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Abstract 

This thesis presents the development and application of a numerical method that 

associates the Rankine source method with double Doppler shift to predict the 

hydrodynamic interactions between two ships travelling or stationary in shallow 

waters. 

Firstly, a 3-D Rankine source panel method was developed to predict the 

hydrodynamic properties of a single ship travelling with a wide range of forward 

speeds. Double Doppler shift was taken into consideration in the boundary condition 

of the control surface. A Wigley III hull travelling with different forward speeds was 

considered to validate this radiation condition. Comparing with the experimental data, 

both the hydrodynamic coefficients and motion responses were well predicted by the 

present method. 

Then, the method for single ship was extended to ship-to-ship without forward speed 

problem. Comparing the present calculations of the hydrodynamic coefficients, wave 

excitation forces and motion responses with the experimental data, as well as with the 

numerical results from Green function method, a very good agreement was achieved 

which illustrated that the present program was a useful tool to predict the 

hydrodynamic behaviours of two ships arranged side by side without forward speed. 

The effects of mooring and fender system were also discussed based on the linear 

assumption.  

Based on the same framework, the 3-D Rankine source panel method associated with 

double Doppler shift was applied to ship-to-ship interaction with forward speed 

problem. The validations were established through two pairs of models. The computed 

dynamic responses of both models in heave and pitch motions showed a good 

agreement with the published experimental results. However, the prediction of the roll 

motion was full of challenges due to the inviscid assumption in the potential flow 

theory. The comparison between the present and Sommerfeld radiation condition was 
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made at τ < 0.25, while the comparison between the present and upstream radiation 

treatment was made at τ > 0.25. It was shown that the present treatment could obtain 

a better wave pattern without reflections from the truncated control surface, which 

confirmed the effectiveness of the present radiation condition as a wave-pattern 

prediction tool for the ships travelling with a wide range of forward speed.  

After the validations of the present method, the parametric study about the forward 

speed and configurations was carried out in order to develop recommendations for ship 

designers and operators for maximum speed and distance between two ships in given 

environmental conditions for safe operation. The analytical expression of the semi-

wedge angle based on double Doppler shift theory was derived to obtain the wake and 

quiescent region of the free surface. Based on the semi-wedge angle, the analytical 

formulation was established to obtain the optimal transvers distance between two 

travelling ships.  
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1. Introduction 

1.1. Background 

Hydrodynamic interaction between two or more ships occurs in harbour area and 

waterways with dense shipping traffic as the vessels have to pass each other in close 

proximity; between tugs and vessels during escorting or manoeuvring and berthing 

operations as well as during ship-to-ship operations for cargo. The behaviour of two 

ships in waves with speed effect is of special concern to the Navy, that is, for underway 

replenishment, and for other commercial purposes.  

Lightering operations with forward speed are important for the transfer of fuel in naval 

operations. Nowadays, lighting operations without forward speed is important for the 

LNG offloading from LNG FPSOs or FSRUs (Floating Storage and Regassification 

Units). The loads in the mooring lines between the two vessels, the loads in the floating 

fenders and the relative motions at the manifold location are the most critical issues 

during this operation. These are determined by the wave, wind and current loads on 

the two vessels in close proximity, as well as by the strong hydrodynamic interaction 

between the vessels. Even in head seas, the two vessels could be subjected to a very 

large separating force as the waves run between the two hulls. The resulting motions 

and mooring loads determine the operability of the operation in certain environmental 

conditions.  

1.2. Objectives and scope of research 

The primary objective of the work presented in this thesis is to study the hydrodynamic 

interactions between two ships travelling or stationary in shallow waters. This entails 

the following specific tasks: 

 Develop a numerical program to predict the behaviour of single ships travelling 

in waves.  

 Develop a numerical program to predict the coupled behaviour of stationary 

ships moored side-by-side in waves. 
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 Develop a numerical program to predict the coupled behaviour of two 

travelling ships arranged side-by-side in shallow water. 

 Validate the numerical programs described above through the commerce 

software as well as the experimental measurements. 

 Carry out parametric studies in order to develop recommendations for ship 

designers and operators for maximum speed and distance between two ships in 

given environmental conditions for safe operation. 

1.3. Challenges 

The seakeeping characteristics between two ships are a complicated issue due to the 

strong hydrodynamic interactions. Besides, the forward speed and shallow water 

effects involved in the present study also add the difficulties to ship-to-ship problem. 

The challenges which will arise in this thesis are summarized as follows: 

1) Hydrodynamic interactions. The hydrodynamic properties of one ship will be 

greatly influenced by the presence of the other ship. The influence will be 

reflected on the radiation problem as well as the diffraction problem. Specially, 

if the dimension of the two ships differs a lot, even relatively small wave can 

induce large motions of the smaller ship due to the nearness of the larger ship. 

Besides, compared with the single ship problem, there are 12 independent 

degrees of freedom, which are coupled in the motion equation. 

2) Shallow water effects. Ship motions are directly affected in two ways by the 

restricted water depth: (1) the incident waves are changed and as a result, the 

wave exciting forces exerted on ship differ from those in deep water; (2) the 

hydrodynamic coefficients of the ship are changed by the nearness of the sea 

bottom. Therefore, the coupled motion responses of both ships will be 

influenced accordingly. 

3) Forward speed effects. Even for a single vessel travelling with forward speed, 

the hydrodynamic responses are difficult to predict due to the additional items 

involved in the boundary value problem induced by the forward speed. When 

it refers to the ship-to-ship problem, the radiated and diffracted waves of one 

ship will bring a significant influence to the motion of the other ship. Special 
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attention should be paid on the very low forward speed problem, since the 

traditional radiation condition is not valid and a new radiation condition must 

be proposed in this study to investigate the ship-to-ship interaction with very 

low forward speed problem. 

4) Parametric study. The hydrodynamic interactions between two ships are 

mainly determined by the forward speed of the ships and the transverse and 

longitudinal distance between the ships. A systematic study should be carried 

out to find the regularities of these parameters in order to develop 

recommendations for ship designers and operators for maximum speed and 

distance between two ships in given environmental conditions for safe 

operation. 

1.4. Organization of the thesis 

The primary objective of the present thesis is to carry out the parametric studies in 

order to develop recommendations for ship designers and operators for maximum 

speed and distance between two ships in given environmental conditions for safe 

operation. Before we achieve this objective, the basic solution should be established 

on single ship with zero speed. The forward speed effect should then be imposed on 

the boundary conditions of single ship. After that, we can extend the approach of single 

ship to two ships without forward speed problem. Two ships advancing in shallow 

water with any configurations will be the last step of our numerical program. This 

thesis is structured in the follow chapters and a brief outline of the content of each 

chapter is given bellow: 

 Chapter 1 (Introduction) introduces the background and objectives of the 

research. The challenges, which will arise in the study, are also presented in 

this chapter. 

 Chapter 2 (Critical review) gives a report of literature review on ship-to-ship 

interactions, forward speed and shallow water effects. The methodology 

adopted is also presented in this chapter. 
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 Chapter 3 (Formulation of 3-D flow) summaries the fundamental formulations 

of 3-D potential flow. The boundary value problem will be discussed in this 

chapter. 

 Chapter 4 (3-D Rankine source panel method) describes the numerical solution 

of the boundary value problem.  The desingularied method, as well as 

difference scheme, will be introduced in this chapter. 

 Chapter 5 (Implementation of radiation condition) complements a new 

radiation condition which takes into account the Doppler shift of the scattered 

waves. This new radiation condition is applicative to a wide range of forward 

speeds, including very low forward speed problem where the Brard number is 

smaller than 0.25. 

 Chapter 6 (Validations and discussion of single ship travelling or stationary in 

waves) validates the present method through a single Wigley hull with or 

without forward speed. The comparisons between the computed results and 

experimental data are given.  

 Chapter 7 (Validations and discussion of two identical ships stationary in 

waves) validates the present method through two pairs of models stationary in 

waves. The comparisons are established between the present results and the 

experimental data. The calculations from the commercial software are also 

included. Discussions are highlighted on the effects from the fender and 

mooring system. 

 Chapter 8 (Validations and discussion of two ships advancing in waves) 

validates the present program through two pairs of models advancing in head 

seas. The corresponding model test results are presented and compared. 

Discussions are highlighted on the scattered wave patterns obtained by the 

present radiation condition and upstream treatment.  

 Chapter 9 (Parametric study and optimal design) carries out a systematic 

parametric study to investigate the regularities of multi-parameters in order to 

develop recommendations for ship designers and operators for maximum speed 

and distance between two ships in given environmental conditions for safe 

operation. 
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 Chapter 10 (Conclusions and recommendations) summaries the main 

contributions of the present work and suggestions of the future work. 
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2. Critical review 

2.1. Introduction 

The present study involves in ship-to-ship interactions associated with the forward 

speed and shallow water problem. In this chapter, the first comprehensive review is 

undertaken concerning the state-of-the-art of the approaches about investigating the 

hydrodynamic interactions between two ships. The discussions then will be made 

about different problems, which includes the forward speed problem and shallow water 

problem. The particular discussion about the numerical treatment of the radiation 

condition will be highlighted. At last, the comparison study is performed and the 

approaches adopted in the present study can be elaborated. 

2.2. Ship-to-ship interactions 

Early studies on the hydrodynamic interactions focused on 2-D strip theory. Ohkusu 

(1974) used the multipoles method and theory to calculate the response of parallel, 

slender, ship like bodies in beam waves. His results clearly illustrated the effect of 

position of a smaller body on the weather and lee side against a large body. Kodan 

(1984) extended Ohkusu's theory (Ohkusu, 1974) to hydrodynamic interaction 

between two parallel structures in oblique waves by strip method. Fang and Kim (1986) 

analyzed the hydrodynamic coupled motions of two longitudinally parallel barges 

advancing in oblique waves by strip method. His analysis showed that the coupling 

motions of two advancing ships depend on the speed, wave heading and distance. The 

2-D method was a simple and effective tool in predicting the hydrodynamic interaction 

between two adjacent ships. Ronæss (2002) applied a unified slender body theory to 

investigate the ship-to-ship with forward speed problem. Her results showed good 

agreement with her model tests at the Marine Technology Centre in Trondheim, 

Norway. However, the limitations of applying 2-D methods in ship-to-ship interaction 

problem in waves have been confirmed by Fang and Kim (1986). The two ships were 

assumed to be in each other’s near-field. The 2-D method overestimates the interaction 

effects due to the wave energy trapped between the two hulls in the frequency range 
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which is important for ship motions, which also leads to the overestimation of the mean 

second order wave loads on each ship. Besides, the strip theory can only predict the 

motion responses of conventional monohull ships in waves at low to moderate Froude 

numbers. However at high Froude numbers, three-dimensional (3-D) effects become 

dominant and strip theory fails to predict the hydrodynamic performance of vessel 

travelling with high forward speed. Under these circumstances, an advanced 

computational technique which accounts for the 3D flow interactions is necessary for 

motion and loading predictions.  

Chen and Fang (2001) extended Fang’s method (Fang and Kim, 1986) to 3-D. They 

used a 3-D Green function method to investigate the hydrodynamic problems between 

two moving ships in waves. It was found that the hydrodynamic interactions calculated 

by 3-D method were more reasonable in the resonance region, where the responses 

were overestimated by 2-D method. However, their method was only validated by 

model tests with zero speed. More rigorous validation should be made by further 

experiments. Kim and Ha (2002) used 3-D pulsating source distribution techniques to 

calculate twelve coupled linear motion responses and relative motions of the barge and 

the ship in oblique waves. Their computational results gave a good correlation with 

the experimental results and also with other numerical results. Taggart et al. (2003) 

and Li (2007) developed a frequency domain code based on 3-D Green function 

method. They validated their numerical predictions by model tests conducted at the 

Institute for Marine Dynamics (IMD) in St. John’s, Newfoundland. It was showed that 

the presence of a larger ship could significantly influence the motions of a smaller ship 

in close proximity. But the numerical prediction of roll motion was not accurate. Inoue 

and Kamruzzaman (2008) developed a computer code YNU-SEA based on the 3-D 

Green function method to predict the relative wave elevations under the bridging structures 

for multihull ships traveling with forward speed in waves. They compared the calculations 

with those of their previous calculations as well as with experimental results to validate 

the efficiency of the code. Xiang and Faltinsen (2011) used a 3-D Rankine source 

method  to solve the linear initial-boundary value problem of two ships advancing in 

waves. The time domain analysis was validated through the frequency solution via 

Fourier transform, and also the model test results. Recently, within the frame work of 

Green function, Xu and Dong (2013) developed a 3-D translating-pulsating (3DTP) 
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source method to calculate wave loads and free motions of two ships advancing in 

waves. Model tests were carried out to measure the wave loads and the heave, roll and 

pitch motions for a pair of side-by-side arranged ship models advancing with an 

identical speed in head regular waves. Both the experiment and the numerical 

prediction showed that hydrodynamic interaction effects on wave loads and motions 

were significant. They also pointed out that the prediction accuracy of the 3DTP 

method was much better than that of 3DP, especially for peak values of the motion 

responses. 

It is found that most of the publications on two ships with forward speed problem are 

based on Green function that satisfies the Kelvin free surface conditions, as well as the 

radiation condition, and it is so-called Green function method. In terms of the Green 

function used in the boundary value problem (BVP), the Green function method can 

be classified into two categories: pulsating source Green function method (PSM) and 

translating-pulsating source Green function method (TPSM). As reported by many 

investigators (Chen and Fang, 2001; Li, 2001; McTaggart et al., 2003), the Green 

function used in PSM satisfies the zero speed and linear free surface condition, and the 

correction of the speed effects on the free surface neglects the interactions between the 

ship oscillation and translation. The diffraction-radiation waves obtained in this 

formulation are pure cylindrical waves which are not true, because the convective 

effects of the forward speed in the free surface wave field make the free surface 

disturbances produced at the bow region convecting downstream. Since hydrodynamic 

interactions between two hulls are caused by radiation and diffraction waves produced 

by these two ships, the prediction accuracy of this method is limited. In this case, the 

3D translating-pulsating source Green function, which satisfies the classical linear free 

surface condition with forward speed and can accommodate the 3D convective effects 

on the free surface (Chan, 1992), may be more genuine and rigorous than PSM. This 

Green function has been successfully adopted by many researchers to predict 

seakeeping characteristics of a single ship (including multihull ship) advancing in 

waves (Inoue and Kamruzzaman, 2008; Maury et al., 2003). However, the expression 

of the Green function, which satisfies the free surface condition with forward speed, is 

very complicated. In the case of forward speed, many numerical and theoretical 

difficulties appear. Firstly, it is difficult to account for the near-field flow condition. 
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Although some researchers (Lee and Sclavounos, 1989; Nossen et al., 1991) extended 

it to include the near-field free surface condition, the so-called irregular frequency still 

cannot be avoided. And it will bring singularity to the coefficient matrix equation. 

Secondly, it is impossible for the Green function to account for the effects of the 

unsteady flow on the steady potential. 

An alternative method, which can avoid the limitation of Green function method, is 

called Rankine source method. It uses a very simple Green function in the boundary 

integral formulation and requires the sources distributed not only on the body surface, 

but also on the free surface and control surface. Therefore, a flexible choice of free-

surface boundary conditions can be realized in these methods. The coupled behavior 

between steady and unsteady wave potential could be expressed in a direct formula. 

Meanwhile, the nonlinearity on the free surface could also be added in the boundary 

condition. The Rankine source approach has been used by many investigators since it 

has been first proposed by Hess and Smith (Hess and Smith, 1964). Investigators from 

MIT (Kring, 1994; Nakos and Sclavounos, 1990; Scalvounos and Nakos, 1988) 

applied the Rankine source approach to model steady and unsteady waves as a ship 

moves in waves. An analysis technique developed by Sclavounos and Nakos 

(Scalvounos and Nakos, 1988) for the propagation of gravity waves on a panelized 

free surface showed that the Rankine source method could adequately predict the ship 

wave patterns and forces. Their work led to the development of a frequency-domain 

formulation for ship motions with a consistent linearization based upon the double 

body steady flow model which assumeed small and moderate Froude numbers. 

Applications were reported by Nakos et al. (1990). This model was extended to the 

time domain by Kring (1994) who also proposed a physically rational set of Kutta 

conditions at a ship’s transom stern. Recently, Gao et al. (Gao and Zou, 2008) 

developed a high-order Rankine panel method based on Non-Uniform Rational B-

Spline (NURBS) to solve the 3-D radiation and diffraction problems with forward 

speed. Their results had very good agreement with the experimental data.  

In terms of ship-to-ship with forward speed problem, the only available publication 

about using Rankine source method can be found in Xiang and Faltinsen (2011). They 

used a 3-D Rankine source method to solve the initial boundary value problem of two 
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ships advancing in waves. An artificial beach is applied to satisfy the radiation 

condition and good agreement had been achieved between their results and 

experimental data.  

In the present study, the Rankine source approach proposed by Hess and Smith (Hess 

and Smith, 1964) will be applied, which will be discussed latter in Section 2.6.  

2.3. Forward speed problem 

Because of the hydrodynamic interactions, even relatively small wave can induce large 

motions of the smaller ship due to the nearness of the larger ship. When the ships are 

travelling with forward speed, the hydrodynamic interactions become more 

complicated. Fang and Kim (1986) firstly took forward speed into consideration in 

ship-to-ship problem. They utilized a 2-D procedure, including the hydrodynamic 

interaction and an integral equation method, to predict the coupled motions between 

two ships advancing in oblique seas. They found that the roll motion was reduced 

while the ships were advancing. However, due to the 2-D assumptions, some 

deficiencies including the special treatment of the convective term still exist. 

Kashiwagi (1993) used an unified theory to investigate the heave and pitch motions of 

a catamaran advancing in waves. Iwashita and Kataoka (1996) used the 3D translating 

and pulsating Green-function method to analyse the hydrodynamic interaction 

between steady and unsteady flows for a catamaran. Chen and Fang (2001) extended 

Fang’s method (Fang and Kim, 1986) to 3-D. They used a 3-D Green function method 

to investigate the hydrodynamic problems between two moving ships in waves. It was 

found that the hydrodynamic interactions calculated by 3-D method were more 

reasonable in the resonance region, where the responses were not so significant 

predicted by 2-D method. However, their method was only validated by model tests 

with zero speed. More rigorous validation should be made by further experiments. The 

first model test of two ships advancing in waves was conducted by Li (2001). Both 

ships were restrained in surge, sway and yaw, as well as the free motions in heave, roll 

and pitch. Taggart et al. (2003) and Li (2007) used that model test data to verify their 

numerical programs, which was based on 3-D Green function method. The numerical 

predictions and experiments showed that the presence of a larger ship could 
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significantly influence the motions of a smaller ship in close proximity. But the 

numerical prediction of roll motion was not accurate. Another model test of two ships 

advancing in waves was conducted by Ronæss (2002) at MARINTEK. The 

experiments were performed at different speeds and with different longitudinal 

distances between the ships. The numerical program based on unified theory was 

verified. It was found that the heave and pitch motions could be predicted well while 

the roll motion was hard to be predicted due to the viscous effect. Ronæss’s model test 

data was used by Xiang and Faltinsen (2011) to verify their numerical program based 

on 3-D Rankine source method. They applied an artificial numerical beach to satisfy 

the radiation condition. They found that the hydrodynamic peaks and spikes were 

related to the resonance modes in the water gap between the hulls. However, they also 

failed to predict the roll motion precisely. Recently, within the frame work of Green 

function, Xu and Dong (2013b) developed a 3-D translating-pulsating (3DTP) source 

method to calculate wave loads and free motions of two ships advancing in waves. 

Model tests were carried out to measure the wave loads and the free motions for a pair 

of side-by-side arranged ship models advancing with an identical speed in head regular 

waves. Both the experiment and the numerical prediction showed that hydrodynamic 

interaction effects on wave loads and free motions were significant. They also pointed 

out that the prediction accuracy of the 3DTP method was much better than that of 3DP, 

especially for peak values of the free motion responses. 

2.4. Shallow water problem 

Most work on ship-to-ship interaction problem assumes that the water is infinitely deep. 

In deep water, the major stimulus for systematic study of the phenomenon arose from 

the needs of the warship replenishing while underway at sea. It has already been 

pointed out that merchant ships are most likely to be in close quarters situation in 

shallow water where the interaction effects may be larger. Meanwhile, the increasing 

demands for LNG and the associated safety requirements have resulted in a large 

number of offshore LNG terminal developments and most of these are located near-

shore, in relatively shallow water. In addition to shallow water effects on the waves, 

the clearance to the bottom might become an issue when the water depth to draft ratio 

becomes small. Ship motions are directly affected in two ways by the restricted water 
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depth: (1) the incident waves are changed and as a result, the wave exciting forces 

exerted on ship differ from those in deep water; (2) the hydrodynamic coefficients of 

the ship (i.e. radiation forces) are changed by the nearness of the sea bottom. The 

influence of limited water depth on the ship motions becomes obvious when the water 

depth is less than 4 times of the draft of the vessel. When the ratio of water depth to 

draft is less than 2, the effect of the bottom becomes significant (Van Oortmerssen, 

1976). Published work on the effect of water depth can be found in Kim (1969), Tuck 

(1970) and Andersen (1979). Most of them were based on the slender body assumption 

and no consideration of free-surface was involved by solving a two-dimensional 

problem. Endo (1987) produced a more accurate seakeeping prediction in shallow 

water, but parts of his method still needed to be improved. 

Very few studies can be found on the ship motions in shallow water recently. In terms 

of ship-to-ship interaction with forward speed problem, the only available publication 

is reported by Zou and Larsson (2013). They used a steady state Reynolds averaged 

Navier–Stokes solver to simulate the ship-to-ship interactions during a lightering 

operation in shallow water. However, the difference between the measured forces and 

moments and results from computations by the two CFD methods was relatively large 

in many cases.  

2.5. Radiation condition 

The limitations for the extensive use of the Rankine source approach lies on the 

computational time and the requirement of a radiation condition. It requires much more 

panels on the wet body surface, free surface and control surface, which will 

considerably increase the computation time, especially when the matrix equation is 

full range matrix. However, the computation time will strongly depend on the 

numerical method and computer language. As the performance of computers increase 

rapidly, it is possiblem to solve the large full range matrix within an acceptable time 

scale in engineering applications. Besides, the Rankine source method requires a 

suitable radiation boundary condition to account for the scattered waves in current. A 

very popular radiation condition for the forward speed problem, which is so-called 

upstream radiation condition, was proposed by Nakos (Nakos, 1990). The free surface 
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was truncated at some upstream points, and a quiescent boundary condition was 

imposed at these points to ensure the consistency of the upstream truncation of the free 

surface.  Another method to deal with the radiation condition is to move the source 

points on the free surface at some distance downstream (Jensen et al., 1986). The 

results from these two methods show very good agreement with published 

experimental data when the Brard number τ (τ = uω/g) is greater than 0.25, since they 

are both based on the assumption that there is no scattered wave travelling ahead of 

the vessel. However, when the forward speed of the vessel is very low, the Brard 

number will be smaller than 0.25. When this case occurs, the scattered waves could 

travel ahead of the vessel, and these traditional radiation conditions could no longer be 

valid. For ship-to-ship problem, the forward speed is usually limited to a low level for 

the safe operation. Therefore, a new extensive radiation condition should be proposed 

to deal with the very low forward speed problem. Das and Cheung (2012a, b) provided 

an alternate solution to the boundary-value problem for forward speeds above and 

below the group velocity of the scattered waves. They corrected the Sommerfeld 

radiation condition by taking into account the Doppler shift of the scattered waves at 

the control surface that truncates the infinite fluid domain. They compared their results 

with the experimental data, and good agreement was achieved. They also computed 

the wave elevation on the free surface, and a reasonable wave pattern was obtained at 

τ < 0.25 by using their new radiation condition. 

2.6. Approach adopted 

In the present study, the Rankine source approach proposed by Hess and Smith (Hess 

and Smith, 1964) will be applied, which uses a very simple Green function in the 

boundary integral formulation. This method requires the sources distributed not only 

on the body surface, but also on the free surface, control surface and sea bottom surface. 

Therefore, a flexible choice of free-surface condition and sea bottom condition can be 

realized in these methods. The forward speed and shallow water effects can be directly 

taken into the consideration in the boundary value problem. Besides, the near field 

wave elevations can be directly obtained by boundary integration on the free surface. 
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 In order to complete the boundary value problem, a radiation condition should be 

imposed on the control surface. For ship-to-ship problem, the forward speed is usually 

limited to a low level for the safe operation. Therefore, a new extensive radiation 

proposed by Das and Cheung (2012a, b) will be adopted in the present study to provide 

an alternate solution to the boundary-value problem for forward speeds above and 

below the group velocity of the scattered waves.  

A 3-D boundary element program based on Rankine source method will be developed 

to investigate the hydrodynamic interaction between two vessels arranged side by side 

with forward speed in shallow water. The motion responses of both ships will be 

calculated and compared to the commercial program and experimental results. After 

the validation, this program will be used for the parametric study to investigate the 

regularities of multi-parameters in order to develop recommendations for ship 

designers and operators for maximum speed and distance between two ships in given 

environmental conditions for safe operation.  
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3. Formulations of 3-D flow 

3.1. Introduction 

 

Figure 3.1: An example vessels and coordinate system. 

The corresponding right-handed coordinate systems are shown in Figure 3.1. The body 

coordinate systems oa-xayaza and ob-xbybzb are fixed on ship_a and ship_b respectively 

with their origins on the mean free surface, coinciding with the corresponding centre 

of gravity (CoG) in respect to x and y coordinates when both of the ships are at their 

static equilibrium positions. oa-za and ob-zb are both positive upward. The inertia 

coordinate system o-xyz with origin located on the calm free surface coincides with oa-

xayaza when the ship has no unsteady motions. O-XYZ is the earth-fixed coordinate 

system with its origin located on the calm free surface and OZ axis positive upward. 

Three components of translation motions include surge ( 1

a  and
1

b , which are parallel 

to x-axis), sway (
2

a  and
2

b , which are parallel to y-axis) and heave (
3

a  and 3

b , 

which are parallel to z-axis). Another three rotational motion components are roll (
4

a  
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and
4

b , which rotates around x-axis), pitch (
5

a  and
5

b , which rotates around y-axis) 

and yaw (
6

a  and
6

b , which rotates around z-axis). The incident wave direction is 

defined as the angle β between the wave propagation direction and X-axis and β = 180° 

corresponds to head sea; β = 90° corresponds to beam sea. dt denotes the transverse 

distance between two ships while dl is the longitudinal distance. u0 is the forward speed. 

In the computation, the motions and forces of each ship are concerted to the local 

coordinate system in which the origins are at the canter of gravity of each ship. 

3.2. Fundamental equations  

It is assumed that the surrounding fluid is inviscid and incompressible, and that the 

motion is irrotational, the total velocity potential exists which satisfies the Laplace 

equation in the whole fluid domain. Let t denote time and ( , , )x y zx denote the 

position vector. The velocity potential provides a description of the flow as 

 
6

0

1

0 0 7 7

( , ) ( ) Re [ ( ) ( ) ]

Re[ ( ) ]  1  ,2,...,6                     Re[ ( ) ]            ,

e e

e e

i t i ta a b b

s j j j j

j

i t i t

t u x e e

e e j

 

 

     

   

 



 

   

 

x x x x

x x

(3.1) 

where φs is the steady potential; 
a

j and
b

j  (j = 1,2,…,6) are the spatial radiation 

potential in six degrees of freedom corresponding to the oscillations of Ship_a and 

Ship_b respectively and ( 1,2,...,6)j j   is the corresponding motion amplitude (
1 , 

surge;
2 ,sway;

3 ,heave;
4 ,roll;

5 ,pitch;
6 ,yaw); η7 = η0 is the incident wave 

amplitude; φ7 is the spatial diffraction potential; φ0 is the spatial incident wave 

potential and ωe is the encounter frequency, which can be given by 

[ ( cos sin )]0
0

0

cosh ( )

cosh

i k x yig k z d
e

kd

 





    (3.2) 

0 0 cose u k      (3.3) 

where d denotes the water depth and k is the wave number. If the incident wave 

frequency ω0 and water depth are given, the wave number k can be determined by the 

dispersion relation as 
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 2

0tanh /k kd g    (3.4) 

3.3. Steady flow 

When a ship advances at constant speed in water, it will generate steady waves and 

produce the so-called wave making resistance. In the present study, the wave making 

resistance will not be considered, since it can be balanced by the propulsion force. 

However, the steady wave will still influence the radiated and diffracted waves. It can 

interact with the unsteady wave field generated by the ship’s motion. The interaction 

between the steady flow and unsteady wave field appears in so-called m-term. 

Generally, there are three different steady flow models, that is, free stream, double 

body flow and steady wave flow (Kim and Shin, 2007). In this thesis, we will use 

steady wave flow model to treat the steady potential problem. The steady potential φs 

satisfies the following boundary conditions: 

2 0s       in the fluid domain (3.5) 

2
2

0 2
0s su g

x z

  
 

 
    on the undisturbed free surface        (3.6) 

0 1
s u n

n





   on the mean wetted part of body surface    (3.7) 

0s

z





     on the sea bottom (3.8) 

where 1 2 3( , , )n n nn  is the unit normal vector inward on the wet body surface. 

Moreover, a radiation condition which states that the waves propagate away from the 

ship, is required and it will be discussed later in Chapter 5. 

3.4. Incident wave 

The spatial incident wave potential was given in Eq. (3.2) and the real part and 

imaginary part of φ0 can be expressed respectively by 

0
0

0

cosh( ( ))
sin( ( cos sin ))

cosh( )
R

g k z d
k x y

kd


  




                           (3.9) 
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0
0

0

cosh( ( ))
cos( ( cos sin ))

cosh( )
I

g k z d
k x y

kd


  




                       (3.10) 

In the body boundary condition of radiation problem, the normal induced velocity of 

incident wave is required. It can be obtained from the partial derivative of the real part 

and imaginary part of the incident wave potential, which are given by 

 0
0 0

cosh( ( ))
cos cos ( cos sin )

sinh( )

R k z d
k x y

x kd


    

 
   


                       (3.11) 

 0
0 0

cosh( ( ))
sin cos ( cos sin )

sinh( )

R k z d
k x y

y kd


    

 
   


                        (3.12) 

  0
0 0

sinh( ( ))
sin ( cos sin )

sinh( )

R k z d
k x y

z kd


   

 
   


                              (3.13) 

 0
0 0

cosh( ( ))
cos sin ( cos sin )

sinh( )

I k z d
k x y

x kd


    

 
   


                       (3.14) 

 0
0 0

cosh( ( ))
sin sin ( cos sin )

sinh( )

I k z d
k x y

y kd


    

 
   


                        (3.15) 

  0
0 0

sinh( ( ))
cos ( cos sin )

sinh( )

I k z d
k x y

z kd


   

 
    


                              (3.16) 

3.5. Diffraction wave 

The diffraction potential can be solved by the following boundary value problem: 

                                      2

7 0      in the fluid domain                                    (3.17) 

2
2 27 7 7

7 0 0 2
2 0e eg i u u

z x x

  
  

  
   

  
   on the undisturbed free surface Sf      

(3.18) 

                         7 0

aS
n n

  
 

 
 on the mean wetted part of Ship_a   (3.19) 

                         7 0

bS
n n

  
 

 
 on the mean wetted part of Ship_b  (3.20) 

7 0
z





     on the sea bottom                         (3.21) 
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Moreover, a radiation condition must be implemented to the boundary value problem, 

which will be discussed later in Chapter 5. 

3.6. Radiation wave 

Radiation waves are generated by the oscillation of both ships. The main difference 

between single ship motion and two ship motion can be reflected on the radiation wave. 

The radiation wave force of a ship is not only due to its own oscillation, but also due 

to the oscillation of the other ship. For linearization, the radiation potential can be 

written as: 

6

1

( , ) Re [ ( ) ( ) ]e ei t i ta a b b

R j j j j

j

t e e
     



  x x x               (3.22) 

The corresponding radiation potential of Ship_a and Ship_b can be obtained by solving 

the following boundary value problem: 

1) Ship_a is oscillating while Ship_b is fixed 

2 0a

j      in the fluid domain (3.23) 

2

2 2

0 0 2
2 0

a a a

j j ja

e j eg i u u
z x x

  
  

  
   

  
 on the undisturbed free surface Sf  (3.24) 

0 a

a

j a a

e j j Si n u m
n





  


 on the mean wetted part of Ship_a     (3.25) 

0
b

a

j

S
n





 on the mean wetted part of Ship_a (3.26) 

0

a

j

z





 on the sea bottom (3.27) 

2) Ship_b is oscillating while Ship_a is fixed 

2 0b

j      in the fluid domain (3.28) 

 

2

2 2

0 0 2
2 0

b b b

j j jb

e j eg i u u
z x x

  
  

  
   

  
 on the undisturbed free surface Sf  (3.29) 
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 0 b

b

j b b

e j j Si n u m
n





  


 on the mean wetted part of Ship_b  (3.30) 

0
a

b

j

S
n





 on the mean wetted part of Ship_a   (3.31) 

0

b

j

z





 on the sea bottom (3.32) 

Besides, a radiation condition must be imposed on the control surface to complete the 

boundary value problem. The generalized normal vectors are defined as 

, 1,2,3

, 4,5,6
j

j
n

j


 

 

n

x n
  (3.33) 

and 1 2 3( , , )n n nn  is the unit normal vector directed inward on body surface,  

( , , )x y zx is the position vector on body surface.  The jm denotes the j-th component 

of the so-called m-term, which can be expressed as 

 

  

, 1,2,3

, 4,5,6

s

j

s

j
m

j





    
 

   

n

n x
  (3.34) 

where φs  is the steady wave potential. The m-terms provide coupling effects between 

the steady and unsteady flows and involve the second derivatives of the steady 

potential. However, in the present study, we are interested in low forward speed 

problem of the slender vessels. Therefore, the Neumann-Kelvin linearization can be 

used to simplify the m-terms, 

1 2 3

4 5 6 3 2

( , , ) (0,0,0)

( , , ) (0, , )

m m m

m m m n n



 
  (3.35) 

3.7. Motion equation 

Once the unknown diffraction potential φ7 and radiation potential φj are solved, the 

time-harmonic pressure can be obtained from Bernoulli’s equation: 

0( )j e j j s j jp i u x            ,   j = 0, 1,…, 7                   (3.36) 
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where ρ is the fluid density. The hydrodynamic force produced by the oscillatory 

motions of the vessel in the six degrees of freedom can be derived from the radiation 

potentials as 

 

6

1

6 6
2 2

1 1
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a

Ra a a b

i j i j j

j S

aa aa a ab ab b
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
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 ,    i = 1, 2, …, 6         (3.37) 

 

6

1

6 6
2 2

1 1

( )

b

Rb b a b

i j i j j

j S

ba ba a bb bb b

e ij e ij j e ij e ij j

j j

F p n dS

i i

 

         



 

  

         



 

 ,    i = 1, 2, …, 6        (3.38) 

The added mass and damping can be expressed respectively as: 
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 ,   ( i = 1, 2, …, 6; j = 1, 2, …, 6)     (3.39) 

 

0

0

0

0

( )

( )

( )

( )

a

a

b

b

a

Ijaa a

ij Rj i

eS

b

Ijab b

ij Rj i

eS

b

Ijbb b

ij Rj i

eS

a

Ijba a

ij Rj i

eS

u
n ds

x

u
n ds

x

u
n ds

x

u
n ds

x


  




  




  




  




  




  




  




  











  ,   ( i = 1, 2, …, 6; j = 1, 2, …, 6)     (3.40) 
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where 
aa

ij is the added mass of Ship_a in i-th mode which is induced by the motion 

of Ship_a in j-th mode; 
ab

ij  is the added mass of Ship_a in i-th mode which is induced 

by the motion of Ship_b in j-th mode; 
ba

ij  is the added mass of Ship_b in i-th mode 

which is induced by the motion of Ship_a in j-th mode; 
bb

ij  is the added mass of 

Ship_b in i-th mode which is induced by the motion of Ship_b in j-th mode; λ is the 

damping coefficient and the definition the subscript is the same as that of added mass;

Rj  is the real part of j-th potential, and Ij  is the imaginary part. The wave excitation 

force can be obtained by the integration of incident and diffraction pressure as 

0 7( )

a

Wa

i i

S

F p p n dS    (3.41) 

0 7( )

b

Wb

i i

S

F p p n dS    (3.42) 

Applying Newton’s second law, the 12 components of ship motions in the frequency 

domain can be obtained by solving the following equation system: 

   
6

2 2

1

, 1,2,...,6a aa aa a a ab ab b Wa

e ij ij e ij ij j e ij e ij j i

j

M i K i F i         


               

 (3.43) 

   
6

2 2

1

, 1,2,...,6ba ba a b bb bb b b Wb

e ij e ij j e ij ij e ij ij j i

j

i M i K F i         


               

 (3.44) 

where 
a

ijM and
b

ijM  represent the generalized mass matrix for Ship_a and Ship_b; 
a

ijK

and
b

ijK  represent the restoring matrix for Ship_a and Ship_b. The mass and restoring 

force matrix can be given by 
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 
 

                    (3.46) 

where m is the body mass; (xG, yG, zG) is the center of gravity; I44, I55 and I66 are the 

roll, pitch and yaw moments of inertia; the roll-yaw moment of inertia holds the 

symmetry relation I46 = I64; Aw is the water plane area; Mw is the first moment of the 

water plane about the y-axis; Iw1 and Iw2 are the second moments of the water plane 

about the x-axis and y-axis respectively; V is the underwater volume; zB is the vertical 

center of buoyancy. The standard matrix solution routine provides the complex 

amplitude of the oscillatory motions from Eqs. (3.43)-(3.44). The wave elevation on 

the free surface then can be obtained from the dynamic free surface boundary condition 

in the form 

 
0

1
( ) ( ) ( ) , 0,1,...,7a a b b a a b be

j j j j j s j j j j Rj Ij

i
u x i j

g g


                      

 (3.47) 

where Rj  is the the real part of j-th model, and Ij is the imaginary part.  

3.8. Summary 

In this chapter, the basic formulations of the 3-D potential flow as well as the motion 

equations are presented. The boundary value problem for each special potential are 

given to solve all of the components of the potential. These formulations constitute the 

basic frame work of the boundary element method. The corresponding numerical 

solution for these boundary value problems will be described in the following chapters.
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4. 3-D Rankine source panel method 

4.1. Introduction 

In the design of ship and other marine structure, the potential flow method is practical 

and efficient to predict the body’s motions and wave loads. As a numerical tool for 

computation of potential flow, the panel method is widely used. The original panel 

method proposed by Hess and Smith (1964) uses large numbers of plane quadrilateral 

panels to discretize the body surface, and on each panel a constant source density 

distribution is assumed.  

The discretization of the boundary integral consists of two categories. First, we have 

to divide the body-, free- and control-surface into panels. Second, we have to choose 

a certain shape for the source function. This can be done in many ways, ranging from 

a very simple first-order approximation of flat panels and constant sources on each 

panel, to a high-order approximation that, for example, uses NURBS-based panels to 

describe the geometry of a panel and the shape of the source function. The first-order 

approximation leads to a relatively easy evaluation of the influence coefficients, and 

the number of the unknown of source density equals to the panel number. A high-order 

approximation leads to a more difficult evaluation of the influence coefficients, and to 

a large number of unknowns of each panel. Although the panels can be taken larger 

due to the higher accuracy, it mostly increases the size of the leading matrix (Bunnik, 

1999). 

In the present study, we use a constant panel method to discretize the boundary integral. 

The exact formulas for the velocity components induced at points in space by a plane 

quadrilateral source element with a unit value of source density are derived. The 

desingularied method and difference scheme are also discussed in this chapter. 

4.2. Constant panel method 

Before we discretize the boundary integral, a Green function should be chosen. 

Rankine source method uses a very simple Green function G = 1/r in the boundary 
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integral formulation and requires the sources distributed not only on the body surface, 

but also on the free surface and control surface. Considering the sea bottom boundary 

condition in Eq. (3.8), (3.21), (3.27) and (3.32), the Green function can be modified 

through the method of image as  

1 1
( , )G

r r
 


x ξ                                                      (4.1) 

where 2 2 2( ) ( ) ( )r x y z        is the distance between the source point 

( , , )x y zx and field point ( , , )  ξ , 2 2 2( ) ( ) ( 2 )r x y z d         

is the distance between the image source point and field point. Therefore, the Green 

function in Eq.(4.1) can satisfy the sea bottom boundary condition. 

There are generally two categories of coordinate systems in the discretization of the 

boundaries: the reference coordinate system and element coordinate system. The input 

data and the influence coefficients should be based on the reference coordinate system, 

while the element coordinate system is used for calculating the exact induced velocity 

component. The transformation matrix can be obtained easily to transform the 

coordinate (Hess and Smith, 1964). Consider a plane quadrilateral source element 

lying in the ξη-plane (element coordinate system) as shown in Figure 4.1. The source 

density of panel Q is written as σ(Q). Denote the number of panels on body, free and 

control surface as NB, NF and NC respectively. Apart from the reference coordinate 

system O-XYZ, an element system O’-ξηζ is established with O’ on the geometry 

centroid and ζ axis on its normal vector, as shown in Figure 4.1. 

 

Figure 4.1: Quadrilateral element coordinate system. 
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It is desired to determine the velocity components induced by this source element at a 

general point P in space with its coordinate (x, y, z). The potential at point P is 

, ,( )Q P Q P

Q

Q G d d       (4.2) 

Since the source density on panel Q is constant. The velocity components at point P 

could be expressed as 
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Hess and Smith (1964) provided the accurate solution for the integrals of Eqs. (4.2)-

(4.5) as 
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where 
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2 2( )i ie z x      (4.13) 

( )( )i i ih y x      (4.14) 

We notice that the second partial derivative of   is also required in the free surface 

boundary condition in Eqs. (3.6), (3.18), (3.24) and (3.29). Therefore, the accurate 

form of the second partial derivative of   is provided here as 
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Special attention should be paid on Eq. (4.8) when the field point P approaches a point 

at the same O’-ξη plane as panel Q.  In such case, if P is within the quadrilateral, 

,
2

Q P

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
; otherwise,  

,
0

Q P







 (Hess and Smith, 1964). It should also be drawn 

to our attention that Eqs. (4.2)-(4.17) are based on the element coordinate system and 

a transformation matrix is required to make all the physical quantities to the reference 

coordinate system. 

The entire boundaries are discretized into a number of quadrilateral panels as 

1 1 1

fb c
NN N

j j jS s s s          (4.18) 

where Nb, Nf and Nc are the panel number on the body-, free- and control  surface 

respectively. Let N denotes the total number of the panels, the potential at point x  (here 

x  denotes the point on the boundary of the computational domain) becomes 

,

1 1

( ) ( , ) , 1,2,...,

b f c

N N

i j i j i j

j jS S S

G dS G i N  
  

   x x ξ        (4.19) 



Chapter 4: Rankine source panel method 

 

28 

 

The influence coefficients jiG , can be calculated with analytical formulas derived from 

Eq. (4.9). Similarly, the other components in the boundary integral formulations for 

the velocity and acceleration can be given by 
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The influence coefficients ,

n

i jG , ,

x

i jG and ,

z

i jG can be derived from Eqs. (4.6)-(4.8), and 

,

xx

i jG  can be derived from Eqs. (4.15)-(4.17). Substituting Eqs. (4.19)-(4.23) into the 

body-, free- and control-surface boundary conditions, we can obtain an equation 

system for the solution of source density σ as 

   , , 1,2,..., ; 1,2,...,i j j i i N j N     P σ Q                       (4.24) 

,i jP  is so-called coefficient matrix. Once jσ  is determined, the potential, velocity and 

acceleration at any points in the computational domain can be obtained accordingly 

from Eqs. (4.19)-(4.23). Typically, the coefficient matrix ,i jP  is a full rank matrix. A 

standard matrix solution, such as Gaussian Elimination, can provide the source density 

of each panel.  

4.3. Desingularied method 

We find from the present study that the denominator in Eq. (4.17) is not always non-

zero. From Figure 4.1 we can observed that if any angle of QiPQi+1 (i=1, 2, 3) is π/2, 
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2 2

1 , 1( )i i i ir r l    in Eq. (4.17) is zero. At this case, the second derivative of the potential 

in the free surface boundary condition would be infinite. As a consequence, the 

coefficient matrix in Eq. (4.24) is singular. In practice, the source distribution does not 

have to be located on the free surface itself, it can also be located at a short distance 

above the free surface, as long as the collocation points, where the boundary condition 

has to be satisfied, stay on the free surface.  This raised-panel method has becomes 

very popular, especially in non-linear method. Cao et al. (1991) desingularized the 

boundary integral equation by moving the singular points away from the boundary and 

outside the problem domain and showed that the desingularization presented better 

solutions to several problems. As a result of desingularization, the surface integrals 

can be evaluated by simpler techniques, speeding up the computation. They also 

discussed the effects of the desingularization distance on the solution and the condition 

of the resulting system of algebraic equations. Computations show that a broad range 

of desingularization distances gives accurate solutions with significant savings in the 

computation time. The raised-panel method is also examined by Bunnik (1999), Kim 

et al. (2005) and Gao and Zou (2008) and it provides good results for different 

problems. The first advantage of this is the velocity field induced in the fluid domain 

is much smoother than with a free surface singularity method. Second, the integrals of 

Green functions over panels are desingularized because the collocation points are not 

located inside the panels, which is easier to evaluate. Third, it is easier to extend our 

program to a non-linear on in the future.  

 

Figure 4.2: A typical vessel and its free surface mesh. 

Figure 4.2 shows a typical free surface panel model. Das and Cheung (2014b) 

indicated that the panel number per ship length NL should not be less than 18.  In the 

present study, NL is fixed at 30. We also use the raised-free surface approach with the 

raised distance i iz S   , where iS  is the area of the i-th panel on the free surface 
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and   is the raising coefficient. Figure 4.3 presents the definition sketch for raised-

panel approach with γ = 1. We examine the convergence of the raising distance by the 

wave field, since the free surface wave elevation can be easily influenced by the 

treatment of the free surface boundary integral. Figure 4.4 compares the wave patterns 

at different raising coefficients. The upper half of each figure represents the wave 

pattern at γ = 1, while the lower half represents the wave pattern at γ = 0.25. Very good 

agreement has been achieved, which indicates that both of the coefficients can provide 

a convergence results. However, as the raising coefficient increases to 4, the solution 

is diverged and it cannot provide a satisfied wave pattern, as shown in Figure 4.5. This 

coincides with the conclusions made by Cao et al. (1991) and Bunnik (1999). It is 

suggested that the optimal raising distance should be at the same order of the mesh 

size (γ = 1), since the larger distance could cause the problem of ill-conditioned 

coefficient matrix. In the present study, we fix the raising coefficient at γ = 1, which 

can provide a stable and converged results.  

 

Figure 4.3: An example vessel and definition sketch for raised-panel approach. 
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   (a)                                                                                        (b) 

Figure 4.4: Wave patterns at different raising coefficients, Fn = 0.3, λ/L = 1. (a) Diffracted waves; (b) 

Radiated waves. 

 

Figure 4.5: Diffracted waves at different raising coefficients, Fn = 0.3, λ/L = 1. 

4.4. Effect of difference scheme 

The choice of the difference scheme is very important to obtain an accurate prediction 

of the wave pattern near an advancing ship. In the numerical experiments, we find even 

we use the accurate derivatives provided in Eqs. (4.6)-(4.17), the wave pattern solution 

is not stable. Even though the singularities on the free surface can be treated by the 

raising-panel approach, the condition number of the coefficient matrix is extremely 
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large, which could also bring the so-called ill-conditioning problem. As a consequence, 

the accuracy of solution for the source density should be challenged.  

The reliability of the difference schemes can be investigated by many ways, for 

example, Bunnik (1999) investigated the schemes through the damping and dispersion 

parameters. A more effective method of examining the efficiency of the difference 

schemes is to calculate the wave pattern on the free surface. We find that the 

hydrodynamic coefficients and diffraction forces are hardly influenced by the 

difference scheme, but the wave elevation is very sensitive to the difference scheme 

of the first and second derivative on the free surface boundary condition. Therefore, 

we examine the stability of the difference schemes by the solution of the wave patterns. 

Firstly, we need a difference schemes for the first derivatives of the potential in all of 

the boundary conditions. Two of the most commonly used approaches are upwind 

difference scheme and central difference scheme. The upwind difference scheme uses 

the points that are on the upstream side, while the central difference scheme uses the 

points on both sides where the derivative is required. The first derivative of φ to x can 

be written as follows 

1( ) ( )
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x x
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A similar formula holds for the second derivative of φ to x can be written as 
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Figure 4.6 shows the wave field with difference schemes. The upper half of each figure 

represents the wave pattern with upwind scheme, while the lower half shows the wave 

pattern with central scheme. These two schemes generally provide the reasonable wave 

field for the diffraction and radiation problem. However, the upwind scheme is 

observed to provide a better solution. Although the central difference schemes are 
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more accurate than the upwind schemes, they have the disadvantage that they often 

lead to instabilities. One of the explanation for the spikes in the lower half of each 

figure can be found by Bunnik (1999). At the high frequency range, the discrete 

dispersion relation has no longer a root near the solution of the continuous dispersion 

relation, but only so-called spurious root, which has a large real part (short wave) and 

a positive imaginary part. These short waves will amplify rapidly and cause numerical 

instabilities. Upwind difference schemes, however, are well known for their stabilizing 

properties. The physical explanation is that the new information on the wave pattern 

mainly comes from the upstream side, especially at high speeds, whereas the 

downstream side only contains old information. 

 

   (a)                                                                                        (b) 

Figure 4.6: Wave patterns with upwind and central difference schemes, Fn = 0.3, λ/L = 1. (a) Diffracted 

waves; (b) Radiated waves. 

We also compare the upwind difference scheme to the accurate scheme provided in 

Eqs. (4.6)-(4.17). It can be observed clearly from Figure 4.7 that the upwind scheme 

provides a better wave pattern. For the accurate scheme, except the diffracted and 

radiated wave modes, some spurious wave modes can also be observed, which could 

interfere with the physical waves and eventually destroy the credibility of the solution 

completely. This is a purely numerical phenomenon that firstly discussed by Longuet-

Higgins and Cokelet (1976). They found that the saw-tooth like waves were 

superimposed on the physical waves such that the waves were zigzag alike if no 

preventive measure is taken. The general consensus on the cause of the problem is that 
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there is high concentration of fluid particles with high speed in certain regions 

especially near the wave crests, as shown in the lower half of each figure in Figure 4.7. 

The same phenomenon was also encountered by Xu and Yue (1995) in their 3-D 

solution.  

A typical treatment to remove the saw-tooth instability is by introducing a low-pass 

numerical filter (Huang, 1997; Longuet-Higgins and Cokelet, 1976; Xu and Yue, 

1995). Although it can provide a smooth wave pattern, it is believed that this numerical 

filter can bring some influence to the real wave elevation. Through the comparison 

from Figure 4.7, we find the difference scheme on the free surface boundary condition 

is the main reason for the spurious wave modes. Even without numerical filtering, the 

upstream difference scheme can obtain a smooth wave pattern. It is found that when 

the accurate scheme provided in Eqs. (4.6)-(4.17) is used, the condition number of the 

coefficient matrix in Eq. (4.24) is extremely large and the coefficient matrix tends to 

be an ill-conditioned matrix. The diagonal elements ,i jP (i = j) is very large due to the 

factor that the field point is within the source panel. When the upwind difference 

scheme is used, the diagonal elements of the coefficient matrix can be restrained and 

as a result, the condition number decreases and the solution tends to be stable, which 

can be observed in the upper half of each figure in Figure 4.7. 

 

   (a)                                                                                        (b) 

Figure 4.7: Wave patterns with upwind and accurate difference schemes, Fn = 0.3, λ/L = 1. (a) Diffracted 

waves; (b) Radiated waves. 
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4.5. Summary 

In this chapter, we introduced a numerical solution for the boundary value problem. 

The Rankine source method can provide a satisfied solution for the present problem of 

two ships travelling or stationary in the shallow waters. It gives a flexible choice of 

free-surface and sea bottom condition, which can take the forward speed and shallow 

water directly into the boundary value problem. We also introduced a desingularization 

method by raising the free surface at some distance above the undisturbed water line. 

A wide range of raising coefficients was investigated and the optimal value had been 

suggested. Besides, the difference schemes were discussed. Through the comparisons, 

it was found that the upwind difference scheme can provide a stable solution for the 

wave elevation and thus, it will be included in our numerical program to investigate 

the seakeeping problems of single or multi-ships advancing or stationary in waves. 



Chapter 5: Implementation of radiation condition 

 

36 

 

5. Implementation of radiation condition 

5.1. Introduction 

In order to complete the boundary value problem by Rankine source method, a 

radiation condition should be imposed on the control surface. A common used 

treatment was proposed by Nakos (1990). The free surface was truncated at some 

upstream points, and a quiescent boundary condition was imposed at these points to 

ensure the consistency of the upstream truncation of the free surface.  Another method 

to deal with the radiation condition is to move the source points on the free surface at 

some distance downstream (Jensen et al., 1986). The results from these two methods 

show very good agreement with published experimental data when the Brard number 

τ (τ = uω/g) is greater than 0.25, since they are both based on the assumption that there 

is no scattered wave travelling ahead of the vessel. However, when the forward speed 

of the vessel is very low, the Brard number will be smaller than 0.25 and the scattered 

waves could travel ahead of the vessel. These traditional radiation conditions could no 

longer be valid at this case. For ship-to-ship problem, the forward speed is usually 

limited to a low level for the safe operation. Therefore, a new extensive radiation 

condition is required to deal with the very low forward speed problem. Das and 

Cheung (2012a, b) provided an alternate solution to the boundary-value problem for 

forward speeds above and below the group velocity of the scattered waves. They 

corrected the Sommerfeld radiation condition by taking into account the Doppler shift 

of the scattered waves at the control surface that truncates the infinite fluid domain. 

They compared their results with the experimental data, and good agreement was 

achieved. They also computed the wave elevation on the free surface, and a reasonable 

wave pattern was obtained at τ < 0.25 by using their new radiation condition. In this 

chapter, we will extend Das and Cheung’s radiation condition to the ship-to-ship 

interaction with forward speed problem. 
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5.2. Formulation of radiation condition 

 
Figure 5.1: Sketch of Doppler shift and radiation condition of single ship. 

Figure 5.1 shows the Doppler Shift of the scattered wave field by a vessel travelling 

with constant forward speed u0 in the positive x direction. When a vessel is moving 

from point B to point O, the traveling time should be t = BO/u0. During this period of 

time, the vessel produces scattered waves all along BO (the first scattered wave should 

arise at point B). The control surface here is defined as a circle with its centroid on 

point O and its radius as BO. The velocity of the scattered wave is defined as c, BO/u0 

= BD/c. According to the sine theorem, it can be easily transferred to 

                                                     0 sin

sin

u

c




                                                                         (5.1) 

The scattered wave velocity at D can be expressed as 

                                         
2 tanh s

s

g
c k d

k
                                                                   (5.2) 

where s is the angular frequency of the scattered waves from a fixed reference point 

given as 
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                                              0 cos( )s e su k                                                  (5.3) 

                                             
2 tanhs s sgk k d                                                     (5.4) 

in which ks is the local wave number at any point on the free or control surface, and d 

is the water depth. 

Combining Eqs. (5.1)-(5.3), we can obtain the following governing equation  
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    (5.5) 

At infinite water depth, d→∞, Eq. (5.5) can be reduced to  

     2 1 2 1 2cos sin sin 2 cos sin sin 1 0                 
   

   (5.6) 

where 2 /s sk  is the local wave length, 
2

0/s g u   is the dimensionless local wave 

length, 0 /hF u gd is the depth Froude number, 2 /   is the dimensionless 

local wave number, and parameter 0 /eu g  .  

Let’s discuss the dimensionless local wave length on x-axis. At α → 0 or π, 

 1sin sin 0    Eq. (5.6) becomes 

  2 2 2cos ( ) 2 cos( ) 1 0                                        (5.7) 

The solutions for Eq. (5.7) can be written as  

 2

1 2 cos 1 4 cos

2cos

   




  
                                     (5.8) 

At α = 0 and τ < 0.25, two solutions can be obtained from Eq.(5.8)  
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At α = π, another group of two solutions can be obtained from Eq.(5.8)  
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                                                 (5.11) 

 4

4

1 2 1 4




 


  
                                                 (5.12) 

These four solutions are shown in Figure 5.2, which are identical to Becker’s (1958) 

results. It has been found by using the Green function method that at τ < 0.25, there 

are three wave systems: one ring wave system and two Kelvin fan wave systems with 

different wedge angle (Becker, 1958; Miao et al., 1995). At τ > 0.25, there are only 

two wave systems, one of which is the wave system formed by the outer fan waves. 

From Figure 5.2, we find that at τ < 0.25, there are four wave lengths in x-axis: γ1 and 

γ3 corresponds to the ring wave system, γ2 and γ4 corresponds to the inner and outer 

Kelvin fan wave systems respectively. It can also be found that at τ > 0.25, there are 

only two wave lengths in x-axis: γ3 corresponds to the ring wave system and γ4 

corresponds to outer Kelvin fan wave system. We notice that the wave length of the 

ring wave system is much larger than that of Kelvin fan wave systems. In the numerical 

study, the free surface is usually truncated at 2L - 3L upstream and downstream. This 

truncation length is in the same order as the length of the ring wave system. But for 

the Kelvin fan wave systems, this truncation length is much larger, and it can be 

regarded as infinity. In Rankine source method, if the truncation length is very large 

(R→∞), the radiation condition is not necessary. Therefore, in the present study, there 

is no radiation condition imposed to Kelvin fan wave systems. The radiation condition 

proposed in this paper is only applicable to solve the radiation and diffraction problem 

of the ring wave system. Therefore, the parameter ks only refers to the local wave 

number of the ring wave system. 
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Figure 5.2: The dimensionless local wave length on x-axis 

Let’s define a point D(x, y), which is used to divide the control surface into two parts, 

SC1 and SC2. If we cannot find the solutions for Eq. (5.5), these points must be on the 

control surface Sc2. Otherwise, they are on SC1. The critical θ at point D can be derived 

analytically. The scattered wave reaching point D is produced by the vessel at point B. 

Notice that α = 2θ, Eq. (5.1) can be written as  

0 1

2cos

u

c 
   (5.13) 

Substituting Eqs. (5.2) and (5.13) into Eq. (5.3), we can obtain the following equation 

at infinite water depth 

0 1

4cos

eu

g




   (5.14) 

Notice that the Brard number is defined as 0 eu

g


  , Eq. (5.14) becomes  

1
cos

4



   (5.15) 
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From Eq. (5.15), we find that  

I. 0.25  , no solution can be found for the critical θ since the scattered waves 

can reach any points on the whole control surface. At this case, the scattered 

wave produced at point B should reach somewhere ahead of point A. 

Correspondingly, the wave group will travel ahead of the vessel.  

II. 0.25  , the critical rotated angle θ = 0. At this case, the scattered wave 

produced at point B is propagating to point A. Correspondingly, the wave group 

is reaching point O.  

III. 0.25  , the critical θ can be found at point D. At this case, the control surface 

could divide into arc DB (SC1) and arc DA (SC2). 

In the numerical calculation, the coordinates of any arbitrary point on the control 

surface are given, and then the unknowns θ and sk  could be obtained by solving Eq. 

(5.5). The double Doppler shift radiation condition is defined as two different 

equations on Sc1 and Sc2 independently, 

cos 0
j

s jik
n


 


 


    (j = 1, 2, … , 7) on SC1                                (5.16) 

0j      (j = 1, 2, … , 7)   on SC2              (5.17) 

Eq. (5.16) is an updated Sommerfeld radiation condition with forward speed correction. 

If the forward speed is zero, kks  ,   = 0 and Eq. (5.16) could reduce to the 

Sommerfeld radiation condition as 

0
j

jik
n





 


  (j = 1, 2, … , 6)    on SC                         (5.18) 

5.3. Validation of single vessel 

Figure 5.3 and Figure 5.5 show a Wigley hull traveling with different Froude number 

in the positive x direction and the free surface is truncated by a rectangle and circular 

control surface respectively. The control surface is dispersed into a number of panels 

(20 panels in the present model). Figure 5.4 and Figure 5.6 are the results of the local 
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wave number sk  on different control surfaces and different Froude numbers. sk  = 0 

illustrates that no solution is found at these panels and these panels are on SC2. It can 

be found from Figure 5.4 that as the Froude number increases, the range of SC1 shrinks. 

At Fn = 0,   = 0 and sk  = k, which is a constant independent of the location. At Fn = 

0.1, the scattered wave at B can only reach No.1-12 panels, and for No.13-20 panels, 

no solutions can be found there. When the Froude number increases to Fn = 0.3, only 

No.1-5 panels on the downstream side can be influenced by the scattered waves. Figure 

5.6 transmits the same information as Figure 5.4, which indicates that the truncation 

of free surface could be arbitrary and sk  and   are only determined by the coordinates 

of the points on the control surface.   

 

Figure 5.3: Rectangle control surface for single ship. 

 

Figure 5.4: Local wave number on rectangle control surface. 
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Figure 5.5: Circular control surface for single ship 

         

Figure 5.6: Local wave number on circular control surface. 

5.4. Validation of two vessels 

 

Figure 5.7: Sketch of Doppler shift and radiation condition of two ships advancing in waves. 
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The radiation condition in Eq. (5.16) and Eq. (5.17) can also be applicable to ship-to-

ship problem, as shown in Figure 5.7. It is assumed that two ships are advancing in 

waves with the same forward speed. The transverse and longitudinal distances between 

two ships are dt and dl respectively. The inertia coordinate system is shown in Figure 

5.7 with its origin located on the central line between two ships. Figure 5.8 is a 

numerical case of two oscillating sources advancing in the positive x direction. The 

free surface is truncated by a circular. To simplify the problem, only 40 nodes are 

distributed on the control surface (20 nodes on the upper half circle and 20 nodes on 

the lower half circle). Figure 5.9 and Figure 5.10 are the calculated local wave number 

and rotated angle respectively at  = 0.2. The solutions of ks and θ can be found at any 

nodes on the control surface, which illustrates that the scattered waves could reach any 

points on the truncated surface. Due to the Doppler Effect, the scattered waves 

upstream have shorter wavelengths. As a result, the local wave number upstream is 

greater than that downstream, which is shown in Figure 5.9. But the maximum values 

of rotated angle appear around y = 0, and it decreases upstream and downstream 

gradually. It is very interesting to find that on the upper half circle, the rotated angle 

θ_a is close to zero at Node 1 and Node 19 while on the lower half circle, θ_b turns to 

be zero at Node 1 and Node 19. This is because these two nodes are almost on the 

trajectory of source a and source b, which can be shown in Figure 5.8. At these points, 

the scattered wave direction is parallel to x axis and it will not be rotated at all. Since 

the origin of the control surface is located on the central line between two sources, the 

symmetry cannot be achieved about the trajectory of source a and source b. Therefore, 

the results on upper and lower half circle are different. The results of source a and 

source b are also not identical to each other.  
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Figure 5.8: Doppler shift of two oscillating sources with forward speed. 

 

Figure 5.9: Local wave number at τ = 0.2. 

 
Figure 5.10: Rotated angle at τ = 0.2. 
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Figure 5.11 and Figure 5.12 are the calculated local wave number and rotated angle 

respectively at  = 0.6. In numerical calculation, if there is no solution for Eq. (5.5), 

the ks and θ are labelled as 0. With regard to source a, the scattered waves can only 

propagate to Node 7 on the upper half circle, while Node 6 is the furthest point on the 

lower half circle. Ahead of these two nodes, there is no scatter wave and ks and θ are 

labelled as 0. Since source b is located at some distance afterward, its scattered waves 

can only reach Node 5 on the upper half circle while Node 6 is the furthest point on 

the lower half circle. We also calculate ks and θ at τ = 0.4. The critical nodes are shown 

inFigure 5.8. It can be concluded that the quiescent region expands with increasing 

Brard number as the scattered waves are convected behind the sources. It can also be 

easily demonstrated that the truncation of free surface could be arbitrary (circular, 

rectangular or ellipse) and sk  and   are only determined by the coordinates of the 

points on the control surface.   

 
Figure 5.11: Local wave number at τ = 0.6. 

 
Figure 5.12: Rotated angle at τ = 0.6. 
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5.5. Summary 

In this chapter, we introduced a new modified Sommerfeld radiation condition which 

takes into account the Doppler shift of the scattered waves. This new radiation 

condition is applicative to a wide range of forward speeds, including very low forward 

speed problem where the Brard number is smaller than 0.25. We examined this new 

radiation condition through a two models: a single ship model and two ships model. 

The results indicated that the present radiation condition can give a reasonable 

explanation of the physical scattered waves. 
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6. Validations and discussion of single ship 

travelling or stationary in waves 

6.1. Introduction 

Before we get down to the multi-body problem, the program for single vessel should 

be validated firstly. Compare to ship-to-ship problem, the coordinate system and 

boundary conditions of single ship is different. Figure 6.1 shows a vessel travelling 

with a constant forward speed in a Cartesian coordinate system which is moving 

together with the body. The origin is located on the still water and axis Z points upward. 

X and Y axis is on the geometric centroid of the water-plane.  

 

Figure 6.1: An example vessel and coordinate system. 

The total potential can be decomposed into  

7

0

0

( , ) ( ) Re ( ) ei t

s j j

j

t u x e
   



     x x x ,    j = 0,1,…,7                    (6.1) 

The boundary value problem of the steady wave is the same as defined in Eq. (3.5)-

(3.8), while the diffraction and radiation boundary condition is different and can be 

given by 
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2 0j             in the fluid domain                                (6.2) 

2

2 2

0 0 2
2 0

j j j

e j ei u u g
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  

  
    
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 on the undisturbed free surface Sf   (6.3) 

0
j

z





           on the sea bottom        (6.4) 
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

  
 

 
  



 on the mean wetted part of the body surface Sb   (6.5) 

The same numerical method illustrated in Chapter 4 and Chapter 5 can provide a 

solution for the boundary value problem of single ship. 

6.2. Single Wigley hull stationary in waves 

6.2.1. Description of the model 

In realistic conditions, a ship cannot be considered as a point source and different parts 

of its hull usually produce several wave systems. Generally, only stern waves have 

magnitude comparable with that of bow waves. The diverging bow and stern waves 

may travel independently if the ship is long enough (Tarmo, 2007). The longer waves 

and the shift of the origin downstream of the vessel require the replacement of the 

control surface further away to satisfy the point source assumption. However, Das and 

Cheung (2012b) carried out the convergence study and found that the present model 

apparently handled those phenomena well with constant panels and provided accurate 

results with a domain of reasonable dimensions and solution commonly used in ship 

and offshore platform design. In the present numerical study, a Wigley III hull 

advancing or stationary in head sea is modelled by using the present method. Journee’s 

(1992) experimental results are quoted to verify the efficiency of the present model. 

The model can be defined as 

2 2
2 2

1 1 1 0.2
2

s
B z x x

y
T L L

          
             

               

                                (6.6) 
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where B is the breadth, L is the length and T is the draft of the ship. The main 

dimensions of Wigley III model are shown in Table 6.1. 

Table 6.1: Main dimensions of Wigley III hull 

Length, L (m) 3 

Breadth, B (m) 0.3 

Draught, T (m) 0.1875 

Displacement, V (m3) 0.078 

Centre of rotation above base, KR (m) 0.1875 

Centre of gravity above base, KG (m) 0.17 

Radius of inertia for pitch, kyy (m) 0.75 

The computational range on the free surface is extended to 2L upstream, 2L 

downstream and 2L sideways, where L = 3 m is the length of the vessel. Since the flow 

around a symmetric body is symmetric about x-z plane, only half computational 

domain is modelled. There are 300 panels on the body surface, 7200 on free surface 

and 1200 on the control surface, which is shown in Figure 6.2. But the free surface is 

extended to 1L upstream, 3L downstream and 1L sideways in the steady wave problem 

in order to simulate the full Kelvin wave. 

 

Figure 6.2: Computational domain and panel distribution of single Wigley hull. 
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6.2.2. Results and discussion 

Figure 6.3 and Figure 6.4 show the comparison of the hydrodynamic coefficient 

between the present and Wadam (2010) results. Good agreement is achieved between 

the present method and Wadam solution. For the present 3-D Rankine source method, 

8700 panels are distributed on the body-, free- and control-surface, while only 2000 

panels on the body surface are required for the Wadam program which is based on the 

frame work of 3-D Green function. Therefore, more CPU time is consumed by the 

present program on modelling as well as solving a very large full rank matrix. It can 

be concluded that both Rankine source method and Green function method can provide 

a stable solution for the ship-to-ship with zero speed problem. The advantage of the 

present method should lie on the two ships travelling with forward speed in the 

restricted waters, which will be discussed in the next chapter. Besides, it can be 

observed from Figure 6.4 (b) that there is an unrealistic spike arising at high frequency 

area. This is so-called irregular frequency problem introduced by Green function 

method. However, the irregular frequency problem can be avoided by using the present 

3-D Rankine source method. 

 

              (a)                                                                                       (b) 

Figure 6.3: Heave hydrodynamic coefficients. (a) Added mass; (b) Damping. 
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              (a)                                                                                       (b) 

Figure 6.4: Pitch hydrodynamic coefficients. (a) Added mass; (b) Damping. 

Figure 6.5 and Figure 6.6 show the comparison of the hydrodynamic coefficients 

between the present results and Wadam solution. Very satisfied agreement has been 

obtained, which indicates that the present 3-D Rankine source panel program can 

predict the hydrodynamic properties of single ship stationary in the waves. 

 
              (a)                                                                                       (b) 

Figure 6.5: Wave excitation forces. (a) Heave; (b) Pitch. 

 

              (a)                                                                                       (b)  

Figure 6.6: Response amplitude operators. (a) Heave; (b) Pitch. 
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6.3. Single Wigley hull advancing in waves 

The same Wigley III model in Section 6.2.1 will be used to investigate the 

hydrodynamic properties of single ship travelling in waves. 

6.3.1. Steady wave problem 
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Figure 6.7: Steady wave patterns at various forward speeds. 

Figure 6.7 shows the comparison of the wave pattern around the Wigley hull at 

different Froude number ( 0 /nF u gL ) ranging from 0.2 to 0.4. As can be seen in 

these figures, the steady wave elevation attenuates rapidly behind the ship. The 

diverging waves are radiating from the bow together with the transverse waves 

following behind the stern. The Kelvin angle increases as the forward speed of the ship 

increases. If the Froude number is smaller than 0.2, the steady wave elevation is very 

small, which means the energy dissipation is relatively small at low forward speed. 

This can also be observed from the wave making resistance in Figure 6.8. The wave 

making resistance can be defined as 

1

2

0

1

2

s

w

F
C

u S

   (6.7) 

where S is the area of the wetted body surface and 
1

sF is the steady hydrodynamic 

forces, which can be obtained by the pressure integrals on the wet body surface as 

follows: 
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b

s

i s i

S

F p n dS  ,    i = 1, 2, …, 6                                     (6.8) 
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 
    
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  (6.9) 

Compared with the ITTC experimental results (SRI: Ship Research Institute, Tokyo; 

TOKYO: University of Tokyo), the present results based on the steady flow is 

satisfactory. The result from Xiang and Faltinsen (2011) is also included in the 

comparison, which is based on the unified flow model. It can be found that in the very 

low forward speed region, the wave making resistance is negligible. For the ship-to-

ship problem, the forward speed is usually limited to a low level for the safe operation. 

Therefore, we will ignore the coupled behavior between the steady waves and unsteady 

waves in the following chapters. 

 

Figure 6.8: Wave making resistance of the Wigley hull. 

6.3.2. Radiation problem 

Figure 6.12 shows the radiated waves of single ship with different forward speeds in 

head seas. It can be found that the present method can provide a satisfied wave pattern, 

even when the Brard number is smaller than the critical value 0.25. From Figure 6.12 

(a), we find there are some scattered waves travelling ahead of the vessel. And in this 

case, the traditional upstream radiation condition is invalid since it cannot satisfy the 

assumption that there is no wave propagating ahead of the vessel. A V-shape region is 

clearly convected downstream as the Brard number increases. No reflections can be 

found on the boundary, which indicates physically that the present radiation condition 

can ensure that the waves propagate away from the ship. 
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     (a)                                                                                         (b) 

 

   

     (c)                                                                                         (d)  

Figure 6.9: Radiation wave pattern for unit heave motion at λ/L = 1. (a) Fn = 0.07, τ = 0.2; (b) Fn = 0.1, τ = 

0.31; (c) Fn = 0.2, τ = 0.75; (d) Fn = 0.3, τ = 1.32. 

Figure 6.10 and Figure 6.11 are the comparison of hydrodynamic coefficients between 

present calculations and experimental results. Overall, the agreement is quite good in 

added mass and damping coefficients of heave and pitch motion. Discrepancy arises 

near τ = 0.25 ( / 1.26e L g  ). This phenomenon has also been observed by Kim and 

Shin (2007) by using Green function method. The main reason for the difference lies 

on the steady wave mj terms given by Eq. (3.34). In the present code, the free-stream 
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assumption of Eq. (3.35) is used and the coupling effects between the steady and 

unsteady flows have been neglected. However, this m-term appeared in the body 

boundary condition will bring some influences to the radiation problem, which is 

reflected in the hydrodynamic coefficients. In order to get better hydrodynamic 

coefficients, the double-body or steady-wave flow should be taken as the basic flow. 

Experimental data for very low forward speed is unfortunately not available. 

  

         (a) Heave added mass induced by heave motion            (b) Pitch added mass induced by heave motion 

 

         (c) Heave damping induced by heave motion                (d) Pitch damping induced by heave motion 

Figure 6.10: Hydrodynamic coefficients of heave motion at Fn = 0.2. (- -, Fn = 0;   ̶ , Present calculation; ○, 

Experiment,  = 2.5cm; •, Experiment,  = 5cm). 
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      (a) Heave added mass induced by pitch motion                 (b) Pitch added mass induced by pitch motion 

 

       (c) Heave damping induced by pitch motion                 (d) Pitch damping induced by pitch motion 

Figure 6.11: Hydrodynamic coefficients of pitch motion at Fn = 0.2. (- -, Fn = 0;   ̶ , Present calculation; ○, 

Experiment,  = 1.5○; •, Experiment,  = 3○). 

6.3.3. Diffraction problem 

Figure 6.12 shows the diffracted waves induced by unit heave motion of a single ship 

with different forward speeds in head seas. It can be found that the present method can 

provide a satisfied diffracted wave pattern, even when the Brard number is smaller 

than the critical value 0.25. From Figure 6.12 (a), we find there are some scattered 

waves travelling ahead of the vessel. And in this case, the traditional upstream 

radiation condition is invalid since it cannot satisfy the assumption that there is no 

wave propagating ahead of the vessel. A V-shape region is clearly convected 

downstream as the Brard number increases. No reflections can be found on the 

boundary, which indicates physically that the present radiation condition can ensure 

that the waves propagate away from the ship. 
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     (a)                                                                                         (b) 

    

     (c)                                                                                         (d)  

Figure 6.12: Diffraction wave pattern at λ/L = 1. (a) Fn = 0.07, τ = 0.2; (b) Fn = 0.1, τ = 0.31; (c) Fn = 0.2, τ 

= 0.75; (d) Fn = 0.3, τ = 1.32. 

Good agreement of wave exciting forces between the present calculation and 

experimental results can be observed in Figure 6.13 and Figure 6.14. The forward 

speed effect on the wave exciting forces is not significant. And it is different to the 

radiation problem that the diffraction potential does not strongly depend on the steady 

flow solution since mj terms appear only in the body boundary condition for the 

radiation problem. 
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Figure 6.13: Wave excitation force in heave at Fn = 0.2. 

 

Figure 6.14: Wave excitation moment in pitch at Fn = 0.2. 

6.3.4. Motion responses 

It can be seen from Figure 6.15 and Figure 6.16 that the heave and pitch RAO 

calculated by the present method agrees well with the model test results of Journee 

(1992). Peak values in the heave and pitch RAOs can be observed at λ/L = 1 and 1.2 

corresponding to resonance of the Wigley hull in the respective motions. But at zero 

forward speed, there is no peak and the RAO curve differs considerably from the 

forward speed curve. It requires special attention in the design and operation of marine 

vessels with forward speed. 
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Figure 6.15: Heave response amplitude operators at Fn = 0.2. 

 

Figure 6.16: Pitch response amplitude operators at Fn = 0.2. 

6.3.5. Effect of radiation condition 

(1) Sommerfeld radiation condition 

Figure 6.17 is the diffraction wave pattern with different radiation conditions, while 

the radiation wave patterns induced by unit heave motion are presented in Figure 6.18. 

The wave length to ship length ratio of λ/L = 1 in head sea corresponds to the critical 

conditions in ship design. In order to investigate how the new double Doppler shift 

radiation condition changes the wave field in very low forward speed, we make the 

comparison between the present model and Sommerfeld radiation condition over a 

wide range of Brard number from 0 to 0.26. The lower half of each sub-figure of Figure 

6.17 and Figure 6.18 shows the wave pattern obtained from Sommerfield radiation 

condition, while the radiation condition in the upper half account for the new double 
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Doppler shift radiation condition defined by Eqs. (5.16)-(5.17). At zero forward speed, 

the wave elevation calculated from present radiation condition is exactly the same as 

that from Sommerfeld radiation condition. The waves propagate as a circle pattern 

beyond one wavelength from the center with the main radiation energy on either side 

of the vessel. From Figure 6.18 (b) we can find that even at very low forward speed, 

the Doppler shift becomes evident and it modifies the wave length. The wave length 

downstream is larger than the upstream wave length. It can also be found that if the 

new radiation condition associated with Doppler shift correction is used, the waves 

appear smooth and stable. While for the Sommerfeld radiation condition, there are 

some distortions and reflections from the control surface. As the Brard number 

increases to 0.25, or just a little greater than 0.25, the forward speed of the vessel is 

equal to or greater than the wave group velocity. There should be no waves 

propagating ahead of the vessel. This phenomenon could be illustrated well from 

Figure 6.17 (c)-(d) and Figure 6.18 (c)-(d). And also, the wave pattern is smooth and 

stable by using the new model.  

     

     (a)                                                                                         (b) 
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(c)                                                                                       (d) 

Figure 6.17: Diffraction wave patterns by using Sommerfeld and present radiation conditions at λ/L = 1. 

(a) Fn = 0, τ = 0; (b) Fn = 0.068, τ = 0.2; (c) Fn = 0.083, τ = 0.25; (d) Fn = 0.09, τ = 0.26. 

  

     (a)                                                                                         (b) 
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(c)                                                                                       (d) 

Figure 6.18: Radiation wave patterns by using Sommerfeld and present radiation conditions at λ/L = 1. (a) 

Fn = 0, τ = 0; (b) Fn = 0.068, τ = 0.2; (c) Fn = 0.083, τ = 0.25; (d) Fn = 0.09, τ = 0.26. 

(2) Upstream radiation condition 

In order to validate the wave patterns calculated by the present radiation condition at 

τ > 0.25 we implement an upstream boundary condition of  Nakos (1990)  for 

comparison. The upstream boundary condition assumes that there is no scattered wave 

travelling ahead of the vessel and a quiescent condition is imposed at the upstream 

boundary as 

 0( ) 0e ji u
x

 


 


                  (6.10) 

2

0( ) 0e ji u
x

 


 


                                                                (6.11) 

Besides, no control surface is required in Nakos’s (1990) model. Figure 6.19 is the 

diffracted waves with different radiation conditions, while the radiated waves induced 

by unit heave motion are presented in Figure 6.20. The wave length to ship length ratio 

of λ/L = 1 in head sea corresponds to the critical conditions in ship design. In order to 

investigate how the new radiation condition changes the wave patterns at different 

forward speeds, we make the comparison between the present model and traditional 

upstream radiation condition over a wide range of Brard number from 0.26 to 1.32. 

The lower half of each sub-figure of Figure 6.19 and Figure 6.20 shows the wave 
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pattern obtained from the upstream radiation condition, while the radiation condition 

in the upper half account for the new treatment of the radiation condition defined by 

Eqs. (5.16)-(5.17). From the comparison in Figure 6.19 and Figure 6.20, we find that 

an upstream quiescent region is achieved by both methods. A very good agreement of 

the wave fields can be observed around the ship hulls, especially at high forward speed. 

The discrepancies increase as the waves propagate to the truncated control surface. For 

the upstream treatment, the reflections can be clearly observed form Figure 6.19 (a) 

and Figure 6.20 (a) when the waves approach the control surface. As the forward speed 

increases, the reflections from the control surface become not evident and very 

satisfied agreement has been achieved between these two radiation conditions. It can 

be supposed that at low forward speed, if the truncated free surface domain is not 

sufficient, the reflected waves could inevitably influence the ship motions. But for the 

present radiation condition, the rotated angle θ has been calculated before we solve the 

boundary value problem. The corrected Sommerfeld radiation condition can ensure 

the out-going property of the scattered waves. Therefore, no reflections can be found 

for the present model at τ > 0.25. The results in Figure 6.19 and Figure 6.20 confirm 

the effectiveness of the present radiation condition as a wave-pattern prediction tool 

for the ships travelling with a wide range of forward speed. However, the traditional 

upstream radiation condition is limited to the high forward speed problem. For the low 

forward speed range, a reasonable control surface is required downstream to ensure 

the out-going property of the scattered waves. 

     
     (a)                                                                                         (b) 
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(c) 

Figure 6.19: Diffracted waves of single ship in head seas by using upstream and present radiation 

condition: λ/L = 1. (a) Fn = 0.09, τ = 0.26; (b) Fn = 0.15, τ = 0.5; (c) Fn = 0.3, τ = 1.32. 

       

     (a)                                                                                         (b) 
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   (c) 

Figure 6.20: Radiated waves of single ship in head seas by using upstream and present radiation condition: 

λ/L = 1. (a) Fn = 0.09, τ = 0.26; (b) Fn = 0.15, τ = 0.5; (c) Fn = 0.3, τ = 1.32. 

We also examine the effect of the radiation condition through the comparison study 

about the hydrodynamic coefficients. Figure 6.21 shows the hydrodynamic 

coefficients with the upstream and present radiation condition at Fn = 0.09. It can be 

clearly seen that at / 3e L g  ( / 3e L g  corresponds to τ = 0.25), the results 

from the upstream treatment are diverged and cannot provide a stable solutions. At the 

range of 3 / 3.5e L g  (corresponds to 0.25 < τ < 0.29), the results from the 

upstream radiation treatment tends to be stable. When the non-dimensional frequency 

is greater than 3.5 (corresponds to τ > 0.29), these two radiation conditions can provide 

the identical results. This coincides with the assumption of the upstream treatment that 

the scattered waves could not propagate ahead of the vessel (τ < 0.25). Even though 

the Brard number is slightly greater than critical value 0.25, there are still some waves 

upstream, which can be observed from Figure 6.19 (a) and Figure 6.20 (a). At this case, 

the reflected waves from the control surface can bring some influences to the vessel’s 

motion, which can explain the discrepancies between these two radiation conditions at 

0.25 < τ < 0.29. As the Brard number keeps increasing, there is no wave ahead of the 

vessel, as shown in Figure 6.19 (b)-(c) and Figure 6.20 (b)-(c), and it fully satisfies the 

upstream assumption. Therefore, both of the radiations can give a stable result. We 
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also investigate the hydrodynamic coefficients at Fn = 0.3, as shown in Figure 6.21. 

It can be found that the added mass and damping with the present radiation condition 

are almost the same as these with the upstream treatment. It can be concluded that the 

present radiation condition can predict the hydrodynamic properties of vessels with 

forward speed above and below the group velocity of the scattered waves while the 

upstream treatment is only valid for the case of  τ > 0.25. 

   
             (a)                                                                                       (b) 

  
              (c)                                                                                        (d)  

Figure 6.21: Hydrodynamic coefficients of single ship by using upstream and present radiation condition at 

Fn = 0.09. (a) Heave added mass; (b) Heave damping; (c) Pitch added mass; (d) Pitch damping. 

   

             (a)                                                                                       (b) 
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              (c)                                                                                        (d) 

Figure 6.22: Hydrodynamic coefficients of single ship by using upstream and present radiation condition at 

Fn = 0.3. (a) Heave added mass; (b) Heave damping; (c) Pitch added mass; (d) Pitch damping. 

6.4. Summary  

In this chapter, we validated the present 3-D Rankine source panel method associated 

with a new radiation condition by solving the hydrodynamic problem of single ship 

travelling or stationary in waves. We examined the hydrodynamic coefficients, wave 

excitation forces and motion responses and established the comparisons between the 

present calculations and the commercial software as well as the experimental data. 

Very good agreement had been achieved which illustrates that the present program is 

a useful tool to predict the hydrodynamic behaviours of single ship with a wide range 

of forward speed in waves. We also examined the present radiation condition and 

effect of forward speed through a series of numerical experiments involving single 

Wigley hull with different forward speeds in head seas. The forward speed introduces 

the Doppler shift which modifies the length of the scattered waves. The comparison 

between the present and Sommerfeld radiation condition was made at τ < 0.25, while 

the comparison between the present and upstream radiation treatment was made at τ < 

0.25. Our solution shows a better wave pattern without reflections from the truncated 

control surface, which confirms the effectiveness of the present radiation condition as 

a wave-pattern prediction tool for the ships travelling with a wide range of forward 

speed. 
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7. Validations and discussion of two ships 

stationary in waves 

7.1. Introduction 

Moored side-by-side operations are important options for the offloading of oil offshore. 

Nowadays, they are also considered seriously for the LNG offloading from LNG 

FPSOs or FSRUs (Floating Storage and Regasification Units). The loads in the 

mooring lines between the two vessels, the loads in the floating fenders and the relative 

motions at the manifold location are the most critical issues during this operation. 

These are determined by the wave, wind and current loads on the two vessels in close 

proximity, as well as by the strong hydrodynamic interaction between the vessels. 

Even in head waves the two vessels are jack-kniving (relative yaw motion of the vessel 

out of phase) as the waves run between the two hulls. The resulting motions and 

mooring loads determine the operability of the operation in certain environmental 

conditions.  

In this chapter, we will validate our program through a numerical study about two 

ships stationary in waves. The validation is established through two pairs of models. 

Model 1 is about a modified Wigley hull and a box model at beam sea case and the 

experimental results as well as some published numerical results will be used for the 

validation. Model 2 is about two identical Wigley III hulls at head sea condition and 

the results from the commercial software will be used for the comparison. The 

discussions on shallow water effects and the distance between two ships are also 

included in this chapter. But these discussions are based on zero speed case. The 

systematic discussions about the water depth variation, the transverse and longitudinal 

distance between the ships and the forward speed effects will be presented latter in 

Chapter 8 and Chapter 9. 
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7.2. Validations of Model 1 (Beam sea) 

Model 1 is about a modified Wigley hull (Ship_a) and a rectangular box (Ship_b) 

model at beam sea condition. The modified model can be defined as (Kashiwagi et al., 

2005) 

4
2 2 2 2 8 2

2 2 2 2
1 1 1 0.2 1 1

y x z x z z x

B L T L T T L

                    
                          

                             

 (7.1) 

where B is the breadth, L is the length and T is the draft of the ship. The main 

dimensions of the modified Wigley and the rectangular box are shown in Table 7.1. 

Table 7.1: Main dimensions of the modified Wigley hull and the box (Kashiwagi et al., 2005). 

 Modified Wigley hull Rectangular box 

Length between perpendicular La = 2 m Lb = 2 m 

Breadth Ba = 0.3 m Bb = 0.3 m 

Draught Ta = 0.125 m Tb = 0.125 m 

Displacement Va = 0.04205 t Vb = 0.075 t 

Water-plane area Awa = 0.416 m2 Awb = 0.60 m2 

Two typical cases are simulated here: 

1) Ship_a is situated in the weather side and Ship_b is in the lee side. The 

transverse (dt) and longitudinal distance (dl) between the two ships is 1.097 m 

and 0 m respectively. 

2) Ship_a is situated in the lee side and Ship_b is in the weather side. The 

transverse (dt) and longitudinal distance (dl) between the two ships is 1.797 m 

and 0 m respectively. 

The computational range on the free surface is extended to 2L upstream, 2L 

downstream and 2L sideways, where L = 2 m is the length of the vessel. For the case 

of dt = 1.079, there are 320 panels on the body surface of Wigley hull, 480 on the body 

surface of the rectangular box, 7800 on free surface and 2052 on the control surface, 

which is shown in Figure 7.1. For the case of dt = 1.797, there are 320 panels on the 

body surface of Wigley hull, 480 on the body surface of the rectangular box, 8360 on 

free surface and 1780 on the control surface.  
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Figure 7.1: Computational domain and panel distribution of a modified Wigley hull and a rectangular box 

model stationary in waves at dt = 1.079. 

Figure 7.2 shows the hydrodynamic coefficients of a modified Wigley hull due to the 

heave motion of the Wigley hull itself when the rectangular box is fixed with the 

separation distance of dt = 1.797 m, where 

2

0 cL
K

g


  and Lc is the characteristic 

length scale for nondimension (which is taken as Lc = La/2). The comparisons with 

experimental data and Green function method (Kashiwagi et al., 2005) are also 

included. The numerical results calculated by the present 3-D Rankine source method 

generally agree well with the experimental data. The hydrodynamic interactions are 

properly accounted for, especially in the sway added mass and damping (
23

aa  and
23

aa  ) 

which are exerted only by wave interactions between Ship_a and Ship_b. Some 

discrepancies can be observed in the heave added mass and damping (
33

aa  and 
33

aa  ) 

at low frequency range, which could be attributed to the effect of the reflection waves 

from the parallel side walls of the tank, as explained by Kashiwagi et al. (2005). 

 

Ship_a 

Ship_b 

dt 
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(d) 

Figure 7.2: Hydrodynamic coefficients of a modified Wigley hull due to the heave motion of the Wigley hull 

itself when the rectangular box is fixed with the separation distance of dt = 1.797 m. (a) Heave added mass; 

(b) Heave damping; (c) Sway added mass; (d) Sway damping. 

Figure 7.3 shows the wave excitation forces on the modified Wigley hull (Ship_a, in 

the weather side) and rectangular box (Ship_b, in the lee side) with the separation 

distance of dt = 1.097 m. The overall agreement between measured and computed 

results is good, although slight discrepancies can be seen in a range of long 

wavelengths, which is due to the reflection wave effects from the side walls of the 

towing tanker. Very good agreement has been obtained between the present Rankine 

source method and Green function method. It can be concluded that both Green 

function method and Rankine source method can predict the hydrodynamic forces of 

two ships arranged side by side with zero speed in beam waves. 
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(b) 

 
(c) 

 
(d) 

Figure 7.3: Wave excitation forces in beam waves with the transverse distance between two ships of dt = 

1.097 m. (a) Sway forces on Ship_a; (b) Sway forces on Ship_b; (c) Heave forces on Ship_a; (d) Heave 

forces on Ship_b. 
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7.3. Validations of Model 2 (Head sea) 

Model 2 is about two identical Wigley III hulls at head sea condition. The Wigley 

models used here is the same as defined in Eq. (6.6), and the main dimensions of the 

hull are given in Table 6.1. The transverse and longitudinal distance between these two 

vessels is 1 m and 0 m respectively. The computational range on the free surface is 

extended to 1.33L upstream, 1.33L downstream and 2L sideward, where L = 3m is the 

length of the vessel. There are 600 panels on the each body surface, 10400 on free 

surface and 2100 on the control surface, which is shown in Figure 7.4. 

 

Figure 7.4: Computational domain and panel distribution of two Wigley hulls stationary in waves. 

Figure 7.5 and Figure 7.6 show the wave excitation forces and response amplitudes of 

both ships in 6 degree of freedom. Good agreement is achieved between the present 

method and Wadam solution. For the present 3-D Rankine source method, 13700 

panels are distributed on the body-, free- and control-surface, while only 2000 panels 

on the body surface are required for the Wadam program which is based on the frame 

work of 3-D Green function. Therefore, more CPU time is consumed by the present 

program on modelling as well as solving a very large full rank matrix. It can be 

concluded that both Rankine source method and Green function method can provide a 

stable solution for the ship-to-ship with zero speed problem. The advantage of the 

Ship_a 

Ship_b 
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present method should be concentrated on the two ships travelling with forward speed 

in the restricted waters, which will be discussed in next chapter. Peak value of roll 

motion in Figure 7.6 (d) can be found around λ/L = 0.65, which corresponds to the 

nature frequency of roll motion. We also find that there are some spikes in sway force 

and roll moment in Figure 7.5 (b) and Figure 7.5 (d). The first spike appears at λ/L = 

0.33, which corresponds to the wave length that equals to the transverse distance dt (L 

= 3 m, dt = 1m). Similarly, the second and third spikes arise at λ/L = 0.66 and λ/L = 

1, which correspond to the wave length that equals to 2dt and 3dt respectively. Special 

attention should be paid on the force and motion of sway. As we can see from Figure 

7.5 (b) and Figure 7.6 (b), there is a significant leap at high frequency around λ/L = 

0.25. The reason for these spikes will be discussed later in next chapter. However, 

there are no obvious spikes observed at these λ/L values for surge, heave and pitch, 

which indicates that in head sea condition, the transverse distance between two ships 

will bring more influence on the dynamic responses in sway, roll and yaw. The 

numerical results of single ship are also included in the comparison. In head sea case, 

the motions in sway, roll and yaw should be zero due to the symmetrical characteristic 

of the vessel. But even in surge, heave and pitch, the influence from the hydrodynamic 

interaction is not significant.  
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                (c)                                                                                       (d)  

 

              (e)                                                                               (f) 

Figure 7.5: Wave excitation forces of both Wigley hulls with zero speed in head waves. (a) Surge; (b) Sway; 

(c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 
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              (c)                                                                             (d) 

  

              (e)                                                                             (f) 

Figure 7.6: Response amplitude operators of both Wigley hulls with zero speed in head waves. (a) Surge; 

(b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 

As we can see from Figure 7.5 (b) and (d) that the peak values of sway force and roll 

moment appear at λ/L = 1. In order to investigate the mechanism, we calculate the 

wave elevation at λ/L = 1, as shown in Figure 7.7. For a single Wigley hull, the sway 

force and roll moment should be zero due to the symmetrical characteristic of the 

vessel and the wave profiles in the portside and starboard are exactly the same. 

However, for the ship-to-ship problem, the wave elevation in the portside and 

starboard is different. For the zero speed case, the diffracted waves are trapped in the 

gap between the hulls and they are not able to propagate sideward. Consequently, the 

wave elevation in the portside of Ship_a is smaller than that in the starboard, which is 

shown in Figure 7.8. As a result, the symmetrical characteristic of the pressure 

distribution around the ship hull is violated, which could result in a significant sway 

force and roll moment. We can also observe from Figure 7.8 that the wave profile is 

non-symmetrical not only about y-axis, but also about x-axis. This can account for the 

yaw moment in Figure 7.5 (f).  
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Figure 7.7: Diffraction wave pattern of two Wigley hulls stationary in head seas: λ/L = 1. 

 

Figure 7.8: Wave profiles at portside and starboard of Ship_a: λ/L = 1. 
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-1 -0.5 0 0.5 1
-0.5

-0.25

0

0.25

0.5

0.75

1

2x/L

 7
/ 

0

 

 

Portside

Starboard



Chapter 7: Validations and discussion of two ships stationary in waves 

 

81 

 

lee side and Ship_b is in the weather side) with the separation distance fixed at dt = 1 

m.  The water depth to draught ratio (d/T) is fixed at 2, 4 and infinity. 

Figure 7.9 and Figure 7.10 show the motion responses of Ship_a (Lee side) and Ship_b 

(Weather side) at different water depths in beam waves. From the figures it can be seen 

that the water depth has a significant influence on the responses of both ships. Both of 

the amplitudes and resonance frequencies are changed by the water depth. There are 

mainly two reasons for these discrepancies. The first reason is that the shallow water 

dispersion relation in Eq. (3.4) changes the incident wave length and as a result, the 

wave exciting forces and the resonance frequencies differ from those in deep water. 

The results in Figure 7.11 can explain this phenomenon. The x-axis of Figure 7.11 is 

the non-dimensional incident wave length, where λ0 is the wave length in infinite water 

depth. We find at small λ/L, the wave length at different water depths differs a little. 

The difference keeps an increased trend as the wave length increases. The second 

reason is the hydrodynamic coefficients and diffraction forces of the ship are changed 

by the nearness of the sea bottom. As can be seen from Figure 7.9 and Figure 7.10, the 

water depth can significantly influence the motion amplitudes of sway and roll at full 

range of wave length. But for the heave motion, the water depth will only shift the 

resonance frequency. As a result, a very large discrepancy can be observed at low wave 

length range, while the motion responses at high wave length range are hardly 

influenced by the water depth. We also include the results of single ship for 

comparison. It can be found that the hydrodynamic interactions are important at the 

low wave length range. As the wave length increases, the discrepancies become not 

evident.  
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(a) 

 
(b) 

 
(c) 

Figure 7.9: Response amplitude operators of Ship_a (Lee side) at different water depths in beam waves. (a) 

Sway; (b) Heave; (c) Roll. 
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(a) 

 
(b) 

 
(c) 

Figure 7.10: Response amplitude operators of Ship_b (Weather side) at different water depths in beam 

waves. (a) Sway; (b) Heave; (c) Roll. 
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Figure 7.11: Wave length at different water depths. 

7.5. Effects of transverse distance between two ships 

In order to investigate the effects of the transverse distance between two ships, the 

model of two identical Wigley III hulls in Section 7.3 are used. The computational 

domain and panel distribution is shown in Figure 7.4. These two ships are stationary 

in beam waves (Ship_a is in the lee side and Ship_b is in the weather side) with infinite 

water depth. The transverse distance to ship length ratio (dt / L) is fixed at 1/3, 2/3 and 

1. The results of single ship represent dt / L = ∞. 

Figure 7.12 and Figure 7.13 show the motion responses of Ship_a (Lee side) and 

Ship_b (Weather side) at different separation distance in beam waves. It can be 

observed that the transverse distance between two ships could influence the motion 

responses at low wave length range. At λ / L > 0.5, the hydrodynamic interactions 

between two ships in beam waves are quite small. There are a large number of spikes 

at low λ / L. The main reason for these spikes can be attributed to the radiation problem. 

Since the distance between the two ships is small, the radiated waves of Ship_a will 

significantly influence the motion responses of Ship_b, and vice versa. It can also be 

observed that the values of these spikes increase as the transverse separation distance 

increases, which indicates that the larger distance can bring more risks to the ship-to-

ship operation in beam waves while the responses of the ships are supposed to be more 

stable with a smaller separation distance. 
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(a) 

 
(b) 

 
(c) 

Figure 7.12: Response amplitude operators of Ship_a (Lee side) with different separation distance in beam 

waves. (a) Sway; (b) Heave; (c) Roll. 
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(a) 

 
(b) 

 
(c) 

Figure 7.13: Response amplitude operators of Ship_b (Weather side) with different separation distance in 

beam waves. (a) Sway; (b) Heave; (c) Roll. 
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7.6. Effects of mooring lines, hawsers and fenders 

In order to investigate the effects of the mooring lines and fenders, the model of a 

modified Wigley hull (Ship_a) and a rectangular box (Ship_b) model in Section 7.3 is 

used. The main dimensions of the modified Wigley and the rectangular box are shown 

in Table 7.1. The computational domain and panel distribution is shown in Figure 7.1. 

The rectangular box represents a floating platform or FPSO, while the modified 

Wigley hull represents the shuttle tanker. These two floating objects are stationary in 

beam waves (Ship_a is in the weather side and Ship_b is in the lee side) with the water 

depth of d = 0.5 m. The transverse distance dt is fixed at 0.5 m. The rectangular box is 

moored by a spread catenary mooring system composed of four symmetrical arranged 

mooring lines, as shown in Figure 7.14. The physical property of each mooring line is 

given in  

Table 7.2. To simplify the solution, the inelastic catenary equations (Faltinsen, 1993) 

will be used here to analyse the effects of the mooring lines.  

The effects of hawsers and fenders are also taken into account in the present study. 

The arrangement of the hawsers and fenders is shown in Figure 7.14. Within the frame 

work of linear assumption, the effects of the hawsers and fenders can be simplified as 

a series of springs with constant stiffness. In the present study, the stiffness of the 

fender is given by: k1 = k2 = k3 = 26 N/m; the stiffness of the hawser is given by: k4 = 

k5 = 34 N/m. The fender k2 is placed at the mid-ship. The distance between k1 (k4) and 

k2 is the same as the distance between k3 (k5) and k2, which is given by: ds = 0.75 m. 

 

Figure 7.14: The sketch of mooring and fender system of a coupled model of a modified Wigley hull and a 

rectangular box. 
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Table 7.2:  Physical properties of the mooring lines. 

Length (m) 3.33 

Diameter (mm) 6 

Axial stiffness (N) 430 

Wet Weight (N/m) 1.76 

Horizontal pretension (N) 5 

Water depth (m) 0.5 

Coordinate of fairlead 1 (m) (1, 0.15, 0) 

Coordinate of fairlead 2 (m) (-1, 0.15, 0) 

Coordinate of fairlead 3 (m) (-1, -0.15, 0) 

Coordinate of fairlead 4 (m) (1, -0.15, 0) 

Due to the effects of the mooring and fender system, the coupled motion equations in 

Eqs. (3.37)-(3.38) become  
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in which 
Fa

ijK  denotes the restoring matrix of Ship_a produced by the fender and 

hawser system,  
Fb

ijK  is the restoring matrix of Ship_b produced by the fender and 

hawser system, 
Mb

ijK  represents the restoring matrix of Ship_b produced by the 

mooring system.  

Figure 7.15 shows the results of the response amplitude operators of both ships with 

or without the mooring and fender system. As illustrated by Ji and Yuan (2014), the 

mooring lines can significantly influence the low frequency responses of the vessels. 

However, in the wave frequency range, the influence on RAO from the mooring 

system is not evident. Since the heave motion is dominated by the wave frequency 

response, the discrepancies of the RAOs with or without mooring system are quite 

small, as shown in Figure 7.15 (b). For the sway and roll motions, both low frequency 
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and wave frequency responses are important. It can be seen from Figure 7.15 (a) and 

(c) that at low range of λ / L (high frequency), the difference between the RAOs with 

or without mooring and fender system is very small. As λ / L increases, the 

corresponding frequency decreases and the discrepancies tend to increase.  
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(c) 

Figure 7.15: Response amplitude operators of Ship_a (Weather side) and Ship_b (Lee side) with or without 

mooring and fender system in beam waves. (a) Sway; (b) Heave; (c) Roll. 

We notice that the motion RAOs with fender system could be even higher than these 

without fenders and hawsers, as shown in Figure 7.15 (a). In order to investigate the 

effects of the fenders and hawsers, 4 cases with different spring stiffness are studied 

here. The stiffness of the fenders and hawsers for these 4 cases are given in Table 7.3. 

Figure 7.16 shows the sway RAO of Ship_a (Weather side) and Ship_b (Lee side) for 

different cases. It can be found that as the stiffness of the fenders increases from 0 N/m 

to 78 N/m (from 0 N/m to 102 N/m for the hawsers), the motion responses of both ships 

keep an increase trend. However, as the stiffness of the fenders and the hawsers 

increases to a very large value (the infinity stiffness represents the rigid connection), 

the motion responses become smaller and the sway motion of Ship_a is identical to 

that of Ship_b due to the rigid connection. 

Table 7.3: The stiffness of the fenders and hawsers for different cases. 

No. Case 1 Case 2 Case 3 Case 4 

k1 (N/m) 0 26 78 Infinity 

k2 (N/m) 0 26 78 Infinity 

k3 (N/m) 0 26 78 Infinity 

k4 (N/m) 0 34 102 Infinity 

k5 (N/m) 0 34 102 Infinity 
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Figure 7.16: Sway response amplitude operator of Ship_a (Weather side) and Ship_b (Lee side) for 

different cases in beam waves. 

7.7. Summary 
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8. Validations and discussion of two ships 

advancing in waves 

8.1. Introduction 

Ship-to-ship with forward speed problem occurs in harbor area and waterways with 

dense shipping traffic as the vessels have to pass each other in close proximity; 

between tugs and vessels during escorting or maneuvering and berthing operations as 

well as during ship-to-ship operations for cargo transfers during oil and gas offloading 

operations. The behavior of two ships in waves with speed effect is of special concern 

to the Navy, that is, for underway replenishment, and for other commercial purposes. 

Because of the hydrodynamic interactions, even relatively small wave can induce large 

motions of the smaller ship due to the nearness of the larger ship. When the ships are 

travelling with forward speed, the hydrodynamic interactions become more 

complicated. 

In this chapter, the 3-D Rankine source method will be extended to investigate the 

hydrodynamic interactions between two ships arranged side by side with forward 

speed. The radiation condition is satisfied by using a modified Sommerfeld radiation 

condition which takes into account the Doppler shift of the scattered waves. This new 

radiation condition is applicable to a wide range of forward speeds, including very low 

forward speed problem where the Brard number is smaller than 0.25. The numerical 

solution is evaluated by applying the present method to two pairs of models in head 

seas. Model 1 is about a full scale supply ship and frigate model, and Li’s model test 

results (Li, 2007) will be used to validate the present numerical calculation. Model 2 

is a tanker and LNG  ship model in model scale, and Ronæss’ experiments (Ronæss, 

2002) will provide the motion responses for validation. The hydrodynamic coefficients 

and wave excitation forces are investigated and a very large sway force is predicted 

when the transverse distance between two ships equalled to the wave length. The wave 

elevations in the gap will be also calculated. Discussions are highlighted on the effect 

of the radiation conditions. 
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8.2. Validation of Model 1 

8.2.1. Description of the model 

The main particulars of the supply ship (Ship_a) and frigate (Ship_b) are shown in 

Table 8.1. The transverse and longitudinal distances between two ships are 52.702 m 

and 0 m respectively. A typical case is simulated here: head sea with forward speed of 

6.18 m/s. To be consistent with the model tests condition, both ships are restrained in 

surge, sway and yaw while the motions in heave, roll and pitch are free. In order to 

make comparison, we also present the numerical results of two ships at zero forward 

speed. The computational domain is shown in Figure 8.1. The free surface is truncated 

at La upstream, 2La downstream, La in the supply ship sideward and Lb in the frigate 

sideward. There are 378 panels on the body surface of supply ship, 5400 on free surface, 

2432 on the control surface and 414 on the body surface of frigate. 

Table 8.1: Main particulars of supply ship and frigate (Li, 2001). 

 Supply ship Frigate 

Length between perpendicular La = 180 m Lb = 122 m 

Breadth Ba = 30.633 m Bb = 14.78 m 

Draught Ta = 8.5 m Tb = 4.5 m 

Displacement Va = 28223.3 t Vb = 4023.7 t 

Block coefficient 
a

BC  = 0.588 
b

BC  = 0.484 

Longitudinal CoG (rel. midship) 
a

GX  = -1.688 m 
b

GX  = 3.284 m 

Vertical CoG (rel. calm waterline) 
a

GZ  = 3.925 m 
b

GZ  = 2.049 m 

Radius of inertia for roll 44

ar  = 8.047 m 44

br  = 4.921 m 

Radius of inertia for pitch 55

ar  = 45 m 55

br  = 30.5 m 

Radius of inertia for yaw 66

ar  = 45 m 66

br  = 30.5 m 



Chapter 8: Validations and discussion of two ships advancing in waves 

 

94 

 

 

Figure 8.1: Computational domain and panel distribution of Ship_a  and Ship_b in head waves. 

8.2.2. Results and discussions 

Figure 8.2 shows the response amplitudes of two ships in heave, roll and pitch motions. 

The comparisons with experimental data and Green function method (Li, 2007) are 

also included. The numerical results calculated by the present 3-D Rankine source 

method generally agree with the experimental data. In order to investigate the speed 

effect, we also present the results of two ships without forward speed. It can be 

observed that the increase of the response amplitude operators with forward speed is 

considerable, especially for the smaller ship (Ship_b). Roll motion of Ship_a is 

obviously reduced due to the forward speed. But for Ship_b, the roll motion increases 

dramatically at λ/L > 1 due to the forward speed.  In heave and pitch motions, there 

are also some discrepancies between the predictions and measurements, especially in 

the long wave case. There are two aspects to explain these discrepancies. The first 

reason should be the model test set-up. From the published work, only three model 

tests can be found on ship-to-ship with forward speed problem (Li, 2001; Ronæss, 

2002; Xu and Dong, 2013). It was found that the model test set-up was very 

challenging, especially for the measurement of roll motion. The second reason is the 

numerical program. The present potential flow program is based on the linear 

assumption. It can be found in Figure 8.2 that the greatest discrepancies between 
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measured and predicted motions generally occur at long wave length. In these 

conditions, the motions of Ship_b are very large, especially in roll motion. It violates 

the linear assumption. Even for the model test, as demonstrated by Li (2003), the 

experiments could not be completed for the highest two wavelengths due to excessive 

motions of the Ship_b (roll amplitude exceeds 30 degrees). Furthermore, the 

hydrodynamic interactions between these two ships are also very important. The 

motions of the larger ship (Ship_a) could influence the motions of smaller ship (Ship_b) 

significantly. The large amplitude roll motion is coupled with the heave and pitch 

motions, which is different from the single ship problem. The unpredictable roll 

motion in long wave length could also influence the predictions of heave and pitch 

motions. 

We also find the roll motions of both ships are significantly influenced by the roll 

damping coefficient. It is found that the damping in roll cannot be predicted well by 

the radiation component only (Chakrabarti, 2001). The difficulty in predicting the roll 

motion arises from the nonlinear characteristics of roll due to the effect of fluid 

viscosity. In ship-to-ship problem, the roll motion is always remarkable due to the 

hydrodynamic interaction between two ships. The present potential flow theory is 

based on the assumption that the surrounding fluid is inviscid and it cannot predict the 

roll damping precisely. To complement the viscid component, an equivalent linear 

damping coefficient is applied in the present study. The non-dimensional roll damping 

coefficient, κ, is given by 

44 44

44 44 442 ( )

v

I K

 







  
  (8.1) 

where λ44v is the viscous damping. This damping coefficient is written as a fraction 

between the actual damping coefficient, λ44 + λ44v, and the critical damping coefficient,

44 44 442 ( )I K   . Figure 8.3 is the numerical results of roll motion amplitudes of 

two ships at different damping coefficients. We find that κa = 0.2 and κb = 0.6 agree 

with the experimental results better than other values. This is because the roll motion 

of Ship_a is relatively small, while the roll motion of Ship_b is extremely large. 

Correspondingly, the nonlinear viscous characteristics of roll motion of Ship_b are 
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more obvious. A larger equivalent linear damping coefficient should be used in the 

numerical simulations. 

 

  
              (a)                                                                                       (b)  

 
              (c)                                                                                       (d) 

  
              (e)                                                                                       (f)  

Figure 8.2: Response amplitude operators. (a) Heave of Ship_a; (b) Heave of Ship_b; (c) Roll of Ship_a; (d) 

Roll of Ship_b; (e) Pitch of Ship_a; (f) Pitch of Ship_b. 
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          (a) 

 

         (b) 

Figure 8.3: Roll motion amplitudes at different damping coefficients. (a) Ship_a; (b) Ship_b. 

8.3. Validation of Model 2 

8.3.1. Description of the model 

The main particulars of the tanker (Ship_a) and LNG (Ship_b) are shown in Table 8.2. 

The details of model test set-up is elaborated by Ronæss (2002). She analysed the bias 

sources and carried out comparative study. She found that the experimental setup 

corrections were necessary and in the present calculation, such corrections will be used, 

as shown in Table 8.3. The forced roll centre is taken to be 0.032 m below the mean 

water level for Ship_a and 0.104 m above the mean water level for Ship_b. To be 

consistent with the model tests condition, Ship_a is restrained in surge and sway while 

the motions in heave, roll, pitch and yaw are free; Ship_b is restrained in surge, sway 

and yaw while the other degrees of freedom are set free. Two typical cases are studied 

here to simulate the different configurations of ship-to-ship problem. In Case 1, the 
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transverse and longitudinal distances between two ships are 1.25 m and 0.09 m 

respectively, which indicates that the longitudinal centre of these two ships are 

approximately the same. In Case 2, the longitudinal centre of two ships is staggered 

and the transverse and longitudinal distances between two ships are 1.25 m and 0.59 

m respectively. Both cases are in head sea condition with forward speed of 0.608 m/s 

( 0 / 0.1aFn u gL  ). In order to make comparison, we also present the results of 

single ship with the same forward speed and two ships at zero forward speed. The 

computational domain of Case 1 is shown in Figure 8.4. The free surface is truncated 

at 1.05La upstream, 1.84La downstream, 1.05 La in the tanker sideward and 1.3 Lb in 

the LNG ship sideward. There are 420 panels on the body surface of tanker, 9020 on 

free surface, 2464 on the control surface and 420 on the body surface of LNG ship. 

Table 8.2: Main particulars of tanker and LNG ship (Ronæss, 2002) 

 Tanker LNG ship 

Length between perpendicular La = 3.76 m Lb = 2.28 m 

Breadth Ba = 0.625 m Bb = 0.387 m 

Draught Ta = 0.232m Tb = 0.124 m 

Displacement Va = 0.4355 t Vb = 0.074 t 

Block coefficient 
a

BC  = 0.83 
b

BC  = 0.68 

Water plane area coefficient 
a

pC  = 0.90 
b

pC  = 0.79 

Longitudinal CoG (rel. midship) 
a

GX  = 0.086 m 
b

GX  = -0.01 m 

Vertical CoG (rel. calm waterline) 
a

GZ  = -0.052 m 
b

GZ  = 0.012 m 

Radius of inertia for roll 44

ar  = 0.175 m 
44

br  = 0.103 m 

Radius of inertia for pitch 55

ar  = 1.008 m 
55

br  = 0.604 m 

Radius of inertia for yaw 66

ar  = 1.008 m 66

br  = 0.604 m 

Table 8.3: Corrections for model set-up of Ship_b, non-dimensionalized using ρ, Vb, Lb, g and Awb. 

(Ronæss, 2002) 

Component, i j 33 55 35, 53 

Additional inertia, Iij 1.6E-01 5.5E-02 -7.2E-04 

Additional damping, Bij 5.2E-03 1.6E-03 -2.6E-03 

Additional restoring, Cij 4.8E-04 1.5E-04 -2.1E-06 
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Figure 8.4: Computational domain and panel distribution of Ship_a and Ship_b model in head waves. 

8.3.2. Motion responses 

Figure 8.5 and Figure 8.6 are the response amplitudes of Case 1 and Case 2 

respectively. The comparisons with experimental data and unified theory are also 

included. The present results in heave and pitch motion of both ships generally have a 

satisfied agreement with those of experimental data. A noticeable discrepancy in Case 

1 can be observed in Figure 8.5 (a) and Figure 8.5 (e) at λ/La = 1.2 and λ/La = 1.3, which 

corresponds to the resonant frequency of heave and pitch of Ship_a respectively. Such 

discrepancy can also be observed in Case 2 from Figure 8.6 (a) and Figure 8.6 (e). But 

the resonant frequency in the numerical calculation is around λ/La = 1 for both heave 

and pitch of Ship_a. This difference is attributed to the trim suspensions in the model 

test set-up (Ronæss, 2002). When it comes to roll, the present prediction, as well as 

Ronæss’ (2002) calculation, is not satisfactory. The main reason for the discrepancies 

is about the damping coefficient. According to Ronæss (2002), the roll viscous 

damping of Ship_a is taken as λ44v = 2λ44 for the forward speed case and λ44v = λ44 for 

the zero speed case. For Ship_b, it is taken as λ44v = 6λ44 for the forward speed case and 

λ44v = 4λ44 for the zero speed case. The lift damping is another factor, which will 
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increase when the roll centre is above the mean water level (Himeno, 1981). Besides, 

the measurement of roll motions from the model test is full of challenges. The devices 

used to measure the roll motion could bring additional friction and upward forces, as 

demonstrated by Ronæss (2002). In order to investigate the speed effect, the results of 

two ships without forward speed are presented. It is found that the increase of the 

response amplitude operators with forward speed is considerable for both Case 1 and 

Case 2. We also include the results of single ship with forward speed. From the 

comparison, we find that the hydrodynamic interaction has much greater influence on 

the motions of the smaller ship. For heave and pitch motion of the larger ship (Ship_a), 

the influence from the smaller ship (Ship_b) is not noticeable. But the hydrodynamic 

interaction is the essential reason that induces the roll motion for both ships. There is 

no roll motion in head sea condition for a single ship due to the symmetrical 

characteristics. 
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             (e)                                                                                     (f) 

Figure 8.5: Response amplitude operators of Case 1. (a) Heave of Ship_a; (b) Heave of Ship_b; (c) Roll of 

Ship_a; (d) Roll of Ship_b; (e) Pitch of Ship_a; (f) Pitch of Ship_b. 
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             (e)                                                                                      (f) 

Figure 8.6: Response amplitude operators of Case 2. (a) Heave of Ship_a; (b) Heave of Ship_b; (c) Roll of 

Ship_a; (d) Roll of Ship_b; (e) Pitch of Ship_a; (f) Pitch of Ship_b. 

8.3.3. Hydrodynamic coefficients 

Figure 8.7 and Figure 8.8 are the non-dimensional added mass and damping 

coefficients respectively. The first comparison should be made from the added mass 

and damping of Ship_a. The hydrodynamic coefficients of Ship_a are composed of 

two components, self-induced component (labelled by aa as its superscript, e.g. 
aa

ij )  

and external-induced component (labelled by ab as its superscript, e.g. 
ab

ij ). From 

Figure 8.7 (a)-(d) and Figure 8.8 (a)-(d), we find the self-induced hydrodynamic 

coefficients of Ship_a are much greater than the external-induced ones, which 

indicates that the hydrodynamic coefficients of Ship_a are mainly determined by the 
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oscillation of Ship_b are not significant compared to the self-induced component. This 
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smallest part. It is not the case for heave added mass. As can be seen from Figure 8.7 

(a) and (b) that the heave-induced heave added mass is much greater than the pitch-

induced heave added mass. It can also be observed from Figure 8.7 (d)-(f) that the non-

dimensional added mass of Ship_b is much greater than that of Ship_a, especially in 

heave-induced and pitch-induced components. Similar findings are also found in 

damping curves shown in Figure 8.8 (d)-(f). This explains why the hydrodynamic 

interaction brings a greater influence on the roll motion of the smaller ship, as shown 

in Figure 8.5 (c)-(d) and Figure 8.6 (c)-(d). 
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 (d) 

 
 (e) 

 
 (f) 

Figure 8.7: Added mass. (a) Heave added mass induced by heave motion; (b) Heave added mass induced 

by pitch motion; (c) Pitch added mass induced by pitch motion; (d) Roll added mass induced by roll 

motion; (e) Roll added mass induced by heave motion; (f) Roll added mass induced by pitch motion. 
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(f) 

Figure 8.8: Damping. (a) Heave damping induced by heave motion; (b) Heave damping induced by pitch 

motion; (c) Pitch damping induced by pitch motion; (d) Roll damping induced by roll motion; (e) Roll 

damping induced by heave motion; (f) Roll damping induced by pitch motion. 

8.3.4. Wave excitation forces 

Figure 8.9 gives the non-dimensional wave excitation forces on both ships. Two large 

spikes can be observed in Figure 8.9 (a) - (b) for the zero speed cases of both ships at 

λ/La = 0.33, which corresponds to the wave length that equals to the transverse distance 

between two ships. At this wave length, the sway force can reach an extreme value, 

which could be twice as large as that at λ/La = 1. We also investigate the wave elevation 

at λ/La = 0.33, which is shown in Figure 8.10. The wave elevation in the gap between 

two ships can also achieve a considerable value. In this case, the ship-to-ship 

offloading operation will be at great risks. On the one hand, the large sway force will 

bring a huge separating load on the mooring lines between the two vessels; on the other 

hand, the large wave elevation in the gap will cause the green water problem, 

especially for the smaller ship with small freeboard. But in the forward speed cases, 

there is no large spike at λ/La = 0.33. This is because the Doppler shift modifies the 

wave length according to the propagation direction. It can also be observed in Figure 

8.9 (b) that the non-dimensional roll moment on Ship_b is much greater than that on 

Ship_a. This can explain why the roll motion amplitude of Ship_b is much greater than 

that of Ship_a, which is shown in Figure 8.5 (c)-(d) and Figure 8.6 (c)-(d). Comparing 

the results of a single ship and two ships with forward speed in Figure 8.9 (c) and (e), 

we find the difference is not significant, which can explain why the motion responses 

of a single ship with forward speed are quite close to that of two ships’ case, as shown 

in Figure 8.5 (a), (e) and Figure 8.6 (a), (e). From Figure 8.9 (d) and (f), we find the 

curves of the forces on Ship_b without interference are smoother. Some fluctuations 
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can be observed when Ship_a is in presence. A sudden increase of heave force on 

Ship_b at λ/La = 1.5 can be found in Figure 8.9 (e) for two ships with speed case, which 

results in an increase in heave motion as shown in Figure 8.5 (b), while a drop of pitch 

moment at λ/La = 1.5 in Figure 8.9 (f) can give an explain why the pitch motion 

experience a decrease at λ/La = 1.5 in Figure 8.5 (f). 
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(f) 

Figure 8.9: Wave excitation forces. (a) Sway forces on Ship_a and Ship_b; (b) Roll moments on Ship_a and 

Ship_b; (c) Heave force on Ship_a; (d) Heave force on Ship_b; (e) Pitch moment on Ship_a; (f) Pitch 

moment on Ship_b. 

Figure 8.10 shows the wave elevation of two ships without forward speed at λ = 1.25 

m, which corresponds to λ/La = 0.33. The wave elevation is non-dimensionalized by 

the incident wave amplitude 0. The contour lines of the wave elevation in the gap 

between the two ships are presented on the top of each figure. The total wave elevation 

is composed of incident, diffraction and radiation components. Since the models are 

restrained in surge and sway (Ship_b is also restrained in yaw), the radiation 

component is mainly from the oscillation of heave, roll and pitch. From Figure 8.5 we 

can find the motion amplitudes at λ/La = 0.33 are very small and the corresponding 

radiated wave amplitude should also be at a small level.  Therefore, the incident and 

diffraction components contribute for the major parts. In can be observed in Figure 

8.10 (a) that the diffracted wave elevation in the gap is much higher than that outside 

the gap, which indicates that most of the diffracted wave energy is trapped in the gap. 

These trapped waves will inevitably induce an extremely inhomogeneous wave loads 

on both ships, which explains the enormous sway force and roll moment in Figure 8.9 

(a) and (b). Meanwhile, from Figure 8.10 (b) we can also find that the longitudinal 

distribution of the wave elevation along Ship_b is not balanced. As a consequence, a 

yaw moment will be induced, which could produce a very large yaw motion. 
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(a) 

 
(b) 

Figure 8.10: Wave elevation of two ships without speed at λ = 0.33, La = dt. (a) Real part of diffracted 

waves; (b) Real part of total wave elevation. 

8.3.5. Wave pattern 

Figure 8.11 shows the real part of diffracted and radiated waves of two ships with high 

forward speed. Figure 8.12 shows the total wave elevation, which is non-

dimensionalized by the incident wave amplitude 0. It is observed that the symmetrical 

characteristic of wave pattern produced by single ship has been modified in the 

presence of the other one. A V-shape region is clearly convected downstream. The 

diffracted waves from the two sides interact with those from the gap through a system 
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of transverse waves and approach the downstream boundary at an oblique angle. The 

radiated waves propagate sideward independently and approach the downstream 

boundary parallel. No reflections can be found on the boundary, which indicates 

physically that the present radiation condition can ensure that the waves propagate 

away from the ship. 

 

 (a)                                                                                      (b) 

Figure 8.11: Wave patterns of two ships in head seas: λ/Lb = 1.08, Fn = 0.25, 1.35. (a) Real part of 

diffracted waves; (b) Real part of radiated waves for unit heave motion of both ships. 

 

(a)                                                                                      (b) 

Figure 8.12: Total wave elevation on the free surface of two ships in head seas: λ/Lb = 1.08, Fn = 0.25, 

1.35. (a) Real part; (b) Imaginary part. 

8.3.6. Effects of the radiation condition 

Figure 8.13 and Figure 8.14 compare the wave patterns with and without Doppler shift 

correction in the radiation condition. In order to make an intuitive comparison, we 

divide the whole free surface into two parts through the centre line of Ship_a: portside 

part and starboard part. The lower half of each figure shows the wave pattern with 
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Sommerfeld radiation condition in Eq. (5.18), while the radiation condition in the 

upper half accounts for the  Doppler shift correction as given by Eq. Eq. (5.16) and Eq. 

(5.17). Since the Brard number τ is smaller than 0.25, the scattered waves will 

propagate ahead of the vessel. It can be observed that if the new radiation condition 

associated with Doppler shift correction is used, the waves appear smooth and stable. 

But for the Sommerfeld radiation condition, there are some distortions and reflections 

from the control surface. Theoretically, all scattered waves normal to the control 

surface must be out-going to avoid reflection. Since the Doppler shift results in rotation 

of the scattered waves relative to the radial axis by an angle θ, the Sommerfeld 

radiation condition in Eq. (5.18) should be modified accordingly to ensure the out-

going property of the scattered waves and lack of it will result in distortions and 

reflections. The results in Figure 8.13 and Figure 8.14 confirm the effectiveness of the 

present radiation condition as a wave-pattern prediction tool for the ships travelling 

with very low forward speed.  

 

(a)                                                                                      (b) 

Figure 8.13: Real part of diffracted waves of two ships in head seas by using Sommerfeld and present 

radiation condition: λ/Lb = 1.08, Fn = 0.05, 0.2. (a) Wave pattern in the portside of Ship_a; (b) Wave 

pattern in the starboard of Ship_a. 
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(a)                                                                                      (b) 

Figure 8.14: Real part of radiated waves of two ships in head seas by using Sommerfeld and present 

radiation condition: λ/Lb = 1.08, Fn = 0.05, 0.2. (a) Wave pattern in the portside of Ship_a; (b) Wave 

pattern in the starboard of Ship_a. 

In order to validate the wave patterns calculated by the present radiation condition at 

τ > 0.25 we implement an upstream boundary condition of  Nakos (1990) for 

comparison. Figure 8.15 and Figure 8.16 show the diffracted and radiated wave 

patterns of both ship at τ = 0.27. The upper half of each figure represents the wave 

pattern obtained from the present radiation condition, while the radiation condition in 

the lower half accounts for the upstream treatment given in Eq. (6.10)-(6.11). An 

evident difference of the wave patterns can be observed between these two radiation 

conditions, especially at far field close to the control surface. The satisfactory radiation 

condition must ensure that the normal component of the scattered waves is outgoing. 

The upstream treatment can only ensure that there is no wave travelling ahead of the 

vessel. However, due to the forward speed effect, most of the wave energy is 

transferred downstream. The outgoing property at downstream control surface cannot 

be guaranteed since that no radiation condition is imposed there.  As a result, the 

reflected waves become very large at downstream control surface, as shown in Figure 

8.15 and Figure 8.16. If the control surface is placed far enough away from the centre 

(dc/λ > 3, as suggested by Das and Cheung (2012b), where dc is the distance between 

the control surface and the center, λ is the wave length), the reflected waves will not 

influence the near field wave patterns. But for the case of τ = 0.27, the wave length is 

very large and dc/λ = 1.4 downstream, dc/λ = 0.8 sideward.  Therefore, the near field 

wave patterns are also modified by the reflected wave form the control surface. As the 

Brard number increases, the wave length becomes smaller. For the case of τ = 0.51 in 
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Figure 8.17 and Figure 8.18, dc/λ = 4.1 downstream, dc/λ = 2.4 sideward. Although 

there are some reflections from the control surface, they will not influence the near 

field wave patterns, as shown in Figure 8.17 and Figure 8.18. In the near field of the 

ship hulls, a very good agreement of the wave fields is obtained between these two 

radiation conditions. For the present radiation condition, the rotated angle θ has been 

calculated before we solve the boundary value problem. The corrected Sommerfeld 

radiation condition can ensure the outgoing property of the scattered waves. Therefore, 

no reflections can be found for the present model at τ > 0.25. The results in Figure 

8.11-Figure 8.18 confirm the effectiveness of the present radiation condition as a 

wave-pattern prediction tool for the ships travelling with a wide range of forward speed. 

    

(a)                                                                                      (b) 

Figure 8.15: Real part of diffracted waves of two ships in head seas by using upstream boundary condition 

of  Nakos (1990) and present radiation condition: λ/Lb = 2.15, Fn = 0.1, 0.27. (a) Wave pattern in the 

portside of Ship_a; (b) Wave pattern in the starboard of Ship_a. 

    

(a)                                                                                      (b) 

Figure 8.16: Real part of radiated waves of two ships in head seas by using upstream boundary condition 

of  Nakos (1990) and present radiation condition: λ/Lb = 2.15, Fn = 0.1, 0.27. (a) Wave pattern in the 

portside of Ship_a; (b) Wave pattern in the starboard of Ship_a. 
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(a)                                                                                      (b) 

Figure 8.17: Real part of diffracted waves of two ships in head seas by using upstream boundary condition 

of  Nakos (1990) and present radiation condition: λ/Lb =  0.75, Fn = 0.1, 0.51. (a) Wave pattern in the 

portside of Ship_a; (b) Wave pattern in the starboard of Ship_a. 

 

(a)                                                                                      (b) 

Figure 8.18: Real part of radiated waves of two ships in head seas by using upstream boundary condition 

of  Nakos (1990) and present radiation condition: λ/Lb = 0.75, Fn = 0.1, 0.51. (a) Wave pattern in the 

portside of Ship_a; (b) Wave pattern in the starboard of Ship_a. 

We also examine the effect of the radiation condition through the comparison study 

based on the wave excitation forces and the hydrodynamic coefficients at Fn = 0.1, as 

shown in Figure 8.19 and Figure 8.20 respectively. It can be clearly seen that at τ < 

0.25, the results from the upstream treatment are diverged and cannot provide a stable 

solutions. Even though the Brard number is slightly greater than critical value 0.25, 

the near field wave pattern obtained by upstream treatment can still be influenced by 

the reflected waves from the control surface, which is analysed previously. This 

explains the discrepancies between the results obtained by two different radiation 

conditions at the range of 0.25 < τ < 0.35. When the Brard number is greater than 0.35, 
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these two radiation conditions can provide the identical results. For the present method, 

the solutions of the wave excitation forces and the hydrodynamic coefficients are quite 

stable in the full range of Brard number. It can be concluded that the present radiation 

condition can predict the hydrodynamic properties of vessels with forward speed 

above and below the group velocity of the scattered waves while the upstream 

treatment is only valid for the case of  τ > 0.25. 

  
               (a) 

  

               (b) 

Figure 8.19: Wave excitation forces on Ship_a by using upstream boundary condition of  Nakos (1990) and 

present radiation condition at Fn = 0.1. (a) Heave; (b) Pitch. 
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(a) 

   

(b) 

Figure 8.20: Hydrodynamic coefficients by using upstream boundary condition of Nakos (1990) and 

present radiation condition at Fn = 0.1. (a) Heave added mass of Ship_a induced by heave motion of Ship_a 

itself; (b) Heave damping of Ship_a induced by heave motion of Ship_a itself. 

8.3.7. Effects of water depth 

The Green function method is regarded as an effective solution for the marine vessels 
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present Rankine source method can provide an intuitive solution for this issue. It takes 

account of the forward speed into the boundary value problem and the Rankine-type 

Green function can satisfy the seabed boundary condition through the method of image 

in Eq. (4.1). Figure 8.21 shows the motion responses of both ships at different water 

depths. The parameters of Case 1 are used here with Fn = 0.1 and dl = 0.09 m. From 

the figures it can be seen that the water depth has a significant influence on the 

responses of both ships. Both of the amplitudes and resonance frequencies are changed 

by the water depth. There are mainly two reasons for these discrepancies. The first 

reason is that the shallow water dispersion relation in Eq. (3.4) changes the incident 

wave length and as a result, the wave exciting forces and the resonance frequencies 

differ from those in deep water. It can be observed that at small λ/La, the difference is 

very small. As λ/La increases, the discrepancies tend to be very large. The results in 

Figure 7.11 can explain this phenomenon. The x-axis of Figure 7.11 is the non-

dimensional incident wave length, where λ0 is the wave length in infinite water depth. 

We find at small λ/La, the wave length at different water depths differs a little. The 

difference keeps a similar increase trend with that of motion responses in Figure 8.21 

as λ/La increases. The second reason is the hydrodynamic coefficients and diffraction 

forces of the ship are changed by the nearness of the sea bottom. As can be seen from 

Figure 8.22, the diffracted wave pattern in shallow water differs a lot from that in 

infinite water. Since λ/La is fixed at 1, the wave trough arises around bow area, while 

the wave crest arises around the stern. This is the most unfavourable load case, since 

both the heave force and pitch moment achieves a maximum value. As a consequence, 

the motion responses in heave and pitch reach their peaks around λ/La = 1, which can 

be observed in Figure 8.21 (a) and (e). At λ/La = 1, the heave force on Ship_a is mainly 

determined by the wave elevation. It can be seen from Figure 8.22 that the diffracted 

wave elevation in deep water is much larger than that in shallow water, which explains 

why heave motion of Ship_a in deep water is greater than that in shallow as shown in 

Figure 8.21 (a). The roll moment mainly comes from the pressure difference at portside 

and starboard of the ships. We find in deep water, the wave crest around the stern is 

asymmetric. As a consequence, the roll motion should be significant. But in shallow 

water, a better symmetrical wave pattern presents at portside and starboard of Ship_a. 
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This can explain why the roll motion at λ/La = 1 in deep water is much greater than 

that in shallow water. 

  
           (a)                                                                                      (b) 

  
           (c)                                                                                      (d) 

 
           (e)                                                                                      (f) 

Figure 8.21: Response amplitude operators of different depths at Fn = 0.1. (a) Heave of ship_a; (b) Heave of 

Ship_b; (c) Roll of ship_a; (d) Roll of Ship_b; (e) Pitch of ship_a; (f) Pitch of Ship_b. 
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(a) 

 
(b) 

Figure 8.22: Wave elevation of two ships at λ/La = 1, Fn=0.1. (a) Infinite water; (b) Shallow water at d/Ta=2. 

8.4. Summary 

In this chapter, we developed a boundary element program based on 3-D Rankine 

source method to investigate the ship-to-ship with forward speed problem. A new 

radiation condition, which takes Doppler shift into account, was imposed on the 

control surface to complete the boundary value problem. This new method is 

applicable to forward speeds above and below the critical Brard number τ = 0.25.  

The present method was validated through two pairs of models. The computed 

dynamic responses of both models in heave and pitch motions show a good agreement 

with the published experimental results. However, the prediction of roll motion is full 

of challenges due to the inviscid assumption in the potential flow theory. The 

contribution of the radiation conponent is small, especially for the smaller ship with 

large amplitude of roll motion which violates the present linear assumption.  In order 

to improve the accuracy of the prediction, a roll damping coefficient should be applied 
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in the motion equation to avoid the unrealistic roll motions. Unfortunately, this 

damping coefficient could not be determined without model test results. A future study 

based on CFD solutions should be carried out. We also find that the hydrodynamic 

interaction has much greater influence on the motions of the smaller ship. 

We investigated the hydrodynamic interactions through the hydrodynamic coefficients 

and wave excitation forces. It is found that the hydrodynamic coefficients of the larger 

ship are mainly determined by the oscillation of the larger ship itself, while the self-

induced and external-induced components of the hydrodynamic coefficients are at the 

same level for the smaller ship. This can explain why the hydrodynamic interaction 

has much greater influence on the motions of the smaller ship. We also observed a 

very large sway force for zero speed case when the transverse distance between two 

ships equals to the wave length. This extreme force is due to the diffracted wave energy 

that trapped in the gap and it will bring a great risk to the ship-to-ship offloading 

operation. 

We also examined the present radiation condition and the effect of forward speed 

through a series of numerical experiments involving two ships with a wide range of 

forward speed in head seas. The forward speed introduces the Doppler shift which 

modifies the length of the scattered waves. The symmetrical characteristic of wave 

pattern produced by single ship has been modified in the presence of the other one. 

The comparison between the present and Sommerfeld radiation condition was made at 

τ < 0.25, while the comparison between the present and upstream radiation treatment 

was made at τ > 0.25. Our solution shows a better wave pattern without reflections 

from the truncated control surface, which confirms the effectiveness of the present 

radiation condition as a wave-pattern prediction tool for the ships travelling with a 

wide range of forward speed. 
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9. Parametric study and optimal design 

9.1. Introduction  

Chapters 6-8 have illustrated the details of the validations of the present method. It 

was concluded that the present method could provide a satisfactory prediction of the 

hydrodynamic properties of single ship or two ships with or without forward speed. 

Based on these validations, a systematic parametric study will be carried out in this 

chapter. For the ship-to-ship interaction with forward speed problem, there are mainly 

three parameters which can influence the hydrodynamic responses significantly. The 

first parameter is the forward speed (u0). It was found by Fang and Kim (1986) that 

the forward speed effects were very important and the roll motion could be reduced as 

the forward speed increased. The second and third parameters are the transverse and 

longitudinal distances (dt and dl) between two ships. Li (2001) studied the effects of 

transverse distance of two ships travelling in shallow water and found that the motion 

responses and wave exciting forces were greatly influenced by the transverse distance. 

However, no published study can be found on the effects of the longitudinal distance 

between two travelling ships. But in the engineering practice, this case could occur in 

the harbour area and waterways with dense shipping traffic. In this chapter, we take 

the longitudinal distance as an important parameter in ship-to-ship interaction with 

forward speed problem and carry out the corresponding comparison study.  

The parameter study on a specified parameter (e.g. different transverse distances dt 

while dl and u0 are fixed) can be useful for us to understand the effects of this parameter. 

But a more practical objective of the parametric study is to provide the 

recommendations for the ship designers and operators with an optimal result in given 

environmental conditions for safe operation. To achieve this goal, a systematic optimal 

study about all the relevant parameters should be carried out. The hydrodynamic 

interactions can be divided into two categories: the radiation problem (radiation forces 

or so-called hydrodynamic coefficients) and diffraction problem (diffraction forces). 

We find that the coupled term (the extra force components due to the existence of the 

other ship) of these forces on a specified ship (e.g. Ship_a) are determined by the waves 
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produced by the other ship (e.g. Ship_b). If the scattered waves produced by Ship_a 

can propagate to the body surface of Ship_b, the hydrodynamic interaction must be 

taken into consideration. Otherwise, the hydrodynamic interaction can be neglected. 

In the previous chapters, we found that as the forward speed increases, the quiescent 

region in front of the ship would be enlarged, as shown in Figure 8.12.  It can be 

supposed that if Ship_b is located in the quiescent region of Ship_a, while Ship_b is 

located in the quiescent region of Ship_a, there should be no hydrodynamic 

interactions between these two ships. In this chapter, we will connect each parameter 

through the scattered waves to find a reasonable and optimal speed and configuration 

to avoid the hydrodynamic interactions between two ships. 

The tanker (Ship_a) and LNG (Ship_b) model used in this chapter are the same as the 

models described in Section 8.3.1. The main particulars are shown in Table 8.2. In the 

previous validation, both ships are restrained in surge, sway and yaw while the motions 

in heave, roll and pitch are free in order to keep consistent with the model tests 

condition. But in this chapter, only the numerical results will be presented and the 

motions in surge, sway and yaw are also of significance. Therefore, all the 6 degrees 

of freedom are set free. 

9.2. Forward speed effects 

In order to investigate the forward speed effects, we keep the configuration of the 

models constant with the transverse dt = 1.25 m and longitudinal distance dl = 0 m. 

These two ships travel with the same forward speed in head waves at infinite water 

depth. We compare the motion responses and wave excitation forces over a wide range 

of Froude number from 0 to 0.3 (Fn = 0, 0.05, 0.1, 0.2, 0.3). Figure 9.1 and Figure 9.2 

show the motion responses of Ship_a and Ship_b respectively with different forward 

speeds in head waves. In general, the forward speed has a significant influence on the 

motion responses of both ships. From Figure 9.1 (a), we can see that the surge motion 

of Ship_a becomes smaller as the forward speed increases. The sway and roll motions 

in head sea condition are caused by the hydrodynamic interactions between two ships 

and they are quite sensitive to the forward speed, as shown in Figure 9.1 (b) and (d). 

At zero forward speed, the sway and roll motions are very small. They increase 
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gradually as the Froude number increases from 0 to 0.1. As the Froude number 

becomes larger then 0.1, the sway and roll motions tend to be very large. This finding 

is different from Fang and Kim’s (1986) conclusion. One reason is that Fang and Kim 

(1986) only discussed the speed effects at very low forward speed (Fn < 0.071), while 

in this thesis we discuss the speed effects at a wide range of Froude number from 0 to 

0.3. When it comes to the heave and pitch motions in Figure 9.1 (c) and (e), we find 

the discrepancies between the motion responses is not evident at Fn < 0.1. A dramatic 

increase can be observed at Fn > 0.2. The same conclusion can also be made for the 

yaw motion of Ship_a, as shown in Figure 9.1 (f). It should also be noticed that the 

resonant frequencies have been shifted to the lower frequency range as the forward 

speed increases. 

Compared with the motion responses of Ship_a, the motion responses of Ship_b are 

more sensitive to the forward speed. The resonant frequencies are shifted to the lower 

frequency range very quickly as the forward speed increases. As a result, at low range 

of λ/Lb (λ/Lb < 1.5), the response amplitudes of Ship_b with smaller forward speed can 

be even greater than those with larger forward speed in surge, heave and pitch motions, 

as shown in Figure 9.2 (a), (c) and (e). But as the Froude number increases, the peak 

values in heave and pitch motions keep an increase trend, especially when the Froude 

number is greater than 0.2. This trend can also be observed in Figure 9.2 (b) and (d) in 

sway and roll motions. The forward speed effects on the surge and yaw motions of 

Ship_b are more complicated and we find that at Fn = 0.2, the sway and yaw motions 

become very small. Overall, the forward speed effects can influence the motion 

responses of both ships significantly and if the other two parameters (dt and dl) are 

fixed, we suggest that the travelling speed should be lower than Fn = 0.1.  
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           (c)                                                                                       (d) 

 
           (e)                                                                                         (f) 

Figure 9.1: Response amplitude operators of Ship_a with different forward speeds in head waves: dt = 

1.25m, dl = 0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 
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           (e)                                                                                       (f) 

Figure 9.2: Response amplitude operators of Ship_b with different forward speeds in head waves: dt = 

1.25m, dl = 0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 

Figure 9.3 and Figure 9.4 show the wave excitation forces of Ship_a and Ship_b 

respectively with different forward speeds in head waves. The wave excitation forces 

are composed of two components: incident wave force (Froude Krylov force) and 

diffraction force. Incident wave force is determined by the incident wave and it will 

not be influenced by the existence of the other ship. However, the hydrodynamic 

interactions could bring a large influence on the diffraction forces since the diffracted 

waves of Ship_a can act on Ship_b, and vice versa. It can be observed from Figure 9.3 

(a), (c) and (e) and Figure 9.4 (a), (c) and (e) that the forward speed effects on surge, 

heave and pitch forces of both ships are not evident. However, the forces in sway, roll 

and yaw directions are significantly influenced by the forward speed, as can be seen 

in Figure 9.3 (b), (d) and (f) and Figure 9.4 (b), (d) and (f). It is very interesting to find 

that the sway forces decrease rapidly and the spikes at the low range of λ/La become 

very small as the increase of the forward speed. One major reason should be the wave 

elevations in the gap between two ships. As for the zero speed case, the diffracted 

waves are trapped in the gap which makes the wave elevations in the gap be much 

higher than those in the other sides of the ships, as shown in Figure 9.5 (a). The wave 

elevation difference between the portside and starboard will induce a large sway force 

as well as a roll moment on both ships, which is shown in Figure 9.3 (b) and (d) and 

Figure 9.4 (b) and (d). But as the forward speed increases to Fn = 0.3, the energy 

trapped in the gap could escape downstream, as shown in Figure 9.5 (b). Therefore, 

the wave elevations in the gap become smaller. As a result, the sway force and roll 

moment can be reduced accordingly. 
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           (a)                                                                                       (b) 

  
           (c)                                                                                       (d) 

 
           (e)                                                                                       (f) 

Figure 9.3: Wave excitation forces of Ship_a with different forward speeds in head waves: dt = 1.25m, dl = 

0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 

  
              (a)                                                                                         (b) 

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

/L
a

|F
a 1
|/


0
K

a 3
3

 

 

Fn=0.3

Fn=0.2

Fn=0.1

Fn=0.05

Fn=0

0 0.5 1 1.5 2 2.5 3
0

0.03

0.06

0.09

0.12

0.15

0.18

/L
a

|F
a 2
|/


0
K

a 3
3

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

/L
a

|F
a 3
|/


0
K

a 3
3

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

/L
a

|F
a 4
|/
k


0
K

a 4
4

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

/L
a

|F
a 5
|/
k


0
K

a 5
5

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

/L
a

|F
a 6
|/
k


0
K

a 5
5

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

/L
b

|F
b 1
|/


0
K

b 3
3

 

 

Fn=0.3

Fn=0.2

Fn=0.1

Fn=0.05

Fn=0

0 0.5 1 1.5 2 2.5 3
0

0.04

0.08

0.12

0.16

0.2

/L
b

|F
b 2
|/


0
K

b 3
3



Chapter 9: Parametric study and optimal design 

 

128 

 

  
           (c)                                                                                       (d) 

 
              (e)                                                                                         (f) 

Figure 9.4: Wave excitation forces of Ship_b with different forward speeds in head waves: dt = 1.25m, dl = 

0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 
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(b) 

Figure 9.5: The real part of the diffracted wave patterns of two ships advancing with different forward 

speeds at λ = La. (a) Fn = 0; (b) Fn = 0.3. 

9.3. Effect of transverse distance 

In order to investigate the effect of the transverse distance (dt), we fix the forward 

speed at Fn = 0.1 and the longitudinal distance at dl = 0 m. These two ships travel with 

the same forward speed in head waves at infinite water depth. As shown in Figure 9.6, 

we compare the motion responses and wave excitation forces over a wide range of 

transverse distances (dt/Ba = 1.25, 2, 3, 5, ∞, where Ba is the breadth of Ship_a). dt/Ba 

= ∞ denotes the cases without hydrodynamic interactions.  

 

Figure 9.6: Sketch of two ships travelling with different transverse distances. 



Chapter 9: Parametric study and optimal design 

 

130 

 

Figure 9.7 and Figure 9.8 show the response amplitude operators of Ship_a and Ship_b 

with different transverse distances in head waves. It can be found in Figure 9.7 (a), (c) 

and (e) that the surge, heave and pitch motions of Ship_a are hardly influenced by the 

transverse distance. However, the sway, roll and yaw motions are significantly 

influenced by the transverse distance, as shown in Figure 9.7 (b), (d) and (f). It can be 

observed that even when the transverse distance becomes very large at dt/Ba = 5, the 

hydrodynamic interactions are still very important. The peak values of sway and yaw 

motions (as shown in Figure 9.7 (b) and (f)) at dt/Ba = 3 could even be larger than 

those at smaller ratios of dt/Ba. When it refers to the roll motion of Ship_a in Figure 

9.7 (d), two spikes can be found at λ/La ≈ 1.1 and 2.6, which is consistent with Xu and 

Dong’s results (2013). And it can also be found that the second spike drops as the 

increase of the transverse distance, while the difference of the first spike is not evident.  

The influence of the transverse distance on the motion responses of Ship_b is totally 

different from that on Ship_a. As can be seen from Figure 9.8 (b), (d) and (f), the sway, 

roll and yaw motions are not sensitive to the transverse distance. It can be observed 

from Figure 9.8 (d) that the roll motion of Ship_b is unrealistic large. This is due to 

the inviscid assumption in the potential flow theory, which has been discussed 

previously in Section 8.2.2. However, the transverse distance can bring an important 

influence to the surge, heave and pitch motions, which are shown in Figure 9.8 (a), (c) 

and (e). It is very interesting to find that as the transverse distance increases, the peak 

values in these three directions will be decreased.  
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            (c)                                                                                       (d) 

 
            (e)                                                                                         (f) 

Figure 9.7: Response amplitude operators of Ship_a with different transverse distances in head waves, Fn 

= 0.1, dl = 0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 
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              (e)                                                                                       (f)  

Figure 9.8: Response amplitude operators of Ship_b with different transverse distances in head waves, Fn 

= 0.1, dl = 0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 

Figure 9.9 and Figure 9.10 show the wave excitation forces of Ship_a and Ship_b 

respectively with different transverse distances in head waves. It can be seen from 

Figure 9.9 (a), (c) and (e) that the influence of the transverse distance on surge, heave 

and pitch forces is not evident. But the wave excitation forces in sway, roll and yaw 

directions are significantly influenced by the transverse distance, which is shown in 

Figure 9.9 (b), (d) and (f). As the transverse distance increases, the wave excitation 

forces in these three directions become smaller in the low range of λ/La, but in the 

higher range of λ/La, the forces with large dt could even be greater (as shown in Figure 

9.9 (d) and (f)). The transverse distance effects on the wave excitation forces on Ship_b 

is similar to that on Ship_a. Overall, the transverse distance effects can influence the 

hydrodynamic properties of both ships. But there are no fixed rules on how to provide 

an optimal value. A specific analysis is required for a specific case, since the size of 

the ships and the working environment could have a great influence on the 

hydrodynamic interactions between two ships.  
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              (c)                                                                                         (d)  

 
              (e)                                                                                         (f) 

Figure 9.9: Wave excitation forces of Ship_a with different transverse distances in head waves, Fn = 0.1, dl 

= 0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 
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              (e)                                                                                         (f) 

Figure 9.10: Wave excitation forces of Ship_b with different transverse distances in head waves, Fn = 0.1, 

dl = 0m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 

9.4. Effect of longitudinal distance 

In order to investigate the effect of the longitudinal distance (dl), we fix the forward 

speed at Fn = 0.1 and the transverse distance at dt/Ba = 3. These two ships are travelling 

with the same forward speed in head waves at infinite water depth. As shown in Figure 

9.11, we compare the motion responses and wave excitation forces over a wide range 

of longitudinal distances (dl = -3 m, -2 m, -1 m, 0 m, 1 m, 2 m, ∞, where dl = ∞ denotes 

the cases without hydrodynamic interactions).  

 

Figure 9.11: Sketch of two ships travelling with different longitudinal distances. 

Figure 9.12 and Figure 9.13 show the response amplitude operators of Ship_a and 

Ship_b with different longitudinal distances in head waves. It can be found in Figure 

9.12 (a), (c) and (e) that the surge, heave and pitch motions of Ship_a are hardly 

influenced by the longitudinal distance. However, the sway, roll and yaw motions are 

significantly influenced by the longitudinal distance, as shown in Figure 9.12 (b), (d) 

and (f). At the case of dl = 0 m, a very large peak values can be observed at λ/La ≈ 1.1 
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in sway, roll and yaw motions. This is a very unfavourable case since λ/La ≈ 1 

corresponds to the critical incident wave frequency in ship design. Although some 

spikes emerge at λ/La ≈ 2.6 (some of which could even be larger than the spikes at λ/La 

≈ 1.1), the corresponding incident wave frequency is very low, which is not the typical 

and critical conditions in the ship design. It could also be observed that as Ship_b shifts 

from the downstream side to the upstream side of Ship_a, the hydrodynamic 

interactions on Ship_a generally become more obvious. This is because the scattered 

waves generated from Ship_b will be convected behind the vessel. When these waves 

propagate to Ship_a, the pressure distribution around the body surface of Ship_a could 

be changed. However, if Ship_b is located in the downstream side of Ship_a, only a 

few amounts of the scattered waves produced by Ship_b can propagate to Ship_a due 

to the Doppler shift. This explains why the sway, roll and yaw motions of Ship_a at dl 

= -3 m and dl = -2 m are generally very small. But in the low frequency region (λ/La ≈ 

2.6), even when Ship_b is located in the downstream side of Ship_a, the hydrodynamic 

interactions on Ship_a are still very important. This is because that at the low 

frequency range, the Brard number τ (τ = u0ωe/g) is very small, and the scattered waves 

produced by Ship_b can propagate directly ahead of the vessel. These waves could 

change the hydrodynamic properties of Ship_a and consequently lead to a large spike 

in the low frequency responses of sway, roll and yaw directions, as shown in Figure 

9.12 (b), (d) and (f).   

When it refers to the motion responses of Ship_b, dl = 0 m and dl = 1 m becomes the 

most unfavourable cases since the sway, heave, roll and yaw motions could be very 

large, as shown in Figure 9.13(b), (c), (d) and (f). The longitudinal distance effects are 

also important in the surge, heave and pitch motions, as shown in Figure 9.13(a), (c) 

and (e). It can also be found that the motion responses of Ship_b at dl = -3 m and dl = 

-2 m are relatively small. These two distances are also the preferable cases for Ship_a. 

It can be concluded that the longitudinal distance has a large influence on the dynamic 

responses of both ships. If the other two parameters (u0 and dt) are fixed, we suggest 

that the smaller ship should be located in the downstream side of the larger ship. The 

case of dl = 0 m must be avoided in the ship-to-ship interaction with forward speed 

problem. 
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            (a)                                                                                       (b) 

 
              (c)                                                                                         (d)  

 
              (e)                                                                                         (f) 

Figure 9.12: Response amplitude operators of Ship_a with different longitudinal distances in head waves, 

Fn = 0.1, dt = 1.875m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 
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            (c)                                                                                       (d) 

 
            (e)                                                                                         (f) 

Figure 9.13: Response amplitude operators of Ship_b with different longitudinal distances in head waves, 

Fn = 0.1, dt = 1.875m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 

Figure 9.14 and Figure 9.15 show the wave excitation forces of Ship_a and Ship_b 

respectively with different longitudinal distances in head waves. It can be found that 

for both Ship_a and Ship_b, the longitudinal distance effects are not important in the 

surge, heave and pitch forces. But for the rest degrees of freedom, the longitudinal 

distance has a significant influence. As can be seen from Figure 9.14 (b), (d) and (f), 

the sway, roll and yaw forces on Ship_a generally keep an increase trend at λ/La < 1.2 

as Ship_b shifts from the downstream side to the upstream side. At λ/La > 1.2, the 

forces in roll and yaw directions become complicated and dl = 0 m and dl = -1 m tend 

to be the most undesirable cases, which is shown in Figure 9.14 (d) and (f). When it 

refers to the sway, roll and yaw forces on Ship_b, no regular trend can be found, since 

the influence of the longitudinal distance varies with the incident wave frequency. 
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            (a)                                                                                       (b) 

 
            (c)                                                                                       (d) 

 
            (e)                                                                                       (f) 

Figure 9.14: Wave excitation forces of Ship_a with different longitudinal distances in head waves, Fn = 0.1, 

dt = 1.875m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 
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            (c)                                                                                       (d) 

 
            (e)                                                                                       (f) 

Figure 9.15: Wave excitation forces of Ship_b with different longitudinal distances in head waves, Fn = 0.1, 

dt = 1.875m. (a) Surge; (b) Sway; (c) Heave; (d) Roll; (e) Pitch; (f) Yaw. 

9.5. Optimal design 

9.5.1. Validation of double Doppler shift 

The hydrodynamic interactions between two ships travelling with forward speed can 

be mainly influenced by the forward speed (u0), the transverse distance (dt) and the 

longitudinal distance (dl). The effect of each individual parameter has been discussed 

in the previous sections, and in this section we will connect these parameters by the 

scattered wave patterns. As demonstrated in Section 5.2, the double Doppler shift 

theory can be used on the control surface to complete the radiation condition. We also 

find that the double Doppler shift theory can also be applicable on the free surface to 

determine the propagation of the scattered waves. Applying Eq. (5.5) to the free 

surface of single Ship_a advancing in head waves at λ/La = 1, we can obtain the local 

wave number ks and the rotated angle θ, which is shown in Figure 9.16. The rotated 

angle is defined as θ = -1 if there is no solution for Eq. (5.5), and it means there are no 

scattered waves propagating to these points. The blue region (θ = -1) in Figure 9.16 

corresponds to the quiescent free surface. It can be observed that the critical line 
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between the quiescent and wake region is almost a straight line. The saw teeth on these 

lines are caused by the discrete meshes in the numerical solution. It can be supposed 

that if the mesh size on the free surface is very small, the saw teeth will be hardly 

noticed. It can also be observed that as forward speed increases, the scattered waves 

will be convected downstream, and the quiescent region becomes larger. It can be 

supposed that if Ship_b is located in this quiescent region, there should be no 

hydrodynamic interactions on Ship_b. In order to validate this assumption, we set up 

two cases at Fn = 0.3, as shown in Figure 9.17. In Case 1, part of Ship_b is in the wake 

of Ship_a (dl = -1 m). In Case 2, Ship_b is entirely located in the quiescent region (dl 

= 1 m). In both cases, the transverse distances are fixed at dt/Ba = 3. 

 
(a) 

 
(b) 

Figure 9.16: The rotated angle θ on the free surface as Ship_a travels with different forward speeds in head 

waves: λ/La = 1. (a) Fn = 0.2; (b) Fn = 0.3. 
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Figure 9.17: Sketch of Case 1 and Case 2. 

The hydrodynamic interactions on Ship_b are mainly reflected in two categories:  the 

wave excitation forces on Ship_b ( , 1,2,...,6Wb

iF i  ) and the hydrodynamic 

coefficients of Ship_b due to the motion of Ship_a (
ba

ij  and 
ba

ij , i = 1,2,…,6,  j = 

1,2,…,6). Table 9.1 shows the wave excitation forces on Ship_b of both cases. The 

results of single ship are also included, which represents the case without 

hydrodynamic interactions. From Table 9.1 we can find that for the single ship case, 

there are no wave excitation forces in sway, roll and yaw directions in head sea 

condition. In Case 2, as Ship_b is entirely located in the quiescent region, the wave 

excitation forces in 6 degrees of freedom are very close to the single ship results. The 

discrepancies between Case 2 and single ship results are mainly introduced by the 

numerical models. The computational domain of Case 2 is different from that of single 

ship case. However, the difference of the wave excitation forces between Case 1 and 

single ship case is very obvious, especially in sway, roll and yaw directions. It indicates 

that the hydrodynamic interactions on Ship_b of Case 1 are very important. 

Table 9.1: Wave excitation forces on Ship_b in head waves: dt/Ba = 3, Fn = 0.3, λ/La = 1. 

  

Surge 

(N) 

Sway 

(N) 

Heave 

(N) 

Roll 

(N∙m) 

Pitch 

(N∙m) 

Yaw 

(N∙m) 

Wb

iF  (Single Ship_b) 725.1 0.0 2426.1 0.0 1882.4 0.0 
Wb

iF  (Case 1)  761.1 189.7 2453.1 16.7 1969.1 86.0 
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Wb

iF  (Case 2) 723.3 17.3 2430.1 1.6 1858.6 2.2 

We also compare the hydrodynamic coefficients of Ship_b due to the motion of Ship_a 

(
ba

ij  and 
ba

ij , i = 3, 4, 5,  j = 1,2,…,6), as shown in Figure 9.18. The x-label in Figure 

9.18 indicates the subscript ij, which corresponds to the relevant components in Eqs. 

(3.39)-(3.40). It can be seen that in Case 2, the motions of Ship_a have a very small 

influence on Ship_b. However, the external-induced hydrodynamic coefficients 

become much larger in Case 1, which indicates the hydrodynamic interactions are very 

significant in Case 1. 

            

(a)                                                                                                (b)  

            

(c)                                                                                                (d) 

            

(e)                                                                                                (f) 

Figure 9.18: The hydrodynamic coefficients of Ship_b due to the motions of Ship_a: dt/Ba = 3, Fn = 0.3, 

λ/La = 1. (a) Heave added mass; (b) Heave damping; (c) Roll added mass; (d) Roll damping; (e) Pitch added 

mass; (f) Pitch damping. 
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The results of these two cases indicate that the hydrodynamic interactions can be 

predicted by the propagation of the scattered waves. The double Doppler shift provides 

an effective and practical method to predict the propagation of the waves. By using 

this method, we can obtain the critical line between the quiescent and wake region 

without solving the boundary value problem, which can save a lot of efforts during the 

modelling and calculations. It was demonstrated in Section 8.3 that the hydrodynamic 

interactions on the smaller ship are more obvious. Therefore, we suggest that the 

scattered waves of the larger ship should be calculated firstly. After the critical line 

between the quiescent and wake region has been determined, the quiescent region 

could be considered as a safe region for the smaller ship.  

9.5.2. Systematic optimization  

The method described above provides a simplified approach to obtain the safe region 

for the smaller ship. Although the hydrodynamic interactions on the larger ship is not 

as significant as that on the smaller ship, an optimal design is also preferred to provide 

a best solution, which can guarantee that both ships are located in the quiescent region. 

Figure 9.19 (a) and (b) shows the rotated angle θ of Ship_a and Ship_b respectively. 

As can be seen from Figure 9.19 (a), Ship_b (the smaller ship) is located in the wake 

region of Ship_a (the larger ship). However, when it refers to Figure 9.19 (b), we can 

observe that Ship_a is entirely located in the quiescent region of Ship_b. As a result, 

the hydrodynamic interactions can only influence the motions of Ship_b. In order to 

avoid the hydrodynamic interactions on both ships, the configuration of these two 

ships should be adjusted. Figure 9.20 shows an example of the optimal configuration. 

It can be seen that both of the ships are located in the quiescent region. The critical 

lines pass through the stern of each ship. 
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(a) 

 
(b) 

Figure 9.19: The rotated angle θ on the free surface: dt/Ba = 3, dl = -1 m, Fn = 0.3, λ/La = 1. (a) Ship_a; (b) 

Ship_b. 
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Figure 9.20: An example of the optimal configuration of two ships traveling in head waves: dl = 0 m, Fn = 

0.3, λ/La = 1, γ = 38°. 

We notice that the critical scattered wave angle (can be called as semi-wedge angle γ, 

which is the angle between x-axis and the critical line, as shown in Figure 9.20) is a 

constant when the incident wave frequency and the forward speed are known. In the 

present case, the critical scattered wave angle of both ship equals to 38° at Fn = 0.3. 

We assume that the optimal objective is the transverse distance dt. Theoretically, there 

are mainly seven parameters which can determine the optimal solution of dt. These 

seven parameters are the water depth (d), the length of Ship_a (La), the length of 

Ship_b (Lb), the longitudinal distance (dl), the incident frequency (ω0), the forward 

speed (u0) and the semi-wedge angle (γ). The transverse distance dt can be expressed 

in terms of these parameters as 

0 0( , , , , , , )a bdt f d L L dl u    (9.1) 

The effect of the water depth has been discussed in the previous sections and it can 

change the dispersion relation in Eq. (3.4). As a result, the water depth will influence 

the semi-wedge angle γ. But, in most of the cases, the water depth to the draft ratio 

(d/T) is greater than 7, which can be regarded as infinite water depth problem. In the 
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present study, we assume d = ∞. La and Lb are the given parameters. Given that the 

two ships are travelling with the same forward speed, the optimal longitudinal distance 

dl can be easily determined as zero, as shown in Figure 9.20. It is also assumed that 

the incident frequency ω0 and the forward speed u0 are given before the optimal design. 

Giving rise to the condition QP/MP = tan(γ), the optimal transverse distance dt in 

Eq.(9.1) can be reduced to 

1
( ) tan( )

2
a bdt L L    , γ < π/2 (9.2) 

From Eq. (9.2) we can find that the optimal dt is only determined by the semi-wedge 

angle γ. Based on the deep water assumption, Eq. (5.14) provides an analytical solution 

for the critical rotated angle θ. From Figure 5.1, the relation between θ and γ can be 

established as 

2      (9.3) 

By substituting Eq. (5.14) and Eq. (3.3) into the Eq. (9.3), we can obtain the relation 

between the semi-wedge angle γ and the incident frequency ω0 and the forward speed 

u0 in head waves as 

2
1

0 0 0 0

2cos
4 ( )

g

u g u
 

 

  
   

 
  (9.4) 

Figure 9.21 shows some results of the semi-wedge angle γ as a function of ω0 and u0. 

  

Figure 9.21: The semi-wedge angle γ as a function of ω0 and u0. (Unit: γ, rad; u0, m/s; ω0, rad/s). 
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It should be noticed that the incident frequency ω0 and the forward speed u0 in Eq. 

(9.4) can be reduced to a single parameter. Let’s define the incident Brard number as 

0 0
0

u

g


    (9.5) 

Then the Eq. (9.4) becomes 

1

0 0

1
2cos

4 (1 )
 

 

  
   

 
  (9.6) 

From Eq. (9.6), we find that the semi-wedge angle γ is only determined by the incident 

Brard number . Figure 9.22 gives the semi-wedge angle γ as a function of  It 

should be noticed that only at  > 0.2, the Eq. (9.6) can be solved. Otherwise, γ = π, 

which indicates that the scattered waves can directly propagate ahead of the ship. At 

 < 0.27, the semi-wedge angle γ > 1/2π and there is no optimal transverse distance 

since one of the ship will be inevitably located in the wake region of the other one. As 

the incident Brard number increases from 0.2 to 1, the semi-wedge angle decreases 

very quickly and the scattered waves are convected downstream. As keep increasing, 

the semi-wedge angle γ will gradually approach 0. However, it will never reach 0. 

  

Figure 9.22: The semi-wedge angle γ as a function of . 

Substituting the semi-wedge angle (9.6) into the optimal transverse distance dt, Eq. 
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1

0 0

1 1
( ) tan 2cos

2 4 (1 )
a bdt L L 

 


   

    
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It is assumed that Lb/La = υ, the optimal transverse distance dt in Eq. (9.7) can be 

expressed by its non-dimensional form as 
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                         (9.8) 

The results of the non-dimensional optimal transverse distance are shown in Figure 

9.23. It can be found that as the incident Brard number increases, the optimal dt/La 

keeps a downward trend. It can also be found that the larger ratio of Lb/La corresponds 

to a smaller optimal dt/La. 

Eq. (9.8) and Figure 9.23 are applicable to a wide range of engineering practice, as 

long as the two ships are travelling with the same forward speed in head waves at 

infinite water depth. As long as the ratio of Lb/La is given, we can use Eq. (9.8) to 

obtain the minimal and optimal transverse distance at different forward speeds and 

incident waves.   

  

Figure 9.23: The non-dimensional optimal transverse distance. 
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9.6. Summary 

In this chapter, we investigated the main parameters (u0, dt and dl) which could 

influence the hydrodynamic interactions between two travelling ships. It was found 

that the forward speed effects could influence the motion responses of both ships 

significantly and if the other two parameters (dt and dl) are fixed, we suggest that the 

Froud number should be lower than Fn = 0.1. But the transverse distance effects are 

complicated and there is no fixed rule on how to provide an optimal value. A specific 

analysis is required for a specific case, since the size of the ships and the working 

environment could have a great influence on the hydrodynamic interactions between 

two ships. We also found that the longitudinal distance had a large influence on the 

dynamic responses of both ships and the case of dl = 0 m must be avoided since the 

hydrodynamic interactions become very violent at this case. 

We also carried out the systematic optimization about these three parameters based on 

the scattered wave patterns. The double Doppler shift was extended to the free surface 

and the critical line between the wake and quiescent region could be obtained. It was 

found that if Ship_a was located in the quiescent region of Ship_b, the hydrodynamic 

interactions on Ship_a could be ignored. Based on this finding, we derive the analytical 

expression of the so-called semi-wedge angle. This angle is only determined by the 

incident Brard number. It provides an easy way to obtain the wake and quiescent 

region without solving the boundary value problem. After the solution of the semi-

wedge angle, we established a systematic optimal process. The analytical formulation 

has been established to obtain the optimal transvers distance between two travelling 

ships. This method is applicable to a wide range of engineering practice, as long as the 

two ships are travelling with the same forward speed in head waves at infinite water 

depth. But, it should be also noticed that the optimal solution can only be found at  > 

0.27. 
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10. Conclusions and recommendations 

10.1. Achievements against the objectives 

The primary objective of the work presented in this thesis is to study the hydrodynamic 

interactions between two ships travelling or stationary in shallow waters. The main 

achievements against the objectives are outlined below: 

 Develop a numerical program to predict the behaviour of single ships travelling 

in waves. A 3-D Rankine source panel method has been developed to predict 

the hydrodynamic properties of marine vessels travelling with a wide range of 

forward speeds. Double Doppler shift has been taken into consideration in the 

boundary condition of the control surface. A Wigley III hull travelling with 

very low or medium forward speed was considered to validate this radiation 

condition. Comparing with the experimental data, it can be concluded that the 

present method can provide a satisfactory prediction of the hydrodynamic 

responses of a single ship travelling with wide range of the forward speeds. 

 Develop a numerical program to predict the coupled behaviour of stationary 

ships moored side-by-side in waves. Based on 3-D Rankine source panel 

method for single ship, we extended the numerical program to predict the 

hydrodynamic interactions between two ships stationary in head and beam 

waves. We examined the hydrodynamic coefficients, wave excitation forces 

and motion responses and established the comparisons between the present 

calculations and the commercial software as well as the experimental data. 

Very good agreement has been achieved which illustrates that the present 

program is a useful tool to predict the hydrodynamic behaviours of two ships 

arranged side by side without forward speed. We also calculated the motion 

responses of both ships at different water depths and separation distance. It was 

found that the effect of the water depth and separation distance was very 

important. The discussion was highlighted on the effects of mooring and fender 

system. We found that the influence of the mooring lines, fenders and hawsers 

on the motion responses of both ships was not evident. 
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 Develop a numerical program to predict the coupled behaviour of two 

travelling ships arranged side-by-side in shallow water. We extended double 

Doppler shift radiation condition to the ship-to-ship interaction with forward 

speed problem and developed a numerical program to predict the coupled 

behaviour of two travelling ships arranged side-by-side in shallow water. The 

present method was validated through two pairs of models. The computed 

dynamic responses of both models in heave and pitch motions showed a good 

agreement with the published experimental results. However, the prediction of 

the roll motion was full of challenges due to the inviscid assumption in the 

potential flow theory. It was also found that the hydrodynamic interaction had 

much greater influence on the motions of the smaller ship. We investigated the 

hydrodynamic interactions through the hydrodynamic coefficients and wave 

excitation forces. It was found that the hydrodynamic coefficients of the larger 

ship were mainly determined by the oscillation of the larger ship itself, while 

the self-induced and external-induced components of the hydrodynamic 

coefficients were at the same level for the smaller ship. A very large sway force 

for zero speed case was predicted when the transverse distance between two 

ships equalled to the wave length. This extreme force is due to the diffracted 

wave energy that trapped in the gap and it will bring a great risk to the ship-to-

ship offloading operation. We also examined the present radiation condition 

and the effect of forward speed through a series of numerical experiments 

involving two ships with a wide range of forward speed in head seas. It was 

concluded that the present method could provide an effective prediction of the 

wave patterns for the ships travelling with a wide range of forward speed. 

 Validate the numerical programs described above through the commerce 

software as well as experimental measurements. Our numerical programs have 

been validated through a series of model tests. For the single ship problem, we 

used Journee’s experimental data (Journee, 1992) to validate our numerical 

results about a Wigley III hull with different forward speeds. For the ship-to-

ship interaction without forward speed problem, we validated our method 

through two pairs of model. Model 1 was about a modified Wigley hull and a 

box model at beam sea case and the experimental results as well as Kashiwagi’s 
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(Kashiwagi et al., 2005) numerical results were used for the validation. Model 

2 was about two identical Wigley III hulls at head sea condition and the results 

from the commercial software (Wadam, 2010) are used for the comparison. 

We also validated our numerical program about two ships travelling in head 

waves through two pairs of model. Model 1 was about a full scale supply ship 

and frigate model, and Li’s model test results (Li, 2007) were used to validate 

the present numerical calculation. Model 2 was a tanker and LNG ship model 

in model scale, and Ronæss’ experiments (Ronæss, 2002) provide the motion 

responses for validation. The corresponding numerical results by using Green 

function method were also included in our validation. Overall, the agreement 

between the present calculations and the model test results is satisfactory.  

 Carry out parametric studies in order to develop recommendations for ship 

designers and operators for maximum speed and distance between two ships in 

given environmental conditions for safe operation. We investigated the main 

parameters (u0, dt and dl) which could influence the hydrodynamic interactions 

between two travelling ships. It was found that the forward speed effects could 

influence the motion responses of both ships significantly. If the other two 

parameters (dt and dl) are fixed, we suggest that the travelling speed should be 

lower than Fn = 0.1. But the transverse distance effects are complicated and 

there is no fixed rule on how to provide an optimal value. We also found that 

the longitudinal distance had a large influence on the dynamic responses of 

both ships and the case of dl = 0 m should be avoided since the hydrodynamic 

interactions became very violent at this case. We also carried out the systematic 

optimization about these three parameters based on the scattered wave patterns. 

The double Doppler shift was extended to the free surface and the critical line 

between the wake and quiescent region could be obtained. It was found that if 

Ship_a was located in the quiescent region of Ship_b, the hydrodynamic 

interactions on Ship_a could be ignored. Based on this finding, we derive the 

analytical expression of the so-called semi-wedge angle, and the analytical 

formulation has been established to obtain the optimal transverse distance 

between two travelling ships. But, it should be also noticed that the optimal 

solution could only be found at τ0 > 0.27. 
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10.2. Contributions of the present study 

The contribution of the present study can be summarised as follows: 

 Introduce a new radiation condition to solve the hydrodynamic problems and 

extend it to the ship-to-ship interaction with forward speed problem. This 

radiation condition takes into account the Doppler shift of the scattered waves. 

It is applicable to a wide range of forward speeds, including very low forward 

speed problem where the Brard number is smaller than 0.25. The validation of 

this new radiation condition was established on both single ship and ship-to-

ship cases. The comparison between the present and Sommerfeld radiation 

condition was made at τ < 0.25, while the comparison between the present and 

upstream radiation treatment was made at τ > 0.25. Our solution showed a 

better wave pattern without reflections from the truncated control surface, 

which confirmed the effectiveness of the present radiation condition as a wave-

pattern prediction tool for the ships travelling with a wide range of forward 

speed. 

 Introduce a 3-D Rankine source method to solve the ship-to-ship interaction 

with or without forward speed problem. Most of the studies on ship-to-ship 

problem are based on Green function method, which has some limitations, e.g. 

the so-called irregular frequency problem. However, these limitations can be 

avoided by using Rankine source method. It takes account of the forward speed 

into the boundary value problem and the Rankine-type Green function can 

satisfy the seabed boundary condition through the method of image. We 

validated the Rankine source method through a number of model tests, as well 

as the Green function method. It was concluded that the present method could 

provide a satisfactory prediction of the hydrodynamic properties of ships 

travelling in waves. 

 Derive the analytical expression of the semi-wedge angle based on double 

Doppler shift theory. This angle is only determined by the incident Brard 

number. It provides an easy way to obtain the wake and quiescent region 

without solving the boundary value problem. After the solution of the semi-

wedge angle, the analytical formulation has been established to obtain the 
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optimal transvers distance between two travelling ships. This method is 

applicable to a wide range of engineering practice, as long as the two ships are 

travelling with the same forward speed in head waves at infinite water depth. 

By using this method, we can obtain the critical line between the quiescent and 

wake region without solving the boundary value problem, which can save a lot 

of efforts during the modelling and calculations. 

10.3. Recommendations for the future work 

The present 3-D Rankine source method associated with the double Doppler shift 

radiation condition can be further improved in several aspects: 

 In order to improve the accuracy of the prediction of the hydrodynamic 

coefficients in radiation problem, the coupled effects between the steady flow 

and radiation potential should be taken into account in the body surface 

boundary condition. Meanwhile, the nonlinear free surface boundary condition 

should also be considered in the future work. 

 In order to improve the accuracy of the prediction of roll motion, a roll damping 

coefficient should be applied in the motion equation to avoid the unrealistic 

roll motions. Unfortunately, this damping coefficient could not be determined 

without model test results. A future study based on CFD solutions should be 

carried out to provide the damping coefficient.  

 In order to save the computational time, a high order panel method should be 

applied to discrete the boundaries. And a self-adaptive mesh refinement 

technique should be required to provide a more effective boundary element 

solution of the Laplace equation. 

 In order to verify the present radiation condition at very low forward speed, the 

corresponding model test should be carried out. 

 In the present study, our calculations about the mooring and fender systems are 

based on linear assumption. But the nonlinear effects from these systems are 

significant during the offloading operation when the two ships are in close 

proximity. Time domain method should be complemented to account for the 

nonlinear loads from the fender and mooring line system. 
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 An extensive study should be carried out on the overtaking and encountering 

operations. 

 The present program for two ships arranged side by side should be expanded 

to simulate three or more than three bodies travelling or stationary in waves.
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