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Abstract

Self-exciting point processes describe a type of point process where the occurrence

of an event leads to an increased probability of a future event taking place. Such

subsequent events can be said to have been ‘triggered’ by the previous event.

Originally used to model earthquakes, in recent years this class of processes has

been utilised in crime modelling to describe how crime events can propagate

future crime. In this thesis we look at ways of building on the existing literature

which uses self-exciting point processes to model crime, with the intention of

improving the ability to predict when and where future crime may occur. We

introduce a new parametric form for the triggering function, which can be utilised

in situations where an initial event does not immediately lead to an increased risk

of further events, but rather the risk increases over a period of time after the event.

We also introduce adaptations to existing non-parametric methods which offer us

fresh insight into the dynamics of crime. We validate our models using publicly

available crime data from the city of Chicago.
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Chapter 1

Introduction

In recent years self-exciting point processes have been increasingly used in order to

model crime, based on the idea that crime is more likely to occur in the aftermath

of a previous crime. In this thesis we concentrate on fitting existing and novel

self-exciting point processes to publicly available crime data from Chicago, with

the intention of building on existing models in order to more successfully predict

where future crime events may occur.

In Chapter 2 we introduce the definition of a temporal self-exciting point process,

along with one of the most common parametric forms which the triggering func-

tion takes in the literature, the epidemic type aftershock sequence (ETAS) model.

We also explain how we infer estimates for the model parameters of self-exciting

point processes throughout the thesis, namely via an EM-algorithm.

We propose a new parametric form for the triggering function in Chapter 3, which

we name the delayed criminal response (DCR) model, which allows the risk of a

future crime occurring to increase for a period after an event, as an alternative

to the ETAS function where the risk decays after the immediate increase when

an event occurs. We run a number of tests on the EM-algorithm for the ETAS

and DCR model on simulated data to verify how well we can recover the true

parameters of a self-exciting point process.

In Chapter 4 we fit temporal self-exciting point processes to publicly available

burglary data from the city of Chicago, using both the ETAS and DCR model,

4



Chapter 1 5

and compare the performance of both models in terms of predicting future crime.

We introduce spatio-temporal point processes and fit parametric versions of these

to the burglary data using both the ETAS and DCR triggering function.

In 2008 Marsan and Lengliné proposed a method which could estimate Hawkes

processes for earthquakes without making any prior parametric assumptions [45].

In Chapter 5 we model burglary in Chicago taking advantage of this method

to incorporate a non-constant background rate, and a non-parametric form for

the triggering function using weighted histograms. We give predictive results for

unseen burglary data for this method.

In Chapter 6 we alter a model previously proposed by Mohler et al. [48] to build

an isotropic version of this non-parametric triggering function. Using Manhattan

distance and the maximum norm, we propose further alternatives to this function

which take advantage of the grid structure of the street network in Chicago, to

give fresh insight into the dynamics of burglary within Chicago. In Chapter 7 we

give a summary of the results obtained within this thesis, along with suggestions

for future work.

Research results from this work have been presented by the author at

� “Mathematical Criminology and Security” workshop, Banff International

Research Station for Mathematical Innovation and Discovery (BIRS), 18-

22 March 2019

� 27th Biennial Numerical Analysis Conference, University of Strathclyde,

27-30 June 2017

� SIAM-UKIE Student Chapter Conference, NUI Galway, 26 May 2017

� British Applied Mathematics Colloquium, University of Surrey, 10-12 April

2017



Chapter 2

Self-Exciting Point Processes

2.0.1 Mathematical Modelling of Crime

In recent years mathematics has increasingly found new applications in the social

sciences where modelling and simulation can be used to shed light on some aspect

of human behaviour. One such area in which mathematics has been applied is

crime modelling, with the European Journal of Mathematics having recent special

issues dedicated to this field [10, 12].

Within criminology there are several areas in which mathematical models have

been utilised to inform the decision making process for police or policy makers,

including the investigation of the effect severity of sentencing can have on the

crime rate [20], how limited police resources can be allocated in the most efficient

way [21, 65], and the effect social factors can have on the prevalence of crime

[36].

Many types of mathematical methods have been used to model different prob-

lems within criminology. Reaction-diffusion equations have been used to describe

the formation and expansion of ‘crime hotspots’, and how these can be erad-

icated or displaced with police suppression [63]. Other research has borrowed

ideas from epidemiology to model crime as an infection with the police response

similar to an immune response [7]. Lotka-Volterra equations have been used to

model gang interactions [14], while ideas from network science have been used to

6
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investigate the formation of criminal networks [46]. Agent-based models, involv-

ing the interactions of people represented as so called agents who follow a set of

simple rules, have been used to model the interaction between street gangs [32]

and the behaviour of burglars [44]. Game theory has been used to investigate

the behaviour of criminals, and optimal strategies to counter criminal behaviour

[24, 64]. Other approaches have sought to utilise data from social media in order

to more accurately assess the risk of crime [25, 43]

One area where mathematical methods have developed significant traction within

police departments is with models aiming to predict future crime [29], with so

called ‘predictive policing’ being used by real police forces to target their resources

more effectively [55]. ‘PredPol’ is a commercial company which offers software for

police to target their patrols [1], with this software being used across the United

States and gaining widespread media attention [3, 11]. Fundamental to the use

of ‘predictive policing’ is the idea that as well as predicting future crime, police

forces can use these predictions to implement some intervention technique which

will reduce the future crime risk [55]. The effectiveness of such methods in terms

of reducing future crime has garnered mixed reviews [13, 33], while great debate

around the ethics of using these techniques has also been generated [9, 35].

2.0.2 Self-Exciting Point Processes in Crime Modelling

Much of the research into criminal behaviour focuses on so-called ‘crime hot

spots’, and the idea that crime doesn’t occur uniformly in space, but rather is

more likely to take place in a limited number of high risk areas [13, 62]. It has

been proposed that certain types of crime, including burglary and gang violence,

take place in highly clustered event sequences, and therefore can be modelled

in much the same way as seismic events, where earthquakes increase the risks

of aftershocks occurring in close proximity to the original earthquake [48]. For

example, a gang shooting may lead to retaliatory acts of violence against rival

gangs, or burglars often target houses which have recently been burgled and

nearby houses [48]. Such self-exciting point processes have been used to model

crime in a number of studies, including to model burglary and other crimes in

Los Angeles [48] and Kent [49], to model gang rivalries in Los Angeles [23], to
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predict gun crime and homicides in Chicago [47], to model the use of improvised

explosive devices during “The Troubles” [69], and to model civilian deaths in Iraq

[39].

2.0.3 Temporal Point Processes

A temporal point process is essentially a list of times (t1, t2, . . . , tn) where events

have taken place [57]. The times arise from probabilistic modelling arguments.

Such processes can be described by a conditional intensity function

λ∗(t) = lim
∆t→0

E(N(t+ ∆t)−N(t)|Ht)

∆t
, (2.0.1)

where Ht is the history of the process prior to time t, and N(t) is a counting

process which describes the number of points which have occurred up to time

t. In essence this function gives the expected number of events relative to an

infinitesimal future time increment, depending on the history of the process [57].

The ∗ notation is typically used to denote that the function depends on the history

of the process to avoid writing this explicitly. The number of events which we

can expect to observe by time T in such a process can be written

E(N(T )) =

∫ T

0

λ∗(t) dt. (2.0.2)

From a modelling perspective, the key task is to specify the form of the conditional

intensity function λ∗(t). A simple type of point process is the Poisson point

process. It has the memoryless property; the conditional intensity function is

constant over time, i.e. λ∗(t) = λ [57]. In such a process the occurrence of events

does not depend on events in the past. The distribution of the waiting times,

the times between consecutive events, follows an exponential distribution. The

memoryless property means that the distribution of how long we can expect to

wait for the next event from a certain time t remains the same regardless of how

long we have been waiting since the previous event.

The Hawkes process is a self-exciting point process whose conditional intensity

λ∗ increases in the aftermath of an event [31]. The conditional intensity λ∗ is



Chapter 2 9

defined as

λ∗(t) = µ(t) +
∑
ti<t

g(t− ti). (2.0.3)

In the Hawkes process we can consider µ to be the background rate, and g to be

a triggering function which increases the intensity of the process in the aftermath

of an event. Cases where g can take negative values have been investigated in

the context of non-linear Hawkes processes [16], but as λ∗ ≥ 0 is a requirement,

we will assume throughout that g and µ are non-negative.

A common form for the triggering function g is known as the ETAS (epidemic

type aftershock sequence) model

g(t) = αωe−ωt, (2.0.4)

where ti are the times of the events in the process, and α and ω are non-negative

parameters. Such models were developed in the context of investigating earth-

quakes, where the probability of an aftershock event happening in the aftermath

of an earthquake would be increased [52]. In particular, ω governs the speed at

which the intensity function decays after an event, and µ in equation (2.0.3) is the

background rate 1. We show below that α gives the expected number of events

which an event triggers.

The Hawkes process can be viewed as a branching process [37], which will inform

us when it comes to simulating such processes. Events occur according to the

background rate µ. An event which happens at time ti produces offspring events

at the rate g(t − ti) for times t > ti independently of each other [37]. The

direct offspring of the background events are known as first-generation offspring,

and these individual events can then trigger further events independently of each

other, which are known as second-generation offspring, and so on. A simple

demonstration of such a process is shown in Figure 2.1.

1In some of the literature this triggering function is given in the equivalent form αe−βt, with
the interpretation that each arrival increases the intensity by α, with this influence decaying
at rate β [37]. We use the form αωe−ωt because it has the useful property that each event is
expected to trigger α events.
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background

1st generation

offspring

2nd generation

offspring

t1 t2 t3 t4t5 t6 t7 t8 t9 t10 t11

process

Figure 2.1: A simple demonstration of a Hawkes process. Background events
may or may not trigger first-generation offspring events, which in turn can trigger
second-generation offspring events, and so on. In Hawkes processes we tend to
see a greater clustering of events than we would expect to see in a simple Poisson
process.

The number of events a single event is said to trigger in the next generation is a

Poisson process with mean n, where n is known as the branching ratio [37]. The

branching ratio of the ETAS model (2.0.4) is

n =

∫ ∞
0

αωe−ωt dt = α (2.0.5)

and can be thought of as the expected number of events in the first-generation

offspring of an event, or alternatively as the proportion of events inside the model

that are triggered events when n ≤ 1.

It can be shown that in the defective case, i.e. when n < 1 [37], and when the

background rate µ is constant,

E[λ∗(t)]→ µ

1− n
, as t→∞. (2.0.6)

The expected number of descendant events from an initial event is
∑∞

i=1 n
i, there-

fore when n < 1, the expected number of descendant events from an initial event

is n
1−n . When n ≥ 1 the process explodes, as each event is expected to produce

an infinite number of descendants.
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2.1 Finding Parameters

When faced with a dataset that is believed to have arisen from a point process, our

primary concern is typically the inverse problem; inferring estimates for the model

parameters and comparing a set of putative models. The standard method for

calibration is to estimate the parameters which maximise the likelihood function

of the model.

Given point process data (t1, t2, . . . , tn) on an interval [0, T ), the likelihood func-

tion is given by

L =

(
n∏
i=1

λ∗(ti)

)
exp

(
−
∫ T

0

λ∗(t) dt

)
. (2.1.1)

We provide a derivation of this, along the lines of Rasmussen [57], as follows. The

conditional intensity function can be defined as

λ∗(t) =
f ∗(t)

1− F ∗(t)
, (2.1.2)

where f ∗ is the conditional density, and F ∗ is the corresponding cumulative dis-

tribution function. From this we get

λ∗(t) =
d
dt
F ∗(t)

1− F ∗(t)
= − d

dt
log(1− F ∗(t)). (2.1.3)

Integrating both sides from tn to t, where tn is the last event before t, we get∫ t

tn

λ∗(s) ds = −(log(1− F ∗(t))− log(1− F ∗(tn))) = − log(1− F ∗(t)), (2.1.4)

as F ∗(tn) = 0 (as tn+1 occurs at tn with probability zero). This can be rewritten

as

F ∗(t) = 1− exp

(
−
∫ t

tn

λ∗(s) ds

)
. (2.1.5)

Combining this with (2.1.2) gives

f ∗(t) = λ∗(t)(1− F ∗(t)) = λ∗(t) exp

(
−
∫ t

tn

λ∗(s) ds

)
. (2.1.6)
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The likelihood function is the joint density function of all the points (t1, t2, . . . , tn)

on [0, T ),

L = f ∗(t1)f ∗(t2) . . . f ∗(tn)(1− F ∗(T )). (2.1.7)

Using (2.1.6) and (2.1.2) we can obtain the likelihood function (2.1.1).

As shown in [54], we therefore find the log-likelihood of the Hawkes process (2.0.3)

with constant background rate µ and ETAS triggering function (2.0.4) to be

logL =
n∑
i=1

log (λ∗(ti))−
∫ T

0

λ∗(t) dt

=
n∑
i=1

log

µ+ αω
∑
tj<ti

e−ω(ti−tj)

− µT − n∑
i=1

∫ T

ti

αωe−ω(T−ti) dt (2.1.8)

=
n∑
i=1

log

µ+ αω
∑
tj<ti

e−ω(ti−tj)

− µT +
n∑
i=1

α(e−ω(T−ti) − 1). (2.1.9)

Standard iterative methods may not be ideally suited to finding the parameters

which maximise the likelihood of a dataset given the flatness of the likelihood

function that is sometimes encountered, as shown by Veen and Schoenberg [70].

Another issue is that the log-likelihood can often be multimodal, meaning nu-

merical methods can often converge on local maxima.

The expectation-maximisation algorithm (EM-algorithm) has been found to alle-

viate some of these problems. The EM-algorithm is an iterative algorithm which

computes maximum likelihood estimators [19]; in the case of the Hawkes process,

the branching structure and the fact we don’t know whether each event is a back-

ground event or a triggered event is regarded as the incomplete data. We will

give an explanation for why the EM-algorithm can be used for Hawkes processes

as follows.

If we know which events are background events and which have been triggered by

other events, we can work with the complete data log-likelihood Lcd(µ, g), which
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can be written as

Lcd(µ, g) =
n∑
i=1

Uii log(µ(ti))−
∫ T

0

µ(t)dt︸ ︷︷ ︸
lback

+
n∑
i>j

Uij log(g(ti − tj))−
n∑
i=1

∫ T

ti

g(t− ti)dt︸ ︷︷ ︸
ltrig

, (2.1.10)

where

Uii =

1, if i is a background event

0, otherwise
(2.1.11)

Uij =

1, if i is caused by j

0, otherwise.
(2.1.12)

We see that the complete data log-likelihood Lcd can be separated into two parts:

the likelihood lback relating to the background events, and the likelihood ltrig

relating to the triggered events [38]. As we never know with certainty whether

an event is a background event or has been triggered by others, we will use the

expected value E(Lcd(µ, g)) of the complete data log-likelihood

E(Lcd(µ, g)) =
n∑
i=1

pii log(µ(ti))−
∫ T

0

µ(t)dt

+
n∑
i>j

pij log(g(ti − tj))−
n∑
i=1

∫ T

ti

g(t− ti)dt, (2.1.13)

where

pii =
µ(ti)

µ(ti) +
∑i−1

j=1 g(ti − tj)
, (2.1.14)

pij =
g(ti − tj)

µ(ti) +
∑i−1

j=1 g(ti − tj)
. (2.1.15)

The probability pii that an event ti is a background event is just the ratio of the

background rate to the total intensity at time ti, and similarly the probability pij
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that an event ti was caused by an event tj is the ratio of the triggering function

contribution of the event tj to the total intensity at time ti.

The expected value E(Lcd(µ, g)) of the complete data log-likelihood of the Hawkes

process (2.0.3) with constant background rate µ and the ETAS triggering function

(2.0.4) is

E(Lcd(µ, g)) =
n∑
i=1

pii log(µ)−
∫ T

0

µdt

+
n∑
i>j

pij log(αωe−ω(ti−tj))−
n∑
i=1

∫ T

ti

αωe−ω(t−ti)dt

=
n∑
i=1

pii log(µ)− µT

+
n∑
i>j

pij log(αωe−ω(ti−tj))− α
n∑
i=1

(1− e−ω(T−ti)). (2.1.16)

Taking partial derivatives of this expression with respect to the parameters θ =

(α, µ, ω), we obtain

∂E(Lcd(θ))

∂µ
=

1

µ

n∑
i=1

pii − T, (2.1.17)

∂E(Lcd(θ))

∂α
=

1

α

n∑
i>j

pij +
n∑
i=1

e−ω(T−ti) − n, (2.1.18)

∂E(Lcd(θ))

∂ω
=

n∑
i>j

pij

(
1

ω
− (ti − tj)

)
+ α

n∑
i=1

(T − ti)e−ω(T−ti). (2.1.19)

Following the approximation α
∑n

i=1(1 − e−ω(T−ti)) ≈ αn suggested in [38] for

ω << T , the last two of these equations become

∂E(Lcd(θ))

∂α
=

1

α

n∑
i>j

pij − n, (2.1.20)

∂E(Lcd(θ))

∂ω
=

n∑
i>j

pij

(
1

ω
− (ti − tj)

)
. (2.1.21)



Chapter 2 15

Setting these partial derivatives to 0, the EM-algorithm for the ETAS model can

be developed, as seen in much of the literature (e.g. [47, 49, 70, 73]).

2.2 EM-algorithm

The EM-algorithm begins with an initial guess θ(0) = (α(0), µ(0), ω(0)). The algo-

rithm iterates between an expectation step and a maximisation step [28].

Expectation Step

The expectation step at the (k+ 1)th iteration uses the parameter estimates θ(k)

to estimate the probabilities p
(k+1)
ii that event i was a background event, and

p
(k+1)
ij that it was caused by event j for i > j as follows

p
(k+1)
ii =

µ(k)

µ(k) +
∑i−1

j=1 g(ti − tj;θ(k))
, (2.2.1)

p
(k+1)
ij =

g(ti − tj;α(k), ω(k))

µ(k) +
∑i−1

j=1 g(ti − tj;θ(k))
. (2.2.2)

Maximisation Step

The maximisation step computes the parameters θ(k+1) = (µ(k+1), α(k+1), ω(k+1))

which maximise the expected complete data log-likelihood according to the prob-

abilities calculated in the expectation step. These are found as

µ(k+1) =

∑n
i=1 p

(k+1)
ii

T
, (2.2.3)

α(k+1) =

∑n
i=1

∑i−1
j=1 p

(k+1)
ij

n
, (2.2.4)

ω(k+1) =

∑n
i=1

∑i−1
j=1 p

(k+1)
ij∑n

i=1

∑i−1
j=1 p

(k+1)
ij (ti − tj)

. (2.2.5)

EM-algorithm

The EM-algorithm alternates between these two steps until some convergence

criterion is achieved, for example, until max |θ(k+1) − θ(k)| is below a certain
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threshold, or the computational budget is exceeded. Local convergence of the

algorithm has been proved [19]. Because the problem is not convex, the algorithm

suffers from the same drawback as many numerical methods, namely the tendency

to converge to local maxima [71].

2.3 Goodness of Fit

Once we have fitted model parameters to a point process, the next logical step is

to check the suitability of the model. For a temporal point process this can be

done by residual analysis, where we compare a transformed version of the point

process with a unit rate Poisson process.

2.3.1 Residual Analysis

The integrated conditional intensity function, also known as the compensator, is

given by

Λ(t) =

∫ t

0

λ∗(s) ds. (2.3.1)

The following theorem can be applied as the basis of a test for suitability of the

model fitted to the data.

Theorem 1 If (t1, t2, . . . ) is a point process with intensity λ∗(t), then the trans-

formed sequence (s1, s2, . . . ) = (Λ(t1),Λ(t2), . . . ), known as the residual sequence,

is a realisation of a unit rate Poisson process [37].

Taking advantage of this theorem we can use residual analysis to check whether

the model is justified, by comparing the residual sequence (s1, s2, . . . , sn) of the

data, with a Poisson process with unit rate.

We can compare in a number of ways. One way to check this visually is through a

quantile-quantile plot (Q-Q plot), where we plot the waiting times of the residual

sequence (Λ(t1),Λ(t2) − Λ(t1),Λ(t3) − Λ(t2) . . . ) against the quantiles from the

exponential distribution, with particularly noticeable deviations away from lin-

earity being taken as an indicator against the points coming from the exponential
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distribution [41].

A more quantitative way of comparing the residuals with an exponential distri-

bution is through a Kolmogorov-Smirnov test. This is carried out by plotting the

cumulative distribution of the residual process as a step function, and plotting

the exponential distribution on the same diagram. The maximum difference be-

tween these two distributions is then compared to the D-value for a Kolmogorov-

Smirnov test. If the difference is greater than the D-value for our chosen α level

(typically 0.05), we reject the null hypothesis that the residuals do come from the

exponential distribution at a 95% confidence interval [34]. In statistics, the null

hypothesis is a hypothesis that is rejected at a certain confidence level if the test

statistic is in the rejection region [41].

We may also wish to check whether there is correlation between the intervals of

Λ(ti). One way of doing this is by plotting the points (Ui+1, Ui), where Ui+1 =

1 − e−(si+1−si). If there is no autocorrelation then we would expect to see an

unstructured spread of the points in (0, 1)× (0, 1) [52].

Given a point process (t1, t2, . . . , tn) we may first want to investigate whether a

self-exciting point process is justified at all. One way to check whether the point

process can be adequately modelled as a homogeneous Poisson point process is

by checking the Q-Q plots of the waiting times (t1, t2− t1, t3− t2, . . . ) against an

exponential distribution, and doing a Kolmogorov-Smirnov test of these waiting

times. If the data is from a homogeneous Poisson point process then these waiting

times will be exponentially distributed [52].

2.3.2 Likelihood-Ratio Test

We may wish to compare a Hawkes process with a Poisson point process in

order to infer whether there is self-excitation in the data which needs to be ex-

plained with a triggering function. An hypothesis test we can use to do this is

a likelihood-ratio test. This compares the difference between the likelihood Lnull

of the null model, in this case a Poisson point process, with the likelihood Lalt of



Chapter 2 18

the alternative model, in this case the Hawkes model

D = 2(ln(Lalt)− ln(Lnull)). (2.3.2)

This discrepancy D is compared with a chi-squared distribution with degrees of

freedom equal to the difference in the number of parameters of the two competing

models. A p-value of less than 0.05 can be taken as strong evidence to reject the

null model [41].

2.3.3 Comparison of Competing Models

A more popular way to compare goodness of fit for competing to models is to

compute the Akaike Information Criterion (AIC), which is taken to be

AIC = 2k − 2 ln(L), (2.3.3)

where k is the number of parameters in the model and L is the likelihood. This

statistic measures the fit of a model relative to other models while containing

a penalty for more parameters being used, with a lower AIC taken to mean a

superior fitting model [40].
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New Triggering Function

3.0.1 Delayed Criminal Reaction Model

We propose an alternative for the triggering function, which we will refer to as

the delayed criminal response model (DCR model), namely

g(t) = ᾱω̄2te−ω̄t. (3.0.1)

Unlike the triggering function (2.0.4) which immediately increases the intensity

after an event with g(0) = αω and shows an exponential decay thereafter, this

function has its maximum increase in intensity at a time 1/ω̄ after an event, with

g( 1
ω̄

) = ᾱω̄e−1 the maximum increase in intensity caused by an event, and ᾱ

giving the expected number of events triggered by an event.

We argue that the DCR trigger function (3.0.1) is more realistic than the ETAS

version (2.0.4). In a real world setting it may be argued that the risk of further

crimes being triggered by a crime will not be increased immediately following

the crime, rather the risk increases over a certain period following the crime

before starting to decay. For example, it has been noted in the criminology

literature that perpetrators of homicide often have a ‘cooling-off’ period between

victims [22]. In terms of burglary several theories have been posited to suggest

that repeat victimisation may be more likely to occur after a period of time has

passed from the initial incident, including that a burglar will want to wait until

19
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the previous victims have replaced their stolen belongings, or that information

about a ‘successful’ crime being committed would take time to pass between

criminals [56].

With the triggering function in (3.0.1) we can also quantify the time period

following a crime which will give the greatest risk of triggered events, namely this

occurs at time 1/ω̄ after the initial event. Examples of the triggering functions

(2.0.4) and (3.0.1) are shown in Figure 3.1.
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Figure 3.1: Example of the ETAS model (2.0.4) in blue, with α = 0.2 and
ω = 0.2, and the DCR model (3.0.1) in red, with ᾱ = 0.2 and ω̄ = 0.2
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3.1 EM-algorithm for DCR model

The expectation step for the DCR model takes the same form as (2.2.1) and (2.2.2)

seen for the ETAS model, with the maximisation step taking the form

µ̄(k+1) =

∑n
i=1 p

(k+1)
ii

T
, (3.1.1)

ᾱ(k+1) =

∑n
i=1

∑i−1
j=1 p

(k+1)
ij

n
, (3.1.2)

ω̄(k+1) =

∑n
i=1

∑i−1
j=1 2p

(k+1)
ij∑n

i=1

∑i−1
j=1 p

(k+1)
i,j (ti − tj)

. (3.1.3)

3.2 Dealing with Data

The timestamps we observe when dealing with real data can sometimes involve

events taking place at the exact same time; a situation which is not possible

for point processes. While with certain types of data events may be recorded

happening at the exact same time due to limits on how precisely we can times-

tamp events, with crime data this typically happens either for practical reasons

(when an event is recorded a police officer may round to the nearest minute or

hour, or a witness may only be able to give a rough estimate for when a crime

occurred), or simply due to the fact that in the case of a burglary it might be

unclear exactly when the crime took place. Filiminov and Sornette dealt with

this issue, where they looked at timestamps of financial transactions which were

given to the nearest second, by randomly redistributing each event within each

second [26]. Lorenzen urged caution however when using this approach, stating

it introduced bias, in particular to the parameters of the exponential triggering

function [42].
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3.3 Simulation

We will produce some simulated data in order to test how well our EM-algorithms

can recover the true parameters of a self-exciting point process. Ogata’s modified

thinning method is a method for simulating point processes that are specified by

their conditional intensities [51]. The algorithm consists of simulating homoge-

neous Poisson processes with intensities which are too high, and then removing

points with probability according to the conditional intensity at that point com-

pared to the intensity of the Poisson process used to simulate [57].

In the algorithm, when we are at time t we wish to find the next point ti > t. We

can do this by simulating a homogeneous Poisson process on the interval [t, T ],

with a constant intensity λ∗ which fulfils λ∗ > λ(s) for s ∈ [t, T ]. When we find

the next point ti of this Poisson process we have to decide whether to keep it as

part of the point process. If ti > T then the point is not in the interval and the

algorithm ends. If ti is in the interval [t, T ] then we keep the point as part of the

interval with probability λ(ti)/λ
∗, and then we start again from ti.

Ogata’s modified thinning algorithm

1. Set t = 0 and n = 0

2. While t < T :

a) Compute λ∗

b) Generate independent random variables s ∼ exp(λ∗) and U ∼ Unif([0, 1])

c) If t+ s > T , set t = t+ s

d) Else if U > λ(t+ s)/λ∗, set t = t+ s

e) Else set n = n+ 1, tn = t+ s, t = t+ s

3. Output is (t1, . . . , tn).

To simulate the Hawkes process with triggering function g(t) = αωe−ωt in (2.0.4),

we can simply take λ∗ = λ(t) at every starting point t as the intensity function

is non-increasing until new points appear.

To simulate the point process with triggering function g(t) = ᾱω̄2te−ω̄t in (3.0.1),
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we use the fact that the triggering effect is non-increasing for times 1/ω̄ after an

event, along with the fact the maximum increase in intensity attributed to an

event is ᾱω̄e−1, and take λ∗ at point t to be:

λ∗ = λ(t) +
∑

t− 1
ω̄
<ti≤t

ᾱω̄e−1

3.3.1 Simulation Results

We first generated 1000 realisations of the Hawkes process with the ETAS trig-

gering function with parameter values µ = 0.1, α = 0.2, ω = 0.2, and 1000 reali-

sations of the DCR model with µ = 0.1, ᾱ = 0.2, ω̄ = 0.2 to attempt to reproduce

self-exciting point processes we might observe in real crime data. We simulated

these point processes with T = 730 and T = 3650 to replicate the timescale with

which we might analyse crime data over, namely 2 and 10 years.

The parameter estimates of the EM-algorithm for the ETAS and the DCR models

for these simulations are shown in Tables 3.1 and 3.2. Table 3.1 shows that for

the simulations of the ETAS model, the EM-algorithm estimates the true µ and α

values with high accuracy, with the ω parameter tending to be overestimated for

the simulations with T = 730 and therefore less data, with the true ω level being

more accurately estimated for the simulations with T = 3650. Similarly Table

3.2 shows that for the simulations of the DCR model, we can accurately estimate

the true µ and ᾱ levels, with ω̄ tending to be overestimated, particularly for the

simulations T = 730 with less data, albeit they seem to not be as overestimated

as the ω parameter was in the ETAS simulations. The results in Tables 3.1 and

3.2 also show that when we use the ETAS EM-algorithm to estimate parameters

for the DCR simulations, and the DCR EM-algorithm to estimate parameters for

the ETAS simulations, in both cases quite accurate estimations are generated for

the background rate µ, and for the number of events which are triggered by prior

events.
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Table 3.1: 1000 ETAS simulations with parameters µ = 0.1, α = 0.2, ω = 0.2

Model Fitted Horizon Parameter Mean Est. Value (s.d)

ETAS

µ 0.1037(0.0173)

730 α 0.1677(0.1070)

ω 0.5094(1.1896)

µ 0.1023(0.0082)

3650 α 0.1836(0.0537)

ω 0.2632(0.1541)

DCR

µ 0.1034(0.0172)

730 ᾱ 0.1712(0.1036)

ω̄ 0.6867(0.8039)

µ 0.1037(0.0080)

3650 ᾱ 0.1719(0.0501)

ω̄ 0.5887(0.3694)

Table 3.2: 1000 DCR simulations with parameters µ = 0.1, ᾱ = 0.2, ω̄ = 0.2

Model Fitted Horizon Parameter Mean Est. Value (s.d)

ETAS

µ 0.1083(0.0181)

730 α 0.1312(0.1099)

ω 0.3971(2.4177)

µ 0.1045(0.0107)

3650 α 0.1632(0.0748)

ω 0.1195(0.0739)

DCR

µ 0.1051(0.0181)

730 ᾱ 0.1565(0.1137)

ω̄ 0.3479(0.4065)

µ 0.1026(0.0095)

3650 ᾱ 0.1790(0.0651)

ω̄ 0.2432(0.1136)
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Figure 3.2: Histogram of predictions of the EM algorithm for the ETAS model for
1000 simulated realisations of the Hawkes process with ETAS triggering function
and parameters µ = 0.1, α = 0.2, ω = 0.2, for T = 730 (top) and T = 3650
(bottom). The predictions for µ are on the left, α in the middle, and ω on the
right. 42 simulations resulted in ω predictions above 2 for T = 730, and 1 above 2
for T = 3650, which have been omitted from the histogram.
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Figure 3.3: Histogram of predictions of the EM algorithm for the DCR model
for 1000 simulated realisations of the Hawkes process with the DCR triggering
function and parameters µ = 0.1, α̂ = 0.2, ω̂ = 0.3, for T = 730 (top) and
T = 3650 (bottom). The predictions for µ are on the left, ᾱ in the middle, and ω̄
on the right. 14 simulations resulted in ω̄ predictions above 2 for T = 730, which
have been omitted from the histogram.

Histograms of the estimated parameters are shown in Figures 3.2 for the simulated
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ETAS process with µ = 0.1, α = 0.2, ω = 0.2, and in Figure 3.3 for the simulated

DCR process with µ = 0.1, ᾱ = 0.2, ω̄ = 0.3. It is clear from these histograms

that as the length of the simulations increases and therefore more data is gen-

erated, the estimations of the parameters become more accurate. For the ETAS

simulations, there are a small number of the simulations for which a far larger

estimate of ω is observed than the true value of ω from which the simulations

were generated from. These large ω values tend to be generated when a small

number of events take place extremely close to one another, and the algorithm

detects that one of the events trigegred the other with high certainty, resulting in

a high ω estimate, and often also a low estimate of α, where the algorithm detects

that only the small number of events which happen extremely soon after another

have been triggered. As we increase the horizon from T = 730 to T = 3650 fewer

of these very large ω values are detected by the EM-algorithm.

For the DCR simulations, there are far fewer large ω values estimated. From the

longer simulations, none of the 1000 simulations result in ω̄ estimations above 2.

Although the parameter estimates for ω̄ when estimating parameters for a DCR

point process tend to be larger than when estimating ω for an ETAS process on

the same data (the equation for ω̄ in (3.1.3) has a factor of 2 compared to the

equation for ω in (2.2.5)), we are less likely to observe very large ω̄ values because

by construction the DCR function is 0 at t = 0, and so an event which happens

very close to another is likely to be assumed to be a background event, rather

than triggered by the previous event.

3.3.2 Detecting Self-Excitation

We ran simulations to investigate how easily point processes can be identified as

having a triggering effect or otherwise. We generated 1000 homogeneous Poisson

point processes with µ = 0.1, and with horizons T = 730 and T = 3650, along

with 1000 simulations of self-exciting point processes with ETAS and DCR trig-

gering functions with different parameters. Table 3.3 displays the percentage of

the 1000 simulations for which a Kolmogorov-Smirnov test would reject that the

data has come from a homogeneous Poisson point process at a 95 % confidence

interval. To make the test more realistic, for each simulation we estimated the
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Table 3.3: Results of tests on 1000 simulations of homogeneous Poisson point
processes with rate λ = 0.1 - how often a Kolmogorov-Smirnov test will reject that
the waiting times are exponentially distributed at a 95% confidence interval, and
likelihood-ratio tests showing how often the null hypothesis of the point process
being a Poisson point process is rejected in favour of it being from a point process
with an ETAS or DCR point process.

Horizon
Poisson rejected Like. Test - Poisson Like. Test - Poisson

by K-S rejected for ETAS rejected for DCR
730 1.0% 1.8% 2.0%
3650 0.2% 2.1% 1.8%

constant rate λ from the number of points generated, rather than the known

ground-truth rate from which the simulations were generated. The rejection rate

of the residuals being exponentially distributed for the Kolmogorov-Smirnov test

would be closer to 5% if we used the true λ parameter that was used to generate

the process. We can see that when a Poisson point process has been generated,

the hypothesis that the data is generated via a Poisson point process is rarely

rejected by the Kolmogorov-Smirnov test. The percentage for which a likelihood-

ratio test would reject a homogeneous Poisson process in favour of the ETAS or

DCR models are also displayed, and shows that this test rarely rejects the hy-

pothesis that the Poisson point process generates the data in favour of the ETAS

or DCR self-exciting point processes.

Table 3.4 uses data simulated from an ETAS process. The first column of per-

centages shows how often the Kolmogorov-Smirnov rejects that the data has been

generated from a homogeneous Poisson point process. We can see this test gener-

ally rejects the data comes from a homogeneous Poisson point process, with the

exception being when we have T = 730 and ω = 0.2. This shows that the biggest

problem this test has with correctly rejecting that data which has been generated

from a self-exciting point process could have come from a homogeneous Poisson

point process is when there is a smaller amount of data, and when the triggering

effect happens over a longer period, i.e. when ω is small. The second column

of percentages shows the amount that the likelihood-ratio test correctly rejects

a homogeneous Poisson point process in favour of the ETAS model, with like-

lihoods generated from the estimations of λ for the homogeneous Poisson point
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Table 3.4: Results of tests on 1000 simulations of the ETAS triggering function
with different parameters - how often a Kolmogorov-Smirnov test will reject that
the waiting times are exponentially distributed at a 95% confidence interval, and
likelihood-ratio tests showing how often the null hypothesis of the point process
being a Poisson point process is rejected in favour of it being from a point process
with an ETAS or DCR point process.

α ω T
Poisson rejected Like. Test - Poisson Like. Test - Poisson

by K-S rejected for ETAS rejected for DCR
0.2 0.2 730 8.1% 30.0% 31.0%
0.2 0.2 3650 63.3% 94.2% 91.4%
0.2 5 730 83.1% 99.3% 47.6%
0.2 5 3650 100.0% 100.0% 62.3%
0.4 0.2 730 52.8% 86.3% 85.5%
0.4 0.2 3650 100.0% 100.0% 100.0%
0.4 5 730 100.0% 100.0% 77.3%
0.4 5 3650 100.0% 100.0% 93.7%

Table 3.5: Results of tests on 1000 simulations of the DCR triggering function
with different parameters - how often a Kolmogorov-Smirnov test will reject that
the waiting times are exponentially distributed at a 95% confidence interval, and
likelihood-ratio tests showing how often the null hypothesis of the point process
being a Poisson point process is rejected in favour of it being from a point process
with an ETAS or DCR point process.

ᾱ ω̄ T
Poisson rejected Like. Test - Poisson Like. Test - Poisson

by K-S rejected for ETAS rejected for DCR
0.2 0.2 730 2.0% 10.8% 15.4%
0.2 0.2 3650 9.4% 55.6% 67.9%
0.2 5 730 76.7% 96.1% 63.0%
0.2 5 3650 100.0% 100.0% 84.3%
0.4 0.2 730 7.3% 48.9% 59.6%
0.4 0.2 3650 53.0% 99.8% 99.9%
0.4 5 730 99.8% 100.0% 90.3%
0.4 5 3650 100.0% 100.0% 99.9%
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process by the number of points in the simulation, and from the EM-algorithms

estimation of the parameters for the ETAS model. This test correctly identifies

the data comes from an ETAS process with high accuracy, with the exception

being for the tests with α = 0.2, ω = 0.2, T = 730, i.e. when there are fewer

triggered points in the simulation, and when they happen over a longer period.

The third column of percentages shows how often the likelihood-ratio test rejects

the data has come from a homogeneous Poisson point process in favour of it being

generated by a DCR triggering functon (the wrong model). The DCR model is

particularly favoured by this test over a homogeneous Poisson point process when

there is more triggered data (α = 0.4 and T = 3650), and when the triggering

effect is over a longer time period (ω = 0.2).

Table 3.5 shows the same tests done with data generated from a DCR process with

different parameters. We can see in the first column of percentages that the data

being generated from a homogeneous Poisson point process is only consistently

rejected when ω̄ is larger, i.e. when there is a more pronounced peak in the

triggering intensity soon after an initial event. In the third column of percentages

we see how often a likelihood-ratio test rejects a homogeneous Poisson point

process correctly in favour of the data coming from a DCR process. This happens

most consistently when we have a greater amount of triggered data (T = 3650 and

α = 0.2) and when the triggering function has its greatest effect over a shorter

period of time (ω̄ = 5). In the second column we can see that the likelihood-ratio

test consistently rejects a homogeneous Poisson point process in favour of a ETAS

triggering function for this data, particularly when ω̄ is high.

Table 3.6 shows average parameters recovered by the EM-algorithm for 1000

simulations of a self-exciting point process with the ETAS triggering function

for varying parameter, and Table 3.7 shows results from data with the DCR

triggering function with varying parameters. We can see for the ETAS triggering

function that as the sample size becomes bigger for larger T the estimates for

the parameters by the EM-algorithm become more accurate. We can also see the

ω parameter is sometimes greatly overestimated, particularly for small sample

size T = 730 and for small ω and α. This is likely because there are fewer

points which have been triggered in these simulations, resulting in the algorithm

only detecting a small number of events have been triggered close to a previous
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Table 3.6: Results of the ETAS EM-algorithm on 1000 simulations of the Hawkes
process with ETAS triggering function with different parameters, showing the av-
erage parameter estimations.

T µ
Mean est

α
Mean est

ω
Mean Est

µ (s.d) α (s.d) ω (s.d)
730 0.1 0.1037(0.0173) 0.2 0.1677(0.1070) 0.2 0.5094(1.1896)
3650 0.1 0.1023(0.0082) 0.2 0.1836(0.0537) 0.2 0.2632(0.1541)
730 0.1 0.0996(0.0128) 0.2 0.2031(0.0587) 5 5.6439(3.6454)
3650 0.1 0.1001(0.0054) 0.2 0.1999(0.0242) 5 5.0471(0.8695)
730 0.1 0.1089(0.0217) 0.4 0.3403(0.1177) 0.2 0.3372(0.4441)
3650 0.1 0.1029(0.0096) 0.4 0.3823(0.0526) 0.2 0.2248(0.0477)
730 0.1 0.1002(0.0113) 0.4 0.3956(0.0603) 5 5.1916(1.1082)
3650 0.1 0.1003(0.0056) 0.4 0.3980(0.0285) 5 5.0393(0.4852)

Table 3.7: Results of the ETAS EM-algorithm on 1000 simulations of the Hawkes
process with DCR triggering function with different parameters, showing the av-
erage parameter estimations.

T µ
Mean est

ᾱ
Mean est

ω̄
Mean Est

µ (s.d) ᾱ (s.d) ω̄ (s.d)
730 0.1 0.1051(0.0181) 0.2 0.1565(0.1137) 0.2 0.3479(0.4065)
3650 0.1 0.1026(0.0095) 0.2 0.1790(0.0651) 0.2 0.2432(0.1136)
730 0.1 0.1045(0.0175) 0.2 0.1622(0.0991) 5 3.1582(2.7199)
3650 0.1 0.1024(0.0088) 0.2 0.1805(0.0595) 5 4.1470(1.9463)
730 0.1 0.1128(0.0253) 0.4 0.3092(0.1319) 0.2 0.2737(0.1474)
3650 0.1 0.1055(0.0115) 0.4 0.3651(0.0640) 0.2 0.2221(0.0377)
730 0.1 0.1051(0.0204) 0.4 0.3631(0.1141) 5 4.5046(1.7315)
3650 0.1 0.1001(0.0063) 0.4 0.3976(0.0323) 5 4.9919(0.4484)



Chapter 3 31

Table 3.8: Results on 1000 simulations of the ETAS triggering function with
different parameter values showing which model would be preferred based on lowest
AIC value. The first two rows show homogeneous Poisson point processes.

T µ α ω
Preferred model by AIC
Poisson ETAS DCR

730 0.1 0 0 93.1% 3.3% 3.6%
3650 0.1 0 0 92.7% 3.2% 4.1%
730 0.1 0.2 0.2 50.4% 19.2% 30.4%
3650 0.1 0.2 0.2 2.5% 64.3% 33.2%
730 0.1 0.2 5 0.3% 86.2% 13.5%
3650 0.1 0.2 5 0% 97.8% 2.2%
730 0.1 0.4 0.2 6.2% 56.4% 37.4%
3650 0.1 0.4 0.2 0% 89.8% 10.2%
730 0.1 0.4 5 0% 91.8% 8.2%
3650 0.1 0.4 5 0% 99.8% 0.2%

event, and thereby overestimating ω, and also underestimating α. Similarly for

the DCR triggering function the EM-algorithm predictions of these parameters

become more accurate as the sample sizes become bigger, with the α parameter

being more likely to be underestimated when there is less data, and ω̄ tending to

be overestimated for ω̄ = 0.2, and underestimated when ω̄ = 5.

We can see in Tables 3.8 and 3.9 that as the sample sizes get larger, the AIC

values tend to be a more accurate barometer of which of the 3 competing models

(Homogeneous Poisson point process, self-exciting point process with ETAS trig-

gering function, self-exciting point process with DCR triggering function) have

produced the point process. Figure 3.4 shows a QQ-plot of an example simulation

of both the waiting times and the residuals, showing a clear deviance away from

the exponential distribution for the waiting times of a self-excited point process,

indicating that it is indeed not from a homogeneous Poisson point process. Fig-

ure 3.5 shows an example of the graph (Ui+1, Ui), where Ui+1 = 1 − e−(si+1−si),

with the apparent randomness indicating there is no autocorrelation between

successive points.
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Table 3.9: Results on 1000 simulations of the DCR triggering function with
different parameter values showing which model would be preferred based on lowest
AIC value.

T µ ᾱ ω̄
Preferred model by AIC
Poisson ETAS DCR

730 0.1 0.2 0.2 71.5% 5.9% 22.6%
3650 0.1 0.2 0.2 18.2% 14.7% 67.1%
730 0.1 0.2 5 1.5% 47.7% 50.8%
3650 0.1 0.2 5 0% 21.3% 78.7%
730 0.1 0.4 0.2 26.7% 11.5% 61.8%
3650 0.1 0.4 0.2 0% 9.6% 90.4%
730 0.1 0.4 5 0% 17.5% 82.5%
3650 0.1 0.4 5 0% 0.5% 99.5%
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Figure 3.4: On the left is a QQ-plot of the waiting times of an ETAS process
generated with parameters µ = 0.1, α = 0.4, ω = 0.2, T = 3650, and on the right
is a QQ-plot of the residuals against the exponential distribution.
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Figure 3.5: An example of the graph (Ui+1, Ui), where Ui+1 = 1− e−(si+1−si) for
an ETAS process with µ = 0.1, α = 0.4, ω = 0.2, T = 3650.
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3.4 Summary

In this Chapter we have shown that for the amount of crime data we plan to

make use of, it is feasible to calibrate and compare models from this class. We

have shown that the method for detecting parameters for the new DCR function

is generally reliable, and that we can consistently identify when point process

data has a level of self-excitation.
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Results on Real Data

4.1 Real Crime Data

The City of Chicago has a publicly available dataset consisting of reported crimes

in Chicago [4]. The police have split the city in 275 ‘beats’ as shown in Figure

4.1, with a number of beat officers assigned to each beat. We concentrate on

burglaries committed in Chicago in the period up until the end of 2015. The

aim is to fit self-exciting point processes to these models and successfully predict

the occurrence and location of future burglaries. Figure 4.2 shows the number

of recorded burglaries which took place in the 10 years between the beginning of

2006 and the end of 2015 which happened in each individual beat. Figure 4.3

displays a choropleth which indicates the number of burglaries in these 10 years

which occurred in each beat according to their geographical location. There were

221,725 burglaries which were recorded as taking place between 2006 and 2015,

and we can see that some beats appear to be at higher risk of burglary than

others.

We fit temporal Hawkes processes with both the ETAS triggering function and

the DCR triggering function to the burglary events which happen in each beat

in the period before the end of 2015. As the recorded times are often just a best

estimate of when a crime was committed, and often recorded to happen exactly

on the hour, we add a random noise element U ∼ Unif([0, 1/24]) to each time,

34
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Figure 4.1: Map showing the 275 police beats in the city of Chicago.
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Number of Burglaries per Beat 2006−2015
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Figure 4.2: Histogram showing the number of burglaries committed in each beat
between the beginning of 2006 and the end of 2015.
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Figure 4.3: A choropleth showing the numbers of burglaries that were committed
per beat between 2006 and 2015.
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where the time is recorded in days. We fit each model to each beat three times,

using the burglary data for the preceding 2 years, 5 years, and 10 years leading

up to the end of 2015. Histograms of the µ, α and ω parameters found when

fitting the ETAS model are shown in Figure 4.4, and the µ, ᾱ and ω̄ for the DCR

model are shown in Figure 4.5.

As we can see from the histograms in Figure 4.4 and Figure 4.5, when we model

burglary events as a temporal point process in each beat, using only data going

back two years, both the ETAS and DCR models tend to detect less of a triggering

effect in the data than when we model using data over a longer term. The results

in Table 4.1 show that as we use a greater amount of data, the Kolmogorov-

Smirnov test rejects with greater regularity that the data comes from a Poisson

point process, and the likelihood-ratio test rejects that the data is from a Poisson

point process in favour of being from one of the two fitted models.

In Table 4.2 we see that while in terms of AIC a simple Poisson point process is

preferred for the processes observed in the most beats, as we use more data, the

ETAS model is increasingly shown to be the best fit in terms of AIC. In terms of

making predictions, the trade-off comes between using enough data where we can

reliably detect the underlying triggering effect, and not using data which could

potentially be outdated and negatively affect how well we can predict future

crimes. Figure 4.6 shows the QQ-plot for the waiting times (t1, t2− t1, t3− t2, . . . )
against an exponential distribution for a sample beat, along with QQ-plots of the

waiting times of the residual sequence for the fitted ETAS and DCR processes to

the data. The QQ-plot clearly shows that there are more large waiting times than

we would expect if the data from this beat came from a homogeneous Poisson

point process. When we fit the ETAS and DCR point processes to this data this

problem is largely resolved, with similar results being seen in the QQ-plots of

the data from other beats. Figure 4.7 shows plots of (Ui+1, Ui), where Ui+1 =

1− e−(si+1−si) for fitted ETAS and DCR processes on the same beat. We observe

a seemingly unstructured spread of the points which we would expect to see if

there was no autocorrelation between the waiting time of the residuals.
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Figure 4.4: Histograms for the µ, α and ω found for each beat when fitting the
ETAS model using data for 2 years (top), 5 years (middle) and 10 years (bottom)
prior to the end of 2015. 32 of the beats give an ω value over 2 for the data going
back 2 years, 17 beats for data going back 5 years, and 15 beats for the data going
back 10 years.
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Figure 4.5: Histograms for the µ, ᾱ and ω̄ found for each beat when fitting the
DCR model using data for 2 years (top), 5 years (middle) and 10 years (bottom)
prior to the end of 2015. 14 of the beats give an ω̄ value over 2 for the data going
back 2 years, 2 beats for data going back 5 years, and for none of the beats for the
data going back 10 years.
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Table 4.1: Results on burglary data separated into 269 beats over different time
periods up until the end of 2015 - how often a Kolmogorov-Smirnov test will
reject that the waiting times in the beats are exponentially distributed at a 95%
confidence interval, and likelihood-ratio tests showing how often the null hypothesis
of the point process being a Poisson point process is rejected in favour of it being
from a point process with an ETAS or DCR point process.

Horizon
Poisson rejected Like. Test - Poisson Like. Test - Poisson

by K-S rejected for ETAS rejected for DCR

730 3.3% 31.2% 24.2%

1826 41.6% 88.5% 83.6%

3652 79.2% 98.5% 95.9%

Table 4.2: Results on the burglary data for 269 beats, indicating which model
would be preferred based on lowest AIC value.

T
Preferred model by AIC

Poisson ETAS DCR

730 49.8% 31.6% 18.6%

1826 4.5% 78.4% 17.1%

3652 0.4% 95.2% 4.5%
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Figure 4.6: On the left is a QQ-plot of the waiting times of the point process of
a randomly selected beat, in the middle is a QQ-plot of the residuals for the same
beat after the ETAS model is fitted to it, and on the right is a QQ-plot of the
residuals after the DCR model is fitted.
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Figure 4.7: On the left is the graph (Ui+1, Ui), where Ui+1 = 1− e−(si+1−si) for
the ETAS process fitted to a randomly selected beat, and on the right is this graph
after the DCR model has been fitted to this beat.

To look at the predictive performance of the competing models, starting from

the beginning of 2016, after fitting both of the models to each beat, we order

the beats in terms of the value of the predicted intensity for each beat using the

events which have happened up until that point. We then look at the proportion

of overall crimes over the next hour that were correctly ‘predicted’ by the model

at each point of the ranking. For example, using the top 1% of beats (3 beats)

in terms of intensity, we record the proportion of the recorded crime in Chicago

occurs in these beats over the next hour. We then recalculate the predicted

intensity an hour later for each beat and rank the beats again, and look at how

well we have predicted the next hours’ crime, and so on. After doing this over

a period of time we can create a graph as seen in previous papers, e.g. [47],[48],

which is analogous to a ROC curve, where we see how many of the total crimes we

can predict in relation to how susceptible we have rated each location as being

to a future crime. In practical terms, this means if law enforcement only had

the resources to police a certain proportion of the city, we will see how well our

model would allocate the limited resources to locations where crime is going to

take place in the future (making the assumption that having law enforcement

resources where crime is going to take place will be productive in either stopping

the crime taking place, or apprehending the perpetrators).

We make predictions hourly for the first 3 months of 2016. We look at the

proportion of crime which takes place in the top 1% of beats (3 beats) we rank
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each hour, top 10% (27 beats), and top 20%. Along with those, we also calculate

the ‘area under the curve’(AUC) which is commonly calculated for ROC curves,

where the higher the value, the more successfully the model has predicted future

events (this is bounded by 0 and 1). The prediction results are shown in Table 4.3,

with an example of the ‘ROC curves’ shown in Figure 4.8 for the beats using data

from the last 5 years for the ETAS and the DCR models, and for a homoegeneous

Poisson point process using data for the preceding 2 years. We can see from

Table 4.3 that the ETAS and DCR models show the best prediction results when

using data from the previous 5 years, with generally the ETAS models predicting

slightly better than their DCR counterparts. If you are modelling each beat as

a homogeneous Poisson point process, the predictions are more successful while

using more recent data (data from the previous month), with these predictions

being slightly worse than both the ETAS and the DCR models. We can see also

that the area under the curve statistic in the last column of this table shows using

less data for the Poisson process gives a worse overall predictive performance, as

there are many beats where very few events have taken place over the previous

month. Overall the area under the curve statistic does not tell us a great deal

about the predictions, as in a practical situation there is far more importance

in predicting burglary in the few highest risk areas, as opposed to predicting

accurately in beats which are given lower priority.
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Table 4.3: Predictive results for burglary using different models and different
amounts of data to calibrate the models parameters. The percentage of burglaries
which are predicted by the top 1%, 10% and 20% of beats by intensity every hour
over the first 3 months of 2016 is shown, along with the total area under the curve.

Model Data Top 1% Top 10% Top 20% AUC

ETAS 10 years 3.68% 22.47% 38.54% 0.6447

ETAS 5 years 3.61% 23.00% 38.60% 0.6456

ETAS 2 years 3.84% 22.10% 37.44% 0.6430

DCR 10 years 3.18% 22.37% 38.40% 0.6410

DCR 5 years 3.45% 22.66% 37.54% 0.6425

DCR 2 years 3.45% 22.07% 36.85% 0.6416

Poisson 2 years 3.38% 21.07% 35.98% 0.6370

Poisson 1 year 3.05% 20.87% 36.08% 0.6350

Poisson 1 month 3.15% 22.23% 37.47% 0.6240
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Figure 4.8: ROC like curves showing number of crimes captured if beats targeted
every hour according to their intensity with each model, ETAS model in blue, DCR
model in red, and a Poisson point process in black.

4.2 Results for Grids

In order to further look at how successfully we can predict the location of future

events, we split Chicago into 1km by 1km grids, as shown in Figure 4.9, 710 of

which cover the city of Chicago. As we have split Chicago into smaller areas than
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the beats, on average we have less data for each separate 1km x 1km grid. Using

the threshold that we require ten events to have occurred in a grid in order to fit

a point process to the data, going back 10 years from the beginning of 2016 we

find that 575 of the grids have had 10 or more reported burglaries in that time

period.

Figure 4.9: Map showing Chicago separated into 1km x 1km grids, 710 of which
fall within the boundaries of Chicago.

In an identical way to before, we fit a temporal point process to each grid us-

ing historical data, and rank the grids hourly accordingly. For the grids with

insufficient data to fit a model to, we rank at random below the 575 grids. The
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corresponding ‘ROC curves’ are shown in Figure 4.10, and the predictions in

Table 4.4.
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Figure 4.10: ROC like curves showing number of crimes captured if 1km x 1km
grids are targeted every hour according to their intensity with each model, with
the ETAS model in blue, DCR model in red, and a Poisson point process in black.

Table 4.4: Predictive results for burglary using different models for 1km by 1km
grids. The percentage of burglaries which are predicted by the top 1%(7 grids),
10%(71 grids) and 20%(142 grids) of 1km by 1km by intensity every hour over the
first 3 months of 2016 is shown, along with the total area under the curve.

Model Top 1% Top 10% Top 20% AUC

ETAS 5.96% 33.96% 53.18% 0.7686

DCR 5.67% 33.90% 52.02% 0.7653

Poisson(1 year) 6.06% 32.70% 51.19% 0.7615

Poisson(1 month) 5.73% 31.58% 48.67% 0.7207
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2014 2015 2016

Figure 4.11: The location of the grid with the greatest number of reported
burglaries over the 10 years prior to 2016, along with a map displaying location of
this grid [6] and a dotplot showing the timing of reported burglaries in 2014 and
2015. Map data ©2020 Google.
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Figure 4.12: Location of events that occurred in 2014 and 2015 in the 1km by
1km grid with the highest burglary levels.

We can see from Table 4.4 and Figure 4.10 that the ETAS model appears to be the

most successful at predicting which 1km x 1km grid burglaries will occur in, with

the DCR model close behind. Both these self-exciting models are more successful

at predicting future crime than a homogeneous Poisson point process.

Figure 4.11 shows the location of the 1km x 1km which has the most recorded

burglaries in 2014 and 2015 in Chicago, and a dotplot indicating the timing of

each recorded event. In Figure 4.12 we can see that even within the grid with the

highest burglary rate in Chicago, the incidents do not appear to be distributed

evenly across the area. Refining the grids further to 200m x 200m grids (the

length of a typical block in Chicago), we find we can increase the success with

which we predict future events of burglary even further. There is a trade off to

be made - while refining the grid means we can identify the location of crime at

a more local level, it also means we have less data for each grid when attempting
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to fit a temporal point process. The corresponding ROC curves are shown in

Figure 4.13, and predictive results shown in Table 4.5. We can see that again

the ETAS model slightly outperforms the DCR model, while both outperform

the homogeneous Poisson point process. Both models consistently outperform a

homogeneous Poisson point process fitted to each 200m x 200m grid.
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Figure 4.13: ROC like curves showing number of crimes captured if 200m x 200m
grids are targeted every hour according to their intensity with each model, with
the ETAS model in blue, DCR model in red, and a Poisson point process in black.

Table 4.5: Predictive results for burglary using different models for 200m by
200m grids. The percentage of burglaries which are predicted by the top 1%(156
grids), 5%(779 grids), 10%(1559 grids) and 20%(3117 grids) of 200m by 200m by
intensity every hour over the first 3 months of 2016 is shown, along with the total
area under the curve.

Model Top 1% Top 5% Top 10% Top 20% AUC

ETAS 8.28% 23.06% 35.92% 56.30% 0.7642

DCR 8.08% 22.23% 35.22% 55.93% 0.7635

Poisson(1 year) 7.39% 20.94% 33.83% 50.96% 0.7168

Poisson(1 month) 5.80% 19.32% 22.73% 36.81% 0.7007
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4.3 Spatio-Temporal Models

Spatio-temporal point processes [58] are an extension to the temporal point pro-

cesses seen previously, where spatial coordinates are taken into account. These

models have been used previously in crime modelling, most notably in modelling

gun-related crime in Chicago [47], and burglary within Los Angeles [48]. The

conditional intensity functions for such models are analogous to those for the

temporal point process. Given a point process with times ti and associated loca-

tions (xi, yi), the conditional intensity function of an unmarked spatial-temporal

point process can be defined as

λ∗(x, y, t) = lim
∆x,∆y,∆t→0

E(N(x+ ∆x, y + ∆y, t+ ∆t)−N(x, y, t)|Ht)

∆x∆y∆t
. (4.3.1)

Given a crime data set with times ti and locations (xi, yi), building on the strictly

temporal process shown in (2.0.3) a spatial-temporal point process can be defined

with the intensity function

λ(x, y, t) = µ(x, y) +
∑
t>ti

g(t− ti)f(x− xi, y − yi). (4.3.2)

If we use the ETAS function to define the exponential decay of the triggering

function in time, and we assume f to be Gaussian in space, we have the spatio-

temporal triggering function

g(t)f(x, y) = αωe−ωt · 1

2πσ2
e−(x2+y2)/2σ2

. (4.3.3)

Following similar logic to that in Section 2.1, the expectation step for such a

spatio-temporal triggering function would be

p
(k+1)
ii =

µ(k)

µ(k) +
∑i−1

j=1 g(ti − tj)f(xi − xj, yi − yj)
, (4.3.4)

p
(k+1)
ij =

g(ti − tj;α(k), ω(k))

µ(k) +
∑i−1

j=1 g(ti − tj)f(xi − xj, yi − yj)
, (4.3.5)
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and the maximisation step

µ(k+1) =

∑n
i=1 p

(k+1)
ii

T · A
, (4.3.6)

α(k+1) =

∑n
i=1

∑i−1
j=1 p

(k+1)
ij

n
, (4.3.7)

ω(k+1) =

∑n
i=1

∑i−1
j=1 p

(k+1)
ij∑n

i=1

∑i−1
j=1 p

(k+1)
ij (ti − tj)

(4.3.8)

σ2(k+1) =

∑n
i=1

∑i−1
j=1 pij((xi − xj)2 + (yi − yj)2)∑n
i=1

∑i−1
j=1 2pij(ti − tj)

, (4.3.9)

where A is the area of the background window.

If we are to model a spatial-temporal process which is Gaussian in space and has

the DCR model for time, i.e.

g(t)f(x, y) = ᾱω̄2te−ω̄t · 1

2πσ2
e−(x2+y2)/2σ2

, (4.3.10)

the steps in the EM-algorithm are the same, with the exception that (4.3.9)

changes to

ω̄(k+1) =

∑n
i=1

∑i−1
j=1 2p

(k+1)
ij∑n

i=1

∑i−1
j=1 p

(k+1)
i,j (ti − tj)

. (4.3.11)

4.3.1 Simulating Spatio-Temporal Point Processes

We can simulate a spatial-temporal point process of the type shown in model

(4.3.2) by following an algorithm proposed by Zhuang, Ogata and Vere-Jones [72].

The algorithm works by simulating the events generated by the background rate,

the so-called first generation. We then simulate the events which are ‘triggered’

by each event in the first generation, and then simulate the events generated by

this generation of events, until the process terminates. The algorithm can be

described as follows:

1. Generate the background events according to the background intensity µ(x, y),

and record these events from the first generation as belonging to G(0).
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2. Set j = 0.

3. For each event (ti, xi, yi) in generationG(j) we simulate itsN (i) offspring, O
(j)
i =

{(t(i)m , x(i)
m , y

(i)
m )|m = 1, . . . , N (i)}, where N (i) is a Poisson random variable with

mean equal to the expected number of events an event triggers, t
(i)
m is generated

from the probability distribution g(t − ti), and x
(i)
m , y

(i)
m are generated from the

probability distribution f(x− xi, y − yi).

4. Set G(j+1) =
⋃
i∈G(j) O

(j)
i .

5. IfG(j+1) is not empty, let j = j+1 and go to step 3. Else return
⋃j
k=0G

(k).

Using this algorithm, we simulate 10 spatial-temporal point processes of the form

(4.3.3) over an area resembling the city of Chicago, with parameters α = 0.3,

ω = 0.5, σ = 0.1, constant background rate µ = 0.02, over time period T =

[0, 365]. We then use the aforementioned EM-algorithm on these simulations to

attempt to recover the model parameters, the results of which are displayed in

Table 4.6.

Table 4.6: Average parameters found by the EM-algorithm for 10 simulated
spatial-temporal point processes.

Parameter True Value Est. Value

µ 0.02 0.0202

α 0.3 0.2913

ω 0.5 0.5116

σ 0.1 0.0990

When assessing the fit of a spatial-temporal point process to data, as well as look-

ing at standard measurements such as AIC, or looking at the predictive accuracy

of the model, we can also look at the locations with which the model fits [59].

One way of doing this visually is by inspecting a residual map, where the residual

in a certain region responds to the difference between the expected number of

events which would be observed in this region over a certain time period, and the

actual number of events which take place. For a point process fitted over time
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[0, T ], the residual R over a grid cell [x1, x2]× [y1, y2] is

R = N([0, T ]× [x1, x2]× [y1, y2])−
T∫

0

y2∫
y1

x2∫
x1

λ(x, y, t) dx dy dt, (4.3.12)

where N is a counting process which gives the number of events observed in the

cell over the time window, and the integrated intensity giving the expected num-

ber of events which would be seen under the fitted model. It has been observed

that creating residual plots based on equally sized grid cells can be problematic

[15]. In many cases there may be many grid cells which have a very low expected

number of events under the model, and a single event happening in one cell re-

sults in a large residual compared to neighbouring cells. In such a case a visual

inspection is not useful in terms of assessing how well the model fits the data.

Attempting to rectify this problem by increasing the size of the grid cells can

lead to another problem, whereby areas within a large grid cell which underfit

and overfit cancel each other out, and we cannot identify locations where a model

may be poorly fitted [15].

4.3.2 Voronoi Residual Analysis

A suggested solution to this problem is to partition the plane into a Voronoi

diagram [15], whereby the spatial region is split into Voronoi cells, with each cell

containing one event, and being a convex polygon where all locations within are

closer to the event within the cell than any other event. For an event (xi, yi), the

associated Voronoi cell Ci can be defined as

Ci = {(x, y) | d((x, y), (xi, yi)) ≤ d((x, y), (xj, yj)) ∀i 6= j}, (4.3.13)

where d gives the Euclidean distance between two points [53]. The Voronoi dia-

gram produced by one of the previously generated spatial point processes on an

area resembling Chicago is shown in Figure 4.14.
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Figure 4.14: Displayed on the left are the locations of events for a simulated
point process on a Chicago shaped area, and on the right is the corresponding
Voronoi diagram generated by the events.

We can evaluate Voronoi residuals Ri
vor for each Voronoi cell i [15], where

Ri
vor = 1−

T∫
0

∫ ∫
(x,y)∈Ci

λ(x, y, t) dx dy dt. (4.3.14)

By construction, each cell has exactly one event which has taken place within

it over the time period. We can numerically integrate the intensity function

over the time window within each cell to evaluate the Voronoi residuals. For a

homogeneous Poisson point process, the expected area of a typical Voronoi cell is

equal to the reciprocal of the intensity of the process, and the area of a Voronoi cell

is approximately gamma distributed [15]. It has been shown that these properties

still approximately hold in the inhomogeneous case [8]. The second term in

(4.3.14) can be approximated by a two-parameter gamma distribution with shape

3.569 and rate 3.569 [68], and so the approximate distribution of the Voronoi

residuals Ri
vor is given by

Ri
vor ∼ 1− Γ(3.569, 3.569). (4.3.15)

We can then plot the Voronoi residuals on a map, scaling the residuals by
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Φ−1{F (Ri
vor)}, where F is the distribution function of 1−Γ(3.569, 3.569), and Φ−1

is the inverse cumulative distribution function. The resultant Voronoi residual

map for a realisation of the previous simulation is shown in Figure 4.15, with a

histogram of the residuals being shown in Figure 4.16. The residual map shows a

seemingly random spread of the residuals, which we would expect as our simulated

point process had a constant background rate, while the histogram shows that the

residuals are indeed well estimated by the previously shown distribution.

0

1

Figure 4.15: A Voronoi residual map on the simulated point process on the city
of Chicago.
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Figure 4.16: Histogram of the Voronoi residuals for the simulated point process,
with the 1− Γ(3.569, 3.569) distribution plotted in red.

We may also test the residuals using the Probability Integral Transform (PIT).

Here we assess the distribution of the values of the residuals under the cumulative

distribution function of the proposed model [15]. If the residuals do indeed come

from the proposed model, then a histogram of the PIT values should be standard

uniform [15]. A plot of the PIT values for a realisation of the simulation is shown

in Figure 4.17, along with 95% confidence intervals for the height of the histogram.

We can see for the height of this histogram broadly fall within the 95% confidence

interval, indicating that the model is a reasonable fit for the data.
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Figure 4.17: Histogram of the PIT values for simulated point process, with a
95% confidence interval for the heights of the histogram shown as a red dotted
line.

4.4 Spatio-Temporal Point Process on Chicago

Data

We fit spatio-temporal point processes of the form (4.3.3) and (4.3.10) to the

burglary data in Chicago. In (4.12) we see the location of events which happened

in the 1km x 1km grid with the highest burglary rate in (4.11). We can see how

localised the incidents of burglary are, and why modelling the point process as

a spatial-temporal process may be advantageous; modelling burglary as separate

temporal processes in each grid didn’t take into account events which happened

in nearby grids, which likely will increase the likelihood of further burglaries in

neighbouring grids. Note that the exact location of the burglary is partially

redacted in the data so it lies within the same block as the actual incident. We

account for this by adding noise in the x or y direction, depending on the cardinal
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direction of the street the data is recorded. The average block in Chicago is

around 200 by 100 metres [2]. For North-South streets we add a random number

U ∼ Unif([−0.1, 0.1]) to the y-coordinate, and for East-West streets we add a

random number U ∼ Unif([−0.05, 0.05]) to the x-coordinate. An illustration of

how this affects the spatial information is given in Figure 4.18.

Figure 4.18: Displayed on the left are the locations of recorded burglary in 2016
in the 1km by 1km grid with the highest burglary rate for the original data. On the
right are the resultant locations after adding noise to account for the fact that the
original data is redacted so as only to lie in the same block as the actual incident.

There are also drawbacks to modelling the entire city as a spatial-temporal point

process. As the computational complexity of the EM-algorithm is O(N2), it

means it is not computationally feasible to use data going back as far as we could

when we modelled many separate temporal point processes. We therefore only

use burglary data from the year of 2015, of which there were 13044 recorded

incidents.

Fitting the spatial-temporal process with ETAS triggering function in time and

Gaussian in space shown in (4.3.3) to burglary data from the entire year of 2015,

we find the parameters µ = 0.0160, α = 0.7321, ω = 0.0513, σ2 = 0.0678.

The DCR triggering function in time and Gaussian in space shown in (4.3.10)

generated parameters µ = 0.0165, ᾱ = 0.7232, ω̄ = 0.1122, σ2 = 0.0847. The

prediction results generated by each of the models are shown in Table 4.7.
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Table 4.7: Predictive results for the spatial-temporal model with ETAS and DCR
triggering function in time. The percentage of burglaries which are predicted by
the top 1%(156 grids), 5%(779 grids), 10%(1559 grids) and 20%(3117 grids) of
200m by 200m by intensity every hour over the first 3 months of 2016 is shown,
along with the total area under the curve.

Model Top 1% Top 5% Top 10% Top 20% AUC

ETAS 7.78% 21.34% 34.23% 51.66% 0.7473

DCR 6.46% 19.95% 32.24% 49.47% 0.7361

We can see that the parameters suggest that there is a far higher triggering rate of

burglary when we fit the spatio-temporal point processes to the data, as opposed

to when we fit the purely temporal models to grid cells previously. In terms

of prediction, the ETAS triggering function which is Gaussian in space predicts

slightly better than the DCR triggering function, however neither model gives as

good a prediction as the purely temporal models fitted previously.

When we look at the Voronoi residuals generated for the ETAS spatio-temporal

model fitted to the data, we can see why these models may not be ideally suited to

the data. Figure 4.20 shows the Voronoi residual map generated for the burglary

data by the ETAS spatio-temporal model, and Figure 4.21 shows the histogram

of the Voronoi residuals.
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Figure 4.19: Voronoi diagram for the burglary events in 2015.

In Figure 4.20 we can see that there are large areas of Chicago coloured blue

for which the model is overpredicting the burglary rate. We can also see in the

histogram of the Voronoi residuals in Figure 4.21 that the residuals don’t appear

to match the theoretical distribution they should if a suitable model has been

fitted. This story remains the same for the Voronoi residuals when fitting the

DCR model with constant background rate in Figures 4.22 and 4.23.
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Figure 4.20: Voronoi residual map for the burglary events in 2015 for the fitted
ETAS point process.
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Figure 4.21: Histogram of the Voronoi residuals for the spatio-temporal ETAS
model fitted to the burglary events of 2015, with the 1−Γ(3.569, 3.569) distribution
plotted in red.

We can also see when we zoom in to the Voronoi map for the ETAS model in

the region with the highest burglary rate in Figure 4.24, that large sections of

this also appear to be underpredicted, indicated in yellow. Even within this grid

with high levels of burglary, there are areas which appear to be overpredicted.

These residual maps give strong evidence that a spatio-temporal point process

with constant background rate is not suitable to model burglary in Chicago. This

backs up what out intuition might be, that the background rate of burglary is not

the same across the entire city. In the residual map in Figure 4.20, we can identify

large regions of Chicago for which the model overpredicts burglary; the North-

West region, where O’Hare International Airport is situated; a region running

south down Chicago and across in a South-Westerly direction in the centre of the

map, which coincides with the Chicago River; and in the South of the city, which

is largely an industrial area. We obviously would not anticipate seeing high rates

of burglary in any of these areas, and so it is not surprising that it is not suitable
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to model the burglary rate in the same way as we would residential regions.

0

1

Figure 4.22: Voronoi residuals for the DCR model fitted to burglary events in
2015.
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Figure 4.23: Histogram of the Voronoi residuals for the spatio-temporal DCR
model fitted to the burglary events of 2015, with the 1−Γ(3.569, 3.569) distribution
plotted in red.
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Figure 4.24: Voronoi residual map zoomed in, with the red grid showing the area
of Chicago with the highest burglary rate.

The PIT histograms for the ETAS model in Figure 4.25 and for the DCR model in

Figure 4.26 confirm this, showing for both models that there are far more Voronoi

cells that have underpredicted the level of burglary than we would expect if the

models were a good fit for the data. Along with that, we also see there are slightly

more cells which have overpredicted the level of burglary than we would expect if

the model was well fitted. Modelling burglary in Chicago as a self-exciting point

process with a homogeneous background rate is not an appropriate choice; as large

areas of Chicago have very little or no burglary, when we estimate the background

rate it is ‘spreading’ the background rate µ over these areas, overpredicting the

rate of burglary in those locations, and simultaneously underpredicting the rate of

burglary in areas where high numbers of offences have taken place. We propose

that this leads to many crimes which have taken place in areas with a high

crime rate being modelled as triggered events with high probability instead of

possible background events in areas with high crime rates, artificially inflating

the triggering parameters we find with the data.
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Figure 4.25: Histogram of the PIT values for the ETAS model fitted to burglary
in 2015, with a 95% confidence interval for the heights of the histogram shown as
a red dotted line.
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Figure 4.26: Histogram of the PIT values for the DCR model fitted to burglary
in 2015, with a 95% confidence interval for the heights of the histogram shown as
a red dotted line.

In Figure 4.27 we show the prediction rates with the ETAS and DCR models

with homogeneous background rate compared with a Poisson point process in

each 200m x 200m grid, where we only take into account the raw amount of

burglary in each grid over the last year. We also compare the previous temporal

ETAS models made for each grid in Section 4.1 with the spatio-temporal ETAS

model with homogeneous background rate.

We can see that the ETAS spatio-temporal model outperforms the DCR spatio-

temporal model, which doesn’t outperform the Poisson point process. However

we see that when compared with the temporal ETAS models that the spatio-

temporal model fails to predict burglary as successfully.
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Figure 4.27: On the left is the prediction success of the spatio-temporal models
with homogeneous background rate for the ETAS and DCR models, compared to
a simple Poisson point process modelled in each grid over one year. On the right is
the spatial-temporal ETAS model compared with the solely temporal model, with
error bars showing one standard error for each method.

4.5 Summary

In this chapter we have introduced a new potential triggering function for self-

exciting point process models. This DCR model outperformed the Poisson point

process models that were fitted in discrete 200m x 200m grids, but was not as suc-

cessful as the ETAS triggering function. However such a triggering function might

still be useful in other contexts where there may be a delay before there is the

largest self-excitation caused by a previous event. We then fitted spatio-temporal

self-exciting point processes with homogeneous background rate to burglary in

Chicago, but observed that this may not be a suitable method to model crime

occurring within a city. We require a different method to successfully model the

inhomogeneity we see in crime rates across the differing geometry of a city.



Chapter 5

Non-Parametric Self Exciting

Point Processes

5.0.1 Background Rate of Crime

In the previous chapter we observed that modelling crime as being uniformly

randomly distributed in space may not be a suitable approach for burglary within

Chicago. That the background rate of crime may not be homogeneous in space

is something which is both intuitive (we would expect there to be a higher risk of

burglary in a densely populated residential area than in a sparsely populated area,

for example), and something which matches the findings of historical criminology

research [62].

In 2008 a method was proposed which used a non-parametric approach to estimate

the triggering effect in the context of earthquake sequences, which made no prior

assumptions on the form of the triggering function [45]. In this chapter we use

this methodology in order to first incorporate a non-constant background rate

to our model, and then to estimate the triggering effect in a non-parametric

fashion.

69
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5.1 Model Independent Stochastic Declustering

(MISD)

Marsan and Lengliné proposed a method which could estimate Hawkes processes

for earthquakes without making any prior parametric assumptions [45]. The

method, named Model Independent Stochastic Declustering (MISD), is similar

to the previous iterative EM-algorithm, but differs in using a probability weighted

histogram when estimating the triggering function and background rate. Essen-

tially this method simply involves discretising the background observation window

into cells and/or discretising the triggering components, and building probability

weighted histograms in the maximisation step based on the sum of the probabil-

ities from the expectation step which fall in each discretised region.

5.1.1 EM-algorithm for Non-Constant Background Rate

While the background rate can take quite general forms [70], Veen and Schoenberg

divided the spatial observation window into κ spatial grid cells of area A, with

constant background intensity µm, m ∈ {1, . . . , κ} [70]. We can see that the

background intensity for a grid m can be defined as

µm =
expected number of background events in grid m

(length of time window) · (area of grid)
. (5.1.1)

We can use this to incorporate a non-constant background rate into our modelling

of a spatio-temporal point process. To model a self-exciting point process of the

form (4.3.2) with triggering function (4.3.3) and non-constant background rates

evaluated in grid cells, the expectation step is

p
(k+1)
ii =

µ
(k)
{m|i∈m}

µ
(k)
{m|i∈m} +

∑i−1
j=1 g(ti − tj)f(xi − xj, yi − yj)

, (5.1.2)

p
(k+1)
ij =

g(ti − tj;α(k), ω(k))

µ
(k)
{m|i∈m} +

∑i−1
j=1 g(ti − tj)f(xi − xj, yi − yj)

, (5.1.3)
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and the maximisation step is

µ(k+1)
m =

∑n
i∈m p

(k+1)
ii

T · A
, (5.1.4)

α(k+1) =

∑n
i=1

∑i−1
j=1 p

(k+1)
ij

n
, (5.1.5)

ω(k+1) =

∑n
i=1

∑i−1
j=1 p

(k+1)
ij∑n

i=1

∑i−1
j=1 p

(k+1)
ij (ti − tj)

(5.1.6)

σ2(k+1) =

∑n
i=1

∑i−1
j=1 pij((xi − xj)2 + (yi − yj)2)∑n
i=1

∑i−1
j=1 2pij(ti − tj)

. (5.1.7)

5.1.2 Results on Simulated Data

As a proof of principle, we initially tested this algorithm on the spatial-temporal

point processes in section 4.3.1, where 10 simulations of the form (4.3.3) were

made with parameters α = 0.3, ω = 0.5, σ = 0.1, constant background rate

µ = 0.02, over time period T = [0, 365]. Note that the algorithm does not assume

that the background rate is constant. We attempted to recover the background

rate and model parameters while using different sizes of grid: 200m x 200m,

1km x 1km, and 2km x 2km. The average estimates for the parameters of the

triggering function for these 10 simulations is shown in Table 5.1 for the different

sizes of grid for the non-background rate.

Table 5.1: Average parameters found by the EM-algorithm with non-constant
background rate for 10 simulated spatial-temporal point processes with different
sizes of grid for the background rate.

Parameter True Value 200m grid 1km grid 2km grid

α 0.3 0.2551 0.2891 0.2950

ω 0.5 0.6252 0.5157 0.5022

σ 0.1 0.0939 0.0986 0.1000

We can see from Table 5.1 that when we select a smaller grid size to estimate the

non-constant background rate, the number of triggered events is underestimated

more than when we select a larger grid size. Problems with selecting too small



Chapter 5 72

a grid size are displayed in Table 5.2, where we see the average L2 error for the

estimated background rate over these simulations is far greater for grids of 200m

x 200m than 1km x 1km or 2km x 2km. Figure 5.1 illustrates an example of the

estimated background rates for one of the simulations with the different selected

grid sizes. We can see the 200m x 200m grids tend to overfit the data far more

than the larger grids. There is a trade off between not overfitting the background

rate, and ensuring the model picks up on events which occur on a very local

level. It should also be emphasised that the processes simulated had a constant

background rate, so it is not surprising that the model gives a better fit when we

use fewer parameters in the spatial background rate.

Table 5.2: Mean L2 error of the background rate for the 10 simulations com-
pared with the true constant background rate for the different sizes of grid for the
background rate.

Size of Grid Mean L2 error norm

200m 0.971

1km 0.040

2km 0.012

Figure 5.1: Example of the background rate found for one of the simulations
with constant background rate when modelled with background grids of 200m x
200m (left), 1km x 1km (middle), and 2km x 2km (right).
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Figure 5.2: Histograms of the PIT values for a simulated point process with
non-constant background rate when modelled with background grids of 200m x
200m (left), 1km x 1km (middle), and 2km x 2km (right), with a 95% confidence
interval for the heights of the histogram shown as a red dotted line. The known
target distribution is uniform.
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Figure 5.3: Voronoi residual maps for a simulated point process with constant
background rate when modelled with background grids of 200m x 200m (left), 1km
x 1km (middle), and 2km x 2km (right).

Figure 5.2 shows the histograms of the PIT values for a typical simulation with
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the different background grid sizes, and Figure 5.3 shows the associated Voronoi

residual map. These PIT histograms confirm that when an inappropriate grid

size is selected we do not observe the model fitting the process as we would

wish. An excess of Voronoi cells underpredict the number of events than we

would expect, and too few Voronoi cells overpredict the number of events than

we would expect.

5.1.3 Information Gain

One measure to assess how well the point process model we have fitted predicts

future crime is the expected information gain [18, 30]. The expected information

gain G is defined as

G =
1

N
log(

L1

L0

), (5.1.8)

where L1 is the likelihood of the model in question, L0 is the likelihood of some

baseline model, which is typically a homogeneous Poisson point process, and N is

the number of events which take place in the observation window. We can use this

quantity to compare the predictive performance of different models, with a higher

information gain being indicative of a superior model in terms of prediction.

5.1.4 Results on Real Data

We fit the model with a triggering function that is ETAS in time and Gaussian

in space with non-constant background rate to the burglary events in 2015 as

seen in Chapter 4. The parameters found for the data when fitting the non-

constant background rate with grids of 200m x 200m, 1km x 1km, and 2km x

2km are displayed in Table 5.3, along with the parameters found when a constant

background rate was used in Section 4.4. The background rate estimated for each

of these models is displayed in Figure 5.4.
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Table 5.3: Parameters estimated for the real data for different background grids,
along with the parameters found for a constant background rate in Section 4.4.

Parameter 200m grid 1km grid 2km grid Constant

α 0.051 0.2184 0.4441 0.7321

ω 0.015 0.0434 0.0437 0.0513

σ2 2.9× 10−5 0.006 0.0231 0.0678

Figure 5.4: Illustration of the estimated background rate found for the Chicago
burglary data from 2015 with non-constant background rate when modelled with
background grids of 200m x 200m (left), 1km x 1km (middle), and 2km x 2km
(right).

We can observe from the parameter values displayed in Table 5.3 that as we refine

the background rate into smaller grid cells, less of a triggering effect is detected

within the data. Similarly to the problem in Section 4.4 where events which

happened in areas with high crime rate were assumed to have been triggered

events with high probability when we modelled the background rate as being

constant across the whole of Chicago, when we model the background rate at too

local a level (with the 200m x 200m grid), events which may have been triggered

appear to be assumed to be background events by the algorithm. Along with

this, as we estimate the background rate on a more local rate, the estimate of σ2

also becomes smaller, with triggered events assumed to occur on a far more local

level as well.
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In Figure 5.5 PIT histograms for the models are displayed. We can see that

the pattern of residuals for the 200m x 200m grid is similar to that seen in the

simulated data in Figure 5.2 where the background rate was estimated with grid

cells which were too small. The other two models with larger grids display more

Voronoi cells which have been underpredicted than we would expect if our model

was a true reflection of the data.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Figure 5.5: Histograms of the PIT values for the Chicago data when modelled
with background grids of 200m x 200m (left), 1km x 1km (middle), and 2km x
2km (right), with a 95% confidence interval for the heights of the histogram shown
as a red dotted line.

Table 5.4: Predictive results for the spatial-temporal model with ETAS trigger-
ing function in time and Gaussian space with different non-constant background
measurements, along with the result for a constant background rate. The percent-
age of burglaries which are predicted by the top 1%(156 grids), 5%(779 grids),
10%(1559 grids) and 20%(3117 grids) of 200m by 200m by intensity every hour
over the first 3 months of 2016 is shown, along with the information gain for each
model. Note we cannot numerically calculate the information gain when using a
200m x 200m background rate.

Background Top 1% Top 5% Top 10% Top 20% Inf. Gain

200m grid 6.62% 19.78% 31.31% 50.13% -

1km grid 8.97% 22.56% 34.99% 52.32% 0.429

2km grid 8.88% 22.37% 34.63% 52.55% 0.433

Constant 7.78% 21.34% 34.23% 51.66% 0.363
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The predictive accuracy of the models are shown in Table 5.4. We can see that in

terms of predictive accuracy the best results are achieved when the background

rate is modelled at a 1km x 1km level, while the predictive performance dips when

the background is modelled with a 200m x 200m grid. Note that we cannot get

an accurate measurement of the information gain for this model as many of the

events occur at locations where numerically the model predicts λ(ti, xi, yi) = 0.

For the background rates measured with 1km x 1km and 2km x 2km we can see

that the predictive performance is greater in terms of burglaries predicted by the

hourly ordering shown in the previous chapter, and in terms of information gain

when compared to the constant background rate.

5.2 Non-Parametric Triggering Function

In addition to estimating the background rate using non-parametric methods, we

can use Marsan and Lengliné’s [45] method to estimate the triggering function

without making any prior assumptions about the form it takes. We are going to

estimate a spatial-temporal point process that has the intensity function

λ(x, y, t) = µ(x, y) +
∑
t>ti

g(t− ti)f(x− xi, y − yi), (5.2.1)

where we will estimate the background intensity µ in the same non-parametric

way as previously, and estimate the triggering function while assuming the spatial

triggering function is isotropic, f(x, y) = f(x2 + y2), as in [27]. In this method

we will introduce a probability density function h(r) for the distance r between

two events, where we have f(r) = h(r)/(2πr), and we assume a.s. there are no

points at the origin [17].

We introduce discretisation parameters δt and δr, with A the set of pairs of events

such that uδt ≤ ti − tj ≤ (u + 1)δt, and B the set of pairs of events such that

vδr ≤
√

(xi − xj)2 + (yi − yj)2 ≤ (v+1)δr. To understand how we can construct

g and f in a non-parametric fashion, we can define the height of the triggering

function g in the weighted histogram in an analogous to way to how we defined
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the non-parametric background rate in (5.1.1), with

g(uδt, (u+ 1)δt) =
expected number of triggered events in (uδt, (u+ 1)δt)

(total number of events) · (δt)
,

(5.2.2)

and similarly the height of the probability density function h defined to be

h(vδr, (v + 1)δr) =
expected number of triggered events in (vδr, (v + 1)δr)

(expected total number of triggered events) · (δr)
.

(5.2.3)

We can use this to motivate the maximisation step for the EM-algorithm

µ(k+1)
m =

∑n
i∈m p

(k+1)
ii

T · A
, (5.2.4)

g(k+1)
u =

1

N × δt
∑
i,j∈A

p
(k+1)
ij , (5.2.5)

h(k+1)
v =

∑
i,j∈B p

(k+1)
ij

δr
∑N

1

∑i−1
j=1 p

(k+1)
ij

. (5.2.6)

As before, the expectation step is

p
(k+1)
ii =

µ
(k)
{m|i∈m}

µ
(k)
{m|i∈m} +

∑i−1
j=1 g(ti − tj)f(xi − xj, yi − yj)

, (5.2.7)

p
(k+1)
ij =

g(ti − tj;α(k), ω(k))

µ
(k)
{m|i∈m} +

∑i−1
j=1 g(ti − tj)f(xi − xj, yi − yj)

. (5.2.8)

5.2.1 Results on Simulated Data

Using the same simulated data as before, we tested the algorithm to find the trig-

gering effect in a non-parametric way. The average results over the 10 simulations

can be seen in Figure 5.6.
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Figure 5.6: Average results for the 10 simulations when the model is fitted using
weighted histograms with g on the left, and the probability density function h on
the right, with the true model parameters shown in red.

We can see that the model gives a reasonably good fit of the data, albeit the

nature of histograms results in not being able to capture the continuity of the

ground truth of the triggering effect. Drawbacks of this method are that we have

to arbitrarily select how to discretise t and r, along with having to be careful of the

estimates we make very close to a previous event, because for events very close to

the origin, f(r)→∞ as r → 0. There are also benefits to using this method over

the parametric methods we used previously. Along with the obvious advantage

of not making any assumptions of the form which the triggering function takes,

this method can also allow us to find information about the triggering effect at

a certain distance from previous event after a certain time period. For example,

if we wish to investigate whether there is a spike of crime a month after previous

crime, we are able to refine the histogram bins for this time period to see whether

this is the case.

5.2.2 Non-Parametric Results on Real Data

We fitted the non-parametric model on the burglary data from Chicago in 2015.

We chose 1km x 1km grids to estimate the background rate, and then chose to

develop the h(r) probability density function using bins every 100m away from
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the origin up to a distance of 500m. For the g(t) histogram, we selected bins

for the first 12 hours and next 12 hours to focus on the immediate aftermath

after a burglary where we suspect there might be an especially heightened risk

of a repeat event. We also selected bins which focused on the 48 hours which

occur every 7 days after the original event, with previous studies suggesting a

spike of burglary took place 7 days after the original burglary events for data in

Los Angeles [48]. We set a limit on the triggering effect of 60 days, meaning we

assumed after 60 days no further crime was triggered. The result for g and h can

be seen in Figure 5.7.
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Figure 5.7: Results for the burglary data from 2015 when the model is fitted
using weighted histograms with g on the left, and the probability density function
h on the right.

It is clear from Figure 5.7 that the greatest risk of a repeat burglary event occurs

in the 24 hours after the initial event. Thereafter there is still a risk of a repeat

event, albeit much reduced from the original aftermath. The branching ratio of

the events an initial event can be expected to trigger under this model is 0.328.

We also do not observe any noticeable spike around the 7 days after the initial

burglary event. The estimated probability density function h shows that the

greatest risk of a repeat event occurs in the 100 metre radius from the initial

event, with this risk reducing as you move further away from the initial event.

These histograms are compared with the findings for the parametric triggering

function found in Section 5.1.4 with the 1km x 1km non-parametric background
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rate in Figure 5.8. We can see the resulting f found for the Gaussian spatial

function found in Section 5.1.4 in Figure 5.9, and for the non-parametric spatial

f in Figure 5.10.
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Figure 5.8: Results for the burglary data from 2015 when the model is fitted
using weighted histograms with g on the left, and the probability density function
h on the right.
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Figure 5.9: Result for f in Chicago when estimated with a Gaussian function in
Section 5.1.4.
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Figure 5.10: Result for f in Chicago when estimated with the non-parametric
histograms. For r < 0.01 we have taken f(r) = h(r)/(2π · 0.01).

It is clear from Figure 5.8 that by finding the triggering function g in a non-

parametric way we detect a far higher risk of repeat events in the initial 24 hours

after an initial event as opposed to the parameters found with the ETAS function.

After this point the non-parametric and ETAS function behave in a similar way.

For h we can see that the non-parametric weighted histogram estimates a wider

reach for the triggering effect than the Gaussian spatial function detected. Note

in Figure 5.10 we took f(r) = h(r)/(2π · 0.01) when r < 0.01, as we did when

making estimates for the predictions to avoid the problem of f(r)→∞ as r → 0.

The prediction results for the non-parametric model are shown in Table 5.5.

Table 5.5: Predictive results for the non-parametric model, with the percentage of
burglaries which are predicted by the top 1%(156 grids), 5%(779 grids), 10%(1559
grids) and 20%(3117 grids) of 200m by 200m by intensity every hour over the first
3 months of 2016 shown, along with the information gain.

Top 1% Top 5% Top 10% Top 20% Inf. Gain

8.61% 22.37% 34.69% 52.98% 0.475

The results in terms of predictive performance in Table 5.5 are broadly in line

with those seen when the triggering function was made parametrically in Table

5.4, with a larger information gain for the non-parametric weighted histograms

being seen for the test events. This suggests the weighted histograms are fitting
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the burglary data better than the parametric triggering function, even if we do not

observe any great improvements in the predictions over the events tested.

One obvious issue when fitting the weighted histograms is how to select the bins

for g and h. We can see what happens when we fit the model as before, only

selecting the bins for h(r) to be every 50 metres instead of 100 metres in Figure

5.11.
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Figure 5.11: Result of the estimated triggering function when we make the
discretisation δr to be 50m instead of 100m. The histogram for h is shown on the
top, with the bottom two diagrams illustrating the resultant g.
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Figure 5.12: Histograms of the PIT values for the Chicago data when estimated
with the non-parametric model, with a 95% confidence interval for the heights of
the histogram shown as a red dotted line.

We can observe from Figure 5.11 that the spikes seen for h fall approximately

where we would expects streets to be in Chicago, i.e. where the events are

recorded as having occurred. Figure 5.12 shows the PIT histogram for this model,

which indicates that more Voronoi cells have been underpredicted than we would

expect if our model was a true reflection of the data. Prediction results for this

version of the model is shown in Table 5.6. We can see the information gain

for this model has increased, while the predictive performance remains relatively

similar. It should be noted that the predictions were made numerically by aver-

aging the estimated intensity in each 200m x 200m grid over 10 randomly selected

points within. Therefore while this version of the model may estimate the data

more accurately in terms of the exact points where an event will happen, this

isn’t necessarily reflected in the predictions which are made over 200m x 200m

grids. Refining the bins for h(r) to every 50 metres isn’t certain to result in

better predictions on this scale, even though it may model the data more accu-

rately in terms of the ‘information gain’ seen for the exact locations where events

occur.
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Table 5.6: Predictive results for the non-parametric model with h estimated
with smaller bins, with the percentage of burglaries which are predicted by the
top 1%(156 grids), 5%(779 grids), 10%(1559 grids) and 20%(3117 grids) of 200m
by 200m by intensity every hour over the first 3 months of 2016 shown, along with
the information gain.

Top 1% Top 5% Top 10% Top 20% Inf. Gain

8.71% 22.66% 34.59% 52.28% 0.527

5.3 Summary

In this chapter we have estimated the process of burglary events in Chicago in

a non-parametric way, first by using Model Independent Stochastic Declustering

to estimate the background rate of burglary, and then using this to estimate the

triggering effect itself. We have seen by doing this we can develop an effective

predictive model for where burglary is likely to occur, along with insight into

where and when future burglaries are likely to occur. Our developed model isn’t

without its drawbacks, with a certain arbitrariness of selecting how to model the

background and triggering rate involved. In terms of the background rate, there

are some regions which may require us to look even more locally than we did, and

others where burglary events are more sparse, and this is not required. Similarly

for the triggering function we do not have a fully automated way to select the

‘bins’ when estimating g and h.
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Models Using Kernel Density

Estimation

The models we utilised in the previous chapter using Model Independent Stochas-

tic Declustering allowed us to construct data-driven self-exciting point processes

without making assumptions about the form which they took. While there were

certain advantages to using these models, there were also drawbacks, including

the triggering function not being continuous, and the arbitrariness of how to

model the background rate and triggering effect. In this chapter we will seek to

address these issues by using kernel density estimation (KDE) to estimate the

background and triggering rate.

6.1 Mohler et al. model

The self-exciting point process proposed by Mohler et al. [48] to model residential

burglary took the form

λ(x, y, t|Ht) = ν(t)µ(x, y) +
∑
t>ti

g(x− xi, y − yi, t− ti), (6.1.1)

where Ht is the history of all events (xi, yi, ti) up to time t. We will compare

(6.1.1) with slightly altered versions of this model in order to show how such

86
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modifications could improve the predictive power when applied to real life point

processes. In our tests we use this Mohler model with a non-temporal background

rate, i.e.,

λ(x, y, t|Ht) = µ(x, y) +
∑
t>ti

g(x− xi, y − yi, t− ti). (6.1.2)

6.1.1 Kernel Density Estimation

Kernel density estimation provides a framework with which a probability density

function can be estimated non-parametrically while providing a continuous esti-

mate and without the dependence on the end points of bins which exist when

fitting histograms [67]. If we have n data points xi, the kernel density estimator

f̂(x) of the distribution x is drawn from can be defined as

f̂(x) =
1

n∆

n∑
i=1

K

(
x− xi

∆

)
, (6.1.3)

where K is a kernel function and ∆ is an associated bandwidth. A common

choice for K is the Gaussian kernel

K(x) =
1√
2π

exp

(
−x2

2

)
. (6.1.4)

An example of KDE implemented on simulated data is shown in Figure 6.1.

While KDE avoids the question of bin placement and the lack of continuity of

histograms, it provides other potential issues, namely in the selection of an ap-

propriate bandwidth. The right hand side of Figure 6.1 displays kernel density

estimations on simulated data for three different bandwidths, showing that if too

small a bandwidth is selected we can overfit the data, while if too large a band-

width is selected we can underfit the data. This data was obtained by sampling

from two normal distributions with differing means, thus the bimodality of this

data.
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Figure 6.1: On the left is a histogram for simulated data generated from known
distribution (black). On the right is kernel density estimations for this data pro-
duced when using different bandwidths with a Gaussian kernel. The crosses at the
bottom of each plot represent a simulated data point.

6.1.2 Mohler et al. Monte-Carlo Iterative Procedure

Mohler et al.’s model uses variable bandwidth KDE where the bandwidth around

each data point is selected according to nearest neighbour distances [48]. The

general idea behind this is that data points which occur in close proximity to other

data points should use a smaller bandwidth in the kernel density estimator, while

data points which exist in ‘isolation’ from other data points, i.e. outliers, should

be subject to a greater bandwidth in their contribution to the estimator.

We recall from Section 2.1 that the EM-algorithm views the point process as

an incomplete data problem, where we don’t know whether each data point is a

background event or a triggered event, but can calculate the associated probabil-

ities for each event [70]. The E-step of the EM-algorithm to find parameters for

point processes consists of building an n× n P -matrix, where n is the number of

events which have occurred, the entries pii represent the probability that event

i was a background event, and pij that it was caused by event j. For the above

model (6.1.2) these probabilities are given as

pii =
µ(xi, yi, ti)

λ(xi, yi, ti)
, (6.1.5)
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pij =
g(xi − xj, yi − yj, ti − tj)

λ(xi, yi, ti)
. (6.1.6)

Given an initial guess of the matrix P , we have N(N + 1)/2 probabilistic data

points {(xi, yi, ti, pii)}Ni=1 and {(xi − xj, yi − yj, ti − tj, pij)}i>j [48]. We use this

data to estimate µ and g in the so-called M-step, update our P -matrix using

these new estimates for µ and g, and continue to iterate between these two steps

until convergence.

The fact we have N(N + 1)/2 data points makes the use of KDE computation-

ally expensive. The procedure by Mohler et al. gets around this problem by

taking samples of background events {xbi , ybi}
Nb
i=1 and offspring/parent interpoint

distances {xoi , yoi , toi}No
i=1 from the P -matrix, with Nb + No = N , greatly reduc-

ing the number of data points with which to build our kernel density estimators

[48].

To describe this process in greater detail, let P (0) be the initial guess of the

P -matrix

P (0) =


p11 0 . . . 0

p21 p22 . . . 0
...

...
. . . 0

pN1 pN2 . . . pNN

 , (6.1.7)

where pij for i > j represents the probability that event i was triggered by

event j, and pii represents the probability that event i was a background event,

with
∑N

j=1 pij = 1. We then sample Nb background events and No triggered

events from the P -matrix, reducing our number of data points from N(N + 1)/2

to Nb + No = N . In effect, based on the probabilities in the P -matrix, we

‘randomly’ assign each event as either being a background event, or as being an

event triggered by a specific previous one (in reality we can not say with certainty

whether an event is a background event or has been triggered).

This works as follows: we take a single sample from each row of the P -matrix

according to the probabilities, i.e., for the k-th row we take a single sample which

with probability pkk will give {xk, yk} as a background event, with probability

pk1 will give {xk − x1, yk − y1, tk − t1} as an offspring/parent interpoint distance,

with probability pk2 will give {xk − x2, yk − y2, tk − t2} as an offspring/parent
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interpoint distance, and so on. We are left with a sample of background events

{xbi , ybi}
Nb
i=1, and a sample of offspring/parent interpoint distances {xoi , yoi , toi}No

i=1,

with Nb +No = N .

Variable bandwidth KDE is used on these samples in the following way. Firstly,

the data {xoi , yoi , toi}No
i=1 is scaled to have unit variance in each coordinate, and

based on this data the k’th nearest neighbour Di in three-dimensional Euclidean

distance is calculated from each data point i.

After transforming back to the original scale and letting σx, σy, σt be the sam-

ple standard deviation of each coordinate, the triggering function is estimated

as

g(x, y, t) =
1

N

No∑
i=1

1

σxσyσt(2π)(3/2)D3
iKi

× exp

(
−(x− xoi )2

2σ2
xD

2
i

− (y − yoi )2

2σ2
yD

2
i

− (t− toi )2

2σ2
tD

2
i

)
, (6.1.8)

which we will hereby refer to as the MM (Mohler Model). Ki is a normalisation

constant for each data point i

Ki =

∫ ∞
0

1

σt
√

2πDi

exp

(
−(t− toi )2

2σ2
tD

2
i

)
dt = 0.5

(
1 + erf

(
toi√

2Diσt

))
, (6.1.9)

which is required due to the fact that we ‘lose’ the density in the negative time

region. This normalisation doesn’t fully address the problem associated with

there being a jump discontinuity for the time element of the triggering function

due to the fact that events can’t trigger events to happen in the past - we will

look at a way of resolving this in future section 6.2.

It is found that for prediction purposes variable bandwidth KDE on the back-

ground µ is less accurate than fixed bandwidth KDE [48]. The background rate

is estimated with a two dimensional Gaussian kernel used on the samples of back-

ground events at each iteration, with the fixed bandwidth determined using k-fold

cross validation [66]. For k-fold cross validation, we randomly split the data into

k parts. For each part we build the estimator using the data in the other (k− 1)

parts, and then calculate the log-likelihood score of the observations not used to
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build the estimator. The likelihood score function can be given as

CV(h) = n−1

n∑
i=1

log f̂−i(Xi), (6.1.10)

where f̂−i represents the density built when omitting the fold containing Xi [66].

We seek the bandwidth h which maximises the value CV, and we locate this via

grid search.

We state the full algorithm used by Mohler as follows:

Mohler Algorithm

1. Set k = 0, and select the number of nearest neighbours we want to correspond

to the bandwidth of the spatial triggering kernel density estimation nntrig.

2. Make an initial guess Pk for the P matrix, with pij = 0 for j > i, and∑n
j=1 pij = 1 for all i. We may also wish to initiate the matrix with pij = 0 if

ti − tj, |xi − xj| or |yi − yj| is above a certain threshold.

3. Sample background events {xbi , ybi , tbi}
Nb
i=1 and offspring/parent interpoint dis-

tances {xoi , yoi , toi}No
i=1, based on the probabilities in each row of Pk from the P -

matrix, with Nb +No = N .

4. Using k-fold cross validation, find σbx and σby which maximise the log-likelihood

score for unseen data via grid search. The background rate is

µ(x, y) =
1

T

Nb∑
i=1

1

σbxσ
b
y2π

exp

(
−(x− xbi)2

2σbx
2 − (y − ybi )2

2σby
2

)
. (6.1.11)

5. Using the sampled triggered events (xoi , y
o
i , t

o
i ), we scale this data to have

unit variance in the x, y and t components. Based on this we calculate Di,trig,

the nntrigth nearest neighbour three-dimensional Euclidean distance to each data

point i. Then, transforming the data back to its original scale, and with σbx,

σby and σbt the standard deviations in the x, y and t directions, we calculate the
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triggering function as

g(x, y, t) =
1

N

No∑
i=1

1

σxσyσt(2π)(3/2)D3
iKi

× exp

(
−(x− xoi )2

2σ2
xD

2
i

− (y − yoi )2

2σ2
yD

2
i

− (t− toi )2

2σ2
tD

2
i

)
, (6.1.12)

where Ki is the normalisation constant we found previously.

6. With the new µ and g we update our P matrix Pk+1, and set k = k+ 1.

7. If k < itermax, go to step 3.

6.2 Mohler Model with Reflected Time

Rosser and Cheng [60] proposed an alteration to the Mohler model to address

the jump discontinuity at t = 0, namely reflecting the temporal component of the

triggering function about t = 0. An example of using a reflected kernel density

estimator is shown in Figure 6.2. As no density is ‘lost’ when doing this, the

normalisation constant is not needed, and the triggering function is estimated

as

g(x, y, t) =
1

N

No∑
i=1

1

σxσyσt(2π)(3/2)D3
i

exp

(
−(x− xoi )2

2σ2
xD

2
i

− (y − yoi )2

2σ2
yD

2
i

)
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
. (6.2.1)

The model in 6.2.1 will be referred to as the MMrt (Mohler Model with reflected

time).
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Figure 6.2: An example of KDE on a sample taken from an exponential distribu-
tion. The un-normalised result of kernel density estimation is shown in red. The
reflected kernel density estimator shown in blue gives a result closer to the true
distribution due to there being no values below 0.

6.3 Rosser and Cheng Isotopic Model

Rosser and Cheng also proposed a type of isotropic model as an alternative to

the Mohler model. Taking r =
√
x2 + y2, the proposed triggering function be-

comes

g(r, t) =
1

N

No∑
i=1

1

σt
√

2πKi

exp

(
−(r − roi )2

2σ2
r

)
×
(

exp

(
−(t− toi )2

2σ2
t

)
+ exp

(
−(−t− toi )2

2σ2
t

))
. (6.3.1)

The model in 6.3.1 will be referred to as the RCM (Rosser and Cheng Model).

As we don’t have r < 0, and we need to normalise the function across the whole
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plane, we have normalisation constant

Ki =

∫ π

−π

∫ ∞
0

exp

(
−(r − roi )2

2σ2
r

)
rdrdθ

= σrr
o
i

√
2π3

(
1 + erf

(
roi√
2σr

))
+ 2σ2

dπ exp

(
− r

o2
i

2σ2
d

)
. (6.3.2)

Note this is slightly different to the normalisation constant given by Rosser and

Cheng [60]. There is an inherent problem with this implementation of an isotropic

function. The kernel density estimator applies it’s kernel to the distance r at

which an event is said to have taken place at, and this is then applied across the

whole plane and normalised. However, if we look at the corresponding probability

distribution function of the resultant estimator, we see there is an inherent bias

where the expected distance at which the kernel will predict a future event to

occur at is greater than the sample it has been given. An example of this is shown

in Figure 6.3.

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

12

r

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

r

Figure 6.3: On the left is an example of the height of this isotropic function
applied to one data point against the distance r from the centre. On the right
is the corresponding probability density function for the distance r which we can
expect a triggered event to happen at. We can see that there is an inherent bias in
the estimator, where the expected value of the distribution is greater than that of
the sample event, which may cause problems in terms of predicting future events.
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6.4 Proposed New Isotropic Function

To address the potential problems in the isotropic function by Rosser and Cheng,

we propose developing such a function in a different way. Fox et al. [27] in-

corporated an isotropic triggering function by specifying a histogram density

estimator of the form h(r, t) = 2πrg(x, y, t), since
∫∞
−∞

∫∞
−∞ g(x, y, t) dx dy =∫∞

0
2πrg(r, t) dr = 1, where the triggering function is assumed to be isotropic,

i.e., g(x, y, t) = g(x2 + y2, t), which we implemented in the previous chapter in

Section 5.2. In a similar way we will use the kernel density estimation to approx-

imate the probability density function of the distance r at which events will be

expected to happen.

Analogously to the Mohler model, we scale the data {roi , toi}No
i=1 to have unit

variance in each coordinate, and based on this data the k’th nearest neighbour

Di in two-dimensional Euclidean distance is calculated from each data point i.

We find the normalisation constant

Ki =

∫ ∞
0

1

σrDi

√
2π

exp

(
−(r − roi )2

2σ2
rD

2
i

)
dr = 0.5

(
1 + erf

(
roi√

2σrDi

))
, (6.4.1)

so that the density of each kernel is 1. We then have the estimator of the proba-

bility distribution function ĥk

ĥk(r, t) =
1

N

No∑
i=1

1

σtσrD2
i 2πKi

(
exp

(
−(r − roi )2

2σ2
rD

2
i

))
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
. (6.4.2)

To find the corresponding value of the function ĝ(x, y, t), we have ĝ(x, y, t) =

ĥk(r, t)/(2πr) with r =
√
x2 + y2, so

ĝ(x, y, t) =
1

N

No∑
i=1

1

σtσrD2
i 4π

2rKi

(
exp

(
−(r − roi )2

2σ2
rD

2
i

))
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
. (6.4.3)
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The proposed isotropic model in (6.4.3) will be referred to as the PIM. An example

of the implementation of this estimator is shown in Figure 6.4. A potential

problem associated with this estimator is that, similarly to what we saw in Section

5.2.2, as the kernel density estimator is estimating the pdf for the distance at

which an event will occur from the origin, we will typically have ĥk(r, t) > 0

for r very close to 0, leading to ĝ(r, t) → ∞ at these points, which may lead to

potential problems if we make predictions based on point estimates. We attempt

to address these concerns by limiting the value the intensity can take very close

to the origin, by making the value of the function for distances within a certain

r of the origin, say 0.01, take the value of the function at r = 0.01, i.e.,

ĝ(x, y, t) =
1

N

No∑
i=1

1

0.04σtσrD2
i π

2Ki

(
exp

(
−(0.01− roi )2

2σ2
rD

2
i

))
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
, for r < 0.01.

(6.4.4)
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Figure 6.4: On the left is the estimated pdf ĥk applied to a single event. On the
right is the corresponding value of ĝ(r, t) for all r =

√
(x2 + y2) in the x-y plane,

found by ĝ(r, t) = ĥk(r, t)/(2πr). A potential problem when it comes to predicting
is that as ĥk > 0 for r ≈ 0, then as r approaches 0 we have ĝ(r, t)→∞.
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Figure 6.5: The top two figures display an example of the Mohler model in the
x-y direction applied to three data points, and the bottom two show the isotropic
model applied to the same data, with the locations of the events represented by
the crosses.

6.5 Model Based on Manhattan Distance

The road network in the city of Chicago is laid out on a grid plan (see Figure

6.6). This suggests that the distance between spatially located events may be

better measured using Manhattan distance rather than Euclidean distance.

With a small alteration to the algorithm we can also build a triggering func-

tion which uses the Manhattan distance, an approach which may give us better

accuracy when trying to predict future crimes.
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Figure 6.6: Example of the block structure of the road network in Chicago [5].
Map data ©2020 Google.

This is done in an almost identical way to the previous estimator. Using Man-

hattan distance d = |x|+ |y|, we have the estimator h̄k of the pdf

h̄k(d, t) =
1

N

No∑
i=1

1

σtσdD2
i 2πKi

(
exp

(
−(d− doi )2

2σ2
dD

2
i

))
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
. (6.5.1)

To find the corresponding value of the function ḡ(x, y, t), we have ḡ(x, y, t) =

h̄k(d, t)/4d, so

ḡ(x, y, t) =
1

N

No∑
i=1

1

σtσdD2
i 8πdKi

(
exp

(
−(d− doi )2

2σ2
dD

2
i

))
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
. (6.5.2)

This proposed model based on Manhattan distance will be referred to as the

PMDM. An example of the implementation of this function is shown in Figure

6.7. Again we will face the same potential issues when looking at point esti-

mates, namely that h̄k(d, t) > 0 for d very close to 0, and ḡ(d, t) → ∞ at these

points.
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Figure 6.7: An example of the Manhattan function in the x-y direction when
applied to three data points.

6.6 Model Based on Maximum Norm

In a similar way we also create a triggering function which just looks at the

maximum distance travelled in either the x or y direction, which may be useful

at detecting events which are triggered in parallel streets. It can be argued that

in a city defined on a grid structure our perception of the distance between two

points is dominated by the maximum of the two x-y distances. This model could

potentially flag streets which are of increased risk after an initial event. By taking

m = max(|x|, |y|), we have the estimator h̃k of the pdf

h̃k(m, t) =
1

N

No∑
i=1

1

σtσm2D2
i πKi

(
exp

(
−(m−mo

i )
2

2σ2
mD

2
i

))
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
. (6.6.1)
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To find the corresponding value of the function g̃(x, y, t), we have g̃(x, y, t) =

h̃k(m, t)/8m, so

g̃(x, y, t) =
1

N

No∑
i=1

1

σtσmD2
i 16πmKi

(
exp

(
−(m−mo

i )
2

2σ2
mD

2
i

))
×
(

exp

(
−(t− toi )2

2σ2
tD

2
i

)
+ exp

(
−(−t− toi )2

2σ2
tD

2
i

))
, (6.6.2)
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Figure 6.8: An example of the triggering function in the x-y direction when
applied to three data points when the distance is based on the maximum norm
m = max(|x|, |y|).

An example of the implementation of this function is shown in Figure 6.8.

6.7 Results on Simulated Data

We initially tested the previously described models on the spatial-temporal point

processes in section 4.3.1, where 10 simulations of the form (4.3.3) were made

with parameters α = 0.3, ω = 0.5, σ = 0.1, constant background rate µ = 0.02,

over time period T = [0, 365]. We fitted the Mohler model (MM) and the Mohler

model with reflected time (MMrt) while finding Di corresponding to the 15’th

nearest neighbour, and the isotropic model, Manhattan model, and the max norm

model with Di corresponding to the 50’th nearest neighbour as we are working
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in fewer dimensions. Note that for all the models apart from the MM, time was

reflected around t = 0.

In Figure 6.9 we show the estimated marginal in the t-direction,

gmarg(t) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y, t)dxdy, (6.7.1)

for the 10 simulations for the MM model, and the MMrt model, against the

true distribution the simulations are generated from. We can clearly see that

the estimates for these simulations are superior for the MMrt model where the

estimates have been reflected about t = 0.
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Figure 6.9: On the left is the estimated marginal gmarg(t) for the 10 simulations
for the MM model, and on the right is the estimated marginal for the MMrt model,
with the true distribution being shown in red.

Figure 6.10 displays the marginal for the probability distribution h for the r

component for both the estimates given by the Mohler model, and the isotropic

model. While both models give good estimates of the true distribution, we can

see the isotropic model slightly better approximates the true distribution the

simulated data was generated from. It should be noted that the simulated data

is isotropic in nature, and the Mohler model would be preferable if this was not

the case.
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Figure 6.10: Displayed on the left is the estimated probability distribution h(r)
generated by the Mohler model with reflected time for the 10 simulations, and on
the right is the estimated probability distribution for the isotropic model, with the
true distribution shown in red.

Table 6.1: Mean L2 error of the triggering parameters for the 10 simulations
compared with the true constant triggering rate for the different fitted models.

Model Mean L2 error norm

MM 1.1× 10−2

MMrt 6.8× 10−3

Isotropic 5.0× 10−3

Manhattan 1.0× 10−2

Max norm 1.0× 10−2

Table 6.1 displays the average L2 error for the triggering function estimated by

each model compared with the true triggering function the data was generated

from. We can see that reflecting time around t = 0 gives a large prediction

improvement for MMrt as opposed to the MM. We can see that the isotropic

outperforms the MMrt for this data. While this is not surprising as the data is

indeed isotropic, it does indicate that this model could lead to improved prediction

if indeed the true triggering function is isotropic. We can also observe how the

Manhattan and max norm model don’t estimate the triggering function as well

as the MMrt or isotropic model, which is to be expected as they assume this

function is not isotropic.
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6.8 Results on Real Data

We fitted each of the four aforementioned models (MMrt, Isotropic, Manhattan

and Maximum Norm models) to the 13044 burglary events observed in Chicago

in 2015. All the models were fitted with a fixed background bandwidth, which is

recommended in [48] due to the spatial features of neighbourhoods. We selected

σbx = σby = 0.15, which was found to give good predictive results. All distances

displayed are in km unless otherwise stated.

6.8.1 Results with Mohler Model

We fitted the MMrt to the burglary data selecting Di relating to the 15’th nearest

neighbour, as recommended in [48]. We limited triggering effects to only occur

within 90 days of the original event and within one kilometre to reduce compu-

tational cost. The result found for the burglary events in 2015 is displayed in

Figure 6.11.
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Figure 6.11: On the left are the positions of the assumed triggered events for
the MMrt on the 100’th iteration of the EM-algorithm in the x-y direction, in
reference to the event assumed to have triggered it at the origin of the graph, with
Di selected relating to the 15’th nearest neighbour. On the right is the estimated
marginal in the t-direction.

We can observe in Figure 6.11 that the algorithm assesses that the triggered

events almost exclusive occur in the North-South direction of the original crime.

The t-marginal shows that the triggering effect is greatest in the days following

an events, with this effect dropping off gradually as the time after the initial event

grows to 90 days.

A histogram of the PIT values for this fit is shown in Figure 6.12. It displays

that the model underpredicts the number of events in far more Voronoi cells than

would be expected if the model was a good fit, suggesting that the model is not

fitting the burglary data accurately.
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Figure 6.12: Histogram for the PIT values for the MMrt when fitted to the
Chicago data with Di selected relating to the 15’th nearest neighbour, with 95%
confidence intervals shown as a red dotted line.

We then fitted the MMrt to the burglary data selecting Di relating to the 30’th

nearest neighbour, to investigate whether this resulted in a better fit to the data.

Figure 6.13 shows that the algorithm assesses that triggered events occur predom-

inantly in the North-South direction of the original crime, but not exclusively as

when Di was selected according to the 15’th nearest neighbour. The t-marginal

shows that the triggering effect is greatest in the days following an events, with

this effect dropping off quite rapidly over the first few weeks after a burglary.

A histogram of the PIT values for this fit is shown in Figure 6.14. It displays

that the model underpredicts the number of events in slightly more Voronoi cells

than would be expected, although provides a better fit than when Di was selected

according to the 15’th nearest neighbour. We also note that selectingDi according

to the 30’th nearest neighbour as opposed to the 15’th reduces the branching ratio

from 0.346 to 0.054.
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Figure 6.13: On the left are the positions of the assumed triggered events for
the MMrt on the 100’th iteration of the EM-algorithm in the x-y direction, in
reference to the event assumed to have triggered it at the origin of the graph, with
Di selected relating to the 30’th nearest neighbour. On the right is the estimated
marginal in the t-direction.
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Figure 6.14: Histogram for the PIT values for the MMrt when fitted to the
Chicago data with Di selected relating to the 30’th nearest neighbour, with 95%
confidence intervals shown as a red dotted line.

6.8.2 Results with Isotropic Model

We fitted the isotropic model to the burglary data selecting Di relating to the

50’th nearest neighbour to reflect the reduced dimensionality of g. Again we

limited triggering effects to only occur within 90 days of the original event and

within one kilometre to reduce computational cost. The result found for the

burglary events in 2015 is displayed in Figure 6.15.
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Figure 6.15: On the left are the positions of the assumed triggered events for the
isotropic model on the 100’th iteration of the EM-algorithm in the x-y direction,
in reference to the event assumed to have triggered it at the origin of the graph.
On the right is the estimated marginal in the t-direction.

We can see that the algorithm assesses that a number of events are triggered in

close proximity to the original event in both the North-South and East-West direc-

tions, with further events triggered in parallel streets to the original event. This

is further demonstrated by the probability distribution of ĥk in the r-direction

displayed in Figure 6.16, which shows that along with the high risk of a triggered

event occurring very near the original event, there is a clear increase in the risk

of a triggered event occurring around r = 0.1 from the original event.

A histogram of the PIT values for this model is shown in Figure 6.17. It displays

that the model underpredicts the number of events in slightly more Voronoi cells

than would be expected, but less so than the MMrt.



Chapter 6 109

0.00 0.05 0.10 0.15 0.20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

r

Figure 6.16: This is the estimated probability distribution of ĥk in the r-
direction.
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Figure 6.17: Histogram for the PIT values for the isotropic model when fitted
to the Chicago data, with 95% confidence intervals shown as a red dotted line.
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6.8.3 Results with Manhattan Model

We fitted the Manhattan model to the burglary data selecting Di relating to the

50’th nearest neighbour. The triggering effects were limited to only occur within

90 days of the original event and within one kilometre of an original event. The

result found for the burglary events in 2015 is displayed in Figure 6.18.
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Figure 6.18: On the left are the positions of the assumed triggered events for the
Manhattan model on the 100’th iteration of the EM-algorithm in the x-y direction,
in reference to the event assumed to have triggered it at the origin of the graph.
On the right is the estimated marginal in the t-direction.

As shown by the events assumed to be triggered in the 100’th iteration of the

algorithm in Figure 6.18, along with the probability distribution in the d-direction

in Figure 6.19, most events which are triggered according to the results occur

within 100 metres of the original burglary. The t-marginal on the right of Figure

6.18 shows the greatest risk of a triggered event occurs in the days following a

burglary, with this risk dropping fairly gradually up to 90 days following the

original event.

Figure 6.20 displays a histogram of the PIT values for the Manhattan model.

Similarly to the isotropic model, it displays that the model underpredicts the
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number of events in slightly more Voronoi cells than would be expected.
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Figure 6.19: This is the estimated probability distribution of h̄k in the d-
direction.
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Figure 6.20: Histogram for the PIT values for the Manhattan model when fitted
to the Chicago data, with 95% confidence intervals shown as a red dotted line.
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6.8.4 Results with Maximum Norm Model

Finally we fitted the model using the maximum norm to the burglary data se-

lecting Di relating to the 50’th nearest neighbour. The assumed triggered events

and marginal in the t-direction are displayed in Figure 6.21.
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Figure 6.21: On the left are the positions of the assumed triggered events for
the maximum norm model on the 100’th iteration of the EM-algorithm in the x-y
direction, in reference to the event assumed to have triggered it at the origin of
the graph. On the right is the estimated marginal in the t-direction.

We can see that when fitting this model, events are triggered in close proximity

to the original event, along with in the streets immediately parallel to the original

event. The t-marginal displays the greatest risk of a triggered event occurs in the

immediate aftermath of an event, with the risk showing an increase at several

periods after the original event, notably including around after 7 days of the

original event, in line with previous findings on crime data [48]. The marginal

in the m-direction in Figure 6.22 further demonstrates the increased risk of a

triggered occurring at around m = 0.1 from the initial event.

Figure 6.23 displays a histogram of the PIT values for the maximum norm model.

Again it displays that the model underpredicts the number of events in slightly
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more Voronoi cells than would be expected as with the isotropic and Manhattan

models.
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Figure 6.22: This is the estimated probability distribution of h̃k in the m-
direction.
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Figure 6.23: Histogram for the PIT values for the maximum norm model when
fitted to the Chicago data, with 95% confidence intervals shown as a red dotted
line.

6.9 Prediction Results

In this section we will summarise the predictive accuracy of the four models we

have fitted, along with the predictive results of a reference model, namely using

kernel density estimation on the previous year’s events while assuming there is no

triggering effect. In Figure 6.24 we display the difference in the assumed triggered

events for each model for comparison, and in Figure 6.25 we show the different

t-marginals estimated for the four different models. These two figures combine

the images in Figures 6.13, 6.15, 6.18, and 6.21.
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Figure 6.24: These figures display the locations of events which are assumed to
be triggered on the 100’th iteration of the EM-algorithm, combining the images in
Figures 6.13, 6.15, 6.18, and 6.21. On the top left is the assumed triggered events
for the MMrt with Di selected according to the 30’th nearest neighbour, the top
right for the Isotropic model, the bottom right for the model using Manhattan
distance, and the bottom right for the model using the maximum norm.
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Figure 6.25: Displayed are the estimated marginals in the t-direction for the
MMrt with Di selected according to the 30’th nearest neighbour(top left), the
isotropic model(top right), the model using Manhattan distance(bottom left), and
the model using the maximum norm(bottom right). These marginals for each
model were previously displayed in Figures 6.13, 6.15, 6.18, and 6.21.
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Table 6.2: Estimated branching ratio for the four models when fitted with bur-
glary data from 2015.

Model Branching Ratio

MMrt (15’th nn) 0.346

MMrt (30’th nn) 0.054

Isotropic 0.104

Manhattan 0.089

Max norm 0.131

Table 6.2 displays the branching ratio, or how many events an event can be

expected to trigger, of each model. Under the MMrt with Di selected accorded

to the 15’th nearest neighbour, far more of a triggering effect is detected than with

the other models. When we take into account the histogram of the PIT values for

this model, along with the fact that the algorithm converged to predicting all the

triggered events occur exclusively in the North-South directions from the original

event, this leads us to speculate that this model is overfitting some particular

element of the data, rather than giving us a good fit for prediction purposes.

Table 6.3 displays the prediction results for the four different models, with results

for the MMrt when fitted with both selections of Di, along with the case where we

have fitted the model as a spatial Poisson process with no self-excitation, using

kernel density estimation for the previous 12 months data, i.e. estimating the

intensity as

λ(x, y) =
1

n

n∑
i=1

1

2πσ2T
exp

(
−(x− xi)2 − (y − yi)2

2σ2

)
, (6.9.1)

with σ = 0.15. The predictions are done hourly based on the ranking of the

200 x 200m grids by intensity as before, where the intensity is estimated by

taking the average of 10 randomly selected points within each grid cell. We

can see in terms of information gain the MMrt with Di selected with the 15’th

nearest neighbour outperforms the other models, but in terms of prediction is

outperformed by the the other 3 models and the MMrt with Di selected with

the 30’th nearest neighbour, along with simple kernel density estimation with no
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self-excitation. This further suggests the MMrt with Di selected with the 15’th

nearest neighbour is overfitting some element of the data, i.e. the model appears

to be learning the specific geometry of the North-South roads in Chicago, without

allowing us to predict future events accurately. The other three self-exciting point

process models we fitted and the MMrt with Di selected with the 30’th nearest

neighbour give superior prediction results to the simple KDE model, with the

model using the maximum norm providing slightly superior results to the other

models.

Table 6.3: Predictive results for the four models and the simple KDE model. The
percentage of burglaries which are predicted by the top 1%(156 grids), 5%(779
grids), 10%(1559 grids) and 20%(3117 grids) of 200m by 200m by intensity every
hour over the first 3 months of 2016 is shown, along with the information gain for
each model.

Model Top 1% Top 5% Top 10% Top 20% Inf. Gain

MMrt (15’th nn) 5.57% 18.46% 30.28% 50.53% 1.028

MMrt (30’th nn) 7.85% 22.06% 33.83% 53.11% 0.541

Isotropic 7.46% 22.27% 34.86% 54.54% 0.602

Manhattan 7.19% 21.67% 34.26% 53.45% 0.622

Maximum Norm 7.62% 22.56% 35.39% 54.64% 0.627

KDE 7.32% 20.58% 33.27% 53.38% 0.478

In Figure 6.26 we compare the prediction rates with MMrt model with Di selected

according to the 30’th nearest neighbour and the maximum norm model. We can

see in terms of prediction the maximum norm model slightly outperforms the

MMrt model.
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Figure 6.26: The prediction success of the MMrt model with Di selected accord-
ing to the 30’th nearest neighbour and the maximum norm model is displayed,
with error bars showing one standard error for each method.

6.10 Background Rate Varying in Time

Finally, we fit the four previous models while allowing the background rate to

vary in time as in [48], i.e.

λ(x, y, t|Ht) = ν(t)µ(x, y) +
∑
t>ti

g(x− xi, y − yi, t− ti).

We estimate ν(t) with variable bandwidth KDE and µ(x, y) by selecting a fixed

σx and σy, i.e.,

ν(t) =
1

Nb

Nb∑
i=1

1

σt
√

2πDi

exp

(
−(t− tbi)2

2σ2
tD

2
i

)
, (6.10.1)

µ(x, y) =

Nb∑
i=1

1

σbxσ
b
y2π

exp

(
−(x− xbi)2

2σbx
2 − (y − ybi )2

2σby
2

)
, (6.10.2)
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where we select σx = σy = 0.15, and find the Di as before, selecting it by using

the 100’th nearest neighbour due to the fact ν is only in one dimension. We

fitted the MMrt, the isotropic model, Manhattan model, and maximum normal

while allowing the background rate to vary in time. All four models gave similar

marginals for µ(t) in time, with an example of this marginal for the isotropic

model displayed in Figure 6.27. Here we can see that the models estimate the

background in time to vary, with spikes appearing on a roughly weekly basis,

perhaps representing the weekly routines of daily life. Indeed the data shows

burglary is less likely to happen at the weekend, in line with previous research

[50], with the implication that burglaries are more likely to happen when people

are at work during the week.
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Figure 6.27: This is the marginal for ν(t) for the burglary data from 2015 fitted
with the isotropic model when the background rate it allowed to vary in time
(days).

Table 6.4 displays the branching ratio for each model. The isotropic model shows

a slightly reduced branching ratio than when estimated without a variable back-

ground rate in time, with the MMrt, Manhattan and maximum norm models

displaying more modest decreases in terms of the branching ratio. Allowing the

background rate to vary in time should allow for slightly improved prediction
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results.

Table 6.4: Estimated branching ratio for the four models when fitted with bur-
glary data from 2015.

Model Branching Ratio

MMrt (15’th nn) 0.343

MMrt (30’th nn) 0.048

Isotropic 0.065

Manhattan 0.087

Max norm 0.119

6.11 Summary

In this section we have introduced new methods with which we can estimate

a self-exciting point process which give strong results in terms of prediction of

future burglary. Along with this, these methods can also reveal fresh insights to

the data, such as how far the self-excitation ‘travels’ in the case of the isotropic

model, or in the case of the Manhattan model the distance crime travels according

to the gridlike structure of the street network in Chicago. We also introduced a

model taking advantage of the maximum norm, which highlighted burglary that

was triggered on streets parallel to the original crime.
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Conclusions and Suggestions for

Future Work

In this thesis we have concentrated on fitting self-exciting point processes to

publicly available crime data from Chicago, with the intention of building on

existing models in order to more successfully predict and understand where future

crime events may occur. In Chapter 3 we introduced a new parametric form

named the DCR model for the triggering function, namely

g(t) = ᾱω̄2te−ω̄t, (7.0.1)

as an alternative to the commonly used ETAS model, g(t) = αωe−ωt. The DCR

model allowed the risk of an event to increase for a period after an initial event

before the risk decays, as opposed to the ETAS model where the risk decays

immediately after the initial increase when an event occurs. This was a reasonable

assumption to make as for some crime, criminals may be more likely to offend

after some time has passed from the initial crime as opposed to immediately after,

for example a burglar may wish to wait until a victim has replaced their stolen

goods, or it may take some time for the information about a potential location

to be passed amongst criminals [56].

After demonstrating that the EM-algorithm for the DCR model could recover

the true parameters of a process of this nature quite accurately, in Chapter 4

122
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we fitted temporal point processes using both the ETAS and DCR model to

burglary events in regions of Chicago. The prediction results displayed in Table

4.5 demonstrated that while the DCR model outperformed a simple Poisson point

process modelled in each 200m grid cell, it did not perform quite as well as the

ETAS model. While the DCR model should not be a preferable model to the

ETAS model in terms of modelling burglary in this setting, it perhaps may still

be of use when modelling other types of crimes in situations where the greatest

risk of an offence being committed occurs some time after the initial offense, as

opposed to immediately after.

Using Voronoi residual analysis we demonstrate that modelling burglary as a

spatio-temporal point process with a constant background rate across the whole

city of Chicago is inappropriate. In Chapter 5 we show that by using non-

parametric methods introduced by Marsan and Lengliné to estimate the back-

ground rate and triggering function, we can more accurately model burglary in

Chicago.

One challenge with this approach is the selection of bin width for the weighted

histograms in the background and triggering rate. To overcome this, in Chapter

6 we use and adapt a non-parametric method proposed by Mohler [48], based

on variable bandwidth kernel density estimation, and an estimated triggering

function of the form g(x − xi, y − yi, t − ti). We altered the algorithm so the

triggering function took an isotropic form, namely g(r − ri, t − ti) where r =√
x2 + y2. Using the fact that the streets of Chicago take a grid structure, we

also proposed that this triggering function could take the form g(d−di, t−ti) with

Manhattan distance d = |x|+|y|, and g(m−mi, t−ti) where we use the maximum

norm m = max(|x|, |y|). As shown in Figure 6.24, these proposed methods can

provide fresh insight into how burglary may be triggered within Chicago, and

can also provide improved predictive power, particularly in the case where the

maximum norm is utilised.

For the Chicago data, the model using the maximum norm obtained the best

predictive results, and this model could be the best to utilise on other locations

which have a grid structure. The Manhattan model could also be used on loca-

tions with these types of streets, while the isotropic model may be the model of
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choice when the street structure is more irregular.

For future work, we could look to extend these models to include other types

of crime events as leading indicators as seen previously [47], where minor crimes

are allowed to trigger more serious offences, along with utilising other types of

data to investigate whether this could help us more accurately assess crime risk.

By incorporating other spatial information to the model, such as locations where

crime cannot possibly take place, we could further improve the predictive power

of the model. It may also be of interest to allow the triggering function to vary

with the location where the original crime has taken place, to reflect that how a

crime event affects future crime risk may be dependent on the location that it has

taken place. In all these cases, a balance must be struck between incorporating

useful information and overfitting a heavily-parameterized model. Other possible

areas of interest include using network science to incorporate the street networks

of a city more directly [61]. By defining a self-exciting point process on a network

we could perhaps improve the predictive accuracy of our models.

While this research has focused on trying to understand and predict the oc-

currence of future crime events, more research is required on how police forces

can best utilise these predictions in order to prevent or reduce further crime.

These studies will need to be carried out while bearing in mind topical concerns

about predictive policing, such as the issues of transparency and the possibility

of bias.
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