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Abstract 

 

High voltage equipment, such as transformers and gas insulated substations, 

are important assets in the power industry. Monitoring of these assets has 

increased in recent years; allowing maintenance to be scheduled to resolve 

any problems that might exist and therefore avoid an unplanned outage, 

which could have serious consequences for customers’ security of supply 

and public safety. With a shift towards condition-based maintenance, various 

techniques have been researched that can assess asset condition and assist in 

asset maintenance and management. One recognised technique utilised to 

identify the condition of equipment insulation is through the monitoring of 

partial discharge (PD) activity. 

 

PD occurs around an insulation defect with the presence of light, sound, 

heat, electromagnetic waves or a chemical reaction. Monitoring and 

measuring PD phenomena can produce large amounts of data, the 

interpretation of which could unveil information about the state of the asset. 

The analysis of PD data has evolved from periodic, labour-intensive 

diagnosis by experts, to fast efficient diagnosis using advanced algorithms 

and artificial intelligence techniques. The move to machine diagnostics, 

although arguably more efficient, has diminished confidence in the 

diagnoses. This is due to the machine learning techniques not providing 

comprehensive justification for their output.  

 

This thesis describes a knowledge-based approach to the analysis of PD data, 

where knowledge engineering techniques have been employed to capture 

expert knowledge in this field. It focuses on the elicitation, modelling and 

implementation of knowledge pertaining to the diagnosis of phase-resolved 

PD patterns. The knowledge-based system provides decision support in the 

classification of phase-resolved patterns by PD defect type, and offers a 

diagnostic explanation of the inferred PD phenomena detected within high 

voltage equipment insulation. 
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Chapter 1 

 

Introduction 

 

  

 

1.0 Introduction and Justification of a Knowledge-Based 

Approach to the Analysis of Partial Discharge Data 

 

As vital assets of the power transmission network, high voltage equipment, 

such as transformers and gas insulated substations (GIS) must perform 

reliably to supply secure and continuous electricity to consumers. The 

introduction of maintenance [Williams-94], be it the traditional time-based 

(scheduled) maintenance or the now more favoured condition-based 

(predictive) maintenance [Wang-02], assists in reducing the number of 

equipment failures and maintains a high-quality operating condition by 

assessing the health of the equipment, allowing it to be removed from 

service, or repaired before failure occurs. With a large number of the 

equipment reaching, or exceeding, their anticipated ‘design life’, the need for 

these maintenance strategies are vital to extend the life of the equipment and 

reduce unexpected equipment failure [James-08].  

 

The failure of high voltage equipment could be as a consequence of the 

degradation of the insulation inside this equipment over time, or due to 

insulation defects introduced during production or maintenance activities. 

Early detection and diagnosis of these types of defects present numerous 

benefits to asset owners such as: providing time to take action; reducing 

unplanned power outages; improving safety of personnel; allowing 

scheduling of maintenance; avoidance of catastrophic equipment failure; 

optimising the operation of the equipment; increasing reliability and 

ultimately increasing the asset owner’s return on their investment (ROI). 
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Monitoring of the insulation of electrical plant for defects provides an insight 

into the condition and longevity of the equipment, offering asset owners the 

opportunity to mitigate the risk of impact failure. 

 

Condition monitoring and automated diagnostic systems provide a means of 

online condition assessment of high voltage equipment insulation [James-

08][Han-03], facilitating the scheduling of maintenance when a fault is 

detected. This condition-based maintenance [Jardine-06] allows the 

apparatus to continue operation until it is deemed necessary to perform 

repairs, saving time and money and potentially optimising the ROI. 

Automated diagnostic systems must be capable of ‘understanding’ and 

‘making sense of’ raw condition monitoring sensor data signals before 

determining the health of the equipment under surveillance. This can only be 

successful if there exists a way of capturing information that indicates the 

health of the apparatus. Analysis of partial discharge (PD) data provides one 

such indication.  

 

A PD is a localised dielectric discharge that only partially bridges the 

insulation system between conductors, and may or may not occur adjacent to 

a conductor [IEC60270-00]. PD occurs at the site of a defect and can cause the 

production of light, sound, heat, electromagnetic waves or a chemical 

reaction. This range of signals emitted during a PD has led to the 

development of various methods of detection [James-06][IEC60270-

00][Krivda-95], ranging from electrical, acoustic, thermal, chemical and, more 

recently, ultra high frequency (UHF) monitoring [Hampton-88][Sacha-

06][Judd-05][Templeton-07]. Overtime, sustained periods of PD activity can 

progressively deteriorate the insulating material of electrical plant and 

possibly lead to electrical breakdown and risk of a catastrophic failure; 

making the early detection of PD activity essential. 

 

The novel research reported in this thesis provides a method of automatically 

identifying defects from PD data captured using either IEC60270 [IEC60270-

00] compliant measurements or UHF sensors [Judd-04]. To diagnose a defect 

from the raw PD sensor data, it first needs to be transformed into a generic 
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workable format. A widely recognised method of displaying the data is to 

plot a period of consecutive pulses, one second in duration, generated by a 

defect present in the insulation, on a 3D phase-resolved pattern [Pearson-95]. 

These 3D patterns, known as phase-resolved patterns, describe the pulse’s 

relative amplitude in terms of its phase position on the voltage cycle and its 

cycle number. 

 

Individual defects within the insulation create specific PD signatures [Cleary-

02] and using the data in this phase-resolved form allows the recognition of 

the PD source that created such a pattern. For several years significant 

research has targeted the monitoring of high voltage equipment for PDs 

[Kemp-95][Han-03][Bengtsson-96]; however, at present the expertise 

required to interpret captured PD data, be it acoustic, UHF, etc is limited. 

The amount of data presented to an expert for interpretation can be 

substantial and therefore the creation of automated systems involving 

artificial intelligence techniques for PD diagnosis make the task of PD 

diagnosis less onerous for experts [Sahoo-05][Krivda-95][Grimmelius-99]. 

 

These automated diagnostic systems originally focused on employing 

pattern recognition techniques to diagnose defects from phase-resolved 

patterns. Different types of artificial intelligence techniques, including 

machine learning techniques [McArthur-04], such as clustering algorithms 

and neural networks, although correctly classifying a defect, offered no 

explicit justification for the derived classification. This lack of diagnostic 

explanation was due to the “black box” nature of the algorithms, which 

transformed a defined feature vector at their inputs into classified outputs 

with no clear explanation of the underlying relationship between them. 

Other constraints of these machine learning techniques include the 

requirement of historical datasets to train the classifier, lack of generality due 

to the classifier being trained on specific apparatus, a classifier’s ability to 

only recognise defects it was trained on and the need for a classifier to be 

retrained on the introduction of new defects. These data-driven techniques 

were employed primarily due to the lack of understanding of why and how 

specific defects create specific patterns. 
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 A limited number of experts are now able to examine a 3D phase-resolved 

pattern and identify distinct features in the pattern that are indicative of 

various aspects of PD behaviour within the insulation. This allows the 

experts to identify the defect characteristics and subsequently infer the defect 

type that created the pattern. Automated PD diagnosis can be achieved by 

using this knowledge within a knowledge-based system, providing a 

number of benefits to the field of PD diagnosis. 

 

The knowledge-based system described in this thesis offers a novel 

automated approach to defect classification and diagnosis. This ability to 

justify the automatic classification sets it apart from machine learning 

techniques, providing confidence to the user by offering a physical 

explanation of the reasons for diagnosing a particular type of PD. Different 

levels of explanation are provided for engineers with varying levels of 

understanding of the equipment; from a classification of the defect, along 

with the characteristics that the defect exhibits, down to the physical PD 

phenomena occurring within the insulation and the relevant areas of the 

phase-resolved pattern that were examined. The knowledge-based system 

also provides a means of storing this valuable expert knowledge regarding 

PD diagnosis, which can be easily updated as new knowledge arises with 

regard to PD phenomena and defect classification. 

 

The incremental knowledge-based approach [Strachan-05] to the analysis of 

PD data is a novel approach developed in this research, initially using 

knowledge pertaining to UHF sensor data. However, due to the common 

physical nature of PD within high voltage equipment [Fuhr-91], the 

knowledge-based system offers a generic approach to classifying defects 

from phase-resolved patterns created from IEC60270 [IEC60270-00] 

measurements or UHF sensors. In addition, due to the consistent physical 

nature of PD across different high voltage apparatus [Fuhr-91], the system 

has the potential to diagnose defects in several items of high voltage 

equipment, including power transformers and GIS. Therefore, the automated 

knowledge-based approach described in this thesis offers the potential of 
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immediate online decision support to diagnose defects from a variety of 

sensors across various plant items. 

 
1.1 Principal Contributions 

 

The introduction of a knowledge-based system to the analysis of PD data (by 

examining a three-dimensional phase-resolved plot consisting of the pulse’s 

amplitude, the cycle number on which the pulse appears and the phase position 

of the pulse on the voltage cycle) provides the following novel contributions: 

• A knowledge-based approach to the automated classification of a 

defect from the aforementioned 3D phase-resolved PD pattern is in 

itself a novel concept that provides confidence (through explanation) 

of the diagnosis. Algorithms to calculate various descriptors that 

represent the data and highlighting the associated physical PD 

phenomena achieve this. 

• Storage of valuable expert knowledge regarding PD phenomena, 

defect characteristics and PD diagnosis, which has previously not 

been captured, creating an evolving knowledge base, with room for 

expansion as knowledge regarding PD diagnosis grows.  

• A novel incremental approach to the diagnosis of PD data providing 

explanation at each stage suitable for engineers with different levels of 

understanding and experience. 

• The knowledge-based approached offers the potential of a generic, 

flexible system due to the common physical nature of PD within high 

voltage equipment [Fuhr-91]. Taking the phase-resolved pattern as the 

input, the knowledge-based system offers a generic approach to 

classify defects from data captured through either UHF or IEC60270 

techniques, across a variety of equipment such as transformers and 

GIS, offering online decision support for condition monitoring. 

• Examination of the phase-resolved PD pattern on a per activity basis, 

rather than per half cycle, to avoid the miscalculation of the 

descriptors that represent the data. 
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1.2 Thesis Overview 

 

To emphasise the motivation for the work contained in this thesis and the 

benefits that it offers to the field of automated PD diagnosis, the thesis will 

first explore the area of condition monitoring of high voltage equipment in 

chapter 2. This chapter discusses different types of high voltage equipment 

that condition monitoring and diagnostic systems can be applied to, and the 

different condition monitoring technologies and techniques available. 

Chapter 3 proceeds to describe the state of the art artificial intelligence 

techniques that are presently available to automatically diagnose defects 

from PD data, highlighting the disadvantages of these relatively opaque 

techniques, and in doing so illustrating how the introduction of a relatively 

transparent knowledge-based approach can add justification and explanation 

for PD defect classification. Chapter 4 will then highlight the required 

knowledge engineering techniques necessary to elicit and model the 

knowledge required for the creation of the knowledge-based system 

described in this thesis. 

 

Chapter 5 will discuss the implementation and creation of the knowledge-

based system and chapter 6 will demonstrate its generic nature by showing 

how defects can be recognised from both the UHF and IEC60270 data, in GIS 

and oil-insulated transformers. This thesis highlights this generic approach 

by diagnosing PD defects from both UHF and IEC60270 data sources, using 

knowledge already captured and implemented during this research relating 

to the expert interpretation of UHF phase-resolved PD patterns. 

 

Finally, chapter 7 concludes and summarises the main points of this thesis, as 

well as identifying areas of future work, which could benefit and advance the 

knowledge-based approach described in this thesis. This also includes the 

integration of the knowledge-based system into an overall condition 

monitoring architecture, which will not only assist in classification but also 

enhance justification of, and confidence in the classification. 
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Gulski, “Knowledge-Based Diagnosis of Partial Discharges in Power 

Transformers”, IEEE Transactions on Dielectrics and Electrical 

Insulation Vol. 15, No. 1, pp259-268, February 2008. 

 

2 S. Rudd, S.D.J. McArthur, M.D. Judd, “A Generic Knowledge-Based 

Approach to the Analysis of Partial Discharge Data”, IEEE Transactions 

on Dielectrics and Electrical Insulation Vol. 17, No. 1, pp149-156, 

February 2010. 

 

3 S.E. Rudd, V.M. Catterson, S.D.J. McArthur, “Agent-Based Technology 
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Chapter 2 

 

Condition Monitoring of High Voltage Equipment 

 

 

 

2.0 Introduction to Condition Monitoring 

 

On-line condition monitoring techniques provide a continuous indication of 

the health of high voltage equipment, which can be utilised to inform a 

predictive maintenance strategy before serious deterioration or breakdowns 

occur [Han-03]. As part of condition-based (predictive) maintenance, on-line 

condition monitoring acquires data that indicates the equipment’s health, 

analyses this data to determine the condition of the equipment (diagnostics) 

and can be used to invoke appropriate maintenance based on this result. This 

offers many advantages, such as; avoiding catastrophic equipment failures, 

the ability to schedule maintenance to minimise overtime costs, optimising 

the operation of the equipment and increasing reliability. 

 

Alternatively, off-line condition monitoring may be invoked to inform a 

combination of time and condition-based maintenance. For example, 

dissolved gas analysis (DGA) on transformers [Duval-01] can be carried out 

periodically to set intervals for maintenance (time-based maintenance) or to 

indicate the health of the equipment (condition-based maintenance), 

following which an informed decision on whether to, and how to maintain 

the transformer may be taken. 

 

In the past, condition monitoring required the physical presence of the 

engineers onsite. The fact that the operators worked in close proximity to the 

“Condition monitoring is based on measuring parameters that reflect the state of 

a machine over a given period of time.” [Pearson-06] 
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equipment meant that they could observe or hear any faults.  However, the 

onsite workforce has depleted in recent years and rather than wait for plant 

items to fail (failure-based maintenance), it is more beneficial to avoid 

failures and subsequent replacement costs (particularly for expensive items 

of transmission equipment such as transformers). Condition monitoring 

enables the capture of data from which incipient faults/defects may be 

observed and therefore the need for automated diagnostic systems and 

condition monitoring has increased, making condition monitoring a 

significant issue for electrical utilities [Judd-02].  

 

However, there are many strategic issues faced by utilities when deciding on 

whether to adopt condition monitoring. These include risk management 

issues regarding the utility’s reputation, safety of personnel as well as 

expense. Due to the number of issues an asset manager faces when trying to 

maintain and maximise the return from assets, a publically available 

specification [PAS55-08] was constructed to standardise and assist asset 

management. According to [Montanari-08] the amount of money that an 

asset manager can invest in diagnostic systems and condition monitoring is 

the difference between the economic losses when diagnostics are 

incorporated in the maintenance regime minus the economic losses for a 

regime without diagnostics. Both calculations of losses take into account the 

mean time to repair after a fault, the cost associated with scheduled or 

condition-driven maintenance activities, the energy cost, the replacement 

cost and the average power demanded by the system. While the economic 

losses with diagnostics also takes into account the mean time to restore in 

service after a false alarm, which is a disadvantage of condition monitoring. 

While such methods for quantifying potential benefits of diagnostics and 

condition monitoring exist, each case must be considered individually from 

economic, operational and safety perspectives before a decision as to 

whether such systems be introduced is taken.  

 

If adopted, condition monitoring is intended to extend the life of high 

voltage equipment by observing and measuring conditions within the 

equipment, as well as detecting and monitoring any signs of defects. To 
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achieve this, the process of condition monitoring involves four main stages 

[Han-03], these are: 

 
1. Sensing – sensors are used to convert a physical occurrence inside the 

high voltage equipment into an electrical signal.  

2. Data acquisition – converts the raw signal by amplification, recording 

and pre-processing.  

3. Fault detection – identifies whether any abnormalities are present 

within the system. 

4. Diagnosis – classifies the fault through the use of human expertise or 

computers to identify the type of fault and location. 

 

The knowledge-based system described in this thesis addresses the fourth 

stage of this condition monitoring paradigm. However, in order to diagnose 

defects within high voltage equipment there must first exist a way of 

capturing information that indicates the health of the apparatus. One way in 

which this can be achieved is by monitoring PD activity within the 

insulation. This chapter will describe a range of different equipment that 

condition monitoring can be performed on, as well as the diverse methods 

that can be used to capture various PD signals, which offer an insight into the 

condition of the equipment. 

 

2.1 High Voltage Equipment 

 

Various types of high voltage equipment perform important roles in the 

power industry. With the design life of most of the equipment ranging from 

20 to 50 years, and with a significant proportion of installed equipment 

already reaching the end of their design life, it is important to monitor high 

voltage equipment for any signs of deterioration [James-08]. Condition 

monitoring can be used to identify these signs of deterioration, which 

undetected could potentially lead to a fault arising within the equipment. 

This approach allows asset managers or maintenance staff to take 

appropriate measures to avoid the occurrence of faults, such as maintenance 

or replacement of the asset. 
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Although condition monitoring can be used as a fault prevention technique, 

it can also be used for post fault diagnosis. Defects can occur at any time in 

the equipment’s life, due to the deterioration of the insulation over time. 

They can happen immediately after manufacturing or occur because of high 

electrical stress, and can also be dependent on operating conditions. Defects 

occurring within the insulation of the equipment could be in the form of 

loose bolts, or metal particles building up on the conductors over time. 

Therefore, the monitoring of the insulation within the equipment can provide 

useful information about the condition of the apparatus [Abu-Elanien-07]. 

 

This section discusses two of the main types of high voltage transmission 

equipment (considered in this thesis) that condition monitoring is applied to: 

power transformers; and gas insulated substations (GIS). 

 
2.1.1 Power Transformers 

Typically found in power stations and substations, transformers (an example 

of which is shown in Figure 2.1) form part of the high voltage transmission 

network, helping to supply consumers with secure and continuous 

electricity. They are used to transfer electrical energy from one circuit to 

another, usually with a change in the voltage and currents. To do this 

transformers have an iron core, which is normally formed from laminated 

sheets into a series of rings with two coils wound around each vertical ‘limb’. 

The ‘primary coil’ is connected to an electrical source and the ‘secondary coil’ 

supplies the power to a load. Three phase transformers, an example of which 

can be see in Figure 2.2, contain three pairs of coils, with each ‘limb’ having a 

primary and secondary winding.  

 

When an ac voltage is applied to the primary coil of a loaded power 

transformer, a current flows in the coil and establishes a magnetic field. This 

changing magnetic field then induces a current in the secondary coil, which 

produces a voltage across the terminals of the secondary winding.  

Power transformers “are probably the most important equipment in an electrical 

transmission system” [James-08] 
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Step down transformers have fewer turns on the secondary coil than on the 

primary coil. This creates an output voltage that is smaller than the input 

voltage (in the same proportion as the turns ratio), which is used when 

migrating from a high voltage to a low voltage. The converse applies for a 

step up transformer. During transformation the current and magnetic losses 

heat the coils so an insulating material, such as oil, circulates around fans 

and the coils to keep them cool. 

 

[Stigant-73] indicated that “the day is now past when a transformer is looked 

upon as a piece of apparatus which requires no attention whatever because 

its parts are stationary”. Defects can occur at any stage of the transformer’s 

life, for example, sharp objects lodging on the high voltage structures, loose 

nuts and bolts in the core clamping structures, floating metal components or 

gas filled cavity in solid or liquid insulation. Early detection of these kinds of 

defects, through the use of on-line condition monitoring and PD diagnosis, 

Figure 2.1. 120MVA SGT1 Transformer at Easterhouse, Glasgow, Scotland, which 

converts 275kV to 33kV (courtesy of V. Catterson, University of Strathclyde) 
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offers economic benefits such as; providing time to take action, reducing 

unplanned power outages and improving safety of personnel.  

 

Condition monitoring of transformers can be achieved through the 

measurement and analysis of a variety of signals that indicate the condition 

of the asset, ranging from top oil temperature and main tank temperature, to 

PD [CIGRE343-08]. Traditionally, oil sampling has been an important 

indication of transformer insulation health [Heathcote-98], originally through 

visual inspection of the sample for odour, appearance and colour. 

[Heathcote-98] proposed that “by far the most worthwhile test of the oil 

sample for all important transformers is to carry out dissolved gas analysis”. 

Figure 2.2. Cutaway of a transformer [Seevers-91] 
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This can be carried out offline or more recently online to identify the 

condition of the oil insulation and therefore the condition of the asset 

(discussed in section 2.2.2.1.4).  In 2003, CIGRE recognised the benefits of 

condition monitoring of transformers and created working group A2.18, 

which published a document [GIGRE227-03] sharing knowledge regarding 

diagnostics and monitoring techniques for transformers. 

 

With growing interest in the area of condition monitoring of transformers, 

CIGRE Working Group A2.27 published “Recommendations for Condition 

Monitoring and Condition Assessment Facilities for Transformers” in April 

2008 [CIGRE343-08]. This guide recognised the importance of condition 

monitoring and stated that a combination of sensors could offer better insight 

into the health of the transformer. To assist in the identification of the correct 

sensor set for transformers in different circumstances, [CIGRE343-08] 

recommends and describes a variety of sensors to capture the main 

indicators highlighting the transformer’s health, proposing DGA and PD as 

two of the main techniques that should be included in the monitoring of 

transformers. 

 

2.1.2 Gas Insulated Substation 
 

Gas insulated substations (GIS) have been in operation for more than 30 

years [Achatz-05]. Designed to overcome space limitations, GIS integrate 

circuit breakers, other switchgear, disconnectors (isolators), instrument 

transformers, surge arresters and busbars into an enclosed metal-earthed 

chamber for electrical power distribution (see Figure 2.3). Consisting of a 

network of coaxial busbars, GIS contain compressed sulphur hexafluoride 

(SF6) gas as the electrical insulation. SF6 is used in this instance due to its 

superior dielectric strength, its successful application in high voltage power 

equipment since the early 1960s and the relative safety of its use [CIGRE276-

05].  

 

The present design of GIS has benefited from previous experience gained 

from earlier versions, making them more reliable than before [Pearson-95]. 
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Although GIS were designed to be maintenance free [James-08], there are still 

several defects that may exist within the GIS. Defects present in GIS include 

voids in solid insulation components, stress-raising protrusions, capacitive 

sparking from bad contacts and free metallic particles. When a fault does 

occur, the GIS would be out of action, with the typical repair time being more 

than a week. This could lead to circuit disruption and loss of supply [Achatz-

05]. 

 

In 1992, CIGRE working group 15.03 recognised that diagnostic methods  

(discussed in section 2.2.2.1) based on different physical or chemical 

phenomena could provide valuable information about the state of the GIS 

insulation, enabling identification of the defect types and their location 

[CIGRE23-01-92]. It is said in [Pearson-95] that “the common feature of all 

these defects is that they generate PD activity in advance of complete 

breakdown”. This is the key aspect that enrols PD detection as the basis of all 

dielectric diagnostics in GIS.  

 

Figure 2.3. 400 kV Gas insulated substation at Torness nuclear generation station 
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2.2.2 PD Monitoring 

 

As highlighted above, many different defects can occur in high voltage 

equipment during any stage of their life. Condition monitoring can be used 

to monitor the equipment for any signs of defects, allowing time to take 

action if such indicators should arise. Condition monitoring has been an area 

of extensive research and as a result there are several methods for each of the 

four stages of condition monitoring [Han-03][Bengtsson-96]. Different 

parameters can be monitored to assess the condition of the equipment 

depending upon the type of diagnostic monitoring method used. A common 

indicator of the deterioration of the insulation in power transformers and GIS 

is the monitoring of PD activity, which (depending on the method used) can 

provide a diagnosis of the type, severity and location of the PD source. The 

existence of PD can also be used to diagnose other equipment where 

insulation is subjected to high electric stress, such as cables. 

 

There are a variety of defect types that can lead to electrical failure; for 

example metallic protrusions, poor or loose electrical contacts, electrically 

floating parts and free moving particles [CIGRE226-03][CIGRE23-01-92]. One 

of the earliest signs that a defect is occurring within electrical equipment is 

the existence of PD [IEC60270-00]. PD arises in the insulation as a 

consequence of local electrical stress, where the electric field exceeds the 

dielectric strength of the insulation. Due to the nature of the PD it can 

progressively damage the insulating material and possibly lead to electrical 

breakdown within minutes, hours or years after the initial PD activity; 

therefore, the early detection of the PD is crucial.  

 

2.2.2.1 PD Monitoring Techniques 

 

PD is a pulse of electrical current that occurs at the site of the defect with the 

possible production of light, sound, heat, electromagnetic waves or a 

“The most effective technique for signalling imminent failure in electrical 

apparatus is the detection and measurement of partial discharges.” [Ward-01] 
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chemical reaction. The variety of signals emitted during PD means that there 

are various methods to capture such occurrences [James-08][Kemp-

95][Krivda-95]. Measurement of PD phenomena include electrical, acoustic, 

thermal, chemical and more recently ultra high frequency (UHF) monitoring, 

each of which will be discussed in this section. 

 

2.2.2.1.1 Electrical Measurement 

 

The field of electrical detection of PDs is a mature area of measurement 

encapsulated in the IEC60270 standard [IEC60270-00]. The IEC60270 

standard provides an electrical method for measuring PDs. This is achieved 

by measuring small current pulses using specialised equipment to acquire 

the apparent charge levels.  

 

The apparent charge is usually expressed in picocoulombs (pC) and is not a 

direct measure of the PD current (since it cannot be physically accessed 

inside the equipment), but is obtained from the transient voltage drop across 

the test object terminals [CIGRE366-08]. The basic testing circuit 

recommended by IEC60270, where the measuring impedance Zm is in series 

with the coupling capacitor Ck, is shown in Figure 2.4 [CIGRE366-08]. This is 

one of three circuits recommended for measuring PD. Two further circuits 

can be found in the IEC60270 standard or in [CIGRE366-08]. These circuits 

differ in the arrangement of the measuring impedance Zm. The use of these 

alternative circuits can increase the PD sensitivity and remove external 

electromagnetic noise. 

 

The circuit in Figure 2.4 comprises an ac voltage source U, an impedance Z, a 

coupling capacitor Ck, a measuring impedance Zm and a test object Ca. When a 

PD occurs within the test object Ca, a current flows in Zm, meaning that a 

voltage Vm can be measured across it. The measuring instrument that is 

connected at Zm is then used to identify the apparent charge from this change 

in voltage. 
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Electric measurements in the field often have to use variations in the sensor 

and measurement circuit to record the current pulse. Utilising the high 

voltage bushing (and tap) as the coupling is one example [James-08]. In the 

case of transformers, a disadvantage of this technique is the requirement to 

connect to the transformer bushing to access the signals, requiring an outage. 

Further disadvantages with this measurement arise from electromagnetic 

interference from nearby plant [Yang-03], and the electrical method cannot 

provide the position of the defect within the high voltage equipment.  

 

2.2.2.1.2 Acoustic Monitoring 

 

Acoustic detection of PD within plant items is based on detecting the 

mechanical energy wave that propagates from the discharge site through the 

insulation [Kemp-95]. The main advantages of acoustic sensors are that they 

are non-invasive due to the external placement of the sensor; they are also 

reliable, reasonable in cost and immune to electromagnetic noise. However, a 

disadvantage with this technique is that the acoustic sensor is affected by 

environmental noise [Ward-01]. 

 

2.2.2.1.3 Thermal Monitoring 

 

Certain developing faults cause thermal changes within high voltage 

equipment, and severe PD or arcing could have this effect. An increase in 

Z – Impedance  Zm – Measuring impedance 

CK – Coupling capacitor Vm – Measured voltage 

Ca – Test object  U – ac voltage source 

Figure 2.4. PD test circuit [CIGRE366-08] 
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heat can lead to accelerated ageing and further degradation of the insulating 

oil [Abu-Elanien-07]. There exist two types of sensors to monitor the heat 

within the high voltage equipment. Firstly, an offline infrared gun 

[Shoureshi-04] can detect abnormal temperatures when pointed at external 

surfaces of the equipment. Secondly, online sensors, usually thermocouples 

[Shoureshi-04], can be placed on the main tank of a transformer, as well as 

load tap changers, bushings, pumps and fans to detect temperature changes. 

The main advantages of thermal monitoring are that the technique is simple 

and effective [Shoureshi-04], and online temperature monitoring reduces the 

likelihood of missing faults between checks, as is the case with the offline 

infrared gun.  

 

2.2.2.1.4 Chemical Monitoring 

 

The chemical composition of the insulation inside high voltage equipment 

alters when PD activity occurs [Kemp-95]. Within the GIS, PD activity results 

in the presence of thionyl fluoride (SOF2) and sulfuryl fluoride (SO2F2) within 

the SF6 insulation. Detector tubes or gas chromatographs and mass 

spectrometers can be used to detect the presence of these two products. 

However, the chemical approach is very insensitive because the large volume 

of SF6 dilutes the gases that indicate PD [Pearson-95]. 

 

Within transformers, DGA can be used to detect PD activity within the 

hydrocarbon oil and paper insulation. Deterioration within the insulation of 

high voltage equipment can lead to the presence of certain gases. When PD is 

present within the insulation various gases can be produced, including 

hydrogen, methane, ethane, acetylene, ethylene, carbon dioxide, and carbon 

monoxide [Saha-03]. A technique that can utilise the presence and 

concentrations of these gases to indicate the condition of the equipment is 

DGA [Duval-05][Ward-01].  

 

To conduct DGA, small oil samples from within the high voltage equipment 

are drawn off via a drain plug and analysed every six to twelve months to 

check for the occurrence of these gases. IEEE standard C57.104-1991 [IEEE 
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C57. 104-91] and IEC standard 60599 [IEC60599-91] stipulate acceptable 

levels of gas concentration within the insulation. Two methods that can be 

utilised for fault diagnosis based on the concentration levels of the gases are 

Roger’s Ratio [Wang-02] and Duval’s Triangle [Duval-02], which can help 

with identification of the type of fault present within the insulation. For 

example, high levels of hydrogen indicate the presence of PD and 

deterioration of the insulation [Wang-02].  

 

As well as the periodic off-line technique, DGA can be performed online. 

One approach to online DGA uses the Hydran sensor [Reason-95] (connected 

to the load tap changer) to detect the major gases produced with most faults 

(hydrogen and carbon monoxide, along with acetylene and ethylene) 

[Martin-96]. Alternatively the Kelman Transfix [Susa-09] offers the detection 

of hydrogen, methane, ethane, carbon dioxide, acetylene, ethylene, and 

carbon monoxide, along with oxygen, nitrogen and water content. The levels 

of gases measured with either sensor can then be used for trending and 

diagnosis to identify the condition of the transformer. The use of online DGA 

eliminates the need to visit site to take samples, as well as removing risk of 

contamination of the samples due to human error.  

 

Although DGA has proven to be successful in the identification of faults 

within transformers [Duval-05], the offline technique is a periodic inspection 

that does not provide detailed in-service analysis. It can identify useful 

information regarding the condition of the equipment but it does not provide 

up to date diagnosis, i.e. detecting the PD as and when it happens. Also, in 

the case of offline DGA, the equipment may degrade between tests due to the 

long time between samples. Other disadvantages associated with this 

method are the lack of information regarding the position of the fault within 

the equipment, and the fact that online DGA requires a significant initial 

capital investment. 
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2.2.2.1.5 UHF Monitoring 

 

The field of UHF monitoring is a developing area of research. Originally 

developed in the 1980s for GIS [Hampton-88], UHF sensors were designed to 

capture the electromagnetic waves emitted by the PD current pulse in the 

UHF range (300 - 3000 MHz). Now also used in power transformers, there 

are at least three different types of UHF sensors to capture PD signals, shown 

in Figure 2.5.  

The first is an internal coupler built into the tank at manufacture (Figure 2.5a) 

[Templeton-07]. The second type of sensor is a window coupler (Figure 2.5b) 

[Judd-05], which is mounted on a special pre-installed dielectric window, 

making it unintrusive and therefore not compromising the integrity of the 

tank, as presented in Figure 2.6. This sensor is more suited for new 

transformers due to the need to remove the transformer from operation to 

install the window. The third sensor is the drain valve sensor (Figure 2.5c) 

[Markalous-06], which is inserted into the oil valve of the transformer while 

it is still in operation. 

Figure 2.5. Three UHF couplers for power transformers: (a) An internal coupler 

(courtesy of DMS Ltd), (b) an external dielectric window type, and (c) oil valve 

probe type 

 

(c) 
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UHF monitoring of PD activity has become a recognised technique [James-

08] due to its sensitivity and comparative immunity to noise. The main 

advantage of the UHF method is its ability to identify the location of the PD 

by using multiple UHF sensors and the “time-of-flight” technique [Judd-05]. 

This can be accomplished by placing multiple sensors on the high voltage 

equipment, as shown in Figure 2.7, and measuring the differences in the time 

it takes for the PD signal to reach each of the sensors.  

2.2.2.2 Representation of PD data 

  
Figure 2.7. Top down view of transformer, showing sensors 1 and 2, and time domain UHF 

signals showing time delay between signal capture [Judd-02b] 

 

“In the design of a partial discharge diagnostic system, finding a set of features 

corresponding to an optimal classification performance (accuracy and reliability) 

is crucial.”  [Yan-05] 

 

Figure 2.6. UHF sensor mounted on special dielectric window [Judd-04] 
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The representation of PD data is an important stage within PD diagnostics. 

The set of features/attributes that are used to classify a certain PD source 

need to be reliable and accurate when identifying the characteristics and 

behaviours of the PD. PD data captured through any of the aforementioned 

monitoring techniques in section 2.2.2.1 should be structured in a suitable 

format for effective diagnostics. 

 

PD patterns include time and frequency domain characteristics and phase-

resolved patterns, which can be used to visualise the PD data for evaluation 

by experts or computer systems [Lapp-00][Kranz-05]. One important 

approach is time-based monitoring, where changes in the PD activity are 

tracked to identify the progress of the PD activity. Increases in the number 

and amplitude of PD pulses over a particular time period, usually a week or 

more, could potentially highlight incipient fault development and 

progressive deterioration of the insulation. 

 

The most common representation of PD activity is the phase-resolved 

pattern, which is the input data representation used in the knowledge-based 

system described in this thesis, and which will be discussed in more detail 

below. 

 

2.2.2.2.1 Phase-Resolved Analysis 

 

Phase-resolved PD analysis is the most reliable for defect identification and is 

used in various commercial products [Portugues-08]. In a phase-resolved 

pattern, the power frequency ac supply voltage is also monitored to establish 

where each PD pulse occurs over the 360 degrees of the voltage cycle, see 

Figure 2.8 [Strachan-08]. Different defects have different inception voltages 

and interact in different ways with electric fields around the site, meaning 

that different defects create different signatures in the waveform [Cleary-02]. 

The difference in these signatures enables artificial intelligence techniques 

(pattern recognition techniques) to diagnose the defect that created such a 

pattern; this will be discussed in chapter 3. 
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One widely used data format is the phase-resolved PD pattern (PRPD), 

otherwise known as the !–q-n plot [Vaillancourt-89], which can be used for 

diagnostic purposes [Kranz-05]. This involves plotting the number of PD 

pulses as a function of their apparent charge and phase angle on a 3D graph, 

an example of this is shown in Figure 2.9.  

 
Figure 2.9. Example of a !–q-n 3D PRPD pattern [Hao-08] 

From the 3D pattern different 2D phase distribution graphs can be 

constructed [Gulski-91], as shown in Figure 2.10, by calculating the 

maximum amplitude, the mean amplitude and the pulse count for each 

phase position of the voltage waveform within a particular period. These 

derived 2D patterns show “statistical fingerprints” representing the 3D 

Figure 2.8. Representation of phase resolve pattern showing PD pulses occurring on 

voltage waveform [Strachan-08] 
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pattern and hence PD activity over the period in question can be derived and 

used to characterise the defect type by extracting various statistical [Gulski-

91] features to classify the PD defect. 

 
Figure 2.10. 2D examples of a maximum amplitude, pulse count and mean pulse height 

distribution from the PRPD pattern in Figure 2.9 [Hao-08] 

[Pearson-95] showed that both the amplitude and repetition rate of discharge 

pulses over a number of cycles are fundamental to the interpretation of the 

data. Therefore an alternative way to represent the raw PD data is to plot the 

amplitude of each pulse (for UHF data), or the apparent charge (in the case of 

the IEC data), on a three-dimensional axis consisting of the pulse’s amplitude, 

the cycle number on which the pulse appears and the phase position of the 

pulse on the voltage cycle. Plotting consecutive pulses generated by a defect 

present in the insulation generates an alternative 3D phase-resolved pattern, 

for example, representing a one second (50 cycle at 50Hz) snapshot of PD 

activity. An example of such a phase-resolved pattern can be seen in Figure 

2.11. This phase-resolved pattern allows ready correlation of the PD pulses 

with the cycle of the high voltage. The positive half cycle appears first, 

between 0 and 180 degrees and then the negative half cycle between 180 and 

360 degrees. This type of phase-resolved pattern can highlight specific PD 

behaviour occurring within the insulation through the features of the pattern 

and is therefore examined and utilised in this research for PD diagnosis. 
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2.3 Conclusion 
 

Whilst this thesis focuses on the later stages of the condition monitoring 

process, the preceding sections in this chapter have highlighted the 

requirement for condition monitoring as a means to offer an insight into the 

condition of high voltage equipment. This constant awareness of the state of 

the apparatus has benefited the industry [Montanari-08] by “decreasing in 

inspection frequency and duration, and reducing the frequency and impact 

of failure” [CIGRE23-202-96].  

 

The preceding sections also demonstrated the variety of sensors and 

monitoring technology available to acquire PD data, which offer an insight 

into the health of the equipment. UHF monitoring for PD data provides a 

sensitive and a comparative immunity to noise, as well as the opportunity of 

identifying the defect location, making it a recognised PD monitoring 

technique being currently researched. This thesis therefore concentrates on 

the automated identification of defects within high voltage equipment from 

PD data captured through the UHF method. However, the IEC60270 

measurement is a standard measurement utilised in industry and therefore 

this research also evaluates the ability of the newly developed knowledge-

based approach to diagnose phase-resolved patterns captured through this 

technique. 

 

The latter stages of this chapter were included to explain the data acquisition 

Figure 2.11. Example of an alternative phase-resolved PD pattern 

 



 

30 

process and representation stage (including the statistical feature extraction), 

since it is this representation (the phase-resolved pattern) which characterises 

the PD activity and provides a basis for classifying the defect type. Since 

every PD generates a specific phase-resolved pattern, various artificial 

intelligence techniques can be utilised to extract meaningful information 

from these patterns and automate the classification of the PD source. This 

will be discussed in chapter 3. 
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Chapter 3 

 

Artificial Intelligence Application to  

Partial Discharge Diagnosis 

 

 

 

3.0 Introduction to Artificial Intelligence 

 

Artificial intelligence (AI) techniques can be employed to automate the 

diagnostic process of condition monitoring and identify certain defects that 

occur within the insulation of high voltage apparatus. These defects emit PD 

signals, as explained in the previous chapter, which, once captured, can be 

represented as 3D and 2D phase-resolved patterns depicting the PD activity 

generated by the insulation defect. During previous research it was identified 

that individual defects exhibit certain characteristics represented as specific 

phase-resolved patterns [Sahoo-05][Cleary-02], enabling AI based pattern 

recognition techniques to be employed to distinguish the defects behind the 

patterns. This chapter will first define what is generally understood by the 

term AI and subsequently detail a variety of AI techniques that have been 

previously utilised in PD diagnosis, and their perceived advantages and 

disadvantages. 

 

The term AI was originally coined in 1956 and has been the subject of 

extensive research and discussion ever since. The question “what is AI?” is 

not easily answered, but may be thought of as one of the four definitions 

shown in Figure 3.1. These definitions show different ways in which 

computers can be employed to act or ‘think’ intelligently. One such 

“Artificial Intelligence is the study of ideas that enable computers to be 

intelligent.”[Winston-84]. 
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definition, which is appropriate for this thesis, is that “AI may be defined as 

the branch of computer science that is concerned with the automation of 

intelligent behaviour” [Luger-98]. This quote is appropriate due to the 

knowledge-based system described in this thesis utilising knowledge from 

experts to diagnose defects intelligently. This then leads onto the question 

“what is intelligence?”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Definitions of artificial intelligence 

 

Intelligence is the ability to problem-solve, plan, reason, learn and adapt by 

applying knowledge or logic in certain domains. According to Husserl 

Heidegger and Merleau-Ponty in 1962, “intelligence was not knowing what 

was true, but rather knowing how to cope in a world that is constantly 

changing and evolving” [Luger-98]. A computer is thought to have achieved 

intelligence when its performance can be compared to that of an actual 

human expert when applied to a specific problem solving-application. This 

stemmed from the Turing Test [Russell-03] described in Figure 3.1. 

Cognitive Approach: 

 Cognitive science looks into the 

psychology of the human mind.  It is 

able to link aspects of human thinking 

into computers. 

 

“Laws of thought” Approach: 

 Aristotle, the Greek philosopher, was 

among the first to attempt the process of 

“right thinking”. 

 

Turing Test: 

 In 1950 Alan Turing designed the 

Turing Test [Russell-03], otherwise 

known as the imitation game, to test 

whether a system could be described as 

acting humanly. A human examiner 

tried to identify if the communication he 

held over a terminal device in natural 

language was with a computer or a 

human. If the examiner could not 

distinguish between them at the end of 

the experiment then the machine is 

thought to have acted humanly and 

therefore show signs of intelligence. 

 

Acting 

Humanly 

 

 

Thinking 

Humanly 

 

 

Thinking 

Rationally 

 

 

Acting 

Rationally 

 

 Rational Agent Approach:  

“An agent is anything that perceives its 

environment through sensors and acting 

upon that environment through 

actuators” [Winston-84].  The word 

“Agent” comes from the Latin Agre, 

which means “to do”.  A rational agent is 

one that “acts so as to achieve the best 

outcome or, when there is uncertainty 

the best expected outcome” [Winston-

84]. 
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The study of AI has led to the existence of a variety of techniques that allow 

computers to act intelligently [Russell-03], making them capable of solving 

problems that would have initially involved extensive and time-consuming 

expertise. One field that draws on AI is machine learning, where a computer 

program is said to learn from experience [Mitchell-97]. Machine learning 

algorithms can be useful in a variety of application domains, for example: in 

domains where a lack of human knowledge is available to develop effective 

algorithms; domains that are constantly changing and where the program 

must dynamically adapt to account for these changes; or to discover valuable 

knowledge from large volumes of data through a method known as data 

mining. Data mining allows the automatic discovery of patterns in data and 

can also provide a first step towards classification, and thereby diagnostics, 

for example through clustering techniques. Examples of other machine 

learning algorithms that can be used to “search a hypothesis space” 

[Mitchell-97] and learn to classify specific situations include neural networks, 

support vector machines and decision trees. 

 

It is not the intention of this thesis to discuss the merits of different AI 

techniques or to enter into philosophical debate regarding the definition of 

AI. However, these AI techniques can be used for the diagnosis of PD 

sources within high voltage equipment insulation [Hucker-95][Krivda-

95][Kemp-95][Sahoo-05][Grimmelius-99] and this chapter is concerned with 

discussing a variety of these PD diagnostic techniques. 

 

3.1 Artificial Intelligence Techniques Used for PD Diagnosis 

 

AI techniques can be used to extract useful information from large amounts 

of data, which would otherwise be laborious to analyse, offering a fast means 

of classification of insulation defects. The data presented to these types of 

systems must have a time trend correlating to the state of the system under 

evaluation, along with threshold values associated with the correct operation 

of the equipment [Montanari-07]. As previously explained in chapter 2, PD 

data provides such information.  
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It should be noted that there are a large number of AI techniques that have 

been researched in the area of PD diagnostics, and describing every 

diagnostic application would be too onerous for the scope of this thesis. 

Therefore, this section will focus on a selection of AI techniques that are 

successful in the area of automated PD diagnostics, along with their 

advantages and disadvantages.  

 

3.1.1 Neural Networks 

 

A neural network (NN) [Winston-94] is a problem solving AI system 

modelled on the biology of the human brain. A NN involves a number of 

interconnecting processors (neurons) operating in parallel to solve specific 

problems. To achieve this, a large set of training data is presented to the NN 

allowing it to learn by example. Once trained NN are able to predict outputs 

based on new observations and its previous learning.   

 

Within the area of PD diagnostics, much research effort has been expended 

on the utilisation of NNs, applying them in various pattern classification 

forms to a variety of PD fingerprints generated by the defects [Satish-

94][Krivda-95][Grimmelius-99][Sahoo-05][McArthur-04][James-95][Danikas-

03]. All of these examples of NN use pattern recognition techniques to gain a 

diagnosis.  Danikas et al [Danikas-03] discovered that supplying the NN with 

the PD pulse and phase patterns sometimes resulted in misclassification, 

where similar patterns could belong to different categories and a particular 

category could be made up of very different patterns. However, it was 

proposed by [Hoof-97] that PD parameters, such as PD inception and PD 

extinction, should be included as the input to a NN to provide meaningful 

input about the PD source, which can then lead to an enhanced classification.  

 

Cachin et al [Cachin-95] exposed that the intrinsic problem of classifying 

defects from PRPD patterns resulted in a very large NN. Therefore, Cachin et 

al proposed that using pre-processing knowledge, which examines the 

related parameters to the physical process of PD, before involving a NN for 

classification, can lead to a smaller NN and so an advanced classification. It 
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can also reduce the training time and reduce the number of examples 

needed. The knowledge base associated with this system consists of 

knowledge regarding the appropriate features of the PRPD pattern, which 

relate to the physical PD process and therefore the condition of the 

equipment. This generates normalised distributions of useful parameters that 

can decipher between different defect classes. While this output classification 

still lacks justification, like many NN applications, it does have the benefit of 

requiring less training time and providing a more accurate classification. 

 

When training a NN, feature vectors, which hold the PD parameters 

associated with a PRPD patterns are used as the inputs. This feature vector 

comprises of a number of attributes that describe the PD pattern in such a 

way that can lead to the classification of various defects. Gulski [Gulski-91] 

determined that this feature vector should comprise of 101 statistical features 

characterising the PRPD pattern that would lead to the unique representation 

of a PD source. This feature vector can then be presented to the NN input 

[McArthur-04] for training, testing and ultimately classification. Once trained 

the NNs are presented with previously unseen new data and are then 

capable of diagnosing defects that show similar traits to the originals, and 

thus forming a conclusion as to the type of PD source creating the newly 

presented feature vector. 

 

One major disadvantage of using a NN with a feature vector that examines 

the phase-resolved pattern per half cycle exists when calculating various 

statistics, such as the kurtosis and skew, as found in Gulski’s statistics 

[Gulski-91]. Comprising the feature vector of statistical features 

characterising the separate positive and negative half cycles of the PRPD 

pattern can pose an issue for pattern recognition techniques. The actual 

discharge activity can occur across the two half cycles, i.e. across the zero 

crossings, which can be difficult to characterise by statistical features, and 

can distort the calculation of the positive and negative half cycle statistics 

[Berg-02] leading to misclassification. 
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The advantage of NNs are their ability to deal with noisy data or incomplete 

information to reach a result. However, NNs require a large and 

comprehensive data set for training, which may not always be available, and 

are considered ‘black box’ techniques. This means that when presented with 

a set of inputs, patterns are matched within the concealed system to produce 

an unexplained output.  The disadvantage of such a system is the lack of 

justification presented with the result. Another disadvantage of NN is its 

inability to identify defects that it has not been trained on [Hucker-95]. This 

need for comprehensive data poses a problem when trying to identify new 

defects [Grimmelius-99]. A further disadvantage which may occur is the 

issue of ‘over training’ the NN. In this case the general characteristics of the 

data sets would be lost and result in misclassification of new data. 

 

3.1.2 Fuzzy Logic 

 

In the 1960s Dr. Lotfi Zadeh of the University of California at Berkeley 

proposed his theory of fuzzy logic [Luger-98].  Fuzzy logic is an approximate 

reasoning process based on the degrees of truth, indicating the extent to 

which something is true. It is a problem solving methodology designed to 

determine the distinctions among imprecise data, in unpredictable 

conditions, to reach a result.  

 

In the case of PD diagnosis, fuzzy classification predicts the conditional 

probability that a measurement belongs to a PD type [Cavallini-05][Salama-

00][Phyng-98]. The system created by Contin et all [Contin-02] uses fuzzy 

classification to separate multiple PD sources and then classify them from a 

3D plot, which represents the number of pulses as a function of their 

amplitude and phase. To perform the separation of multiple PD sources and 

noise, the fuzzy classifier is split into two functions: a PD-pulse feature 

extractor, where meaning is mapped to the pulses; and a feature classifier, 

which can be defined as a set consisting of a parameter vector (") and by a 

rule [Contin-00]. " represents the points in the data space and the rule 

decides if a pattern (xk) belongs to class i or some alternative class. The 

separation side of the fuzzy classification relies on clustering algorithms to 
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match the similarities of two patterns. Fuzzy logic is then applied to the 

features of the extracted pattern to identify which of three main PD 

categories the pattern belongs to [Cavallini-04], which in turn can be sub-

categorised further depending on the apparatus type. 

 

Salama et al [Salama-00] exploit fuzzy logic to classify the size of cavities or 

voids from PD data. They perform this type of classification “in view of the 

foregoing pulse discharge pattern recognition difficulties” [Salama-00], 

where it could be beneficial to describe the PD pattern more vaguely. Here, 

an approximate range of the apparent charge transfer is used to infer the 

cavity size, translating the pulse amplitude classification into cavity size 

classification. The reason Salama et al apply fuzzy logic to the PD process is 

due to the lack of precise information of cavity sizes and their respected PD 

behaviour. 

 

The main advantage of fuzzy classification is the ability to classify defects 

from imprecise data. It also provides the opportunity to identify and classify 

the presence of multiple PD sources, as well as filter out external noise 

[Contin-02]. However, fuzzy classification can fail when different PD 

phenomena produce similar signal shapes. This type of classification also 

possesses a lack of justification for the derived classification, although it can 

provide a description of the parts of the PD pattern that were examined to 

produce a classification. 

 

3.1.3 Clustering 

 

Clustering [Russell-03] is not technically an AI technique; however, it is 

included here as a method that can be used for PD diagnostics. Clustering 

can be applied to PD data to identify various parameters that could describe 

a specific PD source. Clustering is an unsupervised learning method to 

problem solving, which tries to determine how the data is organised through 

the learning of unlabelled data. K-means is one of the simplest clustering 

algorithms available and is often used for diagnostics [McArthur-04].  To 
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achieve this, K-means groups the data into a number of (K) clusters by 

combining together objects with similar characteristics. 

 

The first step of the K-means algorithm is to define K centroids (cluster 

centres) that represent each cluster. The distance between each point, 

belonging to a given data set, and each cluster centre is then calculated using 

L2-Distance (otherwise known as Euclidean distance [Hucker-95]) to assign 

the point to the closest cluster. A new cluster centre is then calculated prior 

to assigning the next point. The Euclidean calculation is used to measure the 

similarity of two vectors, which can be used in diagnostic applications to 

decide which pattern best matches the one to be diagnosed. In terms of PD 

diagnosis, clustering can therefore be used to decide which PD source a 

certain pattern belongs to [Meijer-05][Hucker-95][Sahoo-05][McArthur-04]. 

 

Although the clustering technique can correctly identify a defect type within 

the insulation, it offers no reasoning for this classification, and therefore a 

lack of confidence could be associated with this method. Another issue with 

K-means is that the number of initial nodes, K, must be predefined. A wrong 

choice in the number of chosen clusters can lead to the misclassification of 

PD sources, since different locations of these initial clusters can cause very 

different results. 

 

3.1.4 Support Vector Machine 

 

Another form of defect classification from PD data is through the use of a 

support vector machine (SVM). Otherwise known as kernel machines, SVMs, 

first proposed by V.N. Vapnik in 1995, offer a method that “use an efficient 

training algorithm and can represent complex, nonlinear functions” [Russell-

03]. SVMs are similar to the NN described above; however, the input feature 

vector dimensions are increased to achieve an enhanced classification. 

 

SVMs use machine learning based on statistical learning theory to find either 

classical or regression functions from a set of labelled training data [Hao-06]. 

To do this, a subset of the training data is used to construct the solution to 
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the problem. As with NNs, feature extraction is an important stage in 

development of a SVM. Hao et al use features from phase-based information, 

frequency spectrum and wavelet decomposition coefficients. During training 

a kernel is chosen to map the input vector to a 3D space [Hao-06]. A 

hyperplane is then placed between the clustered data to separate the PD 

sources. When presented with new data the SVM can then classify the PD 

source by identifying which side of the hyperplane best matches the new 

features. 

 

Although the SVM can correctly identify the PD defect behind a pattern 

[Hao-05][Catterson-06], again they suffer the same disadvantage as the NN, 

i.e. needing a large volume of training data, along with a lack of explanation 

of the classification. 

 

3.1.5 Decision Trees 

 

Decision trees [Winston-84] are a data mining method that graphically 

represent all of the alternatives in a decision making process. They take an 

input, described by a set of attributes, and return a “decision” (predicted 

output). The decision is achieved by executing a sequence of tests, 

represented by nodes in a tree. Each adjacent branch represents possible 

values for the test depicted by the node. 

 

Ross Quinlan developed C4.5 and later C5.0 as algorithms to extract 

informative patterns from data [Strachan-05]. C5.0 is a commercial decision 

tree and rule induction product. It is a “sophisticated data mining tool for 

discovering patterns that delineate categories, assembling them into 

classifiers, and using them to make predictions” [RuleQuest]. One of the 

main advantages of the decision trees is their immunity to noise. 

 

Due to their ability to discover patterns within sets of data, decision trees 

have been used in the field of PD diagnostics to classify defects based on the 

patterns that reside in PD data [Strachan-05][Abdel-Galil-05]. In the case of 

[Strachan-05], the C5.0 rule induction algorithm is presented with the PD 
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feature vector of the 101 Gulski statistics that was also presented to the NN 

described above [McArthur-04]. From this feature vector a decision tree and 

a production rule set was automatically derived, identifying the various 

statistical thresholds pertaining to the associated defect classes. 

 

The system described by Abdel-Galil et al [Abdel-Galil-05] is used for the 

classification of void sizes from time dependent PD pulse patterns. Rather 

than utilising the 3D phase-resolved plot, the data associated with this 

method considers features describing the shape of the PD pulses. The 

extracted information used to construct the decision tree consists of peak 

apparent charge transfer, rise time, fall time, area under the PD current pulse 

and the pulse width. This algorithm has the advantage of explaining the 

result via a self-created rule base, identifying the thresholds of the above 

attributes, which can be utilised in a fuzzy expert system for void size 

classification. 

 

[Abdel-Galil-05] states that “this strategy combines the advantage of a rule-

based system and minimises the expense and time associated with building 

such systems” by inferring the identification rules directly from the data. 

However, as a result only the required threshold values can be explained 

using this self-generated rule base to identify the attributes that describe the 

pulses associated with cavity size. Although a decision tree can provide some 

degree of explanation regarding the threshold statistics chosen, it does not 

inform the operator of the actual PD behaviour or defect characteristics that 

are occurring within the insulation. This knowledge cannot be automated 

and must therefore be elicited from experts within the field of PD 

diagnostics, using conventional knowledge engineering techniques, which 

will be described in chapter 4, and will lead to the creation of the knowledge-

based expert system described in this thesis. 

 

3.1.6 Expert System 

 

Expert systems are computer programs that use heuristic problem solving 

methods for interpretation, prediction, diagnosis, design, planning, 
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monitoring, debugging and repair, instruction and control  [Luger-98]. The 

term expert system has been used loosely in diagnostic systems that have 

been created in the past in the area of PD diagnostics [Huecker-98][Hucker-

95]. In this thesis however, expert systems are defined as AI applications that 

draw upon a combination of raw data and a knowledge base of human 

expertise for problem solving. This section will describe the three 

subcategories of expert systems; case-based reasoning, model-based 

reasoning and knowledge-based system, and show how they have been, and 

also in the case of the knowledge-based system, could be, utilised in PD 

diagnostics. 

 

3.1.6.1 Case-Based Reasoning 

 

Case-based reasoning (CBR) is a problem solving AI technique originating 

from the work of Schank and Abelson in 1977 [Luger-98].  The earliest CBR 

system, CYRUS [Watson-94], was developed in the early eighties by Janet 

Kolodner from Roger Schank’s group at Yale University, which involved a 

question-answering system with knowledge of the various travels and 

meetings of former US Secretary of State, Cyrus Vance. 

 

To perform the problem-solving task, CBR uses the solutions of similar past 

problems to solve new ones.  To achieve this, a four-stage process [Luger-98] 

is adopted. CBR begins with a set of cases with descriptive indexes consisting 

of features. Case matching between the numerous sample cases and target 

case is carried out until the ‘most similar’ sample case in the case base is 

found. The main advantage of CBR is the ability to solve problems without 

the need for detailed knowledge of the domain, allowing solutions to be 

found where domain knowledge is limited or incomplete. 

 

CBR has been utilised for transformer fault diagnosis by using DGA data 

[Qian-06]. Qian et al discuss the use of CBR to classify the inception fault 

within the transformer. Using a case base with defined diagnosed faults and 

retrieving the base case that most matches the symptoms of the target case 

achieves this. Although this system uses gas ratios as its parameters to 
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identify the faults that are occurring within the transformer, this still takes 

into account the identification of PD sources that could be occurring (since, 

from chapter 2 it was discussed that DGA is used to detect certain gases that 

occur within the insulation as a result of the by products of the PD source). 

 

This cyclic problem solving approach retains new experience as new 

problems are solved, therefore forming a constantly evolving knowledge 

base that can be used to solve future problems [Aamodt-94]. This ability to 

update the case base after a problem is solved denotes that CBR is a subset of 

machine learning, where failures and correct classifications are maintained to 

avoid mistakes and correctly identify solutions in the future. 

 

A case retrieved by the system may, in certain situations, prove to “be close 

to the required solution, but not close enough” [Watson-97]. Here, case 

adaption rules can be created from generalised knowledge to fit the case to a 

particular solution [Maher-95]. Rather than extensively analysing the domain 

knowledge, as in the case of a rule-based system, CBR “allows a simple 

additive model for knowledge acquisition” [Luger-02]. Here, expert 

knowledge is inserted to the system to alter the case for a particular solution. 

The expert will decide if the output of the system is correct, and if it is 

thought to be incorrect the expert will insert, delete, substitute or transform 

components of the solution to fix the discrepancies. This new/improved 

solution is then placed back in the system for future use. However, case 

adaption is a knowledge intensive task, and since CBR is often applied to 

problems where the domain is not well understood, adaption may not 

always be possible. 

 

3.1.6.2 Model-Based Reasoning 

 

Model-based reasoning (MBR) [Luger-98] is another well-established 

problem solving technique. There are two approaches to MBR. The first uses 

causal rules to represent a model of the physical world. These physical 

models are used to describe the components, behaviour and internal 
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structure of a system.  This enables the models to simulate how a system 

should behave in certain situations. 

 

An alternative approach to MBR is a technique widely used in diagnostic 

systems [Davidson-03]. The diagnosis of a fault is achieved by examining 

discrepancies in predicted and observed behaviour of the system to be 

diagnosed. This is achieved by letting the user of the system know what to 

expect from the system, or when a difference in behaviour occurs, how the 

discrepancies led to identifying a fault.  

 

Aschwanden et al [Aschwanden-98] utilises this model-based approach to 

allow monitoring of the condition within power transformers. It considers 

adaptive thresholds, which can be altered depending on the working 

conditions of the transformer. This is achieved by using mathematical 

models which examine the past output values of various sensors, including 

PD, along with the operator’s decision. However, as suggested in 

[Aschwanden-98] “the transformer problem is not well defined and has some 

non-linear components”. Therefore, the model-based approach described in 

[Aschwanden-98] produces a message or signal indicating that a fault 

condition exists within the transformer. It is not capable on its own to then 

qualify what this fault is. In this case a further diagnostic layer is required to 

locate and identify the fault. 

 

Aschwanden et al [Aschwanden-98] then go onto discuss the diagnostic 

layer, required to identify the fault. Here two possible methods are 

identified, which are later dismissed. The first is a case-based approached, as 

described above. The main disadvantage of this technique is the onerous 

amount of data required to model every operating condition of the 

transformer. And as stated in [Aschwanden-98], “at present, the on-line 

monitoring experience of transformers is rather limited and there are only 

few failure data available.“ The second type of classification system 

identified in [Aschwanden-98] is a knowledge-based expert diagnostic 

system, however this is also dismissed, due to the lack of data available 

about faulty conditions and the lack of knowledge known by human experts. 
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Therefore, Aschwanden et al use NNs to diagnose the defects. However, 

since publication of [Aschwanden-98], human expert knowledge regarding 

the diagnosis of defects has been augmented by a limited number of domain 

experts and the use of this knowledge, within a knowledge-based system, to 

diagnose PD defects is now more viable, and has subsequently directed the 

research reported in this thesis. 

 

3.1.6.3 Knowledge-Based Systems 

 

A knowledge-based expert system is a system where human creativity can be 

expressed in a computer program [Luger-98] to solve problems in a specific 

domain. Due to their ability to provide explanations and justification of their 

results, knowledge-based expert systems have maintained a permanent role 

in industry, winning the acceptance and trust of the end user [Hayes-Roth-

94]. The construction of these systems is achieved by capturing the expert 

knowledge in a domain and then invoking this knowledge as needed in 

response to a particular problem, allowing the computer to draw on the 

expert’s knowledge to mimic the expert’s reasoning process.  

 

This leads on to the question what is knowledge? Knowledge is information 

about information, where a concise presentation of structured data with 

contextual meaning is known about a particular domain. Expert knowledge 

about a particular domain is one that is gained with years of experience, 

through a combination of theoretical understanding of a problem and a 

collection of problem solving rules that are obtained over time. 

 

Knowledge-based expert systems, especially in the area of diagnostic 

reasoning, have reached conclusions unanticipated by their designers 

[Luger-98]. In the mid 1960s Joshua Lederberg and Feigenbaum began the 

development of one of the earliest knowledge-based expert system called 

DENDRAL [Buchanan-85]. DENDRAL was designed to deduce the structure 

Sir Francis Bacon once said, “Knowledge is power.” [Luger-98]. 
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of organic molecules by employing expert knowledge regarding the chemical 

formulas of the organic molecules and mass spectrographic information 

about their chemical bonds. The major issue with the creation of this system 

was how to represent the expert knowledge so that it could be utilised by a 

computer. 

 

Many of the lessons learned in constructing DENDRAL led to the 

development of another expert system called MYCIN [Buchanan-85]. This 

first generation rule-based system was engineered at Stanford in the mid-

1970s. MYCIN “established the methodology of contemporary expert 

systems” [Luger-98]. It was created to diagnose and prescribe treatment for 

spinal meningitis and bacterial infections in the blood, by the use of expert 

medical knowledge. Since then, a variety of knowledge-based systems have 

been constructed in various domains [Hayes-Roth-94], and today, the largest 

knowledge-based system is Lenat’s CYC system [Lenat-95], which 

incorporates common sense facts about the world. 

 

A rule-based system is a knowledge-based expert system that comprises of a 

number of heuristic rules to analyse information [Buchanan-85]. Production 

rules, written using first order logic [JBoss-08], are used in rule-based 

systems to represent the knowledge of an expert in a domain, in an IF 

condition THEN action format. Rule-based systems are not only used to solve 

difficult problems, but also to provide an explanation to justify the decisions 

made.  This explanation offers the user of the system more confidence in the 

result [Hayes-Roth-94], with the rules leading to reasoning that can be 

understood and criticised.  

 

A rule-based system is made up of the parts identified in Figure 3.2 

[Buchanan-85]. The knowledge base of the expert system consists of “a 

collection of symbols intended to reflect the state of the world” [Buchanan-

85]. These symbols represent the knowledge in the domain and these, along 

with the inference engine, are at the heart of a rule-based expert system. To 

determine which rules should be fired, the reasoning part of the inference 
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engine is accomplished by one of two fundamental strategies, forward 

chaining (data-driven) or backward chaining (goal-directed). 

 

Forward chaining is otherwise known as a data-driven method for problem 

solving and should be employed when all the preliminary facts are known, 

and these are used to determine what the conclusion might be. This method 

starts with the initial facts and applies the knowledge rules to draw new 

conclusions or take certain actions. The facts are represented in the working 

memory of the system, which is continually updated. The interpreter 

controls the application of the rules, and examples of this include Drools 

[JBoss-08], Clips (programmed in C) and Jess (CLIPS’ java clone) [Friedman-

Hill-97].  One of the main pattern matching algorithms used within these 

interpreters, to match the conditions (left-hand side) of the rules, is the RETE 

algorithm [Jackson-99]. Dr. Charles Forgy invented this algorithm in 1982 to 

improve the efficiency of condition matching. Rather than testing every rule, 

the RETE algorithm reduces unnecessary iteration through the sorting of the 

rules into a tree structure, where each node represents a certain pattern 

occurring in the condition.  

 

An alternative inference method to control the invoking of rules within the 

rule-based system is backward chaining. It provides a goal-driven approach, 

which is achieved by starting with the hypothesis/goal. These goals are 

proved by looking for rules to confirm it with the aid of newly created sub 

goals. Prolog [Bratko-01] is an example of a backward chaining engine, and 

Figure 3.2. Major parts of an expert system (arrows indicate information flow) [Buchanan-85] 
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PUFF and MYCIN are well known examples of systems that use backward 

chaining [Buchanan-85].  

 

Independent of the type of inference engine used, invoked rules are placed in 

the working memory of the system and can therefore be used to show the 

route taken to reach a conclusion. This ability of a rule-based system to 

provide reasoning behind a diagnosis sets it apart from the machine learning 

techniques. Other advantages of rule-based expert systems are that they are 

always available to perform their task. This can free up the expert’s time if 

they wish to retire or are under constant demand or, in the context of this 

thesis, limited in numbers. Another advantage of an expert system is its 

flexible use of the knowledge. This allows an expert system to perform as 

well or better than an actual expert. As new knowledge is introduced by 

additional experts, or through further understanding of the domain, 

additional knowledge can easily be added to the system, which offers an 

extensible system. The importance of this flexibility and transparency is 

crucial, since the system will spend most of its life being changed, updated 

and improved [Davis-82]. 

 

The limitations of expert systems are their lack of ability to solve problems 

that are unsolvable by humans. Other limitations of knowledge-based 

systems are their inability to perform commonsense reasoning or identify 

how situations may change over time [Luger-98]. It is also difficult to 

develop an expert system where graphical information cannot be described 

verbally. Therefore an expert system can only be successful if there exists 

problem solving knowledge within the domain, as well as a suitable way of 

representing the data. 

 

Knowledge-based systems have been used in the power industry 

[McDonald-97][Newbould-98], and in particular for predictive maintenance 

in power transformers by applying expert knowledge to diagnose defects 

from DGA data [Lin-93][Ahfaz Khan-06][Baroni-95][Ward-01][Xu-

97][Tomsovic-98][Wang-00]. Wang et al [Wang-00] developed a system that 

consists of a NN and expert system that diagnose faults from DGA data. This 
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expert system integrates IEEE and IEC guidelines, as well as human expert 

knowledge, which is utilised when there is insufficient data to train the NN. 

 

An example of a knowledge-based system that is used for state assessment, 

preventive diagnosis and intervention planning of power transformers is 

ASTRA [Baroni-94]. ASTRA supports operators of power transformers by 

clearly presenting data, assessing the state of the transformer and providing 

preventive diagnosis complete with an explanation of its conclusion and 

definition of appropriate interventions. To achieve this, ASTRA holds human 

expertise regarding a number of different domains, from the physical 

structure of the transformer, its historical data, its internal physical 

phenomenon, along with relationships between physical quantities and the 

internal physical phenomenon. Therefore, specialist in the areas of oil and 

DGA are required along with numerous others. A traffic light system is 

displayed to the operator to indicate the state of various parts of the 

transformer. 

 

Within the area of PD diagnosis, there is an offline expert system for acoustic 

diagnostics [Lungaard-92], where the operator is asked questions regarding 

the characteristics of an osillographic representation of the voltage associated 

with the acoustic consequences of PD activity. These user inputs are fed to a 

rule-based system, which classifies the PD source using a knowledge base of 

expertise. Although expert knowledge is utilised to classify the source from 

the user input, it does not identify the underlying physical PD phenomena 

associated with the PD activity. Another example of a knowledge-based 

system for PD classification has been published by Gulski et al [Gulski-05], 

where knowledge rules are used to determine which of three condition 

classes the condition of a cable is. This decision is made after utilising 

statistics on the PRPD fingerprint to determine the condition of the 

insulation. The knowledge rules “support the decision process of the asset 

managers in making distinctions between cable networks with different 

insulation conditions” [Gulski-05]. 
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Although these systems use expert knowledge as part of their diagnosis, they 

do not utilise the expert knowledge to classify the defect by regarding the 

PD’s physical behaviour and defect characteristics that can be inferred from 

the phase-resolved patterns. Abdel-Galil et al [Abdel-Galil-05] did suggest 

that knowledge-based systems in the area of PD diagnosis were too costly 

and time consuming, and perhaps impossible to clearly identify features of 

the phase-resolved pattern that would enable the expert to diagnose the 

defect.  However, this was when identifying specific sizes of cavities in 

capacitors. 

 

It was also expressed by Satish et al [Satish-94] that “manual identification 

and coding of rules required to build these systems was often found very 

difficult, if not impossible”. However, expert knowledge within the area of 

PD diagnostics has since improved and the potential of knowledge rules, 

pertaining to PD diagnosis, has been recognised by CIGRE [CIGRE226-03], 

which specialises in condition monitoring of critical plant items and PD, and 

sharing diagnostic knowledge and experience. The potential of a knowledge-

based system has also been recognised by Gulski, an expert in the field of PD 

diagnosis. Originally in 1993, Gulski wrote that there was no need to have 

knowledge about the underlying physics to diagnose a fault from within the 

equipment [Kreuger-93]. However, Gulski recently collaborated with 

Strachan [Strachan-08] and recognised that understanding the physical 

aspects of the insulation can lead to advanced diagnosis for decision support. 

 

Displaying the PD data in phase-resolved patterns has led to an 

augmentation of knowledge about these phase-resolved patterns. This has 

led to experts being able to extract useful information from this data format 

and therefore diagnosing defects. The engineering of relevant domain 

knowledge to be used in the subsequent implementation of a knowledge-

based system for PD diagnosis represents the core of this thesis and will be 

described in chapter 5. 
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3.2 Conclusion 

 

Although machine learning diagnostic techniques can correctly identify 

defects occurring within high voltage equipment insulation, they offer no 

justification of their classification. Some applications of these types of 

techniques have been described in this chapter. These AI techniques also 

require an extensive dataset of previous defects to be able to train the 

algorithms prior to being able to classify the defect. This can lead to the 

inability to identify new defects where there is a lack of historical data. In 

addition, networks must first be trained before they can recognise defects. 

Another disadvantage of these machine learning techniques is that once 

trained, the classifier is then specific to the equipment and sensory data type 

it was trained on.  

 

To overcome the need for network training (on data that may not always 

exist) before a new defect can be identified, the equipment specific nature of 

machine learning techniques and the lack of output explanation, this thesis 

proposes a knowledge-based expert system approach when diagnosing 

defects from PD data. The introduction of this knowledge-based approach 

will offer the explanation behind why a certain defect was chosen, by 

referring to the underlying PD behaviours and defect characteristics that may 

be present in the high voltage equipment, which can lead to the final 

classification. The knowledge-based approach also does not require constant 

re-training to accommodate new defect types but simply the addition of new 

rules. 

 

Another issue of the described pattern recognition techniques is their 

misclassification of defects, where the discharges occur across the zero 

crossings of the phase-resolved pattern [Berg-02]. Incorporating this 

knowledge into a knowledge-based system can lead to a classification where 

the actual discharges are grouped per activity, rather than per half cycle. This 

will prevent incorrect calculation of statistics, such as kurtosis and skew, 

which could lead to a misclassification. This will be further discussed in 

chapter 5.  
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A limited number of experts posses this knowledge about PD behaviours, 

phase-resolved patterns and defect characteristics. A major challenge 

encountered during the research detailed in this thesis was the task of 

acquiring, representing and organising expert knowledge for PD diagnosis. 

Knowledge engineering techniques can be utilised to elicit and model this 

knowledge to assist in the implementation of this expert knowledge within a 

rule-based system, and these techniques and their application in the 

development of the knowledge-based system detailed in this thesis will be 

discussed in chapters 4 and 5. 
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Chapter 4 

 

Knowledge Engineering 

 

 

 

4.0 Introduction to Knowledge Engineering 

 

As highlighted in the previous chapter, the pattern recognition techniques 

presently employed to diagnose PD defects from phase-resolved patterns 

possess a number of disadvantages. The main disadvantages imposed by 

these machine learning techniques include that the trained classifiers remain 

specific to the equipment they were trained on, and they do not provide a 

justification of their classification. It was also identified in the previous 

chapter that the introduction of a knowledge-based system to diagnose 

defects from phase-resolved PD patterns could provide this explanation and 

justification. Along with this justification, the introduction of this knowledge-

based approach would also provide further benefits described in chapter 1, 

including the potential of a generic system, which would not be specific to 

the equipment it was trained on. However, before the knowledge-based 

system can be created, the knowledge pertaining to phase-resolved patterns, 

PD phenomena and defect characteristics must first be identified, captured, 

and modelled. To achieve this identification and management of knowledge, 

a process of knowledge engineering [Struder-98] must be conducted. 

 

Edward A. Feigenbaum (1977) defines the activity of knowledge engineering 

as “the art of building complex computer programs that represent and 

reason with knowledge of the world” [Angele-98]. It is a process that 

“Knowledge engineering is traditionally concerned with the development of 

information systems in which knowledge and reasoning play pivotal roles.” 

[Schreiber-00] 
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involves identifying and implementing knowledge that would, after years of 

experience, reside in a human’s mind. The elicitation of this knowledge 

would be beneficial to implement into a knowledge-based system, to create 

automated systems that could provide diagnosis, assessment or advice based 

on the expert’s knowledge, saving the human expert the labour intensive 

task. 

 

Although originally believed to be a process of simply acquiring and 

implementing this knowledge, it was found that this in fact involved a long 

and time consuming exercise, where the acquisition of knowledge became 

more difficult than was originally supposed [Angele-98]. To assist in the 

acquisition of this knowledge, over the years the knowledge engineering 

process has migrated through two stages; the knowledge transfer approach 

and the modelling approach [Struder-98].  

 

During the transfer approach, knowledge was directly transferred from the 

human into an implemented system. This direct transfer of knowledge 

identified the knowledge elicitation bottleneck [Forsythe-89]. This bottleneck 

recognised that the actual acquisition of expert knowledge was difficult to 

articulate.  It was identified that this bottleneck arose from two assumptions; 

firstly, that production rule systems were adequate for representing the 

knowledge and secondly, that the required knowledge only needed to be 

collected since it already existed.  

 

During the knowledge transfer approach it was identified [Struder-98] that 

knowledge acquisition was not a direct transfer of already available 

knowledge as previously assumed, but that a process for creating a 

knowledge model was required. To try to overcome the knowledge 

elicitation bottleneck the knowledge modelling approach was recognised, 

where knowledge models were created to illustrate the functionality of 

knowledge-based systems, as well as the expert knowledge that is required 

to achieve this functionality. 
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Modern knowledge engineering is therefore a technique that can be utilised 

to model the knowledge and the system, which are required when creating a 

knowledge-based system. This chapter will discuss different ways of 

conducting knowledge engineering, through the use of tools and models. 

The advantages and disadvantages of these methods will be highlighted and 

the route taken to create the knowledge-based system described in this thesis 

will be identified and justified in this chapter. 

 

4.1 Knowledge Engineering Tools 

 

The “knowledge level” was introduced by A. Newell [Newell-82] in the 

1980s, as a means of providing a conceptual representation of an expert’s 

knowledge, as part of knowledge-based system design. The knowledge level 

separates different kinds of knowledge into different models, as well as 

completely separating the symbol level (functionality of the system) from 

this knowledge. It describes the goals to be achieved, the actions needed to 

achieve these goals and the knowledge required to perform these actions 

[Struder-98]. The idea of a knowledge-level inspired two ESPRIT research 

projects to develop a structured methodology supporting the representation 

of expertise.  The outcome of this research was the Knowledge Analysis and 

Design Support (KADS) methodology, which later evolved into KADS II and 

most recently CommonKADS [Schreiber-00].  

 

The use of a modelling framework for knowledge engineering assists in 

eliciting, representing and storing important knowledge in a domain for 

utilisation in a knowledge-based system, as well as avoiding the knowledge 

bottleneck associated with that domain [Freiling-85]. Although attempts 

have been made to automate the process of knowledge engineering [Freiling-

85], it is still a manual and labour intensive task involving knowledge 

capture, transcribing knowledge documents and developing prototypes. 

However, the assistance of modelling frameworks provide guidance and 

support, and this section will describe the aforementioned CommonKADS, 

along with another modelling framework MIKE [Angele-98]. 
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4.1.1 CommonKADS 

 

CommonKADS is the product of research since 1983 and is the leading 

methodology to support structured knowledge engineering. Within 

CommonKADS a collection of models exist to aid in the construction of a 

knowledge-based system [Schreiber-00]. These are the: 

1. Organisation Model: describes the organisational structure, 

identifying problems and opportunities where a knowledge-based 

system will be installed and any impacts it may produce. 

2. Task Model: describes the hierarchy of the goals within the 

organisation where the knowledge-based system will be installed.  

3. Agent Model: specifies the characteristics of an agent (human or 

information system), where agents are executors carrying out a task. 

4. Communication Model: highlights the various interactions required 

between agents. 

5. Knowledge Model: also known as the Expertise Model, this model 

provides structure to the knowledge that is required to perform a 

problem-solving task, detailing the different types of knowledge 

required for the knowledge-based system. 

6. Design Model: provides the technical system specification, 

highlighting how the knowledge and communication models can be 

implemented. 

 

Within CommonKADS the first four models defined above are beneficial for 

a business or organisation that might require a knowledge-based system, by 

exposing the rewards, impacts and costs of the introduction of a knowledge-

based system through development of these models. However, it is only the 

expertise model and the design model that are necessary for describing 

aspects required to develop the knowledge-based system itself [Struder-98].  

 

“The aim of CommonKADS is to fill the need for a structured methodology for 

knowledge-based system projects by constructing a set of engineering models 

built with the organisation and the application in mind.” [Schreiber-94] 
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As described above, the design model provides technical system 

specification for the implementation of the knowledge-based system. This 

includes [Schreiber-00]: 

1. Designing the systems architecture: defining the general structure of 

the software, identifying the subsystems, control and software 

modules. 

2. Identifying the target implementation platform: deciding upon the 

hardware and software that will be utilised for the system. 

3. Specifying the architectural components: where the subsystems 

identified in 1 are designed in detail. 

4. Specifying the application within the architecture: mapping the tasks, 

inferences, knowledge bases and transactions onto the architecture. 

 

The other model from CommonKADS, which is important when creating a 

knowledge-based system, is the expertise model. [Struder-98] indicated that 

“a major contribution of the KADS approach is its proposal for structuring 

the Expertise Model, which distinguishes three different types of knowledge 

required to solve a particular task”. This model can be viewed as the 

specification of the problem solving requirements, which is achieved by 

splitting the knowledge into three categories: 

1. Task knowledge: describes the goals and how they can be accomplished 

through the use of subtasks and inferences. 

2. Inference knowledge: describes the steps that are required to reach a 

goal. This is achieved by making use of the domain knowledge. 

3. Domain knowledge: is knowledge about the overall topic in an 

application. 

 

These three types of knowledge models identify the expert’s knowledge 

within a domain, which is required for the successful creation of the 

knowledge-based system. Each of the three categories is modelled using 

Unified Modelling Language (UML) diagrams [Booch-98], creating abstract 

models of expertise. Representing the knowledge in this way provides easy 

validation by the human expert, as well as an uncomplicated transition for 

implementation into a knowledge-based system. 
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4.1.1.1 Construction of Expertise Model 

 

The construction of the expertise model is one of the major tasks of the 

CommonKADS knowledge engineering process. With the expertise model 

being the most useful in developing a functional specification for knowledge-

based system prototype development, as described above, it will be further 

detailed in this section.  

 

As shown above, the expertise model is split into three categories, with the 

knowledge in each of these categories requiring acquisition and modelling. 

To perform these tasks, the CommonKADS knowledge engineering process 

is split into four stages; knowledge elicitation, knowledge representation, 

knowledge validation and knowledge utilisation. Each of these categories 

will be described in more detail in this section. 

 

4.1.1.1.1 Knowledge Elicitation 

 

The above definition of expert knowledge implies that knowledge can either 

be explicit, where the knowledge is well defined and understood, or tacit, 

where the knowledge has become second nature to the expert. It is this tacit 

knowledge that often sets experts apart from non-experts and similarly 

distinguishes expert systems from traditional information systems. In either 

case, knowledge is a valuable entity, especially in situations where an expert 

may be retiring or overworked due to being the only expert in a certain field. 

  

Tacit knowledge is the most important form of knowledge and the most 

difficult to capture. It is knowledge that is learned through experience rather 

than something that is taught and often becomes ‘second nature’ to the 

expert, which makes it difficult to articulate. An example of tacit knowledge 

is the ability to ride a bike. This is learnt through personal experimentation 

rather than by reading a textbook. Extracting this type of knowledge from an 

“Expert knowledge is a combination of a theoretical understanding of the 

problem and a collection of heuristic problem solving rules” [Luger-98]. 
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expert can be difficult due to the expert having difficulty articulating this 

knowledge.  

 

Different elicitation techniques can be applied to assist in the articulation of 

the varying types of knowledge, fundamentally helping the expert to unearth 

his/her tacit knowledge. There are five types of techniques [Schreiber-00] 

that the CommonKADS methodology promotes, these are: 

1. Interviewing: Interviews are meetings where the expert discusses 

his/her domain. These meetings should be kept to a minimum length 

so as not to overexert the expert. It is beneficial to record these 

meetings and create a transcript for further use in the modelling stage 

of the knowledge engineering task. Interviews are the most common 

form of elicitation technique and take many forms, from unstructured 

to structured: 

a. Unstructured interviews have no agenda and should only be 

applied in the initial stages of the modelling process. The lack 

of constraints provides considerable scope for the meeting and 

the outcome supplies a broad view of the domain. However, 

the lack of structure can lead to the expert digressing. 

b. On the other hand structured interviews are formally planned 

interviews. Structuring the meetings leads to refining the 

knowledge gained from the unstructured interview. However, 

care must be taken to not over structure a meeting, and so lose 

vital knowledge that would be outside the scope of the 

interview. 

2. Protocol Analysis: Otherwise known as shadowing, this technique 

allows the knowledge engineer (person who is constructing the expert 

system) to observe and record the expert as he/she works. 

3. Laddering: This technique is mainly used in the early stages of 

knowledge engineering to construct initial informal hierarchies. This 

is accomplished by constructing a two-dimensional graph, of nodes 

(objects of key terms in the domain) and labelled arcs (depicting 

relations between objects), forming a hierarchy of trees. Both the 

expert and the knowledge engineer agree on key terms in the domain 
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(objects), any associations, and attributes describing the object prior to 

representing them in a structured manner. 

4. Concept Sorting: Also known as card sorting, this technique uncovers 

relationships between concepts (a set of objects/instances in the 

domain sharing similar characteristics) as seen by the expert. This is 

achieved by presenting the expert with cards of concepts and 

requesting that he/she sorts the cards into categories. Sorting concepts 

this way can lead to the expert also discovering how he/she interprets 

his/her domain.  

5. Repertory grids: Repertory grid is seen as a statistical counterpart to 

card sorting. It is designed to reveal a conceptual map of the domain. 

The expert is presented with a range of similar domain elements and 

asked to choose those elements that are different from the others and 

explain why. Discriminating between different elements results in a 

matrix of similarity ratings. These are then analysed using clustering 

analysis, which can reveal additional clusters of concepts and 

elements, which may not have been articulated in an interview. 

 

There are many pitfalls that could influence the success of the knowledge 

capture, these include; the knowledge engineer directing the questions in 

such a way to either over or under influence the expert, having a fear of 

silence, failing to listen to the expert, interviewing without a recording 

device, or a lack of planning [Forsythe-89]. To overcome some of the pitfalls 

associated with elicitation, the CommonKADS approach encourages the 

audio recording of each meeting to ensure that valuable knowledge is not 

lost and the expert is not interrupted while notes are taken. This establishes a 

smooth meeting, where the expert could talk freely about his/her domain.  

 

From the knowledge engineer’s point of view, the use of a recording device 

allows greater focus on the questioning strategy rather than taking notes. 

Also, since 75% of the time we are distracted or forgetful and only 20% of the 

time we remember what we hear [ETSU-03], recording the knowledge 

elicitation meetings ensures that valuable information is retained. Once 
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knowledge meetings have taken place the elicited knowledge then needs to 

be represented. 

 

A further pitfall that could influence successful knowledge elicitation is 

when multiple domain experts are involved. Issues can be encountered if the 

experts disagree, either at the initial knowledge elicitation stage or from the 

employment of further experts at later stages of the knowledge engineering 

process. If the conflict of opinion is mild then the experts should be left to 

discuss the domain and hopefully agree on a final outcome. However, if the 

disagreement cannot be resolved then two or more alternative approaches 

could be incorporated into the knowledge-based system, providing different 

ways to reach the overall system’s goal. Within this research, no significant 

differences of opinion were encountered. 

 

4.1.1.1.2 Knowledge Representation 

 

Knowledge representation is probably the most important stage of 

knowledge engineering, since representing the knowledge in one way may 

make the solution simple, while an unfortunate choice of representation may 

make the solution more difficult to identify. During this stage, the 

knowledge ascertained during knowledge elicitation meetings are 

transcribed and modelled to expose the key knowledge, which could latterly 

be utilised in the knowledge-based system. 

 

First, a transcript of the meeting is documented from the recordings of the 

elicited knowledge. These transcripts are textual documents that represent 

the knowledge acquired during the knowledge elicitation meetings. It is 

important to ensure that these documents are well structured to provide 

understanding of the transcribed knowledge and allow the expert to easily 

validate the content of the document. Validation will highlight any 

incompleteness, contradiction or uncertainty, which could be improved with 

further elicitation meetings. 
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Once the expert has validated these documents, displaying the knowledge 

graphically exposes any areas where the knowledge may be limited. 

CommonKADS “encourages the use of object-oriented development and the 

notations from UML” [Abullah-05] for its representation of the knowledge 

and system design. UML diagrams are used to construct the task and 

inference models of the expertise model, which will be shown in chapter 5. 

The task model highlights all the individual objectives needed to complete 

the overall goal. The inference models are constructed to describe individual 

reasoning steps required to reach a goal, detailing the input and output of 

each inference. Both the inference and task models map out the agenda for 

eliciting the domain knowledge by highlighting knowledge areas required to 

accomplish the goals and inferences. 

 

One such approach of displaying the expert’s domain knowledge, in a way 

that makes it easier to understand and validate, are semantic network 

models. Semantic network models are causal diagrams that represent the 

knowledge using nodes (the objects or concepts) and links (relationships 

between the nodes).  The links that connect each node add meaning to the 

models. An example of a semantic network model is shown in Figure 4.1.   

Figure 4.1. Example of a semantic network model 

 

Graphically representing the knowledge in this way can help both experts 

and non-experts (i.e. knowledge engineers) understand the structure of the 

elicited knowledge, which can assist in the validation process. These 

semantic network diagrams can also assist in the implementation stage, 

where the semantic models created during the representation stage are 

converted to rules within the knowledge-based system. 

 

implies
A B
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4.1.1.1.3 Knowledge Validation and Utilisation  

 

Knowledge validation is an important stage of knowledge engineering due 

to its exposure of misinterpreted or missing knowledge. It occurs after both 

forms of knowledge representation: the knowledge transcripts and the UML 

models. The validation of the knowledge after the creation of the transcripts 

would expose any areas where the transcribed knowledge had been 

misunderstood or misrepresented by the knowledge engineer. Validation 

after the graphical representation of the knowledge would expose any areas 

that require further knowledge elicitation. Therefore, each validation 

meeting would lead to either redrafting a transcript, remodelling semantic 

models or creating an agenda for further knowledge elicitation meetings. 

 

After the knowledge has been validated, any changes to the knowledge are 

incorporated and the knowledge is finally converted into rules to be used in 

a knowledge-based system. A cyclic process is followed to validate and alter 

the expert’s knowledge prior to being implemented into a programming 

environment. This ensures that all the facts about a domain are known before 

utilisation. 

 
4.1.2 MIKE 

During the 1980s an alternative tool to support the knowledge engineering 

process was developed. Model-based and Incremental Knowledge 

Engineering (MIKE) [Angele-98] covers the entire development process from 

acquisition and design right through to implementation. This full featured, 

portable software environment offers a low cost method to knowledge 

engineering by utilising the expertise model from CommonKADS. 

 

MIKE’s process model, see Figure 4.2 [Struder-98], follows a spiral model, 

with each stage of the cycle producing a prototype. This diagram shows the 

smooth transition from the semiformal model, where graphical diagrams are 

“MIKE puts emphasis on a formal and executable specification of the Expertise 

Model”. [Struder-98] 
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used to represent a high level of the knowledge, to a formal model, KARL, 

which is an executable language that enables validation of the models by 

prototyping. Finally, the process leads to the creation of a design model, 

which captures all functional and non-functional requirements of the 

knowledge-based system [Angele-98] prior to implementation. The design 

model not only incorporates all the knowledge already in the MIKE process 

but also adds information required to implement the knowledge-based 

system, such as defining algorithms, data structures and goals. 

 

Figure 4.2. Steps and documents in MIKE development process from [Struder-98] 

 

The main advantage of MIKE is the facility to validate each stage of the 

process by prototyping. Prototypes cannot only be used to depict progress 

[Freiling-85], but also provide the ability to test within a real target 

environment, leading to the correction, modification or extension of the 

prototype during the succeeding stage of the cycle. Further benefits are 

achieved through the ability to reuse parts of the model for developing 

multiple knowledge-based systems to tackle similar problems. However, 

MIKE only assists in the creation of the knowledge-based system itself. This 

means that if the knowledge-based system was to be embedded within a 

business environment, additional models would be required, for example the 

organisation, task, agent and communication models of CommonKADS. 
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4.2 Choosing a Framework 

 

There are limited criteria to follow when deciding on a knowledge 

engineering framework. The knowledge-based system described in this 

thesis requires the knowledge engineering process to identify, capture, 

document, model and implement knowledge relating to diagnosing defects 

from phase-resolved PD patterns. From the two modelling frameworks 

described previously, CommonKADS offers a range of models and 

techniques to articulate the tacit knowledge associated with a domain.  

 

A number of the elicitation methods from the CommonKADS methodology 

were chosen to assist in the acquisition of valuable expert knowledge 

regarding PD diagnostics. The mix of techniques assisted in eliciting the tacit 

knowledge. Protocol analysis along with the unstructured and structured 

interviews were employed to gain an initial insight into the expertise, 

following which card sorting techniques were deployed to categorise the 

knowledge into groups of similar traits allowing conclusions to be assigned 

to each group.  The CommonKADS approach encourages audio recording 

and transcription of these meetings, which then required a decision to be 

made on how best to represent the elicited knowledge. 

 

With the expertise model offering a means of structuring both the system 

functionality and the domain knowledge, it offers the best representation of 

knowledge within a domain [Struder-98] and has been constructed in this 

thesis. CommonKADS encourages the use of UML models to represent the 

different types of knowledge acquired. Using semantic network models to 

display the domain knowledge, along with other UML models to represent 

the task and inference models provides a graphical notation, which is easy 

for the expert to understand and validate. The elicitation and implementation 

of the knowledge into the rules, which hold the domain knowledge, will be 

described in the next chapter. 

 

The spiral process, adopted in MIKE offers many benefits in terms of 

validation, reuse and prototyping, and for these reasons the process, but not 
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the actual language, has been used in this thesis. The main benefits of using 

prototypes are to provide a physical system for the expert to validate. 

 

4.3 Conclusion 

 

Knowledge engineering is a technique used to capture and utilise expert 

knowledge within a knowledge-based system. It has been identified that the 

transfer of this knowledge is not a simple task, but must involve a 

knowledge representation process to aid the elicitation of tacit knowledge. 

This tacit knowledge is the key when creating a knowledge-based expert 

system and there exist different tools to assist in the activity of knowledge 

engineering, with CommonKADS being a leading methodology.  

 

The expertise model in CommonKADS is the most beneficial of the available 

models and was chosen to represent the knowledge implemented in the 

knowledge-based system described in this thesis, due to its ability to model 

different types of knowledge for validation and implementation. A spiral 

approach was followed, similar but not identical to that used in MIKE, to 

model, implement and prototype the different stages of the knowledge-based 

system. The design and implementation of the knowledge-based system for 

PD diagnosis will be discussed in the next chapter. 
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Chapter 5 

 

Knowledge-Based Approach to Partial Discharge 

Diagnosis 

 

 

 

5.0 Introduction 
 

Understanding the type of defect present within the insulation of an 

electrical plant item, through the interpretation of PD data, has the potential 

to offer equipment health information to the engineer, assisting in the 

possible identification of an appropriate maintenance strategy for the 

particular plant item. For example, certain defects could indicate the 

requirement for an outage to repair the problem, while others could 

potentially lead to replacement of parts or the asset. 

 

Although originally PD data was thought to be stochastic [Hucker-95], with 

the present defect exhibiting no constant PD behaviour, it was shown that 

displaying more than one cycle of a PD event could lead to the identification 

of the physical phenomena occurring at the discharge site [Patsch-01][Hoof-

95]. Plotting the PD data on a phase-resolved PD pattern that displays 

multiple cycles of data, provides experts with a useful insight into the PD 

phenomena, space charge affects (discussed in section 5.1.1.2), and other 

characteristics, which could help identify the type of defect present. 

Therefore, when examined by an expert in the field of PD, meaning can be 

sought from the phase-resolved pattern regarding the PD source. To prove 

the novelty of this technique this thesis focuses on phase-resolved patterns 

for one PD source at a time. However, ongoing research is focusing on 

extracting independent signatures from phase-resolved patterns holding 

multiple PD sources [Judd-04][Yang-03] and in the future these pre-

processed signatures could be input to the knowledge-based system for 

diagnosis. 
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Through previous research at the University of Strathclyde it was identified 

that six different defect classes produced different PD signatures [Cleary-05] 

on phase-resolved patterns due to the variation in PD activity behaviour 

occurring within the insulation. The phase-resolved patterns [Pearson-95] 

utilised in this research display the relative pulse amplitude as a function of 

the voltage cycle and cycle number, similar to those discussed in chapter 2. 

These physical experiments led experts to gain a greater understanding of 

the various features of PD activity behaviour evident in the phase-resolved 

pattern, creating a knowledge base in the mind of the experts concerning the 

various meaningful distinguishing features (descriptors) of the phase-

resolved pattern and how they correlate with the physical behaviour of the 

PD activity. 

 

Automation of PD diagnosis from these phase-resolved patterns was 

achieved through machine learning techniques applied at the University of 

Strathclyde [McArthur-04][Catterson-06][Strachan-05]. These techniques, 

discussed in chapter 3, assisted the experts in increasing their knowledge 

base, linking the cause and effect of PD phenomenon, and providing the 

opportunity to retain and embed this knowledge within a knowledge-based 

system for PD diagnosis [Strachan-08].  

 

Before the creation of such a knowledge-based system, first it must be 

ascertained as to whether the knowledge held by these experts could be 

utilised to classify defects. This thesis uses knowledge engineering 

techniques (described in chapter 4) with experts to identify PD defects from 

phase-resolved patterns (where the relative pulse amplitude is displayed as a 

function of the voltage cycle and cycle number), captured through UHF 

sensors on gas insulated substations (GIS). This is the first time that 

knowledge relating phase-resolved patterns to PD phenomena in GIS has 

been captured from experts. It exposed a step-by-step approach to diagnosis 

that the expert was not consciously aware of following when classifying the 

defect behind the pattern.  
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The knowledge engineering process highlighted that the experts could 

identify descriptors from the phase-resolved pattern, by simply looking for 

certain features created by the pulses (descriptors). The experts could also 

identify the PD behaviour depicted by the identified descriptor, a 

combination of which inferred defect characteristics and defect classification. 

The introduction of a knowledge-based system, which utilises this expert 

knowledge, has the potential to provide the following benefits: 

• Classification of defects from a three-dimensional phase-resolved 

pattern, consisting of the pulse’s amplitude, the cycle number on which 

the pulse appears and the phase position of the pulse on the voltage 

cycle. 

• Explanation of diagnosis from expert knowledge providing 

confidence in the result. 

• Storage of valuable expert knowledge regarding phase-resolved 

patterns, PD phenomena, defect characteristics and PD diagnosis. 

• Scalability by allowing room for expansion as knowledge regarding 

PD diagnosis grows. 

• Reduction of the miscalculation of features that lead to a classification 

by splitting the phase-resolved pattern by PD activity rather than per 

half cycle. 

• Flexibility by providing a varying degree of explanation suitable for 

engineers with different levels of understanding and experience, due 

to an incremental approach, providing knowledge regarding the PD 

physical phenomena, along with the defect characteristics and 

classification. 

• The potential for a generic approach to classify defects from phase-

resolved patterns created through data from either UHF or IEC60270 

data, due to the common physical nature of PD within high voltage 

equipment [Fuhr-91] and taking the phase-resolved PD pattern as 

input. 
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• The potential for a generic, flexible approach to PD diagnosis in a 

variety of equipment, including transformers and GIS, offering 

flexible support for condition monitoring, due to the consistent 

physical nature of PD across different high-voltage equipment [Fuhr-

91] . 

 

From chapter 4 it was identified that the development of a knowledge-based 

system requires knowledge engineering to capture the valuable expert 

knowledge. The acquisition and utilisation of this knowledge is required in 

order to automate the problem-solving task that an expert already has the 

ability to perform. As previously discussed, this elicitation involves a variety 

of the knowledge engineering techniques, described in chapter 4, to 

articulate the experts’ expertise through the use of interviews, experiment 

observations and case studies. Using appropriate representation and 

modelling techniques to model the knowledge (tasks, inferences and domain 

knowledge) is necessary before implementing it within the knowledge-based 

system. 

 

This chapter describes the construction of this knowledge-based system, 

outlining the functionality of the system, which is based on the experts’ 

methodology of PD diagnosis. The knowledge engineering techniques, 

which were performed throughout this research, are described along with 

the UML diagrams, which were constructed from the experts’ knowledge. 

 

5.1 Capturing Diagnostic Knowledge Rules 

 

The construction of a knowledge-based system starts with designing the 

software architecture, which describes the system in terms of subsystems and 

modules. This is achieved by using the CommonKADS design process, 

discussed in chapter 4. In previous research [Strachan-05] it was thought that 

a five-stage process to PD diagnosis would not only provide correct 

classification of the defect, but also provide the operator with varying levels 

of explanation regarding the classification. The rudimentary idea of this stage 
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process was adopted, validated and developed in this research. The actual 

knowledge applied in each of the five stages required elicitation from the 

experts, along with appropriate knowledge representation (through 

transcripts and models) that would ease the validation process and assist in 

the design, development and testing of the knowledge-based system.  

 

As previously explained in chapter 4, knowledge engineering techniques are 

required to identify and capture tacit knowledge from the expert, which is 

achieved by splitting the process into four tasks. First the knowledge requires 

elicitation from the experts. Following elicitation, the knowledge is 

transcribed and represented in model form to assist the expert in validation. 

Once validated, the knowledge is implemented in a rule-based system for 

further validation and utilisation. 

 

Interviews were undertaken to capture the appropriate knowledge from 

experts in the field of PD diagnosis within the high voltage group at the 

University of Strathclyde. Each meeting scheduled with the experts involved 

an agenda to steer the meeting, was recorded using a voice recorder so as not 

to interrupt the experts’ trains of thought or lose valuable information, and 

transcribed immediately after completion of the meeting. Throughout this 

research, 15 meetings, ranging from one to three hours in duration were held 

over 30 months. These meetings consisted of interviews, case studies, 

protocol analysis and card sorting techniques. Expertise was also included 

from the publications of Gulski [Gulski-91] and led to collaboration with 

Gulski and Meijer, through the joint writing of an IEEE journal paper 

[Strachan-08].  

 

The representation aspect of the knowledge engineering process resulted in 

15 meeting transcripts, the outcome of which was a master transcript of 40 

pages of PD diagnosis knowledge. After validation, this led to the 

construction of 148 semantic knowledge models and 5 knowledge bases. 

These knowledge models were then constructed as 148 production rules 

within these knowledge bases, resulting in 5 prototypes and 1 final system. 

The construction of these knowledge bases and the overall diagnostic system 
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will be discussed in this section, the application of which will be shown in 

chapter 6. 

 

5.1.1 Initial Stages of Knowledge Engineering and System 

Specification 

 

The initial interview with the experts was unstructured, allowing the experts 

to speak freely about their domain. The outcomes from this interview 

consisted of background knowledge regarding PD and insulation materials 

utilised within high voltage equipment. The initial meeting was a “scoping” 

meeting designed to set the agenda for subsequent knowledge capture, i.e. 

defining defect types for diagnosis, which can be seen in Table 5.1. These 

defects differ slightly to the defects defined in previous research [Cleary-05], 

as further experiments resulted in the omission of the suspended particle due 

to the expert believing this defect type would not exist in the field. Three 

further defects have been added to the list of defects (the void, the floating 

electrode and the bouncing particle) since further experiments allowed the 

expert to gain a knowledge base of these additional defect types and are so 

included in the knowledge-based system described in this thesis.  

 

Table 5.1. Definition of defects 

Defect Definition Experiment Diagram 

Bad Contact Caused by sparking, e.g. 
between the threads of 
loose nuts and bolts. 

!"#$%%&'()*&%

+*%,+-*+,%"."
(/$--&"-

01

23%"$-,4567  
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Bouncing 
Particle 

Caused by free particles in 
motion due to electrostatic 
forces. 

 
Floating 
Component 

Smaller conducting objects 
that have become isolated 
and acquire a floating 
potential. !"#$!%"!$#&'&

(!)*&%

!%&((+")%,
-+)%%.&%

/0

12#&)%$3456

!")7.'8
*"9!"'&'7

!%"7%:(."'

 
Floating 
Electrode 

Capacitive sparking at 
components such as stress 
shields that have become 
partially detached 
resulting in ineffective 
bonding. 

 
Protrusion Fixed, sharp metallic 

protrusions on conductors. 

 
Rolling 
Particle 

Caused by free particles 
resting on a conductive 
surface until influenced by 
the electric field causing 
them to roll without 
bouncing. 

 



 

83 

Surface 
Discharge 

Caused by moisture 
ingress causing pressboard 
to become semi-
conducting. 

 
Void Gas filled cavity in solid or 

liquid insulation, e.g. a 
bubble or a crack, or a 
void in epoxy resin. 

 
 

5.1.1.1 Types of Insulation 

 

SF6 and oil are the two types of insulating material considered within this 

thesis. Although these two types of insulation materials possess different 

properties, the knowledge-based system was designed to contain generic 

rules that could extract the descriptors from the phase-resolved PD pattern 

regardless of the insulating material.  

 

5.1.1.2 Space Charge 

 

Further background knowledge gained from the initial interview concerned 

the presence of space charge within the insulation. This physical 

phenomenon exists at the time of PD and may be considered as a charge that 

is relatively immobile or trapped in the insulation. Depending on the 

conditions, space charge can influence subsequent pulses. 

 

Space charge is generated once ionisation has occurred. For example, in the 

case of a protrusion defect, there exist metal conductors and insulation that 

initially contain no charge. Prior to discharge within the insulation, there is 

an electric field that is directed from positive to negative, where the 

geometrical field before the discharge is directed from plate to tip of the 
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protrusion, as shown in Figure 5.1. During the discharge, the electrons 

leaving the tip will cause the tip to become more positively charged than 

before, creating a counteracting field that tends to terminate on the negative 

charges, see Figure 5.2.  

Therefore, space charge is created when there is a negative discharge from 

the tip causing the electrons that have been extracted from the tip to be 

accelerated through the insulation. In the case of SF6, which has a high 

attachment coefficient, free electrons are rapidly removed with the formation 

of negative ions (quenching the discharge). Charge is now present within the 

insulation as opposed to only in the metal. Due to the free electrons captured 

by the SF6 molecules, the SF6 molecules are now negatively charged, 

repelling it from the tip towards the plate. This occurs due to the negative 

charge on the tip and the positive charge on the plate, as shown in Figure 5.3.  

The different levels of mobility in the different types of insulation material 

govern whether the space charge affects the pulses in the next cycle or if it 

changes all subsequent pulses encapsulated in the phase-resolved PD 

- 
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 + 
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Figure 5.1. Electric field      Figure 5.2. Electric field 

before discharge         after discharge 
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Figure 5.3 SF6 capturing electron 
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pattern. SF6 is unusual since it is an electronegative gas, which readily forms 

negative ions. This property of SF6, along with the relatively large molecules 

present within the gas allows free electrons to be absorbed very quickly. 

These SF6 molecules are mobile and readily disperse, reducing the memory 

effect between cycles.  

 

However, in oil the space charge becomes trapped and can “leave an 

‘imprint’ in the region surrounding the PD” [Cleary-05]. This is due to the 

immobile property of oil, which tends to act more as a solid, trapping the 

space charge at the PD site. The trapping of this charge permanently affects 

subsequent pulses, as will be apparent in the resulting phase-resolved PD 

pattern. 

 

5.1.1.3 Identification of Diagnostic Process 

 

Once this background knowledge was gained, it was possible to construct 

case studies of possible defects and perform structured meetings with the 

experts. A well thought-out agenda led to the meetings being highly focused, 

which aided in the elicitation of meaningful knowledge. The use of case 

studies (phase-resolved PD patterns of various defects provided by the 

experts, see Figure 5.4) to enable the experts to demonstrate the process they 

followed, highlighted the step-by-step process followed in the experts’ 

classification of the PD defect responsible for generating the phase-resolved 

PD pattern. 

 
Figure 5.4 Phase-resolved PD plot of a protrusion defect 
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The experts were asked to explain the initial steps in their examination of a 

phase-resolved pattern. This was the first time that the experts had 

attempted to articulate the generic process associated with their examination 

of phase-resolved patterns for PD defect classification. Capturing and 

representing this tacit knowledge resulted in the formulation of a novel step-

by-step process for PD defect diagnosis. It was clearly evident that the 

experts followed an incremental process, where the level of diagnosis 

evolved from an understanding of PD behaviour through the defect 

characterisation and ultimately classification. From this information, a UML 

activity diagram (Figure 5.5) was constructed to represent the system 

specification, mimicking this step-by-step process. This diagram highlights 

the breakdown of the diagnostic process into five high level steps each 

supported by detailed expert knowledge of the domain. 

 

From Figure 5.5, it is shown that to achieve classification the expert first 

extracts features from the phase-resolved pattern that not only describes the 

signal, but may also be used to discriminate between various defect classes. 

This identification of descriptors (key features) highlights the underlying 

physics occurring at the site of the discharge. The nature of PD phenomena 

will depend upon certain characteristics pertaining to the defect site, and so 

allow the expert to classify the type of defect responsible for generating the 

PD activity. By utilising the knowledge within the first four stages it might 

also be possible for the expert to identify the site of the defect. This 

identification is dependent on the type of defect classified and discriminating 

descriptors of the phase-resolved pattern, further discussion and examples of 

which will be shown in chapter 6.  
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Figure 5.5 Activity diagram of the system 

 

5.1.1.4 Initial CommonKADS Models 

 

In order to ascertain and validate the knowledge possessed by the experts, 

the knowledge engineering approach from chapter 4 was applied. As 

previously stated in chapter 4, the expertise model from the CommonKADS 

methodology [Schreiber-05] is the most beneficial when modelling the 

knowledge required for a knowledge-based system. This model splits the 

knowledge into three categories, and is modelled using UML diagrams.  

 

From the structured meetings with the expert it was possible to construct the 

task model (Figure 5.6), which highlights all the ‘goals’ needed to complete 



 

88 

the diagnosis. This is an alternative representation to the activity diagram 

(Figure 5.5), which also displays how a diagnosis can be achieved. 

The second type of knowledge model identified in CommonKADS is the 

inference model. CommonKADS contains a library of a standard set of 

inferences to describe the individual steps required to reach a goal. The first 

stage (calculate descriptors), see Figure 5.7, requires the ‘abstract’ inference, 

where a data set (the phase-resolved pattern) is output in an abstracted form 

(descriptors). Stages 2 and 3 involve the ‘match’ inference (see Figure 5.8-5.9), 

where given a set of inputs, specific combinations of inputs may lead to 

particular outputs. Each further stage involved in the knowledge-based 

system requires the ‘classify’ inference (see Figure 5.10-5.11), where the 

output is associated with the input. The identification of the type of inference 

informs the computational method required. CommonKADS suggests a 

forward chaining method for the ‘abstract’ and ‘match’ inferences, along 

with pattern matching for ‘classify’. Both of these can be accomplished in a 

forward-chaining rule-based system. 

Figure 5.6. Task model of the system 

 

Calculate 
descriptors 

Diagnosis 

Identify PD 
behaviour  

Identify 
defect type  

 

Identify 
defect 

characteristics  

Identify PD 
site  

Phase-resolved 
pattern 

Abstract 
descriptors from 

the phase-
resolved pattern 

Descriptors 

Figure 5.7. Extract descriptors inference model 

 

Figure 5.8. Behaviour matching inference model 
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Behaviours 
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5.1.2 Acquisition, Validation and Creation of the Five Stages of 

the Knowledge-Based System 

 

After the task and inference models had been validated by the experts and 

finalised, it became necessary to elicit the domain knowledge for each of the 

five stages. Meetings were held with the experts to identify this knowledge, 

and each of the individual stages were captured, modelled and validated 

separately, leading to a cyclic process similar to that of MIKE [Struger-98], 

described in chapter 4. This led to a staged process where each of the five 

stages were constructed into a prototype to be tested and verified by the 

experts. However, the elicitation of the later stages led to necessary 

alterations in earlier ones. The alteration of the knowledge followed a cyclic 

iteration changing the different stages as new knowledge arose. The 

construction of these individual stages will be explained in this section. 

Behaviours 
Match 

associated 
defect 

characteristics 

Defect 
characteristics 

Figure 5.9. Defect characteristics matching inference model 

 
Defect 

characteristics 
Classify defect Defect type 

Figure 5.10. Classify defect inference model 

 

Classified defect 
Identify PD site 

Defect site 

Figure 5.11. Classify PD site inference model 
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5.1.2.1 Stage #1: Calculate Descriptors from Phase-resolved 

Pattern 

In order to identify useful information from the PD data, it is necessary to 

represent the data in a suitable format. As previously explained in chapter 2, 

a phase-resolved pattern represents the PD activity in a way that can provide 

meaning to the data through expert interpretation. The phase-resolved 

pattern was chosen for its meaningful representation and its ability to be 

constructed using data derived from many types of sensors across different 

apparatus. The pattern utilised in this thesis is created by plotting the 

amplitude of each pulse captured by the UHF sensor, or in the case of the 

IEC data the apparent charge, on a three-dimensional axis consisting of the 

pulse’s relative amplitude, the cycle number on which the pulse appears and the 

phase position of the pulse on the voltage cycle [Pearson-95] (see Figure 5.12). 

It should be noted that this phase-resolved pattern is not the same format as 

the PRPD pattern [Vaillancourt-89], which is examined in other PD 

diagnostic research [Kranz-05][Satish-94][Sahoo-05]. 

The input to Stage #1 of the knowledge-based system is this phase-resolved 

pattern, representing a one second (50 cycle at 50Hz) snapshot of PD activity. 

The input is in the form of a 50*64 matrix of floating points that represent the 

PD activity in 50 cycle bursts across 64 evenly spaced phase windows 

(buckets) of the voltage cycle, see Figure 5.12. This format of the phase-

resolved pattern was chosen due to the experts’ knowledge base of these 

patterns. To gain a classification, the descriptors of the phase-resolved 

Figure 5.12. Phase-resolved pattern represented in 50*64 matrix form 

… 

…
 

50 cy
cles  

  
 

Pulse’s relative amplitude at that 

phase position and cycle number 

64 phase windows of the voltage 

cycle 
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pattern required identification and defining from the experts, as well as 

interpreting the statistics that could lead to these descriptors. 

 

To assist in the elicitation of this knowledge, case studies of the phase-

resolved pattern representing defects captured though UHF sensors in GIS 

were utilised to focus the meeting. Working through these case studies 

demonstrated that the experts could identify twelve descriptors that they 

always acknowledged when seeking a diagnosis. Each identified descriptor 

informs the expert about the behaviour of the PD activity within the 

insulation, which is indicative of the defect characteristics and subsequently 

the PD defect type. The descriptors, identified and defined by the experts 

during the preliminary interviews, are: 

1. Name:  Phase position 

Description:  The knowledge elicitation meetings identified that the most 

important and first descriptor of the phase-resolved pattern 

examined by the experts is the position of the pulses on the 

voltage cycle. This is because the position of the pulses is 

dependent on the PD behaviour that is occurring at the 

defect site. Different phase positions are indicative of 

different defect types, meaning that the phase position 

should always be included when seeking a diagnosis. The 

knowledge-based system should also check the phase 

position first because in the case of the PD activity 

occurring across the zero crossings, the pattern must be 

shifted prior to calculating the rest of the descriptors (as 

explained at the end of this section). 

 

  In order to calculate the phase position, the pattern is split 

into two half cycles, positive and negative. Then within a 

single half cycle there exist different regions, see Figure 

5.13. 

0 180 

Zeros Zeros In-between Peaks In-between 

45 135 
Phase angle (degrees) 

90 

Figure 5.13. Phase positions in a half cycle of a phase-resolved pattern 
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Values: The expert highlighted that there are four main areas where 

the pulses can occur that infers and discriminates between 

particular PD behaviour; these are: 

• On the voltage peaks, where the main window of 

pulses lies around the 90º phase angle. 

• On the zero crossings, where the discharges are 

occurring across the two half cycles and would be 

grouped in terms of discharge activity, as opposed 

to half cycle (this will be explained at the end of this 

section). 

• In-between the zero and peaks, in the first and third 

quadrant, where the discharge activity is occurring 

between 0º and 45º and 180º to 225º. 

• Spread randomly across the phase-resolved pattern.  

2. Name:  Magnitude 

Description:  The magnitude descriptor can prove problematic in the 

classification of the PD behaviour due to signal attenuation, 

where the distance of the sensor from the PD source can 

affect the magnitude of the signal. Therefore magnitude 

should be used with caution when trying to determine how 

stressed the discharge is. However, a podium (the 

characteristic shape that the pulses embody, see Figure 

5.17), would imply that it is close to breakdown no matter 

where the sensor is positioned. When identifying the 

magnitude it is important to consider the relative 

magnitude across the two half cycles rather than on an 

absolute basis. Magnitude is therefore a useful descriptor 

when assessing symmetry between half cycles. 

Values: Due to the format of the phase-resolved pattern displaying 

the relative magnitude, rather than actual magnitude of the 

PD pulse, the magnitude descriptor can offer some 

indication of PD behaviour rather than the severity of the 

discharge. In this case the mean pulse height in one half 



 

93 

cycle is calculated and is categorised by arbitrary levels; as 

three levels: 

• Small: 0-20% of relative amplitude,  

• Medium: 20%-50% of relative amplitude, 

• Large: 50%-100% of relative amplitude. 

3. Name:  Shape 

Description:  Apparent shapes identified from the maximum magnitudes 

of the pulses in each half cycle.  

Values: Shapes that can be identified from the phase-resolved 

pattern and inform the expert about the PD behaviour 

occurring at the source are: 

• The chopped sine wave (Figure 5.14), where the 

amplitude of the pulses follow the sine wave but it 

appears chopped since the pulses follow the voltage 

cycle waveform but will not necessarily be at the 

same amplitude or phase position as the voltage 

cycle. 

• A rectangular shape, see Figure 5.15. 

• The knife blade (or an extremely narrow rectangle), 

shown in Figure 5.16, is a row of discharges in a very 

narrow phase window. It may consist of a single row 

of discharges, where one may occur per half cycle.  

Figure 5.14. Chopped Sine Wave 

 

Figure 5.15. Rectangular Box 
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• A podium shape, see Figure 5.17. 

4.  Name:  Phase inception symmetry 

 Description:  The initial pulse of PD activity in each half cycle infers the 

phase inception. Therefore, phase inception symmetry 

compares the position of the initial PD pulses between half 

cycles. 

Values: There are two states of phase inception symmetry: 

• Symmetrical. 

• Asymmetrical. 

5.  Name:  Magnitude symmetry 

Description:  Magnitude symmetry examines the magnitude variation 

over the two phases and checks which of the two half cycles 

is experiencing the greater magnitude.  

Values: Magnitude symmetry is threefold: 

• Magnitude in positive half cycle is greater than the 

negative half cycle. 

• Magnitude in the positive half cycle is less than the 

negative half cycle. 

• Equality between the magnitudes across the half 

cycles. 

6.  Name:  Shape symmetry 

Description:  Shape symmetry compares the shapes that the maximum 

PD pulses create between half cycles. 

Figure 5.16. Knife Blade 

 

Figure 5.17. Podium 
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Values: Shape symmetry is twofold: 

• Symmetrical. 

• Asymmetrical. 

7.  Name:  Density symmetry 

Description:  Density symmetry compares the frequency of PD pulses in 

each half cycle. Calculating the number of PD pulses in 

each half cycle and then comparing the two half cycles 

achieves this. 

Values: Density symmetry is threefold: 

• Positive half cycle more sparse. 

• Positive half cycle less sparse. 

• Same density. 

8. Name:  Pulse distribution 

Description:   The pulse distribution examines where the pulses of 

greatest magnitude lie within the PD activity within a half 

cycle. This is calculated by taking the area of activity (in one 

half) and comparing the right hand side of the activity with 

the left hand side, identifying where the greatest magnitude 

(bias) lies. 

Values: Pulse distribution is categorised as follows: 

• Biased to an earlier phase position (Figure 5.18). 

• Biased to a later phase position (Figure 5.19). 

• Unbiased, three examples shown in Figure 5.20. 

 

Figure 5.18. Biased to an 

earlier phase position 

 

Figure 5.19. Biased to a 

later phase position 

 

Figure 5.20. Unbiased 

OR OR 
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9. Name:  Phase range 

Description:   The phase range is the width of the window of PD activity 

in the half cycle; this is calculated by subtracting the pulse 

extinction (final pulse) from the pulse inception (initial 

pulse). 

Values: The phase range is broken into two categories: 

• Broad. 

• Narrow. 

10. Name:  Phase density 

Description:   Phase density refers to the frequency of PD pulses within a 

region of PD activity occurring within one half cycle. Since 

this relates to some extent on how individual pulses affect 

subsequent pulses, it will have physical meaning and 

therefore should be taken into account as a descriptor.  

Values: The phase density is broken into two categories: 

• Dense. 

• Sparse. 

11. Name:  Magnitude consistency 

Description:   The consistency of pulse heights across the discharge 

activity in one half cycle. 

Values: Magnitude consistency is twofold: 

• Constant pulse magnitude. 

• Not constant magnitude, showing a broad 

distribution of pulse magnitudes. 

12. Name: Cycle to cycle activity 

 Description: Examining the PD activity over successive cycles to identify 

if there are a number of cycles of inactivity between a row 

of PD pulses across a half cycle. 

 Values: Cycle to cycle activity is twofold: 

• A number of cycles between PD activity. 

• No cycles between PD activity. 
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With the exception of the symmetry descriptors, each of the other descriptors 

are examined on a per half cycle basis. Individually these infer the physical 

PD phenomena occurring within the insulation. The symmetry descriptors 

can then be used to compare the half cycles and identify further PD 

behaviours within the insulation, examples of which are shown in Table 5.3 

in section 5.1.2.2. 

 

Figure 5.21 shows a hierarchical domain model identifying the descriptors of 

the phase-resolved pattern for diagnosis. This type of model includes all the 

possible descriptors, which have been highlighted by the experts as 

important features of the phase-resolved pattern, along with their 

subcategories (descriptor values). In order to use these descriptors to identify 

the PD type, they must first be extracted from the phase-resolved pattern. 

Performing various mathematical calculations, as well as using some of 

Gulski’s statistical features [Gulksi-91], led to the extraction of these 

descriptors. This statistical extraction of the descriptors proved to be an 

intricate task, since although the expert could describe them, creating a 

computer algorithm to exactly identify these descriptors was complex. 

 

Table 5.2 identifies how applying statistics to the PD data finally captured 

the various descriptors. The experts provided the preliminary limits 

associated with each calculation. The initial values of these limits would be 

changed over time as further knowledge was gained from the experts, and 

further case studies were invoked to test these limits and validated them 

through expert judgement. 



 

98 

 

 

Figure 5.21. Descriptor hierarchy for Phase-resolved PD patterns, domain model 
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Table 5.2. Calculation of descriptors (*Gulski statistics) 

Descriptor 
Name 

Statistics 
Descriptor 

Value 
How to calculate? 

a. peaks If most pulses at peaks 

and b < 258. 

b. zeros If most pulses at zeros. 

• Split phase into 4 windows 

and see where the most pulses 

occur. 

• Biasness (b) c. in between If most pulses are in-

between peaks and zeros 

OR on peaks and b >= 

258. 

1.Phase 

position 

 

• Average space between 

pulses 

• Range 

• Average number of 

discharges per bucket (an) 

d. random In a phase if the space 

between pulses >= 11 

and range >= 19 and an 

< 50 

a. large µ=50-100% = 

127.5!255  (since scale 

is 0-255) 

b. medium µ =20-50% = 53!127.5 

2. Magnitude • *Mean (µ)= Sum of 

magnitudes/number of 

discharges  

 

c. small µ = 0-20% = 0!53  

• *Kurtosis of max (ku) 

• *Number of peaks (pe)  

• Range 

• *Standard deviation of max 

(msd) 

a. knife IF ku >3, pe= 1 and 

range <20 and 

msd>=5.5 

OR 

If range > 0 and <=3. 

• *Kurtosis of max (ku) 

• Range 

• *Standard deviation of max 

(msd) 

b. chopped 

sine 

IF ku  <= 3 and range > 

3 and msd >=5.5. 

• *Standard deviation of max 

(msd) 

• Range 

• *Number of discharges (n) 

c. rectangular 

box 

IF msd < 5.5 and n 

>=10 and range > 3. 

3. Shape 

• *Number of Peaks (pe) 

• *Standard deviation of max 

(msd) 

• Range 

• *Kurtosis of max (ku) 

d. podium IF pe != 1 and range > 3 

and ku > 5 and msd >= 

5.5. 



 

100 

 

Descriptor 
Name 

Statistics 
Descriptor 

Value 
How to calculate? 

4. Symmetry • *Phase inceptions (i) a. phase IF (i in positive – i in 

negative) is  ±=2 

ELSE position 

asymmetry 

5. Magnitude 

symmetry 

• *Asymmetry operator (Q) b. magnitude IF Q>=0.9 && Q<=1.1 

THEN symmetrical 

IF Q <0.9 THEN 

positive > negative 

IF Q >1.1 THEN 

positive < negative 

6. Shape 

symmetry 

• Compare the shapes found 

previously between half 

cycles 

c. shape IF same THEN 

symmetrical 

ELSE shape asymmetry 

7. Density 

symmetry 

• Compare no. of discharges 

per half cycle 

d. density IF (pos – neg)>40 

THEN neg more sparse 

ELSE IF( neg-pos) >40 

THEN pos more sparse 

ELSE IF (pos – neg) or 

(neg – pos) <=40 THEN 

same density 

a. unbias IF b > -370 && b < 258 

b. bias to an 

earlier phase 

IF b >= 258 

8. Pulse 

distribution 

• Biasness (b) 

c. bias to a 

later phase 

IF b <= -370 

a. broad IF range > 8 9. Pulse range • Range = *extinction - 

*inception  b. narrow IF range <= 8 

a. dense IF n/range >= 11 10. Pulse 

density 

• *Number of discharges (n) 

• Range b. sparse IF n/range < 11 

a. Constant IF sd < 8 

 

11. Magnitude 

consistency 

• Standard deviation (sd), 

where variance looks at mean 

pulses and count, only taking 

into account actual pulses 

b. Not 

Constant 

IF sd >= 8 

 

a. A number 

of cycles 

IF cycles of inactivity 

between PD activity 

12. Cycle to 

cycle activity 

• Examine the no. of cycles 

between PD activity, looking 

at the average space and no. 

of pulses per cycle 

b. No cycles If no cycles of inactivity 

between PD activity 
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Gulski originally stated that three main groups of quantities could be used to 

characterise the PD activity [Gulski-91]. These are basic quantities, deduced 

quantities and statistical operators: 

1. The basic quantities identify the magnitude and position of the 

discharge pulse along a single voltage cycle. 

2. The deduced quantities characterise the PD over a number of voltage 

cycles. 

3. The statistical features create an input feature vector describing the PD 

activity over a number of cycles and across the voltage cycle, which 

could be utilised by a pattern recognition method for defect diagnosis 

[McArthur-04][Catterson-06][Strachan-05]. 

 

Using a feature vector containing 101 of Gulski’s statistics to identify 

the specific defect behind a phase-resolved pattern not only examines the 

pattern as a whole but also examines the positive and negative half cycles 

individually. A range of statistics, including kurtosis and skew, are used to 

determine the type of defect present. This statistical approach can pose a 

problem when the discharges occur on the zero crossings relative to the 

voltage cycle [Berg-02]. This problem arises due to the statistical features of 

skew and kurtosis being calculated on a per half cycle basis. When the 

discharges occur across the zero crossings then the PD activity is in fact 

occurring between the half cycles. Conventional statistical algorithms do not 

recognise this effect and therefore feed erroneous parameter values into 

pattern recognition techniques. This is resolved in the knowledge-based 

system by implementing the approach an expert utilises when the pulses are 

mainly occurring on the zero crossings.  This is used to reproduce the way in 

which an expert views the pattern as being continuous over the zero-crossing 

points of the ac waveform. 

 

When the experts look at the pattern, the main phase bands in which 

discharges occur are first identified. In the case of pulses occurring around 

the zero crossings (e.g. as shown in Figure 5.14(a)), the expert views the 

pulses as two groups spanning the boundaries of the positive and negative 
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half cycles. By taking Figure 5.22(a) as an example, the pulses in Group 1a 

would be viewed as being in front of the pulses in Group 1b and would 

become the new positive half in the system, with Group 2 becoming the new 

negative half. This regrouping results in the phase-resolved pattern of Figure 

5.22(b), which is then used to calculate the remaining descriptors, excluding 

the phase position, which remain as on the zeros. Incorporating this 

functionality into the knowledge-based system, and automatically adjusting 

the calculations accordingly leads to the descriptors being correctly 

computed and an enhanced classification capability. 
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Figure 5.22. Grouping the PD activity in a phase-resolved pattern when across the zero 

crossings 

 

5.1.2.2 Stage #2: Match Associated PD Behaviour 

  

The second stage of this novel diagnostic approach, as shown in Figure 5.5, is 

concerned with recognising the underlying PD physical phenomena 

associated with the meaningful descriptors identified in the first stage. This 

stage determines the physical process that occurs within the insulation at the 

time of a PD, which is characterised by the different descriptors apparent 

within the phase-resolved pattern. 

 

Before the statistics were created for stage #1 of the process, these PD 

behaviours were sought after from the experts. This allowed validation of 

whether the experts could indeed infer PD phenomena from the descriptors 

that were identified in stage #1. Once the PD behaviours had been elicited 

and validated by the expert, prior to automating the statistics to identify the 
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descriptors within the phase-resolved pattern, a prototype was created. This 

prototype consisted of drop down menus of the descriptors and their values, 

allowing the expert to manually choose the descriptors apparent in the 

phase-resolved pattern to be diagnosed. This was created to test the validity 

of the PD behaviours that will be described in this section. Statistics for 

identifying the descriptors were then automated by performing various 

mathematical calculations and feature extraction, shown in Table 5.2 and 

described in the last section. 

 

Interviews with the experts were performed to establish the PD behaviours 

associated with the descriptors. Again a structured meeting centred on the 

use of case studies was used to establish how experts can infer PD behaviour 

from phase-resolved pattern descriptors. Relevant knowledge from the 

transcripts produced was selected to create semantic network models of 

domain knowledge. This was achieved by identifying ‘indicative’ 

relationships within the domain knowledge, which highlighted specific PD 

behaviours and how they can be described using distinguishing descriptors 

of the phase-resolved pattern. Representing this knowledge as semantic 

network models, see Appendix 1, provides graphical diagrams of how the 

descriptors match to the associated PD behaviours. This comprehensible 

representation makes it easier for the experts to understand and 

subsequently validate.  

 

An example transcript is displayed in Figure 5.23. It should be noted that this 

transcript is taken from the final knowledge document and is included here 

to highlight how the various descriptors and PD behaviours could be 

“extracted” from a transcript and modelled for validation. 
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Figure 5.23. Extraction of descriptors and their inferred PD behaviours from a transcript 
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In Figure 5.23 the words that highlighted the presence of certain descriptors 

were sought and highlighted in red, which included “displayed”, 

“displaying” and “show”. This led to the areas in the transcript that 

discussed certain descriptors, which were highlighted in blue. Then words 

that highlighted relationships between descriptors and PD behaviours were 

identified, and in this case included “associated”, indicated”, “because” and 

“since”, which are highlight in red and underlined. From the identification of 

these relationships the PD behaviours could be identified and highlighted in 

green. From the highlighted sections, the various semantic network models 

could be created and are shown in Figure 5.23. The remainder of the 

transcript holds further details of the identified models or clues as to how to 

extract the descriptor from the phase-resolved pattern (highlighted in pink). 

This transcript abstract also holds knowledge regarding how the 

characteristics are identified from the PD behaviours, which will be 

demonstrated in section 5.1.2.3. 

 

As further transcripts are modelled, additional PD behaviours could be 

inferred from the same descriptor. Table 5.3 shows the list of descriptors with 

their inferred PD behaviours (it should be noted that this is the expert 

knowledge and it is not the intention of this thesis to discuss PD 

phenomena). This table was created from the validated models, see 

Appendix 1, and implemented into the original prototype to create a 

prototype that could validate stages 1 and 2. This prototype enabled the 

experts to validate the usefulness of the descriptors identified in classifying 

PD behaviour from phase-resolved patterns and the correctness of their 

statistical thresholds.  
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Table 5.3. List of descriptors and their PD behaviours 

Descriptor 
Name Descriptor Value Behaviour 

Position Peaks • Minimal space charge present i.e. no memory effect 

beyond half cycle 
 Zero • Discharge dependent on rate of change of voltage 

  • Issue of Space charge 

 In-between • Shift Between absolute and rate of change of voltage 

  • Issue of Space charge 

 Random • PD Source in motion 

  • Interference 

Magnitude Large • Arcing 

 Medium • Pulses initiated in insulation 

 Small • Pulses at a very sharp tip 

  • Pulses at a small site 

Shape Knife blade • Energetic Discharge 

 Chopped sine • Voltage dependent (but not proportional to it) 

 Rectangular box • Not voltage dependent 

 Podium • No space charge 

  • Discharge capable of going through two mechanisms 

Phase Inception 
Symmetry 

Symmetrical • Conditions for PD inception are the same for both 

polarities 
 Asymmetrical • Conditions for PD inception are different for both 

polarities 

Magnitude 
Symmetry 

Positive more than 
negative 

• Extraction of electrons requires comparatively more energy 

in positive half cycle 
 Positive less than 

negative 
• Extraction of electrons requires comparatively more energy 

in negative half cycle 
 Positive equals negative • Defect is geometrically symmetrical 

Shape Symmetry Symmetrical • Defect is geometrically symmetrical 

 Asymmetrical • Defect is geometrically asymmetrical 

Density  Positive more sparse • Ease of discharging is greater in negative half cycle 

Symmetry Negative more sparse • Ease of discharging is greater in positive half cycle 

Pulse  Biased to earlier phase • Discharge retains memory from previous cycle 

Distribution Biased to later phase • Not possible 

 Unbiased • No space charge 

Range Broad • PD pulse influenced by local stored charge 

  • Many small discharge sites acting simultaneously 

  • Charge can disperse easily 

 Narrow • Sufficient charge released to suppress further pulses 

Density Dense • Pulses at a conducting surface 

  • No space charge 

 Sparse • Defect experiencing inconsistent electric field 

  • Interference 

  • Space charge with a long time constant 

Magnitude  Constant magnitude • Constant geometry and capacitance 
Consistency  • Certain amount of energy to ionise the insulation 

 Not constant magnitude • Locally stored charge 

  • PD site is not confined to one region 

Cycle to cycle 
activity 

Number of cycles of 
between PD activity 

• Significant quantity of locally stored charge 
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5.1.2.3 Stage 3: Match Associated Defect Characteristics 

 

The creation of the new prototype led to the scheduling of further knowledge 

elicitation meetings to capture expert knowledge used to classify defect 

characteristics from “observed” PD behaviour. A knowledge elicitation 

technique called ‘card sorting’ was utilised to facilitate this acquisition. 

 

The card sorting technique involved creating cards describing different PD 

behaviours highlighted and validated during the previous knowledge 

elicitation and prototype development. These PD behaviours were presented 

to the expert and the expert was asked to group them into similar traits. An 

example of this can be seen in Figure 5.24, where the grouped PD behaviours 

are all signs of the presence of a metal part within the insulation. The expert 

was then able to identify which PD behaviours could lead to the creation of 

particular defect characteristics. An example of this is shown in Figure 5.25, 

where the left-hand side represents the PD behaviours and the right-hand 

side their combined defect characteristic.  

Figure 5.24. A group of PD behaviours indicating the presence of a metal part 

Figure 5.25. Combination of PD behaviours leading to a defect characteristic 
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Stage #3 of the diagnostic process invokes the knowledge of how to match 

these defect characteristics to their associated PD behaviours, already 

identified in stage #2. These defect characteristics inform the expert about the 

physical nature and make-up of the defect source e.g. presence of metal 

parts, or between which types of material the discharge is occurring. The 

identification of specific defect characteristics would allow the expert to 

subsequently infer the existence of actual defect types (stage #4). 

 

From previous elicitation meetings, it was discovered that the phase position 

of the pulses within a half cycle was an important descriptor of the phase-

resolved pattern. The experts highlighted that each of the identified defect 

characteristics were tied to the phase position of the pulses. Therefore, as 

seen in the knowledge models in Appendix 2, each defect characteristic is 

inferred by multiple PD behaviours including a behaviour that is indicative 

of the phase position. Also, when the expert was examining the activity 

within one half cycle, it became apparent that the half cycle that was being 

examined should be an attribute of each defect characteristic. 

 

The semantic network models that were created for this stage of the process 

can be found in Appendix 2. These models were created as a result of the 

transcripts that were constructed after the card sorting technique. Using the 

same example abstract of transcript from section 5.2.2.2 (shown in Figure 

5.26) key words were identified that could lead to the area in the transcript 

that described defect characteristics. In this case the key words “thought of as 

a” were highlighted in red and underlined leading to the identification of the 

description of the defect characteristics, which is highlighted in orange. The 

PD behaviours, which could be grouped to imply this defect characteristic, 

were identified in stage #2 and are highlighted in green, along with their 

descriptors, which are highlighted in blue. Other information apparent in 

this transcript are the description of defect types, these are highlighted in 

purple and are used in stage #4. 
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 Figure 5.26. Extraction of defect characteristics from PD behaviours from a transcript 
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Again after validation, a prototype demonstrating this stage of the diagnosis 

was implemented from these semantic network models, which extended the 

creation of the first two stages for validation. Further testing of this new 

prototype and presentation of the results to the expert led to identifying 

issues with the statistic thresholds in stage #1, and the terminology 

associated with the original models from stage #2. The expert disagreed with 

some of the automated descriptors, highlighting that the thresholds required 

altering to capture the correct descriptor values. These were not identified 

earlier, due to the automated statistics being implemented in parallel to the 

knowledge base of stage #3.  

 

Presenting the results to the expert also led to discrepancies in the 

terminology of stage #2. This was highlighted when certain PD behaviours 

no longer made sense to the expert in the context of a certain defect 

characteristic. Here, further tacit knowledge was discovered regarding the 

PD behaviours, which were then remodelled and re-implemented, before 

being revalidated by the experts. 

 

5.1.2.4 Stage #4: Classify Defect 

 

All defect characteristics modelled in stage #3 were presented to the expert 

again in card sorting format. From the card sorting technique the experts 

were instructed to assign specific defect characteristics to the defect types 

that were defined in the initial knowledge elicitation meetings (Table 5.1). 

Again the assignment of defect characteristics to defect types is not included 

to provoke discussion about the individual types, but to show how the 

experts placed each defect characteristic into the defined defect types (Figure 

5.27). The expert was then asked if the characteristics in each of the defect 

classes could be combined to create the implied PD source. Semantic models 

(Appendix 3) were created from these decisions, and implemented in the 

prototype system. The models in Appendix 3 show the whole diagnostic 

flow through the different stages, indicating which conditions and actions 

are utilised in each stage. 
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A checklist of the various defects and descriptors was created to show the 

experts which descriptor values were utilised, in various ways, to describe 

each of the defects. This was created to allow verification that the correct 

descriptors were being used. This table is shown in Table 5.4. 

Figure 5.27. Assignment of defect characteristics to defect classes 



 

112 

Table 5.4. Descriptors used for defect classification 

 Floating 
Component 

Floating 
Electrode 

Protrusion Void Surface 
Discharge 

Bad 
Contact 

Rolling 
Particle 

Bouncing 
Particle 

Phase Positon         

Peaks   X      
Zeros X X  X X X   

Inbetween X X  X X    
Random       X X 

         
Magnitude         

Small   X X X    
Megium X X  X X    

Large  X       
         

Shape         
Knide Blade   X   X   

Chopped Sine X   X X  X X 
Podium   X      

Rectangle  X  X X    
         

Phase Inception 
Symmetry 

        

Symmetrical  X    X   
Asymmetrical   X      

         
Magnitude 
Symmetry 

        

Positive more than 
negative 

  X      

Positive less than 
negative 

  X      

Positive equals 
negative 

X X  X X X   

         
Shape Symmetry         

Symmetrical X X  X X X   
Asymmetrical X X X   X   

         
Density Symmetry         

Positive more 
sparse 

  X      

Negative more 
sparse 

  X      

Same density         
         

Pulse Distribution         
Biased to later 

phase 
        

Biased to earlier 
phase 

  X X X    

Unbiased   X      
         

Phase Range         
Broad X X X  X X X X 

Narrow    X X    
         

Density         
Dense  X X  X X X  
Sparse X  X X X   X 

         
Magnitude 

Consistency 
        

Constant  X X      
Not Constant    X X    

         
Cycle to Cycle 

Activity 
        

No. of cycles of 
inactivity 

X        
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5.1.2.5 Stage #5: Identify PD Site 

 
The location of the defect is important when diagnosing defects so that the 

defect can be found quickly and repaired. Previous research identified the 

PD location from various techniques including “time-of-flight” [Judd-04]. 

This technique provides valuable location information, however, it is 

thought that the knowledge-based system could support this more accurate 

PD location technique by adding confidence to (or corroborating) the output 

of the PD location algorithm. Therefore, stage #5 deploys the experts’ 

knowledge to inform the user about the subsystem within the equipment 

where the defect identified in stage #4 may exist. It should be noted that the 

PD site is identified from the phase-resolved pattern alone, utilising the 

experts’ knowledge regarding the PD site from certain descriptors in the 

pattern. This type of information is usually not sought from a phase-resolved 

pattern but rather through the positioning of multiple sensors and 

calculations using the “time-of-flight” algorithm [Judd-04]. 

 

The identification of this knowledge was gained through further structured 

meetings with the experts. From these meetings it became clear that only the 

protrusion defect could be categorised into two sub categories, by using the 

descriptors from the phase-resolved pattern; on the high voltage or earth 

conductors. Therefore, it is only the protrusion that presents a site of the PD 

source to the operator of the system. This knowledge was modelled, 

validated and implemented within the prototype. 

 

It was hoped that the insulation type would be transparent when trying to 

decipher the site of the protrusion defect, however, during the knowledge 

ascertain meetings it was discovered that the insulation type was required 

prior to concluding the PD site. Originally it was thought that other 

descriptors of the phase-resolved pattern could be utilised to identify the 

type of insulation prior to automatically identifying the PD site, without user 

input. However, as far as an expert is concerned there is ambiguity between 

these situations. Automatically identifying (from the PD activity represented 

in the phase-resolved pattern) the insulation type, as well as the site of the 
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protrusion (high voltage or earth conductor) can therefore not be performed 

without manual intervention.  

 

5.1.3 Knowledge Validation and Utilisation 

 

As shown in the sections above, each of the stages involved a cyclic process 

of elicitation, representation, validation and implementation within a 

prototype for further validation. As the knowledge was captured in each 

stage, it was presented back to the experts in the transcripts, models and the 

prototype, allowing the experts to gain a picture of how the knowledge 

would be applied. These feedback sessions identified various 

misinterpretations and discrepancies that existed in the modelled 

knowledge, along with any areas of missing knowledge, which led to the 

alterations of various terminologies and the addition of certain descriptors.  

 

An example of a descriptor that was added after validation was the 

magnitude consistency descriptor. Having not been discovered in the 

original knowledge elicitation meetings, running further case studies 

through the prototype of the knowledge-based system identified trouble in 

discriminating between certain defect types. Further meetings were arranged 

presenting these case studies to the experts, where it became apparent that 

the expert examined the consistency of the magnitude of the pulses in the 

phase-resolved pattern. The addition of this descriptor would aid in the 

classification of defect types, which the knowledge-based system was having 

trouble discriminating between. This was missed in previous meetings due 

to this descriptor being overshadowed by more important ones in the 

original case studies presented to the experts. The discovery of this new 

descriptor led to further elicitation meetings to capture the PD behaviour 

associated with magnitude consistency, along with assigning these new 

behaviours to the appropriate defect characteristics to aid in the diagnosis. 

 

The models of the individual stages in Figure 5.5 were implemented as rules 

to create the prototype systems prior to development of the final system. To 
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implement these rules, a software environment that allows the creation of a 

forward-chaining rule-based system was identified; ‘Drools’ [JBoss-08]. Data-

driven reasoning was chosen due to the inference models identified in the 

elicitation process, and because the descriptors of the phase-resolved pattern 

were already known and could be calculated in a way that could lead to the 

identification of certain defect classes. 

 

Drools [JBoss-08] is an example of a forward-chaining inference engine and 

has been used to construct the knowledge-based system described in this 

thesis. Drools was chosen because of its implementation in java and therefore 

its ability to be integrated into existing work by the University of Strathclyde, 

which will be described in the future work section of chapter 7. Drools’ data-

driven reasoning provides a result by matching the condition of the rules, 

where a rule follows the structure IF condition THEN action. To achieve this 

data-driven approach, Drools uses the RETE algorithm (described in section 

3.1.6.3) to traverse through the data until it results in fewer matches and a 

conclusion can be reached. The rules are stored in the five knowledge bases 

in production memory, while the facts (java objects) that the inference engine 

matches are placed into the working memory, where they can be further 

used to describe the conditions of new rules. 

 

There is no strict algorithm to follow when converting the knowledge 

captured in the CommonKADS models into a rule-based system. When 

constructing the prototype of the system the different stages of the activity 

diagram became the different stages of the system, which were required to 

complete the classification of a defect. Within these tasks, knowledge rules 

are needed. These rules within Drools follow a WHEN condition THEN action 

structure and are constructed by the use of the semantic network models 

gathered during the knowledge elicitation stage. An example of how a model 

is converted to the Drools rules can be seen in Figure 5.28. 

 

Figure 5.28 shows how the left-hand side of the model becomes the when part 

of the rule and the right-hand side becomes the then. For example, in stage #2 

of the system, the when part of the rule examines the identified descriptor 
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from the phase-resolved pattern and distinguishes its name and value. In this 

example the conclusion inserts two new PD behaviour facts into the working 

memory; this allows them to be used in the next stage for identifying defect 

characteristics (Figure 5.29), which in turn are used to classify the PD source.  

Semantic 

Network 

Model 

Drools  

Rule 

Figure 5.28. Conversion of semantic network model to Drools rule – stage #2 

rule "Phase Position at zero" 

no-loop true 

salience 1 

  when 

          d: Descriptor(eval(name.equals(Messages.getString("descriptor.position"))),   

          eval(value.equals(Messages.getString("descriptor.zero")))) 

 then 

          insert(new Behaviours(Messages.getString("behaviour.rateOfChangeVoltage"), d)); 

          insert(new Behaviours(Messages.getString("behaviour.spaceCharge"), d));   

end 

Semantic 

Network 

Model 

Figure 5.29. Conversion of semantic network model to Drools rule – stage #3 

Drools  

Rule 

rule "floating components, Medium severity" 

no-loop true 

  when 

        b: Behaviours(eval(behaviour == Messages.getString("behaviour.rateOfChangeVoltage"))) 

  and  b2: Behaviours(eval(behaviour == Messages.getString("behaviour.energetic"))) 

  and  b3: Behaviours(eval(behaviour == Messages.getString("behaviour.sym")))  

 then 

         String phase1 = b.getPhase(); 

         String phase2 = b2.getPhase(); 

         if(phase1 == phase2){ 

             insert(new Characteristics(Messages.getString("characteristic.medConductor"), b, b2, b3)); 

         } 
end 
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The rules are constructed initially with a unique name beside the attribute 

“rule”. Within the rule the keyword “insert” means that the output is placed 

in working memory where it can be further utilised. The “no-loop true” 

means that once this rule has been fired it cannot be fired again, eliminating 

recursion. The “salience” of a rule depicts the priority of that rule, with a rule 

exhibiting a higher salience being fired before other rules with relatively 

lower salience levels. The expert decided on the recursion and salience 

associated with each rule and test cases were run to validate the ordering. 

The salience was more important during the initial stages of diagnosis due to 

certain descriptors e.g. phase positions, having an influence on later rules 

within the same rule base. For example, within stage #1, a salience from 1 to 

7, with 7 representing the highest priority, was implemented for the 

calculation of the various descriptors.  

 

5.2 Generic Nature of System 

 

The incremental knowledge-based approach, described above, to the analysis 

of PD data was originally created using knowledge pertaining to UHF sensor 

data from GIS. However, due to the common physical nature of PD within 

high voltage equipment [Fuhr-91] the knowledge-based system offers the 

potential of a generic approach to classifying defects from phase-resolved 

patterns created from IEC60270 or UHF sensors. The generic application is 

achieved by providing a diagnosis from IEC60270 data, performed using the 

knowledge already captured and implemented from UHF phase-resolved 

patterns. Due to the consistent physical nature of PD across different high 

voltage apparatus [Fuhr-91] this knowledge-based system also has the 

potential to diagnose defects in different high voltage equipment, including 

power transformers and GIS.  

 

The generic nature of the knowledge-based system created during this 

research, was realised when diagnosing defects from transformer data 

received in IEC60270 format from the University of Southampton. This 
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generic nature, along with the results of the original UHF diagnostics, will be 

examined in chapter 6 of this thesis. 

 

5.3 Conclusion 

 

This chapter has shown that, using knowledge engineering techniques, the 

diagnostic process of experts in the field of PD diagnostics can be identified, 

modelled, validated and implemented within a knowledge-based system to 

automate diagnosis. Knowledge engineering techniques played an important 

role in this research. It helped clarify the experts’ understanding of how they 

examined phase-resolved patterns and identify their structured diagnostic 

process. It provided elicitation techniques to discover expert knowledge in 

the identification of meaningful descriptors of the phase-resolved pattern, 

their associated PD behaviours, defect characteristics, classification and PD 

site. Knowledge representation approaches formed a major part ensuring 

that the knowledge was constructed in a suitable format for validation and 

implementation into the knowledge-based system.  

 

A knowledge-based approach to the diagnosis of PD data, not only provides 

a classification of the PD source, but it also provides explanation of how the 

classification was derived. Capturing the tacit knowledge of experts in the 

area of PD phenomena, phase-resolved patterns and defect classification 

underpins this explanation. The main benefit of this knowledge-based 

system is the explanation provided as to why a certain defect was identified. 

This justification of the classification will provide the user with more 

confidence in the final output. This is a novel approach to phase-resolved 

defect diagnosis, as the systems created and researched in the past, see 

section 3.1, applied machine learning techniques offering no explanation of 

how a defect is classified. These systems present the user with the diagnosed 

defect for a certain input, without informing the user as to how it reached its 

diagnosis. A further disadvantage of the previous types of techniques is their 

requirement to be trained on previous data sets, which are not always 

available. Unlike these techniques, the knowledge-based system does not 

have the requirement to be trained, or retrained as new defect samples arise. 
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During the knowledge engineering stage specific issues were highlighted 

with regard to the examination of the phase-resolved pattern. When the 

discharges occur across the zero crossings the PD activity is occurring 

between the half cycles. Previous classifiers/machine learning techniques do 

not recognise this effect causing the miscalculation of certain statistics 

resulting in misclassification. Therefore when the discharges occur across the 

zero crossings the expert knowledge is reproduced in the knowledge-based 

system by examining the pattern as being continuous over the zero-crossing 

points of the ac waveform.  The grouping of the discharges on a per activity 

basis, along with the construction of algorithms to calculate different 

descriptors of the phase-resolved pattern forms the first stage of the 

diagnostic process in the knowledge-based system. 

 

The knowledge for the various stages has been captured from the literature 

of Gulski and through elicitation meetings with Judd and Reid at the 

University of Strathclyde. It has been modelled using CommonKADS, 

validated, and implemented in a Drools knowledge-based expert system 

shell. The experts’ knowledge is implemented in individual stages of the 

diagnostic process shown in Figure 5.5. Therefore, this knowledge-based 

approach provides storage of valuable expert knowledge in this domain. As 

new knowledge of PD behaviour, defect characteristics or defect 

classification are introduced by additional experts, or through further 

understanding of the phase-resolved pattern and PD phenomena, additional 

knowledge can easily be added to the corresponding stage of the knowledge-

based system. This offers an extensible system for automated PD diagnostics. 

  

Using the phase-resolved PD pattern as the input, the knowledge-based 

system has the potential to classify defects from either IEC60270 or UHF 

sensor data. The knowledge associated with PD behaviours is independent 

of the type of equipment; this knowledge can be employed immediately on 

various apparatus, including transformers and GIS. Consequently, this 

knowledge-based approach could form the basis of a generic system for the 

diagnosis of defects from a variety of sensory data across several types of 
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high voltage equipment. The application and results identified by this 

approach are provided in the next chapter. 
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Chapter 6 

 

Application of Knowledge-Based System for PD 

Analysis 

 

 

 

6.0 Introduction  

 

As shown in the last chapter, an incremental knowledge-based approach was 

adopted to diagnose PD sources within high voltage equipment. To quantify 

the application of the knowledge-based system, the knowledge was 

constructed in the Drools programming language, as previously described. 

Once the final prototype of the system was created it was tested with a 

variety of defects in various high voltage apparatus, examples of which will 

be demonstrated through assorted case studies presented in this chapter. 

 

As explained in chapter 5, the generic workable format input to the 

knowledge-based system is a phase-resolved PD pattern consisting of the 

pulse’s amplitude, the cycle number on which the pulse appears and the phase 

position of the pulse on the voltage cycle, where the PD pulses are captured 

by a measurement system with phase-resolved capability. This research 

concentrates on the classification of phase-resolved patterns created from 

either UHF or IEC60270 PD data. These patterns are in the form of a 50*64 

matrix of floating points that represent the PD pulse amplitude in 50 

consecutive cycles across 64 phase windows (buckets) of the voltage cycle; 

with the positive half cycle appearing first, between 0° and 180° and then the 

negative half cycle between 180° and 360°.  

 

In the following case studies, the phase-resolved pattern representing the PD 

source is input to the knowledge-based system, which increments through 

the five stages of knowledge-based diagnosis to reach its conclusion, as 
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described in chapter 5. A graphical user interface (GUI) was designed to 

provide a staged diagnosis to the expert, and potentially the engineer. The 

GUI (for example Figure 6.1) is included in the following cases studies to 

display the phase-resolved pattern and the automatically calculated 

descriptors used in the diagnostic process.  

Although the knowledge-based system was initially intended to diagnose the 

PD source following noise removal, it was subsequently decided that some 

noise should also be removed by the system. Prior to identifying the 

descriptors of the phase-resolved pattern, the system removes small random 

pulses that lie outside the main phase regions in which discharges are 

present. However, if the pattern being analysed is considered to be random, 

this process is not carried out; otherwise valid data might be lost. The 

motivation for this approach to noise removal was from a visibility point of 

view, where small noise pulses might obscure certain descriptors. This 

process is performed to mimic the way an expert would remove noise by eye 

from the pattern. Alternatively, pulses below a certain noise threshold can be 

manually remove from the pattern by choosing an option in the system’s 

GUI.  

 

To achieve the explanation associated with the classification, the GUI is split 

into sections. The right-hand side of the GUI displays the 3D phase-resolved 

pattern of the discharge pulses, along with 2D mean and maximum graphs 

Figure 6.1. GUI display of a protrusion defect in GIS captured through a UHF sensor 
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calculated from the 3D pattern. All three of these graphs assist the expert 

(and the knowledge-based system) when diagnosing a defect. The left-hand 

side of the GUI shows the descriptors that have been calculated from the 

phase-resolved pattern using the statistical operators described in chapter 5. 

These descriptors describe the different aspects of the pattern that inform the 

expert about the PD behaviours occurring in the insulation.  

 

The inferred PD behaviours are then deployed to highlight the defect 

characteristics and classify the defect that is present in the insulation, along 

with its possible site within the equipment. A varying level of explanation 

regarding the diagnosis is conveyed through tables of knowledge (within the 

various tabs on the right-hand side of the GUI and in the following case 

studies) to justify the classification and provide the user with confidence in 

the result. It should be noted that the knowledge-based system assumes that 

an insulation defect exists within the apparatus and was created for 

diagnosis after an anomalous event [Brown-08] was flagged. 

 

This chapter will demonstrate through the use of suitable case studies the 

application of the knowledge-based system created in this research and show 

how the incremental approach to PD diagnosis justifies the final classification 

of the PD defect source. Various case studies from PD data monitored by 

UHF sensors or measured by conventional IEC60270 techniques are 

included, representing PD sources from a variety of high voltage equipment, 

to demonstrate the potential generic nature of the knowledge-based system. 

 

6.1 UHF Diagnosis 

 

Utilising the outcomes of previous research at the University of Strathclyde, 

UHF sensors were employed to capture the PD activity within a short section 

of 400kV GIS busbar energised using a metalclad transformer in laboratory 

conditions [Pearson-95]. The experimental setup deployed in this process is 

shown in Figure 6.2(a), along with the layout of UHF sensors on the section 

of GIS, Figure 6.2(b). The PD activity captured by this method was used as 

input to the knowledge-based system and represents the various SF6 case 
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studies used in the following subsection to demonstrate the use of the 

knowledge-based system. 

Other research at the University of Strathclyde recorded PD activity under 

high voltage ac conditions [Cleary-02][Cleary-06] using a broadband current 

transformer to measure the PD current pulses, and a pair of sensors mounted 

inside a metal tank to detect the UHF signals. This experimental setup can be 

seen in Figure 6.3 [Cleary-06] and was conducted to show the PD activity 

similar to that in an oil insulated transformer. The oil used in these 

experiments was reclaimed light-grade transformer oil, as commonly used in 

power transformers in the UK. The PD data captured from these experiments 

were previously used to test various diagnostic methods, constructed 

through previous research at the University of Strathclyde [McArthur-

04][Catterson-06][Strachan-05]. The following subsections will demonstrate 

the knowledge-based diagnosis based on this data obtained from 

experiments synthesising defects in oil-insulated transformer.  

!"#$%&'()*+(,-".$/(-0' !1#$2(3-*4,$45$672$0/(8$

*,$-9($."1)"-4):

Figure 6.2. Experimental setup and section of GIS used to monitor PD activity [Judd-99] 

Figure 6.3. Experimental setup to capture PD activity in transformer oil [Cleary-06] 
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This section will show, through the use of various case studies, the ability of 

the knowledge-based system to diagnose previously captured UHF activity 

that represent a variety of PD sources in both the GIS and transformer 

laboratory experiments. 

 

6.1.1 Protrusion Defect 

 

In this section, various case studies will be presented of a protrusion defect. 

Most types of discharge tend to exhibit some characteristic phase correlation 

with the 50Hz voltage cycle, and the protrusion, which is strictly a point to 

plane geometry, is the classic example of this. When a high voltage (at 50Hz) 

is applied across the test cell that holds the protrusion, it results in a 

geometrical field pattern that is greatest at the sharp tip. Since the field at the 

tip is proportional to the instantaneous ac voltage, PD will tend to occur 

around the voltage peaks at phase positions of 90° and 270°, as can be seen in 

Figure 6.1.  

 

When examining a phase-resolved pattern of a protrusion defect, the peaks 

of the voltage cycle tend to be the most interesting reference points. This is 

because, in a given geometry, the electric field within the insulation is 

proportional to the voltage, implying that the stress on the insulation is 

greatest in magnitude at the peaks. The force on charges is governed by the 

electric field, so when ionisation occurs, depending on the polarity of the 

voltage and the position on the ac waveform, the way in which the ionised 

electrons or ions try to move under the influence of the field controls the 

current pulses, which are the PD. 

 

The protrusion can potentially exist either on the high voltage or earth 

conductor; see Figure 6.4. If the protrusion occurs on the high voltage side 

there are two mechanisms that can cause a PD, depending on whether the 

protrusion is at a positive polarity or a negative polarity. Due to the different 

Fixed, sharp metallic objects on conductors. 
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polarities, the different direction in which the electric field is exerting a force 

on charges, and the fact that it is primarily the electrons that are mobile (i.e. 

easily accelerated because of their small mass), an electron source (free 

electron) will initiate the discharge. Depending on the polarity, the electrons 

that form the conducting channel must be either extracted from the metal or 

liberated from the insulation by ionisation.  

 

When the tip is negative and the plane opposite is positive, electrons are 

emitted from the metal tip. This is as a result of the high field strength and 

comparatively lower force required to liberate electrons from the metal 

surface, meaning that the discharges are likely to start first on the negative 

polarity, when increasing the voltage from zero [Nattrass-88]. At a higher 

voltage, once the point is reached where there are discharges on both 

polarities, they would be expected to occur earlier on in the negative part of 

the cycle with a greater density of pulses, because of the comparative ease 

with which electrons can be extracted from the metal tip at that time. These 

descriptors can be seen in the phase-resolved pattern in Figure 6.4(a). 

 

When the point is positive and the plane is negative the electrons must be 

liberated though ionisation of the insulation material. In the case of a 

protrusion on the high voltage conductor, this would occur during the 

positive half cycle. This requires a stronger electric field (higher voltage) and 

the resulting pulse tends to be more energetic. Within the phase-resolved 

pattern, a larger magnitude is observed when extracting the electrons from 

the insulation due to the overstressed insulation during the migration of the 

electrons to the positively charged metal tip. These descriptors can also be 

seen in the phase-resolved pattern in Figure 6.4(a). 
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If the sharp point is earthed and the plane opposite is at high voltage then 

the discharge physics are the same but the above explanation would be 

reversed in relation to the polarity of the ac cycle. This means that during the 

first (positive) half cycle the sharp point will be negative and during the 

second (negative) half cycle the sharp point will be positive, permitting the 

electrons to be removed from the metal tip in the positive half cycle and the 

insulation during the negative half. This would therefore show the reverse 

descriptors in the phase-resolved pattern, with the greater density of pulses 

in the positive half cycle and pulses with a larger magnitude in the negative 

half cycle, as shown in the phase-resolved pattern of Figure 6.4(b). 

 

The actual field at the metal tip is a combination of the geometrical field plus 

the local space charge field, described in section 5.1.1.2. Although different 

insulations hold different properties when it comes to the space charge effect, 

the phase-resolved patterns still show similar descriptors, which can be used 

for diagnosis. The following case studies will show diagnoses from a 

protrusion defect, as shown in Table 5.1, in SF6 (from the experiment in 

Figure 6.2) and in oil (from the experiment in Figure 6.3), where the 

protrusion occurs on either the high voltage and earth conductors. 

Figure 6.4. Protrusion defect on (a) high voltage and (b) earth conductor 
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6.1.1.1 Protrusion in SF6 Case Study 1 

 
Figure 6.1 shows the phase-resolved pattern of a PD source input to the 

knowledge-based system for diagnosis. The descriptors calculated from the 

pattern are also displayed in Figure 6.1, with the explanation from the GUI 

(representing the remaining stages of diagnosis) displayed in Table 6.1 to 

Table 6.4 respectively. This varying explanation supports the user by 

providing a build up of knowledge that leads to the classification. Parts of 

the phase-resolved pattern examined are highlighted to the user, along with 

their inferred PD behaviours, defect characteristics, classification and PD site, 

allowing the user of the system to investigate the diagnosis. This will also be 

apparent in the other case studies. 

Table 6.1 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude symmetry Positive more 
than negative 

1. Extraction of electrons requires comparatively more 
energy in the positive half cycle 

Whole cycle Density symmetry Positive more 
sparse 

1. Ease of discharging is greater in negative half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Peaks 1. Minimal space charge present i.e. no memory effect 
beyond half cycle 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 
3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Knife blade 1. Energetic discharge 

Positive half Magnitude Medium 1. Pulses initiated in insulation 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Peaks 1. Minimal space charge present i.e. no memory effect beyond 

half cycle 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 



 

130 

Table 6.2 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are different for both polarities AND 
minimal space charge present i.e. no memory effect beyond half 
cycle AND ease of discharging is greater in negative half cycle 

Metal part on conductor  

Whole cycle Conditions for PD inception are different for both polarities AND 
pulses at a conducting surface AND defect is geometrically 
asymmetrical AND pulses at a very sharp tip AND Minimal space 
charge present i.e. no memory effect beyond half cycle AND PD 
pulse phase influenced by local stored charge 

Discharge between 
conductor surfaces, 
sharp tip 

Positive half No space charge AND minimal space charge present i.e. no 
memory effect beyond half cycle 

Metal or SF6 involved 

Positive half Minimal space charge present i.e. no memory effect beyond half 
cycle AND space charge with a long time constant AND 
conditions for PD inception are different for both polarities 

Involves gas to metal 
interface 

Positive half Minimal space charge present i.e. no memory effect beyond half 
cycle AND space charge with a long time constant AND defect is 
geometrically asymmetrical 

Involves gas to metal 
interface 

Negative half No space charge AND minimal space charge present i.e. no 
memory effect beyond half cycle 

Metal or SF6 involved 

 
Table 6.3 Classification of PD Source 

Characteristics Behaviours Classification 

Metal or SF6 involved  PROTRUSION 

Involves gas to metal 
interface 

 PROTRUSION 

Metal part on conductor  PROTRUSION 

Metal part on conductor Extraction of electrons requires comparatively more 
energy in the positive half cycle AND energetic discharge 

SEVERE 
PROTRUSION 

Discharge between 
conductor surfaces, sharp tip 

 PROTRUSION 

 
Table 6.4 Site of PD Source 

Classification Characteristics Contributing Descriptors Site 

PROTRUSION Metal part on conductor Positive half more sparse On high voltage conductor 

SEVERE PROTRUSION Metal part on conductor Positive half more sparse On high voltage conductor 

 

Inputting the 50*64 matrix, represented by the protrusion phase-resolved 

pattern in the GUI of Figure 6.1, the knowledge-based system produces the 

classification shown in Table 6.3. As seen in the table, the system reached five 

conclusions that suggest the defect is a protrusion. As the knowledge-based 

system incrementally progresses through its diagnostic process, the actions 

of the rules in each stage are placed in working memory where they can be 

utilised as conditions for further rules. In this case study five results, along 

with the evidence associated with each classification, are displayed to justify 

the final diagnosis of the PD source. The site of the protrusion has also been 

identified as existing on the high voltage conductor, by examining and 

comparing the different activity in each half cycle. 
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As shown in row four of Table 6.3, the severity of the protrusion can also be 

recognised by the expert’s knowledge. In this case, the severity of the 

protrusion was identified from the physical PD process where the extraction 

of electrons requires comparatively more energy in the positive half cycle, 

along with an energetic discharge. This was apparent from the magnitude 

(descriptor) in the positive half of the voltage cycle being greater than the 

negative half, in addition to the knife blade shape in the positive half cycle. 

The final decision regarding the intensity of the protrusion is left to the user, 

which can be achieved by the decision support provided through the build 

up of evidential knowledge associated with the diagnosis. 

 

6.1.1.2 Protrusion in SF6 Case Study 2 
 

Figure 6.5 displays the GUI associated with an alternative phase-resolved 

pattern, which represents the same defect in case study 1, captured by the 

same method. This case study was included because on first inspection 

Figure 6.5 shows different activity on the positive half cycle to that of Figure 

6.1. However, as highlighted by the explanation displayed in Table 6.5 to 

Table 6.8, the knowledge-based system is still able to correctly classify the 

protrusion defect with the expert knowledge held in its knowledge bases. 

This is due to the generic nature of the knowledge rules captured during the 

knowledge engineering process. Again the system classifies the PD source as 

a protrusion defect on the high voltage conductor. 

Figure 6.5. GUI display of a protrusion defect in GIS captured through a UHF sensor 
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Table 6.5 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude symmetry Positive equals 
negative 

1. Defect is geometrically symmetrical 

Whole cycle Density symmetry Positive more 
sparse 

1. Ease of discharging is greater in negative half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Peaks 1. Minimal space charge present i.e. no memory effect 
beyond half cycle 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Energetic discharge 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Peaks 1. Minimal space charge present i.e. no memory effect beyond 

half cycle 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

 

Table 6.6 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are different for both polarities AND 
minimal space charge present i.e. no memory effect beyond half 
cycle AND ease of discharging is greater in negative half cycle 

Metal part on conductor  

 

Table 6.7 Classification of PD Source 

Characteristics Classification 

Metal part on conductor PROTRUSION 

 

Table 6.8 Site of PD Source 

Classification Characteristics Contributing Descriptors Site 

PROTRUSION Metal part on conductor Positive half more sparse On high voltage conductor 
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6.1.1.3 Protrusion in SF6 Case Study 3 

 
Figure 6.6 shows an example of the initial stages of a protrusion defect. 

Within the phase-resolved pattern the negative half cycle displays signs that 

a protrusion is present, through the shape and location of the pulses. As 

highlighted in the descriptors in the figure, the system cannot identify the 

phase position, distribution, range or density of the positive half cycle, due to 

the small number of pulses, believed by the system to be noise. However, 

identifying the possible characteristics of a protrusion in the negative half 

cycle, along with examining the pattern as a whole, the system reached the 

same conclusion as case study 6.1.1.2. The explanation associated with this 

classification can be seen in Table 6.9 to Table 6.12. 

Table 6.9 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude symmetry Positive equals 
negative 

1. Defect is geometrically symmetrical 

Whole cycle Density symmetry Positive more 
sparse 

1. Ease of discharging is greater in negative half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Energetic discharge 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Figure 6.6. GUI of protrusion defect in GIS 
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Phase Range Descriptor Name Descriptor Behaviours 

Negative half Position Peaks 1. Minimal space charge present i.e. no memory effect beyond 

half cycle 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

 

Table 6.10 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are different for both polarities AND 
minimal space charge present i.e. no memory effect beyond half 
cycle AND ease of discharging is greater in negative half cycle 

Metal part on conductor  

 

Table 6.11 Classification of PD Source 

Characteristics Classification 

Metal part on conductor PROTRUSION 

 

Table 6.12 Site of PD Source 

Classification Characteristics Contributing Descriptors Site 

PROTRUSION Metal part on conductor Positive half more sparse On high voltage conductor 

 

6.1.1.4 Protrusion in SF6 Case Study 4 

 

A lack of data from a protrusion defect on the earth conductor in SF6 led to 

further experiments in the laboratory using the experimental setup in [Reid-

06], with a 15mm needle on the earth conductor and a gap between the plates 

of 34mm. An example of the PD activity just after inception can be seen in 

the phase-resolved pattern of Figure 6.7. Inputting this phase-resolved 

pattern to the knowledge-based system correctly classified the defect as a 

protrusion. The explanation associated with this classification can be seen in 

Table 6.13 to Table 6.16. The system also concluded that the protrusion 

resided on the earth conductor by comparing of the pulse density in each 

half cycle (identified in Table 6.16). 
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Table 6.13 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude symmetry Positive more 
than negative 

1. Extraction of electrons requires comparatively more 
energy in positive half cycle 

Whole cycle Density symmetry Negative more 
sparse 

1. Ease of discharging is greater in positive half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Peaks 1. Minimal space charge present i.e. no memory effect beyond 

half cycle 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Number of pulses Too few 1. Too few pulses to diagnose 

 

Figure 6.7. GUI of protrusion defect on the earth conductor in SF6 
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Table 6.14 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are different for both polarities AND 
minimal space charge present i.e. no memory effect beyond half 
cycle AND ease of discharging is greater in positive half cycle 

Metal part on conductor  

Whole cycle Conditions for PD inception are different for both polarities AND 
pulses at a conducting surface AND defect is geometrically 
asymmetrical AND pulses at a very sharp tip AND Minimal space 
charge present i.e. no memory effect beyond half cycle AND PD 
pulse phase influenced by local stored charge 

Discharge between 
conductor surfaces, 
sharp tip 

Positive half No space charge AND minimal space charge present i.e. no 
memory effect beyond half cycle 

Metal or SF6 involved 

Negative half Too few pulses to diagnose Too few pulses to 
diagnose 

 

Table 6.15 Classification of PD Source 

Characteristics Classification 

Metal part on conductor PROTRUSION 

Discharge between conductor surfaces, sharp tip PROTRUSION 

Metal or SF6 involved PROTRUSION 

 

Table 6.16 Site of PD Source 

Classification Characteristics Contributing Descriptors Site 

PROTRUSION Metal part on a conductor Negative half more sparse On earth conductor 

 

6.1.1.5 Protrusion in SF6 Case Study 5 

 

The experimental setup in [Reid-06] was used to examine a severe case of PD 

activity of a protrusion on the earth conductor. This was achieved by 

increasing the voltage level to simulate a severe protrusion, the results of 

which can be seen in the phase-resolved pattern of Figure 6.8. Inputting this 

into the knowledge-based system resulted in correct classification of a 

protrusion on the earth conductor; the explanation associated with the 

classification can be seen in Table 6.17 to Table 6.20.  
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Table 6.17 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude symmetry Positive less 
than negative 

1. Extraction of electrons requires comparatively more 
energy in the negative half cycle 

Whole cycle Density symmetry Negative more 
sparse 

1. Ease of discharging is greater in positive half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Peaks 1. Minimal space charge present i.e. no memory effect 
beyond half cycle 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Medium 1. Pulses initiated in insulation 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Peaks 1. Minimal space charge present i.e. no memory effect 
beyond half cycle 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Narrow 1. Sufficient charge released to suppress further pulses 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Knife blade 1. Energetic discharge 

Negative half Magnitude Large 1. Arcing 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

 

Figure 6.8. GUI of protrusion defect on the earth conductor in SF6 
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Table 6.18 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are different for both polarities AND 
minimal space charge present i.e. no memory effect beyond half 
cycle AND ease of discharging is greater in positive half cycle 

Metal part on a conductor  

Positive half No space charge AND minimal space charge present i.e. no 
memory effect beyond half cycle 

Metal or SF6 involved 

Negative half Minimal space charge present i.e. no memory effect beyond half 
cycle AND space charge with a long time constant AND 
conditions for PD inception are different for both polarities 

Involves gas to metal 
interface 

Negative half No space charge AND minimal space charge present i.e. no 
memory effect beyond half cycle 

Metal or SF6 involved 

Negative half Minimal space charge present i.e. no memory effect beyond half 
cycle AND space charge with a long time constant AND defect is 
geometrically asymmetrical 

Involves gas to metal 
interface 

 

Table 6.19 Classification of PD Source 

Characteristics Behaviours Classification 

Metal or SF6 involved  PROTRUSION 

Involves gas to metal 
interface 

 PROTRUSION 

Metal part on a conductor  PROTRUSION 

Metal part on a conductor Extraction of electrons requires comparatively 
more energy in the negative half cycle AND 
energetic discharge 

SEVERE PROTRUSION 

 

Table 6.20 Site of PD Source 

Classification Characteristics Contributing Descriptors Site 

PROTRUSION Metal part on a conductor Negative half more sparse On earth conductor 

SEVERE PROTRUSION Metal part on a conductor Negative half more sparse On earth conductor 

 

6.1.1.6 Protrusion in Oil-insulated Transformer Case Study 

 

Figure 6.9 shows a typical phase-resolved pattern from a protrusion placed 

within the transformer oil laboratory experiment (Figure 6.3). PD activity in 

oil (Figure 6.9) still demonstrates similar characteristics to that of a 

protrusion within SF6 (Figure 6.8).  

 

In the case of Figure 6.9 the protrusion resides on the high voltage conductor. 

The automatic identification of the site of the protrusion defect in oil is not as 

straight forward as its classification. When the protrusion resides on the high 

voltage conductor, the PD activity in oil behaves differently to that in SF6. 

Depending on the polarity, a different pattern (indicating the PD site) is 

observed depending on the insulation in which the protrusion defect exists 
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[Cleary-05]. The main descriptors of the phase-resolved pattern used to 

identify the site of the protrusion are the comparison of the density between 

half cycles. When the protrusion resides on the high voltage conductor in oil 

these features are shown in the reverse half cycle to the protrusion in SF6, for 

example see Figure 6.1. 

As discussed in section 5.1.2.5, the identification of the PD site requires user 

intervention regarding the type of insulation prior to diagnosis. For this case 

study, the protrusion resides on the high voltage conductor in oil. According 

to the expert, the difference in pattern to that obtained for a defect in SF6 

could be due to the oil containing carbon, which is semi conducting. When 

large discharges occur carbonisation is caused in the oil, eventually turning 

the oil brown. Therefore, when a discharge occurs, fractures could appear 

within the liquid, and possible carbonisation within the gas channels could 

create a source of electrons and therefore a greater number of small 

discharges in the positive half cycle. 

 

Inputting this phase-resolved pattern to the knowledge-based system 

resulted in the diagnosis shown in Table 6.21 to Table 6.24, correctly 

identifying the defect as a protrusion. A clearer classification regarding the 

site of the PD could be achieved with further investigation, experiments and 

Figure 6.9. GUI display of a protrusion defect in transformer model captured through a 

UHF sensor 
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an increase in knowledge base. However at present, due to the defect being 

in oil, the knowledge-based system is unsure of the site of the protrusion, 

since in oil this pattern is also indicative of a protrusion on the earth 

conductor. 

 
Table 6.21 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude symmetry Positive less 
than negative 

1. Extraction of electrons requires comparatively more 
energy in negative half cycle 

Whole cycle Density symmetry Negative 
more sparse 

1. Ease of discharging is greater in positive half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Peaks 1. Minimal space charge present i.e. no memory effect 
beyond half cycle 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Inbetween 1. Shift between absolute and rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Narrow 1. Sufficient charge released to suppress further pulses 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Knife blade 1. Energetic discharge 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 
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Table 6.22 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are different for both polarities AND 
minimal space charge present i.e. no memory effect beyond half 
cycle AND ease of discharging is greater in positive half cycle 

Metal part on a conductor 

Whole cycle Conditions for PD inception are different for both polarities AND 
pulses at a conducting surface AND defect is geometrically 
asymmetrical AND pulses at a very sharp tip AND Minimal space 
charge present i.e. no memory effect beyond half cycle AND PD 
pulse phase influenced by local stored charge 

Discharge between 
conductor surfaces, sharp 
tip 

Positive half No space charge AND minimal space charge present i.e. no 
memory effect beyond half cycle 

Metal or SF6 involved 

Negative half Sufficient charge released to suppress further pulses AND issue of 
space charge 

Discharge on an 
unbounded surface 

 
Table 6.23 Classification of PD Source 

Characteristics Behaviours Classification 

Metal or SF6 involved  PROTRUSION 

Metal part on a conductor  PROTRUSION 

Metal part on a conductor Extract electrons required comparatively more 
energy in negative half AND energetic discharge 

SEVERE PROTRUSION 

Discharge between 
conductor surfaces, sharp tip 

 PROTRUSION 

 
Table 6.24 Site of PD Source 

Classification Insulation Site 

PROTRUSION Oil Either on the earth or high voltage conductor 

 

 

6.1.2 Surface Discharge Defect 

Surface discharges occur as a result of dielectric relaxation or surface 

flashover, with the possibility of arcing in a severe case. Within the phase-

resolved pattern the PD activity would show a broad distribution of pulses.  

The main activity would occur over the zero crossings, or between the zero 

crossings and the peaks, due to the accumulation of space charge creating 

“enough residual electric field at the zero-crossing positions to maintain PD 

activity” [Cleary-05]. This section will demonstrate how the system 

diagnoses the surface discharge defect, as shown in Table 5.1, in SF6 (from 

Caused by moisture ingress causing pressboard to become semi-

conducting. 

 



 

142 

the experiment in Figure 6.2) and transformer oil (from the experiment in 

Figure 6.3). 

 

6.1.2.1 Surface Discharge in SF6 Case Study 

 

The phase-resolved pattern in Figure 6.10 represents PD from a solid 

dielectric sample captured by UHF sensors in GIS. This data was input to the 

knowledge-based system for diagnosis. As shown in the two 2D plots at the 

bottom of Figure 6.10, the half cycles have been shifted before the 

classification occurs. This case study shows an example of when the 

discharges are occurring on the zero crossings relative to the voltage cycle. 

Here, as explained in section 5.1.2.1, the discharges are grouped on a per 

activity basis over the zero crossings, rather than per a half cycle basis, as 

with other pattern recognition approaches to PD diagnostics. Grouping the 

activity in this way ensures that the statistics applied to the discharges are 

correctly calculated for the PD activity and in this case the system correctly 

classified the defect as a surface discharge.  

The explanation for this classification is shown in Table 6.25 to Table 6.27. As 

apparent in Table 6.26, after the phase position has been identified as around 

the zero crossings, the PD behaviour associated with the range, density, 

Figure 6.10. GUI showing a surface discharge defect in GIS 
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shape and size of the pulses inform the expert of the possibility that surface 

discharge is occurring.  

Table 6.25 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive less 
than negative 

1. Extraction of electrons requires comparatively more 
energy in the negative half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Zero 1. Discharge dependent on rate of change of voltage 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

Negative half Position Zero 1. Discharge dependent on rate of change of voltage 

 2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Voltage dependent (but not proportional to it) 

 
Table 6.26 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

Negative half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

 

Table 6.27 Classification of PD Source 

Characteristics Classification 

Poor insulation (carbonised or damp) SURFACE DISCHARGE 
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6.1.2.2 Surface Discharge in Oil-insulated Transformer Case 

Study 1 

 

Surface discharge was reproduced in the laboratory by soaking a pressboard 

sample for 24 hours prior to testing to mimic the moisture contamination 

[Cleary-06]. The phase-resolved pattern in Figure 6.11 represents this PD 

source, showing the distribution of pulses in-between the zero crossings and 

the peaks due to the accumulation of space charge within the insulation 

(explained in section 5.1.1.2). The diagnosis performed in this case study can 

be seen in Tables 6.28 to 6.30.  

 

As shown in the following tables, the system correctly classified the PD 

source as surface discharge. In the case of a surface discharge, the experts’ 

knowledge regarding the phase-resolved pattern cannot be used to identify 

the site of this PD source. This is due to the expert not being able to 

distinguish unique descriptors for this PD source that would inform the PD 

site. 

 
 

Figure 6.11. GUI of surface discharge in oil-filled transformer model 
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Table 6.28 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive 
more than 
negative 

1. Extraction of electrons requires comparatively more 
energy in the positive half cycle 

Whole cycle Density symmetry Negative 
more sparse 

1. Ease of discharging is greater in positive half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

Negative half Position Inbetween 1. Shift between absolute and rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

 
Table 6.29 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

Negative half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

 

Table 6.30 Classification of PD Source 

Characteristics Classification 

Poor insulation (carbonised or damp) SURFACE DISCHARGE 
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6.1.2.3 Surface Discharge in Oil-insulated Transformer Case 

Study 2 

 

Figure 6.12 shows a phase-resolved pattern captured from a surface 

discharge in oil. This pattern is similar to that of a surface discharge in GIS 

(Figure 6.10). In this case the discharges also occur across the zero crossings 

of the ac waveform and the pattern is also examined on an activity, rather 

than phase, basis (as explained in section 5.1.2.1). The similarity of these two 

patterns, in different insulation types, shows the similar behaviour of PD 

activity occurring in different items of equipment [Fuhr-91]. In this case the 

knowledge-based system also identified the defect as a surface discharge, 

where the electrons were readily supplied from ionised water molecules on 

the moist pressboard [Cleary-06]. Tables 6.31 to 6.33 show the explanation for 

this classification. 

 

Figure 6.12. GUI of surface discharge defect in oil-filled transformer model 
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Table 6.31 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive less 
than negative 

1. Extraction of electrons requires comparatively more 
energy in the negative half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Zero 1. Discharge dependent on rate of change of voltage 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Zero 1. Discharge dependent on rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

11. Locally stored charge 

2. PD site is not confined to one region 

 
Table 6.32 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

Negative half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

 

Table 6.33 Classification of PD Source 

Characteristics Classification 

Poor insulation (carbonised or damp) SURFACE DISCHARGE 
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6.1.3 Void Defect 

 

Phase-resolved data that represents a void defect, as shown in Table 5.1, will 

be diagnosed in this section from the GIS experiment (as shown in Figure 

6.2). Voids can form as a result of differential thermal expansion between the 

epoxy and the metallic electrodes or due to epoxy shrinkage during the 

curing process [CIGRE- 92]. 

 

The void defect was not researched in [Cleary-06] and therefore, UHF sensor 

data from the oil-insulated transformer model of a void defect is unavailable 

for diagnosis through the knowledge-based system. However, this defect 

was the focus of research at the University of Southampton and an example 

of IEC60270 data from oil filled transformers are provided in section 6.2.  

 

6.1.3.1 Void in SF6 Case Study 

  

The PD activity in phase-resolved patterns for a void (e.g. Figure 6.13) and 

surface discharge defect (e.g. Figure 6.11) exhibit similar characteristics, 

making it more difficult for experts (and the knowledge-based system) to 

distinguish between them. In both cases the PD activity tends to occur on the 

zero crossings or in the first and third quadrants of the phase-resolved 

pattern, due to the accumulation of space charge in both instances. The main 

distinguishing descriptor is the density of the pattern, with a void tending to 

show a more sparse distribution of pulses, than is the case for a surface 

discharge. 

 

Typically a void pattern (Figure 6.13) tends to show the pulses occurring in 

the rising signal, as the voltage is increased. The pattern in Figure 6.13 was 

input to the knowledge-based system for diagnosis, the results of which can 

be seen in the instantiation of the descriptors in Figure 6.13, which led to the 

diagnosis in Tables 6.34 to 6.36.  

Gas filled cavity in solid or liquid insulation, e.g. a bubble or a crack, or a 

void in epoxy resin. 
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Table 6.34 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive less 
than negative 

1. Extraction of electrons requires comparatively more 
energy in positive half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Inbetween 1. Shift between absolute and rate of change of voltage 

2. Issue of space charge 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Figure 6.13. GUI of void in GIS 
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Table 6.35 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Issue of space charge AND space charge with a long time constant 
AND locally stored charge AND defect is geometrically 
symmetrical AND pulses at a small site AND voltage dependent 
(but not proportional to it) 

Involves a gas to solid 
boundary 

Negative half Issue of space charge AND space charge with a long time constant 
AND locally stored charge AND defect is geometrically 
symmetrical AND pulses at a small site AND voltage dependent 
(but not proportional to it) 

Involves a gas to solid 
boundary 

 

Table 6.36 Classification of PD Source 

Characteristics Classification 

Involves a gas to solid boundary VOID 

 

As shown in Table 6.35, three different conclusions of the presence of space 

charge, the identification of a geometrically symmetrical defect and the PD 

being dependent on the voltage has led to the conclusion of the PD source 

involving a gas to solid boundary, which is the characteristic of a void defect 

(Figure 6.13). 

 

6.1.4 Metallic Particles 

 

Metallic particles resulting as a by-product of the manufacturing or assembly 

process, is the most common defect found in gas-insulated equipment 

[CIGRE23-01-92]. Particles have the ability to acquire charge and move under 

the influence of the electric field in two different ways, bouncing and rolling. 

Both types of particle show similar characteristics in the phase-resolved 

pattern, where random pulses occur across the pattern due to a PD source in 

motion. The random occurrence of the pulses implies that the discharges are 

relatively random with respect to the actual instantaneous voltage. 

 

Rolling Particles: Caused by free particles resting on a conductive surface 

until influenced by the electric field causing them to roll without 

bouncing. 

Bouncing Particles: Caused by free particles in motion due to electrostatic 

forces. 
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A particle is an example of a PD source in motion and occurs due to the 

defect experiencing an inconsistent electric field. Each time it bounces, 

depending on the phase change, it could carry a different amount of charge. 

At lower voltage, a denser pattern would be observed due to the particle 

rolling about the surface and not being able to lift off the conductor. Another 

example of a random, but sparse, phase-resolved pattern is a bouncing 

particle, where the particle has the energy to lift off the surface causing it to 

bounce, resulting in more damage. This section will show examples of how 

the knowledge-based system diagnoses the particle defect, as shown in Table 

5.1, in SF6 (from the experiment in Figure 6.2) and transformer oil (from the 

experiment in Figure 6.3). 

 

6.1.4.1 Metallic Particle in SF6 Case Study 

 

As shown in the 2D plot of the maximum pulses of Figure 6.14, each phase 

bucket shows the amplitude of the pulses following a similar sine wave to 

the ac voltage. This suggests that the voltage has an influence on the extent to 

which the pulse moves, when plotted over 50 cycles. When viewing the 3D 

pattern, the discharges appear to occur randomly across the phase-resolved 

pattern. Examining both types of pattern offers a clearer insight into the PD 

activity. When the activity in Figure 6.14 was input to the knowledge-based 

system the diagnosis in Table 6.37 to Table 6.39 were concluded. 

Figure 6.14. GUI of particle in GIS 
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Table 6.37 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive 
more than 
negative 

1. Extraction of electrons requires comparatively more 
energy in the positive half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Random 1. PD source in motion 

 2. Interference 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Medium 1. Pulses initiated in insulation 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Random 1. PD source in motion 

2. Interference 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

 

Table 6.38 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Voltage dependent (but not proportional to it) AND PD 
pulse phase influenced by locally stored charge AND defect 
experiencing inconsistent electric field AND PD source in 
motion 

Motion is relatively random 
with respect to the 
instantaneous voltage (HIGH 
SEVERITY) 

Negative half Voltage dependent (but not proportional to it) AND PD 
pulse phase influenced by locally stored charge AND defect 
experiencing inconsistent electric field AND PD source in 
motion 

Motion is relatively random 
with respect to the 
instantaneous voltage (HIGH 
SEVERITY) 

 

Table 6.39 Classification of PD Source 

Characteristics Classification 

 Motion is relatively random with respect to the 
instantaneous voltage (HIGH SEVERITY) 

BOUNCING PARTICLE 
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From Table 6.38 it can been seen that the system has identified that the PD 

source is voltage dependent (but not proportional to it); is experiencing 

inconsistent electric field; is influenced by locally stored charge; and is in 

motion. These behaviours led the system to define the defect motion as 

relatively random with respect to the instantaneous voltage. This combined 

with the severity of the discharge, resulted in the knowledge-based system 

concluding that the PD source is a bouncing particle. 

 

6.1.4.2 Metallic Particle in Oil-insulated Transformer Case 

Study 

 

A free metallic particle in the oil-insulated transformer was reconstructed by 

placing a 2.5mm stainless steel particle on a concave earth electrode. During 

the experiment the voltage applied to the test cell was increased. At 33.4kV 

and 35.9kV the particle was seen to lift off and fall back to the earth electrode 

[Cleary-05]. A phase-resolved pattern depicting this activity was input to the 

knowledge-based system and the results can be seen in Figure 6.15, along 

with the explanation output in Tables 6.40 to 6.42. 

 
Figure 6.15. GUI of a metallic particle in oil-insulated transformer 
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Table 6.40 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive 
equals 

negative 

1. Defect is geometrically symmetrical 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Random 1. PD source in motion 

 2. Interference 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Random 1. PD source in motion 

2. Interference 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

 

Table 6.41 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Voltage dependent (but not proportional to it) AND PD 
pulse phase influenced by locally stored charge AND defect 
experiencing inconsistent electric field AND PD source in 
motion 

Motion is relatively random 
with respect to the 
instantaneous voltage (HIGH 
SEVERITY) 

Negative half Voltage dependent (but not proportional to it) AND PD 
pulse phase influenced by locally stored charge AND defect 
experiencing inconsistent electric field AND PD source in 
motion 

Motion is relatively random 
with respect to the 
instantaneous voltage (HIGH 
SEVERITY) 

 

Table 6.42 Classification of PD Source 

Characteristics Classification 

 Motion is relatively random with respect to the 
instantaneous voltage (HIGH SEVERITY) 

BOUNCING PARTICLE 
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6.1.5 Bad Contact Defect 

 

Bad contacts can exist due to poor or loose electrical or mechanical contacts 

between conducting parts [CIGRE23-01-92]. Bad connections are an unusual 

source of PD, however the consequences can be very significant [James-08]. 

An example of a bad contact is a stress shield that has become disconnected 

causing discharges to occur across the break. This type of defect would tend 

to discharge at the zero crossings of the phase-resolved pattern due to the 

maximum rate of change in voltage amplitude occurring at this point. This 

section will demonstrate a variety of PD data (in SF6, using the experiment in 

Figure 6.2 and in oil, using the experiment in Figure 6.3) associated with a 

bad contact, as shown in Table 5.1, and their associated diagnoses from the 

knowledge-based system. 

 

6.1.5.1 Bad Contact in SF6 Case Study 

 

Figure 6.16 illustrates the discharge activity of a bad contact in GIS. As 

shown in the figure, the activity occurring over the zero crossing caused the 

system to split the pattern per activity rather than per half cycle (see section 

5.1.2.1). The high current sparking at the site of a bad contact would cause a 

spark near the zero crossings, along with only one discharge per cycle or less, 

depicted by the knife blade shape across the zero crossings. These 

descriptors can be seen in the pattern of Figure 6.16. Inputting this phase-

resolved pattern to the knowledge-based system resulted in the diagnosis 

shown in Table 6.43 to Table 6.45. 

 

As shown in Table 6.45, the PD source in this experiment can be identified as 

a bad contact. Table 6.44 and Table 6.45 show that the “discharge is on an 

unbounded surface” characteristic is not utilised to classify the final defect. 

This is due to the requirement of an additional condition part of the rule 

(identified characteristic) for classification, which has not been achieved in 

this situation.  

Caused by sparking, e.g. between the threads of loose nuts and bolts. 
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Table 6.43 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive 
more than 
negative 

1. Extraction of electrons requires comparatively more 
energy in the positive half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Zero 1. Discharge dependent on rate of change of voltage 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Narrow 1. Sufficient charge released to suppress further pulses 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Knife blade 1. Energetic discharge 

Positive half Magnitude Medium 1. Pulses initiated in insulation 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Zero 1. Discharge dependent on rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Knife blade 1. Energetic discharge 

Negative half Magnitude Medium 1. Pulses initiated in insulation 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

 

 

Figure 6.16. GUI of bad contact in GIS 
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Table 6.44 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Sufficient charge released to suppress further pulses AND 
issue of space charge 

Discharge is on an unbound 
surface 

Positive half Discharge dependent on rate of change of voltage AND 
energetic discharge AND defect is geometrically symmetrical 

Discharge between a conductor 
and a metal object at floating 
potential (Medium severity) 

Negative half Sufficient charge released to suppress further pulses AND 
issue of space charge 

Discharge is on an unbound 
surface 

Negative half Discharge dependent on rate of change of voltage AND 
energetic discharge AND defect is geometrically symmetrical 

Discharge between a conductor 
and a metal object at floating 
potential (Medium severity) 

 
Table 6.45 Classification of PD Source 

Characteristics Classification 

Discharge between a conductor and a metal 
object at floating potential (Medium severity) 

BAD CONTACT 

 

6.1.5.2 Bad Contact in Oil-insulated Transformer Case Study 1 
 

A piece of aluminium foil was placed between the polypropylene barrier and 

the high voltage electrode to simulate a bad contact on the high voltage 

electrode within the transformer test cell [Cleary-05]. One of the phase-

resolved patterns captured during these previous experiments (Figure 6.3) 

can be seen in Figure 6.17. 

Two different defects have been classified by the knowledge-based system 

for this pattern, the correct classification of a bad contact and the 

misclassification of a floating component. The diagnosis can be seen in Table 

6.46 to Table 6.48. The reason that a floating component and a bad contact 

has been classified could be due to aluminium foil acquiring charge from the 

Figure 6.17 GUI of bad contact in oil-insulated transformer 
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high voltage electrode, with the electric field between the foil and the high 

voltage electrode not being high enough to cause a localised breakdown 

[Cleary-05], exhibiting PD behaviour associated with a floating component.  

 

The presentation of the explanation of the diagnosis to the user would aid in 

resolving the conflict of classification by highlighting the parts of the pattern 

used for diagnosis, as well as the identification of the present PD behaviours 

and defect characteristics, which resulted in the classifications. An expert 

could be hired to make the final decision about these more complex patterns 

and conflicts in classification. By offering the expert the explanation 

associated with classifying these more difficult patterns, they are provided 

with evidence and descriptions to assist the start of their diagnostic process. 

Table 6.46 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive more 
than negative 

1. Extraction of electrons requires comparatively more 
energy in the positive half cycle 

Whole cycle Density Symmetry Positive more 
sparse 

1. Ease of discharging is greater in the negative half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage. 

 2. Issue of space charge 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Zero 1. Discharge dependent on rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Rectangular box 1. Not voltage dependent 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise insulation 
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Table 6.47 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are the same for both polarities 
AND pulses at a conducting surface AND defect is 
geometrically asymmetrical AND discharge dependent on 
rate of change of voltage AND PD pulse phase influenced by 
local stored charge 

Intermittent conduction through 
insulation 

Positive half Voltage dependent (but not proportional to it) AND defect is 
geometrically asymmetrical AND issue of space charge 
AND space charge with a long time constant AND defect 
experiencing inconsistent electric field 

Metal to metal discharge, 
asymmetrical shape 

 
Table 6.48 Classification of PD Source 

Characteristics Classification 

Intermittent conduction through insulation BAD CONTACT 

Metal to metal discharge, asymmetrical shape FLOATING COMPONENT (Asymmetrical shape) 

 
6.1.5.3 Bad Contact in Oil-insulated Transformer Case Study 2 

 
When the electric field between the foil and the high voltage electrode is 

sufficiently high, the PD would be expected to be seen around the zero 

crossings, like that presented in Figure 6.18. This pattern also shows a knife 

blade shape of pulses in the positive half cycle, which is more indicative of a 

bad contact and not a floating component. The floating component would 

more likely exhibit a chopped sine shape, shown in Figure 6.17, which aided 

in the previous classification of the floating component. The classification of 

Figure 6.18 pattern is solely the bad contact, the diagnosis of which is shown 

in Tables 6.49 to 6.51. As displayed in Table 6.51, a different characteristic is 

highlighted to that in section 6.5.2.1 and used to classify the bad contact. This 

is due to the varying characteristics created by a bad contact.  

Figure 6.18. GUI of bad contact in oil-insulated transformer 
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Table 6.49 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive more 
than negative 

1. Extraction of electrons requires comparatively more 
energy in the positive half cycle 

Whole cycle Density Symmetry Positive more 
sparse 

1. Ease of discharging is greater in the negative half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage. 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Knife blade 1. Energetic discharge 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site is not confined to one region 

Negative half Position Zero 1. Discharge dependent on rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Rectangular box 1. Not voltage dependent 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise insulation 

 
Table 6.50 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are the same for both polarities 
AND pulses at a conducting surface AND defect is 
geometrically asymmetrical AND discharge dependent on 
rate of change of voltage AND PD pulse phase influenced by 
local stored charge 

Intermittent conduction through 
insulation 

 
Table 6.51 Classification of PD Source 

Characteristics Classification 

Intermittent conduction through insulation BAD CONTACT 
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6.1.5.4 Bad Contact in Oil-insulated Transformer Case Study 3 

 

As the voltage in the experiments [Cleary-05] was increased to 2.0kV and 

2.3kV, the experimental observations reported that the connection between 

the metallic foil and the high voltage electrode was poorer. Therefore, it is 

likely that multiple sites existed at the surface of the metallic foil, creating a 

more complex pattern [Cleary-05]. A pattern depicting this activity can be 

seen in Figure 6.19. Here, the knowledge-based system classified the defect 

as a bad contact, void and surface discharge.  

At first glance the classification of three different PD sources may look like a 

misinterpretation by the system. However, examining the explanation 

offered by the knowledge associated with each knowledge base, shown in 

Table 6.52 to Table 6.54, identifies that many small sites could be acting 

simultaneously, there could be intermittent conduction through the 

insulation, the insulation is carbonised or damp and there are issues of space 

charge, which can all be possible conditions during this experiment. 

Although the interpretation of the pattern is not precisely the PD source, the 

knowledge-based system offers insight into the activity occurring within the 

insulation. A more detailed classification could be achieved latterly when the 

PD activity becomes more stable. 

 

Figure 6.19. GUI of bad contact in oil-insulated transformer 
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Table 6.52 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive equals 
negative 

1. Defect is geometrically symmetrical 

Whole cycle Density Symmetry Negative more 
sparse 

1. Ease of discharging is greater in positive half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Zero 1. Discharge dependent on rate of change of voltage 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Rectangular box 1. Not voltage dependent  

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise insulation 

Negative half Position Zero 1. Discharge dependent on rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise insulation 

 
Table 6.53 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are the same for both polarities 
AND pulses at a conducting surface AND defect is geometrically 
asymmetrical AND discharge dependent on rate of change of 
voltage AND PD pulse phase influenced by local stored charge 

Intermittent conduction 
through insulation 

Positive half Not voltage dependent AND issue of space charge AND defect 
is geometrically symmetrical AND pulses at a small site 

Discharge in gas bubbles or 
other oil contamination 

Negative half charge can disperse easily AND issue of space charge AND 
pulses at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation (carbonised 
or damp) 

 
Table 6.54 Classification of PD Source 

Characteristics Classification 

Intermittent conduction through insulation BAD CONTACT 

Discharge in gas bubbles or other oil contamination VOID 

Poor insulation (carbonised or damp) SURFACE DISCHARGE 
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6.1.6 Floating Objects in the Insulation 

A floating electrode is a further example of a capacitive defect where the 

capacitive current causes sparking across a gap. Similar in characteristic to 

the bad contact, a floating electrode shows its maximum discharges in the 

first and third quadrants of the phase-resolved pattern, where the current is 

changing maximally. A floating electrode has a capacitance (sparking) across 

a gap, which tends to be quite a consistent discharge over time. The main 

descriptor of the floating electrode is the gull wing shape of pulses when 

viewed top down, see Figure 6.20. Difficulty in representing this shape with 

statistics led to an alternative way to describe these pulses, examining its 

rectangular box shape of constant magnitude. Usually displaying a broad 

range of discharges within the first and third quadrants of the phase-

resolved pattern, the PD pulse is influenced by local stored charge and in this 

case the charge is being stored in the capacitance of the electrode. This 

section will show an example of this PD source, along with a floating 

component (both shown in Table 5.1), in SF6 (using the experiment in Figure 

6.2) and oil-insulated transformer (using the experiment in Figure 6.3).  

Floating Electrode: Capacitive sparking at components such as stress 

shields that have become partially detached resulting in ineffective 

bonding. 

Floating Component: Smaller conducting objects that have become 

isolated and acquire a floating potential. 

 

 

Figure 6.20. Top down view of gull wings of floating electrode, courtesy of DMS 
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6.1.6.1 Floating Electrode in SF6 Case Study 

 

Figure 6.21 displays the PD activity in the GIS section. As apparent in the 

phase-resolved pattern the gull wing pulses are displayed in the first and 

third quadrants of the pattern. The descriptors the knowledge-based system 

calculated are displayed on the left hand side of the GUI. As shown in Figure 

6.21, a rectangular box shape and constant magnitude has been calculated to 

describe the present gull wing shape. Both these descriptors contribute to the 

knowledge-based system’s conclusion of a floating electrode (Table 6.55 to 

Table 6.57). 

 

Table 6.57 highlights that the knowledge-based system identified two 

decisions of the PD source being a floating electrode. Firstly, the system 

concluded that an insulated metal part was present, which could indicate a 

floating electrode. Secondly, a discharge between a conductor and a metal 

object at floating potential was concluded, leading the knowledge-based 

system to decide on the severity of the floating electrode as high. 

 

Figure 6.21. GUI of floating electrode in GIS 
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Table 6.55 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive equals 
negative 

1. Defect is geometrically symmetrical 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Rectangular box 1. Not voltage dependent  

Positive half Magnitude Large 1. Arcing 

Positive half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise insulation 

Negative half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Rectangular box 1. Not voltage dependent  

Negative half Magnitude Large 1. Arcing 

Negative half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise insulation 

 
Table 6.56 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Arcing AND not voltage dependent AND issue of space 
charge 

Discharge between a conductor 
and a metal object at floating 
potential (High severity) 

Positive half Constant geometry and capacitance AND shift between 
absolute and rate of change of voltage AND PD pulse 
influenced by local stored charge AND arcing 

Involves insulated metal part 

Negative half Arcing AND not voltage dependent AND issue of space 
charge 

Discharge between a conductor 
and a metal object at floating 
potential (High severity) 

Negative half Constant geometry and capacitance AND shift between 
absolute and rate of change of voltage AND PD pulse 
influenced by local stored charge AND arcing 

Involves insulated metal part 

 
Table 6.57 Classification of PD Source 

Characteristics Classification 

Discharge between a conductor and a metal object at 
floating potential (High severity) 

FLOATING ELECTRODE (High Severity) 

Involves insulated metal part FLOATING ELECTRODE 
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6.1.6.2 Floating Component in Oil-insulated Transformer Case 

Study 

 

A floating component was simulated in an oil-insulated transformer model 

in the laboratory (using the setup in Figure 6.3) by suspending a small metal 

part between the high voltage electrode and an earthed electrode protrusion 

using a polypropylene spacer [Cleary-05]. Arcing was heard during these 

experiments, introducing space charge into the liquid dielectric. Figure 6.22 

shows an example of the phase-resolved PD pattern obtained from PD 

activity occurring during these experiments. As apparent in the phase-

resolved pattern in the GUI, PD events do not occur on every half cycle. This 

is due to space charge affecting subsequent pulses (see section 5.1.1.2). The 

results of the diagnosis, which would be displayed in the various tabs of the 

GUI, can be seen in Table 6.58 to Table 6.60. 

 

 

 

Figure 6.22. GUI of floating component in an oil-insulated transformer 
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Table 6.58 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude symmetry Positive less 
than negative 

1. Extraction of electrons requires ns requires 
comparatively more energy in the positive half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Narrow 1. Sufficient charge released to suppress further pulses 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Knife blade 1. Energetic discharge  

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site not confined to one region 

Negative half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant 

magnitude 

1. Locally stored charge 

2. PD site not confined to one region 

 

Table 6.59 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Sufficient charge released to suppress further pulses AND 
issue of space charge 

Discharge is on an unbound 
surface 

Negative half Voltage dependent (but not proportional to it) AND defect is 
geometrically asymmetrical AND issue of space charge 
AND space charge with a long time constant AND defect 
experiencing inconsistent electric field 

Metal to metal discharge, 
asymmetrical shape 

 

Table 6.60 Classification of PD Source 

Characteristics Classification 

Metal to metal discharge, asymmetrical shape FLOATING COMPONENT (Asymmetrical shape) 
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6.1.7 Multiple PD Sources 

 
Displaying PD activity from multiple PD sources on a single phase-resolved 

pattern creates a chaotic and complex pattern. This would be more prevalent 

in transformers, where it is quite common to have several PD sources active 

simultaneously due to the equipment’s relatively more complex structure 

with several potential PD activity locations, when compared to GIS busbars. 

Figure 6.23 shows an example of this, where there are different parts of the 

phase-resolved pattern covered by activity from multiple sources. When this 

type of pattern is presented to the knowledge-based system it recognises that 

it cannot identify the defect and informs the engineer of this fact. For 

example in Figure 6.23 the knowledge-based system could not work out the 

phase positions of the PD activity and could therefore not match any 

knowledge to identify the defect. When diagnosing defect types it is more 

beneficial to not classify a PD source than to misclassify. This is not possible 

in black box AI techniques, which when presented with a pattern will always 

try to match a PD source [Catterson-06]. 

Another situation where the knowledge-based system also has trouble 

identifying the defect is where multiple PD sources exist, creating multiple 

regions of activity on one phase-resolved pattern. In this situation the 

knowledge-based system holds no knowledge to match the behaviours and 

Figure 6.23. GUI of multiple PD sources in an oil-filled transformer in the field  

(Courtesy of DMS) 
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therefore is not able to classify the defect. An example of this can be seen in 

Figure 6.24, where there are four rows of PD activity implying that activity 

from multiple PD sources have been captured. It should be noted that there 

is ongoing research to separate multiple PD sources into their constituent 

parts [Judd-04][Yang-03], which would then pre-process the data for input 

into the knowledge-based system for diagnosis.  

 

6.2 IEC60270 Data 

 

The previous section demonstrated the generic nature of the knowledge-

based system across different equipment using UHF sensor data. To further 

demonstrate the generic nature of the knowledge-based system, this section 

will concentrate on the diagnosis of PD sources captured through the 

IEC60270 measurements in oil-filled transformer insulation, while utilising 

the knowledge originally pertaining to UHF diagnosis of GIS. Although the 

PD signals were captured using a different measurement technique, after 

plotting the signal on the generic phase-resolved pattern (relative amplitude, 

cycle number and phase position), it became evident that the PD activity and 

the knowledge retained by the expert are not specific to the measurement 

system.  

 

Figure 6.24. GUI of multiple PD sources in an oil-filled transformer in the field 

(Courtesy of DMS) 



 

170 

Dr. Liwei Hao at the University of Southampton performed laboratory 

experiments to capture PD data from defects within power transformer 

models, see Figure 6.25 [Hao-08]. To capture this data, radio frequency 

current transducer sensors are used with a bandwidth of 10kHz – 200MHz, 

along with a conventional IEC60270 PD detector. To test the potential of the 

generic nature of the knowledge-based system, the data captured through 

this technique was obtained. Not only is this data captured through a 

different PD measurement system, it is also on different apparatus to the GIS. 

Dr. Hao provided raw PD data where the defect type was already known 

prior to diagnosis, as well as raw PD data of undisclosed defect types for 

“blind” diagnosis. These data sets consisted of voids, surface discharges, 

protrusions and floating components. Prior to inputting these data sets to the 

knowledge-based system it was first necessary to convert it into the specific 

data format required by the system, a phase-resolved pattern of 50*64 matrix 

(as described in section 5.1.2.1). This was achieved by plotting consecutive 

pulses generated by the defect on the 3D phase-resolved pattern. The 

creation of the phase-resolved pattern from the raw Southampton data was 

constructed using the Java programming language, implementing the 

following process:  

Figure 6.25. University of Southampton’s experimental setup [Hao-08] 
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1. Split the raw data into 50 cycles 

The raw file, consisting of 50 power cycles of PD data, contained 500,000 

points, therefore, each cycle consisted of 10,000 points (500,000 points / 

50 cycles).  

2. Remove noise and negative values  

Due to the oscillating nature of the signal the negative values were 

removed from the data. A noise level was then chosen to remove any 

noise from the signal. Displaying the raw data in the programming 

environment Matlab identified the appropriate noise level.  

3. Construct the phase buckets 

The 10,000 points per cycle were split into 64 segments to represent the 64 

phase buckets.  The value used in these buckets was the peak value (in 

volts) that occurred in each consecutive 156 values i.e. 1 segment 

(10,000/64). 

4. Change the peak value from volts to pC 

Since the calibration factor was 600mV = 500pC, the peak value was 

transformed to pC by performing the following calculation: 

 SegmentAmplitude = PeakValue/0.6V * 500pC  (Eq 6.1) 

5. Find the relative amplitude 

The relative amplitude was plotted as a percentage and in terms of the 

Southampton data, 5V (or 4167pC by using Eq 6.1) corresponds to 100% 

amplitude. In the knowledge-based system, the 100% corresponds to a 

numerical value of 255 (8-bit resolution). Therefore, the relative 

amplitude of the value calculated in step 4 was found by: 

 RelativeAmplitude = (SegmentAmplitude/4167) * 255   (Eq 6.2) 

6. Plot the relative amplitude against phase and cycle number to form a 

50*64 matrix 

Inserting the relative amplitude at the phase and cycle number of the 

matrix formed the phase-resolved matrix. 

Once the data had been transformed into the 50*64 phase-resolved matrix 

format, it was input to the knowledge-based system for classification. The 
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appropriate descriptors were automatically extracted from the pattern by the 

knowledge-based system, resulting in a classification of the PD source. 

Although the Southampton data was captured using the conventional 

IEC60270 technique, the knowledge-based system showed positive signs of 

being able to classify correctly the defect type within the transformer model. 

These classifications were presented to the University of Southampton; staff 

confirmed the results as being correct. The correct classifications were 

derived using knowledge that originally related to UHF diagnosis in GIS. 

Validation of the classifications demonstrated the potential generic nature of 

the knowledge-based system. Further case studies were sent from the 

University of Southampton, the results of which are demonstrated below in 

the various case studies. 

 
6.2.1 Void Defect 

 
To simulate the void defect, a 5mm (diameter) x 1 mm (depth) void was 

embedded between two pieces of perspex and two symmetrical planar 

electrodes [Hao-08]. The constructed 50*64 phase-resolved matrix of the raw 

PD data was input to the knowledge-based system for diagnosis. This section 

will show an example of the void defect. 

 
6.2.1.1 Void Defect in Transformer Oil Case Study 

 

The raw PD signal captured through IEC60270 standard PD detector can be 

seen in Figure 6.26. From this raw PD signal the phase-resolved pattern, 

shown in the right hand side of the GUI in Figure 6.27, was constructed by 

following the algorithm outlined in section 6.2. This phase-resolved pattern 

was input to the knowledge-based system and the various descriptors, 

behaviours, defect characteristics and classification were generated. The 

results, shown in Table 6.61 to Table 6.63, were sent back to Dr. Hao for 

verification, and were subsequently confirmed as resulting from an internal 

void defect.  
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No adjustments were made to the knowledge in the knowledge bases, which 

had been captured pertaining to UHF GIS phase-resolved patterns, prior to 

analysing the IEC60270 data. As is evident in Table 6.61 to Table 6.63 and the 

phase-resolved pattern of Figure 6.27, the knowledge-based system applied 

this same knowledge and descriptors to correctly classify the void defect. 
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Figure 6.26. Raw PD signal of void 

Figure 6.27. GUI of void captured through IEC60270 
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Table 6.61 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive equals 
negative 

1. Defect is geometrically symmetrical 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Biased to earlier phase 1. Charge retains memory from previous cycle 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Not constant magnitude 1. Locally stored charge 

2. PD site not confined to one region 

Negative half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Biased to earlier phase 1. Charge retains memory from previous cycle 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Not constant magnitude 1. Locally stored charge 

2. PD site not confined to one region 

 

Table 6.62 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Issue of space charge AND discharge retains memory from 
previous cycle AND locally stored charge AND defect is 
geometrically symmetrical AND pulses at a small site AND 
voltage dependent (but not proportional to it) 

Involves a gas to solid 
boundary 

Positive half Issue of space charge AND space charge with a long time constant 
AND locally stored charge AND defect is geometrically 
symmetrical AND pulses at a small site AND voltage dependent 
(but not proportional to it) 

Involves a gas to solid 
boundary 

Negative half Issue of space charge AND discharge retains memory from 
previous cycle AND locally stored charge AND defect is 
geometrically symmetrical AND pulses at a small site AND 
voltage dependent (but not proportional to it) 

Involves a gas to solid 
boundary 

Negative half Issue of space charge AND space charge with a long time constant 
AND locally stored charge AND defect is geometrically 
symmetrical AND pulses at a small site AND voltage dependent 
(but not proportional to it) 

Involves a gas to solid 
boundary 
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Table 6.63 Classification of PD Source 

Characteristics Classification 

Involves a gas to solid boundary VOID 

 

6.2.2 Surface Discharge Defect 

 

The surface discharge defect was simulated in the University of 

Southampton by using a needle as the upper (high voltage) electrode, and a 

plane lower (earth) electrode, with a piece of perspex as the insulation 

between the two electrodes [Hao-08]. The PD signals captured through the 

IEC60270 measurements and constructed as the phase-resolved pattern 

expected by the knowledge-based system can be seen in the following case 

study. 

 

 6.2.2.1 Surface Discharge in Air Case Study 

 

The constructed phase-resolved pattern from the raw IEC60270 signal 

(Figure 6.28) is shown in Figure 6.29. As apparent in Figure 6.29, the 

discharge pulses occur in a similar distribution to that of section 6.1.2. 

Although the pulses have been captured with a different measurement 

system, the PD source still experiences similar PD activity that leads the 

pulses to occur in the first and third quadrant of the phase-resolved pattern. 

The same knowledge utilised in the original case study of 6.1.2 is also 

applicable to this captured activity and the explanation is shown in Table 

6.64 to Table 6.66. 
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Figure 6.28. Raw PD signal of Surface 

Discharge 
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 Table 6.64 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude symmetry Positive 
more than 
negative 

1. Extraction of electrons requires comparatively more 
energy in the positive half cycle 

Whole cycle Density symmetry Negative 
more sparse 

1. Ease of discharging is greater in positive half cycle 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Position Inbetween 1. Shift between absolute and rate of change of voltage 

 2. Issue of space charge 

Positive half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

Negative half Position Inbetween 1. Shift between absolute and rate of change of voltage 

2. Issue of space charge 

Negative half Density Dense 1. Pulses at a conducting surface 

2. No space charge 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude consistency Constant 

magnitude 

1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

Figure 6.29. GUI of surface discharge captured through IEC60270 measurements 
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Table 6.65 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

Negative half Charge can disperse easily AND issue of space charge AND pulses 
act at a conducting surface AND voltage dependent (but not 
proportional to it) AND pulses at a small site 

Poor insulation 
(carbonised or damp) 

 
Table 6.66 Classification of PD Source 

Characteristics Classification 

Poor insulation (carbonised or damp) SURFACE DISCHARGE 

 

6.2.3 Protrusion Defect 

 
Using the same PD measurement system, described previously in section 6.2, 

PD activity was also captured from a protrusion in oil [Hao-08].  This section 

will show how the knowledge-based system used this raw PD signal to 

identify the defect type. 

 
6.2.3.1 Protrusion in Transformer Oil Case Study 

 
Inputting a raw data set of a protrusion defect to the knowledge-based 

system resulted in the phase-resolved pattern and deciphered descriptors in 

Figure 6.30. The results of each stage of explanation can be seen in Table 6.67 

to Table 6.70. Since the insulation is oil, the knowledge-based system was 

unable to identify the site of the PD, similar to the case of section 6.1.1.4. 

Figure 6.30. GUI of protrusion defect in transformer oil captured through IEC60270 
measurement 
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Table 6.67 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Asymmetrical 1. Conditions for PD inception are different for both 
polarities 

Whole cycle Magnitude 
symmetry 

Positive equals 
negative 

1. Defect is geometrically symmetrical 

Whole cycle Density symmetry Negative more 
sparse 

1. Ease of discharging is greater in positive half cycle 

Whole cycle Shape symmetry Asymmetrical 1. Defect is geometrically asymmetrical 

Positive half Position Peaks 1. Minimal space charge present i.e. no memory effect 
beyond half cycle 

Positive half Density Dense 1. Pulses at a conducting surface 
2. No space charge 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 
2. Many small discharge sites acting simultaneously 
3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 
wave 

1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 
2. Pulses at a small site 

Positive half Magnitude 
consistency 

Constant 
magnitude 

1. Constant geometry and capacitance 
2. Certain amount of energy required to ionise the 
insulation 

Negative half Position Peaks 1. Minimal space charge present i.e. no memory effect 
beyond half cycle 

Negative half Density Dense 1. Pulses at a conducting surface 
2. No space charge 

Negative half Range Narrow 1. Sufficient charge released to suppress further pulses 

Negative half Distribution Unbiased 1. No space charge 

Negative half Shape Knife blade 1. Energetic discharge 

Negative half Magnitude Small 1. Pulses at a very sharp tip 
2. Pulses at a small site 

Negative half Magnitude 
consistency 

Constant 
magnitude 

1. Constant geometry and capacitance 
2. Certain amount of energy required to ionise the 
insulation 

 

Table 6.68 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Whole cycle Conditions for PD inception are different for both polarities AND 
minimal space charge present i.e. no memory effect beyond half 
cycle AND ease of discharging is greater in positive half cycle 

Metal part on a conductor  

Whole cycle Conditions for PD inception are different fro both polarities AND 
pulses at a conducting surface AND defect is geometrically 
asymmetrical AND pulses at a very sharp tip AND minimal space 
charge present i.e. no memory effect beyond half cycle AND PD 
pulse phase influenced by local stored charge 

Discharge between 
conductor surfaces, sharp 
tip 

 

Negative half Energetic discharge AND certain amount of energy to ionise the 
insulation AND minimal space charge present i.e. no memory 
effect beyond half cycle AND defect is geometrically asymmetrical 

Discharge highly localised 
at a metal part 
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Table 6.69 Classification of PD Source 

Characteristics Classification 

Metal part on a conductor  PROTRUSION 

Discharge between conductor surfaces, sharp tip PROTRUSION 

Discharge highly localised at a metal part PROTRUSION 

 

Table 6.70 Site of PD Source 

Classification Insulation Site 

PROTRUSION Oil Either on the earth or high voltage conductor 

 

 

6.2.4 Floating Component 

 

The final defect type provided by the University of Southampton is a floating 

metallic discharge in oil (floating component).  

 

6.2.4.1 Floating Component in Transformer Oil Case Study 

 

After transformation into the 50*64 matrix, the phase-resolved pattern was 

input to the knowledge-based system. Figure 6.31 shows the phase-resolved 

pattern and the resulting descriptors. The explanation associated with the 

classification can be seen in Table 6.71 to Table 6.73. In this instance the 

knowledge-based system could not decide on the phase positions of the PD 

activity. Usually in this case, the defect type could not be classified due to the 

rules requiring the identification of the phase position. However, a floating 

component differs in its classification by also examining the cycle to cycle 

activity; identifying a number of cycles of inactivity between bursts of PD 

activity. This identifies a significant quantity of locally stored charge, which 

along with the other identified PD behaviours has led to the identification of 

the floating component.  
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Table 6.71 Descriptors to PD Behaviours 

Phase Range Descriptor Name Descriptor Behaviours 

Whole cycle Phase inception 
symmetry 

Symmetrical 1. Conditions for PD inception are the same for both 
polarities 

Whole cycle Magnitude 
symmetry 

Positive equals 
negative 

1.Defect is geometrically symmetrical 

Whole cycle Shape symmetry Symmetrical 1. Defect is geometrically symmetrical 

Positive half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Positive half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Positive half Distribution Unbiased 1. No space charge 

Positive half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Positive half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Positive half Magnitude 

consistency 

Constant magnitude 1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

Positive half Cycle to cycle 

activity 

Number of cycles 

between PD activity 

1. Significant quantity of locally stored charge 

Negative half Density Sparse 1. Defect experiencing inconsistent electric field 

2. Interference 

3. Space charge with a long time constant 

Negative half Range Broad 1. PD pulse phase influenced by local stored charge 

2. Many small discharge sites acting simultaneously 

3. Charge can disperse easily 

Negative half Distribution Biased to earlier 

phase 

1. Discharge retains memory from previous cycle 

Negative half Shape Chopped sine 1. Voltage dependent (but not proportional to it) 

Negative half Magnitude Small 1. Pulses at a very sharp tip 

2. Pulses at a small site 

Negative half Magnitude 

consistency 

Constant magnitude 1. Constant geometry and capacitance 

2. Certain amount of energy to ionise the insulation 

Negative half Cycle to cycle 

activity 

Number of cycles 

between PD activity 

1. Significant quantity of locally stored charge 

Figure 6.31. GUI of floating component defect in transformer oil captured through 
IEC60270 measurement 
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Table 6.72 PD Behaviours Relation to Defect Characteristics 

Phase Range Behaviours Characteristics 

Positive half Significant quantity of locally stored charge AND locally stored 
charge AND space charge with a long time constant AND defect is 
geometrically symmetrical 

Metal part suspended 
between conductors 

Negative half Significant quantity of locally stored charge AND locally stored 
charge AND space charge with a long time constant AND defect is 
geometrically symmetrical 

Metal part suspended 
between conductors 

 
Table 6.73 Classification of PD Source 

Characteristics Classification 

Metal part suspended between conductors FLOATING COMPONENT 

 

6.3 Further Testing of the Knowledge-Based System 

 

The previous sections of this chapter have shown the correct classification 

and discussion of certain PD sources as input to the knowledge-based system 

for diagnosis. Table 6.74 shows a comprehensive range of tests by displaying 

the results of the diagnosis of a variety of PD sources captured in oil and SF6, 

through both the UHF and IEC60270 techniques (as described in the 

experimental setups in section 6.1 and 6.2). This provides an overview and 

enables assessment of the knowledge-based system’s performance.  

 

The columns in Table 6.74 display the different PD sources presented to the 

knowledge-based system for classification. These are split by insulation type, 

where the defect was either placed in an oil or SF6 test cell, as shown in Table 

5.1. By taking the protrusion defect as an example (column 1), the rows of 

Table 6.47 will be explained. The first row highlights the total number of 

samples input to the knowledge-based system for the protrusion defect; in 

this case there are 60 samples. The next row, “break down of number of 

samples”, displays the three sample sets input to the knowledge-based 

system for diagnosis: 

• Defect in oil using IEC60270 measurements. 

• Defect in oil using UHF sensors. 

• Defect in SF6 using UHF sensors. 

In this example, 10 samples from a protrusion in oil were measured using the 

IEC60270 technique, 12 samples from a protrusion in oil were measured with 

UHF sensors and 38 samples from a protrusion in SF6 were measured with 

UHF sensors, totalling 60 samples. 
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The knowledge-based system’s output could result in multiple defect 

classifications, as highlighted in section 6.1.5.4. It was therefore felt that the 

table should highlight the number of correct classifications inclusive of 

additional types and also split these into classifications relating to a single 

defect type, and classifications that resulted in additional defect types 

(displaying these additions). The row entitled “total number of correct 

classifications” covers the diagnoses that resulted in the protrusion defect 

type; this could also include the classification of other PD sources. In this 

example the knowledge-based system resulted in the correct classification of 

the protrusion in:  

• 9 out of the 10 samples in oil through the IEC60270 technique, 

• 7 out of the 12 samples in oil through UHF sensors,  

• and 38 out of the 38 samples in SF6 through UHF sensors.  

 

  PD source 

 

 

Protrusion 
(PRO) 

Surface 
discharge 

(SD) 

Void 
(V) 

Metallic 
particle 

(MP) 

Bad 
Contact 

(BC) 

Floating 
component 

(FC) 

Floating 
electrode 

(FE) 

 
 Oil SF6 Oil SF6 Oil SF6 Oil SF6 Oil SF6 Oil SF6 Oil SF6 

Total number of samples 60 50 16 50 5 50 10 

IEC 10 - 10 - 12 - - - - - 20 - - - Breakdown of the 
number of samples UHF 12 38 38 2 - 4 40 10 4 1 30 - - 10 

IEC 9 - 10 - 4 - - - - - 17 - - - Total number of correct 
classifications UHF 7 38 31 2 - 2 37 9 3 1 9 - - 6 

IEC 7 - 10 - 3 - - - - - 16 - - - Number of diagnoses 
correctly classifying 
only the PD source UHF 5 38 27 2 - 1 37 9 1 0 7 - - 3 

IEC 2 - 0 - 1 - - - - - 1 - - - Number of diagnoses 
correctly classifying the 

PD source but also 
classifying other PD 

sources  

UHF 2 0 4 0 - 1 0 0 2 0 2 - - 3 

IEC 2x V - - - 1x SD - - - - - 1x V - - - Other types classified 

UHF 2x SD - 4x V - - 1x FC 
 

- - 1x FC 
1x SD 
1x V 

- 3x V 
1x SD 
 

- - 1x SD 
3x FC 
1x V 

IEC 1 - 0 - 6 - - - - - 3 - - - Number of diagnoses 
that do not know what 

the PD source is UHF 5 0 7 0 - 2 3 1 1 0 20 - - 3 

IEC 0 - 0 - 2 - - - - - 0 - - - Number of wrong 
diagnosis UHF 0 0 0 0 - 0 0 0 0 0 1 - - 1 

IEC - - - - 2x P - - - - - - - - - PD source classified 

UHF - - - - - - - - - - 1x V - - 1x V 

Table 6.74 Table of test results  
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By taking the IEC60720 technique in oil, in this protrusion column, as a more 

detailed example, the next row, “number of diagnoses correctly classifying 

only the PD source”, means that 7 out of the original 9 (from the row above) 

classifications related specifically to the protrusion defect. The next row, 

“number of diagnoses correctly classifying the PD source but also classifying 

other PD sources”, in this case resulted in 2 out of the original 9 classifying 

alternative PD sources along with the protrusion defect. These additions are 

shown in the row below (“other types classified”), which in this example 

resulted in the system classifying the protrusion along with a void defect in 

two cases. 

 

The next row, “number of diagnoses that do not know what the PD source 

is”, displays the number of samples for which the knowledge-based system 

could not distinguish any defect type from the PD activity using the 

knowledge within its knowledge bases. In this example, out of the 10 

samples taken from a protrusion defect in oil using the IEC60270 technique, 

the knowledge-based system could not classify 1 sample. Finally, Table 6.74 

displays the number of samples that the knowledge-based system presented 

as a wrong diagnosis. In the protrusion example, this was zero in each of the 

three sample sets. However, if the knowledge-based system wrongly 

classified the defect type, then the next row (“PD source classified”) would 

display the defect type classified by the system. 

 

As apparent from the table, the knowledge-based system is more accurate in 

diagnosing certain PD sources, which can also be said of machine learning 

techniques [Catterson-06]. However, unlike machine learning techniques, the 

knowledge-based system provides a justification for its classification, which 

can assist the engineer in making a final decision. Highlighting the parts of 

the phase-resolved pattern examined, along with their inferred PD 

behaviours, defect characteristics, classification and PD site portrays this.  

Therefore, the user of the system is provided with a build up of knowledge 

that led to the classification and this provides enhanced visibility of the 

diagnostic process. It should also be noted that these machine learning 

techniques, once trained, become specific to the equipment they were trained 
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on. This is not the case with the knowledge-based approach, where generic 

knowledge rules were elicited and implemented to offer the potential of 

diagnosing the same defect independent of the equipment, insulation type or 

measuring technique. This can be seen in Table 6.47, where, for example, the 

knowledge-based system identifies the protrusion defect: 

• 90% of the time in transformer oil from the IEC measurements, 

• 58% of the time in transformer oil from the UHF sensors, 

• and 100% of the time in SF6 from the UHF sensors. 

 

Furthermore, as evident in the table, the knowledge-based system has more 

difficulty in identifying the defect types in oil from the UHF sensors. It 

should be noted that the expert also found these phase-resolved patterns 

difficult to classify, highlighting that it was harder to categorise PD sources 

in oil. Additionally, the test data for this sample set was from previous 

experiments [Cleary-05] where the oil bath was open to air. The expert 

suggested that this could have an effect on the PD activity, with the oil 

rapidly becoming saturated, with a possible strong influence of polarised 

water molecules affecting the PD activity at the defect site. This questions the 

replicability of this data within a real transformer. Therefore, further testing 

of the knowledge-based system using UHF sensors on oil insulated defects 

with proper oil conditioning should be the focus of future work.  

 

As highlighted in section 6.1.5.4, the diagnosis of a phase-resolved pattern 

could result in a conflict of classification. This is also noticeable in Table 6.47, 

where the diagnosis results in the addition of alternative defect types along 

with the correct classification; for example the surface discharge in oil using 

UHF sensors also classifies the void defect in four samples. In these cases an 

engineer would be assisted in resolving this conflict by being presented with 

the different stages of the knowledge-based approach, which resulted in the 

classifications. Although the diagnosis presents multiple PD sources, the 

knowledge-based system offers insight into the activity occurring within the 

insulation. In the case of these more complex patterns and conflicting 

classifications, an expert could be brought in to resolve the conflict with the 
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assistance of the evidence and descriptions offered by the knowledge-based 

system’s diagnosis. 

 

Also as shown in the table, the knowledge-based system can decide that it 

cannot classify the PD source. In this instance the engineer is informed 

regarding this troubled diagnosis and has the option to manually choose 

descriptors for an improved classification. It is felt that this unknown 

classification is more beneficial than a wrong diagnosis, with the potential of 

the knowledge-based system diagnosing the PD source as the PD activity 

evolves and possibly stabilises. 

 

An example of where the knowledge-based system does not know what the 

result is 50% of the time is when diagnosing the void defect through 

IEC60270 compliant sensors in the oil filled transformer. This lack of 

diagnosis is due to the knowledge-based system calculating the position of 

the PD pulses as being on the peaks of the voltage waveform, which is not 

indicative of a void defect and so has not been classified as one. During the 

calculation the difference between peaks and in-between position on the 

voltage waveform can be minute and in these cases the position have been 

wrongly categorised. This wrong calculation of the phase position of PD 

pulses could be resolved in the future with more accurate statistics to 

calculate the position or through other pattern recognition techniques that 

are discussed in the future work section of this thesis. At present the 

knowledge-based system allows the engineer to resolve this miscalculation 

by manually changing the descriptor to the preferred choice and rerunning 

the diagnosis. For these test case the void defect was achieved after manually 

changing the discrepancies in the descriptors and rerunning the diagnosis. 

 

The construction of Table 6.74 provides a useful aid for the validation of the 

expert knowledge and was utilised in the knowledge engineering process. 

Highlighting any cases of wrong diagnosis provides this assistance; along 

with identifying the type of PD source that appear incorrectly. Through 

further testing, knowledge and future experiments it may be possible to add 

additional descriptors to further distinguish these defects.  
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6.4 Conclusion  

 

This chapter was included to prove that human expert knowledge in the area 

of PD diagnostics can be captured effectively and efficiently, and 

implemented into a knowledge-based system to provide generic diagnosis of 

the PD source behind phase-resolved patterns. The phase-resolved pattern 

was taken as input to the knowledge-based system because of its ability to 

highlight the PD behaviour inside the equipment and its ability to be 

constructed from PD data from different measurement systems. The variety 

of experimental data has illustrated the application of the knowledge-based 

approach to oil-insulated transformers, where the signals were captured 

through UHF and IEC60270 measurements, as well as UHF signals in GIS. 

This ability to diagnose the phase-resolved pattern, independent of the 

equipment, insulation and measurement system demonstrated the generic 

applicability of the experts’ knowledge and the knowledge-based system. 

Although the discharges show variations within the insulation materials (SF6 

and oil), the knowledge-based system was proven to have generic rules that 

could be applied to either type of insulation. 

 

The creation of the knowledge-based system to diagnose PD signals in a 

variety of equipment, has not only shown that the expert knowledge in this 

area of research has increased over the years to be able to diagnose a pattern 

by eye, but also that this knowledge can be captured, transcribed, modelled 

and implemented in to a rule-based system for automated PD diagnosis. 

However, it should be noted that expert knowledge regarding the site of the 

PD source is still not sufficient for all defect types, with the site of the PD 

source only applying to the protrusion defect in SF6, due to the other PD 

sources not showing distinguishing descriptors regarding their site within 

the phase-resolved pattern. Other techniques, for example time-of-flight 

[Judd-04], are being investigated to overcome this, albeit in a different way 

from capturing more knowledge. 

 

It has also been demonstrated that phase-resolved patterns can become 

complex and in these cases so can the classification. As shown in the above 
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case studies, the final result may not always identify a unique PD source as 

the source of the data. This is apparent in section 6.1.5.2 and 6.1.5.4. In these 

cases, more than one classification is offered to the engineer, whose decision 

should form the last part of the diagnostic process. From the justification of 

the classification through the use of the expert knowledge in the incremental 

stages of diagnosis, the engineer would be able to make the final 

classification through this decision support. PD experts also found difficulty 

in classifying defects that the knowledge-based system struggled to classify. 

In this case the knowledge-based system is expected to only work as well as 

an expert when presented with a complex phase-resolved pattern. 

 

Another time where the patterns can become complex is when activity from 

multiple PD sources are captured and displayed on a single phase-resolved 

pattern. In these cases the knowledge-based system has an advantage that it 

informs the user that it cannot classify a PD source. This could be because the 

pattern displays multiple regions of PD activity within the one pattern or 

because a noisy pattern is observed. In the case of multiple PD sources it 

would be necessary to strip out a single PD source [Yang-03] prior to 

diagnosis through the knowledge-based system. With the knowledge-based 

system taking the phase-resolved pattern as its input, after pre-processing a 

phase-resolved pattern of a single PD source, it can be input to the 

knowledge-based system for diagnosis. 

 

Due to the knowledge-based system containing expert PD diagnostic 

knowledge, the nature of a knowledge-based system implies that it will not 

be able to diagnose something that an expert would not have been able to 

diagnose. Although a limitation of the knowledge-based approach, it still 

provides decision support to the engineer and a classification in under two 

seconds, removing the need for valuable expert’s time. 

 

One feature offered by the GUI of the knowledge-based system is the ability 

to correct the automatically calculated descriptors of the phase-resolved 

pattern. This feature is useful if the engineer disagrees with, for example, the 

shape of the pulse distribution. After altering this descriptor value to one 
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that describes the pattern more accurately, the knowledge-based system can 

be rerun and a more accurate diagnosis could be sought. At present there is 

no way of storing this correction of the calculation, however, this is a feature 

that could be implemented in the future and will therefore be discussed in 

chapter 7, along with additional future work and the conclusions of this 

thesis. 
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Chapter 7 

 

Conclusions and Future Work 

 

 

 

7.0 Conclusions 

 

The condition monitoring of high voltage equipment is becoming an activity 

of strategic importance with significant investment from industry. However, 

as shown in chapter 2 there are many strategic issues faced by the utilities 

when deciding on whether to adopt condition monitoring. If adopted, the 

measurement and monitoring of numerous parameters on high voltage 

equipment can lead to a large volume of data, which could hold useful 

information regarding the condition of the apparatus. The meaningful 

extraction and interpretation of this data has the potential to inform plant 

maintenance and asset management strategies.  

 

As shown in chapter 2, PD monitoring is an industry-recognised means of 

identifying defects within dielectric insulation of high voltage equipment. 

The PD activity within the insulation not only highlights the presence of 

defects within the insulation but can also be harmful to the insulation if left 

to degrade, with potentially catastrophic consequences if undetected. The 

classification of defects as and when they occur within the insulation can 

inform suitable maintenance strategies to be implemented to avoid further 

degradation.  

 

The phase-resolved pattern is one representation of PD data, resulting in 

defect specific patterns associated with particular PD activity. However, the 

manual interpretation of large volumes of data can prove an onerous task for 

an expert; and there are not many for this type of monitoring. Chapter 3 

discussed the various automated techniques utilised in previous research to 
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identify the type of PD source, which could be present in the insulation, 

primarily using data-driven AI techniques for PD defect classification of 

phase-resolved patterns. 

 

Although correctly classifying the defect associated with the raw PD data, 

the data-driven approaches in chapter 3 possess the following disadvantages:  

• No explanation of why a particular defect was chosen over another. 

• No information of where the classification was derived from. 

• The requirement of training the classifiers to a particular apparatus, 

resulting in the classifier being equipment and family specific. 

• Large data set for training, which may not always be available, as 

well as a large data set for testing. 

• Statistical analysis being carried on a per half cycle basis, which could 

lead to miscalculation and therefore misclassification. 

• The possibility of choosing the wrong number of nodes in the case of 

clustering techniques. 

• Limitations/hazards associated with using data-driven AI techniques 

e.g. 

o The possibility of overtraining in the case of a neural network, 

which could lead to misclassification. 

o An overall lack of explanation leading to lack of confidence in 

the classification. 

 

To overcome the disadvantages of data-driven techniques, and to reduce the 

time consuming task of manual classification, this thesis has proposed a 

knowledge-based approach. This approach resulted in defect classification 

by replicating PD expert knowledge appertaining to the visual recognition 

and interpretation of phase-resolved PD patterns and its inferred PD activity. 

Mimicking the approach that an expert employs led to the construction of a 

knowledge base to diagnose PD sources from phase-resolved patterns. The 

phase-resolved pattern utilised in this research was a three-dimensional 

pattern consisting of the pulse’s amplitude, the cycle number on which the pulse 

appears and the phase position of the pulse on the voltage cycle. The main 
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benefit of this knowledge-based approach is the explanation provided as to 

why a certain defect is identified. This justification of the classification, 

through a novel incremental diagnostic process highlighting the descriptors 

of the phase-resolved pattern, the associated PD behaviours, the defect 

characteristics, defect classification and PD site, provides the user with more 

confidence in the final output.  

 

Previous experiments at the University of Strathclyde [Cleary-05] increased 

the knowledge base of resident PD experts. It is apparent that experts 

associate specific phase-resolved descriptors with the PD phenomena 

occurring at the PD site. The accumulation of this knowledge from experts 

enabled its implementation in a knowledge-based expert system to automate 

the experts’ diagnostic approach. A limited number of experts posses this 

knowledge about PD behaviours, phase-resolved patterns and defect 

characteristics. A major challenge encountered during the research detailed 

in this thesis was the task of acquiring, representing and organising expert 

knowledge for PD diagnosis. Chapter 4 discussed the various ways to 

capture the expert knowledge, and identify the tacit knowledge held by the 

experts. The extraction of this knowledge required an iterative approach 

identifying the steps applied by the experts and the domain knowledge 

invoked at each step. Acquisition, representation and validation were the 

three main stages involved in the knowledge engineering approach prior to 

implementation in the knowledge-based system.  

 

Chapter 5 described the steps taken to capture this evolving knowledge base, 

along with the creation of the five separate knowledge bases; descriptors of 

the phase-resolved pattern, PD phenomena, defect characteristics, PD source 

types and the site of the PD. The modular design of the knowledge-based 

system allows for easy integration of new knowledge regarding PD 

phenomenon, defect characteristics, defect site, defect type and 

distinguishing descriptors of the phase resolved pattern, as the 

understanding of the domain improves. It should be noted that the 

knowledge pertaining to defect classification in this thesis was from a small 

number of experts and in the future it would be beneficial to validate and 
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augment this expert knowledge with further experts in the field of PD 

diagnostics.  

 

During the knowledge engineering stage specific issues were exposed when 

the discharges occur across the zero crossings of the phase-resolved pattern. 

In this case the PD activity is occurring between the half cycles, which 

previous classifiers/machine learning techniques do not take into account, 

causing the miscalculation of certain statistics resulting in misclassification. 

The knowledge-based approach overcomes this disadvantage of machine 

learning techniques by examining the pattern as being continuous over the 

zero-crossing points of the ac waveform, grouping the discharges on a per 

activity basis. 

 

In chapter 6, various case studies were provided to highlight how the 

experts’ knowledge could be utilised within the knowledge-based system to 

identify descriptors present in the phase-resolved pattern, which would infer 

the PD phenomena, the presence of defect characteristics and the 

classification of the PD source. It also showed how expert knowledge could 

be employed to identify the site of the protrusion defect in SF6, through 

distinguishing descriptors of the phase-resolved pattern for this defect type 

(the expert knowledge was unable to provide the PD site of the other defect 

types). The defect types, which the knowledge-based system is able to 

classify, are: 

• Protrusion. 

• Surface discharge. 

• Void. 

• Metallic particle – rolling or bouncing. 

• Bad contact. 

• Floating objects – floating electrode or floating component. 

 
To overcome a further disadvantage of machine learning techniques - that 

once trained, the classifier is then specific to the equipment and sensory data 

type it was trained on - the knowledge-based approach was designed to 

capture generic rules that could classify defects independent of the insulation 
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type and measuring technique. The generic nature of the knowledge-based 

system was highlighted in chapter 6. By taking the phase-resolved pattern as 

its input, the knowledge-based system was presented with three data sets, 

varying the insulation and measuring technique. These sample sets were: 

• Defect in oil using IEC60270 measurements. 

• Defect in oil using UHF sensors. 

• Defect in SF6 using UHF sensors. 

 

The generic nature of this knowledge-based system offers flexible decision 

support to engineers on a variety of equipment, captured by either sensor 

type (UHF or IEC60270) in different insulation types (oil or SF6).  However, it 

should be noted that the knowledge-based system achieved its weakest 

results when trying to diagnose defects from oil-insulated defects using UHF 

sensors. Future work should focus on testing the knowledge-based system 

with further laboratory experiments of known defect types in oil using UHF 

sensors and also with in-field data. 

 

There are times when the phase-resolved patterns can become complex and 

in these cases so can the classification. Difficulty in classifying defects in 

these more complex cases was shown by both the knowledge-based system 

and the expert. In this case the knowledge-based system is expected to only 

work as well as an expert when presented with a complex phase-resolved 

pattern. As a result of these complex patterns, more than one classification is 

offered to the engineer by the knowledge-based system, whose decision 

should form the last part of the diagnostic process. The engineer is assisted in 

making a final decision through the support of the expert knowledge in the 

incremental stages of the knowledge-based approach. Other complex 

patterns are in the form of multiple PD sources on the one pattern. These also 

pose a problem for the knowledge-based approach; however, work is 

underway to strip out a single PD source [Yang-03], which after pre-

processing could be input to the knowledge-based system for diagnosis. 

 

It can therefore be concluded that the research has delivered novel 

contributions to automated PD diagnosis. Specifically: 
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• A new incremental approach to the analysis of PD data, in the form of 

a knowledge-based system, which provides an explanation suitable 

for engineers with different levels of understanding and experience. 

The explanation associated with the classification of a PD source from 

a phase-resolved pattern provides a description of the PD behaviour, 

defect characteristics, classification (defect type), PD site and 

descriptors of the phase-resolved pattern that led to a diagnosis, 

supplying confidence in the classification and decision support in the 

area of PD analysis. 

 

• Translating the raw IEC60270 data into a format for the knowledge-

based system, along with the algorithms to calculate the various 

descriptors, which assist in the classification. 

 

• Examining the phase-resolved pattern on a per activity basis, rather 

than per half cycle basis, reducing the miscalculation of the statistics 

that represent the data and therefore the classification. 

 

• An extensible, evolving knowledge base providing storage of valuable 

expert knowledge regarding PD phenomena, defect characteristics 

and PD diagnosis, which may evolve and expand in line with the 

knowledge base of expertise. This allows new categories of PD defect 

type to be included as the experts’ understanding of these improves. 

 

• By utilising the phase-resolved pattern, the knowledge-based 

approached offers a generic, flexible system due to the common 

physical nature of PD within high voltage equipment. This offers a 

generic approach to the classification of defects from data captured 

through either UHF or IEC60270 techniques, across a variety of 

equipment such as transformers and GIS and potentially cables, 

offering flexible online decision support for condition monitoring. 

This is in contrast with many other developed systems, which focus 

solely on one particular plant type, and even sometimes on one 

particular model of plant type. 
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7.1 Future work 

 

This section will outline work that should be carried out in the future. Firstly, 

improvements to the knowledge-based system will be proposed, followed by 

a discussion on the integration of the knowledge-based system into an 

overall condition monitoring system. 

 

7.1.1 Future Work to the Knowledge-Based System 

 

As with all AI PD diagnostic techniques, the accuracy of the knowledge-

based approach is variable according to the defect type. However, unlike 

other AI techniques, the knowledge-based system provides an explanation as 

to why a certain defect was classified. This means that although the final 

conclusion could be misclassified, the explanation provides an insight into 

the PD activity occurring within the insulation. In the future, these defect 

types could be better diagnosed with more understanding, through new field 

tests supplying new data and extra knowledge sources. For example, further 

testing of the protrusion defect in oil would allow more knowledge to be 

gained as to the different patterns associated with the site of the PD source.  

 

It is hoped to further investigate the potential generic nature of the system 

with PD activity in cables. This investigation, along with further laboratory 

data and field-based trials would expose any defects that required more 

knowledge, the adjustment of thresholds or the addition of further 

descriptors to aid in the diagnosis of defect types. By also increasing the 

volume of test data, more confidence in the diagnosis and classification from 

the knowledge-based system could be achieved. Future work should also 

involve further testing of the knowledge-based system using UHF sensors on 

oil-insulated defects with proper oil conditioning, as described in section 6.3.  

 

The nature of a knowledge-based system requires it to be periodically altered 

and updated as more knowledge or data sets become available. It is therefore 

necessary that future work will be required for this knowledge-based system 
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by updating its various knowledge bases. The modular design of the 

knowledge-based system should make this update simple, however, it 

would be beneficial to create a user interface to support any future updates. 

 

The knowledge-based system was constructed to provide a diagnosis of the 

PD source from a phase-resolved PD pattern. It does this by providing a 

classification along with a justification based on expert knowledge in each of 

the five stages of its diagnosis, as discussed previously. However, the issue 

of uncertainty has not been researched in this thesis with regard to how 

certain an expert is, for example when regarding the PD behaviour 

associated with a particular descriptor or a defect type associated with a 

defect characteristic. It is thought that further work would benefit the 

knowledge-based system by adding a weighting factor representing the 

certainty of an expert with respect to certain facts, associations and 

diagnoses. This would provide a degree of how probable it is that a certain 

defect is occurring within the insulation. 

 

To improve the accuracy associated with the recognition of the descriptors, a 

“self-learning” technique could be deployed [Todd-07]. At present, the 

descriptors are automatically calculated from the phase-resolved PD pattern. 

If the engineer disagrees with a certain descriptor, the GUI associated with 

the prototype allows the manual alteration of these descriptors for a further 

diagnosis. However, the manual change of these descriptors is not retained 

for future similar cases. A beneficial functionality that could be integrated 

into the system could provide the learning of the statistics associated with 

this new descriptor for future cases. This could be achieved through the 

integration of machine learning by using feedback to improve similar 

situations, although further research would be required in this area prior to 

implementing this functionality. This self-learning functionality could also 

allow experts to define entirely new defects with new or existing descriptors. 

 

Further improvements regarding the accuracy of descriptor identification 

could be applied to the identification of the shape the discharges created 

within a half cycle. When extracting the shape characteristics, at present 
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statistical calculations are performed. Although this can identify the 

associated shape, a more accurate solution could be implemented in the 

future by using pattern recognition techniques e.g. template matching 

[McQueen-81]. It may also be possible to use this technique to identify other 

descriptors that are required for diagnosis, although again further research 

would be required before implementing this process. 

 

7.1.2 Integration within an Overall Condition Monitoring 

System 

 

Previous research at the University of Strathclyde constructed an agent-

based condition monitoring system for the diagnosis of PD activity within oil 

filled power transformers [McArthur-04][Catterson-06][Strachan-05]. The 

condition monitoring multi-agent based system, COMMAS, employs 

autonomous modules (agents) to perform separate parts of the data 

management and interpretation tasks for UHF PD diagnosis. Full details of 

this system, along with the benefits of the agent-based architecture, have 

been reported previously [McArthur-04]. While it is not the intention of this 

thesis to discuss agent-based architectures and systems, it is thought that the 

integration of the knowledge-based system described in this thesis would 

add benefit to the COMMAS architecture, not only through an additional 

classification but also through the introduction of diagnostic explanation.  

 

The agent-based architecture utilised in COMMAS provides an extensible 

framework to integrate different types of data interpretation, with the 

present interpretation agents performing data-driven approaches of defect 

classification from UHF phase-resolved PD patterns. These data-driven 

approaches included C5.0 Rule Induction, K-Means Clustering, and Back-

Propagation Neural Network [Strachan-05]. The original interpretation 

agents within COMMAS were deployed due to limited domain knowledge 

in the area of PD phenomena and phase-resolved pattern interpretation. 

Issues associated with these data-driven approaches in PD 

classification/diagnosis were discussed in chapter 3. 
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The COMMAS’ agent-based architecture provides flexibility, which allows it 

to accommodate various sensors and different data interpretation 

techniques. Work is underway to integrate the knowledge-based system 

described in this thesis into COMMAS, and eventually an overall condition 

monitoring architecture for transformer diagnosis [Catterson-09]. The 

addition of this knowledge-based agent, containing the experts’ diagnostic 

knowledge, will ensure that the COMMAS system provides a diagnosis in 

terms of a practical engineering explanation of the classified defect type, and 

thereby enhance the user’s confidence in the diagnosis. Also, this explanation 

allows enhanced visibility and verification of the reasoning process adopted 

by the expert in reaching a particular conclusion.  
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Appendix 1  - Semantic Network Models of Stage #2 
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Appendix 2 - Semantic Networks Models of Stage #3 

 

 

!"#$%&'"((%
)*&+,"-.*#.%
&*/0&%"+/*#.%

&*'1(/"#021&($

31(&0&%

*#*/*"/0)%*#%

*#&1("/*2#

4&&10%25%

&6"+0%

+,"-.0

789

9*&+,"-.0&%"/%

:0";%+2#/"+/%

<0/:00#%

+2#)1+/2-&
9050+/%*&%

.02'0/-*+"(($%

&$''0/-*+"(

82/%=2(/".0%

)060#)0#/

39%&*/0%*&%

#2/%

+2#!#0)%/2%

2#0%-0.*2#

789

9*0(0+/-*+%

-0(">"/*2#%2-%

&1-5"+0%

""&,2=0-

?6"+0%

+,"-.0%:*/,%

(2#.%/*'0%

+2#&/"#/

31(&0&%

*#*/*"/0)%*#%

*#&1("/*2#

31(&0&%"/%"%

&'"((%&*/0

@A

4&&10%25%

&6"+0%

+,"-.0

9050+/%*&%

.02'0/-*+"(($%

&$''0/-*+"(



 

204 

!"#$%&%"#'()"*(

+,(%#-./&%"#(

0*.($%)).*.#&(

)"*(1"&2(

/"30*%&%.'

.0'.(")(

$%'-20*4.(%'(

4*.0&.*(%#(

&2.(#.40&%5.(

203)(-6-3.

78, 9.&03(/0*&("#(

-"#$:-&"*

9%#%;03(

'/0-.(

-20*4.(%<.<(

#"(;.;"*6(

.)).-&

=:)!-%.#&(

-20*4.(

*.3.0'.$(&"(

':*/*.''(

):*&2.*(/:3'.'

+:3'.'(

%#%&%0&.$(%#(

%#':30&%"#

+:3'.'(0&(0(

';033('%&.

>'':.(")(

'/0-.(

-20*4.

78,

?@

A"%$

,.).-&(%'(

4.";.&*%-0336(

'6;;.&*%-03

B"-0336(

'&"*.$(

-20*4.

A"3&04.(

$./.#$.#&(

C1:&(#"&(

/*"/"*&%"#03(

&"(%&D

8"&(5"3&04.(

$./.#$.#&

?@



 

205 

!"#!$%&'()

$*+,-&)

,&.&+/&0)(1)

/",2,&//)

#",(*&,)2"./&/

3//"&)1#)

/2+$&)

$*+,-&

456

6%/$*+,-&)

%/)1')+')

"'71"'0)

/",#+$&

51)/2+$&)

$*+,-&

8%'%9+.)

/2+$&)

$*+,-&)%:&:)

'1)9&91,;)

&##&$(

456 8&(+.)1,)!<=)

%'>1.>&0

&?(,+$(%1')1#)
&.&$(,1'/)
,&@"%,&/)

$192+,+(%>&.;)
91,&)&'&,-;)%')
21/%(%>&)*+.#)

$;$.&

&?(,+$(%1')1#)
&.&$(,1'/)
,&@"%,&/)

$192+,+(%>&.;)
91,&)&'&,-;)%')
'&-+(%>&)*+.#)

$;$.&

AB

C1'0%(%1'/)#1,)

D6)%'$&2(%1')

+,&)0%##&,&'()

#1,)71(*)

21.+,%(%&/

&+/&)1#)

0%/$*+,-&)%/)

-,&+(&,)%')

(*&)21/%(%>&)

*+.#)$;$.&

456 8&(+.)2+,()1')

+)$1'0"$(1,

8%'%9+.)

/2+$&)

$*+,-&)%:&:)

'1)9&91,;)

&##&$(



 

206 

!"#$%&'(#

$)*'(#

+,!%(,-(.#/0#

&1-*&&0#'213(.#

-)*34(

!%&'('#*2#*#

-1,.%-2+,4#

'%35*-(

"(5(-2#+'#

4(16(23+-*&&0#

*'066(23+-*&

71,.+2+1,'#513#

!"#+,-($2+1,#

*3(#2)(#'*6(#

513#/12)#

$1&*3+2+('

"+'-)*34(#

.($(,.(,2#

1,#3*2(#15#

-)*,4(#15#

81&2*4(

9:"

;,2(36+22(,2#

-1,.%-2+1,#

2)31%4)#

+,'%&*2+1,

9:"
;,81&8('#4*'#

21#6(2*&#

+,2(35*-(

"(5(-2#+'#

4(16(23+-*&&0#

*'066(23+-*&

71,.+2+1,'#513#

!"#+,-($2+1,#

*3(#.+55(3(,2#

513#/12)#

$1&*3+2+('

<=

>$*-(#

-)*34(#?+2)#

&1,4#2+6(#

-1,'2*,2

"+'-)*34(#

3(2*+,'#

6(6130#5316#

$3(8+1%'#

-0-&(

<=

@+,+6*&#

'$*-(#

-)*34(#+A(A#

,1#6(6130#

(55(-2



 

207 

!"#$%&$%$"'$

())*&$+*

,-./$/*#)*

0123")/$

4)#*

,)//15.$

67

849

9)*")#*

0123")/$

:,2'$*

';2%3$*+1#;*

.)"3*#1<$*

')"/#2"#

=)'2..>*

/#)%$0*

';2%3$

?-./$/*

1"1#12#$0*1"*

1"/-.2#1)"

?-./$/*2#*2*

/<2..*/1#$

!//-$*)&*

/,2'$*

';2%3$

67

!"@).@$/*

32/*#)*

/).10*

5)-"02%>

9$&$'#*1/*

3$)<$#%1'2..>*

/><<$#%1'2.

91/';2%3$*

%$#21"/*

<$<)%>*&%)<*

,%$@1)-/*

'>'.$

67

A).#23$*

0$,$"0$"#*

B5-#*")#*

,%),)%#1)"2.*

#)*1#C

4)#*

@).#23$*

0$,$"0$"#

67

849



 

208 

!"#$%&%"#'()"*(

+,(%#-./&%"#(

0*.(&1.('02.(

)"*(3"&1(

/"40*%&%.'

+54'.'(0&(0(

-"#$5-&%#6(

'5*)0-.

78,

,%'-10*6.(

3.&9..#(

-"#$5-&"*(

'5*)0-.':(

';22.&*%-04(

'10/.<

+,(/54'.(

/10'.(

%#!5.#-.$(3;(

4"-044;('&"*.$(

-10*6.

+54'.'(

%#%&%0&.$(%#(

%#'540&%"#

7*-%#6

=>

?''5.(")(

'/0-.(

-10*6.

,.).-&(%'(

6."2.&*%-044;(

';22.&*%-04

,%'-10*6.(

$./.#$.#&(

"#(*0&.(")(

-10#6.(")(

@"4&06.

A#.*6.&%-(

$%'-10*6.

,.).-&(%'(

6."2.&*%-044;(

';22.&*%-04
78,

,%'-10*6.(

3.&9..#(0(

-"#$5-&"*(0#$(0(

2.&04("3B.-&(0&(

!"0&%#6(/"&.#&%04(

CDA,?ED<



 

209 

!"#$%&%"#'()"*(

+,(%#-./&%"#(

0*.(&1.('02.(

)"*(3"&1(

/"40*%&%.'

+54'.'(0&(0(

-"#$5-&%#6(

'5*)0-.

,.).-&(%'(

6."2.&*%-0447(

0'722.&*%-04

81%)&(

3.&9..#(

03'"45&.(0#$(

*0&.(")(

-10#6.(")(

:"4&06.

;<,

,%'-10*6.(

3.&9..#(

-"#$5-&"*(

'5*)0-.'=(

0'722.&*%-04(

'10/.>

+,(/54'.(

/10'.(

%#!5.#-.$(37(

4"-0447('&"*.$(

-10*6.

+54'.'(

%#%&%0&.$(%#(

%#'540&%"#

;*-%#6

?@



 

210 

!"#$%&#%'

()"*)%+,'

&#-'

.&/&.0%&#.)

123$)$'

0#0%0&%)-'0#'

0#$23&%0"#

4+.0#(

5607%'

8)%9))#'

&8$"32%)'&#-'

+&%)'"7'

.6&#()'"7'

:"3%&() 4;<

=>

?#:"3:)$'

0#$23&%)-'

*)%&3'/&+%

1<'/23$)'

/6&$)'

0#!2)#.)-'8,'

3".&33,'$%"+)-'

.6&+()

;"%':"3%&()'

-)/)#-)#%

123$)$'

0#0%0&%)-'0#'

0#$23&%0"#

123$)$'&%'&'

$*&33'$0%)

?$$2)'"7'

$/&.)'

.6&+()

4;<

=>

<0$.6&+()'0#'

(&$'82883)$'"+'

"%6)+'"03'

."#%&*0#&%0"#<)7).%'0$'

()"*)%+0.&33,'

$,**)%+0.&3



 

211 

!"#$%&'(

)'*'+)'+$(

,-.$(+"$(

*/"*"/$0"+%#(

$"(0$1

23(*.#4'(

*5%4'(

0+!.'+6')(-7(

#"6%##7(4$"/')(

65%/&'

893

:";0+&(*%/$06#'(
<5'/'($5'(="$0"+(

04(/'#%$0;'#7(
/%+)"=(<0$5(
/'4*'6$($"($5'(

%6$.%#(
0+4$%+$%+'".4(
;"#$%&'(,>?@1

23(4"./6'(

0+(="$0"+

2.#4'4(%$(%(

6"+).6$0+&(

4./A%6'

!"#$%&'(

)'*'+)'+$(

,-.$(+"$(

*/"*"/$0"+%#(

$"(0$1

23(*.#4'(

*5%4'(

0+!.'+6')(-7(

#"6%##7(4$"/')(

65%/&'

893

:";0+&(*%/$06#'(
<5'/'($5'(="$0"+(

04(/'#%$0;'#7(
/%+)"=(<0$5(
/'4*'6$($"($5'(

%6$.%#(
0+4$%+$%+'".4(
;"#$%&'(,BCDB1

23(4"./6'(

0+(="$0"+

3'A'6$(

'E*'/0'+60+&(

0+6"+404$'+$(

'#'6$/06("'#)



 

212 

!"#$%&'(#)'

&#*+,-'

.+*/&$*&

01,*&*'#2'#'

(3).1(2+)%'

*1$4#(&

53,2#%&'

.&/&).&)2'

6712')32'

/$3/3$2+3)#,'

23'+28

01,*&*'

+)+2+#2&.'+)'

+)*1,#2+3)

01,*&*'#2'#'

*9#,,'*+2&

:**1&'34'

*/#(&'

("#$%&

;<=

>?

033$'+)*1,#2+3)'

6(#$73)+*&.'3$'

.#9/8

<32'@3,2#%&'

.&/&).&)2

:**1&'34'

*/#(&'

("#$%&

;<=

=+*("#$%&'

7&2A&&)'#'

(3).1(23$'#).'#'

9&2#,'37B&(2'#2'

!3#2+)%'/32&)2+#,'

6C:DC8
01,*&*'

+)+2+#2&.'+)'

+)*1,#2+3)

;$(+)%

>?



 

213 

!"#$%&%"#'()"*(

+,(%#-./&%"#(

0*.(&1.('02.(

)"*(3"&1(

/"40*%&%.'

+54'.'(0&(0(

-"#$5-&%#6(

'5*)0-.

,.).-&(%'(

6."2.&*%-0447(

0'722.&*%-04

8%#%204(

'/0-.(

-10*6.(%9.9(

#"(2.2"*7(

.)).-&

+54'.'(0&(0(

:.*7('10*/(

&%/

;<,

,%'-10*6.(

3.&=..#(

-"#$5-&"*(

'5*)0-.'>(

'10*/(&%/

+,(/54'.(

%#!5.#-.$(

37(4"-0447(

'&"*.$(

-10*6.

?/0-.(-10*6.(
.)).-&(3.&=..#(
104)(-7-4.'

'/0-.(

-10*6.(=%&1(

0(4"#6(&%2.(

-"#'&0#&

4"-0447(

'&"*.$(

-10*6.

;<,

8.&04(/0*&(

'5'/.#$.$(

3.&=..#(

-"#$5-&"*'
,.).-&(%'(

6."2.&*%-0447(

'722.&*%-04



 

214 

Appendix 3 - Semantic Network Models of Stage #2 
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