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Abstract

Major disease outbreaks command worldwide attention. Many recent outbreaks were

caused by pathogens that were considered ‘exotic’ with severe implications from a

health or economic standpoint. As such, there is need for an in depth examination of

these threats and the means by which they might be introduced to effectively manage

future risk. This thesis examines a means of identifying key emerging threats and,

once identified, then modelling techniques are used to estimate the risk of introduc-

tion.

To determine the relevant exotic pathogens, data from a survey of experts were ex-

amined. In 2010 the 4th Annual Meeting of the EPIZONE network was held at

which work was carried out to elicit the opinions of delegates on current and future

epidemic threats to the EU. Data from this study were examined using both uni-

variate and multivariate analytical techniques to fully explore and understand what

might become an emerging threat.

This found that a particular group of zoonotic arboviruses are viewed as important

potential emerging threats for Europe. Increasingly realistic and complex modelling

approaches were utilised to give an increasingly accurate estimate of the risk of intro-

duction of one of these viruses, Crimean-Congo Haemorrhagic Fever Virus (CCHFV),

by means of migratory birds - a potentially key means of introduction.

Evaluating this risk must take into account not just disease related factors but also

geographic factors especially the migration distance. To model this risk, spatially

explicit models that correctly reflect bird migratory behaviour were used in contrast

to models published previously. The approaches in this thesis show that for CCHFV

there is a definite risk of introduction but it is smaller than has been estimated pre-

viously. Results also show that the bird species that should be focused on are not

those intuitively identified. The migratory speed of birds is a key factor in identify-

ing the species that represent the greatest risk of introducing CCHFV positive ticks



into Europe.
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Chapter 1

Introduction and Thesis Outline

1.1 Introduction

In the last decade there have been several news stories regarding outbreaks of disease

around the world. Many of these stories are considered newsworthy due to the risk

to humans (BBC, 2015, 2014; ECDC, 2014) but just as many featured outbreaks

amongst animals (DEFRA and AHVLA, 2014), both wild and domestic, and the

often high economic and social costs of these which had significant affects on many

people’s lives. The majority of these outbreaks were caused by diseases that were

considered ‘exotic’ at the time; that is they were diseases not normally found within

the country. It is obviously of benefit to try and have some manner of system in

place to forewarn of when such an outbreak is starting to occur so that it can be

controlled and tackled as early as possible thus minimising the damage it can cause.

Focusing on animal disease outbreaks in the United Kingdom (UK) alone, a num-

ber of exotic diseases have made incursions in recent years. These include Classical

Swine Fever (CSF) in 2000 (Gibbens et al., 2000) which was a relatively small out-

break affecting only 16 farms in East Anglia. This is a potentially highly fatal and

contagious disease of pigs which was generally eradicated from the UK in the 1960s

(DEFRA, 2014).

In contrast, a large amount of media attention focused on the Foot-and-Mouth dis-

ease (FMD) outbreak in 2001 (Haydon et al., 2004) which was the worst outbreak
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of FMD, in terms of yearly incidence and animals culled, in over 70 years (Peiso

et al., 2011). This was followed by another outbreak in 2007 which, though on a

much smaller scale and much more localised, still drew a large amount of media

attention. The disease affects cloven hoofed animals which includes a large number

of animals common to the UK such as sheep, cattle, pigs, goats and deer. While

generally not fatal the disease has very serious consequences for animal welfare and

can be very damaging to the economy, with over six million animals slaughtered and

costs estimated at over eight billion pounds (Bourn, 2002; Haydon et al., 2004).

At an international level, 2007 also saw a major exotic disease scare with an out-

break of highly pathogenic avian influenza (specifically H5N1). A highly contagious

virus that affects the respiratory, digestive and nervous systems of birds, it did not

spread widely in humans but there was much focus on its potential for zoonotic trans-

mission (Beigel et al., 2005; Claas et al., 1998; Dinh et al., 2006). Much the same

happened with an outbreak of swine influenza (H1N1) in 2009 (Pawaiya et al., 2009).

The following year brought an outbreak of Bluetongue disease (Gro, 2008), a disease

affecting ruminants that is spread by midges and so tends to have an element of

seasonality but also has the potential to become widely distributed quickly. This

affected 125 farms in the South and East of England (Gro, 2008)

Headlines were also made very recently when a man who flew into Glasgow was di-

agnosed with Crimean-Congo Haemorrhagic Fever Virus (CCHFV) (Atkinson et al.,

2012) and died shortly after. This disease is relatively unknown in most of Europe,

being more common in parts of Africa, the middle East and Russia (Sang et al.,

2011; Leguenno et al., 1990; Deyde et al., 2006). Despite this, there is evidence of

its spread into southern Europe, and as an exotic pathogen, it might become very

important over the coming years Gale et al. (2011). In Peiso et al. (2011) a historical

review of all exotic outbreaks in the UK is made and papers such as this provide a

good indication of what might be a threat.

There are many potential sources of data on the introduction of diseases and viruses

but they often focus on those that are endemic to a region so for exotic pathogens
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there are two general options; firstly to make use of scarce data that directly relates

to the risk of introduction or secondly to use more available information on potential

means of introduction to create a model to estimate the risk.

1.2 Possible Data Sources that will Indicate the

Likelihood and Driver of an Introduction

To select which diseases to look into it is worth starting with the list of notifiable

diseases for the UK. This list was first set out in the Animal Health Act of 1981 and

names a number of diseases that are considered severe enough so that potentially

infected animals must be reported immediately. This provides a good starting point

and from here we can look for diseases for which there has been an outbreak either in

the UK or elsewhere that can be considered exotic. While looking elsewhere obviously

increases the availability of data and thus would potentially allow better development

and testing of methods and techniques, it will raise a number of issues that will have

to be checked. These will mainly involve the sampling methodology in comparison

to the UK; we would require the datasets to contain most of the same key variables

and be recorded or collected in a reasonably similar manner or we would have to

be able to at least take into account any major differences. Taking all of this into

consideration it is possible to identify some possible pathogens to use as case studies.

There are European wide organisations that provide data on animal disease out-

breaks as well as the UK’s own data. While papers make good use of historical

data, they also warn of gaps and scarcity of data (Peiso et al., 2011). The World

Animal Health Information Database (WAHID) is an online database maintained

by the World Organisation for Animal Health (OIE). It is publicly available and

offers a number of ways of retrieving data on animal diseases from 2004 onwards. Its

information services are split across three broad areas; by country, by disease, and

by disease control measures.

The ’by country’ option provides information on reported disease events, a country’s
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animal health situation, the numbers of animal health and veterinary personnel

present, animal populations, the number of human cases of zoonoses, the country’s

laboratory capability, vaccination levels and vaccine production, their OIE notifica-

tion history and timelines for diseases along with some time series analysis. This can

be retrieved for a single country, a region or a selection of countries

Disease data are returned by disease and contain general background information

on that disease, a list of all reported events whether weekly, immediate or historical,

maps of disease outbreaks and distribution, country disease incidence and sanitary

situation and disease timelines.

Disease control measures provides data on control measures in place either by country

or by disease. In addition, there is a portal to the Handistatus database which was

the forerunner of WAHID and contains data from 1996 up to 2004. This database

contains monthly data on the old list A diseases (defined as those that were highly

transmissible and so could rapidly and easily spread across national borders, that

are of serious concern from a public health or socio-economic perspective or are of

major significance in the international trade of animal or animal products (for Ani-

mal Health, 2005) and annual data on the old list A and B diseases (List B disease

having a similar definition to A but without the expectation of rapid and easy spread

so likely to be contained nationally (for Animal Health, 2005). This can be searched

by country and disease for monthly data and by country or country and disease for

annual data. In both cases information on outbreaks within a selected timeframe is

returned detailing when and where an outbreak occurred (often down to a regional

level) and the outbreak’s affects, i.e. animals infected, culled etc.

The EPIZONE network also set up an online database, though this was not as widely

accessible as the WAHID database. This database offered a large range of options for

stratifying and filtering data and an automated alert system was also set up to allow

experts to more easily keep track of information on outbreaks which would have been

potentially very useful for the monitoring of exotic diseases. Unfortunately only the

Veterinary Laboratories Agency (now the Animal and Plant Health Agency) from

the UK and the Federal Research Institute for Animal Health from Germany shared
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any information within the database so this severely limited its usefulness.

An alternative source of data is to make use of non-symptomatic data sources such as

sales data or those offered by the development of the Internet. In recent years, there

have been a number of papers on the use of search engine queries for the prediction of

human disease outbreaks (Ginsberg et al., 2009; Shmueli and Burkom, 2010; Hulth

et al., 2009) or grocery sales for detection of a bioterrorist attack (Goldenberg et al.,

2003; Fienberg and Shmueli, 2005). In 2009 a letter was published in Nature pro-

duced by employees of Google detailing a method of detecting outbreaks of influenza

through a particular form of health seeking behaviour (Ginsberg et al., 2009). Mil-

lions of search queries are submitted daily to Google by people all round the world

and a method of using these queries to predict disease outbreaks was developed.

In this study, data on the 50 million most common search queries were normalised

and a model was developed to investigate the likelihood of a physician visit being

related to an influenza like illness being linked to these search queries. The model’s

explanatory variable was the log odds of the probability of a random physician visit

from a particular region of the United States being related to an influenza like illness

based upon data from the US Centers for Disease Control and Prevention (CDC) US

Influenza Sentinel Provider Surveillance Network. The independent variables were

the log odds of each search query and an automated process was used to test the fit

of each independent variable separately and those that offered the best fit across all

regions were used to develop a model for predicting influenza outbreaks.

The original study, having been carried out by Google, had full access to all search

data. Public access to such data is more restricted. Google Trends is the public inter-

face to Google’s search data and allows data on the popularity of search terms to be

retrieved. Google Insights for Search was a more detailed version of Google Trends

that has since been shut down. Insights for Search in a similar way to Google Trends

took a subsample of total Internet search queries across the timeframe specified and

returned a scaled set of data describing the popularity of the search term across that

time. The scaling was done based on the highest number of queries within the time

frame so all datasets had a point where search queries were 100% and all other time
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periods were scaled against this.

As a dataset, this has a number of weaknesses. First, since data are scaled as a

percentage of the highest number of queries within the selected time frame, then

datasets covering different time frames might not be comparable. Secondly, because

only a subsample is used, then even repeatedly searching the same search term and

time period can return different results. However, for human influenza and with

access to the full dataset, this approach was considered such a success that Google

keeps the final model running with results available to the general public, although

the actual model itself has been kept confidential so as to preserve its accuracy.

While Google has much greater access to facilities for processing these data, as well

as more access than they grant the general public to the data, this is still of great

interest.

A useful source of data, though one that can be difficult to collect, is the opinions

of subject matter experts. At the 4th Annual Meeting of the EPIZONE network,

an interactive question session was carried out to elicit the opinions of delegates on

current and future epidemic threats to the EU. The aim of the interactive session

was to identify the most threatening viruses, both now and in the future, and to

identify those tools which contribute most to prediction, prevention and control of

future epidemics. The output from this was a set of scores for each disease group

selected calculated in part from proportions applied to the likelihood of introduction

of each disease group. This was potentially a useful suorce of data for investigation

of percieved threats but the nature of the data itself meant that care had to be used

in selecting the correct analytical techniques.

The data for individual disease groups could be examined using many common sta-

tistical techniques but since the scoring of groups were in part dependent on how the

other groups were scored then multivariate as well as univariate techniques should

be used. Principal Component Analysis (PCA) was one of the earliest developed and

most commonly used dimension reduction techniques. It works by taking a vector

of possibly correlated random variables and uses an orthogonal transformation to

convert them into a set of uncorrelated variables that are referred to as the Principal
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Components (PCs). Orthogonality refers to the variables being able to vary inde-

pendently, so when used in terms of statistics, it means they will be uncorrelated

and if represented graphically will be perpendicular to each other. Each PC consists

of a linear combination of our original variables and is formed in such a way that

the first PC will explain as much of the variation in the dataset as possible. The

number of PCs will be limited to as many as the original variables but it is to be

hoped that the majority of information, i.e. variation, can be explained by the first

few PCs. Thus, if we have a vector x consisting of p variables, then our principal

components would be a linear function of x1, ..., xp so if, for example, we let α rep-

resent the coefficients of each PC (so a vector of p constants) we would have for PC1:

α′1x = α11x1 + α12x2 + ..+ α1pxp =

p∑
j=1

α1jxj

Plotting these PCs allows underlying patterns in the data to be investigated. To find

these PCs we use either the covariance or correlation matrix of x and solve to find

its eigenvalues and eigenvectors. For our first PC we take the largest eigenvalue of

the matrix and the corresponding eigenvector consists of the coefficients that make

up α1. For our second PC we do the same with the second largest eigenvalue whose

corresponding eigenvector will give us the coefficients of α2 and so on for all p pos-

sible principal components.

One of the more well known examples of PCA is in its application to anatomical

measurements and identifying the sources of variation in these for different groups

and species. A common example (Jolliffe, 2002) is reproduced below in which a

small dataset of 7 measurements of 28 students (15 women, 13 men) were examined

to explore whether different factors are associated with the most variation between

the sexes. The 7 measurements were circumferences of chest, waist, wrist and head,

lengths of hand and forearm and overall height. The first PC will then be a linear

combination of these measurements that has the maximum variance, with the second

PC then being a linear combination, uncorrelated with the first, with the maximum

possible variance and so forth. The most common way to find these linear combi-

nations is to take the covariance (or correlation) matrix and use algebraic methods
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to find the eigenvalues and associated eigenvectors. Since eigenvectors are required

to be orthogonal, these linear combinations will not be correlated and taking an

eigenvalue over the sum of all the eigenvalues gives the proportion of the variance

associated with that PC. The results as given in Jolliffe are recreated below (Table

1.1):

Table 1.1: First three PCs of student anatomical measurements
Component number 1 2 3

Women

Hand 0.33 0.56 0.03

Wrist 0.26 0.62 0.11

Height 0.40 -0.44 -0.00

Forearm 0.41 -0.05 -0.55

Head 0.27 -0.19 0.80

Chest 0.45 -0.26 -0.12

Waist 0.47 0.03 -0.03

Eigenvalue 3.72 1.37 0.97

Cumulative % of total variation 53.2 72.7 86.5

Men

Hand 0.23 0.62 0.64

Wrist 0.29 0.53 -0.42

Height 0.43 -0.20 0.04

Forearm 0.33 -0.53 0.38

Head 0.41 -0.09 -0.51

Chest 0.44 0.08 -0.01

Waist 0.46 -0.07 0.09

Eigenvalue 4.17 1.26 0.66

Cumulative % of total variation 59.6 77.6 87.0

So, for women our largest eigenvalue is 3.72 and, as a proportion, this accounts for

53.2% of variation which will be 3.72 divided by the sum of all eigenvalues multiplied

by 100%. This is then associated with an eigenvector of the form (0.33, 0.26, 0.40,

0.41, 0.27, 0.45, 0.47)’ which is our first PC. As far as interpretation goes, since all
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the coefficients are positive, then this is a balance of the 7 different measurements

and in effect describes the overall size of the individual which would be expected,

as generally a person will have directly proportional anatomical measurements, so a

tall person will also have a larger chest and a wider waist and so on. The relative

magnitude of the coefficients indicates the importance of that particular factor in the

principal component and so in the overall variance of the data. For PC1 for women

the most important factor is waist size, but it’s not noticeably more important than

other factors such as chest and height. Our second PC has a mix of coefficients

and so is a contrast of different measurements with those having a larger magnitude

being more important, in this case it is dominated by hand and wrist against height.

This means that after the general size of a person (PC1), variation in anatomical

measurements is mostly determined by having either large hand and wrist measure-

ments relative to height or the opposite. The sign here is in a way arbitrary if all

the coefficients were to be multiplied by minus one so as to switch the signs about

the interpretation would still be the same.

Examining the rest of Table 1.1, it is seen that for both sexes the majority of varia-

tion is determined by the first three PCs and the first PC in both is a description of

overall size. The second varies slightly between sexes with women being dependent

on hand and wrist contrasted to height and for men hand and wrist being contrasted

against forearm length. This is seen by examining the coefficients of greatest mag-

nitude for each, and looking at PC3 the sexes differ even more.

However since the likelihood of introduction of disease group are what are referred

to as compositional data; that is they consist of a vector of proportions and so have

the constraint that they must sum to one, there are additional issues that must be

considered. Such data also tend to display a curved relationship between variables

and both of these factors mean that standard PCA can sometimes be inadequate

and produce results that are of little use. This issue was first highlighted by Pearson

(Pearson, 1897) in the 1800s and, generally, in relation to the correlation was com-

municated by considering a D-part composition [x1, x2, ...., xD] which is constrained

to sum to one (or any other fixed value) then:
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cov(x1, x1 + ...+ xD) = 0 (1.1)

The covariance in equation (1.1) must be zero as the second element represents the

sum constraint; i.e. x1 + ...+xD will always equal one, therefore it will not vary and

so the covariance will be zero.

Equation (1.1) can be expanded out using the properties of covariance:

cov(x1, x1) + cov(x1, x2) + ...+ cov(x1, xD) = 0

cov(x1, x2) + ...+ cov(x1, xD) = −cov(x1, x1)

cov(x1, x2) + ...+ cov(x1, xD) = −var(x1)

(1.2)

Then in equation (1.2) assuming that x1 is not a constant, then the right hand side

must be negative and so at least one of the left hand side covariances must be neg-

ative. Since this can be done for each x variable, then at least D elements of the

covariance matrix are negative and so correlations will not be free to take all values

over the (-1,1) range. A discussion of the history and state of solutions to this prob-

lem are given in Aitchison and Egozcue (2005).

To illustrate this an example is taken from a paper (Aitchison, 1982a) on this prob-

lem which uses two datasets consisting of vectors of three proportions; the relative

proportions of urinary excretions of three steroid metabolites, here simply labeled 1,

2 and 3, of 37 healthy adults and the AFM compositions of 23 aphyric Skye lavas

(the proportions of three oxides present in lava samples). In the paper, the datasets

are used to form triangular coordinates and ternary plots are produced.
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Figure 1.1: Compositional data in triangular coordinate form for (a) steroid metabo-

lites, (b) aphyric Skye lavas, showing axes obtained by standard principal component

analysis

In Figure 1.1(a) we can see a more conventional shape that is perfect for PCA where

the data take an elliptical shape but in Figure 1.1(b) a non-linear relationship is

clearly present meaning that fitting a first PC which takes a linear form means that

it will miss out on a clear relationship that may explain much of the variation within

the dataset. This is not the case for all datasets of compositional data but is held to

often be the case (Aitchison, 1982a).

The other issue with this type of data is the constraint that they must sum to one,

which tends to be visible as a trade off type curve in scatter plots of the variables.

To illustrate this, a simple example could be considered where our data consist of

just two proportions; sticking with our notation from earlier we shall call these x1

and x2 so taking our constraint we can write:

x1 + x2 = 1

Considering this equation it is clear that as x1 increases then in order to continue to
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sum to one then x2 must decrease and producing basic points we can produce a plot

showing this relationship:

Figure 1.2: Scatter plot of x1 against x2 showing trade off

Figure 1.2 shows this inversely proportional relationship between x1 and x2 and this

can cause problems with PCA as it is dependant on the correlation (or covariance)

matrix and this type of relationship will put a constraint on the levels of correlation

that will occur.

Many papers have been written on possible solutions to this (Aitchison, 1982a,

1999; Egozcue and Barcel, 2003) with an overall summary in Pawlowsky-Glahn and

Egozcue (2006) and generally involve a transformation of the data, or some suggest

the use of non-linear functions for the principal components and the technique used

in this chapter was one of the earlier ones, now known as the centered log ratio

transform, and involves taking the natural logarithm of each variable, a nonlinear

function, and centering them before then performing principal component analysis

as usual. So, for example, using the notation we used above we would have a new

variable y:

y1 = log(x1)− [
log(x1) + log(x2) + ..+ log(xp)

p
]
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1.3 Modelling of Exotic Pathogens

When there is a lack of historical data, modelling techniques can often be used to

examine the possible means of introduction and risk represented by diseases, whether

these are exotic pathogens for which data are unavailable or to explore how an en-

vironmental change will affect the risk represented by an exotic or endemic disease.

Many recent papers have focused on the possible influences of climate change, for

example Naicker (2011); Gale et al. (2011); Gould and Higgs (2009); Baylis and

Githeko (2006), which could make a significant difference in particular to vector

borne pathogens where the ranges of host species may expand.

In Naicker (2011) a review of current literature was carried out and consideration

was made of how changing temperatures as well as how human and other natural

factors will affect the range and survivability of mosquitoes, sandflies and ticks. This

could have the potential to drastically change the incidences and range of a number

of vector borne diseases. This is due to warmer climates allowing many of these vec-

tor species to be active across more of the year and at higher latitudes. The paper

summarises the results of a number of modelling papers focusing mostly on those

concerning developing countries. There is discussion of the possibility of emerging

diseases such as the Lujo virus, a haemorrhagic fever virus, but the conclusion fo-

cuses on the emergence of diseases that are currently present in Africa but have not

been affecting humans. There is therefore little focus on exotic pathogens that will

be introduced to a country.

More traditional epidemiological models, such as compartment models, can be used

to represent the geographical movement of a pathogen and so can be used to estimate

the risk of it being introduced to an area. Generally, these models describe different

population groups but do not simulate the spatial aspects of spread. A discussion

of this drawback, along with others, is given in White et al. (2007) followed by an

approach to modelling epidemics using Cellular Automata (CA). Generally, these

are two dimensional models that use an array of cells which have states that change

across discrete time steps according to rules based upon the states of their neigh-

bours. These have been used to model a number of epidemics or viruses, such as
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the spread of influenza (Beauchemin et al., 2008) or Hepatitis B through cells (Xiao

et al., 2006) or the spread of rabies amongst foxes (Benyoussef et al., 1999).

In contrast to the spatially explicit cellular automata approach, Gale et al. (2011)

describes a Geographic Information System (GIS) model that analyses the differ-

ence between a current baseline and a future climate change scenario on the risk of

CCHFV being introduced into Europe by migratory birds. The model is a GIS that

uses a number of layers of 25km square cells each of which spatially covers Europe.

Each layer contains different data with each cell containing the data for the geo-

graphical area it covers, these layers are then combined to calculate a level of risk

for that area and the sum of all these calculations gives a level of risk for all of Europe.

The first layer describes the distribution of selected bird species across Europe; the

selected species were the four most populous species considered at risk of acquiring

CCHFV. This was judged by their behaviour with the four species selected being

birds that migrated to Europe from sub-Saharan Africa where the virus is present

and which nested and fed on the ground putting them at higher risk of becoming

hosts for ticks; with ticks being the hosts for the virus. The layer was formed from

two datasets: the first being data on the presence or absence of a species and the

other being a total number of breeding pairs for all of Europe and these were com-

bined to give a spatial distribution of the breeding ground of the species.

This layer was multiplied by an estimated prevalence for CCHFV positive ticks on

migratory birds to give a predicted number of CCHFV positive ticks being intro-

duced into Europe. This was combined with the second GIS layer which contained

environmental data on temperature and humidity and was used to estimate the prob-

ability of the tick moulting and reaching adulthood. The final layer described the

density of potential hosts for these adult ticks and a probability of successful quest-

ing combined with this layer and the previous results gave the final results of the

paper. This was a geographical distribution of the number of incursions of CCHFV

in host animals within 25km square cells across Europe. An alternative scenario was

considered where the possible effects of climate change were taken into account, these

caused an increased number of cells that held suitable environmental conditions for
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successful tick moulting but also caused a decrease in the birds that migrated be-

tween Europe and sub-Saharan Africa.

The paper concludes that there will be almost no change in the number of CCHFV

incursions into Europe but that climate change may result in a changing geographical

distribution of these incursions. However this particular approach makes a number

of statistical assumptions that are unlikely to be borne out in real life with the main

assumption being that all infected ticks on a bird will stay attached throughout the

entire migratory journey. To remove this assumption would require a more complex

model where migratory movement is modelled.

All of this shows that with a rapidly changing world, in terms of more international

movement and changing climates, exotic pathogens may be more likely to be intro-

duced into Europe. As such, there is greater need for in depth examination of these

threats. This thesis plans to examine a means of identifying key emerging threats

and a number of data sources will be examined to investigate means of doing so.

Once a key pathogen or pathogens is identified then modelling and estimating of

the risk of introduction will be carried out. This means the thesis can be broadly

broken down into two sections; firstly the identification of a key emerging threat and

secondly the process of modelling its introduction.

1.4 Thesis outline

To determine which exotic pathogens might pose the greatest emerging threat, data

from a survey of experts were examined. The EPIZONE network was founded in

2006 and involves a number of partner institutes from the EU, Turkey and China

and has of course done work on predicting emerging threats, (Izs-ve et al., 2006) and

(Kelly et al., 2013) for example. In 2010 the 4th Annual Meeting of the EPIZONE

network was held, and during this, work was carried out to elicit the opinions of a

large number of delegates on current and future epidemic threats to the EU.

In Chapters 2 and 3, the EPIZONE study of expert opinion (Kelly et al., 2013) will
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be examined in detail to fully explore and understand the expert view on what might

become an emerging threat to Europe (Figure 1.3). This will initially be done from

a univariate approach in Chapter 2 before then being tackled from a multivariate

perspective in Chapter 3. From this exotic pathogens that are expected to become

a threat can be identified and those that seem biologically plausible for the Uk can

be selected and a key emerging threat can be selected.

Once a key emerging threat has been identified, then a number of increasingly re-

alistic and complex modelling approaches (Figure 1.3) will be utilised to estimate

the risk of introduction by means of migratory birds; which was identified as a po-

tentially key means of introduction. The first modelling approach, Chapter 4, will

build upon the work done in Gale et al. (2011) by adding the effects of the migratory

distance. This is an important factor as the ability of birds to introduce the virus

into Europe is time dependent. The approach used here will be relatively simple and

will still allow results to be easily and efficiently produced and explored but will still

not be unrealistic as movement will not be explicitly modelled.

As part of the above model, analytical solutions for the risk to Europe were arrived

at and were used to carry out sensitivity analysis for the various bird and tick param-

eters that were used in the model. For some of the key parameters, there is relatively

little ’real life’ data available and the parameter estimates used in Chapter 4 and

in Gale et al. (2011) were based upon expert opinion. In Chapter 5, Bayesian tech-

niques were used to combine the small amount of real data with the expert estimates

in order to find a more accurate estimate that made use of all available information.

In light of the findings in Chapter 4, in Chapter 6 a more complex model will be

developed where the explicit movement of bird populations will be modelled. This

chapter outlines a cellular automata model for aggregated bird populations which

has the disadvantage of being more time consuming to produce and run but will

have less biologically unrealistic assumptions built into it although it will have birds

move as populations rather than as distinct entities. This is followed by a more

complex individual agent based cellular automata model in Chapter 7 and finally by

the most realistic but most complex of the models: a continuous space model of bird
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migration in Chapter 8. As the complexity of the model increases, a more realistic

estimate of the risk of introduction of CCHFV is found but the models also become

more computationally intensive.

The thesis then finishes with a discussion of the overall findings and potential further

work.

Figure 1.3: Chapter topics and interactions
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Chapter 2

Univariate analysis of expert

opinion data1

2.1 Introduction

In recent years, a number of epidemics have occurred within Europe, and many of

these outbreaks have had a devastating effect on both animal health and the economy

(Gro, 2008; Bourn, 2002; Haydon et al., 2004). For emerging threats, there is often

a lack of ’hard data’ and so expert opinion is often used as part of a risk assessment

process, whether just to suggest possible threats or opinions (more qualitative data)

or to provide parameter values for predictive models (quantitative data). These opin-

ions can be used to supplement other sources of data and to aid in decision making

on investments towards prevention and control.

EPIZONE is a Network of Excellence for Epizootic Disease Diagnosis and Control

and was founded by the European Union (EU) in 2006. It involves 19 partner

institutes from the EU, Turkey and China and was set up with the aim to work

together towards the minimization of the likelihood and consequences of future epi-

demic threats by creating a network of scientists to improve research on the preven-

tion, detection and control of epizootic diseases. At the 4th Annual Meeting of the

EPIZONE network, an interactive question session was carried out to elicit the opin-

ions of delegates on current and future epidemic threats to the EU. The aim of the

1Many of the results of this chapter were published in Kelly et al. (2013).
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interactive session was to identify the most threatening viruses, both now and in the

future, and to identify those tools which contribute most to prediction, prevention

and control of future epidemics.

The delegates were questioned on a number of issues during two sessions which were

held at different times and involved a slightly changed group of delegates. Session

one covered delegates’ background, the impact of disease on different areas such as

economics or health, future changes of an environmental, social and economic nature

and the likelihood of a disease being a threat both now and in the future (2020).

The diseases considered for current and future threats were split between six dis-

ease groups: Influenza; Bluetongue (BT) and African Horse Sickness (AHS); African

Swine Fever (ASF); CSF; FMD; West Nile Fever (WNF), Rift Valley fever (RVF),

and CCHFV. Session two again covered the same background questions before ques-

tions covering more detail on the two most threatening diseases as selected during

session one. The results of both these sessions were then examined to determine

expert views on disease risk and the results were published (Kelly et al., 2013). The

aim of this chapter is to perform a more detailed analysis of the data resulting from

session 1 focusing on how much bias may be present amongst the expert opinions

and to investigate factors that influence someone’s views on what constitutes a threat.

2.2 Materials and methods

2.2.1 Questions

Interest here lies in identifying the disease groups that represent the most risk, and

this is contained within the results of session one; therefore this analysis will be

restricted to session one also. This interactive session was held on the final day of

the 4th annual meeting of EPIZONE, held in St. Malo in November 2010. It was

carried out using an interactive, hand held, electronic device which was used to se-

lect a response to each question; delegate responses were then transmitted from the

device and collated in a spreadsheet and results were displayed graphically after each

question. There were nine buttons on the device though most questions had fewer
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possible options as answers.

After a few initial questions that were used to familiarise the delegates with the

device, the delegates were then questioned on their background. The focus of the

background questions and possible options are shown in Table 2.1 .

Table 2.1: Questions to describe delegates backgrounds

Question topic Options

Background EPIZONE, Research, Industry, Policy

Expertise

Diagnostic Development, Vaccine &

anti-viral development, Surveillance &

epidemiology, modelling & risk assessment

Years experience < 10 years, 10−20 years, >20 years

Two main diseases

worked on 2

Influenza, BT & AHS, ASF, CSF, FMD,

WNF, RVF & CCHFV, Other

Region
Northern Europe, Western Europe, Eastern

Europe, Southern Europe, Non-Europe

Since this meeting was an open meeting with delegates from EPIZONE partner

institutes and elsewhere, the first two questions were used to record a delegates or-

ganisational area (Background) and the area they worked on (Expertise) which was

broadly formed along the EPIZONE scientific themes of diagnostics, intervention

strategies, risk assessment and surveillance and epidemiology. Prior to this session,

the diseases for which most expertise was available were identified and the six disease

groups in Table 2.1 were formed from these. BT and AHS are both non-zoonotic

arboviruses sharing a common vector and so were grouped together and likewise

2Delegates could select up to two of the options e.g. Influenza and other or alternatively just one

option, for example FMD, indicating that their line of work only involves working on one disease.
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WNV, RVF & CCHFV are all zoonotic arboviruses and so were grouped into one

option. For region the zones were defined using United Nations regions and a map

(Figure 2.1) was shown to help clarify for the delegates the countries in each region.

Figure 2.1: Map of European regions for delegates’ origin

Following the background questions, delegates were asked a series of questions fo-

cusing on the impact of an epidemic and these are shown in Table 2.2.
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Table 2.2: Questions on delegates’ views on the type of impact, and their importance,

and disease groups that affect each impact type

Question topic Options

Contributes most to

the threat posed by

an outbreak

Impact on Human Health, Economic

Impact, Impact on Animal Welfare

Contributes least to

the threat posed by

an outbreak

Impact on Human Health, Economic

Impact, Impact on Animal Welfare

Largest impact on

human health

Influenza, BT & AHS, ASF, CSF, FMD,

WNF, RVF & CCHFV

Largest economical

impact

Influenza, BT & AHS, ASF, CSF, FMD,

WNF, RVF & CCHFV

Largest impact on

animal welfare

Influenza, BT & AHS, ASF, CSF, FMD,

WNF, RVF & CCHFV

The questions in this part can be broken down into two sub-sections, the first consist-

ing of the first two questions can be used to rank the three areas of impact in terms

of importance. The second subsection, consisting of the remaining three questions,

then determines which disease group is most relevant for each of the 3 impact areas.

The next section focuses on current threats and asked delegates to identify which dis-

ease group is the most likely to cause a new incursion into their region, which is most

likely to spread if it did get introduced and which would be most likely to persist

if introduced. The question topics and the possible responses are shown in Table 2.3.

22



Table 2.3: Questions on delegates’ views on the most likely disease groups to be

introduced, spread and persist in a region at the current point in time

Question Options

Most likely to cause

incursion

Influenza, BT & AHS, ASF, CSF, FMD,

WNF, RVF & CCHFV

Spread fastest if

introduced

Influenza, BT & AHS, ASF, CSF, FMD,

WNF, RVF & CCHFV

Most difficult to

eradicate once

introduced

Influenza, BT & AHS, ASF, CSF, FMD,

WNF, RVF & CCHFV

Delegates were then questioned on future changes covering four key environmental

areas that may change. Each of these were chosen as areas that could have an im-

pact on the likelihoods assessed (Table 2.3) so, for example, from Table 2.4 the first

question relates to how delegates believe the climate will be in ten years time, the

length of time between the present and future timeframes, compared to the present

which could have the potential to change the likelihood of a disease being introduced

if, for example, a vector species becomes able to survive in the new climate. Two of

the areas are about more human controlled activities, importation and farming, so

strong views on these could be used to draw conclusions on possible future policies

on these areas and the other two, concerning climate and wild animal populations,

are concerned with the natural environment.
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Table 2.4: Question on delegates’ views of environmental differences between the

current point in time and 2020

Question topics Options

Climate

No significant change, More variable, Drier

hotter summers, Milder wetter winters,

Drier hotter summers & milder wetter

winters

Importation of live

animals and meat

products

Large decrease, Small decrease, No

significant change, Small increase, Large

increase

Farming

No significant change, Decrease in farming,

Increase in intensive farming, Increase in

extensive farming, Increase in all types of

farming

Wild populations of

large mammals and

birds

No significant change, Increase in large

mammals, Decrease in large mammals,

Increase in bird populations & migrations,

Decrease in bird populations & migrations,

Increase in both, Decrease in both

After considering the possible ways in which the environment could change over the

next ten years (Table 2.4) delegates were then asked to reconsider the likelihood

questions (Table 2.3) they were asked earlier, but this time for future threats.

2.2.2 Data Analysis

The results of the first session were transmitted directly from the hand held devices

and stored in an Excel worksheet and after the session were cleaned according to two

rules; firstly any delegates who had failed to answer any of the background questions
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on region, background or expertise were removed from the dataset, secondly any

delegates who had more than two missing answers for any of the other questions

were also removed so as to have a dataset that had few missing values but without

greatly reducing the number of subjects. The resulting spreadsheet contained the

responses for 192 delegates.

Ranking Process

Using the results of the first two impact questions, a weighting of each of these im-

pact areas was calculated. For this let α1, α2 and α3 be defined as the number of

delegates who selected each of these measures (human, animal and economic respec-

tively) as contributing most to the impact of an epidemic. Likewise let β1, β2 and

β3 be the number of delegates who selected the measure as contributing the least to

the impact of an epidemic and let N be the total number of delegates. We then have

for i = 1, .., 3:

Wi =
[3αi + βi + 2(N − αi − βi)]

6N
(2.1)

The weights Wi sum to one and can be regarded as representing the proportion of

total delegate views on the importance of each of the areas of impact i.e. the larger

the weighting the more important delegates think that impact measure is.

An impact score for each of the disease groups was then calculated using the re-

sponses from the remaining impact questions. For this the six virus groups are

denoted using j = 1, .., 6 and using the i from above we have xij which is the number

of delegates that selected virus group j as having the greatest impact on the impact

area i if there was to be an outbreak of that virus. So with i = 1, .., 3 and j = 1, .., 6

gives.

Impact Score:

ISj = W1x1j +W2x2j +W3x3j (2.2)

So for example x12 would be the number of delegates that selected BT & AHS as
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having the greatest impact on human health. This produces a value representing

the total view of delegates on the impact of a particular virus, being the sum of

the number of delegates who selected a disease for an impact area multiplied by

the importance of the area as represented by its weighting. A likelihood score was

then calculated for each disease group using the three likelihood questions (Table

2.3), introduction, spread and difficulty to eradicate, represented by i = 1, .., 3. Let-

ting yij represent the number of delegates who selected virus group j as being most

likely to lead to likelihood measure i. For example y12 would be the number of dele-

gates who selected BT and AHS as the most likely to be introduced into their region.

Likelihood Score:

LSj =
3∑
i=1

yij
3

(2.3)

Each of the 3 likelihood scenarios were considered equally important which is why

the 3 values of y for each are averaged i.e. the likelihood score has a denominator of 3.

This leaves us with two measures, one of the perceived impact a disease group would

have and another for the likelihood of such a disease being an issue. A final score

for each virus group was then calculated by multiplying the two of these.

Score:

Sj = ISjLSj (2.4)

This means that the final score for each disease is determined by both the impact of

an epidemic and the likelihood of such an epidemic occurring. This allows a balanc-

ing of a delegates’ view as simply asking for threats would most likely result in just

highly likely diseases being given but if a delegate thinks a disease is very unlikely

but of high impact this means it will still get a reasonably high score. A similar

score was calculated for the future using the same impact score but calculating a

future likelihood score (FLS) using the likelihood questions for 2020 rather than the

current likelihood questions (Table 2.3) and combining these for a future score (FS).

A similar approach was followed for future threats where, instead of yij there is zij,

which represents the number of delegates who selected virus group j as being most

26



likely to lead to likelihood measure i in 2020. That is, those delegates who selected

a particular virus group for a question in Table 2.3 for the year 2020.

Future Likelihood Score:

FLSj =
3∑
i=1

zij
3

(2.5)

Future Score:

Sj = ISjFLSj (2.6)

The scores and future scores for each of the disease groups across all delegates were

plotted in Figure 2.2:

Figure 2.2: Score and Future Score for each disease group calculated from the returns

from all delegates
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These scores can be regarded as the level of threat a particular disease group is

perceived to have by delegates, relative to others considered and using these rating

criteria, and it was used to rank the different disease groups. These scores were

also calculated for different subgroups formed using the Background questions so,

for example, scores were calculated separately for EPIZONE, research, industry and

policy groups with N being replaced by the total number of delegates within each

subgroup. This was carried out to see if perceived current and future threats varied

between different groups e.g. did EPIZONE delegates and industry delegates rank

current threats in the same way or differently or was there a bias towards the disease

groups that a delegate worked on.

Creation of new response variables

Since one of the results identified in the EPIZONE paper (Kelly et al., 2013) was of

a change of opinion regarding current and future threats, new variables were formed

to allow this to be investigated in more detail. The change of opinion identified

was that delegates seemed to think that influenza would be less of a threat in 2020

compared to now and that WNF, RVF, and CCHFV would be more of a threat.

To investigate what factors might influence delegates who changed their opinions in

either of these ways, new datasets were formed using the paired current and future

likelihood questions (Table 2.3). In particular, a delegate’s disease choice for cur-

rent and 2020 risk of incursion, spread and persistence were used to derive two sets

of binary variables for each delegate indicating whether or not they had switched

from Influenza and whether or not they had switched to WNF, RVF & CCHFV

for each likelihood question. The final dataset then had six new indicator variables

with values for each delegate, three of these marking whether a delegate changed

from influenza as a current threat (for risk of incursion, spread and persistence) to a

different disease group as the future threat and three for a delegate changing to the

zoonotic arboviruses as a future threat e.g. if a delegate listed influenza as a current

risk of incursion but not as a future then a 1 would be placed against that delegate

for the appropriate new variable.

Finally, to allow investigation of how background might influence how an individual
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scores a disease as a threat, an individual score was produced for each delegate for

each disease using a variation of the original scoring process. As before, the first

two impact questions were used to calculate an impact weighting. However, for an

individual we let α1, α2 and α3 be defined as an indicator (i.e. taking zero or one)

of whether a delegate selected each of the measures (human, animal and economic

respectively) as contributing most to the impact of an epidemic. Likewise let β1, β2

and β3 be an indicator of whether a delegate selected the measure as contributing

the least to the impact of an epidemic, due to the nature of the questions only one

α and one β will be one and the other two will be zero. We then get:

Wi =
[3αi + βi + 2(1− αi − βi)]

6
(2.7)

In contrast to equation (2.1) the weights being calculated are for the proportion of

an individual delegate’s views on the importance of an area of impact and this is

done for each delegate as opposed to the proportion of total delegate views on the

importance of an area of impact. This is also why N is now replaced by 1 and α

and β are indicator variables, indicating whether a individual delegate selected a

particular response rather than a count of delegates who selected that response.

This produces three values for each delegate (one for each impact measure) that sum

up to one and can be regarded as representing a delegates views on the importance

of each of the areas of impact; i.e. the larger the weighting the more important a

delegate thinks that impact measure is. However, in this case, the possible values

are very restricted, if a delegate selects a different impact area for each question

then the one they regard as being most important will have a weighting of 1
2
, the

second most important will have a weighting of 1
3

and the least important will have

a weighting of 1
6
. If a delegate were to select the same impact measure as both the

most and least important then all three will be equally weighted with weightings of

a 1
3
. This could occur for a number of reasons; for example the delegate believes all

three are equally important or they do not hold the necessary knowledge to be able

to confidently decide between the measures.

An impact score for each of the disease groups is then calculated for each delegate
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using their responses for the remaining impact questions. Again for this, the six

virus groups are denoted using j and x1j would be an indicator (i.e. taking the value

zero or one) of whether a delegate had selected virus group j as having the greatest

impact on human health if there was to be an outbreak of that virus and similarly

for the other two impact measures. The impact score is then as before.

Impact Score:

ISj = W1x1j +W2x2j +W3x3j (2.8)

This produces a value representing the total view of a delegate on the impact of a

particular virus. Again the values are restricted, in this case having to sum to one

and having possible values of 0,1
6
, 2

6
,..., 6

6
.

A likelihood score is then calculated for each disease group using the three likelihood

questions ( so i = 1 to 3) and with yij representing an indicator variable of whether

a delegate selected virus group j as being most likely to lead to likelihood measure i.

For example y12 = 1 would mean a delegate selected BT and AHS as the most likely

to be introduced into their region.

Likelihood Score:

LSj =
3∑
i=1

yij
3

(2.9)

Clearly from the equation this is restricted to the values of 0, 1
3
, 2

3
or 1.

The individual score for each delegate by virus group is then calculated using the

impact and likelihood scores and a similar modification is done for the individual

future score.

Individual Score:

Sj = ISjLSj (2.10)

Given that the possible values for the Likelihood Score are restricted to 0, 1
3
, 2

3
or

1 and the Impact Score to 0, 1
6
, 2

6
,..., 6

6
then clearly the possible values for the In-

dividual Score (and Individual Future Score) will be restricted to the values of 0, 1
18

,
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2
18

,..., 18
18

.

This is technically a discrete variable but, since it takes a fairly large number of

values across a short range, it could be regarded as quasi continuous between zero

and one.

This dataset of individual scores had the two policy delegates removed from it, due

to the small number of delegates from this background and the fact that therefore

there won’t be much of a range of opinion it would be likely to produce spurious

results. The final set of individual scores for both now and the future are displayed

graphically in Figure 2.3.

Figure 2.3: Individual Current Score and Future Score for each disease group calcu-

lated from the returns from all delegates
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A dataset was also created where any score greater than zero was replaced with a

one i.e.

Sj > 0 => Sj = 1

Sj = 0 => Sj = 0

This binary response to individual scores was to allow a logistic regression approach

to be taken and would have the interpretation of simply whether a delegate thought a

disease group was a threat or not with nothing to distinguish between level of threat.

2.2.3 Analysis

2.2.4 Total Scores & Rankings

In the EPIZONE report (Kelly et al., 2013), tables of the disease groups ranked

using the Score and Future Score broken down into subgroups using the background,

expertise, disease worked upon and region questions described previously were pre-

sented. These tables of results were statistically analysed using Spearman’s rank

correlation. Spearman’s rank correlation is a non-parametric test of dependence

between two variables and was used to test the similarity between the rankings of

our six diseases when viewed by sub groups. This produced a correlation coefficient

that represents the strength and direction of the relationship between the two sets

of rankings. The closer to one the stronger the sense of agreement, the closer to

negative one the more opposite the views (i.e. if ranks were completely inverted)

and zero would indicate there is no link at all.

One factor ANOVA (analysis of variance) was used to examine the total scores

for each disease group broken down into subgroups to investigate if there was a

significant level of variation between scores for different subgroups. The most basic

interpretation of this is to test whether the means of different groups are equal. This

was carried out on each future and current score for each disease by subgroup with

our null hypothesis being that there is no difference in how each group has scored

this disease with the alternative hypothesis being that scoring does change across
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groups. Tukey’s range test (with overall significance level of 5%) was used to test

each group against the others and further check for differences.

2.2.5 Individual Scores

A number of analyses were carried out on the individual scores with the focus being

on whether or not the background of delegates could be used to explain their scoring

behaviour. However, before this, an examination of what combination of disease

groups delegates scored was carried out. Since an individual delegate only has three

questions in both the impact and likelihood sections in which they specify the dis-

ease groups they perceive as a threat, this then places a limitation on the number of

disease groups they can score. If a different disease group is specified for each of the

three impact questions and the same three disease groups are specified for the likeli-

hood then those three disease groups will receive a score. If due to either specifying

the same disease group for multiple questions or putting a different combination of

disease groups for the impact questions as opposed to the likelihood questions then

possibly two, one or zero disease groups may be scored for a delegate. Therefore the

maximum number of possible final score combinations for each delegate are:(
6

3

)
+

(
6

2

)
+

(
6

1

)
= 41 (2.11)

With the first term in equation 2.11 being the possible disease combinations for a

delegate scoring three different diseases, the second term being where only two dis-

eases are scored and the final term being the options for a delegate scoring only one

disease group. To investigate the combinations of disease groups for current and

future individual scores were counted and examined.

To begin examining the individual scores, a general linear modelling approach was

taken that depended on the quasi-continuous nature of the individual score. This

was done as analysing it this way allowed a greater level of variation between dele-

gates despite the fact that it stretched the assumptions required, since the data are

not truly continuous but only approximately so. This approach attempts to identify

an underlying mathematical model which explains the level of variation affecting

delegates responses. The model is represented as
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Yj = θB + e

= θ0 + θ1B1 + θ2B2 + θ3B3 + θ4B4 + e
(2.12)

In equation (2.12) Y is the individual current or future score for a delegate for a

particular disease group and B is a set of categorical variables for a delegate’s re-

sponse to the background questions (Table 2.1) relating to their background, area

of expertise, whether they have worked on the disease group in question and their

region.

The aim is then to identify the factors that contribute most towards this controlled

variation; i.e. so which of the background questions seems to contribute the most

variation. The general linear model approach uses least squares regression to esti-

mate the coefficients (θ) in the model and the size and significance of these indicate

the importance of the particular background factor. A general linear model was

fitted for all current and future scores for each disease group with the explanatory

variables being all of the background questions with the exception of years worked

which was removed due to the number of missing values that were present.

A forward stepwise selection procedure was used as follows. Univariate analyses were

run for each factor and factors were selected for inclusion in the initial model using

a significance level of 0.25, before then being used in the stepwise procedure with

a significance level of 0.05, which included main effects and two factor interactions.

Once this preliminary model was set up the terms removed during the univariate

stage were added back in separately to check if they had now become significant.

Once a final model was found, Tukey’s range test was used to test each subgroup of

delegates against the other and check for differences and factor and interaction plots

were produced to explore the behaviour of the model.

To analyse whether or not a delegate regarded a disease group as a threat, a logis-

tic regression approach was used to analyse the binary response data for individual
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scores. This is an adaptation of the general linear model, equation (2.12), where the

dependent variable, Y , is binary so can be only zero or one. It makes use of maxi-

mum likelihood estimation to estimate the values of θ. However, due to separation

issues the standard logistic regression approach could not be used. The separation

issue occurred when all delegates from a particular subgroup scored or didn’t score

a disease, for example all delegates whose area of expertise was modelling & risk

assessment did not score ASF as a current threat. The problem here is that since

delegates who view the disease as a threat (or not as the case may be) all have the

same value for a factor then they can be perfectly separated i.e. a perfect predictor

can be found (Albert and Anderson, 1984). In this case, our maximum likelihood

estimate will not exist and will produce an infinite estimate for the parameter value

or in many softwares a large estimate and very large standard error.

There are various approaches that can be used to handle the issue of data separa-

tion (Heinze and Schemper, 2002) and two of them were used here. Firstly, there

is what is referred to as an ad hoc adjustment which is relatively straightforward

and involves changing a single delegate’s response so as to remove separation. To

continue the example, a single delegate from a modelling & risk assessment area of

expertise would have their response changed so as to score ASF as a threat.

Secondly, there is the use of penalized maximum likelihood where a modified version

of a delegate’s score is used to create and test the model (Heinze and Schemper,

2002). The score function is based on the distribution of the log likelihood and for

penalized maximum likelihood this is replaced with a penalized log likelihood:

logL(B)∗ = logL(β) +
1

2
log|I(β)| (2.13)

Here I(β) is the Fisher information matrix, the negative of the second derivative of

the log likelihood. This new log likelihood is biased away from zero and so is biased

away from infinite parameters being produced.

There are then two methods of calculating confidence intervals for the point estimates

produced, penalized profile likelihood confidence intervals (an alternative iterative
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approach using the log likelihood) or the more traditional Wald intervals. The latter

are more efficient to calculate and less computationally intensive; however, are still

affected by separation though will not be effectively infinite since they are based on

a finite form of point estimate as opposed to the intervals that would be found using

a standard logistic regression approach. Therefore, the former are used here since

they are not affected by separation; however, the Wald intervals for the final models

were also calculated and are included in appendix A.

There are other potential approaches for handling separation, two of the main ones

being omission of the problem group or variable from the model and exact logistic

regression. The first of these is to be avoided where possible as it removes much in-

formation from our model and dataset and does not allow for adjusting effects on the

other factors by the one removed. The second is unfortunately computationally in-

tensive and is only appropriate for very small datasets and for fitting simpler models.

The same selection procedure was used as for our general linear models and was

carried out separately for the ad hoc and penalized maximum likelihood methods.

2.2.6 Examining delegates’ changes of opinion

For the current and future likelihood questions, interest centered on examining the

relationship between what disease delegates viewed as a threat now and those they

saw as threats in 2020. Separate tests were run for each disease, in effect creating a

series of two by two tables, e.g. the number of delegates who selected influenza as

the greatest threat in terms of an incursion now and the number of delegates who

selected another disease group (so the sum of the other 5 groups) as the greatest

threat in terms of an incursion now against influenza in 2020 and all other disease

groups in 2020

To compare the scores, standard contingency table tests were not applicable since

these were dichotomous variables, that is paired outcomes, rather than two inde-

pendent variables; i.e. we have present threats selected with delegates then being
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made aware of how other delegates voted before selecting future threats. As such,

the McNemar test was used to determine if the proportions of delegates choosing a

particular disease changed depending on the time frame.

For this test, our null hypothesis would be that as many delegates are as likely to

switch from the disease of interest as are likely to switch to it when selecting their

current and future threats with the alternative hypothesis being that delegates are

more likely to change their opinions in a particular direction.

H0: Delegates equally likely to change their opinion in either direction

Ha: Delegates change their opinion in a particular direction

The equation for the test statistic itself is:

χ2 =
(|n1 − n2| − 1)2

n1 + n2

, df = 1 (2.14)

Where n1 and n2 are the counts of delegates who have changed their mind; i.e. from

the disease group of interest as a current threat to another disease group for a fu-

ture threat or vice versa. Equation (2.14) is the standard test statistic used in the

Minitab statistical software and includes a correction for continuity which has little

effect unless n1 + n2 < 25 (Edwards, 1948)

As mentioned previously some interest revolved round the changing of delegates

opinions of influenza and the zoonotic arboviruses and a new dataset was formed

to represent this. To analyse this, a logistic regression approach was taken with

the explanatory variables being the new indicator variables described above and a

univariate analysis of this against each of the responses for the Future Changes ques-

tions. Again, the issue of separation occurred and the same approach was taken of

producing models using both an ad hoc adjustment and penalized maximum like-

lihoods. Variables here were selected based upon both a p-value of less than 0.05

being present and examination of the confidence interval i.e. if it does not span one,

then it was accepted as significant.
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2.3 Results

2.3.1 Total Scores & Rankings

The results for Spearman’s rank correlation coefficient were broken down by sub-

groups and current and future rankings. The first division of the delegates was by

background and they were split in to four groups. For example the ranking of the

diseases for EPIZONE delegates and Research delegates were used to calculate the

coefficient and also a p-value which tests the null hypothesis that there is no link in

how these two background groups rank the disease groups in terms of threat. For

interpretation in this case we can see from Table 2.5 that the agreement between Re-

search and EPIZONE is perfect as can be seen by visually examining the data since

both groups gave the same rank to every disease. Agreement between EPIZONE and

Industry and Research and Industry is very strong; however, there is strong evidence

of low agreement between Policy and the other groups, altogether the low number

of Policy delegates means that this result must be treated with some scepticism.

Table 2.5: Spearman’s rank correlation coefficients for current disease scoring calcu-

lated when delegates are split by Background

Present EPIZONE Research Industry Policy

EPIZONE - 1.000 0.886(p=0.019) -0.091(p=0.864)

Research - - 0.886(p=0.019) -0.091(p=0.864)

Industry - - - -0.152(p=0.774)

Policy - - - -

Examining the future rankings, Table 2.6, we see much the same pattern though

the values have dropped slightly meaning some disease groups have been ranked

slightly differently amongst groups but generally EPIZONE, Research and Industry

delegates agree and the negative correlations show the policy delegates disagree with

individuals from all other backgrounds.
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Table 2.6: Spearman’s rank correlation coefficients for future disease scoring calcu-

lated when delegates are split by Background

2020 EPIZONE Research Industry Policy

EPIZONE - 0.943(p=0.005) 0.886(p=0.019) -0.135(p=0.798)

Research - - 0.714(p=0.111) -0.101(p=0.848)

Industry - - - -0.372(p=0.468)

Policy - - - -

Splitting the delegates by area of expertise results in a strong level of agreement

across all sub groups both now and in the future (see Tables 2.7 and 2.8). This is

evidenced by the tables containing positive high values for all combinations.

Table 2.7: Spearman’s rank correlation coefficients for current disease scoring calcu-

lated when delegates are split by Expertise

Present Diagnostic

development

Vaccine &

anti-viral

development

Surveillance

& epidemiol-

ogy

modelling &

risk assess-

ment

Diagnostic

development

- 0.943

(p=0.005)

0.943

(p=0.005)

0.928

(p=0.008)

Vaccine &

anti-viral

development

- - 1.000 0.870

(p=0.024)

Surveillance

& epidemiol-

ogy

- - - 0.870

(p=0.024)

modelling &

risk assess-

ment

- - - -
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Table 2.8: Spearman’s rank correlation coefficients for future disease scoring calcu-

lated when delegates are split by Expertise

2020 Diagnostic

development

Vaccine &

anti-viral

development

Surveillance

& epidemiol-

ogy

modelling &

risk assess-

ment

Diagnostic

development

- 0.886

(p=0.019)

0.943

(p=0.005)

0.899

(p=0.015)

Vaccine &

anti-viral

development

- - 0.943

(p=0.005)

0.928

(p=0.008)

Surveillance

& epidemiol-

ogy

- - - 0.986

(p=0.000)

modelling &

risk assess-

ment

- - - -

When delegates were split by the diseases they work on there was a greater level of

variation (Tables 2.9 and 2.10). As far as the present is concerned, it seems that

those delegates who work on ASF and CSF seem less in agreement with delegates

who have worked on all other diseases. This can be seen in the lower positive correla-

tions for these 2 disease groups groups against each of the others. However, it should

be noted that while there is no strong agreement there is not complete disagreement;

that is, complete disagreement would be represented by a value of zero indicating

no correlation and, in this case, while the values are low they are still greater than

zero. There appears to be reasonably good agreement amongst the other disease

groups but, when we move to the future, the levels of agreement drop amongst most

groups maybe indicating uncertainty about the future or certain groups of delegates

who work on emerging threats moving emphasis to a different group which ties into

the EPIZONE paper (Kelly et al., 2013) where it was noted that the delegates who

worked on arboviruses ( WNF, RVF, CCHFV and BT & AHS) both changed their

rankings of WNF, RVF & CCHFV.
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Interestingly, the opposite can be seen when viewing delegates by region; in this case

agreement seems to improve for the future. For the present, delegates from Western

and Northern Europe showed strong agreement and the recent BT epidemic (Car-

rasco et al., 2010) may have contributed to this and views on the emerging threat

posed by WNF, RVF & CCHFV may be what causes the increased agreement about

the future.

Table 2.11: Spearman’s rank correlation coefficients for current disease scoring cal-

culated when delegates are split by Region

Present North West East South Non

North - 0.943

(p=0.005)

0.600

(p=0.208)

0.600

(p=0.208)

0.657

(p=0.156)

West - - 0.543

(p=0.266)

0.714

(p=0.111)

0.714

(p=0.111)

East - - - 0.657

(p=0.156)

0.600

(p=0.208)

South - - - - 0.714

(p=0.111)

Non - - - - -
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Table 2.12: Spearman’s rank correlation coefficients for future disease scoring calcu-

lated when delegates are split by Region

2020 North West East South Non

North - 0.943

(p=0.005)

0.771

(p=0.072)

0.771

(p=0.072)

0.771

(p=0.072)

West - - 0.657

(p=0.156)

0.886

(p=0.019)

0.829

(p=0.042)

East - - - 0.714

(p=0.111)

0.657

(p=0.156)

South - - - - 0.714

(p=0.111)

Non - - - - -

It is also worth noting that there were never any noticeably high negative correlations

in any of the comparisons suggesting that while there might be some disagreement

about the rankings there was never any group that held completely contrary views

to the others.

For the one factor ANOVA a number of potential factors were flagged as being sig-

nificant in explaining the level of variation between subgroups. When total scores

were broken down by disease worked on a significant result was found for all disease

groups and times indicating that there is a statistically significant difference whereby

delegates who work on a disease are more likely to rate it a threat. This indicates

that there may be a bias amongst delegates towards a disease that they themselves

work on.

When carrying out the same analysis for delegates broken down by expertise, there

is no significant result for any disease indicating that there is agreement across these

groups for all diseases. Subgroups formed by background only resulted in one sig-

nificant result and that was for CSF in the present where there was a statistically

significant difference between delegates from industry and from research with dele-

gates from industry as a whole deeming it more of a threat.
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By region, there is a difference amongst delegates when it comes to scoring two of

the diseases. The first is Foot-and-mouth disease which is seen as more of a threat

outside of Europe though the level of difference becomes less noticeable when looking

at the future as opposed to the present. The other disease group is the zoonotic

arboviruses where the pattern is a little less clear. Regarding current threats what

can be concluded is that delegates from the South regard it as significantly more of

a threat than delegates from the West and for the future the same delegates regard

it as significantly more of a threat than delegates from the North.

2.3.2 Individual Scores

Combinations

Once the individual scores were calculated for each delegate a total was taken of all

the final combinations of diseases scored for both the present and the future. So each

delegate had the potential to score between zero, if a delegate selected completely

different disease groups for impact and likelihood, and three diseases and the five

most common combinations of disease groups scored are shown in Table 2.13 for

current delegate perception and Table 2.14 for delegate future perception.:

Table 2.13: Current Disease Score Combinations

Present scores

Disease combination Number of delegates

Foot-and-mouth disease 38

Influenza 32

Influenza & Foot-and-mouth dis-

ease

29

None 19

BT & AHS & Foot-and-mouth

disease

10
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Table 2.14: Future Disease Score Combinations

Future scores

Disease combination Number of delegates

Foot-and-mouth disease 33

None 30

Foot-and-mouth disease & WNF,

RVF & CCHFV

23

Influenza 22

Influenza & Foot-and-mouth dis-

ease

16

So, for example, 38 of the delegates scored only Foot-and-mouth disease as a threat

to be focused on currently (Table 2.13) and 10 scored both BT & AHS and Foot-

and-mouth disease. A couple of points can be noted from these combinations, firstly

the two highest scoring disease groups from the original report (Influenza and Foot-

and-mouth disease) dominate both tables as might be expected. Secondly, a smaller

proportion of delegates are covered by the top five combinations in the future and

the number who scored no disease group has increased both of which could reflect

a greater level of disagreement or uncertainty on an individual level i.e. the disease

a delegate thinks will have a great impact are not those they think are likely. This

is also supported by the fact that for current scores there was a total of 20 combi-

nations, with only the 5 most popular shown in Table 2.13. In contrast, for future

scores this went up to 24 combinations of disease groups indicating a more diverse

view amongst delegates of what will constitute a threat in the future.

General Linear Model

Analysing the individual scores of delegates using the general linear model approach

resulted in one variable that was always significant and this was whether or not a

delegate had worked on the disease in question with there being a negative effect if

they hadn’t. Using the selection procedure described for fully half of the final models

(i.e. current and future scores for all six disease groups) this was the only factor to
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remain in the final model, however the rest were more complex.

Table 2.15: Major Coefficients (rounded to 1 decimal place) for General Linear Model

for Influenza Scores
Factor Coefficient p-value

Worked on Influenza 0.2 p<0.001

Delegate from North Europe 0.2 p<0.001

Delegate from the East Europe 0.2

Delegate from the West Europe 0.1

Non-European Delegate 0.1

Delegate worked on Influenza & from North Europe 0.3 p<0.001

Delegate worked on Influenza & from East Europe 0.3

Delegate worked on Influenza & non-European delegate 0.1

Delegate does not work on Influenza & from North Europe 0.1

Delegate does not work on Influenza & from West Europe 0.1

Delegate worked on Influenza & from West Europe 0.1

Delegate worked on Influenza & from South Europe 0.1

As regards influenza as a threat in the present, region was also included in the final

model (Table 2.15) with it being present as a main effect and an interaction between

it and whether a delegate had worked on influenza, see Figure 2.4 which is a main

effects and interaction plot showing the mean level for each factor and interaction.

That is, the coefficient associated with a particular level of a factor, for example

delegates from the North of Europe regarded influenza as more of a threat with

those from the North who work on the disease tending to score it even higher. This

could possibly be due to the high concentration of cases in Iceland during the 2009

Influenza pandemic (Sigmundsdottir et al., 2010). Those delegates from South EU

and from outside of Europe who don’t work on the disease had the opposite opinion

and scored it lower.
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Figure 2.4: Factor & Interaction Plots: Influenza (Current)

For the scoring of BT & AHS as a future threat (Table 2.16) everything was a little

less clear. Northern delegates tended to score the disease group higher (Main effects

plot in Figure 2.5) which is rather surprising seeing as both these diseases are his-

torically more of a threat in the other European regions, although outbreaks of BT

in 2007/8 and a smaller outbreak in 2009 did go as far north as Norway so, possibly,

since it is less common but has recently appeared, the reaction to it in the north was

more extreme so it is viewed as more of a future threat.
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Table 2.16: Major Coefficients for General Linear Model for BT & AHS Future

Scores
Factor Coefficient p-value

Delegate worked on BT & AHS 0.1 p<0.001

Delegate from North Europe 0.1 0.057

Delegate worked in Research & from North Europe 0.1 0.012

Delegate worked in Research & from North Europe 0.1

In addition to this, the interaction between background and region (Interaction plot

in Figure 2.5) was also significant and again here it is Northern delegates that stand

out; however, the fact that Northern EPIZONE delegates do not view these diseases

as being as big a future threat is of interest. A search of the Experts database on the

EPIZONE website (http://www.epizone-eu.net/epizone/experts.aspx) only returns

a single expert on BT associated with an EPIZONE partner in Northern Europe and

none for any region for AHS and so possibly, since there is less expertise in this sub-

ject area, there is a tendency to score it slightly lower than the other backgrounds.

Of course, this is merely conjecture and, since many more Northern EPIZONE dele-

gates indicated that they have worked on the disease group, it is likely to be flawed

and to investigate it fully, more information would be needed about all the delegates

who attended the conference.
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Figure 2.5: Factor & Interaction Plots: BT & AHS (Future)

For ASF in the present, with the main coefficients in Table 2.17, those delegates

from East Europe were flagged as more likely to score it a threat than those from

the North. This could be to do with the proximity of the Trans-Caucasus region and

Russia where the disease is endemic in areas (Sánchez-Vizcáıno et al., 2012).

Table 2.17: Major Coefficients for General Linear Model for ASF Scores

Factor Coefficient p-value

Delegate worked on ASF 0.1 p<0.001

Delegate from East Europe 0.1 0.032
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Table 2.18: Major Coefficients for General Linear Model for CSF Scores

Factor Coefficient p-value

Delegate worked on CSF 0.1 p<0.001

Delegate worked in Industry 0.1 p<0.001

Delegate worked on CSF & in Industry 0.2 p<0.001

As a present threat, CSF had a final model (Table 2.18) consisting of whether a

delegate worked on the disease and a delegate’s background and it was deemed more

important by industry delegates and especially by industry delegates who work on

the disease, the much higher value for industry in Figures 2.6.

Figure 2.6: Factor & Interaction Plots: CSF (Current)

This pattern was found earlier when looking at total scores so was worth investi-
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gating further. Firstly the result must be viewed with some caution as firstly only

five delegates scored CSF as a threat in the present and only two of those delegates

were from an industry background. These two delegates did, however, have other

factors in common, both were from the west of Europe and both worked in the area

of diagnostic development. A possible reason for this might be that the history of

outbreaks of CSF in the Netherlands and Belgium (Boender et al., 2008) may have

influenced their views of it as a current threat; however there were a number of other

industry delegates from the West who did not view it as such a threat, so this is

possibly simply due to the small sample size of delegates who scored this disease.

Foot-and-mouth disease (Tables 2.19 and 2.20) had what at first appeared to be

more complex models (containing multiple terms), but much of the interpretation

was quite straightforward. As both a present and future threat, delegates from out-

side of Europe, and especially those who work on the disease, regard it as more of a

threat. Since some of the non-European delegates were from China, and this disease

is endemic in parts of Asia, then this is perhaps not surprising. The final model for

foot-and-mouth disease as a current threat, Table 2.19, also included background as

a factor with delegates from an industry background scoring it less of a threat. This

could perhaps be explained by the fact that almost all industry delegates working

on this disease work in vaccine & anti-viral development and so possibly view it as

something more easily countered and contained.
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Table 2.19: Major Coefficients for General Linear Model for FMD Scores

Factor Coefficient p-value

Worked on FMD 0.3 p<0.001

Did not work on FMD 0.1

Delegate from North Europe 0.1 p<0.001

Delegate from the South Europe 0.1

Delegate from the West Europe 0.1

Non-European Delegate 0.5

Delegate worked on FMD & non-European

delegate
0.9 p<0.001

Delegate worked on FMD & from West

Europe
0.1

Delegate worked on FMD & from North

Europe
0.1

Delegate worked on FMD & from South

Europe
0.1

Delegate does not work on FMD &

non-European delegate
0.1

Delegate does not work on FMD & from

South Europe
0.1

Delegate does not work on FMD & from

North Europe
0.1

Delegate does not work on FMD & from

West Europe
0.1

Delegate works in Research 0.2 0.029

Delegate works in EPIZONE 0.2

Delegate works in Industry 0.1
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Table 2.20: Major Coefficients for General Linear Model for FMD Future Scores

Factor Coefficient p-value

Worked on FMD 0.2 p<0.001

Did not work on FMD 0.1

Delegate from North Europe 0.1 p<0.001

Delegate from the South Europe 0.1

Delegate from the West Europe 0.1

Non-European Delegate 0.3

Delegate worked on FMD & non-European

delegate
0.6 p<0.001

Delegate worked on FMD & from West

Europe
0.1

Delegate worked on FMD & from North

Europe
0.2

Delegate worked on FMD & from South

Europe
0.2

Delegate does not work on FMD &

non-European delegate
0.1

Delegate does not work on FMD & from

West Europe
0.1

Delegate does not work on FMD & from

North Europe
0.1

Delegate does not work on FMD & from

South Europe
0.1

Logistic Regression

Analysing the same variables using logistic regression with the binary dependant

variable being whether or not a delegate scored a disease resulted in more straight-

forward models. Again, as in previous models, a delegate who worked on a disease

was significantly different and in almost all cases far more likely to score the dis-

ease. There was, however, one exception which was the odds of scoring WNF, RVF

& CCHFV as a future threat being unaffected by whether or not a delegate had
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worked on it.

As per the separation issue discussed previously, two methods were used when con-

ducting these logistic regressions and both sets of results are included, though in all

cases, with the exception of CSF, both methods resulted in the same model with

factors having similar behaviours if slightly different odds ratios.

The results here are in the form of odds ratios and so are interpreted as how much

more likely a delegate is to score a disease if they are in that group in comparison

to the control or referent group, which in Table 2.21 would be delegates who do

not work on Influenza and Southern delegates. As such, those odds ratios that are

most different from 1 will be more significant as they will indicate a proportional

difference in the effect of that group against the referent group: if the odds ratio was

1 it would indicate both the group and referent group have the same association.

So, the first odds ratio in the table is for delegates who worked on flu (using the ad

hoc approach) and suggests that those delegates are 2.66 times more likely to score

Influenza as a current threat in comparison to those delegates who do not work on

Influenza.

For Influenza (Table 2.21) Northern delegates were much more likely than delegates

from any other region to award a score to the disease. As a future threat, this is

even more pronounced.
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For BT and AHS (Table 2.22) and ASF (Table 2.23) there was no other significant

factor than whether or not a delegate worked on the disease. The odds ratios (Ta-

bles 2.22 and 2.23) are very high and the fact that these are two of the lower ranked

diseases may indicate something of interest for example that delegate bias is the only

thing making someone more likely to score these diseases.
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CSF has a delegates’ background and whether or not they have worked on the disease

as determining factors for its current threat status (Table 2.24) whilst having similar

behaviour to ASF and BT & AHS for the future, where a delegate having worked on

the disease is the only significant factor. The NA here represents the fact that the

stepwise selection procedure was done separately for each approach, so, for example,

the ad hoc approach for CSF as a current threat found no significant factors and it

is worth noting that the confidence intervals for the penalized maximum likelihood

approach span 1 for all factors in the current model indicating that there is no reason

to reject H0 of no significant difference between the factor levels.
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Foot-and-mouth disease only had one significant result other than whether or not a

delegate had worked on it and this was that those from an industry background were

less likely to score this disease, with industry being the referent group in Table 2.25

and the other backgrounds having higher odds ratios in comparison. This concurs

with the general linear model and again may be due to many of these delegates’

working backgrounds, where those from industry who worked on it work on vaccine

& anti-viral development and so possibly view it as something that can be dealt with

more easily.
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Finally for WNF, RVF & CCHFV, asides from what was noted earlier regarding

working on the disease group, which may indicate a more open less biased view of

this disease as a future threat, the other factor of note was that delegates from the

South were more likely to score this as a future threat (Table 2.26). Since there

have been some outbreaks of West Nile in Southern Europe (Sambri et al., 2013)

and CCHFV has appeared in areas nearby (Foley-Fisher et al., 2012; Midilli et al.,

2009), then as a future threat, it would make sense that this disease group would be

perceived as more threatening by Southern delegates.
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As mentioned earlier, there were two possible approaches to calculating the confi-

dence intervals for the penalized maximum likelihood estimates and the results of

this are included in Appendix A; however, since only one case of a separated variable

remained in any of the final models the majority of these intervals are very similar,

the exception was for CSF, for which delegates of a research background did not

score the disease, but even in this case, we can see from Table 2.27 that these do not

vary hugely so in this case either method seems to be suitable.
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2.3.3 Changes of Opinion

McNemars test which was used to examine the results of those delegates who have

changed their minds, flagged up several significant results and the p-values are pre-

sented in Table 2.28 with the null hypothesis being that delegates are equally likely

to change their mind to or from a disease group and the alternative being that there

is a significant change of opinion in a particular direction.

Table 2.28: p-values from McNemars test of delegates changing to/from a particular

disease group for the likelihood to be introduced, spread and persist

Disease Measure p-value

Influenza Incursion 0.003

Spread 0.005

Persistence 0.307

BT & AHS Incursion 0.059

Spread 0.481

Persistence 0.019

ASF Incursion 0.362

Spread 1.000

Persistence 0.057

CSF Incursion 0.774

Spread 1.000

Persistence 1.000

FMD Incursion p<0.001

Spread 1.000

Persistence 0.023

WNF, RVF & CCHFV Incursion p<0.001

Spread p<0.001

Persistence p<0.001

The p-values below the significance level of 0.05 in Table 2.28 indicate a significant

shift amongst delegate opinions regarding the threat posed by Influenza, Foot-and-

mouth disease and WNF, RVF & CCHFV. This means a large number of delegates
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have changed their views on these disease groups between the current point in time

and the year 2020. So as to further examine the shift in opinions for these diseases,

the relevant counts were produced and shown in Table 2.29. These are the number

of delegates who have changed from and to this disease; the two counts which are

greyed out were those which were not significant in Table 2.28, that is had a p-value

above 0.05. This agrees with some of the earlier analysis (Kelly et al., 2013) which

indicated a shift from influenza and Foot-and-mouth disease and a very strong move

towards WNF, RVF & CCHFV indicating that many delegates see this as a serious

emerging threat. For example 37 delegates changed from viewing Influenza as the

most likely disease to be introduced at the moment to a different disease group for

2020 (Table 2.29) and 64 delegates changed from a different disease group to viewing

WNF, RVF & CCHFV as the most likely to be introduced in 2020.

Table 2.29: Number of delegates whose opinion on the most likely disease group

to be introduced, spread and persist changed to or from a particular disease group

between now and 2020
Disease Measure Changed From Changed To

Influenza Incursion 37 15

Spread 28 10

Persist 15 9

FMD Incursion 19 2

Spread 19 18

Persist 18 6

WNF Incursion 2 64

Spread 3 27

Persist 5 43

The logistic regressions on the indicators of whether or not a delegate changed from

influenza resulted in three potentially significant results. The first of these involved

the risk of influenza being introduced into a delegate’s region and a delegate’s opin-

ions on how farming would change between now and 2020. The explanatory variable

would be if a delegate who viewed influenza as the greatest threat for a current in-

cursion thought a different disease was more of a threat in 2020 compared to now
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and the odds ratios are shown in Table 2.30.

Table 2.30: Logistic Regression: Changed from Influenza (Incursion: Farming)

Incursion Changed from influenza

Odds Ratio Odds Ratio

Farming (Wald) (PML)

Decrease 0.89 (0.35, 2.26) 0.88 (0.35, 2.25)

Increase(intensive) 0.26 (0.07, 0.94) 0.28 (0.08, 0.92)

Increase(extensive) 1.73 (0.46, 6.51) 1.74 (0.46, 6.24)

Increase(both) 0.67 (0.16, 2.86) 0.72 (0.16, 2.71)

No significant change (Reference)

Similarly the risk of influenza spreading once introduced into a delegates region and

a delegates opinions on how farming would change between now and 2020 was also

found to be significant and the odds ratios are shown in Table 2.31.

Table 2.31: Logistic Regression: Changed from Influenza (Spread: Farming)

Spread Changed from influenza

Odds Ratio Odds Ratio

Farming (Wald) (PML)

Decrease 0.72 (0.27, 1.97) 0.72 (0.27, 1.96)

Increase(intensive) 0.15 (0.03, 0.74) 0.18 (0.03, 0.69)

Increase(extensive) 0.60 (0.11, 3.27) 0.69 (0.12, 2.99)

Increase(both) 0.78 (0.18, 3.39) 0.84 (0.18, 3.21)

No significant change (Reference)

The factor that is significant here, having a confidence interval that does not span

1, is an increase in intensive farming (with particular emphasis put on poultry and

pigs) which in relation to livestock is when the level of livestock is very high in

relation to land area, the most famous example of this might be the concept of bat-

tery farming with chickens (Kelly et al., 2013; Fraser, 2008). Since two of the most
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wide scale outbreaks of Influenza in recent years were avian and swine varieties and

concentrated populations of these animals would potentially offer a breeding ground

for this disease, so it seems reasonable that delegates who believe there will be such

a change in farming would be unlikely to view Influenza as less of a threat in the

future, with an odds ratio of 0.15 for Wald and 0.18 for PML showing they are much

less likely to change their opinion in comparison to the delegates who think there

will be no change in farming.

In addition to changes in farming, changes in the populations of wild animals (Table

2.32) also had a possible effect on delegates opinions on the risk of influenza being

introduced. With those who thought that the wild bird population would increase

being 3.83 times more likely to think that Influenza would be less of a threat.

Table 2.32: Logistic Regression: Changed from Influenza (Incursion: Wild Animal

Populations)

Incur Changed from influenza

Odds Ratio Odds Ratio

Wild populations (Wald) (PML)

Decrease(bird) 1.28 (0.13, 12.64) 0.45 (0.00, 4.46)

Decrease(mammal) 0.43 (0.05, 3.65) 0.59 (0.06, 2.91)

Decrease(both) 0.73 (0.23, 2.32) 0.76 (0.23, 2.26)

Increase(bird) 3.83 (1.09, 13.44) 3.75 (1.09, 12.84)

Increase(mammal) 1.53 (0.49, 4.77) 1.56 (0.49, 4.64)

Increase(both) 2.19 (0.78, 6.15) 2.17 (0.78, 6.01)

No significant change (Reference)

This result does not, however, make intuitive sense, if a delegate believed there is

likely to be an increase in the population of wild birds this would imply an increased

way of influenza being introduced into the region and so an incursion would be more

likely. This combined with the fact that the low end of the confidence interval for

this value is close to one means that this result should be viewed with caution and

further investigation as to why delegates scored this way would need to be carried out.
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Table 2.33: Logistic Regression: Changed to WNF, RVF, CCHFV (Incursion: Farm-

ing)

Incursion Changed to zoonotic arboviruses

Odds Ratio Odds Ratio

Farming (Wald) (PML)

Decrease 0.60 (0.27, 1.33) 0.60 (0.27, 1.33)

Increase(intensive) 0.32 (0.13, 0.81) 0.33 (0.13, 0.81)

Increase(extensive) 0.59 (0.16, 2.09) 0.61 (0.17, 2.04)

Increase(both) 0.23 (0.06, 0.92) 0.25 (0.06, 0.89)

No significant change (Reference)

Table 2.34: Logistic Regression: Changed to WNF, RVF, CCHFV (Difficult to erad-

icate: Wild Animal Populations)

Persist Changed to zoonotic arboviruses

Odds Ratio Odds Ratio

Wild populations (Wald) (PML)

Decrease(bird) 0.77 (0.08, 7.40) 0.27 (0.00, 2.64)

Decrease(mammal) 0.92 (0.22, 3.79) 1.00 (0.23, 3.58)

Decrease(both) 1.16 (0.47, 2.88) 1.17 (0.47, 2.85)

Increase(bird) 0.24 (0.03, 1.96) 0.10 (0.00, 0.86)

Increase(mammal) 0.40 (0.11, 1.52) 0.45 (0.11, 1.44)

Increase(both) 1.53 (0.59, 3.99) 1.53 (0.11, 1.44)

No significant change (Reference)

For both factors that were found to be significant for the binary variable indicating

a delegate had changed to scoring the zoonotic arbovirus group as a future threat,

Tables 2.33 and 2.34, again the results do not make intuitive sense and so would

require further investigation. The key result (those where confidence interval does

not include one) from Table 2.33 is that delegates who believe there will be an increase

in intensive or both types of farming are less likely to change to the zoonotic arbovirus
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group as a threat in terms of a possible incursion. Since birds can be important for

two of the diseases in this group, this result would not seem to make sense. From

Table 2.34 the key result is that delegates who think there will be an increase in wild

bird populations are less likely (odds ratios of 0.24 (Wald) or 0.1 (PML)) to change

to the zoonotic arbovirus group as a threat in terms of persisting in their region. For

the Wald value the confidence interval includes one and so is not quite as significant

but again since an increase in wild birds should have the opposite effect this result

may be simply coincidence.

2.4 Discussion

In this chapter the results of a survey of expert opinion on current and future threats

were analysed using a number of techniques to identify what delegates regarded as

current and emerging threats and what factors might explain their choices. This was

done by examining the group scoring of delegates and the number of delegates who

changed their opinions to identify current and emerging threats as well as by deriving

an individual scoring approach and examining the explanatory variables behind this

using a general linear model and logistic regression approach to explore what might

cause a delegate to perceive a particular disease group as a current or emerging threat.

Examining delegates’ total scores by backgrounds and expertise does not suggest

much of a difference although policy delegates have widely differing opinions to other

groups. However, this could be due to the relatively small number of policy delegates

present in the sample.

The lack of significant factors in the one factor ANOVAs on total scores supports the

idea that background or expertise is not particularly important in determining an

expert’s opinion in this case. While these variables do appear as significant factors

in the general linear models (Figures 2.5, 2.6) they tend to be in instances in which

there are fewer delegates. The sole exception to background was for Foot-and-mouth

disease for which a large number of delegates do score the disease and for the general

linear model and the logistic regression model a delegates’ background is found to

be significantly associated.
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Stronger delegate bias is found when results are examined on whether a delegate has

worked on a disease group or the region a delegate is from. The diseases a delegate

works on was found to be significant in almost all cases and regional significance

was found in many of the results. For example, total scores (Tables 2.11 and 2.12)

have lower levels of correlation amongst regions indicating less agreement and a del-

egate’s region was found to be significant in the general linear models and logistic

regressions for Influenza and the zoonotic arbovirus groups. This could suggest 2

forms of opinion bias: firstly, that a delegate is more likely to believe that a disease

group that threatens their region is equivalent to one that threatens all of Europe.

This is understandable, especially since regional media and academic interest might

focus on these groups. The second form of bias is that a delegate who works on a

disease will obviously believe that they are working on something worthwhile and to

support this belief the disease group must be important and so be either a current

or emerging threat and the belief will influence their scoring.

An additional trend that runs through most of the results is that delegates are less

certain about the future than the present. This can be seen by stronger correlations

in total scores for current disease rankings than in future disease rankings and the

greater number of none scoring combinations in Table 2.14 in comparison to Table

2.13. This makes intuitive sense since any future prediction is always going to be less

certain than an opinion given on the present state of things; however, also related

to the difference between current and future views is the increasing significance of

the zoonotic arbovirus group. This disease group does not feature at all in the most

common combinations of current disease groups perceived as a threat by delegates

(Table 2.13) suggesting it is not seen as much of a current threat but, in combina-

tion with Foot-and-mouth disease, is viewed as a future threat by a large number of

delegates (Table 2.14). The highly significant results in the testing of changes of del-

egate opinions for the incursion, spread and persistence of this disease group (Tables

2.28 and 2.29) show that these diseases are viewed as a much more serious threat in

the future possibly at the expense of more traditional threats, such as Influenza and

Foot-and-mouth disease.
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The lack of certainty in an explanation for these future shifts highlights an issue

with this approach. The differing scoring behaviours of delegates towards diseases

are useful in highlighting potential biases that may appear when using expert opin-

ion to identify future threats. However, examining disease groups individually does

not properly examine such data and the scoring combinations is quite a simplistic

approach to viewing all scores. If we look only at how a delegate scores a single group

then the information present in the contrasts and potential tradeoffs between disease

groups is missed. For example, the nature of the scoring system in this survey means

that to score a disease group highly a delegate must score others lowly.

Overall in this chapter the analysis supports what was found in the original paper

(Kelly et al., 2013), that experts believe that particular zoonotic arboviruses will

become a threat and highlights a number of key factors that might explain this re-

sult. However, the approaches in this chapter do not adequately take into account

one of the key factors in an expert’s opinion and that is to score one disease group

a delegate must not score others. Therefore, a univariate approach where just one

disease group is modeled ignores a key factor. In the next chapter, in an attempt to

examine these relationships, a multivariate approach will be utilised. The individual

scores for all disease groups will be analysed at once and the differences between

groups and current and future perceived threats will be identified.
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Chapter 3

Multivariate analysis of expert

opinion data

3.1 Introduction

In the previous chapter, a dataset of expert opinions gathered at an interactive

question session at the 4th annual meeting of the EPIZONE network was analysed

to examine what might determine expert’s opinions on current and future disease

threats. As part of this analysis, an individual score was formed for each of the

six disease groups for each delegate and this score was used along with background

information to explore what factors might be associated with a delegates views. This

approach found that a delegates’ views seemed to be strongly linked to the region

they came from and the disease group that they worked in. Importantly, it identified

a particular disease group, WNF, RVF & CCHFV, as an emerging threat. However,

the univariate approach where each disease group was examined on its own means

that potential patterns and factors that might be behind a delegate’s total scoring

choice for all six disease groups were missed. To examine their scoring behaviour as

a whole, so how delegates score all 6 disease groups as the dependant variable, we

make use of multivariate analysis techniques.
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3.2 Aim

The aim of this chapter is to use the scores derived for the delegates for all six

diseases and look into possible explanations of the overall scoring behaviour for a

delegate as well as trying to identify patterns between the scores.

For this, it was desirable to reduce our six dimensional dataset (a dimension for each

disease group score calculated in Equation 2.10, i.e. a delegate would have a score

for influenza and a score for BT & AHS and a score for each of the other four disease

groups) down to something simpler, that is the six variables down to one or two

new variables that still contain as much information as possible from the originals.

There are a few dimension reduction techniques available and, in this case, Principal

Component Analysis was used.

As a secondary consideration, and for a deeper examination of delegate’s behaviour,

the likelihood and impact scores used to calculate the individual scores of each del-

egate are also looked at along with an examination of the possible issues brought

about by analysing compositional data (data that consists of proportions).

As an alternative approach, cluster analysis was also used to examine the delegate

disease group scores and the results from both methods were compared.

3.3 Methods

3.3.1 Dataset

The initial dataset used was detailed in the previous chapter and consists of the re-

sponses of 190 delegates (for consistency, the two policy delegates continued to be left

out). The key variables in the dataset are those covering each delegate’s background

and the individual scores, both current and future, calculated for each disease group

for each delegate. A full description of how these were derived is in the previous

chapter but suffice to note that the score is found by multiplying a delegate’s impact

score (taking values of j
6

with j=1,..,6) and likelihood score (taking values of i
3

with
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i=1,..,3) and so is technically a discrete variable (with values i∗j
18

with i=1,..,3 and

with j=1,..,6) but since it takes a fairly large number of values across a short range,

it could be regarded as quasi continuous between zero and one.

3.3.2 Principal Component Analysis

Principal Component Analysis (PCA) was one of the earliest developed and most

commonly used dimension reduction techniques. It works by taking a vector of

possibly correlated random variables and uses an orthogonal transformation to con-

vert them into a set of uncorrelated variables that are referred to as the Principal

Components (PCs). Orthogonality refers to the variables being able to vary inde-

pendently, so when used in terms of statistics, it means they will be uncorrelated

and if represented graphically will be perpendicular to each other. Each PC consists

of a linear combination of our original variables and is formed in such a way that

the first PC will explain as much of the variation in the dataset as possible. The

number of PCs will be limited to as many as the original variables but it is to be

hoped that the majority of information, i.e. variation, can be explained by the first

few PCs. Thus, if we have a vector x consisting of p variables, then our principal

components would be a linear function of x1, ..., xp so if, for example, we let α rep-

resent the coefficients of each PC (so a vector of p constants) we would have for PC1:

α′1x = α11x1 + α12x2 + ..+ α1pxp =

p∑
j=1

α1jxj

To find these PCs we use either the covariance or correlation matrix of x and solve

to find its eigenvalues and eigenvectors. For our first PC we take the largest eigen-

value of the matrix and the corresponding eigenvector consists of the coefficients that

make up α1. For our second PC we do the same with the second largest eigenvalue

whose corresponding eigenvector will give us the coefficients of α2 and so on for all

p possible principal components.

In most applications of PCA, the correlation matrix is used as this has the effect of

canceling out the influence of differences in the scale and units of different variables;
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i.e. if the covariance matrix were to be used, then greater weight would be given to

the larger variables, and so when using the correlation matrix, we find the PCs for a

standardised version of x. For example, if there were variables measuring something

of similar size but one variable had millimeters as a scale and the other meters then

the latter would be given more weight and a spurious result may be found where

it is the dominant factor in the PC. In the case studied in this chapter, however, a

stronger argument can be made for using the covariance matrix. Firstly, the units are

the same, as all the variables here are measures of a delegate’s opinion on a disease

group and, secondly, it makes more intuitive sense for the disease groups that are

scored higher to be given more weight. This could be thought of as the more highly

scored diseases will be likely to cover a greater range of values and so will also be

likely to contribute more to variation within the dataset.

PCA was carried out for the current and future scores and the first 2 PCs would then

explain the most variation in the data. Plotting these PCs allowed underlying pat-

terns in the data to be investigated and marking points on these plots, coloured by

a delegate’s background factors (Table 2.1), allowed us to see whether a background

factor contributed to the pattern. Analysis of variance (ANOVA) was used for each

PC and background question to provide a more numerical approach to examining

the same affects. PCA was also carried out for the impact, likelihood and future

likelihood scores and for these a variant of this method was also investigated. This

was necessary as these are what are referred to as compositional data; that is they

consist of a vector of proportions and so have the constraint that they must sum to

one. Such data also tend to display a curved relationship between variables and both

of these factors mean that standard PCA can sometimes be inadequate and produce

results that are of little use.

A transformation of the data was used in this chapter, known as the centered log ratio

transform, and involves taking the natural logarithm of each variable, a nonlinear

function, and centering them before then performing principal component analysis

as usual. So, for example, using the notation we used above we would have a new

variable y:
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y1 = log(x1)− [
log(x1) + log(x2) + ..+ log(xp)

p
]

There is some debate about this type of approach, however, and one of the key is-

sues for this example is that it cannot be used whenever any of the proportions are

zero, which is very common in this case, and so the results for both the transformed

and non-transformed data were found and investigated. For the zero values in the

dataset, these were replaced with half of the smallest non-zero value as was suggested

in the paper from which the method was taken (Aitchison, 1982a).

To examine the principal components, the coefficients of the three principal com-

ponents associated with the largest eigenvalues were considered and scatter plots

of the top two components were produced with and without groups (broken down

by background, expertise, region and disease worked on) marked down. To further

examine the role of background as a determinant of variability, one factor ANOVAs

were performed on the top two principal component scores to see what background

factors might contribute the most to variability in opinions and the results were

discussed with comparisons to the graphical results. The most basic interpretation

of this is to test whether the means of PC1 and PC2 for different groups are equal.

Tukey’s range test (with overall significance level of 5%) was used to test each group

against the others and further check for differences.

3.3.3 Cluster Analysis

Cluster analysis is a common exploratory technique used in data analysis to group

observations or variables by similarity. It is used to form natural groups which in

theory should represent an underlying pattern or set of rules within the data. These

groups can be perfectly distinct, so an individual only falls within one group, or

overlapping where an individual could be classified as belonging to multiple groups.

Within cluster analysis there are two broad approaches, hierarchical and non-hierarchical

(sometimes referred to as k-means or partitioning) (Witten et al., 2011). Hierarchi-

cal clustering as the name suggests attempts to form a hierarchy of clusters and
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can be agglomerative (a bottom up approach where each instance starts as its own

cluster and pairs of clusters are merged as we move up the hierarchy) or divisive (a

top down approach where all instances start in one cluster and splits are performed

as we move down the hierarchy). The output from this kind of approach is often

presented as a dendrogram with axes consisting of variables or instances against a

measure of similarity.

Non-hierarchical clustering has no such hierarchy of clusters but instead clusters

are formed round a distribution, central vector or level of density within multi-

dimensional space (with dimensions equal to the number of variables). One of the

more common non-hierarchical methods is k-means clustering; in this technique the

user specifies in advance how many clusters are required, denoted k. Then k points

are randomly selected and become our cluster centroids, all remaining points are then

assigned to a cluster based on the closest Euclidean distance. Once this is complete a

new centroid for each cluster is calculated from the mean of all instances within that

cluster and all points are assigned to these new clusters. This process is repeated

until the composition of clusters stabilise. Centroids can then be used to classify

clusters by examining the larger coefficients in their compositions, for example one

centroid may be determined by a contrast between two of the variables or a balance

of three, such interpretation is very similar to that for the PCs resulting from PCA.

The number of clusters can be selected based on some prior knowledge, i.e. expert

opinion, or can be selected by examining the within cluster sum of square errors.

This is calculated by summing the squared error for each point against its centroid.

This value is calculated for the largest estimated number of clusters, often slightly

above the number of variables, and the percentage difference between the sum of

square errors for a number of clusters n and n+1 is examined. The number of clus-

ters that results in the smallest percentage increase in error is then selected.

To examine the individual scores data, k-means clustering will be used and will be

expected to produce results in agreement with those produced using principal com-

ponents analysis.
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3.4 Results

3.4.1 Principal Component Analysis

Disease Group Scores

Analysing the disease scores, using no transformations given that the final scores

cannot be assumed to be compositional data, Table 3.1 shows the eigenvalues and

proportions of variation for each PC for the delegate’s current disease scores using

the covariance matrix so as not to standardise the disease groups. Table 3.2 shows

the same results produced for the delegates future disease scores.

Table 3.1: Eigenanalysis of Covariance Matrix of Current Scores

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.029 0.020 0.008 0.006 0.004 0.001

Proportion of variation 0.425 0.292 0.121 0.089 0.060 0.014

Cumulative Proportion of variation 0.425 0.717 0.838 0.927 0.986 1.000

Table 3.2: Eigenanalysis of Covariance Matrix of Future Scores

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.023 0.017 0.014 0.004 0.004 0.001

Proportion of variation 0.343 0.257 0.208 0.117 0.060 0.015

Cumulative Proportion of variation 0.343 0.600 0.808 0.925 0.985 1.000

Examining the eigenvalues and the respective proportions of variability they repre-

sent we can see that in both cases the first three principal components explain over

80% of the variation in the dataset. We can see, however, that the proportion of

variability is more skewed towards fewer principal components as regards current

disease groups, this is illustrated below in Figure 3.1:

82



Figure 3.1: Principal Component Proportions

That is, as can be seen in Figure 3.1, the first two or three principal components

explain a greater part of the variation in current opinions as opposed to future opin-

ions where the variation is more spread out amongst components. This could be

interpreted as more factors or groups having an effect in the future in comparison to

the present. This reinforces what was discussed in the previous chapter where cur-

rent opinion was dominated by two disease groups (influenza and foot-and-mouth

disease) but for the future the balance shifted and while these two groups remained

important the zoonotic arbovirus group also started to have an influence.
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Table 3.3: Principal Component Coefficients (Current Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 0.673 0.024 0.016 0.014 -0.738 -0.031

PC2 -0.712 0.189 0.092 0.001 -0.648 0.173

PC3 -0.010 -0.808 0.109 0.005 -0.056 0.173

PC4 0.163 0.497 -0.331 -0.026 0.125 0.775

PC5 0.117 0.251 0.932 -0.044 0.127 0.190

PC6 0.001 0.028 0.031 0.999 0.020 0.026

Examining the coefficients of the top three principal components for the current

scores we can see from Table 3.3 that the first component is dominated by a contrast

between influenza (large positive coefficient) and foot-and-mouth disease (large neg-

ative coefficient) meaning that the majority of variation amongst delegates is caused

by the differing opinions on these diseases. This is to be expected, since these were

considered the two most important diseases and it means delegates were likely to

have had strong opinions towards them (so as to give a high enough score in both

the impact and likelihood questions) and, since to score one disease high you must

score another low then a contrast between these makes a lot of sense.

The second principal component, and so the second biggest contributor to varia-

tion in the data, is strongly determined by a balance of the two key disease groups

from the first component (both with large negative coefficients) with a weak contrast

against the two arbovirus groups (much smaller positive coefficients). This means

that most of the variation in current scoring is created by delegates selecting either

Influenza or Foot-and-mouth disease with the majority of the remaining variation

being those delegates who select both.

Finally the third principal component is a contrast between the two arbovirus groups

with much greater importance being attached to BT & AHS but explains much less

of the variation than the first two.
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Table 3.4: Principal Component Coefficients (Future Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 -0.886 0.043 0.004 0.007 0.354 0.296

PC2 0.046 -0.046 -0.052 -0.008 0.708 -0.702

PC3 -0.391 0.445 0.068 0.029 -0.534 -0.599

PC4 -0.227 -0.876 0.224 0.053 -0.264 0.240

PC5 -0.084 -0.166 -0.969 0.075 -0.133 -0.057

PC6 0.036 0.046 0.059 0.995 0.043 0.026

Unlike the current scores, looking at Table 3.4, the first principal component for

future scores is not a simple contrast between two disease groups but is instead dom-

inated by a balance of foot-and-mouth and the zoonotic arbovirus group (both pos-

itive large coefficients) against influenza (much larger negative coefficient); however,

the second principal component is then mainly a contrast between foot-and-mouth

disease and the zoonotic arbovirus group. This means that, if we look at the first two

principal components together, then we have a contrast between the three disease

groups that were already identified by delegates as the most important in regards to

future threats. The third principal component is then all three of these groups con-

trasted against the non-zoonotic arbovirus group (three large negative and a single

larger positive coefficient).

A further point worth mentioning is that for both the current and future scores the

last two PCs have much the same structure. PC5 is dominated by ASF and PC6

by CSF; what this indicates is that these two diseases are where there is very little

variation and are near constant amongst delegates i.e. delegates don’t really change

their opinions on them.

To further show the interaction amongst disease groups as a factor in explaining

variation, the two primary principal components were calculated for each delegate

and were plotted against each other. So, for example, the current scores for a dele-

gate’s disease groups would be multiplied by the PC1 coefficients in Table 3.3 and
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added to give a PC1 value for that delegate. The equivalent would be done for

PC2 and then these two values would give the coordinate for that delegate. Viewing

the components graphically in Figure 3.2 gives a better and more straightforward

demonstration of how the important disease groups for scoring interact.

Figure 3.2: Scatter plot of Principal Components 1 & 2 for Current Scores

For our current scores, Figure 3.2, we can see that there are two ’prongs’ of be-

haviour, the points in the top left of the graph indicate those delegates who scored

influenza very highly and foot-and-mouth disease as much less of a threat and the

points in the lower left are the delegates who did the opposite. Both these sets of

points have high scores in principal component one meaning they contribute a lot to

the level of variation in the dataset. These points also have low scores in principal

component 2 which reinforces the idea that some delegates lean towards viewing one

of these two diseases as a threat to the exclusion of all other disease groups.

As a delegate’s views on either of these two become less strong, we move in towards

the origin of the graph and lower scores for both components. There are a few dele-

gates who didn’t view influenza or foot-and-mouth as a key threat but did rate one
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of the arbovirus groups and these are the points to the right of the axis, but, as can

be seen, this behaviour does not dominate the dataset.

Figure 3.3: Scatter plot of Principal Components 1 & 2 for Future Scores

A similar idea can be seen in Figure 3.3 for the future scores although here there

are three distinct types of behaviour displayed. The point on the top left of the plot

indicates delegates who scored zoonotic arboviruses as the greatest threat, points on

the top right are delegates who scored foot-and-mouth as the greatest threat and,

finally, delegates in the lower part of the plot are those who regarded influenza as the

most threatening. As we move in towards the origin from any of these three areas we

are moving through the delegates whose opinions towards any one particular disease

group were less strong and so the level of variation in their scores was lower.

This change in behaviour, shown by the change in shape between Figure 3.2 and

Figure 3.3, is similar to the change identified in both the original report (Kelly et al.,

2013) and in the previous chapter where the diseases of the zoonotic arbovirus group

were perceived by delegates as being more threatening in the future; that is, an

emerging threat.
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To further explore whether there is anything more behind these patterns, the plots

were reproduced with the points marked according to the various background ques-

tions delegates were asked and, for a more numerical approach, one factor ANOVA

and Tukey’s pairwise comparison were produced for each of the first two principal

components for each background question to see whether there was a significant

difference between group means. For example, for the actual values of PC1 for cur-

rent scores (the values on the y-axis in Figures 3.2) is there a significant difference

between the values for delegates whose background was Research, Policy, Industry

or EPIZONE. The factors that were found to be significant, had a p-value below 0.05.

Figure 3.4: Scatter plot of Principal Components 1 & 2 for Current Scores with

delegates status regarding working on Influenza and Foot-and-mouth disease

For current scores, in Figure 3.4, it can clearly be seen that delegates who work on

foot-and-mouth disease and not on influenza account for nearly all the more extreme

negative values in principal component one which are the delegates who score foot-

and-mouth disease as the greatest threat so this is in agreement with many of the

results from the previous chapter. For the other more extreme points, it is a bit

less clear cut: all the delegates there did work on influenza but one also worked on
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foot-and-mouth disease. As we move in towards the origin there are more delegates

who didn’t work on either of these diseases.

Table 3.5: ANOVA of current PC1 against Worked on Influenza

Source DF Seq SS Adj SS Adj MS F P

Worked on Influenza 1 0.19352 0.19352 0.19352 6.86 0.10

Error 188 5.30720 5.30720 0.02823

Total 189 5.50071

Table 3.6: ANOVA of current PC2 against Worked on Influenza

Source DF Seq SS Adj SS Adj MS F P

Worked on Influenza 1 0.04269 0.04269 0.04269 2.15 0.144

Error 188 3.73051 3.73051 0.01984

Total 189 3.77320

Table 3.7: ANOVA of current PC1 against Worked on FMD

Source DF Seq SS Adj SS Adj MS F P

Worked on FMD 1 0.47070 0.47070 0.47070 17.59 0.000

Error 188 5.03001 5.03001 0.02676

Total 189 5.50071

Table 3.8: ANOVA of current PC2 against Worked on FMD

Source DF Seq SS Adj SS Adj MS F P

Worked on FMD 1 0.12730 0.12730 0.12730 6.56 0.011

Error 188 3.64590 3.64590 0.01939

Total 189 3.77320

For delegates who had worked on foot-and-mouth disease, their mean was lower for

both principal components, which would result in them being placed in the lower

left corner of our plot, Figure 3.4, and lending more statistical evidence to the idea
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that there is a distinct pattern here are the low p-values in Tables 3.7 and 3.8. For

delegates who had worked on influenza (Tables 3.5 and 3.6) the p-values were still

not significant but were small, suggesting that there is a bit more of a difference

between those who have and have not worked on influenza.

Figure 3.5: Scatter plot of Principal Components 1 & 2 for Current Scores with

delegates region

Table 3.9: ANOVA of current PC1 against Region

Source DF Seq SS Adj SS Adj MS F P

Region 4 0.75481 0.75481 0.18870 7.36 0.000

Error 185 4.74590 4.74590 0.02565

Total 189 5.50071

Table 3.10: ANOVA of current PC2 against Region

Source DF Seq SS Adj SS Adj MS F P

Region 4 0.31468 0.31468 0.07867 4.21 0.003

Error 185 3.45852 3.45852 0.01869

Total 189 3.77320
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Similarly, when plotting according to region, in Figure 3.5, it is the delegates who

scored foot-and-mouth disease highly who have the most distinct pattern with all of

them coming from outside the EU; again this is in accord with results from the pre-

vious chapter and is likely to be due to the fact that many of the non-EU delegates

were from China where this disease is endemic in certain areas: checking the World

Animal Health Information database run by the OIE displays foot-and-mouth being

present in China since 2005, which is as long as the database has been running (for

Animal Health , OIE). The more extreme point for high influenza scores is from a

delegate from the North; however, since the other less extreme points in that area

are from different areas it can’t be regarded as strong a pattern.

From the ANOVA approach for region, the only strong conclusion was that non-

European delegates were much likely to have a lower score for principal component

one (highly significant p-value and lower mean along with different group for pair-

wise comparison) and that they were likely to score lower for component two than

southern or western delegates. This is quite surprising when looking at the plot,

Figure 3.5, as there is some overlap between these regional groups.

As with our current scores, it was the disease worked on and region that gave the

strongest indication of a pattern for the future. Firstly in Figure 3.6 for delegates

who worked on only one of the three disease groups, they tended to dominate the

more extreme values and those delegates who worked on none of the three were pre-

dominantly spread evenly about the origin meaning these delegates contributed less

to the dataset variability.
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Figure 3.6: Scatter plot of Principal Components 1 & 2 for Future Scores with del-

egates status regarding working on Influenza, Foot-and-mouth disease and zoonotic

arbovirus group

Figure 3.7: Scatter plot of Principal Components 1 & 2 for Future Scores with

delegates region

When region is marked on the plot, Figure 3.7, we can see that the delegates who are
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more strongly inclined to view influenza as a threat come from the North, a region

where there had been outbreaks in recent years and where it would be considered

likely for there to be outbreaks again, and delegates who are more strongly inclined

to view foot-and-mouth as a threat come from outside the EU and this could be

attributed to the same reasoning as for the similar behaviour in current scores. For

the zoonotic arboviruses, it is less clear, although a case could be made for the more

extreme views coming from delegates from the South, an area where these are re-

garded as an emerging threat. Since, under the region breakdown that was used,

Corsica is counted as West, this may explain why some western delegates also have

more extreme views towards the zoonotic arbovirus group since WNF has some his-

tory there. Also, since much of central Europe is listed as West, then this would

also explain why they view influenza as more of a threat, for the same reasons as the

northern delegates.

Table 3.11: ANOVA of future PC1 against Worked on Influenza

Source DF Seq SS Adj SS Adj MS F P

Worked on Influenza 1 0.24009 0.24009 0.24009 11.11 0.001

Error 188 4.06213 4.06213 0.02161

Total 189 4.30223

Table 3.12: ANOVA of future PC2 against Worked on Influenza

Source DF Seq SS Adj SS Adj MS F P

Worked on Influenza 1 0.00566 0.00566 0.00566 0.33 0.566

Error 188 3.22638 3.22638 0.01716

Total 189 3.23204

For the delegates who had worked on influenza, the mean for principal component

one was lower than those who had not, and nonsignificant for principal component

two, meaning they were down in the lower part of our plot, Figure 3.6, and, as such,

a more distinct group.
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Table 3.13: ANOVA of future PC1 against Worked on FMD

Source DF Seq SS Adj SS Adj MS F P

Worked on FMD 1 0.11959 0.11959 0.11959 5.38 0.022

Error 188 4.18264 4.18264 0.02225

Total 189 4.30223

Table 3.14: ANOVA of future PC2 against Worked on FMD

Source DF Seq SS Adj SS Adj MS F P

Worked on FMD 1 0.17335 0.17335 0.17335 10.66 0.001

Error 188 3.05869 3.05869 0.01627

Total 189 3.23204

Delegates who worked on foot-and-mouth disease had a higher mean for both prin-

cipal components meaning they were at the top right of the plot, Figure 3.6, and, as

was the case for influenza, they can be regarded as distinct.

Table 3.15: ANOVA of future PC1 against Worked on WNF, RVF & CCHFV

Source DF Seq SS Adj SS Adj MS F P

Worked on WNF, RVF & CCHFV 1 0.05896 0.05896 0.05896 2.61 0.108

Error 188 4.24327 4.24327 0.02257

Total 189 4.30223

Table 3.16: ANOVA of future PC2 against Worked on WNF, RVF & CCHFV

Source DF Seq SS Adj SS Adj MS F P

Worked on WNF, RVF & CCHFV 1 0.12543 0.12543 0.12543 7.59 0.006

Error 188 3.10661 3.10661 0.01652

Total 189 3.23204
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Table 3.17: ANOVA of future PC1 against Region

Source DF Seq SS Adj SS Adj MS F P

Region 4 0.24156 0.24156 0.06039 2.75 0.030

Error 185 4.06067 4.06067 0.02195

Total 189 4.30223

Table 3.18: ANOVA of future PC2 against Region

Source DF Seq SS Adj SS Adj MS F P

Region 4 0.32332 0.32332 0.08083 5.14 0.001

Error 185 2.90873 2.90873 0.01572

Total 189 3.23204

For region, it was significant for principal component one but highly significant

(p=0001) for principal component two, though in terms of significantly different

groups, all we can say is that those from outside Europe had a higher mean than

western and southern delegates and southern delegates had a lower mean than north-

ern or non-European delegates.

The other background section questions concerned the background of a delegate with

the options of being a member of an EPIZONE organisation, research or industry

and a delegate’s area of expertise and the PC plots with these marked, Figures 3.8

and 3.10 for current scores and Figures 3.9 and 3.11 for future scores.
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Figure 3.8: Scatter plot of Principal Components 1 & 2 for Current Scores with

delegates’ background

Figure 3.9: Scatter plot of Principal Components 1 & 2 for Future Scores with

delegates’ background

In neither the present (Figure 3.8) or future (Figure 3.9) does a delegate’s back-

ground seem to suggest having a significant link with their scoring behaviour.
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Table 3.19: ANOVA of current PC1 against Background

Source DF Seq SS Adj SS Adj MS F P

Background 2 0.01643 0.01643 0.00822 0.28 0.756

Error 187 5.48428 5.48428 0.02933

Total 189 5.50071

Table 3.20: ANOVA of current PC2 against Background

Source DF Seq SS Adj SS Adj MS F P

Background 2 0.02875 0.02875 0.01437 0.72 0.489

Error 187 3.74445 3.74445 0.02002

Total 189 3.77320

Table 3.21: ANOVA of future PC1 against Background

Source DF Seq SS Adj SS Adj MS F P

Background 2 0.04218 0.04218 0.02109 0.93 0.398

Error 187 4.26005 4.26005 0.02278

Total 189 4.30223

Table 3.22: ANOVA of future PC2 against Background

Source DF Seq SS Adj SS Adj MS F P

Background 2 0.05450 0.05450 0.02725 1.60 0.204

Error 187 3.17754 3.17754 0.01699

Total 189 3.23204

For current or future scores, neither of the PCs seemed to be significantly different

between backgrounds, so an industry delegate varied in scoring in the same way as

an EPIZONE delegate. This is the same as was found in Figure 3.8.
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Figure 3.10: Scatter plot of Principal Components 1 & 2 for Current Scores with

delegates expertise

Figure 3.11: Scatter plot of Principal Components 1 & 2 for Future Scores with

delegates expertise
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Table 3.23: ANOVA of current PC1 against Expertise

Source DF Seq SS Adj SS Adj MS F P

Expertise 3 0.09540 0.09540 0.03180 1.09 0.353

Error 186 5.40531 5.40531 0.02906

Total 189 5.50071

Table 3.24: ANOVA of current PC2 against Expertise

Source DF Seq SS Adj SS Adj MS F P

Expertise 3 0.01298 0.01298 0.00433 0.21 0.887

Error 186 3.76022 3.76022 0.02022

Total 189 3.77320

Table 3.25: ANOVA of future PC1 against Expertise

Source DF Seq SS Adj SS Adj MS F P

Expertise 3 0.03099 0.03099 0.01033 0.45 0.718

Error 186 4.27124 4.27124 0.02296

Total 189 4.30223

Table 3.26: ANOVA of future PC2 against Expertise

Source DF Seq SS Adj SS Adj MS F P

Expertise 3 0.02250 0.02250 0.00750 0.43 0.728

Error 186 3.20954 3.20954 0.01726

Total 189 3.23204

Similarly for a delegate’s expertise, there does not appear to be a pattern in the

plots (Figures 3.10 and 3.11) and testing numerically (Tables 3.23, 3.24, 3.25 and

3.26) shows there is no difference in the means of the PCs between the different levels.

Unlike Figures 3.4, 3.5, 3.6 and 3.7, there is no clear pattern here, though from Fig-

ures 3.10 and 3.11, a case could be made for arguing that delegates whose expertise

lies in vaccinations tend to give more varied values.
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Transformation

In his main paper of compositional data Aitchison (1982b) describes the idea of

perturbation and the production of a perturbed composition. This is produced by

multiplying the elements of two compositions and then transforming the values to

fit the correct constraints. The individual scores are produced using the Impact and

Likelihood scores which are true compositions. Therefore, if the individual scores

were to be modified to obey the same constraint, then a perturbed composition would

be produced which would be viable for the transformation discussed earlier.

There are many zeros present in the data for individual scores and the solution of

using half of the smallest non-zero value is used as suggested in Aitchison (1982a)

although some more advanced techniques have since been suggested (Aitchison and

Kay, 2003).

Initial interest is on whether the results are substantially different between the true

compositional data that have been transformed and those produced previously, and

looking at the components that are produced for the transformed scores (Tables 3.27

and 3.28) we can highlight any difference.

Table 3.27: Eigenanalysis of Covariance Matrix (Transformed Current Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.231 0.151 0.088 0.052 0.021 0.000

Proportion of Variation 0.426 0.279 0.162 0.095 0.038 0.000

Cumulative of Variation 0.426 0.705 0.867 0.962 1.000 1.000

Comparing Table 3.27 with Table 3.1 and Table 3.28 with Table 3.2 will allow any

changes in the level of importance of components to be highlighted.
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Table 3.28: Eigenanalysis of Covariance Matrix (Transformed Future Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.203 0.157 0.117 0.059 0.030 0.000

Proportion of Variation 0.359 0.277 0.207 0.104 0.053 0.000

Cumulative of Variation 0.359 0.636 0.843 0.947 1.000 1.000

Examining the eigenvalues and the respective proportions of variability they repre-

sent we can see that in both cases there is not a great deal of difference between the

original and transformed variables in the amount of variation explained by principal

components. While this shows that the importance of each component is relatively

unchanged, the structure of these components may have changed radically and so

the coefficients for the original and transformed variables must be compared.

Table 3.29: Principal Component Coefficients (Transformed Current Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 0.722 0.022 0.021 0.027 -0.682 -0.110

PC2 0.517 -0.373 -0.238 -0.076 0.593 -0.423

PC3 0.071 -0.763 0.117 -0.008 -0.047 0.630

PC4 -0.137 -0.276 0.815 0.120 -0.048 -0.473

PC5 0.145 0.187 0.313 -0.901 0.108 0.149

PC6 0.408 0.408 0.408 0.408 0.408 0.408
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Table 3.30: Principal Component Coefficients (Transformed Future Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 0.784 0.015 0.041 0.021 -0.509 -0.353

PC2 0.178 -0.094 -0.110 -0.033 0.717 -0.658

PC3 -0.0375 0.736 0.170 0.150 -0.210 -0.471

PC4 0.200 0.501 -0.763 -0.258 0.095 0.226

PC5 0.081 0.175 0.457 -0.862 0.089 0.060

PC6 0.408 0.408 0.408 0.408 0.408 0.408

Examining the coefficients of the top three principal components for the transformed

current scores we can see from Table 3.29 that similarly to Table 3.3 the first compo-

nent is dominated by a contrast between influenza, with a large positive coefficient,

and foot-and-mouth disease, with a large negative coefficient. Again, similarly, the

second principal component is a slightly weaker contrast between the two diseases of

our first principal component against the two arbovirus groups. The third principal

component is a contrast between the two arbovirus groups meaning that the struc-

ture of all three of the most important principal components is the same between

the transformed and original scores.

Contrasting Tables 3.4 and 3.30 there are a few differences. For the first principal

component under the transformed variables the signs of the two main coefficients

have reversed; however, this makes no real difference to the interpretation since it is

still a contrast between the balance of foot-and-mouth and the zoonotic arbovirus

group against influenza.

The second principal component has the same structure in both tables as does the

third. However, in the case of the third principal component, it is still a contrast

of influenza, zoonotic arbovirus group and foot-and-mouth against the non-zoonotic

arbovirus group but under the transformed variables, more importance is placed on

the zoonotic arbovirus group and less on influenza and foot-and-mouth disease.
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Overall the transformation makes almost no difference to final results and so in this

case, where it is debatable as to whether the data are truly compositional or not,

then the results using the original individual scores seem perfectly valid.

3.4.2 Principal Component Analysis of Impact and Likeli-

hood Scores

The initial analysis of the impact, likelihood and future likelihood scores was under-

taken using the same principal component approach as for the disease group scores

(Tables 3.1, 3.2, 3.3 and 3.4) before then examining them using the alternative log

centered approach.

Table 3.31: Eigenanalysis of Covariance Matrix (Impact Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.108 0.073 0.310 0.027 0.026 0.001

Proportion of Variation 0.406 0.275 0.117 0.103 0.096 0.003

Cumulative Proportion of Variation 0.406 0.681 0.798 0.901 0.997 1.000

For impact scores, as can be seen in Table 3.31, the first three principal components

again explain the large majority of the variation and so their coefficients were exam-

ined:

Table 3.32: Principal Component Coefficients (Impact Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 -0.828 -0.025 0.067 0.070 0.185 0.519

PC2 -0.033 -0.176 -0.185 -0.153 0.893 -0.336

PC3 -0.369 0.189 0.544 0.290 -0.065 -0.666

From Table 3.32 it can be seen that the first principal component is dominated by a
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contrast between influenza and the zoonotic arboviruses along with a weaker contri-

bution from foot-and-mouth disease. At first this might seem surprising since earlier

results always featured strong influences from both influenza and foot-and-mouth but

since this relates to the impact of the disease and the other two groups here tend to

have higher fatality rates, then it is perhaps to be expected. The second component

then brings in the importance of foot-and-mouth disease with it being contrasted

against a balance of almost all other groups with the exception of influenza simply

meaning that foot-and-mouth disease is a secondary source of variation for delegates

who view the other diseases as less important in terms of impact. The third principal

component is then a contrast between influenza and the zoonotic arbovirus group

against non-zoonotic arboviruses and the two swine fevers. The fact that this third

component contains so many groups and delegates are restricted on the number they

can score means it may be less important even though it has a reasonable proportion

of the data variability assigned to it.

Table 3.33: Eigenanalysis of Covariance Matrix (Current Likelihood Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.090 0.076 0.0581 0.042 0.013 0.001

Proportion of Variation 0.321 0.273 0.206 0.151 0.047 0.002

Cumulative Proportion of Variation 0.321 0.594 0.800 0.951 0.998 1.000

Moving on to likelihood scores in Table 3.33 there is less of a jump between the first

and second principal components meaning they are both almost equally important

in explaining variance.

Table 3.34: Principal Component Coefficients (Current Likelihood Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 -0.277 -0.629 0.198 -0.025 0.698 0.022

PC2 -0.657 0.638 -0.037 -0.061 0.329 -0.219

PC3 -0.482 -0.070 -0.018 0.018 -0.275 0.829
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Our first principal component in Table 3.34 is dominated, surprisingly, by a contrast

between foot-and-mouth disease and the non-zoonotic arbovirus group which has

tended not to feature strongly in any results. It is, however, slightly balanced with

influenza that also has a reasonably large coefficient with the same sign. The second

component rearranges the same three disease groups with influenza against the non-

zoonotic arbovirus group balanced weakly with foot-and-mouth disease; however,

this time the other arbovirus group also has an affect being balanced with influenza.

Finally, the third principal component contrasts the zoonotic arboviruses against

both influenza and foot-and-mouth disease. The fact that all three components

consist of rearrangements of these groups and there is less of a difference between

proportions of variability for the three components mean much of the variation in

delegates’ likelihood scores is based upon the opinions of these groups which then

equally means the two remaining groups have a high level of consistency amongst

delegate opinions on their likelihood as a threat; that is neither of the swine fever

groups will contribute much to variation so will be likely to never be scored unusually.

Table 3.35: Eigenanalysis of Covariance Matrix (Future Likelihood Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.122 0.075 0.058 0.042 0.013 0.000

Proportion of Variation 0.394 0.241 0.186 0.136 0.041 0.001

Cumulative Proportion of Variation 0.394 0.635 0.821 0.957 0.999 1.000

As far as future likelihood scores are concerned, again the first three principal com-

ponents, as seen in Table 3.35, explain over 80% of the variability and there is more

of a difference between them in terms of proportion.
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Table 3.36: Principal Component Coefficients (Future Likelihood Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 0.220 0.425 0.023 0.035 0.151 -0.864

PC2 0.718 -0.678 0.052 0.025 0.024 -0.144

PC3 0.458 0.403 -0.209 -0.063 -0.741 0.175

As with the current likelihood scores, the same four disease groups appear again,

Table 3.36, indicating little variability is contributed by the two swine fevers. The

first component is the zoonotic arbovirus group contrasted against influenza and

non-zoonotic arboviruses, with the second then being a contrast between the non-

zoonotic arboviruses and influenza meaning between the two we have a lot of the

variability dependant on the interplay between these three groups. The third prin-

cipal component is then foot-and-mouth disease contrasted against influenza and

non-zoonotic arboviruses.

Transformation

The data were then transformed according to the method detailed earlier and scatter

plots created of each score combination both before and after, Figures 3.12 and 3.13:
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Figure 3.12: Scatter plots of Impact Scores for each combination of disease groups

This series of plots (Figure 3.12) shows the impact scores (Equation (2.8)) for each

pair of disease groups plotted against each other with each cell representing a dis-

ease combination. So for example the top row of plots will be the impact score for

influenza (with the influenza scores on the y axis) against each of the other disease

groups (the relevant impact score plotted against the x axis), the second row will be

BT & AHS against each of the others. While not as visible as the example earlier

(Figure 1.2) it can be seen in Figure 3.12 that the values are restricted to the lower

left of the plot, towards the origin; i.e. there is a tendency towards a trade off be-

tween variables; e.g. the high values for the disease on the x-axis have low values on

the y-axis.
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Figure 3.13: Scatter plot of Transformed Impact Scores

In Figure 3.13 the impact scores for each pair of disease groups has been plotted but

the data have been transformed and the plots have clearly changed with the data

points being much more dispersed i.e. the points no longer seem to be confined to

the lower left section of the plot.
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Figure 3.14: Scatter plot of Likelihood Scores

Figure 3.15: Scatter plot of Transformed Likelihood Scores
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Figure 3.16: Scatter plot of Future Likelihood Scores

Figure 3.17: Scatter plot of Transformed Future Likelihood Scores

For our likelihood and future likelihood scores, Figures 3.14 and 3.16, again the trade
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off type relationship can clearly be seen. However, once transformed, Figures 3.15

and 3.17, it is not clear that this relationship has been removed, a number of the

scatter plots continue to display the same kind of trade off behaviour, that is, the

values are all in the lower left corner of the plots and suggest an indirectly propor-

tional relationship between variables.

To check for the curved shape described in Aitchison (1982a) is more difficult; the

example shown earlier used a triangular plot, (Figure 1.1), but was conveniently on a

dataset of only three proportions. The delegates scored six different disease groups,

so a similar plot cannot be produced to display the interaction of all proportions.

Taking three scores at a time, such a plot can be produced, though to check all com-

binations would require sixty such plots; for example the impact scores for influenza,

foot-and-mouth disease and the zoonotic arbovirus group, Figure 3.18.

Figure 3.18: Ternary plot Impact Scores for Influenza, Foot-and-mouth disease and

WNF, RVF & CCHFV
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This plot shows the value of delegates’ impact score for influenza on the left axis,

their impact score for foot-and-mouth disease on the bottom axis and their impact

score for WNF, RVF & CCHFV on the right axis. For example, the point at the

very top of the plot represents a delegate that scored WNF, RVF & CCHFV for all

impact measures so has an impact score of 1 for that disease group and of 0 for the

rest. A curved shape like that expected is not visible but neither is the preferred

elliptical shape (Aitchison, 1982a) and much of this difference in behaviour is due

to the nature of the scores. Each delegate, and so each row of the dataset, will have

at least three zeros present (which is why many of the points lie along an axis in

Figure 3.18) and while the individual scores may be regarded as quasi-continuous,

the argument for treating the impact and especially the likelihood and future like-

lihood scores the same way is much weaker. This may indicate that even if it is

acceptable to analyse these data using principal component analysis then, for this

particular example, the common type of transformation may not be suitable due to

the large number of zero values. Nonetheless the analysis was carried out and the

results found for the impact, current likelihood and future likelihood scores.

Table 3.37: Eigenanalysis of Covariance Matrix (Transformed Impact Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 1.183 0.806 0.373 0.330 0.312 0.037

Proportion of Variation 0.389 0.265 0.123 0.109 0.103 0.012

Cumulative Proportion of Variation 0.389 0.654 0.777 0.885 0.988 1.000

Table 3.38: Eigenanalysis of Covariance Matrix (Transformed Current Likelihood

Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.384 0.329 0.248 0.187 0.062 0.000

Proportion of Variation 0.317 0.272 0.205 0.155 0.051 0.000

Cumulative Proportion of Variation 0.317 0.589 0.794 0.949 1.000 1.000
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Table 3.39: Eigenanalysis of Covariance Matrix (Transformed Future Likelihood

Scores)

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 0.493 0.310 0.248 0.185 0.061 0.000

Proportion of variation 0.380 0.239 0.192 0.143 0.047 0.000

Cumulative Proportion of variation 0.380 0.619 0.810 0.953 1.000 1.000

As far as explaining variation, it can be seen that generally the transformation results

in more of a spread across the principal components in comparison to the untrans-

formed results (Table 3.31 compared to 3.37, Table 3.33 compared to 3.38 and Table

3.35 compared to 3.39); i.e. the first two principal components now explain less and

the other components now tend to explain slightly more of the dataset variation.

Table 3.40: Principal Component Coefficients (Transformed Impact Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 0.743 0.025 -0.091 -0.094 0.008 -0.656

PC2 -0.152 -0.224 -0.201 -0.161 0.920 -0.118

PC3 -0.111 -0.484 0.829 -0.024 0.007 -0.256

For our impact scores, the interpretation of the first two principal components (Ta-

ble 3.40) remains much the same as their untransformed counterparts; however, the

third principal component has changed quite radically. It is dominated by ASF con-

trasted against the two arbovirus groups and so is much simpler than it was before

now only really involving three disease groups. However, the fact that it is heavily

dependant on ASF makes the result rather questionable, since this was generally a

very low scored or unscored disease it would not be a likely candidate to contribute

much to variation.

113



Table 3.41: Principal Component Coefficients (Transformed Current Likelihood

Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 -0.310 -0.616 0.236 -0.027 0.683 0.032

PC2 -0.657 0.651 -0.034 -0.061 0.308 -0.210

PC3 0.463 0.062 0.049 -0.024 0.287 -0.835

The first principal component for the transformed current likelihood score, Table

3.41, is similar to the original though there is a bit more of a contribution from

influenza and ASF. The second component remains effectively unchanged; although

the signs of the coefficients have switched for the third component, it has not in fact

changed, as the magnitude of the coefficients are much the same and the contrasts

(the diseases that have a negative sign as opposed to those diseases with a positive

sign) are the same as before.

Table 3.42: Principal Component Coefficients (Transformed Future Likelihood

Scores)

Variable Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

PC1 0.202 0.464 0.005 0.035 0.146 -0.849

PC2 -0.722 0.663 -0.055 -0.032 -0.038 0.183

PC3 -0.440 -0.372 0.152 0.056 0.783 -0.170

All three principal components for the transformed future likelihood scores in Ta-

ble 3.42 are reasonably similar to the untransformed original, there has been some

switching round of signs and there is some slight difference in coefficients for the third

principal component with the non-zoonotic arbovirus group and ASF now mattering

less than they did before.
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Overall, despite there being some change in some of the principal components the

fact that the curved shape remains after transformation and many of the components

being relatively unchanged suggests that this method of transformation is either un-

necessary or ineffectual and some alternative method should be found.

3.4.3 Cluster Analysis

The first requirement is to determine the number of clusters that should be pro-

duced. This can be determined by examining the within cluster sum of squares for

different number of clusters.

Table 3.43: Within cluster sum of squares for current scores

Number of clusters Sum of squares % Change

7 7.93 na

6 9.60 21.03

5 10.05 4.66

4 12.23 21.67

Table 3.43 shows a rapid drop in percentage change of within cluster sum of squares

when moving from six clusters to five. In contrast, for the future scores (Table 3.44)

the drop is less extreme and coincides with a move from seven to six clusters.

Table 3.44: Within cluster sum of squares for future scores

Number of clusters Sum of squares % Change

8 8.03 na

7 8.64 7.66

6 9.03 4.54

5 10.22 13.08

4 13.07 27.96

The coefficients of each cluster centroid describes the relationships between scores
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for each disease group.

Table 3.45: Cluster centroids for current scores
Cluster Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

% of delegates

1 0.0327 0.0076 0.0038 0 0.2298 0.0099 38.42

2 0.125 0 0 0.1944 0.0278 0 2.11

3 0.1736 0.0056 0.016 0.0007 0.0188 0 42.11

4 0.0214 0.3162 0 0 0.0171 0 6.84

5 0.0111 0.0028 0.0778 0 0.0306 0.2167 10.52

As far as current threats are perceived, there are five distinct groups. Of these

five, the majority of delegates are contained within two with almost all delegates

contained within clusters one and three. Cluster three has a centroid mostly de-

termined by the score of influenza with small contributions from some of the other

disease groups. Cluster one’s centroid is defined by foot-and-mouth disease with

contributions from other groups. The third most important cluster, by percentage

of delegates, is mostly dependent on the zoonotic arbovirus group but contains far

less of the delegates than the top two.

Table 3.46: Cluster centroids for future scores
Cluster Influenza BT & AHS ASF CSF FMD WNF,

RVF &

CCHFV

% of delegates

1 0.0069 0.0046 0.0035 0 0.2384 0.044 25.26

2 0.02 0.0044 0.0067 0 0.0489 0.2978 13.16

3 0.0106 0.0062 0.0088 0.0194 0.0247 0.0062 33.16

4 0.2994 0.0015 0.0062 0 0.0509 0.0108 18.95

5 0 0.3611 0 0 0.0185 0.0093 6.32

6 0 0 0.3148 0 0 0.1019 3.16

Table 3.46 shows that the number of delegates are less focused than for current
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scores (Table 3.45). The most important cluster, containing the greatest number of

delegates, contains less than the second most important for the current scores. This

cluster, cluster three, is dependent on the scoring of foot-and-mouth disease, CSF

and influenza. In the second most important cluster (cluster one), there is a strong

dependency on foot-and-mouth disease with some contribution from the zoonotic

arbovirus group.

The third and fourth most significant clusters are dependent on influenza and the

zoonotic arbovirus groups respectively.

3.5 Discussion

Principal component analysis and cluster analysis were used here to examine the

scoring behaviour of delegates from a multivariate perspective. This was considered

important as each disease group was not scored independently of the others and so

how a delegate scored one group had a direct influence on the others.

Despite this, many of the same patterns were found as for the univariate approaches.

Evidence of regional bias and a delegate’s bias towards a disease they work on con-

tinued to be found.

Of greater interest is the repeated pattern of less certainty in future risk as evidenced

by the increased number of principal components (Figure 3.1) and clusters (Table

3.43 contrasted against Table 3.44) required to explain the data. Again, this makes

an intuitive sense; any opinion about the future should intrinsically be less certain

than an opinion about the present, so it would be expected to still be present in

the results. This future change also reinforces the increased future importance of

the zoonotic arbovirus group that was highlighted in previous studies (Gale et al.,

2010) and in Chapter 2. This is shown in the structure of the more significant princi-

pal components and clusters for future scores where large coefficients are associated

with this disease group as opposed to current score principal components and clus-

ters where it tends not to feature as much. It can also be seen graphically in the
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plots of principal components one and two for the past and future which are in the

main dependent on the Influenza, Foot-and-mouth disease and zoonotic arbovirus

groups. Here, the difference from the current threats, where focus is on Influenza

and Foot-and-mouth disease, to a situation where all three seem equally important

is graphically illustrated.

In this and the previous chapter, expert opinion was analysed using both multivari-

ate and univariate and group and individual approaches in order to identify what

diseases might emerge as a threat and which therefore can be regarded as exotic

threats. All of these approaches result in the same disease groups being identified.

Both now and in the future, delegates view influenza and foot-and-mouth disease to

be a threat but the key emerging threat in coming years is seen to be WNF, RVF

& CCHFV. All of these disease are zoonotic arboviruses and are vector borne. The

following chapters will focus on quantifying and exploring the risk represented by

these diseases.
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Chapter 4

Non-spatially explicit

mathematical model of the risk of

CCHFV incursion via migratory

birds

4.1 Introduction

At the 2010 annual EPIZONE meeting, a survey was carried out of over 150 experts

on current and emerging disease threats (Kelly et al., 2013). The experts were ques-

tioned on their current views and their expectations for 2020 about the likelihood

of incursion, spread and persistence of six different disease groups. The data from

this survey were analysed in chapters 2 and 3 using both univariate and multivariate

techniques and all the evidence suggested that the disease group that was viewed by

the experts as the most significant emerging threat was the zoonotic arbovirus group.

This group consists of diseases that are zoonotic, that is capable of being transmitted

from other animal species to humans, and are vector borne, so transmitted by one or

more arthropod species. Three specific diseases of this class were considered; WNV,

RVF and CCHFV only one of which has a potential vector present throughout Eu-

rope - CCHFV. One of the potential means of introduction of this disease is through

Hyalomma marginatum ticks brought in upon migrating birds and so there is value

in understanding and exploring this in order to better understand the risks.
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In this chapter, this risk will be explored. In particular, a geographical information

system approach will be used to assess the risk of CCHFV positive ticks being intro-

duced into Europe from Africa (Palomar et al., 2013; Jameson et al., 2012). A large

number of bird species migrate annually between sub-Saharan Africa, where CCHFV

is present in tick species, and Europe (Kirby et al., 2008; Dorst, 1962) and many

of these species have feeding or nesting habits that put them at risk of becoming

hosts for ticks, thereby creating a means for the disease to be introduced into Europe.

4.2 Crimean-Congo Haemorrhagic Fever Virus

Found throughout much of Africa, Asia and Europe, CCHFV is a fatal viral infection.

It is a member of the Nairovirus genus, of the family Bunyaviridae (Deyde et al.,

2006), and gives its name to one of the seven sub-groups this family is often divided

into (i.e. the Crimean-Congo hemorrhagic fever serogroup consists of CCHFV and

HAZARA virus). All of these viruses are tick borne and can have human or animal

hosts (Turell, 2007). CCHFV causes a severe disease in humans with a reported

mortality rate of 30% (World Health Organisation, 2012) and is the most geographi-

cally widespread of the medically significant tick borne viruses. Figure 4.1 shows the

geographic distribution of both the virus and its main vector and illustrates that, so

far, the distribution of the virus seems to be curtailed by the geographic distribution

of the tick. The grey box at the top of Figure 4.1 is the 50◦ North latitude line and

neither the tick nor virus are established beyond this point (Formenty et al., 2007).

However, over the course of the last few years, a number of CCHFV positive ticks

have been found in many countries north of this line (Hasle, 2010) and the virus has

potentially established itself in some hitherto virus free countries south of the line

(Foley-Fisher et al., 2012).
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Figure 4.1: Geographic distribution of CCHFV and vector (WHO 2008)

Humans can contract the virus through a number of routes including direct contact

with infected blood or tissue; this would include infected meat products or a noso-

comial (hospital acquired) infection (Randolph and Rodgers, 2007). However, the

most important route is via a tick bite, as not only are ticks a source for human

or animal infection but they are also important in the disease lifecycle. The long

lifespan of the tick means they can act as both a vector, introducing the virus to

other animals, and a reservoir; in other words a long term host.

The continued existence of the disease is strongly linked to the presence of its vector
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as can be seen in Figure 4.1. While many countries where this vector is present

(marked in cream) do not have reported cases of CCHFV, it is yet to become es-

tablished in any country where this vector is not present (marked in grey) and all

those where there is evidence for its presence or reported cases (marked in yellow or

red respectively) it is associated with this vector. It relies on a number of stages of

transmission within tick populations and Figure 4.2 shows the transmission of the

disease within the tick lifecycle:

Figure 4.2: CCHFV transmission within the tick lifecycle
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Following through Figure 4.2 in order, at step (1) we have an infected larvae or

nymph feeding on an uninfected small host (generally any small vertebrate species;

e.g. rodents or ground feeding birds) and so transmitting the infection (2). At step

(3) uninfected ticks feed on the infected host and contract the virus (4). At stages

(5) and (6) transtadial transmission is considered, that is, the tick carries the virus

between lifecycle stages, so an infected larvae becomes an infected nymph and an

infected nymph becomes an infected adult. In stage (7) an infected tick reproduces

with an uninfected tick and this tick contracts the virus. This is known as venereal

transmission. In addition, at stage (7), adult tick to adult tick infection can occur

through a phenomenon known as co-feeding where the ticks never come into contact

but the virus is still transmitted from one to the other through the bloodstream of a

shared host. Stage (8) involves vertical transmission whereby the infected female lays

her eggs some of which carry the virus and so hatch into infected larvae (Turell, 2007).

Birds are not as important as other small animals in the lifecycle of the disease

(Turell, 2007). They are hosts of ticks so are important for the tick lifecycle but the

majority of birds are refractory for CCHFV. This means they can never be viraemic

and so generally cannot play a role in transmitting the virus. The one exception to

this is co-feeding where an uninfected tick feeding on the same host as an infected

tick can acquire the virus without the host ever becoming infected (Turell, 2007).

Despite not being important as part of the disease lifecycle, birds are potentially very

important in the spread of the disease as they are capable of, and in fact regularly,

migrate long distances and so can carry infected ticks into regions where CCHFV is

not present and so introduce it.

4.3 Selection of Bird Species

There are over 300 species of birds listed for Europe, some of which are resident

throughout the year and some of which migrate between Europe, to breed, and

warmer locations, to winter. Therefore, it is necessary to have some criteria by

which to identify species to focus on as a means of introduction of infected ticks.

Firstly, we are interested in species that move between Sub-Saharan Africa and Eu-
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rope, i.e. between an area where the virus and vector are present and our area of

interest. Each year, a large number of bird species do this, wintering in Africa where

the temperature is more comfortable and food is more readily available, and migrat-

ing North to Europe in the spring in order to return to breeding grounds. Secondly,

we are interested in species whose behaviour puts them at risk of coming into contact

with ticks such as those species who spend time on the ground or in low undergrowth

(Hoogstraal, 1979; Gale et al., 2011). For example the Chaffinch (Fringilla coelebs)

is likely the most populous species in Europe (Papazoglou et al., 2004); however,

it is not truly migratory and where limited migration does take place, it does not

move overly far South and certainly not into Sub-Saharan Africa. Similarly, the Barn

Swallow (Hirundo rustica), which does migrate from Europe to Sub-Saharan Africa,

but feeds and nests above the ground, would not be considered further. Examining

the hundred most populous European Species (Papazoglou et al., 2004) and elimi-

nating those that fail to meet these criteria results in the species in Table 4.1.
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Table 4.1: Bird species that meet the criteria for possible means of introduction of

infected ticks from Africa to Europe with population data from (Papazoglou et al.,

2004)

Species Behaviour Population Size (Breeding Pairs)

Willow Warbler Ground Feeding/Nesting 49000000

Tree Pipit Ground Feeding/Nesting 16000000

Garden Warbler Low Feeding/Nesting 13000000

Common Whitethroat Ground Feeding/Low Nesting 10000000

Turtle Dove Ground Feeding/Low Nesting 2600000

Sedge Warbler Low Feeding/Nesting (damp) 2500000

Marsh Warbler Ground Feeding/Low Nesting (damp) 2500000

Northern Wheatear Ground Feeding/Nesting 1700000

Common Quail Ground Feeding/Nesting 1300000

Hoopoe Ground Feeding/High Nesting 980000

Thrush Nightingale Ground Feeding/Low Nesting 860000

Ortolan Bunting Ground Feeding/Nesting 700000

Grasshopper Warbler Low Feeding/Nesting (damp) 670000

Iberian Chiffchaff Low Feeding/Nesting 530000

From Table 4.1, it can be seen that the Willow Warbler (Phylloscopus trochilus) is the

most common true migratory bird in Europe, showing obligate migration (Newton,

2011; Dorst, 1962), (it is outnumbered by the Chaffinch, House Sparrow, Common

blackbird and European Robin, but none of these have true migratory behaviour)

and could thus be considered an important candidate for modelling purposes. Much

of it’s behaviour further suggests it as the most interesting candidate. Firstly, it

winters in sub-Saharan Africa (as do all species in Table 4.1) in areas where H.

marginatum, the primary CCHFV vector is present. Secondly, it is a ground nesting

and ground feeding bird meaning it is more likely to come into contact with the

vector, as opposed to other migratory bird species whose nesting and feeding habits

mean they are less likely to come into contact with ticks.
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To consider just one species of bird would, however, be unrealistic and it would be a

mistake to ignore species that may be less populous but might turn out to be more

important for the transportation of ticks e.g they are wider ranging or migrate at

a faster rate, meaning that ticks could be carried further. Returning to Table 4.1

and using a more strict set of criteria to examine the Behaviour column so that only

species whose behaviour maximises their risk of tick contact are accepted, that is,

those that both feed and nest on the ground, we are left with five species to be

modeled in this chapter as shown in Table 4.2:

Table 4.2: Bird Species most likely to be a means of introduction of infected ticks

from Africa to Europe

Species Population

Willow Warbler 49000000

Tree Pipit 16000000

Northern Wheatear 1700000

Common Quail 1300000

Ortolan Bunting 700000

4.4 Avian Migration

4.4.1 Population Distribution

Obtaining accurate population data for birds can be difficult and a number of sur-

veying methods are used by ornithologists to obtain estimates. These include obser-

vatories collecting data on bird passage, normally along the main migratory routes,

either by visual or radar observation. Alternatively, more time consuming but de-

tailed approaches such as spot mapping, a labour intensive method where a bird’s

territory is mapped out allowing a guide to bird densities to be estimated based on

this and the overall area e.g. if a bird’s territory is approximately 10m2 then it can
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be estimated that ten birds may be found in an area of 100m2. Similarly, a transect

count where an observer moves along a fixed path and counts occurrences (in this

case breeding birds) and distance from the path and uses this to arrive at an esti-

mated distribution of birds within an area and so an overall population.

All these methods are labour intensive and involve mainly human measurement and,

thus, there tends to be a high level of variation in population estimates. For this

study, population data were taken from Birdlife International, a global partnership

of conservation organisations who operate in over 100 countries and have made avail-

able estimates of breeding pairs for all common European Species for each European

country based on 2004 estimates. These data are given as an estimated range of

breeding pairs for each country which is then tripled to give an estimate of the true

number of birds. This was undertaken as estimating breeding pairs neglects birds

that will be unable to breed that year and so underestimates the true population.

Such birds would be too old, too young or unable to find a mate. Some papers

(Fuller, 2009) would suggest quadrupling numbers of breeding pairs, but since the

breeding pair estimates are taken from Birdlife International and their approach,

shown in any of their species factsheets, is to triple this number, then that is what

was done here.

For many of these countries, bird populations can be present in only a small part of

the country’s territory. Birdlife International maintains spatial plots of the presence

and absence of a species with a different polygon for the wintering, breeding and

resident populations.

A plot of the European breeding distribution of the Willow Warbler based on data

from Birdlife International can be seen in Figure 4.5. Examining a country like Roma-

nia demonstrates the importance of not simply uniformly distributing a population

across the territory, as in the case of the Willow Warbler population in Romania

they are present in only a small part of the country.
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Figure 4.3: European breeding distribution of the Willow Warbler

4.4.2 Arrival Dates

Like many migratory birds, the behaviour of the Willow Warbler when returning to

its nesting grounds tends to have a level of predictability, with the dates of arrival

across Europe on average being constant from year to year (Dorst, 1962). These

dates are gathered each year by observatories and professional or amateur ornithol-

ogists and the average arrival date for locations across Europe is calculated. This is

the average day on which that species tends to arrive in that region. Lines are then

produced by joining locations which have the same average arrival dates for return-

ing Willow Warblers. For example the South of France, Southern Italy and the West

of Turkey all have the Willow Warbler normally first arriving in these regions about

the 15th of March. These lines are known as isochronal lines. Figure 4.4, taken from

Dorst (1962), shows the isochronal lines for the Willow Warbler.
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Figure 4.4: Isochronal lines for the Willow Warbler (Dorst, 1962)

Unlike for the Willow Warbler, isochronal lines for the other species in Table 4.2,

or indeed for many other bird species, have not been produced by ornithologists.

However, there is considered to be a strong level of spatial correlation between

those isochronal lines that have been constructed and isothermal lines (Dorst, 1962).

Isothermal lines are similar in idea and are formed by joining locations where a par-

ticular temperature ’arrives’ on the same date. As an example, those for 9◦ C can

be seen in Figure 4.5:
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Figure 4.5: Isothermal Lines for 9◦C (Dorst, 1962)

The level of correlation between the data for the Willow Warbler (Figure 4.4) and the

9◦C isothermal lines was investigated using the raster spatial package in the statis-

tical programming language R. Taking Figures 4.4 and 4.5, the isochronal lines and

isothermal lines were interpolated out to the edges of the plots to form zones. Figure

4.6 shows the extended isochronal lines for the Willow Warbler. Each zone was given

a numerical value, starting from zero for the southern most zone and increasing by

one for each day’s difference based on the arrival dates for each subsequent zone.

So, for example, from Figure 4.5, there would be a difference of 14 between the two

most northern zones as there is a fortnight difference in their arrival dates. Both

plots were rasterised (where a 2D plane is broken up into cells) and any cell that fell

within a zone would have the value associated with that zone.
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Figure 4.6: Interpolated Isochronal zones for the willow warbler

An equation very similar to the standard Pearson correlation coefficient equation was

used to calculate the level of correlation between these two sets of raster data. This

is used so as to compute a single correlation coefficient for the two raster layers as

opposed to the standard correlation coefficient equation which is designed to assess

correlation between two vectors, while the data here consist of two matrices, and so

the standard approach would result in a coefficient for each column of the matrix.

The equation used is shown in (4.1).

rX,Y =
Σm
i=1Σ

n
j=1(xi,j − µX)(yi,j − µY )

(mn− 1)σXσY

X = [xi.j]m×n

Y = [yi.j]m×n

(4.1)
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In equation (4.1) rX,Y is the sample correlation and gives a measure of the linear de-

pendence between our two matrices X and Y which must be of the same dimension.

The X and Y matrices contain the rasterised images of the isothermal and isochronal

lines with xi,j being the value associated with the zone that cell i,j is within, µX and

µY being the mean of the elements and σX and σY their standard deviation. The

values of the cells in the matrix will generally be higher for the lower rows as these

would be equivalent to being further North and, as we move towards row m the

values of the cells will be lower as these represent the more southerly locations.

This resulted in a correlation coefficient of rX,Y = 0.9284 (0.9279, 0.9290) and so it

can be reasonably concluded that the 9◦ C isothermal lines are a good isochronal

surrogate for those bird species for whom isochronal lines have not been constructed.

Whether these arrival dates i.e. the isochronal lines, do indeed indicate anything

about the mechanisms of bird migration is a matter of some debate and Dorst (1962)

does discuss the varied reasons put forward to explain them. That there is a link

between isochronal lines and temperature is suggested by the level of correlation

between isochronal and isothermal lines, but this could reflect a difference in depar-

ture dates for migrants rather than the mechanism of migration itself. If a species

migrates at the same speed regardless of route but their departure date varies de-

pending on the temperature of their final destination i.e. those birds whose nesting

grounds reach a required temperature earlier will start their migration earlier, then

the same pattern would be observed. Many ornithologists believe that the influence

of the movement of temperature is simply a trigger for migration and has no affect

on its mechanics with the reason for different arrivals being the availability of tem-

perature dependent insect species that are required as a food source.

This means that even if isochronal lines were available for any of our other species

of interest, the reasons discussed would suggest that these should not be taken into

account when modelling.
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4.4.3 Migration Flight Speed

Bird speeds, or daily migration distances can be measured using a number of different

techniques. Handheld instruments such as laser based rangefinders or ornithodolites

can be used (Pennycuick, 2001; Pennycuick et al., 2013). The latter instrument

combines a rangefinder with an altazimuth mount (a mount designed for rotating an

instrument between two perpendicular axes in this case horizontal and vertical) and

readings from the mount and rangefinder are fed to a computer. It was designed

to be able to allow a single observer to collect a large number of bird flight speed

estimates in a short space of time (Pennycuick, 1982).

Alternatively, many studies use ringing data to estimate speeds (Yohannes et al.,

2009; Cleere et al., 2000). This is where birds are trapped and rings with a unique

identification number are attached to them (often on the leg or wing) before they are

released to continue their migration. If the bird is later recaptured, the identification

number can be used to link the original capture date and location with this new date

and location of capture. The difference in distance between the two locations and

the time elapsed between the two capture dates can be used to estimate the average

flight speed.

The final method is that of radar (Bruderer, 1997) which has the benefit of being

able to gather large amounts of data in a short space of time and allows a larger scale

of study. The data from radar studies can illustrate how birds navigate using the

surrounding landscape and what environmental changes cause a change in migration.

The main weakness of radar is the inability to identify a particular species; in recent

years work is still being done on merely correctly identifying radar targets as birds

(Zaugg et al., 2008).

Although all of these methods exist, for many of these species the only data available

described autumn migration. However, it is a common belief amongst ornithologists

that spring migration speeds are generally faster with the limited data available sug-

gesting an average increase in speed of 34% (Bauchinger and Klaassen, 2005), this

means that spring migration speeds can be estimated for those species that only have

data on autumn migration speed.
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4.4.4 Orientation and Navigation

Papers examining avian migration are often interested in how birds navigate and

whether stars, magnetic fields or geographical markers are used (Erni et al., 2003)

and this is still an area of debate (A. Vrugt et al., 2007). A bird’s ability to orient

itself based upon whatever means of navigation is a very important parameter as

more accurate orientation and navigation will result in a more efficient migration

giving a competitive advantage. As discussed in the previous section, radar studies

can provide information on the large scale movements of birds which can be exam-

ined to investigate how they navigate. Orientation studies are also carried out where

some of these means of orientation are examined and manipulated in order to inves-

tigate their importance and the level of variation amongst birds orienting themselves

by these means (Wiltschko and Wiltschko, 1975). In these studies, birds are often

captured and placed in special cages with sensor equipped perches and a record is

taken of which perches are triggered by the bird flying to them. These data will

indicate the general direction that particular bird is trying to fly and then the means

of orientation can either be removed, e.g. covering the cage so the stars cannot be

seen, or manipulated e.g. modifying the local magnetic field.

Leaving asides the question of how accurately birds navigate the question of what

they orient on is also unsure. For example, a simple clock and compass method

(Mouritsen, 1998) where fixed directions are followed for a fixed period of time, but

other papers argue against this form of navigation (Thorup and Rabøl, 2001) and

suggest geographic markers and a measure of bird orientation and papers such as

Wiltschko and Wiltschko (1975) examine more complicated methods involving mag-

netic fields.

4.4.5 Model Factors

The distribution of birds across Europe will affect both the migration routes taken by

birds and potentially the distribution of introduced ticks and so will feature in all the
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modelling approaches. Since CCHFV positive ticks being introduced by birds has a

time dependency from the length of on host attachment, then migration speed will

feature in all models. A bird’s orientation requires birds to be modelled in greater

detail, so will only feature in the more advanced models used in later chapters.

4.5 Method

4.5.1 Background

In chapter 1 the work of Gale et al. (2011) was reviewed. This paper made use

of a geographic information system (GIS) approach to estimate the risk of livestock

in Europe becoming infected by CCHFV via CCHFV positive ticks introduced by

migratory birds. This approach consists of using multiple layers of geographic and

spatial data to analyse a problem. The model in Gale et al. (2011) focused on four

bird species and as far as risk of introduction is concerned a single GIS layer was used

for each species. These layers consisted of grids of 25km square cells for Europe and

contained a binary value indicating the presence or absence of that species within

the geographical region represented by that cell.

The population for each bird species for all of Europe was evenly distributed amongst

the cells with a present value for that species. This resulted in a new GIS layer which

contained 25km squared cells containing species number for each geographical region.

So, from two original layers, one containing species population values for parts of Eu-

rope by country and another containing species presence/absence data by grid cells,

a single layer is produced for each species containing population in grid cells. These

layers were multiplied by a prevalence rate for CCHFV positive ticks on migrating

birds, which was estimated from a number of papers and represents the average

number of CCHFV positive larval or nymphal ticks on birds in sub-Saharan Africa.

This gives a number of ticks deposited per cell, all of which were summed to produce

a total number of deposited ticks in Europe.

This can be represented mathematically using the notation from the paper:
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NPosT icks[i, j] = Nbirds(i, j)× pprev ×Meantick

NPosT icks = Σm
i=1Σ

n
j=1Nbirds(i, j)× pprev ×Meantick

(4.2)

In equation (4.2) the values m and n represent the dimensions of the grid, Nbirds[i, j]

is the total number of birds in grid cell i,j and is derived as described above. pprev

is the proportion of immature H. marginatum nymphs which are CCHFV positive

and is assumed after reviewing multiple papers (see 4.2), Meantick is the average

number of H. marginatum nymphs per migrant bird and is derived from information

in Molin et al. (2011).

As discussed in chapter 1, this takes no account of the distance of the cell from

sub-Saharan Africa where the birds start their migration, so two countries with sim-

ilar breeding populations of bird species will have the same estimated number of

deposited ticks regardless of the country’s geographical position and the resulting

migration distance from sub-Saharan Africa.

4.5.2 Geographic Information System

In this chapter, a similar approach to Gale et al. (2011) will be used. Their model

will be extended in an attempt to further reflect the spatial element of migration.

The increased distance birds have to fly to reach some more northern European coun-

tries compared to the Mediterranean countries means that there is a much smaller

chance of ticks reaching those countries. This is due to the finite duration of on host

feeding time for the Hyalomma tick (Estrada-Peña et al., 2011; Caporale, 2009; Gale

et al., 2011; EFSA Panel on Animal and Welfare (AHAW), 2010).

Rather than use a grid approach, as in Gale et al. (2011), the number of deposited

ticks was calculated for a series of polygons, in this case the countries of Europe. To

incorporate the spatial element, an expression of the distance between the breeding
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grounds of a country and the African wintering grounds was needed. Points were

sampled in the breeding grounds of a country and across the wintering grounds in

sub-Saharan Africa. The Euclidean distance for each pair of points allows a distri-

bution to be formed of the distance a bird might have to fly to reach its nesting

ground. Dividing by the speed of the bird species this can be converted into a dis-

tribution for the number of days of migration. The proportion of this distribution

(pdistancecountry,birdspecies) that lies under the maximum on host attachment time for

ticks represents the probability that a bird will reach it’s breeding ground in that

country before any ticks that are feeding on it finish and detach. This value, when

multiplied by the number of birds per country (Ncountry,birdspecies) and by the preva-

lence rate of CCHFV positive ticks per bird (average ticks per bird (µtick) multiplied

by CCHFV prevalence in ticks (ρprev)) gives an estimate of the potential number of

CCHFV positive tick incursions per European country with the distance flown taken

into account.

This can be represented mathematically as in equation (4.3):

Tcountry, bird species = ρprev × µtick ×Ncountry, bird species × pdistancecountry, bird species (4.3)

pdistancecountry, bird species = Pr (Dcountry, bird species ≤ a× vbird species) (4.4)

In equation (4.3) the values ρprev and µtick are equivalent to pprev and Meantick in

equation (4.2) and thus came from Gale et al. (2011). However, in contrast to equa-

tion (4.2), in equation (4.3) the number of ticks introduced is calculated by country

and species and so N varies dependent on this. That is, in equation (4.2) Nbirds[i, j]

represents the sum of the breeding populations for all five species of interest in the

25 km square region i,j. In equation (4.3) Ncountry, bird species represents the breeding

population for a particular species and country. This is required as the main dif-

ference between the equations is in the term pdistancecountry, bird species and since this is

dependent on species then N must be too. This is the proportion of a bird species

migrating to that country that will do so in less time than tick on host attachment.

So Pr (Dcountry, bird species ≤ a× vbird species) with Dcountry, bird species being a distribu-
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tion describing the time taken for migration, vbird species being the migration speed

for a particular species and a being the maximum on host attachment time. Thus,

the right hand side of the inequality is the number of days migrating multiplied by

the distance traveled each day giving the total distance a bird can travel carrying a

CCHFV positive tick.

To create distributions for the distance from each bird species’ wintering ground to

each breeding country of interest in the EU (pdistancecountry, bird species) spatial libraries

within the statistical programming language R were used along with two distinct

GIS layers. These offered various methods of spatial sampling with defined poly-

gons, in this case an EU country and a list of African countries. The first GIS layer

consisted of polygons of the countries of the world, the second layer was one of a

set of polygons detailing the distribution of the bird species and was based upon

data from Birdlife International (BirdLife International, 2012a). Since the species

distribution did not contain political boundaries, the initial points were sampled for

an EU country then those that fitted into the bird species distribution map were

kept and the rest discarded.

To test which points fitted into the species distribution map, the coordinates from

one layer were plotted on another. All GIS layers require a map projection method

which is used to convert a 3-dimensional surface into a plane. There are numerous

methods based on the initial shape assumed for the earth, the methods of recording

positions on its surface and the means by which it is transformed dimensionally and

differences between these methods can mean a transformation is often necessary to

plot information from one layer onto another. For the two layers used here, there is

a slight difference in projection method in that our world map uses GRS80 (geode-

tic reference system 1980 - geodetic meaning it relates to the measurement of the

Earth’s surface and GRS being a coordinate system and points of reference for lo-

cations on this surface) and the Birdlife layers make use of WGS84 (world geodetic

system 1984) which is a slightly refined version of GRS80 (Clarke, 2003). Since the

second layer is simply a higher precision version of the first then there is no need for

any transformation to ensure compatibility between the two and the points from our

country map can be plotted directly onto the species distribution map.
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The spatial sampling technique used was based upon a hexagonal grid rather than

random sampling so as to ensure equal coverage of all possible departure and desti-

nation points rather than risk the points being too heavily distributed in one part

of an area. For example, the common quail departs from a number of countries in

sub-Saharan Africa, so a set of hexagonal gridded points was sampled (Figure 4.7

blue points). If this had been sampled randomly a greater proportion may have

been sampled in e.g. Angola and other more southern countries, thus skewing the

distribution of distances. The points can be seen to be based upon a hexagonal lat-

tice taken over the polygons representing the countries in which the common quail

spends the winter months. Points were also sampled for a European country, in this

case the UK (Figure 4.7 red points).

Figure 4.7: Sampled points in wintering grounds and UK

Spatial sampling in R works by taking the defined polygon, in this case often a

country, and distributing points within it (Bivand et al., 2008). It starts by get-
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ting the bounding box for the polygon or polygons, that is a rectangular space that

contains the polygon so for a country or part of a country it will be defined using

the most northerly, southerly, easterly and westerly point. Points can then be either

distributed in a random or non-random way within this space. The points that fall

within the polygon itself will be kept. This often means that the number of points

recorded will be less than requested. For example if 100 regularly distributed spatial

points were to be found for the UK then only 88 points may be returned. Within the

bounding box the points would be distributed on a rectangular grid starting from

a preset offset from the upper left corner of the bounding box. Points can also be

distributed on a hexagonal grid or randomly whereby a random uniform distribution

would be used to select an x and y coordinate within the bounding box. The number

of attempts to find an acceptable spatial point within a bounding box, i.e. one that

falls within the polygon, can be increased meaning that a number of points closer

to what is required will be returned and for awkwardly shaped polygons a result is

more likely. This is often useful when there is a need to map all areas of a country

and a part of it has a very irregular shape.

The Euclidean distance between each combination of the European country (UK in

Figure 4.7) and African points, so between every combination of blue and red point,

was calculated and these gave a distribution for the distance between the wintering

grounds and that country. These were in terms of latitude and longitude and so were

converted back to kilometers and divided by the average daily flight distance for the

bird species. The resulting distribution is in terms of number of days of migration

and the proportion under 26 days (maximum on-host attachment time (Estrada-

Peña et al., 2011; Caporale, 2009; Gale et al., 2011; EFSA Panel on Animal and

Welfare (AHAW), 2010)) was calculated. Figure 4.8 shows this distribution for the

UK and the common quail.
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Figure 4.8: Histogram of the number of day’s flight from wintering grounds to the

UK for the common quail
(
DUK, Quail
vQuail

)
As can be seen from Figure 4.8, only a very small proportion of the distribution lies

under 26 days. This can be contrasted with Figure 4.9 which shows the equivalent

distribution for Italy, a more southern country.

Figure 4.9: Histogram of the number of day’s flight from wintering grounds to Italy

for the common quail
(
DItaly, Quail

vQuail

)
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For Italy (Figure 4.9), a much greater proportion of the distribution lies under 26

days meaning a greater number of birds would reach Italy than the UK before their

attached ticks finished feeding and detached.

Doing this for each European country gave a series of proportions which could be

multiplied by the prevalence rate of CCHFV positive ticks on migrating birds and

by the number of birds for that country giving an estimate of the number of infected

ticks that will still be attached to their host when they reach their breeding ground.

Unfortunately, the distributions of distance for the majority of countries do not fol-

low or resemble any standard distribution; however, doing the same for all European

countries at once (Figure 4.10) gives results that generally resemble the Normal dis-

tribution.
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Figure 4.10: Distribution of migration distances for each bird species between win-

tering grounds and European breeding grounds (DEurope, bird species)

The Normality of these distributions can be judged in part from the histograms

in Figure 4.10, where they look approximately Normal, though the distribution for

the Ortolan Bunting could be argued to have two peaks. Q-Q plots can be used

to compare each of these against a theoretical Normal and gives a better graphical

indication of normality (Figure 4.11).
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Figure 4.11: QQ-plots for distribution of migration distances for each bird species

between wintering grounds and European breeding grounds

None of the plots in Figure 4.11 have the straight line indicative of a perfect fit to

a Normal distribution. The plot for all 5 species gives an approximate fit for the

central part of the plot with the left side being above and the right side falling be-

low the line. This suggests there are short tails at both ends of the distribution.

Intuitively, this might be expected as the Normal distributions are infinite in both

directions while the distributions of migration distances must be bound by the min-

imum and maximum distances between the wintering and breeding areas which are

both measurable finite quantities.

Calculating the mean and standard deviation for the distance distributions for Eu-

rope allows a Normal distribution to be formed which will approximate the true
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distribution. The distributions of bird migration speeds (vbird species), CCHFV preva-

lence amongst ticks (ρprev) and population numbers (NEurope, bird species) are assumed

to be uniform between the estimated minimum and maximum and thus there is a

set of standard distributions from which sampling can be carried out. The results

of this will be a distribution of CCHFV positive tick incursions under all possible

parameter values.

Under these same assumptions, since equations can be found for each of these dis-

tributions, then analytical solutions for all of Europe will be produced and used for

sensitivity analysis to examine the affects of varying parameter values and the con-

tributions towards overall variation. These same distributions will then be used to

produce simulated results for Europe.

Since defined distributions cannot be assumed for each country then only simulated

results can be produced for these with the number of CCHFV infected ticks being

simulated using the distance distribution for each species and Europe country, along

with the distributions of migration speed, prevalence and bird populations.

4.5.3 Approaches

There will thus be three separate approaches: two based around Europe as a sin-

gle entity, and one based around individual countries. The first approach will form

analytical solutions for all of Europe using the possible ranges for speed along with

the derived distance distributions and the attachment time of ticks to calculate the

proportion of birds that can reach Europe. This will be combined with the species

populations and prevalence rate to calculate the total number of CCHFV positive

ticks introduced. This approach will also be used to perform sensitivity analysis on

the parameters.

The second approach will use the single distance distribution for all of Europe and

a single species population distribution for all of Europe along with uniform distri-

butions across the ranges of the other parameters to simulate results for the total
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number of CCHFV positive ticks introduced into Europe.

The final approach will use distinct distance distributions and species population

distributions for each country along with the same distributions for the other pa-

rameters to estimate the total number of CCHFV positive ticks introduced to each

European country and multiple runs will be used for each to try and cover the full

sample space.

Parameter estimates

Parameter values are in Table 4.3 with bird speeds, or daily migration distances,

being taken from a number of sources. A summary of the daily migration speeds for

a large number of bird species (Payevsky, 2013) was used for estimates of the ma-

jority of the species being modeled. However, as discussed, for many of these species

the only data available described autumn migration and so an increase in speed of

34% (Bauchinger and Klaassen, 2005) was applied. For species migration speeds,

the maximum and minimum estimates were taken with the maximum estimates for

those from autumn migrations being increased by 34% to represent the full possible

range of migration speeds. This covers the lowest estimated speed with no multiplier

to cover the possibility that there is not a change in migration speeds between spring

and autumn.
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Table 4.3: Estimates of parameter values

Parameter Description Value(s)
Simulation

Distribution
Reference

vQuail

Average distance

(km) covered per day

during spring

migration by the

Common Quail

150-160 U(150,160) (Perennou, 2011)

vWarbler

Average distance

(km) covered per day

during spring

migration by the

Willow Warbler

62-114 U(62,114) (Payevsky, 2013)

vWheatear

Average distance

(km) covered per day

during spring

migration by the

Northern Wheatear

110-147 U(110,147) (Payevsky, 2013)

vPipit

Average distance

(km) covered per day

during spring

migration by the Tree

Pipit

57-106 U(57,106) (Payevsky, 2013)

vBunting

Average distance

(km) covered per day

during spring

migration by the

Ortolan Bunting

181-243 U(181,243) (Payevsky, 2013)

a
Tick Length of

Attachment
26

µtick
Mean number of ticks

on migrating birds
0.049 (Gale et al., 2011)

ρprev
Prevalence of CCHFV

in Hyalomma ticks
0.0001-0.058 U(0.0001,0.058)

(Gale et al., 2011;

Palomar et al., 2013)
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The length of time of attachment (Table 4.3) is commonly given as being between

12 and 26 days (Gale et al., 2011; Jameson et al., 2012; Caporale, 2009; EFSA Panel

on Animal and Welfare (AHAW), 2010). The prevalence of CCHFV infected ticks

(ρprev) is less certain, with papers suggesting a range of values some based on review

of tick data in Africa and expert opinion (Gale et al., 2011) and others on data col-

lected from migrating birds in Morocco (Palomar et al., 2013) and at Mediterranean

observatories (Lindeborg et al., 2012). The latter paper used a relatively small sam-

ple of birds, and so an estimated range of prevalence is based on the figures from the

two former papers.

The distributions for D were created as described earlier for each European country

and also for Europe as a whole (Table 4.4).

Table 4.4: Parameters of the distributions of migration distances for all Europe for

each species (DEurope, bird species)

Species Mean (km) Standard Deviation (km)

(µbird species) (σbird species)

Willow Warbler 6772 1593

Common Quail 4763 1356

Tree Pipit 6202 1352

Northern Wheatear 5310 1398

Ortolan Bunting 4928 968

As discussed previously, obtaining accurate population data for birds can be difficult.

For this study, population data (Table 4.5) were taken from Birdlife International

and consisted of estimates of breeding pairs for all common European Species for

each European country based on 2004 estimates. The maximum and minimum es-

timate was taken for each country and then tripled to give an estimate of the true

number of birds. This was undertaken as most of the methods described previously

are used to count breeding pairs and so neglect birds that will be unable to breed
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that year and Birdlife International suggest tripling to produce estimates of the true

population.

Certain more Eastern countries where birds often winter in Asia rather than Africa

were removed from this list, e.g. Russia and Georgia. This was done to keep the

area being modeled to a smaller size and focus on central Europe. It also means that

birds that might winter in Asia will not be included, which is desirable as CCHFV

introductions into Europe are believed to be from Africa rather than Asia (Lindeborg

et al., 2012) so focus should be on birds that winter there. As a result, the estimated

number of birds over all of Europe will be lower.
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Table 4.5: Population range estimates for each European country for each species

(Ncountry, bird species)

Country Common Quail Willow Warbler Tree Pipit Northern Wheatear Ortolan Bunting

Andorra 18-27 0-0 2250-3000 7500-12000 12-30

Albania 2400-3450 0-150 3000-6000 15000-30000 3000-6000

Austria 15000-30000 60000-120000 105000-210000 13500-27000 45-75

Bosnia-Herzegovina 0-0 0-0 0-0 255-267 0-0

Belgium 7200-12150 60000-300000 20700-33000 84-93 0-0

Bulgaria 24000-34500 0-15 30000-54000 60000-180000 75000-150000

Belarus 45000-67500 2850000-3300000 2400000-3600000 150000-210000 7500-12000

Switzerland 4500-5250 12000-24000 150000-210000 60000-90000 300-450

Cyprus 3000-7500 0-0 0-0 0-0 0-0

Czech Republic 15000-22500 1500000-3000000 1500000-3000000 600-1200 300-600

Germany 36000-66000 5100000-8400000 1500000-2640000 21000-39000 16800-21000

Denmark 600-1200 1200000-1800000 30000-150000 3000-6000 0-0

Estonia 30-90 2400000-6000000 1350000-2400000 30000-60000 6000-12000

Spain 960000-1132500 150-750 900000-1200000 978000-1083000 600000-675000

Finland 30-165 21000000-33000000 3900000-5100000 450000-600000 90000-150000

France 300000-900000 4500000-22500000 750000-3000000 45000-135000 30000-120000

Guernsey 0-0 0-0 0-0 0-0 0-0

Gibraltar 0-0 0-0 0-0 0-0 0-0

Greece 6000-10500 30-300 1200-2400 90000-300000 60000-150000

Croatia 30000-37500 150-300 30000-150000 15000-18000 3000-15000

Hungary 210000-246000 162000-345000 390000-705000 84000-171000 30-45

Isle of Man 0-0 0-0 0-0 0-0 0-0

Ireland 0-30 1500000-3000000 0-0 7500-30000 0-0

Iceland 0-0 0-0 0-0 30000-150000 0-0

Italy 15000-37500 0-0 120000-240000 300000-600000 12000-48000

Jersey 0-0 0-0 0-0 0-0 0-0

Liechtenstein 15-39 90-180 210-360 9-15 0-0

Lithuania 3000-4500 1200000-1800000 900000-1500000 15000-30000 600-2400

Luxembourg 30-54 24000-36000 15000-18000 15-30 0-0

Latvia 60-780 1500000-1800000 1500000-2700000 30000-90000 1500-6000

Monaco 0-0 0-0 0-0 0-0 0-0

Moldova 10500-12000 3000-4500 45000-60000 10500-12000 13500-15000

Netherlands 6000-12750 1350000-1650000 105000-135000 1800-2400 0-0

Macedonia 6000-7500 0-0 6000-9000 30000-90000 9000-30000

Malta 3-6 0-0 0-0 0-0 0-0

Montenegro 0-0 0-0 0-0 0-0 0-15

Norway 150-525 6000000-30000000 3000000-6000000 1500000-3000000 450-465

Poland 300000-375000 3000000-6000000 1500000-2400000 60000-150000 450000-900000

Portugal 15000-82500 0-0 150-300 1500-15000 1500-7500

Romania 480000-570000 180000-255000 1800000-2550000 675000-1029000 375000-765000

Serbia 30000-37500 0-0 105000-150000 33000-48000 13500-19500

Sweden 30-75 30000000-48000000 9000000-21000000 300000-1500000 6000-21000

Slovenia 3000-4500 600-900 60000-90000 900-1500 600-900

Slovakia 6000-12000 1200000-1800000 600000-1200000 18000-27000 0-15

Turkey 900000-1650000 0-0 30000-90000 6000000-24000000 9000000-30000000

Ukraine 300000-390000 1260000-2280000 2550000-3720000 420000-510000 174000-201000

UK 15-684 6375000-6375000 223200-223200 157500-157500 0-0

EU 3733581-5774775 92437020-181792095 34621710-64549260 11613663-34405005 10949637-33328995
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4.6 Results

4.6.1 CCHFV Incursions to all of Europe

Analytical Results

Due to the fact that the distributions for D for each species across all European

countries (Figure 4.10) are being assumed to be Normal, then analytical rather than

simulated solutions can be reached. So DEurope, bird species will be a Normal distribu-

tion:

DEurope, bird species ∼ N (µbird species, σ
2
bird species)

and will have a probability density function (Equation 4.5) describing the probabil-

ity of different distances of migration (d) for individual species and defined by the

means (µbird species) and standard deviations (σbird species) in Table (4.4).

f(d) =
1

σbird species
√

2π
e

(d−µbird species)
2

2σ2
bird species (4.5)

Referring back to equations (4.4), it is the cumulative distribution function ofDEurope, bird species

that is of interest for the random variable a × vbird species with the minimum, mean

and maximum value of migratory speed. These were calculated using the built in

functions in R. To calculate the number of ticks introduced into Europe by each

species, these cumulative distribution functions would be multiplied by the mean,

minimum and maximum values (where appropriate) of prevalence (ρprev), mean ticks

per bird (µticks) and species population numbers (NEurope, bird species) from Table 4.5.

Table 4.6 gives the minimum, average and maximum predicted introduced CCHFV

positive ticks.
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Table 4.6: Minimum and maximum introduced CCHFV positive ticks by species

Species
Min number of

introduced ticks

Average number of

introduced ticks

Max number of

introduced ticks

Ortolan Bunting 22 22906 87143

Northern Wheatear 2 2604 13689

Common Quail 5 2420 7330

Willow Warbler 0 477 4345

Tree Pipit 0 89 991

Total 29 28496 113498

Sensitivity Analysis

There is a large difference in the maximum and minimum values for each species in

Table 4.6, so it is of interest to examine the contribution of each model parameter to

this overall variation. Equation (4.3) is multiplicative and so a change in almost any

of the parameters will result in a direct proportional change in the value of T ; e.g.

doubling µtick would result in T doubling. Differentiating with respect to the param-

eter would give the rate of change for that parameter. However pdistancecountry, bird species

is a function of parameter values and so its behaviour will be different. So, for exam-

ple, a twofold increase in migration speed (vbird species) will not result in T doubling.

The Normal distributions for DEurope, bird species can be examined but with d defined

by avbird species. The resulting cumulative distribution has the form:

F (avbird species) =
1

2

1 + erf

avbird species − µbird species√
2σ2

bird species

 (4.6)

erf(z) =
2√
π

∫ z

0

e−t
2

dt (4.7)

In equation (4.6) erf is the error function that has the standard form shown in

equation (4.7) and substituting this into equation (4.6) results in equation (4.8).
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F (avbird species) =
1

2

[
1 +

2√
π

∫ avbird species−µbird species√
2σ2
bird species

0

e−t
2

dt

]
(4.8)

However, the integral present in the error function cannot be evaluated directly and

so its Taylor series expansion (equation (4.9)) is used instead to give an approxima-

tion.

erf(z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
=

2√
π

(
z − z3

3
+
z5

10
− z7

42
+

z9

216
− ...

)
(4.9)

Replacing z with
av−µbird species√

2σ2
bird species

before substituting back into equation (4.6) results in

equation (4.10). For ease of reading, the subscripts denoting bird species migration

speed are not being used; i.e. v denotes vbird species.

F (av) =
1

2

1 +
2√
π

∞∑
n=0

(−1)n
(
av−µbird species√

2σ2
bird species

)2n+1

n!(2n+ 1)



=
1

2

1 +
2√
π

∞∑
n=0

(−1)n(av − µbird species)2n+1

n!(2n+ 1)(2σ2
bird species)

n
√

2σ2
bird species


(4.10)

Equation (4.10) can then be partially differentiated in terms of a or vbird species to

give the rate of change of pdistanceEurope, bird species in respect to each of them.
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∂pdistanceEurope, bird species
∂a

=
v√

2πσ2
bird species

∞∑
n=0

(−1)n(av − µbird species)2n

n!(2σ2
bird species)

n

=
v√

2πσ2
bird species

e
−
(
av−µ√

2σ2

)2

∂pdistanceEurope, bird species
∂v

=
a√

2πσ2
bird species

∞∑
n=0

(−1)n(av − µbird species)2n

n!(2σ2
bird species)

n

=
v√

2πσ2
bird species

e
−
(
av−µ√

2σ2

)2

(4.11)

The rate of change of T can now be found for each variable for each bird species.

These are shown in equations 4.12.

dTEurope, bird species
dρprev

= µtick ×NEurope, bird species × pdistanceEurope, bird species

dTEurope, bird species
dµtick

= ρprev ×NEurope, bird species × pdistanceEurope, bird species

dTEurope, bird species
dNEurope, bird species

= ρprev × µtick × pdistanceEurope, bird species

dTEurope, bird species
da

= ρprev × µtick ×Ncountry, bird species ×
∂pdistanceEurope, bird species

∂a

dTEurope, bird species
dvbird species

= ρprev × µtick ×Ncountry, bird species ×
∂pdistanceEurope, bird species

∂vbird species

(4.12)
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Holding all parameters at the minimum values in Table 4.3 and using equations

(4.12), a value for the rate of change can be found for each variable for each bird

species. Since they are based upon fixed geographical points the means and standard

deviations for pdistanceEurope, bird species will not vary. The resulting rates of change are

shown in Table 4.7.

Table 4.7: Rate of change in number of CCHFV positive ticks introduced into Europe

with respect to each parameter taken from minimum estimated values (rounded to

2 decimal places)

Species ρprev µtick NEurope, bird species a vbird species

Willow Warbler 2714.88 5.54 0.00 0.04 0.02

Common Quail 47977.06 97.91 0.00 0.66 0.11

Tree Pipit 407.99 0.83 0.00 0.01 0.00

Northern Wheatear 22673.79 46.27 0.00 0.38 0.09

Ortolan Bunting 219604.1 448.17 0.00 3.90 0.56

From Table 4.7 it can be seen that for all species the level of risk of CCHFV positive

ticks being introduced is far more sensitive to parameters relating to the ticks them-

selves rather than the birds. The greatest sensitivity is associated with a change

in prevalence, followed by the mean number of attached ticks and then the length

of on-host attachment and the sensitivity of these parameters are noticeably larger

than those associated with the bird itself, that is the population size and migration

speed. The estimated species population is relatively insensitive and would require

a large change to have any effect on risk of CCHFV introduction. The Tree Pipit,

which represented the lowest risk amongst the species in Table 4.6 is also the least

sensitive to changes in parameter values. The fastest species, and so that with the

greatest range, the Ortolan Bunting, is most sensitive to those parameters that affect

the possible range; that is the migration speed and length of attachment.
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Simulation Results

The distributions of D can be assumed to be approximately Normal as discussed

previously. Means and standard deviations can be estimated for each distribution

(Table 4.4) and sampling from migration speeds (vspecies) and taking the length of

attachment (a), the probability of a bird arriving within the maximum on host

attachment time for ticks can be found. Combined with sampling from CCHFV

prevalence amongst ticks (ρprev), the mean number of ticks on migrating birds (µtick)

and sampling from population numbers (NEurope, bird species) and inputting these into

equation (4.3) results in an estimated number of introduced CCHFV positive ticks.

Repeated sampling results in the following distributions for CCHFV positive tick

incursions into Europe.

Figure 4.12: Distributions of CCHFV positive tick incursions into Europe for each

and all bird species
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Due to the skewness of many of these distributions, Table 4.8 gives the minimum, me-

dian and maximum predicted introduced CCHFV positive ticks for each bird species

and for all bird species for Europe.

Table 4.8: Minimum, median and maximum number of introduced CCHFV positive

ticks introduced into Europe, by species

Species

Minimum number of

CCHFV positive ticks

introduced

Median number of

CCHFV positive ticks

introduced

Maximum number of

CCHFV positive ticks

introduced

Ortolan Bunting 163 19093 76603

Common Quail 23 2373 6890

Northern Wheatear 18 2035 9863

Willow Warbler 7 334 3299

Tree Pipit 1 64 612

All 211 23900 97267

The results in Table 4.8 can be examined graphically (Figure 4.13) to illustrate the

different contributions to total risk made by each bird species.

157



Figure 4.13: Percentage of CCHFV positive ticks introduced by each bird species in

terms of the maximum, median and minimum results

The proportion of CCHFV positive ticks seems to remain consistent with a far greater

proportion being introduced by the Ortolan Bunting as opposed to any other species.

There is some variation in the risk represented by the Common Quail and the Willow

Warbler and the Tree pipit represents almost no risk relative to the other species

despite being the second most populous of the species examined.

4.6.2 CCHFV Incursions by Individual Country

Simulating the number of CCHFV positive ticks introduced by the migration of birds

into each European country separately and aggregating these gives an alternative es-

timate of the risk to Europe. This total number of ticks introduced into Europe

allows an examination of the importance of each bird species and a comparison with

the analytical results above.
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Table 4.9: Summary statistics of introduced CCHFV positive ticks by species for

Europe

Species

Mean

number of

introduced

ticks

Standard

deviation

Median

number of

introduced

ticks

Minimum

number of

introduced

ticks

Maximum

number of

introduced

ticks

Ortolan Bunting 29848 19267 26763 836 75478

Northern Wheatear 5376 3762 4619 159 17112

Common Quail 2732 1526 2657 109 5699

Tree Pipit 0 1 0 0 9

Willow Warbler 0 0 0 0 0

The first result to note in Table 4.9 is that the more detailed approach, where indi-

vidual countries are modeled, has resulted in the most populous species, the Willow

Warbler, representing absolutely no risk of introducing CCHFV. Additionally, the

second most populous species, the tree pipit, introduced no CCHFV positive ticks

in the vast majority of the simulations. The species that posed the greatest risk

was that with the fastest flight speed, the Ortolan Bunting, and so has the greatest

migration range possible within the on host attachment time of H. Marginatum.

Examining the species proportion of total introduced ticks can highlight the impor-

tance of the different species (Figure 4.14) or, in the case of the Willow Warbler and

Tree Pipit, the lack of importance, with a negligible percentage between both species.
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Figure 4.14: Percentage of CCHFV ticks introduced by each bird species under

maximum, median and minimum results

Examining the number of introduced CCHFV positive ticks by countries gives an

idea about what geographical areas surveillance efforts might be focused on. Taking

the five countries with the greatest number of minimum incursions, median incur-

sions and maximum incursions (Table 4.10) we can see the geographical distribution

of risk.
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Table 4.10: Top five countries most at risk of introduced CCHFV positive ticks for

all bird species as ranked by minimum, median and maximum risk

Minimum number of

introduced ticks

Median number of

introduced ticks

Maximum number of

introduced ticks

Turkey (881) Turkey (28039) Turkey (83255)

Spain (55) Spain (1667) Spain (3806)

Romania (55) Romania (1191) Romania (2955)

Poland (28) Poland (895) Poland (2471)

Ukraine (18) Ukraine (413) France (997)

Examining by individual country shows a distinctly limited geographic distribution,

as a proportion of the total number of introduced CCHFV positive ticks, the five

most at-risk countries are representative of the vast majority of incursions (over 90%).

The most at-risk countries for each species can also be examined in order to see if

there is a different geographical distribution of risk for each bird species. Figure 4.15

shows the top five countries where there is the highest median number of introduced

ticks; for two of the species, this was zero for all countries and so results for these

species have not been plotted.
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Figure 4.15: Top five countries most at risk of introduced CCHFV ticks for each bird

species as ranked by median risk

4.7 Discussion

Adapting the linear model from Gale et al. (2011) in order to introduce a spatial

distance element and to have a non-uniform distribution of birds resulted in three

sets of results. The first makes use of an assumed Normal distribution for the migra-
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tion distance between wintering grounds in sub-Saharan Africa and Europe and a

uniform distribution of bird populations to simulate results. The second makes use

of the same assumptions to arrive at analytical solutions and finally separate non-

standard distributions of distance are developed for each country and non-uniform

distributions of birds across Europe are used to simulate results separately for each

country.

Comparing the European simulated (Table 4.8) and analytical results (Table 4.6),

the results are broadly similar with the analytical approach producing a slightly

wider range. This, of course, might not be the case if a larger number of iterations

were used in the simulation approach as there would be a greater chance of extreme

values being chosen for all parameters in a single run.

One of the main points of interest is that the species that represents the most risk is

the Ortolan Bunting, which was not one of the species modeled in the original paper

(Gale et al., 2011) which used only the top four bird species that were judged to be

the greatest risk for introducing CCHFV positive ticks. This means that it may be

more important to look at those species with a greater potential migratory range

within our attachment time, rather than looking merely at those with the largest

population. Put simply, many of the less populous species may represent a much

greater risk of introducing CCHFV compared to the more populous species and so

focusing on them might give a better overall indication of the potential risk.

The sensitivity of either of these approaches to the different parameters is dependent

on which bird species is being discussed, but a couple of general conclusions can be

drawn. Firstly, it seems very clear that the number of CCHFV positive ticks is much

more influential than the number of birds (large values in Table 4.7 as opposed to

values that were effectively zero for population) though it is worth noting that the

absolute change in estimates of bird numbers will be much larger than either the

mean number of ticks per bird or the prevalence of CCHFV positive ticks. In Table

4.7, the values associated with population are so low that they are rounded to zero;

however, with a large enough change in population there could still be a small change

in risk although this would be insignificant compared to a much smaller change in
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prevalence. However, examining Tables 4.3 and 4.5 the biggest proportional change

between our lowest and largest estimates is for prevalence, so it is this that our model

is most sensitive to. This makes intuitive sense as, since prevalence is very small,

then it would require a large increase in the number of birds to result in a small

change in the number of CCHFV positive ticks, but since N for all of Europe is very

large, then a small change in prevalence will have a large effect on the number of

CCHFV positive ticks introduced.

The parameters relating to distance, migration speed (vbird species) and length of at-

tachment (a), show more variation between different bird species. Using either of

these parameters, our five bird species can be ranked by their level of sensitivity

from most to least with the Ortolan Bunting being the most sensitive to a change

followed by the Common Quail, the Northern Wheatear, the Willow Warbler and

the Tree Pipit being the least sensitive to a change in migration speed or attachment

time. Examining Table 4.3, it can be seen that this is the same order found if the

bird species are ranked in terms of their minimum estimated speed. Both these pa-

rameters are used to form pdistanceEurope, bird species which, in this case, takes the form

of the cumulative distribution of the Normal distribution which is sigmoidal and so

the rate of change will be relatively lower at the tails of the distribution. Since the

point taken on this distribution is equal to the migration speed multiplied by attach-

ment, avbird species, then a bird species with a much lower migration flight speed will

be much further left on this distribution where the gradient is smaller and so less

sensitive to any changes.

The greater sensitivity to changes in migration speed and attachment time for the

Ortolan Bunting may also be in part due to the fact that the geographical distribu-

tion for this species is much more focused i.e. they winter and breed across a much

smaller area of Europe. As such, the distribution describing their flight distance

(Figure 4.10) has greater kurtosis and so increasing x results in more of an increase

in Pr(X ≤ x) than in a less peaked distribution.

Comparing the results for all of Europe (Table 4.8 and Table 4.6) with those of

Europe where each country is calculated independently (Table 4.9), the first thing
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to note is that the Willow Warbler and Tree Pipit are now virtually no threat in

terms of the introduction of CCHFV positive ticks. Examining Table 4.5 for both

these species, a large part of their European population breeds in Scandinavia, so the

greatest distance from their wintering grounds. Relaxing the assumption of uniform

distribution of birds across Europe now means that for some species the larger part

of their populations will coincide with the upper part of the European distance dis-

tributions (Figure 4.10) and so not contribute to introducing CCHFV positive ticks.

This means that, under this model, the two most populous of our bird species are in

fact the least important.

For some of the other bird species, the opposite is true. The Northern Wheatear now

introduces more CCHFV positive ticks. In Table 4.5 a large part of the Northern

Wheatear population can be seen to breed in Turkey which is relatively far south

and so closer to the winter feeding grounds. This means that a greater part of

the population coincides with the lower part of the European distance distributions

(Figure 4.10) and so a smaller proportion of the population will be associated with

the upper part where the distance is greater than can be covered. These differences

suggest that the assumption of a uniform population, as in Gale et al. (2011) or the

first simulated approach, to be deeply flawed. Modelling the countries individually

not only results in a more detailed geographic distribution that examines where risk

might be focused but also results in a far more accurate estimate of the overall risk

of introduction.

Examining the countries with the greatest number of introduced CCHFV positive

ticks (Table 4.10) and the plots of most at risk countries for those species that do

introduce CCHFV positive ticks (Figure 4.15), then Turkey is consistently most at

risk. For two of these species, the Northern Wheatear and the Ortolan Bunting,

Turkey has the largest European population (Tables 4.5) and is a southern country

so close to the wintering grounds in sub-Saharan Africa meaning its likely well within

the 26 day (on-host attachment time) flight range of migrating birds. The Common

Quail has a large Turkish population as well, though slightly smaller than Spain, and

so it is unsurprising that it is at a far greater level of risk. For the separate species, it

is interesting that Spain is not at the most risk for the Common Quail despite having

165



the largest population and this is presumably to do with having a generally greater

required flight distance than Turkey (D̄Turkey, Common Quail < D̄Spain, Common Quail). A

more evenly distributed European population for the Common Quail can also be seen

by the smoother results between countries as opposed to the Northern Wheatear or

Ortolan Bunting which are very much focused in Turkey and have results that reflect

this.

In terms of a single European approach (as in the first two approaches in this chapter)

or a separate country approach (the third and final approach) there are a number

of results that could be argued to agree, but an equal number that appear very

different. This is likely to be due in part to the fact that, while a single distance

distribution for all of Europe is fine as an approximation, having a single population

figure for Europe is not. To assume a single European population like this is to as-

sume that the species is spatially uniformly distributed across Europe. This means

an unrealistic distance of migration will be assumed for several species i.e. those

species that live only in the North will have a much lower distribution of distance

than they should and so represent a much greater threat than they should. Risk

will also be more uniformly distributed especially if the actual migration itself is not

taken account of, as in Gale et al. (2011), but even if the migration is examined this

will still have an affect. It can be concluded that a simplistic analytical approach is

not suitable.

The level of difference in levels of risk in both the analytical and simulated results

indicate the level of uncertainty. The magnitude of difference between maximum and

minimum estimated risk means that tackling many of the parameter uncertainties

especially for prevalence of CCHFV amongst larval and nymphal ticks on migratory

birds would be very important in estimating the risk represented by CCHFV

Leaving aside the uncertainty in prevalence rates, some species have a much larger

difference in maximum and minimum predicted migration speeds but in Payevsky

(2013) they also have the most data available and so this level of variation in mi-

gratory speed may be the norm and for our other species the more concise range of

speeds is simply due to lack of data.

166



Results by country are, in part, consistent with what little real data there are in that

CCHFV is present in Turkey and may have been introduced by migratory birds. It

has also recently been found to be present in Spain and Portugal so it is consistent

with real data that Spain has the second highest level of introduced CCHFV positive

ticks.

Results from this modelling approach must be viewed with some caution. Despite

improving on the approach in Gale et al. (2011), there are still a couple of major

weaknesses with this approach.

Firstly, while the distance distributions take account of the possibility of ticks de-

taching from their host before reaching their breeding grounds, it does not allow

for those ticks that detach in another European country. For example, a bird that

breeds in France may pass through and deposit a CCHFV positive tick in Spain and

this would not be counted. This can be contrasted with the approach from Gale

et al. (2011) where all ticks stayed on host and so these ticks would be counted but

so additionally would those ticks that would have detached outside of Europe.

Secondly, the distance distributions make use of the Euclidean distance which is a

straight line between the two points. For avian migration, this is not appropriate

as birds will take an indirect course in order to avoid obstacles. In particular many

species will change their route to avoid, where possible, flying over open water. This

means for migrating birds flying between Africa and Europe they tend to follow three

flyways that avoid the most open parts of the Mediterranean. This would results in

a greater flight distance and so change our distributions.

The next modelling approach will make use of a more spatially explicit model where

these two issues will be addressed and the results generated can be compared and

contrasted with those above. Before this, however, an examination of the estimate

of CCHFV prevalence will be carried out. This is due to the importance of this

parameter as shown by the sensitivity analysis and the fact that real life data do

not seem to agree with estimates in previous papers. A Bayesian approach will be
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used to examine these two data sources and to create a better estimate of prevalence

based upon both of them.

168



Chapter 5

Bayesian statistical estimate of the

prevalence rate of CCHFV in

sub-Saharan ticks

5.1 Introduction

In the previous chapter a Geographic Information System approach was used to

model the number of CCHFV infected ticks introduced into Europe by five different

species of migratory birds. As part of this modelling process, an analysis of the sen-

sitivity of the model to its different parameters was carried out. It was found that

across all five species the number of introduced infected ticks was most sensitive to

a change in the prevalence of CCHFV amongst ticks.

Of the two estimates of CCHFV prevalence in H. marginatum used in Chapter 4

the first is based on an expert opinion (Gale et al., 2011), which is in turn based on

data of CCHFV prevalence amongst adult ticks in Africa, and the second is taken

from one of two recent studies testing ticks on migratory birds. In this chapter, a

Bayesian approach will be used to combine these estimates using the expert opinion

as a prior and the two studies as data points. This will mean that no single source

of information is being used and that the small amount of real data available will

not be ignored, as in Gale et al. (2011), but neither will such a small sample be used

on its own to estimate prevalence.
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5.2 Methods

Bayesian inference is a technique based on Bayes’ theorem (Equation (5.1)) and can

be used to take new data into account to improve a previous estimate of a parameter

(Vose, 2008).

The approach can be broken down into three parts, containing x which is a vector

or matrix of data and θ a vector or matrix containing the parameters of a potential

model to explain x, with the first being a prior (π(θ)) that represents all that is

known about our parameter and represents the current belief or view held on its

value. Secondly an appropriate likelihood function (l(x|θ)) for the observed data

and finally the calculation of the posterior (f(θ|x)) which is the revised estimate of

the parameter. As seen in Equation (5.1) the posterior is calculated by multiplying

the prior by the likelihood and the denominator is used to normalise this so the area

under the curve for the posterior is equal to one.

f(θ|x) =
π(θ)l(x|θ)∫
π(θ)l(x|θ)dθ

(5.1)

The prior, the initial state of information, is often uncertain so rather than simply

being a point estimate is instead represented as a probability density function. The

likelihood function measures the probability of observing the data (x) for a particu-

lar value of θ and the posterior is the description of our knowledge of the parameter

after the data have been taken into account. If the data are considered very unlikely

to have randomly occurred, given our prior beliefs, then our posterior beliefs will

be radically different from the prior. If, however, the data are very likely to have

occurred randomly, given our prior distribution, then the posterior distribution will

more closely resemble the prior.
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5.2.1 Priors

In this case our prior, the current belief on CCHFV prevalence in larval and nymphal

ticks, is taken from Gale et al. (2011) and consists of a single estimated level of preva-

lence for CCHFV amongst ticks. This single point estimate must be turned into a

distribution that represents our prior knowledge and a number of approaches can be

used. These approaches can be split by the type of prior used and broadly speaking

there are three types (Vose, 2008). The first is an informative prior that reflects

the initial view including the particular distribution chosen for the prior as well as

the parameter values. For many studies involving proportions, such as prevalence,

a beta distribution is used (Enøe et al., 2000) as it is bounded by zero and one and

can, by manipulation of its parameters, portray a large number of shapes.

In Enøe et al. (2000) a technique is outlined to form suitable parameters for a beta

distribution by making use of an estimated most likely value (mode or in some case

a mean) and an upper estimate (95% percentile) and/or lower (5% percentile value).

The equation of the mode for the beta distribution (Equation 5.2) is dependent on

the two shape parameters, a and b, that determine the beta distribution.

Mo =
a− 1

a+ b− 2
(5.2)

This can be rearranged to give an equation for the shape parameter a (Equation 5.3).

a =
1 +Mo(b− 1)

1−Mo
(5.3)

The value of the mode can then be substituted and for a given value of the shape

parameter b then the parameter a can be found. A software program such as R can

be used to simulate random draws from a beta distribution with different values of

b and the equivalent a and the 5% and 95% percentiles can be found. These can be

compared to the upper and/or lower estimate and an iterative approach can be used

to find appropriate parameter values to represent the prior.

The second form of prior is the conjugate prior. This is a distribution chosen so
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that the posterior distribution is in the same family as the prior distribution. This

is done in the main for computational convenience.

The final form of prior is the noninformative prior distribution. These represent

minimal existing belief or knowledge and are generally flat or diffuse and give very

little information about the parameter of interest and these can often be difficult to

construct (Gelman et al., 1998).

To investigate the sensitivity of results and to ensure a better model fit is found,

a prior of each type will be used. In order to easily form a noninformative prior,

the same distributions as for the informative prior will be used, but with parameter

values changed in order to give a more diffuse shape.

To compare the different prior choices, the deviance information criterion (DIC) will

be used. This was designed to select a model based on fit and complexity (Spiegel-

halter et al., 2002) and takes the form:

DIC = −2ln[P (y|θ̄)] + 2p (5.4)

In equation (5.4) θ̄ is the posterior mean(s) of θ and p is the posterior mean of the

deviance minus the deviance of the posterior means and should be approximately

the true number of independent parameters (Spiegelhalter et al., 2002). A higher

likelihood ([P (y|θ̄)) will result in a smaller value and this indicates a better fit and a

smaller p indicates a more parsimonious model and so the smaller the value of DIC

the better the model.

5.2.2 Likelihood and Data

The likelihood function for the prevalence of CCHFV amongst larval and nymphal

ticks in sub-Saharan Africa is set as a Normal distribution. This distribution was

chosen as it is unimodal and many natural occurrences follow this distribution, so it

seems a reasonable choice.
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The data for this analysis are taken from studies of ticks removed from captured

migratory birds during their northwards migration.

5.3 Parameters

The informative prior for our estimate is taken from Gale et al. (2011) and consists

of a single estimated prevalence for CCHFV amongst larval and nymphal ticks. This

value is very small and, since prevalence must be bounded by zero and one, then a

distribution with a positive skew would be most appropriate. A beta distribution

with b > a will give this shape. This single point estimate can be used as the most

likely value for the technique in Enøe et al. (2000). An upper and/or lower estimate

is then needed and since Gale et al. make a case for this estimated larval/nymphal

prevalence being less than the estimated CCHFV prevalence for adult ticks, then

the value for adult tick prevalence is used as the upper estimate (Table 5.1). Values

of the two shape parameters were then found by filling the most likely value into

equation (5.3), selecting values for the shape parameter b and calculating the value

of the shape parameter b. For this beta distribution, the 95% percentile can be found

and compared to the CCHFV prevalence for adult ticks and from this comparison a

new value of b can be selected and the process repeated until a distribution is found

that correctly reflects the estimated parameters, Mo and θU (see Table 5.1), and this

process produced the following distribution:
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Figure 5.1: Informative prior distribution for mean value of prevalence of CCHFV

amongst ticks in sub-Saharan Africa

Figure 5.1 is the prior distribution for the mean prevalence of CCHFV amongst lar-

val and nymphal ticks in sub-Saharan Africa. Prior information about how certain

we are of this value is needed, but there is no available information on how much

this might vary. It is based on expert opinion and the reputation and certainty of

the expert could be used to define a level of uncertainty, but, in this case there is

little in the original paper to convey such a measure. Therefore, for the standard

deviation of CCHFV prevalence a uniform prior covering the entire sample space is

used.

The noninformative prior was created in a simplistic fashion by taking the informa-

tive prior and changing the parameters of the beta distribution so as to flatten the

distribution.

The data for this analysis are taken from Lindeborg et al. (2012) and Palomar et al.

(2013); both of these papers were studies of ticks removed from captured migratory

birds during their northwards migration in Capri and Antikythira and in Morocco

respectively.
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Table 5.1: Estimates of parameter values

Description Value(s) Reference

Mode of distribution of mean prevalence

of CCHFV amongst sub-Saharan ticks

(Mo)

0.0001 (Gale et al., 2011)

Upper limit of mean prevalence of

CCHFV amongst sub-Saharan ticks (θU)
0.0027 (Gale et al., 2011)

Informative Prior distribution of mean

prevalence of CCHFV amongst

sub-Saharan ticks
Beta(1.14995, 1500)

Informative Prior distribution of

standard deviation of prevalence of

CCHFV amongst sub-Saharan ticks

U(0, 1)

Noninformative Prior distribution of

mean prevalence of CCHFV amongst

sub-Saharan ticks

Beta(1, 1)

Noninformative Prior distribution of

standard deviation of prevalence of

CCHFV amongst sub-Saharan ticks

U(0, 1)

Data on mean number of infected ticks

removed from captured migratory birds

0.057692308,

0.004563709

(Lindeborg et al.,

2012), (Palomar

et al., 2013)

5.3.1 Posterior

To arrive at a posterior distribution for all of the priors and data in Table 5.1, Win-

BUGS (Windows Bayesian inference Using Gibbs Sampler) software was used. This
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makes use of a Bayesian technique known as the Gibbs Sampler which is a Markov

Chain Monte Carlo (MCMC) method used for posterior simulation. This method is

used to find a sequence of observations from a multivariate distribution from which

direct sampling is tricky. It achieves this by sampling from a conditional distribution

instead, Our posterior f(θ|x) in Equation 5.1 is often not easy to draw from when θ

is more complex and, if independent samples cannot be drawn to allow a standard

Monte Carlo approach then instead slightly dependent draws can be taken. For ex-

ample if θ consists of 3 separate values, then initial values of θ are selected, regarded

as θ0 which will contain θ01, θ
0
2 and θ03 as starting estimates for each of the 3 values.

A random draw for θ11 can then be taken from p(θ1|θ02, θ03).

This new estimate of θ11 can then be used to find a random draw for θ12 from

p(θ2|θ11, θ03).

Similarly, for a estimate of θ13 as a random draw from p(θ3|θ11, θ12).

These steps can then be repeated S times to yield a set of S draws for each value

of θ, a number of these draws, the default in WinBUGs is 1000 which was sufficient

here, can be discarded as ’burn in’ to eliminate the effect of the selection of the

starting values; plots of the coefficient estimates can be used to visually inspect for

convergence. A weak law of large numbers is then invoked to show that the estimates

of θ tend to the true values as S goes to infinity.

5.4 Results

Running the analysis for each of the 3 priors (Table 5.1) in WinBUGS the following

posterior parameters were found:
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Table 5.2: Posterior parameter values

Description Mean Standard deviation

Posterior mean prevalence of CCHFV amongst

sub-Saharan ticks (Informative Prior distribution)
0.0007528 0.0007067

Posterior standard deviation of prevalence of CCHFV

amongst sub-Saharan ticks (Informative Prior

distribution)

0.1467 0.1713

Posterior mean prevalence of CCHFV amongst

sub-Saharan ticks (Noninformative Prior distribution)

0.1433 0.1722

Posterior standard deviation of prevalence of CCHFV

amongst sub-Saharan ticks (Noninformative Prior

distribution)

0.2468 0.2452

Density plots of each of the posterior distributions can be produced by WinBUGS

(Figure 5.2).

Figure 5.2: Posterior distributions of mean and standard deviation of prevalence of

CCHFV amongst ticks in sub-Saharan Africa formed from each prior
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In Figure 5.2, the posterior distributions produced using the informative prior has

yielded a much tighter distribution compared to the non-informative prior and this

is to be expected since it reflects a more certain prior. Since, in the informative

prior, more weight is given to the expert opinion on CCHFV prevalence in ticks the

resulting mean in Table 5.2 is much closer to the estimated value in (Gale et al.,

2011) than the result from either of the other 2 priors.

To test which of these priors was the most suitable and which set of results might

therefore be regarded as the most useful, the deviance information criterion was pro-

duced for each.

Table 5.3: Estimates of parameter values

Description DIC

DIC for posterior using informative prior -5.580

DIC for posterior using noninformative prior -4.427

Table 5.3 indicates that the informative prior should be regarded as yielding the

most useful set of results and the noninformative yields the least. This means that

using all available information i.e. the available data and the expert opinion from

Gale et al. (2011) produces the better posterior.

5.5 Discussion

In Table 5.2, the mean prevalence of CCHFV amongst sub-Saharan ticks has in-

creased in all cases from the mean in the priors. This is expected, as all the data

points are above the value used to create the priors and so the posterior distribution

would be centered more in this direction. The greatest movement between prior

and posterior estimates of prevalence is in the case of the uninformative prior. This

reflects the strength of the priors; the prior representing the strongest belief (the in-

formative prior) has the smallest difference between prior and posterior mean value

and the prior representing the weakest belief (the noninformative) has the greatest.
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In Table 5.2 and Figure 5.2 the prevalence estimate produced by using the infor-

mative prior has a much narrower distribution than the noninformative prior. This

combined with the lower deviance information criterion (Table 5.3) show that the

informative prior was the most appropriate approach in this case. This also indi-

cates that the expert judgment used for the prevalence value in Gale et al. (2011)

produced an accurate estimation of CCHFV prevalence since the prior most closely

based upon this was found to be most appropriate.

As such, the posterior mean CCHFV prevalence amongst sub-Saharan ticks pro-

duced using the informative prior will be used in the next chapter where a spatially

explicit model of migration will be developed. The estimate of CCHFV prevalence

taken from Gale et al. (2011) will continue to be used as the lower estimate and this

new estimate of prevalence, which is higher than that in Gale et al. (2011), will be

used as the upper estimate. This will yield more realistic estimates that make full

use of all available data whether that be expert opinion or the scarce real life data

that have been collected.
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Chapter 6

Population level cellular automata

for the risk of incursion of CCHFV

via migratory birds

6.1 Introduction

In Chapter 4, a GIS approach based upon an initial model from Gale et al. (2011)

was expanded upon to take into account distance of migration. This was used to

explore the risk of CCHFV positive ticks being introduced by migrating birds fly-

ing from sub-Saharan Africa to Europe. A GIS modelling approach had two main

weaknesses: firstly, it did not allow for ticks detaching from their host in any part of

Europe the host passed through and, secondly, it made use of the Euclidean distance

when estimating the likelihood of a host reaching its destination within the on host

attachment period. Both these assumptions are unrealistic as birds do not take a

direct path from wintering to breeding grounds and ticks can detach from their host

during this journey.

In this chapter, a more spatially explicit modelling approach will be used to explore

the risk of CCHFV positive ticks being introduced to Europe. In particular, an ag-

gregated population cellular automata model of birds’ migratory behaviour will be

constructed and used to assess the risk of tick introduction.

180



6.2 Methods

6.2.1 Birds Species

The species of birds will be the same as those discussed in Chapter 4 (Table 4.2).

That is, the Willow Warbler, the Northern Wheatear, the Common Quail, the Tree

Pipit and the Ortolan Bunting. These are the five most populous species that mi-

grate between sub-Saharan Africa where CCHFV is present and Europe and which

have both nesting and feeding behaviours that make them vulnerable to becoming

hosts for ticks.

6.2.2 Cellular Automata

To model the movement of birds and estimate the risk it represents, a spatially ex-

plicit model is needed. The simplest of these are known as cellular automata and are

grid based, so the movement at each timestep is discrete (Navier-stokes, 1985). The

model created here describes the movement of birds from Africa to Europe over dis-

crete time steps of length one day and is implemented in the statistical programming

language R. The geographical area including Africa and Europe is represented by a

m x n lattice with each cell on the lattice covering an area based on the average daily

speed of a particular bird species; e.g for the Common Quail that has an average

daily speed of 150km per day then each cell is 150x150km2 as opposed to the Willow

Warbler where the average daily speed is only 62km per day and so cells would be

62x62km2.

In many applications of these models each cell’s value is determined using a differ-

ential equation with parameters taken from surrounding cells (White et al., 2007)

and many such models have been used to investigate disease spread (Estrada-Peña

et al., 2012; Beauchemin et al., 2008; Xiao et al., 2006; Benyoussef et al., 1999). Since

our model does not involve disease dynamics but instead involves the movement of

agents whose numbers should not vary, this would not be appropriate and all our

equations will be based round the movement of birds and make use of population

and geographical data from surrounding cells to govern movement. The simplest ap-
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proach is to model this from a population perspective so we model the movement of

a group of birds within each cell as opposed to modelling from an agent perspective

where we would model behaviour for each individual bird.

The model makes use of a number of matrices all of size m x n. Firstly, there is

the matrix Bt, which will represent all birds that are undergoing migration, i.e. are

migrating in flight, and will represent their geographical positions at time t. Each

cell Bt[x, y] will contain the total number of birds present in that area (in flight)

at time t with y being equivalent to a longitudinal position and x a latitudinal one

and so there will be a single group of birds per cell. In order to cover the required

geographical region, these will vary from longitude -15◦ (the leftmost edge of y=1)

up to 57.78◦ (the rightmost edge of y=n) and from latitude -46.98◦ (the bottommost

edge of x=1) up to 71.16◦ (the topmost edge of x=m).

In addition, there will be 2 matrices to record the birds that have landed in available

breeding space (BLt) and ticks that have been deposited (Tt), again both at time t.

The dynamics of the lattice model, that is, the movement of birds through Bt, are

also governed by two m x n matrices Pt and G which will both have the same di-

mensions as Bt with cells representing the same geographical region. The matrix Pt

represents the available space for breeding populations for each cell of the lattice.

These values will change following settlement and so at time t will represent the

maximum breeding capacity minus the number of birds that have settled there in all

time steps less than t. This means that each element of P will potentially decrease

every timestep and that Pt−1[x, y] ≥ Pt[x, y].

As the available population in a cell decreases, the number of birds landed in that

cell will increase by an equal value.

Pt−1[x, y]− Pt[x, y] = BLt[x, y]−BLt−1[x, y] (6.1)

This is true for all time steps and thus we can rewrite equation (6.1) as:

−(Pt[x, y]− P0[x, y]) = BLt[x, y]−BL0[x, y] (6.2)
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Proof:

Pt−1[x, y]− Pt[x, y] = BLt[x, y]−BLt−1[x, y]

⇒ Pt[x, y] = Pt−1[x, y]−BLt[x, y] +BLt−1[x, y]

⇒ Pt[x, y] = [Pt−2[x, y]−BLt−1[x, y] +BLt−2[x, y]]−BLt[x, y] +BLt−1[x, y]

⇒ Pt[x, y] = Pt−2[x, y]−BLt[x, y] +BLt−2[x, y]

...

⇒ Pt[x, y] = P0[x, y]−BLt[x, y] +BL0[x, y]

(6.3)

Additionally, since no birds will be landed at timestep zero (so BL0[x, y] = 0) then

equation (6.3) tells us that the available population for any cell is equal to the total

number of birds that a cell can support (P0[x, y]) minus all the birds that have landed

up to time t.

Behaviour

Matrix P

Movement of the in flight bird population through Bt is determined by evaluating

the total available breeding space in all neighbouring cells. That is, for cell B[x, y]

all cells that share an edge or vertex with P [x, y], so all cells directly above, below or

beside and also those diagonally touching (the Moore neighbourhood (Navier-stokes,

1985; White et al., 2007)). This means the majority of cells will have eight neigh-

bours. The in flight bird population for that cell is divided by this total available

breeding space as in equation 6.4.
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Rt[x, y] =
Bt[x, y](

1∑
i=−1

1∑
j=−1

Pt[x+ i, y + j]

)
− Pt[x, y]

(6.4)

Rt[x, y] is therefore the ratio of the number of birds in flight in a cell against the

amount of breeding space available to those birds within the next timestep.

Bt+1, the number of birds in flight in the next timestep, is found by evaluating the

sum of all neighbouring ratios and multiplying them by the corresponding Pt for that

cell. This is shown in equation 6.5.

Bt+1[x, y] =

((∑
i

∑
j

Rt[x+ i, y + j]

)
−Rt[x, y]

)
∗Pt[x, y]

x = 1 i = 0 to 1

x = m i = −1 to 0

1 < x < m i = −1 to 1

y = 1 j = 0 to 1

y = n j = −1 to 0

1 < y < n j = −1 to 1

(6.5)

For both equation (6.4) and equation (6.5) this is the case for the majority of cells.

For cells where x = 1 then i will go from zero to one, for x = m then i goes from

negative one to zero and equivalently with j when y = 0 and y = n.

As an example, consider the following simple 3x3 matrices:

B0 =


0 0 0

0 50 0

0 0 0

P0 =


10 10 0

10 0 15

25 20 10


If we number the rows and columns starting from the top left cell then matrix B0 tells

us that there are 50 birds inflight over the area represented by B0[2, 2]. In addition

we know that there is breeding space available for 10 birds in each of cells P0[1, 1];

P0[1, 2]; P0[2, 1] and P0[3, 3]; breeding space available for 15 birds in cell P0[2, 3]; for

20 birds in cell P0[3, 2] and for 25 birds in cell P0[3, 1].
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R0 is then:

R0 =


0 0 0

0 50
100

0

0 0 0


Our matrix B for the next timestep can then be calculated as:

B1 =


10 ∗ 0.5 10 ∗ 0.5 0 ∗ 0.5

10 ∗ 0.5 0 15 ∗ 0.5

25 ∗ 0.5 20 ∗ 0.5 10 ∗ 0.5



This means each cell will receive a number of birds proportionate to its level of

breeding space in comparison to other neighbouring cells. This can be thought of

as considering the potential for birds to land in the following timestep and defining

movement based on this. This means direction of travel for birds will be based only

upon availability of resource (in this case breeding space) in neighbouring cells This

is carried out simultaneously for each cell at each timestep.

After each timestep, the values in the matrices P and B will be rounded to the near-

est integer. This will result in a level of rounding error which means that the number

of birds in the system can vary slightly between timesteps. This is a disadvantage

of this aggregated population approach but is necessary as having partial birds in

a cell is physically impossible in a real world sense but will also cause modelling issues.

Matrix G

General bird movement when there is not breeding ground nearby is determined by

the matrix G. It was designed to reflect two particular behaviours of bird movement;

first, that birds will generally have a northbound direction of movement (during

spring migration) and, secondly, they tend to avoid open water. This means that G

will contain increasing values as we move from the bottom to the top of the matrix

i.e. cells in row one will be greater than those in row two, and that any cell that

contains only water shall have a value of zero.

In the case of there being no available breeding space, that is all neighbouring cells

have P=0, then matrix G is used in a similar fashion to that described in our exam-
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ple. For cells with nearby breeding space, a neighbouring cell has P>0, movement

will be determined as described in the previous section and G will not be used.

Matrix BL

Once all the cells of B have been updated with new bird population numbers, birds

will land to fill up the available space. This is represented by the number of birds

in a cell reducing by the associated Pt e.g. if 20 birds move into a cell with a

value of Pt[x, y]=10, Pt+1[x, y] will then be zero and the number of in flight birds will

have reduced to 10. The landed bird population (BL[x,y]) will increase to reflect this.

This can be illustrated by a simple example where we have a 3 x 3 matrix and start

with birds in cell B0[3, 2] and available breeding space to the northwest, north and

northeast and with no birds on the ground:

B0 =


0 0 0

0 0 0

0 100 0

BL0 =


0 0 0

0 0 0

0 0 0

P0 =


0 0 0

10 25 15

0 0 0


Birds in cell B0[3, 2] then split proportionally to move into these neighbouring cells:

B1 =


0 0 0

20 50 30

0 0 0


To complete the first timestep birds land to take up the available breeding space

leaving us with:

B1 =


0 0 0

10 25 15

0 0 0

BL1 =


0 0 0

10 25 15

0 0 0

P1 =


0 0 0

0 0 0

0 0 0


Since all cells are updated simultaneously then a single cell of B1 will probably ac-

quire birds from multiple cells of B0. Once all movement for that timestep has been
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determined and all bird related matrices are fully updated, the birds in flight (Bt)

and birds landed (BLt) matrices are summed and multiplied by the prevalence rate

for CCHFV positive ticks on that particular bird species (ρ) divided by the number

of days on host (a), resulting in the number of ticks that will drop off that day which

is added to the previous timestep’s total.

Tt[x, y] =
(Bt[x, y] +BLt[x, y]) ∗ ρ

a
+ Tt−1[x, y] (6.6)

ρ in this case makes no assumptions about the distribution of ticks amongst a pop-

ulation i.e. all the ticks introduced to a region could come from multiple birds or

a single bird within that population. Since this model is based round aggregated

populations it is simply the expected number of ticks per bird.

Equation 6.6 uses birds in flight (Bt) as well as birds landed as there is the possi-

bility of birds depositing ticks during migration as well as when they have landed.

Birds will make regular stopovers to rest and feed (Dorst, 1962) and so ticks can be

deposited at this time meaning that birds that are listed as in flight can introduce a

tick to the area they are currently passing through. The division by a represents the

proportion of ticks that will be ready to detach at that point in time; for example if

we know that ticks could have between 1 or 2 days of attachment left then we would

expect half of them to detach each day.

The model will run for a number of timesteps equal to the maximum on host attach-

ment time of ticks, so for a timesteps.

Matrix formation

The matrix P0 was created by regularly distributing points across a country, remov-

ing those that don’t fall within a species’ breeding grounds, and forming the m by n

grid and counting the number of points for each cell. Figure 6.1 illustrates this for

the UK.
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Figure 6.1: Illustration of point sampling approach for the UK that was used to

derive values for the matrix P

The count for each cell was divided by the total number of points to give a percentage

of the country that lay within a cell and this was multiplied by the total number of

birds listed for that country taken from bird population data produced by Birdlife In-

ternational (Burfield and van Bommel, 2004). Referring to the example in Figure 6.1,

the cell containing Northern Ireland contains six percent (6 of 100) of the assigned

points and so this cell will be given six percent of the bird population associated

with the UK and Northern Ireland. This was done for each European country, and

thus a (m×n) matrix was created for each country, and the results were summed to

give a single matrix (P0) describing the total breeding space for each bird population.

The second matrix (G), representing the general migration behaviour of birds to be

used when there is no nearby breeding ground, was used to reflect two aspects of bird

movement. Firstly, birds will generally have a northbound direction of movement

and, secondly, they tend to avoid open water. It was formed by having an increasing

value as birds move north up the grid and any cell that is entirely water is initially

given a value of zero to represent the difficulty in crossing this area.

To form the increasing values the simple approach of counting down from m for

each row (see below) was not possible as, when calculating the proportions of birds

moving into a cell, it would be required to have a bird being equally likely to move
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in a direction regardless of where it currently is and this would not happen with

this approach. By this we mean that a bird should be equally likely to move north

irrespective of where it is assuming there is no neighbouring population space and/or

water. This problem can be illustrated by examining the below matrix:

G =


4 4 4

3 3 3

2 2 2

1 1 1


Then considering the case of a starting population of migratory birds in cell 2,2

(B0,A) compared to cell 3,2 (B0,B).

B0,A =


0 0 0

0 100 0

0 0 0

0 0 0

B0,B =


0 0 0

0 0 0

0 100 0

0 0 0


In this case, the proportion of birds in cell B0,A[2, 2] that would move directly north

would be the value associated with cell G[1,2] divided by the sum of the gradient

value for all neighbouring cells (the same approach used in the example after equation

6.5). This would need to be equal to that for B0,B which would be the value for cell

G[2,2] divided by the sum of all neighbouring cells:

4

3 ∗ 4 + 2 ∗ 3 + 3 ∗ 2
6= 3

3 ∗ 3 + 2 ∗ 2 + 3 ∗ 1

1

6
6= 3

16

(6.7)

This is clearly not true and the resulting B1,A and B1,B show this difference:

B0,A =


17 17 17

13 0 13

8 8 8

0 0 0

B0,B =


0 0 0

19 19 19

13 0 13

6 6 6
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In both cases, as discussed earlier, there is a slight change in the total number of

migratory birds present in B due to rounding error; meaning that there is an addi-

tional bird in each matrix compared to the starting population.

If we use i to represent the row number and a scalar c to represent the proportion

of birds that will move directly north then:

m+ 1− i+ 1

3(m+ 1− i+ 1) + 2(m+ 1− i) + 3(m+ 1− i− 1)
= c (6.8)

Equation (6.8) is the ratio of the value of G in the cell directly north against that of

all surrounding cells minus three times the value in the row above (for north, north-

west and northeast), two times the value for the current row (for east and west) and

three times the value of the row below (for south, southeast and southwest).

To simplify equation (6.8) the value m+ 1− i can be replaced with k and it can be

rearranged to give:

k + 1

8k
= c

⇒ 1

8
(1 + k−1) = c

(6.9)

In this case, c clearly decreases as k increases; this would mean that a bird’s prefer-

ence to move north would decrease the further north it moves and this would not be

the case. An alternative would be a linearly increasing exponentiation with a fixed

base and powers increasing by one as we move up the row, taking the same example

as above and using a base of two we have:
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G =


24 24 24

23 23 23

22 22 22

21 21 22


In this case, the proportion of birds in cell B0,A[2, 2] that would move directly north

would again be the value associated with cell G[1,2] divided by the sum of the

gradient value for all neighbouring cells. This would need to be equal to that for

B0,B which would be the value for cell G[2,2] divided by the sum of all neighbouring

cells:

16

3 ∗ 16 + 2 ∗ 8 + 3 ∗ 4
=

8

3 ∗ 8 + 2 ∗ 4 + 3 ∗ 2

8

38
=

8

38

(6.10)

In this case, we satisfy this requirement and the resulting B1,A and B1,B show this:

B0,A =


21 21 21

11 0 11

5 5 5

0 0 0

B0,B =


0 0 0

21 21 21

11 0 11

5 5 5


Again using i to represent the row number and c to represent the proportion of birds

that will move north and using b to represent the base we can write:

bi+1

3bm+1−i+1 + 2bm+1−i + 3bm+1−i−1 = c (6.11)

Simplifying by replacing the term m+ 1− i with k:
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⇒ bk+1

3bk+1 + 2bk + 3bk−1
= c

⇒ bk ∗ b
3bk ∗ b+ 2bk + 3bk ∗ b−1

= c

⇒ b

3b+ 2 + 3b−1
= c

(6.12)

In this case a bird is equally likely to move in a northerly direction independent of

its location; this is proved by the fact that equation (6.12) is independent of row

numbers in its final form. Since the proportion moving north is now independent of

location as in equation (6.12) and increases with b then we can determine how much

of the bird population of a cell will move north. If, for example, we desire 25% of a

cell population to move north then c=0.25:

b

3b+ 2 + 3b−1
= 0.25

b2 − 2b− 3 = 0

b = −1, 3

(6.13)

To avoid oscillating values (values moving between positive and negative) in matrix

G caused by having a value of b<0 then the positive solution for b would always be

chosen.

To find suitable values for c, papers on bird orientation were used. A wrapped Nor-

mal distribution with a fixed mean (chosen to represent north) and a level of standard

deviation (σorientation) taken from Batschelet (1981) were used for the baseline value

and from Erni et al. (2003) for a stronger level of orientation. This distribution was

sampled from and the cosine and sine of the resulting angles were calculated to give

the equivalent movement in the x and y planes. These were then rounded to the
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nearest integer to represent the cell that each bird would move to. The proportion

that moved north (c) could then be found and be used in equation (6.12).

The initial starting positions of the birds, B0, were based upon maps taken from

Birdlife International (BirdLife International, 2012b). Firstly, a subset of African

countries was taken, then spatial points were randomly distributed amongst them.

To minimise computing time, 2000 points were taken and these were used to give a

proportion of each species for each grid cell before birds were assigned proportionally

to these starting grid locations.

Parameter estimates

Many of the values used in chapter 4 were used again here, in particular the migra-

tory speeds and the population number per country for each bird species. However,

the prevalence rate of CCHFV positive ticks on migrating birds was informed by the

work in chapter 5.

The orientation of migrating birds, which is required for the formation of the matrix

G, were taken from the sources discussed (Batschelet, 1981; Erni et al., 2003).
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Table 6.1: Estimates of parameter values

Parameter Description Value(s) Reference

vQuail

Average distance (km) covered

per day during spring migration

by the common quail

150, 160 (Perennou, 2011)

vWarbler

Average distance (km) covered

per day during spring migration

by the willow warbler

62, 114 (Payevsky, 2013)

vWheatear

Average distance (km) covered

per day during spring migration

by the northern wheatear

110, 147 (Payevsky, 2013)

vPipit

Average distance (km) covered

per day during spring migration

by the tree pipit

57, 106 (Payevsky, 2013)

vBunting

Average distance (km) covered

per day during spring migration

by the ortolan bunting

181, 243 (Payevsky, 2013)

a Tick Length of Attachment 26 (Gale et al., 2011)

µtick
Mean number of ticks on

migrating birds
0.049 (Gale et al., 2011)

ρprev
Prevalence of CCHFV in

Hyalomma ticks
0.0001, 0.0007528

(Gale et al., 2011),

(Lindeborg et al.,

2012), (Palomar

et al., 2013)

σorientation
Standard deviation of direction

of bird migration
54◦, 30◦

(Batschelet, 1981),

(Erni et al., 2003)
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Number of runs

Since the model can be sensitive to the random initial distribution of the migrating

birds, then the simulation will have to be run multiple times. To determine the num-

ber of runs required for convergence, the model was run 50 times using the minimum

values from Table 6.1 and the standard error of the number of ticks deposited in Eu-

rope was taken across increasing numbers of runs (Figure 6.2). The standard error

continues decreasing as the number of runs increases but it decreases at a greater

rate initially, up to approximately 40 runs. Despite the fact that more runs always

leads to more accurate results, as our results converge to the real value, this has to

be balanced against efficiency in producing these results and so a value of 50 runs

was selected.

Figure 6.2: Standard error for number of introduced CCHFV positive ticks into

Europe for all bird species under standard parameters

6.2.3 Scenarios

To investigate the sensitivity of the model to its parameters, a number of distinct

scenarios were considered. Firstly, the model was run with the baseline parameters

(Table 6.1) and the number of CCHFV infected ticks per country was calculated for

each run. This is the baseline scenario and was referred to as scenario one. The
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values used are the lower of those in Table 4.5 and those in Table 6.1.

This was then repeated with an increase in tick prevalence to the value calculated

in Chapter 5 to see if an increase in CCHFV prevalence amongst ticks had an affect

on the risk of the virus being imported into European countries via migrating birds.

This was referred to as scenario two. It is worth noting, when interpreting results,

that because of how the model works, this change is also equivalent to a proportional

increase in the mean number of ticks per bird (µbird species).

The model was run with the values from Table 6.1 and the higher population esti-

mates from Table 4.5 which was referred to as scenario three. Scenario four used the

lower population estimates (Table 4.5) and increased estimates of migration speeds

but with all other parameters remaining unchanged (Tables 6.1).

The final scenario, scenario five, used a higher level of orientation amongst migrating

birds. This is reflected by a lower level of standard deviation of their direction of

migration (the smaller value of σorientation in Table 6.1).

6.3 Results

6.3.1 CCHFV Incursions to all of Europe

Examining the number of ticks being introduced into Europe we can plot the ex-

pected numbers under each of our scenarios (Figure 6.3):
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Figure 6.3: Boxplot of number of ticks introduced into Europe by all bird species

under each scenario

As was found in Chapter 4, the level of sensitivity to changes in prevalence is greater

than for the other parameters. From Figure 6.3, it can be seen that the level of varia-

tion in risk and the overall level of risk represented by the increased level of CCHFV

prevalence is the highest for our scenarios. In contrast to the results in Chapter 4,

there is not as marked a difference between the sensitivity of the model to this param-

eter and the other parameters notably increasing the speed of migration. In addition,

it can be seen that, as expected, the baseline scenario represents the lowest risk as

well as the highest level of consistency in results, but a small number of CCHFV pos-

itive ticks are still being introduced into Europe. The level of risk increases slightly

with an increase in bird populations, but is more sensitive to a change in orientation.

Summary statistics of these results can be found in Table 6.2, ordered by increasing

mean, which illustrate the much higher risk and level of variance present in scenario 2.
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Table 6.2: Summary statistics of number of ticks introduced into Europe under each

scenario

Scenario title

(scenario number)
Mean

Standard

deviation

Lower

confidence

interval

Upper

confidence

interval

Baseline (1) 7.22 0.15 6.94 7.51

Increased Population

(3)
9.81 0.26 9.3 10.31

Increased Orientation

(5)
20.67 0.39 19.9 21.43

Increased Flight

Speed (4)
47.20 1.09 45.06 49.33

Increased Prevalence

(2)
53.25 1.12 51.05 55.44

To inspect whether the geographic distribution of risk changes between scenarios,

plots can be produced (Figure 6.4). Risk is very much not uniformly distributed

amongst the at risk countries, and plotting as a heat map, where a country’s colour

was determined by the number of ticks introduced, resulted in only a few countries

being visibly different from zero. Instead, in Figure 6.4, to stop a single country’s

risk meaning the risk for others is almost indistinguishable from no risk, then ordinal

rankings of the mean number of CCHFV introduced ticks will be used to determine

a country’s colour.
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Figure 6.4: Geographic map of risk by rank; most at risk country (red) shading to

no risk (white)

While there are some slight differences in Figure 6.4, in particular France under the

increased prevalence scenario, generally the geographic pattern of risk is fairly simi-

lar under each scenario.

6.3.2 CCHFV Incursions by Individual Bird Species

Means and standard deviations were derived for all of Europe for each bird species to

investigate differences in sensitivity to parameters between species and to examine

the varying level of risk represented by each. In Table 6.3 it can be seen that the

Ortolan Bunting represents the greatest risk under all of the scenarios. In addition,

under a number of the scenarios, some of the species represent no risk.
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This again means that it is the bird species with the fastest migration flight speed

rather than the greatest population that introduces the most CCHFV positive ticks.

This is similar to the results in Chapter 4, likewise is the fact that the two most pop-

ulous of the bird species, the Willow Warbler and the Tree Pipit, contribute almost

nothing to the risk of CCHFV positive ticks being introduced into Europe and it is

only when their migratory flight speed is increased that they introduce any CCHFV

positive ticks at all.

6.3.3 CCHFV Incursions by Individual Country

As in Chapter 4, it is worth looking at the most at-risk countries for each case to see

if there is a geographical area that is more at risk where surveillance efforts might

be focused. Table 6.4 lists the five most at risk countries for CCHFV positive ticks

being introduced by all bird species for each scenario.
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Examining Table 6.4, there are three countries that consistently occur although not

always in the same rank; however, Turkey, the most at risk country under every sce-

nario, has a much greater level of introduced CCHFV positive ticks than any other

country. Plotting the results in Table 6.4 yields Figure 6.5 which shows that there

is a rapid fall in risk after the most at-risk country.

Figure 6.5: Bar charts of level of tick incursion for top five most at risk countries for

all bird species and for each scenario

The scale of differences between the top five at risk countries seems to be the same

for each scenario and to further test whether this is the case, the proportion of risk

for each country based on only the top five most at-risk can be plotted (Figure 6.6).
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Figure 6.6: Proportions of level of tick incursion for top five most at risk countries

for all bird species and for each scenario

This is the country’s proportion of risk out of the total risk for the top five coun-

tries. Examining the plot, it would seem that changing the parameters does not

cause much of a change as far as the proportion of risk is concerned and, under all

scenarios, the top three most at risk countries are consistently the same. This could

indicate that changing parameters makes very little difference to the geographical

distribution of risk.

6.4 Discussion

In this chapter, a model was formed to examine the level of risk represented by mi-

grating bird species introducing CCHFV positive ticks into Europe. After being run

for the five most populous and at risk bird species, estimated numbers of CCHFV

positive ticks were found for each country in Europe.

Figure 6.3 and Table 6.2 show that increasing the prevalence of CCHFV positive

ticks, even by the smaller amount calculated in Chapter 5, still has far more impact
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than increasing the other parameters and also results in greater variation of results.

The scenarios that offer the second and third highest risk are an increased migra-

tion speed and an increased level of orientation. Both of these parameters have the

effect of decreasing the number of timesteps required for a bird to reach Europe.

This means that there is much the same pattern of sensitivity as there was for the

GIS model (Table 4.7) where prevalence was found to have the greatest influence,

followed by migration speed and with bird population numbers coming last.

The maps of risk of tick introduction (Figure 6.4) show a pattern of risk that is

fairly consistent between scenarios and this is supported by Table 6.4 where under

all five scenarios the top three most at-risk countries are the same. These countries

are major parts of the main migration routes for birds flying between Africa and

Europe so it would be expected that they be more at risk. The top two, also flagged

up in Chapter 4, are both countries where CCHFV has been detected; in fact Turkey

has had a large number of human cases over the last decade. For Spain, however,

the presence of CCHFV has only recently been detected. It is possible then that the

virus was introduced to these countries through bird migration. The repeated inclu-

sion of Italy, where CCHFV is not believed to be present, means that this aggregated

cellular automata model suggests a definite possibility of it being introduced.

While in Table 6.4 there are quite marked differences in risk between scenarios, the

maps in Figure 6.4 and the proportion of risk between countries in Figure 6.6 suggest

the proportional distribution of risk might be fairly similar between all five scenarios.

The risk represented by the different species in the cellular automata shows that

the Ortolan Bunting represents by far the greatest level of risk (Table 6.3). Of the

other species, two of them, the Tree Pipit and the Willow Warbler, embody no risk

under the majority of scenarios and the two remaining species, the Common Quail

and the Northern Wheatear, have means and standard deviations such that there

can not be said to be a significant difference in the risk they represent. The sole

scenario that is an exception to this is when there is an increased migratory flight

speed. Under this scenario, the Tree Pipit and Willow Warbler have a very small

risk of tick introduction, and the Northern Wheatear has a noticeably higher level
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of risk than the Common Quail. For the Pipit and Warbler, this will be due to them

now having the necessary flight range to reach Europe within the timeframe of tick

attachment as both have quite a large increase in speed compared to the baseline

scenario (over 80% above their baseline speed). The larger gap between the Northern

Wheatear and Common Quail will be due in part to the fact that, of all five species,

the Common Quail has the smallest proportional increase in speed, so increasing

migration speed has little effect. This can be seen by comparing the results of the

baseline and increased speed scenario for the Quail where the mean and standard

deviation suggest there is no significant difference between the two.

In Chapter 4, full distributions were found and sampled from for each species and

country in order to arrive at the final results. This means that the scenarios in this

chapter are not directly comparable to those results. However, the minima found in

chapter 4 should be approximate to the baseline scenario. Comparing the baseline

results in Table 6.2 to those of Tables 4.8 and 4.6 or Table 6.4 to Table 4.10 show

the number of expected CCHFV positive tick incursions are much lower under this

model. This suggests modelling the spatial element explicitly has made a difference

to the estimated risk of CCHFV positive ticks being introduced into Europe.

As far as the model is concerned, the results flagging up countries where the virus

has already been found goes some way towards validating the results. However, this

approach has a couple of flaws, the main one of which is behavioural; birds do not

simply move northwards and settle in the first region they come across that has

available space. To properly reflect this, a model would have to include a form of

settling behaviour and this will be examined in the next chapter. This would affect

the routes taken by birds and would have the additional affect of meaning that some

of the birds who start in the northern most parts of sub-Saharan Africa will not

stop in southern most Europe despite being the first birds to reach this area but will

instead continue on towards their traditional nesting ground. This could have the

possibility of increasing the range of ticks.
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Chapter 7

Individual agent level cellular

automata for the risk of incursion

of CCHFV via migratory birds

7.1 Introduction

In the previous chapter, a spatially explicit model was used to simulate and estimate

the risk posed by migrating birds introducing CCHFV virus positive ticks into Eu-

rope from Africa. While it was an extension of the previous simple model, it still

had some areas which could be expanded.

In this chapter, an individual agent based cellular automata model will be devel-

oped. This uses a spatial grid as in the previous model but each bird, its movement

and attached ticks are modeled independently. This allows a more realistic level of

bird behaviour to be modeled; in particular, birds will no longer necessarily settle

in the first available space and this will affect where CCHFV positive ticks will be

introduced.
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7.2 Methods

7.2.1 Selection of Bird Species

As in the GIS (Chapter 4) and aggregated cellular automata (Chapter 6), the bird

species considered were the common quail, the ortolan bunting, the tree pipit, the

willow warbler and the northern wheatear.

7.2.2 Cellular Automata

As in Chapter 6, a cellular automata type model is used to model the movement of

birds and estimate the risk it represents. However, in this case, rather than model

the population per grid, each agent (in this case a bird) will be modeled individually

as it moves across the grid. The model describes the movement of birds from Africa

to Europe over discrete time steps of length one day and will be implemented in the

statistical programming language R. Again, as in the previous model, the geograph-

ical area including Africa and Europe is represented by a m x n lattice with each

cell on the lattice covering an area based on the average daily speed of a particular

bird species; e.g for the Common Quail that has an average daily speed of 150km

per day then each cell is 150x150km2 as opposed to the Willow Warbler where the

average daily speed is only 62km per day and so cells would be 62x62km2.

The location of each bird and tick will be recorded as an individual so, unlike in

the previous model, there will be no matrices Bt or Tt, instead, arrays (T and B)

will be used to record information about each individual tick and bird, such as its

position and number of days of attachment. However, it still makes use of a number

of matrices all of size m x n. Firstly, there is the matrix P which represents the

proportion of available space for breeding populations for each cell of the lattice.

Each cell P [x, y] will contain a number describing the breeding space of that cell as

a proportion of the total breeding space with y being equivalent to a longitudinal

position and x a latitudinal one. In order to cover the required geographical region

these will vary from longitude -15◦ (the leftmost edge of y=1) up to 57.78◦ (the

rightmost edge of y=n) and from latitude -46.98◦ (the bottommost edge of x=1) up

208



to 71.16◦ (the topmost edge of x=m). This matrix will be used to determine the

settling behaviour of migratory birds; i.e. when they cease to migrate.

The dynamics of the lattice model, that is, the movement of the birds, are governed

by an m x n matrix G. As before, this will represent the general northbound direc-

tion of movement (during spring migration) and the tendency of migratory birds to

avoid open water and will take the same form as in Chapter 6.

Since only those birds who are host to a CCHFV positive tick are of interest then

only these birds are modeled.

Behaviour

Ticks and birds

As each bird can carry multiple ticks a negative binomial distribution is used to cal-

culate the number of CCHFV positive ticks on each bird; this distribution is often

used to model the number of parasites on a host (Bliss and Fisher, 1953; Pena-

Rehbein, 2013; Shaw et al., 1998) selected as it is a discrete distribution with an

unbounded positive range where the sample variance is often much larger than the

sample mean. This can be sampled from in the R programming language with a

number of failures set as 1 and the distribution mean set as the mean number of

ticks per bird (µtick) multiplied by the prevalence of CCHFV amongst ticks (ρprev).

A number of values equal to the total population size of a bird species will be drawn

from this distribution and all those greater than one shall be kept and these will be

the birds modeled. For identification purposes each of these birds will have a unique

reference number generated.

The status of all CCHFV positive ticks will be held in an array (T) that will keep

a record of the number of days on host the tick still has, the reference number for

the bird the tick is attached to and the coordinates of the cell the bird is in when it

either stops migrating or the ticks on host attachment reaches zero.

A similar array for migratory birds (B) will record their reference number, the cur-
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rent coordinates of the cell the bird is passing through and, finally, a value describing

the length of the bird’s migration.

Matrix G and bird movement

Movement of the in flight bird population is determined by evaluating the values

of all neighbouring cells in G. That is, all cells that share an edge or vertex, so

all cells directly above, below or beside and also those diagonally touching. This is

known as the Moore neighbourhood. This means the majority of cells will have eight

neighbours.

These values will be transformed to give the proportion of the neighbourhood total

and will represent the probability of moving in that particular direction. For exam-

ple, if we consider the following simple 3x3 matrix, where north is to the top of the

matrix:

G =


3 3 3

2 2 2

1 1 1


If we consider a bird who is currently in the centre cell (G[2, 2]) then the neighbour-

hood total will be 16 (3 + 3 + 3 + 2 + 2 + 1 + 1 + 1) and the probability for each

direction will be the value of the cell divided by this; as shown in Table 7.1.
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Table 7.1: Probability of movement for each direction

Direction Probability

North-West 0.1875

North 0.1875

North-East 0.1875

East 0.125

South-East 0.0625

South 0.0625

South-West 0.0625

West 0.125

These probabilities can be calculated for each individual bird based on the direc-

tions of movement available to them; i.e. for geographical reasons Eastern movement

might be impossible so the probability will be zero. A direction can then be randomly

sampled from this categorical distribution for each bird with the outcomes being the

possible directions and with the relevant probabilities being those calculated for that

bird’s current position, and this will be the direction the bird moves in that timestep.

The values of the matrix G will be selected so that there is a greater probability of

the birds moving north; in Table 7.1, the probability regions for northerly directions

are greater than those for southerly directions.

Matrix P and bird settling behaviour

Bird settling behaviour will be based around two factors the matrix P and the value

describing the length of a bird’s migration stored in the array B. Each cell of P

will reflect the proportion of total breeding space contained within the geographical

region represented by that cell. This means the sum of all values of P will be equal

to one.

The value for the length of a bird’s migration will be randomly sampled from the

uniform distribution to give a probability between zero and one with equal likelihood.

211



As a bird passes through a cell (x,y), the value of P [x, y] shall be subtracted from

this value. Once this value ceases to be greater than zero then the bird will stop

migrating and the current x and y coordinates will be recorded against the tick or

ticks attached to the bird. This means the likelihood of settling will increase as the

bird passes through Europe and that in geographical areas where a large proportion

of the total population is known to be breed a bird is more likely to cease migrat-

ing. Additionally, it also resolves one of the weaknesses identified in the model from

Chapter 6 in that birds will not stop in the first suitable region.

The model will run for a number of timesteps equal to the maximum on host attach-

ment time of ticks; so for a timesteps.

Matrix formation

The initial steps for the creation of matrix P were as described for the aggregated

cellular automata approach (Chapter 6). Points are regularly distributed across a

country, those that don’t fall within a species’ breeding grounds are removed. An m

by n grid is formed and counting the number of points for each cell and dividing by

the total number of points gives a percentage of the country that lay within a cell

and this was multiplied by the total number of birds listed for that country. This

was done for each European country and thus a (m×n) matrix was created for each

country, and the results were summed to give a single matrix (P ) describing the total

breeding space for the bird population. Each value of P is then divided by the sum

of all P .

The second matrix (G) was produced in an identical manner to that in Chapter 6

with increasing values moving from the bottom to the top of the matrix (i.e. north-

wards) and with zero values for cells that contain only open water.

The initial starting positions of the birds were based upon maps of wintering loca-

tions taken from Birdlife International (BirdLife International, 2012b). To minimise

computing time, 2000 points were randomly sampled from the wintering grounds

for each species and these were used to produce a list of starting cells which was
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randomly sampled from for each bird.

Parameter estimates

All parameter values were identical to those in Chapter 6 Table 6.1.

Number of runs

As in Chapter 6, since there is randomness present in the model, then the simulation

will have to have multiple runs. To determine the number of runs required for con-

vergence, the model was run 100 times and the standard error of the number of ticks

deposited in Spain (chosen as a country that consistently had ticks deposited and

so non-zero data) was taken across increasing numbers of runs. The standard error

continues decreasing as the number of runs increases but it decreases at a greater

rate initially, up to approximately 50 runs and so a value of 50 runs was selected for

the production of results.

Figure 7.1: Standard error for number of ticks deposited in Spain under standard

parameter values
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7.2.3 Scenarios

To investigate the sensitivity of the model to its parameters, five distinct scenarios

were considered. These scenarios were identical to those used in Chapter 6.

The first scenario is the baseline scenario and makes use of the lower parameter

estimates in Table 4.5 and those in Table 6.1 and should represent the minimum

expected level of risk of CCHFV introduction. As before, scenario two replaced the

baseline prevalence of CCHFV amongst ticks with that calculated in Chapter 5 to

investigate the affect of an increase in CCHFV prevalence amongst ticks.

The model was then run with the higher population estimates from Table 4.5 (sce-

nario three); scenario four returned to the lower population estimates (Table 4.5)

but with increased estimates of migration speeds. The final scenario, scenario five,

used a higher level of orientation amongst migrating birds.

Since only those birds carrying a CCHFV positive tick will be modelled then the

number of birds modelled will vary between the scenarios, as either the total bird

population or the prevalence rate changes, the expected number of each species mod-

elled under each scenario are summarised in Table 7.2.
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Table 7.2: Expected number of birds, rounded to nearest integer, carrying CCHFV

ticks to be modelled under each scenario

Species

Baseline (1), Increased

Flight Speed (4), Increased

Orientation (5)

Increased

Prevalence (2)

Increased

Population (3)

Willow Warbler 453 3410 889

Tree Pipit 170 1277 316

Northern

Wheatear
57 428 176

Common Quail 18 138 38

Ortolan Bunting 54 404 163

7.3 Results

Unlike in the aggregated cellular automata, results for this model will be restricted

to integer values and this restriction will affect the appearance and shape of the

results. To determine the best way of summarising these results, that is, whether

presenting a mean and standard deviation was appropriate, the normality of the

data was inspected. A histogram of the results for Spain with a fitted Normal curve

can be seen in Figure 7.2. The Shapiro Wilk normality test was also carried out,

returning a p-value of p < 0.001.
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Figure 7.2: Histogram of level of tick incursion for Spain under standard parameters

and average population numbers

In Figure 7.2, there very little fit between the data and the proposed Normal distri-

bution and since the p-value from the Shapiro Wilk test is extremely significant then

it is safer to assume results are not Normally distributed. Therefore, a selection of

statistics will be used to summarise results.

7.3.1 CCHFV Incursions to all of Europe

Examining the number of ticks being introduced into Europe, we can plot the ex-

pected numbers under each of our scenarios:
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Figure 7.3: Boxplot of number of ticks introduced into Europe under each scenario

As was found in chapters 4 and 6, the level of sensitivity to changes in prevalence

is greater than for the other parameters. From Figure 7.3, it can be seen that the

level of variation in risk and the overall level of risk represented by the increased

level of CCHFV prevalence is the highest for our scenarios. In addition, it can be

seen that, as expected, the baseline scenario represents the lowest risk as well as the

highest level of consistency in results, but a small number of CCHFV positive ticks

are still being introduced into Europe. There is not much of a marked difference

between scenarios 2, 3 and 4, indicating there may not be much of a difference in

risk between these scenarios. This indicates that biological factors relating to the

bird species themselves have very little impact on the risk of CCHFV positive tick in-

troduction, and the sensitivity to each factor is similar across the estimated range of

each. Maximising the speed or efficiency of migration or increasing to the maximum

estimated population sizes has a similar affect on the number of CCHFV positive

ticks being introduced into Europe. The single factor relating to the ticks directly,

the prevalence of CCHFV, has a greater affect on the overall risk.
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Summary statistics of these results can be found in Table 7.3, ordered by increasing

median, which illustrate the much higher risk and level of variance present in sce-

nario 2 with both its mean and median being almost twice those of the second most

risky scenario.

Table 7.3: Summary statistics of number of ticks introduced into Europe under each

scenario

Scenario title

(number)
Mean

Standard

deviation
Median Range

Baseline (1) 3.6 2.05 3 8

Increased Orientation

(5)
7.34 2.50 7 15

Increased Population

(3)
8.9 3.05 9 15

Increased Flight

Speed (4)
10.94 2.71 11 17

Increased Prevalence

(2)
20.56 4.58 21 30

In Table 7.3, it is of note that almost all values of summary statistics increase as we

move down the table. So, as both measures of average risk increase so too does the

level of variation in risk.

To inspect whether the geographic distribution of risk changes between scenarios

plots can be produced (Figure 7.4). Risk is very much not uniformly distributed

amongst the at-risk countries and so to stop a single country’s risk meaning the risk

for others is almost indistinguishable from no risk then ordinal rankings will be used.
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Figure 7.4: Geographic map of risk by rank; most at risk country (red) shading to

no risk (white)

There are several slight differences in Figure 7.4 between scenarios 1,2,3 and 5, in

particular for the UK and France. However, the most marked difference is the spatial

distribution under increased migration speeds. Much more of Europe, including part

of Scandinavia is at risk.

7.3.2 CCHFV Incursions by Individual Bird Species

Summary statistics can be derived for all of Europe for each bird species to inves-

tigate differences in sensitivity to parameters between species and to examine the

varying level of risk represented by each. In Table 7.4, the results suggest that some

of the bird species are of very little importance in introducing CCHFV positive ticks.

In particular, under all scenarios the willow warbler represents no risk.

Under scenario 4 the tree pipit has a low level of risk for introducing CCHFV positive

ticks but represents no risk at its lower migration speed.

The common quail and northern wheatear both have a relatively low level of intro-
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duction of CCHFV positive ticks under all scenarios and have a median value of

never more than three between them.

The vast majority of introduced ticks are by the ortolan bunting and this holds true

under all five scenarios. Under the baseline scenario, this is still, however, a fairly

small number of introduced ticks.
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7.3.3 CCHFV Incursions by Individual Country

Table 7.5 lists the five most at risk countries for CCHFV positive ticks being intro-

duced by all bird species for each scenario to allow us to examine the most at risk

countries for each case to see if there is a geographical area that is more at risk where

surveillance efforts might be focused.
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Examining Table 7.5, Turkey and Spain, consistently are the countries with the

greatest incidences of introduced CCHFV positive ticks. There are two countries,

France and Italy, that consistently occur although not always in the same rank.

Turkey, the most at-risk country under every scenario, has a much greater level of

introduced CCHFV positive ticks than any other country. Plotting the results in

Table 7.5 yields Figure 7.5 which shows that there is a rapid decrease in risk after

the most at-risk country under all five scenarios.

Figure 7.5: Histograms of level of tick incursion for top five most at risk countries

for all bird species and for each scenario

As was seen in the comparison of the most at risk countries for the aggregated pop-

ulation cellular automata (Figure 6.5) the rate of reduction seems to be the same

for each scenario and again this can be tested by plotting the proportion of risk for

each country (Figure 7.6).
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Figure 7.6: Proportions of level of tick incursion for top five most at risk countries

for all bird species and for each scenario

Examining the plot, it would seem that changing the parameters does not cause

much of a change. Comparing to the previous model (Figure 6.5) there does seem to

be more variation between the proportion represented by the most at risk country

for each scenario. Since the settling behaviour of migratory birds is no longer an

automatic response then it is of additional interest whether the majority of ticks

are deposited due to birds settling or total attachment time expiring and Table 7.6

gives the proportion of ticks that are deposited by settled birds per species. This is

not the total proportions of ticks deposited in Europe but generally and since the

results are a proportion then it wold be expected that the larger population and

prevalence scenarios would be similar to the base as these simply increase the num-

ber of birds being modelled without affecting their behaviour. It is clear from Table

7.6 that total attachment time is a much more significant driver of the final location

of CCHFV positive ticks given the very small proportion of birds who reach their

breeding grounds before the total tick attachment time passes.
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7.4 Discussion

In this chapter, an individual agent based model was formed to examine the level

of risk represented by migrating bird species introducing CCHFV positive ticks into

Europe. After being run for the five most populous and at-risk bird species, esti-

mated numbers of CCHFV positive ticks were found for each country.

Examining the different scenarios, Figure 7.3 and Table 7.3, it is found again that

increasing the prevalence of CCHFV positive ticks has a greater impact on incursions

than increasing the other parameters and also results in greater variation of results.

Again, as expected, the baseline scenario produces the lowest level of risk. Despite

Normality not being assumed for results, there is not a large difference between the

mean and median so the results don’t appear to be overly skewed. The other three

scenarios do not appear to be strongly different as there is a great deal of overlap in

their ranges.

Comparing these results to the equivalent aggregated cellular automata results (Fig-

ure 6.3 and Table 6.2) the expected number of CCHFV positive ticks being intro-

duced is noticeably lower and there is a greater level of variation in the results. This

might be expected, as this model allows a greater range of behaviours and is not

using an aggregate population approach to produce results and so behaviour would

not be averaged out.

There is also less difference between scenarios when modeled from an individual agent

perspective. That is, the ranges overlap for the majority of scenarios with only the

baseline and increased prevalence being completely distinct, contrasted with the ag-

gregate approach where all five scenarios are quite distinct. The pattern of scenario

results, however, is also quite different; that is, for the aggregated approach the

scenarios might be formed into three groups; (1) baseline and increased population,

(2) increased level of orientation, (3) increased migratory flight speed and increased

level of prevalence. In contrast, the larger jumps for the individual agent results are

between baseline and the three middle scenarios and then between them and the top

scenario. This suggests that the individual agent model is less in agreement with the
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analytical sensitivities derived in Chapter 4, where the increased population should

result in very little difference. This suggests that moving away from population

models towards a more realistic individual agent model reveals potentially impor-

tant dynamics in migration behaviour. While increasing population numbers results

in more of a difference than in the population approaches, and so is more influential,

it does not appear to have a markedly different affect on risk compared to changing

the migratory flight speed or orientation.

The maps of risk of tick introduction (Figure 7.4) show a few different patterns of

risk between scenarios and this is supported by Table 7.5, where, under all five sce-

narios, only the top two most at-risk countries are the same, although two of the

other top countries are consistently present. These countries are major parts of the

main migration routes for birds flying between Africa and Europe, so it would be

expected that they be more at-risk and the top two were flagged up in Chapter 4

and 6. The greatest geographic range is associated with an increased migratory flight

speed which makes intuitive sense

Again, as in the aggregated approach, there are quite marked differences in risk be-

tween the top countries for each of the scenarios (Table 7.5) but the proportion of

risk between countries in Figure 7.6 suggests the proportional distribution of risk

might be fairly similar between all five scenarios.

The risk represented by the different species shows that the Ortolan Bunting repre-

sents by far the greatest level of risk (Table 7.4). The Willow Warbler offers no risk

of tick introduction even with an increased migration speed, in contrast to the aggre-

gated cellular automata approach, where that scenario resulted in the species having

a small level of risk. As before, increasing the flight speed and so the migration range

is the only circumstance in which the Tree Pipit has a risk of entering Europe with

CCHFV positive ticks still attached. Of the remaining two species, the Common

Quail poses a similar level of risk to the Northern Wheatear; i.e. if mean and stan-

dard deviation is examined, there is no significant difference and medians are the

same, except under an increased level of prevalence, in which the Northern Wheatear

seems much more sensitive to the changed parameter. This may be due to the larger
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population for the Wheatear and so an increased prevalence would result in a larger

additional number of CCHFV positive tick carrying birds than it would for the Quail.

Across each species, the increased migration speed is either the second highest or

in the case of the Pipit the highest level of risk; the exception to this, as in the

aggregate cellular automata, is the Common Quail and again this is most likely due

to the small proportional increase in flight speed that this scenario represents.

The results from the individual agent approach are repeatedly lower than in the GIS

or aggregated cellular automata approach. Since the behaviours in this model can be

argued to be more representative of bird behaviour, this difference in results would

suggest that a general population approach even with explicit spatial modelling is

not the most appropriate way to model this risk.

As in the previous chapter, the results flagging up countries where the virus is already

present goes some way towards validating the results. However, this approach still

contains some areas of potential improvement, the main one of which is behavioural;

while birds no longer simply settle in the first available breeding space this model

does not explicitly show the homing instinct birds have with birds returning to the

same area to nest year after year. To properly reflect this, a model would have to

include a form of homing behaviour and this will be examined in the next chapter.

This will very much affect the routes taken by birds and to properly reflect this

greater flexibility in movement will be needed and so continuous rather than discrete

space will be used.
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Chapter 8

Continuous space model for the

risk of incursion of CCHFV via

migratory birds

8.1 Introduction

In the previous chapter avian migration was modeled using an individual agent cellu-

lar automata approach. There are a number of weaknesses in this approach, mainly

that bird movement, and more significantly settlement, is determined by carrying

capacity and this is not realistic. The majority of bird species tend to return to the

same breeding areas year after year (Dorst, 1962) and so modelling should reflect

this with birds displaying a level of homing behaviour. Unlike the GIS model in Gale

et al. (2011), many of the current models of bird migration produced by ornitholo-

gists are based in continuous space (Thorup and Rabøl, 2001; Mouritsen, 1998).

In mathematics, these kind of problems are often solved using diffusion type models

or, as per the ornithological models, stochastically by making use of circular statis-

tical distributions.

The aim of this chapter is to model bird migration in continuous two dimensional

space and use this model to evaluate the risk of CCHFV positive ticks being im-

ported into countries by migrating birds.
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8.2 Continuous Space modelling

8.2.1 Particle Diffusion

Many simpler models of movement make use of random walks, the simplest of which

has an individual moving along a linear space that is divided into sites labeled by

integers, sites are taken as size 1 and steps are every timestep t. Moves between sites

(Z) are assumed to be independent and decided by simple probabilities:

Pr(move from site i to i+ 1) = p

Pr(move from site i to i− 1) = q = 1− p

(8.1)

Therefore Z will be equal to one with probability p and to negative one with prob-

ability 1− p. An individual’s position at timestep t (Xt) will then be the sum of all

previous steps (Z1 to Zt):

Xt =
t∑

j=1

Zj (8.2)

If we then replace our sites by a smaller scale, for example spaces of size δx, and

take a smaller timestep, δt, then each step of this scaled random walk has a mean

µ = p(+δx) + q(−δx) = (p− q)δx

and variance

σ2 = [p(+δx)2 + q(−δx)2]− µ2

= 4pq(δx)2
(8.3)
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Over a time period of length t there will be t/δt separate timesteps. This means the

individual’s position X(t) will have:

mean

µ(t) = (p− q)tδx/δt

and variance

σ2(t) = 4pqt(δx)2/δt

As the size of the sites and timesteps decreases, as δt→ 0 and δx→ 0 then the mean

and variance of X(t) must remain finite for the process to make biological sense. If

it is required for the limiting process to have a mean a and variance D2 in unit time

then it must be the case that:

µ(1) = (p− q)δx/δt→ a

σ2(t) = 4pq(δx)2/δt→ D2

This is satisfied by having δx = D
√
δt, p = 1

2
(1 + a

√
δt/D) and q = 1

2
(1− a

√
δt/D).

The limiting process X(t) then has a Normal distribution with a mean of at and

variance D2t of the form:

f(x; t) = (2πD2t)−
1
2 exp

(
−(x− at)2

2D2t

)
δx (8.4)

This can then be increased to cover two dimensional diffusion which makes use of

the bivariate Normal distribution.

8.2.2 Simple Diffusion

The simplest form of the particle diffusion equation, in our two dimensions, simulates

the dispersal of a large number of individuals from a central point and utilises the

bivariate Normal distribution. In the case of no drift, i.e. no preferred direction of
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motion, the equation has the following form:

f(x, y; t) = (2πD2t)−1exp(−(x2 + y2)/2D2t)

V ar[X(1)] = V ar[Y (1)] = D2

(8.5)

In many cases (i.e. in chemistry or physics) the diffusion term (D) will vary depend-

ing on the circumstances, so there will be a DX and DY , but since in this case, birds

should equally be able to fly in any direction then we simply have a single D. This

symmetry in equation 8.5 allows us to make the following transformations:

x = rcos(θ), y = rsin(θ) and dxdy = rdθdr (8.6)

If we then denote b2 = 2D2 we can create a polar coordinate form of equation 8.5:

ψ(r, θ; t)dθdr = (πb2t)−1exp(−r2/b2t)rdθdr (8.7)

Equation 8.7 would then allow birds to determine a direction of movement free from

the restrictions of a grid and allows variation in the amount of distance traveled.

However, if initially we allow only the direction of travel to vary, we can produce a

model that relies only on a variable θ and this can be used to determine the horizontal

(east-west) and vertical movement (north-south) of birds. If it is assumed that birds

have no preferred direction, that is no homing instinct, then this would be modeled

as follows:

θ ∼ U [0, 2π] = UC

X = Cos(θ)

Y = Sin(θ)

(8.8)

This can be easily simulated by randomly sampling from θ, a circular uniform (UC)

distribution, and moving our points the required horizontal and vertical distance.

Doing this with 2000 individuals who all start at the origin and producing density

plots we get:
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Figure 8.1: Density plot of individuals at t=5, 25, 50 under diffusion with no drift

In Figure 8.1 we can see that as time passes our individuals spread outward in a

broadly symmetrical fashion and stay centered around the origin.

To examine the movement analytically though we would require the mean and vari-

ance of this distribution, and since the cosine (or sine) of a uniform distribution is

not a standard distribution, this requires a transformation of the following form:

fZ(z) =

[
d

dz
g−1(z)

]
fW (g−1(z))Iη(z) (8.9)

Equation 8.9 allows us to find the probability distribution function for a transformed

known distribution, in this case, the cosine of a uniform distribution. Taking each

component of 8.9 and solving for our problem gives us equations 8.10 and 8.11.

[
d

dz
g−1(z)

]
:

[
d

dx
cos−1(x)

]
=

1√
1− x2

(8.10)

fW (g−1(z)) : fθ(cos
−1(x)) =

1

2π
(8.11)

This approach, however, is only applicable in the case of a one to one transformation

and since across the interval 0 to 2π most values of H would occur twice then this is

not applicable. If, however, our original variable, in our case θ, can be broken down

into subsets so that a one to one transformation can be performed for each subset

then we can replace equation 8.9 with equation 8.12 where the density is found by
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summing across these subsets.

fZ(z) =
∑[

d

dz
g−1i (z)

]
fW (g−1i (z))Iη(z) (8.12)

Since our values between 0 and π and π and 2π are symmetrical for values of h

we can simply double the results of our above component equations 8.10 and 8.11.

This leaves us with a final probability distribution function for horizontal movement:

fX(x) = 2 ∗ 1

2π
∗ 1√

1− x2

=
1

π
√

1− x2

(8.13)

We can then use this function to find analytical solutions for the descriptive statistics

of horizontal movement for each time step:

µX =

∫ 1

−1

x

π
√

1− x2
dx =

[
−
√

1− x2
π

]1
−1

= 0 (8.14)

σ2
X =

∫ 1

−1

x2

π
√

1− x2
dx =

[
sin−1(x)− x

√
1− x2

2π

]1
−1

=
1

2
(8.15)

These values then increase linearly with time. From Figures 8.1 we can clearly see

that our individuals are centred around zero as predicted. For our variance, Figure

8.2, we can record the variance in the horizontal coordinates of individuals for each

timestep:
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Figure 8.2: Plot of the variance in horizontal movement under diffusion with no drift

against timestep

As can be seen, Figure 8.2 is very linear with a gradient equal to our values of σ2
H

If we wish to investigate the distance R(t), rather than just vertical or horizontal

movement, of an individual from the origin at time t, we can integrate equation 8.7

over θ to obtain:

Pr(r ≤ R(t) ≤ r + dr) =

∫ 2π

0

(πb2t)−1exp(−r2/b2t)rdθdr

=
2r

πb2t
exp(−r2/b2t)dr

(8.16)

If we then define R(t) as the ’wavefront’ of our model at time t, that is, the value at

which we expect to find a single individual, from a population of N , at a distance

further than R(t) we have that:

1

N
=

∫ inf

R(t)

2r

πb2t
exp(−r2/b2t)dr (8.17)
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Equation 8.17 can be rearranged to give us a time dependent equation for the ap-

proximate maximum distance an individual can travel by timestep t, replacing b2

with 2D2:

R(t) =
√

2D2 t log(N) (8.18)

For our model without drift we found that D2 = 1
2

and so equation 8.18 becomes:

R(t) =
√
t log(N) (8.19)

For our simulation the maximum Euclidean distance of any individual from the origin

at each timestep can be recorded and these points plotted against the estimated R(t):

Figure 8.3: Plot of the maximum actual (points) and predicted (line) Euclidean

distance of individuals from the origin under diffusion with no drift against timestep

8.2.3 Diffusion with drift

For many natural processes and for modelling bird migration this assumption of no

drift is not realistic. Birds do not simply move randomly in any direction but instead

have a determined direction of movement. For the particle diffusion equation, this is
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often referred to as the advective term and was represented by a in equation 8.4. In

circular statistics, this is modeled by one of the non-Uniform circular distributions

and normally by one of the two related distributions of the wrapped/circular Normal

distribution or the vonMises distribution.

This distribution has similar parameters to the Normal distribution in that there is a

mean and standard deviation. The mean, in this case, is an angle between 0 and 2π

and the standard deviation is a measure of the concentration of angles around this

mean. The standard deviation is sometimes replaced with a concentration parame-

ter, inversely proportional to the standard deviation, or by the mean resultant length

(MRL) which gives the average distance moved as a proportion. So, for example,

the MRL for the circular uniform distribution would be zero and would tend towards

one as the standard deviation decreases. It is equivalent to the size of the drift term

(a in equation 8.4) in the particle diffusion equation with an MRL of zero indicating

that diffusion is the stronger force and an MRL of one indicating that advection is

entirely dominant.

A convenient equation is given (Batschelet, 1981) to link the standard deviation and

MRL, assuming the standard deviation is given in radians, then:

s2 = 2(1−MRL)

Taking a mean direction of 45◦ (π/4) and a standard deviation of 30◦ (π/6), the

MRL can be calculated to be 0.863. Running this for 100 timesteps the mean dis-

tance from the origin can be plotted:
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Figure 8.4: Plot of the mean Euclidean distance of individuals from the origin under

diffusion with drift against timestep

From Figure 8.4 the mean distance is clearly very linear and has a gradient approx-

imately equal to our MRL; this is consistent with the expected mean from equation

8.4 of a (equivalent to MRL) multiplied by time.

Controlling for this drift, i.e. taking the distance from the mean location for each

timestep, would result in similar results to our simple diffusion.

This is entirely suitable for models where there is true advection (an exogenous flow

whose bulk motion moves the particles); however, unlike particles, the drift for birds

would be endogenous and would be determined by their homing instinct. A simple

example of two birds (in the Republic of Niger) and their nesting grounds (in Turkey

and Spain) shows why the traditional advection approach is not viable:
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Figure 8.5: Locations of two birds (red) and their nesting grounds (blue)

Figure 8.5 shows that to reach their nesting grounds, each of the two birds is re-

quired to head in completely different directions and this would be the case for all

birds. As such, each bird would have a drift or endogenous direction of it’s own that

will get increasingly different from those of other birds as they move up into Europe

(initially all birds will be moving broadly north and so variation in direction will

be low). Theoretical results will not be viable in these circumstances though con-

trolling individually for each bird’s drift would give results similar to simple diffusion.

To model this kind of movement, the wrapped Normal distribution will still be used,

but with a mean calculated for each bird based on where it is at a particular time

and where its nesting grounds are in relation to this.

8.2.4 Obstacle Avoidance

As discussed for our models in previous chapters, the homing instinct is only one of

two main determinants of how birds migrate, the other being obstacle avoidance. In

the more mathematical particle diffusion models, obstacles tend to be limits on the

x or y plane and have an absorbing or reflecting property. This allows for analytical
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solutions to be derived and reflects the behaviours of many physical and chemical

processes. However, it is less realistic for avian migration where an avoidance strat-

egy is often adopted. For many of the existing ornithological models (Erni et al.,

2003; A. Vrugt et al., 2007), this is often dealt with using a ’zugknick’ which is a shift

in a birds endogenous direction either at a particular point in time or space. For

very simple migration paths this can work, the papers in question (Erni et al., 2003),

used birds migrating south from Scandinavia to Africa with a change in direction at

a point in latitude and both papers use changes based on coastlines, but for many

birds traveling from different wintering grounds to a variety of nesting grounds this

is not possible.

Many other models, including some of the diffusion simulations, make use of perfectly

circular obstacles in order to make use of the simple geometric properties this offers,

but again this would not adequately describe the behaviour of migrating birds who

must deal with irregularly shaped obstacles such as the Mediterranean or English

channel.

Instead, a simple approach based on birds detecting multiple small obstacles will

be used, such that the birds will tend to avoid water and therefore display obstacle

avoidance behaviour. A number of points will be regularly distributed throughout

the bodies of water in our geographic area with the points being used to approxi-

mately map the overall obstacle.

This can be illustrated by examining the case of a single bird:
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Figure 8.6: Location of a bird (red triangle) and its nesting grounds (filled red

triangle) and regular points indicating water (blue)

In Figure 8.6 if the bird was to take a direct route to its nesting grounds then this

would entail crossing over a body of open water which the majority of bird species

tend to avoid where possible (Dorst, 1962). The bird will instead react to this body

of water and this combined with the variation in orientation will result in the much

less direct route in Figure 8.7:

Figure 8.7: Location of a bird (red triangle) and its nesting grounds (filled red

triangle) and regular points indicating water (blue) and the birds migratory path

(red)
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Focusing in on the north of the Red Sea, the behaviour governing obstacle avoidance

can be examined.

Figure 8.8: Position of bird at t=45 (red triangle) and at t=46 (red circle) and

regular points indicating water (blue)

In Figure 8.8 the position of the bird at two consecutive time points is shown as

well as the obstacle points. At timestep 45 (the red triangle), all obstacles within

flight distance for the next time step will be found and their circular mean will be

calculated. Assuming a set of angles α1, α2....αn for the n obstacles within range

then the mean (ᾱ) can be found:

ᾱ = tan−1

(
1

n

n∑
j=1

sinαj,
1

n

n∑
j=1

cosαj

)
(8.20)

The arithmetic mean is not suitable for data from circular distributions, which is

why Equation (8.20) is needed. This can be illustrated with a simple example; two

data points of 0◦ and 360◦ which are effectively the same and so the true mean should

again be 0◦ or 360◦ but if the arithmetic mean is used then the result would be 180◦.

Taking the circular mean of the directions to all relevant obstacles would give the

mean direction of obstacles. Adding 180◦ to this gives a direction that moves directly

away from the mean obstacles. Combining this with the bird’s endogenous direction
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can give a direction of movement for the next timestep.

Considering the bird at t=45 in Figure 8.8, then all the angles that help determine

its direction of movement for the next timestep can be plotted.

Figure 8.9: Directions measured for bird movement based on Figure 8.8 from t=45:

direction to nesting grounds (blue), direction of obstacle within flight distance (or-

ange), direction of obstacle avoidance (red) and direction of movement for next

timestep t=46 (green)

In Figure 8.9 the blue arrow is the endogenous direction indicating the direct route

between the bird and its nesting grounds. In this case, there is only one obstacle

found within a day’s migration distance and the direction between the bird and this

point is shown by the orange arrow with the obstacle avoidance direction being di-

rectly opposite (the red arrow). The endogenous and obstacle avoiding directions

are then averaged to find the direction of movement shown by the green arrow.

This should result in obstacle avoidance the majority of the time. For the model,

the distance flown and the sample angle for each timestep will be stochastic and so

there is the potential for a bird to move out into an area that birds would generally

avoid but this would be an exception rather than the norm.
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8.2.5 Continuous Space Model

Since there is no interaction between birds, then there is no need to model those

that are not carrying CCHFV positive ticks. Therefore, the first parameter to be

found for each bird will be the number of ticks it carries. This will be randomly

sampled from a negative binomial distribution and any bird with zero ticks will be

removed from the model. For each tick, a number of days of on-host attachment will

be sampled.

The starting location for each bird will be randomly sampled from the wintering

grounds for that species. For nesting grounds, i.e. finishing location, a country

will be randomly selected for each bird with probabilities for a country based on its

proportion of total bird numbers (birds for that country divided by total European

population). A spatial point would then be randomly selected from that country.

For each timestep, the endogenous angle will be calculated for each bird. A migratory

flight distance will be sampled for each bird for that timestep using the appropriate

vbirdspecies distribution; the obstacles within this range will be found and the direction

of obstacle avoidance will be calculated. The circular mean of these two directions

will then be found and used as the mean direction of movement for that bird in this

timestep.

A sample direction from the wrapped Normal distribution with the calculated mean

and a standard deviation based upon bird orientation studies, is taken for each in-

dividual bird and the movement in the x and y direction is found. A bird’s current

location will then be updated accordingly and each tick’s days on-host attachment

time will decrease by one. When the attachment time becomes zero, the current lo-

cation of the relevant bird will be recorded. Once a bird reaches its nesting grounds,

it will stop migrating and its location will no longer change.
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Parameter estimates

The majority of parameter values were identical to those in Chapters 6 and 7. How-

ever, since migratory flight speed is now variable within timesteps and across indi-

viduals, then it will be described by a uniform distribution across the values used in

these earlier chapters. The uniform distribution was chosen as the different param-

eter estimates are equally valid and so any value within the range should be equally

likely.
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Table 8.1: Estimates of parameter values for bird and tick behavioural factors in

continuous space model

Parameter Description Value(s) Reference

vQuail

Distance (km) covered per day

during spring migration by the

common quail

U(150,160) (Perennou, 2011)

vWarbler

Distance (km) covered per day

during spring migration by the

willow warbler

U(62,114) (Payevsky, 2013)

vWheatear

Distance (km) covered per day

during spring migration by the

northern wheatear

U(110,147) (Payevsky, 2013)

vPipit

Distance (km) covered per day

during spring migration by the tree

pipit

U(57,106) (Payevsky, 2013)

vBunting

Distance (km) covered per day

during spring migration by the

ortolan bunting

U(181,243) (Payevsky, 2013)

a Tick Length of Attachment 26 (Gale et al., 2011)

µtick
Mean number of ticks on migrating

birds
0.049 (Gale et al., 2011)

ρprev
Prevalence of CCHFV in

Hyalomma ticks
0.0001, 0.0007528

(Gale et al., 2011),

(Lindeborg et al.,

2012), (Palomar

et al., 2013)

σorientation
Standard deviation of direction of

bird migration
54◦, 30◦

(Batschelet, 1981),

(Erni et al., 2003)
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Number of runs

To determine the number of runs required for convergence, the model was run 150

times and the standard error of the number of ticks deposited in Spain (chosen as a

country that consistently had ticks deposited and so non-zero data) was taken across

increasing number of runs. There is no clear ’elbow’ in the standard error (Figure

8.10) after a particular number of runs unlike in the previous chapters. There does

seem to be a slightly steeper decrease up to about 50 runs so again this number was

chosen.

Figure 8.10: Standard error for number of ticks deposited in Spain under standard

parameter values

8.2.6 Scenarios

To investigate the sensitivity of the model to its parameters four distinct scenarios

were considered. These scenarios were identical to scenarios 1, 2, 3 and 5 used in

Chapters 6 and 7. In all these scenarios the speed of migration is now a distribution

across the range of estimated migratory speeds, hence why scenario 4 from the pre-

vious chapters (the increased migration speed) is not used.

The model was first run with the minimum of the defined parameters, for all tick

related factors and for the orientation of bird migration, and the number of CCHFV

infected ticks per country was calculated for each run. This is the baseline scenario
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and was referred to as scenario one.

For scenario two, as before, everything was repeated with an increase in tick preva-

lence to the value calculated in Chapter 5 and used in the 2 previous models and

the number of ticks was calculated to investigate the affect of an increase in CCHFV

prevalence amongst ticks on the risk of the virus being imported into Europe via

migrating birds.

The model being run with the higher population estimates from Table 4.5 was sce-

nario three and the final scenario, still referred to as scenario five to maintain consis-

tency with previous chapters, used a higher level of orientation amongst migrating

birds.

8.3 Results

As in the individual agent cellular automata (Chapter 7), the results for this model

will be restricted to integer values and, as in that chapter, to determine the best way

of summarising these results the Normality of the data was inspected. A histogram

of the results for the common quail for Spain under the baseline scenario was pro-

duced and with a fitted Normal curve (Figure 8.11). The Shapiro Wilk normality

test was also carried out returning a p-value of p < 0.001.
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Figure 8.11: Histogram of level of tick incursion for Spain under standard parameters

and average population numbers

In Figure 8.11, there is very little fit between the data and the proposed Normal

distribution and, since the p-value from the Shapiro Wilk test is extremely small,

then it is safer to assume results are not Normal. Therefore, results will summarised

as in Chapter 7 with a full selection of summary statistics.

8.3.1 CCHFV Incursions to all of Europe

Examining the number of ticks being introduced into Europe, we can plot the ex-

pected numbers under each of our scenarios:
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Figure 8.12: Boxplot of number of ticks introduced into Europe under each scenario

As was found in the previous models (chapters 4, 6 and 7), the level of sensitivity to

changes in prevalence is greater than for any of the other parameters. From Figure

8.12 it can be seen that the level of variation in risk and the overall level of risk rep-

resented by the increased level of CCHFV prevalence is the highest for our scenarios.

The baseline scenario, as expected, represents the lowest risk of CCHFV positive

tick introduction and has the least variation in results. In contrast to the previous

chapters, the difference between scenarios is much smaller, the ranges of number of

CCHFV positive ticks for each scenario overlap with other scenarios much more than

was seen previously.

Out of the remaining scenarios there does not seem to be much of a difference between

the expected number of CCHFV positive ticks being introduced, though increasing

the level of orientation of a migrant’s flight results in more varied results than are

produced under the higher population estimates.
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Summary statistics of these results can be found in table 8.2, ordered by increasing

mean, which illustrate the higher risk and level of variance present in scenario 2.

Table 8.2: Summary statistics of number of ticks introduced into Europe under each

scenario

Scenario title

(number)
Mean

Standard

deviation
Median Range

Baseline (1) 2.96 1.87 3 8

Increased Population

(3)
9.14 2.35 9 10

Increased Orientation

(5)
10 2.97 10 14

Increased Prevalence

(2)
22.8 5.46 23 27

Table 8.2 supports the lack of a difference between scenarios 3 and 5, increased pop-

ulation and increased level of orientation, with their being only a small difference

between their mean and median estimates.

To inspect whether the geographic distribution of risk changes between scenarios,

plots can be produced (Figure 8.13). Once again, risk is not uniformly distributed

across at risk countries and so as discussed in the previous chapter plotting as a

proportion of total risk is not useful. To negate this issue then ordinal rankings of

risk will be used.
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Figure 8.13: Geographic map of risk by rank; most at risk country (red) shading to

no risk (white)

While there are some slight differences in Figure 8.13, in particular France and Ger-

many under the increased prevalence scenario and baseline versus the increased pop-

ulation and increased orientation scenarios, generally, the geographic pattern of risk

is fairly similar under each scenario as far as the more at-risk countries are concerned.

8.3.2 CCHFV Incursions by Individual Bird Species

Summary statistics for each individual bird species were derived to examine whether

there is a species difference in the sensitivity to parameters. In Table 8.3 it can be
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seen that the Ortolan Bunting represents the greatest risk under all of the scenarios.

In addition, under all scenarios the Willow Warbler represents no risk and the Tree

Pipit represents almost no risk.

The Ortolan Bunting is the only species of the five that represents a risk under every

scenario and the Willow Warbler is the only species that has no risk of introduc-

ing CCHFV positive ticks despite any parameter changes. Of the three remaining

species, the Common Quail and Northern Wheatear have means that are always

greater than zero but the median values are zero for some scenarios; in particular,

the baseline scenario. Increasing the population or prevalence results in medians that

are greater than zero for both species. Both these scenarios result in an increased

number of birds carrying CCHFV positive ticks, so an increase in the expected num-

ber introduced into Europe is not surprising. Increasing the orientation results in a

higher median for the Common Quail only.

The final species is the Tree Pipit, which has a small risk of introducing infected

ticks when migrating with an increased level of orientation. This is equivalent to in-

creasing migration speed as better navigation results in a quicker migration though

it is interesting that the same change did not yield a difference in results for the

Willow Warbler.
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8.3.3 Countries

As in the previous chapters, it is worth looking at the most at-risk countries to iden-

tify areas of greater risk. The five most at-risk countries for CCHFV positive tick

introduction are listed in Table 8.4 for each scenario.
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Examining Table 8.4, there are three countries that consistently occur although not

always in the same rank; however, Turkey, the most at-risk country under every sce-

nario, has a much greater level of introduced CCHFV positive ticks than any other

country. Plotting the results in Table 8.4 yields Figure 8.14 which shows that there

is a rapid decrease in risk after the most at-risk country.

Figure 8.14: Histograms of level of tick incursion for top five most at risk countries

for all bird species and for each scenario

The pattern or rate of reduction seems to be the same for each scenario and to

further test whether this is the case, the proportion of risk for each country can be

plotted (Figure 8.15). This is the proportion of each country out of the total risk

for the top five countries. Examining the plot, it would seem that changing the pa-

rameters does not cause much of a change as far as the proportion of risk is concerned.
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Figure 8.15: Proportions of level of tick incursion for top five most at risk countries

for all bird species and for each scenario

8.4 Discussion

In this chapter, a continuous space model was developed to examine the level of risk

represented by migrating bird species introducing CCHFV positive ticks into Eu-

rope. After being run for the five most populous and at-risk bird species, estimated

numbers of CCHFV positive ticks were found for each country.

Compared to the previous two chapters, there are now only four scenarios, Figure

8.12 and Table 8.2 show that increasing the prevalence of CCHFV positive ticks has

a greater impact than increasing the other parameters and also results in the great-

est variation of results though not markedly so. As would be expected, the baseline

scenario equates to the lowest level of risk and also the lowest variation and range

of results. The remaining scenarios of increased bird populations and an increased

level of orientation have a very similar effect on the number of CCHFV positive
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introduced ticks.

There is much more overlap in results across scenarios, which is illustrated in Figure

8.12, meaning that it is difficult to say whether or not the scenarios are significantly

distinct, though the inter quartile range for the increased prevalence does suggest

that it is different from the remaining scenarios.

Comparing these results to those from the other three modelling approaches, it

is clear that modelling birds as individual agents results in the estimated level of

CCHFV positive tick incursions decreasing. The mean and median results are lower

than the mean results for the aggregated cellular automata approach (Table 6.2) or

minimum results for the geographic information system approach (Tables 4.8, 4.6

and 4.9). In comparison to those for the individual agent model (Table 7.3), there

does not seem to be much of a difference. If the scenarios are taken as being distinct,

then the order of the scenarios is, in effect, the same as for the aggregate cellular

automata and so is in agreement with the sensitivities found in Chapter 4.

The maps of risk of tick introduction (Figure 7.4) show a pattern of risk that is fairly

consistent between scenarios and is very much focused round countries that are ma-

jor parts of the main migration routes for birds flying between Africa and Europe.

The top at-risk countries for each scenario are, however, less consistent (Table 8.4)

though the top place is always held by the same country. This country, Turkey, is

consistently at the top in all the preceding chapters (Chapter 4, 6 and 7) and has

a historical problem with CCHFV. Spain and Cyprus are also both repeatedly in-

cluded where CCHFV has recently been detected in the former but is not believed

to be present in the latter meaning that this continuous space modelling approach

suggests a definite possibility of it being introduced.

Figure 8.13 shows a much tighter geographic distribution of risk in comparison to the

maps for the aggregated cellular automata approach (Figure 6.4) or the individual

agent based cellular automata (Figure 7.4) suggesting that freeing up the movement

of migratory birds has reduced the speed of their northwards movements. Table 8.4

and Figures 8.14 and 8.15 show there is little variation in the geographic distribution
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of risk between scenarios. Figures 8.14 and 8.15 shows that the most at-risk country,

Turkey for all models, explains the vast majority of total risk even more so than the

results in Chapters 6 and 7.

The risk represented by the different species in the continuous space model (Table

8.3) reveals that out of the five species modeled, the risk of CCHFV positive ticks

being introduced into Europe can be attributed almost entirely to just one of them.

While the Tree Pipit does introduce a single CCHFV positive tick under scenario

five, it and the Willow Warbler can generally be regarded as posing no risk of intro-

duction. The Common Quail and Northern Wheatear do carry a risk of introducing

CCHFV positive ticks, but the vast majority (over 78%) are introduced into Europe

by the Ortolan Bunting.

While there is a great deal of difference between the overall results for the two aggre-

gated population approaches, the geographic information system and the aggregated

cellular automata, there is less of a difference between the individual agent based

cellular automata and this model. This could suggest that modelling birds as individ-

uals is very important in terms of estimating risk but that the method of movement

and settling behaviour can be simplified without a great difference being seen in the

estimated risk.

However, when examining the geographic distribution of this risk within Europe,

there is some difference between the two individual agent based models. In the

continuous space model, a much greater proportion of the total number of CCHFV

positive ticks are deposited in Turkey and a relatively small number are deposited

elsewhere. For the individual agent based cellular automata, the majority of risk

is still associated with Turkey but there is now a much greater risk associated with

Spain as well. CCHFV has been found in Spain but the method of its introduction

is less certain (Foley-Fisher et al., 2012).

Examining the two methods from a species approach also reveals a difference. In

both cases, the Ortolan Bunting is the most important species in terms of introduc-

ing CCHFV positive ticks, but it plays slightly more of a role in the continuous space
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model than in the individual agent based cellular automata.

The lack of certainty in the method of CCHFV introduction into Spain means that

the much lower risk associated with Spain in this model could reflect a real world

pattern, in which case, this more detailed modelling approach is required when prop-

erly evaluating the risk of CCHFV positive ticks being introduced into Europe. The

large proportion of risk focused round the Ortolan Bunting and Turkey, and so the

eastern migration route, means that surveillance and preventive methods could be

restricted to key areas and species.

In summary, all of the modelling approaches suggest that surveillance for CCHFV

positive ticks being introduced can be made more effective by focusing on key geo-

graphical areas. The more realistic the model, the more the results suggest a focus

on the eastern migration route for surveillance; so a focus on Turkey. Focusing ef-

forts on countries that lie along migratory routes is not a surprising result; what is

of much greater interest is that all modelling approaches suggest that efforts should

not focus on the most populous at-risk species, but that instead a combination of

population and migratory speed should be used to select the species to be focused

on. As the modelling approach became more realistic, the strength of this conclusion

increased so any surveillance programs should take this into account.
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Chapter 9

Discussion

The overall aim of this thesis was to identify useful sources of information and meth-

ods for examining the risk of introduction of exotic pathogens into Europe. This was

addressed by firstly investigating available data sources including historical data and

expert opinion data and the different methods used to analyse these data as well as

some of the issues inherent to data of these types. These issues required the inves-

tigation of transformational techniques or variants of more common statistical tests

and highlighted the dangers of applying the more well known tests to datasets with-

out investigation. In relation to the search engine queries, it highlights the risks of

poor sub-sampling techniques and why at the current level of data availability many

of the results based on this source of data could well be spurious. From a detailed

analysis of the expert opinion data, some key emerging pathogens were identified

and, considering their characteristics, a potential biggest emerging risk was identi-

fied.

The second part of the thesis focused on this key risk, a particular method for the

introduction of the identified pathogen, whereby geographical and host species data

were used to predict the risk of it being introduced into Europe. Different models

were investigated, ranging from the simplest but most efficient, up to the more com-

plex but more computationally time consuming stochastic models. These models

also progressed from the least realistic, with uniform spread of populations, through

to the more realistic, with modelling of individuals through continuous space. Each

of these models highlights issues that are worth considering for future work or for

263



the examination of current published work, and the variation in results emphasises

the need to consider these issues closely.

9.1 Key Findings

In Chapters 2 and 3, expert opinion data on current and emerging threats collected

at an EPIZONE conference were outlined and analysed. These data examined what

the experts viewed as important in terms of a diseases impact i.e. economic, human

health or animal health impact, which diseases were most likely to be introduced,

spread and persist, both now and in the future, and what factors they thought might

influence changes between now and then. In Chapter 2, a univariate approach for

analysing these data was used to identify the diseases experts viewed as the most

important emerging threats as well as factors that might contribute to these views.

Delegate’s scoring behaviours were examined separately for individual groups and it

was found that the background or area of expertise of a delegate was not particularly

important in determining their opinion. The sole exception seeming to be Foot-and-

mouth disease, for which a delegate’s background was found to be significant with

those from an industry background viewing it as less of a threat. Many of these

industry delegates worked in the development of vaccine and anti-viral development,

so potentially viewed this disease as less of a threat due to a greater knowledge of its

treatment. Stronger delegate bias was found in relation to a delegate’s geographical

region and whether a delegate has worked on a disease group. The diseases a delegate

works on was also found to be significant in almost all cases and regional significance

was found in many of the results. This suggested a possible bias whereby a delegate

allowed their own work or outbreaks common in their area to affect their views on

threats to all of Europe. However, it is also fair to assume that an expert would

want to work on diseases that they genuinely believe to be important so for the first

of these this may not be a true bias but just another reflection of a delegate’s expert

opinion.

An additional, though unsurprising, trend that ran through most of the results was

that delegates were less certain about the future compared to the present, with one of
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the key differences between the two being the increasing importance of the zoonotic

arbovirus group, a group containing WNV, RVF and CCHFV. This was the most

important conclusion of this chapter: that this particular disease group was viewed

as a much more serious threat in the future, possibly at the expense of threats with

a historical precedent such as Influenza and Foot-and-mouth disease. This means

that a large number of delegates from diverse regions and backgrounds identified a

small number of exotic pathogens as being the most important emerging threat.

In Chapter 3, a multivariate approach was used to examine all disease group scores

simultaneously in order to take into account interactions and trade offs between

them. Many of the same patterns were found as for the univariate approach, includ-

ing evidence of regional bias and a delegate’s bias towards the disease they worked

on. Once again, there was less certainty relating to future risk and there was seen to

be an increased future importance for the zoonotic arbovirus group. This reinforced

the key messages of the previous chapter. Even when examining the views on all

disease groups simultaneously, one group of diseases stood out as a threat and it was

one member of this group of diseases that would form the basis for the work in the

rest of the thesis.

The disease group identified in Chapters 2 and 3 contained three zoonotic arboviruses,

namely West Nile Virus, Rift Valley Fever and Crimean-Congo Haemorrhagic Fever

and, of these, the latter was selected for more detailed work, specifically the risk

of introduction of the virus through ticks on migrating birds. As such, the second

part of the thesis involved making use of available data on host populations and

behaviours to model and estimate the risk of an exotic pathogen being introduced.

CCHFV was selected as it has a viable vector present throughout Europe and, in

Chapter 4, the lifecycle of the disease, the behaviour of the birds that could introduce

it to new areas and the available parameter data were explored.

In the rest of Chapter 4, a model based upon one previously published (Gale et al.,

2011) was developed in order to introduce a spatial distance element and analyti-

cal and simulated solutions were found. The analytical and simulated results were

broadly similar to each other, but were quite different from those in the previously
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published approach (Gale et al., 2011) on which the model was based. The bird

species that represented the most risk was the Ortolan Bunting and it was found

that the number of introduced CCHFV positive ticks is much more sensitive to a

change in CCHFV prevalence than a change in any parameter relating to the birds

themselves, and that a small change in prevalence will have a large effect on our main

estimate of risk, that is, the number of CCHFV positive ticks introduced into Europe.

The effect of parameters relating to distance, migration speed and tick feeding time,

showed more variation between different bird species. Relaxing the assumption of a

uniform distribution of birds across Europe and introducing the spatial element to

the model, where migratory distance became a factor, meant that for some species

the larger part of their populations could not contribute to introducing CCHFV pos-

itive ticks, due to being unable to reach their nesting grounds within the required

time. This means that, under this model, the two most populous of migratory bird

species were in fact the least important, as their migratory flight times meant that a

relatively small proportion of the species would reach Europe within the maximum

on host attachment time for ticks. As such, even if ticks were to attach themselves

to the host immediately before migration, there was still little chance of them be-

ing deposited in Europe. In contrast, some of the other bird species were found to

introduce more CCHFV positive ticks. This means that any examination of a virus

where time is a factor for either the vector being attached to the migratory bird, as

in CCHFV, or for the infectious period of the migratory bird itself, such as WNV,

must take account of the distance and length of time of migration.

Taking account of bird movement alone was not enough; the use of a uniformly dis-

tributed population in Europe as in Gale et al. (2011), even if distance of migration

is explicitly taken into account, is still a seriously flawed assumption. Since it affects

the number of birds at a particular geographic point, it will therefore affect the mi-

gratory distance for the birds; obviously, this could be in a negative or positive way,

more birds could be assumed to have further to migrate thus lowering the potential

risk, but in either case it does not result in an accurate assessment of risk.

The results for the most at-risk countries are consistent with what little real data
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there are. However, results from this modelling approach must be viewed with some

caution due to a couple of weaknesses with this approach. Firstly the possibility of

ticks detaching from their host before reaching their breeding grounds but still de-

taching in another European country and so contributing to the risk of introduction.

Secondly, the distributions of migratory distance make use of the Euclidean distance

which is a straight line between the two points and this is not realistic given the

routes used in migration. In Chapter 6, an aggregated cellular automata modelling

approach with a more spatially explicit element was used to partially address these

two issues. However, before doing this the level of parameter uncertainty was exam-

ined. The level of difference found in the analytical and simulated results means that

tackling many of the parameter uncertainties, especially for the prevalence of CCHFV

amongst larval and nymphal ticks on migratory birds, would be very important in

estimating the risk represented by CCHFV and to examine some of the parameter

values more fully, a Bayesian approach was applied in Chapter 5 to try and form

a better estimate for the prevalence of CCHFV amongst ticks by combining expert

opinion along with the limited data available. This resulted in an alternative higher

estimate of CCHFV prevalence that was used as the higher risk scenario in the later

chapters with the lower estimate being kept as the value derived from expert opinion.

In Chapter 6, a more spatially explicit cellular automata approach was used to ad-

dress the issues identified with the model in Chapter 4. Despite a different modelling

approach, it was still found that increasing the prevalence of CCHFV positive ticks,

even by the amount calculated by the Bayesian approach in Chapter 5, still has

far more impact than increasing any of the other parameters and that, generally,

the pattern of parameter sensitivities seemed the same with or without the explicit

spatial element and once again, the Ortolan Bunting represented by far the greatest

level of risk. Two of the more populous species, the Tree Pipit and the Willow War-

bler, represented almost no risk of introducing CCHFV in this modelling approach.

In addition, the number of expected CCHFV positive tick incursions were much

lower. Thus, modelling the actual movement of migratory bird populations had a

noticeable affect on the estimated risk of CCHFV positive ticks being introduced

into Europe. This approach, however, still did not truly represent bird migratory

behaviour as it made the assumption that birds ceased migrating in the first viable
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area in Europe and this is not what actually occurs where birds instead return yearly

to the same breeding area. To more properly reflect this, a model was developed to

include a form of random settling behaviour and this required an individual agent

based model though it was still based round a cellular automata type model and so

still had discrete spatial steps.

With all birds being modeled individually (Chapter 7), it was found again that in-

creasing the prevalence of CCHFV positive ticks had the greatest impact on CCHFV

incursions and compared to the previous model, the expected number of CCHFV

positive ticks being introduced was much lower and there was a greater level of vari-

ation in the results. There was also less difference between scenarios when modeled

from an individual agent perspective. This suggested that moving away from popula-

tion models to an individual based model can reveal potentially important dynamics

in migration behaviour.

As in the previous approaches, the Ortolan Bunting represented by far the great-

est level of risk, and the species with the largest population, the Willow Warbler,

represented no risk of tick introduction; however, migratory behaviour could still be

more explicitly modeled: while birds no longer simply settled in the first available

breeding space, the model still did not show the homing instinct of migratory birds.

In Chapter 8, a continuous space model was developed and, in line with all modelling

approaches, increasing the prevalence of CCHFV positive ticks had a greater impact

than increasing any other parameters. This consistency of result under the simplest

and more complex model suggest that there could be some real value in attempting

to gather more data so as to properly estimate the true value of this parameter and

so to be able to correctly estimate the risk of CCHFV being introduced to Europe.

However, under this more complex model, there was much more overlap in results be-

tween scenarios, meaning that it is difficult to say whether or not the risk of CCHFV

introduction is that sensitive to change. The results from the different modelling

approaches displayed an indirectly proportional relationship between the estimated

level of CCHFV positive tick incursions and the complexity of the model. This would

mean that previously published papers making use of very simple models may be
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overestimating the level of risk of CCHFV introduction.

The maps of risk of tick introduction showed a pattern of risk that was fairly con-

sistent between scenarios, and across the three different types of spatial models.

As would be expected, these were very much focused round countries that are ma-

jor parts of the main migration routes for birds flying between Africa and Europe.

Turkey was consistently the most at-risk country; Italy, Spain and Cyprus also were

repeatedly included in the largest results. CCHFV has recently been detected in

Spain, but is not believed to be present in either of the other countries meaning that

increased monitoring in these countries may be worthwhile.

As the complexity of the model increased, a much tighter geographic distribution of

risk was seen, suggesting that freeing up the movement of migratory birds reduces

the speed of their northwards movements which is reflected in the lower results for

the more complex models as less birds reach Europe before any ticks they are car-

rying detach.

As the migration of birds became more realistically modeled, the importance of the

more populous species as a proportion of the birds introducing CCHFV positive

ticks decreases and the importance of the less populous but faster Ortolan Bunting

increases. This might be one of the more important results, as any paper estimating

the risk or surveillance effort would intuitively target the larger species under the

assumption that sheer numbers will mean they pose the greatest threat and, even in

this thesis, the most important species may have been missed as only the top five

identified species were selected.

While there is a difference between the overall results for the two aggregated pop-

ulation approaches, the geographic information system and the aggregated cellular

automata, there is less of a difference between the individual agent based cellular

automata and this model. This could suggest that modelling birds as individuals is

very important in terms of estimating risk but that the method of movement and

settling behaviour can be simplified without a great difference being seen in the es-

timated risk.
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However, in the continuous space model, a much greater proportion of the total num-

ber of CCHFV positive ticks are deposited in Turkey, and a relatively tiny number

are deposited elsewhere. For the individual agent based cellular automata, the ma-

jority of risk is still associated with Turkey but there is now a more significant risk

associated with Spain as well. CCHFV has been found in Spain, but the method of

its introduction is less certain (Foley-Fisher et al., 2012), so whether this presence

of the pathogen can be taken as support for the slightly less complex model is not

clear. The lack of certainty in the method of CCHFV introduction into Spain means

that the much lower risk associated with Spain in the final model could reflect a real

world pattern, in which case, this more detailed modelling approach is required when

properly evaluating the risk of CCHFV positive ticks being introduced into Europe.

The large proportion of risk focused round the Ortolan Bunting and Turkey, and

so the eastern migration route, means that surveillance and preventative methods

could be restricted to key areas and species.

Overall, this thesis has found that a particular group of viruses are viewed as an

important potentially emerging threat for Europe in coming years, and further work

and investigation of the risk of introduction of these viruses should be considered.

Any work that evaluates such a risk must take into account all factors, not just those

that are disease related but also geographic factors, especially the distance across

which these viruses might have to be carried; two of the three identified, WNV and

CCHFV, can be introduced into a region by birds, but in both cases there is a time

dependency. To properly model this risk, a spatially explicit model that correctly

reflects bird migratory behaviour should be used. The approaches highlighted in this

thesis show that, for CCHFV, there is a definite risk of introduction, but it may be

smaller than that which has been estimated previously. The results also show that

the bird species that should be focused on will not be those intuitively identified, and

the migratory speed of birds is a key factor in identifying the species that represent

the most risk of introducing CCHFV positive ticks into Europe.
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9.1.1 Modelling approaches

As discussed in Chapter 1 the modelling approaches used in the latter half of the

thesis move from less to more computationally complex and relax a number of bio-

logical assumptions as they do so. The initial modelling approach adapted the linear

model from Gale et al. (2011) in order to introduce a spatial distance element and

allow for non-uniform distribution of birds and resulted in three sets of results. The

first made use of an assumed Normal distribution for the migration distance between

wintering grounds in sub-Saharan Africa and Europe as well as a uniform distribu-

tion of bird populations to derive results analytically. As such it was extremely

efficient since there was no time required for the running of simulations; but while

it was an improvement from the model in Gale et al. (2011) it still had a number

of very questionable assumptions. The second made use of the same assumptions to

arrive at analytical solutions and as such had the same flaws, however it was very

efficient to simulate due to the low level of model complexity and was a good initial

baseline for the development of more complex models. The final approach relaxed

the assumption of a uniform European population and used separate non-standard

distributions of distance for each country and a separate uniform distribution of bird

population for each country. Therefore it could be argued to be more biologically

realistic without adding to the technical difficulty of coding since the approach was

identical to the simulation before. Given the greater granularity the computation

time was increased relative to the previous models but with a resultant increase in

the detail of the final output.

The spatially explicit cellular automata model used in Chapter 6 allowed for ticks

to be deposited anywhere along a birds migration route. This was based at the pop-

ulation level and so was still fairly efficient to run with the disadvantage that some

biological assumptions were still in place, in particular the model included a form

of automatic settling behaviour which while easy to simulate was not biologically

realistic. In contrast a form of variable settling behaviour was added in Chapter

7 to an agent based cellular automata approach but to allow for this different set-

tling behaviour each bird had to be modelled individually. This added an additional

level of computational complexity to the model as each calculation had to be carried

out for every bird in the data frame. Each of these approaches, despite increasing
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the time required to produce an estimate, resulted in significantly different results

suggesting that removing these flawed modelling assumptions could be important to

correctly estimating the true risk of introduction. In the final chapter, a continu-

ous space model was developed to allow for freer movement of migratory birds and

for true homing behaviour, rather than an automatic or random settling behaviour,

and this had the greatest computational complexity of all the modelling approaches

with a commensurate increase in run time. As such it would have to be carefully

considered whether this approach added enough value to be worth the additional

time required, given that there was less difference in results between this continuous

space approach and the much simpler cellular automata in Chapter 7 as opposed to

the change between any of the other modelling approaches.

9.2 Further Work

The mathematical approaches used in the latter part of this thesis could be used

to investigate other exotic pathogens. Additionally, it would be interesting to use

another pathogen to see if a similar pattern of risk emerges, that is, do the more

complex but possibly more realistic modelling approaches result in lower levels of

risk? As for CCHFV, with every modelling approach emphasising the importance of

the Ortolan Bunting, it would be worth going through each of modelling approaches

with a much wider range of species, or potentially for the ease of modelling, doing

a sub-selection of species based upon migratory flight speed rather than population

size. In addition, while the majority of papers give the same estimate of tick at-

tachment time, it would be worth investigating the effect of varying the on host

attachment time of ticks. This will have a similar final effect as increasing migration

speed, since it will increase the potential range of introduction, but given the scale of

the parameter the models may be more sensitive to a change in attachment. There

are also additional bird species and populations that migrate into Europe via Turkey

from wintering grounds that are not in sub-Saharan Africa and there would be value

in modeling the migration of these birds using similar approaches to investigate the

threat of introduction of CCHFV, and other pathogens, from Asia.
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With the apparent importance of the level of prevalence of CCHFV in larval and

nymphal ticks it would be of great benefit to have a better estimate of the true value

of this. This could be achieved by the gathering of additional data, or a similar mod-

elling approach could be used, where this unknown parameter is estimated by using

more well known ones. That is, a model of the tick lifecycle in sub-Saharan Africa

could be developed and parameters on the spread of CCHFV between ticks could be

used to investigate what kind of equilibrium values of prevalence there could be. The

models developed here, and the results that were produced, can guide further work

that will allow the key factors, with the greatest impact, to be investigated and, in

this way, the models developed in this thesis could be updated to allow an even more

accurate examination of the risk represented by CCHFV; with further applications

to other pathogens that spread in similar ways and other geographic regions.
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Appendix A

Individual Scores

Table A.1: Logistic Regression: Individual Score Confidence Intervals (Influenza)

Influenza Current Future (2020)

Factor CIs CIs CIs CIs

(Wald) (Profile Penalized) (Wald) (Penalized Profile)

Worked on Flu (1.37, 5.30) (1.39,5.32) (1.97, 8.50) (2.00, 8.61)

Region (East) (0.31, 5.58) (0.30, 5.25) (0.42, 12.23) (0.41, 11.85)

Region(Non) (0.30, 4.96) (0.29, 4.67) (0.43, 11.98) (0.42, 11.67)

Region(North) (1.86, 12.71) (1.94, 13.11) (1.70, 19.20) (1.86, 21.22)

Region(West) (0.93, 5.78) (0.97, 5.93) (1.00, 10.41) (1.09, 11.51)

Table A.2: Logistic Regression: Individual Score Confidence Intervals (BT & AHS)

BT & AHS Current Future (2020)

Factor CIs CIs CIs CIs

(Wald) (Profile Penalized) (Wald) (Penalized Profile)

Worked on

BT & AHS

(2.35, 13.18) (2.41, 13.62) (1.99, 13.27) (2.05, 13.88)
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Table A.3: Logistic Regression: Individual Score Confidence Intervals (ASF)

ASF Current Future (2020)

Factor CIs CIs CIs CIs

(Wald) (Profile Penalized) (Wald) (Penalized Profile)

Worked on ASF (2.74, 20.50) (2.75, 20.30) (2.25, 17.33) (2.24, 17.02)

Table A.4: Logistic Regression: Individual Score Confidence Intervals (CSF)

CSF Current Future (2020)

Factor CIs CIs CIs CIs

(Wald) (Profile Penalized) (Wald) (Penalized Profile)

Worked on

CSF

(0.95, 28.51) (0.79, 31.08) (2.83, 49.22) (2.93, 54.18)

Background

(Industry)

(0.58, 19.96) (0.52, 20.58) NA NA

Background

(Research)

(0.01, 4.04) (0.00, 2.36) NA NA

Table A.5: Logistic Regression: Individual Score Confidence Intervals (Foot-and-

mouth Disease)

FMD Current Future (2020)

Factor CIs CIs CIs CIs

(Wald) (Profile Penalized) (Wald) (Penalized Profile)

Worked on

FMD

(0.89, 5.98) (0.94, 6.15) (1.00, 6.87) (1.06, 7.09)

Background

(EPIZONE)

(0.97, 6.42) (1.02, 6.61) (1.06, 7.53) (1.12, 7.85)

Background

(Research)

(1.37, 9.94) (1.43, 10.23) (1.54, 11.95) (1.63, 12.44)
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Table A.6: Logistic Regression: Individual Score Confidence Intervals (WNF, RVF,

CCHFV)

WNF, RVF

& CCHFV

Current Future (2020)

Factor CIs CIs CIs CIs

(Wald) (Profile Penalized) (Wald) (Penalized Profile)

Worked on

WNF, RVF

& CCHFV

(2.01, 12.24) (2.00, 12.20) NA NA

Region(East) NA NA (0.31, 8.19) (0.27, 7.15)

Region(Non) NA NA (0.73, 11.47) (0.71, 10.99)

Region(South) NA NA (2.57, 19.72) (2.69, 20.55)

Region(West) NA NA (0.97, 6.24) (1.01, 6.55)
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