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Abstract

This thesis presents novel methods and algorithms for state estimation and optimal

control under generalised models of uncertainty. Tracking, scheduling, conjunction as-

sessment, as well as trajectory design and analysis, are typically carried out either

considering the nominal scenario only or under assumptions and approximations of the

underlying uncertainty to keep the computation tractable. However, neglecting uncer-

tainty or not quantifying it properly may result in lengthy design iterations, mission

failures, inaccurate estimation of the satellite state, and poorly assessed risk metrics.

To overcome these challenges, this thesis proposes approaches to incorporate proper

uncertainty treatment in state estimation, navigation and tracking, and trajectory de-

sign. First, epistemic uncertainty is introduced as a generalised model to describe

partial probabilistic models, ignorance, scarce or conflicting information, and, overall,

a larger umbrella of uncertainty structures. Then, new formulations for state esti-

mation, optimal control, and scheduling under mixed aleatory and epistemic uncer-

tainties are proposed to generalise and robustify their current deterministic or purely

aleatory counterparts. Practical solution approaches are developed to numerically solve

such problems efficiently. Specifically, a polynomial reinitialisation approach for effi-

cient uncertainty propagation is developed to mitigate the stochastic dimensionality

in multi-segment problems. For state estimation and navigation, two robust filtering

approaches are presented: a generalisation of the particle filtering to epistemic uncer-

tainty exploiting samples’ precomputations; a sequential filtering approach employing

a combination of variational inference and importance sampling. For optimal control

under uncertainty, direct shooting-like transcriptions with a tunable high-fidelity poly-

nomial representation of the dynamical flow are developed. Uncertainty quantification,
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orbit determination, and navigation analysis are incorporated in the main optimisation

loop to design trajectories that are simultaneously optimal and robust. The methods

developed in this thesis are finally applied to a variety of novel test cases, ranging

from LEO to deep-space missions, from trajectory design to space traffic management.

The epistemic state estimation is employed in the robust estimation of debris’ conjunc-

tion analyses and incorporated in a robust Bayesian framework capable of autonomous

decision-making. An optimisation-based scheduling method is presented to efficiently

allocate resources to heterogeneous ground stations and fusing information coming

from different sensors, and it is applied to the optimal tracking of a satellite in highly-

perturbed very-low Earth orbit, and a low-resource deep-space spacecraft. The optimal

control methods are applied to the robust optimisation of an interplanetary low-thrust

trajectory to Apophis, and to the robust redesign of a leg of the Europa Clipper tour

with an initial infeasibility on the probability of impact with Jupiter’s moon.
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Chapter 1

Introduction

1.1 Motivation and Rationale

Uncertainty is ubiquitous in astrodynamics and space systems. Uncertainty comes in

different forms and can represent random phenomena or uncertain quantities, such as

imperfect state knowledge, execution errors or missed thrust, system failures, partially

known system parameters, and unknown dynamical constants. Such uncertainties af-

fect the majority of disciplines in space, such as state estimation of space objects,

trajectory design, guidance navigation and control, operations planning with uncertain

information, flight dynamics, navigation analysis, and so on.

Traditional large spacecraft typically rely on multiple redundancies, accurate and

established systems, and extensive ground networks to mitigate the potential risks. In

the last years, the trend has shifted toward smaller satellites as a low-cost high-efficiency

alternative. However, such a rapidly growing class of missions is characterised by limited

resources and budgets, therefore entailing new challenges for robust risk mitigation.

In the near-Earth environment, the number of space objects has been swiftly grow-

ing due to the enlarged range of terrestrial services that space technology provides.

In this context, next to traditional satellites, small satellites have gained significant

momentum as they represent a cost-efficient solution for Earth observation, communi-

cations, and science [1, 2]. Therefore, access to space has become affordable for smaller

organisations like universities, research centres, and companies of any size, given the
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explosion of low-cost small platforms, which have reached an adequate technology readi-

ness level [3]. Another recent trend is the use of mega-constellations of hundreds to

thousands of satellites to achieve global coverage by New Space actors, as SpaceX’s

Starlink [4] and Planet Labs’ Dove [5], or the planned Amazon’s Project Kuiper, Tele-

sat LEO, and Boeing’s [6, 7]. The consequence of this fast growth is that near-Earth

space traffic is becoming more and more congested, causing a sharp increase in the num-

ber of conjunction events. Even in the unrealistic “no new launches” scenario, studies

suggest that, if no mitigation action is enforced, the current Low Earth Orbit (LEO)

environment has already reached an unstable condition [8] where collisions will increase

noticeably and cause a domino effect [9]. This planned and unplanned traffic surge will

pose substantial pressure on current satellite operations to track satellites accurately,

analyse more conjunctions, design optimal Collision Avoidance Manoeuvres (CAMs),

and upload commands.

On the other hand, the deep-space scene is still dominated by large traditional

spacecraft, e.g. the recent JAXA’s Hayabusa 2 [10] and NASA’s OSIRIS-REx [11]

to visit Near-Earth Objects (NEOs). Only recently, developments in components and

launchers are enabling deep-space smallsat missions as a viable alternative as they are

capable of low-cost, fast, and efficient deep-space exploration. Among others: NASA’s

CubeSat pairs MarCO were launched alongside InSight and performed independent

flight to Mars and served as communications relay during InSight’s entry, descent,

and landing [12]; JAXA’s PROCYON was a CubeSat flyby mission [13] launched in

2014 but later interrupted due to a malfunction; NASA has recently proposed NEA

Scout [14], a 6U CubeSat secondary payload mission, aimed at visiting an asteroid;

ESA’s M-ARGO CubeSat plans to rendezvous with an asteroid and characterise its

mass, shape, and surface features [15]; ESA’s LUMIO is a 12U CubeSat aiming at

observing and characterising meteoroid impacts on the lunar farside [16]. Other current

mission proposals to comets and NEAs have been studied as a compromise between cost,

scientific return, planetary defence needs, and completion time [17, 18, 19, 20]. However,

such spacecraft have limited orbit control capabilities (e.g., limited ∆V , thrust level,

and attitude control accuracy), large uncertainties in the state knowledge (e.g., due to
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limited ground station access) and in the execution (low Technology Readiness Level

components), and limited room for margins and system redundancy (limited size and

cost) [21, 22]. These structural and operational limitations cause microsats to be more

prone to early failure [23]. Furthermore, despite a constant platform’s technological

development, small space missions beyond the near-Earth environment are still out of

the reach of most small- and medium-size stakeholders.

Most of these challenges, both near-Earth and deep-space, stem from a common

cause: the operational segment of space missions has not scaled down—in cost, size, and

procedures—at the same pace of technology and platform miniaturisation, nor scaled

up fast enough to properly support the growing number of satellites [24]. Employing

more and more networks and operators or pushing for ever-increasingly precise systems

and sensors are traditional solutions to this modern challenge and may not lead to a

definitive fix due to intrinsic limitations. To properly tackle increased space traffic,

low-resource platforms, and limited budget missions, there is a compelling need to: i)

design for robustness and reliability; ii) enhance ground and onboard autonomy. For the

former, these quality metrics need to be achieved by smarter mission designs rather than

by mere redundancy. For the latter, a disruptive shift requires the decentralisation of

information and algorithmic processing, automatisation of resource allocation and risk

assessment, and the development of intelligent decision-making agents. Moving toward

unsupervised autonomy, Russell and Norvig state “A system deployed with an incorrect

objective will have negative consequences. Moreover, the more intelligent the system,

the more negative the consequences” [25]. Thus, proper quantification and treatment of

uncertainty metrics for objectives and constraints are, even more, a critical requirement

to reduce negative consequences in low-resource autonomous systems.

To address these challenges, this thesis will focus on methodological developments

that can enable: i) state estimation and tracking under complex uncertainty structures;

ii) operational autonomy and efficiency; iii) mission robustness by design.
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1.1.1 State estimation

Accurately tracking objects is of fundamental importance for both operational satellites

and space debris. To deliver increasingly precise services and solid scientific outcomes,

operational satellites require multi-source observations to achieve accurate knowledge

of their position and velocity to precisely calibrate the instruments, interpret scien-

tific data, and communicate with ground stations. Non-collaborative objects tracking

is needed for collision avoidance and re-entry prediction, events which pose a threat

respectively to the around-Earth and the terrestrial environment. While modern opera-

tional satellites flying below Medium Earth Orbit (MEO) can exploit global navigation

satellite systems to estimate their state accurately, non-operational objects are chal-

lenging to track [26]. The major issues are the debris’ potential small sizes, data latency,

data and association uncertainty, and low reflectivity [27]. As for a low-resource deep-

space mission scenario, tracking would be even more critical as the number of ground

networks with interplanetary capabilities is limited, the associated efforts more onerous,

and the construction of competent amateur stations may be unrealistic.

These challenges highlight the need for robust estimation algorithms to deliver reli-

able metrics and assess conjunction scenarios accurately. In particular, the robustness

of state estimation methods depends on their capability of handling sparse observations,

severe data uncertainty, partially known system and dynamical parameters.

However, standard estimation techniques for space object tracking and collision

avoidance require the definition of a single precise probability measure, either explic-

itly or implicitly [28]. Indeed, precise probability distributions are employed to model

uncertainty both in the prior knowledge of state and in the received observations. Con-

sequently, the correctness of the posterior distribution depends on the quality of priors

and likelihood [29]. Furthermore, most methods for state estimation rely on para-

metric distributions and simplifying assumptions to keep the analysis computationally

tractable [30]. For example, the Kalman Filter is based on the assumption (or approx-

imation for nonlinear variants) of Gaussian distributions describing the state prior, the

dynamical process noise, and the observation likelihood. Different methods exist to deal

with more complex distributions, such as Particle Filter (PF) [31] or Gaussian mixture
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models [32], but they still rely on the availability of precise and complete information

on the probability distributions associated with prior states and measurements.

These estimation techniques have proven to be optimal or efficient primarily because

of the assumptions made in their problem statement rather than their accuracy in

describing the true uncertainty structure of certain dynamical systems. Indeed, in

many real-world applications, it may be difficult to quantify uncertainty with precise

probability distributions since it would require a perfect knowledge of all the factors

which concur to the definition of such uncertainty and an abundance of data (e.g. full

knowledge of the exact dynamics, full sensor characterisation, complete information

on the source and quality of the measurements, etc.). In these cases, a more general

uncertainty model is required to allow the integrated treatment of a mix of aleatory

(irreducible probabilistic variability) and epistemic (lack of knowledge) uncertainty.

In this context, the H-infinity filter [28, 33] may be a viable alternative as it does not

require information on the noise statistics. However, this filter minimises the worst-case

estimate error of a linear combination of the state only, whereas the collision probability

is a highly nonlinear function of such a state. Furthermore, the symmetric positive-

definite weight matrices in the H-infinity cost function need to be precisely set, thus

not allowing one to express epistemic uncertainty on their values. Recent works have

investigated outer probability measures, and particularly possibility functions, to model

partial uncertainty specifications for tracking resident space objects [34], collision as-

sessment [35], and a generalisation of admissible region analysis [36]. Estimation meth-

ods to handle generalised uncertainty models have been investigated recently. Specif-

ically, estimation approaches under p-box uncertainty [37], set-valued robust Kalman

filters [38, 39, 40], convex polytopes to model epistemic sets [41], coherent lower pre-

visions using closed convex sets of probabilities as the model of imprecision [42] have

been investigated. However, most of such methods in literature employ closed convex

sets of probability distributions as epistemic sets for prior, measurement, and transition

uncertainties, and their developments are more theoretical than practical.

The need for accurate uncertainty treatment in orbit determination also concerns

the specific context of navigation analysis, which has great relevance in space mission
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analysis and operations. Currently, navigation analysis is typically tackled as a Monte

Carlo simulation of operations and observations since diverse sources of uncertainty

affect the spacecraft trajectory [43, 44]. The resulting slow convergence is often tackled

by introducing many approximations and assumptions to reduce the computational

burden, e.g. dynamical linearisation and Gaussian uncertainties [45, 46, 47]. However,

although the larger admissible number of samples reduces the estimator error, the

estimated quantity may differ from the true sought one because of the approximations

introduced. In other words, the Monte Carlo simulation may deliver accurate statistics

of a possibly inaccurate operational scenario. To overcome these potential inaccuracies,

the paradigm of navigation analysis should be updated to incorporate more reliable

measures of uncertainty.

1.1.2 Operations

Pushing to the limits the number of Earth-orbiting objects and interplanetary mis-

sions, the modern challenge of finding efficient methods to face the growing demand

for operational services has to be addressed. As seen, one of the key limiting factors

is the maturity of the associated ground segment. While usually large missions have

a dedicated but expensive ground network, e.g. the Deep Space Network (DSN) [48],

smaller or non-collaborative ones often rely on amateur stations or third-party services

with reservation slots and time constraints where still humans are involved in the loop

to solve scheduling conflicts [49, 50, 51].

Optimisation-based approaches for operations planning and scheduling of ground

stations have been proposed, e.g. using Genetic Algorithm (GA) [52, 53], simulated

annealing [54], mixed integer programming [55], as ESA’s EPS relies on dynamic pro-

gramming [56]. Specific approaches for low-cost stations have been investigated [57] and

compared [58]. Almost the entirety of methods in literature neglects non-deterministic

effects typical of real-world operational scenarios to avoid the computational burden

of uncertainty quantification routines. However, communication with and tracking of

space objects in highly nonlinear dynamical environments, e.g. LEO, are complex tasks

affected by different sources of uncertainty. Usually, the initial state knowledge is de-
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fective and its density distribution often unknown, in particular for space debris, the

dynamical evolution of the state depends on partially known geometrical and dynami-

cal parameters, and the measurements are generally biased and affected by stochastic

effects due to sensor and atmospheric noises. Hence, there is a timely need for methods

accounting for these stochastic sources to enhance the reliability of operations, tracking

and communication scheduling.

In the context of Space Traffic Management (STM), current operational tools need

to be updated to efficiently address modern challenges entailed in the so-called New

Space era [59]. One key aspect to enhance is the automation of tasks, both onboard

the satellite and in-ground facilities. Indeed, in a situation of an increasing number of

conjunctions alerts, multiple processes have to be automated for the sake of sustainabil-

ity [60]. This is the case of close encounters detection and proper identification of the

most appropriate action in the face of a potential collision, e.g. the allocation of avoid-

ance manoeuvres. Artificial Intelligence (AI) has been investigated given its ability to

learn from data, approximate the dynamical flow, and support decision agents. Along

with the capacity to provide faster results once trained, AI appears as a promising tool

for automation in space [61, 62]. However, autonomy entails unsupervised analyses

and potentially decision-making, which again stress the importance of proper uncer-

tainty modelling and treatment in STM. These tasks are of major importance when

predicting collisions and conjunctions between operational satellites and space debris if

a limited number of, possibly, low-quality observations are available or some informa-

tion is missing. Indeed, most collision avoidance approaches employ Conjunction Data

Messages (CDMs) as input to quantify the probability of conjunction. However, a stan-

dard CDM presents only an estimation of the covariance of the state at the Time of

Closest Approach (TCA) without any information on the uncertainty distribution [63].

Although several studies have focused on covariance realism to quantify and improve

the covariance estimation accuracy (size, shape, and orientation) [64], they may pro-

duce a larger estimate rather than a more accurate one [65]. A solely larger covariance

at TCA, although more conservative, may produce diluted collision probability and

therefore an underestimated risk [66]. Given the catastrophic impact each decision has
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in affecting the future stability of the LEO environment [8], a more robust approach to

deal with generalised models of uncertainty has to be contemplated to deliver reliable

metrics and informed decisions.

1.1.3 Optimal control

Space trajectories are typically optimised as deterministic optimal control problems to

meet the science and flight system constraints in a nominal scenario. However, in real-

life applications, perfect compliance to the reference trajectory is impossible to achieve

as uncertainty always affects the system; uncertainty can be due to imperfect state

knowledge, imperfectly known dynamical parameters, missed thrust events, execution

errors, and unmodelled perturbations. Furthermore, even small deviations from the

desired initial conditions can translate into significant differences in the terminal states

in nonlinear systems. Hence, although optimal, the resulting control law might not be

robust against the uncertainty naturally affecting the system.

In the design phase, the robustness and reliability of the reference trajectory are

usually evaluated a posteriori through a navigation analysis, and the nominal design

adjusted through several iterations. The robustness and reliability evaluation is car-

ried out by assessing the mission outcome when the trajectory is affected by different

uncertainty realisations. To improve robustness, common practice is to either add a

posteriori empirical margins [67, 68], enforced coasting arcs for Trajectory Correction

Manoeuvre (TCM), reduce the thrust level or increasing the flyby altitudes. Hence,

the design and optimisation of the nominal trajectory are generally decoupled from the

quantification of the uncertainty in its realisation. The iteration and handover between

trajectory design and navigation analysis to solve flight dynamics’ infeasibilities are gen-

erally time-consuming and may lead to sub-optimal trajectories with over-conservative

margins.

For smallsats, which, as we have seen, are more prone to early failure due to low-

resource platforms, there is a compelling reason to design for robustness and reliability

from the start. Besides, one can argue that, while trajectory optimisation under uncer-

tainty is an enabling methodology for small spacecraft, it presents advantages also for
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larger scale traditional missions. In fact, integrating uncertainty from the first phase

of the design process leads to optimal trajectories that achieve a better compromise

between performance and robustness than deterministic ones with added empirical mar-

gins. It also reduces the number of iterations between trajectory design and navigation

analysis with a corresponding saving in cost, time, and complexity.

In the specific case of low-thrust trajectories (i.e. trajectories whose dynamics is

controlled via a small thrust action compared to the local gravity field), the limited

control authority offered by the propulsion system makes corrections to uncertainty in

initial or terminal states challenging. If uncertainty is not properly taken into account

during the design of the trajectory and the associated control law, there can be no mar-

gin to compensate for possible deviations from the desired states. One common cause

of trajectory deviation in low-thrust trajectories is missed-thrust due to sub-systems

partial failure or external causes, like experienced by the Dawn [69] and Hayabusa

missions [70, 71].

In the past decades, a few authors have addressed the problem of introducing either

aleatory or epistemic uncertainty or both in the design of space trajectories. Model

predictive control or stochastic closed-loop formulations were used to account for cor-

rection terms in the control profile [72, 73]. The use of Taylor algebra was investigated

to deal with uncertain boundary conditions around a reference trajectory in optimal

control and produce a robust control law [74, 75]. The case of a temporary engine failure

was investigated by stochastic programming [76, 77]. Differential dynamic program-

ming was applied to trajectory optimisation with an expected value formulation for

Gaussian-modelled uncertainties [78]. Approaches based on evidence theory to model

uncertainty were developed to optimise transfers under system and dynamical epistemic

uncertainties [79, 80, 81]. A generalisation to multi-objective problems and uncertainty

modelled with p-boxes was developed to compute families of control laws and tested

on a rendezvous scenario [82]. A robust guidance based on stochastic optimal control

using a sequence of convex programming and nonlinear programming was proposed and

studied for proximity orbit design around small bodies [83].

The common assumption underneath most of these methods is the existence of

10



Chapter 1. Introduction

the desired reference trajectory. Uncertainty is then producing an undesired deviation

from it. This problem statement can be formulated implicitly by working with the mean

value of the objective and constraints, or explicitly compensating for the deviations.

However, often these techniques can deal only with simple families of precise probability

density distributions to represent uncertainty. Besides, these methods do not include

a rigorous navigation analysis in the optimisation loop to quantify flight dynamics

and science requirements. In particular, the Orbit Determination (OD) process with

measurements simulations and uncertainty update is not included in previous works.

In addition, some of the previous approaches deal with uncertainties of a single nature

while employing a tailored formulation to address a specific application.

1.1.4 Common limitations

Two main mathematical pitfalls are shared amongst the discussed state estimation,

operations planning, and optimal control practical methods:

• the common use of low-fidelity approximations, e.g. linearisation, of nonlinear dy-

namical and observation models. These approaches create simplified models and

allow one to obtain closed-form solutions for uncertainty propagation, orbit deter-

mination, guidance navigation and control, and navigation analysis. Also, for the

conjunction analysis of satellites in Earth orbits, most methods rely on analytical

or semi-analytical approaches to speed up the collision probability computation.

However, in complex dynamics, these approximations introduce non-negligible er-

rors in the quantified uncertainty metrics, which may result in wrong assessments

of the involved risks.

• the use of a precise probabilistic model to describe the uncertainties characterising

space applications. Indeed, uncertainties on the initial conditions, sensor noises,

and system and dynamical parameters are generally modelled as random variables

with precisely known probability density functions. Although this often-implicit

assumption may seem legitimate, it actually encodes very precise information on

the uncertainty structure of the problem, and it gives rise to the following incon-

sistency: “how can you be so certain about your uncertainty?” Indeed, precise
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probability theory is a rather restrictive model as it cannot describe partial prob-

ability specifications, scenarios characterised by scarce or conflicting information,

poorly characterised systems, and so on.

These (often implicit) models are introduced to keep the uncertainty quantification

computationally tractable. However, as discussed in detail in the previous sections for

each specific topic, these approximations exacerbate the discrepancy between reality

and the restrictive mathematical model, making the analyses’ outcomes unreliable or

not robust.

1.2 Research Objectives and Contribution

Based on the described considerations, the main research objectives and corresponding

sub-objectives behind this thesis are:

• to employ scalable nonlinear uncertainty propagation:

– mitigate the accumulation of uncertainty in multi-segment problems;

– tunable surrogate modelling to speed up propagation.

• to develop state estimation and navigation approaches under generalised models

of uncertainty:

– sequential filtering approaches that handle epistemic uncertainty;

– efficient numerical solutions to estimate robust bounds.

• to investigate efficient strategies for space operations under uncertainty and lim-

ited resources:

– optimal tracking by scheduling observations from heterogeneous sources;

– autonomous resource allocation and decision-making.

• to introduce proper uncertainty treatment in trajectory design for improving mis-

sion robustness, reliability, and autonomy:

12
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– uncertainty quantification in optimal control under epistemic uncertainty;

– numerical transcription approaches to find optimal and robust trajectories.

Given the motivations outlined in the previous section, the main scientific contri-

butions of this thesis are:

• Time and state continuous tractable filtering under severe uncertainty:

– general formulation of state estimation under mixed aleatory and epistemic

uncertainty;

– development and theoretical analysis of robust particle filter approach;

– theoretical results for Branch & Bound bound computation approach with

simplicial domains.

• Preliminary development of the concept of epistemic variational inference:

– epistemic reinitialisation approach to handle epistemic uncertainty in state

estimation;

– use of importance sampling to reduce bound computation to a linear pro-

gramming problem.

• Polynomial-time algorithm for optimal control under severe uncertainty for robust

trajectory optimisation:

– general formulation of optimal control problems under mixed aleatory and

epistemic uncertainty;

– direct shooting transcription with polynomial algebra and conservative un-

certainty reinitialisation;

– belief optimal control to formulate and solve control problems as observable

Markov decision processes;

– inclusion of navigation analysis and proper uncertainty quantification for

objective and constraints in nominal trajectory design.

• Robust Bayesian framework for closed-loop control and navigation analysis:

13
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– Bayesian agent for autonomous decision-making for optimal action alloca-

tion;

– inclusion of robust state estimation and CAM design under epistemic uncer-

tainty.

• Multi-source observation scheduling for optimal tracking

– formulation of ground station scheduling as a variable-size optimisation prob-

lem;

– development of tracking metric with nonlinear uncertainty quantification by

sequential filtering;

– employment of structured-chromosome genetic algorithm to efficiently solve

variable-size scheduling problem under budget constraints.

• The application of the proposed methods to novel and challenging problems con-

cerning robust space trajectory design, navigation analysis, reliable conjunction

assessment, and scheduling of tracking campaigns.

1.2.1 Publications

Part of the content of this thesis was published in journal articles, book chapters, and

conference papers. In the following, the list of publications produced in this research

period is reported.

Journal publications

1. C. Greco and M. Vasile, “Robust Bayesian Particle Filter for Space Object

Tracking Under Severe Uncertainty”, Journal of Guidance, Control, and Dynam-

ics, under review [84];

2. C. Greco, S. Campagnola, and M. Vasile, “Robust space trajectory design us-

ing belief optimal control”, Journal of Guidance, Control, and Dynamics, under

review [85];
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3. L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “Satel-

lite tracking with Constrained Budget via Structured-Chromosome Genetic Al-

gorithms”, Optimization and Engineering, under review [86];

4. L. Walker, M. Di Carlo, C. Greco, M. Vasile, and M. Warden, “A mission

concept for the low-cost large-scale exploration and characterisation of Near Earth

Objects”, Advances in Space Research, 2020, https://doi.org/10.1016/j.asr.2020.

10.038 [18];

5. C. Greco, M. Di Carlo, M. Vasile, and R. Epenoy, “Direct multiple shooting

transcription with polynomial algebra for optimal control problems under un-

certainty”, Acta Astronautica, 2020, Vol. 170, pp. 224-234, https://doi.org/10.

1016/j.actaastro.2019.12.010 [87].

Book chapters

1. C. Greco and M. Vasile, “Fundamentals of Filtering”, In Optimization Under

Uncertainty with Applications to Aerospace Engineering, 2021, pp. 181-222, https:

//doi.org/10.1007/978-3-030-60166-9 6 [88];

2. A. Riccardi, E. Minisci, K. Akartunali, C. Greco, N. Rutledge, A. Kershaw, and

A. Hashim, “Introduction to Optimisation”, In Optimization Under Uncertainty

with Applications to Aerospace Engineering, 2021, pp. 223-268, https://doi.org/

10.1007/978-3-030-60166-9 7 [89].

Peer-reviewed conference papers and presentations

1. L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “Structured-

chromosome GA optimisation for satellite tracking,” In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, 2019, https://doi.org/10.

1145/3319619.3326841 [90];

2. C. Greco, L. Gentile, G. Filippi, E. Minisci, M. Vasile, and T. Bartz-Beielstein,

“Autonomous generation of observation schedules for tracking satellites with
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structured-chromosome GA optimisation”, In 2019 IEEE Congress on Evolution-

ary Computation (CEC), 2019, https://doi.org/10.1109/CEC.2019.8790101 [91].

Conference papers and presentations

1. C. Greco, L. Sánchez Fernández-Mellado, M. Manzi, and M. Vasile, “A Ro-

bust Bayesian Agent for Optimal Collision Avoidance Manoeuvre Planning”, 8th

European Conference on Space Debris, 2021 [92];

2. C. Greco and M. Vasile, “Closing the loop between mission design and navigation

analysis”, International Astronautical Congress, The Cyberspace Edition, 2020,

https://strathprints.strath.ac.uk/74361/ [93];

3. C. Greco and M. Vasile, “Robust Particle Filter for Space Navigation under

Epistemic Uncertainty”, UQOP2020, 2020 [94];

4. G. Acciarini, C. Greco, and M. Vasile, “On the solution of the Fokker-Planck

equation without diffusion for uncertainty propagation in orbital dynamics”, 2020

AAS/AIAA Astrodynamics Specialist Conference, 2020, https://strathprints.strath.

ac.uk/73897/ [95];

5. C. Greco, S. Campagnola, and M. Vasile, “Robust space trajectory design using

belief stochastic optimal control”, AIAA SciTech 2020 Forum, 2020, https://doi.

org/10.2514/6.2020-1471 [96];

6. L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “An op-

timization approach for designing optimal tracking campaigns for low-resources

deep-space missions”, In 70th International Astronautical Congress, 2019, https:

//strathprints.strath.ac.uk/70403/ [97];

7. C. Greco, L. Gentile, M. Vasile, E. Minisci, and T. Bartz-Beielstein, “Ro-

bust particle filter for space objects tracking under severe uncertainty”, 2019

AAS/AIAA Astrodynamics Specialist Conference, 2019, https://strathprints.strath.

ac.uk/70566/ [98];
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8. L. Walker, C. Greco, M. Di Carlo, A. Wilson, L. Ricciardi, A. Berquand, and

M. Vasile, “Nanospacecraft exploration of asteroids by collision and flyby recon-

naissance”, Low-Cost Planetary Missions Conference, 2019, https://strathprints.

strath.ac.uk/68659/ [99];

9. M. Di Carlo, M. Vasile, C. Greco, and R. Epenoy, “Robust optimisation of low-

thrust interplanetary transfers using evidence theory”, 29th AAS/AIAA Space

Flight Mechanics Meeting, 2019, https://strathprints.strath.ac.uk/67543/ [81];

10. C. Greco, M. Di Carlo, M. Vasile, and R. Epenoy, “An intrusive polynomial

algebra multiple shooting approach to the solution of optimal control problems”,

69th International Astronautical Congress, 2018, https://strathprints.strath.ac.

uk/65918/ [100];

11. C. Greco, M. Di Carlo, L. Walker, and M. Vasile, “Analysis of NEOs reachability

with nano-satellites and low-thrust propulsion”, 4S Symposium, 2018, https://

strathprints.strath.ac.uk/64029/ [17].

1.2.2 Thesis structure

This thesis is organised into two parts. Part I concerns the theoretical and methodolog-

ical developments to address challenges in uncertainty propagation, state estimation,

navigation, and control under generalised models of uncertainty. Part II presents ad-

vanced applications of such methods to conjunctions analysis, space trajectory design,

navigation analysis, and optimal scheduling.

In the first part, Chapter 2 first introduces some common definitions of dynamical

and uncertainty models which will be used throughout the thesis, then it describes the

common nonlinear uncertainty propagation approaches employed for the state estima-

tion, tracking, and optimal control methods developed in later chapters of the thesis.

Specifically, first tunable polynomial approximations of the dynamical flow constructed

via both intrusive algebra or stochastic collocation are discussed to speed up the prop-

agation approach. In this section, a reinitialisation approach is developed to avoid

the accumulation of uncertainty in different time segments and mitigate the curse of
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dimensionality. Then, numerical approaches for computing expectations and moments

of the propagated distribution are discussed.

Chapter 3 concerns developments in the field of state estimation and navigation

under mixed aleatory and epistemic uncertainty. The filtering problem is formulated

in terms of expectations to estimate given noisy indirect observations of the state of a

dynamical system. Thus, the epistemic filter output is a robust interval whose bounds

are the expectation’s extrema resulting from epistemic uncertainty. Two solution ap-

proaches are developed: a generalisation of the particle filter to solve the optimisation

routine to compute the robust bounds efficiently; a sequential filtering approach based

on a combination of variational inference and importance sampling. These approaches

aim at removing the need for large two-level Monte Carlo sampling while maintaining

the dynamical and observation nonlinearities.

Chapter 4 deals with the development of novel problem formulations and solution

approaches for optimal control problems under mixed aleatory and epistemic uncer-

tainty. Two methods are presented: one tailored for open-loop trajectory optimisation,

which employs generalised intrusive polynomial algebra to describe the dynamical flow;

one designed for open- and closed-loop control design, which employs a belief optimal

control formulation and non-intrusive stochastic collocation as a surrogate of the dy-

namics. The latter generalises the former by incorporating a full navigation analysis

in robust trajectory optimisation. These approaches allow one to design trajectories

that are both optimal and robust against uncertainties by closing the loop between

trajectory design and navigation analysis.

In the second part, Chapter 5 concerns the application of the state estimation

approach developed as well as the use of a robust Bayesian framework for autonomous

decision-making for STM. The common test case involves the robust estimation of

the collision probability in a space debris conjunction scenario. In this application, the

crucial effect of accounting for epistemic uncertainty is demonstrated, and the impact of

introducing new measurements on the risk metric is analysed. Successively, the robust

Bayesian agent is employed to automatically allocate optimal actions, e.g. CAMs, based

on the robust filter metrics for the different conjunctions studied.
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Chapter 6 presents a new scheduling algorithm for optimal tracking of satellites from

ground to reduce the knowledge uncertainty while taking into account operational bud-

gets. The fitness metric is the satellite final uncertainty, and therefore all the pipeline

composed of stations’ visibility, observation simulation, uncertainty propagation, and

orbit determination is implemented. Hence, the scheduling problem is formulated as a

variable-size optimisation and a tailored solver employed. Then, the optimisation-based

approach is applied to the optimal tracking of both a LEO satellite and a low-resource

deep-space spacecraft. For the former, different ground station network configurations

and budget constraints are analysed. In the latter, TCMs and their execution errors

are included as well after each observation arc in the overall uncertainty quantification.

Chapters 7 and 8 show the application of the optimal control methods under un-

certainty developed. Specifically, the first chapter discusses the robust optimisation of

a low-thrust rendezvous trajectory to the near-Earth asteroid 99942 Apophis subject

to uncertain hyperbolic excess velocity at departure. The second one presents the ro-

bust re-design of one flyby of Europa Clipper’s tour to simultaneously optimise the

total cost of the executed manoeuvres and to respect a constraint on the probability

of impact with Europa during the close encounter. Furthermore, on Europa Clipper,

the epistemic variational inference is applied for a preliminary navigation analysis to

consider epistemic uncertainty also on the likelihood distributions.

Finally, Chapter 9 closes the thesis with a discussion on the main developments and

results obtained and a discussion of potential future research directions.
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Chapter 2

Uncertainty Propagation and

Expectation Estimation

The content of this chapter was published in:

C. Greco and M. Vasile, “Fundamentals of Filtering”, In Optimization Under Un-

certainty with Applications to Aerospace Engineering, 2021 [88]

C. Greco, M. Di Carlo, M. Vasile, and R. Epenoy, “Direct multiple shooting tran-

scription with polynomial algebra for optimal control problems under uncertainty”,

Acta Astronautica, 2020 [87].

This chapter introduces the uncertainty models and propagation techniques for a

state- and time-continuous dynamical system, which will be employed throughout the

thesis. In particular, it first introduces the epistemic model, which is used to describe

severe uncertainty stemming from the lack of knowledge of system and dynamic pa-

rameters. Then, it contextualises the full Uncertainty Propagation (UP) problem for

probability distributions in dynamical systems and Markov processes and discusses

why numerical methods and approximations are needed for practical UP. Hence, the

two-step approach employed in this thesis for state estimation, tracking, and optimal

control is presented. First, a tunable polynomial expansion of the dynamical flow is con-

structed utilising either intrusive algebra or stochastic collocation. For this expansion,

a reinitialisation approach is developed to reduce the dimensionality in multi-segment

or multi-phase problems. In the end, Monte Carlo and Gauss-Hermite approaches are
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discussed for computing expectations and moments of the propagated distribution. The

first class is employed for generic densities, the second one for the special case of normal

ones as Gaussian distributions are extensively employed for uncertainty modelling in

estimation, tracking, and control problems in space. These practical methods, as well

as the intrusive algebra and stochastic collocation, can be found in literature, so only

a brief description is provided to improve the thesis readability, whereas more space is

dedicated to the novel reinitialisation contribution.

The chapter is structured as follows. The uncertainty model employed in this thesis

is presented in Section 2.1. The general problem statement of nonlinear uncertainty

propagation in dynamical systems and the challenges of its practical computation are

discussed in Section 2.2. Then, the two-step approach for efficient UP is described.

The tunable polynomial representation of the flow and the reinitialisation strategy are

discussed in Section 2.3. Then, numerical techniques for computing expectations or

moments of the propagated distribution are described in Section 2.4.

2.1 Epistemic Uncertainty

For a generic random variable Ξ : ΩΞ → Rnξ , from its sample set ΩΞ to its mea-

surement space Rnξ (nξ real coordinate space), we will write parametric epistemic

uncertainty as

Ξ ∼ p(ξ;λξ) ∈ Pξ;λξ , (2.1)

to indicate that its probability density function (pdf) belongs to the family Pξ;λξ pa-

rameterised in the epistemic parameter λξ as

Pξ;λξ =
{
p(ξ;λξ) |λξ ∈ Ωλξ

}
, (2.2)

where Ωλξ , a compact subset of Rnλ , is the epistemic parameter domain [101]. When

information is sufficient to identify a single distribution, uncertainty is purely aleatory

and Ωλξ degenerate to a singleton. Therefore, Eq. (2.2) is as a generalisation of the

pure aleatory model.

22



Chapter 2. Uncertainty Propagation and Expectation Estimation

For ease of notation, in some cases we will use uppercase special characters Zλξ =

p(ξ;λξ) to indicate the pdf of a random variable Ξ. The explicit dependence on the

epistemic parameter will be dropped when not essential.

Given a functional of interest

Ψ : Pξ;λξ → R , (2.3)

which is a mapping from the pdf space to the real line, its inferior and superior values

over the set Pξ,λξ are named lower bound Ψ and upper bound Ψ, respectively. For the

epistemic specification as in Eq. (2.2), the lower and upper bounds are defined as

Ψ = inf
λξ∈Ωλξ

Ψ [p(ξ;λξ)] (2.4a)

Ψ = sup
λξ∈Ωλξ

Ψ [p(ξ;λξ)] . (2.4b)

For the special case of aleatory uncertainty, we have Ψ = Ψ because Ωλξ is a singleton.

In the context of optimal control under uncertainty and filtering, we will often

employ an integral functional in the form of expectation of a generic function ψ :

Rnξ → R as

Ψ [p(ξ;λξ)] = Epλξ [ψ(ξ)] =

∫
ΩΞ

ψ(ξ) p(ξ;λξ) dξ . (2.5)

In the following, we show how this functional formulation encloses common alternatives:

• Expected Value: by definition, the expectation operator of a generic function of a

random variable returns the expected value of that function, which is Eq. (2.5)

directly.

• Probability : the probability of an event is the expectation of the indicator function

of such event. Thus, to compute the probability of a generic event ξ ∈ A, the

auxiliary function ψ is defined as

ψ(ξ) = IA(ξ) , (2.6)
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where

IA(ξ) =


1 if ξ ∈ A

0 if ξ 6∈ A .

(2.7)

Hence, chance constraints can be formulated using the indicator function and the

functional formulation.

Another relevant example is the percentile of a random variable, often used as an

objective or constraint. Let ψ∗ be the (1− α)-percentile of ψ(ξ) such that

Pr(ψ(ξ) < ψ∗) = 1− α . (2.8)

We can compute the probability on the left as an expectation by using the indi-

cator function as

ψ(ξ) = Iψ<ψ∗(ξ) , (2.9)

where

Iψ<ψ∗(ξ) =


1 if ψ(ξ) < ψ∗

0 if ψ(ξ) ≥ ψ∗ .

(2.10)

• Higher-order moments: by definition, the nth moment of a pdf is the expectation

of its nth power. For example, the covariance of the random variable is computed

by setting the auxiliary function ψ to

ψ(ξ) =
(
ξ − E

[
ξ
])(
ξ − E

[
ξ
])T

. (2.11)

2.2 Nonlinear uncertainty propagation

Uncertainty Propagation (UP) deals with the computation of the probability density

function (pdf) p(z) of an output variable z given a generic function H : Rnξ → Rnz and

the probability density function of the input variable p(ξ). This task is of fundamental

importance for all the topics treated in this thesis. Indeed, state estimation, tracking,

and optimal control under uncertainty all require the ability to compute how input
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variables’ errors map to state uncertainty, how the state distribution evolves in time,

how state uncertainty maps to observation uncertainty, and so on. Thus, in the remain-

der of this chapter, p(ξ) can represent either the input pdf or the prior distribution for

sequential filtering and control.

The explicit expression of p(z) is possible only in a restricted number of cases. For

example, if H is a diffeomorphism with nξ = nz, then the output distribution can be

expressed by means of the transformation’s Jacobian [102]

p(z) =

∣∣∣∣∂H∂ξ
∣∣∣∣−1

p(ξ) . (2.12)

As another well-known example, Kolmogorov derived equations for the exact evolution

of the state density function p(x) in the context of stochastic differential equations

governed by a Wiener process. The Kolmogorov forward equation, or mostly known as

Fokker-Planck Equation (FPE), is a Partial Differential Equation (PDE) that is given

by [103, 104]:

∂p(x)

∂t
= −

nx∑
i=1

∂

∂xi

[
fi(t,x)p(x)

]
+

nx∑
i=1

nx∑
j=1

∂2

∂xi∂xj

[
Dij(t,x)p(x)

]
, (2.13)

where fi is ith equation of the dynamical model, whereas Dij are the elements of the

diffusion tensor. It goes without saying that Eq. (2.13) holds under existence and

continuity assumptions on the involved partial derivatives. This equation has been

generalised to include more general stochastic perturbations other than the Gaussian

white noise [105]. This equation has a closed-form solution in a limited number of

simplified cases only [106]. UP through the FPE requires the solution of a partial

differential equation, which is a laborious and time-consuming task.

In the context of Markov processes, the transition probability

p(xt|x0) (2.14)

is often used as probabilistic model of the dynamical flow. This conditional distribution

expresses the likelihood of the random system state to be Xt = xt given that the initial
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state was X0 = x0. Indeed, in contrast to deterministic flows, the state xt is not

uniquely defined for a given initial condition x0 because of uncertainty on the static

parameters and possible process noise. Hence, in the Markov model, the propagated

density can be computed by the Chapman-Kolmogorov equation [30]:

p(xt) =

∫
p(xt,x0) dx0 =

∫
p(xt|x0) p(x0) dx0 , (2.15)

where the first equality follows from the definition of marginal densities, the second

equality stems from the definition of the joint probability with respect to conditional

one.

In general, the main difficulty stems from the transformation being nonlinear and

non-diffeomorphic. Even when the input distribution is set to be a well-behaved para-

metric distribution, e.g. a normal distribution, the output pdf is not conjugate as it

would have higher-order moments due to the transformations (2.12), (2.13), or (2.15).

Indeed, although the deterministic dynamical flow is a diffeomorphism for any fixed

time and static parameter, its nonlinearity yields a non-Gaussian evolution of the state

uncertainty [107].

As we have seen, the full propagated distribution is generally expensive to compute,

and its complete knowledge provides greater information than needed for most practical

applications. Therefore, state estimation and control algorithms primarily focus on the

computation of the expectation of the generic function ψ as in Eq. (2.5). In the UP

context, the expectation can be written with respect to the input distribution

Ez
[
ψ(z)

]
=

∫
ψ(z)p(z)dz =

∫
ψ(H(ξ))p(ξ)dξ = Eξ

[
ψ(H(ξ))

]
. (2.16)

by exploiting the law of the unconscious statistician theorem [108]. This powerful prop-

erty allows one to compute generic expectations without computing the full propagated

distribution first.

Under epistemic uncertainty, such expectation is interval-valued and the extrema

need to be computed through optimisation, as in Eq. (2.4). Hence, efficient numerical

tools are even more critical for high-fidelity uncertainty propagation under epistemic
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uncertainty, either to approximate the full propagated distribution or some expectation

with respect to it.

2.3 Polynomial dynamical flow

Let us study a dynamical system x ∈ Rnx evolving according to a nonlinear Ordinary

Differential Equation (ODE)

ẋ = f(t,x,d,u), (2.17)

where t ∈ R is the independent variable (usually time), d ∈ Rnd are static parameters,

and u ∈ Rnu control variables.

Under uncertainty, let the true initial state x0 and the true value of the parameters d

be unknown realisations of the random variables X0 : ΩX0 → Rnx and D : ΩD → Rnd

respectively, where Ω(·) denotes the sample space, with pdf p(x0) and p(d). These

random variables together with Eq. (2.17) induce the state at a later time to be a

random variable itself Xt. Explicitly, if for all t ≥ 0 the map F t0 : Rnx → Rnx is the

point-wise solution to (2.17)

F t0(x0,d) := x0 +

∫ t

0
f(τ,x,d,u) dτ , (2.18)

then Xt is a random variable governed by the push-forward measure p(xt) := p(x0,d)◦

F t
−1

0 .

Let us collect the uncertain variables in a single joint random variable Ξ with

realisations ξ = [x0,d]. Consider now the sample space ΩΞ of all the possible values of

the uncertain variables, and a polynomial of degree q in nξ variables Px(t, ξ) ∈ Tq,nξ ,

where Tq,nξ is a polynomial space for any fixed t. The interest lays in the time evolution

of the set ΩΞ, so that the evolved set F t0(ξ) can be calculated at any point in time. In

other words, first the set (assumed compact and finite) is propagated in time with a

polynomial model. Once the set is propagated, the relevant statistical quantities can

be computed by sampling the polynomial representation according to a specific input

distribution p(ξ). As long as the dynamics is integrable for all values in the set, no
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additional assumption on ξ is required to propagate the set.

Let the set F t0(ξ) be formally defined as follows. For a given realisation of the

uncertain vector ξ and a control law u the propagated state x(t) at time t is:

x(t, ξ) = x0(ξ) +

∫ t

0
f(τ,x0(ξ),u,d(ξ))dτ , (2.19)

and the set F t0(ξ) is:

F t0(ξ) = {x(t, ξ) | ξ ∈ ΩΞ} . (2.20)

Here the assumption is that the dynamics f is integrable for all values of ξ ∈ ΩΞ

and τ ∈ [t0, t]. Note that if x was not a continuous function of ξ, a set Ω̂Ξ of a

continuous function x̂ of ξ that contains all the realisation of x induced by ξ could still

be considered.

The set ΩX0 is now approximated with the polynomial Px(t0, ξ) = Px(t0,x0(ξ))

and this approximation propagated forward in time to obtain:

F t0(ξ) ≈ F̃ t0(ξ) = Px(t, ξ) =

Nq∑
i=1

αi(t)Pi(ξ) , (2.21)

where Nq =
(
nξ+q
q

)
are the number of terms retained in the truncated representation,

Pi is a multivariate polynomial basis and αi(t) the associated coefficient.

Once F̃ t0(ξ) is available, one can compute the expectation (2.16) of a generic function

of the propagated uncertain state as

E
[
ψ
(
x
)]

= E
[
ψ
(
F̃ t0(ξ)

)]
=

∫
ΩΞ

ψ
(
F̃ t0(ξ)

)
p(ξ)dξ . (2.22)

2.3.1 Generalised intrusive polynomial algebra

The polynomial approximation F̃ t0(ξ) can be computed with Generalised Polynomial

Algebra (GPA) first introduced in [109] and then further developed in [110, 111].

This approach generalises the well-known Taylor algebra [112] which has been ex-

tensively applied in orbital mechanics [113, 114, 115], trajectory control under un-

certainty [116, 74, 75], nonlinear filtering [117], conjunction analysis [118, 119], and
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other areas. This generalisation to other polynomial bases allows one to exploit differ-

ent bases’ properties which may be beneficial for specific applications. For example,

Chebyshev polynomials have better uniform convergence over the expansion region even

in the presence of a finite number of discontinuities but are characterised by a higher

computational complexity [120, 121, 111]. This property is particularly valuable under

epistemic uncertainty. Indeed, the dynamical approximation should be accurate on the

envelope of all the pdfs’ supports within the epistemic set. Besides, in general, there

will not be a single central point around which the representation could be constructed.

Hence, GPA starts by expressing the generic polynomial Px(t0, ξ) into monomial

bases so that Px(t0, ξ) ∈ T ′q,nξ , where T ′q,nξ is the functional space of the polynomial in

monomial bases. A set of algebraic operations between monomials is then introduced

defining an algebra in T ′q,nξ . Denoting with V and W the multivariate polynomial

expansions of two functions v and w, the algebraic operation ⊕ = {+,−, ·, /} between

real-valued functions has its correspondent ⊗ in the monomials space:

v(ξ)⊕ w(ξ) ∼ V (ξ)⊗W (ξ) ∈ T ′q,nξ . (2.23)

The result of the addition (or equivalently subtraction) of two elements of T ′q,nξ is still

an element of the same functional space (closed under addition). To keep the order of

the polynomials constant, the multiplication result is truncated to the order q, and so

is the result of any composition. Composition rules are defined to handle division and

other elementary functions such as trigonometric functions, exponents, logarithms, etc.

These polynomial operations are implemented using the C++ overloading operator

within the Strathclyde Mechanical and Aerospace Research Toolbox for Uncertainty

Quantification (SMART-UQ) [110].

Given this set of operations, any integrator for the propagation of ordinary differ-

ential equations can be directly applied to the propagation of a set of states through

the dynamical system Eq. (2.17) once the set is expressed as an element of T ′q,nξ (for

more details and examples refer to [111]).

During propagation, the uncertain model parameters are handled similarly to the

initial conditions. The parameter sample domain ΩD, induced by the random variable
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Ξ, is bounded by a constant multivariate polynomial Pd ∈ Tq,nξ , which is composed in

Px(t, ξ) through the dynamical operations.

Intrusive polynomial algebra has shown high representation accuracy even with

rather low-order polynomials at competitive time complexities, and it has demonstrated

good scalability properties for higher-dimensional problems [111]. This methodology

has been successfully applied to multiple uncertainty propagation scenarios in aerospace

applications [109, 122, 110, 111].

2.3.2 Non-intrusive polynomial representation

Intrusive algebra requires a very specific interface with the dynamical models. When

the dynamics is available as a black-box model only, e.g. part of a numerical tool as

GMAT [123] or jTOP [21], intrusive approaches cannot be employed, and non-intrusive

alternatives should be preferred.

In this thesis, for constructing the non-intrusive polynomial surrogate, the coeffi-

cients αi in Eq. (2.21) are computed using stochastic collocation [124]: a number of

samples x(t, ξ(j)) is first evaluated over a structured grid of collocation points ξ(j); then

the polynomial approximation F̃ t0 is built to fit the set of x(t, ξ(j)) vectors. Because

the stochastic and control dimensions can be rather large, the Smolyak polynomial

space-variant is used to limit the growth of collocation points with increasing stochas-

tic dimensions. Figure 2.1 shows an example of a grid coming from a full tensor product

(a) and a sparse Smolyak grid (b) both constructed with a level two grid, that is 17

nodes per dimension in 2D.

The grid level is a tunable parameter that determines the number of collocation

points in each dimension. Samples are unique across different grid levels. Therefore,

one can sequentially increment the grid level while reusing previously computed samples

until reaching the requested accuracy.

There are several advantages of this sparse polynomial mapping by stochastic col-

location over other methods for uncertainty propagation in trajectory optimisation

applications:

• being a non-intrusive method, the dynamical model is called as a black-box func-
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Full Tensor Product

(a)

Sparse Smolyak Grid

(b)

Figure 2.1: Comparison of two-dimensional grids constructed by (a) full tensor product
and (b) sparse Smolyak rule of one-dimensional grids.

tion, thus pre-existing libraries can be easily interfaced with such transcription

without alteration;

• the accuracy of the polynomial approximation can be improved by increasing the

degree q of the polynomial space; the growth of the number of collocation points

with the degree q is limited by the sparse Smolyak variant;

• Chebyshev polynomials can be employed for their global convergence properties

over a compact set [111] and previous applications in a number of aerospace

cases [87, 122, 109].

2.3.3 Dynamic Reinitialisation

The uncertainty propagation could be performed with a single numerical integration

from initial to time of interest to get:

F̃ t0(ξ) = Px(t, ξ) . (2.24)

The advantage of this approach is that the numerical uncertainty propagation has to

be performed only once, and then the expectation can be computed by means of an
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inexpensive polynomial evaluation. However, using a single polynomial representation

exacerbates the curse of dimensionality typical of uncertainty propagation, that is, a

critical increase in computation complexity [125] or decrease in the representation ac-

curacy as the number of uncertain variables grows [125]. In GPA for example, the

number of terms in the polynomial expansion grows with (nξ + q)!/(nξ!q!) and conse-

quently the algorithmic complexity of its computations. Thus, this approach can only

handle a limited number of uncertain model parameters. When different (and indepen-

dent) uncertain parameters affect the system evolution at different instants of time (e.g.

multi-segment multi-phase trajectories, discretised control with disturbances, etc.), the

size of the polynomial would quickly become intractable.

Consider now the uncertain model parameter vector to be defined as follows:

D = [D0,D1, . . . ,Dk, . . . ] ,

such that the realisations of the uncertain model parameters Dk manifest only over

the time interval (tk, tk+1]. For instance, the errors due to manoeuvres executed in a

given temporal interval influence the belief state until the end time of that interval.

Observation errors are another example of uncertainty sources that affect the belief state

update at a given time only. The effect of these errors, beyond the end of the interval

where they manifest, is carried by the belief state at the start of the next interval.

In this case, the polynomial UP can be applied to each sub-segment independently

of the uncertain model parameters affecting the other segments. Consequently the

algebra dimension in the kth segment reduces to nξk = nx + ndk , namely the number

of the uncertain state variables Xk at the beginning of the segment and the number of

uncertain model parameters Dk affecting the system for t ∈ (tk, tk+1] only. With this

scheme, the polynomial Pxk representing the uncertain states at tk is propagated to

Pxk+1
at tk+1 only under the effect of uncertain parameters Dk. In this decomposition,

uncertainties that affect the dynamics over multiple or all arcs are allowed, and they

need to be replicated across all the segments they affect, e.g. uncertain dynamical

model parameters. Nonetheless, this decoupling enables one to favourably exploit the

Markov property typical of these dynamical systems.
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However, the uncertainty decoupling and sequential approach pose a key challenge:

how to match the polynomial representation at the boundaries of each time segment.

Indeed, the main difficulty of the proposed discretisation arises from the necessity to

impose continuity conditions between two hyper-dimensional uncertainty sets at the

boundary of two adjacent segments.

If one calls F
(p)
k+1 the set of states at time tk+1 and F

(g)
k+1 the superset such that

F
(p)
k+1 ⊆ F

(g)
k+1, the corresponding polynomial approximations become P

(p)
xk+1 and P

(g)
xk+1 ,

where P
(p)
xk+1 is a function of Xk and Dk, and P

(g)
xk+1 is the so-called re-initialised set of

uncertain states Xk+1 at time tk+1. Note that the stochastic vector Dk+1 has realisation

only over the open interval (tk+1, tk+2].

Hence, the propagation phase is carried out as described in Algorithm 1, and is

represented in the cartoon in Fig. 2.2 for a two-dimensional example. In Fig. 2.2 the

initial uncertainty set expanded in polynomial basis Px0 at t0 (depicted in grey) is

propagated through the dynamical system (intrusively or non-intrusively) to P
(p)
x1 at

the end of the first segment t1 (depicted in blue). In order to obtain an uncertainty

representation function of the variables of the next segment only, the uncertain region

P
(p)
x1 is reinitialised as a hyper-box P

(g)
x1 (again, in grey in Fig. 2.2) which conservatively

bounds the propagated set. The propagation and reinitialisation steps are repeated for

each segment.

Algorithm 1 Polynomial Propagation Phase of Reinitialisation Approach

1: Initialise k = 0, P
(g)
xk = Px0

2: for Discretisation intervals do
3: Propagate uncertainty region from tk to tk+1 through intrusive

polynomial algebra

P
(g)
xk → P

(p)
xk+1

4: Compute propagated lower and upper ranges of P
(p)
xk+1

XLk+1, XUk+1

5: Reinitialise uncertainty region as hyper-box with computed range

XLk+1, XUk+1 → P
(g)
xk+1

6: Update quantities for loop iteration
k = k + 1

7: end for

By outer bounding the propagated region, the key advantage is that all the possible
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Figure 2.2: Graphical sketch of intrusive polynomial propagation approach. The blue
regions depict the propagated polynomials, whereas the grey boxes represent the reini-
talisation hyper-boxes.

state realisations are included, thus granting the continuity of any pointwise trajectory

realisation. This simple approach comes at the expense of propagating larger regions

than strictly needed.

It is worth noting that the state uncertainty region can be propagated at any inter-

mediate time of interest t ∈ (tk, tk+1] without the need for further discretisation and

reinitialisation. Trivially, the coefficients of an intermediate polynomial can be saved

during the propagation phase. Therefore, the result of this propagation approach is a

chain of polynomial surrogates describing the uncertain state Xt as a composite func-

tion of the initial conditions X0 and the uncertain parameters D0:k = [D0, . . . ,Dk]

which affected the system evolution up to time tk < t ≤ tk+1. However, at this step,

the hyper-box reinitialisation caused the uncertain state polynomial representation to

be an over-estimation of the true uncertainty space.

An estimation of the correct size of the actual propagated set Ft is recovered by

sampling the polynomial representation. The approach to propagate samples and re-

cover the actual state uncertainty region is described in Algorithm 2, and graphically

represented in Fig. 2.3.

The approach starts by drawing N state samples x
(j)
0 from the initial uncertainty

state space and N parameter samples d
(j)
0 from the first segment uncertainty parameter

space. Each of the N pairs (x
(j)
0 ,d

(j)
0 ) corresponds to a deterministic realisation of the

trajectory (black dots and lines in Fig. 2.3), which is propagated using the polynomial

mapping P
(p)
x1 computed as in Algorithm 1. The propagated state x

(j)
1 is scaled within
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Algorithm 2 Samples Propagation Phase of Reinitialisation Approach

1: Sample N -times the initial uncertainty space

x
(j)
0 ∈ ΩX0

2: Initialise k = 0
3: for Discretisation intervals do
4: Sample N -times the k−uncertain parameter space:

d
(j)
k ∈ Ωdk

5: Propagate each uncertain sample from tk to tk+1 with polynomial mapping

x
(j)
k+1 = P

(p)
xk+1(x

(j)
k ,d

(j)
k )

6: Scale propagated samples within the polynomial input domain using
ranges XLk+1 and XUk+1

7: Update quantities for loop iteration
k = k + 1

8: end for

x

y
…

time

𝑃"#
(%) 𝑥(

()) 𝑃"*+#
(%) 𝑥,-(

()) 𝑃"*
(%) 𝑥,

())𝑥.
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Figure 2.3: Graphical sketch of the recovery approach by sampling. The grey boxes
represent the reinitialisation hyper-boxes, the blue regions depict the propagated poly-
nomials, while the green areas symbolise the true uncertainty regions reconstructed by
the black samples.

the polynomial input domain, and new parameter samples d
(j)
1 are drawn for the suc-

cessive segment to form N new pairs (x
(j)
1 ,d

(j)
1 ). The propagation and sampling steps

are iterated for each segment. Thanks to this approach, the true uncertainty region

(green in Fig. 2.3) is recovered from the conservative polynomial expansion (grey in

Fig. 2.3), and represented by a cloud of discrete samples. These samples can be used to

numerically compute moments or expectations with respect to the input pdfs as shown

in the next section.
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2.4 Expectation estimators

In this section, practical sample-based techniques will be presented to compute the

expectation E
[
ψ
(
H(ξ)

)]
. Once these methods are available, the propagated distribu-

tion can be approximated in a number of ways. One alternative is to approximate the

continuous propagated pdf using a discrete distribution using the drawn samples as

atoms (see Section 2.4.1). Another alternative is to approximate the propagated pdf

by its first few moments. Indeed, the moments are defined as expectations for specific

auxiliary function ψ. Thus, once a method is available to compute generic expectations

efficiently, the moments of the propagated pdf can be derived, and the distribution

can be approximated by retaining only a few moments (see Section 2.4.2). These two

approaches are the ones used in the methods for state estimation, optimal control, and

tracking throughout this thesis.

2.4.1 Monte Carlo methods

A large family of techniques to approximate expectations with respect to the propagated

density is Monte Carlo methods. Among them, direct Monte Carlo aims at solving the

expectation in Eq. (2.16) by directly taking samples from the known input distribution.

Then, the expectation is approximated as

E
[
ψ(H(ξ))

]
=

∫
ψ(H(ξ))p(ξ)dξ ≈ 1

N

∑
j

ψ
(
H(ξ(j))

)
, (2.25)

with ξ(j) ∼ p(ξ).

Therefore, this method does not require any linearity or Gaussian assumption on

the model. Furthermore, unlike deterministic methods, the number of samples required

for the mean to converge is theoretically independent of the problem’s dimensionality

[126].

In this vanilla Monte Carlo, it is evident to infer how crucial it is to properly select

the random samples in accordance with the original probability distribution. This

is numerically straightforward when p(ξ) belongs to any simple distribution family.
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Thus, this method is optimal when there is a direct, simple map between the input

distribution and the quantity of interest. However, in sequential state estimation or

optimal control applications, when the propagated distribution becomes the prior for

the next time segment, such a direct map may not be tractable.

Hence, another special class of Monte Carlo methods is importance sampling, which

draws samples from an approximated density π(ξ), simpler to sample from, instead of

the original p(ξ)

Ep [ψ(H(ξ))] =

∫
ψ(H(ξ))p(ξ)dξ =

∫
ψ(H(ξ))

p(ξ)

π(ξ)
π(ξ)dξ = Eπ

[
ψ(H(ξ))

p(ξ)

π(ξ)

]
.

(2.26)

The requirement on the importance density is that its support should be greater or

equal to the one of p(ξ) [127]. Thus, the expectation can be computed again as a

weighted sum by weighting each sample with a measure of the deviation between the

original and sampled distribution

E [ψ(H(ξ))] ≈
∑
j

w(j)ψ
(
H(ξ(j))

)
, (2.27)

where

w(j) =
1

N

p(ξ(j))

π(ξ(j))
(2.28)

and ξ(j) ∼ π(ξ).

Intuitively, the weights correct the bias associated to the samples selected from a

non-ideal distribution. Clearly, the closer the importance distribution is to the original

one, the smaller the required bias correction is, i.e w(j) ≈ 1/N . The same weights

computed for the expected value can be used for the covariance, or higher-order moment

approximation. Liu [127] suggests to use the normalised weights:

ŵ(j) =
w(j)∑
j w

(j)
. (2.29)

The resulting estimate, although biased, often results in a smaller mean squared error.

The same weight choice is found in Sarkka [30] when deriving the importance sampling
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form for conditional probabilities.

Indeed, this framework applies also to the density functions in the sequential filtering

algorithms, where conditional distributions substitute p(ξ) and π(ξ). The specific form

importance sampling assumes for sequential filtering formulations will be discussed in

the relevant sections of Chapter 3.

Importance sampling should be preferred when the probability distribution is com-

plex to sample but rather easy to evaluate, or when the expectation has to be evaluated

for a set of possible density functions p ∈ P, as in the case of epistemic uncertainty (2.2).

Indeed, in the latter case, the most expensive evaluations ψ
(
H(ξ(j))

)
(which typically

require numerical propagations) should be performed only once per sample. Then,

the expectation corresponding to different distributions is computed by using different

weights w(j), which are inexpensive evaluations of the specific density function.

Formally, in Monte Carlo methods, the propagated pdf is approximated as a discrete

distribution as [30]

p(z) =

N∑
j=1

w(j) δ
(
z− z(j)

)
, (2.30)

where δ is the Dirac function.

2.4.2 Gaussian cubature

Powerful methods exist to solve integrals in the expectation form when the density

function is Gaussian

E
[
ψ
(
H(ξ)

)]
=

∫
ψ
(
H(ξ)

)
N
(
ξ;µξ,Σξ

)
dξ , (2.31)

where µξ and Σξ are the mean and covariance of the normal distribution, respectively.

The strategy is again to approximate the integral as a weighted sum

E
[
ψ
(
H(ξ)

)]
≈

N∑
j=1

w(j)ψ
(
H(ξ(j))

)
, (2.32)

but, now, the weights and samples are not sampled from the pdf but constructed

deterministically. The weights, positive or negative, should sum to one to have an
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unbiased estimate.

The Unscented Transform (UT) builds the sigma points by fitting a discrete dis-

tribution to the input density. The most common variant relies on the use of 2nξ + 1

sigma points [128]. In this case, the UT can approximate a Gaussian distribution up to

the third-order, while errors appear as a result of fourth-order cross-kurtoses terms. In

the derivation by Wan and Van Der Merwe, the points and weights are selected around

the mean value and scaled according to the covariance [129].

On the other hand, in Gauss-Hermite cubature, the weights and samples are cho-

sen to integrate polynomial integrands exactly. Thus, ξ(j) are chosen to be the roots

of multivariate Hermite polynomials of order q, which exactly integrate polynomial

integrands up to order 2q − 1 [130]. The multivariate Gauss-Hermite grid is usually

constructed by Cartesian products of univariate ones, therefore the number of samples

increases exponentially with the uncertainty dimension. Sparse Gauss-Hermite rules

are available to achieve only a polynomial increase [124, 131] and fight the curse of

dimensionality encountered in high-dimensional problems. Again, the grid level is a

tunable parameter connected to the polynomials’ order which determines the number

of collocation points in each dimension, and samples are different for different levels.

Therefore, Gauss-Hermite cubature enables adaptive approximations of the estimator

as the grid level can be sequentially increased until a convergence metric is met.

Once the set of deterministic samples has been selected by either technique, the

first two moments of the propagated distribution p(z) are reconstructed as [132, 130]:

µz ≈
N∑
j=1

w(j)H(ξ(j)) (2.33)

Σz ≈
N∑
j=1

w(j)
(
H(ξ(j))− µz

)(
H(ξ(j))− µz

)T
. (2.34)

Higher-order moments can be computed as well by plugging the relevant ψ in Eq. (2.32).

The main advantage of such techniques over statistical or Taylor linearisation, e.g.

as for the extended Kalman Filter, is that they do not require differentiability or deriva-

tive information of the nonlinear mappings ψ and H.
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2.5 Chapter summary

This chapter introduced the methods for efficient UP in dynamical systems that are used

in this thesis. A two-step approach was employed: first, a polynomial representation

of the dynamics was constructed; then, the propagated distribution or some summary

statistics was computed by exploiting the polynomial representation.

Two approaches were presented for constructing the polynomial, one intrusive based

on generalised polynomial algebra, the other non-intrusive using stochastic collocation.

For both, a reinitialisation strategy was presented to keep the uncertain dimensionality

contained in multi-segment or multi-phase problems.

Finally, practical approaches for computing the propagated distribution or its mo-

ments were presented, differentiating between Monte Carlo methods for generic dis-

tributions and quadrature approaches tailored for Gaussian densities, which will be

extensively employed in the applications’ part.
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Chapter 3

Robust State Estimation

The content of this chapter was published in:

C. Greco, and M. Vasile, “Robust Bayesian Particle Filter for Space Object Track-

ing Under Severe Uncertainty”, Journal of Guidance, Control, and Dynamics, un-

der review [84];

C. Greco, and M. Vasile, “Closing the loop between mission design and navigation

analysis”, International Astronautical Congress, The Cyberspace Edition, 2020 [93].

This chapter presents two novel methods for state estimation of dynamical systems

under an imprecise specification of the probability distributions modelling the problem

uncertainty [101]. The proposed state estimation formulation encompasses both mixed

aleatory and epistemic models for the uncertain components. The prior, likelihood, and

transition distributions are set-valued rather than precisely specified. Specifically, set-

valued hyperparameters are employed to parameterise the epistemic sets, making this

model more general than the closed convex sets found in most methods in literature.

Bayes inference is used to compute a posterior distribution leading to an infinite number

of posteriors compatible with this set-valued specification. This epistemic filtering

scheme can also be used to study how the filter output is affected by changes in input

parameters of predefined families of distributions.

The chapter is structured as follows. Section 3.1 introduces the robust filtering

formulation under epistemic uncertainty. Section 3.2 presents the robust particle fil-

tering approach to solve the filtering problem under epistemic uncertainty. Section 3.3
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describes the second approach, which employs variational inference and epistemic un-

certainty reinitialisation. Finally, Section 3.4 concludes the chapter with a short recap

of the introduced methods.

3.1 Filtering formulation

The state estimation problem addressed in this thesis is a generalisation of the mixed

continuous-discrete one [133]: the system state evolves according to a time-continuous

differential equation, whereas indirect noisy observations are collected at discrete in-

stants of time.

3.1.1 Precise filtering

Again, let x ∈ Rx be the state of a dynamical system evolving according to a nonlinear

differential equation (2.17). If the system initial condition x(t0) = x0 and the dynamical

model parameters d were known perfectly, there would be no need for measurements, as

the equations of motion could be (usually numerically) integrated to obtain the system

evolution in time. However, in real-life scenarios, uncertainty is always involved in such

systems, and measurements are needed to refine the state knowledge at a later time.

Thus, let us consider uncertainty on the initial conditions, model parameters, and on

the state at a generic time, as introduced in Section 2.3.

Hence, the system is observed through indirect noisy measurements. The measure-

ments yk ∈ Ry, taken at time instances tk for k = 1, . . . ,M with tk < tk+1, is a known

realisation of a random variable Yk governed by a stochastic measurement model

yk = h(tk,xk, εk), (3.1)

where εk is a stochastic term modelling sensor noise.

Hence, the standard continuous-discrete state-space is formulated in a probabilis-

tic fashion [30] to explicitly describe the uncertain nature of the system in terms of
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probability density functions p as
X0 ∼ p(x0) (3.2a)

Xk ∼ p(xk |xk−1) (3.2b)

Yk ∼ p(yk |xk) for k = 1, . . . ,M , (3.2c)

where p(x0) is the initial density function, p(xk |xk−1) is the transition density function

and p(yk |xk) is the observation likelihood. The transition probability describes the

system dynamics as a Markov chain as resulting from the uncertainty on the model

parameters. The likelihood function models the probabilistic state-observation spaces

relationship governed by sensor noise.

Given a precise specification of the densities in Equation (3.2), the complete solution

of the filtering problem of general state estimation is the posterior distribution of the

state conditional to the previously received observations

p(xk |y1:k) . (3.3)

Generally, this posterior distribution is arduous to compute, and its complete knowledge

is not required, as already discussed in Chapter 2. Therefore, state estimation and

filtering algorithms primarily focus on the computation of the expectation of a generic

function ψ : Rx → R of the uncertain state given the received measurements as

Ep
[
ψ(xk) |y1:k

]
=

∫
ψ(xk) p(xk |y1:k) dxk , (3.4)

with respect to the posterior distribution.

3.1.2 Imprecise filtering

In the case of epistemic uncertainty, the probability distributions cannot be assumed

to be known precisely, but they are only specified within an imprecise set P. Within

these sets of distributions, no judgement is made about their relative likeliness. This

definition allows one to model more faithfully uncertain scenarios in which information

is too scarce to specify a single distribution. In this thesis, we focus on parametric
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distributions with epistemic uncertainty on their parameter λ ∈ Rλ as described in

Section 2.1. The use of families of distributions captures the epistemic component in

the knowledge of the exact probability governing the realisation of an event. In the

filtering context, epistemic uncertainty can be associated with the poor characterisation

of physical, e.g. celestial body’s physical characteristics, or system parameters, e.g.

sensor noise or engine performance. When information is sufficient to identify a single

distribution, uncertainty is purely aleatory and Ωλ degenerate to a singleton. Therefore,

this model is a generalisation of the pure aleatoric model.

In this generalised scenario, the probabilistic continuous-discrete estimation prob-

lem can be written to account for the new epistemic component as
X0 ∼ p(x0;λ0) ∈ Px0 (3.5a)

Xk ∼ p(xk |xk−1;λx) ∈ Pxk|xk−1
(3.5b)

Yk ∼ p(yk |xk;λy) ∈ Pyk|xk for k = 1, . . . ,M, (3.5c)

where λ0 ∈ Ωλ0 , λx ∈ Ωλx and λy ∈ Ωλy are the epistemic parameters for the initial,

transition and likelihood distributions, respectively. Hereafter, λ = [λ0,λx,λy] is used

to indicate the collection of the three epistemic parameters, Ωλ the collection of their

respective sets, and pλ =
{
p(x0;λ0) , p(xk |xk−1;λx) , p(yk |xk;λy)

}
the collection of

the corresponding densities.

Such uncertainty specification induces an infinite number of posterior distributions

p(xk |y1:k;λ) (3.6)

parameterised in λ, which represent the complete solution of the robust estimation pro-

cess. In the epistemic setting, the expectation of interest has a parametric dependency

on λ

Epλ
[
ψ
(
xk
)
|y1:k

]
=

∫
ψ(xk) p(xk |y1:k;λ) dxk . (3.7)

Being the set of posterior distributions infinite in general, there are infinite values of

such expectation for varying λ.

Hence, the outcome of the presented robust estimation process is an interval whose
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bounds are the lower and upper values of the expectation of the quantity of interest

conditional on the observations. The lower and upper expectations are defined as

E
[
ψ
(
xk
)
|y1:k

]
= min
λ∈Ωλ

Epλ
[
ψ
(
xk
)
|y1:k

]
(3.8a)

E
[
ψ
(
xk
)
|y1:k

]
= max
λ∈Ωλ

Epλ
[
ψ
(
xk
)
|y1:k

]
, (3.8b)

that is the minimum and maximum of the expectation computed with respect to the

posterior p(xk |y1:k;λ). If the imprecise sets were precise, i.e. Ωλ was a singleton,

Equations (3.8a) and (3.8b) would coincide. We will refer to the distributions with

epistemic parameters corresponding to the argument of the minimum and maximum

in Eq. (3.8) as lower and upper distributions, respectively.

A direct optimisation could compute these bounds over the parameterised imprecise

sets where each objective function evaluation requires an independent precise filtering

run for each candidate epistemic parameter λ to evaluate. In this case, however, the op-

timisation would be inefficient because the expectation Epλ would be used as a black-box

cost function. Therefore, the computations performed during the filter call run would

be discarded each time. Furthermore, if bounds on the expectation should be updated

as new observations arrive, the optimisation would need to be rerun completely.

3.2 Robust particle filter

Hence, in this section, we propose the Robust Particle Filter (RPF) to efficiently com-

pute bounds on the expectation of a given quantity of interest by exploiting a pre-

computation of the particles. Given the sequential nature of this filter, when a new

observation is available, the bounds can be updated by still exploiting the precompu-

tations performed at the previous step.

The overall RPF algorithm to compute robust bounds under epistemic uncertainty

is thus schematised in Algorithm 3. Line 1 is the precomputation step performed

using a standard particle filter. Line 2 is the bound computation routine performed

by a Branch & Bound (B&B) optimisation of the expectation estimator θ̂. These two

fundamental steps will be discussed in greater detail in the next two sections.
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Algorithm 3 Algorithmic scheme for the Robust Particle Filter.

Given:
· the estimation problem (3.5)
· the proposal distributions π(x0) and π(xk |xk−1,y1:k)

1: Precomputation step by standard Particle Filter

Save collection of particles χ0:M , densities π
(i)
0:M , and function evaluations ψ(i).

2: Bound computation by Branch & Bound

θ̂(χ0:M ) = min
λ∈Ωλ

θ̂(χ0:M ,λ)

θ̂(χ0:M ) = max
λ∈Ωλ

θ̂(χ0:M ,λ)

3.2.1 Expectation estimator

If no specific assumption, or parameterisation, is imposed on the distributions pλ, the

expectation has no closed-form solution, and numerical techniques are required. In this

section, we employ a precomputed Sequential Importance Sampling (pSIS) to construct

an estimator θ̂(xk,λ) for the expectation Epλ
[
ψ
(
xk
)
|y1:k

]
.

Precomputed sequential importance sampling

One of the main difficulty in computing the sought expectation is that in most practical

applications it is impractical to draw samples directly from the posterior distribution

p(xk |y1:k;λ), although it is possible to evaluate its density. To overcome this challenge,

the integral in Eq. (3.7) is written by using a proposal distribution as

Epλ
[
ψ
(
xk
)
|y1:k

]
=

∫
ψ(xk)

p(xk |y1:k;λ)

π(xk |y1:k)
π(xk |y1:k) dxk

=

∫
ψ(xk)w(xk)π(xk |y1:k) dxk,

(3.9)

under the condition that π, the so-called proposal distribution, has a larger support

than p(xk |y1:k;λ). The function w(xk) is the ratio between the target distribution

and the proposal one functioning as a weight measuring their deviations. The proposal

distribution should be chosen such that it is simple to draw samples from it.

Furthermore, to exploit the sequential nature of the tracking problem (3.5) the
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posterior in Eq. (3.6) can be decomposed as

p(xk |y1:k;λ) ∝ p(yk |xk,y1:k−1;λ) p(xk |y1:k−1;λ)

= p(yk |xk;λ) p(xk |x0:k−1,y1:k−1;λ) p(x0:k−1 |y1:k−1;λ)

= p(yk |xk;λy) p(xk |xk−1;λx) p(x0:k−1 |y1:k−1;λ),

(3.10)

with initial condition p(x0:0 |y1:0;λ) = p(x0;λ0). The first relationship stems from

unnormalised Bayes’ inference, where the normalisation constant p(yk |y1:k−1) is not

computed as too expensive to evaluate. Neglecting the normalisation constant requires

a self-normalisation step (see Eq. (3.13b)) that causes the final estimator to be only

asymptotically unbiased [134]. The second one results from the conditional indepen-

dence of the observation yk given the state xk, and from writing the joint distribution

p(xk |y1:k−1;λ) in terms of the conditional one. The last relation comes from the

Markov property of the dynamical system, that is, conditional independence on the

previous history of xk once xk−1 is given.

Also, the proposal distribution should be chosen as

π(xk |y1:k) = π(xk |x0:k−1,y1:k) π(x0:k−1 |y1:k−1), (3.11)

with initial condition π(x0:0 |y1:0) = π(x0). If the initial distribution could be inexpen-

sively sampled, the optimal choice is to set π(x0) = p(x0). With a proposal in this form,

the samples can be drawn sequentially, that is, when the samples χk = {x(1)
k , . . . , x

(N)
k }

at time tk need to be drawn, the samples until tk−1 need not to be drawn again. The

new collection of samples is formed as χ0:k = {χ0:k−1,χk}.

Hence, the estimator is

θ̂
(
χ0:k;λ

)
=

N∑
i=1

ŵ
(i)
k (λ)ψ

(
x

(i)
k

)
, (3.12)

where samples x
(i)
k are drawn from π(xk |x0:k−1,y1:k) and xk = {x0:k−1,xk} thanks to

the sequential choice of the proposal (3.11), and w
(i)
k (λ) are the importance weights,
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computed in a sequential fashion as

w
(i)
k (λ) =

p(yk |x
(i)
k ;λy) p(x

(i)
k |x

(i)
k−1;λx)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

ŵ
(i)
k−1(λ) (3.13a)

ŵ
(i)
k (λ) =

w
(i)
k (λ)∑N

j=1w
(j)
k (λ)

, (3.13b)

with ŵ
(i)
0 (λ0) = p(x

(i)
0 ;λ0)/π(x

(i)
0 )/N . The weight update rule in Eq. (3.13a) does not

include the posterior normalisation constant, as it has been neglected in Eq. (3.10),

therefore Eq. (3.13b) is the weight self-normalisation which ensure the estimator con-

sistency, that is, it converges in probability to the true value with increasing sample

size [135].

The proposal distribution may not be representative for all the distributions in the

posterior epistemic set. Therefore, the estimate may be significantly biased when using

the same samples for different epistemic parameters λ. We use an a posteriori check on

the figure of the effective sample size to ensure that the estimator yields a satisfactory

accuracy in the computation of the expectation. This will be discussed in detail in a

later section concerning the proposal selection.

Such estimator brings an advantageous decoupling between the weights, dependent

on the epistemic parameter, and the particle sampling, independent from the epistemic

parameter. Therefore, once a set of particles has been drawn from a fixed proposal and

propagated, the optimisations in Eq. (3.8) can be carried out by optimising the impor-

tance weights w
(i)
k (λ). Hence, all the quantities which are independent of the epistemic

parameter are precomputed before the optimisation. Indeed, once the proposal distri-

butions have been chosen, the particles sampling, the proposal density evaluations and

the function ψ evaluations can be computed offline. The precomputations are outlined

in Algorithm 4. A graphical representation is sketched in Fig. 3.1. First, the initial

samples are drawn from the initial proposal distribution and the initial densities com-

puted by evaluating the proposal (Line 1 of Algorithm 4 and Fig. 3.1(a)). Then, for

each of the M observations, the particles are drawn from the transition proposal and

the densities evaluated for such samples (Line 2 and Fig. 3.1(b)). The particles rep-

48



Chapter 3. Robust State Estimation

Algorithm 4 Precomputation for sequential importance sampling estimator.

Given:
· the estimation problem (3.5)
· the proposal distributions π(x0) and π(xk |xk−1,y1:k)

1: Draw N particles from the initial distribution π(x0) and evaluate density

x
(i)
0 ∼ π(x0) , π

(i)
0 = π(x

(i)
0 )

for k = 1 : M do

2: Draw N particles from the proposal transition and evaluate density

x
(i)
k ∼ π(xk |x

(i)
k−1,y1:k) , π

(i)
k = π(x

(i)
k |x

(i)
k−1,y1:k)

end for

3: Evaluate function ψ for each particle path realisation

ψ(i) = ψ(x
(i)
0:M )

Save collection of particles χ0:M , densities π
(i)
0:M , and function evaluations ψ(i).

resent a discrete approximation of the propagated distribution (Fig. 3.1(c)). Finally,

once the whole collection of particles χ0:M has been generated, the function of interest

ψ is evaluated, and the resulting values saved (Line 3).
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Figure 3.1: Representation of precomputation step of sequential importance sampling
estimator: a) initial samples, b) propagated samples, c) propagated distribution ap-
proximation.

Once this precomputation step has been performed, the pSIS estimator is evaluated

for an epistemic parameter λ as described in Algorithm 5. Its graphical representation

is shown in Fig. 3.2. The pSIS is evaluated by computing the new weights ŵ
(i)
k (λ) for

a given λ. By starting from the precomputed initial samples (Fig. 3.2(a)), the initial

distribution with epistemic parameter λ0 is targeted by adjusting the weights (Line 1

of Algorithm 5 and Fig. 3.2(b)) as the ratio between the distribution (in green) and the
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Algorithm 5 Algorithmic scheme for precomputed sequential importance sampling
estimator.

Given:
· the estimation problem (3.5)

· the precomputed quantities χ0:M , π
(i)
0:M and ψ(i)

· epistemic parameter λ = [λ0,λx,λy] to evaluate

1: Set the weights of the N precomputed initial samples χ0 and normalise them

w
(i)
0 = p(x

(i)
0 ;λ0)/π

(i)
0 /N

for k = 1 : M do

2: Update the weights of the precomputed samples χk and self-normalise them

w
(i)
k = ŵ

(i)
k−1 p(yk |x

(i)
k ;λy) p(x

(i)
k |x

(i)
k−1;λx)/π

(i)
k , ŵ

(i)
k = w

(i)
k /

∑N
j=1w

(j)
k

end for

3: Evaluate the estimator with the updated weights ŵ
(i)
k

θ̂
(
χ0:M

)
=
∑N

i=1 ŵ
(i)
M ψ(i)

initial proposal (in blue) normalised by the number of particles, such that Eq. (3.12) is

coherent also for k = 0. For each observation instance, the precomputed samples are

used to save new propagations (Fig. 3.2(c)). Their weights are updated (Line 2 and

Fig. 3.2(d)) according to Eq. (3.13) with the new transition and likelihood (represented

in dashed dark yellow line). Finally, the estimator is computed as a weighted sum of

the updated weights and the precomputed function evaluations (Line 3).
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Figure 3.2: Representation of precomputed sequential importance sampling estimator:
a) initial samples, b) adjusted weights, c) precomputed samples at next time step, d)
updated weights after conditioning with the likelihood (dashed curve).
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Estimator derivatives

The derivatives of the pSIS estimator can be computed analytically. The derivative

knowledge is precious in the bound computation (3.8) as it enables the use of efficient

gradient descent methods to improve the exploitation stage in the optimisation. Fur-

thermore, because the precomputed SIS works on fixed samples χ0:k, there would be

no noise due to sampling in the derivative information.

Let us assume that we can compute the derivatives of the density functions in

Equation (3.5), that is, we can evaluate

∇λ0 p(x0;λ0) (3.14a)

∇λx p(xk |xk−1;λx) (3.14b)

∇λy p(yk |xk;λy). (3.14c)

The quantity to compute is the gradient of the estimator with respect to the epis-

temic parameters

∇λ θ̂ =

∇λ0 θ̂

∇λx θ̂
∇λy θ̂

 . (3.15)

By the linearity of the derivative operator and the chain rule, the gradient can be

computed as

∇λ θ̂ =

N∑
i=1

ψ(i)∇λŵ
(i)
M , (3.16)

since the precomputed function evaluations ψ(i) = ψ(x
(i)
k ) are independent from λ.

Hence, the estimator gradient is obtained by computing the derivative of the weights.

By Eq. (3.13) and chain rule again, the weight derivative ∇λ ŵ
(i)
k can be computed by
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the previous weight derivative ∇λ ŵ
(i)
k−1 as

∇λw
(i)
k =

 0

p(yk |x
(i)
k ;λy) ∇λx p(x

(i)
k |x

(i)
k−1;λx)

∇λy p(yk |x
(i)
k ;λy) p(x

(i)
k |x

(i)
k−1;λx)

 ŵ(i)
k−1

π
(i)
k

+

p(yk |x
(i)
k ;λy) p(x

(i)
k |x

(i)
k−1;λx)

π
(i)
k

∇λ ŵ
(i)
k−1

(3.17a)

∇λ ŵ
(i)
k =

N∑
j=1

∂w
(i)
k

∂w
(j)
k

∇λw
(j)
k , (3.17b)

with
∂w

(i)
k

∂w
(j)
k

= −
w

(i)
k(∑N

k=1w
(k)
k

)2 +
δij∑N

k=1w
(k)
k

(3.18)

where δij = 1 if i = j, δij = 0 otherwise. The initial conditions for the weights derivative

computation are

∇λw
(i)
0 =

∇λ0 p(x
(i)
0 ;λ0)/π

(i)
0

0

0

 (3.19)

because the initial distribution does not depend on the epistemic parameters λx and

λy.

Algorithmic complexity

In this section, the algorithmic complexity of evaluating the estimator (3.12) is assessed.

Specifically, the complexities of the precomputation step and the pSIS estimator are

analysed separately to pinpoint the main saving of precomputation.

Let cx0 be the complexity of drawing one particle from π(x0), cx the complexity to

sample the proposal π
(
xk |x0:k−1,y1:k

)
, cπ the complexity of evaluating each term of

the proposal (3.11) (assumed equal complexity), cp the complexity of evaluating each of

the distributions in problem (3.5) (assumed equal complexity), and cψ the complexity

of evaluating the function ψ.

The complexity of the precomputation step can be assessed by looking at the com-

plexity of each step in Algorithm 4:
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1. N (cx0 + cπ) as N particles are drawn from and evaluated with the initial proposal;

2. N (cx + cπ) since N particles are drawn from and evaluated with the transition

proposal;

3. Ncψ because there are N evaluations of the function ψ.

Step 2) is performed M times because of the for-loop over the number of observation

instances. Therefore, the computational complexity of the precomputation step of the

pSIS estimator is

Cpre
(
M,N

)
= N(cx0 + cπ + cψ) +M N (cx + cπ) = O

(
N +MN

)
, (3.20)

which is linear both with the number of observations M and the number of particles

N employed and displays an interaction between them.

Once the precomputations have been performed, the computational complexity of

the pSIS estimator is assessed by studying each step in Algorithm 5:

1. N (cp + 2) because the importance weights are computed by evaluating the initial

distribution and performing two divisions per weight;

2. N (cp + 3)+2N−1 since the unnormalised weights are computed by evaluating two

densities and performing three products or divisions, whereas the normalisation

requires N − 1 sums and N divisions;

3. 2N − 1 because the estimator is computed by N multiplications and N − 1 sums.

Step 2) is performed M times. Thus, the computational complexity of the pSIS is

CpSIS
(
M,N

)
= N(cp + 4)− 1 +M [N(2cp + 5)− 1] = O

(
N +M +MN

)
, (3.21)

which again is linear both with the number of observations M and in the number of

particles N employed and showing the interaction between the two of them. In space

tracking, the main saving stems from removing the term MNcx, that is, sampling from

the proposal distribution, which implies sparing MN new numerical integrations of the

equations of motion every time the estimator is evaluated in the optimisation routine.
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As for the estimator derivatives, let c∂p be the computational complexity of eval-

uating one of the derivative in Eq. (3.14) (assumed equal complexity), and nλ =

nλ0 +nλx+nλy the total number of epistemic parameters. The computational complexity

of evaluating the derivative of the pSIS estimator is

C∂psis(M,N) = O(MNnλc∂p +MN2) = O(MN +MN2), (3.22)

where the quadratic term comes from Eq. (3.17b), and the quantities already computed

in Algorithm 5 have not been recomputed, e.g. evaluating the densities and the com-

putation of the weights. The terms c∂p and nλ have been retained in the first big O

notation because their value influence significantly the algorithm complexity.

Thus, evaluating analytically the estimator derivatives requires an algorithmic com-

plexity of O(MN2 +MNnλc∂p +MNcπ). If the same quantities were to be computed

by finite differences, the computational complexity would be O(MNnλcπ), that is eval-

uating the estimator nλ times (or a small multiple of nλ). Because of the quadratic

term and because typically c∂p > cπ, the finite differences method has lower complex-

ity in general. On the other hand, finite differences provide only an approximation

of the actual derivative value and therefore are affected by truncation errors. Hence,

the choice between an exact but slower derivative computation and a faster but less

accurate finite difference approximation should be resolved for each specific test case.

Factors influencing this trade-off are cπ, nλ, c∂p and the assessed accuracy of the finite

difference approximation.

Proposal selection

As discussed, the self-normalised pSIS estimator is asymptotically unbiased, but the

bias could be significant for small sample sizes [134]. Even when enough particles are

employed, the sequential estimator often suffers from the degeneracy problem, that is,

when most of the particles have zero weights [30], which causes the estimate to rely on

a small effective sample. The main cause of degeneracy is the choice of a non-optimal

(in terms of bias) proposal distribution, which is one that differs significantly from the
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target posterior. This problem is exacerbated in the epistemic scenario because there

may not be a single proposal distribution which keeps the bias low for all the posteriors

resulting from the epistemic set λ ∈ Ωλ.

In this work, the effective sample size is computed as neff = 1/
∑N

i=1w
(i)2

k . The

condition of effective size below a minimum threshold is often used to trigger resam-

pling in particle filtering [126]. However, resampling is not possible in the constructed

precomputed estimator as the particles are drawn before the optimisation. Thus, one

would need to check the effective sample size at the end of the estimation process and

loop back to update the proposal, as done in iterated importance sampling [134].

An alternative to ensure a satisfactory sample size is to use a strategy analogous to

the one implemented in recent Unscented Particle Filter (UPF) [136]. The main idea

is to construct an approximated posterior by introducing information on the expected

measurement through an Unscented Kalman Filter (here in Line 2 of Algorithm 4).

Starting from a set of particles generated with a given proposal, one would apply a

Unscented Kalman Filter (UKF) to each particle and do conditioning with the likeli-

hood of the expected measurements. The main computational advantage of a UKF-

based proposal in this method is that the sigma points can be propagated inexpensively

through the surrogate polynomial expansion approximating the dynamical flow. The

posterior of this process is a new proposal that includes information about the last ob-

servation resulting in more particles distributed in regions of higher expected likelihood,

a crucial step to ensure a satisfactory effective sample size even without resampling.

In the case in which measurements are affected by epistemic uncertainty, this ap-

proach presents two challenges: 1) approximate the likelihood with a normal distri-

bution such that the UKF can be applied; 2) construct a posterior which takes into

account that the statistical moments of the likelihood are set-valued. We address these

two challenges with the following solutions. First, we approximate the generic likelihood

with a normal

p(yk|xk;λ(j)
y ) ≈ N

(
yk|xk;µ(j)

y ,Σ(j)
y

)
(3.23)

where µ
(j)
y = µ

(j)
y (λ

(j)
y ) and Σ

(j)
y = Σ

(j)
y (λ

(j)
y ) are the parameterised mean and covari-

ance. For distributions with undefined or infinite mean or covariance, e.g. Lévy or
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Cauchy distributions, the location and scale parameters could be used as substitutes

for the mean and covariance. The second challenge is addressed by constructing the

proposal as a convex combination of UKF posteriors, each resulting from a different

likelihood in the epistemic set

π(xk |x
(i)
k−1,y1:k) =

Nπ∑
j

bj N
(
xk;µ

(i,j)
k ,Σ

(i,j)
k

)
, (3.24)

where
∑

j bj = 1.

The overall approach is described in Algorithm 6. Right arrows represent input to

output relationships for the corresponding line in the algorithm. The initial proposal

Algorithm 6 Construction of proposal distributions.

Given the estimation problem (3.5)

1: Set initial proposal as convex combination of distributions in epistemic set

π(x0) =
∑Nπ

j p(x0;λ
(j)
0 )/Nπ with λ

(j)
0 ∈ Ωλ0

2: Draw N particles from the initial proposal π(x0)

x
(i)
0 ∼ π(x0)

3: For each particle, initialise UKF mean as particle value and covariance as sample
covariance
µ

(i)
0 = x

(i)
0 , Σ

(i)
0 =

∑
j(x

(j)
0 − µ

(i)
0 )(x

(j)
0 − µ

(i)
0 )T /(N − 1)

for k = 1 : M do

4: Propagate UKF mean and covariance with UT

µ
(i)
k−1,Σ

(i)
k−1 → µ

(i)
k ,Σ

(i)
k

for j = 1 : Nπ do

5: Select an epistemic parameter λ
(j)
y ∈ Ωλy and approximate the likelihood

p(yk|xk;λ
(j)
y )→ N

(
yk|xk;µ

(j)
y ,Σ

(j)
y

)
6: Update UKF mean and covariance with Bayes’ update

µ
(i)
k ,Σ

(i)
k → µ

(i,j)
k ,Σ

(i,j)
k

end for

7: Construct proposal with UKF posteriors

π(xk |x
(i)
k−1,y1:k) =

∑Nπ
j bj N

(
xk;µ

(i,j)
k ,Σ

(i,j)
k

)
end for

is constructed as a convex combination of multiple distributions in the initial epistemic

set (Line 1). N particles are drawn from the proposal (Line 2), and for each of them, the
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mean and covariance of the parallel UKFs are initialised (Line 3). For each observation

instance, the UKF distributions are propagated forward in time with the UT [137] (Line

4). Then, Nπ likelihoods are selected within their epistemic set according to a low-

discrepancy sequence, and approximated with normal distributions (Line 5) according

to the rule discussed above (see Eq. (3.23)). For each normal likelihood, the UKF

Bayes’ update is performed to compute the posterior mean and covariance (Line 6).

From here, the proposal is constructed as the collection of UKF posteriors (Line 7).

The weights bj , which sum to one, could express the belief on the relative likelihood of

each epistemic parameter.

Such procedure requires application-specific information as working input, partic-

ularly the received observations’ likelihood and the epistemic domain specification.

Nonetheless, this information is part of the epistemic filtering specification and there-

fore this proposal can be constructed for any specification of the likelihood set and

application to solve.

With this approach, the proposal is constructed to cover the support of each like-

lihood in the epistemic set while concentrating more particles in high-likelihood areas.

Furthermore, the UKF-based proposal concentrates more particles in high-likelihood

areas because it explicitly incorporates information on the observations, thus reducing

the risk of sample degeneracy. This behaviour is particularly valuable in space appli-

cations characterised by multi-dimensional spaces, highly peaked likelihoods (accurate

observations), and little overlap between the predicted distribution and the likelihood.

Polynomial propagator

Propagating the particles in time is the most computationally intensive step in space

applications as it requires solving the initial value problem in Eq. (2.17) by numeri-

cal integration as many times as the number of particles employed. In this filter, a

polynomial surrogate of the dynamical flow is employed to speed up the uncertainty

propagation step and enable the use of a large number of particles to improve the

estimate accuracy.

The polynomial expansion discussed in Section 2.3 is adapted here to approximate
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the dynamical flow F̃ k+1
k . The particles are then propagated from tk to tk+1 through

inexpensive polynomial evaluations.

3.2.2 Bound estimator

The robust estimation method computes the bounds in Eq. (3.8) by taking advantage

of the efficient estimator constructed above. In the following, the routine to estimate

the lower bound only will be discussed, as the same approach holds for the upper bound

with appropriate modifications.

The lower bound estimator and the epistemic parameter achieving it are denoted

as

θ̂(χ0:M ) = min
λ∈Ωλ

θ̂(χ0:M ,λ) (3.25a)

λ(χ0:M ) = arg min
λ∈Ωλ

θ̂(χ0:M ,λ), (3.25b)

that is, the minimum of the expectation estimator and the argument of the minimum

given the set of samples χ0:M . By employing the precomputation step, and Algo-

rithm 5 to evaluate the estimator for a candidate λ, the estimator is written in the

form of θ̂
(
χ0:M ,λ

)
=
∑N

i=1 ŵ
(i)
M (λ)ψ(i), with precomputed ψ(i), so that the optimisa-

tion process operates on the importance weights only w
(i)
M (λ).

Eq. (3.25) entails two challenges: first, the optimisation problem is generally multi-

modal since the objective function results from numerous operations between nonlinear

functions as in Eq. (3.13); second, even if the global extremum is found, θ̂ could still

deviate from the true sought bound E. The first challenge is addressed with a nu-

merical global optimisation scheme with ensured convergence, presented in detail in

Section 3.2.3. For the latter, indicators and confidence intervals to improve and quan-

tify how well the estimator approximates the true bound are here discussed.

In a previous work [98] we analysed the estimator landscape (collision probability

in that instance) as a function of the epistemic parameters and their correlation. The

results showed a strong nonlinearity and multi-modality of the objective function. Thus,

a local optimiser cannot handle the bound computation as it may converge to a local

58



Chapter 3. Robust State Estimation

optimum only, and therefore it may yield an inner approximation leading to a loss of

robustness. Besides, if an outer approximation is used the risk is to obtain a vacuous

model where bounds are too wide to be useful. The B&B scheme presented in this

section assures asymptotic convergence to the exact bounds and provides an outer

approximation if stopped before convergence to the global optimum.

The approximation of the bound value itself depends on two additional factors: the

precision of the pSIS estimator (3.12) in approximating the expectation for a given

epistemic parameter; the accuracy of the bound estimator (3.25) in approximating the

true bound.

The former requires the estimator θ̂(χ0:M ,λ) to suitably approximate the expecta-

tion Epλ
[
ψ
(
xk
)
|y1:k

]
. A good approximation is ensured by the check on the effective

sample size.

The latter requires the estimator θ̂(χ0:M ) to suitably approximate the true bound

E
[
ψ
(
xk
)
|y1:k

]
. [134] proved that the estimator (3.25) is a coherent lower expectation

if θ̂(χ0:M ,λ) is a coherent expectation, which is true for the constructed estimator

thanks to the self-normalisation of the weights. Furthermore, confidence bounds can

be constructed for the bound estimator [134]. Let χ1
0:M , . . . ,χ

2n
0:M be 2n sets of samples.

Define the quantities

θ̂
j

= θ̂
(
χj

0:M ,λ
(
χj

0:M

))
for j = 1, . . . , n

θ̂
j

= θ̂
(
χj

0:M ,λ
(
χj−n

0:M

))
for j = n+ 1, . . . , 2n,

(3.26)

with λ(χ0:M ) defined in Eq. (3.25b). For the first half, these are the classical bound

estimators, whereas for the other half, these require evaluating θ̂ for a set of samples

χj−n
0:M with the epistemic parameter minimizing the estimator for another set of samples

χj
0:M . Let µ1H

χ and σ1H
χ be the mean and standard deviation of the first half of θ̂

j
,

i.e. for j = 1, . . . , n, and µLHχ and σLHχ the ones of the last half of θ̂
j
, that is for

j = n + 1, . . . , 2n. Then, under the assumption that enough particles have been used

to keep the bias small and bounded for all λ, the confidence interval for the confidence

level 1− α is [
µ1H
χ − tα,n−1

σ1H
χ√
N
,µLHχ + tα,n−1

σLHχ√
N

]
, (3.27)
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where tα,n−1 is the 1−α two-sided critical value of the t-distribution with n−1 degrees

of freedom.

3.2.3 Global search

The optimisation problem (3.25) is generally nonlinear, nonconvex and multi-modal be-

cause of the nonlinear dependencies of the distributions from the epistemic parameters

and the nonlinear operations in the weights update step. Thus, a global optimisation

routine is employed to explore expensively and robustly the epistemic domain to find

the extremum of θ̂.

The global search for solving the optimisation problem in Eq. (3.25) is tackled with

a B&B approach using simplexes as subdomains and a Lipschitz-based lower bound

estimation. The advantage of using B&B is that asymptotic convergence to the global

optimum is granted and that an estimation of the distance from it is known at each iter-

ation. The advantage of using simplexes is that the number of branched sub-simplexes

is decoupled from the problem dimension rather than growing exponentially as with

a simple lattice grid. The Lipschitz constant can be estimated using the estimator

analytical derivatives. Indeed, under the assumption that the densities derivatives ex-

ist and are bounded for λ ∈ Ωλ, the precomputed SIS estimator is continuous and

differentiable with bounded derivatives in λ (from Eqs. (3.16) to (3.18)).

The B&B algorithm is presented in Appendix A.1. In this section, the bounding

strategy is discussed in detail along with a lemma on the bounding step needed for the

convergence proof. Then, the branching strategy is presented together with a lemma

showing that this approach eventually generates sub-domains of arbitrary small size,

and providing an upper bound on the number of branching steps. Finally, the theorem

proving the algorithm convergence is stated.
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Preliminary definitions

Let S ⊂ Rn be a n-simplex with vertexes [λ0, . . . ,λn]. Let L, with 0 < L <∞, be the

Lipschitz constant of θ̂ over Ωλ such that

∣∣θ̂(χk,λ1)− θ̂(χk,λ2)
∣∣ ≤ L‖λ1 − λ2‖ ∀λ1,λ2 ∈ Ωλ. (3.28)

Let the diameter of a n-simplex S be the maximum distance between any two points

belonging to the simplex, which is the maximum distance between two vertexes

σ (S) = max
i,j∈[0:n]

‖λi − λj‖ ,

and let λi∗ and λj∗ be the most distant vertices such that σ (S) =
∥∥λi∗ − λj∗∥∥. For

each branching step k = 1, . . . ,K, let Lk be the list of disjoint simplexes covering the

feasible domain, that is
⋃
jS

(j)
k = Ω for S(j)

k ∈ Lk and S(i)
k

⋂
S(j)
k = ∅ ∀S(i)

k ,S
(j)
k ∈ Lk.

Finally, let lb : S→ R be a function bounding θ̂ from below in the simplex S

lb(λ) ≤ θ̂(λ) ∀λ ∈ S

and denote lb(S) its minimum

lb(S) = min
λ∈S

lb(λ).

Thus, lb(S) is the lower bound for the minimum of θ̂ in the simplex. Similarly, denote

ub(S) the upper bound for the minimum of θ̂ in the simplex.

Bounding

Because θ̂ is Lipschitz continuous, the lower bounding function lb : S → R can be

defined as

lb(λ) = max
j

[
θ̂(λj)− L‖λ− λj‖

]
, (3.29)
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where λj are the vertexes of the simplex. The lower bound value lb(S) is therefore the

minimum of lb(λ) over the simplex S

lb(S) = min
λ∈S

max
j

[
θ̂(λj)− L‖λ− λj‖

]
. (3.30)

For the upper bound of the minimum, the minimum of the fitness values at the simplex

vertexes is chosen as trivial bound

ub(S) = min
j
θ̂(λj). (3.31)

Hence, we state a lemma to show that these values actually bound the minimum over

the simplex. The proof is presented in Appendix A.2.

Lemma 1. The bounds lb(S) and ub(S) in Eqs. (3.30) and (3.31) satisfy

lb(S) ≤ min
λ∈S

θ̂(λ) ≤ ub(S). (3.32)

Another property required to prove convergence of Algorithm 7 is that as the sim-

plex diameter goes to zero, the bounds difference should uniformly converge to zero.

This is proven in the following lemma for the B&B presented here. Again, the proof is

discussed in Appendix A.2.

Lemma 2. The bounds lb and ub satisfy

∀ε ∈ R+ ∃δ ∈ R+ s.t. ∀S ⊂ Rn, σ(S) ≤ δ =⇒ ub(S)− lb(S) ≤ ε. (3.33)

An analytical procedure has been developed to compute the lower bound lb(S) for

the Lipschitz bounding function in Eq. (3.30), and it is presented in Appendix A.3.

Branching

To prove B&B convergence, we need to show that the branching scheme eventually

produces a simplex of arbitrary size δ. We adopt Longest Edge Bisection (LEB) as

branching rule. The simplex S is split into two simplexes by bisection along its longest
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edge, that is, the one connecting the vertices λi∗ and λj∗ , such that

λ∗ij =
λ∗i + λ∗j

2
(3.34)

is the new vertex. The two offspringing simplexes S(1) and S(2) share the same vertices

of S except that one has λ∗ij in place of λ∗i , whereas the other has λ∗ij in place of λ∗j .

[138] showed that LEB reduces the diameter of a n-simplex of at least
(√

3/2
)bk/nc

after

k splittings. On the other hand, as trivial lower bound, LEB reduces the diameter of a

n-simplex no more than half the size of the immediate parent after 1 split.

For each branching step k = 1, . . . ,K, choose a simplex S ∈ Lk−1 and split it

into 2 disjoint simplexes S(1) and S(2) by LEB. Define the next list of simplexes as

Lk = (Lk−1 \ S) ∪ S(1) ∪ S(2).

We now state that this branching rule eventually creates a simplex of arbitrarily

small diameter and define an upper bound on the number of iterations. The proof is

reported in Appendix A.2.

Lemma 3. Let L0 be the initial list of N0 n-simplexes and

σ0 = max
S(i)

0 ∈L0

σ
(
S(i)

0

)

the largest diameter among them. For any δ ∈ R+, there exist K ∈ N such that the

LEB rule yields

min
S(j)
k ∈LK

σ
(
S(j)
k

)
≤ δ.

Specifically, the requested diameter is realised after at most K splitting of the initial

simplexes with

K = N0 n

⌈
log 2√

3

σ0

δ

⌉
. (3.35)

Convergence

The algorithm terminates when the difference between the upper and lower bounds on

the most promising simplex S∗, that is the one with the lowest bound for the minimum
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lb(S∗) ≤ lb(S(j)
k ) for any j, is below a given threshold. Let

Lk = min
S(j)
k ∈Lk

lb
(
S(j)
k

)
Uk = min

S(j)
k ∈Lk

ub
(
S(j)
k

)
,

then with the lemmas presented above, we can now state the theorem proving the

convergence of Algorithm 7. The proof is detailed in Appendix A.2.

Theorem 1. Algorithm 7 converges in a finite number of steps to within a set threshold

ε ∈ R+ of the global minimum θ̂. Specifically

∀ε ∈ R+ ∃Kε such that UKε − LKε ≤ ε, LKε ≤ θ̂ ≤ UKε .

This ensures the global minimum to be within the interval θ̂ ∈ [lb(S∗Kε), ub(S
∗
Kε

)] at

convergence after Kε steps.

Filter complexity with epistemic dimension

In this section, we quantify the computational complexity of the filter and its de-

pendency on the number of dimensions of the epistemic space. This dependency gives

a measure of the scalability of the filter with the number of epistemic parameters. We

start by noting that the number of particles in the pSIS estimator depends on the

dimension of the state space and on the shape of the distributions of the random vari-

ables Xk, D, and Y but not directly on the dimension of the epistemic space. Similarly,

the polynomial surrogate depends on the number of aleatory variable, but not on the

number of epistemic ones. Thus the only part of the filter whose complexity is directly

affected by the number of epistemic parameters is the global optimisation algorithm.

Let nλ be the number of epistemic variables. The initial number N0 of simplexes

in L0 covering the nλ-dimensional epistemic space depends on the rule employed to

partition Ωλ. We currently use a standard algorithm for triangulation of a hyper-box

into N0 = nλ! simplexes [139]. Nonetheless, a more convenient decomposition that
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yields a lower number of initial simplexes could be employed. Among them, an initial

circumscribing simplex with a fitness penalisation for points outside the domain yield

N0 = 1 regardless of nλ [140, 141], a minimum-cardinality triangulation can be achieved

by means of linear programming [142], or covering with intersecting simplexes could be

employed in place of triangulation [143]. Therefore, in our complexity analysis we will

retain N0 = N0(nλ) without making such dependence explicit.

In the first iteration, at most N0(nλ + 1) evaluations of the pSIS estimator are

required. For each LEB branching step, only one estimator evaluation is needed at the

new common vertex λ∗ij . By using the maximum number of branching steps K from

Eq. (3.35), the upper bound on the filter complexity is

CRPF(nλ) = 2 [N0(nλ + 1) +K]CpSIS = 2

[
N0 +N0 nλ

(
1 +

⌈
log 2√

3

σ0

δ

⌉)]
CpSIS ,

(3.36)

where CpSIS was defined in Eq. (3.21). Therefore, the complexity upper bound is linear

with the number of epistemic variables if N0 is independent of nλ, e.g. [140], otherwise

it scales as nλN0(nλ). By pruning the simplexes, as the B&B proceeds with the search,

the actual filter complexity is significantly reduced from this conservative estimate.

Lipschitz constant estimation

The Lipschitz constant is estimated as the maximum of the estimator gradient evaluated

on the vertexes of the simplexes. Specifically, at a generic iteration k, the domain is

partitioned in disjoint simplexes S(i)
k each with vertexes [λ

(i)
0 , . . . ,λ

(i)
n ]. The Lipschitz

constant is set to

L = max
i,j

∥∥∇λ θ̂(χ0:k,λ
(i)
j )
∥∥. (3.37)

This is an adaptive, although lower, approximation of the true Lipschitz constant.

Therefore, it could lead to over-pruning potentially optimal simplexes. However, lower

approximations are often employed in literature and have proven to be efficient on a

large number of test cases [144, 145, 146]. Furthermore, if a larger Lipschitz constant

is found, each pruned simplex is re-assessed and recovered if it was wrongly excluded.

65



Chapter 3. Robust State Estimation

3.3 Epistemic variational inference

This section presents a second approach designed specifically to handle epistemic uncer-

tainty in Navigation Analysis (NA) for space applications. In particular, the approach

is again mathematically framed as a sequential filtering problem. A typical trait of se-

quential filtering is the alternation of UP arcs, through the dynamical model, and OD

instances, when a new measurement is received and the state distribution is updated.

3.3.1 Variational inference

For a generic observation time tk, let us recall that p(xk|y1:k−1) is the prior distribution,

p(yk|xk) the likelihood function of the received observation, and p(xk|y1:k) the sought

posterior. By Bayesian inference, the target distribution (3.3) is expressed as [30]

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
, (3.38)

where

p(yk|y1:k−1) =

∫
p(yk|xk) p(xk|y1:k−1) dxk.

The Bayes update process is represented in Figure 3.3, where the prior is represented in

blue, the likelihood in yellow and the posterior in green. The denominator is the most
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OBSERVATION UPDATE

• Bayesian Inference rule p(x | y) = p(y | x) p(x)
p(y)

p(x)

p(y |x)
p(x | y)

• No closed-form solution for generic distributions

• Variational Bayesian Inference q(x) ≈ p(x | y)
q*(x) = arg min

q
DKL(q∥p)

DKL(q∥p) = ∫ log ( q(x)p(y)
p(y | x) p(x) )q(x) dx = ∫ log ( q(x)

p(y | x) p(x) )q(x) dx + ∫ log (p(y))q(x) dx

• No need to compute normalisation term p(y)

= ∫ log ( q(x)
p(y | x) p(x) )q(x) dx + K

= p(y | x) p(x)
∫ p(y | x) p(x) dx

Figure 3.3: Representation of Bayes’ inference.

complex term to compute as it requires solving a multidimensional integral. Hence, the
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goal is to approximate p(xk|y1:k) with a parametric variational distribution q(xk). The

parameter of the variational distribution is not reported explicitly for ease of notation

until the development of epistemic variational inference.

Variational distribution optimisation

We use KL divergence as a measure of dissimilarity between target p and variational

distribution q

DKL [p‖q] = Eq
[
ln

q(xk)

p(xk|y1:k)

]
=

∫
ln

q(xk)

p(xk|y1:k)
q(xk) dxk , (3.39)

where Eq indicates the expectation with respect to q. The goal is, therefore, to find the

variational distribution minimising the divergence

q∗(xk) = arg min
q∈Q

DKL [p‖q] , (3.40)

where Q is the set of admissible variational distributions. To simplify the optimisation,

the divergence can be written by exploiting logarithmic properties as

DKL [p‖q] = Eq [ln q(xk)− ln p(xk|y1:k)] . (3.41)

Substituting Equation (3.38) and using the expectation linearity, one gets

DKL [p‖q] = Eq
[
ln

q(xk)

p(yk|xk) p(xk|y1:k−1)

]
+ Eq [ln p(yk|y1:k−1)]

= Eq
[
ln

q(xk)

p(yk|xk) p(xk|y1:k−1)

]
+ ln p(yk|y1:k−1) ,

(3.42)

where Eq [ln p(yk|y1:k−1)] = ln p(yk|y1:k−1) because ln p(yk|y1:k−1) is independent from

x. Therefore, ln p(y) is a constant and can be neglected in the optimisation, which can

now be written as

min
q∈Q

Eq
[
ln

q(xk)

p(yk|xk) p(xk|y1:k−1)

]
. (3.43)

As seen before, this expectation has no closed-form solution and needs to be com-
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puted numerically. As the expectation is a n-dimensional integral, employing an effi-

cient numerical method is crucial in solving the minimisation problem efficiently. In this

development, we employ importance sampling to the expectation computation, that is,

a Monte Carlo method sampling a proposal distribution π(xk) which has a larger sup-

port than all the distributions in Q. Hence, we can rewrite the generic expectation

Eq [ψ(xk)] as

Eq [ψ(xk)] =

∫
ψ(xk) q(xk) dxk =

∫
ψ(xk)

q(xk)

π(xk)
π(xk) dxk = Eπ

[
ψ(xk)

q(xk)

π(xk)

]
.

(3.44)

Thus, a Monte Carlo method taking N samples from the proposal x
(i)
k ∼ π(xk) approx-

imates the posterior as

Eq [ψ(xk)] ≈
1

N

N∑
i=1

q(x
(i)
k )

π(x
(i)
k )

ψ(x
(i)
k ) . (3.45)

Therefore, we can run the optimisation over the variational distributions using a single

proposal and fixed samples. Furthermore, many of the quantities are now independent

on q and therefore can be precomputed. The discretised optimisation problem to be

solved now is

min
q∈Q

N∑
i=1

q(x
(i)
k )

π(x
(i)
k )

ln
q(x

(i)
k )

p(yk|x
(i)
k ) p(x

(i)
k |y1:k−1)

. (3.46)

Epistemic variational inference

In the epistemic setting, both the prior distribution, coming from the propagation, and

the likelihood function can be affected by epistemic uncertainty as

p(xk|y1:k−1;λxk) ∈ Pxk

p(yk|xk;λyk) ∈ Pyk
. (3.47)

The posterior distribution resulting from the variational inference (3.40) is therefore

set-valued as well

q(xk;λk) ∈ Pxk|yk (3.48)
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with

Pxk|yk =

{
q∗(xk;λk)

∣∣∣ arg min
q∈Q

DKL

[
p(xk|y1:k;λk)‖ q(xk)

]}
, (3.49)

where λk = [λxk ,λyk ] is the shorthand for the collection of the different epistemic

parameters involved. The disadvantage of this representation is that the epistemic

uncertainty accumulates when new observations are received, leading to an increase in

the uncertainty space dimensionality.

Hence, we aim at constructing a posterior set representation as

q(xk;λqk) ∈ Pqk , (3.50)

by introducing a new epistemic parameter λqk . In this way, the epistemic posterior set

is independent on λxk and λyk once the inference step is completed. To achieve this

goal, the variational distribution employed is a mixture one as

q(xk;λqk) =
M∑
j=1

λ(j)
qk
q(j)(xk) (3.51)

subject to
M∑
j=1

λ(j)
qk

= 1∫
q(j)(xk)dxk = 1 ∀j ∈ [1, . . . ,M ] .

(3.52)

The conditions (3.52) ensures that the distribution (3.53) is a valid density function

integrating to one. The epistemic parameters are the mixture weights

λqk = [λ(1)
qk
, . . . , λ(M)

qk
] . (3.53)

Thus, by plugging Eq. (3.51) in Eq. (3.40), the variational optimisation now becomes

min
λqk

N∑
i=1

∑M
j=1 λ

(j)
qk q

(j)(x
(i)
k )

π(x
(i)
k )

ln

∑M
j=1 λ

(j)
qk q

(j)(x
(i)
k )

p(yk|x
(i)
k ) p(x

(i)
k |y1:k−1)

s.t.

M∑
j=1

λ(j)
qk

= 1 .

(3.54)
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Hence, the procedure to perform the variational inference under epistemic uncer-

tainty is structured as follows:

1. Take S different pairs of prior and likelihood epistemic parameters λxk ∈ Ωλxk

and λyk ∈ Ωλyk ;

2. For each s-th pair of epistemic parameters, with s = 1, . . . , S, solve the optimi-

sation (3.54) to get the optimal coefficients λs∗qk ;

3. Construct the posterior epistemic set as

Pxk|yk =
{ M∑
j=1

λ(j)
qk
q(j)(xk)

∣∣∣λ(j)
qk
∈
[
min
s
λs∗

(j)

qk
,max

s
λs∗

(j)

qk

]
,

M∑
j=1

λ(j)
qk

= 1
}

. (3.55)

Therefore, the posterior epistemic set is constructed by taking an outer approximation

on the coefficients found by performing variational inference on S epistemic instances

of the prior and likelihood.

Such process is illustrated in Figure 3.4. Specifically, Figure 3.4(a) represents the

(a) Kernels of mixture to repre-
sent posterior.

(b) S variational inference op-
timisations given epistemic in-
stances of prior and posterior.

(c) Instances of the epistemic pos-
terior distribution (3.55).

Figure 3.4: Representation of the epistemic variational inference approach.

kernels q(j)(xk) of the variational distribution. Figure 3.4(b) depicts the posteriors

with coefficients λs∗qk resulting from the S variational inferences performed. Once the

epistemic posterior is formed as in Equation (3.55), Figure 3.4(c) represents multiple

instances of such posterior obtained by sampling the epistemic coefficients within the

componentwise bounds
[
mins λ

s∗(j)
qk

,maxs λ
s∗(j)
qk

]
under the conditions that they sum to

one.
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Such epistemic inference enables the re-initialisation of the state uncertainty after

each observation update. The posterior imprecise set is indeed constructed with epis-

temic parameters λqk which do not depend on the previous history. Therefore, this

procedure avoids the aforementioned accumulation of uncertainty.

The optimisation in Equation (3.54) is performed using a local solver because ana-

lytical derivatives of the objective are available and easy to compute, and the constraints

are linear. It may be the case that the global optimum is not found. However, the goal

is to select a variational distribution that suitably approximates the target posterior,

although not the best possible fit. Therefore, local optimality is considered acceptable

because of the advantages in computational time. The derivative of the objective with

respect to the j-th free variable is

N∑
i=1

q(j)(x
(i)
k )

π(x
(i)
k )

(
ln

∑M
j=1 λ

(j)
qk q

(j)(x
(i)
k )

p(yk|x
(i)
k ) p(x

(i)
k |y1:k−1)

+ 1

)
. (3.56)

Hence, the analytical objective’s gradient can be easily computed.

3.3.2 Mixture uncertainty propagation

In the epistemic inference developed, the variational distribution has been imposed to

be a mixture of kernels. In this section, we will focus on UP for a mixture of normal

distributions, although different kernels can be easily adapted.

The usual two-step polynomial UP is exploited. The polynomial mapping F̃ k
k−1

is constructed non-intrusively as described in Section 2.3.2. The Gaussian mixture

propagation through the sparse Gauss-Hermite cubature discussed in Section 2.4.2 is

employed. In the next section, a short adaptation to the mixture scenario is presented.

Gaussian mixture propagation

The state probability distribution at time tk−1 is a Gaussian mixture one with interval-

valued weights (see Eq. (3.55))

p(xk−1|y0:k−1) =

M∑
j=1

λ
(j)
k−1N (xk−1;µ

(j)
k−1,Σ

(j)
k−1) , (3.57)
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where µ(j) is the j-kernel mean and Σ(j) its covariance. The goal is to compute the

propagated distribution at time tk.

In general, an uncertainty distribution propagated through a nonlinear dynamics

does not keep its Gaussianity. However, when using a Gaussian mixture, each kernel

acts on a more localised portion of the domain. Therefore, the dynamical nonlinearities

experienced in each component are smaller than they would have been by using a single

larger Gaussian distribution.

Hence, the propagated distribution is still assumed as a Gaussian mixture in the

form of

p(xk|y0:k−1) =
M∑
j=1

λ
(j)
k−1N (xk;µ

(j)
k ,Σ

(j)
k ) , (3.58)

where the means and covariances are computed by means of Gauss-Hermite cubature

(see Section 2.4.2) as

µ
(j)
k =

N∑
i=1

w(j,i) F̃ k
k−1(ξ

(j,i)
k−1)

Σ
(j)
k =

N∑
i=1

w(j,i)
(
F̃ k
k−1(ξ

(j,i)
k−1)− µ(j)

k

)(
F̃ k
k−1(ξ

(j,i)
k−1)− µ(j)

k

)T
,

(3.59)

where, again, ξ
(j,i)
k = [x

(j,i)
k ,d

(j,i)
k ]T are the roots of the multivariate Hermite polynomial

and w(j,i) the corresponding quadrature weights for the j-th belief component [124].

Lower and upper expectations

In navigation analysis often the interest is to compute the expectation of a quantity ψ

connected to the uncertain state Ep [ψ(xk)]. When the state distribution is epistemic,

the value of such expectation depends on the epistemic parameter as in Eq. (3.7). Hence,

we can compute tight bounds on such expectation such that Epλk ∈
[
Epλk ,Epλk

]
. By
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plugging the variational form (3.55) in the expectation definition, we obtain

Epλk [ψ(xk)] =

∫
ψ(xk)

M∑
j=1

λ(j)
qk
q(j)(xk)dxk

=
M∑
j=1

λ(j)
qk

∫
ψ(xk)q

(j)(xk)dxk

=

M∑
j=1

λ(j)
qk
Eq(j) [ψ(xk)] .

(3.60)

Therefore, once the kernels expectations Eq(j) [ψ(xk)] are computed, e.g. using Gauss-

Hermite quadrature rules, the lower bound can be easily computed as the solution of a

linear programming problem

Epλk = min
λk

M∑
j=1

λ(j)
qk
Eq(j) [ψ(xk)]

s.t.
M∑
j=1

λ(j)
qk

= 1 .

(3.61)

The same holds for the upper bound, where a maximisation is performed in place of

a minimisation. Plenty of efficient numerical routines exist to solve linear program-

ming problems, e.g. MATLAB’s linprog. In addition, because the linear programming

problem is a subclass of convex optimisation, the found optimum is also granted to

be globally optimum. Therefore, the chosen variational parameterisation makes it ex-

tremely efficient and robust to compute tight lower and upper expectations.

3.4 Chapter summary

This chapter proposed a formulation to the state estimation problem under mixed

aleatory and epistemic uncertainty. The filtering problem was formulated in terms of

expectations to estimate given noisy indirect observations of the state of a dynamical

system. Mixed aleatoric and epistemic uncertainty can affect the prior, likelihood,

and model parameters’ distributions. The epistemic filter output is a robust interval

whose bounds are the expectation’s extrema resulting from epistemic uncertainty. Two
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solution approaches have been developed.

One of the main contributions was the development of the robust particle filter in

Section 3.2. Estimators for the expectation resulting from different epistemic param-

eters and its robust bounds were proposed, their computational complexity derived,

and their accuracy assessed. By exploiting precomputation performed with a standard

particle filter, the RPF approach was designed to efficiently solve the epistemic state

estimation problem by inexpensively tuning the particles’ importance weights. A sim-

plicial B&B optimiser exploiting the estimator’s Lipschitz continuity was developed to

ensure convergence to the true bounds. Theoretical results proving the optimiser con-

vergence with the employed bounding functions were derived. This approach will be

tested in Chapter 5.

The second contribution was specifically tailored for sequential filtering under epis-

temic uncertainty as a fundamental step towards an integrated approach for trajectory

design under generalised uncertainty models. Specifically, the main contribution of

Section 3.3 was the development of a combination of variational inference and impor-

tance sampling to solve the Bayes’ update step in the presence of epistemic priors

and likelihoods. Methods for performing both UP and OD under epistemic mixture

distributions were introduced and discussed. The OD step was solved by using the de-

veloped epistemic variational inference approach, which requires the solution of several

local optimisations to find the posterior distributions. The UP was realised by Gauss-

Hermite quadrature rules sped up by sparse polynomial mappings to approximate the

dynamical propagation. Such epistemic steps remove the need for large two-level Monte

Carlo sampling over the initial dispersion, observation errors and model uncertainties.

Another advantage of the developed approach is the formulation of lower and upper ex-

pectations as easy-to-solve linear programming problems. This method will be applied

in Chapter 8.
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Optimal Control under

Uncertainty

The content of this chapter was published in:

C. Greco, M. Di Carlo, M. Vasile, and R. Epenoy, “Direct multiple shooting tran-

scription with polynomial algebra for optimal control problems under uncertainty”,

Acta Astronautica, 2020 [87];

C. Greco, S. Campagnola, and M. Vasile, “Robust space trajectory design us-

ing belief optimal control”, Journal of Guidance, Control, and Dynamics, under

review [85].

This chapter presents two developments for the solution of optimal control problems

under uncertainty. Optimal control problems under uncertainty are recast in a general

framework suitable to model a wide class of stochastic problems, including the case

of non-parametric distributions and epistemic uncertainty. Moreover, the premise of a

reference trajectory is abandoned in favour of an extended uncertainty set representa-

tion. Each sample within the uncertainty set is a fully admissible pointwise trajectory

with associated density.

The first approach implements a generalised multiple shooting transcription us-

ing polynomial algebra. The second one extends the multiple shooting transcription

method to incorporate a full navigation analysis in the robust trajectory optimisation

problem. This generalisation enables the direct coupling of trajectory optimisation and
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navigation analysis by incorporating the quantification of uncertainty metrics within

the optimisation cycle.

The remainder of the chapter is structured as follows: Section 4.1 shows the tran-

scription approach with GPA; Section 4.2 presents the shooting generalisation to in-

clude navigation analysis in the design cycle; Section 4.3 summarises the concepts

introduced in this chapter.

4.1 Direct transcription with polynomial algebra

In the general Bolza formulation, the deterministic Optimal Control Problem (dOCP)

reads as

min
u∈U

J = Φ(tf ,xf ) +

∫ tf

t0

L(t,x,u) dt (4.1a)

s.t. ẋ = f(t,x,d,u) (4.1b)

g (t,x,d,u) ∈ G (4.1c)

b (t0,x0, tf ,xf ) ∈ B , (4.1d)

where again t ∈ R denotes the independent variable, x ∈ Rnx the state vector, u(t) ∈

Rnu the control, and d ∈ Rnd the static model parameters. The aim of the deterministic

optimal control problem is to find an optimal control law u∗(t) ∈ U ⊂ Rnu such that

objective function J in Equation (4.1a) is minimised while fulfilling, respectively, the

dynamical nonlinear equations of motion in Equation (4.1b), the path constraints in

Equation (4.1c), and the boundary conditions in Equation (4.1d). Path and boundary

constraints are expressed with a set inclusion condition that represents both equality

and inequality constraints. This formulation is suitable for optimising a deterministic

trajectory governed by a single control profile and deterministic dynamics.

When uncertainties come into play, a set of admissible trajectories is associated

with a single control profile. Hence, Problem (4.1) needs to be extended to allow

the treatment of a general optimal control problem for a dynamical system under

uncertainty. Two different formulations will be presented in the following sections.
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4.1.1 Optimal control under uncertainty

The parametric uncertainty described in Section 2.1 will be considered in this section.

The two uncertain variables are collected in the joint variable Ξ = [X0,D], with real-

isation ξ = [x0,d] and joint pdf p(ξ) = p(x0) p(d) because the initial conditions and

static parameters are assumed independent. The control variables will be treated as a

completely deterministic input, since possible execution errors can be modelled in the

dynamics as uncertain variables incorporated in D.

As seen, the dynamical nature of the system induces the state at time t to be

a random variable Xt as well. In the general nonlinear case, directly computing the

evolution of the density distribution over time p(xt) is an ambitious and, when possible,

laborious task. Therefore, this problem is often tackled with sampling techniques.

Indeed, the solution of the dynamical equations can be directly used as a map from the

state and parameter sample space at a given time to the state sample space at another

time. Then, the distribution at the time of interest may be reconstructed according to

the sample responses, usually by fitting a parametric distribution.

In the context of optimal control under uncertainty, the definition of objective and

constraint functions is critical because their formulation greatly affects the result and its

interpretation. Common choices in stochastic programming are to formulate objective

and constraints either in expected value or in probability [147]. In this section, we

adopt the unified formulation in expectation described in Section 2.1, that makes use

of the auxiliary function ψ to customise the constraints and objective function under

uncertainty.

We can now use the formulation in expectation to cast a general optimal control

problem under uncertainty in the following form:

min
u∈U

E
[
ψJ(t,x,u,d)

]
(4.2a)

s.t. ẋ = f(t,x,u,d) (4.2b)

E
[
ψg(t,x,u,d)

]
∈ ΨG (4.2c)

E
[
ψb(t0,x0, tf ,xf )

]
∈ ΨB , (4.2d)
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where ψJ , ψg and ψb are the problem-dependent auxiliary functions for the objective,

path and boundary constraints respectively, and ΨG and ΨB are the feasible sets for

such constraints.

Generally, problem (4.2) does not have a closed-form solution. Thus a numerical

solution scheme is required. The next section will introduce a novel numerical method

for the solution of optimal control problems under uncertainty in the form of problem

(4.2).

4.1.2 Direct shooting with generalised polynomial algebra

A well-established method for the solution of optimal control problems is known as

direct multiple shooting [148]. Direct multiple shooting starts by discretising the time

domain into time segments [tk, tk+1]. The k th segment is defined by the initial state

xk and a parameterisation of the control profile uk(t) = Uk(t,βk) as function of some

free parameters βk. A Nonlinear Programming (NLP) solver is then used to identify

the optimal value of the states xk and parameters βk for all the segments. Every

time the NLP solver assigns a value to xk and βk, xk is propagated from tk to tk+1.

The NLP solver enforces continuity constraints on the states at the boundary of two

adjacent segments to ensure the continuity of the final solution and the satisfaction

of the boundary conditions. Once all the segments are propagated, the values of the

objective function and constraints are computed.

When uncertainties are introduced, the pointwise state xk becomes a set, and thus

a propagation method that can handle sets of values is required. In Section 2.3, we

proposed the use of GPA to model and propagate the state variables as functions of the

uncertain variables [110, 111]. Hence, here GPA is incorporated in a direct multiple

shooting scheme to solve Problem (4.2). The resulting approach is named IPANeMA

(Intrusive Polynomial Algebra aNd Multiple shooting Approach).

The goal of the direct transcription method proposed in this section is to evaluate

the expectations of the objective function and constraints in problem (4.2) resulting

from a given control u(t). The standard direct multiple shooting scheme is modified

so that GPA is used to propagate the control law and the effect of uncertainty on each
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time segment [tk, tk+1].

The reinitialisation approach presented in Section 2.3.3 is employed with GPA to

construct a composite polynomial mapping in the form

F̃ t0(ξ) = Px(t, ξ) = P
(p)
xt (. . . (P

(p)
x2 (P

(p)
x1 (x0,d0),d1), . . . ),dk) , (4.3)

that is a sequential evaluation of a cascade of polynomial surrogates that maps the

uncertain initial conditions and model parameters to the state vector at any time t ∈

(tk, tk+1].

The composite polynomial formula is the equation of the direct multiple shooting

based on GPA. Eq. (4.3) intrinsically guarantees continuity at the boundaries of each

time interval thanks for the outer reinitialisation strategy, and maintain the dimension-

ality of the uncertainty space on each and any time interval equal to nξk = nx + ndk .

Note that using an outer set approximation removes the need for explicit defect con-

straints and free state variables at the start of each time interval, reducing the dimen-

sionality of the associated constrained optimisation problem. The only free variables

to be optimised are the control parameters in each sub-segment.

Objective and constraints computation

With the composite polynomial mapping in Eq. (4.3) the set of uncertain states can

be recovered at any time t ∈ [t0, tf ] via the simple evaluation of a polynomial through

sampling. These samples can be exploited to compute the general expectation form

as in Eq. (2.25). The expected value of objective and constraints can be computed

either by direct Monte Carlo or by importance sampling (see Section 2.4.1). Hence,

the sampling in steps 1 and 4 of Algorithm 2 can be performed either directly from

the corresponding density function or using an importance distribution. Then, the

expectations associated with the objective and constraints can be computed by plugging

the propagated samples in the relevant formula.

Clearly, other techniques could be applied to the computation of the expectation,

but Monte Carlo methods have been selected because: they are not restricted to specific
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families of probability distributions; their convergence rate to the true expected value

is independent of the uncertainty space dimensionality [149], making it appropriate for

realistic, practical applications.

Depending on the uncertain distribution and the degree of nonlinearity of the equa-

tions of motion, the number of samples required to estimate the expectation accurately

may be rather high. Furthermore, the transcription is called numerous times during

the optimisation process. Therefore, the employment of an inexpensive polynomial

mapping in place of direct numerical propagation plays a crucial role in the practical

application of IPANeMA to realistic scenarios.

From the approach presented, it follows that the proposed shooting generalisation to

the uncertain scenario is a natural extension of the classical deterministic transcription.

A single propagation is replaced by multiple trajectory realisations weighted according

to the uncertainty probability distribution to compute the objective and constraints

values.

Representation of the control set

In order to avoid a new polynomial propagation each time a new control law u(t) is

generated by the NLP solver, we expanded also the controls with GPA. Specifically,

the set of control parameters Ωβk can be approximated by a time-static multivariate

polynomial Pβk ∈ T
′
q,nξk

. The number of uncertain variables nξk = nx + ndk + nβk is

increased accordingly. Then, the set of control profiles in each time interval descends

from the parameter-control relationship Puk(t) = Uk(t, Pβk), where the composition

rules defined in the GPA apply. Once the expansion is computed, both the control

profile and the associated set of propagated states can be computed with a single

polynomial evaluation for each βk ∈ Ωβk . With this procedure, only one uncertainty

polynomial propagation is needed, and it can be precomputed before the optimisation

cycle. Consequently, updating the set of propagated states for a new vector of the

control parameters comes at a very low computational cost.

On the other hand, increasing the input dimensionality causes an higher computa-

tional complexity for the intrusive propagation as well as an higher polynomial degree to
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achieve a given representation accuracy. These two aspects make the trade-off between

the computational cost of constructing the polynomial map and the representation

accuracy to compute reliable metrics even more critical. Nonetheless, including the

control variables in the polynomial map is always advantageous from a computational

standpoint as the optimisation is then carried out over a sequence of polynomials. The

representation accuracy needs to be assessed after the intrusive propagation in each

test case and, if not satisfactory, the degree of the polynomials needs to be increased.

In Chapter 7, the polynomial accuracy is verified against numerical propagations for

the robust trajectory analysed.

Smoothing of the indicator function

When a gradient-based method is employed to solve the NLP problem, one practi-

cal difficulty arises from the computation of objective and constraints in probability.

Although probability constraints (and objectives) are an intuitive and general way to

impose conditions on random variables, they require evaluating the indicator function,

which is discontinuous in nature. This discontinuity introduces a significant difficulty

when computing the derivatives. In the general case, one cannot guarantee the dif-

ferentiability of the expectation with respect to the controls. Even more so when the

expectation is computed with a sample-based numerical technique.

To overcome this difficulty, IPANeMA implements the option to substitute the indi-

cator function with a smoother approximation obtained by convolution [147]. Convolu-

tion is applied by first redefining the indicator function with the following membership

condition: ηA : Rnx → R such that:


|ηA(x)| ≤ 1 if x ∈ A

|ηA(x)| > 1 if x 6∈ A .

(4.4)

Hence, the indicator function can be equivalently expressed as

IA(x) = I[−1,+1](ηA(x)) . (4.5)
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Now, if we introduce the smoothing function h, for each state realisation x, the convo-

lution of the indicator function with h results in:

I(r)[−1,+1]

(
ηA(x)

)
=

∫ +∞

−∞
I[−1,+1](y)

1

r
h

(
ηA(x)− y

r

)
dy

=

∫ +1

−1
I[−1,+1](y)

1

r
h

(
ηA(x)− y

r

)
dy ,

(4.6)

with r > 0 a small positive scaling parameter. The integration interval is restricted to

the interval [−1,+1] because of the membership function ηA. The smoothing function

h is chosen so that h : R → R, h is non-negative, symmetric, with a unique maxi-

mum in 0, and integral equal to 1 over the interval [−1, 1]. These properties imply

limr→0 h(·/r)/r = δ, with δ the Dirac delta. Hence, for r → 0 the convolution result

tends to the original indicator function [147].

Finally, the sampling grid used to compute the smoothed indicator function is kept

constant within one major iteration of the NLP solver. This is particularly important

when derivatives are approximated with finite differences to avoid introducing noise in

the computation of the gradients of objective and constraints.

Numerical solution of the NLP problem

The NLP problem resulting from the transcription approach implemented in IPANeMA

is dense and low-dimensional, as no intermediate state vectors and continuity con-

straints are present, as explained above, and the control parameters βk for each time

segment are the only free variables. In the current C++ implementation, this NLP

problem is solved using WORHP [150].

4.2 Belief optimal control

In this section, the dOCP (4.1) is employed again as starting formulation. In the

high-thrust case, the controls u(t) are to be intended in the form:

u(t) =
∑
i

uiδ(t− ti) (4.7)

with δ the Dirac delta function and ui ∈ Ru.
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When boundary conditions and system parameters are affected by uncertainty,

problem (4.1) needs to be again recast in a form that allows one to derive a control law

that is optimal with respect to a metric that accounts for the effect of uncertainty. In

the remainder of this section, we propose a belief formulation of optimal control prob-

lems that directly work with the probability distributions of the uncertain quantities

and incorporate system-level and navigation uncertainties in the derivation of optimal

control laws.

Preliminary definitions

In this section, we define several elements required to introduce the belief formulation

of optimal control problems.

• Parameter uncertainty. Parameter uncertainty refers again to uncertainty in ini-

tial conditions and system parameters. We will now specialise Eq. (2.2) for such

uncertainties and write

X0 ∼ p(x0;λx0) ∈ PX0;λx0
(4.8)

D ∼ p(d;λd) ∈ PD;λd (4.9)

to indicate that the stochastic variables X0 and D have probability distributions

p(x0;λx0) and p(d;λd) and that these pdfs belong to the two families PX0;λx0

and PD;λd parametrised in λx0 and λd, respectively. In the remainder of the

section, we will present the methodology starting from the treatment of epistemic

uncertainty, under the assumption of a known family of distributions, and then

derive the solution for aleatory uncertainty as a special case for λ precisely known.

• Execution errors. The general form of the executed control Ue(u,X) : Rnu ×

Rnx → Rnu considered is a random variable defined as

Ue(u,X) =
∑
i

[ui + δui(X) + Θi(ui + δui)]δ(t− ti) , (4.10)

where ui and δui are the commanded open- and closed-loop control terms respec-
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tively, and Θi models the control errors. The sum of the commanded components

will be denoted as ui = ui + δui. In this form, we assumed that the control un-

certainty affects only the components of the manoeuvre and not the time of the

execution and is a function of the commanded control. The meaning and form of

the feedback component and errors will be better defined in the remainder. As

discussed in Section 2.1, for ease of notation, the uppercase special character X

will be used to indicate the pdf of the state X, and similarly for other random

variables.

• Observation uncertainty. Observations are employed to reduce the knowledge un-

certainty associated with the system state. The observation model is a nonlinear

function of the state and environment noise realisations εk:

yk = h(xk, εk) . (4.11)

Hence, a generic observation yk ∈ Rny is a realisation of the random variable

Yk : ΩEk → Rny induced by the sensor noise Ek. The random variable observation

is described by the conditional likelihood

Yk ∼ p(yk|xk;λy) ∈ PY ;λy . (4.12)

This relation expresses that, given the state, the observation likelihood Yk =

p(yk|xk;λy) is completely determined by the sensor noise Ek [151]. At each ob-

servation k, the state distribution is updated given the last received observation

according to an inference rule TI which returns the posterior distribution, condi-

tional on all the observations received until time tk, as

Xk = TI
(

X−k ,Yk
)

= p(xk|y1:k) , (4.13)

given the predicted state uncertainty X−k = p(xk|y1:k−1) and the last observation

yk. The superscript (·)− indicates the predicted distribution right before the new

observation yk is received.
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• Dynamical evolution. X0 and D, together with the dynamical equation (4.1b),

induce the state at a later time to be a random variable through the push-forward

measure resulting from the pointwise dynamical flow. As already seen, the dis-

tribution of the random variable X evolves according to a PDE, written in the

general notation

∂tX −Fx(t,X ,D,Ue) = 0 , (4.14)

where the term Fx includes the partial derivatives with respect to the state vari-

ables, and it depends on the pointwise dynamics (4.1b). Eq.(4.14) is the Fokker-

Planck (or Forward Kolmogorov) equation [152] (see Section 2.2). Epistemic un-

certainty on either of the sources of uncertainty induces, through the dynamical

evolution, the state distribution at a later time to be set-valued itself as

X ∼ X = p(x;λ) ∈ PX ;λ , (4.15)

where λ = [λx0 ,λd,λy] is the collection of all the epistemic parameters.

4.2.1 Belief formulation

Given the elements defined in the previous section, the optimal control problem under

uncertainty is well described as a Partially Observable Markov Decision Process [153],

i.e. the state is observed only through indirect measurements. This model can be

re-framed as a Belief Markov Decision Process (BMDP) [154], which employs an ad-

vantageous belief state representation. That is, the state of the model is not a specific

realisation x, but rather the state is the density function X . The probability distribu-

tion of the dynamical system state is henceforth called belief state. An advantage of

such a formulation is that the belief state can be computed at any time, even if the

specific state realisation is not observable. We write the Belief Optimal Control (BOC)
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as

min
u

sup
λ

{
Cf
(
tf ,Xf

)
+

∫ tf

t0

C
(
t,X ,Ue

)
dt
}

(4.16a)

s.t.

 ∂tX −Fx(t,X ,D,Ue) = 0 between observation times

Xk = TI
(

X−k ,Yk
)

at each observation k
(4.16b)

G
(
t,X ,D,Ue

)
∈ ΨG , G

(
t,X ,D,Ue

)
∈ ΨG (4.16c)

B
(
t0,X0, tf ,Xf

)
∈ ΨB , B

(
t0,X0, tf ,Xf

)
∈ ΨB (4.16d)

X0 ∈ PX0;λx0
, D ∈ PD;λd , Yk ∈ PYk;λy (4.16e)

where, Cf and C are the functionals (2.3) associated respectively to Φ and L, G, G, B,

B, are the lower and upper limits defined in (2.4a) and (2.4b) on the functionals (2.3)

associated to the path and boundary constraints g and b. The target sets ΨG, ΨG,

ΨB and ΨB for the expectations on g and b are predefined quantities. The objective

in (4.16a) is the upper bound of the objective function realisations under uncertainty.

Eqs. (4.16b) describe how the belief state evolves in time according to a PDE and

updates with an inference rule each time an observation is acquired. They are the

dual of the equations of motion (4.1b) in the dOCP. Finally, Eq.(4.16e) describes the

uncertainty structure of the problem, namely expressing the initial condition for the

belief state, the uncertain parameter distribution and the observation likelihood. The

BOC aims at optimising the open-loop component to find the nominal trajectory which

minimises the objective function and satisfies the constraints under uncertainty.

In general, the BOC problem (4.16) has no closed-form solution, just like the deter-

ministic dOCP (4.1). Thus, in the following section, we propose a direct transcription

method that allows incorporating navigation analysis in the optimisation of the control

law under the type of epistemic and observation uncertainty defined in this section.

4.2.2 Transcription method

Solving problem (4.16) requires propagating the belief state from the initial condi-

tions through the dynamics and updating it with observations. This section presents

an efficient multiple shooting-like direct transcription method for the solution of prob-

86



Chapter 4. Optimal Control under Uncertainty

lem (4.16), which employs a direct propagation of the belief state. This work generalises

the direct transcription method developed in [87] to the case in which orbit determi-

nation arcs intermingle control arcs.

Sequential belief transcription

Following the same idea of general multiple shooting schemes, we start by partitioning

the independent variable domain into segments. In this case we partition the time

domain in the following time segments:

[tk, tk+1] for k = 0, 1, . . . , F − 1 . (4.17)

On each segment we define a vector of commanded control parameters uk in the fol-

lowing form:

uk(tk,Xk) = uk(tk) + δuk
(
Xk

)
(4.18)

where the first term is an unknown parameter to be optimised, whereas the second one

is a correction to uk(tk) coming from a pre-defined function of the state at time tk.

Operationally speaking, the term uk(tk) has to be understood as an open-loop control

while δuk
(
Xk

)
as a feedback control policy. In addition, on each segment we define a

vector of uncertain parameters Dk such that:

D = [D0,D1 . . . , Dk, . . . ] .

Again, the assumption is that each Dk affects the dynamics only over the time interval

t ∈ (tk, tk+1]. Uncertain model parameters which affect the dynamics over multiple time

segments are replicated across all the segments they affect. From (4.10) the executed

controls Uek at time tk is:

Uek = uk(tk,Xk) + Θk(uk(tk,Xk),λk) , (4.19)

which combines the commanded controls with execution errors.

For each time segment, the belief state Xk is first propagated from tk to tk+1 under
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the effect of the dynamics (4.1b) and the possible control actions uk, if they are present

on that segment. We indicate this propagation with the symbol TP that represents the

mapping of the probability distribution p(xk |y1:k) from tk to tk+1:

X−k+1 = TP
(

Xk,Dk,Uek

)
= p(xk+1 |y1:k) . (4.20)

We now consider the case of observation instances at the end of some sub-intervals

[tk, tk+1]. Thus, suppose now that a new measurement yk+1 is available. By using

Bayes’ inference rule one can calculate the posterior distribution:

Xk+1 = TI
(

X−k+1,Yk+1

)
= p(xk+1 |y1:k+1) =

p(yk+1|xk+1) p(xk+1 |y1:k)∫
p(yk+1|xk+1) p(xk+1 |y1:k) dxk+1

.

(4.21)

Again, the dependencies on the deterministic parameters have not been written ex-

plicitly. We assume that the measurement yk+1 is conditionally independent of the

observation and control history, given the state at time tk+1, thus those terms disap-

pear from the observation likelihood p(yk+1|xk+1).

Hence, the calculation of the belief state at time tk+1 can be written, in compact

form, as the composition of the state propagation map TP and the Bayes inference map

TI :

Xk+1 = T
(

Xk,Dk,Uek ,Yk+1

)
= TI ◦ TP . (4.22)

Eq. (4.22) models the most general case of a segment where both control actions at

tk and measurements at tk+1 are present. In the following, arcs can have both control

and observations, only control actions, only observations or neither of the two (pure

propagation). Depending on the specific case, we will apply either the propagation map

alone, the inference map or the composition of the two.

One interesting feature of the belief formulation is that, while the system point-

wise state would dynamically evolve through a one-to-many relationship in a standard

Markov Decision Process, the belief state of the Belief Markov Decision Process evolves

through the prediction and update steps according to a one-to-one relationship.

Being the uncertain parameters partitioned as D =
[
D0, . . . , Dk, . . . , DF−1

]
, the
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main advantage of the shooting scheme is that it decouples the uncertainty in the

different time segments [tk, tk+1]. When the belief is propagated from tk to tk+1, the

stochastic dimensionality is nξk = nx+ndk , where nx and ndk are respectively the state

and uncertain parameters Dk dimensionality, instead of being the total nξ = nx+nd as

it would be with a vanilla Monte Carlo approach. This efficient decoupling avoids the

accumulation of uncertainty and the growth of the belief stochastic dimension in time,

thus helping to contain the curse of dimensionality, typical of uncertainty quantification

problems. This feature is computationally crucial for an uncertainty quantification

method called within an optimisation loop numerous times.

The propagation map TP

Propagating the belief state in time is the most computationally intensive step of the

transcription method as it would require solving a PDE which has no closed-form

solution in the general nonlinear case.

The BOC formulation, however, permits the propagation of the exact dynamics

and, in the general case, of a family of probability distributions. Thus we split the

mapping TP in typical two steps adopted in this thesis: first we create a non-intrusive

polynomial representation F̃ k+1
k of all possible states at time tk+1 given the states at

time tk, the uncertain parameters and the control variables as described in Section 2.3;

then we sample the distribution at time tk to represent the distribution at time tk+1.

This second step requires only multiple evaluations of the polynomial at time tk+1. Let

us shortly recall how the polynomial mapping is represented and adapt it to the case

under consideration.

To assess the surrogate accuracy, one option is to construct a polynomial represen-

tation by using a collocation grid of level l. Then, the accuracy can be quantified as

the root mean square error of the polynomial mapping versus the numerical one on a

subset of samples of grid level l + 1. If such error is below a user-set threshold, the

polynomial representation is accepted, otherwise the polynomial is re-constructed with

a collocation grid of level l+ 1 and the process iterated until the requested accuracy is

met.
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Once the polynomial F̃ k+1
k is available, the output of the propagation map TP can

be approximated as

X−k+1 ≈ p
(
F̃ k+1
k (ξk) |y1:k

)
. (4.23)

Navigation analysis and the inference map TI

Treating observations in offline trajectory optimisation is a subtle task. Indeed, a mea-

surement is a random function of the true state of the system and sensor noise, which

is, however, unknown at the time of offline planning. Therefore, simulating a specific

observation value yk, and its corresponding likelihood, rather than another value, is

an arbitrary choice corresponding to an arbitrary reduction in the state uncertainty

(through the update equations). This problem is depicted in Figure 4.1, where a single

observation reduces the uncertainty dispersion. Specifically, Figure 4.1(a) is the uncer-

Xk Xk+1

(a)

Xk Xk+1

(b)

Xk Xk+1

(c)

Xk Xk+1

(d)

Figure 4.1: Effect of single measurement simulation on the uncertainty propagation
process.

tainty propagation without any observation. Figure 4.1(b) depicts the generation of a

single observation. Figure 4.1(c) shows the uncertainty update of the belief Xk given

the new observation. Figure 4.1(d) is the new belief propagation X−k+1 after the new

observation has been processed. While reducing the uncertainty is the goal of orbit

determination in the operational life of a spacecraft, that is, when actual measure-

ments are available, when performing robust trajectory optimisation, this simulation

approach leads to discarding entirely feasible regions of uncertainty.

Hence, the inference map TI comes from the simulation of the expected observations

along the trajectory considering observation errors. Indeed, for a given observation at

time tk, the measurement yk is conditional to the true state xk of the spacecraft, which

is unknown. Thus one needs to simulate a set of possible measurements over the space

of possible predicted states [43, 44].

90



Chapter 4. Optimal Control under Uncertainty

Considering M measurement realisations y
(j)
k , with j = 1, . . . ,M , each with an

associated probability density, an inference step is required for each of them. This

results in a set of possible posterior beliefs

X (j)
k = p (xk |y

(j)
1:k) , (4.24)

each resulting from a different observation realisation. Such a scenario is depicted in

Figure 4.2, where multiple belief states are generated as a consequence of the inference

with multiple sample measurements. Specifically, Figure 4.2(a) depicts the uncertainty

propagation without any observation. Figure 4.2(b) indicates the generation of multiple

observation samples by Monte Carlo. Figure 4.2(c) shows the multiple uncertainty

updates of the belief Xk given the Monte Carlo observation samples. Figure 4.2(d)

represents the belief components propagation after the new observations have been

processed. Hence, we first apply the inference map (4.21) M times, one for each y
(j)
k at

Xk Xk+1

(a)

Xk Xk+1

(b)

Xk Xk+1

(c)

Xk Xk+1

(d)

Figure 4.2: Effect of Monte Carlo measurement simulation on the uncertainty propa-
gation process.

time tk, then we use map (4.23) to propagate each posterior to obtain M distributions

at time tk+1.

If this process was iterated for each segment, one would have an exponential growth

of the number of expected trajectories and associated control laws. Indeed, if we were

to simulate M new observations for each belief component at time tk+1, we would end

up with M2 belief components, which would grow to M3 at tk+2, and so on. On the

contrary, once the M distributions at time tk+1 are available we build the following
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convex combination:

X−k+1 =
M∑
j=1

b(j) X−
(j)

k+1

M∑
j=1

b(j) = 1 ,

(4.25)

where b(j) is the belief degree, a weight quantifying the relative degree of likeliness of

each X (j)
k+1. The value of each b(j) depends on the credibility of each measurement y

(j)
k .

Then, we use this belief state as prior at time tk+1 to be updated with the M simulated

likelihoods. With this approach, the number of belief components is kept constant to

M regardless of the number of shooting segments.

The convex combination in Eq. (4.25) can be derived from the concept of Jeffrey

conditionalisation [155]. This conditionalisation rule describes how the probability of

the occurrence of an event A depends on the realisation of events B(j) with confidence

belief degrees b(j):

Pr
(
A |B(1) ≡ b(1), . . . , B(M) ≡ b(M)

)
=

M∑
j=1

b(j) Pr
(
A |B(j)

)
, (4.26)

when the condition events form a partition. This conditionalisation generalises the

traditional conditional probability measure, which is now a special case when event B(j)

has been observed with certainty, i.e. when its belief degree is b(j) = 1, and therefore the

belief degree of its conjugate is zero. Given this probability measure, we can interpret

the belief in Eq. (4.25) as an overall inference step by Jeffrey conditionalisation over

sampled observations y
(j)
k with belief degrees b(j):

Xk = p
(
xk |y

(1)
k ≡ b

(1), . . . ,y
(M)
k ≡ b(M)

)
=

M∑
j=1

b(j) p
(
xk|y

(j)
k

)
(4.27)

The problem is that, in general, the sampled observations do not form a partition of

the observation space, which is indeed continuous. However, we can approximate any

continuous distribution as a probability mass function by using samples drawn from
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the original one and the Dirac delta function as [30]

p(ξ) ≈
M∑
j=1

b(j)δ
(
ξ − ξ(j)

)
. (4.28)

If such approximation is introduced for the observation likelihood, then the Jeffrey

conditionalisation provides a key formal interpretation of the employed inference step

with different sampled measurements for the navigation analysis approach considered.

Solution of the transcribed problem

Once the belief state is propagated at each stage k with the approximated propagation

map TP and the inference map TI is applied when observations are available, Prob-

lem (4.16) is transcribed into the following nested NLP problem:

min
u

sup
λ

{
Cf
(
tf ,Xf

)
+
∑
k

∑
s

wsC
(
ts,Xk,Uek

)}

s.t.

 X−k+1 = TP
(

Xk, Dk, Uek

)
between observation times

Xk = TI
(

X−k ,Yk
)

at observation instances

Gk
(
tk,Xk,Dk,Uek

)
∈ ΨGk , Gk

(
tk,Xk,Dk,Uek

)
∈ ΨGk

B
(
t0,X0, tf ,Xf

)
∈ ΨB , B

(
t0,X0, tf ,Xf

)
∈ ΨB

X0 ∈ PX0 , D ∈ PD , Yk ∈ PYk;λy

(4.29)

where ws are quadrature weights used to discretise the objective integral in time. The

outer optimisation is carried out on the transcribed open-loop control components to

find the most robust and reliable nominal trajectory. The quantities Cf ,C, Gk, B are

integrals over the space of the uncertain parameters as in Eq. (2.3). In the general

case, these integrals need to be computed numerically, either by sampling or with a

numerical quadrature formula, as

Epλz [ψ(z)] =

∫
ΩZ

ψ(z) p(z;λz) dz ≈
∑
j

wj(λ)ψ(zj) . (4.30)

For given control vector and epistemic parameter to evaluate, the transcription
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complexity depends primarily on the number of aleatory variables and observation

arcs. The number of grid samples to construct the expansion by sparse collocation

scales polynomially with the number of aleatory dimensions, whereas the complexity

of evaluating the surrogate for samples’ propagation is secondary. Updating the belief

state requires only simple evaluations of the likelihood function and low-dimensional

matrix operations, as discussed in the next sections. Hence, the main computational

and accuracy advantages of the transcription come from the shooting discretisation.

This transcription enables an efficient decoupling of the uncertainties and, therefore,

lower aleatory dimensions in each segment. Thus, adding new control or observation

instances does not yield an exponential increase in computational complexity.

The two-level NLP problem is solved by nested local optimisations. In the general

case of epistemic uncertainty, for each integral (4.30) we need to solve an optimisation

problem over the space of the parameters λ. To alleviate the computational burden

of these optimisations, the polynomial mapping is constructed only once per iteration

of the minimisation over the space of the controls, and the optimisations over λ are

performed exploiting the inexpensive surrogate model. This is made possible by the

fact that the polynomial representation covers the entire space of admissible controls.

This approach causes the input set Ωξk to be larger than in the purely aleatory case.

Nonetheless, the collocation grid level can be tuned to ensure the required surrogate

accuracy under epistemic uncertainty as well. Thus, propagation of uncertainty in the

epistemic setting may imply a higher computational cost due to additional grid levels,

whereas the representation accuracy is preserved.

The local optimisations rely on finite differences to compute the first- and second-

order derivative information. When sampling is employed to compute Equation (4.30),

the sampling grid is kept constant within one major NLP iteration to avoid introducing

noise in the computation of the objective’s gradient and constraints’ Jacobian.

In the following, we will present two approaches to the computation of the integrals

in the two cases in which the distribution functions are explicitly available or not. In

the former case, we limit our attention to the treatment of Gaussian distributions.
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The Gaussian case In the Gaussian case the distribution of the uncertain param-

eters and initial conditions is normal, and so is the likelihood of the measurements:

X0 = N
(
x0; µX0

, ΣX0

)
(4.31a)

D = N
(
d ; µD, ΣD

)
(4.31b)

Yk = N
(
yk |xk; µYk , ΣYk

)
, (4.31c)

where µ(·) indicates the mean and Σ(·) the covariance of the normal distributions. The

posterior distribution (4.22) at each stage k is generally not Gaussian. However, under

certain conditions, one can approximate the actual posterior with only the first two

statistical moments [130] as it is commonly done in Kalman-type of sequential filters.

Thus we can approximate the prior at stage k with:

X−k =
M∑
j=1

b(j)N
(
xk ; µ

(j)

X−k
,Σ

(j)

X−k

)
(4.32)

with each mean and covariance computed by Gauss-Hermite quadrature (see Sec-

tion 2.4.2). The M observations y
(j)
k are sampled from the prior (4.32). The posterior

Xk =
M∑
j=1

b(j)N
(
xk; µ

(j)
Xk
, Σ

(j)
Xk

)
(4.33)

is computed by updating the mean and the covariance matrix according to the obser-

vations received:

µ
(j)
Xk

= µ
(j)

X−k
+ Kk(y

(j)
k − µYk)

Σ
(j)
Xk

= Σ
(j)

X−k
−KkSkK

T
k .

(4.34)
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where the observation mean µYk and Kalman gain Kk are defined as

µYk =

M∑
j=1

b(j)
N∑
i=1

w(j,i) h
(
x

(j,i)
k , ε

(j,i)
k

)
SYk =

M∑
j=1

b(j)
N∑
i=1

w(j,i)
(
h
(
x

(j,i)
k , ε

(j,i)
k

)
− µYk

) (
h
(
x

(j,i)
k , ε

(j,i)
k

)
− µYk

)T
CXY k =

M∑
j=1

b(j)
N∑
i=1

w(j,i)
(
x

(j,i)
k − µ−Xk

) (
h
(
x

(j,i)
k , ε

(j,i)
k

)
− µYk

)T
Kk = CXY k S−1

Yk
,

(4.35)

with ε
(j,i)
k are realisations of the sensor noise, SYk is the observation covariance, whereas

CXY k is the cross covariance between state and observation.

From the posterior, one can then compute the expectation of any function ψ as

E
[
ψ
(
xk
)
|y1:k

]
≈

M∑
j=1

b(j)
N∑
i=1

w(j,i)ψ
(
x

(j,i)
k

)
. (4.36)

For ease of notation, the dependency on the control and parameter uncertainty has not

been reported, but the same form applies when ψ depends on them by taking samples

from their distributions.

The advantage of this approach over similar sample-based ones is that the estimation

fidelity can be made as accurate as desired simply using more quadrature points, that is

a higher-order Hermite polynomial. A high accuracy computation of the prior moments

in Eq. (4.32) is made computationally possible by the polynomial mapping F̃ k
k−1, which

can be employed to propagate a great number of samples inexpensively.

General distribution case When the posterior distribution at stage k cannot be

easily expressed with an explicit function of the state variables, the prediction and

update steps of the belief transition function, in Eq. (4.22), can be computed with

the particle filter described in Section 3.2. Specifically in this setting, the posterior

density is approximated as a discrete one by using samples x
(i)
k drawn from the proposal
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π (xk |xk−1,y1:k) , as

X−k =

M∑
j=1

b(j)
N∑
i=1

w
(i,j)
k δ

(
xk − x

(i,j)
k

)
, (4.37)

where δ(·) is again the Dirac function, w
(i,j)
k and x

(i,j)
k are the i-th weight and sample

to approximate the j-th belief component. To construct the posterior approximation,

the inference step is then carried out by updating the weights of the predicted samples

as

w
(i,j)
k = w

(i,j)
k−1

p( y
(j)
k |x

(i,j)
k ) p(x

(i,j)
k |x(i,j)

k−1)

π (x
(i,j)
k |x(i,j)

k−1,y
(j)
1:k)

, (4.38)

to account for the received observation y
(j)
k and the known dynamical evolution. Once

again, the conditional dependencies on the deterministic parameters have not been

written down explicitly for ease of notation. Nonetheless, the proposal, transition and

likelihood distributions could depend on them.

From this posterior, one can then compute the expectation as

E
[
ψ
(
Xk

)
|y1:k

]
≈

M∑
j=1

b(j)
N∑
i=1

w
(i,j)
k ψ

(
x

(i,j)
k

)
, (4.39)

which is the same as Eq. (4.36)) but with weights and samples computed differently.

The accuracy of the discrete approximation and the particle filter performance

greatly depend on the number of particles used, which is further critical for high-

dimensional nonlinear problems like navigation analysis for space trajectory. Therefore,

the polynomial mapping F̃ k
k−1 results crucial in this scheme as it allows one to employ a

larger number of samples, which can be propagated through an inexpensive polynomial

evaluation.

This particle filter-based approach to the practical computation of the shooting

transcription should be employed in the most general case of non-Gaussian uncertainty,

nonlinear dynamical system and observation model. This concludes the transcription

method for the BOC as formulated in Eq. (4.16).
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4.3 Chapter summary

This chapter introduced two transcription methods for the solution of optimal control

problems under uncertainties of different nature.

The proposed formulations can accommodate different forms of the quantities of

interest and do not require any underlying assumption on the model used to quantify

uncertainty. In fact, it was shown that it could also incorporate epistemic uncertainties

and imprecision.

Specifically, Section 4.1 introduced IPANeMA, a numerical approach which inte-

grates a multiple shooting numerical scheme with a GPA expansion to represent and

propagate uncertainty regions. The reinitialisation and recovery approach, introduced

in Chapter 2, was employed to limit the dimensionality of the uncertain space across

multiple time segments, which intrinsically satisfies the continuity conditions between

two adjacent segments and removes the need for additional constraints. A specific

convolution approach was implemented to avoid discontinuities in the evaluation of ob-

jective and constraints and to enable the use of gradient-based methods. IPANeMA is

capable of handling uncertainties both in the initial state and in the model parameters.

Furthermore, it is suitable to work with a large variety of uncertainty models, hence

it is not restricted to purely Gaussian, uniform or other basic probability distribution

families.

Section 4.2 proposed a further development in optimal control problems under un-

certainty for the design of space trajectories. The main contribution of this section

was the development of the BOC formulation and the generalisation of a shooting-like

stochastic transcription to the case of orbit determination arcs and statistical con-

trollers. It was shown that the proposed belief-based formulation could accommodate

both aleatory and epistemic and allows the treatment of families of probability mea-

sures since no assumptions are made on the nature of the probability distributions

describing the uncertainties or on the transition function to propagate them. This for-

mulation further enables the optimisation of the open-loop thrust profile, taking into

account the effect of closed-loop components in continuous state space applications
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with sparse observations, thus coupling the trajectory optimisation process with the

navigation analysis. Indeed, a belief-based model is particularly suited to model the

inference step necessary for the state knowledge update when an orbit determination

campaign is carried out. The proposed transcription was generalised to the presence

of orbit determination by adapting the shooting-like discretisation through propaga-

tion and inference maps. A sparse polynomial mapping was employed to propagate

the belief state through the nonlinear dynamics. The developed scheme was shown to

transcribe the continuous problem under uncertainty in a discrete form to be optimised

with a local NLP solver. The optimised solution resulting from this approach is highly

informative as it determines the nominal control profile given a predefined control pol-

icy for possible deviations due to uncertainty, hence directly providing multiple control

laws and the associated empirical margins for correction manoeuvres.

These approaches developed in this chapter will be applied in Chapters 7 and 8.
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Chapter 5

Robust Collision Analysis and

Avoidance

The content of this chapter was published in:

C. Greco, and M. Vasile, “Robust Bayesian Particle Filter for Space Object Track-

ing Under Severe Uncertainty”, Journal of Guidance, Control, and Dynamics, un-

der review [84];

C. Greco, L. Sánchez Fernández-Mellado, M. Manzi, and M. Vasile, “A Robust

Bayesian Agent for Optimal Collision Avoidance Manoeuvre Planning”, 8th Euro-

pean Conference on Space Debris, 2021 [92].

This chapter presents the applications of the robust particle filter for state estima-

tion developed in Section 3.2 and introduces an autonomous decision-making Bayesian

agent. In detail, Section 5.1 shows the application of the RPF to space debris con-

junction analyses. Then Section 5.2 presents an application of the robust Bayesian

framework to an autonomous action allocation and CAM planning scenario.

5.1 Robust Particle Filter for collision analysis

This section presents the test case to assess the performance of the robust filter. First,

it introduces the general potential collision case and the uncertainty models for the

initial and measurement uncertainty. Then, a numerical assessment of the pSIS wall

time as a function of the number of particles and observations is carried out to verify the
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theoretical numerical complexity derived. Finally, three collision/non-collision scenarios

are considered for testing the filter in different operational conditions.

5.1.1 General scenario definition

The scenario considered consists of a piece of debris on a potential collision orbit with

a known operational satellite. SOCRATES (Satellite Orbital Conjunction Reports

Assessing Threatening Encounters in Space)[156], an online service that provides twice-

daily reports on the most likely collision events based on NORAD two-line elements

(TLEs) and the SGP4 propagator, was employed to select two space objects with low

distance at their close approach. The orbital elements of these two objects are reported

in Table 5.1. The first object is an operational satellite, SENTINEL 2B (NORAD ID

42063), whose ephemerides are assumed to be known perfectly (or at least very well)

as it carries a GPS receiver. The second object is a piece of debris (NORAD ID 30141)

resulted from the anti-satellite test carried out on FENGYUN 1C DEB in 2007 [157].

Thus, the state of the debris is the latent variable xk to filter. The reference Time of

Closest Approach (rTCA) is the 13-Jan-2021 at 13:24:25 UTC. We will define the final

time of our propagation as tF = rTCA, with tF > tM the time of the last observation

before the possible collision.

Table 5.1: Spacecraft orbital elements at reference epoch from NORAD TLEs.

NORAD ID EPOCH [UTC] a [km] e [-] i [deg] Ω [deg] ω [deg] M [deg]

42063 08-Jan-2021 01:17:15 7167.14 1.1e-4 98.57 85.33 81.09 279.04

30141 07-Jan-2021 16:24:07 7180.78 2.5e-3 99.08 183.01 252.25 107.59

Note that in general the uncertainty in both objects should be taken into account.

However, the scope of this example is to test the ability of the filter to generate robust

bounds on the probability of collision rather than the assessment of the ability of the

filter to handle high dimensional uncertainty spaces. For this reason we deliberately

selected one of the two objects to be well-tracked, and assumed that the main source of

epistemic uncertainty was the piece of debris. The application of our RPF to a scenario

in which both objects are uncertain can be found in Section 5.2, where the operational

satellite performs a CAM characterised by execution errors.
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In this research, the motion of the body is described in Cartesian coordinates in

an Earth-centered inertial reference frame. The dynamical model in Eq. (2.17) in-

cludes the following components [158]: the Earth gravitational force derived from the

EGM96 geopotential model up to degree and order 4; the atmospheric drag, according

to Jacchia-Gill model; the third-body disturbances due to the Moon and Sun gravita-

tional attraction; the solar radiation pressure with a conical shadow model for Earth’s

eclipses.

The quantity to compute and bound is the Probability of Collision (PoC). A colli-

sion is defined when the minimum distance between the two objects is smaller than a

given threshold δDCA. Hence, the collision indicator is expressed as:

IC(xF ) =


1 DCA(xF ) ≤ δDCA

0 DCA(xF ) > δDCA ,

(5.1)

where DCA is the function extracting the Distance of Closest Approach (DCA), that

is the minimum of the relative position norm between the debris state realisation and

the known operational satellite.

To detect the correct DCA for each sample, the relative distance at rTCA cannot be

not used directly because different state realisations have different TCAs. Because the

relative velocity is approximately 11 km/s, it is paramount to identify the correct TCA

for each sample to ensure an accurate DCA computation. Hence, the polynomial map

is used to propagate all the particles to rTCA, and then the hyperbolic assumption is

employed to compute the specific TCA for each sample. Therefore, the minimum DCA

for a realisation xF is obtained by computing the pericenter distance of the relative

hyperbolic trajectory between the two objects [159].

From here, the probability of collision is evaluated by computing the expectation

of the indicator function

PoC(λ) =

∫
IC(xF )p(xF |y1:M ;λ)dxF . (5.2)
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Therefore, the goal is to compute robust bounds on the PoC as

PoC = min
λ∈Ωλ

PoC(λ) (5.3a)

PoC = max
λ∈Ωλ

PoC(λ) , (5.3b)

with a specific interest for PoC which represents the epistemic worst-case scenario.

Initial state uncertainty

The initial distribution is constructed by imposing an uncertainty measure on the de-

bris’ TLE in Table 5.1. The value of such uncertainty is defined by following the

guidelines of the European Space Agency (ESA) [160]. For inclinations larger than

60 deg, the 1σ uncertainty in the radial, transversal and normal components of position

and velocity are reported in Table 5.2. A Gaussian parametric family is employed to

describe the initial state uncertainty.

Table 5.2: 1σ position (r) and velocity (v) uncertainty of TLEs for orbits with e < 0.1,
i > 60 deg, perigee altitude ≤ 800km, in radial (U), transversal (V), and normal com-
ponents (W).

1σrU [m] 1σrV [m] 1σrW [m] 1σvU [mm/s] 1σvV [mm/s] 1σvW [mm/s]

104 556 139 559 110 148

The covariance matrix Σx0 in inertial coordinates is computed using the Jacobian of

the transformation from radial, transversal and normal to Cartesian coordinates. From

here, the importance initial distribution is defined as a normal distribution

π(x0) = N
(
x0;µx0 ,Σx0

)
(5.4)

where µx0 is the Cartesian state retrieved from the TLE. Epistemic uncertainty is

introduced in the probability distribution associated with the initial conditions by using
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two epistemic parameters. The initial epistemic set is defined as:

Px0 = { p(x0;λ0) : p(x0) = N
(
x0;µx0 , Σ̃x0 ;λ0

)
,

Σ̃x0 = diag(λx0−1 Σx0(1 : 3, 1 : 3), λx0−2 Σx0(4 : 6, 4 : 6)),

λx0−1 ∈ [1/52, 52], λx0−2 ∈ [1/52, 52] } ,

(5.5)

where λ0 = [λ0−1, λ0−2] is the epistemic parameter on the initial distribution, the

symbols Σx0(1 : 3, 1 : 3) and Σx0(4 : 6, 4 : 6) indicate respectively the position block

and the velocity block of the covariance matrix Σx0 , and the operator diag indicates

a block-diagonal matrix. Therefore, the set Px0 is parameterised using two epistemic

multipliers λx0−1 and λx0−2 which scale the covariance matrix, reducing the initial

uncertainty for multipliers < 1, or increasing the initial uncertainty for multipliers > 1.

The multiplier range [1/52, 52] means that the standard deviations of the initial state

may be reduced or increased by a factor 5 of their reference value computed from

Table 5.2.

Note that the definition and parameterisation of the family of distributions are very

much dependent on the nature of the epistemic uncertainty that one is considering. In

this illustrative example, we maintain the parameterisation of a Gaussian type of fam-

ily of distributions. More general parameterisations are also possible, see [161] for an

example of the use of Bernstein polynomials to represent generic families on bounded

support. Although the inputs’ distribution is parametric, the state distribution in time

will have a generic form thanks to the particle-based method, capturing the dynamical

and observational nonlinearities. The range and distribution of the uncertain param-

eters λx0−1 and λx0−2 can be derived from a statistical analysis of a time series of

observations or CDMs. In this example, we take the more general case in which the

parameters are defined within intervals, but their distribution is unspecified.

Observation model and errors

The simulated scenario involves indirect measurements of the state between the initial

time and the TCA which are employed to improve the state knowledge. The mea-
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sured quantities are the debris azimuth and elevation with respect to the equatorial

plane [162], such that the ideal measurement model is expressed as

h(tk,xk, εk) = h(tk,xk)+εk =

 haz(tk,xk)

hel(tk,xk)

+εk =

 arctan xk(2)
xk(1)

arcsin xk(3)
‖xk(1:3)‖

+εk , (5.6)

where xk(i) indicates the i-th element of the vector xk, i.e. the Cartesian position

elements for i = 1, . . . , 3, h(tk,xk) indicates the ideal model, and the noise term is

assumed additive. The noise is modelled as zero-mean normal with diagonal covariance

Σyk generated using the standard deviations in Table 5.3. The simulated measurements

Table 5.3: 1σ azimuth (az) and elevation (el) uncertainty for noisy measurements of
debris.

1σaz [arcsec] 1σel [arcsec]

10 10

are generated using the debris reference trajectory, i.e. with initial conditions µx0 ,

which is one of the collision trajectories of the space debris. Observation errors are

drawn from the distribution of εk. Observations are taken every eight hours between

the initial epoch and the rTCA. The resulting noisy observations are indicated as ȳk.

In the epistemic scenario, we assume that the observation covariance Σyk is not

known precisely due to poor sensor characterisation. The likelihood epistemic set Pyk|xk
is therefore parameterised as

Pyk|xk =
{
p(ȳk|xk) : p(ȳk|xk) = N

(
h(tk,xk); ȳk, Σ̃yk

)
,

Σ̃yk = diag(λyΣ−1 Σyk(1, 1), λyΣ−2 Σyk(2, 2)),

λyΣ−1 ∈ [1/52, 52], λyΣ−2 ∈ [1/52, 52]
}
,

(5.7)

where Σyk(1, 1) and Σyk(2, 2) indicate respectively the azimuth and elevation variance

values of the reference covariance matrix Σyk as resulting from the standard deviations

in Table 5.3. The unknown epistemic parameters λyΣ−1 and λyΣ−2 are constant for

all the acquired measurements k = 1, . . . ,M as they are intended to describe the

lack of knowledge about the accuracy of the sensor and not the accuracy of a specific
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observation. The resulting ranges of standard deviation for the azimuth and elevation

measurements encompass diverse figures found in literature [163, 164, 165].

5.1.2 Wall time analysis

In this section, the wall time TpSIS of a pSIS call is used as a metric to numerically

check the algorithm complexity in Eq. (3.21) for varying numbers of observations and

particles. The upper value N = 50000 was selected experimentally as the number of

particles after which the pSIS estimator value changed only marginally (less than 1%

from the previous N). A two dimensional grid is constructed by using M ∈ {10 + 5i :

i = 1, . . . , 8} observations and N = {5000j : j = 1, . . . , 10} particles. The filter is

run for each pair, and the average wall time for 100 pSIS calls is stored. The process

is repeated 30 times, i.e. until their average varied only marginally for most of the

pairs (less than 1% from the previous iteration), and the average time is stored. This

simulation was performed on Matlab R2020b on a macOS Big Sur 3.5GHz Dual-Core

i7. The same system will be employed for the successive simulations.

Hence, linear regressions on the average wall time are run with three different can-

didate models:

a) linear TpSIS ∼ β0 + β1M + β2N ;

b) linear with interaction TpSIS ∼ β0 + β1M + β2N + β3MN ;

c) quadratic TpSIS ∼ β0 + β1M + β2N + β3MN + β4M
2 + β5N

2.

The results of the linear regression for each of this models is shown in Tables 5.4 to 5.6.

Each table reports: the Root Mean Squared Error (RMSE) on the residuals; R2, that

is the ratio between the regression’s sum of squared residuals and the total sum of

squares, thus it measures the variance proportion explained by the model; p-value, that

corresponds to an F-test on the regression model. Besides, it shows the estimate of the

coefficients, the standard error of their estimate, the t-statistic, and the corresponding

p-value. In addition, Table 5.7 shows the change in R2 when the interaction and the

quadratic terms are included in the model as well as the p-value of the F-test on these

∆R2.
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Table 5.4: Linear regression of TpSIS with linear model.

Model RMSE R2 p-value
linear 0.0578 0.928 < .001

Predictors β0 β1 β2

Estimate -2.84e-01 9.15e-03 1.21e-05
SE 2.30e-02 5.64e-04 4.50e-07
t-stat -1.23e+01 1.62e+01 2.69e+01
p-value < .001 < .001 < .001

Table 5.4 shows that the linear model is significant given the observed wall times

as well as the estimate of the coefficients. The R2 value shows that the linear model

explains 92.8% of the observed variance.

Table 5.5: Linear regression of TpSIS with linear model with interaction.

Model RMSE R2 p-value
linear w/ int 0.0360 0.972 < .001

Predictors β0 β1 β2 β3

Estimate -4.18e-02 1.71e-03 3.31e-06 2.71e-07
SE 2.62e-02 7.59e-04 8.43e-07 2.45e-08
t-stat -1.60e+00 2.25e+00 3.93e+00 1.11e+01
p-value 1.14e-01 2.76e-02 < .001. < .001

Table 5.5 reports the results when the interaction term MN is included in the

regression model. The R2 value increased to 97.2% of the observed variance showing

that the inclusion of the interaction actually explains the observed wall time variance

better. Also, the ∆R2 is significant as it can be seen in Table 5.7. Also, the RMSE in

this model decreased by approximately 37% with respect to the linear model.

Table 5.6: Linear regression of TpSIS with quadratic model.

Model RMSE R2 p-value
quadratic 0.0357 0.973 < .001

Predictors β0 β1 β2 β3 β4 β5

Estimate -9.50e-02 5.70e-03 2.95e-06 2.71e-07 -6.14e-05 6.56e-12
SE 4.31e-02 2.39e-03 1.47e-06 2.43e-08 3.49e-05 2.20e-11
t-stat -2.20e+00 2.39e+00 2.01e+00 1.11e+01 -1.76e+00 2.98e-01
p-value 3.07e-02 1.96e-02 4.83e-02 < .001 8.24e-02 7.66e-01
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Table 5.6 presents the regression results for the quadratic model. The p-values for

the coefficients of the quadratic terms, that is, β4 and β5, are larger than 0.05, and

thus they are not statistically significant. Furthermore, when compared to the linear

model with interaction, the R2 increased only marginally, and the RMSE decreased by

less than 1%. The ∆R2 increase is not significant as reported in Table 5.7.

Table 5.7: Progressive change in R2 and change significance.

Model R2 ∆R2 p-value ∆R2

linear 0.928 0.928 < .001
linear w/ int 0.972 0.045 < .001
quadratic 0.973 0.001 .21

Thus, this analysis provides empirical evidence that the numerical complexity of a

pSIS call is indeed linear with interaction on the number of observations and particles

as derived in Eq. (3.21).

5.1.3 Results

Four main instances of the conjunction scenario are considered in this section. In the

first, no observations are simulated and we compute the collision probability resulting

from uncertainty propagation only. In the last three, we simulate observations up until

24 hours before the rTCA. In the first two instances, the true unknown trajectory of

the FENGYUN 1C DEB debris eventually results in a collision with SENTINEL 2B. In

the second, after the robust PoC analysis 24 hours before rTCA, the operator decides

to take further measurements before deciding whether to manoeuvre or not. In the

third one, the debris’ true unknown trajectory does not result in a collision although

it passes close to SENTINEL. Similarly, extra measurements are employed to decide

whether to implement a manoeuvre. The last instance is again a collision trajectory,

but instead of taking new measurements, they are simulated to see how they would

impact the PoC. Different subcases are tested for this last instance to test the filter

scalability further. The filter settings and performance for each instance are reported

in Table 5.8.
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Uncertainty propagation

For instance A, an initial uncertainty propagation using N = 50000 particles, the max-

imum N used in the wall time analysis, and without any measurements, that is M = 0,

is performed to compute the probability bounds resulting from uncertainty on the ini-

tial conditions. The PoC is computed using a Hard-Body Radius (HBR) corresponding

to the threshold δDCA = 50m, which is conservative for the combined satellites’ dimen-

sions. Fig. 5.1 represents 3σ ellipses in b-plane coordinates. The ellipses are recon-

structed from the propagated samples and weights. The different ellipses correspond

to different values of the epistemic parameters, which impact the weights. Besides,

each sample is characterised by a different incoming asymptote, which correspond to

different B-plane orientation [166]. Hence, Fig. 5.1 and successive ones represent all the

ellipses in a unique plane, which is the average of all the realisations-specific b-planes

for a given conjunction instance. The ellipses corresponding to the epistemic param-

eters λ and λ, respectively yielding the lower PoC and upper PoC, are plotted as well

with the same line style.

-600 -400 -200 0 200 400 600

-10
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0

5

HBR
3 Ell

Figure 5.1: Debris’ HBR and b-plane 3σ ellipses for instance A.

One could also plot the Empirical Cumulative Distribution Function (ECDF) of the

DCA from the propagated samples and weights as displayed in Fig. 5.2. The distribu-

tion corresponding to the lower probability, henceforth labelled as lower distribution,

is displayed in green, whereas the one corresponding to the upper probability, labelled

upper distribution, is represented in red. The dashed grey distributions are the ones
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Figure 5.2: DCA’s ECDFs for instance A. Fig. 5.2(b) is a zoom of Fig. 5.2(a) for DCAs
up to 500 meters.

resulting from different epistemic parameters within the imprecise sets. Fig. 5.2(a) dis-

plays the full distributions. Fig. 5.2(b) is a zoom of Fig. 5.2(a) for DCA up to 500m.

For the threshold distance δDCA = 50m, the collision probability is within the robust

interval

PoC50m ∈ [0, 4.97 · 10−5] .

The filter performance for this instance A is reported in Table 5.8. The propaga-

tion step, including surrogate construction and particle propagations, requires approx-

imately half of the total computational time. The time dedicated to construct the

proposal is zero as no observations are employed in this instance.

It is important to underline that the lower and upper distributions do not necessarily

result in lower and upper bounds for the collision probability at different distance

thresholds δDCA 6= 50m. Specifically, the lower and upper distributions are not lower

and upper envelopes for the ECDFs resulting from the imprecise set, but they are

distributions belonging to the set itself bounding the expectation of a specific quantity

of interest. From Fig. 5.2 we can notice that indeed the lower and upper distributions

do not yield to the probability lower and upper bounds for DCA thresholds larger than
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≈ 100 m. Even more, from Fig. 5.2(a) we can notice that the green line is above the

red one for DCA thresholds larger than ≈ 20 km.

The ellipses and ECDFs are reconstructed from uncertainty propagation of TLE-

derived uncertainties. ESA’s guidelines for pure Two-Line Elements (TLE) screening

set a threshold of PoC > 10−4 for δDCA = 300 m to trigger further analyses. For

such distance, by visual enquiry of Fig. 5.2(b), the upper probability is PoC300m >

5 · 10−4. Thus, the upper probability value flags up a potential collision that needs to

be further investigated. On the other hand, the lower probability is PoC300m < 1 ·10−5,

which would indicate a near-safe scenario. The difference between these two scenarios

indicates why it is critical to model and handle the epistemic uncertainty in collision

risk assessment. Specifically, the width of the probability interval indicates the degree of

ignorance of the probability estimate. Thus, it should be used to support the decision-

maker and decide whether to acquire new measurements or to manoeuvre. In the next

sections, we will use the distance threshold of δDCA = 50m as it is tailored for the

satellites under assessment.

Collision scenario

For instance B, a tracking campaign with M = 12 noisy observations is considered

between the satellites’ epoch dates and 24 h before the rTCA. At this cut-off time, the

RPF is run to estimate the PoC bounds. The ellipses resulting from said simulation

are displayed in Fig. 5.3. The collision probability now belongs to the robust interval

PoC50m ∈
[
0, 2.15 · 10−4

]
.

The effective sample size at the last propagation step is greater than 75%, and therefore

it is deemed suitable for the estimator approximation given the high number of particles

employed. The upper PoC increased by almost an order of magnitude when the new

tracking observations are taken into account. Still, for some combination of the initial

and likelihood epistemic parameters, the PoC could be zero.

It is important to note how epistemic uncertainty on the initial distribution and
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Figure 5.3: Debris’ HBR and b-plane 3σ ellipses for instance B with observations until
24 h before rTCA.

observation likelihood result in B-plane ellipses, which vary in size, orientation, and

central point. Thus, most algorithms that tackle the dilution of collision probability

issue by just tuning the covariance at TCA would fail to capture the actual large variety

of distributions resulting from epistemic uncertainty.

We now investigate how these bounds change if new observations are taken into

account. In particular, two new sets of azimuth and elevation measurements are em-

ployed until 9 h before the rTCA. This second cut-off time is chosen to leave enough

time for further observations’ processing, decision making and, in case, communications

with the satellite to manoeuvre.

The new DCA distributions are shown in Fig. 5.4. The ellipses are more concen-

trated near the HBR of the operational satellite. Thus, the collision probability interval

is now

PoC50m ∈
[
0, 9.69 · 10−3

]
.

The upper probability is almost 1%, which flags up a critical collision risk. Again, the

lower bound is 0 although the unknown trajectory is actually a collision one, and the

last observation is relatively close to the rTCA mainly because of probability dilution

resulting from specific combinations of the initial condition and likelihood covariance

matrices. This difference further highlights the importance of considering epistemic
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Figure 5.4: Debris’ HBR and b-plane 3σ ellipses for instance B with observations until
9 h before rTCA.

uncertainty in collision risk assessment.

The filter performance for this instance B is reported in Table 5.8. The propagation

requires the most computational time whereas the optimisation converges in less than

1000 iterations. When compared to instance A, the use of observations causes a higher

computational time for: i) the surrogate construction as a new polynomial expansion

needs to be constructed for each observation time; ii) the bound computation, despite

the lower number of B&B iterations, as the pSIS estimator complexity increases with

the number of measurements. The proposal requires a smaller share of time as it

employs the surrogate to propagate the sigma points and it requires only few efficient

matrix operations.

No-collision scenario

For instance C, the true unknown initial velocity is slightly perturbed by approximately

1m/s to cause a reference miss distance of 1 km. Again a tracking campaign with

M = 12 is considered up to 24 h before the rTCA. The resulting ellipses are shown in

Fig. 5.5. The collision probability now belongs to

PoC50m ∈
[
0, 2.82 · 10−4

]
.

114



Chapter 5. Robust Collision Analysis and Avoidance

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

-0.6

-0.4

-0.2

0

0.2

0.4

HBR
3 Ell

Figure 5.5: Debris’ HBR and b-plane 3σ ellipses for instance C with observations until
24 h before rTCA.

Although the true unknown trajectory does not result in a collision, we see how the

upper PoC computed 24h before rTCA is similar to the one in the collision scenario.

This happens especially for two reasons: the measurements are affected by noise; the

dynamics is highly nonlinear and has a fast time scale. The former causes larger

uncertainties in the state estimates. The latter causes even small deviations at the cut-

off time to translate into significant differences at rTCA. Indeed, the satellites revolve

more than 14 times in the 24h time span.

Again, we investigate how the bounds change with the two new sets of measurements

until 9 h before rTCA. The new ellipses are plotted in Fig. 5.6, and the probability

interval is

PoC50m ∈ [0, 0] .

The width of the probability interval is zero, meaning that the estimated probability is

0 no matter the epistemic parameter. Hence, although the PoC at the 24 h cut-off was

larger than the one in the collision scenario, the PoC interval at the 9 h cut-off actually

reflects the no-collision scenario.

Again, the performance for this instance C is displayed in Table 5.8. In this case,

the bound computation routine requires more iterations to estimate the robust bounds,

whereas the propagation and proposal steps take approximately the same computa-

tional time.
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Figure 5.6: Debris’ HBR and b-plane 3σ ellipses for instance C with observations until
9 h before rTCA.

Measurements simulation scenario

The last instance D is again the collision one in Section 5.1.3, but the measurements

after the 24h cut-off are simulated rather than acquired. The measurement simulation

is useful for the operator to understand and quantify the impact of future observations

on the probability figures. If the PoC estimates do not change significantly with succes-

sive measurements, it would be optimal to manoeuvre, if necessary, as soon as possible

without waiting for further measurements. If the probability interval changes signifi-

cantly and, specifically, becomes wider, successive observations can help to discriminate

whether a manoeuvre is truly needed or not.

The likelihood mean in Eq. (5.7) was set to be the received measurement itself.

Simulated measurements are characterised by further epistemic uncertainty on the like-

lihood mean because no observation has been received yet. Thus, for this scenario, the

likelihood epistemic set for the simulated future measurements k = M + 1,M + 2 is
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parameterised as

Pyk|xk =
{
p(yk|xk) : p(yk|xk) = N

(
h(tk,xk); yk, Σ̃yk

)
,

yk =

haz(tk, x̄k) + λyµk−1

√
Σyk(1, 1)

hel(tk, x̄k) + λyµk−2

√
Σyk(2, 2)


Σ̃yk = diag(λyΣ−3 Σyk(1, 1), λyΣ−4 Σyk(2, 2)),

λyµk−1 ∈ [−5, 5], λyµk−2 ∈ [−5, 5]

λyΣ−3 ∈ [1/52, 52], λyΣ−4 ∈ [1/52, 52]
}
,

(5.8)

where λyµk−1 and λyµk−2 are two new epistemic parameters modelling the uncertainty

on each observation value. These epistemic parameters regulate deviations from a ref-

erence measurement value h(tk, x̄k) taken along the reference trajectory. The epistemic

parameters λyΣ−3 and λyΣ−4 are the covariance multipliers which are constant for each

new simulated measurement as before.

For this instance, six subcases are run to investigate the filter scalability. The first

three (D1, D2 and D3) employ a set of simulated measurements until 9 h before collision,

while the last three (D4, D5 and D6) simulate an extra set of observations until 6 h

before rTCA. Then, they differ for the B&B convergence thresholds ε as reported in

Table 5.8.

The results of the RPF runs on instances D3 and D6 are shown in Fig. 5.7. Specif-

ically, in Fig. 5.7(a) the measurements are simulated at the same time instance as in

instance B. The probability interval for D3 is

PoC50m ∈
[
0, 2.94 · 10−2

]
.

By comparing this interval with the corresponding one in Fig. 5.4, we can see that the

value of the upper probability is larger, up to almost 3%. Likely, this is due to the noise

on the measurement in the first instance, whereas here the observation corresponding

to the collision trajectory is included in the epistemic set.

Fig. 5.7(b) shows the ellipses for D6 when the measurements are simulated until 6 h

before rTCA, that is less than 4 revolutions before the possible impact. The probability
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Figure 5.7: Debris’ HBR and b-plane 3σ ellipses for instance (a) D3 and (b) D6.

interval becomes

PoC50m ∈
[
1.20 · 10−8, 9.94 · 10−1

]
.

The upper probability shows that for specific measurement values within the imprecise

set, the PoC estimate would be very close to 100%, therefore predicting the collision.

On the other hand, the lower probability bound indicates that specific measurements

can still implicate an extremely low collision risk. The width of such interval indicates a

great degree of ignorance. In such a case, new better measurements should be acquired

to narrow the PoC interval and to allow a better informed decision.

The filter performances for these instances are shown in Table 5.8 as well. The pre-

computation times are in line with instances B and C. The time to compute the bounds
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sharply increases primarily with the number of epistemic dimensions, mainly due to the

initial triangulation complexity, and then with a more demanding convergence thresh-

old. Nonetheless, the time increase is not factorial as the filter upper bound complexity

thanks to early pruning.

Table 5.8: Filter performance for different conjunction instances.

Instance nλ ε L Time pSIS calls

Surrogate [s] Proposal [s] Optimisation [s] Total [min]

A 2 10−6 6.03·10−7 76.38 .00 80.02 2.60 1023

B 4 10−6 2.63·10−6 150.62 26.97 117.91 4.93 903

C 4 10−6 1.67·10−6 150.04 32.42 280.39 7.71 2774

D1
8

10−4

7.83·10−5 154.27 33.17
784.82 16.20 4140

D2 10−5 1265.25 23.76 6227
D3 10−6 1466.72 27.57 7376

D4
10

10−4

2.57·10−4 159.58 34.44
1555.66 29.16 9752

D5 10−5 1736.89 32.18 11636
D6 10−6 1922.37 35.27 13043

5.2 Bayesian framework for CAM

This section presents the initial design of a robust Bayesian framework for autonomous

decision-making in conjunction scenarios. The goal is to reduce the workload on oper-

ators and improve autonomy on the ground segment as the number of space objects is

rising sharply.

The proposed framework aims to automatically process observations, analyse con-

junction geometry, compute reliable risk metrics, and decide the optimal action to take.

Hence, this system aims to close the loop between the several topics developed in this

thesis, that is, tracking, state estimation, uncertainty propagation, and optimal control

for improving STM. Thus, this section will specifically discuss this agent’s high-level

architecture, whereas most of the single modules were developed in the relevant chap-

ters.
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Figure 5.8: Diagram of robust Bayesian pipeline for optimal collision analysis and
avoidance planning.

5.2.1 Framework architecture

Fig. 5.8 shows the pipeline of the Bayesian framework. Given a pair of satellites in a

potential collision, the workflow starts from sparse, noisy measurements of the satel-

lites’ state collected from external sensors. The state estimation module powered by

the RPF developed in Section 3.2 is run sequentially to estimate the collision geometry

as new measurements are available. The RPF enables the computation of the posterior

state distributions and the expectation on the collision probability accounting, at all

steps, for aleatory and epistemic uncertainty. The Bayesian agent performs risk as-

sessment using an AI-based classification system that considers the proximity of the

encounter as well as all the uncertainty affecting the state. The system can provide

feedback on the most suitable action to be taken. For events presenting low-risk, the

suggestion would be to wait for new measurements or take no further actions. For

events possessing a higher risk, the need of executing a CAM would be indicated and

the optimal manoeuvre computed by a CAM optimiser. The CAM engine works in

close collaboration with the estimation module. Indeed, the manoeuvre optimisation

model employs the full nonlinear UP to re-estimate the collision probability under the

initial uncertainty and newly introduced CAM execution errors. The goal is to find a

CAM which ensures a safe encounter with collision probability below a safety threshold.
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After manoeuvring, the new state is estimated and the risk metric updated as post-

manoeuvre measurements are available. Finally, on events affected by a high degree

of uncertainty, mainly epistemic due to lack of knowledge, the suggested action would

be to acquire more observations and refine the state estimation before re-assessing the

collision risk.

To accomplish these tasks, the Bayesian framework is composed of different modules

that relate to each other: the robust state estimation; the Intelligent Classification

System (ICS); the CAM optimiser. As said, the first module is based on the RPF

previously introduced. In the following, the last two modules are introduced in more

detail.

Intelligent classification system

This section describes the Decision on Close Event module of Fig. 5.8. This module

of Fig. 5.8 employs a Machine Learning (ML) based ICS to automatically allocate the

most appropriate action to be taken by an operator under the event of a close encounter.

This ICS was first introduced in [167]. This criterion classifies a close encounter event

based on: the time to the TCA; two epistemic variables, that are the lower expectation

and the degree of confidence (the difference between the upper and lower expectation) of

the collision probability being bigger than a given threshold. Oppositely to the common

probabilistic approaches, where the decision is made exclusively based on the value of

the computed PoC to raised binary alert flags (i.e. collision/no-collision), this method

works with the lower and upper probabilities to provide a more complete information.

Thus, the outcome of the classification criterion is not only able to indicate if an event

is high risk or low risk, but also if it is affected by a high degree of uncertainty.

The output of the criterion is a 5-class classification aiming to address the uncer-

tainty associated with the events properly and, therefore, provide a more meaningful

decision to the operators. This five classes can be grouped on: high risk events, classes

1 and 2, which require a CAM (High risk module on Fig. 5.8); low risk events, classes 4

and 5, where no further action is needed (Low risk and No action modules on Fig. 5.8);

event highly affected by uncertainty, class 3, where more observations should be ac-
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quired before making any decision on the manoeuvring (Uncertain and Collect new

measurements modules on Fig. 5.8). The details of the ML-based classifier are dis-

cussed in [167, 92].

Collision avoidance manoeuvre optimisation

This section illustrates the Perform CAM module of Fig. 5.8. Specifically, it introduces

the Collision Avoidance Manoeuvre model to compute the optimal CAM in those cases

that require a correction in the orbits for avoiding a potential collision. This allows us

to close the loop between state estimation, decision-making and CAM performance.

The optimal CAM is formulated as a BOC (see (4.29))

min
∆v

∆v

s.t. PoC < ε ,

(5.9)

that is a bi-level optimisation problem where again

PoC = max
λ∈Ωλ

PoC , (5.10)

and ∆v is the magnitude of the nominal ∆v. Therefore, the goal is to find the optimal

impulsive manoeuvre that minimises the nominal propellant expenditure while realis-

ing a PoC below the safe threshold ε even in the epistemic worst-case scenario. The

safe PoC threshold is set to ε = 10−6 according to European Space Agency’s (ESA)

guidelines [168].

When computing the PoC, it is important to account for possible deviations due

to execution errors on the CAM. Indeed, the executed CAM will differ from the com-

manded one due to pointing errors, thrust inaccuracies, time delays and so on. The

same model (4.10) for execution errors introduced in Section 4.2 will be employed in

the robust Bayesian framework.

In this scenario, both the objects’ states are modelled as random variables. Indeed,

although the operational satellite may be very well tracked, CAM execution errors

introduce uncertainty on its state knowledge as well. The PoC is computed as expec-
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tation of the indicator function (see Section 2.1) of a condition on the DCA between

the two space objects. By labelling the spacecraft states xs/c1 and xs/c2 , the collision

indicator is

IC =

 1 if DCA(xs/c1 ,xs/c2) ≤ δC

0 if DCA(xs/c1 ,xs/c2) > δC ,
(5.11)

where δC is a collision threshold depending on the satellites’ geometrical characteristics.

The DCA for two objects in a close encounter is computed as the pericentre distance

of their relative hyperbolic trajectory [159].

5.2.2 Case Study

This section discusses the applications to test the robust Bayesian agent for autonomous

decision-making and CAM design. The same conjunction scenario, dynamical and

observation models, initial and likelihood epistemic uncertainties introduced in Sec-

tion 5.1.1 hold for this test case. The difference is that now the optimal action to

take will be taken autonomously by the ICS. Furthermore, in a high-risk scenario, the

robust Bayesian framework will design a robust CAM to actively avoid the collision

encountered before.

The CAM and estimation engines of the Bayesian agent require the definition of

execution errors. The definition of such random variable Θ (see Eq. (4.10)) follows

the Gates’ model [169, 170]. A sketch of this model is displayed in Figure 5.9. In

Δv

D
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̂y

̂z

dx
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dz

Commanded Δv

Er
ror

 D
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Figure 5.9: Execution error by Gates’ model.

this model, the disturbance is defined in terms of modulus and angular variations on

the commanded ∆v. In a frame centred in the spacecraft with the z-axis aligned with
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∆v, the y-axis perpendicular to both the ∆v and the ecliptic normal, and the x-axis

completing the right-handed frame, the execution error components are taken from

zero-mean normal distributions

Θx ∼ N (0, σ2
pf + σ2

pp∆v)

Θy ∼ N (0, σ2
pf + σ2

pp∆v)

Θz ∼ N (0, σ2
mf + σ2

mp∆v) ,

(5.12)

where ∆v is the magnitude of ∆v, σmf and σmp are respectively the standard devia-

tions of the fixed and proportional magnitude component, while σpf and σpp concern

the pointing components. In this model, the pointing error is decomposed into two

components in the plane normal to the commanded ∆v, which is equivalent to decom-

posing it in terms of magnitude and angular components for suitable distributions [170].

These three components are then rotated into the inertial reference frame in which ∆v

is defined to yield the vector Θ. The parameters for the Gates’ execution error are set

as in Table 5.9.

Table 5.9: Gates’ parameters for execution errors on CAM test case.

Component Value

σpf 3.0 [mm/s]
σpp 7.0 [mrad]
σmf 5.0 [mm/s]
σmp .33% [-]

The values of the thresholds used by the ICS for risk assessment are shown on

Table 5.10. They include the two-time thresholds (T1, T2) to discern among short-

term, mid-term and long term encounter; the threshold on the probability of collision

(PC0) at which evaluate the lower expectation and the Degree of Confidence; the value

of the lower expectation at which the trust on the value is lost (E0); and the value of

the Degree of Confidence above which the event is considered to be highly affected by

uncertainty (∆).
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Table 5.10: ICS thresholds values.

Threshold Value

T1 2.0 [days]
T2 4.0 [days]
PC0 10−6 [-]
E0 0.5 [-]
∆ 0.3 [-]

5.2.3 Results

The first two operational scenarios introduced in Section 5.1.3 are considered here, that

is, one resulting in a collision and one near-miss conjunction.

Collision scenario

In this case, the true unknown trajectory of the FENGYUN 1C DEB debris eventually

results in a collision with SENTINEL 2B. We assume observations are available up to

48 hours before rTCA.

The result of the robust Bayesian estimation at this point is displayed in Fig. 5.10.

In the plot, several 3σ ellipses, which correspond to different values of the epistemic
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Figure 5.10: B-plane 3σ ellipses for collision scenario with observations up to 48h before
TCA.
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parameters, are displayed. The collision probability is robustly estimated as

PoC ∈ [0, 2 · 10−4].

Hence, the ICS is run to analyse the conjunction. The classification returns a class

3 scenario, a highly uncertain conjunction requiring further measurements to take an

informed action. Therefore, the agent decides to wait for new measurements until the

next checkpoint, 24 hours before rTCA.

At this point, after new observations are available, the robust Bayesian estimation

is rerun and the results displayed in Fig. 5.11. The collision probability is now
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Figure 5.11: B-plane 3σ ellipses for collision scenario with observations up to 24h before
TCA.

PoC ∈ [0, 1.8 · 10−3].

The ICS return a class 1 conjunction, which is a high-risk event that requires a CAM.

Thus, the CAM module is run to design a robust and optimal manoeuvre which

realise a PoC smaller than 10−6 while taking into account state and CAM execution

errors. The CAM on SENTINEL 2B is designed 10 revolutions before the rTCA.

After the manoeuvre execution, the robust estimation is rerun to check that the

upper collision probability indeed satisfies the safety threshold in the presence of state

and execution errors. The resulting graph is shown in Fig. 5.12, where it can be seen
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that there is no intersection between the 3σ ellipses and the HBR.
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Figure 5.12: B-plane 3σ ellipses for collision scenario after CAM.

The upper probability bound post CAM is PoC < 10−7. The evolution of the PoC

bounds at the several checkpoints considered is shown in Figure 5.13.
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Figure 5.13: Evolution of PoC bounds for collision scenario.

No-collision scenario

In this scenario, the true unknown trajectory of the FENGYUN 1C DEB debris misses

SENTINEL 2B.Again, we start assuming observations are available up to 48 hours

before rTCA.

The result of the robust Bayesian estimation 48 hours before rTCA is depicted in

Fig. 5.14. The robust probability interval is
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Figure 5.14: B-plane 3σ ellipses for no-collision scenario with observations up to 48h
before TCA.

PoC ∈ [0, 1.8 · 10−4].

Thus, the conjunction analysis is similar to the collision one at 48 hours before rTCA.

The ICS is run, and it returns a class 3 conjunction, again labelling a highly uncertain

scenario and the need for further measurements to implement an informed action.

Further measurements are acquired until the 24 hours checkpoint, where the Bayesian

estimation is updated. The resulting conjunction geometry is displayed in Fig. 5.15.

Here, it can be seen how the debris 3σ ellipses are rather distant from the HBR of the
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Figure 5.15: B-plane 3σ ellipses for no-collision scenario with observations up to 24h
before TCA.

operational satellite and indeed centred on the true (unknown) trajectory. The ICS
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returns a class 5 conjunction labelling a safe conjunction. Indeed, the corresponding

upper probability is estimated to be PoC < 10−10. The intelligent agent, therefore,

requires no further action.

For the no-collision scenario, the PoC bounds estimated at the two different check-

points are displayed in Figure 5.16.
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Figure 5.16: Evolution of PoC bounds for no-collision scenario.

5.3 Chapter summary

This chapter presented the applications of the methods developed in Chapter 3.

On the robust PoC estimation between SENTINEL 2B and FENGYUN 1C de-

bris, the RPF was shown to efficiently compute robust probability bounds under both

aleatory and epistemic uncertainty in the prior and likelihood distributions. The com-

bined use of a UKF-based proposal and the polynomial propagator ensured a large and

satisfactory effective sample size for the estimators’ computation on the challenging

test cases analysed. The filter proved to be a useful tool for the decision-maker in the

different operational conditions considered. The output of the RPF is not the robust

interval only. Indeed, it was shown that the full ECDFs of the quantity of interest

could be reconstructed, thus providing informative information for different threshold

values. Besides, for the last scenario in particular, the measurements at later times

were simulated rather than acquired, and the RPF provided a valuable analysis to

assess the potential impact of future observations on the PoC bounds. This process

129



Chapter 5. Robust Collision Analysis and Avoidance

could assist the operator in deciding whether to manoeuvre immediately or acquire new

measurements in highly uncertain scenarios.

With the numerical experiments we confirmed the correctness of the theoretical

prediction of the performance of the filter and demonstrated how the filter can com-

pute tight bounds enclosing all realisations of the PoC for a given threshold. We also

demonstrated that in some cases epistemic uncertainty can lead to fairly wide bounds,

which suggests that a poor consideration for epistemic uncertainty would give operators

a false confidence in the value of the PoC.

The conjunction instances analysed in this example illustrated how the filter could

handle epistemic uncertainty. However, more realistic and general scenarios would need

to include epistemic uncertainty on both objects and on the prior mean.

Successively, the RPF was integrated within a robust Bayesian framework for opti-

mal CAM allocation. This framework is constituted by three main modules that relate

to each other. Other than the RPF for state estimation, the modules constituting the

Bayesian pipeline are: an intelligent classification that automatically indicates the most

convenient action to be taken when a close encounter is detected; the optimal CAM

engine on the high-risk events to steer the thrusting spacecraft on a safe trajectory.

Aleatory and epistemic uncertainties are considered on the state knowledge and ma-

noeuvre errors, which are included to model inevitable errors in the CAM execution.

The manoeuvre is designed such that the post-CAM upper collision probability is below

a safety threshold set to 10−6.

Such a system was applied to the same SENTINEL-FENGYUN conjunction anal-

yses. In both the collision and no-collision cases, the initial uncertain state has been

propagated and updated with measurements using the robust Bayesian estimator and

the Robust Particle Filter before performing a risk assessment. Then, the Intelligent

Classification System has been used for indicating the most suitable actions. Through

both scenarios, the three possibilities have been shown: obtaining more measurement to

reduce the uncertainty of the event, executing a CAM for avoiding a potential collision,

and taking no further actions in case of a safe encounter. In all cases, after executing

the appropriate action, the state has been re-estimated to re-evaluate the encounter
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risk. On the collision scenario, it is shown the CAM optimiser provides an optimal and

robust manoeuvre accounting for the uncertainty affecting the state and including the

uncertainty introduced by the manoeuvre itself.
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Chapter 6

Optimal Scheduling

The content of this chapter was published in:

C. Greco, L. Gentile, G. Filippi, E. Minisci, M. Vasile, and T. Bartz-Beielstein,

“Autonomous generation of observation schedules for tracking satellites with

structured-chromosome GA optimisation”, In 2019 IEEE Congress on Evolution-

ary Computation (CEC), 2019 [91];

L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “Satel-

lite tracking with Constrained Budget via Structured-Chromosome Genetic Al-

gorithms”, Optimization and Engineering, under review [86];

L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “An op-

timization approach for designing optimal tracking campaigns for low-resources

deep-space missions”, In 70th International Astronautical Congress, 2019 [97].

This chapter presents advancements in efficient and autonomous scheduling of track-

ing campaigns. The goal is to contribute toward an augmented autonomy, efficiency,

and safety in the ground segment by introducing proper uncertainty quantification in

observation and communication scheduling. To this end, an optimisation-based ap-

proach is developed to generate multi-source optimal tracking campaigns to improve

the satellite state knowledge given noisy indirect measurements of its state.

The chapter is structured as follows. Section 6.1 describes the scheduling algo-

rithm by first introducing the fitness metric using a sequential filtering scheme and

then showing the tailored optimisation approach for the variable-size formulation used.

Then, this approach is applied to the optimal tracking of a LEO satellite in Section 6.2,

132



Chapter 6. Optimal Scheduling

and a deep-space scenario in Section 6.3.

6.1 Multi-source tracking

In general, the task of tracking space objects in a dynamical environment is highly

complex because it is affected by different sources of uncertainty, e.g. initial state dis-

persion, partially known dynamic parameters, noisy and sparse measurements. Hence,

the proposed method aims to find the optimal observation schedule for minimising the

uncertainty associated with the spacecraft state while considering limited budget re-

sources. From another standpoint, the presented approach can also be employed for

reducing the resources needed to meet an accuracy requirement on the state level of

uncertainty.

This problem requires the coupling of two major disciplines in aerospace engineer-

ing. The outer loop is an optimisation routine for generating candidate observation

schedules. The inner model involves an orbit determination routine for evaluating sen-

sible objective and constraint functions associated with a specific schedule.

The free variables considered are: 1) the number of times a specific ground station is

used; 2) the selection of adequate observation windows; 3) the number of observations to

acquire. Consequently, without simplifying assumptions, the number of design variables

changes among different solutions, and the observation scheduling falls under the area

of variable-size mixed-discrete global optimisation.

6.1.1 Tracking model

This section shows the problem formulation and the fitness metric for optimal schedul-

ing of tracking campaigns from heterogeneous sensors.

Scheduling formulation

The optimal scheduling is formulated as a sensor control problem [171], that is a

decision-making process to find the best sensor actions uk, associated to the mea-

surement yk(uk), that optimise a fitness metric J . Thus, the sensor action influences
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the observation directly and, as a consequence, the state knowledge. Uncertainty over

the initial conditions, dynamical parameters, and observations values is accounted for

in the scheduling model. Thus, the tracking model is again framed in a filtering proba-

bilistic fashion as in Eq. (3.2). The posterior p(xf |y1:M ) is again computed sequentially

by iterating uncertainty propagation arcs and orbit determination updates.

In this thesis, offline scheduling is of interest, that is, the whole tracking schedule is

optimised before the first satellite passage. Thus, the scheduling problem is formulated

as

u∗1:M = arg min
u1:M∈U1:M

J
(
u1:M , p(xf |y1:M )

)
s.t. Gk

(
uk, p(xk|y1:k)

)
∈ ΦGk for k = 1, . . . ,M ,

(6.1)

where U1:M is the set of admissible sensor controls, J and Gk are functionals that return

deterministic statistics from the posterior density and the actions, respectively, for the

objective and constraints, and ΦGk is the set of admissible constraints.

Given the sensor control formulation, the specific problem is scheduling optimal

tracking campaigns to reduce the satellite knowledge uncertainty using observations

from a heterogeneous ground network.

Ground stations

The specific observation model depends on the nature of the tracking station employed,

its geographical location, and the sensors available. Thus, each Ground Station (GS)

is specified by the following characteristics:

• geodetic coordinates (lat, lon, alt)j , that is latitude, longitude and altitude over

the Earth reference ellipsoid;

• specific observation model hj depending on the physical hardware available, e.g.

range, range-rate, azimuth and elevation measurements;

• reference sensor accuracy at 90 deg elevation over the station’s local horizon; at

different elevation angles the covariance elements worsen as ∼ 1/ sin (El(x)) [162];
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• the operational cost of the ground station Costj , depending on the tracking win-

dow.

The latter is used to impose budget constraints on the optimal schedules and avoid the

trivial solution of using as many accurate measurements as possible. Such list of GS’

characteristic is rather preliminary but it serves the scope to test the optimisation-based

scheduling in this preliminary analysis. A more faithful modelling of physical charac-

teristics and operational requirements is left for future developments of the scheduling

method, e.g. slewing speed and reservation conflicts.

Given the network specification, the satellite could fall within the station Field of

View (FoV) never, once, or multiple times, depending on the specific orbit and absolute

time interval considered. Hence, a first deterministic visibility analysis is performed by

numerically propagating the satellite reference trajectory and checking the condition

El(x) > 0 deg. From this, the total number of passages pj in the GS-j FoV, and the

contact window times [Tin, Tout]pj for each passage pj = 0, . . . , pj when the object is

visible, are computed.

An optimal combination of ground stations, observation types, high-elevation pas-

sages, and close measurements helps to improve the estimation accuracy. A graphical

2D simplified depiction of a possible solution candidate is reported in Fig. 6.1, where

only three ground stations are employed using a different number of observations.

Observation

Used station

Unused station

Figure 6.1: Sketch of space object passage over ground station network.
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Fitness metric

The goal of tracking is to improve the state knowledge as much as possible by using mea-

surements. Different metrics were examined to quantify the estimation accuracy given

a candidate tracking campaign [162]. Among others, a common metric is the RMSE

of the measurement residuals. However, small residuals do not necessarily imply an

accurate state estimate as there may be unobservable state components. Another ap-

proach to quantify the estimation accuracy requires comparing estimates coming from

different filtering schemes. However, this metric would be rather expensive to call nu-

merous times within the scheduling search. Finally, the covariance is a metric that

describes how spread the pdf is around the state. Furthermore, it is directly computed

in Kalman-based filters or easily retrieved from samples in particle filters. As a down-

side, the covariance results typically optimistic and highly dependent on the selected (if

any) process noise [162]. However, only a relative measure of the estimation accuracy

between different candidate schedules is of interest in the optimisation. Thus, the pro-

cess noise can be kept constant in each fitness evaluation. Therefore, the covariance was

chosen as the accuracy metric of the estimation process for the scope of this analysis.

As the optimisation works on a scalar quantity, the trace of the covariance is employed

as fitness to quantify the confidence in the state elements

J = Tr
{
Σxf |y1:M

}
. (6.2)

Since at the time of scheduling the actual observations are not available yet, a

covariance analysis [45, 47, 46] is employed to compute the final covariance by using the

expected measurements’ accuracy. Covariance analysis is mostly used for the navigation

analysis of space missions to design suitable tracking strategies [46, 172, 173]. In this

approach, OD is performed around the reference trajectory and the measurements are

employed just to model the reduction of the second moment of the state distribution.

Practically, this is achieved by simulating observations along the reference trajectory

with zero noise.

A Sparse Gauss-Hermite Quadrature Filter (SGHQF) [174] is employed as a filtering
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algorithm suitable for normal distributions and non-linear dynamical and observational

models. This nonlinear filter employs sparse grid quadrature rules to compute the

mean and covariance prediction and update. The square root of the covariance matrix

is employed in place of the covariance itself to improve the numerical stability of the

method [162]. The covariance needed for Eq. (6.2) is then computed by multiplying

the covariance square root by its transpose.

Budget constraint

In general, the more accurate measurements employed, the better the estimation ac-

curacy would be. However, operating a tracking station has an associated monetary

and human cost. Thus, each observation has an associated cost to quantify the budget

corresponding to a specific schedule. In this model, the cost Costj will depend on

the sensors’ accuracy, station architecture, ground operation costs, number of measure-

ments, etc. The total cost Cost is the sum of the individual costs, and the budget

constraint is formulated as

Cost(u1:M ) ≤ Cost , (6.3)

where Cost is the maximum budget available.

6.1.2 Optimisation approach

The scheduling problem has a hierarchical nature. Indeed, by looking for example at

Fig. 6.1, the number of measurements from a given station is a decision variable that is

activated only once the station is actively employed in the tracking schedule. Thus, the

number of variables changes for different candidate schedules depending on the sensor

controls u1:M . The specific hierarchical structures for the applications addressed in this

chapter will be discussed in Sections 6.2 and 6.3.

Thus, the search space has a varying size which entails additional challenges, e.g.

the generation of the initial population and an increased complexity of the optimisa-

tion algorithm. GAs proved to be efficient for variable size global optimisation when

employing appropriate encoding [175], and were employed for space trajectory de-

sign [176, 177, 178]. Specifically, hidden-genes GA was employed for the interplanetary
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trajectory optimisation [178]. In this variant, the variable size problem is translated

into a fixed size one by introducing boolean activation genes, each associated with an

original gene, to indicate whether a gene should be considered in the objective and

constraint computation. As a downside, the number of free variables doubles while the

operators work on the inactive variables as well.

Hence, in this work, a hierarchical multi-level chromosome structure is adopted as

proposed by [176, 177]. In this scheme, known as Structured-Chromosome Genetic

Algorithm (SCGA), the problem structure is encoded into the genes by employing

vicinity and hierarchy relationships, thus enabling a meaningful exchange of informa-

tion between chromosomes. SCGA bases its strategies on a revised version of standard

GA operators [179]. In particular, SCGA encodes a candidate as a structure rather than

a string. Then, the operators, nowadays established in stochastic fixed-length mixed-

discrete optimisation, have been redefined to manipulate candidates characterised by

different length and structure. In particular, the design of experiment, crossover, mu-

tation operators, and repairing strategies have been redefined to work on hierarchical

chromosomes. To make the search of the optimum more reliable, the proposed SCGA

also uses other strategies such as the population restart mechanism and the partial

local optimisation. This implementation of SCGA is available as open-source SCGA R-

package at [180] and was developed by Lorenzo Gentile as part of his PhD thesis and

research works, e.g. [90]. Since global optimisation is not a central theme of this disser-

tation, a detailed description of SCGA is not reported, but it can be found in [91, 86].

6.2 LEO space debris

In this section, first the details of the setup used in the LEO experiments will be

described in Section 6.2.1, then the results are presented in Section 6.2.2.

6.2.1 Experimental setup

The dynamical system is parameterised in Cartesian coordinates, and several forces are

included to model the motion in LEO faithfully [158]: Earth’s gravitational force using
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the EGM96 geopotential model up to degree and order 10; atmospheric drag with

Jacchia-Gill model; third-body disturbances due to the Moon and Sun gravitational

pull; Solar Radiation Pressure (SRP) with a conical shadow model. The satellite epoch

date is 2018 October 29 12:00 UTC, with reference Keplerian elements

µkep0
= (a[km], e[-], i[rad],Ω[rad], ω[rad], θ[rad])

= (6608.17, 1.61 · 10−3, 1.685, 5.662, 1.199, 1.589) .

After conversion to Cartesian coordinates µ0, this estimate is the mean of the Gaussian

initial state distribution p(x0) = N (x0;µ0,Σ0) with covariance set as

Σ0 = diag(10−4 km2, 10−4 km2, 10−4 km2,

10−8 km2/s2, 10−8 km2/s2, 10−8 km2/s2) .

The drag cross-section is set to 15.0 m2. The mean solar flux considered is 106.4 in

solar flux units, with a mean SRP cross-section of 1.625 m2 and a SRP coefficient of

1.3. These system and orbital parameters are set to resemble a GOCE-like satellite.

The tracking window lasts 8 hours, and it ends 2018 October 29 20:00 UTC.

Ground Station network

In this work, a hypothetical network composed of NGS = 9 GSs is modelled. Three dif-

ferent GS configurations have been implemented in terms of sensor types, accuracy, and

cost (see Table 6.1) to analyse the impact of GS’ characteristics on the final schedules

and the behaviour of the optimisation strategies. Each GS can measure one or more of

the following scalar observables: the station-satellite Range (R), Range-Rate (RR) and

Azimuth and Elevation (AzEl). The first two configurations (Conf-1 and Conf-2) have

been randomly generated to construct a network of variegated GSs. The third (Conf-

3) implements a simplified configuration in which the GSs have the same features and

cost. This configuration serves as a baseline and helps to simplify the results’ analysis

by isolating the effects of the station-satellite geometry. The station coordinates have

been exported in data kernels for NASA’s SPICE toolkit [181] to retrieve their inertial
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Table 6.1: Tracking network configurations reporting each station’s geodetic latitude
[deg], longitude [deg], 1σ accuracy in measurements for Range (R) [km], Range-Rate
(RR) [km/s] and Azimuth and Elevation (AzEl) [rad] and cost per measurement.

GS Latitude Longitude Feature Conf-1 Conf-2 Conf-3

GS-1 35.43 243.11

R NO NO 5.00E-01
RR NO 7.76E-05 NO
AzEl 3.64E-03 6.52E-03 NO
Cost 1.04E-01 1.57E-01 1.25E-01

GS-2 -35.4 148.98

R NO 1.36E-01 5.00E-01
RR NO NO NO
AzEl 2.56E-03 NO NO
Cost 4.36E-02 7.04E-02 1.25E-01

GS-3 40.43 355.75

R NO 2.24E-01 5.00E-01
RR 4.39E-05 NO NO
AzEl 2.90E-03 NO NO
Cost 1.04E-01 8.36E-02 1.25E-01

GS-4 40.53 17.43

R NO 7.14E-01 5.00E-01
RR 1.13E-05 1.00E-04 NO
AzEl NO 2.44E-03 NO
Cost 6.56E-02 3.00E-01 1.25E-01

GS-5 41.89 12.48

R NO NO 5.00E-01
RR 2.66E-05 8.14E-05 NO
AzEl 9.04E-03 NO NO
Cost 1.37E-01 8.59E-02 1.25E-01

GS-6 40.65 16.7

R NO 9.74E-01 5.00E-01
RR NO 6.97E-05 NO
AzEl 2.00E-03 7.75E-03 NO
Cost 3.94E-02 3.56E-01 1.25E-01

GS-7 67.86 20.96

R 3.72E-01 9.10E-01 5.00E-01
RR NO 1.92E-05 NO
AzEl 3.56E-03 NO NO
Cost 2.08E-01 2.25E-01 1.25E-01

GS-8 -72.01 2.53

R 4.78E-01 7.53E-01 5.00E-01
RR NO 2.53E-05 NO
AzEl 2.94E-04 NO NO
Cost 8.73E-02 2.06E-01 1.25E-01

GS-9 78.23 15.4

R 1.09E-01 5.18E-01 5.00E-01
RR 6.28E-05 1.26E-05 NO
AzEl 8.47E-03 NO NO
Cost 1.93E-01 1.62E-01 1.25E-01

state at different epochs while accounting for Earth’s rotation.

In the test case, an 8-hour time span is considered to track a satellite in LEO. As a

result of the short orbital period, the object falls in the stations’ FoVs multiple times.

The geometry of the satellite passes over the GSs considered is visualised in the sky
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plots in Fig. 6.2, which displays the azimuth and elevation angles over the GS’ local

horizon. The total number of potential tracking passages over all the stations is equal

to 21. The maximum elevation angle ≈ 71 deg is achieved over the tracking station
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Figure 6.2: Sky plots of satellite passes over the ground stations, with concentric circles
indicating different elevation levels, while the angular quantity represents the azimuth
measured eastwards from the local north. Different colours indicate different satellite
passes over the same station.

GS-9, which in addition sees the satellite in multiple passes. Good elevation angles

≥ 50 deg are also realised above stations GS-3, GS-4, GS-8, whereas the worst ones

correspond to station GS-2 and GS-5.

Sensor controls

It is expected that the optimal tracking schedule would have accurate measurements

at high elevation angles to improve the satellite visibility. Besides, the final accuracy
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depends also greatly on the observation timing, that is, when the observations are ac-

quired along the trajectory. All these features make the problem highly multi-factorial.

The actual measurement and its estimated accuracy depend on the time at which

it is taken and the station-satellite relative geometry. The sensor action can influence

these factors and therefore helps to acquire a measurement with a greater information

content. In this example, the action should first describe whether a measurement

is taken from GS-j or not, then should set the number of tracking arcs, the specific

orbital passages, and the times within each passage. The control variables encoded in

the sensor action are reported in Table 6.2. Thus, a boolean variable sets if the ground

Table 6.2: Free variables and types encoded within sensor action uk.

Description Variable Type Values
Use ground station j Discrete ON/OFF
Number of passages to use Integer [0, pj ] ∈ N
Indexes of passages to use Discrete [1, pj ] ∈ N
Number of observations per passage Integer [0,NoMmax] ∈ N
Times of observations per passage Continuous t ∈ [Tin, Tout]

p
j

station GS-j is used. If it is employed, an integer variable describes in how many orbital

passages measurements are acquired (up to pj), and a corresponding number of discrete

variables is used to pinpoint the specific passage. Each orbital passage can be used only

once. Thus, each of these discrete variables should have a unique value to have a feasible

schedule. Finally, for each orbit passage, an integer variable describes the Number of

Measurements (NoM) to acquire, and continuous variables set the specific measurement

times. Hence, the scheduling problem looks for the optimal combination of tracking

stations, orbital passages, and observation instances to optimise the fitness metric and

improve the system observability.

Tracking encoding

Once the optimiser has set a collection of sensor controls, a hierarchical structure with

three levels has been employed for the chromosome encoding, as depicted in Fig. 6.3.

The top class Ground Station indicates the number of different satellite passes in which

a specific ground station will be employed, and therefore NGS genes of this class will
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Figure 6.3: Chromosomes-hierarchy in the SCGA’s formulation.

be present in all the solutions. However, because different GSs have a different number

of orbital passages (see Fig. 6.2), the upper bound pj depends on the specific GS. The

intermediate class Orbit Index (OI) represents the indexes of the orbital passages in

which observations are acquired. The bottom gene class Budget for Measurements

(BfM) indicates the percentage of the total available budget for each specific orbital

passage of a given GS. The actual NoMj to be acquired is expressed by the equation

NoMj =

⌊
BfMj

Costj

⌋
(6.4)

where BfMj is the allocated BfM to GS-j.

As an example, two candidate schedules are shown in Fig. 6.4 by depicting the

multi-level structure for GS-1, GS-2 and GS-9 only. The solution in Fig. 6.4(a) allocates

(a) (b)

Figure 6.4: Example of two candidate observation schedules.

observations as: GS-1 on 2 different orbital passages OI-1 and OI-2 with BfM of 0.12
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and 0.16 respectively; GS-2 has no observations; GS-9 on 3 different orbital passages OI-

1, OI-4, and OI-5 with the reported BfM. The schedule in Fig. 6.4(b) has observations

for: GS-1 on 1 orbital passage, OI-1; GS-2 on 1 orbital passage, OI-1; GS-9 on 3

orbital passage, OI-1, OI-3, and OI-5. The two candidates have differences on each

structure level. Indeed, the second candidate uses GS-2 while the first does not, the

second schedule requires observations on the OI-3 of GS-9 whereas the first employs

the orbital passage OI-4, and the BfM are all different.

Figure 6.5: Cumulative distribution function employed to compute measurement times
within the FoV.

The accuracy of the estimation process strongly depends on the exact measure-

ment times. The choice of measurement times within an orbital passage in the station

FoV comes from the compromise of two conflicting factors: acquiring the most accu-

rate measures by concentrating them around the maximum elevation point; acquiring

the most independent observations possible spreading them in the whole observation

window. Hence, in this work, given the NoMj , the measurement times are computed

as the values of the normal cumulative distribution with mean = 0.5 and standard

deviation = 0.16 at the points that evenly divide the interval [0,1] NoMj times. The

times are then linearly scaled within the corresponding time interval [Tin, Tout]
p
j (see

Table 6.2). A graphical representation is given in Figure 6.5. This method concentrates
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the measurements around the maximum elevation point (scaled time 0.5) while adding

observations at the interval extrema as NoM increases.

Schedule cost

The cost of operations has been assumed to change linearly with the measurement

accuracy between the bounds defined in Table 6.3. Thus, if a station GS-j takes a

Table 6.3: Minimum and maximum 1σ accuracy and cost for each measurement type
M = {R,RR,AzEl} .

Parameter Symbol R [km] RR [km/s] AzEl [rad]

Accuracy
Min AccMmin 10−4 10−6 10−4

Max AccMmax 1 10−4 10−2

Cost
Min CostMmin 5 · 10−2 25 · 10−2 25 · 10−2

Max CostMmax 2 · 10−1 10−1 10−1

specific measurement M = {R,RR,AzEl} with accuracy AccMj (at 90 deg), then the

cost of a single observation is

CostMj = CostMmin + (AccMj −AccMmin) · (CostMmax − CostMmin)

(AccMmax −AccMmin)
. (6.5)

This unit cost is then summed over the types of observations and the number of mea-

surements acquired by GS-j to compute its operational cost for an orbital passage

Costj = NoMj

∑
M

CostMj . (6.6)

Hence, the total tracking cost required for the budget constraint (see Eq. (6.3)) is given

by

Cost(u1:M ) =
∑
j

Costj . (6.7)

The threshold value Cost is varied for different runs of the optimisation to analyse

the impact of limited versus large budgets in the estimation accuracy. The maximum

budget is varied in the range from 1.5 to 9 with a step of 1.5.
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Search algorithms

The free variables for SCGA are summarised in Table 6.4. SCGA is tested using three

different configurations: SCGA with population restart mechanism, SCGA with local

search and plain SCGA (see [86]). The restart and local search strategies are activated

only after 50 consecutive generations do not improve the best-found fitness above 1%.

The proposed optimiser is tested against a standard GA [182] and the hidden-

genes GA [178]. The former was not designed to tackle variable-sized problems, thus

a special encoding had to be designed to adapt it. In this case, the adopted strategy

is to activate the top and intermediate levels (see Fig. 6.3) for each GS and passage,

and the free variables are the BfM for every passage only. Thus, the decision variables

are 21 real variables, one for each time the satellite falls in the FoV of at least one

station. As said, the hidden-genes employs activation genes to control the activation of

a specific GS and OI while keeping the typical GA architecture and use of operators.

Thus, the free variables are 42 in total, 21 real-valued as before and 21 categorical

representing activation genes. The control variables with the corresponding bounds for

the comparison algorithms are reported in Table 6.4.

Table 6.4: Decision variables for different optimisation algorithms in observation
scheduling problem.

Algorithm Gene Type Size

SCGA
Ground Station Integer 9
OI Discrete variable
Budget Real variable

Hidden-genes GA
Budget Real 21
Activation Discrete 21

GA Budget Real 21

For all the strategies, the number of candidates in the population is set to 30 and

the maximum objective evaluations to 13, 500. Additional optimisations of hidden-

genes GA and SCGA with population restart are run with maximum objective evalua-

tions set to 27, 000 (respectively labelled GA-Hidden-DoubleEval and SCGA-Restart-

DoubleEval in the results) to check the convergence of the algorithms, only for the
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instances with maximum budget equal to 3 and 9. To have statistical significance, 50

independent runs initialised with different seeds are performed for each combination of

GSs network configuration (see Table 6.1) and a maximum allocated budget.

6.2.2 Results

The results for all the GS network configurations, budget allocations, and optimisation

algorithms are displayed in Figs. 6.6 and 6.7. The covariance traces of the 50 runs’

best solutions are reported using box and violin plots, respectively, with a linear and

logarithmic scale. As expected, the optimal tracking schedules of Conf-1 and Conf-2

deliver a significantly higher estimation accuracy than the Conf-3 schedules because

the latter uses only coarse range measurements. The boxes’ arrangement in Fig. 6.7

helps to show how increasing the allocated budget results in more accurate estimations.

For tighter budgets, SCGA manages to deliver tracking schedules whose estimation

accuracy is several orders of magnitude better than the one of plain GA and hidden-

genes GA. Thus, severe budget constraints undermine classical genetic algorithms’

ability to find optimal solutions for this scheduling problem. On the other hand, for

less constrained scenarios, the estimation accuracy’s difference resulting from different

methods is not statistically significant.

The convergence history of the algorithms is displayed in Fig. 6.8. SCGA shows

a significantly better convergence velocity especially in the low-budget configuration

in Fig. 6.8(a). Besides, in the less constrained scenario reported in Fig. 6.8(b), plain

and hidden-genes GAs are almost anytime outperformed by SCGA reinforcing the

hypothesis that traditional fixed-size optimisation strategies actually struggle to face

variable-size problems even when reformulated.

A visualisation of the 4 best solutions for each algorithm in the considered configu-

rations is shown in Fig. 6.9. These plots show the measurements allocation to each GS

and the fitness value. For each GS, the number of rectangles indicates the number of

orbital passages tracked, and the number in a rectangle specifies the OI. The colours

discriminate the algorithm employed as usual, whereas the hues indicate the NoM allo-

cated for each pass with brighter shades indicating more measurements. Furthermore,
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Figure 6.6: Box and violin plots showing the accuracy of the best schedules for each
algorithm in the 50 independent runs. The labels indicate the combination of GS
configuration (C: Conf) and maximum budget (B: Budget).

given the floor function in the definition of NoMj (see Eq. (6.4)), some resources are

discarded when the budget allocated to a GS is not exactly a multiple of its cost of
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employment. Thus, an efficiency metric defined as the percentage of unused budget

Eff =

∑
j Costj

Cost
· 100 (6.8)
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Figure 6.8: Anytime performance plot for two GS and budget configurations.

is reported in Fig. 6.9 as well. Looking at Fig. 6.9(a), the tracking schedules found by

the SCGA variants are very similar while there are some important differences with

the ones optimised by fixed-size GAs. As an example, SCGA always uses the first

high-elevation passage over GS-1 (see Fig. 6.2), which helps to improve the estimation

accuracy early in the tracking window. GS-8 and GS-9 are always employed having

very high elevation angles, GS-5 is employed in several solutions as well due to its

accurate RR measurement capability, which is highly informative, at a relatively low

cost (see Table 6.1). The high-elevation R measurement from GS-3 is utilised only by

SCGA with restart mechanism. In the second configuration, depicted in Fig. 6.9(b), the

optimal tracking schedules by hidden-genes and SCGA are similar, whereas the results

from GA are still significantly different. One difficulty seems to stem from the inability

of standard GA to totally discard a station, possibly due to the chromosome encoding.

Indeed, GS 1 to 6 are employed with a very low number of observations. Furthermore,

by looking at the allocation efficiency metric, standard GA does not manage to allocate

the whole budget efficiently, and therefore it discards tracking resources. Again, all

the best schedules employ GS-8 and GS-9 primarily because of their high elevation

passages. Multiple passages over GS-9 are tracked to acquire measurements during

different revolutions rather than only the second passage like in Conf-2.

Fig. 6.10 shows the distribution of the observation over the whole tracking window
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Figure 6.9: Visualisation of the four best solutions found by all the algorithms on two
tracking configurations.

for all the 50 final solutions. The rectangles composing the histogram are also colour-

coded for the ground station employed to take the measurement. For a given GS
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Figure 6.10: Distribution of the observations’ times over the tracking window in all the
final solutions.

configuration and budget, all the SCGA share the same qualitative distribution. By

increasing the budget for a fixed GS configuration, the number of employed observations

tends to increase sharply. This implies that often a suitable schedule is found already

at lower budgets. For Conf-2 and Conf-3, the observations are well spread in time and

tend to focus at the end of the tracking campaign when the budget increases. For Conf-

1, the observations are taken mainly at the middle of the observation interval. Besides,

larger budgets tend to concentrate on specific most-informative GSs and passages, that

is GS-4 for Conf-1, and GS-8 and GS-9 for Conf-2 and Conf-3. This difference is due to

the significantly higher cost of operating GS-4 in the second and third GS configurations

(see Table 6.1).

Fig. 6.11 shows the observation distribution for the best-found schedule only. The y-

axis now reports the final estimation accuracy while the colours and marks discriminate

the algorithms. For lower budgets, most of the measurements are acquired toward

the end of the tracking campaign such that the reduced uncertainty has less time to
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Figure 6.11: Distribution of the observations over the tracking window in the best
found solutions by all the optimisers.

grow due to dynamical propagation. As the budget increases, earlier observations are

employed as well to improve the accuracy more gradually during the tracking window.

In all the configurations, the variable size optimisation demonstrated to be more

reliable and better performing than fixed-size GAs. This performance difference was

even more evident for tighter budgets which significantly shrink the search space.

6.3 Deep-space tracking

In this section, the setup of a low-budget deep-space mission test case is described

in Section 6.3.1. The observation schedules obtained by SCGA are then presented in

Section 6.3.2.
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6.3.1 Experimental setup

A proper definition of the observation schedules of spacecraft cruising in the deep-space

is of utmost importance for the success of the missions. However, the methodologies

used nowadays often need a priori parameter specification that limits the search for

optimal observation schedules. One of these is the number of observation campaigns to

be performed. Based on previous experience, common practice is to fix this parameter

at the early stage of the schedule design and keep free the other parameters defining

the observation campaign. Indeed, in cases where the operator already gained a deep

knowledge about the mission, this approach may be successful and lead to optimal

low-budget observation schedules. In others, this can represent a severe limitation and

compromise the quality of the state estimation of the spacecraft and the success of the

mission. In light of these considerations, the approach used in this section aims at

increasing the degrees of freedom, keeping the number of observation campaigns as a

free variable of the observation schedules design process.

Problem scenario

The goal is to track a low-thrust spacecraft departing from the Earth in its propellant-

optimal trajectory to rendezvous the near-Earth asteroid 99942 Apophis (2004 MN4).

The ephemerides of Earth and Apophis at different epochs are computed with NASA’s

SPICE through high-fidelity prediction routines [181].

An interplanetary trajectory to 99942 Apophis is considered as an application to

test the tracking scheduling. The nanoSat departs from an Earth escape trajectory on

the 22nd of October 2026 and reaches Apophis on the 10th of April 2028 for a total

time of flight of 537 days. Only the Sun’s central gravitational force and the high-thrust

impulses are considered in the dynamical model as the primary interest is on the OD

schedules optimisation. The reference orbit for the interplanetary transfer is shown in

Fig. 6.12.

The uncertainty considered on this transfer is due to

• knowledge error for the initial conditions modelled as a multivariate Gaussian
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Figure 6.12: Reference trajectory of spacecraft from Earth to Apophis.

distribution;

• execution errors for TCMs modelled with the Gates’ model [169] (already intro-

duced in Section 5.2.2); the TCMs are executed two days after the end of each

tracking arc;

• noisy observations yk with likelihood distribution, modelled as normal, accounting

for sensor and external noises.

Table 6.5 reports the parameters for the first two uncertainty models: the standard de-

viation for the initial distribution and the Gates’ parameters. The observation accuracy

is reported in Table 6.6 where the GSs parameters are detailed.

Ground station network

In this example, three GSs constitute the network for tracking the spacecraft during

its interplanetary transfer. Each of them can measure the station-spacecraft relative

R, RR and AzEl, but the accuracy and operating cost vary for the three of them. The

accuracies and costs have been set such that GS-1, GS-2, and GS-3 provide respectively

low-, medium- and high-fidelity observations as detailed in Table 6.6.
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Table 6.5: 1σ standard deviations for position and velocity in RTN components of
initial distribution, and execution error parameters for Gates’ model.

Uncertainty Component Value

Initial Dispersion Position (RTN) [166, 166, 166] [m]
Velocity (RTN) [70, 10, 15] [mm/s]

Execution Error Fixed Pointing 3.0 [mm/s]
Prop. Pointing 7.0 [mrad]

Fixed Magnitude 5.0 [mm/s]
Prop. Magnitude 3.3e-3 [-]

Table 6.6: Ground stations’ accuracy and operating costs.

Ground Station Measure 1σ std. Cost

GS-1
Range 1 0.05
Range rate 10 0.025
Azimuth and Elevation 50 0.025

GS-2
Range 0.1 0.1
Range rate 4 0.05
Azimuth and Elevation 20 0.05

GS-3
Range 0.02 0.2
Range rate 1 0.1
Azimuth and Elevation 2 0.1

As the adopted schedule is a trade-off between final accuracy and operating cost,

several budget constraints have been tested, ranging from 0.2 to 15.

SCGA encoding

A full tracking campaign is composed of multiple OD arcs distributed at different times

during the trajectory. In this example, a single OD arc is defined by four quantities: the

time of the last observation; the ground station to employ; the type of measurements;

the NoM in that arc. Thus, schedules with a different number of OD arcs are encoded

by a different number of design variables making the use of variable size optimisation

advantageous.

The adopted formulation aims at reducing the number of free variables generally

considered by applying the concept of hierarchy. In this case, the hierarchy is consti-
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Table 6.7: Free variables types and possible values for scheduling of deep-space tracking
schedules.

Top level

Gene Variable type Lower Bound Upper Bound

Number of OD arcs Integer 1 10

Bottom level

Gene Variable type Lower Bound Upper Bound

Ending time Real 0 1
Number of measurements Integer 1 20

Gene Variable Possibilities

Measurement type Discrete [R,RR,AE, [R,RR], [R,AE], [RR,AE], [R,RR,AE]]
Ground Station Discrete [GS-1,GS-2,GS-3]

tuted by two levels. The top class is the number of OD arcs for a specific schedule. The

bottom level encodes all the other genes that define a single OD arc as described above.

The variable types, lower and upper bounds, or discrete possibilities for each of these

genes are reported in Table 6.7. The time has been scaled in [0, 1] as the departure

and arrival dates are known. The population size is set to 50, and for each budget

level 58 instances with different random seed have been analysed to obtain statistically

significant outcomes.

6.3.2 Results

The convergence history during the optimisation for the best-found schedule is depicted

in Fig. 6.13. In Fig. 6.13(a) the history of the mean of the performance of the best-

found solution during the optimization is depicted for each configuration investigated.

As expected, this picture shows that better estimation accuracy is achieved for higher

budgets. This result is even more evident from Fig. 6.13(b) which reports box-plots of

the covariance trace as a function of the allocated budget. The width of the boxes at

low budgets indicates the difficulty in finding optimal tracking schedules under severely

limited resources across multiple simulations.

Fig. 6.14 shows histograms counting the values of the genes (see Table 6.7) for the

optimal tracking schedule in the 58 independent runs for varying budgets. Specifically,

Fig. 6.14(a) counts the number of OD arcs for the optimal schedule. For most of the
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Figure 6.13: (a) Convergence history of the mean of the best found schedule and (b)
box-plots of optimal fitness value as function of budget over 58 independent simulations.

budgets, only one or two OD arcs are employed, whereas three or more arcs appear

for higher budgets. Increasing the budget, the optimal number of OD arcs is 3 for

the majority of the simulations. Fig. 6.14(b) reports the GS usage for the optimal

schedules. The medium- and high-fidelity stations, that is, GS-2 and GS-3, dominate

the schedules for budgets over 1. In contrast, schedules with tighter resources tend to

employ the low-fidelity GS-1 more. Fig. 6.14(c) displays the time distribution of the

OD arcs. The results suggest that tracking at the beginning and toward the end of

the trajectory yields a more accurate estimation. Indeed, from a navigation analysis

take, early measurements are beneficial because: they reduce the initial dispersion un-

certainty, therefore decreasing the dispersion growth with dynamical propagation; they

enable early, thus more efficient, impulsive TCMs. Late measurements are crucial in

improving the state knowledge at arrival and adjusting the final braking manoeuvre to

rendezvous the asteroid. Allocating a larger budget and, as a consequence, increasing

the number of OD arcs, the scheduling method found that it is beneficial to first track

toward the 75% of the mission, and secondly toward the 25%. Indeed, intermediate

observation windows help to reduce the uncertainty growth due to pure uncertainty

propagation and enable TCMs with large time margins before the final rendezvous.
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Figure 6.14: Analysis of the free variables considered in consideration of the budget
imposed. The histograms show the occurrences of the values assumed over the 58
solutions obtained for each configuration.

Finally, Fig. 6.14(d) counts the number of measurements per OD arcs in the 58 opti-

mal schedules. For low budgets, very few measurements are employed, whereas for high

budgets, almost all the OD arcs are characterised by the maximum number of measure-

ments. The NoM increases almost monotonically as more budget is allocated. Indeed,

the transition from tight to large budgets is rather smooth, with more observations
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distributed over a larger range of NoMs.

6.4 Chapter summary

An observation scheduling method was developed and tested on different tracking sce-

narios.

First, the optimisation-based scheduling approach to automatically generate opti-

mal tracking schedules was introduced to enhance the knowledge of the satellites’ state

evolving under the effect of strong dynamical perturbations. This work contributes to

the crucial need for methodologies to efficiently allocate ground resources to the con-

stantly increasing number of objects, operational and non, in space. All the ground

pipeline consisting of stations’ modelling, observation simulation, uncertainty prop-

agation, and orbit determination was designed. A structured-chromosome GA was

proposed to tackle the variable-size optimisation problem efficiently. The algorithm

was implemented to work with any dynamic, measurement model, and station network

such that test cases with different constraints and characteristics can be tackled.

Then, a test case on a LEO satellite was analysed. In particular, the optimisations

were repeated using three GS network configurations and using six levels of severity

for the maximum available budget limitation. The characteristics of the GS network

available were varied by changing the measurement accuracy of each GS and its archi-

tecture together with its cost of utilisation. Three settings of SCGA were implemented

and tested: SCGA with population restart mechanism, SCGA with local search and

plain SCGA. For comparison, standard and hidden-genes GAs were tested on the same

problems.

A second application was analysed for limited-resources allocation strategies in

deep-space objects tracking with stations characterised by different cost and accuracy.

In this test case, TCMs and their execution errors are included after each observation

arc. In this case, the effect of new measurements improves the knowledge at the obser-

vation instance but introduces errors on the velocity, which tends to worsen the future

prediction accuracy.

The results of both test cases indicated that the presented methodology could suc-
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cessfully enhance resource allocation strategies in space object tracking problems, in

particular under severe budget limitations. The results show the clear benefits granted

by employing a variable-size algorithm regardless of the problem instance. The advan-

tages of using SCGA, in comparison to standard or hidden-genes GA, were even more

evident for severe budget limitations, that is, when only limited portions of the search

space yield feasible schedules.
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Chapter 7

Low-thrust Trajectory Design

The content of this chapter was published in:

C. Greco, M. Di Carlo, M. Vasile, and R. Epenoy, “Direct multiple shooting tran-

scription with polynomial algebra for optimal control problems under uncertainty”,

Acta Astronautica, 2020 [87].

In this chapter, IPANeMA, developed in Section 4.1, is applied to the robust opti-

misation of a low-thrust space trajectory to the asteroid Apophis. This test case aims

at assessing the suitability and performance of the approach implemented in IPANeMA

when applied to the preliminary design of robust space trajectories.

7.1 Mission scenario

The goal is to compute the propellant-optimal rendezvous to the near-Earth asteroid

99942 Apophis (2004 MN4) with a low-thrust spacecraft departing from the Earth.

The ephemerides of Earth and Apophis at different epochs are computed with NASA’s

SPICE through high-fidelity prediction routines [181]. The initial date of the inter-

planetary leg is 22/10/2026 for a total time of flight of 628 days. The engine has a

maximum thrust of Tmax = 53 mN, a specific impulse of 3080 s, and an initial mass of

m0 = 644.3 kg.

The three-dimensional motion of the spacecraft is described with nonsingular equinoc-
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tial elements [183]:

a

P1 = e sin (Ω + ω)

P2 = e cos (Ω + ω)

Q1 = tan (i/2) sin (Ω)

Q2 = tan (i/2) cos (Ω)

L = Ω + ω + θ ,

(7.1)

where [a, e, i,Ω, ω, θ] are the standard Keplerian elements.

The governing equations of motion are the Gauss’ planetary equations in a radial-

transverse-normal (RTN) reference frame. The fast angular variable L, i.e. the true

longitude, will be used as independent variable to replace the time. Under the assump-

tion that the magnitude of the low-thrust control is significantly smaller than the local

gravitational force, the resulting system of equations is [184]:

da

dL
=

2a3B2

µ

[
P2 sinL− P1 cosL

Φ2(L)
fR +

1

Φ(L)
fT

]
dP1

dL
=
B4a2

µ

[
− cosL

Φ2(L)
fR +

(
P1 + sinL

Φ3(L)
+

sinL

Φ2(L)

)
fT − P2

Q1 cosL−Q2 sinL

Φ3(L)
fN

]
dP2

dL
=
B4a2

µ

[
+

sinL

Φ2(L)
fR +

(
P2 + cosL

Φ3(L)
+

cosL

Φ2(L)

)
fT + +P1

Q1 cosL−Q2 sinL

Φ3(L)
fN

]
dQ1

dL
=
B4a2

2µ

(
1 +Q2

1 +Q2
2

) sinL

Φ3(L)
fN

dQ2

dL
=
B4a2

2µ

(
1 +Q2

1 +Q2
2

) cosL

Φ3(L)
fN ,

(7.2)

where B =
√

1− P 2
1 − P 2

2 and Φ(L) = 1 + P1 sinL+ P2 cosL. The thrust vector is

defined by its acceleration magnitude, azimuth angle and elevation angle in the RTN

reference frame: 
fR

fT

fN

 =


ε sinα cosβ

ε cosα cosβ

ε sinβ

 . (7.3)

First, we calculate a reference solution with no uncertainty that departs from Earth

with the hyperbolic excess velocity reported in Table 7.1, where the vector is defined

163



Chapter 7. Low-thrust Trajectory Design

in terms of magnitude, azimuth and elevation in the Earth-centered inertial reference

frame. In this deterministic case, the constraint is imposed on the final state to exactly

Table 7.1: Deterministic hyperbolic excess velocity at departure from Earth.

Component Value

vdet∞ 3.34 [km/s]
αdet∞ 38.39 [deg]
βdet∞ −28.68 [deg]

match the equinoctial elements of Apophis at the final time, and the objective function,

to be minimised, is the low-thrust ∆V . The reference trajectory was generated with

FABLE (Fast Analytical Boundary-value Low-thrust Estimator) [185], transcribing the

optimal control problem into a sequence of coast and constant thrust arcs with vari-

able length. The size of each thrust and cost arc is then optimised to minimise the

objective function and satisfy the boundary conditions. In FABLE, the dynamics in

Eq. (7.2) is analytically propagated using a first-order expansion in the perturbing con-

trol acceleration [184]. The value of the objective function for the reference trajectory

is ∆V = 2.0318 km/s.

7.2 Uncertainty formulation

In the following, we consider uncertainties stemming from the interplanetary orbit

injection velocity vector. Uncertainty is modelled with the density functions defined in

Table 7.2. Note that a support of 4-σ from the peak value is considered.

Table 7.2: Density functions modelling uncertainties on the hyperbolic excess velocity
at departure from Earth. The deterministic excess velocity magnitude in Table 7.1
is the mode of the reversed Gaussian tail density distribution modelling the uncer-
tainty on vunc∞ , whereas the angular components are the mean of the Gaussian density
distributions describing the uncertainty on αunc∞ and βunc∞ .

Component Density Function Param. Std. deviation Support

vunc∞ Reversed Gaussian Tail 3.34 [km/s] 25.0 [m/s] [3.24, 3.44] [km/s]
αunc∞ Gaussian 38.39 [deg] 0.250 [deg] [37.39, 39.39] [deg]
βunc∞ Gaussian −28.68 [deg] 0.125 [deg] [−29.18,−28.18] [deg]

The uncertain vector, defined as ξ = [vunc∞ , αunc∞ , βunc∞ , ]T , induces uncertainty in

the initial conditions. The resulting distributions of the equinoctial elements at the
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initial time are displayed in Fig. 7.1. The colour code indicates the probability density

associated with each sample. In the same figures, the black dot is the expected value,

and the dashed line represents the projected 1σ ellipsoid corresponding to the covariance

matrix reconstructed from the samples. It is possible to see that, by construction, the

distribution is asymmetric, and the mean significantly deviates from the mode, located

in the dark red coloured area. Hence, the first two moments are not fully representative

of the real distribution. In such a case, the method implemented in IPANeMA is further

justified as it does not require any hypothesis on the shape of the distribution or the

linearity of the dynamics.

1.042 1.046

a [au]

-5.3

-5.2

-5.1

P
1

 [
ra

d
]

10
-2

1.042 1.046

a [au]

7.3

7.4

7.5

7.6

7.7

P
2

 [
ra

d
]

10
-2

1.042 1.046

a [au]

-1.27

-1.26

-1.25

-1.24

-1.23

-1.22

Q
1

 [
ra

d
]

10
-2

1.042 1.046

a [au]

-2.34

-2.32

-2.3

-2.28

-2.26

-2.24

Q
2

 [
ra

d
]

10
-2

Samples

Expected Value

1 Ellipsoid

-0.053 -0.051

P1 [rad]

7.3

7.4

7.5

7.6

7.7

P
2

 [
ra

d
]

10
-2

-0.053 -0.051

P1 [rad]

-1.27

-1.26

-1.25

-1.24

-1.23

-1.22

Q
1

 [
ra

d
]

10
-2

-0.053 -0.051

P1 [rad]

-2.34

-2.32

-2.3

-2.28

-2.26

-2.24

Q
2

 [
ra

d
]

10
-2

0.073 0.075 0.077

P2 [rad]

-1.27

-1.26

-1.25

-1.24

-1.23

-1.22

Q
1

 [
ra

d
]

10
-2

0.073 0.075 0.077

P2 [rad]

-2.34

-2.32

-2.3

-2.28

-2.26

-2.24

Q
2

 [
ra

d
]

10
-2

-0.0126 -0.0122

Q1 [rad]

-2.34

-2.32

-2.3

-2.28

-2.26

-2.24

Q
2

 [
ra

d
]

10
-2

Figure 7.1: Initial projections of the distribution of equinoctial elements induced by
the uncertainty in the hyperbolic excess velocity at departure. The black dot is the
expected value and the dashed line is the boundary of the 1σ ellipsoid associated to
the sample distribution. The color code indicates the probability density associated to
each sample.

This optimal control problem under uncertainty is formulated by substituting the

final boundary condition with a probability constraint. Specifically, the probability

that the final position and velocity have a difference, ∆r and ∆v, with respect to the

target position and velocity, smaller than or equal to the two thresholds ∆rthres and
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∆vthres. The values of the two thresholds are defined in Table 7.3.

Table 7.3: Position and velocity threshold for probability constraint.

Deviation Value

∆rthres 3.0e5 [km]
∆vthres 100.0 [m/s]

For a given state realisation x, the probability constraint is then computed via the

auxiliary positive continuous function:

ηT (X = x) =


≤ 1 if ∆r ≤ ∆rthres ∧∆v ≤ ∆vthres

> 1 if ∆r > ∆rthres ∨∆v > ∆vthres ,

(7.4)

and by setting the probability threshold 1−ρ to 95%. A quadratic smoothing function

is used for the convolution operator [147]:

h(ηT (x)) = 3(1− ηT (x)2)I[−1,+1]/4 . (7.5)

Uncertainty is propagated with 4-degree Chebyshev polynomials, given their proven

superior global convergence properties [109, 122]. Degree 4 has been selected as a suit-

able trade-off between representation accuracy (see Section 7.4) and numerical com-

plexity for the intrusive propagation. The fourth-order Runge-Kutta numerical scheme

is employed to integrate the dynamical equations of motion. For the transcription

with multiple shooting 6 equally sized time intervals, constant controls on each interval

and 1000 samples for the calculation of the sample-based expectation in Eq. (2.25) are

employed.

7.3 Results

The optimised robust control profile components are shown in Fig. 7.2 and compared to

the control profile of the deterministic solution. While the thrust magnitude is essen-

tially unaltered, the thrust angles changed significantly to steer the set of final states

within the required target region. In fact, the robust solution achieves a probability

166



Chapter 7. Low-thrust Trajectory Design

1 2 3 4 5 6 7 8 9 10

L [rad]

0

0.02

0.04
[N

]

1 2 3 4 5 6 7 8 9 10

L [rad]

-1.8

-1.6

-1.4

[r
a

d
]

1 2 3 4 5 6 7 8 9 10

L [rad]

0

0.05

0.1

0.15

[r
a

d
]

Robust control

First guess

Figure 7.2: Optimised robust control profile and deterministic control components.

of 95.60% that the final state is within the target region. On the contrary, when the

robust control profile is replaced with the control profile of the deterministic reference

trajectory, the probability of meeting the final target region drops to 69.80%.

Fig. 7.3 shows the probability to have a deviation in the final state that is lower than

a given threshold (in position and velocity). The blue dash-dot line is the cumulative

probability associated with the control profile of the deterministic reference solution,

while the green solid line represents the cumulative probability of the optimal robust

solution. The 0.95-quantile is highlighted for both the distributions to show how the

robust solution satisfies the probabilistic threshold with a significantly lower constraint

deviation. Furthermore, the figure shows that robust distribution always has a higher

cumulative probability value for any threshold. This demonstrates that the robust solu-

tion probabilistically outperforms the deterministic control for every possible deviation

threshold value.

The three-dimensional interplanetary trajectory, corresponding to the peak values

of the injection uncertain conditions in Table 7.2, is shown in Fig. 7.4, decomposed in

its ecliptic in-plane and out-of-plane projections.
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Figure 7.3: Cumulative distribution functions of final position and velocity deviations
for robust and deterministic reference solution.

7.4 Validation and verification

In this section, we verify the accuracy of the two key approximations employed in the

optimisation routine, that is, the propagation with GPA and the probability approxi-

mation by convolution on a limited number of samples.

To this end, 105 samples drawn from the initial distribution are propagated forward

in time with the robust control profile, either using the polynomial approximation

coming from GPA or by direct numerical integration of the dynamics with a fourth-

order Runge-Kutta integrator. The resulting root-mean-square (RMS) of the difference

between the GPA approximation and the numerical integration of the equinoctial el-

ements, at the final time, is reported in Table 7.4. These RMS deviations result in

an error of 10−4 relative to the threshold values as set in Table 7.3. Therefore, these

results confirm that GPA produces a fully satisfactory propagation approximation as

required for computing accurately the probability constraint.

Table 7.4: Root-mean-square error per state component between 105 samples propa-
gated by numerical integration and by intrusive polynomial algebra.

a [AU] P1 [deg] P2 [deg] Q1 [deg] Q2 [deg]

1.17 · 10−6 3.80 · 10−6 1.88 · 10−5 4.37 · 10−6 8.88 · 10−6

Then, the numerically propagated samples are used to compute the probability of

hitting the final target region without the convolution approximation. The result is
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Figure 7.4: Three-dimensional robust interplanetary trajectory of spacecraft departing
from Earth and arriving at Apophis with initial conditions resulting from the peak
values of the uncertainties in Table 7.2. The green and red lines represent the spacecraft
trajectory during thrust and coast arcs, respectively.

95.97%, slightly higher than the value 95.60% that was calculated in the optimisation

loop. Table 7.5 reports the probability resulting from different combinations of control

profiles, propagation schemes, number of samples, and with or without the convolution

operator.

Table 7.5: Probability of matching the final target region for different control laws and
approximation schemes.

Solution Propagation Samples Convolution Probability

Deterministic Polynomial 103 Yes 69.80%
Robust Polynomial 103 Yes 95.60%
Robust Polynomial 105 No 96.00%
Robust Numerical 105 No 95.97%

The results on lines two and four of Table 7.5 confirm that the use of GPA and the

convolution function provide an excellent approximation of the probability of meeting

the final target region.

A time comparison is then performed between the average time employed to prop-

agate a sample (the average over the 105 samples) with a fourth-order Runge-Kutta

numerical integrator and the recursive polynomial mapping with GPA. A time step
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of 2 hours was used in both propagations. The results, averaged out of ten tests on

an OptiPlex7050 desktop with Intel(R) Core i7-7700 @ 3.60GHz with 8GB of RAM

running Ubuntu 18.04.1 LTS, are reported in Table 7.6. The table shows that the

Table 7.6: Average time comparison for propagation of a sample with fourth order
Runge-Kutta numerical integrator and with polynomial surrogate mapping.

Propagation Average Time [ms]

Polynomial 1.5
Numerical 13.4

polynomial mapping is almost one order of magnitude less computationally expensive,

per propagated sample, than a full numerical integration. Since this time has to be

multiplied by the number of samples and the number of times sampling is required in

the optimisation loop, the employment of intrusive polynomial algebra results crucial

to the practical solution of realistic scenarios.

7.5 Epistemic uncertainty

The method employed in this section can also accommodate the case in which uncer-

tainty is epistemic or probabilities are imprecise. When uncertainty is epistemic, there

is a lack of knowledge on which distribution p has to be used, and we can only know

that p belongs to a set of possible probability density functions: p ∈ P. On the other

hand, when imprecision affects the probabilities, one can argue that the probability of

a realisation depends on a family of distributions rather than on a single one. In both

cases, in general, the probability distribution p is not exactly known, and one can only

know the boundaries of the set P of possible density functions. This section considers

the less general case in which p belongs to a known family of probability distribution

with parameters affected by epistemic uncertainty. Although this is not the most gen-

eral case of imprecision and epistemic uncertainty, it serves the scope of showing how

IPANeMA can handle distributions that are not completely defined a priori.

For an efficient computation of the expectation, the importance sampling scheme

in Eq. (2.27) should be preferred, in this case, in contrast to the direct Monte Carlo

sampling as used in Section 7.2.
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Since the key aspect of handling imprecision and epistemic uncertainty is the com-

putation of the expectation of quantities of interest, in the following, we use the robust

control optimised previously computed in Section 7.3, and we calculate the different

cumulative density functions which result from the set P.

For each uncertain parameter, we consider a different family of density functions:

a family of reversed Gaussian tail for the norm of the escape velocity and two different

families of Gaussian for azimuth and elevation angles (see Table 7.7). Epistemic uncer-

tainty affects the knowledge of the standard deviation of these distributions, which is

now defined as an interval. By construction, the precise uncertainty in Table 7.2 falls

within the imprecise set.

Table 7.7: Parameterisation of imprecise set of density functions P modelling uncer-
tainties on the hyperbolic excess velocity at departure from Earth for the same supports
defined in Table 7.2.

Component Density Function Param. Std. deviation

vunc∞ Reversed Gaussian Tail 3.34 [km/s] [20.0, 33.3] [m/s]
αunc∞ Gaussian 38.39 [deg] [0.2, 0.33] [deg]
βunc∞ Gaussian −28.68 [deg] [0.1, 0.166] [deg]

A three-dimensional uniform density function over the defined support is used as

proposal distribution

π(ξ) = U[3.24,3.44](v
unc
∞ ) · U[37.39,39.39](α

unc
∞ ) · U[−29.18,−28.18](β

unc
∞ ) (7.6)

to draw samples. The samples are propagated only once, and then the expectations cor-

responding to different admissible densities p ∈ P are computed with different weights

as in Eq. (2.27). The empirical cumulative distribution functions for a number of distri-

butions p are shown in Fig. 7.5 (dash-dot line with different markers). For comparison,

also the CDF corresponding to the robust solution in Fig. 7.3 is added to the figure

(green solid line). Given the construction of P, the robust solution falls within the set

of empirical CDFs.

Note that using a set of distributions rather than a single one does not affect the

transcription and propagation schemes. However, the NLP solver needs to evaluate

only one expectation function. Hence, one should replace the expectation functions
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Figure 7.5: Empirical cumulative distribution functions of final position and velocity
deviations for different uncertainty density functions out of the imprecise set P and for
the original precise distribution defined in Table 7.2.

in problem (4.2) with either the lower or upper expectations as in Eq. (2.4). For

the constraint in probability defined in Table 7.3, the idea is to evaluate the lowest

probability of satisfying the constraint, given the set P, which corresponds to the

worst-case constraint violation. Therefore, the constraint would be imposed on the

lower expectation:

E
[
IT (Xf )

]
= inf

p∈P
Pr(Xf ∈ T ) ∈ [1− ρ, 1] (7.7)

The optimisation under epistemic uncertainty is not directly solved in this section but

it is left as the main advancement of the next chapter.

7.6 Chapter summary

In this chapter, IPANeMA was applied to the robust optimisation of a low-thrust

rendezvous trajectory to the near-Earth asteroid 99942 Apophis subject to uncertain

hyperbolic excess velocity at departure. The resulting robust control law achieved over

95% of probability to reach the final target set. Furthermore, it was shown that this

robust solution significantly outperforms the reference, deterministic, one.

It was also shown that the method for the propagation of uncertainty and the cal-

culation of the expectation is fast and accurate and has low computational complexity.
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In particular, it was shown that the polynomial mapping is very accurate when com-

pared to a direct numerically integration of the dynamics, and the convolution operator

produces an accurate estimation of the correct probability.
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Chapter 8

Robust flyby design and analysis

The content of this chapter was published in:

C. Greco, S. Campagnola, and M. Vasile, “Robust space trajectory design using

belief optimal control”, Journal of Guidance, Control, and Dynamics, under re-

view [85].

C. Greco, and M. Vasile, “Closing the loop between mission design and navigation

analysis”, International Astronautical Congress, The Cyberspace Edition, 2020 [93].

In this chapter, first BOC, developed in Section 4.2, is applied to the robust op-

timisation of one leg of the Europa Clipper tour [186] in Section 8.1. Successively,

the epistemic variational inference presented in Section 3.3 is employed for reliable

navigation analysis on the same flyby scenario in Section 8.2.

8.1 Robust trajectory design

8.1.1 Mission scenario

The original full tour comes from a deterministic design. However, from a navigation

analysis, the leg of interest, labelled E17-E18, yields a dangerously high probability of

impact with Europa at flyby E18. Such deterministic trajectory is used as initial guess

for the robust optimisation. Therefore, the goal of this test case is to re-optimise the

E17-E18 open-loop trajectory with BOC so that the flight dynamics requirements are

satisfied and the remainder of the tour remains feasible. The problem is to minimise
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the sum of deterministic and statistical manoeuvres, while respecting the constraints on

the desired B-plane flyby parameter b, the hyperbolic TCA [187], the expected value

of the final position, and a constraint on the collision probability with Europa. We will

study both the case of purely aleatory uncertainty and mixed aleatory and epistemic

uncertainty.

The scenario addressed in this section is depicted in Figure 8.1. Each subplot in
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Jupiter
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Figure 8.1: Schematic representation of navigation analysis setup for part of Europa
Clipper leg belief optimisation test case.

Figure 8.1 represents a phase of the analysed trajectory, specifically:

(a) The E17−CU -E17 phase (Fig. 8.1(a)) starts from the initial belief X0, and goes

till the first control point, denoted as Clean-Up (CU).

(b) The CU -E17 − TRG-E18 phase (Fig. 8.1(b)) starts from the CU, where the

belief state is given by the ensemble
∑

j bjpj , executes the open-loop manoeuvre

∆vCU-E17 and propagates till the next control point near the trajectory apocenter,

denoted as Targeting (TRG).

(c) The TRG-E18 − APR-E18 phase (Fig. 8.1(c)) starts from TRG with the be-

lief state given by the ensemble
∑

j bjpj , performs manoeuvre ∆vTRG-E18 +
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δ∆vTRG-E18 and propagates till the pre-flyby control point, denoted as Approach

(APR).

(d) The APR-E18 − E18 phase (Fig. 8.1(d)) starts from APR with the belief state

given by the ensemble
∑

j bjpj , performs the feedback manoeuvre δ∆vAPR-E18

and extends till flyby E18.

(e) The E18−CU -E18 phase (Fig. 8.1(e)) starts from E18 with the belief state given

by the ensemble
∑

j bjpj , extends till the successive clean-up point CU -E18.

(f) The CU -E18−TF phase (Fig. 8.1(f)) starts from TF with the belief state given by

the ensemble
∑

j bjpj , performs manoeuvre ∆vAPR-E18 +δ∆vCU-E18 and extends

till the leg final time.

During each phase, OD campaigns are carried out, represented in yellow, with an

8 hours ON 8 hours OFF schedule (dashed line) to improve the knowledge of the

trajectory. The 8 hours ON 8 hours OFF is the access schedule of the DSN for Europa

Clipper, with range and range-rate measurements generally employed, whereas Delta-

DOR is used only when specifically needed. Therefore, this latter measurement type

will not be included in the observation model. The OD stops at a cut-off time before

the subsequent manoeuvre, here set to one day, to model the time needed by the

operators to compute the updated trajectory. The Navigation Analysis (NA) approach

solving the nonlinear Bayes’ step developed in Section 4.2.2 is employed here to simulate

observation samples and update the belief state.

The Probability of Impact (PoI) with Europa is computed by propagating the belief

state after the targeting manoeuvre ∆vTRG-E18 + δ∆vTRG-E18 to the nominal flyby

time without applying the successive approach manoeuvre δ∆vAPR-E18 or performing

additional OD. This mapped uncertainty projected onto the B-plane is computed by

applying map TP only. A constraint on the PoI is then enforced to ensure environmental

protection to Europa even in the event of spacecraft loss after the main manoeuvre.

The whole trajectory lasts for 21 days, from E17 to the second apocenter passage.

The trajectory in Fig. 8.1 is defined in an inertial reference frame, mean equinox and

ecliptic of J2000 (ECLIPJ2000) [188], centred in Jupiter. This frame has the x̂ axis
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pointing to the mean vernal equinox at January 1, 2000, the ẑ axis normal to the

ecliptic plane, and ŷ completing the right-handed frame. A high-fidelity full-ephemeris

dynamics governs the spacecraft motion x(t), taking into account the gravitational field

of Jupiter (central and J2 effects), of its moons Europa (central and J2), Io, Ganymede

and Callisto, and of the Sun. The dynamics is integrated with the propagation module

of the trajectory optimisation tool jTOP [21]. This black-box module has been used

to propagate collocation points to train the non-intrusive surrogate model described

in Section 4.2.2. The outer and inner optimisation loops are solved with two nested

instances of the local solver MATLAB fmincon.

In this section, we will talk about delivered and mapped uncertainty. By delivered

uncertainty, we intend the output of pure dynamical propagation of the belief state in

time without further OD. By mapped uncertainty, we intend the output of a generic

transformation of the belief state, e.g. conversion to B-plane parameters.

8.1.2 Problem statement

For this application, the interest is in finding the optimal open-loop control ∆v which

yields the most robust and reliable trajectory under uncertainty in navigation analysis

and manoeuvre execution errors. Hence, the executed control Ue acting on the belief

components is written as

∆Ve(tk,Xk) = ∆v(tk) + δ∆v(X
(j)
k ) + Θ

(
∆v(tk) + δ∆v(X

(j)
k ),λk

)
, (8.1)

where the open-loop nominal impulse u = ∆v(tk) is to be optimised and the disturbance

Θ depends nonlinearly on the commanded control ∆v = ∆v(tk) + δ∆v(X
(j)
k ). The

definition of Θ follows the Gates’ model, as already described in Section 5.2.2.

The components of the Gates’ parameters vector λk = [σmf , σmp, σpf , σpp]
T have

crisp values for the pure aleatory case, as defined in Table 8.1, whereas they are interval-

valued for the epistemic case, as in Table 8.2.

The closed-loop control component δ∆v(X
(j)
k ) is an analytical linear function from

time tk to a generic target state at time t}, which therefore needs not to coincide with
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the end of that segment tk+1. Let x = [r,v] be the decomposition of the spacecraft

inertial state in position and velocity. The linear guidance law to target the position r}

is computed as follows. First, the dynamics is linearised around the nominal trajectory

in [tk, t}], that is, the one computed using only the optimisable open-loop control ∆v,

to obtain a linear mapping

δr}
δv}

 = Φ}
k

 δrk

δvk + δ∆vk

 =

Φ}
k 1,1

Φ}
k 1,2

Φ}
k 2,1

Φ}
k 2,2

  δrk

δvk + δ∆vk

 , (8.2)

where the Cartesian state deviation δxk has been decomposed in position δrk and

velocity δvk deviations, and Φ}
k has been accordingly partitioned in 3× 3 blocks. The

linear guidance is obtained by imposing

δr} = 0

which leads to

δ∆vk = −Φ}
k
−1
1,2

[
Φ}
k 1,1

Φ}
k 1,2

]δrk
δvk

 . (8.3)

This guidance law is employed for the controller δ∆vCU-E18 to target the final nominal

position.

The targeting and approach manoeuvres, respectively δ∆vTRG-E18 and δ∆vAPR-E18,

target the B-plane parameters instead [187]. Let B} = [b}, TCA}] be the B-plane pa-

rameters targeted, with b-vector expressed in two components (bt = b · t̂ and br = b · r̂)

and TCA being the hyperbolic time of closest approach, B the corresponding coordinate

transformation from the inertial state B = B(x), and JB its Jacobian (see Appendix B).

Using the linearisation as above, the deviations in B-plane parameters from the nominal

ones are written as

δB} = JB Φ}
k

 δrk

δvk + δ∆vk

 =
[
∂B/∂r} ∂B/∂v}

]Φ}
k 1,1

Φ}
k 1,2

Φ}
k 2,1

Φ}
k 2,2

  δrk

δvk + δ∆vk

 .

(8.4)
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By imposing

δB} = 0

and by matrix manipulation, the B-plane targeting is obtained as a linear guidance law

as

δ∆vk = −
(
∂B

∂r}
Φ}
k 1,2 +

∂B

∂v}
Φ}
k 2,2

)−1

JB Φ}
k

δrk
δvk

 . (8.5)

This guidance law is employed for the controllers δ∆vTRG-E18 and δ∆vAPR-E18 to target

the nominal B-plane parameters. Hence, the belief component-dependent controller

δ∆v(X
(j)
k ) employed in this test case is computed according to either Eq. (8.3) or (8.5)

depending on the targeted parameters. The quantities δrk and δvk are the deviations

of the belief component expected value E
[
X

(j)
k

]
with respect to the nominal trajectory

at time tk.

As for the orbit determination campaigns, the measured quantity is the range and

range rate of the spacecraft with respect to Earth (see Sections 3.2.1-3.2.2 in [162]).

The likelihood function is modelled as Gaussian, and the associated covariance charac-

terising the observation accuracy is assumed diagonal (see Table 8.1).

Once the execution and navigation errors are defined we can explicitly write the

BOC formulation as follows:

min
∆vi

∆v99 (8.6a)

s.t. Xk = T
(

Xk−1, Dk−1, ∆Vek−1
, Ek

)
(8.6b)

P (‖∆Vetot‖ < ∆v99) = 0.99 (8.6c)

PoI < ε (8.6d)

E
[
BE18

]
, E
[
BE18

]
∈ ΦBE18

(8.6e)

E
[
RF

]
, E
[
RF

]
∈ ΦRF

(8.6f)

X0 ∈ Px0 , ϑ ∈ PΘ , Yk = NYk|Xk

(
µyk ,Σyk

)
, (8.6g)

where k denotes the time discretisation with multiple arcs which can contain both

control and observations, only control, only observations or neither of the two according
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to the phases described in Figs. 8.1. The objective to be minimised is the threshold

value ∆v99 on the quantile of the magnitude of the total ‖∆Vetot‖. Eq. (8.6c) expresses

the quantile with a constraint on the lower probability P that the total cost is below

the threshold ∆v99 (see (2.8) for the expression of P ). The total magnitude ‖∆Vetot‖

including execution errors is defined as:

‖∆Vetot‖ =
∑
i

‖∆Vei(tk,Xk)‖+ ‖∆VF ‖ ,

which is a random variable encompassing all manoeuvres (indexed by i ∈ {CU -E17,

TRG-E18, APR-E18, CU -E18}) plus the final velocity mismatch magnitude ‖∆VF ‖ =

‖VF −vF ‖ between the final state velocity and the original final velocity. Numerically,

this constraint is computed with Equation (4.36) using φ = I(‖∆vetot‖ < ∆v99) by

taking samples from the executed control distribution ∆Ve and the final velocity mis-

match ∆VF . In particular, for the latter, samples x
(i)
F are first generated from the final

belief state XF , then the velocity vector of each sample v
(i)
F is subtracted by the target

final velocity vF , and finally, the norm of this difference is used as a sample of the ve-

locity mismatch magnitude. Constraint (8.6f) imposing the expected value of the final

position vector, together with the mismatch ‖∆VF ‖ in the objective function, ensures

that the expectation of the E17 − E18 trajectory connects with the remainder of the

original tour.

Eq. (8.6b) is the belief transition function from segment k to segment k + 1. The

transition function incorporates the effect of observations and manoeuvres when present

within a segment.

Eq. (8.6d) is the upper bound on the probability of impact PoI after targeting,

and it is written as the upper bound on the probability of the minimum distance from

Europa, at flyby E18, to be smaller or equal to the radius of Europa written as

PoI =

∫
I(φ(xE18) ≤ REUR) p(xE18;λ) dxE18 , (8.7)

where rE18 = φ(xE18) is the function mapping the Cartesian state at E18 to the peri-

center distance of the hyperbolic trajectory with respect to Europa. This probability
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is constrained to be less than ε = 0.1%. Numerically, this constraint is computed using

Equation (4.36) with φ = I(rE18 ≤ REUR).

Eq. (8.6e) imposes the expected values of the B-plane flyby conditions to be within

a target set ΦBE18
. In the first test case with purely aleatory uncertainty, the set is a

singleton composed of the target B-parameter ΦBE18
= {B̂}. In the second case with

epistemic uncertainty, the target set is defined as an hyperbox around the target value

B̂ = [̂bt, b̂r, T̂CA] as

ΦBE18
= [b̂t− δbt, b̂t + δbt]× [b̂r − δbr, b̂r + δbr]× [T̂CA− δTCA, T̂CA + δTCA] (8.8)

where the tolerances are set to δbt = 0.5 [km], δbr = 0.5 [km] and δTCA = 0.05 [s].

Similarly, Eq. (8.6f) requires the lower and upper expectations of the final position

to be within the set ΦRF
. In the aleatory case, the set is composed of a single element

ΦRF
= {r̂F }. In the epistemic case, the set is defined as a hyper-box around the precise

target position as

ΦRF
= [r̂Fx−δrFx , r̂Fx +δrFx ]× [r̂Fy −δrFy , r̂Fy +δrFy ]× [r̂Fz −δrFz , r̂Fz +δrFz ] (8.9)

for the x−, y− and z−components of the position vector and where each tolerance is

δrF(·) = 10 km because variations in the next apocenter position are less critical and can

be compensated with successive manoeuvres. In the epistemic case, these constraints

imply that the open-loop optimum under uncertainty needs to satisfy, in expectation,

the flyby and terminal conditions within a set for all distributions in the imprecise set

Pλ.

Finally, Eqs.(8.6g) define the initial belief condition, the uncertain parameters dis-

tribution and the observation likelihood.

For comparison, the dOCP for the first guess generation optimises only the nominal

∆v while respecting the reference initial conditions, flyby B-plane parameters B̂, and

final boundary conditions r̂F . No observations are employed in the deterministic first

guess generation.

In the pure aleatory case, the epistemic sets are composed of a single distribution
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each, that is Px0 =
{
N
(
µx0

,Σx0

)}
and PΘ = {p(θ;λΘ)} is described by a single

Gates’ model distribution as described above. The parameters for these uncertainty

models are reported in Table 8.1. These values come from previous navigation analysis

studies for Europa Clipper [189, 44]. The table reports respectively the square root

of the diagonal values (standard deviations) for the initial dispersion covariance Σx0 ,

with typical values reconstructed from OD campaigns post-flyby, the Gates’ model

parameters λΘ for the execution errors, and the standard deviation values for the

accuracy of each observation type Σyk . The initial mean µx0
is the spacecraft initial

state coming from the deterministic tour design used as the initial guess.

In the epistemic scenario, we consider the following uncertainty components. The

initial dispersion considered in the aleatory scenario is the reconstructed uncertainty

from simulated OD arcs post-flyby. Therefore, the values in Table 8.1 are estimated

during the navigation analysis in the mission design phase, whereas the actual disper-

sion to consider during operations may vary from these values. This further uncertainty

is modelled as epistemic, and the imprecise initial set is parameterised as

Px0 = { p(x0) : p(x0) = N
(
x0;µx0

,
∼
Σx0

)
,

∼
Σx0 = blkdiag(λx0−1 Σx0(1:3, 1:3), λx0−2 Σx0(4:6, 4:6)),

λx0−1 ∈ [0.5, 2.0], λx0−2 ∈ [0.5, 2.0] } ,

(8.10)

where Σx0(1:3, 1:3) and Σx0(4:6, 4:6) indicate respectively the position block and the

velocity block, the operator blkdiag indicates a block-diagonal matrix, λx0−1 and λx0−2

are two multipliers scaling the precise covariance matrix Σx0 defined from the standard

deviations in Table 8.1. Being the multipliers defined within [0.5, 2.0], they encompass

distributions with covariance from half up to double the magnitude of the pure aleatory

one. That is, the epistemic multipliers can give more or less confidence to the initial

state knowledge. For the execution errors, the epistemic set PΘ =
{
p(θ;

∼
λΘ)

}
is con-

structed by allowing interval-valued parameters
∼
λΘ in the Gates’ model. Indeed, these

parameters are estimated by testing the engine in nonoperational conditions and then

updated multiple times during the spacecraft operational life with possible substantial
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changes, as it happened, for example, during the Cassini mission [190]. Specifically, the

intervals for the model parameters considered in the epistemic analysis are reported

in Table 8.2, which include the precise values employed in the pure aleatory scenario.

For missions like Europa Clipper, the observations from Earth are generally performed

from the DSN. In such advanced facilities, the instruments and operating conditions are

well known and precisely controlled. Therefore, the likelihood distribution describing

the observation noise is well characterised. Hence, the zero-mean observation errors are

assumed to remain purely aleatory also in the case of epistemic uncertainty on initial

conditions and manoeuvre execution. Nonetheless, the overall OD remains an epistemic

process because the priors, resulting from the initial conditions and execution errors,

are epistemic.

Other model uncertainty sources are not included in this preliminary test case, e.g.

celestial bodies’ ephemerides uncertainty, although they may be relevant for a complete

navigation analysis.

Table 8.1: Parameters of aleatory uncertainty models considered in Europa’s moon
flyby belief optimisation.

Uncertainty Component Value

Initial Dispersion 1σ Position (RTN) [3.7, 5.3, 9.3] [m]
1σ Velocity (RTN) [2.3, 3.4, 5.9] [mm/s]

Execution Error Fixed Pointing σpf 3.33 [mm/s]
Proportional Pointing σpp 6.67 [mrad]

Fixed Magnitude σmf 4.67 [mm/s]
Proportional Magnitude σmp 0.33% [-]

Observation Accuracy 1σ Range 3.0 [m]
1σ Range-rate 0.1 [mm/s]

8.1.3 Results

First, we analyse the case of purely aleatory uncertainty. We start from the determin-

istic optimal control solution reported in Table 8.3, which was computed by optimising

the nominal trajectory with the open-loop control only. This solution meets the flyby

and final position constraints but violates the required probability of impact with the
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Table 8.2: Interval-valued epistemic parameters for initial covariance multipliers and
Gates’ parameters in Europa’s moon flyby belief optimisation.

Uncertainty Component Value

Initial Dispersion Position multiplier λx0−1 [0.5, 2.0] [-]
Velocity multiplier λx0−2 [0.5, 2.0] [-]

Execution Error Fixed Pointing
∼
σpf [1.67, 4.00] [mm/s]

Proportional Pointing
∼
σpp [3.33, 8.00] [mrad]

Fixed Magnitude
∼
σmf [2.33, 6.60] [mm/s]

Proportional Magnitude
∼
σmp [0.17, 0.40]% [-]

moon when a navigation analysis is performed. In fact, the probability of impact is

PoI = 0.75% ≮ 0.1%. A visualization of the probability of impact for this solution is

Table 8.3: Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and PoI for
first guess under aleatoric uncertainty.

Solution Aleatory First Guess

∆vCU-E17 [m/s] [+0.00,+0.00,+0.00]
∆vTRG-E18 [m/s] [−1.30,+2.86,+3.23]
∆vCU-E18 [m/s] [+0.00,+0.00,+0.00]

∆v [m/s] 4.51

∆v99 [m/s] 8.05

∆v99/∆v [-] 1.79

PoI [-] 0.75%

displayed in Fig. 8.2, where the state uncertainty at different times along the trajectory

is propagated onto the B-plane of the Europa flyby E18, without applying successive

manoeuvres or performing any new orbit determination campaign. Different samples

drawn from the belief state distribution have different velocity vectors resulting in dif-

ferent incoming asymptotes, which, in turn, result in different B-plane orientations. In

this application, the mapping of the uncertainty onto the B-plane coordinates is realised

by letting the B-plane frame vary for each sample as suggested in [166] for collision sce-

narios. Hence, Fig. 8.2 employs a single plane for representing all the B-parameters

resulting from different state realisations, although their corresponding B-planes are

different. Thus, the confidence ellipses are reconstructed from the mapped b−vector

184



Chapter 8. Robust flyby design and analysis

samples, each of which has a different reference frame.
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(a) CU -E17 post-flyby manoeuvre
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(b) TRG-E18 apocenter manoeuvre
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(c) APR-E18 approach manoeuvre
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(d) E18 closest approach

Figure 8.2: Confidence ellipses in B-vector components mapped from different instances
of the first guess trajectory without successive manoeuvres and observations under
aleatory uncertainty.

Fig. 8.2(a) shows the ellipses that would result on the B-plane if the spacecraft

was not controlled or observed anymore after the E17 clean-up. Fig. 8.2(b) shows the

ellipse of uncertainty on the B-plane propagated from the TRG (see Fig. 8.1(b)). The

figure shows that without corrections coming from a navigation analysis, the uncer-

tainty on this deterministic trajectory has an intersection with the surface of the Moon

(represented by the thick black line at h = 0 km), which corresponds to an undesirably

high PoI. Fig. 8.2(c) displays the B-plane uncertainty propagated without new OD

after the APR (see also Fig. 8.3(c)), which is notably smaller than the post-targeting

one because of the new OD arcs and the controller δ∆vAPR-E18. Fig. 8.2(d) finally
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shows the uncertainty on the B-plane as reconstructed using the OD arcs after the

APR. The estimated overall ∆v99 is approximately 79% larger than the open-loop one

(see Table 8.3), a cost increase in line with previous navigation analysis for the Europa

Clipper trajectory [43].

We now apply BOC, starting from the deterministic solution, to find a trajectory

that minimises the ∆v99 while respecting the PoI constraint, and satisfying the con-

straints on the flyby conditions and terminal position. The resulting solution fulfils the

constraint on the probability of impact. A summary of its characteristics is reported in

Table 8.4. Looking at the open-loop ∆v allocation, one can infer that the feasibility on

Table 8.4: Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and PoI for
the robust solution under aleatoric uncertainty.

Solution Aleatory Robust

∆vCU-E17 [m/s] [+0.12,+0.18,+0.09]
∆vTRG-E18 [m/s] [−2.09,+2.01,+1.99]
∆vCU-E18 [m/s] [−1.21,+0.56,−1.79]

∆v [m/s] 5.98

∆v99 [m/s] 9.91

∆v99/∆v [-] 1.66

PoI [-] 0.09%

the PoI constraint was realised by trading-off part of the targeting manoeuvre with the

clean-up ones. The controller at the apocenter can adjust the execution errors coming

from an increased ∆vCU-E17, while the smaller ∆vTRG-E18 and associated execution

errors result in a smaller uncertainty at the flyby B-plane (see Fig. 8.3(b)). After the

flyby, a ∆vCU-E18 manoeuvre is needed to meet the target conditions at the final time.

Overall the optimal trajectory has a higher open-loop magnitude ∆v than the first

guess, but the infeasibility is restored. We observe that the percentage increase of the

∆v99, with respect to the open-loop ∆v, is now lower, i.e. 66%, indicating that the BOC

trajectory can compensate for the possible uncertainty realisations more efficiently. Fig.

8.3 shows the B-plane uncertainties of the robust trajectory. Fig. 8.3(b), representing

the uncertainty mapped after TRG, shows that the 3-σ ellipse does not cross the surface
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(b) TRG-E18 apocenter manoeuvre
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Figure 8.3: Confidence ellipses in B-vector components mapped from different instances
of the robust trajectory without successive manoeuvres and observations under aleatory
uncertainty.

of Europa anymore. By comparing it with the corresponding plot in Figure 8.2(b), the

robust B-plane ellipse has a smaller semi-major axis, which mainly contributes to the

PoI, whereas it has a larger semi-minor axis, which has a limited contribution to the

PoI constraint. The robust ellipse is also rotated counterclockwise, which leads to an

even lower impact probability.

To quickly verify that the increase in total ∆v99 between the robust solution and

the first guess is due to the initial infeasibility, the BOC problem has been solved after

removing the PoI constraint. Table 8.5 shows the unconstrained optimal solution, which

displays a lower overall ∆v99 compared to that of the deterministic solution, although

the open-loop magnitude ∆v is slightly higher. This result further confirms that the
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robust optimum differs from the deterministic one and that the statistical performance

is indeed improved.

Table 8.5: Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and PoI for
verification solution without imposing the PoI constraint.

Solution Aleatory Robust w/o PoI

∆vCU-E17 [m/s] [+0.00,−0.01,−0.01]
∆vTRG-E18 [m/s] [−1.28,+2.89,+3.25]
∆vCU-E18 [m/s] [−0.04,−0.02,+0.03]

∆v [m/s] 4.60

∆v99 [m/s] 8.02

∆v99/∆v [-] 1.74

PoI [-] 0.76%

Fig. 8.4 provides an insightful visualisation of how the manoeuvres and observation

arcs affect the flyby uncertainties. In particular, the figure shows, on the y-axis, the

Semi-MAjor Axis (SMAA) and Semi-MInor Axis (SMIA) of the B-plane 1-σ confidence

ellipse, and of the uncertainty on the hyperbolic TCA for different times along the

trajectory (x-axis), if no other action is taken after that time. The observation instances

are represented with vertical dashed black lines, while manoeuvres are indicated by

black solid lines.

The value of the mapped uncertainty is around 10 km and 500 m in SMAA and SMIA,

and 10 seconds in TCA, as resulting purely from the initial dispersion as in Table 8.1.

The mapped uncertainty exhibits then a jump at E17, the time of the clean-up manoeu-

vre, because of the executions errors. Successively, the orbit determination arcs reduce

the B-plane ellipsoid by more than one order of magnitude in SMAA and TCA, whereas

the reduction in SMIA is more contained. The main targeting manoeuvre ∆vTRG-E18

and its high execution errors cause a major spike in the delivered uncertainty. The val-

ues of SMAA and SMIA at this event are critical for the robust optimisation process,

as this B-plane mapped uncertainty is the one employed for the probability of impact

computation. Successive OD arcs help to reduce the SMAA significantly and TCA

mapped dispersion until another, more contained, jump at the approach manoeuvre
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Figure 8.4: Uncertainty mapped from different times during the robust trajectory to
the reference flyby time and transformed in B-plane coordinates.

before E18. Finally, the measurements arcs before E18 reduce the mapped uncertainty

even further, to have an expected 1-σ uncertainty at flyby of a few hundred meters in

SMAA and SMIA, and a few tenths of a second for the TCA.

Starting from the same deterministic solution, we now introduce epistemic uncer-

tainties in the distributions and solve the full problem (8.6). In this case, for the

deterministic solution reported in Table 8.6 we have PoI = 2.29% ≮ 0.1%, which vi-

olates the impact constraint even more severely than in the aleatory case. The total

∆Vtot that provides the required percentile ∆v99 is significantly higher than the one in

the purely aleatory case, mainly due to the larger execution errors.

The corresponding B-plane uncertainty ellipses mapped and delivered from the

manoeuvre instances along the trajectory are visualised in Fig. 8.5. For each subfigure,

multiple 3-σ ellipsoids are represented by taking samples of the epistemic parameters

within their intervals (see Table 8.2) and running a full navigation analysis for each

epistemic value. By comparing Fig 8.2 with Fig. 8.5, one can see that in every subplot

the ellipses change in size and, at times, rotate due to the epistemic uncertainty. For
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Table 8.6: Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and upper
PoI for first guess under epistemic uncertainty.

Solution Epistemic First Guess

∆vCU-E17 [m/s] [+0.00,+0.00,+0.00]
∆vTRG-E18 [m/s] [−1.30,+2.86,+3.23]
∆vCU-E18 [m/s] [+0.00,+0.00,+0.00]

∆v [m/s] 4.51

∆v99 [m/s] 8.65

∆v99/∆v [-] 1.92

PoI [-] 2.29%

the chance constraint on the PoI after targeting, the inner optimisation routine looks

for the epistemic sample, which yields the ellipse with the largest intersection with the

equivalent Europa surface in Fig. 8.5(b).

The main features of the BOC solution to problem (8.6) are reported in Table 8.7.

Again, the values of the expected value constraints are not reported as they are met

up to the required threshold, that is, the new trajectory respects the required flyby

conditions and final position in expected value. The PoI constraint is satisfied by

Table 8.7: Free variables, open-loop magnitude ∆v, total ∆v99, their ratio and upper
PoI for the robust solution under epistemic uncertainty.

Solution Epistemic Robust

∆vCU-E17 [m/s] [−0.35,+1.12,+0.16]
∆vTRG-E18 [m/s] [−1.73,+1.57,+1.30]
∆vCU-E18 [m/s] [+1.43,−2.13,−3.24]

∆v [m/s] 7.99

∆v99 [m/s] 14.76

∆v99/∆v [-] 1.84

PoI [-] 0.04%

trading part of the targeting manoeuvre with the E17 and E18 clean-up manoeuvres.

The latter is now the largest manoeuvre employed to steer the spacecraft back to the

desired final conditions. The value of ∆v99 is significantly higher than in the aleatory
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(a) CU -E17 post-flyby manoeuvre (b) TRG-E18 apocenter manoeuvre

(c) APR-E18 approach manoeuvre (d) E18 closest approach

Figure 8.5: Confidence ellipses in B-vector components mapped from different instances
of the first guess trajectory without successive manoeuvres and observations under
epistemic uncertainty.

case in Table 8.4 due to:

• the more severe uncertainty coming from the unknown probability distribution;

• the larger execution errors causing bigger deviations and, therefore, higher sta-

tistical manoeuvres.

A visualisation of the 3-σ uncertainty ellipses on the B-plane for the robust solution

can be found in Fig. 8.6, where again each ellipsoid results from a different value of the

epistemic parameters. By comparing this plot with Fig. 8.5, Fig. 8.6(a) displays an

evident change in the B-plane parameters after E17-CU, as the larger clean-up manoeu-
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(a) CU -E17 post-flyby manoeuvre (b) TRG-E18 apocenter manoeuvre

(c) APR-E18 approach manoeuvre (d) E18 closest approach

Figure 8.6: Confidence ellipses in B-vector components mapped from different instances
of the robust trajectory without successive manoeuvres and observations under epis-
temic uncertainty.

vre steers the delivered uncertainty closer to the target flyby conditions. Fig. 8.6(b),

representing the mapped uncertainty after targeting, shows that there is no intersection

between the largest 3-σ ellipse and the equivalent surface of Europa, confirming that

the PoI constraint is also met in the epistemic case. Similarly to the precise case, the

ellipses have smaller semi-major axes, larger semi-minor axes and are rotated counter-

clockwise to reduce the PoI while keeping the mean on the desired flyby conditions.

Figure 8.6(c) reveals an increase in the delivered uncertainty after approach due to the

larger statistical manoeuvres. Finally, Fig. 8.6(d) shows how the range and range-rate
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observations reduce the reconstructed uncertainty at flyby, mainly in the b · t̂ com-

ponent, whereas the b · r̂ one is more difficult to observe from range and range-rate

Earth-based measurements.

8.2 Epistemic navigation analysis

In this section, the developed epistemic filtering is applied for a preliminary NA of one

leg of the Europa Clipper tour [186], already discussed in Section 8.1, to quantify the

PoI during a close encounter with Jupiter’s moon Europa under epistemic observation’s

likelihoods as well.

8.2.1 Problem definition

The simplified scenario studied is represented in Figure 8.7. The trajectory spans again

two successive flybys with an apocenter impulsive manoeuvre to target the second flyby

(E18) identified by the black square. The spacecraft trajectory and its deviations are

depicted with dotted black lines, Europa’s orbit with a dotted blue line, the observations

with a dashed yellow line and the ∆v manoeuvre with a green arrow. Hence, the

TEST CASE

E18

Europa
S/C

Jupiter

ΔV
Observation

Figure 8.7: Sketch of navigation analysis scenario for Europa Clipper leg.

spacecraft trajectory starts from a close flyby, and the initial uncertainty is propagated

until the apocentre while performing OD. The OD campaign is carried out again with
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an 8 hours ON 8 hours OFF schedule to faithfully model the part-time availability

of the tracking stations availability. The PoI is then computed by propagating the

uncertainty after the ∆v, and its associated execution errors, to the nominal flyby time

without performing additional OD. It is worth reminding that the PoI is computed in

such a way to ensure spacecraft safety and environmental protection to Europa even in

the event of a communication loss after the main manoeuvre. Also, the delivered PoI

after the apocentre manoeuvre is usually the more critical measure because: this ∆v

brings the spacecraft close to the moon; it introduces the largest execution errors; the

state uncertainty can grow severely during the long propagation time.

The trajectory considered here lasts for 14 days. The motion is described in a

Europa-centred inertial reference frame, the ECLIPJ2000. The spacecraft dynamics is

a high-fidelity full-ephemeris one, including the gravitational fields of Jupiter (central

and J2), of its moons Europa (central and J2), Io, Ganymede and Callisto, and of the

Sun. Again, the dynamics is numerically propagated with the library jTOP [21].

The goal is to quantify tight bounds on the PoI at flyby [PoI,PoI]. The PoI is

computed as in Eq. (8.8).

8.2.2 Uncertainty model

The initial distribution p(x0;λ0) is written in the Gaussian mixture form as

p(x0;λ0) =

M∑
j=1

λ
(j)
0 N (x0;µ0,Σ

(j)
0 ) (8.11)

with interval-valued weights

λ
(j)
0 = [0, 1] ∀j = 1, . . . ,M . (8.12)

The mean is the same for all the components, and it is the nominal initial state. The

covariances are defined as

Σ
(j)
0 = blkdiag

(
λ

(j)
0−1 Σ0(1:3, 1:3), λ

(j)
0−2 Σ0(4:6, 4:6)

)
(8.13)
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where λ
(j)
0−1, λ

(j)
0−2 ∈ [0.5, 2.0] are two multipliers scaling the reference covariance Σ0,

Σ0(1:3, 1:3) and Σ0(4:6, 4:6) indicate respectively the position block and the velocity

block and the operator blkdiag indicates a block-diagonal matrix. Being the multipliers

defined within [0.5, 2.0], they encompass kernels with covariance from half up to double

the extent of the reference one. The reference covariance is defined from the one in

Radial Transversal Normal (RTN) components

ΣRTN = diag
(

[3.72, 5.32, 9.32, 2.3e-32, 3.4e-32, 5.9e-32]
)

(8.14)

where diag indicates a diagonal matrix and the unit of the first three elements is [m2]

while for the last three is [m2/s2]. Then, the reference covariance in inertial rectangular

coordinates is computed as

Σ0 = J CarRTNΣRTNJ Car
T

RTN (8.15)

where J CarRTN is the Jacobian of the transformation from RTN to Cartesian coordinates.

The execution errors of the impulsive manoeuvre are modelled with Gates’ model [169,

170], which decompose the additive error in magnitude (along the commanded ∆v di-

rection) and pointing components (perpendicular to the commanded ∆v direction) as

depicted in Figure 5.9. The parameters of the Gates’ model are reported in Table 8.8.

This model has both fixed parameters, that is, an error appears whenever a manoeu-

vre is performed, and proportional parameters, that is, the error is larger for larger

manoeuvres.

Table 8.8: Parameters Gates’ model for execution errors.

Fixed Pointing σpf 3.33 [mm/s]
Proportional Pointing σpp 6.67 [mrad]

Fixed Magnitude σmf 4.67 [mm/s]
Proportional Magnitude σmp 0.33% [-]

As for the OD, the tracking stations measure the spacecraft range and range rate

with respect to Earth [162]. The likelihood function is modelled as Gaussian mixture
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with epistemic coefficients as

p(yk|xk;λy) =

M∑
j=1

λ(j)
y N (y

(j)
k ;h(xk),Σy) (8.16)

where h is the range and range-rate observation model, and the weights are interval-

valued as

λ(j)
y = [0, 1] ∀j = 1, . . . ,M . (8.17)

This time the covariance, quantifying the measurement accuracy, is fixed and set to

Σy = diag
(

[3.02, 0.12]
)

, (8.18)

where the unit of the range is [m2] and for the range-rate is [m2/s2]. The exact value

of the received measurement is unknown at the time of mission design, and therefore

it is considered as an epistemic parameter y
(j)
k .

The number of mixture components has been set to M = 100 for the initial distri-

bution, the likelihood function and the variational distribution.

8.2.3 Results

The developed epistemic navigation analysis has been run on the described test case

to robustly quantify the PoI range resulting from epistemic uncertainty. Figure 8.8

displays the resulting 3-σ uncertainty in B-plane coordinates at flyby E18. In detail,
B-PLANE IMPACT ELLIPSOIDS

PoI = [ 0.6 % , 6.5% ]
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Figure 8.8: Spacecraft 3-σ epistemic ellipses in B-plane coordinates.
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the several coloured ellipses result from different instances of the epistemic coefficients

in the mixture representation. The equivalent Europa’s surface is represented by the

bold black line at h = 0 km, while the dashed grey ones represent Europa’s subsurface

for different depths. It can be seen that all the ellipses have a significant nonzero

intersection with Europa’s surface, but different instances of the epistemic parameters

have a relevant influence on both the extension and the displacement of the uncertainty

region.

The bounds on the PoI computed by Equation (3.61) using ψrE18 are

PoI ∈ [0.6, 6.5] % . (8.19)

The width of this interval indicates that epistemic uncertainty has a large effect on

the value of the collision probability. In particular, epistemic uncertainty on the initial

covariance and the observation realisation has a large impact on the delivered uncer-

tainty.

8.3 Chapter summary

On the re-design of the Europa Clipper flyby tour, the BOC formulation was shown

to simultaneously optimise the total cost of the executed manoeuvres and to satisfy all

constraints under both aleatory and epistemic uncertainty. Both aleatory and epistemic

uncertainties were considered in the initial conditions, execution errors and observation

noises. The BOC was able to solve for the initial infeasibility in PoI of the determin-

istic solution and find a robust trajectory that simultaneously satisfies the statistical

constraints and minimises the ∆v99. As a verification, it was shown that the BOC

solution outperforms the deterministic optimal initial guess when no PoI constraint is

considered.

Successively, the developed NA with variational inference was applied to the robust

quantification of collision probability bounds for Europa Clipper during one of its flybys.

This test case encompassed epistemic uncertainty again on the initial dispersion and, in

addition to the previous study, in the observation likelihood, thus resulting in epistemic
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priors and posteriors along all the trajectory. OD arcs were performed before the main

manoeuvre, which introduced executions errors as well, and then the PoI was quantified

on the delivered uncertainty at the flyby. The range of PoI resulting from epistemic

uncertainty was rather large, showing the importance of modelling and processing this

systematic component as well in mission design. Indeed, in general, while the lower

value PoI may be considered safe for some applications, the upper value PoI may

not. A purely aleatoric approach, in which only precise distributions can be specified,

would only be able to return a single value within the interval [PoI,PoI], therefore

providing only limited information to the mission designer. The upper probability

displayed a significant increase with respect to the quantification in the BOC case, thus

showing the impact of accounting for observation likelihood’s epistemic uncertainty on

the probability metric.
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Conclusion

The main objective of this thesis was to develop new methods for state estimation,

optimal control, and operations under mixed aleatory and epistemic uncertainty. The

ultimate interest for space applications was to improve the space and ground segment

robustness, reliability, and autonomy by introducing proper uncertainty treatment in

mission design and analysis as well as space traffic management. The multiple objectives

defined in the introduction of the thesis have been met and addressed in the different

chapters.

Part I of the thesis was allocated to theoretical and methodological developments

to meet the research objectives and tackle the entailed challenges. Each chapter was

dedicated to one major topic: uncertainty propagation, state estimation, and optimal

control.

Chapter 2 presented the epistemic uncertainty model employed and the two-step

approach for uncertainty propagation employed throughout this thesis. This approach

consists of constructing a polynomial approximation of the dynamical flow and then

employing the polynomial mapping for efficiently computing expectations. For the

first, two approaches were proposed, one intrusive using generalised polynomial alge-

bra and one non-intrusive using stochastic collocation, and the applicability and ad-

vantages of both methods were discussed. In this context, a reinitialisation approach

was proposed to mitigate the curse of dimensionality in multi-segment and multi-phase

problems. This approach consists of outer bounding the propagated polynomial with
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a reinitialised one to ensure continuity of pointwise trajectories, which are recovered

by evaluating a sequence of polynomials. The reduced dimensionality comes at the

expenses of propagating larger regions than strictly required, and therefore a potential

decline in accuracy. The reinitialisation approach proved crucial in constructing direct

transcriptions and polynomial-time algorithms for optimal control under uncertainty.

Successively, practical approaches for computing expectations or moments of the prop-

agated distribution were discussed: Monte Carlo methods for generic distributions and

Gauss-Hermite cubature rules for normal densities. Among them, importance sampling

was extensively applied in all the developments concerning epistemic uncertainty for

its ability to draw samples from a single proposal distribution. These methods enabled

efficient nonlinear uncertainty propagation with tunable accuracy depending on the

polynomial degrees.

Chapter 3 presented developments in the field of state estimation and navigation

under generalised models of uncertainty. First, the formulation of the state estimation

problem under epistemic uncertainty was presented. Such a problem aims to compute

robust bounds on the expectation of a generic quantity of interest, e.g. state variable,

collision probability, etc. Then, two solution approaches were developed. The robust

particle filter is a sequential Monte Carlo method that exploits particles’ precomputa-

tion and performs an optimisation over the estimator weights to compute the sought

bounds efficiently. The expectation and bound estimators were presented and their the-

oretical properties analysed. Complexity analyses for the precomputation, estimator

and its derivative evaluations were performed. It was shown that the estimator com-

plexity is linear with the number of particles and observations with interaction. The

numerical analysis performed in the corresponding application chapter confirmed the

theoretical result. A B&B approach with simplicial domains was developed to ensure

asymptotic convergence to the global bound. Theoretical proofs for the optimisation

convergence and an analytical method to find the minimum of the bounding function

were derived. The second approach is a sequential filtering method that exploits a com-

bination of variational inference and importance sampling to reinitialise the epistemic

representation of the state at each observation instance. This specific reinitialisation
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procedure makes this filtering method sequential and helps avoid the accumulation of

uncertainty sources at different instances, e.g. new observations. This epistemic vari-

ational inference was specialised for Gaussian mixture distributions, with the weights

being the epistemic parameters. In this context, the bound computation routine was

shown to reduce to a simple linear programming problem that can be efficiently solved.

Both the methods were developed with the goal of maintaining the dynamical and

observation nonlinearities and without enforcing restricting approximations or assump-

tions. Besides, such an epistemic approach to filtering allows one to include broader

models of uncertainty and, therefore, to characterise more faithfully the uncertainty

and information structure available during different operational scenarios.

Chapter 4 dealt with optimal control problems under severe uncertainty to incorpo-

rate proper uncertainty quantification in trajectory and manoeuvre design. A formu-

lation was developed that generalises optimal control to mixed aleatory and epistemic

models of uncertainty. For this, a direct shooting transcription employing generalised

intrusive polynomial algebra was developed. The low-thrust control was embedded in

the polynomial representation to avoid a new polynomial propagation for every control

profile to evaluate. The composite polynomial surrogate constructed using the reinitial-

isation approach was employed to ensure lower computational complexity and a higher

approximation accuracy for the same polynomial degree. Successively, this transcrip-

tion was expanded to include orbit determination and closed-loop control profiles. In

this setting, a belief optimal control formulation was proposed to model the uncertain

problem in terms of probability densities directly rather than state realisations. This

formulation directly derives from belief Markov decision processes which make partially

observable processed become observable by changing the state notation. Thus, BMDP

is an elegant model to incorporate noisy measurements in the optimal control under

uncertainty. Hence, propagation and inference maps were developed to describe the

belief state evolution respectively in time and at an observation instance. The former

employs again a polynomial representation to speed up the propagation of samples,

whereas the latter uses the Bayes’ update rule. The polynomial surrogates employed

in both approaches ensure a high-fidelity and tunable representation of the dynamical
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flow, which can be made more accurate by increasing the polynomial degree. These

approaches allow one to handle both aleatory and epistemic uncertainty. Therefore

they are suited for robust manoeuvre design in highly uncertain scenarios, e.g. colli-

sion avoidance in LEO with a non-operational debris or preliminary trajectory design

when most system parameters are only partially specified. Besides, by including flight

dynamics and navigation metrics, these approaches potentially yield a reduced number

of iterations between the trajectory optimisation and flight dynamics teams during the

mission design process.

Then, Part II of the thesis focused on the application of the developed approaches

to STM conjunction assessment as well as space mission design and analysis. These test

cases were characterised by nonlinear dynamical and observation models, complex opti-

misation and navigation challenges, and generalised uncertainty models on the system

state and sensor outputs.

Chapter 5 focused on applications of the novel robust filtering and navigation ap-

proaches developed. The first test case dealt with the robust estimation of PoC between

SENTINEL 2B and a FENGYUN 1C debris under mixed aleatory and epistemic un-

certainty on the initial conditions and observation likelihoods. Different operational

scenarios were considered. The RPF was shown to efficiently and accurately quan-

tify the probability bounds in all cases and to provide insightful information to be

used for decision making. The evolution of the probability bounds as new observations

are acquired was discussed in the different scenarios. The effective sample size of the

estimates was large mainly thanks to the employed UKF-based proposal and the poly-

nomial propagator. The large differences between the lower and upper distributions

provided evidence that further highlights how sensitive the collision probability met-

ric is to input distributions specification and, therefore, the importance of considering

epistemic uncertainty. Then, the same scenarios were analysed using a robust Bayesian

framework to allocate actions given risk metrics and the conjunction geometry au-

tonomously. In addition to before, avoidance manoeuvres were designed and executed

in high-risk scenarios. The CAM model was designed as a BOC problem to include

execution errors on the manoeuvre. The RPF was incorporated within the Bayesian
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framework as state estimation engine to compute the uncontrolled collision metric and

within the CAM optimisation to design manoeuvres that yield risk figures below a

safety threshold. The filter proved to be a useful tool for the intelligent agent in decid-

ing which action to take. In all cases, after executing the appropriate action, the state

was re-estimated by the RPF to re-evaluate the collision probability. On the collision

scenario, the CAM module was able to design a robust manoeuvre to reduce the upper

PoC below the safety threshold. This test case proved the crucial role of modelling

epistemic uncertainty in highly uncertain scenarios as the risk metrics were shown to

be greatly sensitive to the input distributions. The developed methods proved effective

in estimating reliable metrics both in collision and non-collision scenarios, as well as

designing robust manoeuvres to steer the satellite in a safe orbit with the minimum

propellant expenditure.

Chapter 6 presented a scheduling method for optimal tracking under state and

observation uncertainties. Specifically, it showed the development of an optimisation-

based approach to automatically generate optimal observation schedules from hetero-

geneous sensors under budget constraints. The optimal scheduling was framed as a

variable-size problem, where the fitness function required a full nonlinear quantification

of the satellite state uncertainty given noisy observations. A structured-chromosome

genetic algorithm was specifically designed to handle variable-size problems and au-

tomatically construct optimal observation campaigns. For the test cases, uncertainty

was included in both the initial dispersion and observation likelihoods. The first ap-

plication focused on the observation campaigns generation for a satellite in a very-low

Earth orbit characterised by a highly perturbed dynamical environment. The devel-

oped approach was tested on different ground networks configurations and different

levels of budget constraints. The second case dealt with the robust observation and

TCMs allocation for a low-budget deep-space satellite. Execution errors are included

after each observation arc. Thus, this test case was characterised by a critical trade-off

between the instantaneous state knowledge improvement provided by a measurement

arc and the introduced velocity errors, which tended to worsen future predictions. The

results of both test cases have shown the ability of the optimisation-based method to
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optimally generate observation campaigns by trading off accuracy with budget alloca-

tion and execution errors. The presented analyses validate the design choice of using a

variable-size structured genetic algorithm when compared to the standard and hidden-

genes GAs, in particular for scenarios with tighter constraints. These applications have

proven that the developed approach is a solid tool for automatic resources allocation

in space tracking applications under severe budget limitations.

In Chapter 7, the direct transcription with generalised intrusive polynomial algebra

was applied to the robust optimisation of a low-thrust rendezvous to the near-Earth

asteroid 99942 Apophis. Uncertainty was considered on the initial conditions as re-

sulting from errors on the hyperbolic excess velocity at departure. The robust control

approach managed to find a trajectory achieving the required probability to reach the

final target set. Furthermore, the robust solution was shown to outperform the ref-

erence deterministic one on this uncertainty metric significantly. The performance of

the intrusive polynomial-based method was assessed, and it resulted to be a fast and

accurate approach for nonlinear UP. Epistemic uncertainty in the hyperbolic excess

velocity was also considered for a sensitivity analysis on the found solution.

Finally, Chapter 8 then presented the application of the belief transcription to the

robust re-design of an infeasible flyby of Europa Clipper. Both aleatory and epistemic

uncertainties were considered in the initial conditions, execution errors, and observation

noises directly within the trajectory design cycle. Constraints were imposed both in ex-

pectation and in probability (chance constraint). The robust formulation and solution

approach were able to find a trajectory that simultaneously optimises the statistical

∆v99 of the executed manoeuvres and satisfies all the constraints. Indeed, the belief

optimal control was able to solve the initial infeasibility in PoI with Europa during the

close encounter, as well as to respect the nominal flyby conditions and final position in

expectation, such that the rest of the tour is left unchanged. As a verification, it was

shown that the robust approach finds a solution that outperforms the deterministic one

on the robust measure ∆v99 when no PoI constraint is considered. The discrepancy

between the upper and precise PoI highlights the sensitivity of the estimation process

to the specification of the input distributions. Therefore, it proves the importance of
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modelling epistemic uncertainty in robust trajectory design. This example proved the

usefulness of BOC in practical trajectory design as it solved for the PoI infeasibility

automatically, which otherwise would have taken several iterations between the tra-

jectory optimisation and flight dynamics teams to fix. In this chapter, a preliminary

application of the epistemic variational inference on the same test case was also pro-

posed for the robust quantification of PoI. In addition to the uncertainty model used

before, epistemic uncertainty was considered on the observation likelihood as well. The

wide range of PoI highlighted how crucial epistemic uncertainty modelling and process-

ing are to quantify the navigation analysis’ risk metrics accurately. Indeed, different

actions might be taken when considering either the lower or the upper impact proba-

bility. The increased upper impact probability with respect to the BOC metric was due

mainly to further epistemic uncertainty on the observation likelihood. Therefore, this

extended analysis proved how sensitive the impact probability is to the specification of

observation errors and, therefore, the usefulness of epistemic variational inference.

Although the research objectives of this thesis were met, future developments would

help improve the maturity, applicability, and efficiency of the methods presented, as

well as overcome some limitations currently affecting them.

As for the robust particle filter, the main limitation comes from the computational

complexity for increasing epistemic dimensionality, primarily due to the initial domain

decomposition which currently grows factorially. Hence, different aspects would deserve

further investigations: a more scalable initial domain decomposition strategy to reduce

the computational complexity with the number of epistemic dimension; the use of a

resampling strategy to enhance the representation accuracy of the estimator if the

effective sample size degrades; an analysis of alternative methods to construct the

proposal; the use of alternative optimisation approaches in place of the branch and

bound method. Last but not least future test cases will consider more complex collision

models, e.g., accounting for both objects uncertainties, their shape, and orientation to

provide more accurate risk metrics.

Future work on the epistemic variational inference should focus on both the steps

characterising the filter. For the UP, an epistemic update routine for the mixture
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weights during propagation should be investigated as the current implementation keeps

them fixed. For the update step, one limitation of the present algorithm is the use of

local Gaussian kernels with fixed mean which may not provide a good global coverage of

the posterior set. Thus, future developments should revolve around the employment of

different kernels, which provide better global coverage of the domain, such as Bernstein

polynomials and nonlinear epistemic parameters. From here, theoretical work should

focus on developing enhanced methods and proofs for the epistemic reinitialisation

with nonlinear parameters that conservatively approximates the infinite set of possible

posteriors resulting from Bayes’ inference. Finally, a complexity analysis should be

performed to compare the numerical performance of epistemic variational inference

versus existing methods.

For the optimisation-based stochastic scheduling, the current implementation is

characterised by a number of limitations which prevent its applicability in real-world

scheduling. Among them, the approach can now schedule the observation campaign for

a single object only, optimise for a single objective, that is the final estimate accuracy,

and it relies on a simplified model of the GS’ requirements and characteristics. Thus,

next developments will concern a faithful modelling of the GSs’ physical and operational

characteristics as well as the method applicability to the scheduling of multiple objects

concurrently while automatically addressing reservation conflicts. Furthermore, future

work should focus on its formal generalisation as a multi-objective problem. Indeed, an

efficient implementation of multiple budget levels to generate Pareto fronts for a track-

ing window, comparing different levels of accuracy and allocated budget, could help

the operator decide the most suitable schedule to select. Besides, a dynamic approach

could be developed where the tracking optimisation decides a subset of observations

ahead in time, updates the state estimate with the actual observations received, and

re-optimises future tracking schedules. This would improve the tracking optimality in

online applications and partially remove the need for covariance analysis.

The robust Bayesian framework could be further expanded by working both on the

individual modules and on their interactions. Besides, the main limiting factor to its

applicability to current STM procedures is that the estimation process currently relies
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on raw measurements, which however are not publicly available in general. Thus, future

developments would need to incorporate CDM observations directly and understand

how to define robust manoeuvres in the case of uncertainty in the correctness of the

CDMs. Besides, another development could be to extend the CAM module to a multi-

manoeuvre optimisation such that a sequence of avoidance manoeuvres ensures safety

not only for the imminent conjunction but also for possible subsequent ones.

Finally, an interesting direction for the control methods would be to incorporate

epistemic variational inference as sequential filtering engine. Indeed, the current im-

plementation of the observation update step does not enable the use of sequential

epistemic reinitialisation. Using an epistemically sequential filtering approach would

enable easy treatment of epistemic uncertainty on the observation likelihood and a sim-

plified optimisation over the epistemic variables as the inner loop would reduce to a

linear programming problem. This improvement would also enhance the computational

complexity of BOC with an increasing number of epistemic dimension. Besides, as the

BOC framework already enables concurrent optimisation of open- and closed-loop con-

trol profiles, it could be further developed to work efficiently in online scenarios and

tested on GNC applications.

207



Appendix A

B&B Algorithm and Proofs

A.1 Algorithm

The algorithmic flow of the global optimisation is presented in Algorithm 7. The

Algorithm 7 Algorithmic scheme for B&B over simplexes.

Let:
· ε ∈ R+ a termination threshold
· L0 initial list of simplexes covering Ω

· L0 = minS(i)
0 ∈L0

lb(S(i)
0 ) initial lower bound of θ̂

· U0 = minS(i)
0 ∈L0

ub(S(i)
0 ) initial upper bound of θ̂

· k = 0 the iterator

while Uk − Lk > ε

1: Branch most promising simplex lb (S∗k) = Lk
S∗k → S∗1k+1,S∗

2

k+1

2: Construct new list of simplexes
Lk+1 = (Lk \ S∗k) ∪ S∗

1

k+1 ∪ S∗
2

k+1

3: Compute new lower and upper bounds of θ̂

Lk+1 = minS(j)
k+1∈Lk+1

lb(S(j)
k+1)

Uk+1 = minS(j)
k+1∈Lk+1

ub(S(j)
k+1)

4: Discard non-optimal simplexes

Lk+1 = Lk+1 \ S
(j)
k+1 if lb(S(j)

k+1) > Uk+1

5: Update iterator
k = k + 1

end while
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algorithm is a classical B&B starting with an initial list of simplexes L0 covering the

search space Ω. On each simplex S(i)
0 , the function minimum is bounded from below

lb(S(i)
0 ) and from above ub(S(i)

0 ). The minimum of both is kept in the variables L0 and

U0 respectively, such that θ̂ is bounded between them L0 ≤ θ̂ ≤ U0. Then, starting

from k = 0, the B&B iterates until the upper and lower bound are closer than the set

threshold ε. The most promising simplex is branched into two sub-simplexes in each

iteration according to the branching rule employed. The two new simplexes are added

to the list Lk+1 and the old one removed. The bounding procedure is repeated on the

new simplexes, and the values Lk+1 and Uk+1 updated. Because Lk+1 ≤ θ̂ ≤ Uk+1, the

simplexes whose lower bound lb(S(j)
k+1) is larger than Uk+1 can be automatically deemed

as non-optimal and therefore discarded. Finally, the iterator is updated, and the loop

repeated until convergence.

A.2 B&B proofs

The proof of Lemma 1 is as follows.

Proof. As for the lower bound, from Eq. (3.28) we have n+ 1 inequalities

θ̂(λ) ≥ θ̂(λj)− L‖λ− λj‖ , (A.1)

for every λj . Therefore, θ̂(λ) must be larger than the largest r.h.s.

θ̂(λ) ≥ max
j
θ̂(λj)− L‖λ− λj‖ . (A.2)

This r.h.s. is lb so Eq. (A.2) holds for every point in the simplex. In the argument of

the minimum of θ̂ over the simplex, call it λS (which may be non-unique), we have that

θ̂S = θ̂(λS) ≥ lb(λS) (A.3)

and by Eq. (3.30) we have that

lb(λS) ≥ lb∗S (A.4)
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resulting in the lower bound inequality in Eq. (3.32)

θ̂S ≥ lb∗S . (A.5)

For the upper bound of the minimum, we have the trivial relationship

θ̂(λ0) = ub(S) ≥ θ̂S (A.6)

because λ0 is in the simplex, proving the upper bound inequality.

The proof of Lemma 2 is presented below.

Proof. Let

λ∗lb = arg min
λ∈S

lb(λ)

be the argument of the minimum of lb over the simplex. Equation σ(S) ≤ δ implies

that

‖λ∗lb − λ‖ ≤ δ .

Hence, let us consider the bound difference

ub(S)− lb(S) =
∣∣∣θ̂(λ0)− lb(λ∗lb)

∣∣∣
= θ̂(λ0)−max

j

[
θ̂(λj)− L‖λ∗lb − λj‖

]
.

For each λj , we have

|θ̂(λ0)− θ̂(λj) + L‖λ∗lb − λj‖| ≤ |θ̂(λ0)− θ̂(λj)|+ L‖λ∗lb − λj‖

≤ L‖λ0 − λj‖+ L‖λ∗lb − λj‖

≤ Lδ + Lδ ,

where the first inequality comes from the triangle inequality, the second one from the

Lipschitz condition and the last one from σ(S) ≤ δ. Therefore, also for the λj argument
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of the maximum in the lb expression, we have that

ub(S)− lb(S) =
∣∣∣θ̂(λ0)− lb(λ∗lb)

∣∣∣ ≤ 2Lδ .

Hence, there exists δ such that

ub(S)− lb(S) ≤ 2Lδ ≤ ε ,

and it can be chosen as

0 < δ ≤ ε/2L .

The proof of Lemma 3 is constructed as follows.

Proof. The diameter of a n-simplex S(i)
0 ∈ L0 is reduced at least by a factor

√
3/2 every

n splits [138] such that

min
S(j)
k ∈Lk

σ
(
S(j)
k

)
≤

(√
3

2

)b knc
σ
(
S(i)

0

)

holds. For increasing k the right hand side goes to zero because
(√

3/2
)b knc is a mono-

tonically decreasing sequence. Therefore the minimum diameter of the simplexes gen-

erated by S(i)
0 converges to within the tolerance δ in a finite number of steps. By

repeating this argument for each S(i)
0 of the N0 simplexes in L0, we get the first part

of the lemma.

By focusing again on a single S(i)
0 ∈ L0, we can find the number of splittings K(i)

to achieve a minimum diameter smaller or equal to a given threshold δ. Using again

the bound in [138], we can write

min
S(j)
k ∈Lk

σ
(
S(j)
k

)
≤

(√
3

2

)b knc
σ
(
S(i)

0

)
≤ δ .
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By rearranging the terms and taking the logarithm, one obtains

⌊
k

n

⌋
≥ log 2√

3

σ
(
S(i)

0

)
δ

,

which is equivalent to

k ≥ n

log 2√
3

σ
(
S(i)

0

)
δ

 .

For being conservative, one can employ σ0 in place of σ
(
S(i)

0

)
, that is using the largest

initial diameter for every initial simplex S(i)
0 and set an upper bound on the number of

simplex splits as

K(i) = n

⌈
log 2√

3

σ0

δ

⌉
By repeating this argument for each of the N0 initial simplexes, we obtain a conservative

upper bound on the number of LEB splits to obtain the required diameter threshold δ

as

K = N0 n

⌈
log 2√

3

σ0

δ

⌉
,

thus concluding the proof.

The proof of the convergence Theorem 1 is outlined below.

Proof. Let S∗K = arg minSK∈LK σ(SK) be the (possibly non-unique) simplex with small-

est diameter at the k-th iteration of the B&B. Let S∗Kε ∈ LKε be the parent simplex

which was split at the Kε-th iteration, with Kε < k, to obtain S∗k. From Lemma 2,

there exists δ ∈ R+ such that

∀S ⊂ Rn, σ(S) ≤ 2 δ =⇒ ub(S)− lb(S) ≤ ε .

Hence, select K ∈ N sufficiently large such that

σ(S∗K) ≤ δ

which is granted to happen in a finite number of steps by Lemma 3. Then, because of
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the selected LEB branching rule, we have a lower bound on the diameter change as

σ(S∗Kε) ≤ 2σ(S∗K) ≤ 2 δ .

As shown before, this implies that

ub(S∗Kε)− lb(S
∗
Kε) ≤ ε .

Since S∗Kε was split, from passage 1 of Algorithm 7, we have that LKε = lb(S∗Kε), and

by definition UKε ≤ ub(S∗Kε). Thus, we conclude that

UKε − LKε ≤ ub(S∗Kε)− lb(S
∗
Kε) ≤ ε

as stated in the first part of the theorem.

Finally, we need to show that LKε ≤ θ̂ ≤ UKε . First, we need to show that the

simplex containing the optimum has not been discarded in any iteration up to Kε. Let

the argument of the minimum λ∗ = arg minλ∈Ω θ̂(λ) be attained in the simplex S∗k ∈ Lk
at a generic iteration k ∈ N, that is the optimal simplex has not been discarded. By

Lemma 1, in this simplex we have

lb(S∗k) ≤ θ̂ ≤ ub(S∗k) .

For all the simplexes in the list Sk ∈ Lk, we have by the definition of ub and Uk

Uk ≤ ub(Sk) .

Hence, we have that the simplex containing λ∗ cannot be discarded because

lb(S∗k) ≯ Uk .
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Finally, because λ∗ ∈ S∗k, θ̂ ≥ LKε and θ̂ ≤ UKε it follows that

UKε − θ̂ ≤ UKε − LKε ≤ ε

θ̂ − LKε ≤ UKε − LKε ≤ ε .

These two inequalities directly imply

LKε ≤ θ̂ ≤ UKε ,

thus concluding the proof.

A.3 Lower bound computation

The function

θ̂(λj)− L‖λ− λj‖

can be seen as the boundary of a hyper-cone Cj with apex in [λj , θ̂(λj)] and half-

aperture tan−1(1/L). The lower bounding function lb(λ) in a simplex S (see Eq. (3.29))

results from the maximum of the cones generated from all the vertexes [λ0, . . . ,λn]. By

construction, the minimum lb(S) is either attained at the common intersection of these

n+1 hyper-cones, call it λ∩ if this intersection is inside the simplex, or at the boundary

of the simplex, call it λ∂ if the intersection is outside. In the latter case, the common

intersection has a lower function value than the point on the boundary, that is lb(λ∩) <

lb(λ∂), because lb(λ∩) is the minimum of the convex hull CH = conv{λ0, . . . ,λn,λ∩}

and S ⊂ CH [191].

The intersection point λ∩ can be found by reformulating Eq. (3.30) by introducing

a slack variable s ∈ R

min
s

s (A.7a)

s.t. ‖λ− λj‖ ≥ (θ̂(λj)− s)/L , (A.7b)
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where Eq. (A.7b) holds for j = 0, . . . , n. Problem (A.7) tells us that we need to find

for the minimum s such that there exists a feasible point outside the n-dimensional

hyper-spheres centered in λj and with radius (θ̂(λj)− s)/L. This value is achieved at

the common intersection of the boundary Sj of such hyper-spheres for the minimum

feasible s.

For a given s, the intersection λ∩ij between two hyper-spheres Si and Sj lays on

an hyperplane perpendicular to the line connecting λi and λj . Hence, the intersection

belongs to the plane parameterised as

λ∩ij ∈
(λj − λi)T

‖λj − λi‖
λ− λ∩0j = 0 (A.8)

where λ∩0j ∈ R. This holds between each pair of vertexes of the simplex. To discard

redundant pairs, we can write everything with respect to λi = λ0 for j = 1, . . . , n. To

find the value of λ∩0j , let us suppose for simplicity that λ0 is in the origin and that

λj = [d0j , 0, . . . , 0], with d0j = ‖λj − λ0‖. The intersection λ∩0j between S0 and Sj

comes from the solution of the system

λ2
0 + λ2

1 + · · ·+ λ2
n−1 = (θ̂(λ0)− s)2/L2

(λ0 − d0j)
2 + λ2

1 + · · ·+ λ2
n−1 = (θ̂(λ1)− s)2/L2 ,

where λ0, λ1 and so on are the components of the λ vector. By subtracting the equations

and re-arranging the terms, we obtain

λ∩0j
:= λ0 = m0j s+ c0j =

θ̂(λj)− θ̂(λ0)

L2d0j
s+

(
θ̂(λ0)2 − θ̂(λj)2

2L2d0j
+
d0j

2

)
, (A.9)

that is, the intersection lies on a hyperplane with coordinate λ0 = λ∩0j . This holds true

for generic λ0 and λj because we can interpret λ∩0j as the distance of the hyperplane

with normal λj − λ0 from the vertex λ0. Hence, we can write the system of linear
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equations λ∩ij needs to satisfy as



(λ1−λi)T
‖λ1−λi‖

(λ2−λi)T
‖λ2−λi‖

...

(λn−λi)T
‖λn−λi‖


λ =



m01

m02

...

m0n


s+



c01

c02

...

c0n


(A.10)

which is a classical linear equation in the form dVλ = ms+ c. The hyperplane inter-

section is linear in s. Indeed, it is worth underlining that the hyperplanes’ intersection

generally differs from the spheres’ intersection because Eq. (A.10) is a set of necessary

but not sufficient conditions for λ∩ij , and they coincide only for a specific value of s.

Hence, to find a unique value, we need to add an additional constraint in s. This can be

solved by requiring that the hyperplanes’ intersection lays on the hyper-sphere centred

in λ0 as 
dVλ = ms+ c

‖λ− λ0‖2 = (θ̂(λ0)− s)2/L2 .
(A.11)

This system has a closed-form solution. Again, without loss of generality, let us suppose

that λ0 coincides with the origin. Then, let λ = m̃s + c̃ with m̃ = dV−1m and

c̃ = dV−1c. Plug λ into the quadratic equation to get

n∑
j=1

(m̃0js+ c̃0j)
2 = (θ̂(λ0)− s)2/L2 , (A.12)

that is a simple second-order equation in s that can be solved analytically. The smallest

root s∩ out of the two should be selected because the largest one corresponds to the

upper half of the double cone. The spheres’ intersection can then be computed as

λ∩ = m̃ s∩ + c̃. By construction, the sought lower bound is

lb(S) = lb(λ∩) = s∩ . (A.13)
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B-plane coordinate tranformation

The B-plane is the plane passing through the target body centre of mass and perpen-

dicular to the hyperbola incoming asymptote [187, 192, 159]. It is defined by three unit

vectors: ŝ is the unit vector parallel to the relative incoming asymptote with positive

direction aligned to the incoming asymptotic velocity; t̂ is the cross product between

ŝ and the normal to the ecliptic, that is ẑ vector in the inertial frame; r̂ is the cross

product between ŝ and t̂.

The transformation from inertial to B-plane coordinates is

B = [ b, TCA] = B(x(t)) ,

where the aiming point b = (b · t̂) t̂ + (b · r̂) r̂ is the target-centred vector to the

intersection point between the incoming asymptote and the B-plane (it would be the

closest approach point if the target body were massless), whereas the hyperbolic TCA

is the time interval that the spacecraft needs to travel from x(t) to the flyby closest

approach along the relative hyperbolic orbit.

The transformation B therefore returns the two components, b · t̂ and b · r̂, and

the hyperbolic TCA for a given inertial state x in the proximity of the flyby. First, the

inertial state with respect to the central body is converted to the inertial state with

respect to the target body to flyby by a simple translation. Hence, let r and v be the

relative position and velocity of the spacecraft. Then, following [192], the unit vectors
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are first derived by computing the unit normal vector

ĥ = r× v / ‖r× v‖ ,

the eccentricity vector

e =
(v2

µ
− 1

r

)
r−

(
r · v)

µ
v ,

and the asymptote angle

β = cos−1(1/e) .

Hence, ŝ can be written as

ŝ = cosβ
e

‖e‖
+ sinβ

ĥ× e

‖ĥ× e‖
,

and consequently

t̂ = ŝ× ẑ

r̂ = ŝ× t̂ .

Hence, from the hyperbolic semi-major axis

a = −µ
2

/(v2

2
− µ

2

)
,

the b vector magnitude is computed as

‖b‖ =
‖h‖
v∞

= −a
√
e2 − 1 .

Begin the aiming point within the B-plane (perpendicular to ŝ) and within the relative

orbital motion (perpendicular to ĥ), the b vector can be finally written as

b = ‖b‖
(
ŝ× ĥ

)
,

and its projections onto t̂ and r̂ can be found by a scalar product. The hyperbolic

TCA is computed by the relation between hyperbolic anomaly H and time (see Equa-
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tion (8.23-1) of [159] )

TCA =
e sinhH −H√

µ/a3
,

where H is derived by its definition

r = a(1− e coshH) .

As the B-plane change of coordinates involves only algebric passages, the Jacobian

of this transformation with respect to the inertial state

JB =
∂B

∂x

can computed analytically. Specifically, the derivative of the equations above with

respect to the parameters appearing on the right-hand side are derived by symbolic

differentiation, and the Jacobian is constructed by chain rule.
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design to flyby near-earth asteroids using cubesats,” Acta Astronautica, vol. 167,

pp. 146 – 163, 2020.

[21] S. Campagnola, N. Ozaki, Y. Sugimoto, C. H. Yam, H. Chen, Y. Kawabata,

S. Ogura, B. Sarli, Y. Kawakatsu, R. Funase, and S. Nakasuka, “Low-thrust tra-

jectory design and operations of procyon, the first deep-space micro-spacecraft,”

in 24th International Symposium on Space Flight Dynamics, Munich, Germany,

2015.

[22] S. Campagnola, J. Hernando-Ayuso, K. Kakihara, Y. Kawabata, T. Chikazawa,

R. Funase, N. Ozaki, N. Baresi, T. Hashimoto, Y. Kawakatsu, T. Ikenaga,

K. Oguri, and K. Oshima, “Mission analysis for the EM-1 CubeSats EQUULEUS

and OMOTENASHI,” IEEE Aerospace and Electronic Systems Magazine, vol. 34,

no. 4, 2019.

222



Bibliography

[23] J. Guo, L. Monas, and E. Gill, “Statistical analysis and modelling of small satellite

reliability,” Acta Astronautica, vol. 98, pp. 97–110, 2014.

[24] B. K. Malphrus, A. Freeman, R. Staehle, A. T. Klesh, and R. Walker, “Inter-

planetary cubesat missions,” in Cubesat Handbook, C. Cappelletti, S. Battistini,

and B. K. Malphrus, Eds. Academic Press, 2021, pp. 85–121.

[25] S. Russell and P. Norvig, Artificial intelligence: a modern approach, 4th ed.

Pearson, 2020.

[26] D. Mehrholz, L. Leushacke, W. Flury, R. Jehn, H. Klinkrad, and M. Landgraf,

“Detecting, tracking and imaging space debris,” ESA Bulletin(0376-4265), no.

109, pp. 128–134, 2002.

[27] J. Xi, Y. Xiang, O. K. Ersoy, M. Cong, X. Wei, and J. Gu, “Space debris detection

using feature learning of candidate regions in optical image sequences,” IEEE

Access, vol. 8, pp. 150 864–150 877, 2020.

[28] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear ap-

proaches. John Wiley & Sons, 2006.

[29] R. Weiss, “An approach to Bayesian sensitivity analysis,” Journal of the Royal

Statistical Society: Series B (Methodological), vol. 58, no. 4, pp. 739–750, 1996.

[30] S. Sarkka, Bayesian filtering and smoothing, 1st ed. Cambridge University Press,

New York, 2013.

[31] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation,” IEE proceedings F (radar and signal pro-

cessing), vol. 140 (2), pp. 107–113, 1993.

[32] A. G. Wills, J. Hendriks, C. Renton, and B. Ninness, “A Bayesian filtering algo-

rithm for Gaussian mixture models,” arXiv preprint arXiv:1705.05495, 2017.

[33] W. Li and Y. Jia, “H-infinity filtering for a class of nonlinear discrete-time systems

based on unscented transform,” Signal Processing, vol. 90, no. 12, pp. 3301–3307,

2010.

223



Bibliography

[34] E. Delande, J. Houssineau, and M. Jah, “Physics and human-based information

fusion for improved resident space object tracking,” Advances in Space Research,

vol. 62, no. 7, pp. 1800–1812, 2018.

[35] E. Delande, M. Jah, and B. Jones, “A new representation of uncertainty

for collision assessment,” in AAS/AIAA Spaceflight Mechanics 2019, 2019,

http://www.univelt.com/book=7406.

[36] H. Cai, I. Hussein, and M. Jah, “Possibilistic admissible region using outer prob-

ability measure theory,” Acta Astronautica, vol. 177, pp. 246–257, 2020.

[37] W.-S. Wang and M. Orshansky, “Robust estimation of parametric yield under

limited descriptions of uncertainty,” in Proceedings of the 2006 IEEE/ACM in-

ternational conference on Computer-aided design, 2006, pp. 884–890.

[38] C. Masreliez and R. Martin, “Robust Bayesian estimation for the linear model

and robustifying the Kalman filter,” IEEE transactions on Automatic Control,

vol. 22, no. 3, pp. 361–371, 1977.

[39] D. R. Morrell and W. C. Stirling, “Set-values filtering and smoothing,” IEEE

transactions on systems, man, and cybernetics, vol. 21, no. 1, pp. 184–193, 1991.

[40] P. Smets and B. Ristic, “Kalman filter and joint tracking and classification in

the tbm framework,” in Proceedings of the Seventh International Conference on

Information Fusion, vol. 1. Citeseer, 2004, pp. 46–53.

[41] B. Noack, V. Klumpp, D. Brunn, and U. D. Hanebeck, “Nonlinear Bayesian

estimation with convex sets of probability densities,” in 2008 11th International

Conference on Information Fusion. IEEE, 2008, pp. 1–8.

[42] A. Benavoli, M. Zaffalon, and E. Miranda, “Robust filtering through coherent

lower previsions,” IEEE Transactions on Automatic Control, vol. 56, no. 7, pp.

1567–1581, 2010.

[43] P. N. Valerino, B. Buffington, K. Criddle, Y. Hahn, R. Ionasescu, J. A. Kangas,

T. Martin-Mur, R. B. Roncoli, and J. A. Sims, “Preliminary maneuver analy-

224

http://www.univelt.com/book=7406


Bibliography

sis for the europa clipper multiple-flyby mission,” in AIAA/AAS Astrodynamics

Specialist Conference, 2014.

[44] S. Nandi, J. Kangas, P. N. Valerino, B. Buffington, R. Ionasescu, and D. Boone,

“Initial navigation analysis for the europa multiple flyby mission concept,” in

26th AAS/AIAA Space Flight Mechanics Meeting, 2016.

[45] A. Gelb, Applied optimal estimation. MIT press, 1974, chap. 7.

[46] N. B. Stastny and D. K. Geller, “Autonomous optical navigation at jupiter: A

linear covariance analysis,” Journal of Spacecraft and Rockets, vol. 45, no. 2, pp.

290–298, 2008.

[47] D. K. Geller, “Linear covariance techniques for orbital rendezvous analysis and

autonomous onboard mission planning,” Journal of Guidance, Control, and Dy-

namics, vol. 29, no. 6, pp. 1404–1414, 2006.

[48] B. Clement and M. Johnston, “The deep space network scheduling problem,” in

Seventeenth Annual Conference on Innovative Applications of Artificial Intelli-

gence, 01 2005, pp. 1514–1520.

[49] A. Kleinschrodt, A. Freimann, S. Christall, M. Lankl, and K. Schilling, “Advances

in modulation and communication protocols for small satellite ground stations,”

in Proceedings of the 68th International Astronautical Congress, 2017, pp. 2–s2.

[50] K. M. Riesing, “Portable optical ground stations for satellite communication,”

Ph.D. dissertation, Massachusetts Institute of Technology, 2018.

[51] F. Z. Ali, S. N. M. Rahim, and M. H. Jusoh, “Amateur satellite ground station:

Troubleshooting and lesson learned,” Journal of Physics: Conference Series, vol.

1768, no. 1, p. 012013, jan 2021.

[52] P. Soma, S. Venkateswarlu, S. Santhalakshmi, T. Bagchi, and S. Kumar, “Multi-

satellite scheduling using genetic algorithms,” in Space OPS 2004 Conference,

2004, p. 515.

225



Bibliography

[53] J. Sun and F. Xhafa, “A genetic algorithm for ground station scheduling,” in

2011 International Conference on Complex, Intelligent, and Software Intensive

Systems. IEEE, 2011, pp. 138–145.

[54] F. Xhafa, X. Herrero, A. Barolli, and M. Takizawa, “A simulated annealing algo-

rithm for ground station scheduling problem,” in 2013 16th International Con-

ference on Network-Based Information Systems. IEEE, 2013, pp. 24–30.

[55] S. Spangelo, J. Cutler, K. Gilson, and A. Cohn, “Optimization-based scheduling

for the single-satellite, multi-ground station communication problem,” Computers

& Operations Research, vol. 57, pp. 1–16, 2015.

[56] S. Damiani, H. Dreihahn, J. Noll, M. Nizette, and G. P. Calzolari, “A planning

and scheduling system to allocate esa ground station network services,” in The

Int’l Conference on Automated Planning and Scheduling. Citeseer, 2007.

[57] M. Schmidt, M. Rybysc, and K. Schilling, “A scheduling system for small ground

station networks,” in SpaceOps 2008 Conference, 2008.

[58] A. Kleinschrodt, N. Reed, and K. Schilling, “A comparison of scheduling algo-

rithms for low cost ground station networks,” in 67st international astronautical

congress. Guadalajara, Mexico, 2016, pp. 1–15.

[59] T. J. Muelhaupt, M. E. Sorge, J. Morin, and R. S. Wilson, “Space traffic man-

agement in the new space era,” Journal of Space Safety Engineering, vol. 6, no. 2,

pp. 80–87, 2019.

[60] S. Nag, D. Murakami, M. Lifson, and P. Kopardekar, “System autonomy for

space traffic management,” in 2018 IEEE/AIAA 37th Digital Avionics Systems

Conference (DASC), 2018, pp. 1–10.

[61] T. Flohrer, H. Krag, K. Merz, and S. Lemmens, “Cream-esa’s proposal for colli-

sion risk estimation and automated mitigation,” in Proceedings of the Advanced

Maui Optical and Space Surveillance Technologies Conference (AMOS), 2019.

226



Bibliography

[62] A. Mashiku, C. Frueh, N. Memarsadeghi, E. Gizzi, M. Zielinski, and A. Burton,

“Predicting satellite close approaches using statistical parameters in the context

of artificial intelligence,” in AAS/AIAA Astrodynamics Specialist Conference,

2019.

[63] The Consultative Committee for Space Data Systems, “Recommendation for

space data system standards: Conjunction Data Message,” CCSDS 133.0-B-1.

Blue Book, Tech. Rep., 2013.

[64] A. B. Poore, J. M. Aristoff, J. T. Horwood, R. Armellin, W. T. Cerven, Y. Cheng,

C. M. Cox, R. S. Erwin, J. H. Frisbee, M. D. Hejduk et al., “Covariance and

uncertainty realism in space surveillance and tracking,” Numerica Corporation

Fort Collins United States, Tech. Rep., 2016.

[65] J. R. Carpenter, “Covariance realism is not enough,” in AAS/AIAA Astrodynam-

ics Specialist Conference, 2019.

[66] M. S. Balch, R. Martin, and S. Ferson, “Satellite conjunction analysis and the

false confidence theorem,” Proceedings of the Royal Society A, vol. 475, no. 2227,

p. 20180565, 2019.

[67] M. D. Rayman and S. N. Williams, “Design of the first interplanetary solar electric

propulsion mission,” Journal of Spacecraft and Rockets, vol. 3, pp. 589–595, 2002.

[68] F. E. Laipert and J. M. Longuski, “Automated Missed-Thrust Propellant Margin

Analysis for Low-Thrust Trajectories,” Journal of Spacecraft and Rockets, vol. 52,

pp. 1135–1143, 2015.

[69] D. Grebow, G. J. Whiffen, D. Han, and B. Kennedy, “Dawn safing approach to

Ceres re-design,” in AIAA/AAS Astrodynamics Specialist Conference, 2016.

[70] H. Kuninaka, K. Nishiyama, Y. Shimizu, I. Funaki, H. Koizumi, S. Hosoda, and

D. Nakata, “Hayabusa asteroid explorer powered by ion engines on the way to

earth,” in Proceedings of the 31st International Electric Propulsion Conference,

2009.

227



Bibliography

[71] H. Kuninaka and J. I. Kawaguchi, “Lessons learned from round trip of Hayabusa

asteroid explorer in deep space,” in 2011 Aerospace Conference. IEEE, 2011,

pp. 1–8.

[72] A. Richards and J. How, “Robust stable model predictive control with constraint

tightening,” in American Control Conference 2006 IEEE, 2006.

[73] E. D. Gustafson, “Stochastic optimal control of spacecraft,” Ph.D. dissertation,

The University of Michigan, 2010.

[74] P. Di Lizia, R. Armellin, F. Bernelli-Zazzera, and M. Berz, “High order optimal

control of space trajectories with uncertain boundary conditions,” Acta Astro-

nautica, vol. 93, pp. 217–229, 2014.

[75] P. Di Lizia, R. Armellin, A. Morselli, and F. Bernelli-Zazzera, “High order optimal

feedback control of space trajectories with bounded control,” Acta Astronautica,

vol. 94, no. 1, pp. 383–394, 2014.

[76] J. T. Olympio and C. H. Yam, “Deterministic method for space trajectory design

with mission margin constraints,” in 61st International Astronautical Congress,

Prague, Czech Republic, 2010.

[77] J. T. Olympio, “Designing robust low-thrust interplanetary trajectories subject

to one temporary engine failure,” in 20th AAS/AIAA Space Flight Meeting, San

Diego, CA, US, 2010.

[78] N. Ozaki, S. Campagnola, R. Funase, and C. H. Yam, “Stochastic differential dy-

namic programming with unscented transform for low-thrust trajectory design,”

Journal of Guidance, Control, and Dynamics, vol. 41, pp. 377–387, 2018.

[79] M. Vasile, “Robustness optimisation of aerocapture trajectory design using a

hybrid co-evolutionary approach,” in 18th International Symposium on Space

Flight Dynamics, Munich, Germany, 2004, pp. 1–6.

[80] F. Zuiani, M. Vasile, and A. Gibbings, “Evidence-based robust design of deflection

228



Bibliography

actions for near earth objects,” Celestial Mechanics and Dynamical Astronomy,

vol. 114, pp. 107–136, 2012.

[81] M. Di Carlo, M. Vasile, C. Greco, and R. Epenoy, “Robust optimisation of

low-thrust interplanetary transfers using evidence theory,” in 29th AAS/AIAA

Space Flight Mechanics Meeting, Ka’anapali, Hawaii, US, 2019, pp. 339–358, URL

strathprints:67543.

[82] S. Graça Marto, M. Vasile, and R. Epenoy, “Multi-objective robust trajectory

optimisation under epistemic uncertainty and imprecision,” in Proceedings of the

70th International Astronautical Congress, IAC19, Washington, DC, US, 2019,

URL strathprints:70454.

[83] K. Oguri and J. W. McMahon, “Robust spacecraft guidance around small bodies

under uncertainty: Stochastic optimal control approach,” Journal of Guidance,

Control, and Dynamics, pp. 1–19, 2021.

[84] C. Greco and M. Vasile, “Robust Bayesian particle filter for space object track-

ing under severe uncertainty,” Journal of Guidance, Control, and Dynamics,

Manuscript submitted for publication.

[85] C. Greco, S. Campagnola, and M. Vasile, “Robust space trajectory design using

belief optimal control,” Journal of Guidance, Control, and Dynamics, Manuscript

submitted for publication.

[86] L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “Satellite

tracking with constrained budget via structured-chromosome genetic algorithms,”

Optimization and Engineering, Manuscript submitted for publication.

[87] C. Greco, M. Di Carlo, M. Vasile, and R. Epenoy, “Direct multiple shooting

transcription with polynomial algebra for optimal control problems under uncer-

tainty,” Acta Astronautica, vol. 170, pp. 224–234, 2020.

[88] C. Greco and M. Vasile, “Fundamentals of filtering,” in Optimization Under Un-

229

https://strathprints.strath.ac.uk/67543/
https://strathprints.strath.ac.uk/67543/
https://strathprints.strath.ac.uk/70454/


Bibliography

certainty with Applications to Aerospace Engineering, M. Vasile, Ed. Cham:

Springer International Publishing, 2021, pp. 181–222.

[89] A. Riccardi, E. Minisci, K. Akartunali, C. Greco, N. Rutledge, A. Kershaw, and

A. Hashim, “Introduction to optimisation,” in Optimization Under Uncertainty

with Applications to Aerospace Engineering, M. Vasile, Ed. Cham: Springer

International Publishing, 2021, pp. 223–268.

[90] L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “Structured-

chromosome ga optimisation for satellite tracking,” in Proceedings of the Genetic

and Evolutionary Computation Conference Companion, ser. GECCO ’19. New

York, NY, USA: ACM, 2019, pp. 1955–1963.

[91] C. Greco, L. Gentile, G. Filippi, E. Minisci, M. Vasile, and T. Bartz-Beielstein,

“Autonomous generation of observation schedules for tracking satellites with

structured-chromosome ga optimisation,” in 2019 IEEE Congress on Evolution-

ary Computation (CEC). IEEE, 2019, pp. 497–505.

[92] C. Greco, L. Sánchez Fernández-Mellado, M. Manzi, and M. Vasile, “A robust

Bayesian agent for optimal collision avoidance manoeuvre planning,” in 8th Eu-

ropean Conference on Space Debris, 2021.

[93] C. Greco and M. Vasile, “Closing the loop between mission design and navigation

analysis,” in International Astronautical Congress, The Cyberspace Edition, 2020.

[94] C. Greco and M. Vasile, “Robust particle filter for space navigation under epis-

temic uncertainty,” in UQOP2020, 2020.

[95] G. Acciarini, C. Greco, and M. Vasile, “On the solution of the fokker-planck

equation without diffusion for uncertainty propagation in orbital dynamics,” in

2020 AAS/AIAA Astrodynamics Specialist Conference, 2020.

[96] C. Greco, S. Campagnola, and M. L. Vasile, “Robust space trajectory design

using belief stochastic optimal control,” in AIAA Scitech 2020 Forum, 2020, p.

1471.

230



Bibliography

[97] L. Gentile, C. Greco, E. Minisci, T. Bartz-Beielstein, and M. Vasile, “An opti-

mization approach for designing optimal tracking campaigns for low-resources

deep-space missions,” in Proceedings of the 70th International Astronautical

Congress, IAC19, Washington, DC, US, 2019.

[98] C. Greco, L. Gentile, M. Vasile, E. Minisci, and T. Bartz-Beielstein, “Ro-

bust particle filter for space objects tracking under severe uncertainty,” in 2019

AAS/AIAA Astrodynamics Specialist Conference, Portland, ME, US, 2019, URL

strathprints:70566.

[99] L. Walker, C. Greco, M. Di Carlo, A. Wilson, L. Ricciardi, A. Berquand, and

M. Vasile, “Nanospacecraft exploration of asteroids by collision and flyby recon-

naissance,” in Low-Cost Planetary Missions Conference, 2019.

[100] C. Greco, M. Di Carlo, M. Vasile, and R. Epenoy, “An intrusive polynomial

algebra multiple shooting approach to the solution of optimal control problems,”

in Proceedings of the 69th International Astronautical Congress, IAC18, Bremen,

Germany, 2018, URL strathprints:65918.

[101] T. Augustin, F. P. A. Coolen, G. De Cooman, and M. Troffaes, Introduction to

Imprecise Probabilities. John Wiley & Sons, 2014.

[102] E. G. Tabak and E. Vanden-Eijnden, “Density estimation by dual ascent of the

log-likelihood,” Communications in Mathematical Sciences, vol. 8, no. 1, pp. 217–

233, 2010.

[103] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications,

2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.

[104] S. Challa and Y. Bar-Shalom, “Nonlinear filter design using fokker-planck-

kolmogorov probability density evolutions,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 36, no. 1, pp. 309–315, 2000.

[105] T. P. Sapsis and G. A. Athanassoulis, “New partial differential equations govern-

ing the joint, response–excitation, probability distributions of nonlinear systems,

231

https://strathprints.strath.ac.uk/70566/
https://strathprints.strath.ac.uk/70566/
https://strathprints.strath.ac.uk/65918/


Bibliography

under general stochastic excitation,” Probabilistic Engineering Mechanics, vol. 23,

no. 2, pp. 289–306, 2008.

[106] A. T. Bharucha-Reid, Elements of the Theory of Markov Processes and their

Applications. Courier Corporation, 1997.

[107] C. Yanez, M. Gupta, V. Morand, and J. Dolado, “On the gaussianity validity

time for orbital uncertainty propagation,” in ESA NEO and Debris Detection

Conference, Darmstadt, 2019.

[108] M. DeGroot and M. Schervish, Probability and Statistics, 4th ed. Addison-

Wesley, 2012.

[109] A. Riccardi, C. Tardioli, and M. Vasile, “An intrusive approach to uncertainty

propagation in orbital mechanics based on Tchebycheff polynomial algebra,”

Advances in Astronautical Sciences, pp. 707–722, 2015. [Online]. Available:

https://strathprints.strath.ac.uk/60560/

[110] C. A. Ortega, A. Riccardi, M. Vasile, and C. Tardioli, “SMART-UQ: Uncertainty

Quantification Toolbox for Generalised Intrusive and non Intrusive Polynomial

Algebra,” in 6th International Conference on Astrodynamics Tools and

Techniques, 2016. [Online]. Available: https://strathprints.strath.ac.uk/58920/

[111] M. Vasile, C. A. Ortega, and A. Riccardi, “Set propagation in dynamical systems

with generalised polynomial algebra and its computational complexity,” Com-

munications in Nonlinear Science and Numerical Simulation, vol. 75, pp. 22–49,

2019.

[112] M. Berz, “From taylor series to taylor models,” in AIP Conference Proceedings

CONF-961208, vol. 405, no. 1. American Institute of Physics, 1997, pp. 1–23.

[113] P. Di Lizia, R. Armellin, and M. Lavagna, “Application of high order expansions

of two-point boundary value problems to astrodynamics,” Celestial Mechanics

and Dynamical Astronomy, vol. 102, no. 4, pp. 355–375, 2008.

232

https://strathprints.strath.ac.uk/60560/
https://strathprints.strath.ac.uk/58920/


Bibliography

[114] R. Armellin, P. Di Lizia, F. Bernelli-Zazzera, and M. Berz, “Asteroid close en-

counters characterization using differential algebra: the case of apophis,” Celestial

Mechanics and Dynamical Astronomy, vol. 107, no. 4, pp. 451–470, 2010.

[115] M. Valli, R. Armellin, P. Di Lizia, and M. R. Lavagna, “Nonlinear mapping of un-

certainties in celestial mechanics,” Journal of Guidance, Control, and Dynamics,

vol. 36, no. 1, pp. 48–63, 2013.

[116] P. Di Lizia, R. Armellin, E. Finzi, and M. Berz, “High-order robust guidance of

interplanetary trajectories based on differential algebra,” Journal of Aerospace

Engineering, Sciences and Applications, vol. 1, pp. 43–57, 01 2008.

[117] M. Valli, R. Armellin, P. Di Lizia, and M. R. Lavagna, “Nonlinear filtering meth-

ods for spacecraft navigation based on differential algebra,” Acta Astronautica,

vol. 94, no. 1, pp. 363–374, 2014.

[118] A. Morselli, R. Armellin, P. Di Lizia, and F. Bernelli Zazzera, “A high order

method for orbital conjunctions analysis: Sensitivity to initial uncertainties,”

Advances in Space Research, vol. 53, no. 3, pp. 490–508, 2014.

[119] A. Morselli, R. Armellin, P. Di Lizia, and F. Bernelli Zazzera, “A high order

method for orbital conjunctions analysis: Monte carlo collision probability com-

putation,” Advances in Space Research, vol. 55, no. 1, pp. 311–333, 2015.
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