THE FORMATION, PROPERTIES AND BEHAVIOUR OF COASTAL SOFT SOIL DEPOSITS AT PERLIS AND OTHER SITES IN PENINSULAR MALAYSIA

by

AHMAD NADZRI BIN HUSSEIN

VOLUME II

A thesis submitted to the University of Strathclyde in fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Civil Engineering University of Strathclyde Glasgow

May 1995

للله ألتجز التجيب المش

In the Name of Allah, the Most Gracious and Most Merciful

LIST OF FIGURES

Fig.2.1 :	Types of Depositional Environment (Kukal, 1971) 208
Fig.2.2 :	Components of Delta after P.C. Scruton (1960) (Kukal, 1971) 208
Fig.2.3 :	Structure of Clay Minerals (Mitchell, 1976) 209
Fig.2.4 :	Published Curves of Fluctuation in Sea Levels from Various Researchers (Belknap and Kraft, 1977) 210
Fig.2.5 :	Eustatic Changes in Sea Levels Showing Kenney and Fairbridge Curves (Cox, 1970)
Fig.2.6 :	Transgression and Regression (Curray, 1964) 211
Fig.2.7 :	Definition of Inside and Outside Clearance and Area Ratio after Hvorslev (1949) (From Andresen, 1981) 211
Fig.2.8 :	Open Tube Wall Sampler (BS5930:1981) 212
Fig.2.9 :	Piston Sampler (BS5930:1981) 213
Fig.2.10 :	Continuous Soil Sampler (BS 5930 :1981) 214
Fig.2.11 :	Field Vane Apparatus (Andresen, 1981) 215
Fig.2.12 :	Correction Factor for Undrained Shear Strength from Field Vane after Bjerrum (1972) and Swedish Geotechnical Institute (Tortensson, 1977)

(xviii)

Fig.2.13 :	Dutch Cone and Electric Cone Penetrometer (ASTM, 1986)	216
Fig.2.14 :	Types of Consolidation Testing	217
Fig.2.15 :	Relationship of Compression Index with Water Content for Some Nat Soil Deposits (Mesri and Rokhsar, 1974)	ural 218
Fig.2.16 :	Secondary Compression Curves (Lo, 1961)	218
Fig.2.17 :	Correlation between C_{α} and C_c for some Natural Deposits (Mesri Godlewski, 1977)	and 219
Fig.2.18 :	Correlation between C_{α} and C_c for Three Different Types of Sam (Katagiri, 1993)	ples 220
Fig.2.19 :	Types of Strength Tests	221
Fig.2.20 :	Type of Failure Envelopes Obtained from Quick Shear Box Tests (H 1982)	lead, 222
Fig.2.21 :	Permeability Test Setup in Oedometer Cell (Tavenas et al, 1983a)	223
Fig.2.22 :	Soil Press for Pore Water Salinity Test (ASTM D4542-1985)	223
Fig.2.23 :	Types of Piezometers (Leroueil et al, 1990)	224
Fig.2.24 :	Details of Settlement Devices (Leroueil et al, 1990)	224
Fig.2.25 :	Details of Inclinometer (Leroueil et al, 1990)	225

Fig.2.26 :	Inf	fluence of	of Embankment	Width o	on the P	rogre	ess of Con	solidation	h Beneath
	а	Long	Embankment	from	Dunn	and	Razouki	(1974)	(Murray,
	19	78)							225

Fig.3.1 :	Comparison	of	Radiocarbon	Dated	Samples	Obtained	in	Penins	sular
	Malaysia to	Oth	er Data on Sea	a-Level	Changes				226

 Fig.3.4 :
 Classification of Various Types of Transgression and Regression (Curray, 1964)

 1964)
 228

Fig.3.6 :	Typical	Profile	of	Peninsular	Malaysia	Coastal	Soft	Soil	Deposits
	(Abdulla	ah and C	han	dra, 1987)					230

Fig.3.7 :	Undrained Shear	Strength with Depth		. 231
-----------	-----------------	---------------------	--	-------

Fig.3.8: Undrained Shear Strength with Moisture Content 232

Fig.3.9 :	Undrained	Shear	Strength	with	Organic	Content			233
-----------	-----------	-------	----------	------	---------	---------	--	--	-----

Fig.3.11 :	Sensitivity with Depth 235
Fig.3.12 :	Sensitivity with Liquidity Index 236
Fig.3.13 :	Sensitivity with Salt Content 236
Fig.3.14 :	Cone Resistance with Friction Ratio 237
Fig.3.15 :	$q_T - \sigma_v$ with Undrained Vane Shear Strength (Dobie and Wong, 1990)
Fig.3.16 :	Classification of Peninsular Malaysia Coastal Soft Soil Deposits Using the Soil Classification Charts for the Marchetti Dilatometer (Wong and Dobie, 1990)
Fig.3.17 :	Overconsolidation Ratio with K_D for Three Sites along the North-South Expressway (Wong and Dobie, 1990) 240
Fig.3.18 :	Overconsolidation Ratio with K_D (Wong et al, 1993) 241
Fig.3.19 :	Comparison of Data Obtained from Self Boring Pressuremeter Test with Other Field and Laboratory Tests (Wong et al, 1993) 242
Fig.3.20 :	Moisture Content with Organic Content 243
Fig.3.21 :	Moisture Content with Salt Content 243
Fig.3.22 :	Moisture Content with Depth 244
Fig.3.23 :	Unit Weight with Depth 244

Fig.3.24 : Particle Size Distribution with Depth	5
Fig.3.25 : Relationship of Data Obtained from Various Sites with Reference to the Casagrande A-Line	e 5
Fig.3.26 : Atterberg Limits with Depth 247	7
Fig.3.27 : Effect of Sample Preparation on the Atterberg Limits of Peninsular Malaysia Coastal Soft Soil Deposits (Mohammad Nor and Yusouf 1990)	r F, 8
Fig.3.28 : Atterberg Limits with Organic Content	9
Fig.3.29 : Atterberg Limits with Salt Content 24	9
Fig.3.30 : Plasticity Index with Clay Fraction	0
Fig.3.31 : Liquidity Index with Depth 25	1
Fig.3.32 : Organic Content with Depth 25	1
Fig.3.33 : pH with Depth	12
Fig.3.34 : Chloride Ion Content with Depth	52
Fig.3.35 : Mineralogy with Depth 25	53
Fig.3.36 : Compression Index with Organic Content	54
Fig.3.37 : Compression Index with Void Ratio 25	54

Fig.3.38 :	Compression Index with Liquid Limit	255
Fig.3.39 :	Compression Index with Natural Moisture Content	255
Fig.3.40 :	Compression Index with Depth	256
Fig.3.41 :	Coefficient of Consolidation at In-Situ Stress with Depth	256
Fig.3.42 :	Preconsolidation Pressure with Depth	257
Fig.3.43 :	Overconsolidation Ratio with Depth	257
Fig.3.44 :	Initial Void Ratio with Depth.	258
Fig.4.1 :	Location of the Trial Embankment Site in the State of Perlis, North Peninsular Malaysia.	west 259
Fig.4.2 :	Actual Location of the Trial Embankment Site Near Kuala Perlis, F	Perlis . 260
Fig.4.3 :	Details of Layout of the North and South Trial Embankments	261
Fig.4.4 :	Details of Layout of the South Trial Embankment	262
Fig.4.5 :	Longitudinal Section of the South Trial Embankment	263
Fig.4.6 :	Cross Section of the South Trial Embankment	264
Fig.4.7 :	Location of Boreholes on the South Trial Embankment	265
Fig.4.8 :	Detail Layout of Instrumentation Work	266

1.4

Fig.4.9 :	Details of Inclinometer/Extensometer System
Fig.4.10 :	Details of Settlement Plates 268
Fig.4.11 :	Details of Temporary Datum
Fig.4.12 :	Loading Sequence for the South Trial Embankment 270
Fig.4.13 :	Locations of Field Vane and Piezocone Tests 271
Fig.5.1 :	Undrained Shear Strength with Depth from Field Vane Tests Before Construction of the Trial Embankment
Fig.5.2 :	Undrained Shear Strength with Depth from Field Vane Tests Days After The Start of Construction of the Trial Embankment
Fig.5.3 :	Sensitivity with Depth from Field Vane Tests Before Construction of the Trial Embankment
Fig.5.4 :	Sensitivity with Depth from Field Vane Tests Days After The Start of Construction of the Trial Embankment
Fig.5.5 :	Cone Resistance with Depth Before Construction of the South Trial Embankment
Fig.5.6 :	Cone Resistance with Depth Days After The Start of Construction of the Trial Embankment
Fig.5.7 :	In-situ Permeability with Depth 278
Fig.5.8 :	Moisture Content with Depth 279

(xxiv)

Fig.5.9 : Atterberg Limits with Depth	280
Fig.5.10 : Liquidity Index with Depth	281
Fig.5.11 : Unit Weight with Depth	282
Fig.5.12 : Specific Gravity with Depth	282
Fig.5.13 : Particle Size Distribution with Depth	283
Fig.5.14 : Preconsolidation Pressure with Depth	284
Fig.5.15 : Overconsolidation Ratio with Depth	285
Fig.5.16 : Compression Index with Depth	. 286
Fig.5.17 : Initial Void Ratio with Depth	. 287
Fig.5.18 : Void Ratio with Effective Vertical Stress	. 288
Fig.5.19 : Coefficient of Secondary Consolidation at In-situ Vertical Stress Depth	s with . 289
Fig.5.20 : Coefficient of Secondary Consolidation with Effective V Stress	ertical
Fig.5.21 : Coefficient of Consolidation at In-situ Vertical Stress with Depth	. 291
Fig.5.22 : Coefficient of Consolidation with Effective Vertical Stress	. 292
Fig.5.23 : Coefficient of Consolidation with Void Ratio	. 293

Fig.5.23 : Coefficient of Consolidation with Void Ratio 293
Fig.5.24 : Coefficient of Volume Compressibility at In-Situ Vertical Stress with Depth
Fig.5.25 : Coefficient of Volume Compressibility with Effective Vertical Stress
Fig.5.26 : Coefficient of Volume Compressibility with Void Ratio 296
Fig.5.27 : Permeability at In-Situ Vertical Stress with Depth 297
Fig.5.28 : Permeability with Effective Vertical Stress
Fig.5.29 : Permeability with Void Ratio 299
Fig.5.30: Undrained Shear Strength from Laboratory Vane Tests 300
Fig.5.31 : Sensitivity with Depth from Laboratory Vane Tests
Fig.5.32 : Effective Cohesion with Depth 302
Fig.5.33 : Effective Angle of Friction with Depth
Fig.5.34 : Chloride Content with Depth
Fig.5.35 : Sulphate Content with Depth 304
Fig.5.36 : Carbonate Content with Depth
Fig.5.37 : pH with Depth 305

(xxvi)

Fig.5.39 : Pore Water Salinity with Depth
Fig.5.40 : Mineralogy with Depth 307
Fig.5.41 : Age of Kuala Perlis Coastal Soft Soil Deposits with Depth 308
Fig.5.42 : Age of Peninsular Malaysia Coastal Soft Soil Deposits with Depth
Fig.5.43 : In-situ Unit Weight with Height of Embankment
Fig.5.44 : Comparison between Undrained Shear Strengths Before Construction and 434 days After The Start of Construction of the Trial Embankment
Fig.5.45 : Comparison of Undrained Shear Strength from Laboratory Vane and Field Vane Tests
Fig.5.46 : Comparison between Sensitivity Values Before Construction and 434 days After The Start of Construction of the Trial Embankment 313
Fig.5.47 : Comparison of Sensitivity Values from Laboratory Vane and Field Vane Tests
Fig.5.48 : Undrained Shear Strength with Organic Content
Fig.5.49: Undrained Shear Strength with Moisture Content
Fig.5.50 : Undrained Shear Strength with Salt Content
Fig.5.51 : Sensitivity with Liquidity Index

(xxvii)

Fig.5.52 : Sensitivity with Salt Content	6
Fig.5.53 : Effective Angle of Friction with Plasticity Index	7
Fig.5.54 : Comparison of Cone Resistance Before Construction and 434 days After The Start of Construction of the Trial Embankment	er 8
Fig.5.55 : Cone Resistance with Friction Ratio	19
Fig.5.56 : $q_T - \sigma_v$ with Undrained Shear Strength from Field Vane Tests 31	19
Fig.5.57 : Comparison of Moisture Content Values	20
Fig.5.58 : Moisture Content with Organic Content	20
Fig.5.59 : Moisture Content with Salt Content	21
Fig.5.60 : Atterberg Limits with Salt Content	21
Fig.5.61 : Atterberg Limits with Organic Content	22
Fig.5.62 : Atterberg Limits with Sensitivity	22
Fig.5.63 : Plasticity Index with Liquid Limit	123
Fig.5.64 : Plasticity Index with Sensitivity 3	323
Fig.5.65 : Plasticity Index with Clay Fraction	324
Fig.5.66 : Activity with Clay Fraction	324

(xxviii)

Fig.5.67 : Liquidity Index with Effective Overburden Pressure and Depth 3	125
Fig.5.68 : Unit Weight with Moisture Content	326
Fig.5.69 : Comparison of Preconsolidation Pressure Results with Depth 3	327
Fig.5.70 : Comparison of OCR Results with Depth	328
Fig.5.71 : Comparison of Compression Index Results with Depth	329
Fig.5.72 : Compression Index with Organic Content	330
Fig.5.73 : Compression Index with Liquid Limit	330
Fig.5.74 : Compression Index with Moisture Content	331
Fig.5.75 : Compression Index with Initial Void Ratio	331
Fig.5.76 : Comparison of Initial Void Ratio Results with Depth	332
Fig.5.77 : Initial Void Ratio with Atterberg Limits	333
Fig.5.78 : Comparison of Void Ratio Values with Effective Stress	334
Fig.5.79: Coefficient of Secondary Consolidation with Compression Index .	334
Fig.5.80: C_{α} /(1+e _o) with Depth	335
Fig.5.81 : Comparison of Coefficient of Consolidation Values at In-Situ Ver Effective Stress with Depth	tical 336

Fig.5.81 : Comparison of Coefficient of Consolidation Values at In-Situ Vertical Stress with Depth
Fig.5.82 : Comparison of Coefficient of Consolidation Values with Effective Vertical Stress
Fig.5.83 : Comparison of Coefficient of Consolidation Values with Void Ratio
Fig.5.84 : Comparison of Coefficient of Volume Compressibility Values at In-Situ Vertical Stress with Depth
Fig.5.85 : Comparison of Coefficient of Volume Compressibility Values with Effective Vertical Stress
Fig.5.86 : Comparison of Coefficient of Volume Compressibility Values with Void Ratio
Fig.5.87 : Comparison of Permeability Values at In-Situ Vertical Stress with Depth
Fig.5.88 : Comparison of Permeability Values with Effective Vertical Stress 341
Fig.5.89 : Comparison of Permeability Values with Void Ratio
Fig.5.90 : Comparison of Effective Angle of Friction Results with Plasticity Index from Present Study with Data Obtained from Various Researchers

(xxx)

- Fig.5.93 : Comparison of Liquidity Index Values with Remoulded Undrained Shear

 Strength from Present Study with Data Obtained from Various

 Researchers
 343
- Fig.5.95 : Comparison of Compression Index Values with Moisture Content from Present Study with Data Obtained from Various Researchers 345

Fig.6.3 :	Cumulative Settlement/Heave with Distance in the North-South Direction During the Construction of the Trial Embankment
Fig.6.4 :	Cumulative Settlement/Heave with Distance in the North-South Direction After the Completion of the Trial Embankment
Fig.6.5 :	Cumulative Vertical Settlement at Extensometer Locations with Depth in the East-West Direction During the Construction of Trial Embankment.
Fig.6.6 :	Cumulative Vertical Settlement at Extensometer Locations with Depth in the East-West Direction After the Completion of the Trial Embankment
Fig.6.7 :	Excess Pore Pressure Contours with Time 10 days After the Start of Construction of the Trial Embankment
Fig.6.8 :	Excess Pore Pressure Contours with Time 20 days After the Start of Construction of the Trial Embankment
Fig.6.9 :	Excess Pore Pressure Contours with Time 36 days After the Start of Construction of the Trial Embankment
Fig.6.10 :	Excess Pore Pressure Contours with Time 100 days After the Start of Construction of the Trail Embankment
Fig.6.11 :	Excess Pore Pressure Contours with Time 300 days After the Start of Construction of the Trail Embankment

(xxxii)

Fig.6.12 : Excess Pore Pressure with Height of Fill for PP21 (2.5m from Edge of Embankment) During and After Construction of the Trial Embankment.

(xxxiii)

Fig.6.21 :	Maximum Lateral Displacement with Maximum Vertical Settlement at Centre of Embankment During and After Construction of the Trial Embankment
Fig.6.22 :	Ratio of Maximum Lateral Displacement/Maximum Vertical Settlement at the Centre of the Embankment with Height of Fill 368
Fig.6.23 :	Volume Displaced Vertically (ΔVv) with Volume Displaced Laterally (ΔVh)
Fig.7.1 :	Comparison of Cumulative Settlement with Time from Computer Analysis with Field Data at the Centre of the Embankment 370
Fig.7.2 :	Comparison of Cumulative Settlement with Time between Computer Analysis and Field Data at Other Distances from the Centre of the Embankment
Fig.7.3 :	Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data at the Centre of Embankment 372
Fig.7.4 :	Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data 22.5m West of the Centre of the Embankment
Fig.7.5 :	Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data 22.5m East of the Centre of the Embankment
Fig.7.6 :	Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data 32.5m West of the Centre of the Embankment
	(xxxiv)

Fig.8.1 :	Pore Pressure Dissipation and Settlement of Two Trial Embankmen	ts in
	Kedah, Northwest Peninsular Malaysia (James, 1970)	376

Fig.8.2 :	Excess Pore Pressure During Consolidation - Prai, Malaysia Case Study	'
	(Mesri and Choi, 1979) 377	1

Fig.8.3 : Prediction of Settlement in Penang Using CONSOL Program Using c_v from Oedometer Tests (Wong and Choa, 1991) 377

Fig.8.4 : Performance of the Juru Trial Embankment up to the End of Construction(Mohammad et al, 1991)378

Fig.8.6 : Prediction of the Excess Pore Pressure Dissipation at the Centre Line of the 3m Control Embankment in Muar Using the Kon2D program with Varying Pore Pressure Coefficient (A) (Younger, 1992) 380

Fig.8.8 : Details of Cross Section of the Layout of the Three Trial Embankments

(xxxv)

Fig.8.11 : Excess Pore Pressure with Time
Fig.8.12 : Excess Pore Pressure with Height of Fill at the Centre of the Kuala Perlis Trial Embankment
Fig.8.13 : Excess Pore Pressure with Height of Fill at the Centre of the Muar Trial Embankment
Fig.8.14 : Excess Pore Pressure with Height of Fill at the Centre of the Juru Trial Embankment
Fig.8.15 : Lateral Displacement with Depth and Time of the Three Embankments
Fig.8.16 : Maximum Lateral Displacement with Height of Fill During Construction
Fig.8.17 : Maximum Lateral Displacement with Cumulative Settlement at Centre of Embankment During Construction
Fig.8.18 : Volume Displaced Vertically with Volume Displaced Laterally Up To 370 days After Start of Construction of Trial Embankment
Fig.8.19 : Ratio of $\Delta V_{v} / \Delta V_{h}$ with Height of Fill

LIST OF TABLES

Table 2.1 :	Classes of Sample Quality (BS5930:1981)
Table 2.2 :	Combination of Area Ratio and Cutting Edge Taper from ISSMFE (1965) (Clayton, 1986)
Table 2.3 :	Length/Diameter Ratios recommendation from ISSMFE (1965) based on Inside Clearance of 0.5 to 1% (Clayton, 1986)
Table 2.4 :	Classification of Sensitivity from Various Researchers (Mitchell and Houston, 1969)
Table 2.5 :	Mechanisms Affecting Clay Sensitivity (Mitchell and Houston, 1969)
Table 2.6 :	Compression Index and Compression Ratio Relationship with Other Soil Parameters (Balasubramaniam and Brenner, 1981) 395
Table 2.7 :	Coefficient of Secondary Consolidation with Compressibility (Mesri, 1973)
Table 2.8 :	Values of C_{α}/C_{c} for Some Natural Soil Deposits (Mesri and Godlewski, 1977)
Table 2.9 :	Typical Values of Coefficient of Volume Compressibility for British Soils (Head, 1980)
Table 2.10 :	Particle Associations in Clay Suspensions (van Olphen, 1963) 397
Table 2.11 :	Methods Used in Study of Soil Fabric (Mitchell, 1976) 398

Table 2.12 : Cla 199	assification of Carbonate Content by Schon (1965) (Leroueil et al, 90)
Table 2.13 : Cla	assification of Organic Content (From Leroueil et al, 1990) 399
Table 2.14 : Co 19	Omparisons between 1D, 2D and 3D Consolidation Theory (Murray, 078)
Table 3.1 : Le	engths of Rivers from Peninsular Malaysia with Gradient of Slope om the Source to the Coastal Plains
Table 3.2 : So D	ummary of Localised Depths of Peninsular Malaysia Coastal Soft Soil Deposits Obtained from Various Researchers
Table 3.3 : S	bub Division of Peninsular Malaysia Quaternary Sediments by the Geological Society of Malaysia (Bosch, 1988)
Table 3.4 : S	Summary of Shear Undrained Strength Parameters of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers 404
Table 3.5 : 5	Summary of Classification Properties of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers
Table 3.6 :	Summary of Chemical Properties of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers
Table 3.7 :	Summary of the Mineralogy of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers
Table 3.8 :	Summary of Compressibility Characteristics of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers

(xxxviii)

Table 3.9 :	Summary of Laboratory Shear Strength Parameters of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers 409
Table 3.10 :	Typical Values of Geotechnical Parameters of Soft Soils (Das, 1990)
Table 5.1 :	Consistency of Material (BS5930, 1981)
Table 5.2 :	In-situ Permeability Values Obtained From Standpipe Piezometers
Table 5.3 :	Permeability Values Obtained From Triaxial Tests Using Constant Head
Table 5.4 :	Age of Kuala Perlis Coastal Soft Soil Deposits
Table 5.5 :	Geotechnical Properties of Fill Material Used in Trial Embankment
Table 5.6 :	Typical Values of Undrained Shear Strength Parameters from Field Vane
Table 5.7 :	Typical Values of Classification Properties of Kuala Perlis Coastal Soft Soil Deposits
Table 5.8 :	Typical Values of Compressibility Parameters of Kuala Perlis Coastal Soft Soil Deposits
Table 8.1 :	Comparison of Geotechnical Properties of the Three Trial Embankment Sites

(xxxix)

Table 8.2 :	Volume	Displaced	Laterally	$(\Delta V_{\rm b})$	as	а	Percentage	of	Volu	me
	Displace	d Vertically	(ΔV_v) .						4	417

LIST OF PLATES

Plate 3.1 :	Organic Matter in Peninsular Malaysia Coastal Soft Soil Deposits (Aziz, 1993)
Plate 3.2 :	Pyrites in Peninsular Malaysia Coastal Soft Soil Deposits (Aziz, 1993)
Plate 3.3 :	Granular Matrix in Peninsular Malaysia Coastal Soft Soil Deposits (Aziz, 1993)
Plate 4.1 :	Surveying of the Trial Embankment Site Prior to Main Site Investigation and Instrumentation Works
Plate 4.2 :	Polyfelt Geotextile TS600 used as a Separator Layer on the Trial Embankment
Plate 4.3 :	Pegging the Geotextile by Wooden Stakes
Plate 4.4 :	Dumping of Drainage Material by Lorries
Plate 4.5	Levelling of the Drainage Fill Material by Backpushers 422
Plate 4.6	: Finished Level of the Drainage Fill Material
Plate 4.7	: Checking for Leakage in Pneumatic Piezometers
Plate 4.8	: Readout Unit Used for Pneumatic Piezometers
Plate 4.9	: Standpipe Piezometer Tip

Plate 4.10 :	Dipmeter Used for Taking Readings of Standpipe Piezometer 424
Plate 4.11 :	Inclinometer/Extensometer Tubes
Plate 4.12 :	Insertion of Torpedo Probe to Take Readings of the Inclinometer
Plate 4.13 :	Spider Magnets Used for the Extensometer
Plate 4.14 :	Type of Settlement Plate Used in Trial Embankment
Plate 4.15 :	Settlement Plate Lowered in to Dug Hole
Plate 4.16 :	Taking of Reduced Levels of Settlement Plates
Plate 4.17 :	Heave Markers Installed Near the South Trial Embankment 428
Plate 4.18 :	Equipment Used for Field Vane Testing
Plate 4.19 :	Augering of Hole for Field Vane Testing
Plate 4.20 :	Insertion of the Vane Tip for Field Vane Testing
Plate 4.21	: Shearing of the Soil During Field Vane Testing
Plate 4.22	: Type of Piezocone Tip Used in the Site Investigation Work of the South Trial Embankment
Plate 4.23	: Type of Machinery Used For Piezocone Testing in the South Trial Embankment

Plate 4.24 :	Hole Dug for Water Replacement Method
Plate 4.25 :	Water is Weighed Prior to Filling of Hole
Plate 4.26 :	The Hole Being Filled with Water
Plate 4.27 :	Samples Stored Horizontally Prior to Testing
Plate 4.28 :	The Horizontal Extruder Used for Extrusion of Undisturbed Samples
Plate 4.29 :	Laboratory Vane Test Being Carried Out on Kuala Perlis Samples
Plate 4.30 :	Triaxial Test Setup for Testing of Kuala Perlis Samples 436
Plate 4.31 :	Rowe Cell Setup for Testing of Kuala Perlis Samples
Plate 5.1 :	Macrofabric of Kuala Perlis Coastal Soft Soil Deposit (6m to 8.4m)
Plate 5.2 :	Macrofabric of Kuala Perlis Coastal Soft Soil Deposit (8.4m to 12m)
Plate 5.3 :	Macrofabric of Kuala Perlis Coastal Soft Soil Deposit (12m to 13.8m)
Plate 6.1 :	Crack Appearing on the Kuala Perlis South Trial Embankment . 440

LIST OF APPENDICES

Appendix 5.1 :	Borehole Logs of the Trial Site Both in the West-East and South- North Directions
Appendix 5.2 :	Field Vane and Laboratory Vane Test Results 447
Appendix 5.3 :	Laboratory Shear Strength Results 448
Appendix 5.4 :	Data of Macrofabric Analysis of Kuala Perlis Coastal Soft Soil Deposits
Appendix 5.5 :	Photographs of Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits
Appendix 6.1 :	Relationship of Cumulative Settlement/Height of Fill with Time of Settlement Plates (SG21 to SG30) in the East-West Direction
Appendix 6.2 :	Relationship of Cumulative Settlement/Height of Fill with Time of Settlement Plates (SG21 to SG36) in the North-South Direction
Appendix 6.3 :	Relationship of Cumulative Heave with Time of Heave Markers (HM41 to HM46) in the East Direction
Appendix 6.4 :	Relationship of Cumulative Heave with Time of Heave Markers (HM61 to HM73) in the West Direction
Appendix 6.5 :	Relationship of Cumulative Heave with Time of Heave Markers (HM29 to HM30) in the North Direction

Appendix 6.6 :	Relationship of Cumulative Heave with Time of Heave Mark	ers
	(HM1 to HM19) in the South Direction.	532

Appendix 6.7 :Relationship of Cumulative Settlement with Time for TopSettlementPlates(TP21 to TP30)in the East-WestDirection542

Appendix 6.9 :Relationship of Cumulative Settlement with Time forExtensometers (Ext21 to Ext24 and Ext31) in the East-WestDirection.554

- Appendix 7.1: Input Format and Data of TWODIM 573
- Appendix 7.2 : Input Format and Data of Kon2DN (Linear Version) 578
- Appendix 7.3 : Input Format and Data of Kon2DN (Non Linear Version). 580

FIGURES

Fig.2.1 : Types of Depositional Environments (Kukal, 1971)

Fig.2.2 : Components of Delta after P.C.Scruton (1960) (Kukal, 1971)

Silica Tetrahedron and Silica Tetrahedra Arranged in a Large Hexagonal Network

Octahedral Unit and Sheet Structure of Octahedral Units

Fig.2.3 : Structure of Clay Minerals (Mitchell, 1976)

Fig.2.4 : Published Curves of Fluctuation in Sea Levels from Various Researchers (Belknap and Kraft, 1977)

Fig.2.5 : Eustatic Changes in Sea Levels Showing Kenney and Fairbridge Curves (Cox, 1970)

Fig.2.6 : Transgression and Regression (Curray, 1964)

Fig.2.7: Definition of Inside and Outside Clearance and Area Ratio after Hvorslev (1949) (Andresen, 1981)

Fig.2.8 : Open Tube Wall Sampler (BS5930:1981)

.

Fig.2.9 : Piston Sampler (BS5930:1981)

Fig.2.10 : Continuous Soil Sampler (BS5930:1981)

Fig.2.11 : Field Vane Apparatus (Andresen, 1981)

Fig.2.12 : Correction Factor for Undrained Shear Strength from Field Vane after Bjerrum (1972) and Swedish Geotechnical Institute (Torstensson, 1977)

COLLAPSED

EXTENDED

b. Electric Cone Penetrometer Tip

a. Standard Oedometer

b. Rowe Cell

Fig.2.14 : Types of Consolidation Testing

Fig.2.15 : Relationship of Compression Index with Water Content for Some Natural Soil Deposits (Mesri and Rokhsar, 1974)

Fig.2.16 : Secondary Compression Curves (Lo, 1961)

Fig.2.17: Correlation Between Ca and Cc for Some Natural Deposits (Mesri and Godlewski, 1977)

a. Samples From Clay-Seawater Mixtures with Different Water Contents

c. Inter-Connected Samples Made by Same method (w=1500%)

Fig.2.18 : Correlation Between C_{α} and C_{c} for Three Different Types of Samples (Katagiri, 1993)

b. Laboratory Vane Test

c. Triaxial Test

d. Unconfined Compression Test

Fig.2.19 : Types of Strength Tests

Representative Coulomb envelopes from quick shear tests: (a) saturated clay, (b) overconsolidated clay, (c) sandy clay or silt

Fig.2.20 : Type of Failure Envelopes Obtained from Quick Shear Box Tests (Head, 1982)

Fig.2.21 : Permeability Test Setup in Oedometer Cell (Tavenas et al, 1983a)

Fig.2.23 : Types of Piezometers (Leroueil et al, 1990)

Fig. 8.3 - Methods of measuring settlements.

Fig.2.25 : Details of Inclinometer (Leroueil et al, 1990)

Fig.2.26 : Influence of Embankment Width on the Progress of Consolidation Beneath a Long Embankment from Dunn and Razouki (1974) (Murray, 1978)

Fig.3.1: Comparison of Radiocarbon Dated Samples Obtained in Peninsular Malaysia to Other Data on Sea-Level Changes

Fig.3.2: Comparison of Radiocarbon Dated Samples Obtained in Peninsular Malaysia to Other Data on Sea-Level Changes During the Last 10000 years B.P.

Fig.3.3: Age of Material with Depth and Boundaries to Indicate the Different Types of Depositional Environments

Fig.3.4 : Classification of Various Types of Transgression and Regression (Curray, 1964)

Fig.3.5: Distribution and Location of Coastal Soft Soil Deposits in Peninsular Malaysia (Malaysian Highway Authority, 1989)

Fig.3.6: Typical Profile of Peninsular Malaysia Coastal Soft Soil Deposits (Abdullah and Chandra, 1987)

Fig.3.7 : Undrained Shear Strength with Depth

Fig.3.8 : Undrained Shear Strength with Moisture Content

Fig.3.9 : Undrained Shear Strength with Organic Content

Fig.3.10 : Undrained Shear Strength with Salt Content

Fig.3.11 : Sensitivity with Depth

Fig.3.13 : Sensitivity with Salt Content

Fig.3.14 : Cone Resistance with Friction Ratio

Fig.3.15 : $q_T \sigma_v$ with Undrained Vane Shear Strength (Dobie and Wong, 1990)

Fig.3.16 : Classification of Peninsular Malaysia Coastal Soft Soil Deposits Using the Soil Classification Charts for the Marchetti Dilatometer (Wong and Dobie, 1990)

Fig.3.17 : Overconsolidation Ratio with K_D for Three Sites along the North-South Expressway (Wong and Dobie, 1990)

Fig.3.18 : Overconsolidation Ratio with K_D (Wong et al, 1993)

Fig.3.19 : Comparison of Data Obtained from Self Boring Pressuremeter Test with Other Field and Laboratory Tests (Wong et al, 1993)

Fig.3.20 : Moisture Content with Organic Content

Fig.3.21 : Moisture Content with Salt Content

Fig. 3.22 : Moisture Content with Depth

Fig.3.23 : Unit Weight with Depth

Fig.3.24: Particle Size Distribution with Depth

Fig.3.25 : Relationship of Data Obtained from Various Sites with Reference to the Casagrande A-Line

Fig.3.26: Atterberg Limits with Depth

Fig.3.27 : Effect of Sample Preparation on the Atterberg Limits of Peninsular Malaysia Coastal Soft Soil Deposits (Mohammad Nor and Yusouf, 1990)

Fig.3.29 : Atterberg Limits with Salt Content

Fig.3.30 : Plasticity Index with Clay Fraction

SET

Depth Relative to Mean Sea Level(m) -10-25 -20 -15 -30ά 0 o 0 10 Average 20 30 40 50 60 70 80 90 100 Kaolinite(%) * F × M 0 0 * Aziz(1993) D Present Study × X MHA(1989)

Depth Relative to Mean Sea Level(m)

Fig.3.35 : Mineralogy with Depth

Fig.3.36 : Compression Index with Organic Content

Fig.3.37 : Compression Index with Initial Void Ratio

Fig.3.38 : Compression Index with Liquid Limit

Fig.3.39 : Compression Index with Natural Moisture Content

Fig.3.40 : Compression Index with Depth

Fig.3.41 : Coefficient of Consolidation at In-Situ Vertical Stress with Depth

Fig. 3.42 : Preconsolidation Pressure with Depth

Fig.3.43 : Overconsolidation Ratio with Depth

Fig.3.44 : Initial Void Ratio with Depth

Fig.4.1 : Location of the Trial Embankment Site in the State of Perlis, Northwest Peninsular Malaysia

Fig.4.2 : Actual Location of the Trial Embankment Site Near Kuala Perlis, Perlis

Horizontal 1:1000

Fig.4.3 : Details of the Layout of the North and South Trial Embankments

Scole (mm.) Vertical 1 : 1000 Horizontal 1 : 1000

Fig.4.4 : Details of the Layout of the South Trial Embankment

Fig.4.5 : Longitudinal Section of the South Trial Embankment

Fig.4.6 : Cross Section of the South Trial Embankment

Fig.4.7 : Location of Boreholes on the South Trial Embankment

Fig.4.8 : Detail Layout of Instrumentation Work

Fig.4.9 : Details of Inclinometer/Extensometer System

Fig.4.10 : Details of Settlement Plates

Fig.4.11 : Details of Temporary Datum

Fig.4.12 : Loading Sequence for the South Trial Embankment

Scale (mm)

Ventical 1:500

Horizontal 1:500

-

Fig.4.13 : Locations of Field Vane and Piezcone Tests

Fig.5.1 : Undrained Shear Strength with Depth from Field Vane Tests Before Construction of the Trial Embankment

Fig.5.2 : Undrained Shear Strength with Depth from Field Vane Tests 434 days After The Start of Construction of the Trial Embankment

Fig.5.3 : Sensitivity with Depth from Field Vane Tests Before Construction of the Trial Embankment

Fig.5.4 : Sensitivity with Depth from Field Vane Tests 434 days After The Start of Construction of the Trial Embankment

Fig.5.6 : Cone Resistance with Depth 594 days After the Start of Construction of the Trial Embankment

Fig.5.7 : In-situ Permeability with Depth

Fig.5.8 : Moisture Content with Depth

Fig.5.9: Atterberg Limits with Depth

Fig.5.10 : Liquidity Index with Depth

Fig.5.11 : Unit Weight with Depth

Fig.5.12 : Specific Gravity with Depth

Fig.5.14: Preconsolidation Pressure with Depth

Fig.5.15: Overconsolidation Ratio with Depth

Fig.5.16 : Compression Index with Depth

Fig.5.17 : Initial Void Ratio with Depth

Fig.5.18 : Void Ratio with Effective Vertical Stress

Fig.5.19 : Coefficient of Secondary Consolidation at In-situ Vertical Effective Stress with Depth

Fig.5.20 : Coefficient of Secondary Consolidation with Effective Vertical Stress

Fig.5.21 : Coefficient of Consolidation at In-situ Vertical Stress with Depth

Fig.5.22 : Coefficient of Consolidation with Effective Vertical Stress

Fig.5.23 : Coefficient of Consolidation with Void Ratio

Fig.5.24 : Coefficient of Volume of Compressibility at In-situ Vertical Stress with Depth

Fig.5.25 : Coefficient of Volume of Compressibility with Effective Vertical Stress

Fig.5.27 : Permeability at In-situ Vertical Stress with Depth

Fig.5.28 : Permeability with Effective Vertical Stress

Fig.5.30 : Undrained Shear Strength from Laboratory Vane Tests

Fig.5.31 : Sensitivity with Depth from Laboratory Vane Tests

Fig.5.32 : Determination of average c' and φ' from Direct Shearbox Tests

Fig.5.33 : Determination of average c^\prime and φ^\prime from Triaxial Tests

Fig.5.34 : Chloride Content with Depth

Fig.5.35 : Sulphate Content with Depth

Fig.5.38 : Organic Content with Depth

Fig.5.39 : Pore Water Salinity with Depth

Fig.5.40 : Mineralogy with Depth

Fig.5.41 : Age of Kuala Perlis Coastal Soft Soil Deposits with Depth

Fig.5.42 : Age of Peninsular Malaysia Coastal Soft Soil Deposits with Depth

Fig.5.43 : In-situ Unit Weight with Height of Embankment

Fig.5.44 : Comparison of Undrained Shear Strength Before Construction and 434 days after the Start of Construction of the South Trial Embankment

Fig.5.45 : Comparison of Undrained Shear Strength from Laboratory Vane and Field Vane Tests

Fig.5.46 : Comparison between Sensitivity Values Before Construction and 434 days after the Start of Construction of the South Trial Embankment

Fig.5.47 : Comparison of Sensitivity Values from Laboratory Vane and Field Vane Tests

Fig.5.48 : Undrained Shear Strength with Organic Content

Fig.5.49 : Undrained Shear Strength with Moisture Content

Fig.5.50 : Undrained Shear Strength with Salt Content

Fig.5.51 : Sensitivity with Liquidity Index

Fig.5.52 : Sensitivity with Salt Content

Fig.5.54 : Comparison of Cone Resistance Before Construction and 434 days after the Start of Construction of the South Trial Embankment

Fig.5.55 : Cone Resistance with Friction Ratio

Fig.5.56 : $q_T - \sigma_v$ with Undrained Shear Strength from Field Vane Tests

Fig.5.57 : Comparison of Moisture Content Values

Fig.5.58 : Moisture Content with Organic Content

Fig.5.60 : Atterberg Limits with Salt Content

321

Fig.5.61 : Atterberg Limits with Organic Content

Fig.5.62 : Atterberg Limits with Sensitivity

Fig.5.64 : Plasticity Index with Sensitivity

Fig.5.66 : Activity with Clay Fraction

Fig.5.67 : Liquidity Index with Effective Overburden Pressure and Depth

Fig.5.68 : Unit Weight with Moisture Content

Fig.5.69 : Comparison of Preconsolidation Pressure Results with Depth

327

Fig.5.70 : Comparison of OCR Results with Depth

Fig.5.71 : Comparison of Compression Index Results with Depth

Fig.5.72 : Compression Index with Organic Content

Fig.5.73 : Compression Index with Liquid Limit

Fig.5.74 : Compression Index with Moisture Content

Fig.5.75 : Compression Index with Initial Void Ratio

Fig.5.76 : Comparison of Initial Void Ratio Results with Depth

Fig.5.79 : Coefficient of Secondary Consolidation with Compression Index

Fig.5.80: C_{α} /(1+e) with Depth

Fig.5.81 : Comparison of Coefficient of Consolidation Values at In-Situ Vertical Stress with Depth

Fig.5.82 : Comparison of Coefficient of Consolidation Values with Effective Stress

Fig.5.84 : Comparison of Coefficient of Volume of Compressibility Values at In-Situ Vertical Stress with Depth

Fig.5.85 : Comparison of Coefficient of Volume Compressibility Values with Effective Vertical Stress

Fig.5.86 : Comparison of Coefficient of Volume Compressibility Values with Void Ratio

Fig.5.87 : Comparison of Permeability Values at In-Situ Vertical Stress with Depth

Fig.5.88 : Comparison of Permeability Values with Effective Vertical Stress

Fig.5.89 : Comparison of Permeability Values with Void Ratio 341

Fig.5.91 : Comparison of q_T-o', Values with Undrained Shear Strength from Field Vane Tests from Present Study with Data Obtained by Dobie and Wong (1990)

Fig.5.93 : Comparison of Liquidity Index Values with Remoulded Undrained Shear Strength from Present Study with Data Obtained from Various Researchers

Fig.5.94 : Comparison of Preconsolidation Pressure Values with Depth from Present Study with Data Obtained from Various Researchers

Fig.5.95 : Comparison of Compression Index Values with Moisture Content from Present Study with Data Obtained from Various Researchers

Fig.5.96 : Comparison of Compression Index Values with Liquid Limit from Present Study with Data Obtained from Various Researchers

Fig.5.97 : Comparison of Coefficient of Secondary Consolidation Values with Compression Index from Present Study with Data Obtained from Various Researchers

Fig.5.98 : Comparison of Age of Soft Soil Deposits Data from Present Study with Sea Level Changes Hypothesised by Various Researchers for the last 10000 Years B.P.

Fig.6.1 : Cumulative Settlement/Heave with Distance in the East-West Direction During the Construction of the Trial Embankment

Fig.6.2 : Cumulative Settlement/Heave with Distance in the East-West Direction After the Completion of the Trial Embankment

Fig.6.3 : Cumulative Settlement/Heave with Distance in the North-South Direction During the Construction of the Trial Embankment

Fig.6.4 : Cumulative Settlement/Heave with Distance in the North-South Direction After the Completion of the Trial Embankment

Fig.6.5 : Cumulative Vertical Settlement at Extensometer Locations with Depth in the East-West Direction During the Construction of the Trial Embankment

Fig.6.6 : Cumulative Vertical Settlement at Extensometer Locations with Depth in the East-West Direction After the Completion of the Trial Embankment

353

Excess Pore Pressure Units in mHd H.O

Fig.6.7: Excess Pore Pressure Contours with Time 10 days After the Start of Construction of the Trial Embankment

Scale x axis 1mm : 0.4m y axis 1mm : 0.1m

Excess Pore Pressure Units in mHd.H₂O

Fig.6.8 : Excess Pore Pressure Contours with Time 20 days After the Start of Construction of the Trial Embankment

Scale x axis 1mm : 0.4m y axis 1mm : 0.1m

Excess Pore Pressure Units in mHd.H₂O

Fig.6.9 : Excess Pore Pressure Contours with Time 36 days After the Start of Construction of the Trial Embankment

Scale

x axis 1mm : 0.4m

Fig.6.10 : Excess Pore Pressure Contours with Time 100 days After the Start of Construction of the Trial Embankment

Excess Pore Pressure Units in mHd.H2O

Scale x axis 1mm : 0.4m y axis 1mm : 0.1m

Fig.6.11: Excess Pore Pressure Contours with Time 300 days After the Start of Construction of the Trial Embankment

Fig.6.12 : Excess Pore Pressure With Height of Fill for PP21 (2.5m from the Edge of the Embankment) During and After Construction of the Trial Embankment

Fig.6.13 : Excess Pore Pressure With Height of Fill for PP22 (22.5m West of the Centre of the Embankment) During and After Construction of the Trial Embankment

Fig.6.14 : Excess Pore Pressure With Height of Fill for PP24 (22.5m East of the Centre of the Embankment) During and After Construction of the Trial Embankment

Fig.6.15 : Excess Pore Pressure With Height of Fill for PP23 (The Centre of the Embankment) During and After Construction of the Trial Embankment

Fig.6.16: Excess Pore Pressure with Height of Fill hypothesised by Parry and Wroth (1981)

Fig.6.17: Lateral Displacement with Depth and Time in the East-West Direction During the Construction of the Trial Embankment

Fig.6.18 : Lateral Displacement with Depth and Time in the East-West Direction After the Completion of the Trial Embankment

Fig.6.20: Maximum Lateral Displacement with Settlement During Construction (Tavenas et al, 1979)

Fig.6.21: Maximum Lateral Displacement with Maximum Vertical Settlement at Centre of Embankment During and After Construction of the Trial Embankment

Fig.6.22 : Ratio of Maximum Lateral Displacement/Maximum Vertical Settlement at the Centre of Embankment with Height of Fill

Fig.6.23 : Volume Displaced Vertically (ΔV_{ν}) with Volume Displaced Laterally (ΔV_{b})

Fig.7.1 : Comparison of Cumulative Settlement with Time from Computer Analysis with Field Data at the Centre of the Embankment

Fig.7.2: Comparison of Cumulative Settlement with Time between Computer Analysis and Field Data at Other Distances from the Centre of the Embankment

Fig.7.3 : Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data at the Centre of the Embankment

Fig.7.4 : Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data 22.5m West of the Centre of the Embankment

Fig.7.5: Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data 22.5m East of the Centre of the Embankment

Fig.7.6: Comparison of Excess Pore Pressures with Time between Computer Analysis and Field Data 32.5m West of the Centre of the Embankment

Fig.8.1 : Pore Pressure Dissipation and Settlement of Two Trial Embankments in Kedah, Northwest Peninsular Malaysia (James, 1970)

Fig.8.2 : Excess Pore Pressure During Consolidation - Prai, Malaysia Case Study (Mesri and Choi, 1979)

Fig.8.3 : Prediction of Settlement in Penang Using CONSOL Program Using c_v from Oedometer Tests (Wong and Choa, 1991)

Fig.8.4 : Perfomance of the Juru Trial Embankment up to the End of Construction (Mohammad et al, 1991)

Fig.8.5 : Prediction of the Excess Pore Pressure Dissipation at the centre line of the 3m Control Embankment in Muar Using the Kon2D program (Younger, 1992)

Fig.8.6 : Prediction of the Excess Pore Pressure Dissipation at the centre line of the 3m Control Embankment in Muar Using the Kon2D program with Varying Pore Pressure Coefficient (A) (Younger, 1992)

Fig.8.7: Prediction of the Excess Pore Pressure Dissipation at the centre line of the Juru Trial Embankment Using the Kon2D program with Varying Permeability with Time (Younger, 1992)

a. Kuala Perlis

b. Muar

с. Јиги

Fig.8.9 : Cumulative Settlement and Height of Fill with Time at the Centres of the Three Embankments

Fig.8.10 : Cumulative Settlement with Height of Fill

Fig.8.11 : Excess Pore Pressure with Time

Fig.8.12 : Excess Pore Pressure with Height of Fill at the Centre of the Kuala Perlis Trial Embankment

Fig.8.14 : Excess Pore Pressure with Height of Fill at the Centre of the Juru Trial Embankment

Fig.8.13 : Excess Pore Pressure with Height of Fill at the Centre of the Muar Trial Embankment

Fig.8.15 : Lateral Displacement with Depth and Time for the Three Embankments

Fig.8.16 : Maximum Lateral Displacement with Height of Fill During Construction

Fig.8.17 : Maximum Lateral Displacement with Cumulative Settlement at Centre of Embankment During Construction

Fig.8.18 : Volume Displaced Vertically with Volume Displaced Laterally Up To 370 days After Start of Construction of Trial Embankment.

(a)

Fig.8.19 : Ratio of $\Delta V_{v}/\Delta V_{h}$ with Height of Fill

TABLES
Quality	Properties That Can Be Determined
Class 1	Classification, Moisture Content, Density, Strength, Deformation and Consolidation Characteristics
Class 2	Classification, Moisture Content, Density
Class 3	Classification, Moisture Content
Class 4	Classification
Class 5	None(Sequence of Strata only)

 Table 2.1: Classes of Sample Quality (BS5930:1981)

Area Ratio (%)	Cutting Edge Taper (Degrees)
5	15
10	12
20	9
40	5
80	4

Table 2.2 : Combination of Area Ratio and Cutting Edge Taper from ISSMFE (1965) (Clayton, 1986)

Type of Soil	Length/Diameter Greater Than
Clay (Sensitivity > 30)	20
Clay (Sensitivity 5-30)	12
Clay (Sensitivity < 5)	10
Loose Frictional Soil	12
Medium Loose Frictional Soil	6

Table 2.3 : Length/Diameter Ratios recommendation from ISSMFE (1965) based on Inside Clearance of 0.5-1% (Clayton, 1986)

Skempton and Northey (1952)	Rosenqvist (1953)	Shannon and Wilson (1964)
1.0 : Insensitive	1.0 : Insensitive	< 3 : Low
1-2 : Low	1-2 : Slightly	3-5 : Low to Medium
2-4 : Medium	2-4 : Medium	5-7 : Medium
4-8 : Sensitive	4-8 : Very Sensitive	7-11 : Medium to High
> 8 : Extra Sensitive	8-16 : Slightly Quick	11-14 : High
> 16 : Quick	16-32 : Medium Quick	14-20 : High to Very High
	32-64 : Very Quick	20-40 : Very High
	> 64 : Extra Quick	> 40 : Extremely High

Table 2.4 : Classification of Sensitivity from Various Researchers (Mitchell and Houston, 1969)

Mechanism	Types of Reaction	Limit of Sensitivity	Predominant Soil Types Affected
Metastable Particle Arrangements	Physical	Slightly Quick	All Clays
Silt Skeleton Bond Clay	Physical	Very Sensitive	Clay-Silt-Sand
Cementation	Chemical	Slightly Quick	All Soils Containing Potential Cementation Compounds
Ion Exchange	Physico- Chemical	Slightly Quick	Leached and Weathered Clays
Leaching of Salt	Physico- Chemical	Extra Quick	Glacial and Post Glacial Marine Clays
Weathering	Chemical	< 1 to Medium (Sensitive 1-4)	All Soils Magnitude of Effect Depends on Mineralogy
Thixotropic Hardening	Physico- Chemical	Medium to Sensitive to Slightly Quick	Clays
Dispersing Agent Addition	Physico- Chemical	Extra Quick	Clays-Particularly Organic Bearing or Organic Deposit Associated

Table 2.5 : Mechanisms Affecting Clay Sensitivity (Mitchell and Houston, 1969)

Regression Equation	Correlation Coefficient	No. of Samples	Applicability	Reference
$C_{c}=0.007 (LL-7)$ $C_{c}=1.15(e_{o}-0.35)$ $C_{c}=0.256+0.43(e_{o}-0.84)$ $C_{c}=0.0046(LL-9)$ $C_{c}=0.009 (LL-10)$			Remoulded Clay All Clays Brazilian Clays Brazilian Clays Normally Consolidated Clay	Skempton (1944) Nishida (1956) Cozzolino (1961) Cozzolino (1961) Terzaghi and Peck (1967)
$C_{c} = 0.4(e_{o} - 0.25)$ $C_{c} = 0.01(w - 5)$ $C_{c} = 0.006(LL - 9)$ $C_{c} = 0.37(e_{o} + 0.003LL - 0.34)$ $C_{c} = 0.4(e_{o} + 0.001w - 0.25)$ $C_{c} = 0.37(e_{o} + 0.003LL + 0.004w - 0.34)$	0.85 0.79 0.59 0.86 0.85 0.86	717 717 678 678 717 678	Clays from Greece and some parts of the United States	Azzouz et al (1976)
$C_{c}=0.21+0.008LL$ $C_{c}=0.22+0.29e_{o}$ $C_{c}=0.2+0.008w$ $C_{c}=0.2+0.008LL+$ $0.009e_{o}$	0.7 0.77 0.77 0.77	113 113 113 113 113	Weathered and Soft Bangkok Clay	Adikari (1977)
$C_c = 0.1882 + 0.3097e_o$ $C_c = 0.1509 + 0.3401e_o$ $-0.0062e_o^2$	0.88 0.9		Soft Bangkok Clay	Sivandran (1979)
$C_c = 0.575 e_o - 0.241$ $C_c = 0.0.147 w - 0.213$	0.966 0.963	-	French Clays	Vidalie (1977)
CR=0.0043w CR=0.0045LL			Marine Clays of Southeast Asia	Cox (1968)
CR=0.156e _o +0.0107 (e _o <2)	0.93	230	All Clays	Elnaggar and Krizek (1970)
CR=0.14(e _o +0.007) CR=0.003(w+7) CR=0.002(LL+9)	0.74 0.68 0.53	717 717 678	Clays from Greece and some parts of the United States	Azzouz et al (1976)
CR=0.00566w-0.037 CR=0.0463LL-0.013	0.81 0.63		Bangkok Clays	Balasubramaniam and Brenner (1981)
CR=0.0039w+0.013 (w<100%) CR=0.403logw-0.478	0.86		French Clays	Viladie (1977)

Table 2.6 : Compression Index and Compression Ratio Relationship with Other SoilParameters (Balasubramaniam and Brenner, 1981)

$C_{\alpha}/(1+e_{o})$ as a Percentage	Secondary Compressibility Classification
< 0.2	Very Low
0.4	Low
0.8	Medium
1.6	High
3.2	Very High
> 6.4	Extremely High

Table 2.7: Coefficient of Secondary Consolidation with Compressibility (Mesri, 1973)

Soil Type	C _α /C _c	Reference
Whangamarino Clay	0.03-0.04	Newland and Allely (1960)
Norfolk Organic Silt	0.05	Barber(1961)
Calcareous Organic Silt	0.035-0.06	Wahls (1962)
Amorphous and Fibrous Peat	0.035-0.083	Lea and Brawner (1963)
Canadian Muskeg	0.09-0.1	Adams (1965)
Leda Clay	0.03-0.055	Walker and Raymond (1968)
Leda Clay	0.04-0.06	Walker and Raymond (1969)
Peat	0.075-0.085	Weber (1969)
Post-Glacial Organic Clay	0.05-0.07	Chang (1969)
Soft Blue Clay	0.026	Crawford and Sutherland (1971)
Organic Clays and Silts	0.04-0.06	Ladd (1971)
Portland Sensitive Clay	0.025-0.055	Ladd (1971)
Peat	0.05-0.08	Samson and La Rochelle (1973)
San Francisco Bay Mud	0.04-0.06	Su and Prysock (1972)
New Liskeard Varved Clay	0.03-0.06	Quigley and Ogunbadejo (1972)
Silty Clay C	0.032	Samson and Garneau (1973)
Nearshore Clays and Silts	0.055-0.075	Brown and Rashid (1975)
Fibrous Peat	0.06-0.085	Berry and Vickers (1975)
Mexico City Clay	0.03-0.035	Mesri et al (1975)
Hudson River Silt	0.03-0.06	Mesri, Personal Files
Leda Clay	0.025-0.04	Mesri and Godlewski (1977)
New Haven Organic Clay Silt	0.04-0.075	Mesri and Godlewski (1977)

Table 2.8 : Values of C_{α}/C_{c} for Some Natural Soil Deposits (Mesri and Godlewski, 1977)

Description of Compressibility	Coefficient of Volume Compressibility m _v (m ² /MN)	Clay Types
Very High	Above 1.5	Very Organic Alluvial Clays and Peats
High	0.3-1.5	Normally Consolidated Alluvial Clays (e.g. Estuarine Clays)
Medium	0.1-1.3	Fluvio-Glacial Clays, Lake Clays, Upper Blue and Weathered Brown London Clay
Low	0.05-0.1	Boulder Clays, Very Stiff or Hard Blue London Clay
Very Low	Below 0.05	Heavily Overconsolidated Boulder Clays, Stiff Weathered Rocks

Table 2.9 : Typical Values of Coefficient of Volume Compressibility for British Soils (From Head, 1980)

Type of Particles	Description
Dispersed	No Face to Face Association of Clay Particles
Aggregated	Face to Face Association of Several Clay Particles
Flocculated	Edge to Edge or Edge to Face Association
Deflocculated	No Association Between Aggregates

Table 2.10 : Particle Associations in Clay Suspensions (van Olphen, 1963)

Method	Basis	Scale of Observation and Fraturas
Optical Microscope (Polarising)	Direct Observation of Fracture Surfaces or Thin Sections	Individual Particles of Silt Size and Large Clay Particles Groups, Preferred Orientation of Clay, Homogeneity on a Millimeter Scale or Larger
Electron Microsope	Direct Observation of Particle through Soil Sample (Scanning Electron -SEM) Observation of Surface Replicas (Transmission Electron Microscope - TEM)	Resolution to about 100Å,Large Depth of Field with SEM, Direct Observation of Particles, Particle Groups and Pore Space, Details of Microfabric
X-Ray Diffraction	Groups of Parallel Clay Plates produce stronger diffraction than Randomly Oriented Plates	Orientation in Zones Several Square Millimeters Thick, Best in Single Mineral Clays
Pore Size Distribution	i. Forced Intrusion of Non Wetting Fluid (Usually Mercury) ii. Capillary Condensation	i. Pores in Range from 0.01 to > 10 μm ii. 0.1 μm Maximum
Ascoustical Velocity	Particle Alignment Influences Velocity	Anisotropy; Measures Microfabric Averaged over a Volume equal to Sample Size
Dielectric Dispersion and Electrical Conductivity	Variations of Dielectric Constant and Conductivity and Frequency	Assessment of Anisotropy, Flocculation and Deflocculation; Measure Microfabric averaged over a Volume equal to Sample Size
Thermal Conductivity	Particle Orientation Influence Thermal Conductivity	Anisotropy, Measures Microfabric averaged over a Volume equal to Sample Size
Magnetic Susceptibili ty	Variation in Magnetic Susceptibility with Change of Sample Orientation Relative to Magnetic Field	Anisotropy, Measures Microfabric average over a Volume equal to Sample Size
Mechanical Properties Strength Modulus Permeability Compressbility, Shrinkage Swelling	Properties Reflect Influences of Fabric	Microfabric averaged over a Volume equal to Sample Size, Anisotropy, Macrofabric Features in some cases

Table 2.11: Methods Used in Study of Soil Fabric (Mitchell, 1976)

Calcium Carbonate Content (CaCO3)	Description
0-10%	Clay
10-30%	Marly Clay
30-70%	Marl
70-90%	Chalky Marl
90-100%	Chalk

Table 2.12 : Classification of Carbonate Content by Schon (1965) (From Leroiuel et al (1990))

Percentage of Organic Content	Description
< 3%	Inorganic Soil
3 - 10%	Slightly Organic Soil
10 - 30	Moderately Organic Soil
> 30%	Very Organic Soil

Table 2.13 : Classification of Organic Content (From Leroueil et al, 1990)

Number of space dimensions	Terzaghi-Rendulic pseudo-consolidation theory	Biot theory	Coefficient of consolidation
1	$\frac{\partial u_e}{\partial t} = c_1 \frac{\partial^2 u_e}{\partial z^2}$	$\frac{\partial u_e}{\partial t} = c_1 \frac{\partial^2 u_e}{\partial z^2}$	$c_1 = \frac{kE(1-\upsilon)}{\gamma_w(1+\upsilon)(1-2\upsilon)}$
2	$\frac{\partial u_e}{\partial t} = c_2 \left(\frac{\partial^2 u_e}{\partial x^2} + \frac{\partial^2 u_e}{\partial z^3} \right)$ or: $\frac{\partial u_e}{\partial t} = c_2 \frac{\partial^2 u_e}{\partial x^2} + c_2 \frac{\partial^2 u_e}{\partial z^2}$	$\frac{\partial u_e}{\partial t} = c_z \left(\frac{\partial^z u_e}{\partial x^2} + \frac{\partial^z u_e}{\partial z^2} \right) + \frac{1}{2} \frac{\partial (\sigma_x + \sigma_z)}{\partial t}$	$c_{z} = \frac{kE}{2\Upsilon_{w}(1-2\upsilon) \ (1+\upsilon)}$
3	$\frac{\partial u_e}{\partial t} = c_3 \left(\frac{\partial^2 u_e}{\partial x^2} + \frac{\partial^2 u_e}{\partial y^2} + \frac{\partial^2 u_e}{\partial y^2} \right)$ $+ \frac{\partial^2 u_e}{\partial z^3} \right)$ or: $\frac{\partial u_e}{\partial t} = c_x \frac{\partial^2 u_e}{\partial x^2} + c_y \frac{\partial^2 u_e}{\partial y^3} + c_x \frac{\partial^2 u_e}{\partial z^2}$	$\frac{\partial u_e}{\partial t} = c_3 \left(\frac{\partial^2 u_e}{\partial x^2} + \frac{\partial^2 u_e}{\partial y^2} + \frac{\partial^2 u_e}{\partial z^2} \right) \\ + \frac{1}{3} \frac{\partial \left(\sigma_x + \sigma_y + \sigma_x\right)}{\partial t}$	$c_{1} = \frac{kE}{3\Upsilon_{w}(1-2\upsilon)}$

Notation: υ = Poisson's ratio of soil skeleton, E = Young's modulus of soil skeleton.
 σ_x, σ_y, σ_x = total stress increments in x, y and x directions respectively at a point in the soil mass.
 c_x, c_y, c_x = one-dimensional coefficients of consolidation in x, y and z directions respectively.

Table 2.14 : Comparisons between 1D, 2D and 3D Consolidation Theory (Murray, 1978)

Name of River	Length (km)	Gradient of Slope from Source to the Coastal Plain
Pahang River	420	1:270
Kelantan River	280	1:250
Perak River	350	1:250
Pontain River	40	1:250
Muar River	110	1:230
Klang River	60.	1:30
Bernam River	70	1:15
Kinta River	120	1:45
Kedah River	62	1:66

 Table 3.1 : Length of Rivers from Peninsular Malaysia with Gradient of Slope from Source to the Coastal Plain

Source of Data	Localised Depths (Metres) of Various Sites in Peninsular Malaysia								
	Perlis	Kedah	Penang	Perak	Selangor	Melaka	Johore	Pahang	Terengganu
Ting and Ooi (1977)	-		9-12	-	12	-	14		-
Abdullah and Chandra (1987)	5-12	5-12	5-25	÷	5-30		10-35	3-20	3-10
Malaysian Highway Authority (1989)		-	-	-		÷	-	-	-
Kobayashi et al (1990)	-	-	10-12	4	10-16	12-13	-	-	8-10
Aziz (1993)	6-12	9-16	12-22	11-22	10-23	-	9-18	-	-
Mohamad et al (1994)	-	-	19	-	18.5	-	17-20	-	-
Present Study	13-14	-	-	-	-	-	-	-	-

Table 3.2 : Summary of Localised Depths of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers

Names of Formation/Member	Classification
Gula Formation	clay,silt and sand with mminor amount of gravel,shells and corals deposited in amarine environemnt after the most recent major low sea- level
Matang Gelugur Member	sand, gravel, shells and corals deposited in a coastal environment
Bagan Datoh Member	sand, clay and silt deposited in an offshore environment
Teluk Intan Member	sand, clay and silt deposited in an inshore environment
Port Weld Member	clay and silt deposited in a mangrove environment
Beruas Formation	clay,silt,sand,gravel and peat deposited in a terrestrial environment after the most recent major low sea-level
Pengkalan Member	peat formed form an insitu vegetation with minor intercalations of clay and silt deposited in a paludal environment
Simpang Formation	clay,silt,sand,gravel and peat deposited in a terrestrial environment before the most recent major low sea-level
Kempadang Formation	clay,silt and sand deposited in a marine environment before the most recent major low sea-level

Table 33.	Sub Division of Peninsular Malaysia Quarternary Sediments by
* uoic 5.5 .	Sub Division of Analysia (Bosch 1988)
	the Geological Society of Malaysia (Bosen, 1966)

Source of Data	Undrained Shear Strength Parameters of Peninsular Malaysia Coastal Soft Soil Deposits					
WEST COAST	Undrained Shear Strength (C _u) (kPa)	Remoulded Shear Strength (kPa)	Sensitivity			
Ting and Chan (1971)			4			
Ting and Ooi 1977)	10-60	1-20	2-6			
Abdullah and Chandra (1987)	20-40	-	1.5-18			
Malaysian Highway Authority (1989)	8-42	2-12	2-8			
Kobayashi et al (1990)			2-10			
Nicholls and Ho (1990)	-		2-8			
Aziz (1993)	10-60	2-20	2-5			
Mohamad et al (1994)	8-55	-	2-15			
Present Study	10-40	1-13	2-8			
EAST COAST						
Abdullah and Chandra (1987)	12-29	-	-			

Table 3.4 :Summary of Undrained Shear Strength Parameters of Peninsular
Malaysia Coastal Soft Soil Deposits from Various Researchers

Source of Data		Classificat	ion Properti	ies of Peninsula	r Malaysia C	oastal Soft	Soil Depos	its
WEST COAST	Natural Moisture Content (%)	Bulk Density (kN/m ³)	Specific Gravity	Particle Size Distribution (%)	Activity	Liquid Limit (%)	Plastic Limit (%)	Liquidity Index
Ting and Ooi (1977)	20-140	-	•	33-65 clay 24-62 silt 1-36 sand		40-155	10-45	
Abdullah and Chandra (1987)	20-175	14.6-15	2.53-2.6	15-55 clay 38-70 silt 7-16 sand	Normal to Active	-		0.5-1,2
Malaysian Highway Authority (1989)	20-120	14-17	-	30-70 clay 25-55 silt 1-30 sand	÷	40-100	20-40	0.4-2.3
Kobayashi et al (1990)	40-125	14.5-17.5	2.45-2.7	25-85 clay 15-60 silt 0-45 sand	-	50-130	20-70	-
Aziz (1993)	15-130	14-15.5	2.6	27-59 clay 25-64 silt 2-28 sand	Inactive to Active (0.77-4)	40-130	16-53	0.1-1.6
Mohammad et al (1994)	12-175	13-16.5	2.35-2.75	50-60 clay 40-50 silt < 5 sand	Normal to Active (1.04-1.8)	50-150	20-65	-
Present Study	20-160	13-16	2.5-2.8	50-60_clay 20-40 silt 0-25 sand	Inactive to Active (0.5-2.0)	40-125	10-40	0.1-2.1
EAST COAST								
Abdullah and Chandra (1987)	21-107	16.3-17.1	2.5-2.57	31-56 clay 16-49 silt 6-28 sand			-	-
Kobayashi et al (1994)	70-100	14.5-15.5	2.65-2.7	-	-	·	-	
Mohamad et al (1994)	-	-	-		Inactive to Active (0.64-1.15)	-	-	-

Table 3.5 : Summary of Classification Properties of Peninsular Malaysia Coastal Soft
Soil Deposits from Various Researchers

Source of Data	Chem	Chemical Properties of Peninsular Malaysia Coastal Soft Soil Deposits								
WEST COAST	Organic Content (%)	Salinity (gm/l)	рН	Chloride Content (%)	Sulphate Content (%)	Carbonate Content (%)				
Ting and Ooi (1977)	1-17	20-40			-	-				
Abdullah and Chandra (1987)	1-22.5	13.7	3-8	-	-					
Kobayashi et al (1990)	-	-	5.3-8.2	0.05-0.7	0.03-0.9	*				
Aziz (1993)	0.3-20	-	4-8.5	0.01-4.5	-					
Nicholls and Ho (1990)	-	0.01-43	-	÷	÷	*				
Present Study	2-15	24-38	5-9	0.007- 0.026	0.1-1.7	13.5-22				
EAST COAST										
Abdullah and Chandra (1987)	10	-	-		+	*				
Kobayashi et al (1990)	-	-	7.5-8.5	-	-	0.14-0.31				

Note : Data Obtained from	Present	Study will	l be discusse	d in a	later	Chapter
---------------------------	---------	------------	---------------	--------	-------	---------

Table 3.6 : Summary of Chemical Properties of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers

Source of Data	Mineralogy of Peninsular Malaysia Coastal Soft Soil Deposits					
	Kaolinite (%)	Illite (%)				
Malaysian Highway Authority (1989)	0-60	0-80	2-42			
Aziz (1993)	4-45	10-50	5-55			
Present Study	5-45	35-65	20-50			

 Table 3.7:
 Summary of the Mineralogy of Peninsular Malaysia Coastal Soft Soil

 Deposits from Various Researchers

Source of Data	Compressibility Characteristics of Peninsular Malaysia Coastal Soft Soil Deposits								
WEST COAST	Compression Index (C _c)	Coefficient of Secondary Consolidation (C _a)	Coefficient of Consolidation (c _v) (m ² /yr)	Preconsolidation Pressure (p _c) (kPa)	Over- consolidation Ratio (OCR)	Initial Void Ratio (e _o)			
Ting and Ooi (1977)	-	-	0.61-32	-	0.52-4	-			
Abdullah and Chandra (1987)	0.4-1.38	-	-	-	-	-			
Malaysian Highway Authority (1989)	0.5-2.35	0.001-0.24	0.7-14.7	20-180	0.4-1.9	1.4-3.2			
Kobayashi et al (1990)	0.35-1.8	0.001-0.03		30-250	-	-			
Aziz (1993)	1-2	-	0.2-1.5	30-150	1-13	0.9-4.1			
Mohamad et al (1994)	0.4-3.2	-	0.2-1.3	20-120	0.5-5.0	0.6-3.5			
Present Study	0.6-2.2	0.06-0.35	0.1-25	20-100	1-6.5	2-3.8			
EAST COAST									
Abdullah and Chandra (1987)	0.02-0.8	-	-	-	-	-			
Kobayashi et al (1990)	0.9-1.2	0.01-0.04			-	-			

 Table 3.8 : Summary of Compressibility Characteristics of Peninsular Malaysia

 Coastal Soft Soil Deposits from Various Researchers

Source of Data	Laboratory Shear Strength Parameters of Peninsular Malaysia Coastal Soft Soil Deposits								
WEST COAST		Consolidate	ed Undrained		Unconsolida Undrained	ted	Consolidated Drained		
	c'(kPa)	φ'(°)	C _{cu} (kPa)	φ _{cu} (⁰)	C _u (kPa)	φ _u (°)	c _d (kPa)	φ _d (⁰)	
Ting and Ooi (1977)	34.5	8-24.5				· · · · ·	0	18-24.5	
Abdullah and Chandra (1987)	-	-	2.3-17	1.47-6.1	-	-	-	-	
Kobayashi et al (1990)	-	20-27	-	4	-	-	-	-	
Present Study	4-12	18-27	-	-	-	-	-	-	
EAST COAST									
Abdullah and Chandra (1987)	5.3-12	24-38	5.3-32.7	3-14	17.9-25.5	2.5-4_6	0	24-30	

Table 3.9 : Summary of Shear Strength Parameters of Peninsular Malaysia Coastal Soft Soil Deposits from Various Researchers

Source of Data	Type of Soil	e。	w	$\gamma_d (kN/m^2)$	LL	PL	C _c	LI	φ'(°)	Sensitivity
-	Stiff Clay	0.6	21	17						
	Soft Clay	0.9-1.4	30-50	11.5- 14.5						
	Soft Organic Clay	2.5-3.2	90-120	6-8						
-	New Orleans Clay				80	25	0.3			
-	Chicago Clay				60	20	0.4			
Norwegian Geotechnical Institute	Seven Sisters Canada			i.	127	35		0.28	19	
	Lilla Eder Sweden				68	30		1.32	25.5	5
	Gota River Sweden				60	27		1.3	23	12
Bishop and Bjerrum (1960)	Silo, Transcona		50		110	30		0.25	23	12

Table 3.10 : Typical Values of Geotechnical Parameters of Soft Soils (Das, 1990)

Description	Undrained Shear Strength (kPa)
Very Soft	< 20
Soft	20-40
Firm	40-75
Stiff	75-150
Very Stiff or Hard	>150

Table 5.1 : Consistency of Material (BS5930, 1981)

Reduced Level (m)	Insitu Permeability (k _{insitu}) (m/s)
2.169	1.04 E-04
6.169	6.95 E-05
10.169	6.91E-05

Table 5.2 : Insitu Permeability Values Obtained from Falling Head Tests Carried Out in Standpipe Piezometers

Reduced Level (m)	Pressure Head (kPa)	Permeability (k) (m/s)
8.169	40	8.82E-07
8.169	100	1.68E-07

Table 5.3 : Vertical Permeability Values Obtained From Triaxial Tests Using Constant Head

Location	Sample Type	Average Depth below Mean Sea Level(m)	Age of Sample (Years B.P.)
Kuala Perlis	Shells	4.2	5130
	Shells	5.7	5950
	Shells	12.3	7120
Sungei Acheh	Organics	13.5	7840
Bagan Datoh	Shells	5.5	5330
	Organics	23.3	8700
	Organics	24.3	8990
Port Klang	Shells	5.5	2950
	Shells	7.5	5350
	Organics	9.5	7580
	Organics	12.5	7780
	Organics	13.5	7710
	Organics	17.5	8030

Table 5.4 : Age of Kuala Perlis Coastal Soft Soil Deposits

Fill	Moisture	Particle Size Di	stribution		Undrained Shear		
Material	Content (%)	Sand and Gravel (%)	Silt (%)	Clay (%)	Strength (kPa)		
Type I	3-4	85	12	3	N.A.		
Type II	12-15	28-46	28-33	26-28	N.A.		

Table 5.5 : Geotechnical Properties of Fill Materials Used in Trial Embankment

Note : This table will be updated from time to time as some data are still not available.

Geotechnical Properties	Undisturbed Undrained Shear Strength (kPa)	Remoulded Undrained Shear Strength (kPa)	Sensitivity
Upper Limit			6
Average m.sl. 1m m.s.l. 10m m.s.l. 15m m.s.l.	12 35	3 10	3
Lower Limit	-		2

m.s.l. : mean sea level

 Table 5.6 : Typical Values of Undrained Shear Strength Parameters from Field Vane Tests

	Geotechnical Properties	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Liquidity Index	Unit Weight (kN/m ³)	Specific Gravity	Particle Distribut (%)	Size tion	
								Clay	Silt	Sand
	Upper Limit m.s.l. 0-10m m.s.l. 10m m.s.l. 10-15m m.s.l. 0-15m m.s.l.	140 60 40				14.5	2.75	80	45	25
415	Average m.s.l. 0-10m m.s.l. 10m m.s.l. 10-15m m.s.l. 15m m.s.l. 0-15m m.s.l.	110 40 27	105%	35% 20%	1.07 0.15	14.0	2.6	63	32	5
	Lower Limit m.s.l. 0-10m m.s.l. 10m m.s.l. 10-15m m.s.l. 0-15m m.s.l.	80 25 12				13.5	2.5	40	20	0

m.s.l. : mean sea level

Table 5.7 : Typical Values of Classification Properties of Kuala Perlis Coastal Soft Soil Deposits

Geotechnical Properties	Preconsolidation Pressure	Overconsolidation Ratio	Compression Index	Initial Void Ratio	Coeff. of Secondary Consolidation
Upper Limit 0-10m m.s.l. below 10m m.s.l.			2.2 2.0	3.8 1.0	
Average m.s.1 0-10m m.s.1. 10m m.s.1. below 10m m.s.1.	30 65	4.1 1.4 ,	1.4 1.0	3.1 0.75	0.003
Lower Limit 0-10m m.s.l. below 10m m.s.l.			0.8 0.3	2.4 0.6	

m.s.l. : mean sea level

Table 5.8 : Typical Values of Compressibility Parameters of Kuala Perlis Coastal Soft Soil Deposits

Soil Properties	Kuala Perlis	Muar	Juru
Liquid Limit(%)	50-120	40-80	40-130
Plastic Limit(%)	20-40	20-40	20-45
Moisture Content(%)	70-130	50-100	60-130
Bulk Density (kN/m³)	13-17	14-17	14-19
Liquidity Index	0.5-2	1-2	0.5-1.5
Preconsolidation Pressure (P _c)(kPa)	30-70	20-110	20-100
OCR	1-3	0.9-1.9	1.5-5
Void Ratio	2-3	1.4-3	1-3
Compression Index (C _c)	1-2	0.5-2.2	0.5-2.5
Undrained Shear Strength (C _u) (kPa)	10-35	8-30	8-35
Sensitivity	3-5 -	2-7	3-7

Table 8.1 : Comparison of the Geotechnical Properties of the Three Trial Embankment Sites

Trial Embankment Site	Volume Displaced Laterally as % of Volume Displaced Vertically
Kuala Perlis	3-13%
Muar	0.5-15%
յուղ	13-37%

Table 8.2 : Volume Displaced Laterally (ΔV_h) as a Percentage of Volume Displaced Vertically (ΔV_v)

PLATES

Plate 3.1 : Organic Matter in Peninsular Malaysia Coastal Soft Soil Deposits (Aziz, 1993)

Plate 3.2 : Pyrites in Peninsular Malaysia Coastal Soft Soil Deposits (Aziz, 1993)

Plate 3.3 : Granular Matrix in Peninsular Malaysia Coastal Soft Soil Deposits (Aziz, 1993)

Plate 4.1 : Surveying of the Trial Embankment Site Prior to Main Site Investigation and Instrumentation Works

Plate 4.2 : Polyfelt Geotextile TS600 used as a Seperator Layer on the Trial Embankment

Plate 4.3 : Pegging the Geotextile by Wooden Stakes

Plate 4.4 : Dumping of Drainage Material by Lorries

Plate 4.5 : Levelling of the Drainage Material by Backpushers

Plate 4.6 : Finished Level of the Drainage Fill Material

422

Plate 4.7 : Checking for Leakage in Pneumatic Piezometers

Plate 4.8 : Readout Unit for Pneumatic Piezometers

Plate 4.9 : Standpipe Piezometer Tip

Plate 4.10 : Dipmeter Used for Taking Readings of Standpipe Piezometers

Plate 4.11: Inclinometer/Extensioneter Tubes

Plate 4.12 : Insertion of Torpedo Probe to Take Readings of the Inclinometer

Plate 4.15: Settlement Plate Lowered in Dug Hole

Plate 4.16 : Taking of Reduced Levels of Settlement Plates

Plate 4.17 : Heave Markers Installed Near the South Trial Embankment

Plate 4.18: Equipment Used for Field Vane Testing

Plate 4.19 : Augering of Hole for Field Vane Testing 429

Plate 4.20 : Insertion of the Vane Tip for Field Vane Testing

Plate 4.21 Shearing of the Soil During Field Vane Testing

Plate 4.22 : Type of Piezocone Tip Used in the Site Investigation Work of the South Trial Embankment

Plate 4.23 Type of Machinery Used for Piezocone Testing in the South Trial Embankment

Plate 4.24: Hole Dug for Water Replacement Method

Plate 4.25 - Water is Weighed Prior to Filling of Hole

Plate 4.26 : The Hole Being Filled with Water

Plate 4.27 : Samples Stored Horizontally Prior to Testing

Plate 4.28: The Horizontal Extruder Used for Extrusion of Undisturbed Samples

Plate 4.29 : Laboratory Vane Test Being Carried Out on Kuala Perlis Samples 435

Plate 4.30 : Triaxial Test Setup for Testing of Kuala Perlis Samples

Plate 4.31 : Rowe Cell Setup for Testing of Kuala Perlis Samples

Plate 5.1 : Macrofabric of Koala Perils Coastal Soft Soft Deposit for to 8.4m

KUALA PERLIS SOUTH TRIAL EMBANKMENT

Depth	Depth	Depth
13.2m-13.8m	12.6m-13.2m	12.0m-12.6m

Plate 5.3 : Macrofabric of Kuala Perlis Coastal Soft Soil Deposit (12.0m to 13.8m)

Plate 6.1 : Crack Appearing on the Kuala Perlis South Trial Embankment

APPENDICES

APPENDIX 5.1

BOREHOLE LOGS OF THE TRIAL SITE BOTH IN THE WEST-EAST AND SOUTH-NORTH DIRECTIONS

Scale x axis 1cm : 2m y axis 1cm : 2m

Borehole Logs in the West-East Direction (BH21 to BH24)

\$ 4 د م

RL 1849 0 Fill Material 0 45 WAAAA . - --Very Soft Liney Silly Clay with traces of seashell . 5 Fragments and Organic Matter 1 -- 1 -. 130 Medium Stiff Greyish brown Silly chay 15-0 Soft to Medium Shiff Brownish Light Grey Silly Clay 173 Very Shiff Greyish Brown Sandy Gravelly Silly Clay 1.7 190 Shift Grownish Grey Silly Clay with 28.2 61125

Scale x axis 1cm : 2m y axis 1cm : 2m

Borehole Logs in the West-East Direction (BH25 to BH27)

Borehole Logs in the West-East Direction (BH28 to BH30)

Borehole Logs in the South-North Direction (BH25 to BH28)

BH 26

Borehole Logs in the South-North Direction (BH26 to BH29)

Scale

x axis 1cm : 2m y axis 1cm : 2m

Borehole Logs in the South-North Direction (BH27 to BH30)

APPENDIX 5.2

FIELD VANE AND LABORATORY VANE TESTS RESULTS

 $(\mathbf{C}_{\mathbf{u}} \mathbf{vs} \ \sigma')$

0+

APPENDIX 5.3

LABORATORY SHEAR STRENGTH TESTS RESULTS

DIRECT SHEAR BOX TESTS

(VERTICAL ALIGNMENT)

DIRECT SHEAR BOX TESTS

(HORIZONTAL ALIGNMENT)

TRIAXIAL TESTS

(CONSOLIDATED UNDRAINED TESTS)

APPENDIX 5.5

PHOTOGRAPHS OF MICROFABRIC FEATURES OF KUALA PERLIS COASTAL SOFT SOIL DEPOSITS

APPENDIX 5.4

DATA OF MACROFABRIC ANALYSIS OF KUALA PERLIS COASTAL SOFT SOIL DEPOSITS

Site : Kuala Perlis South Trial Embankment

Date Test Done : 3/2/93

Sample No: BH 23AA Sample Length: 0.3m Orientation of Basic Axis : N.A.

Depth: 0.6m to 1.2m

R.L. of Borehole : 1.831m

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

	No. of	Nature		Form			Orientation		Spacing
	Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
	1	Dusting	Sand	0.2	Continuous	Planar	Horizonta	1	290
	2	Dusting	Sand	0.4	Continuous	Planar	Horizonta	1	-
	3	Dusting	Organic	0.5	Continuous	Planar	40		180
	4	Lamina	Organic	1	Continuous	Planar	45		-

.

Site : Kuala Perlis South Trial Embankment

Date Test Done : 3/2/93

Sample No: BH 23AB Sample Length: 0.4m Depth: 1.2m to 1.8m R.L. of Borehole : 1.831m Orientation of Basic Axis : N.A.

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of	Nature		Form			Orientatio	n	Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Sea Shells	N.A.	0.01	Discontinuous	N.A.	Horizont	al	10
2	Sea Shells	N.A.	0.01	Discontinuous	N.A.	Horizont	al	25
3	Sea Shells	N.A.	0.02	Discontinuous	N.A.	Horizont	al	1825
4	Sea Shells	N.A.	0.03	Discontinuous	N.A.	Horizont	Horizontal	
5	Sea Shells	N.A.	0.07	Discontinuous	N.A.	Horizon	al	35
6	Sea Shells	N.A.	0.01	Discontinuous	N.A.	Horizon	al	10
7	Sea Shells	N.A.	0:01	Discontinuous	N.A.	Horizon	tal	25
8	Sea Shells	N.A.	0.02	Discontinuous	N.A.	Horizon	tal	25
9	Sea Shells	N.A.	0.03	Discontinuous	N.A.	Horizon	tal	38
10	Sea Shells	N.A.	0.07	Discontinuous	N.A.	Horizon	al	-

.

Site : Kuala Perlis South Trial EmbankmentDate Test Done : 3/2/93Sample No: BH 23AB Sample Length: 0.4mDepth: 1.2m to 1.8mR.L. of BorelOrientation of Basic Axis : N.A.

R.L. of Borehole : 1.831m

÷

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

A REAL PROPERTY AND ADDRESS ADDRES

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness tmm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
11	Dusting	Sand	0.4	Continuous	Planar	Horizont	al	70
12	Dusting	Sand	0.3	Continuous	Planar	Horizont	al	10
13	Lamina	Sand	1.0	Continuous	Planar	Horizon	al	20
14	Dusting	Sand	0.5	Continuous	Planar	Horizon	tal	40
15	Dusting	Sand	0.2	Continuous	Planar	Horizon	tal	60
16	Dusting	Sand	0.5	Continuous	Planar	Horizon	tal	70
17	Lamina	Sand	4	Continuous	Planar	Horizon	tal	70
18	Lamina	Sand	3	Continuous	Planar	Horizon	tal	10
19	Lamina	Sand	1	Continuous	Planar	Horizon	tal	20
20	Dusting	Sand	0.5	Continuous	Planar	Horizon	tal	40
21	Dusting	Sand	0.2	Continuous	Planar	Horizon	tal	60
22	Dusting	Sand	0.5	Continuous	Planar	Horizon	tal	-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 3/2/93

Sample No: BH 23AC Sample Length: 0.4m

Depth: 1.8m to 2.4m

R.L. of Borehole : 1.831m

1

1

Orientation of Basic Axis : N.A.

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form			Orientatio	n	Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	10	Continuous	Planar	Horizonta	I	10
2	Dusting	Organic	0.3	Continuous	Planar	Horizonta	1	90
3	Thin Layer	Organic	10	Continuous	Planar	Horizonta	1	15
4	Thin Layer	Organic	10	Continuous	Planar	Horizonta	1	-
5	Lamina	Sand	0.7	Continuous	Planar	Horizonta	1	-
6	Thin Layer	Sand	0.5	Continuous	Planar	Horizonta	1	-
7	Thin Layer	Sand	30	Continuous	Planar	Horizonta	1	12
8	Thin Layer	Sand	40	Continuous	Planar	Horizonta	1	-
9	Sea Shells	N.A.	60	Discontinuous	N.A.	Horizonta	1	-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 3/2/93

Sample No: BH 23ADSample Length: 0.4mDepth: 2.4m to 3.0mR.L. of Borehole : 1.831mOrientation of Basic Axis : N.A.

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Sea Shells	N.A.	1	Discontinuous	N.A.	Horizonta		-
2	Thin Layer	Sand	30	Continuous	Planar	Horizonta	1	-

1

Site : Kuala Perlis South Trial Embankment

Date Test Done : 17/5/93 Sample No: BH 23AE

Depth: 3m to 3.6m R.L. of Borehole : 1.831m

1

1

Orientation of Basic Axis : N.A.

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None

Sample Length: 0.55m

Measurements:

No. of	Nature		Form		Orientation		Spacing	
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Lamina	Organic	5	Continuous	-Planar	Horizonta	1	5
2	Lamina	Organic	5	Continuous	Planar	45		5
3	Lamina	Organic	5	Continuous	Planar	Horizonta	1	40
4	Lamina	Organic	5	Continuous	Planar	Horizonta	1	20
5	Lamina	Organic	5	Continuous	Planar	Horizonta	1	-
6	Sea Shells	N.A.	40	Discontinuous	N.A.	Horizonta	1	-

 Site : Kuala Perlis South Trial Embankment

 Date Test Done : 17/5/93

 Sample No: BH 23AF
 Sample Length: 0.48m

 Depth: 3.6m to 4.2m
 R.L. of Borehole : 1.831m

 Orientation of Basic Axis : N.A.

 Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments

Observed related or referred features : None

Measurements:

No. of	Nature		Form			Orientation		Spacing	
Feature	Feature Type	Soil Classifica tion	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm	
1	Lamina	Organic	2.5	Continuous	Planar	Horizontal		5	
2	Lamina	Organic	2.5	Continuous	Planar	Horizontal		70	
3	Lamina	Organic	1	Continuous	Planar	Horizontal		10	
4	Lamina	Organic	2	Continuous	Planar	Horizontal		70	
5	Lamina	Organic	2	Continuous	Planar	Horizontal		80	
6	Lamina	Organic	0.6	Continuous	Planar	Horizontal		-	
7	Lamina	Sand	10	Continuous	Curved	25	-	20	
8	Lamina	Sand	10	Continuous	Planar	45	-	40	
9	Lamina	Sand	5	Continuous	Planar	-	45	100	
10	Lamina	Sand	5	Continuous	Planar	Horizontal		40	
11	Thin Layer	Sand	30	Continuous	Planar	-	45	-	
12	Sea Shells	N.A.	20	Discontinuous	N.A.	Horizontal		-	

Site : Kuala Perlis South Trial Embankment
Date Test Done : 17/5/93
Sample No: BH 23AG Sample Length:0.6m Depth: 4.2m to 4.8m R.L. of Borehole : 1.831m
Orientation of Basic Axis : N.A.
Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments
Observed related or referred features : None
Measurements:

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Lamina	Sand	1.5	Continuous	Planar	Horizontal		10
2	Lamina	Sand	1.5	Continuous	Planar	Horizontal		10
3	Dusting	Sand	0.5	Continuous	Planar	Horizontal	-	10
4	Lamina	Sand	0.65	Continuous	Planar	Horizontal		40
5	Lamina	Sand	2	Continuous	Planar	Horizontal	30	80
6	Lamina	Sand	1.5	Continuous	Planar	Horizontal		20
7	Thin Layer	Sand	10	Continuous	Planar	Horizontal		20
8	Thin Layer	Sand	20	Continuous	Planar	Horizontal		50
9	Lamina	Sand	2	Continuous	Planar	Horizontal		20
10	Lamina	Sand	2	Continuous	Planar	Horizontal		*
11	Lamina	Organic	2	Continuous	Planar	Horizontal		90
12	Lamina	Organic	2	Discontinuous	Planar	Horizontal		110
13	Thin Layer	Organic	15	Continuous	Planar	-	45	-
13	Sea Shells	N.A.	20	Discontinuous	N.A.	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 17/5/93

Sample No: BH 23AHSample Length:0.6mDepth: 4.8m to 5.4mR.L. of Borehole : 1.831mOrientation of Basic Axis : N.A.

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form	1		Orientation	Orientation	
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	15	Continuous	Planar	Horizontal		60
2	Thin Layer	Organic	10	Continuous	Planar	Horizontal		230
3	Thin Layer	Organic	25	Continuous	Planar	Horizontal	-	-
4	Thin Layer	Sand	15	Continuous	Planar	Horizontal		170
5	Lamina	Sand	0.9	Continuous	Planar	Horizontal		40
6	Lamina	Sand	1	Continuous	Planar	Horizontal		-
7	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		60
8	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		10
9	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		5
10	Sea Shells	N.A.	8	Discontinuous	N.A.	Horizontal		80
9	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		1-1

Site : Kuala Perlis South Trial Embankment

Date Test Done: 17/5/93

Sample No: BH 23AI Sample Length: 0.53m Orientation of Basic Axis : N.A. Depth: 5.4m to 6.0m

R.L. of Borehole : 1.831m

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	10	Continuous	Planar	Horizontal		- 0.40
2	Sea Shells	Sea Shells	5	Discontinuous	N.A.	Horizontal		10
3	Sea Shells	Sea Shells	10	Discontinuous	N.A.	Horizontal		60
4	Sea Shells	Sea Shells	5	Discontinuous	N.A.	Horizontal		90
5	Sea Shells	Sea Shells	5	Discontinuous	N.A.	Horizontal	·	40
6	Sea Shells	Sea Shells	5	Discontinuous	N.A.	Horizontal		-
7	Lamina	Sand	0.2	Continuous	Planar	Horizontal		10
8	Lamina	Sand	0.2	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 17/5/93

Sample No: BH 23AJ Sample Length:0.55m Orientation of Basic Axis : N.A.

Depth: 6.0m to 6.6m

R.L. of Borehole : 1.831m

Soil Description : Light to dark greyish clay of high plasticity with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form	Form			Orientation	
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	40	Continuous	Planar	Horizontal		330 ;
2	Thin Layer	Organic	5	Continuous	Planar	Horizontal	Horizontal	
3	Thin Layer	Organic	5	Continuous	Planar	Horizontal		-
4	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		80
5	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		40
6	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		40
7	Sea Shells	N.A.	10	Discontinuous	N.A.	-	45	-

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

PAGE MISSING IN ORIGINAL

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

PAGE MISSING IN ORIGINAL

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AM Sample Length: 0.57m Orientation of Basic Axis : N.A.

Depth: 7.8m to 8.4m

R.L. of Borehole : 1.831m

÷.

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments

Observed related or referred features : None

Measurements:

No. of	Nature		Form	Form			Orientation	
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	8	Continuous	Planar	Horizontal		15
2	Thin Layer	Organic	30	Continuous	Planar	Horizontal		180
3	Thin Layer	Organic	5	Continuous	Planar	Horizontal		70
4	Thin Layer	Organic	10	Continuous	Planar	Horizontal		-
5	Sea Shells	N.A.	2	Discontinuous	N.A.	Horizontal		60
6	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		10
7	Lamina	Sand	0.3	Continuous	Planar	Horizontal		150
8	Lamina	Sand	0.5	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AN Sample Length:0.6m Orientation of Basic Axis : N.A.

Depth: 8.4m to 9.0m

R.L. of Borehole : 1.831m

i

×.

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	5	Continuous	Planar	Horizontal		20
2	Thin Layer	Organic	15	Continuous	Planar	Horizontal		140
3	Thin Layer	Organic	5	Continuous	Planar	Horizontal		120
4	Thin Layer	Organic	5	Continuous	Planar	Horizontal		-
5	Sea Shells	N.A.	20	Discontinuous	N.A.	Horizontal		80
6	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		120
7	Sea Shells	N.A.	7	Discontinuous	N.A.	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23A0 Sample Length:0.6m Orientation of Basic Axis : N.A. Depth: 9.0m to 9.6m

R.L. of Borehole : 1.831m

1

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments

Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	20	Continuous	Planar	Horizontal		110
2	Thin Layer	Organic	6	Continuous	Planar	Horizontal		160
3	Thin Layer	Organic	10	Continuous	Planar	Horizontal		-
4	Sea Shells	N.A.	6	Discontinuous	N.A.	Horizontal		-
5	Lamina	Sand	0.4	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93 Sample No: BH 23AP

Depth: 9.6m to 10.2m

R.L. of Borehole : 1.831m

1

1

Orientation of Basic Axis : N.A. Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

Sample Length: 0.47m

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	15	Continuous	Planar	Horizontal		10
2	Thin Layer	Organic	10	Continuous	Planar	Horizontal		150
3	Thin Layer	Organic	6	Continuous	Planar	Horizontal		20
4	Thin Layer	Organic	6	Continuous	Planar	Horizontal		-
5	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		30
6	Sea Shells	N.A.	7	Discontinuous	N.A.	Horizontal		10
7	Sea Shells	N.A.	6	Discontinuous	N.A.	Horizontal		10
8	Sea Shells	N.A.	6	Discontinuous	N.A.	Horizontal		-
9	Laminar	Sand	0.3	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AQ Sample Length: 0.57m Orientation of Basic Axis : N.A.

Depth: 10.2m to 10.8m

R.L. of Borehole : 1.831m

1

12

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	10	Continuous	Planar	Horizontal		-
2	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		40
3	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		30
4	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		30
5	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		90
6	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		40
7	Sea Shells	N.A.	10	Continuous	N.A.	Horizontal		-
8	Thin Layer	Sand	40	Continuous	Planar	90		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AR Sample Length:0.46m Orientation of Basic Axis : N.A. Depth: 10.8m to 11.4m

R.L. of Borehole : 1.831m

. . .

Soil Description : Soft grrenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Sea Shells	N.A.	15	Discontinuous	N.A.	Horizontal		30
2	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		30
3	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		40
4	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		50
5	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		-
6	Thin Layer	Organics	5	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AT Sample Length:0.46m

Depth:12.0m to 12.6m

R.L. of Borehole : 1.831m

T

.

Orientation of Basic Axis : N.A.

Soil Description : Soft light to dark greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organics	20	Continuous	Planar	Horizontal		240
2	Thin Layer	Organics	5	Continuous	Planar	Horizontal		-
3	Dusting	Sand	0.1	Continuous	Planar	Horizontal		200
4	Lamina	Sand	1	Continuous	Planar	Horizontal		-
5	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		60
6	Sea Shells	N.A.	15	Discontinuous	N.A.	Horizontal		50
7	Sea Shells	N.A.	8	Discontinuous	N.A.	Horizontal		10
8	Sea Shells	N.A.	20	Discontinuous	N.A.	Horizontal		50
9	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 20/5/93

Sample No: BH 23AT Sample Length: 0.46m

Depth: 12.0m to 12.6m

R.L. of Borehole : 1.831m

.

Orientation of Basic Axis : N.A.

Soil Description : Stiff light greenish clay with traces of organic matter and shell fragments

Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Sea Shells	N.A.	15	Discontinuous	Planar	Horizontal		-
2	Thin Layer	Organics	5	Continuous	Planar	Horizontal		10
3	Thin Layer	Organics	5	Continuous	Planar	Horizontal		110
4	Thin Layer	Organics	5	Continuous	Planar	45		-
5	Dusting	Sand	0.05	Continuous	Planar	Horizontal		140
6	Dusting	Sand	0.05	Continuous	Planar	Horizontal		-
Site : Kuala Perlis South Trial Embankment

Date Test Done: 20/5/93

Sample No: BH 23AU Sample Length: 0.46m

Depth: 12.6m to 13.2m

R.L. of Borehole : 1.831m

1

1

Orientation of Basic Axis : N.A.

Soil Description : Stiff mottled light greyish browinish red silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organics	5	Continuous	Planar	Horizontal		50
2	Thin Layer	Organics	5	Continuous	Planar	Horizontal		90
3	Thin Layer	Organics	5	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment Date Test Done : 17/5/93 Sample No: BH 23AK Sample Length:0.55m Orientation of Basic Axis : N.A.

Depth: 6.6m to 7.2m

R.L. of Borehole : 1.831m

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	10	Continuous	Planar	Horizontal		40
2	Thin Layer	Organic	5	Continuous	Planar	-	45	210
3	Thin Layer	Organic	5	Continuous	Planar	90	-	20
4	Thin Layer	Organic	8	Continuous	Planar	45		-
5	Sea Shells	N.A.	8	Discontinuous	N.A.	Horizontal	_	80
6	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		10
7	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		10
8	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		40
9	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		-
10	Thin Layer	Sand	5	Continuous	Planar	Horizontal		60
11	Lamina	Sand	3	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 18/5/93

Sample No: BH 23AL Sample Length: 0.6m

Depth: 7.2m to 7.8m

R.L. of Borehole : 1.831m

.

Orientation of Basic Axis : N.A.

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	5	Continuous	Planar	Horizontal		290
2	Thin Layer	Organic	7	Continuous	Planar	Horizontal		-
3	Sea Shells	N.A.	5	Discontinuous	N.A.	45	-	10
4	Sea Shells	N.A.	5	Discontinuous	N.A.	45		10
5	Sea Shells	N.A.	5	Discontinuous	N.A.	45		120
6	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		90
7	Sea Shells	N.A	8	Discontinuous	N.A.	Horizontal		-
8	Lamina	Sand	2	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AM Sample Length: 0.57m

Depth: 7.8m to 8.4m

R.L. of Borehole : 1.831m

Orientation of Basic Axis : N.A.

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments

Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form	1		Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	8	Continuous	Planar	Horizontal		15
2	Thin Layer	Organic	30	Continuous	Planar	Horizontal		180
3	Thin Layer	Organic	5	Continuous	Planar	Horizontal		70
4	Thin Layer	Organic	10	Continuous	Planar	Horizontal		-
5	Sea Shells	N.A.	2	Discontinuous	N.A.	Horizontal		60
6	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		10
7	Lamina	Sand	0.3	Continuous	Planar	Horizontal		150
8	Lamina	Sand	0.5	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23ANSample Length:0.6mOrientation of Basic Axis : N.A.

Depth: 8.4m to 9.0m

R.L. of Borehole : 1.831m

÷

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	5	Continuous	Planar	Horizontal		20
2	Thin Layer	Organic	15	Continuous	Planar	Horizontal		140
3	Thin Layer	Organic	5	Continuous	Planar	Horizontal		120
4	Thin Layer	Organic	5	Continuous	Planar	Horizontal		-
5	Sea Shells	N.A.	20	Discontinuous	N.A.	Horizontal		80
6	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		120
7	Sea Shells	N.A.	7	Discontinuous	N.A.	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23A0 Sample Length:0.6m

Depth: 9.0m to 9.6m

R.L. of Borehole : 1.831m

1

Orientation of Basic Axis : N.A.

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of Feature	Nature	Nature		Form			Orientation	
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	20	Continuous	Planar	Horizontal		110
2	Thin Layer	Organic	6	Continuous	Planar	Horizontal		160
3	Thin Layer	Organic	10	Continuous	Planar	Horizontal		-
4	Sea Shells	N.A.	6	Discontinuous	N.A.	Horizontal		-
5	Lamina	Sand	0.4	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AP

Sample Length: 0.47m Depth: 9.6m to 10.2m

R.L. of Borehole : 1.831m

τ.

Orientation of Basic Axis : N.A. Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form	Form			Orientation	
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	15	Continuous	Planar	Horizontal		10
2	Thin Layer	Organic	10	Continuous	Planar	Horizontal		150
3	Thin Layer	Organic	6	Continuous	Planar	Horizontal		20
4	Thin Layer	Organic	6	Continuous	Planar	Horizontal		-
5	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		30
6	Sea Shells	N.A.	7	Discontinuous	N.A.	Horizontal		10
7	Sea Shells	N.A.	6	Discontinuous	N.A.	Horizontal		10
8	Sea Shells	N.A.	6	Discontinuous	N.A.	Horizontal		-
9	Laminar	Sand	0.3	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93 Sample No: BH 23AQ

Orientation of Basic Axis : N.A.

Sample Length: 0.57m Depth: 10.2m to 10.8m

R.L. of Borehole : 1.831m

÷

Soil Description : Soft greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form			Orientation		Spacing
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organic	10	Continuous	Planar	Horizontal		-
2	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		40
3	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		30
4	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		30
5	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		90
6	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		40
7	Sea Shells	N.A.	10	Continuous	N.A.	Horizontal		-
8	Thin Layer	Sand	40	Continuous	Planar	90		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AR Sample Length:0.46m Orientation of Basic Axis : N.A.

Depth: 10.8m to 11.4m

R.L. of Borehole : 1.831m

3

Soil Description : Soft grrenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Sea Shells	N.A.	15	Discontinuous	N.A.	Horizontal		30
2	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		30
3	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		40
4	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		50
5	Sea Shells	N.A.	5	Discontinuous	N.A.	Horizontal		-
6	Thin Layer	Organics	5	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 19/5/93

Sample No: BH 23AT Sample Length:0.46m Orientation of Basic Axis : N.A.

Depth:12.0m to 12.6m

R.L. of Borehole : 1.831m

÷

Soil Description : Soft light to dark greenish silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of	Nature		Form	Form			Orientation	
Feature	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organics	20	Continuous	Planar	Horizontal		240
2	Thin Layer	Organics	5	Continuous	Planar	Horizontal		-
3	Dusting	Sand	0.1	Continuous	Planar	Horizontal		200
4	Lamina	Sand	1	Continuous	Planar	Horizontal		
5	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		60
6	Sea Shells	N.A.	15	Discontinuous	N.A.	Horizontal		50
7	Sea Shells	N.A.	8	Discontinuous	N.A.	Horizontal		10
8	Sea Shells	N.A.	20	Discontinuous	N.A.	Horizontal		50
9	Sea Shells	N.A.	10	Discontinuous	N.A.	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 20/5/93

Sample No: BH 23AT Sample Length: 0.46m Orientation of Basic Axis : N.A.

Depth: 12.0m to 12.6m

R.L. of Borehole : 1.831m

.

Soil Description : Stiff light greenish clay with traces of organic matter and shell fragments Observed related or referred features : None

Measurements:

No. of Feature	Nature		Form					Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Sea Shells	N.A.	15	Discontinuous	Planar	Horizontal		-
2	Thin Layer	Organics	5	Continuous	Planar	Horizontal		10
3	Thin Layer	Organics	5	Continuous	Planar	Horizontal		110
4	Thin Layer	Organics	5	Continuous	Planar	45		-
5	Dusting	Sand	0.05	Continuous	Planar	Horizontal		140
6	Dusting	Sand	0.05	Continuous	Planar	Horizontal		-

Site : Kuala Perlis South Trial Embankment

Date Test Done : 20/5/93

Sample No: BH 23AU Sample Length: 0.46m

Depth: 12.6m to 13.2m

R.L. of Borehole : 1.831m

1

Orientation of Basic Axis : N.A.

Soil Description : Stiff mottled light greyish browinish red silty clay with traces of organic matter and shell fragments Observed related or referred features : None Measurements:

No. of Feature	Nature		Form			Orientation		Spacing
	Feature Type	Soil Classification	Thickness t mm	Continuity Assessment	Surface Geometry	Strike	Dip	S mm
1	Thin Layer	Organics	5	Continuous	Planar	Horizontal		50
2	Thin Layer	Organics	5	Continuous	Planar	Horizontal		90
3	Thin Layer	Organics	5	Continuous	Planar	Horizontal		-

Magnification (x700)

Magnification (x1300)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Horizontal Alignment at a Depth of 3.7m to 4.3m

Magnification (x700)

Magnification (x1300)

Magnification (x2500)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Vertical Alignment at a Depth of 3.7m to 4.3m

Magnification (x650)

Magnification(x1300)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Horizontal Alignment at a Depth of 5.7m to 6.3m

Magnification (x700)

Magnification(x1300)

Magnification (x2500)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Vertical Alignment at a Depth of 5.7m to 6.3m

Magnification (x700)

Magnification (x1300)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Horizontal Alignment at a Depth of 7.7m to 8.3m

Magnification (x700)

Magnification (x1300)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Vertical Alignment at a Depth of 7.7m to 8.3m

Magnification (x350)

Magnification (x700)

Magnification (x1300)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Horizontal Alignment at a Depth of 11.7m to 12.3m

Magnification (x700)

Magnification (x1300)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Vertical Alignment at a Depth of 11.7m to 12.3m

Magnification (x700)

Magnification (x1300)

Magnification (x2500)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Horizontal Alignment at a Depth of 13.7m to 14.3m

Magnification (x700)

Magnification (x1300)

Microfabric Features of Kuala Perlis Coastal Soft Soil Deposits in Vertical Alignment at a Depth of 13.7m to 14.3m

Magnification (x700)

Magnification (x1300)

Microfabric Features of Consolidation Kuala Perlis Coastal Soft Soil Deposits in Vertical Alignment at a Depth of 5.7m to 6.3m (Consolidation Pressure=50kPa)

Magnification (x700)

Magnification (x1300)

Microfabric Features of Consolidation Kuala Perlis Coastal Soft Soil Deposits in Horizontal Alignment at a Depth of 5.7m to 6.3m (Consolidation Pressure=50kPa)

a. Pyrites in Cluster Form

b. Pyrites in Pyritohedral Form

Other Microfabric Features Observed in Kuala Perlis Coastal Soft Soil Deposits

APPENDIX 6.1

RELATIONSHIP OF CUMULATIVE SETTLEMENT/HEIGHT OF FILL WITH TIME OF SETTLEMENT PLATES (SG21 TO SG30) IN THE EAST-WEST DIRECTION

APPENDIX 6.2

RELATIONSHIP OF CUMULATIVE SETTLEMENT/HEIGHT OF FILL WITH TIME OF SETTLEMENT PLATES (SG21 TO SG36) IN THE NORTH-SOUTH DIRECTION

RELATIONSHIP OF CUMULATIVE HEAVE WITH TIME OF HEAVE MARKERS (HM41 TO HM46) IN THE EAST DIRECTION

RELATIONSHIP OF CUMULATIVE HEAVE WITH TIME OF HEAVE MARKERS (HM61 TO HM73) IN THE WEST DIRECTION

RELATIONSHIP OF CUMULATIVE HEAVE WITH TIME OF HEAVE MARKERS (HM21 TO HM30) IN THE NORTH DIRECTION

RELATIONSHIP OF CUMULATIVE HEAVE WITH TIME OF HEAVE MARKERS (HM1 TO HM19) IN THE SOUTH DIRECTION

÷.

RELATIONSHIP OF CUMULATIVE SETTLEMENT WITH TIME OF TOP SETTLEMENT PLATES (TP21 TO TP30) IN THE EAST-WEST DIRECTION

APPENDIX 6.8

RELATIONSHIP OF CUMULATIVE SETTLEMENT WITH TIME OF TOP SETTLEMENT PLATES (TP22 TO TP36) IN THE NORTH-SOUTH DIRECTION

APPENDIX 6.9

RELATIONSHIP OF CUMULATIVE SETTLEMENT WITH TIME FOR EXTENSOMETERS (EXT21 TO EXT24 AND EXT31) IN THE EAST-WEST DIRECTION

*1

APPENDIX 6.10

RELATIONSHIP OF PIEZOMETRIC HEAD AND EXCESS PIEZOMETRIC HEAD WITH TIME FOR PNEUMATIC PIEZOMETERS (PP21 TO PP24) AND STANDPIPE PIEZOMETERS (SP1 TO SP3)

Piezometers PP21(2.5m West of Edge of Trial Embankment)

Piezometers PP21(2.5m West of Edge of Trial Embankment)

Piezometers PP22(22.5m West of Centre of Trial Embankment)

Piezometers PP22(22.5m West of Centre of Trial Embankment)

Piezometers PP23(Centre of Trial Embankment)

Piezometers PP23(Centre of Trial Embankment)

.

Piezometers PP24(22.5m East of Centre of Trial Embankment)

Piezometers PP24(22.5m East of Centre of Trial Embankment)

1.44

Standpipe Piezometers SP1 to SP3(5m East of Centre of Trial Embankment)

APPENDIX 6.11

RELATIONSHIP OF DEFLECTION WITH REDUCED LEVEL FOR INCLINOMETERS (I21, I22, I24 AND I31)

Inclinometer 22

Inclinometer 24

Inclinometer 31

APPENDIX 7.1

INPUT FORMAT AND DATA OF TWODIM CONSOLIDATION PROGRAM

Item	Format	Description of Data	Max.Allowable Value	Units
1	20A4	JOB Name of Job		-
2	20A4	Description	-	-
3	1515	Drainage Boundaries (1 or 2) No of Stages of Construction No.of Layers No.of Nodal Points on Horizontal Axis No.of Nodal Points in Each Layer on Vertical Axis	2 No Limit 10 101 30	-
4	1015	No. of Specified Values of Stress and Strain per Layer	10	-
5	1015	No.of Specified Values of Deviator Stress and Pore Pressure Coefficient 'A' per layer	10	-
6	8F10.3	Depths to sucessive boundaries Length of Horizontal Element Base Width of Embankment		m m m
7	515	 a. Initial Pore Pressure Data (No data if =0, if 1 read data) b. Lateral Boundary Parameter (O=free, 1=fixed) c. Printout of Stress Data (print inhibited if=0, print if=1) d. Printout of Pore Pressure Data (Values determines intervals between prints) e. Printout of Settlement Data 	- - No Limit	-
		(Values determine intervals between nodal points)	No Limit	-

Item	Format	Description of Data	Max.Allowable Value	Units
8	16F5.1	Excess Pore Pressures at Nodal Points if 7(a)=1 (Read in Column Order)	-	kN/m ²
9	1015	No. of coefficients specified for each layer	-	-
10	8F10.3	Overburden pressures at centres of layers	-	kN/m ²
11	8F10.3	Initial horizontal stresses at centres of layers	-	kN/m²
12	8F10.3	Elastic settlement per kN/m ² /m in each layer	_	mm
13	3A8	Description of soil in top layer	-	-
14	8F10.3	Values of effective stress corresponding to specified strain	-	kN/m²
15	8F10.3	Specified values of strain	_	-
16	8F10.3	Values of deviator stress corresponding to specified porewater parameters	-	kN/m ²
17	8F10.3	Specified porewater parameters 'A'		-
18	8F10.3	Coeffcients of consolidation in vertical direction	_	m²/yr
19	8F10.3	Coefficient of volume compressibility in vertical direction	-	m²/MN
Item	Format	Description of Data	Max.Allowable Value	Units
------	--------	--	---------------------	--------------
20	8F10.3	Coefficents of consolidation in horizontal direction	-	m²/yr
21	8F10.3	Coefficients of volume compressibility in horizontal direction		m²/MN
22	8F10.3	Coefficients of secondary consolidation	-	mm/m
23	8F10.3	Range of effective stresses corresponding to coeffcients in Items 18,19 and 22	-	kN/m²
24	8F10.3	Range of effective stresses corresponding to coefficients given in Items 20 and 21	-	kN/m²
25	-	Items 13-23 repeated for each layer in the subsoil	-	-
26	2F10.3	Total elapsed time to end of construction Total elapsed time to end of current stage of construction Number of time intervals required for the results of	-	year year
		the analysis of this stage	No limit	-

Item	Format	Description of Data	Max.Allowable Value	Units
27	4F10.3	Increment of embankment height for current stage of construction Side slope of embankment for current stage of construction Unit weight of fill material New width of embankment of terraced or bermed structure otherwise negative value e.g10 to indicate side slopes are continuous	-	m kN/m² m
28	-	Repeat items 26 and 27 according to number of stages	-	-
29	-	Repeat items 1-28 according to number of cases to be analysed	-	ā.
30	-	STOP	-	_

JOB KUALA PERLIS SOUTH TRIAL EMBANKMENT Coastal Soft Soil Deposit --- 11.83 metre thickness 1 15 12 1 1 6 3 ... 11.83 2.50 60.0 0 1 0 1 1 0 2 23.67 23.67 0.7524 coastal soft soil deposit 18.0 0.0 36.0 72.0 143.0 287.0 0.0 0.002 0.007 0.033 0.049 0.061 0.0 120.0 287.0 0.5 1.0 1.0 8.0 8.0 3.0 3.0 8.0 8.0 3.0 3.0 0.013 0.013 0.0 287.0 287.0 0.0 0.099 2.0 30 4.0 0.267 18.0 -10 STOP

APPENDIX 7.2

INPUT FORMAT AND DATA OF KON2DN CONSOLIDATION PROGRAM

(LINEAR VERSION)

PROJECT TITLE : Kuala Perlis South Trial Embankment (Linear Version)

Internal_boundary	: n
Constant Skempton par	ameter "A" : n
Number of soil layer	: 1
SOIL LAYER DATA	
Soil layer	: 1
Is Soil layer compressi	ble ? : y
Thickness	meter = 11.83
Volume weight	KN/m3 = 14.00
Natural water content	% = 110.00
Young`s modulus	KPa = 1700
Number of vertical mes	sh = 10
Cv	m2/year = 8.0
Ch	m2/year = 8.0
Сс	= 1.400
Cr	= 0.140
C_alpha	= 0.013
eo	= 2.900
Pc`	KPa = 50.00

WATER-TABLE, TIME and HORIZONTAL BOUNDARY DATA

Depth of water table	meter	= (0.00
Time intervals	days =	5	.0
Lateral boundary distance	meter	=	40.0
Number of horizontal mesh		=	20

EMBANKMENT DATA

Initial height of embankment	meter = 0.45
Initial weight of embankment	t KN/m3 = 18.00
Initial half-top width n	neter $= 28.31$
Half-bottom width	meter $= 30.00$
Bulk-weight of embankment	KN/m3 = 18.00
Embankment stage loading	= y
Number of stage loading	= 7

EMBANKMENT STAGE LOADING DATA

Height of fill	meter	= 0.50
Increment at cycle		= 1
Height of fill	meter	= 0.50
Increment at cycle		= 2
Height of fill	meter	= 0.50
Increment at cycle		= 3
Height of fill	meter	= 0.50
Increment at cycle		= 4
Height of fill	meter	= 0.50
Increment at cycle		= 5
Height of fill	meter	= 0.50
Increment at cycle		= 6
Height of fill	meter	= 0.55
Increment at cycle		= 7

BOTTOM BOUNDARY DATA

Permeable Bottom	: n

OUTPUT DATA

Offset is needed	: 2
Distance of Offset	meter $= 22.50$
Distance of Offset	meter = 32.50

Vertical point is needed	: 4
Depth of point	meter = 2.00
Layer of point	= 1
Depth of point	meter = 5.00
Layer of point	= 1
Depth of point	meter $= 8.00$
Layer of point	= 1
Depth of point	meter $= 11.00$
Layer of point	= 1

APPENDIX 7.3

**

INPUT FORMAT AND DATA OF KON2DN CONSOLIDATION PROGRAM

(NON-LINEAR VERSION)

PROJECT TITLE : Kuala Perlis South Trial Embankment (Non-Linear Version)

Data of coeffecient of permeability : N			
Constant Skempton pa	rameter "A" : N		
Number of soil layer	: 2		
SOIL LAYER DATA			
Soil layer	: 1		
Is Soil layer compressi	ble ? : Y		
Thickness	meter = 5.83		
Volume weight	KN/m3 = 14.00		
Natural water content	% = 110.00		
Young's modulus	KPa = 1700		
Number of vertical me	sh = 10		
Cv	m2/year = 8.0		
Ch	m2/year = 8.0		
Сс	= 1.400		
Cr	= 0.140		
C_alpha	= 0.013		
eo	= 2.900		
Pc`	KPa = 50.00		
Ck	= 1.450		
Soil layer	: 2		
Is Soil layer compressi	ble? : Y		
Thickness	meter = 6.00		
Volume weight	KN/m3 = 14.00		
Natural water content	% = 110.00		
Young's modulus	KPa = 1700		
Number of vertical mes	sh = 10		
Cv	m2/year = 8.0		
Ch	m2/year = 8.0		
Cc	= 1.400		
Cr	= 0.140		
C_alpha	= 0.013		
eo	= 2.900		
Pc`	KPa = 50.00		
Ck	= 1.450		

WATER-TABLE, 'TIME and HORIZONTAL BOUNDARY DATA

Depth of water table	meter	=	0	0.00
Time intervals	days	=	5.	0 *
Lateral boundary distance	mete	r =	=	40.0
Number of horizontal mesh		ŧ	Ξ	20

EMBANKMENT DATA

Initial height of embankment	meter = 0.45
Initial weight of embankment	KN/m3 = 18.00
Initial half-top width n	neter $= 28.31$
Half-bottom width	meter $= 30.00$
Bulk-weight of embankment	KN/m3 = 18.00
Embankment stage loading	= Y
Number of stage loading	= 7

EMBANKMENT STAGE LOADING DATA

Height of fill	meter $= 0.50$	
Increment at cycle	= 1	
Height of fill	meter $= 0.50$	
Increment at cycle	= 2	
Height of fill	meter = 0.50	
Increment at cycle	= 3	
Height of fill	meter = 0.50	
Increment at cycle	= 4	
Height of fill	meter = 0.50	
Increment at cycle	= 5	
Height of fill	meter = 0.50	
Increment at cycle	= 6	
Height of fill	meter = 0.55	
Increment at cycle	= 7	

BOTTOM BOUNDARY DATA

Permeable Bottom	: N

OUTPUT DATA

-

Offset is needed	: 2
Distance of Offset	meter = 22.50
Distance of Offset	meter $= 32.50$
Vertical point is needed	: 4
Depth of point	meter = 2.00
Layer of point	= 1
Depth of point	meter = 5.00
Layer of point	= 1
Depth of point	meter = 8.00
Layer of point	= 2
Depth of point	meter $= 11.00$
Layer of point	= 2