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Abstract

In this thesis trajectory generation for quadrotors, a type of rotor-

craft UAV (Unmanned Aerial Vehicle), is considered with two different

methods. The first applies the Maximum Principle of optimal con-

trol to derive closed-form analytical functions that describe the trans-

lational states for two different cases of nonholonomic constraints.

Parametric optimisation is used to find the trajectories. Reachable

sets are found numerically and a simple obstacle avoidance method is

demonstrated for both cases.

The second motion planning method found trajectories with polyno-

mial basis functions that are parametrised by an abstract function

between zero and one. This virtual time domain trajectory satisfied

conditions placed on the boundary derivatives and followed a sequence

of desired waypoints. A process for finding a mapping function that

converts the virtual domain trajectory into one on the standard time

domain is developed to minimise the trajectory time whilst ensur-

ing the motion remained feasible by enforcing bounds on the thrust

required from each rotor.

An algorithm that uses additional waypoints where necessary to en-

sure the trajectory does not collide with the gates that define the

course is developed. A method for minimising the accumulated angu-

lar acceleration of the heading angle whilst remaining within a desired

tolerance of the velocity vector angle is also described.

Trajectory tracking is considered by modifying an existing quadrotor

tracking controller on the Special Euclidean group SE(3) to include a

Linear Extended State Observer that estimates and counteracts trans-

lational disturbances. The modified controller is shown to reduce the

position tracking error in the presence of square wave, sinusoidal and

wind disturbances.
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Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) or Miniature Air Vehicles (MAVs) are be-

coming increasingly popular with many new applications made possible by the

development in technology. It is still common for a pilot on the ground to con-

trol the vehicle at some or all stages of a mission but a truly autonomous system

should be capable of deciding where to go and how to get there before successfully

carrying out that plan. This thesis considers these requirements by investigat-

ing the motion planning and trajectory tracking problems. Drone racing is the

chosen application because it is an exciting new sport that is currently in rapid

development and has had little consideration from the academic literature. How-

ever, there are other applications such as package delivery, search & rescue and

security in which the techniques could prove useful.

The challenging nature of the sport ensures a steep learning curve for humans

and currently no autonomous drone exists that comes close to matching what a

skilled pilot can achieve. However, developments in computer vision, differential

GPS, inertial tracking systems and other technologies are soon likely to allow

the types of aggressive trajectories performed by humans to be generated and

tracked autonomously. Different applications have different criteria for rating the

optimality of a trajectory such as energy efficiency, minimising snap (the fourth

derivative of position with respect to time) or minimising time. The objective in

this thesis is to minimise time because in the context of drone racing, maximising

1



Chapter 1 Introduction

a vehicle’s dynamic capabilities to finish the course as fast as possible means

the vehicle is more likely to win the race. It is also necessary to avoid collisions

with obstacles in the environment. In the context of drone racing, gates that the

vehicle must fly through can be considered as obstacles and it is important that

the trajectory generation method is capable of handling them. Drone racing is

often carried out in wide, open spaces with fewer obstacles, than for instance,

an urban environment. However, it is important that a drone closely follows its

intended path in order to avoid collisions, such as when flying through the narrow

gates mentioned previously. A tracking controller is required to achieve this and

must be capable of handling any disturbances such as wind by minimising the

deviation from the planned course. There are few scenarios in which there is no

risk of colliding with obstacles so good trajectory planning and tracking can be

considered universally important.

1.2 An overview of quadrotors and multirotors

Quadrotors are the most common type of multirotor, a general term for rotorcraft

vehicles with two or more propellers that don’t require wings for lift. Multiro-

tors are controlled by varying the thrust generated by each rotor which is typ-

ically done by changing the motor speed. Quadrocopters, quadcopters or even

the shortened form ‘quads’ are common names often used for multirotors with

four propellers. To avoid confusion, in this thesis ‘quadrotor’ shall be be used

throughout when referring to multirotors with four propellers.

1.2.1 A brief history of multirotor flight

Soon after the first heavier-than-air powered aircraft –the Wright Flyer– was flown

in 1903 [1], attempts were made to fly rotary wing aircraft such as the Breguet-

Richet Gyroplane designed by Louis Breguet and tested in 1907 [2]. However,

even by 1922 the multirotor aircraft de Bothezat helicopter built by the United

States Air Service was extremely limited; with a maximum altitude ever achieved

of 5 metres [3]. For manned flight, helicopters dominated the rotorcraft field of

aerial vehicles during the twentieth century. It wasn’t until the advent of modern

electronics that multirotors saw a boom in popularity as small UAVs. The Parrot
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AR.Drone was one of the first commercially available ‘toy’ drones targeted to

the general public. The Phantom series by DJI has also proven popular with

many people attaching action cameras to capture aerial footage. Other industrial

applications have also been made possible and are discussed in Section 1.2.3.

In the past few years multirotors have seen a return to their origins as various

manufacturers have presented their concept for vehicles capable of lifting humans,

an example of which is given in Figure 1.1.

Figure 1.1: Skydiving from a multirotor – An example of a vehicle capable of
lifting a human skydiver was successfully tested May 2017. Image Credit: Aerones.

1.2.2 Multirotors with more or less than four propellers

The principles for multirotors with more than four propellers such as hexacopters

(six rotors) [4, 5, 6] and octocopters (eight rotors) [7, 8, 9] are similar to that

of quadrotors and most of the trajectory generation and control techniques are

transferable. The benefit of using more propellers is increased thrust, allowing

greater payloads like heavy cameras or other sensors. There is also greater fault

tolerance because if the flight controller senses a rotor failure there is redund-

ancy in the system to prevent a crash landing [10, 11]. However, these types of

multirotors are more expensive than quadrotors because additional motors and

speed controllers are required. They are generally bigger than the smaller size

quadrotors preferred in drone racing. Trirotors or tricopters (three rotors) are
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another type of multirotor [12, 13, 14], particularly popular for acrobatic stunts

performed in freestyle flying. They are not typically used for drone racing because

one or more of the rotors must be capable of tilting in order to maintain stability

as opposing co-axial rotor pairs are not available. This means the control system

and mechanical design are more complex because a tilting actuator is necessary.

The active tail element is particularly vulnerable in the event of collision. For the

reasons outlined, multirotors with more or less than four rotors are not considered

in this thesis.

1.2.3 Typical quadrotor applications

There are many practical applications for quadrotors, examples include: remote

sensing for landslides [15, 16] and agriculture [17, 18], package delivery [19] and

structural inspection [20]. These developments and many others are becoming

feasible thanks to the development in sensor, battery and microcontroller tech-

nology. They all require trajectory planning and tracking to accomplish their

tasks although their goals vary. Applications that are not industry orientated,

particularly artistic applications in mainstream entertainment, are increasingly

prominent. During the 2017 Super Bowl, 300 drones formed a flag and other

patterns to accompany the halftime show [21]. Another artistic application is

motion planning specifically designed for cinematographers using keyframes, a

concept familiar to specialists in that field [22], thereby allowing a wider use base

of drone technology.

Hobbyists have played a pivotal role improving the technology by continuing

to push the bounds of what is possible and helping to develop the platforms.

The popular open-source flight software Pixhawk (formerly known as Ardupilot)

originated in the Computer Vision and Geometry Lab of ETH Zurich [23]. How-

ever, amateurs have contributed to the code and helped test the controller on a

wide variety of platforms. For hobby pilots interested in competing there are two

main quadrotor disciplines; freestyle flight where acrobatic stunts are performed

and drone racing, which is the focus of this thesis.
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Figure 1.2: A typical racing drone – A 210mm racing drone fitted with stand-
ard equipment. Image Credit: Author.

1.2.4 Drone racing

Drone racing consists of two or more participants racing their vehicles round a

predefined course. An on-board camera streams real-time video to the human

operator controlling the craft. Also known as ‘FPV Racing’ and ‘Rotorcross’, it

has had much media attention including the article in the popular Make magazine

[24]. Reports such as [25] remark on the worldwide nature of the competitions,

the large sums of prize money available and investment from a variety of sources

which all indicated the growing popularity of the sport. Enthusiasts have been

racing radio controlled vehicles for decades but it is only in the past few years

the weight of the video transmitting equipment and performance of drones has

improved to a level where first person view racing is feasible. Other factors

include the drop in prices and general availability of parts has made the sport

affordable and possible for amateurs. Initially, races were organised informally

but a number of associations (both profit and non-profit) have been formed with

their own rules and regulations [26, 27, 28, 29]. One of the largest races to date

was held in Dubai, 2016 by the World Drone Prix [30] and the course layout is

pictured in Figure 1.3.

The first and, to the author’s knowledge, only autonomous drone racing event

to date within the research community was the competition held at the IROS

(Intelligent Robots and Systems) 2016 conference in Daejeon, South Korea [31].

Nine teams competed in a time trial event inside a small netted, indoor arena. It
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Figure 1.3: Dubai drone racing circuit – The track layout for the World Drone
Prix 2016 Race. Image Credit: World Drone Prix.
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was a challenging contest but the format was only loosely related to drone racing

as practiced by human pilots. The density of gates and obstacles was very high

and the vehicles struggled to determine their location. The vehicle performance

mattered little because of the difficulties in state estimation.

Figure 1.4: IROS 2016 autonomous drone racing course – The course
layout for the autonomous drone racing competition. Image Credit: Author.

1.3 Trajectory generation

Motion planning for autonomous systems is a well studied field of robotics. Gen-

eralised, it is the task of finding a trajectory in the configuration space [32] from

an initial set of states to a desired set of states. It is a challenging problem that

has been shown to be NP-hard in all but the simplest cases [33]. Complex en-

vironments with dynamic and static obstacles require sophisticated planning and

simple point-to-point trajectories are often not enough. Generating a trajectory

enables the vehicle to know where it will be in the future allowing it to calculate

how it will achieve this.

In this thesis there are three criterion by which a trajectory is considered:

dynamic feasibility, obstacle avoidance and optimality. The first two are essential

for a trajectory to be valid. A dynamically feasible trajectory is one that the
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vehicle controls are capable of performing. For instance, requiring an acceleration

beyond the thrust ability of the craft is futile because it is impossible to track such

a trajectory. Obstacle avoidance is also essential and simply involves avoiding

collisions with the physical environment, be that trees, the ground or an artificial

object. Finally, optimality is to be desired but in practice seldom achieved. It

has already been mentioned that trajectory generation is an NP-hard problem

and satisfying the first two criteria is challenging in itself. For this reason, ‘good

enough’ is often acceptable and pseudo-optimal solutions are still of use. These

three criterion will be referred to within the thesis and are introduced individually

in the following sections. They are inherently linked when generating a trajectory

but it is helpful to separate them for the purposes of this introduction.

1.3.1 Dynamic feasibility

One of the main reasons quadrotors are popular platforms, compared to other

UAVs such as fixed wing aircraft, is because trajectory planning is simpler. This

is due to minimal dynamic coupling and fewer constraints on the motion. For

instance, a quadrotor will not stall if its airspeed drops below a certain value. The

differential flatness of quadrotor dynamics has been proven [34]. A system with

this property has an equal number of outputs to the number of inputs. All the

states and outputs can be defined from the inputs analytically without the need to

numerically integrate the system which is computationally expensive [35]. During

this thesis, the quadrotor dynamics are considered a form that facilitates the

flatness of the system. The implication of differential flatness for the quadrotor

system is that a trajectory can be described by just the translational position

and heading angle (the direction of the first axis in the body-fixed frame) as a

function of time; this greatly simplifies the problem of trajectory generation for

quadrotors. In other words, the motion along each axis of the inertial frame and

the heading angle is enough to fully define the trajectory and a full description

of attitude need not be considered at this stage.

A common method for defining the translational states of the vehicle along an

axis is the use of a basis function parametrised by some argument such as time.

After parametrising a basis function with the independent argument, suitable

function coefficients are found to define an analytical expression that describes
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the motion and satisfies any desired conditions on that axis. These conditions

could be values of the higher order derivatives at the boundaries such as velocity

and acceleration or waypoints that must be passed during the motion. Control of

the boundary value derivatives is desirable for motion planning because separate

segments can be joined to form a single, smooth trajectory without discontinuities

where segments meet. The basis function can be analytically differentiated with

respect to the parametrising argument and the higher order derivatives can be

written as an expression. Examples of power series polynomials used for traject-

ory planning include those for UAVs [36, 37] and spacecraft [38, 39]. To illustrate

the concept, a polynomial function is used as the basis function for position para-

metrised by time in Figure 1.5. Polynomials are popular because they are easy to

manipulate, differentiate and implement. However, caution must be taken when

higher order functions are used because stability issues can occur. The order of

the polynomial must be sufficient to allow all the conditions to be achieved. It

should be mentioned that the Gauss-Jordan elimination [40] used for curve fitting

is inappropriate for motion planning because there is no independent paramet-

risation of the functions so there is no control over the boundary derivatives. This

means the direction of the initial and final velocity cannot be controlled.
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Figure 1.5: Polynomial basis function example – A power series polynomial
used as a basis function to describe the position as a function of time using the
equation x(t) = 0.2t+ 0.6t2 − 0.04t3

Polynomials parametrised by time were used in [36] to form linear equations

by matching the order of the function to the number of conditions. This is

easily solved and simple to implement but the lack of flexibility means that for

the trajectory to remain feasible throughout, the dynamic capabilities are not
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fully exploited. If the maximum acceleration was constrained, the acceleration

throughout could be reduced by increasing the trajectory time. However, for

much of the manoeuvre the acceleration would be far below the limit and not

exploit the capabilities of the vehicle, leading to an inefficient and sub-optimal

trajectory. Alternatively, a higher order basis function can be used which allows

for great flexibility. Since there is no longer a single solution for a given set of

conditions, the coefficients can be chosen by minimising a cost function such as

[41] that formulates an unconstrained quadratic program in which the coefficients

are found that minimise the fourth derivative snap. According to [42] this is

indirectly equivalent to minimising the control effort because in the system model

used the inputs are functions of the fourth derivative of position so the trajectories

generated minimise the integral of the square of the norm of the snap. Another

method of achieving greater control over the dynamics is to parametrise the basis

functions with an abstract argument instead of time. Such a trajectory is said to

be in the virtual domain and must be mapped into the time domain before it is

feasible.

The feasibility of a quadrotor trajectory can be assured with a variety of

methods such as limiting the acceleration and rotational rates [43] or kinody-

namic limits on the velocity and acceleration [44]. The disadvantage of using

relatively simple constraints like this is that it is necessary to be overly conser-

vative to ensure thrust available is actually capable of following the trajectory.

One solution is calculating the actual thrust required from the trajectory [41].

In practice a safety margin between the maximum allowable thrust when gener-

ating a trajectory and the rotor’s real limit should be included. This is because

no model is completely accurate and unforeseen disturbances such as wind often

cause more thrust to be required. The size of the safety margin is application

dependent; a drone crashing during a race is of little importance when compared

to a mission critical search and rescue vehicle.

1.3.2 Obstacle avoidance

Obstacle avoidance is achieved by ensuring the vehicle does not enter the forbid-

den regions of the configuration space [45] and stays in ‘free space’. In the context

of motion planning the forbidden region is some area or volume that the system
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cannot pass through. This could be a physical object or an artificial constraint

such as a no fly-zone near an airport. In this thesis it is assumed all the obstacles

are static and known a priori. However, in practice a pre-existing map, combined

with SLAM (Simultaneous Localization and Mapping) techniques and obstacle

sensors like laser range finders would be used to provide the path planner with

real-time obstacle location. For a fully autonomous vehicle, reactive collision

avoidance is essential because the future motion of the other drones is unknown

and cannot be planned in advance. Examples of vision-based positioning systems

have been developed that also have the capability of reactive collision avoidance

include [46, 47, 48, 49]. Fortunately, it’s in the shared interest of all racers not

to collide because mutually assured destruction is almost certain if such an event

occurs.

Ideally a path planner will find a solution if a feasible path exists, or report

that none exist. Such a planner is referred to as a ‘complete path planner’ and one

of the earliest examples was proposed by Lozano-Pérez that found trajectories

for polyhedral robots moving amongst polygonal/polyhedral obstacles [50]. This

was generalised by Laumond for non-polygonal obstacles constructed from line

sections and circular arcs [51]. Other cases based on the ‘Piano Mover’s Problem’

were considered by Schwartz and Sharir [52, 53]. In practice, however, complete

path planners are difficult to implement and costly to compute [54, 55]. For

many problems in the real world, sub-optimal solutions with respect to path

length, found by incomplete planners, are ‘good enough’. For the application of

drone racing, completing the course in the minimum time is desirable but so long

as your vehicle finishes before its competitors you will still win.

The artificial potential field method is one such incomplete path planner that

uses a simple, heuristic approach. An attractive potential is assigned to the goal

region and repulsive potentials to forbidden regions in the configuration space.

These fields can be implemented by direction equations, analogous to electro-

potential fields, or equations developed specifically for the problem. Artificial

potential fields have been applied to a range of applications including robotic

arms [56], wheeled planetary exploration robots [57] and structural inspection

using quadrotors [58]. The major limitation to the artificial potential method is

the risk of becoming stuck in local minima, unable to escape [59]. In practice, this

can be overcome by adding a random-walk to the algorithm capable of leaving
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the local minima but this must be tuned and could be considered too risky for

critical applications. Another drawback is control effort that exceeds the limits

of the vehicle’s capability can be required, violating the criteria that a trajectory

is feasible [60].

Other approaches to the motion planning problem in the presence of obstacles

include sampling based methods. These can be proven to be probabilistically

complete, that is to say, as the number of points sampled tends to infinity, the

probability of a path not being found when one exists approaches zero. The

speed of convergence depends on the sampling method and the visibility of the

free space. The Probabilistic Roadmap introduced by Kavraki [61] consists of two

phases, a learning phase and a query phase. During the first phase, connections

between the sampled configurations are found by a local planner and added to a

topological graph to build a roadmap. Where a connection strays from the free

configuration space it is rejected. The query phase then finds a path between the

initial and final goal using a method such as Dijkstra’s shortest path algorithm

[62]. One benefit of Probabilistic Roadmap Methods is that more than one initial

and final configuration can be defined so a single roadmap can be used to generate

many trajectories. However, the comprehensiveness of this method is also a

drawback because although the second phase is computationally efficient, the

first is not. In cases where a thorough search is desirable this may not be an issue

but for many practical implementations it is too slow.

Driven by the desire to reduce computation time other, less comprehensive

methods, were developed. One of the most widely used is the Rapidly-Exploring

Random Tree (RRT) method introduced by Lavalle [63]. Instead of comprehens-

ively mapping the entire free space, a ‘tree’ of paths is incrementally constructed.

In its simplest form, points are sampled in the free space and a tree of paths

are formed from the initial configuration. The node on the existing graph closest

to that of sampled node is used as the initial condition for a local path planner

to the new node. If the new path segment enters at the forbidden region of the

configuration space it can be either rejected or terminated at the boundary of

the obstacle. Various extensions to RRT have been proposed, including using a

potential function planner to improve the local path planner that connects nodes

[64]. The sampling can also be changed to suit the problem, instead of random

choosing nodes or uniform sampling it can be biased, using potential functions
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for instance [65]. The RRT method can also be adapted to reactively account for

obstacles by pre-computing branches off-line and rapidly switching between them

as required by the presence of blockages in the scene [66]. However, the most

significant development to date is RRT*, introduced by Karaman and Frazzoli

[67]. Their algorithm is not only probabilistically complete, it will also converge

on the optimum trajectory if given enough time. This is achieved by re-wiring

the tree during the search process. When the cost to reach a node is less via a

new route, the previous path is broken and an improved path is created. As soon

as a feasible path is found the algorithm can be terminated at any time but by

waiting the solution will continue to improve, although the rate of improvement

decreases with time. For motion planning this is ideal because the best available

solution can be used when the trajectory generation process must terminate.

1.3.3 Optimality

It has already been mentioned that of the three trajectory criterion optimality is

the only one that can be considered non-essential. A pseudo-optimal solution is

still better than one that does not consider optimality at all. Typically, optimality

is judged by some measurable cost function that is desirable to minimise such as

fuel expenditure, snap (the fourth derivative of position with respect to time),

trajectory time or proximity to some region. It is also possible to have a multi-

weighted cost function if two or more types of costs are to be considered.

Methods for finding optimal trajectories do exist, such as pseudospectral op-

timal control that has been demonstrated for a variety of motion planning cases

in recent years, including wheeled robots [68] and the International Space Station

[69]. By approximating the system state at quadrature nodes, time-dependent

global polynomials, such as Legendre or Chebyshev functions are obtained. When

combined with nonlinear programming methods using tools such as PSOPT [70]

optimal solutions can be obtained. Constraints can be applied on the system

states to ensure feasibility and path constraints to ensure obstacle avoidance.

However, without a good initial guess, pseudospectral methods struggle or often

fail to find the solution. For complex problems the computation time can take

hours and still fail, rendering these methods unsuitable for many applications.

Another method for obtaining optimal solutions is by applying the Maximum
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Principle of optimal control to a kinematic description of a vehicle’s motion [71].

In comparison to pseudospectral methods this technique is limited because only

certain cost functions can be used and other constraints like obstacle avoidance

cannot be included. However, they can be solved rapidly using parameter optim-

isation.

1.4 Trajectory tracking

Once a trajectory has been successfully generated a tracking controller is required

to follow it. Ideally the error between desired states and the actual vehicle states

are minimised to ensure the vehicle closely matches its desired motion. This

section discusses the necessary elements for trajectory tracking.

1.4.1 State determination

In order calculate the error between the desired states and the actual states the

actual states must be known or estimated. In simulation this is easily achieved

because the outputs can be fed directly into the controller. However, this does not

accurately represent the real world so depending on the fidelity of the simulation,

noise or other errors may be added to the tracking controller input states. In

the real world determining the translational position of the vehicle in the inertial

frame is one of the most challenging aspects of autonomous UAV flight.

The IROS 2016 drone racing competition mentioned previously did not permit

external positioning systems such as VICON that use infra-red cameras. These

have been used for similar applications [72, 73] and are capable of tracking mul-

tiple vehicles and have been shown to be accurate to within 3 mm [74]. However,

most racing takes place outdoors in areas far larger than these systems are cap-

able of monitoring. They are also prohibitively expensive for use outside the best

equipped labs. A Global Navigation Satellite System (GNNS) such as Global

Positioning System (GPS) is commonly used outdoors but has a relatively low

refresh rate typically between 1-10Hz which is slower than the minimum typical

controller update rate of about 50Hz. Also satellite based systems are usually

only accurate to within metres which is outside the tolerance necessary for flying
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through small gates. Differential GPS, proposed by Morgan-Owen [75], can be

used to improve the accuracy by using two receivers, one stationary in a known

position and another on-board. However, the mathematics is complex and imple-

menting such a system is non-trivial. On-board cameras have enabled machine

vision to be used for positioning [76, 77]. This is a computationally demanding

task and needs considerable processing power so it is often done by a base station

that receives the footage wirelessly. Attitude determination is easier for sensors

to measure than the translational states and is typically achieved by combining

the data from a gyroscope and accelerometer using a Kalman Filter [78].

1.4.2 Quadrotor tracking controllers

Early attempts for quadrotors were based on linear control methods [79, 80] and

were proven to be effective. However, quadrotors are inherently non-linear so

outside the design limits the performance is uncertain. A non-linear control-

ler was later proposed based on model predictive control [81]. However, all these

controllers use Euler angles for attitude representation which make them suscept-

ible to singularities and gimbal lock [82], particularly when performing aggressive

manoeuvres that require large angles like those performed in drone racing. This

is a problem for drone racing controllers and an alternative attitude representa-

tion should be used that doesn’t suffer from these drawbacks. Quaternion based

controllers are popular within the spacecraft community after the first control-

ler using this attitude representation was introduced by Wie [83]. Composed of

three complex elements and one real element, a quaternion vector can describe

any attitude in a three-dimensional coordinate system. Quaternion based quad-

rotor tracking controllers have been developed [84, 85], however, these have an

ambiguity due to the three-sphere (a higher-dimensional analogue of a three-

dimensional sphere) S3 double covering SO(3) and can also exhibit unwinding

behaviour which causes excessively large rotations [86] or when there is noise in

the system [87] if not accounted for correctly. The SE(3) nonlinear tracking con-

troller developed in [88] suffers from none of the aforementioned drawbacks caused

by the Euler or Quaternion attitude representations, making it a suitable choice

for our application. It is also easily applied to an inverse dynamics approach of
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determining the control thrusts needed given a reference trajectory which is con-

venient for efficiently checking feasibility, discussed previously, without needing

to numerically integrate the equations.

1.4.3 Disturbances

Like all systems operating in the real world quadrotors are subject to disturbances

and uncertainties that affect the dynamics of flight. Parametric uncertainties

arise from the difficulty in accurately determining the physical parameters of the

vehicle, such as inertia matrix and centre of mass. Any modification will change

these parameters and it is impractical to recalculate them every time a change

is made. System modelling can be used to describe the main physical effect

acting upon quadrotors during flight such as propeller rotation, blade flapping,

friction and inertial counter torques [89]. An accurate model allows the controller

to better counteract these effects and improve performance but the nature of

disturbances makes this difficult to do with a high degree of precision. External

disturbances such as wind are impossible to predict.

Examples of control methods that consider disturbances include robust con-

trol, adaptive control, sliding mode control and Active Disturbance Rejection

Control (ADRC). Robust controls are designed to work under the assumption that

certain variables are not known but are bounded [90]. In comparison to robust

controls, whose control policy remains static, adaptive controllers change with

respect to measurements over time. This is usually done by adjusting the gains

using simple, deterministic or fuzzy rules. Again, knowledge of the disturbance

bounds and frequency are necessary. Adaptive control has been demonstrated

for quadrotors [91]. Sliding mode controls switch between multiple control struc-

tures so that the trajectories move toward an adjacent region of another control

structure. The crossing of the boundary of one control structure to another is

called ‘sliding’ and in doing so generates a discontinuous control signal. Although

sliding mode controls have been shown to be robust, they are susceptible to ‘chat-

tering’, a phenomenon that incurs high heat loses in electrical power circuits and

causes excessive wear of moving, mechanical components. Chattering can also

occur in mechanical systems as vibrations, particularly in flexible appendages.
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Examples of sliding mode controls for quadrotors include [92, 93, 94]. The chat-

tering problem for altitude control using a sliding control has also been addressed

[95].

The ADRC method uses a dynamic observer to estimate the disturbances at

each sampling period so the controller can reject them [96, 97]. No models of the

disturbances and uncertainties are necessary because an Extended State Observer

(ESO) is used to estimate them. When a nonlinear ESO (that uses a nonlinear

function) is used then a high estimation performance can in theory be achieved,

however, extensive tuning of four parameters is required. A simpler observer, the

Linear Extended State Observer (LESO) only needs two tuning parameter and is

easier to apply, whilst still offering good performance [98]. ADRC has been ap-

plied to quadrotor vehicle control [99, 100, 101]. However, the first only considers

attitude and all use Euler attitude representation which has the disadvantages

discussed previously.

1.5 Objectives and contributions of the thesis

The following contributions have been made.

� The nonholonomic robot path planning at arbitrary speeds that uses geo-

metric control theory first conducted by Biggs [102] and later developed

by Maclean [103] for simple wheeled robots motion planning is extended

for quadrotor UAVs and autonomous underwater vehicles (AUVs). For two

different sets of constraints on the body velocities, a particular solution that

can be expressed using standard trigonometric functions, analogous to sub-

Riemmannian curves is found. For both cases reachable sets are defined

and a basic obstacle avoidance method demonstrated. For the single body-

velocity case, a more sophisticated obstacle avoidance method for AUVs

using the Rapidly-Exploring Random Tree algorithm is designed. Relevant

publications:

– Jamieson, Jonathan, and Biggs, James. “Trajectory generation us-

ing sub-riemannian curves for quadrotor UAVs.” Control Conference

(ECC), 2015 European. IEEE, 2015.
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– Jamieson, Jonathan, and Biggs, James. “Path planning using concat-

enated analytically-defined trajectories for quadrotor UAVs.” Aerospace

2.2 (2015): 155-170.

– Jamieson, Jonathan, and Biggs, James. “Path planning on SE(3) for

AUVs using the RRT method” IMA Conference on Mathematics of

Robotics, 2015.

Minimum time trajectory planning for drone racing was considered and a

novel method for generating polynomial trajectories in the virtual domain

and mapping them into the time domain using B-splines is developed. Non

rest-to-rest manoeuvres are considered and a method for passing through

the gates that describe the course is presented. A method for optimising

the heading angle to ensure it points in the direction of the planar velocity

vector whilst minimising accumulated acceleration is also developed. The

trajectory generation methods are tested with three common quadrotor

configurations. Finally, a 3D visualisation tool to view animated quadrotor

trajectories within Matlab is presented. Relevant publications:

– Jamieson, Jonathan, and Biggs, James. “Near minimum-time traject-

ories for quadrotor UAVs in complex environments.” Intelligent Ro-

bots and Systems (IROS), 2016 IEEE/RSJ International Conference

on. IEEE, 2016.

� The SE(3) controller developed by Lee [88] was modified to include Act-

ive Disturbance Rejection Control (ADRC) by using a Linear Extended

State Observer (LESO) and tested under square wave, sinusoidal and wind

disturbances.

1.6 Thesis outline

This thesis is organised as follows. In Chapter 2 the mechanical and electrical

design of quadrotor vehicles is introduced and various aspects of drone racing are

defined. Also, the kinematics and dynamics of quadrotors and the autonomous

underwater vehicles are given. Chapter 3 develops optimal controls for both types

of vehicles and reachable sets are defined. Two types of obstacle avoidance are
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also demonstrated. The curves developed in Chapter 3 are used for an additional

application of AUV path planning in Chapter 4. In Chapter 5 virtual domain

trajectories are defined using polynomials as basis functions. A method for nav-

igating the gates without collision and choosing the heading angle are developed.

The virtual trajectories are then mapped into the time domain in Chapter 6

to produce feasible, minimum time trajectories. Chapter 7 modifies an existing

tracking controller to include disturbance rejection and tests the performance un-

der three types of disturbances. In Chapter 8 the trajectory generation techniques

developed in Chapter 5 and 6 are tested with different layout configurations and

a trajectory visualisation tool is presented. Finally, in Chapter 9 the outcomes

of the thesis and areas of future research are discussed.
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Chapter 2

Vehicle models & design

In Chapter 1 the need for trajectory generation and trajectory tracking were

introduced. However, before methods for these are developed it is necessary to

give further details on quadrotor design. This chapter will cover the kinematic

and dynamic models that are used in simulation to test the methods. Similarly,

the methods used to define drone racing courses are described. Background theory

on B-spline curves are also given because they are used multiple times during the

trajectory generation process.

One of the earliest and most comprehensive works on quadrotor design and

control was by Bouabdallah [89]. Other papers on quadrotor dynamics and aero-

dynamic effects include [104, 105]. In [37] multi-resolution modelling of quadro-

tors is investigated to the balance between a higher fidelity model and efficiency

of the simulation. The dynamic model used in this thesis [88] is comparatively

simple and neglects effects such as wing flutter and drag. Such effects could be

included in the future to represent a more accurate quadrotor model but for the

purposes of developing the trajectory generation and trajectory tracking method

it is adequate.

The same layout of the rotors, sometimes referred to as the quadrotor con-

figuration is typically used in most of the literature. However in the hobbyist

community other layouts are sometimes used. In [24] one of the pilots being

interviewed prefers a design that is bilaterally symmetric H-shape because he be-

lieves it to be more stable and capable of better performance in drone racing. To

the author’s knowledge, this claim has not been studied in the literature so this
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Chapter 2 Vehicle models & design

thesis will define and compare three common configurations.

Original Contributions

The original contributions in this chapter are outlined as follows:

� The mechanical and electrical models of drone racing vehicles are discussed

for the first time in the literature. The advantaged and disadvantages of the

three commonly used layouts (standard, cross and H-Shape) are discussed,

diagrams are given for each configuration.

� Typical courses used for drone racing, both indoors and outdoors are dis-

cussed for the first time in the literature.

� A method for defining drone racing gates using hollow cylinders is de-

veloped. This technique allows for the orientation and position in the in-

ertial frame to be easily defined. Also, efficient calculations to check the

trajectory is free from collisions can be performed.

The chapter is structured as follows. In Section 2.1 the quadrotor reference

frames, mechanical and electrical are introduced. The kinematic and dynamic

model are also given together with three common quadrotor layouts. Various as-

pects of drone racing are discussed in Section 2.2 include the method of modelling

the gates and the scope of this thesis. Section 2.3 gives the background theory of

generating B-spline curves used during the trajectory generation stage. Finally,

Section 2.4 contains a summary of the chapter.

2.1 Quadrotor design

Although the focus of this thesis is on the theoretical aspects of trajectory gener-

ation and tracking, a basic understanding of how quadrotors operate is beneficial.

It is also necessary to clarify the notation used to define the system’s state and

other parameters.
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2.1.1 Reference frames

Three-dimensional reference frames can define the translational position and at-

titude of the vehicle. The first reference frame is used when deriving the curves

in Chapters 3 and 4 is given in Figure 2.1a. States defined in this inertial frame

es are denoted by superscript s. The vehicle’s centre of mass is xs = [xs1, x
s
2, x

s
3]T

and the vehicle’s attitude is Rs = [bs
1, bs

2, bs
3] where bs

1, bs
2, bs

3 ∈ R3 are or-

thogonal body frame vectors. This type of attitude representation is discussed

further in the following chapter. It is sometimes convenient to use the Euler angle

representation when discussing rotation so the three scalar angles: roll φs1, pitch

φs2 and yaw φs3 are also given. The thrusts produced from each rotor are not given

in this figure because this reference frame is only used for kinematic, not dynamic

planning in this thesis.

The second reference frame e, given in Figure 2.1b is used for the remaining

chapters and is a typical NED (north-east-down) frame common in aerospace ap-

plications. The inertial position of the vehicle’s centre of mass is x = [x1, x2, x3]T

and has attitude R = [b1, b2, b3]. Scalar thrusts f1, f2, f3, f4, are produced

from each rotor in the −b3 body frame direction and can be summed to calculate

the total thrust f = f1 + f2 + f3 + f4. The Euler angles for roll φ1, pitch φ2 and

yaw φ3 are also given. To transform states from the first reference frame es to

the second frame e the following relations are used:

x = Rsx
s, R = RsR

s (2.1)

where Rs ∈ R3×3 is:

Rs =

1 0 0
0 −1 0
0 0 −1

 (2.2)

To go from the reference frame in Figure 2.1b to the reference frame Figure 2.1a

the inverse of Rs can be used.

2.1.2 Mechanical design

The dynamic model of a quadrotor is considered as a rigid body and any aero-

elastic effects or frame vibrations are ignored. This is a reasonable assumption
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(a) Sub-Riemannian curve quadotor reference frame.

(b) Drone racing reference frame.

Figure 2.1: Quadrotor reference frames – a) This reference frame is used in
Chapter 3 & 4. b) This reference frame is used in Chapters 5-8.
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because significant effort is made to ensure frame stiffness by using modern, light-

weight engineering materials like carbon fibre. Four rotors (vertically facing pro-

pellers) are mounted directly to motors attached to the arms some distance from

the centre of mass. Common rotor layouts are given in Section 2.1.5. Opposite

propellers share the same direction of rotation, so two spin clockwise and two

spin counter-clockwise. This is necessary because a torque is induced about the

yaw axis when the propellers rotate and the motion about this axis must be con-

trollable. The counter-rotating blades serve a similar purpose to that of a tail

rotor on a helicopter and stop the vehicle from spinning about the third body

axis. A simplified explanation of how changes in the altitude and attitude are

achieved is given in Figure 2.2 for a typical quadrotor in the next section. In

practice, a combination of these actions is required to perform a complex man-

oeuvre. The method for finding each rotor thrust when the moment and total

thrust are known is given in Chapter 7.

Unlike helicopters that change their thrust by adjusting the pitch of the ro-

tor blades, most quadrotors change the angular speed of the rotors to vary the

thrust. This means that there are no vulnerable linkages that can be easily dam-

aged in crashes. Quadrotors that generate thrust in both directions of the b3

body frame axis are unusual but do exist, some use variable pitch blades such as

the commercially available Stingray [106] or as research platforms [107, 108, 109].

Alternatively, the direction of the rotors can be reversed to change the direction

of thrust [110]. A quadrotor with bi-directional thrust has enhanced dynamic

capabilities, for instance, it can accelerate towards the ground faster than gravit-

ational acceleration without flipping upside down. However, variable pitch rotors

are relatively delicate and reversing the rotation direction induces a significant

amount of back-EMF from the motor and requires special speed controllers. Cur-

rently, no drone racing is performed with either of these types of vehicles because

the drawbacks outweigh the benefits.

2.1.3 Electrical & control design

The simplicity of the mechanical design is possible because the electronics and

control system are complicated. Even when a human is controlling the vehicle, a

low-level control system is necessary to convert the inputs into motor speeds. A
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Figure 2.2: Rotor thrusts for basic manoeuvres – A simplified explanation of
the quantitative rotor thrusts required to perform the basic quadrotor manoeuvres.
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multirotor in which the rotor speeds were directly controlled would be impossible

to fly, unlike fixed wing UAVs which can be flown manually. The minimum

attitude sensor requirement is a 3-axis gyroscope when the angular rates are the

control input and this is known as ‘rate mode’. This type of flight is analogous to

the behaviour of the roll and pitch rotations on a fixed-wing aircraft. If ‘attitude

mode’ is desired, which is when the angle of the quadrotor is proportional to the

position of the transmitter joysticks, an accelerometer is also required. In practice

both a gyroscope and accelerometer are used and the data from both is filtered

to produce a more accurate attitude estimation. Most pilots prefer rate mode for

drone racing and tune the flight controller for aggressive, responsive flight.

The system design for a drone racing quadrotor is shown in Figure 2.3. As

mentioned previously, a pilot uses a transmitter to wirelessly send commands to

an on-board controller. The controller uses the information from the attitude

sensors and the desired input from the pilot to compute the rotor speed. For the

on-board camera, a wide-angle lens with a field of view around 148◦ is typical.

This allows the operator a clear view of the vehicle’s surroundings from the video,

transmitted to them in real time. A CCD (charge-coupled device) sensor with

a global shutter is preferred because it doesn’t suffer from motion artefacts or

‘jello’ seen on a CMOS (complementary metal-oxide-semiconductor) sensor. Ad-

ditionally, they offer a higher dynamic range allowing the pilot to see clearly in

a variety of lighting conditions. Lithium-polymer cells are used for the batteries

because they have a good energy density that minimises weight and a large max-

imum discharge current to meet the demands of high thrust manoeuvres. Ideally,

the minimum capacity needed to complete the race is used in order to reduce the

mass of the battery and improve performance.

2.1.4 Kinematics & dynamics

Quadrotors can be modelled as a rigid body of mass mw with an inertia mat-

rix Ji ∈ R3×3 under constant gravitational acceleration ga. The inertial position

and velocity are x = [x1, x2, x3]T and v = [v1, v2, v3]T respectively. The an-

gular velocities in the body-fixed frame are Ω = [Ω1, Ω2, Ω3]T . The propellers

generate a total scalar thrust f in the direction of the body frame thrust vector

e3 = [0, 0, 1]T and body frame moments M = [M1, M2, M3]T . Any translational
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RC Receiver

4x Speed
Controllers

4x Motors

Flight
Controller

Attitude SensorsBattery

Camera

Video Transmitter

LCD Screen

Video Receiver RC Transmitter

Pilot

Drone

Ground

Figure 2.3: Drone racing system design – A block diagram of the drone racing
system when controlled by a human pilot.

disturbances, such as aerodynamic forces, turbulence and wind are described by

D = [D1, D2, D3]T . The equations of motion are [88]:

ẋ = v (2.3)

mv̇ = mgae3 − fRe3 + D (2.4)

Ṙ = RΩ̂ (2.5)

JiΩ̇ + Ω× JiΩ = M (2.6)

with R ∈ SO(3) where:

SO(3)
∆
= {R ∈ R3×3 : RTR = I3×3 and det(R) = 1} (2.7)

2.1.5 Layouts

There are three common quadrotor layouts: Standard, Cross and H-shape (collo-

quially referred to as ‘dead-cat’). Photographs and diagrams of quadrotors with

each of the layouts are given in Figure 2.4 and Figure 2.5 respectively. The Stand-
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(a) Standard layout. Image credit:
mydronelab.com

(b) Cross layout. Image credit: firstper-
sonview.co.uk

(c) H-shape layout. Image credit: Gra-
ham Dyer.

Figure 2.4: Photos of quadrotor layouts – Examples of three typical quadrotor
layouts.

ard layout is the configuration typically found in the literature. It is simple to

design and is supported by the majority of flight controllers on the market. Heavy

payloads such as remote sensing equipment are usually mounted underneath to

ensure a low centre of mass and improve stability. The Cross layout is similar to

the Standard layout except each rotor is rotated 45◦ about the b3 axis. Compared

to the Standard layout this configuration is superior for FPV flight because the

view is unobstructed along the b1 axis where the camera is normally mounted.

Since the battery is the heaviest single component for drone racing, it must be

carefully positioned and the central bar in this design facilitates this. Finally, the

H-shape is similar to the Cross configuration except that the arm lengths on the

b2 axis are greater than those on the b1 axis.
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(a) Standard layout. (b) Cross layout.

(c) H-shape layout.

Figure 2.5: Quadrotor layout diagrams – The distances from the rotors used
in this thesis are given in Table 2.1.
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Rotor 1 Rotor 2 Rotor 3 Rotor 4
d1,1(m) d1,2(m) d2,1(m) d2,2(m) d3,1(m) d3,2(m) d4,1(m) d4,2(m)

Standard 0.315 0 0 0.315 0.315 0 0 0.315
Cross 0.223 0.223 0.223 0.223 0.223 0.223 0.223 0.223

H-Shape 0.256 0.183 0.256 0.183 0.256 0.183 0.256 0.183

Table 2.1: Layout configurations: properties – The rotor distances for the
Standard, Cross and H-shape configurations used during the simulations.

In order to compare the configurations fairly it is necessary to ensure the sum

of the rotor distances from the centre are the same for each configuration:

dtotal =
4∑

n=1

√
d2
n,1 + d2

n,2 (2.8)

This is because the induced torque about the third body axis b3 from a rotor

is proportional to its distance from the centre of mass. In other words, if one

configuration had disproportionately larger distances, then smaller thrusts would

be required from the rotors to induce an equivalent moment. Table 2.1 gives the

rotor distances for each layout configuration used during the simulations. Since

the distance from the centre of each rotor to the centre of the quadrotor mass is the

same for all rotors on all layouts the same torque coefficient cκf = 8.004×10−4 m, a

measure of the torque about the yaw axis when the propellers rotate, can be used.

This coefficient and the other physical properties including mass mw = 4.34 kg,

gravitational acceleration ga = 9.81 m/s2 are based on the quadrotor model in

[88]. Finally, the moment of inertia is:

Ji =

0.0820 0 0
0 0.0845 0
0 0 0.1377

 kg m2 (2.9)

In reality the moment of inertia will change slightly depending on the layout.

However, because the difference in arm lengths is relatively small and the majority

of a quadrotor’s mass is near the centre, the moment of inertia was assumed to

be constant. The thrust limit of each rotor is constrained to the following bound:

0 ≤ f1,2,3,4 ≤ 12 N (2.10)
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2.1.6 Obstacles

The obstacles are modelled as spheres whose volumes are considered regions of the

collision space that valid trajectories must avoid. Figure 2.6 gives the notation

used where xs
o is the centre of the sphere in the inertial reference frame and rso

is the radius of the sphere. Although comparatively simple when compared to

objects in the real world, spheres were chosen because accurate collision checking

is fast and efficient. Also, by combining spheres it is trivial to represent and

approximate many different types of obstacles.

Figure 2.6: Obstacle reference frame – A diagram of the notation used to
describe the position and size of an obstacle.

2.2 Drone racing

In this section, the types of course used in drone racing and how they can be

modelled virtually are discussed. The scope of drone racing considered in this

thesis is also discussed.

2.2.1 Courses

Drone racing courses are the equivalent to racetracks used for motorsports. The

vehicles will usually start at rest on the ground, or hovering in front of a line before
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(a) An indoor drone racing course. Image
Credit: thedronegirl.com

(b) An outdoor drone racing course. Im-
age Credit: newswire.com

Figure 2.7: Types of drone racing course – An example of an indoor and
outdoor course typically used for drone racing.

navigating through a series of gates and obstacles. One or more laps (complete

circuits of the entire course) are raced before finishing at some predefined point.

Both indoor and outdoor courses (Figure 2.7) are used for drone racing. Existing

features such as pillars, gradients in the terrain and trees can be deliberately

incorporated to make the course more challenging. Currently, no standard track

layouts have emerged and the course designers are given free reign when laying

out the gates. The courses used to test the trajectory planner and tracking control

in this thesis are representative to those used in actual races.

2.2.2 Gates

The basic building blocks of the courses are gates that must be flown through

sequentially. Closed gates like the ones described in this section make it easier to

check if a vehicles has navigated the gate because the acceptable region is clearly

defined. Open gates that don’t have a closed shape can cause confusion and doubt

that a vehicle successfully passed through if travelling at high speeds. The gates

are modelled as ‘hoops’ and are toroids with square cross-sections. Figure 2.8a

is a an example of a commercially available gate similar to the kind rendered in

Figure 2.8b. The black torus that represents the physical hoop contained within

a virtual, transparent green, hollow cylinder. This green volume is used by the

motion planner as the collision region that the trajectory may not enter. The

process of calculating the green volume is as follows.
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(a) Premier RC Key Hole gate. Image
Credit: Mini Quad Club.

(b) A rendering of the type of gates used
in this thesis.

Figure 2.8: Type of drone racing gates – The rendered gate is modelled
around the type of gate shown in the photograph. The green volume represents
the collision region in which the trajectory should not enter.

Figure 2.9 defines the notation used to model the gate in the motion planner

and Figure 2.10 explains how the parameters are calculated. Each gate is mod-

elled as a small cylinder inside a larger one. Any point outside the large, outer

cylinder or inside the small, inner cylinder is considered safe from collision for a

given gate. Any point inside the outer cylinder and outside the inner cylinder is

assumed to collide with the gate and the trajectory considered infeasible. Sub-

script h for ‘hoop’ was used to denote parameters related to the modelling of the

gates. The inner and outer radii are rh,i and rh,o respectively and the length of

both cylinders is lh. For a given gate, the cylinders are defined from their centre

with a translational position xh ∈ R3 and orientation Rh ∈ SO(3). The first body

fixed axis of the gate bh,1 is aligned with the central axes of the cylinders, with

the direction of bh,2 and bh,3 defined in the diagram. The rotation of the gate can

also be specified using the Euler angles φh,1, φh,2 and φh,3 about the body axes

bh,1, bh,2 and bh,3 respectively. By modelling the gates in this way, complex,

three dimensional configurations in which gates are rotated about multiple axes

can be represented. Currently, the gates of most real courses are perpendicular to

the ground bh,3 = e3 but as the sport develops gates angled about the bh,2 axis

can be used to force more sophisticated trajectories that offer a greater challenge.

Figures 2.10a and 2.10b are diagrams that explain the method for determining

the parameters of the virtual gate’s collision region based on the properties of the
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Figure 2.9: Drone racing gate: reference frame – The notation used to
define the size and shape of the collision region surrounding the gate.

hoop and the vehicle’s characteristics. If rh,i = rh,c − 1
2
dh,c is the inner radius

of physical hoop and rh,o = rh,c + 1
2
dh,c is the outer radius of the physical hoop

then the radii of the virtual collision region can be calculated. If dmax is the

largest distance between the centre of mass and the tip of the rotor then the

conditions dh,i > dmax and dh,o > dmax must be observed to ensure the collisions

are avoided. Similarly, along the length of the cylinder the condition dh,l > dmax

must be maintained. The size of the internal radius, outer radius and length of

the cylinder can now be defined:

rh,o = rh,c +
dh,c
2

+ dh,o,

rh,i = rh,c −
dh,c
2
− dh,i,

lh,o = 2dh,l + dh,c

(2.11)

In practice a safety margin should be included in dh,i, dh,o and dh,l because the

trajectory tracking is unlikely to be perfect and an error in the translational

position is more likely to cause a crash if a small tolerance is used.
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(a) End view of the gate. (b) Isometric view of the gate

Figure 2.10: Drone racing gate: parameters – The notation used to find the
properties that define the collision region of the gate.

2.2.3 Objectives & scope

There are a variety of quadrotor simulators available with various levels of fidelity;

some are aimed at researchers [111, 112] and others for amateur pilots [113, 114].

In this thesis a simple dynamic simulation that neglected aerodynamic and other

higher order effects was used to test the tracking controllers because it was ad-

equate for the purpose of comparing them. A truly autonomous quadrotor must

be capable of accurately determining its translational position so the tracking

controller can follow the planned trajectory. The available methods and sensors

discussed in the introduction are not currently capable of doing so with the re-

quired accuracy. However, location estimation is vital to many UAV applications

and is an active area of research that is continuing to improve the capabilities of

multirotor flight. Attitude determination has progressed to the point were even

low cost sensors are capable of accurate measurement.

Trajectory planning for drone racing racing is essentially a minimum time

problem because the winner is the vehicle that finishes the course first. In this

thesis, moving obstacles such as other vehicles are not considered and the only

obstacle present are the gates. This assumption is made because many courses

take place in open areas. Future work may also consider other obstacles in the
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environment. The generated trajectories are benchmarks of what a quadrotor is

capable of with a given layout configuration, mass and thrust capabilities. This

is useful for vehicle design and modification because the impact on the trajectory

time and performance can be calculated.

2.3 B-spline curves

The definition of B-splines given in this section should be considered an introduc-

tion to the subject of such curves [115]. The full derivation is lengthy and modern

numerical software typically has inbuilt functions to handle their computation so

custom routines do not need to be written. For the purposes of this thesis a brief

explanation of the curves and their properties is sufficient. A B-spline is a type

of piecewise polynomial spline function and is defined as follows:

x(u) =
n∑
i=0

Ni,k(u)χi (2.12)

where u is the segment number 0 ≤ u ≤ n− k + 2, the control coefficients are χ,

n+ 1 is the number of control coefficients, k is the order of the curve and Ni,k is

the basis function and expressed using the Cox-de Boor recursion formula:

Ni,k(u) =
(u− κi)Ni,k−1(u)

κi+k−1 − κi
+

(κi+k − u)Ni,k−1(u)

κi+k − κi+1

(2.13)

and the special case
Ni,1 = 1 if κi ≤ u ≤ κi+1

Ni,1 = 0 otherwise
(2.14)

The knot values κi (0 ≤ i ≤ n+ k) are as follows:

κi = 0 if i < k

κi = i− k + 1 if k ≤ i ≤ n

κi = n− k + 2 if i > n

(2.15)

The basis function has the continuity of the segments inherently built into it.

Since a B-spline is fully defined by the Nκ number of knots κ and the coefficients

χ, there are three ways of changing the curve shape: 1) the positions of the
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control points; 2) knot location; 3) order of the curve. The order of the curve

is simply k = Nκ − n and the curve is Ck−2 continuous between segments. The

knots within the knot vector must be given in ascending order and define the

position of the control points. An example B-spline showing the control points is

given in Figure 2.11.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Figure 2.11: B-spline example – A B-spline with a knot vec-
tor κ = [0, 0, 0, 2.2, 2.9, 3.8, 6.3, 6.3, 6.3, 6.3], coefficient vector χ =
[1.8, 2.7, 3.1, 1.9, 0.48, 0.79, 1.8] and order k = 4.

There are various types of knot vector. A cardinal B-spline, for instance, has

knots that are equidistant from each other. However, these are not commonly

used because it is not possible to clamp knots to a specific location with multiple

coincident knots which is desirable for most applications. The continuity of the

derivative order is reduced by 1 for each additional knot. This knot multiplicity is

typically used at the boundaries to ensure the curve finishes and ends at the de-

sired location. The interior knots can have a uniform or non-uniform distribution

between the boundary knots.

The main benefit of B-splines is their local control modification scheme. Each

control point only affects a limited number of nearby segments so changes in

one part of the curve leave the rest of curve untouched. This is in comparison
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to Bézier curves which are a small subset of B-spline curves and have a strict

relationship between curve degree and number of control points. Since the knot

vector does not demand uniformity and because of the local control modification

scheme it is trivial to insert knots where required without changing other parts

of the curve. For instance, if only a small section of the curve needs a fine level of

control knots only need to be added in this location. B-splines are also flexible in

allowing continuity of the curve to be specified. This means that whatever degree

of smoothness is required can be satisfied. Finally, the convex hull property of

B-splines guarantees the curve will remain bounded in the region of the control

points. This is in contrast to polynomials which can exhibit large amplitude of

oscillations if not defined well. There are extensions to the basic B-spline method.

For instance, NURBS (Non-Uniform Rational B-Spline) adds a weighting to each

basis function which can be thought of as a spring that pulls the curve closer to

the control points [116]. However, in this thesis the basic B-spline approach was

used because it was adequate for the requirements, future work may consider the

use of NURBS.

2.4 Chapter summary

In this chapter the vehicles models used for trajectory planning were introduced.

The inertial reference frames used to derive the trajectories were also given. Three

common quadrotor layout configurations were presented: Standard, Cross and H-

Shape. The physical parameters used in the simulations for each type were also

given. Drone racing system design was discussed to provide a background for

these types of vehicles. A simple yet flexible method for modelling the gates to

define the courses was introduced so the collision region can be clearly defined.

Finally the basic theory of construction B-splines was introduced because some

of the trajectory generation methods use this type of curve.
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Trajectory planning on SE(3)

with sub-Riemannian curves

In this chapter a trajectory generation method is developed using optimal curves

analogous to sub-Riemannian curves. They are found by solving an optimal

control problem via Pontryagin’s Maximum Principle on a 3D-Lie group. The

method for motion planning on the Special Euclidean Group SE(3) is an inher-

ently kinematic approach to describing the motion of a vehicle. The trajectory

obtained will not only contain the translational position but also the attitude as

a function of time. This attitude is purely kinematic, in a system with forces

such as gravity in the case of the quadrotor, the rotation of the vehicle required

to track the position over time is different to the kinematic rotation obtained by

the planner. However, the translational position on SE(3) can be projected to

xs ∈ R3 and used as the translational position basis function for the tracking con-

troller. In Chapter 4 the curves derived in this chapter are used to plan motions

for an AUV. In this application the full translational and rotational information

contained within the 3D-Lie group can be used for trajectory tracking.

One of the earliest motion planning problems to be considered was that of

simple wheeled robots in two dimensions. The Dubins car is named after the

mathematician who derived a method for generating trajectories for car-like

vehicles with arbitrary initial and final positions and rotations [117]. Dubins

curves describe the shortest length path connecting the initial and final position

when it is assumed the vehicle can move at a fixed speed and turn at a fixed
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angular velocity. These trajectories consist of straight line segments and arcs of

constant curvature. Were these segments meet, the trajectory is only smooth

to C1. It is possible to extend Dubins curves into three dimensions and plan

trajectories for quadrotors [118]. Similarly, they have been used as the basis for

AUV motion planning [119].

Dubins curves are just one way of finding controls for vehicles with kinematic

constraints. These constraints are a type of nonholonomic system, which is a

system that has constraints not only on position but also velocity. Compared

to holonomic systems that are only constrained by the configuration variables

position and attitude [120] nonholonomic systems are more challenging motion

planning problems. This is because the velocity constraints prevent certain paths.

A common example of a nonholonomic system is that of a standard car which

must use a parallel parking manoeuvre to fit into a space, it cannot simply stop

next to the gap and transversely slide into position. It should also be noted that

it is not possible to integrate a nonholonomic constraint and obtain holonomic

constraints because they are non-integrable.

Two examples of methods that can be used to plan motions for nonholonomic

systems are describing the controls using sinusoids [121] and numerical based

pseudospectral optimal control [122]. Sinusoidal controls have been demonstrated

for a number of systems including snakeboards [123], AUVs [124] and spacecraft

[125]. However, there are no obvious ways to include obstacles or optimality so

feasibility is the only motion planning criterion discussed in Chapter 1 that is

satisfied. Pseudospectral optimal control is capable of producing feasible, op-

timal and obstacle free trajectories for nonholonomic systems by specifying the

constraints as differential equations. Unfortunately, as discussed in the introduc-

tion the computation times can be excessively large, especially when obstacles

are included and a reasonable initial guess is usually necessary for the solution to

converge.

A nonholonomic system can be formulated as an optimal control problem by

incorporating the Maximum Principle of optimal control into Geometric control

theory. The trajectories produced will satisfy some cost function and the kin-

ematic constraints of the vehicle. This method is best suited to local planning in

the presence of only a few obstacles because the optimal control method cannot

directly account for them. However, it is possible to incorporate the local planner
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into a global sampling-based planner to navigate complex environments. This is

similar to the use of Dubins curves within an RRT framework [118].

In this chapter two kinematics models are used to define the motions repres-

ented using Lie groups and their associated algebra. After defining a quadratic

cost function to the kinematics, the Maximum Principle of optimal control is

applied to define an optimal Hamiltonian from the kinematics and cost function.

The final step lifts the dual of the Lie algebra using the Poisson bracket to obtain

Hamiltonian vector fields which are solved to find the analytical optimal controls.

These controls describe trajectories that are analogous to sub-Riemannian curves.

Original Contributions

The original contributions in this chapter are outlined as follows:

� A closed-form optimal solution for a rigid-body with a nonholonomic sliding

constraint i.e. where the body fixed translational velocity is fixed to motion

in one direction is derived. This analytical solution was then utilized to

design motions for a quadrotor. The solution is also applied to AUVs in

Chapter 4.

� A closed-form optimal solution for a rigid-body where the body fixed trans-

lational velocity is not fixed in one direction is derived.

� Reachable sets for both cases are derived numerically under unit speed and

unit time conditions to demonstrate the ability of the analytical solutions

to reach a variety of final translational states in the inertial reference frame.

� A method that uses parametric optimisation to find a curve with a desired

final position is presented and demonstrated for both types of curves.

� A method that uses parametric optimisation to find a curve that considers

both the final position and final velocity is presented and demonstrated for

both types of curves. Although the desired velocity could not be matched

in either case it is possible to influence the shape of the curve and this is

used to practical effect by developing a simple obstacle avoidance method.

The chapter is structured as follows. In Section 3.1 the Special Euclidean groups

of motions SE(3) and Special Orthogonal group SO(3) are introduced and their
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respective algebras se(3) and so(3) are given. A particular solution of the optimal

curves for when only the first body-velocity is non-zero is derived in Section

3.2. Similarly, a particular solution for when three body-velocities are present

is derived in 3.3. Reachable sets are found for both types of curve in Section

3.4. The method for finding the final conditions using parametric optimisation is

developed in Section 3.5. In Section 3.6 obstacle avoidance by biasing the final

velocity is investigated. Finally a summary of the chapter is given in Section 3.7.

3.1 Lie groups and Lie algebra

Before deriving the curves it is necessary to give a brief explanation of Lie groups

and Lie algebra that are used to describe the motions. The Special Euclidean

group of motions gs ∈ SE(3) defines the position in six-dimensional space:

gs =

(
1 0 0 0
xs Rs

)
(3.1)

where xs ∈ R3 is the translational position in the inertial es frame and Rs is the

rotational position formulated in the Special Orthogonal group SO(3), the set of

every 3× 3 rotation matrix, which is formally defined as:

SO(3)
∆
= {Rs ∈ R3×3 : RsTRs = I3×3 and det(Rs) = 1} (3.2)

where I3×3 ∈ R3×3 is the identity matrix. The matrix R defines an orientation by

specifying the direction of each axis in the body frame relative to another frame.

The first column is for the first body axis, the second column for the second axis

and the third column for the third axis.

The basis elements of the Lie algebra se(3) of the matrix Lie group SE(3) are
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given by:

A1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , A2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , A3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



B1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , B2 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , B3 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


(3.3)

where A1, A2, A3, B1, B2, B3 describe the infinitesimal motion in the roll,

pitch, yaw, surge, sway and heave directions of the vehicle respectively. That is

to say, the derivatives of rotation and translation around each of the standard

axes evaluated at the identity. The Lie bracket is defined as [X, Y ] = XY − Y X
and the corresponding Lie bracket table is then:

[,] A1 A2 A3 B1 B2 B3

A1 0 A3 −A2 0 B3 −B2

A2 −A3 0 A1 −B3 0 B1

A3 A2 −A1 0 B2 −B1 0
B1 0 B3 −B2 0 0 0
B2 −B3 0 B1 0 0 0
B3 B2 −B1 0 0 0 0

Table 3.1: Commutative table for basis on se(3) – The commutative table is
used for calculating the Lie bracket.

The Lie bracket can be thought of as the derivative of Y along the flow generated

by X. Similarly, the basis elements for SO(3) are:

E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0

 (3.4)

where E1, E2 and E3 describe infinitesimal motion in the roll, pitch and yaw

directions of the vehicle respectively. The corresponding Lie bracket table for

SO(3) is given in Table 3.2.
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[,] E1 E2 E3

E1 0 E3 −E2

E2 −E3 0 E1

E3 E2 −E1 0

Table 3.2: Commutative table for basis on so(3) – The commutative table
is used for calculating the Lie bracket.

From the Wei-Norman representation [126], Rs can be expressed as:

Rs(t) = eφ
s
1(t)E1 eφ

s
2(t)E2 eφ

s
3(t)E3 (3.5)

where φs1(t), φs2(t) and φs3(t) are scalar functions of time t. The rotation matrix

(3.5) can be considered using the Euler attitude representation as the motion of

a freely rotating rigid body spinning about the first body-axis by φs1, the second

body-axis by φs2 and the third body-axis by φs3. The equivalent Euler angle

rotation sequence for the rotation matrix (3.5) is φs3 ← φs2 ← φs1. A diagram of

the reference frame can be found in Figure 2.1a.

A vehicle with angular velocities about the body frame Ωs = [Ωs
1,Ω

s
2,Ω

s
3]T

and body frame translational velocities νs = [νs1, ν
s
2, ν

s
3]T has kinematics that can

be expressed as a left-invariant system on the Lie group SE(3):

dgs

dt
= gs(B1ν

s
1 +B2ν

s
2 +B3ν

s
3 + A1Ωs

1 + A2Ωs
2 + A3Ωs

3) (3.6)

where B1, B2, B3, A1, A2, A3 are basis elements of the Lie algebra of the Lie

group SE(3) defined previously in (3.3).

3.2 Single body velocity case

The curves derived in this section assume the vehicle can only produce thrust

in the direction of νs1, and the angular rotational velocity about the same axis

should be minimised. Therefore, the body velocities νs2 = νs3 = Ωs
1 = 0. These

conditions are necessary to enable the initial direction of the velocity to be spe-

cified and is a requirement for the sampling-based path planning RRT method

implemented in Chapter 4. After applying these assumptions on the body ve-

locities, the kinematics on SE(3) given in (3.6) can be reduced to the following
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kinematic constraint:

dgs

dt
= gs(νs1B1 + A2Ωs

2 + A3Ωs
3) (3.7)

It should be noted that although there is no direct control over the translational

motion in B2 and B3 direction the Lie bracket allows motion in these directions.

A quadratic cost function that is analogous to defining a sub-Riemannian

metric on SE(3) but parametrised by virtual time rather than arc length is then

defined:

Js,1 =
1

2

∫ T

0

νs1
2 + cs(Ωs

2
2 + Ωs

3
2)dt (3.8)

subject to the given boundary conditions gs(0) = gs0 and gs(T ) = gsT and where

cs is a constant weight and νs1, Ωs
2, and Ωs

3 are measurable and bounded. The

weighting cs is required because the distance metric on SE(3) is degenerate. Since

the cost function is multi-objective, the weighting can be manipulated to increase

or decrease the angular velocity of the planned reference trajectory relative to the

translational velocity in the forward direction. For instance, if cs is reduced then

the trajectories become more helical.

From [127, 128] an application of the coordinate free Maximum Principle that

minimises (3.8) subject to (3.7) yields the Hamiltonian:

H = νs1µ1 + Ωs
2µ5 + Ωs

3µ
s
6 −

ρ0

2
(νs1

2 + cs(Ωs
2

2 + Ωs
3

2)) (3.9)

where ρ0 = 1 for regular extremals and ρ0 = 0 for abnormal extremals. This

thesis only considers regular extremals because it has been shown that abnor-

mal extremals are a subset of regular extremals [127], therefore ρ0 = 1 is used

throughout. Noting that (3.9) is a concave function and from Pontryagin’s Max-

imum Principle that if:

∂H

∂νs1
=
∂H

∂Ω2

=
∂H

∂Ωs
3

= 0,
∂2H

∂2νs1
< 0,

∂2H

∂2Ωs
2

< 0,
∂2H

∂2Ωs
3

< 0 (3.10)

then νs1, Ωs
2, and Ωs

3 are optimal. To satisfy these conditions the following controls

were chosen:

νs1 = µs1, Ωs
2 =

µ5

cs
, Ωs

3 =
µ6

cs
(3.11)
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and substituted into (3.9) to yield the optimal Hamiltonian:

H∗ =
1

2
(µ2

1 +
µ2

5

cs
+
µ2

6

cs
) (3.12)

The corresponding Hamiltonian vector fields describing the necessary conditions

for optimality are calculated using the Poisson bracket dµi
dt

= [µi, H
∗] where

i = 1, . . . , 6 [127]. For example, the derivative of first extremal curve written out

fully is:

µ̇1 =
∂H∗

∂µ1

{µ1, µ1}+
∂H∗

∂µ2

{µ1, µ2}+
∂H∗

∂µ3

{µ1, µ3}+
∂H∗

∂µ4

{µ1, µ4}

+
∂H∗

∂µ5

{µ1, µ5}+
∂H∗

∂µ6

{µ1, µ6}
(3.13)

The vector fields are then:

µ̇1 =
µ2µ6

cs
− µ3µ5

cs
, µ̇2 = −µ1µ6

cs
, µ̇3 =

µ1µ5

cs
,

µ̇4 = 0, µ̇5 = µ1µ3 −
µ4µ6

cs
, µ̇6 = −µ1µ2 +

µ4µ5

cs

(3.14)

In addition to the conserved quantity (3.12) the Casimir functions:

I2 = µ2
1 + µ2

2 + µ2
3 (3.15)

I3 = µ1µ4 + µ2µ5 + µ3µ6 (3.16)

are constant along the Hamiltonian flow (3.14). If µ̇3 = 0 is assumed then a

particular solution can be identified. This means that only a subset of the possible

solutions can be obtained from the following analysis. However, the final functions

that describe the motion of the vehicle will not contain elliptic integrals and are

considerably easier for software to evaluate.

To solve the Hamiltonian equations, the derivative of the first extremal curve

from (3.14) is squared:

(µ̇1)2 =
µ2

2µ
2
6

cs2
− 2

µ2µ3µ5µ6

cs2
+
µ2

3µ
2
5

cs2
(3.17)

and from the conserved quantities the following is true:

cs(2H∗ − µ2
1) = µ2

5 + µ2
6, I2 − µ2

1 = µ2
2 + µ2

3 (3.18)
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therefore:

cs(2H∗ − µ2
1)(I2 − µ2

1) = µ2
2µ

2
5 + µ2

2µ
2
6 + µ2

3µ
2
5 + µ2

3µ
2
6; (3.19)

From (3.16):

(I3 − µ1µ4)2 = µ2
2µ

2
5 + µ2

3µ
2
6 + 2µ2µ3µ5µ6 (3.20)

and therefore:

(µ̇1)2 =
1

c2

(
c(2H∗ − µ2

1)− (I3 − µ1µ4)2
)

(3.21)

Equation (3.21) can be solved in terms of elliptic functions. However, just as the

derivative of the third extremal was set to zero, the same will be done to the first,

so µ̇1 = 0. This ensures only trigonometric functions are needed to solve the final

equations. Particular solutions at the singularity are found using the following

condition:

(µ̇1)2 =
1

cs2

(
cs(2H∗ − µ2

1)− (I3 − µ1µ4)2
)

= 0 (3.22)

The real root of this equation is denoted by µ1(0) which is a constant velocity in

the body fixed frame so µ1 = νs1. The conserved quantities (3.18) can written in

the terms of the constants η1 and η2:

η2
1 = µ5(0)2 + µ6(0)2, η2

2 = µ2(0)2 + µ3(0)2 (3.23)

where η2
1 = cs(2H∗ − µ1(0)2) and η2 = I2 − µ1(0)2. These conserved quantities

suggest using polar coordinates to solve the differential equations (3.14), so the

ansatz solution is attempted:

µ2 = η2 sin(αt+ β), µ3 = −η2 cos(αt+ β)

µ5 = η1 sin(αt+ β), µ6 = −η1 cos(αt+ β)
(3.24)

Substituting (3.24) into (3.14), two solutions for α are obtained:

α =
sνs1
csη2

, α =
Ω1

cs
− νs1η2

η1

(3.25)

where Ωs
1 = µ4 and is constant since Ω̇s

1 = 0. Thus, (3.24) is only a particular

solution, if and only if:

Ωs
1 = µ4 = νs1

η2
1 + csη2

2

η1η2

(3.26)
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The particular solution for the Hamiltonian vector flow (3.14) can now be ex-

pressed as:
µ1 = νs1, µ2 = η2 sin θ, µ3 = −η2cosθ,

µ4 = νs1
η2

1 + csη2
2

sr
, µ5 = η1 sin θ, µ6 = −η1 cos θ

(3.27)

where θ =
η1νs1
csη2

t + β and β = atan2 (−µ5(0), µ6(0)). For convenience, define a

constant K2 = I2 then Rs ∈ SO(3) is known to satisfy the equation [127]:

RsPRs−1 = ρ (3.28)

where P = µ1E1 + µ2E2 + µ3E3 and ρ ∈ so(3) is a constant matrix. This fact

implies that any orbit RsPRs−1 = ρ is conjugate to ρ = KE1 and therefore it

suffices to integrate the particular orbit:

RsPRs−1 = KE1 (3.29)

Then let φs1, φs2 and φs3 denote the coordinates of a point on SO(3) according to

the formula:

Rs = eφ
s
1E1eφ

s
2E2eφ

s
3E1 (3.30)

then substituting (3.30) into (3.29) yields:

P = Ke−φ
s
1E1 e−φ

s
2E2 E1e

φs2E2 eφ
s
1E1 (3.31)

which yields:

P = K

 0 − cosφs1(t) cosφs2(t) cosφs2(t) sin(φs1(t)
cosφs1(t) cosφs2(t) 0 sinφs2(t)
− cosφs2(t) sin(φs1(t) − sinφs2(t) 0

 (3.32)

then:
νs1 = K sinφs2,

η2 sin θ = K cosφs2 sinφs1,

η2 cos θ = cosφs1 cosφs2

(3.33)

therefore:

sinφs2 =
νs1√

η2
2 + νs1

2
, cosφs2 =

η2√
η2

2 + νs1
2

(3.34)

and as tan θ = tanφs then φs3 = θ. To calculate φs1, substitute (3.30) into (2.5)

48



Chapter 3 Trajectory planning on SE(3) with sub-Riemannian curves

and obtain the following relationships:

sinφs2 sinφs3φ̇
s
1 + cosφs3φ̇

s
2 = Ωs

2
∗,

− sinφs2 cosφs3φ̇
s
1 + sinφs3φ̇

s
2 = Ωs

1
∗

(3.35)

which can be manipulated to give:

φ̇s1 =
Ωs

2
∗ sinφs3 − Ωs

1
∗ cosφs3

sinφs2
(3.36)

which can be simplified and integrated assuming φs1(0) = 0 to yield:

φs1 =

(
η1

√
r2 + νs1

2

η2cs

)
t (3.37)

Substituting all the values found into (3.30) to obtain a particular optimal solu-

tion for Rs, we can then obtain xs by integration of the equation dxs

dt
= Rsνs.

These analytical solutions are then used to form a particular solution gsp which

for convenience is pulled back to the identity by computing gs(t) = gsp(0)−1gsp(t)

so the trajectory starts at the origin. The translational position xs from the

particular solution is obtained via the projection [1, xs]T = gs[1, 0, 0, 0]T . The

analytical functions that describe the motion in each axis are:

xs1 =
j2

2ν
s
1

γ
sin γt+ j2

1ν
s
1t

xs2 =
j2ν

s
1

γ
((cos γt− 1) cos β − j1 sin β (γt− sin γt))

xs3 =
j2ν

s
1

γ
((cos γt− 1) sin β + j1 cos β (γt− sin γt))

(3.38)

where:

γ =
η1

√
η2

2 + νs1
2

η2cs
, j1 =

νs1
η2

2 + νs1
2 , j2 =

η2

η2
2 + νs1

2 (3.39)

Differentiating (3.38) gives the translational velocities in the inertial frame:

ẋs1 = j2
1ν

s
1 + j2

2ν
s
1 cos γt

ẋs2 = −j2ν
s
1

γ

(
− j1(γ − γ cos γt) sin β + γ cos β sin γt

)
ẋs3 =

j2ν
s
1

γ

(
j1(γ − γ cos γt) cos β − γ sin β sin γt

) (3.40)
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The projection of a particular optimal curve gsp ∈ SE(3) onto Rs is given by:

Rs =

Rs
11 Rs

12 Rs
13

Rs
21 Rs

22 Rs
23

Rs
31 Rs

32 Rs
33

 (3.41)

where:

Rs
11 = j2

1 + j2
2 cos tγ

Rs
12 = −j1j2(cos tγ − 1) sin(tα + β)− j2 cos(tα + β) sin tγ

Rs
13 = −j1j2(cos tγ − 1) cos(tα + β) + j2 sin(tα + β) sin tγ

Rs
21 = −j1j2(−1 + cos tγ) sin β + j2 cos β sin tγ

Rs
22 = cos β cos(tα + β) cos tγ + (j2

2 + j2
1 cos tγ) sin β sin(tα + β)− j1 sin tα sin tγ

Rs
23 = cos(tα + β)(j2

2 + j2
1 cos tγ) sin β − cos β cos tγ sin(tα + β)− c1 cos tα sin tγ

Rs
31 = −j1cj(−1 + cos tγ) cos β − j2 sin β sin tγ

Rs
32 = − cos(tα + β) cos tγ sin β + cos β(j2

2 + j2
1 cos tγ) sin(tα + β) + j1 cos tα sin tγ

Rs
33 = cos β cos(tα + β)(j2

2 + j2
1costγ) + cos tγ sin β sin(tα + β)− j1 sin tα sin tγ

(3.42)

The initial conditions of the extremal curves will be found using parametric op-

timisation later in Section 3.5.

3.3 Multiple body velocities case

The curves derived in this section are not limited to a single translational body-

fixed velocity like those in the previous section. The benefit of this is that when

the initial velocity direction is not constrained these curves are more flexible and

allow for a greater range of trajectory shapes. The derivation in this section

is explained in less detail than that of the previous one because the process of

deriving the curves is similar to the previous section.

The kinematic constraints for this curve are given in (3.6) and without any

simplifications and the quadratic cost function is defined as:

Js,2 =
1

2

∫ T

0

(ms
1ν

s
1

2 +ms
2ν

s
2

2 +ms
3ν

s
3

2 + cs1Ωs
1

2 + cs2Ωs
2

2 + cs3Ωs
3

2) dt (3.43)
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and the corresponding Hamiltonian is:

H = µ1ν
s
1 + µ2ν

s
2 + µ3ν

s
3 + µ4Ωs

1 + µ5Ωs
2 + µ6Ωs

3

−ρ0

2
(ms

1ν
s
1

2 +ms
2ν

s
2

2 +ms
3ν

s
3

2 + cs1Ωs
1

2 + cs2Ωs
2

2 + cs3Ωs
3

2)
(3.44)

with the controls chosen:

νs1 =
µ1

ms
1

, νs2 =
µ2

ms
2

, νs3 =
µ3

ms
3

,

Ωs
1 =

µ4

cs1
, Ωs

2 =
µ5

cs2
, Ωs

3 =
µ6

cs3
.

(3.45)

Substituting the controls into (3.44) yields the optimal Hamiltonian:

H∗ =
1

2

(
µ1

2

ms
1

+
µ2

2

ms
2

+
µ3

2

ms
3

+
µ4

2

cs1
+
µ5

2

cs2
+
µ6

2

cs3

)
(3.46)

The Hamiltonian vector fields are:

µ̇1 =
µ2µ6

cs3
− µ3µ5

cs2
,

µ̇2 =
µ3µ4

cs1
− µ1µ6

cs3
,

µ̇3 =
µ1µ5

cs2
− µ2µ4

cs1
,

µ̇4 =

(
ms

2 −ms
3

ms
2m

s
3

)
µ2µ3 +

(
cs2 − cs3
cs2c

s
3

)
µ5µ6,

µ̇5 =

(
ms

3 −ms
1

ms
1m

s
3

)
µ1µ3 +

(
cs3 − cs1
cs1c

s
3

)
µ4µ6,

µ̇6 =

(
ms

1 −ms
2

ms
1m

s
2

)
µ1µ2 +

(
cs2 − cs1
cs1c

s
2

)
µ4µ5

(3.47)

The Casimir functions for this case are similar to those given in the previous one.

They can be written as conserved quantities in terms of the constants η1 and η2:

η2
1 =

(µ1(0)µ4(0) + µ2(0)µ5(0))2

µ1(0)2 + µ2(0)2
, η2

2 = µ1(0)2 + µ2(0)2 (3.48)

The ansatz solutions used for solving the conserved quantities are:

µ1 = −η2 cos(αt+ β), µ2 = η2 sin(αt+ β)

µ4 = −η1 cos(αt+ β), µ5 = η1 sin(αt+ β
(3.49)
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and the third and sixth extremals are constant and defined respectively as µ3 = νs3

and µ6 = Ωs
3. Two expressions for α can then be obtained:

α =
Ωs

3

cs3
− νs3η1

cs2η2

, α =
Ωs

3

cs3
− νs3η1

cs1η2

(3.50)

Equating α from both results in the following expression:

Ωs
3

cs3
− νs3η1

cs2η2

=
Ωs

3

cs3
− νs3η1

cs1η2

(3.51)

which is true if, and only if cs1 = cs2 = cs. By taking the derivative of (3.49) and

substituting into (3.47) two more expressions for α can be obtained:

α =

(
ms

2 −ms
3

ms
2m

s
3

)
η2ν

s
3

η1

+

(
cs − cs3
cscs3

)
Ωs

3, α =

(
ms

1 −ms
3

ms
1m

s
3

)
η2ν

s
3

η1

+

(
cs − cs3
cscs3

)
Ωs

3

(3.52)

Again, both expressions for α are equated:(
ms

2 −ms
3

ms
2m

s
3

)
η2ν

s
3

η1

+

(
cs − cs3
cscs3

)
Ωs

3 =

(
ms

1 −ms
3

ms
1m

s
3

)
η2ν

s
3

η1

+

(
cs − cs3
cscs3

)
Ωs

3 (3.53)

which is true if and only if ms
1 = ms

2 = ms. Rearranging (3.53) for Ωs
3:

Ωs
3 = νs3

(
cs η2(ms −ms

3)

msms
3η1

+
η1

η2

)
(3.54)

The following condition must also be true:

µ1

µ2

=
µ4

µ5

(3.55)

The particular solution for the Hamiltonian vector flow (3.47) can now be ex-

pressed as:
µ1 = −η2 cos θ, µ2 = η2 sin θ, µ3 = νs3,

µ4 = −η1 cos θ, µ5 = η1 sin θ, µ6 = Ωs
3,

(3.56)

where θ =
(

Ωs3
cs3
− νs3s

csη2

)
t+ β and where β = atan2 (−µ5(0), µ4(0)). The rotation

matrix Rs in terms of Euler angles φs1, φs2 and φs3 can be expressed according to

the formula:

Rs = eφ
s
1E3eφ

s
2E2eφ

s
3E3 (3.57)
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then substituting (3.57) into (3.29) yields:

P = Ke−φ
s
3E3 e−φ

s
2E2 E3e

φs2E2 eφ
s
3E3 (3.58)

where K = I2
2 and yields:

P = K

 0 − cosφs2 sinφs2 sinφs3
cosφs2 0 sinφs2 cosφs3

− sinφs2 sinφs3 − sinφs2 cosφs 0

 (3.59)

then:
η2 cos θ = sinφs2 cosφs3,

η2 sin θ = sinφs3 sinφs2,

νs3 = K cosφs2

(3.60)

From (3.60) the following expressions can be obtained:

j1 = cosφs2 =
µ3(0)√

η2
2 + µ3(0)2

(3.61)

j2 = sinφs2 =
η2√

η2
2 + µ3(0)2

(3.62)

φs3 = θ (3.63)

To find φs1, substitute (3.57) into (2.5) to obtain the following relationships:

sinφs2 sinφs3φ̇
s
1 + cosφs3φ̇

s
2 = Ωs

2
∗,

− sinφs2 cosφs3φ̇
s
1 + sinφs3φ̇

s
2 = Ωs

1
∗

(3.64)

which can be manipulated and simplified to:

φ̇s1 =
η1

√
η2

2 + µ3(0)2

η2cs
(3.65)

If it is assumed φs1(0) = 0, the particular solution is:

φs1 = γt (3.66)

where γ =
η1
√
η22+µ3(0)2

η2cs
. The translation position xs is found as an analytical
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function using the method described in the previous section:

xs1 =
1

msms
3γ

(
2
(
j2m

sνs3 − j1m
s
3η2

)
sin β sin

(
tγ

2

2
)

+ cos β
(
− j2

(
j1m

sνs3 + j2m
s
3η2

)
tγ

+j1

(
j2m

sνs3 − j1m
s
3η2

)
sin tγ

))
,

xs2 =
1

msms
3γ

(
2
(
j2m

sνs3 − j1m
s
3η2

)
cos β sin

(
tγ

2

2
)

+ sin β
(
j2
(
j1m

sνs3 + j2m
s
3η2

)
tγ

+j1

(
j1m

s
3η2 − j2m

sνs3
)

sin tγ
))

,

xs3 =
1

msms
3γ

(
j1

(
j1m

sνs3 + j2m
s
3η2

)
tγ + j2 sin tγ

(
j2m

sνs3 − j1m
s
3η2

))
(3.67)

Analytical expressions for the translational velocities are obtained by differenti-

ating (3.67):

ẋs1 =
1

msms
3γ

(
2
(
j2m

sνs3 − j1m
s
3η2

)
sin β sin

(
tγ

2

2
)

+ cos β
(
− j2

(
j1m

sνs3 + j2m
s
3η2

)
tγ

+j1

(
j2m

sνs3 − j1m
s
3η2

)
sin tγ

))
,

ẋs2 =
1

msms
3γ

(
2
(
j2m

sνs3 − j1m
s
3η2

)
cos β sin

(
tγ

2

2
)

+ sin β
(
j2

(
j1m

sνs3 + j2m
s
3r
)
tγ

+j1

(
j1m

s
3r − j2msνs3

)
sin tγ

))
,

ẋs3 =
1

msms
3γ

(
j1

(
j1m

sνs3 + j2m
s
3η2

)
tγ + j2 sin tγ

(
j2m

sν3 − j1m
s
3η2

))
(3.68)

The acceleration for each axis can be obtained by differentiating (3.68) but is not

given here. The magnitude of velocity and acceleration are:

‖νs‖ =

√
ν2

3
2

ms
3

2 +
η2

2

ms2
(3.69)

‖ν̇s‖ =

√
γ2

ms2ms
3

2

(
ms

3
2η2

2 − 2j1j2msms
3ν

s
3η2 + j2

(
ms2νs3

2 −ms
3

2η2
2

))
(3.70)

It is possible to project the attitude Rs, as a function of t from the solution on

SE(3) as given for the case of a single translation body velocity in the previous

section. However, it is a large expression and not used in later sections so it is
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has been omitted from this thesis.

3.4 Reachable sets

For the purpose of this thesis, reachable sets are defined as the states achievable

starting from the origin, for a single trajectory given some bounds applied to

the controls. It is assumed that the configuration space is free from obstacles

for the purposes of defining reachable sets. The reachable sets for both types of

curves defined in Section 3.2 and Section 3.3 are found numerically using a Monte

Carlo approach. The trajectory time is fixed as T = 1 and the magnitude of the

translational body velocity is also fixed at unit speed, ‖νs‖ = 1. Any weightings

relevant to the curve (cs, cs3, ms, ms
3) are fixed and the same for all trajectories.

3.4.1 Single body velocity reachable set

The curve weighting and surge direction body velocity were fixed as cs = 1 and

νs1 = 1 m/s respectfully. The three extremals that describe the shape of the curve

were defined using the random number generator rand built into Matlab and

constrained with the following bounds:

0 < µ3(0) < 1, 0 < µ5(0) < cs, 0 < µ6(0) < cs (3.71)

Extremals µ5(0) and µ6(0) have upper bounds of cs because that limits the

controls Ωs
2 and Ωs

3 to have a maximum value of 1 from (3.11). A thousand

combinations of (3.71) were generated and plotted in Figure 3.1. All trajectories

start at the origin, with an initial velocity vector equal to that of xs1 before

diverging. It should be noted that the reason all the trajectories remain within

xs2(t) ≥ 0 is due to the bounds on the extremals having minimums of zero (3.71).

3.4.2 Multiple body velocities reachable set

The weightings for all the trajectories generated were fixed as cs = 1, cs3 = 1,

ms = 2, ms
3 = 1. The process of choosing the random extremals was slightly more
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Figure 3.1: Single velocity sub-Riemannian curve reachable set – 1000
random trajectories generated with the bounds (3.71) to numerically illustrate the
reachable set for the curves defined in Section 3.2.

involved than that of the previous case because the magnitude of the velocity is a

function of all the individual body-axis velocities (3.69). Consequently the choices

of the extremals were dependent upon each other, therefore the following process

was used to ensure the magnitude of translational velocity was unit speed. The

first step was to generate a random velocity in the third body direction within

the following bounds:

0 < νs3 < 1 (3.72)

Then the first body-fixed velocity is generated within the following bounds:

0 < µ1(0) < ms

√
‖νs‖2 − νs3

2

ms
3

2 (3.73)

The third body velocity can be found by rearranging (3.69):

µ2(0) = ms

√
‖νs‖2 − νs3

2

ms
3

2 −
µ1(0)2

ms2
(3.74)
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The fourth extremal is generated within the bounds:

0 < µ4 < cs (3.75)

which means µ5(0) is calculated by satisfying (3.55) rearranged to:

µ5(0) =
µ2(0)µ4(0)

µ1(0)
(3.76)

All the parameters of the curve have now been defined. Again, 1000 combinations

of parameters were randomly generated and the results plotted in Figure 3.2.

Compared to the single speed case (Figure 3.1) which has similar constraints,

there is a greater degree of flexibility because the initial direction of the velocity

in the inertial frame has more freedom. This reachable set is also limited by

the minimum bounds of the conditions applied when randomly generating the

parameters so the trajectories remained bounded to xs1(T ) < 0. For the purposes

of motion planning these bounds are relaxed, so a greater set of final positions

can be met.

Figure 3.2: Multiple velocity sub-Riemannian curve reachable set – 1000
random trajectories generated using bounds given in (3.72)-(3.76) to numerically
illustrate the reachable set for the curves defined in Section 3.3.
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3.5 Parametric optimisation

Parametric optimisation can be used to find a curve that goes from the origin to

a desired translational state. The free parameters in the analytical expressions

that describe the states form the optimisation vector Ξ1,2, which for the single

velocity case is:

Ξ1 = [µ1(0), µ5(0), µ6(0), T ]T (3.77)

and for the multiple velocity case:

Ξ2 = [µ2(0), µ4(0), µ5(0), T ]T (3.78)

where T is the final time, recalling t ∈ [0, T ]. When the optimisation vector

and the appropriate weightings are chosen the curve is fully defined because any

other parameters can calculated from these. During the optimisation process the

optimisation vector is controlled by the solver that tries to minimise some cost

function. In this section two cost functions are introduced, the first optimises for

the final translational position and the second also considers the final translational

velocity.

3.5.1 Solving for final position

The cost function for matching the final position is simply the Euclidean distance

between the final position of a curve and the desired position:

Jx(Ξ1,2) = ‖xs
des − xs(T )‖ (3.79)

where xs
des is the desired final position. The minimisation problem is therefore:

minimise
Ξ1,2

J(Ξ1,2)x

subject to Ξ1,2,min ≤ Ξ1,2 ≤ Ξ1,2,max

(3.80)

where Ξ1,2,min = [−∞, −∞, −∞, 0]T and Ξ1,2,max = [∞, ∞, ∞, T ]T are the

minimum and maximum bounds on the optimisation vector. A variety of numer-

ical optimisers were tested and Matlab’s fmincon was found to perform well for

both types of curves and converged on the solution in a reasonable amount of
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Figure 3.3: Single velocity position optimisation example – The tra-
jectory starts at the origin and finishes at the desired translational position
xs

des = [6 m, 12 m, 15 m]T .

computation time. It is capable of handling the linear inequality constraint on

the solution that the trajectory time must be greater than or equal to zero. An

initial guess of Ξ1,2 = [1, 1, 1, 1]T was found to be effective for a wide range of

desired positions and was therefore chosen as the initial guess for both types of

curve.

If xsdes = [6 m, 12 m, 15 m]T is the desired position, ν1 = 1 m/s and weight-

ing c = 200 is chosen, then for the single velocity case the numerical optimiser

found Ξ1 = [16.6665, −14.1895, 11.5624, 27.9885]T to be the optimisation vector

that generated a curve finished closest to the target position. The trajectory

and position against time is shown in Figure 3.3. The solution time was 0.56 s

on a standard 3.8 Ghz desktop computer. Similarly, for the multiple velocit-

ies case with weightings νs3 = 1 m/s, cs = 20, cs3 = 1, ms = 5, ms
3 = 50 and

target position xs
des = [−8 m, 2 m, 4 m]T , the optimisation vector was found to

Ξ2 = [0.2574, 3.9942, −0.4156, 19.3300]T . The solution time was 0.20 s and the

trajectory and position against time was plotted in Figure 3.4. These are two

simple examples but it is important to appreciate that although the derivation

of the curves is mathematically involved, using them in practice is simple.
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Figure 3.4: Multiple velocity position optimisation example – The tra-
jectory starts at the origin and finishes at the desired translational position
xs

des = [−8 m, 2 m, 4 m]T .

3.5.2 Solving for final position and biasing the velocity

The following cost function considers both the final translational position and

velocity:

Jxs,ẋs(Ξ1,2) = jxs ‖xs
des − xs(T )‖+ jẋs ‖ẋs

des − ẋs(T )‖ (3.81)

where xs
des is the desired final position and ẋs

des is the desired velocity. The

weightings jxs for position and jẋs for velocity are necessary because it is im-

portant that the velocity matching does not dominate the minimisation. If this

occurs then the position will not be matched because using the curves derived in

this chapter it is not possible to match the final velocity. As discussed previously,

the inclusion of velocity into the cost function allows the shape of the curve to

be biased while still reaching the desired final position if suitable weightings are

chosen. The minimisation problem for this cost function is:

minimise
Ξ1,2

J(Ξ1,2)

subject to Ξ1,2,min ≤ Ξ1,2 ≤ Ξ1,2,max

(3.82)

where Ξ1,2,min = [−∞, −∞, −∞, 0]T and Ξ1,2,max = [∞, ∞, ∞, T ]T are the

minimum and maximum bounds on the optimisation vector. The same minim-

iser used for optimising the position that was discussed previously is used for this

minimisation problem. One option to improve the convergence when both posi-
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tion and velocity are considered would be to use a general solution instead of the

particular solutions that were derived. However, since numerical minimisers must

recalculate the functions that describe the position and velocity for every iteration

of the optimisation vector, the hyperbolic functions required for the general solu-

tion would take longer to solve compared to the trigonometric functions needed

for the particular solution. Example trajectories for the minimisation problem

are not given for this section because the simple obstacle avoidance method in

the next section uses the minimisation problem (3.82).

3.6 Obstacle avoidance motion planning

The cost function introduced in Section 3.5.2 is used to find a curve with a final

position and also influence the shape of the curve by including an error term for

the direction of the final velocity. As discussed previously, with these curves it is

not possible to satisfy a desired final velocity direction in the inertial frame but

the bias introduced can be used as a simple obstacle avoidance method. This is

demonstrated for both types of curves.

After defining the obstacles and desired final position the first step is gener-

ating random unit velocity vectors:

vdes =

 cosφr1 cosφr3
sinφr sinφr1 cosφr3 − cosφr2 sinφr3
cosφr2 sinφr1 cosφr3 + sinφr2 sinφr3

 (3.83)

where φr1, φr2 and φr3 are scalar constants randomly generated between the

bounds 0 ≤ φr1,2,3 ≤ 2π. In this example 50 trajectories are then generated using

a numerical optimiser solving the minimisation problem (3.82) and ranked by

their path length. Any trajectories that enter the collision space are rejected. In

this thesis the shortest path is selected but a different metric could be used.

Two examples of this obstacle avoidance method are given. The first uses the

curves with a single body velocity direction starting at the origin and finishing

at xs
des = [6 m, 12 m, 6 m]T . The obstacles are three spheres with the properties

are given in Table 3.3 and the weighting for all curves was cs = 200 and the surge

velocity νs1 = 1 m/s. Figure 3.5 shows all the trajectories generated, ranked in

61



Chapter 3 Trajectory planning on SE(3) with sub-Riemannian curves

colour by their path length. The next step of removing those trajectories which

collide with the obstacles is given in Figure 3.6 and the shortest trajectory plotted

in Figure 3.7.

xs1 (m) xs2 (m) xs3 (m) ro (m)

8.4 7.0 3.8 0.6
9.1 8.7 5.4 0.7
10.7 7.0 7.0 5.0

Table 3.3: Obstacle Avoidance: single body-velocity case obstacles – The
translational position and size of the obstacles.
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Figure 3.5: Obstacle avoidance single body velocity: all trajectories –
50 trajectories generated with randomly chosen biasing velocities to change their
shape. The paths are coloured coded from the shortest to longest geometrical
lengths.

The simple obstacle avoidance method can also be applied to the multiple

body-velocity curves. In this example the trajectory starts at the origin and

the desired final position is xs
des = [−8 m, 2 m, 4 m]T . The weightings chosen

are cs = 20, cs3 = 1, ms = 5, ms
3 = 50 and the body-velocity was fixed at

νs3 = 1m/s. Figure 3.8 contains the 50 randomly generated trajectories with the

velocity biasing vector found using (3.83). The trajectories were then checked
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Figure 3.6: Obstacle avoidance single body-velocity: collision free tra-
jectories – The trajectories that collide with obstacles in the collision space are
rejected and those that remain plotted with the spherical obstacles present.
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Figure 3.7: Obstacle avoidance single body-velocity: shortest, collision
free path – The shortest trajectory generated from the origin to desired final
position xs

des = [6 m, 12 m, 6 m]T .
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with the obstacles (Table 3.4) and those that collided were removed (Figure 3.9).

The shortest, collision-free trajectory is then given in Figure 3.10.

Comparing the range of trajectories for the two different types of curves (Fig-

ure 3.8 and Figure 3.5) it can be seen that the multiple body-velocity type pro-

duces a greater variety of curves so where possible it should be used for this kind

of collision avoidance. However, both types of curves are unable to directly ac-

count for the obstacles and instead rely on at least one trajectory being feasible.

If this is not so, a different approach must be taken such as the RRT method

described in the next section.

xso,1 (m) xso,2 (m) xso,3 (m) ro (m)

−3.0 1.4 0.5 0.2
−5.4 1.1 2.7 0.3
−5.7 2.0 2.0 0.4
−4.0 1.6 2.5 0.7
−4.6 1.0 3.0 0.6

Table 3.4: Obstacle Avoidance: multiple body-velocity case obstacles –
The translational position and size of the obstacles.

3.7 Chapter summary

In this chapter motion planning methods for vehicles in three dimensions defined

on Lie groups with kinematic constraints were considered using optimal control

theory. Two variations of kinematic constraints were developed: (i) when two

body angular velocities and one translational body-velocity was non zero and; (ii)

when all translational and angular body velocities are non-zero. The curves are

analogous to sub-Riemmanian curves but are parametrised by time, not length.

The analytical functions that describe the states are trigonometric because par-

ticular solutions are chosen. This means only a subset of the general solutions to

the optimal curves possible are available given the kinematic constraints applied.

Future work could consider the particular solutions but if so, hyperbolic functions

would be required that are not well supported by numerical computing software,

in particular that of on-board hardware.
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Figure 3.8: Obstacle avoidance multiple body-velocities: all trajectories
– 50 trajectories generated with randomly chosen biasing velocities to change their
shape.
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Figure 3.9: Obstacle avoidance multiple body-velocities: collision free
trajectories – The trajectories that collide with obstacles in the collision space
are rejected and those that remain plotted with the spherical obstacles present.
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Figure 3.10: Obstacle avoidance multiple body-velocities: shortest, col-
lision free path – The shortest trajectory generated from the origin to desired
final position xs

des = [−8 m, 2 m, 4 m]T .

Reachable sets for unit speed and unit time conditions for both cases were

found. Unsurprisingly, the case of multiple body velocities is capable of reaching

a greater range of final translational states for similar conditions compared to

the single velocity case. Therefore, when the vehicle kinematics and dynamics

allow for it, the multiple body velocity case should be chosen over the single body

velocity case.

Two parametric optimisations were introduced: i) when a final translational

position in the inertial frame is desired ii) when a final translational position

in the inertial frame is desired and the final velocity is also biased in the cost

function. Optimising for the final translational position was demonstrated for

both types of curves and the case when the final velocity is biased was used as

the basis of an obstacle avoidance strategy for both types of curve. This simple

obstacle avoidance method used spheres to represent obstacles in the environment.

Again, the variation of curve shapes was greater for the multiple translational

body velocity, making it more suitable for this kind of obstacle avoidance if the

kinematics of the vehicles permits it. However, this method is limited when

many obstacles are present because a single trajectory found using this method
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is unable to significantly change its shape. To overcome the limitations of the

simple obstacle avoidance method, the single velocity curves were combined with

a sampling-based path planner in Chapter 4.
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Chapter 4

Additional application: AUV

path planning

Although the focus of this thesis is on quadrotor flying vehicles, the curves de-

veloped using optimal control theory in the previous chapter lend themselves to

trajectory planning for underwater vehicles so this chapter will explore their use

in that area. The sub-Riemannian curves from this chapter were defined on SE(3)

which includes the translational and rotational position as a function of time. In

that chapter the solution was projected onto xs ∈ R3 but the AUVs used in

this chapter can use the rotational information contained within the curve for

the purposes of trajectory tracking. For neutrally buoyant, long, slender AUVs

such as C-SCOUT [129], the lateral body-fixed motions νs2 and νs3 are quickly

damped out and it can only produce thrust in the direction of the first body-axis.

This means that the nonholonomic constraints in Section 3.2 match those of the

vehicle so the rotational position from those curves can be used.

It was noted that the obstacle avoidance method in Chapter 3 was limited

in the presence of a dense obstacle field. This is because the obstacles are not

directly accounted for by the path planner, instead it relies upon at least one

trajectory being valid. In this chapter the sub-Riemannian curves are used as a

local planner within the sampling-based Rapidly-exploring Random Tree (RRT)

framework. The trajectories no longer need to be limited to a single curve but can

consist of concatenated segments allowing more flexibility and range of trajectory

shapes.
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Original Contributions

The original contribution in this chapter is:

� A path planning framework for AUVs that considers both attitude and

translational position is developed by combining the single velocity curves

with a sampling-based motion planner. The method is capable of find-

ing feasible paths through a field of obstacles by concatenating individual

segments into a single trajectory.

The chapter is structured as follows. In Section 4.1 the reference frame and

kinematic model of the AUV is introduced. Section 4.2 introduces the RRT

method and uses it to develop an obstacle avoidance framework for the sub-

Riemannian curves. Finally, a summary of the chapter is given in Section 4.3.

4.1 AUV model

In this section a basic model of an AUV is presented. Figure 4.1 shows a long,

slender AUV that is representative of the C-SCOUT [129]. The vehicle’s centre

of mass is xs = [xs1, x
s
2, x

s
3]2 and the vehicle’s attitude is Rs = [bs

1, bs
2, bs

3] where

bs
1,2,3 ∈ R3 are orthogonal body frame vectors. This reference frame is equivalent

to the quadrotor reference frame presented in Figure 2.1a but for an AUV instead.

If the vehicle is assumed to be neutrally buoyant and it is also assumed that

the dynamic effects are damped out, then the dynamics can be neglected and a

simple, kinematic model can be used to express its motion:

ẋs = vs (4.1)

Ṙs = RsΩ̂s (4.2)

where vs = [vs1, v
s
2, v

s
3]T is the translation velocity in the inertial frame and

the angular velocities about the body axes Ω̂s which is the skew symmetric matrix

of Ωs = [Ωs
1, Ωs

2, Ωs
3]T .
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Figure 4.1: Sub-Riemmanian curve AUV reference frame – The AUV has
translational position xs and rotational position Rs.

4.2 RRT for underwater vehicles

In this section the curves derived in Section 3.2 in which the body fixed trans-

lational velocity is fixed to motion in one direction are used within a sampling-

based planning framework, RRT. The trajectories are formed by concatenating

local curves that are generated using the parametric optimisation described in

Section 3.5.

Before introducing the method used to incorporate the sub-Riemmanian curves

into the RRT algorithm it is useful to introduce the standard RRT algorithm

which is constructed as follows. A starting position is defined with the vehicle’s

initial state in the inertial reference frame. For this problem the initial state

is position xs(0) and orientation Rs(0). The goal position xs
goal is also chosen

which is the desired position at the end of the trajectory. There are two meth-

ods for generating target positions xs
target in order to extend the tree. They can

either be sampled randomly from the free configuration space or chosen with a

deterministic algorithm. Examples of deterministic sampling algorithms include

the simple uniform spacing method or one that accounts for the environment and
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current solution by biasing the location of xs
target towards where it believes it

should be. Once xs
target has been chosen a search is performed on the existing

nodes to determine which is closest to the target node according to some metric

and is designated xs
closest. This node is chosen as the point the tree will branch

out from during that particular iteration. A segment between this node and the

target node is computed using a time integrated simulation of the vehicle. If

the segment is deemed acceptable (that is, it doesn’t collide with obstacles and

is feasible according to any other constraint) then it is added to the tree. A

given number of points along that segment are defined as nodes that can be used

as xs
closest in future iterations. This basic algorithm works well for vehicles with

holonomic constraints. However, for the majority of systems in the real world like

AUVs with kinematic constraints the time integration simulation can be compu-

tationally intensive because the controls must be calculated for each time step.

Since this integration is performed many times to create a tree of trajectories,

the overall computational time is significant, especially for embedded on-board

hardware.

In this chapter the standard RRT algorithm is used, with one significant

change. Instead of performing a time integrated simulation to generate segments,

parametric optimisation of the minimisation problem (3.80) is performed. This is

achieved by generating a curve from the closest node to the target node. In doing

so, a segment can be calculated faster than a time integration simulation. Since

the curves are defined analytically, they can be efficiently discretised to check for

proximity to obstacles and rejected if a collision is detected. A random search

of the environment was used to generate target nodes because although it may

take longer than a deterministic algorithm, no heuristics need to be tuned that

are specific to the problem. A certain percentage of the target nodes are located

at xs
goal. The optimum value for this scalar bias is referred to as xs

bias and could

be obtained through numerical experimentation, using a Monte Carlo approach

for instance because it is not possible to determine analytically. Optimising xsbias
was left as future work for the purposes of this thesis and instead a few values

were tested before settling upon the one used. If xsbias is too large, then the en-

vironment will not be properly explored and tend to get stuck in dead-ends. If

xsbias is too small then it can take a long time for the algorithm to converge on

the goal state.
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A Euclidean distance metric is used to determine which of the nodes on the

tree is closest to the target:

JRRT =
∥∥xs

target − xs
n

∥∥ (4.3)

where xs
n is the position vector of the node on the tree currently being considered.

Although this metric is simple to compute, the orientation of the vehicle is not

considered. Given the nonholonomic constraints, the Euclidian distance metric

(4.3) can recommend a node xs
closest that does not result in the shortest path

to xs
target. Other metrics have been proposed [54, 130] but for the purposes of

demonstrating the method it was decided that the Euclidean metric is adequate.

Further research is necessary to determine the benefits of using a more sophist-

icated metric that accounts for the rotational position, not just translational.

To demonstrate the RRT path planner with the single body-velocity curves an

example shall be be given. Further examples can be found in the paper [131]. The

initial position of vehicle is at the origin xs(0) = [0 m, 0 m, 0 m]T , Rs(0) = I3×3

and the goal position is xs
goal = [5 m, 5 m, 5 m]T . The obstacles were defined as

spheres and are given in Table 4.1. The entire tree and obstacles are plotted in

Figure 4.2. At this stage an exploration of the state space has been performed

and a path has been found that reaches the goal state and avoids the obstacles.

The final path (4.3) consisting of 4 segments was found after 119 iterations and

has total length 16.7 m.

xso,1 (m) xso,2 (m) xso,3 (m) ro (m)

1.6 4.4 1.8 1
1.0 −3.0 4.0 1
5.0 0.0 3.0 1
−1.4 5.0 2.0 1
−4.0 1.0 3.0 1
−1.0 −2.0 1.5 1
1.0 1.0 3.1 1
3.0 3.0 3.1 1
−3.0 1.0 −1.0 1
1.0 −3.0 −1.0 1

Table 4.1: RRT obstacle parameters – The translational position and size of
the obstacles.
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Figure 4.2: AUV RRT complete tree – The entire tree for the motion planning
problem of going from the origin to the goal position in the presence of 10 obstacles.
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Figure 4.3: AUV RRT feasible path – The path from the origin to the desired
position consisting of 4 segments.
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The RRT based path planning algorithm is capable of planning a collision-

free, feasible path from an initial position to final position and is easy to imple-

ment. The main requirement is the availability of an efficient numerical function

minimiser. However, like Dubins curves, the curves developed here have trans-

lational velocity between segments that is C1 smooth and the angular velocities

are discontinuous between trajectory segments. It may be possible to smooth

the transitions between the segments so the trajectory is continuous to a higher

degree, however, this is left as further work.

4.3 Chapter summary

By concatenating individual trajectory segments to form a single path from the

origin to the desired final position, far greater flexibility is possible compared

to the simple obstacle avoidance method previously demonstrated in Chapter 3.

The discontinuity of the derivatives at boundaries of the segment are the same

as that of Dubins curves. That is to say, the translational states are C1 smooth

and the angular states C0 smooth. A tracking controller should be able to handle

the discontinuity between segments, however, this was not tested and ideally a

method to smooth the transition during the planning stage should be designed.

The RRT sampling-based path planner was chosen because manually choosing

the start and end points of each segment be impractical. However, no obvious

method for making the RRT trajectories not only feasible, but also optimal with

respect to path was found. This is because the rotational position at the end of

the curves cannot be controlled so extensions such as RRT* are not suitable.
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Trajectory generation for drone

racing

In Chapter 2 the basic concepts of drone racing were introduced. The traject-

ory generation method obtained by applying Pontryagin’s Maximum Principle in

Chapter 3 lacked the flexibility necessary to navigate the types of courses found

in drone racing and control the derivatives of the translational position at the

boundaries. The equations that defined the translational motion were not de-

coupled for each axis, any change on one axis would affect the others because the

parameters in the optimisation vector were shared between them. The simple

obstacle avoidance method from Section 3.6 was suitable for simple obstacles but

lacked the control needed to fly through narrow gates. The RRT path planning

method described in Section 4.2 is more applicable to vehicles with limited kin-

ematic abilities than quadrotors and the path length was longer than necessary.

A trajectory generation method more suitable for drone racing is desired and was

the motivation for the polynomial based, virtual domain trajectories developed

in this chapter.

Polynomials are used as the basis functions for the trajectory translational

states in this chapter because they are simple to implement and constraints on

the boundary derivatives can be applied easily. As a function of time, polynomials

for the translational positions can be expressed as:

xa(τ) =
Na∑
n=0

pa,nt
n , a ∈ {1, 2, 3} (5.1)

76



Chapter 5 Trajectory generation for drone racing

where pa,n are the coefficients, Na is the degree of the polynomial and a is the

axis number. Trajectory planning for various systems have been developed using

power series polynomials including that for fixed-wing UAVs [36] and spacecraft

[38, 39]. For the UAV case, polynomials were parametrised by time to form linear

equations by matching the order of the function to the number of conditions. This

approach is similar to the one taken in this chapter. However, here waypoints

can also be included between the boundary conditions which is possible because

the polynomials are parametrised in the virtual domain. Another disadvantage of

parametrising polynomial by time as is done in [36] is that there is little flexibility

and control over the derivatives during the manoeuvre. For the trajectory to

remain feasible throughout, the dynamic capabilities are not fully exploited. If for

instance, the maximum acceleration was constrained, the acceleration throughout

could be reduced by increasing the trajectory time. However, for much of the

manoeuvre the acceleration would be far below the limit and not exploit the

capabilities of the vehicle, leading to an inefficient and sub-optimal trajectory with

respect to trajectory time. A higher order basis function can be used which allows

for greater flexibility but since there is no longer a single solution for a given set of

conditions, the coefficients can’t be obtained by solving a linear equation. Instead,

they must be found by some other method. For example, the coefficients can be

chosen to minimise a cost function such as [41] that formulates an unconstrained

quadratic program in which the coefficients are found that minimise the fourth

derivative snap, which is equivalent to minimising the control effort.

As discussed in Chapter 1, obstacle avoidance in cluttered environments is

challenging. Sampling-based path planning is one method that has shown good

potential for solving these types of problems in a reasonable amount of time.

The application of these approaches in relation to quadrotors is covered in [132].

Most outdoor drone racing does not occur in environments with many obstacles.

If this is the case and there is a sparse field of obstacles then they could be

ignored until the trajectory entered the collision space. The trajectory could be

modified between the two gates where the collision with the offending obstacle

occurred and in this way limit the sampling space. However, in this thesis the

only obstacles that are considered are gates and a path planning algorithm that

is more problem specific is developed to reduce the computation time.
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Recalling the discussion on trajectory generation from Chapter 1, the three cri-

teria that must be considered when generating a trajectory are feasibility, obstacle

avoidance and optimality. The polynomial based, virtual domain trajectory gen-

eration method developed in this chapter considers feasibility and optimality but

these are only properly accounted for during the mapping process in the following

chapter. To do this the boundary state derivatives must be controllable in the

virtual domain. The final trajectory time in the time domain does not need to be

considered at this stage. The virtual trajectory also needs to define the heading

angle (the direction of the first body axis). Assuming the heading angle is not

fixed at a static position, as is the case in much of the literature [88], it can be

optimised to improve the trajectory performance.

Original Contributions

The original contributions in this chapter are outlined as follows:

� A polynomial path planning method on the virtual time domain that is

suitable for quadrotors and can be mapped to the real time domain is

developed. Conditions on the boundary derivatives and multiple, sequential

waypoints can be specified for the trajectory to satisfy. The locations of the

waypoints on the virtual time domain are chosen by a numerical optimiser

that minimises a cost function related to the trajectory length.

� The Waypoint Selection Algorithm (WSA) is developed to find the locations

of corrections waypoints that shape the curve sufficiently to ensure it passes

through drone racing gates without collisions. Compared to the simple

conservative method of ensuring the trajectory passes through hoops by

using fixed waypoints, this method generates trajectories that can be flown

faster.

� A method for minimising the accumulated angular acceleration of the head-

ing angle when a camera is used to navigate is investigated. The direction

of the first body axis is bounded to remain within a defined region of the

velocity vector direction. This optimisation is achieved by assigning the

heading angle to a B-spline parameterised in the virtual domain. The num-

ber of nodes required to find a reasonable solution with the least amount

of computation time is investigated through a Monte Carlo simulation.
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The chapter is structured as follows. In Section 5.1 a power series polynomial

is introduced and a method to find polynomial coefficients by forming a linear

equation which contains the conditions of the trajectory is given. A cost function

that minimises the length of the path is defined and a simple example is provided

to demonstrate the method. Section 5.2 introduces the Waypoint Selection Al-

gorithm that is used to shape the trajectory in order to avoid collisions with the

gates. Again, a simple example of the method is provided. The method for op-

timising the heading angle is given in Section 5.3. Finally, Section 5.4 concludes

the chapter and provides a summary of the results.

5.1 Polynomial basis functions

In this section a method of generating polynomial basis functions for each trans-

lational axis is developed using the inertial reference frame from Figure 2.1b in

Chapter 2. The trajectories are planned on the virtual domain by parametrising

the polynomial functions with an abstract parameter τ ∈ [0, 1] instead of the

actual time t ∈ [0, T ] and they satisfy the given waypoint and boundary con-

ditions. Waypoint conditions in this thesis are defined as translational position

states that must be reached, in order, during the trajectory. The location of the

waypoints in the virtual domain are found using a numerical optimiser that min-

imises the geometrical path length. The trajectories found in the virtual domain

are not guaranteed or designed to satisfy any feasibility constraints throughout

the motion. In order to achieve a feasible trajectory, the virtual domain traject-

ories must be mapped onto the time domain using the techniques developed in

Chapter 6.

5.1.1 Polynomial series

A polynomial for each translational axis describes the position in the inertial

frame as a function of τ :

Pa(τ) = pa,nτ
Na + pa,n−1τ

Na−1 + · · ·+ pa,0 =
Na∑
n=0

pa,nτ
n , a ∈ {1, 2, 3} (5.2)
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where pa,n are the coefficients, Na is the degree of the polynomial and a is the

axis number. Any conditions that the polynomial must satisfy are given in the

form P
(r)
a (τ) where r is the rth derivative with respect to τ . The initial and final

boundary conditions occur at τi = 0 and τf = 1 respectively. These conditions

are used to control the states of the vehicle at the beginning and end of the

trajectory. The values of the boundary derivatives P
(r)
a (τ) do not necessarily

equal the desired values in the time domain x
(r)
a

(
t(τ)

)
but must be found using the

method described in Section 6.1.1. Between the boundary conditions, waypoints

in the form of translational position conditions are used to shape the curve for

the purposes of obstacle avoidance. The value of τ for each waypoint is found

numerically using the procedure described in Section 5.1.3.

5.1.2 Formulating the polynomial matrix

It is convenient to find the coefficients by formulating the polynomial using

matrices. The degree of the polynomial that describes the motion on a par-

ticular axis is such that a linear equation can be formed when all the conditions

are applied:

Mapa = ca (5.3)

where Ma ∈ R(Na+1)×(Na+1) is a matrix in which each row is a condition on the

path containing the terms of the polynomial at the relevant derivative. The

vectors containing the polynomial coefficients and the values of the conditions

are pa ∈ RNa+1 and ca ∈ RNa+1 respectively. Equation (5.3) can be solved using

Gaussian elimination to find the polynomial coefficients. This is more efficient

than solving pa = M−1
a ca because the inverse of Ma does not need to be found.

The motion along each axis on the virtual domain is now defined and can be

combined to form a multi-dimensional trajectory that satisfies the conditions on

the boundaries and passes through the waypoints specified.

5.1.3 Minimising path length

The position of the intermediate waypoints, those between the first and last

waypoint, on the virtual domain form the waypoint optimisation vector Ξw =

[τi+1, . . . , τf−1]T . The optimisation vector that minimises the geometrical path
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length is obtained using a numerical optimiser. Any given optimisation vector

has a unique solution for the motion on each axis, found by solving (5.3). It is

desirable that the optimisation vector which results in the shortest path length is

found but a sub-optimal optimisation vector will still produce a trajectory that

satisfies the conditions. However, a poor choice will cause the trajectory length

to be excessively large. This is demonstrated by the planar trajectory example

given in Figure 5.1.

The optimisation vector is found as follows. A cost function related to the

path length is defined:

J(Ξw) =

∫ 1

0

A∑
a=1

Ṗa(τ)2 dτ (5.4)

where A is the number of axes. The optimisation function J(Ξw) can be cal-

culated numerically or analytically because the integrand is a polynomial. The

analytical solution requires less computation and is more accurate. The code

developed for this thesis solves (5.4) analytically but since the polynomials are

problem specific a single expression cannot be given here. Remembering τi = 0

and τf = 1, for the waypoints to be passed in the correct order the following must

be true:

τi < τi+1 < τ2 < · · · < τf−1 < τf (5.5)

which can be written as a linear constraint:

LwΞw ≤ bw (5.6)

where Lw is a matrix of the associated τw terms and bw is a column vector that

implements the inequality constraints given in (5.5). Finding the optimisation

vector that minimises the geometric path length is formulated as:

minimise
Ξw

J(Ξw)

subject to LwΞw ≤ bw

(5.7)

The initial guess for the optimisation vector is taken from the previous solution

if available. When this is not possible, a uniform distribution of the τ elements

for each waypoint is used. A non-uniform distribution based on the Euclidean
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distance between waypoints was tested but found to offer no improvement of the

solution time compared to the uniform case. Standard optimisation tools such as

Matlab’s fmincon or patternsearch can be used to solve this problem. Exper-

imentation showed the latter performing best for the types of trajectories found

in this thesis. Gradient based-methods methods such as fmincon are prone to

becoming stuck in local minima and this was occasionally observed. The min-

imisation problem (5.7) is continuous but not easily differentiable so providing

an analytical expression for the gradient was not possible. In the case of prob-

lems like this where the gradient is unavailable, the optimiser must numerically

estimate the gradient which can be inaccurate and computationally expensive.

Pattern search methods do not require the gradient while optimising and are

suitable for functions that are not continuous or differentiable so it is a direct

search method. The general method and name were introduced by Hooke and

Jeeves [133]. The principle is to vary parameters by steps of a given magnitude

until no improvement occurs, the step size is then reduced and the process re-

peated. The algorithm continues until some termination condition is reached,

such as minimum step size.

5.1.4 Polynomial formulation example

To illustrate the method of finding the polynomial trajectories in the virtual

domain, an example will be given. A planar trajectory that passes through the

waypoints given in Table 5.1 and satisfies the conditions in Table 5.2 is planned.

A two-dimensional trajectory is chosen to aid understanding but the process is

the same for three-dimensional planning. The waypoints were chosen arbitrarily

and are given in Table 5.1.

τ x1 x2

τ0 (τi) 0 5
τ1 (Ξw,1) 0 4
τ2 (Ξw,2) 1 3
τ3 (Ξw,3) 4 6
τ4 (τf ) 5 5

Table 5.1: Planar polynomial trajectory example: waypoints – The way-
point parameters for the polynomial formation example.
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In this example there are three waypoints between the initial and final point

that require τ values (τ1, τ2, τ3) and form the optimisation vector Ξw = [Ξw,1, Ξw,2, Ξw,3].

The boundary conditions required are given in Table 5.2. The vector of the con-

Condition Value

P
(1)
1 (τ0) −5

P
(2)
1 (τ0) 0

P
(3)
1 (τ0) 0

P
(4)
1 (τ0) 0

P
(1)
1 (τ4) 0

P
(1)
2 (τ0) 4

P
(2)
2 (τ0) 0

P
(3)
2 (τ0) 0

P
(1)
2 (τ4) −5

Table 5.2: Planar polynomial trajectory example: conditions – The con-
ditions in the virtual time domain that the trajectory must satisfy.

ditions on the first axis is therefore:

c1 = [P
(0)
1 (τ0), P

(0)
1 (τ1), P

(0)
1 (τ2), P

(0)
1 (τ3), P

(0)
1 (τ4),

P
(1)
1 (τ0), P

(2)
1 (τ0), P

(3)
1 (τ0), P

(4)
1 (τ0), P

(1)
1 (τ4) ]T

(5.8)

and on the second axis:

c2 = [P
(0)
2 (τ0), P

(0)
2 (τ1), P

(0)
2 (τ2), P

(0)
2 (τ3), P

(0)
2 (τ4),

P
(1)
2 (τ0), P

(2)
2 (τ0), P

(3)
2 (τ0), P

(1)
2 (τ4) ]T

(5.9)

To ensure the waypoints were followed in this correct order the linear constraint

(5.6) was applied. The linear inequality constraints matrix in this example is

written as:

Lw =



−1 0 0 0 0

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 0 0 0 1


(5.10)

and the constraints vector is:

bw = [0, 0, 0, 0, 1]T (5.11)
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After minimising the cost function (5.4) to find the minimum path length, the

optimisation vector for this problem is Ξw = [0, 0.38, 0.51, 0.86, 1]T . The

matrix containing the polynomial conditions of the first axis is

M1 =



τ0
0 τ0

1 τ0
2 τ0

3 τ0
4 τ0

5 τ0
6 τ0

7 τ0
8 τ0

9

τ1
0 τ1

1 τ1
2 τ1

3 τ1
4 τ1

5 τ1
6 τ1

7 τ1
8 τ1

9

τ2
0 τ2

1 τ2
2 τ2

3 τ2
4 τ2

5 τ2
6 τ2

7 τ2
8 τ2

9

τ3
0 τ3

1 τ3
2 τ3

3 τ3
4 τ3

5 τ3
6 τ3

7 τ3
8 τ3

9

τ4
0 τ4

1 τ4
2 τ4

3 τ4
4 τ4

5 τ4
6 τ4

7 τ4
8 τ4

9

0 τ0
0 2τ0

1 3τ0
2 4τ0

3 5τ0
4 6τ0

5 7τ0
6 8τ0

7 9τ0
8

0 0 2τ0
0 6τ0

1 12τ0
2 20τ0

3 30τ0
4 42τ0

5 56τ0
6 72τ0

7

0 0 0 6τ0
0 24τ0

1 60τ0
2 120τ0

3 210τ0
4 336τ0

5 504τ0
6

0 0 0 0 24τ0
0 120τ0

1 360τ0
2 840τ0

3 1680τ0
4 3024τ0

5

0 τ4
0 2τ4

1 3τ4
2 4τ4

3 5τ4
4 6τ4

5 7τ4
6 8τ4

7 9τ4
8


(5.12)

and for the second axis:

M2 =



τ0
0 τ0

1 τ0
2 τ0

3 τ0
4 τ0

5 τ0
6 τ0

7 τ0
8

τ1
0 τ1

1 τ1
2 τ1

3 τ1
4 τ1

5 τ1
6 τ1

7 τ1
8

τ2
0 τ2

1 τ2
2 τ2

3 τ2
4 τ2

5 τ2
6 τ2

7 τ2
8

τ3
0 τ3

1 τ3
2 τ3

3 τ3
4 τ3

5 τ3
6 τ3

7 τ3
8

τ4
0 τ4
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(5.13)

After solving the linear equation (5.3), the polynomial coefficients for the first

axis were:

p1 = [0, −5, 0, 0, 0, 1.7066e3, −7.2016e3, 1.1699e4, −8.5341e3, 2.304e3]T

(5.14)

and for the second axis:

p2 = [5, 4, 0, 0, −473.67, 1.2834e3, −911.59, −155.3180, 253.19]T (5.15)

The solid, black line in Figure 5.1 plots the trajectory of the optimisation vector

that minimised the path length. To illustrate non-optimal solutions, three other

trajectories represented by dashed lines are shown in the same figure. These
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satisfy the waypoint and boundary conditions (Table 5.1 & Table 5.2) but have

longer path lengths. Figure 5.2 shows the translational position and its derivatives

against the abstract parameter τ . All the boundary conditions are satisfied.

0 2 4 6

4

6

Figure 5.1: Polynomial example: trajectories – The three dashed curves
represent sub-optimal trajectories with path lengths longer than the optimal tra-
jectory as found by the numerical optimiser, represented by the solid black line.

5.2 Navigating through gates

A feasible trajectory must pass through each of the gates, modelled in Section

2.2.2, without entering the collision region. Simply placing a single waypoint in

the centre of a gate will not guarantee the trajectory safely passes through the

gate because there is no control over the direction during entry and exit. To

avoid collisions, additional waypoints can be added, as required, before and after

the centre of the gate. Waypoints added before the centre waypoint of a gate are

known as entry waypoints and the ones after centre waypoint are exit waypoints.

The Waypoint Selection Algorithm developed in this section finds the locations of

these waypoints in the inertial frame to pass through the gates without entering

the collision region. It also minimises the change in the shape of the curve so the

path length is not increased unnecessarily. Early tests of the algorithm simply

put two waypoints on the bh,1 axis at either side of the gate’s centre. However,

it was observed that this caused tight turns which increased the trajectory time

because the speed needed to be reduced for the rotor thrusts to stay within the

feasibility bounds. By using an iterative process that gradually changes the shape

of the curve, the increase in trajectory time can be minimised.
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Figure 5.2: Polynomial formation example: states – The translational states
from position to snap in the virtual domain.
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5.2.1 Waypoint Selection Algorithm

For each gate, the Waypoint Selection Algorithm (WSA) can add entry and exit

waypoints when required. In this section the algorithm is described in the context

of adding an entry waypoint but the process is similar for the exit waypoint case.

The translational position of the gate in the inertial frame xh is automatically

added to the list of waypoints a trajectory must pass through when it is defined.

Assuming the trajectory collides with the gate upon entering the following method

is used to find the position of the entry waypoint xW,a ∈ R3. A unit vector

vW,Ṗ ∈ R3 pointing in the same direction as the inertial velocity vector Ṗ in the

virtual domain at xh is defined. The unit vector that defines the direction of the

first body axis of the gate bh,1 is also shown. By taking the cross product these

unit vectors a third vector is obtained: bW,3 = bh,1 × vW,Ṗ. This vector is used

as an axis of rotation about which the vector vW,a is rotated by an angle σ from

vW,Ṗ. The Euclidean distance between xW,a and xh can be altered by varying

the magnitude ‖vW,a‖. The maximum rotation angle σmax can be calculated

using the dot product:

σmax = cos−1

(
vW,Ṗ · bh,1∥∥vW,Ṗ

∥∥× ‖bh,1‖

)
(5.16)

If there is a collision when entering the gate, σ is gradually increased to σmax until

there is no collision. If σmax is reached and a collision still occurs σ is reset to zero

and the magnitude ‖vW,a‖ is increased and the process begins again. A limit on

the maximum magnitude ensures the algorithm terminates with an error message

if there is a problem and the geometry needs to be checked. This algorithm only

considers gate collisions for the segment of trajectory between the gate before

and the gate after the one in question. If a collision occurs with a gate outside

of these conditions another technique like a sampling based method would need

to be used. In practice this rarely occurs with racing circuits because having the

course pass through a previous section of the course significantly increases the

likelihood of a collision with other drones.

As discussed in the next chapter, when mapping from the virtual domain

to the time domain the geometrical shape of the trajectory can change so it is

necessary to ensure that when this occurs the new trajectory is free from collision.

The block diagram in Figure 5.3 describes the process. In practice it was found
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that the WSA algorithm needed to be run after changing the mapping routine

but it is important to check the trajectory is still collision free.

Trajectory succesfully found

Find virtual domain

trajectory with single

waypoint at each gate

Apply Waypoint Selection

Algorithm until collision

free trajectory found

YES

Map the trajectory to the

time domain

Does the trajectory 

avoid collisions?

NO

Figure 5.3: Waypoint Selection Algorithm: block diagram – A block dia-
gram of the process used to determine if a waypoint should be added (applicable
to both the entry and exit case).

5.2.2 Single gate example

To demonstrate the Waypoint Selection Algorithm an example is given in Fig-

ure 5.4. Starting from rest at the origin x(0) = [0 m, 0 m, 0 m]T , the traject-

ory must pass through a single gate and finish at x(T ) = [8 m, 0 m, 0 m]T . The

hoop parameters are as follows: Rh = [0,−1, 0; 0.866, 0, 0.5,−0.5, 0, 0.8666], xh =

[5 m, 0 m, 0 m]T , rh,i = 1.2 m, rh,o = 2 m and lh = 2 m. Four iterations were re-

quired to find the correction waypoints that allowed a collision free trajectory

to be obtained. The first iteration in Figure 5.4a used a single waypoint at the

centre of the gate and collisions occurred upon entering and exiting the cylinders

that represented the collision region. A correction waypoint was added on the

second iteration in Figure 5.4b but collisions still occurred at both sides. The

location of this waypoint was changed on the third iteration shown in Figure 5.4c

and there was no longer a collision when entering the gate. The fourth iteration

in Figure 5.4d added a waypoint that corrected for the collision upon exiting to
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obtain the collision free trajectory. This example demonstrates that a ‘worst case

scenario’ in which the trajectory collides with the gate perpendicularly to the

correct entrance direction can be quickly resolved with the Waypoint Selection

Algorithm.

5.2.3 Multiple gate example

In this example a trajectory that must pass through 3 gates rotated about multiple

axes is generated. As in the previous example, the trajectory starts from rest

but the derivatives at the final waypoint are not fixed. The inner radius, outer

radius and length for all the gates are rh,i = 0.3 m, rh,o = 0.9 m and lh = 0.3 m

respectively. The position and orientation of each gate is given in Table 5.3.

The initial and final translation position are chosen as x(0) = [0 m, 0 m, 0 m]T

and x(T ) = [2 m,−4 m, 0 m]T respectively. Figure 5.5a shows the trajectory with

no additional waypoints and collisions occur at every gate. At the start of this

section it was noted that one method of using waypoints to navigate through the

gates is to place them along the axis defined by bh,1 and an example of this is

given in Figure 5.5c as a ‘simple approach’. Compared to the trajectory found

by the WSA in Figure 5.5b it can be seen that this method produces inferior

results. Although the path length is slightly shorter, the turns are tighter which

forces the vehicle to reduce its speed in order to stay within the thrust limits and

increase the trajectory time.

xh,1 (m) xh,2 (m) xh,3 (m) φh,1 (◦) φh,2 (◦) φh,3 (◦)

2 0 0 0 10 −50
6 2 0 0 −10 20
6 −2 0 0 −10 −160

Table 5.3: Multiple gate example: gate parameters – The gate parameters
for the multiple gate example.

5.3 Heading angle optimisation

The heading angle θ is the angle between the first body axis of the vehicle and e1

of the inertial reference frame about the third axis e3 of the inertial frame. For
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

Figure 5.4: Waypoint Selection Algorithm: single gate example – The
four iterations required to find a collision free trajectory are shown.
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(a) Centre waypoints only. (b) Waypoint Selection Algorithm.

(c) Simple approach.

Figure 5.5: Multiple gate example: trajectories – Both the WSA and the
simple approach produce collision free trajectories but the latter has tight turns
which result in a slower trajectory time.

91



Chapter 5 Trajectory generation for drone racing

many multi-rotor applications the direction of the first body axis can be fixed

throughout the trajectory. For instance, if a sensor such as an infra-red camera

for crop monitoring is mounted underneath the vehicle pointing in the direction of

the third body axis there is little need to have the heading angle vary. However,

if a camera is pointing in the direction of the first body axis, the heading angle

can be changed so it is pointing towards the area of interest. For drone racing

the camera is used to detect obstacles and should point in the velocity vector

direction of the planar motion on the e1−e2 plane. Since wide-angle lenses are

typically used there is a region of tolerance between the heading angle and the

planar motion. Consequently, it is not required that the heading angle is exactly

equal to the planar velocity vector direction and can be optimised to reduce

the amount of angular acceleration about the third body axis. This is desirable

because additional thrust must be used to make these changes (see Chapter 8),

thereby reducing the translational capabilities of the vehicle and increasing the

trajectory time.

5.3.1 Determining the planar velocity vector direction

The planar velocity vector direction as an angle about e3 can be found using the

arctangent function:

θv(τ) = atan2 (v2(τ), v1(τ)) (5.17)

where θv is velocity vector angle in radians. This is equivalent to side slip

heading in conventional flight mechanics. When v1 = v2 = 0 the previous non-

zero θv is used if available, otherwise the next non-zero value of θv is used. This is

necessary because if the trajectory at a given time has zero velocity then (5.17) is

undefined. This commonly occurs in the context of drone racing when the vehicle

starts at rest or zero velocity is desired at the end. The arctangent function

atan2 has a range θ ∈ [−π, π], so in order to avoid discontinuities θv(τ) must be

unwrapped by adding multiples of ±2π to jumps between consecutive elements

equal or bigger than π. Figure 5.6 is an example of the function unwrap being

used on a rest-to-rest rotation with two revolutions. At τ = 0.38 and τ = 0.62

the angle calculated using atan2 jumps from +π to −π but θunwrapped remains

smooth. By unwrapping the velocity vector angle there are no discontinuities at
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these points that would cause problems with the optimisation when the tolerance

region is defined using the method in the next section.

0 0.2 0.4 0.6 0.8 1
-5

0

5

10

15

Figure 5.6: Angle unwrapping example – A rest-to-rest rotation with two
revolutions. The unwrapped angle θunwrapped has no discontinuites, unlike θv with
discontinuities at +π and −π radians.

5.3.2 Optimised heading angle

If it is assumed that it is acceptable for the heading angle to track but not exactly

equal the planar velocity vector angle, then it can be optimised to minimise the

accumulated angular acceleration cost, defined as:

Jθ̈opt =

∫ 1

0

θ̈opt(τ)2 dτ (5.18)

where θ̈opt is the angular acceleration and is the second derivative of the optimised

heading angle θopt with respect to τ . This cost function was chosen because

it minimises the accumulated amount of rate of change in the heading angle.

Accelerating about the yaw axis requires thrust and can limit the translational

acceleration capabilities of the vehicle at times. An analytical expression could be

used to calculate Jθ̈opt but it would need to be re-derived for each unique B-spline

so instead (5.18) was discretised and the integral evaluated numerically. The

accuracy of this calculation is dependent upon the coarseness of the discretisation

so a suitable resolution should be chosen.

The allowable deviation of the optimised heading angle from the planar velo-
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city angle is constrained throughout the trajectory such that:

θmin(τ) ≤ θopt(τ) ≤ θmax(τ) (5.19)

where θmin(τ) and θmax(τ) are the minimum and maximum angles at a given time

on the virtual domain respectively. They are calculated using a tolerance angle

θtol that is chosen by the user:

θmin(τ) = θunwrapped(τ)− θtol
θmax(τ) = θunwrapped(τ) + θtol

(5.20)

An example optimisation of the heading angle is given in Figure 5.7. The process

used to generate the optimised heading angle is described in the following section.

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

Figure 5.7: Heading angle optimisation example – The heading angle before
and after is has been optimised. The dashed lines represent the boundaries in which
the optimised angle must remain.

The optimised heading angle θopt(τ) was parametrised using a B-spline. The

properties and formulation of B-splines were introduced in Section 2.3 but to sum-

marise for this application, the main benefits are the local modification scheme

and the fine degree of control achievable when required. The coefficients of the

B-spline that describe θopt(τ) are found using a numerical minimiser but first the

location of the knots must be chosen. The smoothness of the B-spline curve up to

a given derivative is dependent upon the order. To achieve a continuously smooth

function up to the rth derivative, the order is n = r + 3. To clamp the boundary

values of θopt(τ) there must be n repeated values of either 0 or 1 for the initial

and final knots respectively. The boundary coefficients must also be repeated and
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this is discussed below. The knot vector is composed of three vectors:

κ = [κinitial, κinterior, κfinal] (5.21)

where κinitial ∈ Rn, κinterior ∈ Rk and κfinal ∈ Rn are vectors composed of the ini-

tial, interior and final knots. The number of interior knots k can be freely chosen

by the user. Initially, the interior knots are evenly distributed in ascending order

between the boundary knots but as mentioned below it is sometimes necessary

to include additional knots when forming an initial guess if the constraint (5.19)

is being violated. Increasing the number of interior knots will give more control

over the spline but a numerical minimiser will struggle to converge in a reasonable

time when too many parameters must be optimised. This is explored further for

the context of this problem in Section 5.3.4. The total number of knots or length

of the knot vector κ is Nκ.

The length of the coefficient vector is calculated by Nχ = Nknots − n. Before

applying a numerical optimiser to find the heading angle it is beneficial to generate

an initial guess for the coefficient vector χ. A good initial guess is one which

is close to θunwrapped(τ) and always remains within the minimum and maximum

tolerances throughout. This is important because the cost function only considers

the largest breach of the limits. So if there are many violations only the largest

has a bearing on the optimisation cost which causes the convergence time to be

excessive because between iterations there is no penalty applied to the smaller

violations.

An efficient method to calculate a guess for the coefficients is by using the fixed

knot variation of the least-squares spline approximation [115] that is available in

Matlab as the spap2 function. This method requires the virtual domain para-

meter τ and velocity vector heading θunwrapped(τ) to be discretised and provided

to the algorithm in conjunction with the knots vector κ and order of the B-

spline n. The function returns a unique coefficient vector χ that corresponds

to a B-spline approximation of the heading angle θleastSqares(τ). In the event of

θleastSqares(τ) not remaining within the tolerance values a new knot location is

added to κinterior at the position where the maximum violation occurred and the

least-squares spline approximation is performed again. This process continues

until a feasible heading angle represented by a B-spline can be found. It is pos-

sible in extreme cases for this approach to fail and no feasible heading angle is
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found. This typically occurs when there are discontinuities in the velocity vector

heading angle, for instance when the vehicle comes to a complete rest during the

trajectory before continuing in a different direction. This is a dynamically valid

trajectory but the method described here fails to represent it. The trajectory can

either be rejected as unsuitable or, more practically, it can be accepted that for

a short time it is impossible for the heading angle to track the velocity vector

direction exactly. This may or may not be an issue and is left to the operators

judgement.

The least-square approximation does not consider any conditions placed upon

the heading angle and its derivatives at the boundaries. In order to fix the

heading angle and drive its derivatives up to the rth degree to zero, repeated

coefficients can be used. For the initial boundaries to be set, the first r + 1

coefficients must be equal to the the desired initial heading angle. Likewise, for

the final boundary conditions to be set, the last r+ 1 coefficients must equal the

final desired heading angle. The coefficients that are free to be chosen by the

optimiser form the optimisation vector Ξχ. It should be noted that if either of

these conditions on the boundaries is not required, for instance if the final angle is

not fixed, then the associated coefficients of that boundary condition are included

as free parameters in the optimisation. Being able to choose the precise angle

at the boundary and specify that the derivatives are to be zero is useful when

concatenating separate trajectory segments because then it is possible to ensure

the controls are smooth between them.

If the boundary coefficients are changed then the B-spline is recalculated with

the new knot and coefficient vector to ensure it remains within the tolerance

bounds. If this is not so, a new knot is added at the location of the maximum

violation and the least-squares spline approximation method is performed again.

Since only the coefficients at the boundaries have been changed from the previous

step, it will only be at the beginning and end of the spline that problems can

occur. This is due to the local modification scheme that is characteristic of the

B-spline function. In practice it is seldom necessary to rerun steps because the

heading angle limits have been breached.

Assuming a valid initial guess has been obtained, the optimisation of the head-

ing angle can be performed using the following multi-parameter minimisation:

minimize
Ξχ

jθJθ(Ξχ) + jθ̈Jθ̈opt(Ξχ) (5.22)
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where jθ and jθ̈ are scalar weightings for the boundary violation and the accu-

mulated acceleration respectively. The accumulated acceleration cost Jθ̈(Ξχ) was

defined previously and the boundary violation cost Jθ(Ξχ) is found as follows.

The logical statements that determines the undershoot cost is:

Jθ,undershoot =

max(θmin(τ)− θopt(τ)), if max(θmin(τ)− θopt(τ)) ≥ 0

0, otherwise

and similarly for overshoot:

Jθ,overshoot =

max(θopt(τ)− θmax(τ)), if max(θopt(τ)− θmax(τ)) ≥ 0

0, otherwise

The largest of either the undershoot and overshoot is used as the boundary cost

violation, or if identical they are identical (including zero) then the undershoot

is used:

Jθ =

Jθ,undershoot, if Jθ,undershoot ≥ Jθ,overshoot

Jθ,overshoot, otherwise

The maximum values are obtained using the max function included in Matlab.

Theoretically, the coarseness of the discretisation will affect the computation time

of this function but in practice it is negligible compared to other functions so any

reasonable resolution can be used.

In the multi-objective cost function (5.22) there is no obvious metric to com-

pare the two types of cost. Therefore the size of the weightings jθ and jθ̈ must

be chosen with a heuristic approach. Since it is desirable for there to be no vi-

olation of the heading angle limits, jθ should be large to reflect the importance

of this requirement. However, since numerical minimisers such as fmincon and

patternsearch can’t include the heading angle limits as hard constraints, very

small violations may occur. Including a safety margin on the θtol is one way of

negating this and it is trivial to check a solution to ensure it is valid.

5.3.3 Optimised heading example

An example will be given to illustrate the process of finding the optimal heading

angle that minimises angular acceleration. A planar trajectory (Figure 5.8) was
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randomly generated using the method described in Section 5.3.4. There are a

mixture of turns with different radii of curvature, the smallest being at the end

of the trajectory. The unwrapped heading angle that tracks the velocity vector

direction is plotted in Figure 5.9. The dashed lines represent the maximum and

minimum angles when θtol = 0.2618 rad.

Before calculating the coefficients using the least-squares spline approxima-

tion, the knot vector and order must be chosen. The number of unique knot

vector nodes was chosen to be 18. The knot vector nodes are control points on

the B-spline that influence its shape. The order was chosen as n = 7 because

it desired that up to the fourth derivative of the angle should be smooth and

continuous. The initial derivatives of the heading angle should be zero up to the

same derivative. The only constraint on the final conditions is that the head-

ing angle should be within the tolerance bounds. The length of the knot vector

(including the repeated boundary knots) is Nκ = 30:

κ = [0, 0, 0, 0, 0, 0, 0, 0.06, 0.12, 0.18, 0.24, 0.30, 0.35, 0.41, 0.47, 0.53, 0.59,

0.65, 0.71, 0.76, 0.82, 0.88, 0.94, 1, 1, 1, 1, 1, 1, 1]

(5.23)
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Figure 5.8: Heading angle optimisation example: trajectory – A planar
trajectory starting at the origin that was randomly generated using the process
described in Section 5.3.4. It contains turns of different radii and is parametrised
in the virtual domain.

There are 23 coefficients and the initial guess for these is found using the
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Figure 5.9: Heading angle optimisation example: velocity vector angle
– The heading angle of the trajectory in Figure 5.8, calculated using the atan2
function. The dashed lines mark the maximum and minimum allowable angles
during the trajectory.

least-squares approximation:

χ = [0.75, 0.75, 0.70, 0.72, 0.61, 0.65, 0.61, 0.77, 2.29, 2.02, 1.42,

0.53, 0.46, 0.56, 0.44, −0.52, −0.54, 0.67 1.15, 1.66, −0.67, −0.33, 0.92]
(5.24)

A plot of the heading angle as found by the least-squares approximation is shown

in Figure 5.10. It can be seen that the approximation closely matches the velocity

vector heading angle and θleastSquares remains within the tolerance limits.

After replacing the coefficients to force zero derivative initial boundary con-

ditions and clamp the starting angle, the coefficient vector is:

χ = [0.75, 0.75, 0.75, 0.75, 0.75, 0.65, 0.61, 0.77, 2.29, 2.02, 1.42,

0.53, 0.46, 0.56, 0.44, −0.52, −0.54, 0.67, 1.15, 1.66, −0.67, −0.33, 0.92]

(5.25)

These coefficients and knot vector describe a B-spline that is plotted as

θleastSquaresConditions in Figure 5.11. Compared to θleastSquares in Figure 5.10 the

heading angle doesn’t track the velocity vector heading as closely at the beginning

which is to be expected because the coefficients in that region were changed.

However, since the entire trajectory is still within the tolerance limits, it is a

valid initial guess for the optimiser and no additional knots need to be added.

The following weightings were chosen, jθ = 10000 and jθ̈ = 0.0001 which were
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Figure 5.10: Heading angle optimisation example: least-squares spline
approximation – A B-spline approximation of the heading angle (Figure 5.9)
calculated using the least-squares spline approximation.
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Figure 5.11: Heading angle optimisation example: initial guess – The
coefficients from θleastSquaresCondition are used as the initial guess for the numerical
minimiser after replacing the coefficients that are fixed.
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obtained by experimenting with a variety of trajectories and found to work for a

variety of scenarios. The large difference in the order of magnitude was used to

ensure the heading angle remained within the specified bounds. Since the initial

guess for the optimiser is within these bounds the optimised solution should also

be so. After solving the minimisation problem (5.22), the optimised coefficient

vector was obtained:

χ = [0.75, 0.75, 0.75, 0.75, 0.75, 0.72, 0.98, 1.02, 1.80, 1.90,

1.42, 1.03, 0.50, 0.34, −0.06, 0.14, −0.51, 1.17, 0.27, 1.66, −0.67, 0.23, 0.60]

(5.26)

The optimised heading angle θopt(τ) is shown in Figure 5.12. The accumulated

angular acceleration cost for θleastSquaresCondition(τ) was Jθ̈opt = 9.70 × 105. For

θopt(τ) the accumulated angular acceleration cost was Jθ̈opt = 1.26× 105 which is

a decrease of 87%.
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Figure 5.12: Heading angle optimisation example: optimised spline –
The optimised heading angle θopt described by a B-spline with the coefficients
found using a numerical minimiser.

5.3.4 Monte Carlo test of the knot vector length

Choosing the number of unique knots in the knot vector is a compromise between

solution quality and computational time. In the case when a very low number of

unique knots is used it may be impossible to find a B-spline that remains within

the tolerance bounds throughout the trajectory. At the other extreme when

too many knots are used the increased computational challenge can cause the

numerical optimiser to struggle to converge on the solution. A numerical, Monte
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Carlo simulation was designed to experimentally test and investigate the effect

of varying the number of knots. Figure 5.14 shows the 1000 planar trajectories

that were created with varying numbers of waypoints, chosen randomly, between

5 and 10. The Euclidean distance ∆W between adjoining points was constrained

to be 3 m < ∆W < 5 m. The final constraint was on the angle between the vector

of the previous waypoint and the current waypoint, and the vector between the

current waypoint and the one about to be added. The angle between the vectors

ψm was constrained to be within −π
2

rad ≤ ψm ≤ π
2

rad as defined by Figure 5.13.

The purpose of this constraint was to develop a variety heading angle profiles

that were representative of the types of trajectory found in circuit racing. It is

unlikely for the vehicle to double-back on itself as would sometimes happen if the

angle was unconstrained.

Figure 5.13: Heading angle Monte Carlo test geometry – The locations
of the waypoints are defined in manner similar to polar coordinates. The distance
between consecutive coordinates is ∆W with an angle between the vectors ψm.

For each trajectory, the unwrapped heading angle θunwrapped was calculated

and five different θtol values were defined in the vector:

θtol,range = [0.26, 0.35, 0.44, 0.52, 0.61] rad (5.27)

Five different knot vectors were also defined, these will be referred to by the

number of unique knots in each which are as follows κrange = [10, 15, 20, 25, 30].

For each combination of θtol,range and κrange an optimised heading angle using the
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process described in the previous section is found for each of the 1000 trajectories.

The stopping criteria for the numerical minimiser was a precision tolerance on

the free parameters and function cost of 1e−8.

x1 (m)

-40 -20 0  20 

x
2
(m

)
-40

-20

0

20

Figure 5.14: Heading angle parameter selection: 1000 trajectories – All
the planar trajectories generated by the Monte Carlo process.

The computation time Tcomp for each parameter combination and trajectory

were recorded. Since these computation times varied considerably for the different

trajectories a method of normalising the times was devised in order to prevent

outliers from skewing the results. This was achieved by taking the maximum

computation time Tcomp,max of all the κrange for a given trajectory. The normalised

computation time is then calculated for each trajectory:

Tcomp,norm =
Tcomp

Tcomp,max
(5.28)

The mean of the normalised computation times T̄comp,norm are then taken for

each combination of parameters. Figure 5.15 shows this against the heading

angle tolerance for each of the different numbers of nodes. Generally, stricter

tolerance bounds mean the solution is found faster because there is less scope for
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improving the heading angle. However, for the case of 10 unique knots there is

little difference in the computation time between the smallest tolerance bounds

and the largest tolerance bounds.

θtol (rad)
0.26 0.35 0.44 0.52 0.61

T̄
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m
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Figure 5.15: Heading angle Monte Carlo test: computational cost – The
computational cost for each combination of κ and θtol. Using fewer knots reduces
the computation time.

To compare the acceleration cost improvement for each combination of para-

meters the following method was used. The angular acceleration cost when

θleastSquaresConditions described the heading angle was found for each trajectory

when the maximum number of unique nodes, in this case 30, was used. The

maximum number of unique nodes was used because the approximated curve is

closer to θunwrapped. The angular acceleration cost percentage decrease was then

found for every parameter combination for that particular trajectory. The same

θleastSquaresConditions was used for all the parameter combinations in each traject-

ory to ensure the comparison between them was fair. The mean angular cost

J̄θ̈,norm from all the trajectories for each combination was then calculated and

shown in Figure 5.16. When θtol is small there is little difference between J̄θ̈,norm
for each of the different numbers of knots because again, there is little scope for

improvement. As θtol increases having fewer nodes performs better in this Monte

Carlo simulation. This is most likely due to convergence issues within the nu-

merical minimisation because there are too many free parameters. It is possible

that in long trajectories with many sharp bends increasing using a large number

of knots is necessary. However, for the trajectories considered here it is unneces-

sary. Therefore, from this Monte Carlo simulation the results show that using a

relatively small number of knots provides the best solutions.

104



Chapter 5 Trajectory generation for drone racing
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Figure 5.16: Heading angle Monte Carlo test: angular acceleration cost –
The normalised, average angular acceleration costs for the range of θtol and number
of coefficients used.

5.4 Chapter summary

In this chapter the trajectory generation within the virtual domain for drone

racing was developed. Starting with the translational motion, polynomials were

used as basis function to describe the position on each axis as the function of the

abstract parameter τ . A method of formulating linear equations that could be

solved to find the polynomial coefficients which satisfied the conditions placed on

the trajectory was given. An example trajectory was given which demonstrated

the use of a numerical minimiser to find the trajectory that satisfied all the

conditions and had the shortest geometrical path path length. Unlike the sub-

Riemannian curves derived in Chapter 3 the derivatives at the boundaries can be

chosen making this trajectory generation method more suitable for drone racing.

A method for ensuring the trajectories do not collide with the gates used to

mark drone racing courses was developed. The Waypoint Selection Algorithm

adds correction waypoints where necessary and two examples were given in this

chapter of its use. In the first example a single gate was placed between the

initial and final position and the algorithm quickly found extra waypoints to

avoid colliding with the obstacle. The second example had three gates rotated

about multiple axes placed in a three-dimensional environment. Once again, a

collision free trajectory was found using the Waypoint Selection Algorithm. To

demonstrate the benefits of using this algorithm an alternative approach was also

used that simply placed waypoints on the first body axis of the gate. A collision
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free trajectory was found with this method but it required tighter turns than

those found using the Waypoint Selection Algorithm.

Finally a method for optimising the heading angle was developed. A cost func-

tion that minimised the accumulated acceleration whilst staying within prescribed

tolerance limits was defined. B-splines were used as function to parametrise the

heading angle and the coefficients were found using a numerical minimiser. An

example that demonstrated how to formulate the knot vector and coefficient vec-

tor that define a B-spline was given. A Monte Carlo simulation was performed

to numerically investigate the effect of increasing the number of unique nodes in

the knot vector and the size of the tolerance angle limits.

In the following chapter the virtual domain trajectories developed in this

chapter are mapped to the time domain. This is required for the trajectories

to be feasible and address optimality. During the mapping process it is some-

times necessary to recompute the virtual domain trajectory, the reasons for this

are given in the next chapter. When this does occur, the same method described

in this chapter is used.
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Mapping trajectories to the time

domain

In the previous chapter, trajectories were planned in the virtual domain and were

parametrised by the abstract parameter τ . In order for these trajectories to be

feasible and trackable by the controller in Chapter 7 they must be mapped into the

time domain. This is achieved through the use of a mapping function that allows

the trajectory to be parametrised in the real time domain t. This trajectory can

then be used as a reference trajectory because during the mapping process the

kinodynamic limits, such as the limit of thrust available or maximum acceleration

can be accounted for, unlike the virtual domain trajectory found previously.

Mapping a trajectory from the virtual domain to the time domain is equi-

valent to separating the temporal information from the spatial information, a

technique developed by Bobrow for robotic manipulators [134]. Time mapping is

also known as adjusting the velocity profile, planning in the virtual domain, time

parametrisation and time scaling. The geometric path remains the same before

and after mapping but the rate at which the vehicle moves along it is different.

This has advantages and disadvantages for the motion planning. For obstacle

avoidance it is a useful property to have because a trajectory in the virtual do-

main that avoids the collision region will do the same in the time domain. The

disadvantage is that the shape of the trajectory is not directly considered when

optimising the motion so while the mapped solution may be optimal for one vir-

tual domain trajectory, it may not be globally optimal. However, as discussed in

Chapter 1, pseudo-optimal solutions are still useful.

107



Chapter 6 Mapping trajectories to the time domain

The same mapping must be applied to the motion along each axis. For this

reason it is impossible to change derivatives of position (such as velocity and

acceleration) independently so appropriate derivatives must be be chosen in the

virtual domain. Rotational motion can also be mapped, as is necessary for the

heading angle in the case of quadrotors. Examples of different systems where time

mapping has been applied to include spacecraft [135, 136] and robotic arms [137].

A point-to-point quadrotor virtual trajectory generation method was presented

in [138] but the manoeuvres are rest-to-rest and the yaw angle is not considered.

A well-chosen mapping function has a high level of control over the relationship

between the virtual domain and the time domain. The kinodynamic limits of

the vehicle can be pushed as much or as little as desired. One of the appealing

aspects of time mapping is its suitability for minimising trajectory time because

the final trajectory time does not need to be known in advance. As discussed in

Chapter 2, drone racing is essentially a minimum time problem so this method

of optimisation is ideal. This chapter will develop methods for optimising the

trajectory time whilst remaining feasible for a drone to fly. The vehicle model

and layout is that of the Standard configuration with the parameters defined in

Chapter 2. In this chapter it is assumed the thrust required from each rotor can

be calculated by the translational states and the heading angle. The method for

doing this is called inverse dynamics and how this is achieved in this thesis is

given in Chapter 7.

Original Contributions

The original contributions in this chapter are outlined as follows:

� A multi-weighted cost function that includes the trajectory time and feas-

ibility of the trajectory with respect to the thrust capabilities of the rotors

is given.

� An algorithm that quickly finds the two boundary mapping values with

the minimum trajectory time when only boundary nodes are present is

developed. This enables dynamically feasible, non-zero boundary conditions

on the derivatives to be found.

� Three methods for finding the internal mapping nodes (those between the

boundary mapping nodes) are developed and compared. The first is a

heuristic approach that seeks to lower the mapping value of each node by

an algorithmic approach. The second also uses power series polynomials as
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the basis function but the multi-weighted cost function is applied with a

numerical optimiser. The final approach uses the same cost function but

instead of polynomials a B-spline is used as the basis function.

� The best parameter choice for when B-splines are used as the basis functions

for the time mapping was investigated numerically with a Monte Carlo

simulation.

The chapter is structured as follows. In Section 6.1 the concept of mapping func-

tions that convert a trajectory in the virtual domain onto the time domain is

introduced. A multi-weight cost function is given in Section 6.2.1 that accounts

for the dynamic feasibility of the trajectory and minimises the final trajectory

time. Then, a method for algorithmically determining the boundary values ef-

ficiently is presented in Section 6.2.2. Three methods are developed in Section

6.2.3 to find the interior mapping nodes and compared against each other. A

Monte Carlo simulation in Section 6.2.4 is used to investigate the choice of para-

meters when a B-spline is used to parametrise the mapping function. Section 6.3

concludes the chapter with a summary of the findings.

6.1 Mapping function

The mapping function λ(τ) that maps the virtual domain τ to the real time

domain t is defined as:

λ(τ) =
dt

dτ
(6.1)

or equivalently:

t(τ) =

∫ τ

0

λ(τ) dτ (6.2)

A valid mapping function must satisfy the constraint λ(τ) > 0 because time

increases monotonically. The trajectory states in the time domain can now be

written as a function of virtual domain states and the mapping function. In this

thesis expressions up to the fourth derivative of position with respect to time are

provided because the inverse dynamics formulation in Chapter 7 requires control

up to this degree. The states in the virtual domain are no longer power series

polynomials but they are still continuously differentiable C∞ and smooth. The
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translational position on axis a in the inertial reference frame is simply:

xa
(
t(τ)

)
= Pa(τ) (6.3)

By applying the chain rule, the velocity on a given axis in the time domain is

found to be:

ẋa(t(τ)) =
dPa(τ)

dτ

1

λ(τ)
(6.4)

Likewise, the acceleration is:

ẍa(t(τ)) =
d2Pa(τ)

dτ 2

1

λ(τ)2
− dPa(τ)

dτ

dλ

dτ

1

λ(τ)3
(6.5)

and jerk:

...
x a(t(τ)) = 3

dλ(τ)

dτ

2dPa(τ)

dτ

1

λ(τ)5
+
d3Pa(τ)

dτ 3

1

λ(τ)3

−3
dλ(τ)

dτ

d2Pa(τ)

dτ 2

1

λ(τ)4
− d2λ(τ)

dτ 2

dPa(τ)

dτ

1

λ(τ)4

(6.6)

Finally, the fourth derivative jounce is:

....
x a(t(τ)) = 15

d2Pa(τ)

dτ 2

dλ(τ)

dτ

2 1

λ(τ)6
− dPa(τ)

dτ

d3λ(τ)

dτ 3

1

λ(τ)5

+10
dPa(τ)

dτ

dλ(τ)

dτ

d2λ(τ)

dτ 2

1

λ(τ)6
− 15

dPa(τ)

dτ

dλ(τ)

dτ

3 1

λ(τ)7

−6
dλ(τ)

dτ

d3Pa(τ)

dτ 3

1

λ(τ)5
− 4

d2λ(τ)

dτ 2

d2Pa(τ)

dτ 2

1

λ(τ)5

+
d4Pa(τ)

dτ 4

1

λ(τ)4

(6.7)

The mapping function λ(τ) can be parametrised using a basis function just

as the translational position and heading angle were in Chapter 5. In this thesis

B-splines and polynomials are both candidate functions for the mapping and are

compared in Section 6.2.3. The boundary value finding method in 6.2.2 can also

be performed with either candidate function. The mapping optimisation vector

Ξχ contains the mapping values currently being optimised. In this chapter the

method for forming the polynomials and B-splines from the conditions is not

given because the process is very similar to that described in Chapter 5.
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6.1.1 Matching the boundary conditions

The required boundary values of the velocity dPa(τ)
dτ

, acceleration d2Pa(τ)
dτ2

, jerk
d3Pa(τ)
dτ3

and jounce d4Pa(τ)
dτ4

in the virtual domain can be obtained by rearranging

(6.4), (6.5), (6.6) and (6.7) respectively. However, all derivatives before a de-

sired constraint must be known if rearranged directly. For instance if only the

acceleration was to be constrained a velocity would have to be specified. This

undesirable limitation can be avoided by specifying that any derivatives of λ(τ)

at the boundaries are zero. In our formulation this means:

λ̇(τi) = λ̇(τf ) = λ̈(τi) = λ̈(τf ) =
...
λ (τi) =

...
λ (τf ) = 0 (6.8)

This assumption means that if λ(τ) at the boundaries is known, the condition on

the derivatives at the boundary expressed in the time domain can be expressed

as:

Pa
(r)(τ) = xa(t(τ))(r)λr(τ) (6.9)

The initial value of λ(τ) at the boundaries are found numerically because if the

value is too small then it is impossible to find a mapping function that produces

a feasible trajectory since the kinodynamic limits are exceeded. This is because

when a larger value of λ(τ) is needed, λ̇(τ) must be increased. This causes the

higher order derivatives of the position to also increase, making the trajectory

infeasible. This can be easily illustrated with a planar example on the first two

axes. The boundary conditions are given in Table 6.1 and the three example

trajectories are plotted in Figure 6.1. Since the direction of the initial velocity

is specified, the trajectory planner is not free to optimise when attempting to

minimise the path length. Three combinations of boundary mapping values are

used. The first trajectory in Figure 6.1a has initial and final boundary mapping

values of λ(0) = 1 and λ(1) = 1, so all the derivatives throughout the trajectory

in the time domain are identical to those of the virtual domain. If a relatively

small maximum acceleration was applied there is no choice of mapping function

between the prescribed boundary mapping values that would enable a feasible

trajectory. This is because the trajectory rapidly changes direction which requires

an acceleration before the vehicle would have time to decelerate to a slower speed

that would require a smaller acceleration for the same manoeuvre. In Figure

6.1c the boundary mapping values have increased to λ(0) = 2 and λ(1) = 3

and the curve has changed shape. The geometrical length is now longer but
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the distance from the starting point to when the turn begins has also increased.

The boundary mapping values are further increased in Figure 6.1e to λ(0) = 4

and λ(1) = 8. Again, the distance from the starting point to the first turn

increases and the radius of curvature of the final turn to meet the boundary

conditions on the velocity vector at the end is increased. All three trajectories

match the boundary conditions in the time domain as required in Table 6.1 but

as this example demonstrates, the boundary mapping values affect the shape of

the trajectory and by choosing them carefully, the motion can be made feasible.

Condition Value

x
(0)
1 (0) 0

x
(1)
1 (0) 0

x
(2)
1 (0) 0

x
(3)
1 (0) 0

x
(4)
1 (0) 0

x
(0)
1 (T ) 4

x
(1)
1 (T ) 1

x
(0)
2 (0) 0

x
(1)
2 (0) 2

x
(2)
2 (0) 0

x
(3)
2 (0) 0

x
(4)
2 (0) 0

x
(0)
2 (T ) 1

x
(1)
2 (T ) 1

Table 6.1: Boundary mapping values: conditions – The boundary conditions
placed upon the translational states when parametrised in the time domain.

6.2 Time mapping algorithms

The optimal mapping function is one that maps a trajectory from the virtual

domain into the time domain with the minimum trajectory time whilst remaining

feasible. In this section the methods for finding this function are developed. In

Section 6.2.1 a cost function is defined, then an algorithm for finding an initial

guess of the boundary mapping values is given given in Section 6.2.2. Finally,

Section 6.2.3 addresses how mapping values between the boundaries are found.
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(a) Trajectory: λ(0) = 1 and λ(1) = 1.
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(b) Acceleration: λ(0) = 1 and λ(1) = 1.
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(c) Trajectory: λ(0) = 2 and λ(1) = 3.
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(d) Acceleration: λ(0) = 2 and λ(1) = 3.
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(e) Trajectory: λ(0) = 4 and λ(1) = 8.
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(f) Acceleration: λ(0) = 4 and λ(1) = 8.

Figure 6.1: Effect of change the boundary mapping values on the tra-
jectory shape – The combinations of boundary mapping values are applied to
the same problem. The shape of the curve is dependent upon the choice and by
increasing the values dynamic feasibility can be achieved.
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6.2.1 Defining the mapping cost function

The multi-objective optimisation problem of minimising time and remaining feas-

ible can be converted into single-objective problem by scalarising it:

Jm = jTT + jfJf
2 (6.10)

where jT and jf are scalar weightings for time and feasibility respectively. The

trajectory feasibility cost is Jf and T is the final trajectory time. The trajectory

time is calculated using (6.2) and the method for finding the feasibility cost is

given below.

In this thesis a feasible trajectory is one in which the thrust required from

each rotor is within specified limits throughout the entire motion. If each rotor

satisfies the condition fmin < f1−4(t) < fmax then the feasibility cost is zero,

Jf = 0. Effectively this means that so long as the trajectory remains feasible it

does not contribute to the cost function (6.10). If one or more of the thrusts do not

stay within the limits then the maximum violation is used as the feasibility cost.

The violation of the lower and upper thrust limit, Jf,lower and Jf,upper respectively

are calculated as follows:

Jf,lower = |min(f1−4(t)) + fmin|
Jf,upper = |max(f1−4(t))− fmax|

(6.11)

If Jf,lower > Jf,upper then the feasibility cost is Jf = Jf,lower otherwise it is Jf =

Jf,upper. In practice the latter is most often the case because it is only when

the trajectory requires an acceleration in the direction of e3 that is similar in

magnitude to the gravitational acceleration ga = 9.8 m/s2 that the lower thrust

limit is reached.

6.2.2 Determining boundary mapping values

The method described in this section to find the boundary mapping values is

universal to the three methods for finding the interior mapping nodes that are

developed in Section 6.2.3. It has already been explained in Section 6.1.1 that to

match the boundary conditions the boundary mapping values must be sufficiently

large to ensure the trajectory is dynamically feasible throughout. If a mapping

114



Chapter 6 Mapping trajectories to the time domain

function that produces a feasible trajectory is defined by some function (such

as a polynomial or B-spline) with only boundary mapping the interior mapping

values can be found later. This ensures that a feasible but sub-optimal solution is

quickly produced that can be improved by optimising the interior nodes to reduce

the trajectory time.

Early attempts at finding the boundary mapping values used standard nu-

merical optimisers such as fmincon and patternsearch. However, because the

virtual trajectory needs to be recomputed at every iteration the solution time was

excessively long because standard optimisers have no knowledge of the problem

being solved. For instance, there are usually two peaks of maximum dynamic

infeasibility, one near the beginning and one near the end. The maximum infeas-

ibility of a given peak can be reduced by increasing the corresponding mapping

value. Additionally, the standard optimisers require upper and lower bounds to

be given for the optimisation vector. The values of the optimisation vector are

problem dependent and it is difficult to predict their size in advance. Although an

infinitely large bound can be applied this will result in iterations with excessively

large guesses that will extend the computation time. The problem is exacerbated

if the interior mapping values are also found at the same time as the boundary

values. However, if a good initial guess is obtained the standard numerical op-

timisers perform better. The method in this section can be thought of as finding

that initial guess.

Since the optimisation vector used to find the boundary mapping values only

has two parameters, the initial and final mapping value, developing a time min-

imisation algorithm specific to this problem is relatively simple. Figure 6.2 ex-

plains the method that was developed. The first step is to initialise the bound-

ary mapping values to some minimum value. A convenient starting point is

λ(0) = λ(1) = 1 so the trajectory in the time domain is identical to that of the

one in the virtual domain. For the purposes of checking the dynamic feasibility

the trajectory was divided into two halves. The feasibility cost of the first half

is Jf,initial = Jf ([0, T/2]) and for the second half is Jf,final = Jf ([T/2, T ]) where

Jf ([0, T/2]) is the maximum feasibility cost when t ∈ [0, T/2] and Jf ([T/2, T ]) is

the maximum feasibility cost when t ∈ [T/2, T ]. If the trajectory in infeasible

during the first half, Jf,initial > 0, then the initial mapping value λ(0) is doubled

at the next iteration. Similarly, if Jf,final > 0 then the final mapping value λ(1)

is doubled.
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A new virtual domain trajectory is obtained with the new mapping values and

the same process for checking the dynamic feasibility is applied and the process

is repeated. If one half of the trajectory is feasible then the mapping value on

that side is held constant for the next iteration. The other mapping value is then

increased until the entire trajectory is dynamically feasible. Then the boundary

values are refined by taking the average of the current value and the largest map-

ping value of when trajectory was still infeasible. This is repeated until one of

two tolerance criteria is reached. The first is a minimum step size for the bound-

ary values and the second is when the maximum thrust is within some defined

region from the maximum allowable thrust. The first criteria stopping criteria is

required because sometimes the maximum thrust on one side does not come close

to the maximum allowable thrust. Decreasing the step size and maximum thrust

region will result in an improved trajectory time but the algorithm takes longer

to converge.

To illustrate the method for finding the boundary mapping values an example

is given in Figure 6.3. In this example a B-spline curve was used as the basis

function for the mapping function (Section 6.2.3.3). However, the same method

is used when polynomials are used to define the mapping function (Section 6.2.3.1

and Section 6.2.3.2). The dashed lines represent the boundary mapping values

(left vertical axis) and the solid lines represent the logarithmic of the maximum

thrusts (right vertical axis). The red circle marks represent values related to the

initial boundary condition and the blue square marks relate to the final bound-

ary condition. The logarithmic applied to the maximum thrust was necessary

because the thrusts that correspond to small mapping values are several orders

of magnitude larger than the thrust limit. In this respect, the graph understates

the ability of the method to rapidly converge on a feasible solution. During it-

erations one through to nine the algorithm is finding the mapping values that

give a feasible trajectory throughout. At iteration six a feasible thrust for the

first half is found and the algorithm no longer attempts to increase the mapping

value. At iteration nine the maximum thrust for the second half of the traject-

ory is found and the refining stage can begin. The mapping values for both the

initial and final boundary nodes were reduced, with the greatest improvement

shown for the latter. This is to be expected due to the exponential increase of

the mapping value caused by doubling them in the previous stage. The number

of iterations required to find the boundary mapping values is a fraction of the
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number required when using standard numerical optimisers. The solution found

using the boundary mapping algorithm and a B-spline as the basis function was

λ(0) = 9.50, λ(1) = 39.75 which resulted in a trajectory time T = 24.63 s.

2 4 6 8 10 12 14 16
0

20

40

60

80

0

5

10

15

Figure 6.3: Boundary mapping algorithm example – The solid lines denote
the maximum thrust violation in the first and second half of the trajectory. The
dashed lines denote the boundary mapping values.

For the same boundary mapping problem addressed in Figure 6.3, a two-

dimensional contour plot of the final trajectory time T is given in Figure 6.4.

The purpose of this figure is to demonstrate the ability of the method used to

determine the near-optimum boundary mapping values. It was generated by

starting with mapping values λ(0) = λ(1) = 1 and increasing them in unit in-

crements to λ(0) = λ(1) = 100 whilst ensuring all combinations in between were

tested. If a given combination of λ(0) and λ(1) did not produce a dynamically

feasible trajectory then it was not included in the contour plot. The best solu-

tion from this exhaustive search was λ(0) = 10, λ(1) = 37 that resulted in a

trajectory time T = 23.50 s which is slightly smaller than the one found by the

algorithm. This discrepancy is due to the assumption made by the algorithm

that Jf,initial and Jf,final can be treated independently. At the twelfth iteration

the condition flimit − ftol ≤ fl,max ≤ flimit is true so the initial mapping value is

fixed at λ(0) = 9.5, however, if it was slightly larger then the final λ(1) mapping

value could be lower and result in reduced trajectory time. One solution to this

would be to try a range of values of λ(0) whilst choosing λ(1). However, this

would make the algorithm more complicated and harder to implement. It would

also require more iterations to solve, thereby increasing the computation time.

It was decided that the algorithm performed satisfactorily and further improve-
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ments would be left to future work. Recalling the discussion in Chapter 1 on the

subject of optimality, for motion planning problems, pseudo-optimal solutions are

still ‘good enough’. Additionally, since the interior mapping values still need to

be found further improvements of the boundary mapping values may be possible

after this is performed.

λ(0)
0 50 100

λ
(1
)

0

50

100

T
(s
)

40

60

80

100

Figure 6.4: Boundary mapping value algorithm trajectory times – A
contour plot of the final times relating to feasible trajectories. Trajectories that
were not feasible and violated the thrust limits were ignored.

6.2.3 Three time mapping methods

In this section three methods for finding the interior mapping values – after the

boundary mapping values have been determined – are compared. This is achieved

by defining a drone racing scenario and running the motion planner using each of

the three methods. The position and orientation of the gates are defined in Table

6.2 and they are all the same size: rh,i = 0.6 m, rh,o = 1.4 m and lh = 0.5 m.

The boundary conditions are given in Table 6.3. The starting and finishing

translational position are x(0) = [0 m, 0 m, 0 m]T and x(T ) = [14 m,−2 m, 0 m]T

respectively. In this example the heading angle is fixed throughout the traject-

ory at b1 = [1, 0, 0]T . Time mapping when the heading angle is not static is

demonstrated in the next chapter. As mentioned earlier in this chapter, all the

simulations assume the standard layout quadrotor from Chapter 2 is being used.
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Gate h1 (m) h2 (m) h3 (m) φh,1 (◦) φh,2 (◦) φh,3 (◦)

1 0 −6 −1 0 0 −90
2 4 −10 −4 0 20 75
3 15 −5.5 −2.5 0 15 0

Table 6.2: Time mapping test: gate parameters – The translational position
and attitude of the gates for this test.

Condition Value

x
(0)
1 (0) 0 m

x
(1)
1 (0) 4 m/s

x
(2)
1 (0) 0 m/s2

x
(3)
1 (0) 0 m/s3

x
(4)
1 (0) 0 m/s4

x
(0)
1 (T ) 14 m

x
(1)
1 (T ) 0 m/s

x
(0)
2 (0) 0 m

x
(1)
2 (0) −0.8 m/s

x
(2)
2 (0) 0 m/s2

x
(3)
2 (0) 0 m/s3

x
(4)
2 (0) 0 m/s4

x
(0)
2 (T ) −2 m

x
(1)
2 (T ) 0 m/s

x
(0)
3 (0) 0 m

x
(1)
3 (0) 0 m/s

x
(2)
3 (0) 0 m/s2

x
(3)
3 (0) 0 m/s3

x
(4)
3 (0) 0 m/s4

x
(0)
3 (T ) 0 m

Table 6.3: Time mapping comparison: boundary conditions – The bound-
ary conditions placed upon the translational states when parametrised in the time
domain. The values were chosen arbitrarily but selected to show the derivatives
can be specified to different values independently.

6.2.3.1 Mapping value heuristic optimisation using polynomials

An earlier version of this algorithm was presented by the author in [44]. In that

paper the dynamic feasibility was considered using simple kinodynamic conditions
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on the maximum speed and acceleration. This is a valid approach but the results

tend to be overly-conservative because the kinodynamic constraints are simplified

in comparison to the inverse dynamic approach used to find the thrust in this

thesis. This version of the algorithm also assumes the boundary mapping values

have already been found using the method described in the previous section.

Of the three methods presented in this section this is the only one that does not

use the multi-objective cost function previously defined. Instead, the approach

taken to minimise the trajectory time is to recognise that the area under the

mapping function when λ(τ) is plotted against τ is the trajectory time in the

time domain (6.2). Therefore, reducing this area will improve the trajectory

time. Using a polynomial function to describe λ(τ), the mapping values that

control the shape of this curve can be reduced where possible whilst ensuring the

trajectory remains feasible. The heuristic approach taken alternates between the

initial mapping value side and the final mapping value side and works in towards

the middle. Each node is considered individually and reduced as much as possible

before the trajectory until the point where the trajectory becomes infeasible. The

method used to form and solve the polynomial is identical to how the motion on

the translational axes is defined in Chapter 5. In summary, the conditions on

the mapping function, including on its derivatives (6.8), are formed into a linear

equation and solved to find the coefficients of the polynomial.

Figure 6.5 is a flow chart of the heuristic algorithm that is split into two stages.

The first stage, ‘Interior Value Finding’, begins by taken the boundary mapping

values found previously. The mapping value that corresponds to the second node

is interpolated by numerically discretising the current solution. It is reduced until

any further reduction would cause the trajectory to become infeasible. Next, the

penultimate mapping value is considered and reduced in a similar manner. The

third mapping value, then the third-last and so on are reduced until all the values

have been minimised. The alternating approach is taken at this stage because

it was found that when the order was linear from the initial value to the final

value the trajectory time at the end of this stage was inferior. Now that all of the

mapping nodes have values, they can be considered from the initial to final value

repeatedly in the final stage, known as ‘Value Refinement’. Once again, each

node is considered individually and reduced when possible. When no further

reductions can be made the algorithm terminates.

Using the scenario described by (Table 6.2 and Table 6.3) an example mapping
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Reduce mapping value

of the current node

Is the trajectory

feasible?

Record last mapping 

value that gave 

a feasible trajectory

Do all mapping nodes

have values?

Is the current

node LEFT?

Go to next 

LEFT node

Go to next 

RIGHT node

Set node 1 as current node

Reduce current node value

Is the trajectory

feasible?

Record last feasible value

Have all the values

been examined in

this loop?

Record last feasible value

and move to the next node

Where any values

changed in this loop?

Mapping Completed

YES

YES

YES

YES

YES

YES

NO

NONO

NO

NO

NO

Start mapping with default values

Stage 2: Intermediate Value Finding

Stage 3: Value Refinement

Figure 6.5: Heuristic time mapping algorithm – A flowchart of the logic
behind the second and third stage of the Heuristic time mapping method. Before
using this algorithm the boundary mapping values must be found first.
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from the virtual domain to the time domain is performed using the heuristic

approach described above. Twelve mapping nodes were distributed uniformly in

the virtual domain and the minimum reduction allowed was 0.1. The relationship

between the virtual domain and the time domain for each stage is given in Figure

6.6a. A planar view of the trajectory after the third mapping stage is shown in

Figure 6.6b. The mapping functions for Stage 1, Stage 2 and Stage 3 are given in

Figures 6.6c, 6.6e and 6.6g respectively. Similar the thrust profiles for each stage

are given in Figures 6.6d, 6.6f and 6.6h

The trajectory time in the first, second and third stage is 18.50 s, 16.20 s and

12.65 s respectively. The greatest improvements to the trajectory time occurred

when τ > 0.6, which is to be expected because the final mapping value is consid-

erably higher than the first so a greater proportion of the area under λ(τ) is after

that point. In Figure 6.6d the two peaks of maximum thrust that occur when

the boundary values are found are both visible. After defining and reducing the

interior mapping nodes in Figure 6.6e the trajectory time is improved but in the

region 7 s < t < 15 s the thrust capabilities are not being fully utilised because

the thrusts are well below the limit of 12N . The final refinement stage mapping

function shown in Figure 6.6g improves the trajectory time, mainly by altering

this region.

The translational states on each axis from position to the fourth derivative

as found by in the final mapping stage are plotted against time in Figure 6.7. It

can be seen that all the boundary state conditions from Table 6.3 are matched.

The first axis requires the greatest number of changes in acceleration direction

(Figure 6.7c) so it dominates the thrust magnitude.

6.2.3.2 Mapping value optimisation using polynomials

Like the heuristic mapping method, the approach introduced in this section also

uses a polynomial to describe the mapping function. However, a numerical op-

timisation is applied to find the mapping values that minimise trajectory time

by using the cost function defined in Section 6.2.1. There are three stages to this

method. The first stage is to find the boundary mapping values with the method

previously discussed. In the second stage the interior mapping values are found

by minimising the cost function and in the final stage all the mapping values are

considered.
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(h) Rotor thrusts: Stage 3.

Figure 6.6: Heuristic time mapping: example – The mapping stages for the
heurstic time mapping example.
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Figure 6.7: Heuristic time mapping: example states – The translational
states up to the fourth derivative.
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An initial guess for the interior mapping values in Stage 2 is obtained by

interpolating between the discretised mapping function from the previous stage.

The boundary mapping values are not considered because if they are included the

virtual trajectory must be recalculated whenever either are changed which is com-

putationally optimal and interior mapping values have not been optimised yet.

The final stage is identical to the second except all the mapping values including

the boundary ones are considered because a good guess should be available at

this point and observations have shown the boundary values do not change sig-

nificantly in this step. Therefore, the solution for the virtual domain trajectory

can be found reasonably quickly. For this reason, the bounds placed on the initial

and final mapping guessed values in the optimisation vector only need to allow

small changes from the previous stage.

The same trajectory scenario described in Table 6.2 and Table 6.3 was used

to test this method. Again, twelve nodes are used distributed across the virtual

domain. The scalar weightings for the cost function are jT = 0.1 and jf = 20.

The relationship between time and the virtual domain for each stage is given

in Figure 6.8a. The trajectory times after Stage 1, Stage 2 and Stage 3 were

respectively 18.50 s, 13.09 s and 12.32 s. The trajectory after the final mapping

stage is given in Figure 6.8b. Mapping functions in the virtual domain and the

rotor thrusts in the time domain for each stage are plotted in Figures 6.8c, 6.8e

& 6.8g and 6.8d, 6.8f & 6.8h respectively.

The first stage in this method is identical to the first stage of the previous

method because both are defined using polynomials using the same algorithm to

find the boundary values. Interestingly, there is no qualitative difference between

the mapping functions and rotor thrusts in Stages 2 & 3, which is reflected by

both having similar trajectory times. In this case there was minimal benefit to

refining the boundary values. The translational states up to the fourth derivative

in the time domain are given in Figure 6.9. All the boundary conditions were

matched successfully.

6.2.3.3 Mapping value optimisation using B-splines

The method for optimising the mapping functions in this section is identical to

that of the previous one, except B-splines are used as the basis functions instead of

polynomials. The boundary nodes are clamped by repeating knots at both ends of
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Figure 6.8: Polynomial time mapping: example – The mapping stages for
the polynomial time mapping example.
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Figure 6.9: Polynomial time mapping: example states – The translational
states up to the fourth derivative.
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the mapping function to ensure the conditions on the derivatives of the mapping

function (6.8) were satisfied and the boundary values could be specified exactly.

The interior values control the shape of the curve but the mapping function is

not required to pass through them exactly, as is the case for polynomials. This

means that an interior mapping value could be less than zero, so long as the

condition λ(τ) > 0 was still met. Therefore, the upper and lower bounds on the

optimisation vector should not be so restrictive as to prevent valid solutions.

Like the previous methods, the process was split into three stages. The first

stage finding the boundary values, the second finding the interior values and the

third refining all values. In Chapter 5 it was necessary to find an initial guess for

the B-spline coefficients when the heading angle was optimised using the least-

squares approximation. This was not required for the mapping function because

the shape of the curve after the boundary values were found was simple enough

to simply discretise the solution to obtain the interior values that were used as

guesses for the coefficients.

The same trajectory scenario described in Table 6.2 and Table 6.3 was used

to test this method. Again, 12 unique mapping values were optimised (at each

boundary the same value was repeated 5 times to ensure the boundary conditions

were met. The same scalar weightings as the previous polynomial method were

used: jT = 0.1 and jf = 20. Figure 6.10a shows the relationship between the

time domain and the virtual domain for each stage. The trajectory times after

Stage 1, Stage 2 and Stage 3 were respectively 18.75 s, 12.81 s and 11.61 s. In

Figure 6.10b the trajectory after the final stage is shown.

Mapping functions in the virtual domain and the rotor thrusts in the time

domain for each stage are plotted in Figures 6.10c, 6.10e & 6.8g and 6.10d, 6.10f

& 6.10h respectively. As mentioned above, the mapping function after the first

stage in Figure 6.10c is simple enough for the B-spline to approximate with inter-

polation rather than the least-squares approximation method. The improvement

in trajectory time between the second and final stage is minimal for this case.

The translational states up to the fourth derivative in the time domain are given

in Figure 6.11. All the boundary conditions were matched successfully.
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Figure 6.10: B-spline time mapping: example – The mapping stages for the
B-spline time mapping example.
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Figure 6.11: B-spline time mapping: example states – The translational
states up to the fourth derivative.
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6.2.3.4 Algorithm comparison

Three methods for optimising the mapping values to minimise the trajectory time

have been presented. The final trajectory times found by each method are similar

but the B-spline approach is marginally the best. Currently the virtual domain

trajectories require a numerical optimiser to find the shortest path lengths but

if an alternative method was used and combined with the heuristic mapping

approach then no numerical optimiser would be required. In some situations this

could be beneficial, for instance if the flight software did not support or have one

built in. However, the heuristic approach is just that, heuristic. The other two

methods change the mapping values based on a cost function that includes the

trajectory time. There could be cases when reducing an individual mapping value

does not reduce the trajectory time so it is not possible to prove the strategy of

the heuristic method is always the best one. For this reason and despite the

simplicity of this method it was not chosen

B-splines are more complicated to calculate compared to polynomials but

modern numerical software such as Matlab includes built-in dedicated functions

to handle the mathematics. One significant benefit of B-splines is that there is

no risk of ill-conditioning, as can happen when too many constraints are applied

to polynomials. This means that the number of mapping values for polynomi-

als are limited, whereas B-splines can add mapping values indefinitely and are

only limited by convergence issues within the numerical optimiser. Addition-

ally, power-series polynomials suffer from Runges phenomenon that can cause

the function to oscillate near the boundaries [139]. In Figure 6.12a and Figure

6.12b the cost function against iteration number are plotted for both the poly-

nomial and B-spline method respectively. It can be seen that the B-spline basis

function converges to the minimum much more quickly than the polynomial basis

function. This is most likely because B-splines have a local modification scheme

so it is easier for the numerical optimiser to improve the mapping values without

affecting the rest of the solution. For the reasons given, B-splines were chosen as

the basis function for the mapping function and a further investigation is given

in the next section.
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Figure 6.12: Second numerical optimiser performance – A comparison
between using the polynomial and B-spline as the basis function during the second
stage of the mapping process.

6.2.4 Finding the best parameters for B-Spline algorithm

Of the three methods presented for the finding the mapping function, the B-spline

parametrisation with the numerical optimisation was chosen as the preferred

method. In this section it will be explored further to ascertain: the benefits

of running the third stage and how many unique mapping values should be used.

The third stage requires the virtual domain trajectory to be recalculated at each

step because the boundary mapping values are not fixed. In the example scenario

there was a marginal improvement of the trajectory time when the third stage

was used but this was only a single test case. Intuitively, one would expect that

increasing the number of mapping nodes would improve the solution. However,

in practice, multi-parameter optimisation is challenging and by increasing the

number of free variables it is possible that the minimiser will struggle or fail to

converge.

In order to test both of these issues numerically a Monte Carlo simulation was

created. This simulation is similar to the one performed in Chapter 5 that invest-

igated the heading angle optimisation. However, in this example the boundary

conditions on the translational derivatives were randomly chosen between given

bounds. 50 trajectories were generated using the following process. Velocity and

acceleration conditions were considered at the beginning and end of the traject-

ories. A 50% chance for each type of condition being applied was chosen so that

wide variety of scenarios and types of boundary cases was generated. When a

velocity or acceleration condition was applied to an axis it was constrained within
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the limits:

− 5 m/s ≤ ẋ1,2,3 < 5 m/s, −1 m/s2 ≤ ẍ1,2,3 < 1 m/s2 (6.12)

The waypoints were randomly chosen with the same set of rules as Section 5.3.4.

The trajectories that are feasible in the time domain after the boundary mapping

values were found are given in Figure 6.13. The second stage of optimisation

was then applied to each trajectory for 5, 10, 15, 20, 25 and 30 unique mapping

values. To find the average improvement in trajectory time between the first

and second stage the percentage decrease was found for each mapping value case

during the first 100 iterations. The mean percentage decrease at every iteration

was then calculated. Percentage decrease was chosen as the metric because short

trajectories have less time available to improve so the longer trajectories would

have a greater influence on the results if it was just the average trajectory time

that was found.
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Figure 6.13: B-spline time mapping parameter selection: 50 trajectories
– All the trajectories generated by the Monte Carlo process after the time mapping
process has been applied.
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Chapter 6 Mapping trajectories to the time domain

The results after running the second optimisation stage are shown in Figure

6.14. It can be seen that the case of 5 mapping values converges the fastest but

shows the smallest percentage decrease of all the tests. If there is only a very short

optimisation period available then it is possible that 5 mapping values would be a

reasonable choice, however the others have a similar trajectory time improvement

rate during the early optimisations but then continue to get better later. At the

other end of the spectrum, 30 mapping values is clearly too many because in

100 iterations it has only just converged to a result similar to when only 10

mapping values are used. The mid-range shows the best results and either 15 or

20 mapping values have a sufficient amount of nodes to find an good solution but

not so many that the optimiser struggles to converge. One possibility to improve

the method is to start with small number of mapping values and then add more

to refine the solution. It may also be possible to find where the trajectory time

has the most scope for improvement and focus the computational efforts there.

Due to the local modification scheme of B-splines the rest of the solution would

be unaffected by these changes. However, this is left as future work.
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Figure 6.14: B-spline time mapping parameter selection Stage 2 per-
formance – The percentage decrease for the various numbers of mapping nodes
used for each iteration of the optimisation algorithm are given.

To test the improvement of the final mapping stage, 15 unique mapping nodes

were used on the 50 trajectories previously generated. The same method for

finding the average percentage decrease was used from Stage 2 to Stage 3. Figure

6.15 shows the percentage decrease against the iteration number when 15 nodes

were used. It is clearly beneficial to apply this stage if possible. However, after

about 40 iterations the trajectory time is no longer improved significantly.
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Figure 6.15: B-spline time mapping parameter selection Stage 3 per-
formance – The performance of Stage 3 when 15 unique mapping nodes are used.

6.3 Chapter summary

In this chapter the methods for mapping a trajectory from the virtual domain

into the time domain have been giving. The concept of a mapping function was

defined and a simple, multi-objective cost function was defined that considered

trajectory time and dynamic feasibility. An example showing the need to carefully

choose the boundary mapping values was given and the algorithm for finding these

was shown to find a good solution efficiently and was compared to an exhaustive

search. Of the three methods demonstrated the B-spline optimisation was chosen

as the best performer. An investigation into the number of mapping values to

use suggested that 15 is a good amount. It was also shown that refining all the

mapping values including the boundary ones was beneficial if it was possible.

This chapter concludes the trajectory generation methods. Dynamically feas-

ible, collision avoiding and pseudo-optimal trajectories can now be generated for

drone racing scenarios. The next chapter will use these motion planning methods

as references for tracking controllers to follow. In Chapter 8 further simulations

are performed with the trajectory generation methods in order to gain a better

understanding of them.
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Chapter 7

Disturbance rejection tracking

controller

Chapters 5 and 6 developed a framework for generating drone racing trajectories.

Once these trajectories have been obtained they can be used as reference traject-

ories for a tracking controller. The need for tracking controllers was introduced

in Chapter 1 and they are required to calculate the control actions necessary to

follow a planned motion. As explained in Chapter 2, quadrotors have four out-

puts (f1, f2, f3, f4) that consist of rotors that produce varying amounts of thrust

depending on the motor speed. These thrusts were used for determining dynamic

feasibility in the previous chapter. The dynamic equations of motion require the

quadrotor outputs as a total scalar thrust f and moment about each body axis

M. This is also the format of the controls that the tracking controller uses but

it easy to transform them into four thrusts if the layout configuration is known

and the method for doing so will be given in this chapter.

Lee designed a nonlinear tracking controller for quadrotors on the SE(3) group

[88]. This shall be referred to as the Standard Controller in this thesis and is the

basis of the Modified Controller developed in this chapter. The Modified Con-

troller uses a Linear Extended State Observer (LESO) which has been shown to

be effective on nonlinear systems [140] to estimate the translational disturbance

D acting upon the vehicle. LESOs have been applied to quadrotors previously

[99, 100, 101] but in all these cases the tracking controllers were based on Euler

angles which suffer from the limitations discussed in the first chapter. A non-

linear extended state observer is another kind of Active Disturbance Rejection
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Control (ADRC) but it requires more parameters to tune and also requires more

calculations. If the estimator struggles to track the disturbance then a nonlinear

ESO should be considered. When a disturbance estimator is used it is important

to demonstrate that the estimator error remains bounded and converges within

a known region [141].

Original Contributions

The original contributions in this chapter are outlined as follows:

� The conversion of the total thrust and moment about each axis into four

individual thrusts for the Cross and H-Shape layout configuration is de-

veloped. The conversion for the Standard layout configuration is also given

but this has been found previously.

� The Standard Controller is used to develop and inverse dynamics model

that can be used to find the thrust required of each rotor given a time

based reference trajectory and assuming there are no disturbances.

� The Standard SE(3) Controller is modified to include a Linear Extended

State Observer that improved the tracking performance when disturbances

are present.

� A convergence proof for the LESO is given to show the bounds on the

estimation error of the disturbance.

� Three types of disturbances were used to test and compare the tracking

controllers: i) square wave, ii) sinusoidal, iii) wind model.

The chapter is structured as follows. In Section 7.1 the Standard Controller is

introduced. It is then used as the basis for an inverse dynamics formulation that

allows the individual rotor thrusts to be calculated for a variety of layout con-

figurations. Section 7.2 develops a LESO that is used to modify the Standard

Controller to include ADRC. The two tracking controllers are compared numer-

ically in simulation with three types of disturbances in Section 7.3. The chapter

is concluded and summarised in Section 7.4.
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7.1 Standard controller and inverse dynamics

This section introduces the Standard SE(3) tracking controller and uses it to

form an inverse dynamics method for find the control thrusts required to follow

a quadrotor trajectory.

7.1.1 Standard SE(3) controller

The nonlinear tracking controller developed on the special Euclidean group SE(3)

presented in [88] is used as the basis for the disturbance rejection controller in the

next section. The scalar magnitude of thrust is calculated by the controller by

trying to minimises the tracking errors in both the translational and rotational

position:

f = −(−kxex − kvev −mge3 +mẍd) ·Rde3 (7.1)

where e3 is the direction of the third body axis. Similarly for the moment control:

M = −kReR − kΩeΩ + Ω× JΩ

−J(Ω̂RTRdΩd −RTRdΩ̇d)
(7.2)

where R is the actual rotation and Rd is the desired rotation and where ex, ev, eR

and eΩ are the tracking error vectors in position, velocity, attitude and angular

velocity respectively and are calculated respectively:

ex = x− xd (7.3)

ev = v − vd (7.4)

eR =
1

2

(
RT
dR−RTRd)

∨ (7.5)

eΩ = Ω−RTRdΩd (7.6)

Their associated scalar gains are kx, kv, kR and kΩ. The desired states are denoted

with subscript d and Ω̂ is the skew-symmetric matrix of the angular velocity:

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 (7.7)
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The desired rotation can be expressed as Rd = [b1d
, b3d

× b1d
, b3d

] where

the desired direction of the third body axis is:

b3d
=
−kxex − kvev −mge3 +mẍd

‖−kxex − kvev −mge3 +mẍd‖
(7.8)

7.1.2 Inverse dynamics

If it is assumed that the error vectors of the position, velocity, orientation and

angular velocity are zero so no control gains are required. The controls can then

be calculated analytically from the translational motion and the direction of the

first body-axis without needing to numerically integrate the equations of motion

(2.3)-(2.6).

The translational dynamics are controlled by the net thrust f directed along

the b3 body axis. The direction of this axis is dependent on the translational

acceleration desired, the actual translational acceleration and the gravitational

acceleration in the inertial frame:

b3c =
−mge3 +mẍd

‖−mge3 +mẍd‖
(7.9)

where subscript d is the desired value and subscript c is the commanded value.

After choosing the desired direction of the b1 either by fixing it at a constant or

using the heading angle optimisation developed previously, the second body axis

b2 can be computed:

b2c =
b3c × b1d

‖b3c × b1d
‖

(7.10)

The commanded direction along the first body axis is:

b1c = b2c × b3c (7.11)

The desired attitude as a rotation matrix:

Rd = [b1c ,b2c ,b3c ]
T (7.12)

And the desired angular body velocity:

Ω̂d = RT
d Ṙd (7.13)
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Since the first derivative of the desired rotation matrix is required it can be seen

that Ω̂d is dependent upon the translational acceleration and jerk. Using the

chain rule, the rate of change of Ω̂d can be found:

˙̂
Ωd = RT

d R̈d + ṘdṘ
T
d (7.14)

which is a function of translational acceleration, jerk and jounce. The attitude is

controlled by applying a suitable moment about each axis and is computed by:

M = Ωd × JΩd − J(Ω̂dΩd − Ω̇d) (7.15)

The net thrust that controls the translational dynamics can be expressed as:

f = (mge3 −mẍd) ·Rde3 (7.16)

If the controls of trajectory segments are to be smoothly joined then the states

x(t) must be considered to the fourth derivative. In this way continuity of f and

M can be ensured during the transfer between segments.

7.1.3 Calculating rotor thrusts

For a given set of controls, f and M , the required thrust from each rotor can be

calculated by the relation: 
f1

f2

f3

f4

 = L−1


f

M1

M2

M3

 (7.17)

where L ∈ R4×4 is a matrix that relates the controls to the thrust for each

rotor. The composition of L is dependent on the layout configuration. In order

for L to be invertible the determinant of L must be non-zero. For the Standard

layout (Figure 2.5a) the following simplifications can be made:

d2,2 = d4,2 = d1,1 = d3,1 = d,

d1,2 = d3,2 = d2,1 = d4,1 = 0
(7.18)
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so the layout configuration is:

Ls =


1 1 1 1

0 −d 0 d

d 0 −d 0

−cκf cκf −cκf cκf

 (7.19)

where d is the distance between the centre of mass and the rotor and cκf is a

constant related to the torque produced about the yaw axis of the quadrotor

caused by the rotors angular motion. The determinant of Ls is 8cκfd
2 so the

matrix is invertible when cκf 6= 0 and d 6= 0.

For the Cross layout (Figure 2.5b) the following simplifications can be made:

d1,2 = d2,2 = d3,2 = d4,2 = d,

d2,1 = d2,1 = d3,1 = d4,1 = d
(7.20)

so the layout configuration is:

Lc =


1 1 1 1

d −d −d d

d d −d −d
−cκf cκf −cκf cκf

 (7.21)

and the determinant is 16cκfd
2, so again, the matrix is invertible when cκf 6= 0

and d 6= 0.

Finally, for the H-shape (Figure 2.5c) the following simplifications can be

made:
d1,2 = d2,2 = d3,2 = d4,2 = d2,

d2,1 = d2,1 = d3,1 = d4,1 = d1

(7.22)

so the layout configuration is:

Lh =


1 1 1 1

d2 −d2 −d2 d2

d1 d1 −d1 −d1

−cκf cκf −cκf cκf

 (7.23)

where the determinant is 16cκfd1d2. Therefore the Lh is invertible when cκf 6= 0,
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d1 6= 0 and d2 6= 0.

7.2 Modified controller

The scalar thrust calculated by the modified tracking controller is:

f = −
(
−kxex − kvev −mge3 +mẍd − D̂

)
·Rde3 (7.24)

and the control moment is:

M = −kReR − kΩeΩ + Ω× JΩ

−J(Ω̂RTRdΩd −RTRdΩ̇d)
(7.25)

and desired direction of the third body axis is:

b3c = − −kxex − kvev −mge3 +mẍd − D̂∥∥∥−kxex − kvev −mge3 +mẍd − D̂
∥∥∥ (7.26)

It can be seen that the Modified Controller is very similar to the Standard Con-

troller, the only difference being that the estimated disturbance D̂ is included in

the control thrust f and the commanded direction of the third body axis b3c .

The method for calculating the estimated disturbance is given in the next sec-

tion. The moment control for the Modified Controller (7.25) is identical to the

moment control for the Standard Controller (7.2) because in this thesis rotational

disturbances were not considered and were left as future work.

The process of deriving the LESO to estimate the disturbance and show the

estimation error is bounded is as follows. After rearranging (2.4) the disturbance

term as an acceleration is γ = D
m

. Using a linear second-order extended state

observer [140] the estimated disturbance can be found:

˙̂v = γ̂ + β1(v − v̂)− fRe3

m
+
mge3

m
(7.27)

˙̂γ = β2(v − v̂) (7.28)

where the estimated velocity and disturbance are v̂ and γ̂ respectively. The

LESO scalar gains β1 and β2 must satisfy the constraint β1
2 > 4β2. To ensure

143



Chapter 7 Disturbance rejection tracking controller

this they were defined in terms of scalar bandwidth ωc > 0 such that β1 = 4ωc

and β2 = 3ωc.

The estimation errors for the velocity ṽ = v − v̂ and disturbance γ̃ = γ − γ̂
are differentiated with respect to time to find the estimation error dynamics:

˙̃v = v̇ − ˙̂v = −β1ṽ + γ̃ = −4ωc + γ̃ (7.29)

˙̃γ = γ̇ − ˙̂γ = −β2ṽ + γ̇ = −3ω2
c ṽ + γ̇ (7.30)

Equations (7.29) and (7.30) can be rewritten by setting ε = [ε1, ε2]T where ε1 = ṽ

and ε2 = γ̃
ωc

:

ε̇1 = −4ωcε1 + ωcε2 (7.31)

ε̇2 = −3ω2
c ε1 +

γ̇

ωc
(7.32)

which can be combined using matrices to form a single equation:

ε̇ = ωcAε+B
γ̇

ωc
(7.33)

where ε1 = [ε11, ε12, ε13, ]
T , ε2 = [ε21, ε22, ε23, ]

T , A =

[
−4I3×3 I3×3

−3I3×3 03×3

]
, B =[

03×3

I3×3

]
. New estimation error dynamic variables are defined by taking elements

from ε1 and ε2 such that ε̃i = [ε1i, ε2i]
T for i = 1, 2, 3 so (7.33) becomes:

˙̃εi =Ãε̃i + B̃
γ̇i

ωc
(7.34)

where Ã =

[
−4ωc ωc

−3ωc 0

]
and B̃ =

[
0

1

]
. The general solution of a differential

equation in the form of (7.34) can be expressed as:

ε̃i(t) = eÃt ε̃i(0) +

∫ t

0

eÃ(t−τ) B̃γ̇

ωc
dτ (7.35)

From the Cayley-Hamiltonian theorem eÃt can be written as:

eÃt =
1

2
e−3ωct

[
3− e2ωct −1 + e2ωct

3(1− e2ωct) −1 + 3e2ωct

]
(7.36)
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therefore, limt→∞ then eÃt = 0. Assuming ||γ̇|| ≤ δ and as t → ∞ the limit of

the magnitude of the estimation error dynamics can be reduced to:

‖ε̃i(t)‖ ≤
δ

ωc

∥∥∥−Ã−1
∥∥∥
F

≤ δ
√

26

3ω2
c

(7.37)

In order to derive a bound on the estimation error of the disturbance it is necessary

to remember ε2 = γ̃
ωc

. From the inequality ‖ε̃i(t)‖ ≤ δ
√

26
3ω2
c

it must be true that

|γ̃i| ≤ δ
√

26
3ωc

and therefore the Euclidean norm of γ̃ is given as:

‖γ̃‖ =
√
γ̃2

1 + γ̃2
2 + γ̃2

3 ≤
δ
√

78

3ωc
(7.38)

Therefore, as t→∞ the estimation error of the disturbance is bounded by

‖γ̃‖ ≤ σ2 (7.39)

where σ2 = δ
√

78
3ωc

is a constant.

7.3 Disturbances

Three types of disturbance were used to compare the tracking performance of

the Modified Controller and the Standard Controller. The reference trajectory

for all the simulations in this section was the final mapping stage using the B-

spline as the basis function for the mapping function from Section 6.2.3.3, the

translational states being given in Figure 6.11. The error gains for both types of

controllers were the same and chosen as follows: kx = 10m, kv = 5.6m, kR = 15,

kΩ = 2.54. These values were found from experimentation and hand-tuning. For

the Modified Controller the estimator gains β1 = 15 and β2 = 50 were chosen,

which satisfy the condition β2
1 > 4β2.

7.3.1 Square wave

The square wave is a discontinuous function that is particularly challenging for

the observer to track due to the step changes. The convergence proof presented in
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the previous section assumes the disturbance is continuous but for the purposes

of testing the LESO under difficult conditions the square wave is of interest in

order to see how the controllers behave. Different square wave functions were

applied to each translational axis in the inertial frame independently. On the

first axis e1 a square wave with amplitude 2 N, period 6 s and zero phase offset

is applied. The square wave disturbance on the second axis e2 has an amplitude

0.6 N, period 0.7 s and a phase offset of 2.2 s. The third axis e3 disturbance square

wave has an amplitude 0.8 N, period of 1.259 s and phase offset of 3.3 s.

The solid lines in Figure 7.1b plot the disturbance against time. The dashed

lines represent the estimated disturbance D̂ as calculated by the Modified Con-

troller. The estimated values track the actual values reasonably well. The step

changes cause periods in which the estimated values must catch up but this hap-

pens quickly and there is no overshoot so the estimator gains are tuned correctly.

Figure 7.1a shows the estimation error of the velocity v̂ is small throughout

the trajectory. The translational position error for each axis is shown for the

Standard Controller (solid lines) and the Modified Controller (dashed lines) in

Figure 7.1c. The largest errors occur on the first axis due to the magnitude of

the disturbance being greatest there. On the Standard Controller the errors re-

main steady when a disturbance is present. This is in contrast to the Modified

Controller that converges back to the reference trajectory once the disturbance

estimator has regained the correct value. The magnitude of the position error is

given in Figure 7.1d. The only times that the Modified Controller (dashed line)

shows inferior tracking performance compared to the Standard Controller (solid

line) is just after the step changes. This suggests that if the disturbance is highly

discontinuous then an extended state observer may not be suitable because the

disturbance estimator will be unable to track the actual disturbance.

7.3.2 Sinusoidal

Unlike the previous disturbance, the sinusoidal disturbances are continuous and

defined for each axis by the following:

D =

 2 sin(0.4330t)

1 sin(0.2165t)

0.5 sin(1.7321t)

N (7.40)
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Figure 7.1: Square wave disturbance tracking controller performance –
The Modified Controller demonstrates better tracking performance compared to
the Standard Controller under the influence of a square wave disturbance.

The choices for the amplitude, and frequency for each of the three axes was

arbitrary but a range of values were chosen to enable a comparison.

The performance of the tracking controllers under sinusoidal disturbances is

given in Figure 7.2. The actual (solid lines) and estimated (dashed lines) disturb-

ances are plotted in Figure 7.2b. It can be seen that the disturbance with the

smallest period on the second axis is tracked best by the estimator. This is to be

expected because as discussed previously, slow changes are easier to track. How-

ever, even the relatively high frequency disturbance on the third axis is tracked

reasonably well, showing only a small offset. The velocity estimation error in

Figure 7.2a is small throughout the trajectory. The position tracking error ex is

smaller on all axes for the Modified Controller compared to the Standard Control-

ler. This is also demonstrated by the magnitude of the tracking error in Figure

7.2d.
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Figure 7.2: Sinusoidal disturbance tracking controller performance –
The Modified Controller demonstrates better tracking performance compared to
the Standard Controller under the influence of a sinusoidal disturbance.

7.3.3 Wind

The final disturbance used to test the tracking controllers is from a wind model

and is continuous but non-cyclical. A spatially correlated turbulent wind simu-

lation in Figure 7.3 was produced using Cheynet’s open source code [142] that is

based on the models in [143, 144]. The disturbance force caused by the wind for

each axis is calculated by [145]:

Da = −1

2
ρairCd,aAa(va − vw,a)2 sgn(va − vw,a) (7.41)

where vw,a is the wind speed for the given axis, ρair = 1.225 kg/m3 is the air

density, Cd,a is the drag coefficient, Aa is the cross sectional area for the given axis

denoted by subscript a. In this simulation the drag coefficient and cross sectional

area were assumed to be the same for all axes and were Cd,1 = Cd,2 = Cd,3 = 0.5

and A1 = A2 = A3 = 0.202m2 respectively. The sgn function returns 1 if the

input is greater than 0, −1 if the input is less than 0, and 0 if the input is equal

to zero.
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Figure 7.3: Wind speed simulation – The wind velocities generated in simu-
lation and used as the disturbance.

The performance of the Standard Controller and the Modified Controller un-

der wind disturbances is given in Figure 7.4. As was the case for previous dis-

turbances, the velocity estimation error in Figure 7.4a is small throughout the

trajectory. The performance of the disturbance estimator in Figure 7.4b shows

that it is capable of tracking the wind disturbance and there is only a small lag

between the actual disturbance and the estimated value. The tracking error in

the translational position shown in Figure 7.4c is greatest on the first axis, corres-

ponding to largest disturbance force. The magnitude of the translational position

error is given in Figure 7.4d. The Modified Controller (solid line) has a maximum

magnitude of error that is approximately half of the Standard Controller (dashed

line).

7.4 Chapter summary

In this chapter the trajectory tracking problem was addressed. A Standard Con-

troller based on SE(3) was used to develop an inverse dynamics formulation for

calculating the thrust and moment required to follow a trajectory. The method

for calculating the required thrusts for each rotor was given for three layout con-

figurations: Standard, Cross and H-Shape. This inverse dynamics formulation

was used to ensure the feasibility of trajectories during the trajectory generation

in earlier chapters.

A LESO was added to the Standard Control in order to provide better trans-

lational disturbance rejection. A convergence proof was given for the LESO that

gave the bound of the error on the disturbance estimate. The Modified Control-

ler was compared to the Standard Controller with numerical simulations under
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Figure 7.4: Wind disturbance tracking controller performance – The
Modified Controller demonstrates better tracking performance compared to the
Standard Controller under the influence of a wind disturbance.

three types of disturbances using a reference trajectory from Chapter 6. The

square wave disturbance showed the worst disturbance estimation due to the dis-

continuous nature of the signal. However, the tracking error performance in the

translation position for the Modified Controller was still superior than that of

the Standard Controller. The sinusoidal and wind disturbance also showed the

Modified Controller performed better than the Standard Controller. Rotational

disturbances were not considered for this controller, however, the same methods

used for the translational disturbances could be applied. Future work can address

this and the controllers should also be tested on a higher fidelity simulation and

onboard an actual quadrotor.
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Simulations and further testing

In Chapters 3, 5 and 6 the motion planning methods for quadrotors were de-

veloped. Examples were given to illustrate the methods, however, these test

cases did not explore the wide variety of scenarios. For instance, the Standard

quadrotor layout was used throughout for consistency but two other layouts were

also given in Chapter 2 and inverse dynamics found in Chapter 7. Also, example

trajectories were given for the heading optimisation method but a comparison

between the trajectory time of fixed heading angles was not possible because the

time mapping method had not yet been introduced. Finally the dynamic feasib-

ility of trajectories in this thesis is considered by limiting the maximum thrust

of each rotor but it is possible to add other kinodynamic constraints such as a

maximum velocity magnitude.

The quadrotor simulators [113, 114] mentioned previously show the vehicle in

a 3D environment but are not suitable for visualising the trajectories generated

in this thesis. This is because the vehicle states that have been calculated cannot

be used as inputs. The Quadrotor Trajectory Analyser (QTA) introduced in this

chapter seeks to address this by providing a simple method for generating an

animated three dimensional trajectory whilst simultaneously showing the graphs

of any vehicle states that are of interest.

Original Contributions

The original contributions in this chapter are outlined as follows:

� The final trajectory times with different quadrotor configurations are found

for a variety of heading angle scenarios.

151



Chapter 8 Simulations and further testing

� The relationship between the final trajectory time and size of the bounds

on the optimised heading angle is investigated.

� Trajectory time mapping with additional feasibility constraints on velocity

and acceleration is demonstrated.

� The Quadrotor Trajectory Analyser that visualises quadrotor trajectories

using a 3D animation is presented.

The chapter is structured as follows. In Section 8.1 three layout configurations

are compared under different heading angle conditions. Section 8.2 investigates

the relationship between the trajectory time and the size of the heading angle

constraints when the heading angle is free to be optimised. Additional kinody-

namic feasibility constraints are added to the time mapping method in Section

8.3. The Quadrotor Trajectory Analyser is presented in Section 8.4. Finally, a

summary of the chapter is given in Section 8.5.

8.1 Comparison of quadrotor configurations

During the previous chapters the Standard layout has been used as the default

configuration for the simulations. However, two other configurations, Cross and

H-Shape were also given. In this section the layouts are compared with each other

by defining a drone racing course in which the vehicles start at rest x(0)(0) =

x(1)(0) = x(2)(0) = x(3)(0) = x(4)(0) = 0 and pass through five gates defined in

Table 8.1. All the gates were the same size and had the following parameters:

rh,i = 0.35 m, rh,o = 1 m and lh = 0.5 m.

The trajectories start and finish at x(0) = [0 m, 0 m, 0 m]T and

x(T ) = [0 m, 2 m,−1 m]T respectively. The vehicle properties for each layout are

given in Chapter 2.

8.1.1 Fixed heading angle

A minimum time, dynamically feasible trajectory, that satisfies the boundary

conditions and passes through the gates is found for each configuration when the

desired first body angle is fixed at b1d = [1, 0, 0]T . The trajectory results for the

Standard layout, Cross Layout and H-Shape are given in Figures 8.1, 8.2 and 8.3
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Gate h1 (m) h2 (m) h3 (m) φh,1 (◦) φh,2 (◦) φh,3 (◦)

1 6 0 −1 0 0 0
2 15 3 −2 0 10 −50
3 22 1 −2 0 30 90
4 20 8 −6 0 0 110
5 8 8 −2 0 0 220

Table 8.1: Layout comparison: gate parameters – The parameters for each
of the 5 gates used to define a 3D drone racing course.

respectively. In the same order, the final trajectory times after mapping were

15.18 s, 15.00 s, 15.08 s respectively. The small improvement for the Cross and

H-Shape layout compared to the Standard is likely because the first axis in the

inertial frame e1 has the greatest translational motion. Initially, when at rest, the

Standard layout has one rotor that can produce a thrust to tilt the quadrotor in

the desired direction compared to the other layouts which have two. However, the

figures demonstrate that the trajectories are very similar when a fixed heading

angle is desired. All layouts maintain high thrust from all rotors for much of the

trajectory, showing that the dynamic capabilities of the vehicle are being utilised.

8.1.2 Exact velocity heading direction

For this scenario the heading angle was always in the direction of the planar

velocity θv, as calculated by (5.17). The trajectory results for the Standard layout,

Cross layout and H-Shape are given in Figures 8.4, 8.5 and 8.6 respectively. In the

same order, the final trajectory times after mapping were 24.03 s, 24.07 s, 24.55 s.

These trajectory times and the trajectory states were similar for each layout. The

thrust at the early stage of the trajectory spikes to the maximum bound but soon

drops for the first five seconds. This is due to the exact velocity angle lacking

sufficient smoothness, so the initial mapping function value is relatively large.

8.1.3 Optimised heading angle

The final comparison between the quadrotor configurations is the case when

the heading angle is optimised with a tolerance angle θtol = 15◦. The initial

derivatives of the optimised angle were fixed at zero to the forth derivative
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Figure 8.1: Layout comparison: Standard layout, fixed heading – The
trajectory results for the gates given in Table 8.1.
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Figure 8.2: Layout comparison: Cross layout, fixed heading – The tra-
jectory results for the gates given in Table 8.1.
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Figure 8.3: Layout comparison: H-shape layout, fixed heading – The
trajectory results for the gates given in Table 8.1.
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Figure 8.4: Layout comparison: Standard layout, exact heading – The
trajectory results for the gates given in Table 8.1.
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Figure 8.5: Layout comparison: Cross layout, exact heading – The tra-
jectory results for the gates given in Table 8.1.
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Figure 8.6: Layout comparison: H-shape layout, exact heading – The
trajectory results for the gates given in Table 8.1.
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Fixed (s) Velocity heading (s) Optimised heading (s)
Standard 15.18 24.03 19.55

Cross 15.00 24.07 19.23
H-shape 15.08 24.55 19.50

Table 8.2: Layout comparison: trajectory times – The final trajectory times
for all the layouts and heading angle methods.

θ(4)(0) = θ(3)(0) = θ(2)(0) = θ(1)(0) = 0 and the final derivatives and angle

were not fixed. The trajectory results for the Standard layout, Cross layout and

H-Shape are given in Figures 8.7, 8.8 and 8.9 respectively. In the same order,

the final trajectory times after mapping were 19.55 s, 19.23 s, 19.50 s respectively.

These trajectory times and the trajectory states were similar for each layout. The

thrust profiles remained near the maximum rotor limits for most of the trajectory.

8.1.4 Layout configuration summary

The final trajectory times for all the simulations in this section are given in Table

8.2. When the heading angle is fixed the fastest times are obtained and the

slowest times occur when the heading angle tracks the velocity direction exactly.

The optimised heading angle trajectory times sits between these two cases. If

the tolerance value in the heading was relaxed it would be expected that the

optimised heading times would approach the fixed heading trajectory time, this

is investigated further in the next section. No layout configuration showed any

clear advantage and the trajectory times between them were very similar. From

the simple dynamic model and tracking controller used in this thesis, none of them

could be judged better than the others. However, future work should consider

a more complex quadrotor model when simulating their dynamics because it is

possible that the simple one used here is not fully capturing their behaviour.

8.2 Optimised heading and trajectory time

Using the same course defined in the previous section, an analysis of the relation-

ship between the trajectory time and θtol when the heading angle is optimised can

be performed. In this section the Standard layout configuration is used to find

the trajectory time with a range of θtol values from 5◦ to 180◦. In total 17 different
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Figure 8.7: Layout comparison: Standard layout, tracked heading – The
trajectory results for the gates given in Table 8.1.
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Figure 8.8: Layout comparison: Cross layout, tracked heading – The
trajectory results for the gates given in Table 8.1.
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Figure 8.9: Layout comparison: H-shape layout, tracked heading – The
trajectory results for the gates given in Table 8.1.
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angles were used and these are plotted against their respective trajectory time

in Figure 8.10a. The markers locate the angles in which a simulation was per-

formed, three of which are colours other than black and are used to mark angles

that were plotted in Figure 8.10b. The trajectory times continue to improve un-

til θtol = 60◦, at which point there is minimal scope to reduce the accumulated

angular acceleration. It would be expected that when θtol = 180◦ the trajectory

time would be equal to when the heading was fixed T = 15.18 s, however, the

actual time is T = 15.22 s. This small discrepancy can be explained by Figure

8.10b. The final heading angle when θtol = 180◦ is close to the final angle when

the heading follows the velocity vector direction even though it is not constrained

to do so. This is because the numerical minimiser has found a local optimum

instead the global optimum that would be a straight, horizontal line. In prac-

tice the heading optimisation method was intended for stricter tolerances so the

initial guess was designed to match the velocity vector heading. If large value is

chosen for θtol then a more suitable initial guess should be found before using the

numerical optimiser.

8.3 Additional kinodynamic constraints

The feasibility of a trajectory has been considered by keeping the rotor thrust

within prescribed limits during the time mapping process. However, it is pos-

sible to include other kinodynamic limits such as the magnitude of the velocity

and acceleration. In this section the gate parameters and boundary conditions

from Section 8.1 were used to create a trajectory with a fixed heading angle for

the Standard quadrotor layout with the additional limits on the velocity and

acceleration magnitudes:

‖v‖ ≤ 3 m/s, ‖v̇‖ ≤ 1.5 m/s2 (8.1)

This is achieved by adding additional penalties to the cost function if either of

these constraints is violated. Figure 8.11 shows the trajectory that was created

under the above conditions. The thrust profile in Figure 8.11a does not stay near

the maximum allowable thrust limit per rotor, instead the trajectory is mainly

limited by the constraint on the velocity magnitude (dashed line), shown in Figure

8.11d. There are also periods when the acceleration magnitude (dashed line in
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Figure 8.10: The effect of θtol on trajectory time T – As the tolerance angle
is increased the trajectory times reduce until they are approximately equal to the
fixed heading angle case.
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Figure 8.11e) is the limiting factor. Further work will allow kinodynamic limits

to be specified at only certain regions of the trajectory. This could be useful for

defining safe zones in which the speed must be limited. There may also be other

applications where it is desirable for the trajectory to remain steady, for instance

if a remote sensor such as a camera was collecting data.

8.4 Quadrotor Trajectory Analyser

Motion planning is inherently dynamic, the vehicle’s states change over time and

representing this in a static figure has its limitations. Typically, states are plotted

against time but this can be unintuitive, especially to the layperson. For instance,

attitude can be represented by the Euler angles roll, pitch and yaw but it is diffi-

cult to gain a sense of how this rotation relates to the translational position over

time. In order to aid understanding a visualisation tool was developed in Matlab.

This software was chosen because it’s commonly used amongst researchers and

available at most universities. Additionally, since the trajectory generation and

tracking algorithms were coded in this environment it is convenient to use it.

Outreach and other activities that bring research to a wider audience are becom-

ing increasingly important so a clear and simple way to visualise the trajectory

generation and trajectory tracking is useful.

The Quadrotor Trajectory Analyser combines a three dimensional model of

a quadrotor following a trajectory with animated plots of its states. The user

can decide what outputs to display to ensure the animation is not cluttered

by unnecessary information. For example, a simplified version that only gives

the speed may be desirable for demonstration purposes but the velocity vector

containing the speed of each axis is useful when examining a trajectory in more

detail. The translational trajectory is represented by a solid line in space. The

position and orientation of the virtual camera can remain static or follow the

motion of the vehicle. A stationary camera that displays the entire trajectory

gives a broader picture but by tracking the vehicle closer up more detail can be

observed.

Although it is possible to use a detailed model of a quadrotor in Matlab, for

instance by importing a 3D STL (STereoLithography) file, it was found that a

simple model consisting of four rods that represented the arms sufficed. The arms
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Figure 8.11: Additional kinodynamic constraints trajectory results – The
trajectory results when the additional kinodynamic constraints on the maximum
magnitude of acceleration and velocity are applied.
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(a) Snapshot 1. (b) Snapshot 2.

(c) Snapshot 3. (d) Snapshot 4.

Figure 8.12: Quadrotor Trajectory Analyser snapshots – Four snapshots
from the Quadrotor Trajectory Analyser.

were colour coded to the thrust profile line colours to aid understanding. The

process of generating the animation file is generally slower than real-time because

Matlab is an interpreted language and the code was not optimised for efficiency.

However, the video file containing the animation can have an arbitrary playback

speed and frame rate. The position and rotation of the quadrotor is represented

and any gates or obstacles can be included.

It was designed to have flexible inputs, if only the position and rotation are

given then an inverse dynamics simulation is used to find the thrust controls.

Alternatively, if a trajectory has already been full simulated then the vehicle and

control states can be plotted directly. The analyser was intended for animated

applications rather than static print so in order to demonstrate it, snapshots from

an animation are shown in Figure 8.12. The change in position and rotation can

be seen clearly. Finally, Figure 8.13 gives the full animation including graphs of

the thrust, attitude, position, velocity and acceleration. A video of which can be

found at http://personal.strath.ac.uk/xbb08162/PhD/trajectory.mp4.
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8.5 Chapter Summary

In this chapter three different quadrotor configurations were compared. It was

found that the Standard, Cross and H-Shape layouts all produced similar traject-

ory times. It was noted that only a simple dynamic model was used and further

work would be needed in simulation and real world testing to determine if aero-

dynamic effects that were not considered would influence the result. Using the

same trajectory scenario, different heading angle cases were compared by finding

the minimum trajectory time possible for each. Leaving the heading angle fixed

and constant was found to produce the fastest time, then the optimised heading

angle and finally the heading angle that tracks the planar velocity vector diagram

was the slowest. Further testing of the tolerance angle when the heading angle

is optimised showed that if the bounds are large a better initial guess may be

needed compared to the method developed in Chapter 5. However, the optimised

heading angle is capable of handling a wide variety of bounds and improves the

minimum trajectory time considerably compared to directly tracking the velocity

direction.

The time mapping method was revisited with additional constraints on the

kinodynamics. An example in which the magnitude of the velocity and magnitude

of velocity were considered in addition to the limits on the rotor thrusts. This

may be useful for certain applications in which the vehicle’s must be controlled

tightly. It was also noted that future work should consider only apply additional

constraints at certain points during the trajectory.

Finally the Quadrotor Trajectory Analyser was presented. The QTA can

animate a quadrotor trajectory in 3D in order to aid understanding of the motion

and is a useful tool for researchers, users and outreach to the general public.

Future versions of the QTA will consider modelling other vehicles such as fixed

wing aerial vehicles.
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Chapter 9

Conclusions and future work

The previous chapters developed trajectory planning and trajectory tracking

methods for quadrotor UAVs with particular attention paid to the drone ra-

cing application. Trajectory planning for long, slender AUVs was also considered

as an additional application. The following chapter will summarise the contribu-

tions of this thesis, discuss the limitations of this thesis and finally, suggest future

areas of research.

9.1 Reasearch outcomes and limitations

This thesis was motivated by the need to plan dynamically feasible, collision

free, optimal trajectories for autonomous quadrotor UAVs. The main focus was

finding minimum time trajectories suitable for drone racing. To this end, geomet-

rical control theory methods with inherent optimality were used to derive basis

functions for two types of non-holonomic constraints. These basis functions were

analogous to sub-Riemannian curves and have been used for trajectory planning

in previous works but not for the case of quadrotors. The final translational pos-

ition of the vehicle could be specified for both types of non-holonomic constraints

using parametric optimisation. Although the final velocity direction could not

be arbitrarily chosen, including it in a numerical minimisation allowed for the

shape of the curve to be influenced. This enabled simple obstacle avoidance to be

demonstrated for both cases. It was found that the case of non-holonomic con-

straints that constrained the relation between the first and second translational

body velocity, and the first and second angular body velocity gave the greatest
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flexibility in the curve shape. This result was obtained numerically using Monte

Carlo simulations. Since a quadrotor is capable of tracking trajectories for both

cases, the multiple body velocities case is recommended if a point-to-point man-

oeuvre is required. However, the single body velocity case can be combined with

a sampling based motion planning method, RRT, that concatenates trajectory

segments into a single trajectory. This was demonstrated with the application

of AUVs but could also be used for quadrotor trajectories. A neutrally buoyant

AUV was used because the kinematic description of the curve included the trans-

lational position and attitude. To the author’s knowledge, this is the first time

these types of curves have been used within an RRT framework.

The main limitation of the curves found using these geometric control methods

is that the speed is constant and there is little control over the derivatives at the

boundaries. For drone racing courses, the lack of flexibility in the curves rendered

them unsuitable for that application. Therefore a method for defining traject-

ories in the virtual time domain using polynomials as the basis functions was

developed. Polynomials have been used previously for trajectory planning but

the method for defining consecutive waypoints and minimising for the shortest

path length in this thesis is novel. In order to fly through the gates without

collision, a method for changing the shape of the trajectory was required. This

was achieved using the Waypoint Selection Algorithm that added additional way-

points according to a method designed to ensure the curve remained smooth by

not creating tight turns that increase trajectory time. The Waypoint Selection

Algorithm was demonstrated with a variety of test cases including a single gate,

multiple gates and a drone racing course.

Another aspect of drone racing was considered whilst generating the virtual

domain trajectories, namely, the direction of the heading angle. It was assumed

that a camera fixed to point in the direction of the first body axis was being

used to navigate so the heading angle should be chosen such that it points in

the direction of motion. However, due to the use of wide angled lenses it is

not necessary for the heading angle to point exactly in the direction of the planar

velocity vector and can instead be optimised to remain within a defined tolerance.

A method for optimising the heading angle during the trajectory to minimise

the accumulated angular acceleration was developed and tested. Previously in

the literature, the heading angle was either fixed or defined by some arbitrary

function such as a sinusoid. It was found that for the types of trajectories in this
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thesis 15 unique knots for the B-spline function that defines the heading angle is

best for the numerical optimiser. It was shown that the optimised heading angle

resulted in shorter trajectory times when compared to the case of the heading

angle directly tracking the planar motion.

The polynomial based trajectory generation was separated into two parts,

the previously discussed virtual domain trajectories and the mapping method for

converting these to time domain trajectories. The time mapping method has

been used in a variety of applications but in this thesis it is used to find feasible

trajectories that minimise trajectory time for quadrotors with the feasibility en-

sured by checking the thrust required from each rotor using a nonlinear inverse

dynamics simulation. Since the value of the boundary derivatives in the virtual

domain are dependent on the boundary mapping values, the geometrical shape of

the trajectory changes when the boundary mapping values are adjusted. This is

necessary to ensure a feasible trajectory is found but recomputing the virtual tra-

jectory is computationally costly so it is desirable for the boundary values to be

found efficiently. To this end, a novel algorithm was developed to find boundary

mapping values that produced a feasible trajectory with minimal trajectory time.

These mapping values were then used as the basis of the initial guess for refining

the rest of the mapping values in order to further reduce the trajectory time.

Three different methods were tested and it was found that defining the mapping

function with a B-spline and numerically minimising according to a cost func-

tion produced the best results with respect to minimising the trajectory time.

This is similar to the case for optimising the heading angle, 15 unique knots for

the B-spline was found to be the optimum number according to a Monte Carlo

simulation based on 50 trajectories. It was also demonstrated that additional

kinodynamic constraints, such as those on the velocity and acceleration, could be

included in the time mapping method.

Further simulations were performed to test three common quadrotors layouts

because some racing drone operators express a preference for particular configur-

ations. However, in the simulations using the dynamic model from this thesis no

significant difference of the trajectory times could be found between the layouts.

The Quadrotor Trajectory Analyser was created to enable a better visual-

isation of the trajectories by animating the motion of the vehicle in 3D. This

should be a useful tool for research and outreach because it is more suitable than

commercially available simulation software for playing back and demonstrating
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planned trajectories.

The trajectory tracking problem in the presence of disturbances was also ad-

dressed. An existing nonlinear tracking controller on SE(3) was modified to in-

clude a LESO that estimated and attempted to reject any translational disturb-

ance. This is achieved by using the estimated disturbance within the tracking

controller so it can account for the actual disturbance and remain closer to the

desired, planned trajectory. A convergence proof was offered for the LESO and

an expression for the bound given. The Modified Controller and Standard Con-

troller were compared using three types of disturbances. It was found that the

Modified Controller rejected the continuous disturbances like a sinusoid or wind

simulation best, however, it also showed improved translational tracking perform-

ance for square waves compared to the Standard Controller. Previous attempts

in the literature had only considered Extended State Observers for attitude only

or linearised controller dynamics.

9.2 Future work

From the outcomes of this thesis given above, this section suggests further work

and extensions for the methods developed.

It has been noted previously that the curves derived with geometric control

theory in this thesis cannot have their velocity vector direction specified at the

end of the trajectory. This limitation is probably not due to the parametric

optimiser being unable to find the correct optimisation vector but because a

particular solution was found during the curve derivation that is a subset of the

general solution. This meant that the analytical functions defining the trajectories

could be written as standard trigonometric functions whereas the general solution

would have required elliptic functions. The particular solutions are a subset of

the general solutions so if the latter had been used more trajectory shapes would

have been available to the optimiser. Future work should investigate using the

general solution for quadrotor trajectories. The ability for efficient, onboard

calculation of elliptical functions could also be necessary. If the general solution

were used it may also be possible to integrate the trajectory generation method

with the RRT* framework to find trajectories that are optimal in path length.

The parametric optimisation used to minimise the cost function related to the
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final position could also be investigated. If a better initial guess was provided

then the solution should be found more rapidly.

The polynomial trajectory generation method would also benefit from an im-

provement in calculation speed, especially during the mapping process when it is

called repeatedly. Currently, the position on the virtual domain of the waypoints

during the mapping process is not retained and is only passed from one optimisa-

tion to the next. If all the previous waypoint optimisation vectors were available

then the closest could be used as an initial guess for any new boundary mapping

values being attempted. There are also numerical issues when large numbers

of conditions are required because the order of the polynomials that define the

virtual domain trajectory grow. If the polynomials become badly scaled then

the numerical results may be inaccurate. The condition of a polynomial can be

checked to ensure it is valid but if a high order is necessary then it may be more

appropriate to use splines, a series of connected polynomials that are smooth to

a given degree at the boundaries. Future work should consider the use of these

to avoid numerical issues.

It may also be possible to improve the numerical efficiency of the mapping

function optimisation. This could be achieved by designing an optimiser that has

an inbuilt knowledge of the problem that avoids unnecessary iterations in which

obviously invalid optimisation vectors are attempted. Currently, the mapping

function tries to minimise the final trajectory time and ensure the thrust from

each rotor remains within the defined limits. However, other costs functions could

also be considered, such as minimising the amount of energy required to complete

a manoeuvre. The drone racing application is just one of many, so improving the

abilities of the methods in this thesis should benefit other areas.

With regards to trajectory tracking, the Modified Controller only considered

the rejection of translational disturbances. Future work should also investigate

the use of an observer for the rotational dynamics and disturbances. This should

improve the ability of the controller to reduce the tracking error in both the

translational and rotational position. A nonlinear ESO is another possibility for

improving the performance. In theory, a well tuned nonlinear observer would

be capable of estimating a disturbance better than a linear one. However, as

mentioned previously, more parameters must be tuned compared to the linear

case. A more realistic quadrotor simulation to test the controllers is another

important area for future work. Currently, aerodynamic effects are not included
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in the dynamic model and they may have an effect on the controller performance.

Ideally, both the Standard and Modified Controller should be tested on a real

quadrotor. This would allow the best possible comparison to be made between

the two and also enable their performance to be characterised, so the simulations

can be improved.

Finally, the trajectory generation methods developed in this thesis are the-

oretical because the state-of-the-art quadrotors at this point in time are unable

to reliably and accurately track the aggressive trajectories that have been gener-

ated. This is particularly true for the case of outdoor flying where it is difficult to

obtain an accurate, frequently updated information of the vehicle’s position for

the controller. In the short term, strict kinodynamic limits can be applied during

the motion planning process in order to generate trajectories that are easier to

follow. As the technology improves these limitations can be relaxed and greater

use of the vehicle performance can be gained. Human pilots are capable of flying

at fast speeds with aggressive turns and manoeuvre through small gates, future

autonomous drones should be able to participate at the same level or higher.
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