus the

trace of a semantics, if only an abstract one. Most data is then self-describing, to some

degree and within some context of reference in which the metadatata is understood and

the data is interpreted (Figure 3.1).

One way to define the context of reference is with a set of formatting rules. For

example, consider the case of text structures organised into lines and then further di-

vided within each line by some distinguished character. Within the context of this

Comma-Separated-Values (CSV) format [68], newlines and delimiters are metadata

and describe datasets as sequences of tuples with variable fields of variable length.

This variability within and across datasets is the primary justification for self-

description. No metadata would be required if tuples were expected to have the same

number of fields and each field the same number of characters. Instead of conflating
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self-describing data

metadata

describes

 context of reference 

 consumer 

interprets

understands

Figure 3.1: Self-Description

the size of the data, these numbers could be conveniently factored out in the context of

reference (Figure 3.2).

23454780395,12[nl]67,394506[nl]...

234547803952...

 self-described by commas/newlines 

 non self-describing 

 known size and number 

 unknown size and number 

Figure 3.2: Self-description and Static Knowledge

Self-description captures within each dataset those aspects of its semantics that

vary within and across datasets, and thus cannot be held constant within the context

of reference. The requirement for self-description is in inverse proportion to our static

knowledge of the data: lower degrees of static knowledge demand higher degrees of

self-description, and vice versa.

The intuitions are relatively simple but become significant when self-description

relates to application domains rather than abstract value spaces (e.g lists of tuples).
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This passage from ‘abstract semantics’ to ‘application semantics’ is deceptively sim-

ple. It occurs when one relies on metadata not only to identify structure, but also to

name its components. The first record of a CSV dataset, for example, is often intended

as a ‘header’ for the rest of the data, in that its fields name those of the remaining

tuples. In these cases, we speak interchangeably of self-describing data and labelled

structures.

3.2 Generic Programming

Semantics that, informally, ‘moves’ from the context of reference into the data supports

generic manipulations of the data.

Unaware of its application semantics, for example, we can exploit the metadata

in a CSV dataset to reverse the order of its tuples, or to rearrange them based on

the lexicographic order of their n-th field. We can more generally write a parser to

model its abstract semantics within a language (e.g. as a bulk value or as a stream),

ensuring its well-formedness and hiding encoding issues from other programs. An

application may then more easily inject the parsed data into relational tables based on

the application semantics of fields.

A first implication of self-describing data is thus for generic programming. The

richer is the semantics represented within the data, and thus the metadata embedded in

it, the larger is the class of programs which can be factored out of and reused within

applications.

A typed variant of the CSV format, for example, may specify the semantics of

tuple fields in terms of numbers, strings, or dates. We can then exploit the additional

metadata for generic programming, e.g. towards more refined rendering or ordering of

the data, but also for application programming, e.g. to validate the mappings of fields

onto columns of relational tables.
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Labelled structures broaden further the scope for generic programming. We can

now write generic programs that are parametric with respect to labels, and thus with

respect to application semantics. Using header tuples, for example, we can write a

program that orders a CSV dataset based on predicate expressions on field names.

More ambitiously, we can write a general-purpose query and transformation language

for declarative specifications of arbitrary manipulations of the data. Even when ap-

plication semantics could be held as constant, its exposure through a general-purpose

format — ideally a strong standard — promotes the use of equally general tools in

support of application programming. The wide deployment of similar tools for XML

illustrates well the potential of self-describing data for generic programming [69, 70].

Notice that this does not contradict the relationship of inverse proportion between

static knowledge and self-description we observed in Section 3.1. When we rely on

generic tools, we push the interpretation of the data in a context in which its application

semantics is unknown and thus must be represented within the data.

3.3 Semistructured Data

In CSV data, self-description is justified by variable-length structures. Structural vari-

ability may assume a great variety of forms, however, and some forms limit severely

what can be assumed about the data in the context of reference. In these cases,

structural variations are perceived as ‘irregularities’ and one speaks of semistructured

data [10, 11, 71].

Data is semistructured if its structure is explicit and yet varies under the same appli-

cation semantics. Data elements that are conceptually related in the problem domain

may have different parts, and those they share may differ in turn. This irregularity

reduces the static knowledge of the data and thus renews the requirement for self-

description. Labelled graphs serve the purpose well, as they can describe arbitrary
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structure without imposing homogeneity constraints upon it. Essentially, the graph se-

mantics absorbs the irregularity that would be observed under less general abstractions.

Figure 3.3 showcases the range of irregularities that may be found in semistructured

data. Different employees are modelled differently within the data: employees may

have zero, one, or more phone numbers and their names may or may not be structured;

some employees are linked to their offices but the link is labelled differently across

employees. Similar features may also be observed over time: some employees may

acquire email addresses while others may acquire standard postal addresses, and the

two may be differently structured; phone numbers of employees may be described

indirectly as properties of their addresses.

Spatial and temporal irregularities of this kind have been observed in scientific do-

mains characterised by long-term studies, particularly when bridging systematic data

and experimental evidence, or when the data grows too quickly under advances in

domain-specific technology [72].

They have been more generally linked to decentralised collation and modelling

policies. Distributed information services, for example, associate irregularity with the

variety of narrative styles and document types induced by autonomous authoring; ser-

vices that integrate or mediate between content collections may find that the degree

of regularity that could be assumed for each collection is considerably reduced at the

time of their merging [73, 74]. The example generalises: problems of data integration

and evolution affect most applications that target autonomously managed and widely

distributed data.

The problem with semistructured data is that mainstream technology cannot eas-

ily handle it. Conventional programming and database systems make assumptions of

homogeneity and stability of the data which allow them to generalise over its struc-

ture and semantics. The resulting types and schemas form a body of static knowledge

that the systems exploit to verify, document, and optimise the use of the data. The
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Figure 3.3: An example of semistructured data
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approach pays off in proportion to the amount and specificity of the available knowl-

edge; its effectiveness decreases as the generality of types and schemas increases. The

systems populate their value space accordingly, with relations, records, objects, and

collections that enforce constraints of homogeneity and uniqueness upon the data, and

thus run opposite to the requirements of semistructured data. Using such structures to

model graphs is a solution only insofar as user-defined algebras offer adequate pro-

gramming idioms for irregular data. Expectations in this sense are high: one would

want flexible constructs to distribute programming logic along structural variations in

the data and, conversely, the possibility to ignore variations that bear no relationship

to it. The requirement is thus for algebras that may simplify case-based programming

and programming under partial knowledge of the structure of the data, ideally without

excessive compromises in efficiency. To compound the problem, user-defined models

of graphs sacrifice static knowledge for modelling flexibility. The trade-off may then

be unappealing if the data is partly regular and its irregularities are known in advance,

as it is often the case in data integration scenarios.

There is a substantial body of work that addresses this problem. Most of the work

originates at the fringes of database research and investigates algebras for querying and

transforming semistructured data. This is reasonable ground: irregularities are most

commonly observed in long-lived data and declarative algebras with bulk evaluation

semantics can yield enough transparencies to handle them. Two strategies emerge:

• an ‘evolutionary’ strategy, which extends the static approach of conventional

technology to accommodate contained degrees of irregularity;

• a ‘revolutionary’ strategy, which dispenses with static knowledge for maximum

generality.

The two strategies can result in similar algebras, and their integration within a

single system is possible [75].
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In the first strategy the value space remains populated with heterogeneous struc-

tures but the type system includes some form of finite disjunction to describe them

homogeneously (cf. Section 2.4.2). In [76], the approach relies on tagged unions but

makes them transparent to the query algebra by inferring casts and absorbing failures.

This allows queries to abstract over irregularities that occur in the data. In [77], the

approach relies on untagged unions and combines them with an algebra of case ex-

pressions based on pattern-matching. A flexible notion of subtyping automates the

optimal distribution of unions and thus simplifies case-based programming.

Neither approach dispenses with the requirement for self-description; labels are

used to discriminate among disjoints, explicitly for tagged unions and implicitly for

untagged unions. Both approaches, however, meet the requirement opportunistically

and rely on self-description only where and when the irregularities become manifest.

This is appropriate when the data is mostly regular and the structural variations can be

statically enumerated. It becomes progressively less appealing when the lack of static

knowledge cannot be so conveniently bound.

In the second strategy the query algebra is defined directly over a value space of

graphs [78, 79, 80, 81, 82, 83]. The design space here is richer and proposals vary

along a number of dimensions, including:

• scope of application: from general purpose data management to data integration,

data conversion, and website management [73, 84, 80, 81, 85];

• choice of data model: from trees to unconstrained graphs, from ordered to

unordered structures, from node-labelled to edge-labelled structures, and from

object-based to value-based structures [86, 87];

• syntactic and semantic foundations: from structural recursion, graph simulation,

and comprehension syntax to Skolem functions and various forms of logic [88,

89, 90, 91, 92].
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The resulting algebras differ in expressive power but converge on core features:

• Queries are multi-clause expressions that declare filters, joins and transfor-

mations against variable bindings, in resemblance of conventional query alge-

bras [93, 94];

• Variable bindings are to nodes and nodes are denoted by the paths that connect

them to the root. Path expressions replace the multiplicity of operators required

to traverse deep structures in heterogeneous value spaces, and confer a ‘naviga-

tional’ feel to the algebra. Effectively, they identify regular subsets of the data

based on the topology of the graph rather than by abstraction over the application

semantics of its nodes;

• Abstractions now apply to the paths themselves: regular expressions over labels

and sequence of labels accommodate irregularity of data naming and location;

variables on labels and sequence of labels enable queries that inspect the struc-

ture and transform it into data [95];

• Path expressions that do not match the graph topology make no contribution to

the output of queries, but they never fail them either.

The last point captures the spirit of the strategy. When one designs for unbridled

irregularity, the issue of structural correctness is moot in principle: a query that appears

unsound at the point of evaluation may prove correct shortly after. Equivalently, a

match that fails on the structure is indistinguishable from a condition that fails on the

data. This is in stark contrast with the conventional approach and its evolutions, where

opposite expectations justify a clear notion of structural correctness and motivate the

use of typechecking techniques for its static enforcement (cf. Section 2.2).

In practice the structure of the data is never entirely unpredictable, of course. As

much as the conventional approach may concede to some irregularity, so can the oppo-
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site approach acknowledge and exploit the existence of some regularity. Static knowl-

edge may thus be reconciled with a self-describing value space, to an extent that varies

along a spectrum of expectations about the data.

At one side of the spectrum, the data is mostly irregular and the static knowledge is

partial, indicative, and relatively transient. A number of type and constraint formalisms

have been proposed to infer and describe this form of knowledge [96, 97, 98, 99, 100].

Exploitation here is opportunistic rather than systematic, and it does not change the

underlying model of query correctness. Types are intended for query decomposition

and optimisation, or as a guide to query formulation [101, 102].

Moving towards the opposite side of the spectrum, the data becomes more regular

and the static knowledge is progressively less partial and more stable. Ultimately, it

becomes prescriptive and the expectation of typechecking can be reintroduced.

One interesting result is that we may meet the expectation without a ‘continuity

jump’ in the design space. Instead of reverting to a conventional value space with

union types, we can directly typecheck queries over the self-describing value space, at

least as long as the data can be interpreted as an ordered tree.

This requires unconventional type systems based on formal language theory, and

may even require unconventional notions of type correctness [103, 18, 104, 105, 106].

The approach is immediately relevant to programming over partly-regular data, be-

cause it grants more resilience to irregularities that are problematic to handle with

union types in conventional value spaces [104].

3.4 Loose Coupling

The last implication of labelled structures is more subtle. It stems from the observa-

tion that application semantics that is represented within the data does not have to be

known a priori, or in its entirety, in all the different contexts in which the data may
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be interpreted. Within such contexts, programs may refer to it dynamically and to the

precise extent which is necessary to validate and uphold their own interpretation of the

data.

Programs that align minimally against shared data, rather than synchronise fully

on a shared interpretation of the data, are loosely coupled. Once more, we observe

the relationship of inverse proportion between self-description and static knowledge,

now in relation to the broader context in which sharing occurs: we reduce shared

knowledge and increase self-description in order to decouple interpretations of the

data (cf. Figure 3.4).

self-describing data

metadata

 non self-describing data

interprets interprets

interprets interprets

Figure 3.4: Tight and Loose Coupling

As a simple example of loose coupling and its implications, consider a program that

wishes to consume some fields of interest within CSV datasets. If the datasets do not
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name the fields of their tuples, the program needs to access them based on position.

Positional access requires exact knowledge of the structure of the dataset (up to the

point where it is being accessed), and thus forces the program to interpret the data as

the program that produced it. As the requirements demand only partial knowledge of

it, the interpretation introduces unwanted dependencies. Over time, changes induced

by the producer (e.g. additions and removals of fields) require similar changes on the

program, even when these are irrelevant to its requirements. If datasets include a header

that labels the fields, however, the program can directly dereference the required ones

and ignore the evolution of the others. With access ‘by name’, the program needs no

more knowledge of its input than strictly induced by its requirements.

These observations generalise, in that the relationship between labelled structures

and loose coupling is more general than access by name. In the labels, different pro-

grams may find sufficient evidence of application semantics to uphold radically dif-

ferent interpretations of the data, not just partial ones and not solely for program re-

silience.

Arguably, this is the most subversive value proposition of self-description for data

sharing. Traditionally, data has been shared under the assumption of predictable pro-

cessing requirements. In this case, there is little or no requirement for loose coupling

and labelled structures inflate the size of the data unnecessarily. Under such ‘closed-

world’ assumptions, self-description is best avoided and, until recently, so it has been.

Closed-world assumptions characterise the definition of many formats for the ex-

change, persistent storage, and transient representation of structured data. We find

them already in the runtime of statically typed programming languages, for example in

the definition of record-like structures. As the fields of records are statically defined,

their names can be factored out of the runtime representations of individual records

and moved into the representation of their types. Type representations can then be

used to resolve access by name into positional access, typically prior to execution.
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Closed-world assumptions here contribute to optimal memory management, and over-

all justify the semantics of records as particularly constrained labelled structures.

Conventional middleware systems based on remote procedure calls extend the closed-

world assumptions of language runtimes [8, 107]. Labels are excluded from record

serialisations and are kept instead into the context of reference, here here the skeletons

and proxies that govern the typed exchanged of data. Serialisations may thus remain

minimal but bindings become fragile when types evolve at the producing end of the

wire. Evolution typically requires synchronisation of skeletons and proxies, and thus

the re-establishment of shared knowledge at both ends of the wire [108].

An increasingly large class of applications, however, make fewer expectations on

where, when, by whom, and most importantly how their data may be consumed dur-

ing its lifetime. ‘Open-world’ assumptions are most commonly found in large-scale

computing, where programs are distributed across mutually autonomous runtimes that

share data over long distances and periods of time. They may also be recognised within

single runtimes, as a result of the increasing level of abstraction at which even local

computations manipulate their inputs (e.g. in application frameworks).

More generally, open-world assumptions characterise application systems that are

built around principles of loose coupling. Within such systems, inflating the repre-

sentation of shared data is a better option than conflating the context in which sharing

occurs.

3.5 Self-description and Type Projections

With loose coupling, we can finally establish a connection between self-description

and typeful programming (cf. Section 2.7). Self-description encourages diverging in-

terpretations of shared data; typeful programming requires them to converge towards

local processing requirements. Self-description is thus an enabler of typeful program-
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ming.

With type projections, we act on this relationship in the context of a statically typed

language, where types capture the interpretations of data and type safety is one of the

benefits that we expect in return. External type projections exploit self-description to

assert the principle of typeful programming at the boundary of the language. Internal

type projections do so directly over language values.

By implementing type projections, in fact, we reflect all the implications of self-

description which we have discussed in this Chapter; we write a single generic program

that uses the labels embedded within the data to parametrically validate and uphold

interpretations that other programs may wish to lay upon the data, including partial

interpretations of regular subsets of otherwise semistructured data.
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Extraction Mechanisms

This Chapter reports the contents of the following publication:

SIMEONI, F., MANGHI, P., LIEVENS, D., CONNOR, R. C. H., AND

NEELY, S. An approach to high-level language bindings to XML. Infor-

mation & Software Technology 44, 4 (2002), 217–228.

This is the first publication on type projections. It is largely motivated by the

reconciliation of mainstream typed technologies and XML, particularly the type-driven

‘extraction’ of language values from regular subsets of potentially semistructured data.

The focus is on the formalisation of the ideas, and the main contribution is a

language-independent framework for the rigorous definition of extraction mechanisms

based on external type projections. The framework is instantiated to yield an extraction

mechanism for an idealised language with a type system of purely structural abstrac-

tions, including record, collection, union, and recursive types. A high-level algorithm

implements the mechanism and the implementation is shown to be correct and com-

plete with respect to the formal definitions.

The work presents also a simple metric that quantifies the accuracy with which

a type projection matches the bound data. It then reports on a first application in dis-
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tributed computing based on a correspondence between the type system of the idealised

language and CORBA’s IDL [8]. The application is investigated further in [24].

4.1 Abstract

Values of existing typed programming languages are increasingly generated and ma-

nipulated outside the language jurisdiction. Instead, they often occur as fragments of

XML documents, where they are uniformly interpreted as labelled trees in spite of their

domain-specific semantics. In particular, the values are divorced from the high-level

type with which they are conveniently, safely, and efficiently manipulated within the

language.

We propose language-specific mechanisms which extract language values from ar-

bitrary XML documents and inject them in the language. In particular, we provide

a general framework for the formal interpretation of extraction mechanisms and then

instantiate it to the definition of a mechanism for a sample language core L. We prove

that such mechanism can be built by giving a sound and complete algorithm that im-

plements it.

The values, types, and type semantics of L are sufficiently general to show that

extraction mechanisms can be defined for many existing typed languages, including

object-oriented languages. In fact, extraction mechanisms for a large class of exist-

ing languages can be directly derived from L’s. As a proof of this, we introduce the

SNAQue prototype system, which transforms XML fragments into CORBA objects

and exposes them across the ORB framework to any CORBA-compliant language.
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4.2 Introduction

Values of existing typed programming languages are increasingly generated and ma-

nipulated outside the language jurisdiction. Instead, they often occur as fragments of

XML documents [12].

This may be because the containing documents are semistructured, i.e. their struc-

ture is too irregular or unstable to be effectively handled by traditional programming

languages or DBMSs [11, 10]). It may also occur when the document is more dis-

ciplined, but needs to be exchanged across proprietary boundaries in a standard and

self-describing format.

As an example, consider the following XML document d, where some irregularities

have been intentionally added to the data for sake of illustration.

<staff>

<member code = "123517">

<name>Richard Connor</name>

<home>www.cis.strath.ac.uk/˜richard</home>

</member>

<member code = "123345">

<name>Steve Neely</name>

<ext>4565</ext>

<project>

<name>SNAQue</name>

<project/>

</member>

<member code = "175417">

<ext>4566</ext>

<name>Fabio Simeoni</name>
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</member>

</staff>

On a much larger scale, this irregularity would prevent the document from being

conveniently managed within the typed framework of conventional technology. While

union types and object-oriented features may accommodate some of the irregularity,

their abuse would soon degrade the performance of the system and complicate program

specification and maintenance.

Consider instead the fragment d′ of d shown next:

<staff>

<member code = "123517">

<name>Richard Connor</name>

</member>

<member code = "123345">

<name>Steve Neely</name>

<member code = "175417">

<name>Fabio Simeoni</name>

</member>

</staff>

For most object-oriented languages, d′ may be an XML encoding of an object

staff of class Staff, where

class Staff {

private Member[] member;

Member[] getMembers() {...}

void setMembers(Member[] members) {...}

...}
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and Member is the class:

class Member {

private String name;

private int code;

String getName() {...}

void setName (String n){...}

int getCode() {...}

void setCode (int c){...}

...}

This simple observation raises the expectation that programming over d′ be as sim-

ple, safe, and efficient as programming over staff with existing programming lan-

guages. In particular, we require these good properties to scale, i.e. hold for gener-

alised computations over XML fragments considerably larger than d′. Unfortunately,

we believe that none of the current approaches fully satisfies such requirement.

4.2.1 Background

To date, computations over XML data can be specified in a variety of paradigms, mod-

els and languages. Two kinds of approaches, however, appear to prevail: dedicated

query languages and bindings to programming languages, typically object-oriented

ones.

In query languages such as [82, 79, 109, 110], queries have a familiar SQL-like

structure, but contain powerful path expressions specified against the tree topology of

the data. This gives the languages the flexibility required to compute over data with ir-

regular or partially known structure. It makes them also more succinct than full-fledged

programming languages for most operations of data filtering and transformation.

However, query languages are usually not Turing-complete, nor well suited to
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complex programming tasks over large datasets, possibly involving recursion. Fur-

thermore, they are essentially untyped, except with respect to the tree structure of the

data. While this is justified in the general case by the typeless nature of the format,

potential regularity in (subsets of) the data could and should be exploited for program

verification and optimisation.

Language bindings are instead defined by implementing programming interfaces

to one of two possible in-memory representations of the data. In the Document Object

Model interface [16], the data is organised and manipulated as a labelled tree. In the

Simple API for XML [17], the data is a string of characters organised and processed

along parsing events.

Beside performance-related differences, both solutions impose an interpretation of

the data which generalises their structural relationships (e.g. nodes of a tree), but con-

veys only indirectly and too concretely their intended meaning (e.g. staff of a university

department). When computations explicitly address the structural properties of the data

(e.g.adding or removing a node, searching for a string in the data), this interpretation

is adequate. In most cases, however, it complicates program specification, making it

tedious, error-prone and hard to maintain.

Consider, for example, any computation over the names and codes of the staff

members in d. In a pure implementation of the DOM interface for a Java-like language,

the code may include something like:

int code;

String name=null;

Element staff=d.getDocumentElement();

NodeList members = staff.getElementsByTagName("member");

int memberCount = members.getLength();

for (int i=0;i<memberCount;i++) {

Element member = (Element) members.item(i);
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code = Integer.parseInt(member.getAttribute("code"));

NodeList children = member.getChildNodes();

int length = children.getLength();

for (int j=0;j<length;j++) {

Node child = children.item(j);

if (child.getNodeType()==Node.ELEMENT NODE) {

String tagName= ((Element) child).getTagName();

if (tagName.equals("name")) name=

((characterData) child.getFirstChild()).getData(); }

...do something with name and code ...}}

Even for a simple task, the code is highly convoluted and inefficient. Partly, this is

due to the document-oriented nature of any XML programming interface. For instance,

semantically related data must be accessed with the different algebras of elements and

attributes. Similarly, manipulating atomic data requires an implicit or explicit cast from

the type of strings, the only available. More generally, the logic of the computation is

unnecessarily expressed in an algebra of trees, while domain-specific concepts (e.g.

names and codes) are relegated to the role of run-time parameters.

The same task could have been specified directly against the object staff of class

Staff defined above, and as simply as:

Member[] members = staff.getMembers();

for (int i=0;i<members.length;i++) {

int code = members[i].getCode();

String name = members[i].getName();

...do something with name and code ...}

The code is now aligned to the semantics of the application. It is also more succinct

and less redundant, for generic operations on staff and staff members do not have to
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be repeated within specific computations, but can be factored out in class declarations,

thoroughly tested, and then reused.

Inadequate data abstractions also compromise static checking of computations.

Correctness can be guaranteed for operations on trees and strings, but not staff mem-

bers. For example, the following invocation:

NodeList members = staff.getElementsByTagName("mebmer");

where "mebmer" is a typo for "member", would silently compile and return a

null value only at run-time. Safety is thus responsibility of the programmer, not the

system. Programmatic checks worsen readability and maintainability of the code, and

are not always sufficient to guarantee correct behaviour. In the lack of some description

of the data (e.g. a DTD), the typo may be interpreted as the absence of required data

and thus trigger unintended behaviour. Even assuming some data description, the typo

may accidentally identify some other data or, in the best case, be simply signalled at

run-time.

For similar reasons, the system can optimise resources only within the limits of its

static knowledge of the data. For instance, it ignores the fact that all staff members

have names and codes.

4.2.2 Extraction Mechanisms

Motivated by the previous observations, we aim at defining high-level bindings be-

tween XML and existing programming languages, which preserve the intended se-

mantics of the data.

Specifically, we propose language-specific mechanisms that extract self-describing

representations of language values from arbitrary XML documents, and transform

them into their counterparts within the language. Thereafter, the extracted data are

computed over in a familiar, expressive, and robust environment.
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To achieve this for a given language, we interpret the extraction of a value as the

projection of its language type over the containing XML document. Following the

previous example, the projection of class Staff over d would result in the extraction

of the object staff.

More formally, let D be the set of XML documents, L a typed programming lan-

guage, and V and T the value and type spaces of L, respectively (see Figure 4.1). Let

also sd : V → D be a self-describing interpretation of L’s values in D, and � in

D×D a relation of ‘inclusion’ between XML documents.

Definition 4.2.1 Let v ∈ V. v is extractable from d ∈ D according to T ∈ T if: (i) v

has type T , and (ii) there exists d′ � d such that sd(v) = d′.

Finally, an extraction mechanism for L takes both a document d and a type T , and

returns a value v extractable from d according to T , if one exists.

<

V

T

d’

D

T

sd

L

v

d
Binding

Mechanism

Figure 4.1: An extraction mechanism for L

An extraction mechanism is invoked by a programmer, via some interface to the

language. If no extractable value can be returned, the programmer is notified of the

failure. In case of successful extraction, the returned value may still not fully satisfy

the programmer’s requirements.
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The reason is that, when passing a type to the mechanism, the programmer may

not be aware of the exact structure of the target document. Such a type will probably

be defined after an eye-inspection of the document or, if available, a description of its

structure. As a result, the type may be an under-specification or an over-specification

of the data that are potentially relevant to the programmer.

These sort of misjudgements may be very frequent, especially in correspondence

with large documents in which data have been inserted at different times and possibly

by different users with a different cognition of data representation.

In general, we require that some quantification of relevance be always returned

along with the value extracted by the mechanism, and Section 4.7 will present one

quantification scheme in more detail. By interpreting the quantification, the program-

mer may conclude the inadequacy of the proposed type, refine it, and then re-invoke

the mechanism in a prototyping fashion.

4.2.3 Outline

In the rest of the paper, we concentrate on the formal definition of an extraction mech-

anism. This is done in Section 4.5, after the definition of a simplified syntax for XML

data and a typed language core in Section 4.3 and Section 4.4, respectively.

Section 4.6 completes the definition of the extraction mechanism by presenting

an algorithm that implements it. The algorithm is then used to illustrate a sample

quantification scheme in Section 4.7. Section 4.8 presents a prototype implementation

of the mechanism, while Section 4.9 and Section 4.10 examine related work, draw

conclusions, and outline further work.
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4.3 A Document Syntax

In this Section, we define a syntax for XML documents that isolates the data-oriented

features of the format (e.g. naming and nesting) from its document-oriented features

(e.g. ordering, attributes, processing instructions, etc.). In practice, element attributes

may be replaced by subelements.

Definition 4.3.1 Let D be the language of documents defined by the following gram-

mar:

d, d1, d2 ::= <> | s | < l→ d > | d1 ∧ d2

where l ∈ Lbl, s ∈ Str, and the sets Lbl of labels and Str of strings are pre-defined

languages over the same alphabet of characters.

A document d is atomic or complex. An atomic document is either the empty

document <> or else a string. A complex document is either the singleton document

< l→ d > or the concatenation d1 ∧ d2 of two complex or empty documents. Finally,

we shall consider equal two documents that differ only in the ordering of components

(e.g. d1 ∧ d2 = d2 ∧ d1).

Essentially, we interpret a document as an edge-labelled tree, in slight contrast

with the standard interpretation of XML documents as node-labelled trees. This choice

allows us to simplify the formal treatment but has no impact on the applicability of our

results.

In the rest of the paper, we shall abbreviate d =< l1 → d1 > ∧ . . .∧ < lp → dp >

with < l1 → d1, . . . , lp → dp > and refer to l → d as to an l-field with name l and

value d. We will also use the function FVl which takes a document and returns the set

of its l-field values.
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Definition 4.3.2 Let l ∈ Lbl. Let FVl : D→ ℘(D) be the function:

FVl(d) =


{d′} d = [l→ d′]

FVl(d1)
⋃
FVl(d2) d = d1 ∧ d2

∅ otherwise

As an example, the following document d

< member →< name→ Richard, age→<>>>

is a rewriting of the XML syntax

<member>

<name>Richard</name>

<age/>

</member>

while FVmember(d) = {< name→ Richard, age→< >>}.

4.4 A Language Core

In this Section, we present the language L for our sample extraction mechanism of

Section 4.5. For our purposes, it suffices a language core defined around a value no-

tation, a language of structural types, and a relationship of typing between the two.

Extensions to full-fledged languages with value operators or object-oriented types do

not present particular problems.

Along the way, we follow a principle of generality that allows extraction mecha-

nisms for other typed languages to be derived from L’s.

We have chosen for L a selection of the type constructs commonly found in exist-

ing programming languages. Available types are constructed from a range of atomic
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types B1, B2, . . . , BN . They include record, set, and union types, possibly recursively

defined. Record constructors are the singleton record type [l : T ] and the concatenation

T1∧T2 of two disjoint record types, where two record types are disjoint when they have

no field name in common. Set types are denoted by set(T ), where T is the member

type of the set. Note that we could have chosen bag types that, differently from set

types, can describe repeated sub-documents of a given document. The extension does

not present particular problems but it slightly complicates the formal treatment and has

been avoided here. Recursive types are denoted by µX.T , where T is the body of the

type and X a type variable, and union types by T1∨T2, where T1 and T2 are the branch

types of the union. Contrary to most languages, union types are untagged, as we do

not need tags to describe alternatives in the structure of the data – of course, this does

not exclude the use of tagged unions.

Definition 4.4.1 Let T be the language of types generated by the following grammar:

T, T1, T2 ::= Bk | X | [l : T ] | T1 ∧ T2 | T1 ∨ T2 | set(T ) | µX.T

where l ∈ Lbl,X ∈ V ar, k ∈ [1, n].

As for documents, two types are equal if they differ only in the ordering of the

components (e.g. T1∧T2 = T2∧T1 and T1∨T2 = T2∨T1). Similarly, we shall implicitly

extend to types the abbreviations, conventions, and auxiliary functions introduced for

documents.

The values of L include the elements of the atomic types, singleton records [l = v],

disjoint concatenations v1 ∧ v2 of two record values, sets {v1, . . . vn}, and the empty

set { }. To improve readability, we do not syntactically distinguish the operations of

concatenation of documents, types, and values. The context shall clarify the domains

of definition. In the following examples, we shall assume that L include integer num-

bers n of type int and strings ”s” of type string among its atomic values and types.
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Finally, value equality follows the same rules as document and type equality.

Definition 4.4.2 Let V be the language of values generated by the following gram-

mar:

v, v1, . . . , vn ::= bk | [l = v] | v1 ∧ v2 | { } | {v1, . . . , vn}

where l ∈ Lbl and bk ∈ Bk.

The relation of typing between values and types is standard and can be defined as

follows:

Definition 4.4.3 Let d ∈ D, T ∈ T. d has type T if d : T , where :⊆ D × T is the

typing relation inductively defined by the following rules:

bk : Bk (ATM) { } : set(T ) (ESET )

v1 : T, . . . , vn : T

{v1, . . . , vn} : set(T )
(SET )

v : T
[l = v] : [l : T ]

(SREC)

v1 : T1 v2 : T2

v1 ∧ v2 : T1 ∧ T2
(REC)

v : T
[
µX. T/X

]
v : µX.T

(RCS)

v : T1

v : T1 ∨ T2
(ULFT )

v : T2

v : T1 ∨ T2
(URGT )

where T
[
µX. T/X

]
denotes the standard operation of (capture-avoiding) variable

substitution

4.5 An Extraction Mechanism

In this Section, we provide a self-describing interpretation of language values as well

as an inclusion relation between documents.
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Definition 4.5.1 Let sd : V→ D be the function defined as:

sd(bk) = textify(bk)

sd([l = v]) =


<> v = { }∧n

i=1 < l→ sd(vi) > v = {v1, . . . vn}

< l→ sd(v) > otherwise

sd(v1 ∧ v2) = sd(v1) ∧ sd(v2)

where textify is any function that returns string representations of atomic values.

The interpretation is straightforward, except perhaps for the case of set values,

which are interpreted only within record values. The reason is that set values are not

directly supported in D and must be interpreted in correspondence with repeated field

names within complex documents.

For example, the document

<member →< name→ Steve >,

member →< name→ Fabio >>

interprets the value

[member = {[name = “Steve′′], [name = “Fabio′′]}].

In particular, values such as {1, 2}, v∨{1, 2}, or [a : {{1, 2}, 3}] cannot be interpreted

in D for no field label is available for their interpretation.

Inclusion of documents is susceptible of different interpretations. Here, we have

followed the simple intuition according to which d′ is included d if d′ is syntactically
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contained in d, with the exception that the empty document is included in any docu-

ment.

Definition 4.5.2 Let d, d′ ∈ D. d′ is contained in d if d′ � d, where �:⊆ D ×D is

the relation inductively defined by the following rules:

<>� d (EMP ) s � s (STR)

d1 � d2

< l→ d1 >�< l→ d2 >
(SDOC)

d1 � d3 d2 � d4

d1 ∧ d2 � d3 ∧ d4
(DOC)

4.6 Extraction Algorithm

In this Section, we show the algorithm Ext that implements the extraction mechanism

defined in Section 4.5.

Definition 4.6.1 Let V⊥ = V
⋃
{⊥}. Let Ext : D × T → V⊥ be the algorithm

defined as

Ext(d, T) =

1 if unf(T)={T}

2 case of T

3 Bk:

4 { if ∃bk s.t. textify(bk)= d

return bk

5 return ⊥ }

6 T1 ∧ T2: return (Ext(d, T1)∧⊥Ext(d, T2))
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7 [l : T ′], T ′ = set(T ′′):

8 {if d ∈ Str return ⊥

9 A := ∅

10 for each d′ ∈ FVl(d) {

11 v = Ext(d′, T ′′)

12 if v 6=⊥ A = A
⋃
{v} }

13 return [l=collect(A)] }

14 [l : T ′], T ′ 6= set(T ′′):

15 { for each d′ ∈ FVl(d) {

16 v = Ext(d′, T ′)

17 if v 6=⊥ return [l=v] }

18 return ⊥ }

19 otherwise: return ⊥

20 else

21 { for each T ′ ∈ unf(T) {

22 v = Ext(d, T ′)

23 if v 6=⊥ return v }

24 return ⊥ }

where ∧⊥ : V⊥ ×V⊥ → V⊥ is the function defined as:

v1 ∧⊥ v2 =

 ⊥ v1 =⊥ or v2 =⊥

v1 ∧ v2 otherwise

Given d ∈ D and T ∈ T, Ext performs a recursive analysis of both type and

document and it either fails (i.e. returns ⊥) or else derives a value v ∈ V extractable
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from d according to T . To achieve this, Ext solves two main problems.

The first is that set values must be extracted along with record values, for the same

reason underlying Definition 4.5.1. This explains why Ext processes set types only

when processing record types and fails with types such as set(T ) ∨ T or set(set(T )).

The situation is complicated further by the possibility that set types do occur within

record types but are ‘protected’ by union or recursive types. Given the type [a :

set(T ) ∨ T ], for example, we cannot recursively delegate to the union case the ex-

traction of a value of type set(T ), for we would lose the label a necessary to extract

the value set from the document.

Ext solves the problem by extracting values only according to record types that

are ‘flattened’, i.e. contain no union or recursive type fields. This is achieved with the

preliminary check on line 1, which invokes an implementation of the function unf .

unf is a generalisation of the standard operation of one-step unfolding of recursive

types. In particular, it one-steps unfolds a union type into the set of its branches, and

a record type into the set of records obtained by one-step unfolding all its non-record

field values.

Definition 4.6.2 Let unf : T→ T be the function defined as:

unf(T ) =



{T ′
[
µX. T/X

]
} T = µX.T ′

{T1, T2} T = T1 ∨ T2

{[l : T ′′] | T ′′ ∈ unfR(T ′)} T = [l : T ′]

{T ′1 ∧ T ′2 |

T ′1 ∈ unf(T1), T
′
2 ∈ unf(T2)} T = T1 ∧ T2

{T} otherwise
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where unfR : T→ T is the function

unfR(T ) =

 {T} T = [l : T ′]

unf(T ) otherwise

For example,

unf([a : int∨set(string), b : [c : int ∨ set(int)]]) =

{ [a : int, b : [c : int ∨ set(int)]],

[a : set(string), b : [c : int ∨ set(int)]]}.

A type T is then unfolded if unf(T ) = {T}, otherwise is folded.

The second problem occurs when multiple values of type T can be extracted from

d. Due to the presence of set and union types, this possibility is in fact the norm. For

example, consider the document d =< a → 1, a → 2, b → 3, c → four > and the

type T = T1∨T2, where T1 = [a : set(int), b : int] and T2 = [a : set(int), c : string].

From Definition 4.2.1 and Definition 4.5.1, it is easy to see that the values [a =

{1, 2}, b = 3] and [a = {1, 2}, c = ”four”] are extractable from d according to T1 and

T2, respectively, and thus according to T . The same is true of the values [a = { }, b =

3], [a = {1}, b = 3], [a = {2}, b = 3], etc.

Ext returns one extractable value on the basis of both a best-attempt and a first-

attempt policy. Specifically, it returns: (i) the largest value extractable from d accord-

ing to a set type, and (ii) the first value extractable from d according to one of the

branches of union types, when these are ordered from left to right (left-to-right is also

the branch ordering followed by the sub-routine unf). In the previous example, Ext

derives the value [a = {1, 2}, b = 3].

The best-attempt policy is justified by an immediate principle of maximisation of

the data contained in a correctly extracted value. The first-attempt policy is instead
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more arbitrary but it simplifies the definition of the algorithm and is thus adequate for

the purpose of a proof of concept.

In lines 21-23, Ext implements its first-attempt policy and either fails or returns the

first extractable value returned by a recursive execution of Extwith d and an unfolding

of T .

In lines 2-19, Ext processes basic, singleton record, and concatenated record

types. For a basic type Bk, Ext is successful only if d ‘textifies’ a value v of type

Bk (lines 3-5).

For singleton record types [l : T ′], Ext tries to derive a singleton record value

[l : v], where the shape of v depends on whether T ′ is a set type.

If T ′ is a set type set(T ′′) (lines 7-13), Ext implements its best-attempt policy

and tries to extract a value of type T ′′ from each l-field value of d. The extracted

values are then memorised and eventually grouped into a set value v by the sub-routine

collect. Notice that, in this case, Ext fails only when the document is a string (line

8). Otherwise, it returns at worst the singleton record [l = { }].

If T ′ is not a set type (lines 14-18), Ext returns the first value of type T ′ extractable

from an l-field value of d. If such value does not exist, Ext fails.

If T is the concatenation of two record types T1 and T2, Ext concatenates the

values extracted from d according to T1 and T2 respectively. The operation of concate-

nation ∧⊥ refines standard concatenation by returning ⊥ any time one of the operands

is ⊥. This ensures that failing the extraction according to either singleton record type

fails the entire process.

Ext is clearly terminating, for it recursively operates on subdocuments of the input

document and because unf, textify, and collect are trivially terminating. Note

that termination holds under the standard assumption that contractive recursive types,

such as µX.X , are not part of the type language (cf. [111]). Next, we shall also prove

74



Chapter 4. Extraction Mechanisms

that Ext is sound, i.e. returns a value extractable from d according to T , and complete,

i.e. it fails only when no value of type T can be extracted from d.

This completeness result is already sufficient to give users confidence in appli-

cations of Ext. As shown earlier, however, the first-attempt policy of the algorithm

and the presence of union types prevents the user of assuming any relationship between

Ext’s output and any other value of type T extractable from d. In some cases, this may

not be satisfactory. When executed against the document < a→ 1, b→ 2, c→ foo >

and the type [a : int]∨ [a : int, c : string], for example, Ext returns the value [a = 1]

instead of the ‘larger’ [a = 1, c = ”foo”].

4.6.1 Correctness

Lemma 4.6.3 Let v ∈ V,T ∈ T. v : T if and only if there exists T ′ ∈ unf(T ) such

that v : T ′.

Proof. By structural induction on T. The proof is immediate and we shall here discuss

only the cases T = T1 ∧ T2.

Assume v : T . For typing scheme (REC), v = v1 ∧ v2, with v1 : T1, and v2 : T2.

For the inductive hypothesis, v1 : T ′1 and v2 : T ′2, for some T ′1 ∈ unf(T1) and T ′2 ∈

unf(T2). For typing scheme (REC) and Definition 4.6.2, v = v1 ∧ v2 : T ′1 ∧ T ′2 ∈

unf(T1 ∧ T2) = unf(T ).

Vice versa, assume v : T ′, with T ′ ∈ unf(T ). For Definition 4.6.2, T ′ = T ′1 ∧ T ′2,

with T ′1 ∈ unf(T1) and T ′2 ∈ unf(T2). For type scheme (REC), v = v1 ∧ v2, v1 :

T ′1, v2 : T ′2. For the inductive hypothesis and typing scheme (REC), v = v1 ∧ v2 :

T1 ∧ T2 = T .

�

Proposition 4.6.4 Let d ∈ D, T ∈ T. If Ext(d, T ) 6=⊥ then Ext(d, T ) is extractable

from d according to T .
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Proof. By induction on the height h of the execution tree of Ext(d, T ).

For the hypothesis, the case h = 1 corresponds to one of the cases T = Bk and

T = [l = T ′], with T ′ = set(T ′′). In the first case, Ext(d, T )= bk and sd(bk) = d.

The thesis follows then from typing scheme (ATM), and the reflexivity of document

inclusion, which can be easily proven by structural induction on D. In the second case,

v = [l = { }]. For Definition 4.5.1 and inclusion scheme (EMP), sd(v) = sd([l =

{ }]) =<>� d. For typing schemes (SREC) and (ESET), v : T and the thesis is

proven.

Assume now an execution tree of height h > 1 and that the thesis is proven for all

execution trees of height h − 1. Let us distinguish the cases in which T is folded or

unfolded.

If T is folded, the hypothesis ensures that Ext(d, T )=Ext(d, T ′)= v 6=⊥ for some

T ′ ∈ unf(T ). For the inductive hypothesis, sd(v) � d and v : T ′. For Lemma 4.6.3,

v : T and the thesis is proven.

If T is unfolded, there are three cases to examine:

(i) T = T1 ∧ T2. For the hypothesis and the definition of ∧⊥, Ext(d, T )= v =

v1 ∧ v2, where v1 =Ext(d, T1)6=⊥ and v2 =Ext(d, T2)6=⊥. For the inductive

hypothesis, sd(v1) � d,v1 : T1,sd(v2) � d, and v2 : T2. For Definition 4.5.1 and

inclusion scheme (DOC) , sd(v) = sd(v1 ∧ v2) = sd(v1) ∧ sd(v2) � d ∧ d = d.

For typing scheme (REC), v : T and the thesis is proven.

(ii) T = [l : T ′], with T ′ = set(T ′′). For h > 1, FVl(d) 6= ∅. For the hypothesis,

Ext(d, T )= v = [l = {v1, . . . , vn}], where vi = Ext(di, T
′′)6=⊥, di ∈ FVl(d),

for each i ∈ [1, n] and some n ∈ N. For the inductive hypothesis, sd(vi) �

d and vi : T ′′. For Definition 4.5.1 and scheme (DOC) , sd(v) = sd([l =

{v1, . . . , vn}]) =
∧n

i=1 < l → sd(vi) >�
∧n

i=1 < l → di >� d. For typing

schemes (SREC) and (SET), v : T and the thesis is proven.
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(iii) T = [l : T ′], with T ′ 6= set(T ′′). For the hypothesis, Ext(d, T )= v = [l = v′],

where v′ = Ext(d′, T ′)6=⊥, d′ ∈ FVl(d). In particular, d = [l : d′] ∧ d′′, for

some d′′ ∈ (D). For the inductive hypothesis, sd(v′) � d′ and v′ : T ′. For

Definition 4.5.1 and inclusion scheme (DOC), sd(v) = sd([l = v′]) =< l →

sd(v′) >� d. For scheme (SREC), v : T and the thesis is proven.

�

Proposition 4.6.5 Let d ∈ D, T ∈ T, v ∈ V. If v is extractable from d according to

T then Ext(d, T )6=⊥.

Proof. By induction on the height h of the proof tree of v : T .

The case h = 1 corresponds to one of the case v = bk and v = { }. The second

case is excluded by the hypothesis and Definition 4.5.1. In the first case, T = Bk,

Ext(d, T )= bk 6=⊥ and the thesis is proven.

Assume now an execution tree of height h > 1 and that the thesis is proven for all

execution trees of height h − 1. Let us distinguish the cases in which T is folded or

unfolded.

If T is folded, the hypothesis v : T and Lemma 4.6.3 ensure that v : T ′, for some

T ′ ∈ unf(T ), and thus that v is extractable from d according to T ′. For the inductive

hypothesis, Ext(d, T ′)6=⊥ and thus Ext(d, T )6=⊥.

If T is unfolded, there are three cases to examine.

(i) T = T1 ∧ T2. For typing scheme (REC) there exist v1, v2 ∈ V such that

v1 : T1, v2 : T2, and v = v1 ∧ v2. For the definition of ∧, Definition 4.5.1,

inclusion schemes (EMP) and (DOC), and the hypothesis sd(v) � d, sd(v1) =

sd(v1)∧ <>� sd(v1) ∧ sd(v2) = sd(v1 ∧ v2) = sd(v) � d. Similarly,

sd(v2) � d. For the inductive hypothesis, Ext(d, T1)6=⊥ and Ext(d, T2)6=⊥.

For the definition of ∧⊥, Ext(d, T )= Ext(d, T1)∧⊥Ext(d, T2)6=⊥, and the the-

sis is proven.
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(ii) [l : T ′], with T ′ = set(T ′′). The thesis follows immediately from Ext(d, T )=[l =

v′], for some v′ ∈ (V ).

(iii) [l : T ′], with T ′ 6= set(T ′′). For the hypothesis v : T and scheme (SREC),

v = [l = v′], and v′ : T ′. For the hypothesis sd(v) � d and Definition 4.5.1,

sd(v) = sd([l = v′] =< l → sd(v′) � d. From inclusion scheme (DOC),

d = [l : d′] ∧ d′′, for some d′, d′′ ∈ (D), where sd(v′) � d′. For the inductive

hypothesis, Ext(d′, T ′)= v′′ 6=⊥, Ext(d′, T ′)= [l : v′′] 6=⊥, and the thesis is

proven.

�

4.7 Relevance

In this Section, we present a simple relevance quantification scheme for the extraction

mechanism defined in Section 4.5. The scheme can be easily embedded in Ext, but

we give it here a separate specification to improve readability.

Let us start with a motivating example. Consider the following document d:

< staff

< member →

< name→ David >

< project→

< name→ SNAQue, . . . > . . . >

< project→

< name→ GLOSS, . . . > . . . > . . . >

< member →

< name→ Paolo >

< project→
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< name→ Tequyla, . . . > . . . >

< project→

< name→ TQL, . . . > . . . > . . . > . . . >

and assume that the programmer requires to compute over named projects of staff

members.

From an initial analysis of d, the programmer proposes the type T :

[staff : [member : set([project : [name : string]])]]

and the mechanism returns the value v:

[staff = [member = {[project = [name = ”SNAQue”]],

[project = [name = ”TeQuyLa”]]}]].

The programmer did not notice that staff members have more than one project, i.e.

d contains more relevant data than T makes possible to extract.

To inform the user, we quantify the precision with which T describes the data in

d that are relevant to the programmer. To return a readable measure, we distribute it

along the singleton record types occurring in T , i.e where loss of relevant data may

actually occur. The result is a set of annotations for T that may help the user to refine

the type and improve extraction.

In particular, the precision of a singleton record type [l : T ] is measured with

respect to all the documents that are processed with [l : T ] on a successful execution

path of Ext ( by successful execution path, we intend a path of the execution tree along

which Ext never fails).

Let thus D[l:T ] be the set of all such documents, and let P[l:T ] be the set defined as:

P[l:T ] = { (d, [l = v]) | d ∈ D[l:T ], [l = v] = Ext(d, [l : T ]) }.

79



Chapter 4. Extraction Mechanisms

The precision prec[l:T ] of [l : T ] is then calculated as:

prec[l:T ] =

∑
p∈P[l:T ]

vprec(p)

| P[l:T ] |

where the value precision vprec of a pair in P[l:T ] is defined as:

vprec(d, [l = v]) =


|v|

|FVl(d)| | FVl(d) |> 0

1 | FVl(d) |= 0

and, in turn

| v |=


0 v = { }

n v = {v1, . . . , vn}

1 otherwise

Informally, prec[l:T ] is the average of the precisions calculated at each pair (d, [l =

v]) ∈ P[l:T ]. Each of these is in turn the ratio between the number of l-field values from

which Ext extracted a value and the number of those from which it did not.

In particular, low precision for a singleton T1 = [l : set(T ′)] in T suggests that Ext

did not extract values of type T ′ from many l-field values in d. A renewed analysis of

the data may then reveal that the singleton T2 = [l : set(T ′ ∨ T ′′)] allows to extract

more relevant data from d and should thus replace T1. Similarly, [l : set(T ′)] may do

better than a low-precision singleton [l : T ′].

For example, the precision of type T in the previous example may be returned as

the following annotation:

1[staff :1 [member : set{
1
2 [project :1 [name : string]]}]]

The user may then improve extraction by refining T into the type:

[staff : [member : set{[project : set([name : string])]}]]
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which has precision 1 on all its singleton record types.

The problem of relevance quantification is certainly complex and identifies an in-

teresting research topic per se. The scheme presented is fairly simple, and we have

introduced it as a proof of concept. Although we have not yet gathered experimental

results, we believe that the scheme can be useful with large datasets, where the exact

structure of relevant data is not known when the mechanisms is first invoked.

4.8 SNAQue for CORBA

Based on the algorithm Ext, we have built a distributed system prototype. The system,

maintained at the Computer Science Department of the University of Strathclyde, is

called SNAQue - the Strathclyde Novel Architecture for Querying extensible mark-up

language. Although some parts are still under development, the system is currently

being tested in a number of biodiversity projects by the Palaeobiology Research Group

at the University of Glasgow.

SNAQue is a CORBA application that implements an extraction mechanism for a

subset of the CORBA Interface Definition Language [8], and therefore for any CORBA-

compliant language (e.g. C, C++, Smalltalk, Java, Ada95, etc.).

The correctness of the system relies directly on the correctness of the extraction

mechanism defined in Section 4.5. In particular, SNAQue receives an XML document

and an IDL type description from a remote client, and maps them onto a document

d ∈ D and a type T ∈ T, respectively. It then invokes Ext and transforms the

output v ∈ V of type T in a number of interrelated CORBA objects. By virtue of the

mapping from IDL to T, the objects expose interfaces corresponding to the initial IDL

description.

There is always one entry point to the generated CORBA objects: the object o

that corresponds to the root of the XML document. A reference to o is returned to
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Figure 4.2: SNAQue for CORBA

the client for local binding in programs written in any CORBA-compliant language of

choice. Optionally, SNAQue may register o with a public alias provided by the client.

Then any client informed of the alias can come along and gain remote access to o (see

Figure 4.2).

The details of the mappings from XML to D, IDL to T, and V to the corresponding

CORBA objects are out of the scope of this paper. Roughly, the mapping from XML

concentrates on the data-oriented features of the format, while the mapping from IDL

converts interfaces, sequences, and tagged union types, into records, sets, and untagged

union types in T.

As an example, consider the document d and its fragment d′ introduced in Sec-

tion 4.2. Using SNAQue, it is straightforward to compute over d′ with a code analo-

gous to that shown in Section 4.2. One has only to provide SNAQue with the following

IDL type description:

interface Staff {

typedef sequence <Member> MemberSeq;
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attribute MemberSeq members; }

interface Member {

attribute String name;

attribute long code; }

With respect to these inputs, SNAQue will create four CORBA objects: one con-

forming to the Staff interface and three conforming to the Member interface. It will

then return a reference to the first object to which clients can bind in their programs.

SNAQue chooses Java to implement the extracted CORBA objects. In particular,

the Java classes generated by the system for the objects derived above are exactly

the Staff and Member classes shown in Section 4.2. Similarly, the Java-like code

suggested there could be immediately used to compute over the data.

The choice of CORBA IDL as the type language is an obvious one. It increases the

applicability of the extraction mechanism for L and makes it distributed. However, the

distributed nature raises performance issues, such as those related with every read or

write operation performed on the data across the network.

We are currently investigating two ways of tackling such problems. On the one

hand, we are considering the use of value types, which have been recently introduced

into CORBA to allow objects to be passed by value, rather than by reference. This

allows clients to pull the generated CORBA objects over the network and inject them

in the local environment. On the other hand, we could push computations to the server,

by allowing clients to specify additional methods in the IDL interfaces. For example,

the Staff interface could be extended with a new method:

interface Staff {

typedef sequence<Member> MemberSeq;

attribute MemberSeq members;
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Member getMember(in String name) }

SNAQue can not automatically generate the implementation for this method, which

has to be provided by the client. Due to the lack of space, we cannot discuss this facility

in more detail.

4.9 Related Work

The differences between extraction mechanisms and existing approaches has been

largely discussed in Section 4.2. It is worth noticing here that extraction mechanisms

operate on arbitrary XML documents and can thus be easily coupled with untyped

query languages. In an integrated environment, the convenience of the first would

complement the flexibility of the second for data with a varying degree of structural

regularity.

Other high-level bindings between XML and existing programming languages have

been recently presented [112, 15]. They all map some form of data description (usually

a DTD or an XML Schema) onto language types that capture directly the semantics

intended for the data. For this reason, they operate on fairly regular XML documents

and do not provide facilities for extracting regular subsets from arbitrary documents.

In addition, they have been developed for specific languages (e.g. Haskell, Java) and

do not generalise.

The idea of exploiting regularity in XML, and more generally, semistructured data,

has also motivated a number of approaches.

Early proposals were for extending standard database technology to accommodate

some degree of irregularity in the data, typically via the provision of union types. Al-

though similar in motivation, such approaches differ from ours in their attempt to pro-

vide a total description of the data. As mentioned in Section 4.2, significantly irregular
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data lead to an uncontrolled use of union types, thereby progressively decreasing sys-

tem performance and complicating program specification.

Later proposals assume a dedicated query language as a starting point, but differ in

their data-first or type-first strategy.

Approaches of the first kind infer type information from existing datasets. In this

case, type inference can be performed by the system for the entire database, automat-

ically or semi-automatically [96, 98, 113, 102, 114]. The resulting types are mainly

for users to understand the data and, to some extent, for query optimisers to improve

execution [101]. Partial inference can be also performed by users, and the results then

fed to the system as hints to reduce the scope of a search [97]. Overall, inference-

based approaches exploit typing for resource optimisation, while computations remain

essentially untyped.

Approaches of the second kind exploit static knowledge to guarantee computational

safety [115, 116, 117, 81]. To achieve this against a tree-based model, they resort

to low-level types for XML documents. Due to the support of regular expressions,

such tree types are more flexible than high-level types in capturing irregularities in the

data [18, 118].

To the best of our knowledge, Ozone [75] is the only attempt to seamlessly integrate

structured and semistructured data in the same typed environment. The system extends

the ODMG model to include semistructured data, and allows structured objects to be

queried with semistructured primitives. Interestingly, it also supports a function for

coercing semistructured data to structured objects according to a type and, as such,

implements a simple extraction mechanism for ODMG. However, our mechanism is

proved correct and returns values of a larger set of types.
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4.10 Conclusion and Future Work

We have presented a novel approach to programming over XML data based on lan-

guage bindings. The bindings are defined as mechanisms that identify and derive lan-

guage values from subsets of arbitrary XML documents. When programming over

such subsets, the approach delivers the computational advantages associated with the

host language. Furthermore, the derived values preserve the semantics intended for the

data, and thus facilitate program specification.

These mechanisms can be formally defined and correctly implemented, and we

have done it for a sample but representative core language. In particular, we have

proven the generality of the sample mechanism by deriving extraction mechanisms for

all CORBA-compliant languages directly from it.

Future research directions concern both theoretical and practical aspects of the in-

vestigation. Beyond XML, we have already extended our results to more general forms

of semistructured data. In particular, we are able to extract language values from graph-

structured data, i.e. in the presence of cycles and sharing. The interested reader is

referred to [25] for the full treatment.

Another interesting direction relates to the definition of inclusion between docu-

ments. The one we proposed follows first intuitions, but alternative definitions could

be considered. As a first example example, inclusion checks may start from arbitrary

elements of the target document, not necessarily the root element. This would save the

user the often tedious task of describing the structure that leads from the root of the

document to the data of interest. It would also give a hint of the flexibility achieved by

navigational query paradigms without reducing the advantages of the approach.

The extraction algorithm has been proved sound but the belief that it is also tractable

in pragmatic terms has not been supported by a formal analysis of its complexity. Al-

though tests on large data samples have shown acceptable performance even on desktop
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machines, the impact of a considerable use of union types remains to be measured. Fur-

thermore, we are currently working with back-tracking techniques towards algorithms

with stronger properties of completeness.

Relevance quantification could be certainly improved over the sample scheme pro-

posed in Section 4.7. In particular, an extraction mechanism could customise a general

scheme to the programmer’s specifications.

Finally, SNAQue is under continuous development, and a web interface to the sys-

tem is being published at the time of writing. The research agenda is currently focusing

on whether values can be virtually injected in the value space of the target language

rather than materialised. Single or multiple indexes to regular subsets suggest the pos-

sibility to dynamically synchronise the interface between the language and the database

under updates. At the same time, they raise the opportunity for incremental extractions.

In addition, the client/server scenario raises a number of questions related to the

efficiency of the system and to the possibility of integrating data from distributed XML

servers.

Investigation is needed to identify the cases in which it is more convenient to pull

extracted values at the client side or else push client computations to the server. Com-

pleteness quantification could here be used by both client and server to make intelligent

decisions about data or code migration.

In addition, the possibility of storing and publishing typed interfaces over the data

at the server side suggests interesting data protection and data evolution policies. For

example, the usage and volume of XML data referenced through the interfaces could

be gathered into statistical information that may be used to assess the impact of changes

to the data.
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Language Bindings to XML

This Chapter reports the contents of the following publication:

SIMEONI, F., LIEVENS, D., CONNOR, R. C. H., AND MANGHI, P. Lan-

guage bindings to XML. IEEE Internet Computing 7, 1 (2003), 19–27.

Here, the theme of typeful programming is illustrated with a systematic compari-

son of mainstream approaches to XML parsing [16, 17]. A new class of data binding

tools enters the arena of XML processing and defines an ideal point of reference for

motivating and applying type projections. A deeper understanding of typeful program-

ming reveals the tight-coupling induced by models that are dictated by data producers.

This forms the basis for discussing the advantages that type projections retain over

mainstream approaches.

The prototypical application in Chapter elsevier evolves as a general-purpose data

binding tool for Java, and a correspondence between the type system of the idealised

language and Java’s bridges the design of the tool to the formal results presented in

previous work.
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5.1 Abstract

In this paper, we investigate the issues that arise when binding statically typed lan-

guages to XML data. In particular, our motivation is to exploit the computational fa-

cilities of mainstream languages when computing over real-world entities encoded as

XML documents or document fragments. These include completeness, strong typing,

efficiency, as well as user-base and support.

We first show that standard binding solutions, such as the SAX and DOM APIs,

do not preserve the semantics of such entities, and thus hinder program specification,

verification, and optimisation. We then compare two novel approaches, which rely

on type information to preserve semantics. The first is Sun’s JAXB architecture, in

which types are automatically generated from document descriptions. The second is

our SNAQue architecture, where types are directly specified by binding computations.

For certain classes of applications, we show that the latter offers substantial advantages

in terms of simplicity and flexibility.

In previous work [119], we have formally proven that SNAQue bindings can be

correctly built for a representative, canonical language. Here, we extend that work and

present SNAQue/J, a binding mechanism specific to the Java language.

5.2 Introduction

The significance of the eXtensible Markup Language extends beyond the community

it was originally intended to serve, namely document processing over the Web. As a

standard and widely supported format for arbitrary data, XML delivers to any hetero-

geneous, distributed computer system the common lingo for data exchange which only

closed or relatively closed systems could previously assume and enforce.

In addition, XML data contains a description of its intended meaning, either in the
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form of element names or, optionally, as an embedded or referenced type description

(e.g. a DTD). Self-description allows programs to interpret the data dynamically, i.e.

with no reliance on shared assumptions or agreements (e.g. header files or interface

definition languages). In turn, this promotes system flexibility, for programs become

more resilient to irrelevant changes in the data.

In its untyped form, XML is also an ideal carrier for semistructured data, where

the structure is too irregular or instable to be effectively handled in statically typed

programming languages and database management systems [10].

5.2.1 Motivations

This broad view over XML explains the proliferation of related technologies, espe-

cially programming models. To date, computations over XML data can be specified in

a variety of paradigms and languages.

Most approaches, however, have so far focused on novel and dedicated solutions.

These include flexible query languages, which resort to regular expressions to match

data with irregular or partially known structure [109, 120, 79]. They also include

Turing-complete and/or strongly typed functional languages, which exploit structural

regularity to ensure correctness of arbitrary computations [69, 70, 115].

In contrast, the computational facilities of mainstream, statically typed languages

have only been partially reused in this novel context. Among these, the completeness

and simplicity of the procedural and object-oriented programming models, the relia-

bility and efficiency of computations, and equally important, the large user-base and

tool support.

In particular, we identify two broad scenarios where XML and typed languages

could be conveniently bridged. The first accounts for most of current XML usage,

namely the exchange of business data across proprietary boundaries. The second
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concerns semistructured documents with large fragments of more disciplined data,

such as those that arise in scientific domains or from the integration of heterogeneous

databases.

In the general case, the goal is to compute over representations of real-world en-

tities which are maintained or even generated outside the language jurisdiction, and

occur as fragments of (possibly semistructured) XML documents. For example, con-

sider the following document d about staff members of a university department:

<staff code="123517">

<member>

<name>Richard Connor</name>

<home>www.cis.strath.ac.uk/˜richard</home>

</member>

<member code="123345">

<name>Steve Neely</name>

<ext>4565</ext>

<project>

<name>SNAQue</name>

<project/>

</member code="175417">

<member>

<ext>4566</ext>

<name>Fabio Simeoni</name>

</member>

</staff>

For the sake of illustration, a few irregularities have been added to the data: some

staff members have homepage information, others have projects or phone extensions.

On a much larger scale, these irregularities would prevent the document from being

conveniently managed within statically typed frameworks. While union types and

object-oriented hierarchies may accommodate some of the irregularity, their extensive
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use would soon reduce the static knowledge of the system and complicate program

specification and maintenance.

However, all members in d do have a name and a code. In particular, the following

fragment d′ of d may be an XML representation of a standard language value:

<staff>

<member code="123517">

<name>Richard Connor</name>

</member>

<member code="123345">

<name>Steve Neely</name>

</member>

<member code="175417">

<name>Fabio Simeoni</name>

</member>

</staff>

For most statically typed object-oriented languages, for example, d′ may be an

XML encoding of the state of an object staff of class Staff, where

class Staff {

private Member[] member;

Member[] getMembers() {...}

void setMembers(Member[] members) {...}

...}

and

class Member {

private String name;

private int code;

String getName() {...}

void setName (String n){...}

int getCode() {...}
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void setCode (int c){...}

...}

This simple observation raises the expectation that programming over d′ be at least

as simple, safe, and efficient as programming over staff. Furthermore, one would

like these good properties to scale, i.e. hold for generalised computations over frag-

ments of XML documents considerably larger than d′.

Motivated by such computational requirement, we advocate the importance of lan-

guage bindings to XML, i.e. software mechanisms which transform XML data into val-

ues that programmers can access and manipulate from within their language of choice.

However, the computational facilities of the host language do not guarantee per

se the convenience of a binding. It is also necessary that the resulting values support

the interpretation of the data required by computations. One aim of this paper is to

show that, when this is not the case, the benefits of expressiveness, strong typing, and

efficiency can only be partially delivered to the programmer.

5.2.2 Overview

In this paper, we advance and motivate the claim that standard binding solutions,

namely the Simple API for XML and the Document Object Model API are not well

suited to compute over XML-encodings of real-world entities. In Section 5.3, in par-

ticular, we show that they do not preserve the semantics of entities when passing from

the XML to the language representation.

We then compare two novel approaches. In Section 5.4, we discuss Sun’s JAXB

architecure [15], while in Section 5.5 we introduce SNAQue, an architecture of our

own definition. Both approaches rely on type information to preserve the semantics of

real-world entities. In JAXB, language types are statically generated from document

descriptions, in the style of middleware solutions for heterogeneously typed frame-
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works. In SNAQue, they are directly specified by the binding computation, in the style

of statically typed languages with dynamic types [1].

In previous work [119], we have formally proven that SNAQue bindings can be

built for a representative, canonical language. Here, we extend that work and present

SNAQue/J, a binding mechanism specific to the Java language . This is done is Sec-

tion 5.6, while in Section 5.7 we draw some conclusions and outline further research

directions.

5.3 SAX and DOM

We assume pure Java implementations of the APIs and then consider a generic com-

putation over the names and codes of the staff members that occur in the document d

of Section 5.2.

From a binding perspective, SAX transforms an XML document into a string

served to the programmer as a temporal sequence of tokens. The induced program-

ming model is one based on parser-generated events and programmer-implemented

callbacks.

The SAX programmer is thus invited to share the interpretation of the data of the

underlying parser, albeit at a higher level of abstraction. In particular, the programmer

receives only tokens that correspond to distinguished elements of the format, such

as PCDATA sections or element names. The following may be a SAX program that

iterates over staff members to retrieve their names and codes:

class SaxTask extends DefaultHandler {

private String name;

private int code;

private boolean inProject;

private CharArrayWriter buffer = new CharArrayWriter();
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public void characters (char[ ] ch,int start,int length)

{buffer.write(ch,start,length);}

public void startElement (String uri,String name,String qName,

Attributes atts){

if (name.equals("member")) code=atts.getValue("code");

if (name.equals("project")) inProject = true;

buffer.reset();}

public void endElement (String uri,String name,String qName){

if (name.equals("project")) inProject = false;

if (name.equals("name") && !inProject) name = buffer.toString().trim();

...do something with name and code...}}

Instead, DOM represents an XML document as a node-labelled tree where nodes

correspond to the distinguished elements of the format. The DOM programmer is thus

invited to interpret the data as the document in which it is contained, i.e. in terms of

the ‘has-a’ relationships between its structural components. The following is a DOM

solution to the previous task:

int code;

String name = null;

Element staff = d.getDocumentElement();

NodeList members = staff.getElementsByTagName("member");

int memberCount = members.getLength();

for (int i=0;i<memberCount;i++) {

Element member = (Element) members.item(i);

code = Integer.parseInt(member.getAttribute("code"));

NodeList children = member.getChildNodes();

int length = children.getLength();

for (int j=0;j<length;j++) {

Node child = children.item(j);

if (child.getNodeType() == Node.ELEMENT NODE) {
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String tagName=((Element) child).getTagName();

if (tagName.equals("name")) name =

((characterData) child.getFirstChild()).getData();}

...do something with name and code...}}

Even for such a simple task, both programming solutions are quite convoluted.

Facing problems on a much larger scale, SAX and DOM programmers have described

their code as tedious, hard to read and maintain, and thus prone to errors.

Partly, this is due to the document-oriented nature of any complete programming

interface to XML. Conceptually related data (e.g. names and codes of staff members)

must be accessed with the different algebras of elements and attributes. Similarly,

manipulating atomic data requires an implicit or explicit cast from the type of strings,

the only available. The main problem, however, is that the computation is expressed

in an algebra of strings and trees, while domain-specific concepts (e.g. staff names and

codes) are relegated to the role of actual parameters.

In SAX, for example, one does not ask for the name of a member, but patiently

collect the characters of name elements, and only when one has made sure it is the

right name element. In DOM, one has first to reach a member node, then scan its

children nodes to get a name node, and eventually get its string value. SAX does

not even reflect the structure of the data and in order to get things right one has to

coordinate the action of possibly distant methods.

Inadequate data abstractions compromise also static checking of computations.

Correctness can be guaranteed for generic operations on strings and trees, not staff

members. The DOM invocation:

staff.getElementsByTagName("mebmer");

where "mebmer" is a typo for "member", would silently compile and return a null

value at run-time. Safety becomes thus responsibility of the programmer, not the sys-

tem. Programmatic checks worsen code readability and maintainability, and are not
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always sufficient to guarantee correct behaviour. In the lack of some document de-

scription, the typo may be interpreted as the absence of required data, and thus trigger

unintended behaviour. Even assuming some document description, the typo may acci-

dentally identify some other data or, in the best case, be simply signalled at run-time.

For similar reasons, the system can optimise resources only within the limits of its

static knowledge of the data. For instance, it ignores the fact that all staff members

have names, codes, and ages.

Compare this with the code required to perform the same task over the object

staff equivalent to d′:

Member[] members = staff.getMembers();

for (int i=0;i<members.length;i++) {

int code = members[i].getCode();

String name = members[i].getName();

...do something with name and code ...}

The code is now aligned with the semantics of the task. It is also more succinct,

for generic operations on staff and staff members can be easily factored out in class

definitions, thoroughly tested, and then reused. The programmer can also count on

finer-grained system type-checking to ensure code correctness: the age has the proper-

ties of an integer number, all members have one and only one name, while erroneous

manipulations are detected at compile-time.

In conclusion, SAX and DOM do not preserve the semantics of XML-encodings

of real-world entities. When computations need to address the syntax or the structure

of the data, respectively, both solutions can be very effective. For example, SAX is

efficient and simple when it comes to count the number of elements or the occurrences

of a particular string within the document. Similarly, DOM is ideal when it comes to

add or remove ‘has-a’ relationships between document components.

A large class of computations, however, are directly concerned with the intended
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meaning of the data, not its syntactic or structural properties. In these cases, the data

should be represented within the language by values whose semantics reflects the in-

tended meaning as closely as possible. When a binding does not satisfy these expec-

tations, the programmer faces the choice of expressing computations in an awkward

algebra or writing ad-hoc translation code between the available values and the desired

ones.

For example, many SAX and DOM programmers would prefer to tackle the pro-

posed task by mapping the string or tree generated by the parser into staff, and then

compute directly over staff. In a statically typed language, this requires the prelimi-

nary declaration of type Staff as a description of the semantics intended for d′. This

suggests the possibility of defining automated solutions that take types as the input to

semantic-preserving bindings to XML data.

5.4 JAXB

In the Java Architecture for XML Binding, type information is automatically generated

from document descriptions, such as DTDs. Specifically, descriptions are converted

into classes with unmarshalling functionality, i.e. they can recursively generate their

own instances from XML documents which are valid with respect to the generating

descriptions.

For example, suppose the fragment d′ of d shown in Section 5.2 exists as a stand-

alone document associated with the following DTD STAFF:

<!ELEMENT staff (member*)>

<!ELEMENT member (name)>

<!ATTLIST member code CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

The JAXB programmer passes STAFF to a schema compiler, which generates the
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declarations for two classes Staff and Member. These are similar to those declared

in Section 5.2 but, besides access methods to private properties, they also include a

static method unmarshal for binding to XML-encodings of its instances.

program
Binding

Staff Member
Classes

&

staff

uses
is valid

instantiates

generates STAFF

d’

Figure 5.1: JAXB Bindings

The programmer may then add domain-specific functionality to the generated classes,

and use them in programs. To compute over d′, applications would then invoke the

unmarshal method of Staff on d′. Assuming that doc denotes the file that con-

tains d′, the instantiation of d′ would look like:

Staff staff = Staff.unmarshal(doc);

Thereafter, applications can manipulate staff with the standard facilities of the

host language (cf. Figure 5.1).

Binding is successful only if the target document is valid w.r.t. the initial DTD,

otherwise an exception is raised. This is guaranteed by the schema compiler, which

augments the binding logic within the generated classes with programmatic checks

equivalent to the constraints expressed in the DTD. Validity is thus enforced at run

time, with a single dynamic check in an otherwise statically typed program.

In addition, the generated classes are capable of marshalling their instances back

into XML documents, thereby implementing a lightweight, file-based update model.
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Object marshalling is also validated, in that it generates only documents that conform

to the DTD that initiated the binding.

Finally, the JAXB programmer may also feed a binding schema to the compiler

in order to specialise its binding strategy. An XML application itself, the binding

language gives control over the generation of class names, properties and methods, as

well as type conversions, constructor functions, type-safe enumeration classes and even

interfaces. For example, a simple binding schema may specify that Staff objects

encapsulate arrays of Member objects instead of lists, and that their code property is

an integer rather than a string.

Although JAXB succeeds in preserving data semantics, it has a number of short-

comings. Some of these are certainly related to the early implementation status, such

as the instable and incomplete functionality, including the limited support for descrip-

tion formalisms. Others occur more noticeably in the form of loss of type information,

for the constraints imposed by DTDs are enforced at the point of marshalling, rather

than when they are actually violated.

The main issues, however, are directly raised by the dependency on document de-

scriptions of the underlying architecture. Firstly, programs cannot directly bind to

document fragments in order to reflect the distribution of computational tasks across

the system or to access regular subsets of semistructured documents. For example,

JAXB programs cannot bind directly to d′ within the more irregular d introduced in

Section 5.2, but they have to provide a DTD for the entire d and bind to it. Given

the irregularities in d, the DTD would probably be rather convoluted and thus compile

into classes that offer either poor or excessive abstraction over the actual data. Such

classes would provide little static knowledge to the system and a cumbersome, ineffi-

cient, cast-based algebra to the programmer. Overall, this solution would result in the

introduction of semistructured data into a statically typed language, which is notori-

ously an inconvenient match. Describing staff members, for example, would require
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either a single class with the totality of required properties, or else a rather unnat-

ural class hierarchy of Member, MemberWithHomepage, MemberWithPhone,

MemberWithNameAndPhone, etc. In both cases, computations would have to make

extensive use of type casts and/or conditional statements.

Document-level bindings show also poor resilience to changes in the data. Even

when change is irrelevant to existing programs, the classes generated from old docu-

ment descriptions become invalid and must be regenerated. Besides the problems it

may imply in loosely-coupled systems, class regeneration discourages programmers

from adding domain-specific functionality to the generated classes. For example,

a method find which takes the name of a member and returns the corresponding

Member object should not be directly declared for Staff objects, for future class

generations would simply make it vanish. Solutions must therefore be based on wrap-

per classes or extension patterns, which makes it necessary for the programmer to be

aware of the internal workings of the binding architecture.

Because of the automatic class generation, this complexity is in fact propagated

throughout the binding process. In order to get control on the generation, the program-

mer must learn a new binding language that becomes complicated in most non-trivial

cases. Programming control remains partial due to the unavoidable tension between

the generality of the mechanism and the specificity of the computational requirements.

Finally, the generated classes remain rather opaque to the programmer and can prove

difficult to integrate with legacy code.

5.5 SNAQue

In the SNAQue architecture, the Strathclyde Novel Architecture for Querying the eX-

tensible Markup Language, document descriptions play no role and type information

is directly projected over XML documents by binding programs.
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Specifically, a SNAQue binding is completely defined by a type and a target doc-

ument. The type –which may be the result of an inspection of the document or, when

available, a document description– is then projected over the document in an attempt to

find a conforming document fragment. This entails a recursive match between the type

structure and the names of elements in the document. If the match is successful, the

conforming fragment is transformed into an instance of the projected type and finally

returned to the binding program (see Figure 5.2).

program
Binding d

d’

staff

Staff Member
?Classes

&projects

Figure 5.2: SNAQue Bindings

SNAQue is thus similar to the language mechanisms which have been extensively

used in statically typed languages to guarantee type-safe access to heterogeneous or

persistent data. These include the numerous language incarnations of infinite, untagged

union types (e.g. the subclass structure of Simula-67 [121] or the type dynamic of

Amber [59]), especially their implementations in persistent languages (e.g. the type

any of Napier88 [4]). Instead of performing a dynamic type check between the type

projected by the computation and the type of the data, however, SNAQue compares the

first directly with the self-describing document.

The programmer has now full control on the projected types –which may have

been defined for the purpose of binding or simply reused from legacy code– and the

design in which they should participate. Bindings can be defined with an arbitrary

degree of granularity, and thus give access to fragments of possibly semistructured

XML documents. Finally, irrelevant changes to the data have no impact on projected
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types or binding programs.

At the time being, the SNAQue architecture focuses on bindings and does not in-

clude an update model over the bound data. However, such possibility is not precluded

and, in fact, SNAQue could offer a finer grained model than JAXB. This may intro-

duce validity issues, for the full range of document constraints cannot be captured by

language types but requires programmatic checks. While JAXB automatically gener-

ates the checks from document descriptions, SNAQue would leave the responsibility

to binding programs.

5.5.1 An Example

With reference to the definitions in Section 5.2, consider an object-oriented program

that wants to bind to d′ using SNAQue. The program declares classes Staff and

Member and then projects Staff on d. The binding mechanism infers a structural

type from Staff and begins a recursive analysis of both type and document in an

attempt to match their structure.

Since Staff has only an instance variable member of class Member[], the

mechanism considers only homonymous elements immediately below the staff ele-

ment. At the second step, it repeats the analysis between the type inferred from class

Member and the ‘sub-documents’ of d rooted in each of the member elements identi-

fied at the previous step, e.g.:

<member code ="123345">

<name>Steve Neely</name>

<ext>4565</ext>

<project>

<name>SNAQue</name>

<project/>
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</member>

In particular, the mechanism looks in each sub-document for at least a name el-

ement and a code attribute. At the third step, it repeats the analysis comparing the

atomic type String and int with the CDATA and PCDATA content of, respectively,

the name elements and code attributes identified at the previous step. The compar-

isons are all successful because any PCDATA content is a string while the CDATA

value of all code attributes can be converted into an integer.

At this point, the fragment of d that conforms to the type inferred from class Staff

is that obtained by traversing d along the elements and attributes successfully consid-

ered by the recursive analysis, i.e. d′. The last step of the mechanism is then to convert

d′ into the Staff object staff shown in Section 5.2, and finally return staff to

the binding program (see Figure 5.1(b))1.

5.5.2 Formal Definition and Canonical Specification

The SNAQue architecture can be more formally defined as follows. Let D be the set of

XML documents, L a statically typed programming language, and V and T the value

and type spaces of L, respectively (see Figure 5.3). Let sd : V → D be a mapping

which gives an interpretation of language values as self-describing documents. Let

also � in D ×D a relation of containment between XML documents which gives an

interpretation of the notion of document fragments.

Definition 5.5.1 Let v ∈ V. v is extractable from d ∈ D according to T ∈ T if: (i) v

has type T , and (ii) there exists d′ � d such that sd(v) = d′.

Finally, a SNAQue binding mechanism for L takes both a document d and a type

T , and returns a value v extractable from d according to T , if one exists.

1More detailed examples of SNAQue bindings can be found in Section 5.6.
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Figure 5.3: The SNAQue architecture

In [119], we have shown that the SNAQue architecture can be correctly imple-

mented, and we have done it for a canonical language core L. In doing so, we have

followed a principle of generality that would allow binding mechanisms for other typed

languages to be derived directly from L’s. In Section 5.6, in particular, we will extend

such canonical mechanism to one for the Java language. For later reference, we sum-

marise here the characteristics of the canonical mechanism.

The canonical language L is defined around a value notation V, a type language

T, and a relationship of typing between the two. In particular, we have chosen for T

a selection of the first-order types commonly found in existing procedural languages.

Canonical types can be recursively built from a set of atomic types, and include record,

set, union, and recursive types. Specifically, a type T ∈ T is one of the atomic types

B1, B2, . . . , BN , a record type [l1 : T1, . . . , ln : Tn], a set type set(T ), a union type

T1 +T2, or a recursive type µX.T , where X is a type variable and the operator µ binds

occurrences of X in T .

Canonical values mirror the available types. A value v ∈ V is an atomic value

bk ∈ Bk, a record value [l1 = v1, . . . , ln = vn], a set value {v1, . . . , vn}, or the empty

set {}. The typing relation is inductively defined in a standard fashion. An atomic

value bk has the corresponding type Bk, while a record [l1 = v1, . . . , ln = vn] has the

type [l1 : T1, . . . , ln : Tn] only if each vi has type Ti. A set {v1, v2, . . . , vn} has the type
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set(T ) only if all the vi have type T , while the empty set has the type set(T ) for all

T . A value v has then type T1 + T2 if v has type T1 or type T2 and, finally, v has type

µX.T if v has the type obtained by substituting µX.T for all the bound occurrences of

X in T .

For the specification of the canonical mechanism, we have defined a fairly simple

self-describing interpretation of canonical values, although the lack of XML support

for set values introduces some subtlety in the definition of sd. We have then defined

the relation of document containment � according to the intuition that a document is a

fragment of another if they are both well-formed and the first is syntactically contained

in the second, as in the case of d′ and d of Section 5.2.

In the canonical binding mechanism, for example, the binding shown in Section 5.5.1

would require the projection of the following canonical type over d:

[member : set([name : String, code : int])]

and result in the identification of the following canonical value equivalent to d′:

[member : {[name = ”RichardConnor”, code = 123517],

[name = ”SteveNeely”, code = 123345],

[name = ”FabioSimeoni”, code = 175417]}]

Finally, we have given an algorithm Ext that takes an XML document d and a

canonical type T , and returns a canonical value v which is extractable from d according

to T . In particular, we have proven the soundness and completeness of Ext with

respect to the canonical specification.

5.6 SNAQue/J

In this Section, we briefly discuss a prototype implementation of the SNAQue archi-

tecture for the Java language. SNAQue/J consists of an API with a single public class
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SNAQueJ which exposes a static method bind for binding to fragments of XML

documents. In particular, bind takes a Class object and a reference to an XML

document, and returns an instance of the class corresponding to the Class object.

Consider the example of Section 5.5.1 and assume that clStaff and doc de-

note the Class object corresponding to Staff and the document d, respectively.

SNAQue/J can then be invoked as simply as:

Staff staff = (Staff) SNAQueJ.bind(clStaff,doc);

If the binding fails an exception is raised, otherwise the program can downcast the

returned object to the projected class.

SNAQue/J is directly derived from the canonical mechanism discussed in Sec-

tion 5.5.2. In particular, the projected classes are mapped onto canonical types before

Ext is invoked. The mapping is then used to convert the canonical values returned by

successful bindings into equivalent graphs of Java objects (see Figure 5.4). The same

extension scheme can be used to derive implementations of the SNAQue architecture

for other typed languages.
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Figure 5.4: The SNAQue/J Architecture

SNAQue/J is thus completely defined by the mapping between Java classes and

canonical types. The mapping is established at binding time, by a reflective analysis of
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the projected class. Roughly, the mapping behaves like the identity function on atomic

types while it associates classes with record types, possibly recursively defined. For

example, class Member would map onto the record type [name : string, code : int].

We derive union and set types by inferring additional information at binding time.

In particular, SNAQue/J maps an array class or any class that implements the Collection

interface onto a type set(T ), using the names of instance variable to deduce the type

T . Consider, for example, the following version of class Member:

class Member {

String name;

int code;

List project;}

where the intended class of objects in list project is the following:

class Project {

String name;

Member coordinator;}

When Member is projected over an XML document, SNAQue/J uses the name project

of the List variable in Member to infer the following recursive type:

µX.[name : String, code : int, project : set([name : String, coordinator : X])]

Inferring union types is less trivial, for Java –like most object-oriented languages–

offers no direct support for them. Partly, this is due to the fact that much of the flexibil-

ity of union types can be achieved with inheritance. In particular, we infer non-disjoint

union types from class hierarchies and disjoint union types from structurally disjoint

classes which implement the same interface, possibly empty. For example, if the fol-

lowing class is in scope when Member is projected:
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class Professor extends Member {

Project[] supervisedProject;}

SNAQue/J maps class Member into the following type: :

µX.[name : String, code : int, project : set([name : String, coordinator : X])]

+

µX.[name : String, code : int, project : set([name : String, coordinator : X]),

supervisedProject : set([name : String, coordinator : X])]

As an example of the second case, consider a binding to a semistructured XML

document in which university projects are represented by project elements having

either a name or a title sub-elements. To capture this terminological diversity,

the binding program may first declare an interface Project with a single method

getName(). It may then declare two classes Project1 and Project2 which

implement Project using a String instance variable called name and title,

respectively. Finally, the program may project Project over the target document,

and let SNAQue/J infer the following type:

[name : String] + [title : String]

Depending on their content, SNAQue/J would convert the project elements in the

document into instances of either Project1 or Project2.

5.7 Conclusions

We have discussed four binding approaches to XML encodings of real-world entities

and investigated the extent to which they preserve the computational advantages of the

host language. The main characteristics and application areas of each approach are

summarised in the following table:
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Data Structure/

Computational

model

Application domain

SAX

string/

parsing events &

callbacks

syntax-oriented processing

DOM
tree/

tree navigation
structure-oriented processing

JAXB

document-

dependent

(via type

generation)/

generic

semantics-oriented processing

mostly in tightly-coupled systems

(regular and stable data, e.g.

DTD-governed)

SNAQue

computation-

dependent

(via type

projection)/

generic

semantics-oriented processing

mostly in loosely-coupled

systems

(data with semistructured

features)

Differently from SAX and DOM, JAXB and SNAQue preserve the semantics of

data and thus the simplicity and safety of programming. In SNAQue, in particular,

bindings are driven by partial and user-specified type projections rather than document

descriptions, as in JAXB. This makes them simpler to define and maintain, especially

in the presence of semistructured and rapidly evolving data.

This suggests that type projections may be fruitfully employed within a dedicated

XML language rather than at its boundary with the file system/network. Early tests

of the hypothesis appear in [26] and [122] in the context of an object-based and a

mixed-paradigm (procedural/query) model, respectively. Interestingly, they bring out

the similarity between partial projections over untyped but self-describing data and
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structural record subtyping of statically typed data (e.g. XDuce’s). Besides achieving

flexibility within a safe environment, however, projections enable partial typing, i.e

typed and untyped views of the same data within the same computation.

111



Chapter 6

Hybrid Applications over XML

This Chapter reports the contents of the following publication:

MANGHI, P., SIMEONI, F., LIEVENS, D., AND CONNOR, R. C. H. Hy-

brid applications over XML: integrating the procedural and declarative

approaches. In Fourth ACM CIKM International Workshop on Web Infor-

mation and Data Management (WIDM 2002), pp. 9–14.

This work embraces the full implications of typeful programming and marks a shift

from external to internal type projections. The focus is on metamorphic languages,

and type projections are employed to decouple the components of a single program

in support of typeful programming. One such language is proposed which integrates

procedural and declarative paradigms for hybrid applications over XML.

6.1 Abstract

We discuss the design of a quasi-statically typed language for XML in which data may

be associated with different structures and different algebras in different scopes. In

declarative scopes, data are labelled trees and may be queried with the full flexibility
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of XML query algebras. In procedural scopes, data have more conventional structures

built out of records and sets and may be manipulated with the constructs normally

found in mainstream procedural languages. By combining the facilities of declarative

and procedural paradigms, the language offers integrated support for the development

of hybrid applications over XML, where data change form to reflect programming

expectations and enable their enforcement.

6.2 Introduction

To date, programming over XML is largely programming over trees of labelled nodes

and string leaves, according to the standard interpretation of the format [123]1. This

can be done in a procedural algebra, such as the DOM [16], or in the declarative algebra

of a dedicated query language, XQuery’s before others [69].

Based on powerful path expressions, declarative algebras offer unrivalled flexibility

for retrieving and transforming the data, in the spirit of query languages. They may also

offer computational completeness and, as in XQuery, an appropriate notion of static

typing. On the other hand, procedural algebras fit within a well-known computational

model inclusive of update. Embedded in mainstream languages via language-specific

bindings, they also promise full integration with existing computational facilities (e.g.

input/output, user interface, database access, network programming, legacy code), a

large user base, as well as proven and familiar development tools.

For their different qualities, the two approaches are complementary and would in-

tegrate well within, say, a single object-oriented language. In spite of their flexibility,

however, labelled tree structures cannot be expected to be adequate choices for all

computational tasks. More familiar programming abstractions - such as pairs, tuples,

records, sets, relations - may better reflect the application’s view of the data. Indeed,
1Stream-based procedural algebras such as SAX [17] are also common, but they are normally used

as high-level parsers and more rarely participate of application-level programming.
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the rise of XML as a universal exchange format for structured data suggests that more

and more XML data will originate in mainstream programming languages and database

systems. How many employees live within programs and databases as labelled trees?

6.2.1 XML and Data Structures

Ignoring for a moment issues of efficiency, inadequate data structures induce linguistic

problems, for programs become soon harder to write, read, and thus maintain. As a

simple example, consider the case of an employee record e which is encoded in XML,

sent over the wire, and then materialised at destination as a labelled tree. Here, the

relationship between the employee and its name becomes one between two nodes and

their labels, whereas it was originally one between a record and the value of its field

name. Accordingly, the sender accesses the name by writing the expression:

e.name

whereas the receiver using a DOM implementation must resort to something like:

NodeList children = e.getChildNodes();

for (int j=0;j<children.getLength();j++) {

Node child = children.item(j);

if (child.getNodeType() == Node.ELEMENT\_NODE) {

String tagName=((Element) child).getTagName();

if (tagName.equals("name")) ...

((characterData) child.getFirstChild()).getData()...}}

It should be evident that even simple operations become unnecessarily convoluted.

Instead of a simply de-referencing the name field of e, the receiver has to: (i) loop

through all the children nodes of e, (ii) distinguish element nodes from other kinds

of nodes potentially parsed from the XML encoding of the data, (iii) identify one of

them as the name node, and eventually (iv) access yet another child in order to get the
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required string value. Of course language-specific APIs may simplify access to rele-

vant nodes by better tuning the tree algebra to the type system of the host language.

Perhaps more significantly, linguistic problems may be sensibly reduced by ‘subset-

ting’ XML and the associated algebra in order to reflect a stronger orientation towards

data rather than documents. It should be clear, however, that the tree structure does not

directly reflect the data semantics required by the receiver and, in this particular case,

that originally intended by the sender.

When computations are statically typed, the problem is further aggravated by a loss

of safety, for correctness can only be guaranteed for generic operations on strings and

trees, not employees. For example, name was part of a record type at the sender and it

has become data within the tree structure at the receiver. As such, it escapes the static

knowledge of the system which may no longer ensure its correct use before program

execution or, worse, not ensure it at all (e.g. when a misspelled label accidentally

identifies another). Performance is a further concern for, again, the receiver’s system

can optimise resources only within the limits of its static knowledge of the tree data.

For instance, the system ignores now that all employees have a name.

The declarative algebras of query languages alleviate considerably these problems

by ‘hiding’ the underlying tree structures under a navigational syntax, thereby achiev-

ing succinct and clear programs. XQuery shows also that fine-grained type safety is not

an implication of conventional data structures but can be extended to trees, while recent

developments show that this can done via extremely flexible type systems (eg. [104]).

The choice of data structures, however, extends its impact on semantics: like the pro-

cedural XML programmer, the declarative one is still forced to perceive employees as

trees in spite of more intuitive models of the data. Besides, the completeness of pro-

gramming environments and the notion of mutability are normally outside the scope

of query languages.

We believe that the problem here is not directly related to labelled trees, which
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remain the preferred structures for computations that interpret the data as the hierar-

chical pattern of relationships in which they are organised (i.e. independently of more

refined, domain-specific semantics). Such ‘structural computations’ include most doc-

ument manipulations – i.e. the original and still primary target of the format – but also

flexible querying, filtering and transformation of arbitrary data. Trees are also ideal for

semistructured data management , for their generality can easily accommodate spatial

and temporal irregularities in the data which would otherwise defeat or strain the more

rigid structures of conventional typed technologies (cf. [74]).

We argue instead that problems similar to those discussed above would surface with

any structure imposed by the wire format and, more generally, with any incarnation of

the one-size-fits-all approach to data modelling.

The example of the SAX programming model and algebra is here appropriate. With

SAX, the XML data are served to applications as a stream of textual tokens, where

each token identifies the occurrence in the data of some distinguished component of

the format. The associated programming model is then based on callbacks issued in

correspondence with token parsing events. Overall, the SAX programmer is invited

to share almost the same view of the data as the underlying parser’s. Compared with

DOM, this makes it slightly easier to specify computations which interpret the data

as the text in which they are encoded; such ‘syntactic computations’ include token

counts, deep queries and, most commonly, high-level parsing routines for instantiat-

ing application-specific or domain-specific data structures. Nonetheless, it is easy to

see that the problems associated with DOM programs resurface unsolved, and in fact

aggravated, when the application logic is directly cast in terms of SAX structures and

algebra. On the other hand, SAX programming is notedly efficient in terms of memory

consumption. This reminds us of the impact of data structures on performance and

show us that different structures may satisfy different computational requirements.
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6.2.2 A Language for Hybrid Applications

Motivated by the previous observations, we advocate the importance of applications

in which the same data are subject to different structural views and are manipulated

according to different algebras in order to support different programming tasks. For

example, some components of such hybrid applications, as we may call them, may

benefit from a tree view over the data and from the flexibility of a query algebra. Other

components may instead be safer and simpler through, say, a view based on record and

set abstractions and their associated algebras.

In practice, hybrid applications are common and yet the integration of their compo-

nents is essentially unsupported. XML programmers must associate components with

different tools and computational environments – such as a mainstream programming

language and a dedicated query engine – and then share data between them through

the file system or the network. This forces interactions between components to be

‘off-line’ (i.e. planned in advance of execution) and strictly sequential (a component’s

output becomes another’s input). Lack of integration becomes also lack of efficiency,

due to the unnecessary operations of input/output and parsing of the data. Updates oc-

cur only at the file level while sharing between components require ad-hoc conversions

between data structures which are prone to errors and always irrelevant to application

semantics. Overall, the XML programmer is entirely responsible for understanding

and maintaining the mapping between the application design and its scattered imple-

mentation.

In our research, we explore the possibility of writing hybrid applications within the

context of a single programming language, where the imposition of structure over the

data is transparent and entirely under the programmer’s control. In this paper, in par-

ticular, we experiment with two different interpretations of the data and associate them

with different scopes in the program. In declarative scopes, the data are labelled trees

and can be manipulated with a simple query algebra based on XPath expressions [124].
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In procedural scopes, the structure of the data is a recursive composition of records and

sets and can be manipulated with conventional algebras. In the latter case, program-

mers may also count on a selection of the basic types and programming constructs

found in most procedural languages. We believe that integrating the procedural and

the declarative paradigm within the same language would satisfy most requirements

for structural change associated with hybrid applications.

In such language, programs could be partitioned according to the view which is

syntactically in scope, with data changing form upon entering and exiting scopes. The

passage to a declarative scope would be straightforward, for the data can always be in-

terpreted as a labelled tree. Different is the opposite case, when the projection of more

constrained structures over trees would introduce the possibility of failure. We propose

to solve these problems by resorting to a quasi-statically typed language and interpret-

ing structural projections as type assertions attached to program variables. Noticeably,

type assertions would be verified dynamically, when variables are bound to trees, and

yet their scope within the program would be statically typechecked.

The rest of the paper is organised as follows. Section 6.3 introduces our model

of type projections while Section 6.4 illustrates by way of example the design of a

language core built around the projection model. Section 6.5 examines related work

and, finally, Section 6.6 draws some conclusions and suggests directions for further

development.

6.3 Type Projections

We have successfully investigated the problem of type projections over labelled tree

data in the context of SNAQue, a language-independent architecture for binding quasi-

statically typed programming languages to XML data which emanate from outside

their context. SNAQue is formally defined in [119], while an implementation specific
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to the Java language is discussed in [125]. In the same paper, the approach is also

compared with related work, including SAX and DOM and other high-level XML data

binding solutions, such as Sun’s JAXB [15].

With SNAQue, the programmer projects a type over an XML document in an at-

tempt to instantiate the content of the second into a value of the first, and thus derive

the benefits discussed in Section 6.2. Conceptually, this requires: (i) parsing the file

into a labelled tree structure with string leaves, and (ii) establishing whether the parsed

tree is an encoding of a value of the projected type according to a pre-defined mapping

between language values and labelled trees. If this is the case, the value is materialised

from the tree and may be subject to application logic, otherwise an indication of failure

is returned to the programmer1.

For generality, we have studied type projections in the formal context of a canon-

ical language defined around a value notation, a type language, and a relationship of

typing between the two. In particular, we have chosen a selection of structural types

commonly found in existing procedural languages: built from a set of atomic types,

they include include record, collection, and disjoint union types, possibly recursively

defined. Specifically, a type T is one of a finite set of atomic types Bi, a record type

[l1 : T1, . . . , ln : Tn] where the li are drawn from some pre-defined set of labels, a

collection type coll(T ), a union type T1 + T2, or a recursive type µX.T , where X is a

type variable and the operator µ binds occurrences of X in T 2.

The choice of structural types reflects the non-procedural nature of a general-

purpose and textual data format, and thus the restricted applicability of projecting

function types and data abstractions built around them. However, non-functional com-

ponents of abstract data types may well be projected over XML encodings of the state

1An optimised implementation may well prefer a stream-based view over the data and thus inter-
leave parsing and projection to avoid materialising the tree structure. This is the strategy adopted for the
latest implementation of SNAQue.

2Recursive types do not need to appear such theoretical guise within programs, but can be derived
as usual from self-referencing type declarations.
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of their values. An example of this can be found in [125], where we have stripped

Java classes of their names and method declarations before projecting them over XML

documents.

Collection types have the semantics of sets, although other bulk types preserving

ordering and duplicates could have been equally considered. For example, the projec-

tion of array types is considered in [125]. Union types are important additions to the

type language, for they allow to capture some of the irregularity allowed within tree

structures, especially those obtained from parsing semistructured XML documents. In

addition, they justify the choice of projecting recursive types in the lack of cyclic graph

structures. The combination with recursive types is also useful within the language dis-

cussed in Section 6.4, where it allows the definition of finite recursive structures. In this

context, our union types are similar to the united modes of Algol 68 [51], in that they

act as typed views of more concretely typed values but do not introduce new values in

the language.

Canonical values mirror the available types. A value v is an atomic value bk ∈ Bk,

a record value [l1 = v1, . . . , ln = vn], a collection value {v1, . . . , vn}, or the empty col-

lection {}. The typing relation is inductively defined in a standard fashion. An atomic

value bk has the corresponding type Bk, while a record [l1 = v1, . . . , ln = vn] has the

type [l1 : T1, . . . , ln : Tn] only if each vi has type Ti. A collection {v1, v2, . . . , vn} has

the type coll(T ) only if all the vi have type T , while the empty collection has the type

coll(T ) for all T . A value v has type T1 + T2 if v has type T1 or type T2 and, finally,

v has type µX.T if v has the type obtained by substituting µX.T for all the bound

occurrences of X in T .

For parsing purposes, we have considered a tree interpretation of XML data which

abstracts over the document-oriented features of the format (ordering, processing in-

structions, etc.) and concentrates on the ’data-oriented’ features (e.g. naming and
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nesting)1; again, this reflects our view on XML as a generic exchange format. The

interpretation is straightforward and Figure 6.1 gives a visual example of the tree re-

sulting from parsing a sample XML document.

<store>
  <name> BooksRus </name>

<book>
     <author> John Backus </author>
     <author> Peter Naur </author>
     <title>XML Does Not Care </title>

  </book>
<book>

<fname> Stan </fname>
<sname> Lee </sname>

</store>

<book>
  </book>

  </book>

     <author>

</author>
     <title> The Annotated Spiderman </title>

     <title> The Bible </title>

XML ... The An ...

TheBible

name

store

BooksRus authorauthor author title

book

title

book book

fname sname

title

Peter ...John ...

LeeStan

Figure 6.1: XML Parsing

The tree encoding of values is illustrated by way of example in Figure 6.2, which

shows the tree corresponding to the record:

v=[a=1,b={"two,"three"},c=[d="four",e=5],f={}],

in the reasonable assumption that string and integers are among the available atomic

values. Essentially, atomic values are encoded as childless nodes labelled with a textual

encoding of the values themselves, while the encoding of records is built from that of

their field values via nodes labelled with corresponding field names. This seems rather

intuitive given that, purely from a structural perspective, records can be seen as labelled

trees constrained to have no nodes with two or more equally labelled children.

An encoding of collections is instead less obvious for labelled tree structures give

no direct support for aggregations of anonymous values. One possibility would be to

1For flexibility, we allow attributes and parse them as subelements.
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follow the encoding rule of records and choose some special label, say ε, in place of

field names. However, we feel that such an explicit introduction of collections within

tree structures would: (i) complicate parsing of external XML documents which do

not follow the convention and yet could be conveniently projected over, (ii) force early

distinctions in the data between record and singleton collections, and (iii) complicate

either the specification or the evaluation of queries within the integrated language (see

Section 6.4). Overall, introducing and then managing ε-nodes would introduce unnec-

essary overhead within the projection framework.

We prefer instead to encode collections indirectly, that is only when they occur as

values of record fields. In this case, we specialise the encoding rule for records by

interpreting a collection-valued field as a collection of homonymous fields. For exam-

ple, the collection {"two,"three"} is encoded in the context of the surrounding

record as a collection of two string valued b-fields. In particular, the encoding does

not preserve empty collections, such as the value of the f-field of v. Besides solv-

ing most of the problems raised above, we believe that this encoding reflects common

practices in XML-based modelling. Its main drawback is that it forces collection types

to be wrapped within record types before being projected, which may introduce some

programming noise when typing the entire document (see Section 6.4).

A last problem in the encoding is introduced by the mismatch between node-

labelled trees and anonymous record values, which raises the question of what labels

should be used at root nodes. In previous work, we have avoided this problem by

interpreting XML-data into edge-labelled tree structures, in the spirit of other data-

oriented approaches. Here, we find more convenient to maintain labels on nodes in

order to rely later on standard query semantics for XML. As with collections, our view

is then that the label may only be provided by the context in the form of the field

name of an enclosing record. For example, the root of the tree that encodes the record

[d="four",e=5] is provided by the name of the c-field of v. Besides explain-
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ing the label omitted at the root node in Figure 6.2, this implies that tags of top-level

document elements, such as store in Figure 6.1, are simply ignored for projection

purposes.

Type projections can finally be illustrated with the following example, where the

type Store:

Store =

[name:string,

book:coll([title:string,author:coll(Author)]

Author = string+[fname:string,sname:string]

is projected over the data in Figure 6.1. This results in the language value store, where:

store = [name="BookRus",book={book1,book2,book3}]

book1 =

[title="XML Does Not Care",

author={"John Backus","Peter Naur"}]

book2 =

[title:"The Annotated Spiderman",

author={[fname="Stan",sname="Lee"]}]

book3 = [title="The Bible",authors:{}]

four

b ba c

ed1

5

threetwo

....

 [a = 1, b = {"two","three"}, c = [d = "four", e = 5], f = {} ]

Figure 6.2: Encoding example
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6.4 Procedures and Queries

Technically, this work originates from the hypothesis of moving tree data and the pro-

jection model within the language, rather than at its boundary with the file system or

the network. At this early stage of investigation, however, our aim is not to define and

implement a complete language, rather to explore the design space induced by the type

projection model. In this Section, in particular, we use a pseudo-syntax to illustrate by

way of example a number of possible extensions to the canonical language.

For the procedural fragment of the language, we assume the availability of type

declarations, functional and procedural abstractions, assignments, and a standard choice

of control structures, atomic types, and value operators. We also assume static scoping,

by-reference semantics for function and procedure application, as well as a regime of

static typing in all but specific points in the programs, as shown below. Finally, type

equivalence is structural to match the nature of type projections.

As a first example, the following program fragment declares and invokes a function

addBook to increment the number of books of an existing collections:

type Book = [title:string,isbn:string,price:number]

proc addBook(Book book, coll(Book) booklist){

for b in booklist

if (b.isbn = book.isbn) remove b from booklist

add book to booklist

}

val coll(Book) bookcoll := {}

addbook([title ="The Annotated Spiderman",

isbn="0-567-00256-8",price =23.45])
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The code should be self-explaining: the atomic types number and string have

their standard meaning, while the operators for..in, add..to, and remove..from

form the bulk of the collection algebra. Note also the use of anonymous types in dec-

larations of values and formal parameters.

We then introduce XML in the language in the form of values of a type tree

and combine it with an XPath-based query algebra into a dedicated form of functional

abstraction. In particular, queries may take one or more labelled trees with string

leaves in input and return a labelled tree or an atomic value in output, possibly using

well-formed XML as a literal syntax.

For example, the following query findBooks shows the flexibility of declarative

algebras in dealing with semistructured input. The query takes a tree representation

of an online bookshop’s catalog and returns the title, ISBN number, and price all the

books scattered in the data under differently labelled nodes and possibly at different

levels of depth:

query findBooks($catalog) {

for $book in

$catalog//book union $catalog/reviews/entry

return

<book>

$book/title

$book/isbn

$book/price

</book>}

}

Query semantics is standard, and in any case its details have little relevance in this
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context, where the focus is on the integration of programming paradigms. Accordingly,

we assume the reader’s familiarity with XPath and FLWR-like expressions and only

point out that the query processor embeds the sequence of book elements produced

by the return clause in a system-defined ROOT element, so as to return rooted trees

to the invoking scope.

This brings us to query invocations, which represent the boundaries between pro-

cedural and declarative scopes. Actual parameters may have any type but they are in

any case encoded as trees before binding to formal parameters, according to the rules

described informally in Section 6.3. Return values may be implicitly projected over

via assignments to typed variables and formal parameters within procedural scopes.

This is illustrated in the next example, where two trees enter the same procedural

scope. The first, read("catalog.xml"), is parsed from a local file via the pre-

defined function read but exits the scope immediately as the actual parameter of an

invocation of findBooks. The second, findBooks(read("catalog.xml"),

returns from the query and remains in scope with the form of a record. It is then

updated before being written back to file via the predefined procedure write:

type BookList = [book:coll(Book)]

val BookList books := findBooks(read("catalog.xml"))

for b in books.book

b.price := b.price*1.1

write(books,"books.xml")

The previous example captures the essence of the language, for it shows that as-

signments may entail type projections, implicitly. Type BookList is here projected

over the tree output of findBooks with the intention of binding the resulting record

to variable books. The model outlined in Section 6.3 and the body of findBooks
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ensure that the projection is successful; had it not been, an error would have been re-

turned to the programmer, such as a null value or some kind of more explicit exception.

The collection of books contained in books can then be conveniently browsed and the

individual books updated to reflect an increase in price1.

The previous example shows what we believe to be a standard programming pattern

for the language: data is flexibly filtered or transformed via the query algebra to then

be updated or otherwise manipulated via procedural programming abstractions and

facilities. As a further example of this, the following fragment populates a listbox in

some user interface with book titles, possibly in response to a user query:

type ListBox = ... ListBox

fun newListBox (string name) {...}

proc fillListBox (ListBox box, coll(string) data) {...}

query findTitles($catalog, $publisher, $year) {

let $books := $catalog//book

for $book in $books,

$y in $books//year,

$p in $books//publisher

where $y = $year and $p = $publisher

return $book/title

}

val ListBox titleBox = newListBox ("Book Titles")

val [book:coll([title:string])] books :=

1Type coll(Book) cannot be directed projected over the data for the encoding rules described
in Section 6.3 require that a record type such as BookList be wrapped around it. While this does
introduce some noise in the code, terseness may be regained by introducing ad-hoc projection rules. For
example, collection types may be directly projected over trees in which all the children of the root have
the same label (book in this case).
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findTitles(read(catalog.xml"), "Addison", 2002)

val coll(string) titles = {}

for b in books.book

add(b.title) to titles

fillListBox(titleBox, titles)

Listboxes and their interface are here assumed to be part of an available graphical

toolkit. In the toolkit, in particular, type ListBox describe listboxes in terms of pre-

viously defined types, procedure newListBox creates a named listbox, and function

fillListBox draws the content of a listbox from a given collection of strings. The

latter is obtained as the output of the query findTitles, which extracts it from the

catalog of books of the previous example using information received from the invoking

context as a filter. .

As a final example, consider the case of a simple hybrid application that selects

the cheapest price for a list of books. Assume that the list is contained in a relational

database and comprises the recommended books for the courses offered by a university

department. Assume also that the language is supported by a database access API

and that two functions getRecBooks and updateRecBooks have already been

defined as abstractions for interfacing the course database and, respectively, extract

and update the list of recommended books. Finally, assume that information on a list

of online stores is locally available in an XML file "stores.xml":

type Store = [name:string,catURL:string]

type StoreList = [store:coll(Store)]

// database access

fun coll(Book) geRecBooks() {...}

proc updateRecBooks (coll(Book) rl) {...}
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query getLowerPrices($list, $catalog) {

for $b1 in list, $b2 in $catalog//book

where $b1/isbn = $b2/isbn and $b2/price < $b1/price

return {

<book>

$b2/title

$b2/isbn

$b2/price

</book>

}

val coll(Book) recList := getRecBooks()

for b in recList

b.price := MAX_PRICE

val StoreList stores := read("stores.xml"))

for s in stores.store {

val BookList catalog =

getLowerPrices([book:recList],read(s.catURL))

for b in catalog.book

addBook(b,recList)}

updateRecBooks(recList)

The application is very simple and the reader should compare it with the solutions
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currently available. First, the list of recommended books is retrieved from the database

as a collection value recList. Book prices in recList are then initialised to some

large constant to ensure that an update will actually take place.

Similarly, the store list is read from"stores.xml" and assigned to variable

stores. This entails the projection of type StoreList, which asserts that, for

each store, the file contains a name and the URL of a corresponding XML catalog. As-

suming the assertion is correct, the catalog of each store is fetched from its URL with

an overloaded version of read and passed to a query getLowerPrices. The latter

receives also the recList, after this has been wrapped within a record and the latter

encoded as a tree upon entering the declarative scope (again, rooted in a node labelled

by the system as ROOT)1. This offers a more substantial example of a conventional

language value that changes its form in order to be queried.

In particular, the query filters the books in the catalog which are recommended

and currently offered at a lower price. When returned to the procedural scope within

the record value of catalog, the new offers are reflected in recList with repeated

invocations of the function addBook defined above. After all the catalogs have been

so processed, recList is eventually written back to the database.

6.5 Related Work

The language sketched in Section 3 offers what we believe to be a unique combination

of: (i) a full hybrid programming paradigm which allows arbitrary computations to be

expressed in either a procedural or a declarative style, according to convenience, and

(ii) an unusual form of structural polymorphism whereby, for similar reasons, different

structures can be imposed over the same data. It is useful to conceptually separate

1Similarly to the case discussed above, the record surrounding recList is necessary for out inter-
pretations of collections and it may be avoided with ad-hoc encoding rules.
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the two features and notice that while the first may be associated with a single data

structure, the second may exist in, say, a fully procedural language.

To some degree, similar hybrid programming paradigms may be found in database

languages which layer procedural constructs over the query algebra and data model of

an underlying DBMS. In Oracle’s own PL\SQL, for example, the programmer may

specify SQL queries against a relational database, assign the resulting values to vari-

ables, and then computer over them with looping and conditional statements. Here,

however, the query algebra is functional to interfacing the DBMS rather than improv-

ing programming expressiveness; in particular, the SQL algebra cannot be used over

values procedurally generated or already extracted from the database.

Interestingly, a tight integration of declarative and procedural algebras is not hard to

imagine in the XML scenario, where a single tree structure may offer both an XQuery

and a DOM interface within the same mainstream language. Unfortunately, we are

not currently aware of the availability of synchronised implementations of the two

algebras.

Polymorphic behaviour, on the other hand, is far more common across mainstream

and theoretical languages alike. Normally, however, it is related to type abstractions –

such as those induced by subtyping relations and type parameters – which hide prop-

erties of the data that are contextually irrelevant [37]. Accordingly, data may only

be subject to ‘quantitative’ changes and may only be manipulated under progressively

restricted algebras. We propose instead a less regular, ‘qualitative’ form of polymor-

phism which increases language expressiveness in a rather different way: rather than

enlarging the input of programs, perhaps to allow them to be reused over time, it ex-

poses the features of that input that most adequately support its intended manipulation.

Interestingly, we have found this polymorphic behaviour in the dynamically typed

ECMAScript standard [126], where it follows largely from the object-based paradigm

and an extensive coercion scheme. In ECMAScript, structured values can be equally
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manipulated as objects, associative arrays or – under more restricted circumstances –

heterogeneous arrays. As objects and arrays, they support familiar programming ab-

stractions via algebras based on de-reference and indexing operator, respectively. As

dictionaries, they can be more flexibly browsed with a combination of a look-up oper-

ation and a corresponding looping control structure. Building on such flexibility, we

have experimented with adding types to the Javascript implementation of the standard,

along with the possibility of projecting them over tree structures parsed from XML

data. The reader interested in this alternative approach to the issues raised in the paper

may refer to [26].

To conclude, our model of type projections extends the tradition of dynamic type-

checking within statically typed languages, whereby some types are asserted statically

but the soundness of those assertions is ascertained at run-time against some self-

describing representation of values. This occurs when the programmer wants to force

the type-checker to restrict, broaden, or otherwise revise its assumptions on the data,

and is common in casting and coercing operations, as well as in operations associated

with variant and union types(cf. [1]). In particular, our projections resemble those re-

quired by infinite union types – such as Amber’s dynamic [59] and Napier’s 88 any

[4]) – and we may well make them explicit introducing an equivalent case..of state-

ment. As used in SNAQue, in particular, they have also the same functionality, namely

to allow type-safe access to data which emanates from outside the context of the lan-

guage, such as persistent or network data. Our labelled trees, however, do not need

to be type-tagged at run-time – neither through an injection operation nor implicitly

– for they are sufficiently self-describing to enable dynamic type-checking. Accord-

ingly, they offer advantages of simplicity and evolution within distributed systems with

significant degree of local autonomy.
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6.6 Conclusions and Further Work

We have identified a principle for XML programming and then proposed it towards

the design of a quasi-statically typed XML language. The principle is that, whenever

possible, the encodings of a universal exchange format should be interpreted according

to the expectations of the applications that consume them rather than the intentions of

those which generated them, and certainly not in the computational vacuum of the

format definition. An implication of this is that, however well some data structures

may satisfy some expectations, no single data structure may be expected to adequately

reflect all the possible interpretations.

Accordingly, the language allows users to see data from either one of two different

structural perspectives. As trees of labelled nodes and string leaves, the data may be

flexibly queried, filtered, or otherwise transformed. As potentially recursive structures

built from a set of atomic values via record and collection constructors, they may be

more safely and directly manipulated, possibly updated, and overall injected within a

complete programming environment. We have then proposed and described a model of

type projections which gives data the required degree of polymorphic behaviour at the

cost of introducing a controlled form of dynamic type-checking in an otherwise stati-

cally typed regime. We believe that, for the resulting integration of the declarative and

procedural paradigms of computation, such a language may facilitate the development

of hybrid applications over XML, where data are subject to different interpretations in

different points and at different times.

Due to the novelty of the approach, it is not yet clear what language features would

best support the development of hybrid applications.

Implicit type projections let us exclude the type tree from the syntax available to

the programmer and to confine it only into more formal accounts. In particular, the pro-

grammer may overlook the fact that expressions such as read("catalog.xml")
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denote trees and rather think that the latter can only occur in declarative scopes. This

increases the readability of programs and, most importantly, induces a clear separation

between procedural and declarative scopes in the mind of the programmer.

However, making tree a ‘first-class’ type in procedural scopes would introduce

a form of partiality in type projections and may thus be considered for the benefit of

the expert programmer. The benefits are essentially those associated with an infinite

union type, especially its incarnations in persistent programming languages (cf. [4]).

Projected over a tree within a collection or record type, in particular, it would allow

some part of the tree to remain intentionally unspecified. This may be useful as a type

abstraction mechanism, where it would give some of the flexibility normally associated

with parametric polymorphism. It may also be used for incremental projections over

trees, whereby the complete typing of trees is defined in two of more steps and the

outcome of each step determines the definition of the successive one.

In addition, the identity of data is currently preserved across procedural scopes

(due the by-reference semantics of procedure and function application) but only par-

tially when passing from procedural to declarative scopes (due to the standard by-copy

semantics of query algebras). In particular, while all values can currently become trees,

they cannot ‘round-trip’ and return to assume more constrained shapes without losing

their identity. Accordingly, programs in which parts of conventional values are flexi-

bly retrieved within declarative scopes in order to be updated later, upon returning in

procedural scopes, cannot be currently written. While a by-reference semantics for

queries may be considered, it would require a passage to a graph-based data model and

should therefore be carefully considered.
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Concluding Remarks

In summary, we have presented a model for binding statically typed programs and

self-describing data based on type projections. We have shown that the model exploits

the potential for loose coupling which inheres in self-description in order to endorse a

principle of typeful programming over shared data: the type of the data should vary in

accordance with the requirements of individual programs.

We have argued that loose coupling is key between programs that execute in co-

operating but autonomous runtimes. Accordingly, type projections may be employed

at the boundary of typed languages to regulate the exchange of untyped data across

the nodes of distributed systems. External type projections give rise to a class of data

binding tools for mainstream languages and standard self-describing formats, such as

XML.

We have also argued that loose coupling is desirable between programs that ex-

ecute within a single runtime, where conventional typechecking regimes may unduly

constrain interpretations of shared data. Type projections may then be employed within

typed languages to regulate the exchange of typed data across local application compo-

nents. Internal type projections give rise to metamorphic languages, where an uncon-

ventional ‘data-first’ approach to dynamic typechecking extends support for typeful
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programming beyond the scope of polymorphism and coercions.

Overall, we believe to have put type projections on solid conceptual ground. In

the process, we have uncovered general connections between self-description, loose

coupling, and typeful programming which can be readily applied to the understanding,

evaluation, and design of a wide range of programming technologies. This is especially

true in the context of XML processing, where our analysis yields new insights into

the motivations and limitations of widely deployed tools and popular programming

practices.

In particular, our analysis in the first Part of this Dissertation included:

• an account of typechecking practices which culminates with the identification

of the principle of typeful programming. This qualifies and generalises the role

of types in programming languages beyond the conventional viewpoint of pro-

gram correctness. Most importantly, it offers the motivation that unifies all the

applications of type projections.

• an account of self-describing data and its implications for general-purpose data

processing. To the best of our knowledge, this represents the first systematic

attempt to analyse self-description in the formal literature. Type projections then

emerge as a mechanism to exploit the potential for loose-coupling which inheres

in self-describing data.

• the identification of a new class of tools based on type projections for binding

statically typed languages and self-describing data, and their comparison with

related tools in the mainstream.

• the identification of metamorphism, a novel form of type abstraction that gener-

alises over polymorphism and coercions under a data-first approach to dynamic

typechecking.
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With concepts firmly in place, we have outlined and sampled the design space

induced by type projections. In particular, our contribution in the second Part of this

Dissertation included:

• a formal framework for the definition of external type projections and its appli-

cation to an idealised language with structural types. This serves a model of

the design and implementation of binding tools for mainstream languages and

standard self-describing formats.

• a report on the design and implementation of prototype binding tool for Java and

XML.

• a proposal for the design of a metamorphic language that unifies procedural and

declarative paradigms for computing over XML.

The formalisations and applications shown in the previous Chapters, however,

served to prove the concepts. They answered the research question: can we build

useful data binding tools and metamorphic languages based on type projections? We

now face a broader question: what data binding tools and metamorphic languages can

we build? Much work remains to be done to address this question. While some of the

work has been already carried out, we have not discussed it so far. We then conclude

the Dissertation with an overview of the directions in which the investigation has been

and still could be pursued further.

***

For external type projections, one way forward would be to evolve the prototype

presented in Chapter 5 into a full-fledged data binding tool for XML. The prototype

focuses on the extraction of language values from external data, but it does not recog-

nise or preserve the full range of XML structures, nor does it externalise language
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values back into self-describing forms. Similarly, the prototype falls short to meet-

ing real-world expectations concerning the pre-compilation and customisation of bind-

ings. However, even though there are valid research questions behind some of these

functional requirements — e.g the ‘impedence mismatch’ between object-oriented and

document-oriented structures — the issues are largely unrelated to type projections, are

too focused on the target data format, and have been sufficiently explored [127]. Of

more interest are instead novel applications scenarios, particularly those that require

extensions to the formal framework presented in Chapter 4.

Projections over Graphs. As a first example, we note that the framework is de-

fined over tree-based representations of data, in line with the basic definition of XML.

Yet self-describing data can form graph structures, and there are conventions to encode

graphs in XML which are endorsed in many applications domains. Type projections

over labelled graphs may be relatively easy to implement, but we do need to extend

our formal framework to guarantee the soundness and completeness of the implemen-

tations. The extension is reported in [25], and it is far from trivial. Partly, this is

because natural models of cyclic structures give rise to non-wellfounded sets, which

are axiomatically excluded from classic set theory [128]. To preserve such models, we

must embrace hyperset theories and approach definitions and proofs with less familiar

tools, such as simulation and co-induction [129]. In addition, the possibility of cycles

and sharing in the data imply that multiple types may be simultaneously projected on

the same node. This should be allowed only if we can extract a value from the node

which has all the types projected over it. Introducing and enforcing notions of com-

patibility between types (such as equivalence or subtyping) is possible, but it raises

its own problems: the definition of type relationships is complicated by the presence

of recursive types [111, 130]; more seriously, the definition of complete algorithms

is complicated by the presence of union types, and it requires expensive backtrack-

ing techniques. It is as yet unclear whether the lack of completeness is of pragmatic
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significance.

Projections over Streams. Issues of data complexity aside, we meet different

challenges and opportunities if we lift certain assumptions on how data becomes avail-

able for binding. So far, we have assumed it to be accessible in its entirety and for

as long as the program needs it. It is increasingly common, however, to compute

over data streams, where random access is granted only on a small portion of the

data at the time. Streamed processing may be used opportunistically, to address un-

favourable ratios between the available memory and the size of the data; it may also

reflect the way in which the data is generated, rapidly and continuously. In all cases,

the model raises requirements of locality and efficiency against programs, which are

best matched by certain classes of queries (e.g. filters). Streamed processing is ex-

tensively discussed for relational data [131], but XML streams are also widely in-

vestigated [132, 133, 134, 135]. Most approaches focus on partial translations from

declarative query languages (such as XPath or XQuery) to networks of finite automata,

which then consume the stream along the events of a suitable parser (typically SAX).

Data binding tools normally do not enter the picture, as the expectation is that they

may be used downstream, to bind query results as these become available from the

automata. With type projections, however, we can integrate query execution and data

binding within the context of a single high-level language. The key observation here is

that many queries may be decomposed in two sub-queries: a primary filter that iden-

tifies data with relevant structure, and another query that transforms each instance of

this data into a query result. This suggests a ‘progressive’ model of query evaluation in

which the two sub-queries execute asynchronously and only the structural filter inter-

faces the stream. Type projections can support this model when the filter is relatively

simple and the transformation relatively complex, as it is the case with queries that

target regular subsets of semistructured data. For such queries, the transformation may

be expressed in the host language and the type of its input may be projected over the
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stream as the structural filter. The approach is discussed in detail in [27], where the

formalisation and implementation of type projection is appropriately cast in terms of

automata theory.
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Distributed Projections. Separating program execution from type projection en-

ables applications other than streaming. In the prototype discussed in Chapter 4, the

separation occurred over a network: programs executed in client runtimes while types

were projected in a server runtime, locally to the data. Clients sent the required types

and then computed over the values extracted and bound by the server as CORBA ob-

jects. Recently, we have migrated similar ideas to different technologies, replacing

the shared abstractions of distributed objects with standard message exchanges be-

tween Web Services. This causes a shift in responsibilities: values are now bound

locally to clients against self-describing data that is extracted and returned by the ser-

vice as the output of successful projections. As in the streaming application discussed

above, projections act as filters while the interpretation of the data occurs downstream.

The implications are now in terms of reduced coupling, as clients and service need

no longer to synchronise on a type language. The service may publish a type lan-

guage for projection, but clients may use different types and technologies for binding,

including again type projections. Furthermore, the types used at the service are not

constrained by its implementation language, which may even be dynamically typed;

they may be designed or chosen for their flexibility in characterising self-describing

data. We have followed this approach in a service-based system that controls a large-

scale, production-level infrastructure for international scientific research1. A key data

management service in the system provides its clients with access to a wide variety of

data repositories, both internal and external to the infrastructure. The service exposes

a data model of edge-labelled trees with untyped text leaves, which it exchanges using

a minimal subset of XML; it then delegates to plug-ins the task of adapting the tree

model to the remote repositories. Clients can require trees with a given topology and

given content at the leaves. These requirements are captured by ‘tree types’, which are

projected by plug-ins over tree representations of the data returned by the repositories.

1http://www.gcube-system.org.
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The parts of the trees that do not match the type are pruned, the rest are returned to

clients for binding.

***

All the applications above face limited issues of language integration. The host

language is characterised exclusively in terms of its type language and value space,

as reflected in the formal framework of Chapter 4. This is precisely what gives wide

and immediate applicability to external type projections. As we move from external

projections to internal projections, however, we must contend with a larger number of

variables, all of which relate to the design of the host language.

As a first implication, it is unclear whether we can still formally capture the essence

of internal type projections with a useful degree of generality; rather, we plan to further

the investigation in terms of concrete language designs. In addition, we have already

identified cases in which type projections are in clear tension with some instantiations

of these variables. We have mentioned in Section 1.3.2 the problematic interaction

between type projections and update, and hinted at the scope for solutions. We also

note here that issues arise with data abstraction as well, e.g. with the encapsulation of

structure which is found in mainstream languages. Equally, we are as yet unclear about

the interaction between type projections and other language features, such as inclusion

and parametric polymorphism, or nominal typechecking.

While these issues define a clear agenda for the investigation, we note that they do

not threaten the possibility of useful applications. The language proposal in Chapter 6

proves the point by showing that metamorphoses may be fruitfully introduced into a

language with update and structural typechecking, but without data abstraction and

polymorphism. In fact, solving the issues may be of little value per se if the solutions

compromise the pragmatics of the language, i.e. increase its overall complexity or de-

crease its expressiveness. In this sense, the issues may indicate that the integration may
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be best pursued for languages with particular computational models and for particular

applications domains, e.g. purely functional languages or languages for data mod-

elling and integration. Alternatively, they may indicate that the integration may not be

orthogonal to the design of the language; rather, it may be confined to data-oriented

fragments of a general purpose language, in the spirit of [136]. The overall theme

of the investigation is thus to discover the identity and character of a metamorphic

language.

Partial Typing. In keeping with this theme, the very assumption of integrating type

projections in a statically typed language may be questioned. We have already shown

in Section 2.6 that a useful degree of static typechecking is only one of the benefits that

we expect from typeful programming, hence from metamorphoses and internal type

projections. We can forego it as long as we devise means other than types to capture

the interpretations that we want to project over self-describing data (e.g. representative

values), or as long as we use type expressions exclusively for dynamic verification.

Less drastically, we can retain the assumption of static typechecking, but introduce it

‘partially’ within a dynamically typed language. The idea aligns with the motivations

for some of the hybrid typechecking techniques that we have discussed in Section 2.5,

particularly gradual typing techniques. As with gradual typing, programmers would

have the option to annotate program variables with type assertions. The typechecker

would verify the available assertions insofar as they give evidence to support its deduc-

tions. When they do not, most noticeably at the boundary between typed and untyped

program fragments, the typechecker would prepare the runtime for dynamic verifi-

cation and rely on induction to move its analysis forward. The key difference from

gradual typing is in the grain and nature of dynamic verification. In gradual typing,

verification occurs at the application of primitive operations, as a conventional type-

check against the types that tag the operands. In our scheme, verification can occur

at the application of user-defined operations, and takes the form of type projections
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against the deep structure of the data. We have explored this notion of partial typing in

[26], where we have integrated type projections in a JavaScript implementation of the

Ecma262 standard [137, 126].

***

To conclude, we notice that the evolution of the field since 2004 indicates that the

ideas set forth in this Dissertation remain as relevant today as they were then. True

to its promise, XML has achieved wider penetration in the market, while the uptake

of novel formats for the exchange of structured data (e.g. JSON1) has emphasised the

general value of self-description in the practice of system engineering. More to the

point, it has reflected the need to depart from interpretations of shared data that reflect

the strength of a standard more than the significance of local processing requirements.

This has served as an illustration of the benefits of typeful programming for a class

of computations (e.g. for JSON, simpler, general-purpose, procedural algebras over

untyped but regular data structures). However, it has fallen short of showcasing the

decoupling potential of self-description, i.e. witnessing to the range of interpretations

that may remain latent within the data. At the same time, loosely coupled patterns

of data exchange have acquired more application within the field, as most noticeably

manifested by the increasing interest in REST-based architectures over tightly-typed

RPC-based architectures for distributed systems based on Web Services [138].

Across all architectures, data binding tools continue to be employed ubiquitously

upstream of application protocol stacks, though standard approaches have shown rel-

atively little innovation with respect to the assumptions discussed in Chapter 1 and in

Chapter 5, as well as limited integration with enterprise technologies that have become

mainstream since (e.g. Spring [139], Guice [140], or similar containers based on De-

pendency Injection for lifetime management of bound objects [141]). Interestingly, the

1cf. http:www.json.org
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most popular tools in this context have given some recognition to the value of bindings

that are driven by consumers’ requirements, rather than shared types. Since 2005 for

example, alongside the usual approach whereby bound types are generated from XML

schemas, JAXB allows bindings over untyped data to be defined directly via annota-

tions of bound types, in line with modern practices for metadata specifications. This

mode of usage aligns well with type projections, and its anecdotal popularity among

practitioners provides further evidence towards the validity of our motivations. The in-

consistencies and idiosyncrasies that still mar the realisation of the approach, however,

seem to point to an unclear binding model underneath, leaving the overall impression

of dealing with an implementation feature rather than a design viewpoint. At the time

of writing, we are not aware of binding tools that make a systematic commitment to,

and offer comprehensive support for, consumer-driven bindings to XML data.

Even more than external projections, internal type projections remain a novel pro-

posal in language design. A string of important research projects has focused on the

integration of XML within the design of programming languages, thereby bringing

self-description firmly within the scope of language design [115, 142, 143, 144, 136].

Some of the approaches have been experiments centred around the themes of inte-

gration, others have targeted mainstream languages and in some case have reached

production stage. Approaches have ranged widely in theoretical foundations and have

targeted different computational paradigms, but they have all shared a common quest

for adequate programming models over tree-structured data. The adequacy of a model

has been understood as an implication of a programming algebra that promotes pro-

gram fluency without compromising guarantees of static type-checking, and with good

integration with the rest of the language. Clearly, these goals witness to the the value

of typeful programming but seek it in a restricted context, either over the subset of the

value space occupied by tree structures, or else over a value space that consists solely

of such structures. With internal type projections, self-description enters the language
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to allow a number of different models for shared data, including but not limited to tree

models. The value space is still uniformly populated but its uniformity remains hidden

to the users, who manipulate the same values through a variety of programming alge-

bras. In this sense, the language designs that we have envisioned in this Dissertation

exploit self-description to generally endorse typeful programming, rather than deliver

typeful programming over data in standard self-describing formats. To date, we know

of no language design that enables true metamorphoses of shared data to extend its

support for typeful programming beyond the scope of coercions and polymorphism.
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Mediators Need Data Conversion! In Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD-98), volume 27,2 of

ACM SIGMOD Record, pages 177–188, New York, June 1998. ACM Press.

[82] Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: a Query Language

and Algebra for Semistructured Data based on Structural Recursion. The VLDB

Journal, 9(1):76–110, 2000.

[83] Luca Cardelli and Giorgio Ghelli. TQL: a Query Language for Semistructured

Data based on the Ambient Logic. Mathematical Structures in Computer Sci-

ence, 14(3):285–327, 2004.

[84] Dallan Quass, Jennifer Widom, Roy Goldman, Kevin Haas, Qingshan Luo,

Jason McHugh, Svetlozar Nestorov, Anand Rajaraman, Hugo Rivero, Serge

Abiteboul, Jeff Ullman, and Janet Wiener. LORE: a Lightweight Object REpos-

itory for Semistructured Data. SIGMOD Rec., 25(2):549, 1996.
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