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Abstract 

The performance of RF antennae for ion cyclotron heating applications of fusion 

plasmas have hitherto been greatly degraded by the presence of instabilities in the 

plasma edge. These appear electrically as fast transient reflections on the RF circuit. 

The conjugate-T (CT) architecture achieves resilience by arranging two straps in 

parallel with a tuning component on each arm. If properly configured, a symmetrical 

disturbance to both straps will result in the reflected power destructively interfering 

at the T point. 

The objective of the research reported here is to lay the foundations of a control 

methodology to enable an in-vessel matched CT antenna to self configure in order to 

achieve optimal resilience and perfect matching for any given plasma state. Highly 

non linear steady state models of the electrical behavior are derived, and parameter 

scans of the non ideal variables such as mutual impedance, asymmetry and reactive 

disturbances are investigated. Finally, the basis of a self optimising control algorithm 

is presented and performance validated for resistive disturbances. Options for fully 

reactive and resistive disturbance resilience are proposed. 
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1. Introduction 

Environmental concerns, and limited reserves of fossil fuels, necessitate the 

development of alternative sources of energy in the medium to long term. Of the 

candidate solutions envisaged, controlled nuclear fusion is one of the most 

promising, yet highly technically challenging. 

One such challenge requiring a solution is the need of a reactor to heat its plasma 

to the required energies necessary for sustained fusion reactions, and to provide 

steady state non inductive current drive to sustain the magnetic confinement fields 

holding the plasma away from the reactor walls. 

One candidate heating and current drive system is Ion Cyclotron Resonant 

Heating (ICRH), which heats plasma by a high power electromagnetic wave. 

However, the performance of such systems is greatly degraded in the presence of 

plasma edge instabilities. These appear electrically as fast transient loads on the RF 

circuit, of frequency beyond that which may be compensated for in real time. As 

such circuits are highly tuned, the load variations result in large transient reflections 

of RF power. In response protection interlocks will shut down the generator 

momentarily. However the cumulative effect of these outages is a large decrease in 

duty cycle, reducing the average delivered power. 

This study concerns the investigation of the conjugate T load resilient 

architecture, and develops control algorithms that enable the maximum power 

transfer to the plasma, as well as maximising the passive disturbance rejection of the 

electrical system. 
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1.1. Synopsis 

The objective of this study is to understand the behavior of optimally resilient 

circuits, and so develop control algorithms that drive the antenna toward a perfectly 

matched, resilient state. The manner in which this is achieved is summarised below: 

ICRH systems and fusion power in general is described by way of introduction in 

chapter 2. In this regard, basic principles of fusion and its magnetic confinement are 

described in section 2.1 & 2.2. This is necessary to understand the toroidal geometry 

frame used throughout the text.  

An introduction to ICRH is provided in section 2.3. This section explains the 

physical processes of coupling power to the plasma, and the systems required to 

achieve this. A brief introduction to the RF actuators and design techniques is 

provided, as these will be used throughout. 

As this study is primarily focused on load disturbance rejection, the mechanism 

of loading the antenna, and the known type of disturbances encountered are 

described in section 2.4. Unfortunately, most physical data is available from studies 

by Monakhov (2003) on antennae geometries not consistent with the modern short 

strap designs assumed in this study. 

A review of candidate fast matching and resilient methodologies is included in 

section 2.5. Various methods from active compensation (Fast Ferrite Tuners, Lin et 

al, 2008) to passive are summarised. Most antennae use a combination of active and 

passive means, and the conjugate T circuit is introduced as an architecture capable of 

coupling power through plasma edge disturbances. 
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The CT circuit is discussed at depth in section 2.6. In this regard, the JET ILA is 

introduced as a modern short strap conjugate T antenna, which serves as the design 

basis for this study. 

With suitable introductions in place, in Chapter 3 the study reviews the 

mathematical model of one CT circuit. In this regard, a simplified model that 

includes asymmetries and mutual impedance effects is developed in section 3.1. 

The second stage matching circuits are mathematically described in section 3.2. 

Two basic models are proposed; one a simplified circuit suitable for resistive 

variations, and the second a more accurate realisation required for multidimensional 

disturbance modelling. 

The phenomenological model of loading disturbance is set out in section 3.3. 

This model is based on that described by Lamalle (2005). Only two models were 

considered in this study; a purely resistive disturbance, and a combined resistive-

reactive disturbance. 

With the mathematical models now established, in chapter 4 the study can 

proceed to defining the conditions of a CT circuit for optimal resilience. Firstly, 

resilience is mathematically defined in section 4.1, using a purely resistive variation 

following on from work by Durodie (M65). 

The optimal configuration of an ideal CT circuit is derived algebraically in 

section 4.2. However, the complexity of incorporating non ideal parameters requires 

a numerical solver. As the resilience solution space contains mathematical 

discontinuities, custom solvers were written, and these are summarised in section 4.3. 
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Having developed the mathematical tools necessary to calculate the optimal set 

point of any given circuit, in chapter 5 the study proceeds to develop control 

heuristics for optimal resilience.  

To serve as reference, the fixed T point control methodology of the ILA, as 

developed by Durodie (M68) is described, and the model thereof summarised in 

section 5.1. 

In section 5.2 an alternative methodology is proposed that controls the arm 

current phase rather than antenna impedance. This was demonstrated to be load 

invariant, yet would require feedback control of the second stage circuit for 

automatic matching. 

The influence of non ideal parameters was investigated using numerical tools. 

The sensitivity and set point loci are published in section 5.3. Consequently, general 

control heuristics were developed for the phase control methodology, and the non 

ideal parameters shown to have a strong influence on performance. 

A novel methodology using a diagnostic sideband, amplitude modulated on the 

main heating frequency is proposed in section 5.4 for non ideal parameter 

compensation. The resulting control algorithm was tested against the fixed T method 

in section 5.5 and shown to have significantly superior performance. 

It is known that plasma disturbances are multidimensional events, and therefore, 

the one dimensional methods investigated thus far were insufficient. Therefore, in 

chapter 6 an alternative average coupled power performance measure is proposed 

that is more scalable in dimensions and better captures system behavior. The 

performance measure is mathematically described in section 6.3.1. Numerical tools 
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for calculating performance and the consequential optimal configuration are 

described in sections 6.3.2 & 6.3.3 respectively. 

The sensitivity studies were repeated for multidimensional disturbances in 

chapter 7. It was found that reactive disturbances had prominent detrimental effects 

on the system performance. Additionally, the amplitude modulation diagnostic 

required modification. Proposals to address some of the reactive ELM implications 

are set out in section 7.2 

The study leaves many issues outstanding, and the proposed further work is 

discussed in chapter 8. Of particular note is the overarching requirement to gain a 

better understanding of plasma disturbance by direct measurement on the ILA. 

The study concludes in chapter 9 by summarising the useful contributions by 

developing a better understanding of the non ideal parameters on CT performance, 

and has proposed the framework for a control methodology whereby both matching 

and resilience are controlled under feedback, and the use of diagnostic sidebands to 

indicate the state of the antenna. 

References used in this study are reported in chapter 10. 

Appendix A contains the derivation and code realisation of the required input 

parameters of a phase shifter – stub 2nd stage match, as used in the modelling of 

section 6.3.2 

Appendix B contains a measured impedance matrix provided by the ILA 

commissioning team. This was used to set bounds on non ideal parameters 

Appendix C contains the MATLAB code for the resilience performance 

assessment for an arbitrary CT circuit, as used for studies in chapters 4 & 5. 
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Appendix D contains the MATLAB code for the adaptive mesh optimization 

solver that was written to extract optimal CT configuration when the solution lies on 

a mathematical discontinuity. This was used for sensitivity studies of section 5.3 

Appendix E contains the code that derives the CT circuit configuration required 

for a fixed T point algorithm. This was used as reference for the algorithm 

assessments of section 5.5. 

Appendix F contains the code for the amplitude modulation algorithm, which 

was assessed in section 5.5. 

Appendix G records the code for the averaged coupled power in disturbance X-R 

space as used to assess the impact of multidimensional ELMs. 

Appendix H contains the code for the modified adaptive mesh optimization 

algorithm that extracts the maximum performance from the average coupled power 

model of Appendix G. This was used for the sensitivity studies of section 7.1. 

1.2. Original contributions 

The original work presented in this study to which the author made significant 

contributions is the following: 

Chapter 4: The derivation, in section 4.3.1, of a systematic approach to modelling 

resilience by defining a performance measure rather than VSWR 

contours. 

 The development and validation, in section 4.3.2, of numerical 

method to extract the optimal configuration of an arbitrary CT circuit, 

including mutual impedance and resistive asymmetry 

Chapter 5: The derivation, in section 5.2, of the definition of a resilient circuit as 

defined by arm phase. 
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 The proposal, in section 5.2, of a control methodology whereby 

resilience is optimised by feedback control to deliver the optimal arm 

phases, and resulting floating T point impedance matched by feedback 

control of the 2nd stage circuit. 

 The parametric investigation, in section 5.3, of non ideal parameters 

of mutual impedance and resistive asymmetry on optimal 

configuration set points for resistive disturbances. 

 The proposal, in section 5.4, of adding diagnostic sidebands to the 

heating frequency, and so enable automatic compensation of varying 

non ideal parameters. 

 The validation, in section 5.5, of the amplitude modulated arm phase 

control algorithm, demonstrating superior and broadband resilience 

performance for resistive disturbances. 

Chapter 6: The proposal & development, in section 6.2, of a revised average 

coupled power model of resilience performance, enabling multi 

dimensional scaling, non path dependant disturbances, and capturing 

interlock functionality. 

The development, in section 6.3.3, of numerical method to extract the 

optimal configuration of an arbitrary CT circuit, including mutual 

impedance and resistive asymmetry using the average coupled power 

performance measure. 

Chapter 7: The parametric investigation, in section 7.1, of non ideal parameters 

of mutual impedance and resistive asymmetry on optimal 

configuration set points for combined resistive - reactive disturbances. 
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The proposal, in section 7.2, of adding a diagnostic sideband to the 

heating frequency, of frequency chosen so that when the sideband is 

controlled to the nominally optimal locus, the resulting offset from 

optimal on the drive frequency provides a cushion to absorb the 

reactive component of the ELM, yet uses the sideband as a “handrail” 

to provide automatic compensation for mutual reactance and 

asymmetry variations. 
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2. General background 

2.1. Overview of Nuclear Fusion 

Nuclear fusion is the process whereby elements of low atomic number are 

combined into heavier elements, and is the mechanism that powers the stars. The 

process releases very large amounts of energy, with significant power amplification. 

However, the initiating energy trigger is substantial. Not withstanding the 

consequential difficulties, the large resulting power, amplification and readily 

available fuel sources make the prospect of a controlled fusion power plant attractive. 

The most efficient reaction to utilise fusion on earth is the DT reaction in which 

nuclei of the two Hydrogen isotopes Deuterium (D) and Tritium (T) are forced 

together to overcome the rejection due to their electric charge and so allow them to 

fuse due to the strong nuclear force between them. The product of this reaction is a 

Helium nucleus and a neutron, both with very high kinetic energy. 

Due to losses in any confinement system, three parameters, temperature, density 

and confinement time, need to be simultaneously achieved for sustained fusion to 

occur in a given volume. The product of these parameters is called the fusion (or 

triple) product, and provides a figure of merit for a candidate fusion device. 

Breakeven (energy input equal to energy output) is represented by a fixed value of 

5x1021m-3keVs, however no experimental device has yet attained this figure (Wesson 

1999). 

Fusion reactions occur at a sufficient rate only at very high temperatures and 

consequently in the fourth state of matter known as plasma - when electrons 
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disassociate from their nuclei and co exist in an electrically neutral, yet conductive 

medium of free moving electrons and ion species. 

The high temperatures confer a large kinetic energy to the ions, so enabling them 

to overcome the electrostatic repulsive force and approach each other sufficiently to 

be captured by the strong nuclear force and so fuse. For the DT reaction an optimal 

temperature near 300M K exists (Wesson, 2004), although lower temperatures of 

~200M K are typically used on contemporary experiments (Wesson 1999) 

The number of fusion reactions per unit volume is roughly proportional to the 

square of the density. Therefore the density of fuel ions must be sufficiently large for 

fusion reactions to take place at the required rate. Contemporary devices can attain 1-

2 x 1020 particles m-3, however greater densities are limited by the onset of plasma 

instability with currently available magnetic confinement field strengths (Wesson 

1999). 

The Energy Confinement Time is a measure of how long the energy in the 

plasma is retained before being lost. It is defined as the ratio of the thermal energy 

contained in the plasma to the power input required to maintain these conditions. 

This figure is limited by convective losses from the plasma edge and radiation. The 

confinement time increases dramatically with plasma size (large volumes retain heat 

much better than small volumes) - the ultimate example being the Sun whose energy 

confinement time is massive. Confinement times of 4-6 seconds are necessary for 

attainable temperatures and density; however present records are just greater than 1s. 
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2.2. Magnetically Confined Fusion 

To achieve the necessary triple product for sustained fusion, various confinement 

devices have been designed and researched. Among these the tokomak is the most 

highly developed. 

Since plasma comprises charged particles, magnetic fields can be used to 

isolate the plasma from the walls of the containment vessel. This isolation reduces 

the conductive heat loss to the vessel, enabling the high temperatures discussed in 

section 2.1 to be achieved. It also minimises the release of impurities from the vessel 

walls into the plasma that would contaminate and further cool the plasma by 

radiation.  

In a tokomak, plasma is confined in a toroidal chamber. This toroidal 

geometry is illustrated in Figure 1, which defines the coordinate frame that shall be 

used throughout. 

 

Figure 1: Toroidal Geometry (simplified) 

The confinement is achieved by arranging magnetic coils toroidally to form a 

circular magnetic field when viewed in plan. This enables the plasma to loop back on 

itself and so avoid the “end” problem with a cylindrical geometry.  

A A 

SECTION AA 

Toroidal plane 
Radial plane Poloidal plane 
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The internal plasma pressure is reacted by exciting a toroidal current in the 

plasma itself. The resulting magnetic field “pinches” the plasma away from the 

vacuum vessel wall. This current is achieved by induction, where the plasma serves 

as the secondary winding of a transformer. 

The plasma vertical position is stabilised by arranging large coils in the 

toroidal plane to form a poloidal field that can manipulate the plasma’s vertical 

location and cross sectional shape. 

The resulting interaction yields magnetic field lines that orbit both poloidally 

and toroidally to “corkscrew” around the vessel and so form closed magnetic 

surfaces. Plasma species move along the field lines and are therefore confined. This 

principle is illustrated in Figure 2. A more comprehensive review of Tokomaks is 

reported by Wesson (2004). 

 

Figure 2: Principle of magnetic confinement in a Tokomak 

Plasma heating is achieved by three principle means; ohmic heating, neutral 

beam injection and RF systems. 

As discussed above, large currents are required to flow in the plasma to 

complete the magnetic confinement. These currents are of order 5MA on 

contemporary devices such as JET. Although plasma has a low electrical resistance 

significant heating is achieved through classical resistive losses. However, plasma 
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resistance decreases with temperature and so complimentary additional heating 

systems are required. 

Neutral Beam injection is the primary heating system on contemporary 

tokomaks, and consists of an ion source and accelerator to produce focused ionised 

beams. These are neutralized in order to penetrate the plasma’s magnetic 

confinement and heat the plasma by kinetic energy conversion. 

Radio Frequency (RF) systems heat the plasma by exploiting a resonance of 

the plasma species. Plasma particles orbit magnetic field lines with a characteristic 

cyclotron frequency. An electromagnetic wave of the same frequency is 

preferentially absorbed by such particles, and the wave energy converted to kinetic 

energy, or “heat”. Different RF systems target the various plasma species. GHz band 

ECRH (Electron Cyclotron Resonant Heating) systems heat the plasma electrons, 

whereas shortwave ICRH (Ion cyclotron Resonant Heating) systems target the ions. 

The three heating systems are illustrated in Figure 3 

 

Figure 3: Illustration of Tokomak additional heating systems 
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2.3. Ion Cyclotron Resonant Heating (ICRH) Systems 

2.3.1. Physics of Ion cyclotron Heating & Current D rive 

In plasma, ions orbit magnetic field lines with a characteristic cyclotron 

frequency, ωC, which depends only on three quantities: charge and mass of the 

particle, and magnetic field strength, as defined below: 

S

S
CS m

eBZ=ω  [1] 

 

Where subscript ‘s’ denotes the plasma species, Ze the species’ charge, ‘B’ the 

magnetic flux density and ‘m’ the mass. 

Due to the circular geometry of the Tokomak, the toroidal magnetic field drops 

off as a consequence of Amperes law in proportion to R-1, where R is the radius from 

the major axis of the torus (see Figure 1).  

Therefore, if an electromagnetic wave is launched into the plasma, specific 

plasma species can be targeted by gross selection of frequency band dependant on 

the species charge & mass. Because field changes by a factor of 2 over the plasma 

cross section, the geometrical absorption location can be accurately controlled to a 

narrow vertical layer by fine variation of frequency. 

This control of power deposition is a unique feature of ICRH RF systems, and 

enables an enhanced confinement time as power is delivered straight to the plasma 

core, not losing power to the edge. 

 Ion cyclotron heating and current drive exploits the interaction mechanisms of 

the fast magnetosonic wave in plasma, as discussed in section 2.4. The resonance 

condition for a species ‘s’ is mathematically described as:  
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0|||| =++ SCS vkpωω  [2]  

Where ‘p’ is the cyclotron harmonic number (0,1,2..), ‘ω’ is the wave angular 

frequency, ‘k||’ the parallel component of the velocity ‘vS’ along the field line, and 

‘k||’ the component of the wave vector parallel to the magnetic field.  

The velocity component in the relation results in more significant heating for fast 

particles than for slow particles, especially for higher order harmonics. This 

introduces temperature dependencies as well as distortion in thermal distribution due 

to the heating.   

The main interaction processes are cyclotron heating of the ions (p>0, s = ions), 

and transit time magnetic pumping (e-TTMP) or Landau damping of electrons (ELD) 

(p=0, s=electrons). Additionally, the fast magnetosonic wave can be converted into 

short wavelength electrostatic waves (e.g. Ion Bernstein waves) which can damp 

their energy into ions and electrons. A comprehensive review of the plasma physics 

involved with IC heating and current drive is reported by Becoulet (1996). 

In the ion heating regime the direct coupling to the ions is a distinct feature of 

ICRH systems and can be exploited to enhance plasma reactivity, and so burn control 

on future reactors (Koch 1993). Three distinct ion species are typically targetted: 

• The second harmonic of tritium (Rogers 1996) 

• The fundamental of 3He as minority species in Helium doped plasmas  

• The fundamental of deuterium (although this is in competition with 

plasma impurities such as Beryllium) 

The presence of k|| in the resonance condition allows the wave to generate 

current in the plasma (Fisch 1987). This is obtained by combining multiple toroidal 

antennae in a progressively phased array. The resulting constructive and destructive 
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interference can be used to steer the wave propagation front and obtain a toroidally 

asymmetric wave spectrum. A resonant condition takes place when particles parallel 

velocity matches the fast wave parallel phase velocity. The opposite sign of the two 

processes involved (e-TTMO & ELD) lowers the overall absorption, and so coupling 

is reduced. However, this resonant condition occurs at different frequencies, and so 

heating and current drive functions can be decoupled. The ability to drive steady 

state DC current is important for commercial reactors, as contemporary induction 

driven machines are inherently pulsed. 

2.3.2. Overview of ICRH Systems 

An ICRH system can be decomposed into four distinct parts, the generators, 

matching network, antenna and protection systems. 

Generators: 

ICRH systems use sufficiently low frequencies to enable the use of conventional 

and commercially available amplification devices. The generators consist of an 

amplitude or phase modulated milli-Watt frequency sources that drives a train of 

cascaded amplifiers.  

A typical RF generator layout consists of a four stage amplifier, including a 

wideband solid state amp (~0.5kW) followed by three tube powered tuned stages; a 

pre driver (20kW), a driver-stage (200kW) and an end stage (~2MW). This typical 

configuration is shown in Figure 4 (as per ITER WBS 5.1). 
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Figure 4: RF Power source block diagram 

All power stages have input and output cavities that are mechanically adjusted to 

cover the frequency range. The use of coaxial cavities leads to a relatively simple 

mechanical layout. With amplitude feedback the generator bandwidth about the 

matched frequency can be as high as 4MHz although only 400kHz is actively used 

(Sibley 1999). 

Tubes are typically operated in class B. However, Generator efficiencies of 65% 

conversion of DC to RF input have been achieved, making ICRH one of the most 

efficient additional heating systems available (Sibley 1999). 

Generators are capable of controlling under feedback the relative phase (between 

generators), modulation, output power and frequency. 

Matching Networks: 

In order to satisfy ohms law for propagating electrical waves in a conductor, a 

proportion of any incident wave is reflected at an impedance discontinuity (Da Silva 

2002). This reflected wave will alter the effective output impedance of the tube. As 

this impedance moves out of the correct range the screen grid and anode currents will 

exceed limits as the tube responds to maintain power. Consequently, the output 

impedance of the generators is matched to the characteristic impedance of the 
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transmission lines by the amplifiers output cavity, and in turn the transmission line is 

matched to the antenna. 

The coupling load of the antenna is very low for reasons to be discussed in 

Section 2.4. Consequently it must be transformed to a suitable impedance (preferably 

real) using matching stubs and trombones. The choice of transmission line 

characteristic impedance is chosen to be sufficiently low to ease the matching 

requirement, but sufficiently high so that the innate voltage carrying capacity of the 

line is maintained. A value of 30Ω is typically used (Wade 1994). Coaxial 

transmission lines are employed due to the compact mechanical realisation and 

natural isolation conferred. 

Antenna matching employs classic microwave techniques. The combination of a 

forward and reflected wave leads to the creation of a standing wave pattern along the 

transmission line with a maximum every half wavelength. Therefore, at any given 

location on the line the input impedance, defined as voltage/current, varies. 

Various methods of matching exist, but most exploit the ability of a termination 

load to be changed when seen through varying lengths of transmission line. The 

generic matching components are summarised below: 

Trombone, line stretcher phase shifter or transformer: This component is an 

adjustable length of transmission line, much like a trombone’s slider. The variable 

length can be used to change the phase of a perfectly matched RF wave due to the 

increased propagation delay associated with a longer line. This is mathematically 

expressed as follows: 

x
up

∆=∆ ωφ  
[3] 
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Where ‘∆φ’ is the change in phase, ‘ω’ the angular frequency of the wave, ‘up’ 

the wave velocity and ‘∆x’ the change in transmission line length. Alternately, the 

same component can be used as a transformer to convert an unmatched load from 

one impedance to another by the relation: 

( ) ( )
( ) ( )







+
+=

lZlZ

lZlZ
ZZ

L

L
in γγ

γγ
sinhcosh

coshsinh

0

0
0  

[4] 

 

Where ‘Zin’ in the input impedance, ‘ZL’ the load impedance ‘Z0’ the line 

characteristic impedance, ‘γ’ the propagation constant, and ‘l’ the length of the 

transmission line. 

Variable stub: A stub is a section of coaxial line terminated with a short circuit, 

therefore ZL = 0, and for a lossless line γ = jβ, where ‘β’  is the phase shift index 

defined as 2π/λ, where ‘λ’ is the wavelength. By equation 4, the resulting input 

impedance is given by the equation: 

( )( )ljZZin βtan0=  [5]  

Therefore the inclusion of a stub in series with a circuit appears as a pure shunt 

reactance. By varying the length ‘l’ of the input to the location of the short, the 

reactance may be varied. A capacitive effect can be achieved for lengths of l> λ/4, 

whereas an inductive effect can be achieved for lengths of l< λ/4.  

For lengths equal to a quarter wavelength, the input impedance appears infinite 

and the stub plays no part in the electrical behavior of the system. Such fixed stubs 

are employed to introduce services such as coolant or instrumentation to the 

electrically isolated core conductor. 

Variable capacitor: These elements are conventional capacitors, and are realised 

as a set of two isolated coaxial interlocking cylinder arrays. These are installed in 
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line with the coaxial transmission line. The capacitance is varied by simply altering 

the overlapping areas of the two cylinder arrays. However, the capacitor will have its 

own parasitic inductance, and so appears as a series combination of variable 

capacitor and fixed inductance. Therefore the capacitor may behave as an inductor 

for low capacitor stroke values: 

( )
( )
( )xC

xCL

xC
LX f

f ω
ω

ω
ω

11
2 −

=−=  for e+jωt [6]  

 
 

Where ‘X’ is the series reactance, ‘Lf’ the fixed inductance and ‘C(x)’ the 

capacitance as a function of displacement ‘x’. 

Fixed stubs & transformers are also used to perform the bulk of a matching 

solution. This enables the variable elements to have a lower dynamic range to 

account for coupling and frequency variations. 

Antennae: 

The low frequencies of the ion cyclotron range means that the vacuum 

wavelength lies in the range of approximately 5-10m. As this dimension significantly 

exceeds physical the dimensions of even the largest tokomaks, conventional resonant 

antennae are not possible. 

However, the equivalent dielectric constant of plasma is sufficiently high to 

enable a reduction in wavelength to approximately 10-20cm, which can propagate. 

Therefore, coupling will occur if the plasma is located within the evanescent field of 

the antenna, enabling the RF to “tunnel” the vacuum gap. 

This has two consequences; firstly that coupling is strongly dependant on the 

characteristics of the plasma edge (Lamalle, 2004), and secondly that the radiation 

resistance of the antenna is very low (Kaye, 1994). 
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The radiating section of an antenna consists of strip-line “current straps” shorting 

the core conductor to the outer. The outer flairs into a cavity or “strap housing”, the 

design of which maximises the magnetic flux linkage to the plasma whilst 

minimising impedance transitions (Kaye 1994). The straps run poloidally so as best 

to excite a wave polarised perpendicular to the magnetic field. Typically a faraday 

screen shields the straps from the plasma and completes the polarisation closer to the 

true field incidence angle; although this component is omitted in some modern 

designs. 

Modern strap design makes no attempt to tune the length of the strap to the 

midband frequency, rather single or parallel combinations of short straps are 

preferred, as short strap’s lower inductance requires less driving voltage to achieve 

the same current. Such a configuration is illustrated in the concept model of the ITER 

antenna (Borthwick, 2008). 

 

Figure 5: Example of Strap Design for ITER concept 

Finally, the antenna is always located on the equatorial plane of the low field side 

of the torus, as illustrated in Figure 6. This is for, amongst other reasons, ease of 

access, and to enable refraction on the plasma edge to focus the power near the 

centre of the plasma, as illustrated in Figure 6. 
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Figure 6: Location of Antennae in Vessel Wall. 

Protection Systems 

ICRH systems are equipped with a variety of protection systems. These systems 

interact with any controller and so this section shall summarise the generic 

requirements. These are broadly to i) Protect the generators from excess power 

dissipation (e.g. excessive reflected power), ii) Prevent the onset of arcs (by limiting 

voltage in various components), and iii) Protect the system in the event of arcs (by 

tripping the power). Protection systems can take several levels of intervention. These 

are: 

• Terminating the pulse in response to a system threatening event, such as an arc 

or excessive power dissipation in the Tetrode. 

• Power trip & restore in response to fault events that may be transient or cleared 

by removing the RF temporarily. The trip window is typically of order 5-20ms. 

• Power limitation in response to off normal conditions that may be tolerated, 

such as high reflected power, voltage limits and generator dissipation. 

Protection systems are highly complex, with a more comprehensive summary of 

their operation is given by Wade (1994). 
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2.4. Plasma coupling 

In the ion cyclotron range of frequency, the amount of RF power that can be 

transferred to the plasma depends, in a complex way, on the plasma geometry, 

location and density profile, the scrape off layer density profile and array parameters. 

In the cold plasma limit, two generally uncoupled waves co-exist in the plasma: 

the fast and slow magnetosonic waves with dispersion relations: 

2

||

2
2

|| nS

D
nSn F −

−−=⊥  
(fast wave) [7]  









−=⊥ S

n
Pn S

2

||1  
(slow wave) [8]  

Where ‘ ⊥n ’& ‘n ||’  are the perpendicular and parallel components of the wave 

vector ckkkn ω== 00, . S, D & P are the dielectric tensor elements as defined 

by Stix (1992). 

In plasma, the slow wave is strongly evanescent ( )02

, <⊥ sn , with a typical 

evanescence length of approximately 0.6mm. The polarisation vector has the main 

component of the electric field in the toroidal direction, reflecting the fact that the 

plasma is a very good conductor in the parallel direction. This screens out the parallel 

electric field by allowing image currents to flow over one skin depth. The fast wave 

propagates instead with typical wavelength mkF 12.02 ≅= ⊥⊥ πλ inside the 

plasma. This scales with density, so wavelength increases toward the plasma edge. 

At the very edge, density falls to near zero, and so 0≅S & 0≅D , and the fast 

wave connects to the vacuum wave polarised with electric field perpendicular to the 

static magnetic field. As described in section 2.3.2, the vacuum wave is strongly 
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evanescent. Defining ‘k||c’  the characteristic parallel wave number (n||=ck||/ω) of the 

driving frequency, the electromagnetic field decays as 
crke ||−

 where ‘r’ is the distance 

from the strap in vacuum.  

It is therefore very difficult to couple power over large vacuum gaps, so by 

design these are made small. However, the sensitivity of coupling to distance is 

consequently very high. Therefore variations in plasma position or geometry are seen 

by the antenna as pronounced changes in coupling resistance. Secondary effects such 

as the density profile of the scrape off layer also result in changes for the same 

reason. 

The parameters of plasma position, shape & density profile all vary from pulse to 

pulse. In addition, the large number of parameters makes predicting the coupling for 

a given scenario problematic, and this can be performed using 3D electromagnetic 

simulations of plasma simulated by dielectric layer stack (Lamalle 2004). 

Importantly, the plasma geometry also changes during the pulse. This can be due 

to actions of the plasma position feedback control system, changes to the 

confinement mode, and edge instabilities known as sawtooth or Edge Localised 

Modes (ELMs). Of these ELMs and mode transitions are most reported on. 

Mode changes: In modern tokomaks plasma confinement is achieved in two 

modes; L mode and H mode. L mode is the conventional confinement mode 

characterised by a Gaussian cross sectional density distribution. Consequently, the 

plasma edge is closer and more diffuse and relatively high coupling is achieved. 

With sufficient additional heating, a higher H mode confinement is obtained. 

Consequently, the plasma edge density profile is steeper and further away, increasing 

the reflection (Wesson 1999).  
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As all plasmas begin in L mode, the transition of L to H mode is seen by the 

antenna as a sharp decrease in coupling. Experimental studies (Monahkov 2003) on 

the JET A2 antennae using fast data acquisition suggests an approximate 50% base 

load reduction in coupling and an associated approximate 2cm increase in strap 

equivalent length. This can occur in a time frame as short as approximately 10ms. A 

typical trace showing an H-L-H mode transition is shown in Figure 7, where the strap 

is modelled as a resistive load seen through an equivalent length of a 30Ω 

transmission line. It should be noted that the millisecond response rate of the 

disturbances is insignificant in response to the MHz RF. Therefore, no circuit 

transient dynamics are included in the analysis. 

 

Figure 7: H-L-H mode transition electrical response (42.1 MHz, JET A2 antenna) 

As the L-H transition requires additional heating to be sustained, the antennae 

must continue to couple power throughout this disturbance. 

ELMs : The ELM is an instability of the plasma edge associated with H-mode 

plasmas only. It is characterised by a poloidally localised cyclical collapse in the 

density gradient of the plasma edge, at a frequency of between 1-40Hz. This appears 

as plasma filaments expelled from the main plasma and following the magnetic field. 
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The scale of the release of plasma is inversely proportional to the frequency, with 

small “grassy” ELMs occurring at high frequency, and “giant” Type 1 ELMs at low 

frequency. The duration of an ELM is of order 2-5ms. Electrical models of the 

impact of the ELM are not well developed, but the collapse of the edge brings 

plasma well within the evanescent field of the antenna, and so coupling increases. 

Experimental measurements (Monakhov 2003) observed that: 

• There is a significant effect on coupling, of up to 7Ω difference. 

• There is a significant decrease in equivalent length of the A2 antenna 

transmission line model of around 40cm. 

• The change of coupling impedance with time throughout an ELM varies 

from ELM type to type 

• The electrical disturbance on the A2 antenna is of similar scale for all 

ELMs, regardless of type (type of ELM denoted by the Dα radiation 

diagnostic – see Figure 8) 

• No change to mutual coupling was detected between toroidally adjacent 

antennae. 

• Change in coupling was frequency independent. 

• The asymmetric loading of the A2 antenna can change during ELM in a 

variable fashion.  

Typical traces of ELMs illustrated below demonstrate the high variation of 

traces between ELMs, and the pronounced variation in resistive loading and 

appreciable change in electrical length (reactive part). 
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Figure 8: Examples of ELM behaviour for the JET A2 Antenna (i) Type 1 (ii) "Type III" (iii) 
"Grassy" 

It should be stressed, however, that the above data was collected from the JET 

A2 antenna, and extrapolation from one antenna geometry to another is dangerous. 

The above data can only be used as a guide. 

2.5. Strategies to enhance load variation tolerance  

The objective of any Antenna control system is to: 

• Control the generator frequency for the required plasma resonance chord 

• Control the output power to an operator command level by varying the 

driving voltage (within limits of anode current and max line voltage) 

• Match the circuit to the antenna load, with high disturbance rejection so 

that the L-H mode transition is matched within 100ms (1/5th of a typical 

confinement time, Durodie (3)) 

• Control the relative phasing of toroidal antennae arrays (complicated by 

mutual coupling and interaction with power control) 



 

28

This report concerns only the matching control of ICRH systems. As summarised 

in 2.3.2, ICRH antennae do not resonate in vacuum, and consequently are matched to 

the generator by a highly tuned matching circuit. General matching solutions are pre 

calculated and configured offline. Such matching networks are typically variations 

on classic stub – transformer phase shifter matching circuits, as reported by Lamalle 

(2003) JET ILA 2nd stage match or Hofmeister (1994) on the ASDEX upgrade. In 

such configurations the real part of the load is transformed to the line characteristic 

impedance using fixed 1/4λ transformers and trombones. The residual reactive 

element is eliminated by variable stubs.  

However, as discussed in 2.4, the load seen by the antenna varies throughout the 

pulse, and is subject to fast transient variations. The combination of a highly tuned 

circuit and significant load variations results in a large reflected power. 

Such transient reflections are detected by the antenna protection interlocks, as 

summarised in section 2.3.2. The excessive transient reflections induced by ELMs 

prompt the interlocks to shut down the generator momentarily. However the 

cumulative effect of these outages is a large decrease in duty cycle, reducing the 

average delivered power. 

Therefore, automatic matching is required to i) compensate for inaccuracies in 

the pre calculation ii) follow base load variations, & iii) disturbance rejection from 

plasma instabilities.  

The classic matching components discussed above require large stroke lengths 

and are generally insufficiently fast to achieve the required settling time 

specification. A number of solutions have been developed to address this issue. 

These are summarised below: 
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Coupling Resistance Feedback & frequency control: This method pioneered 

on JET (Wade 1994) changes the frequency of the RF to alter the location of the 

standing waves in the matching circuit. This is used to eliminate the reactive part of 

the matched load. The plasma radial location is then varied to provide independent 

control over coupling resistance and so match the real part of the load. The response 

of both actuators involved (oscillator & field coils) are very fast, and hence this 

method has successfully achieved matching across the L-H transition. However, 

plasma position and the resonant chord of the plasma both become coupled to the 

antenna operation and this may be undesirable for certain experiments. Additionally, 

the very fast transients involved with ELMs are beyond the response rate of the 

actuators. 

Fast Ferrite Tuners: The electrical length, and hence phase delay, of a 

transmission line is dependent on the wave velocity. Velocity in turn is dependent on 

the magnetic permeability and dielectric constant of the conductor inter-space. 

Compact phase shifters have been developed that utilise ferrite in the inter-space, 

whose magnetic permeability can be varied by an applied magnetic field. Therefore 

the wave speed is varied electrically, and thus the FFT behaves like a compact phase 

shifter with no moving parts. Successful test have been reported by Lin (2008) 

showing the successful tracking of the L-H mode transition. However, ELMs again, 

have a dynamic range beyond that which may be compensated for in real time, and 

the devices present many practical challenges that have limited their use. 

Liquid filled Tuners : As above, the electrical length of a transmission line is 

dependent on the properties of the dielectric. Vertical stubs or transmission lines of 

fixed length can have a controllable phase delay by pumping in variable level of a 
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fluid dielectric such as silicon based oil. This solution is still under development, 

with high power static tests reported by Yoon (2007), and low power dynamic tests 

by Saito (2006) 

3dB splitters: This strategy adopts a passive disturbance rejection methodology. 

In this approach, one generator feeds two straps (or antennae) via a 3dB splitter. This 

is realised as a section of edge coupled transmission line, so that forward power is 

distributed 50:50 on the two output ports with a 180o phase shift (Pozar 2005). 

Likewise, reflected power is coupled to a sister “dump” port terminated in a matched 

load. Therefore transient reflections are not conducted back to the generator, yielding 

a more robust system. This approach is adopted on, amongst others, ASDEX upgrade 

(Wesner 1998). However, this dumping of reflections reduces the average power 

transferred to plasma, unless an automatic matching system is included downstream 

of the splitter as in the JET ILA (Durodie 2005). Additionally, it requires a balanced 

junction, so differential load control may be necessary. 

Conjugate T matching: This method again achieves a passive disturbance 

rejection. The approach seeks to connect two straps in parallel with a tuning 

component on each arm. If properly configured, a symmetrical disturbance to both 

straps will result in the reflected power destructively interfering at the T point. The 

advantage of this methodology is that power is coupled to the plasma even through a 

disturbance, and not dumped on a dummy load as with the 3dB splitter. This report 

primarily focuses on the control of the CT circuit. 
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2.6. Conjugate T (CT) resilient architectures 

2.6.1. CT architecture overview 

The CT control methodology is based on the Resonant Double Loop (RDL) 

architecture. This comprises two straps connected in parallel with an active tuning 

component on each arm. This was initially developed to increase the power density 

of antennae (Hoffman, 98), although it was later found that if properly configured the 

load variation tolerance, or resilience, of the matching circuit was significantly 

improved (Bosia, 2003).  

Rather than follow transients by active compensation of the matching elements, 

the CT design minimises reflections by resonating this power between the two 

parallel straps. This condition is met when one arm of the RDL is inductive, and the 

other capacitive. Thus, a symmetrical disturbance to both straps will result in the 

reflected power destructively interfering at the T point. Therefore, the CT design is 

inherently load resilient. Two CT architectures exist, those being in-vessel matching, 

and ex-vessel matching as discussed below. This configuration is shown electrically 

in Figure 9. 

 

Figure 9: Simplified electrical circuit for the CT architecture 
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Ex-vessel matching, as reported by Monahkov (2005), places tuning elements, 

typically trombones, outside of the antenna structure. This enables modular stock 

tuning items to be used, and as each arm is typically connected to arrays of straps the 

circuit has greater loading. However, the remote location of the CT junction results 

in the requirement for large stroke, bulky devices. This limits their dynamic response 

(unless an FFT were used) and increases the amount of RF infrastructure. 

In-vessel matching strives to achieve a compact matching configuration located 

immediately to the rear of the straps. The compact geometry enables a low stroke 

actuator to be used, typically a capacitor, as dimensions are small with respect to the 

wavelength. Therefore, the transmission line electric fields are minimised (with 

consequently high fields in the capacitor where superior vacuum insulation and build 

quality confer a superior beak down limit). Additionally, the low stroke enables fast 

matching to track plasma base load variations. Finally, the compact realisation results 

in less RF infrastructure and a lower standing wave ratio on the transmission line 

(Bremond, 2001). However, the complexity of the antenna itself is significantly 

increased, and the CT circuit is less loaded (each strap is connected in a CT circuit) 

This study adopts as reference an in-vessel matched antenna. The antenna model 

used is loosely based on the JET ITER Like Antenna (ILA), as reported by Durodie 

(2005). However, not all aspects are captured in their entirety, rather the ILA was 

taken to provide candidate realistic values for parameters. 

2.6.2. JET ITER Like Antenna (ILA) 

The ILA consists of a tightly packed 4x2 array of straps, needed to deliver a high 

power density of ~ 8MW/m2. Poloidally adjacent straps are connected in a conjugate-
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T (CT) configuration by feeding them through variable capacitors from a common 

vacuum transmission line (VTL). This forms a resonant double loop (RDL). The 

antenna array therefore comprises eight straps (1 – 8) and four RDLs (P-S) as shown 

in Figure 10. 

 

Figure 10: ILA Antenna array showing strap & RDL I. D. (as viewed looking toward plasma) 

 
Matching is physically achieved by driving the RDL variable capacitors by 

hydraulic actuators. Due to physical design limitations, the drive system and 

feedback sensors were located remotely from the capacitors. The RF circuit of the 

antenna is poloidally symmetric. The circuit diagram for one poloidal half is shown 

in Figure 11. The parameters of each sub component is summarised in Table 1. 

 

Figure 11: RF circuit diagram of one poloidal half of the ILA. 
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Figure 12: Poloidal cut illustrating mechanical realisation of one toroidal half of the ILA:  

The mechanical implementation of the in-vessel matched RDL is illustrated in 

Figure 12. The key features of the antenna are: (1) faraday screen protective shield, 

(2) straps, (3) antenna housing, (4) matching capacitors, (5) inner VTL, (6) outer 

VTL & support, (7) hydraulic actuator system, (8) main vacuum sealing bellows, (9) 

high power RF vacuum feedthroughs, (10) support structure.  

It should be noted that the 2nd stage match is not entirely displayed in the above 

section, as it is located ex vessel. This consists of the low impedance 1/4λ fixed 

transformer (‘d’ as per Figure 11, (5) in figure 3), a fixed stub (‘f’), and a variable 

stub & trombone (‘g’). 

The present control methodology of the ILA is described by Durodie (M65). The 

control methodology has two components, an open loop resilience control system, 

and a closed loop matching control system. 

SOURCE: Durodie  2005 
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For resilience control, an optimal T point impedance is calculated pre-pulse, 

using target plasma parameters, calculated antenna loading, and a detailed calibration 

of the antenna. The two elements of the second stage match are then configured to 

transform this target impedance to 30Ω. 

For matching control the T point impedance is measured, and the two capacitors 

of the RDL are controlled to deliver the pre-calculated T point impedance, and so 

complete the matching arrangement. 

However, this inherently limits the circuit to be optimally resilient at one plasma 

load only, whereas the base load is known to vary throughout the pulse as described 

in section 2.4. The ILA algorithm addresses this by setting the H-mode ELM affected 

plasma as the reference matching impedance for two reasons.  

Firstly, the L mode does not give rise to ELMs and so presents a quiescent load 

sympathetic to the generators and so a less resilient system response is required. 

Secondly, the response of the CT circuit to varying load is asymmetric about the 

matched location, as shall be discussed in section 3. The sensitivity of the circuit to 

increasing loads is significantly lower than that for decreasing loads. Therefore 

matching to the lowest base load anticipated (H mode) means that the resulting 

steady state reflection encountered in off design plasma loads (L mode) is minimised. 

Additionally, this adds “padding” to the system so that the L-H mode transition does 

not introduce large reflections.
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Table 1: RF Circuit Parameters for the ILA 

Item Description Purpose Parameters 

a   Strap Couples RF to plasma  30cm, 2-3Ω/Ω/Ω/Ω/m, 50cm of 
200nH/m 

b  Variable Capacitor Active tuning element for RDL C: 80 – 300pF,  parasitic L: 
20nH 

c  CT Junction Connects two strap & tuning element combinations in parallel Modelled as transmission line, 
0.14m, 20ΩΩΩΩ characteristic 
impedance 

d  ¼ wave low 
impedance VTL 

¼ wave transformer converts low CT impedance (as required for 
load resilience) to main feed transmission line characteristic 
impedance 

1.765m, 9.5ΩΩΩΩ characteristic 
impedance 

e ½ wave transmission 
line inc Vacuum 
Window 

Air pressurised transmission line (APTL). Window provides 
mechanical support & vacuum boundary 

3.53m, 30ΩΩΩΩ characteristic 
impedance 

f Fixed service stub ¼ wave low impedance stub. Used for services access and to 
improve frequency response of the fixed transformer (elements d – 
f) 

1.765m, 12ΩΩΩΩ characteristic 
impedance  

g 2nd stage matching 
circuit 

Phase shifter & stub. Not part of the real time RDL control system. 
Pre set to cancel reflections from the fixed transformer as a 
function of frequency. Located on platform immediately to rear of 
the antenna 

STUB: 0.13-3m, 30ΩΩΩΩ 

Trombone: ∆∆∆∆1.5m stroke 

h Main transmission 
line 

Connects antenna to generator hall 30ΩΩΩΩ characteristic impedance 



 

37

i Main phase shifter Used to vary toroidal phasing of the antenna and to compensate for 
the induced ππππ rad phase delay of the hybrid splitter. Infinitely 
variable but typically only discrete settings are used. Variable 
poloidal phasing is not employed [not really true : we do (will) use 
it to compensate poloidal cross coupling] 

0 – ππππ rad toroidal phase 
difference 

ππππ rad fixed poloidal phase 
difference: P: 0 rad , Q: -ππππ rad,    
R: -ππππ rad, S: 0 rad 

j 3dB Hybrid Splitter Splits the power between two RDL’s and enables passive load 
resilience by introducing a dummy load for reflected power 

4MW in - 2MW per RDL 

k 3dB Hybrid 
combiner 

Combines two generators in to one RF source in order to feed (j) 2MW – 4MW 

l Dummy Load Reflected power is diverted from generator to a dummy load to 
prevent generator trip 

 

m RF source  2 MW 

Max VSWR of 3 transient, OR 
max reflected power of 130kW 

Max VSWR of 1.5 steady state 

30 – 55 MHz 
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3. Conjugate T (CT) circuit model 

3.1. Lumped element CT circuit 

3.1.1. Circuit description 

For JET EP the basic CT circuit is achieved by mounting variable capacitors as 

matching elements immediately behind poloidally adjacent straps. The T point is 

directly to the rear of the capacitors.  

Therefore, an initial approximation can assume: 

1. The straps have different geometries, and so coupling asymmetries exist. 

Therefore 21 RR ≠  

2. The geometry of the CT circuit is small in comparison to the wavelength. 

Therefore no phase delay due to transmission lines is considered between 

the T point and strap. 

3. Straps & capacitors can be absorbed in to one lumped parameter model 

where resistance is fixed and impedance varied (by altering the capacitor). 

4. The T point can be considered ideal, with no reflections or cross coupling. 

5. The currents on the two straps are mutually coupled. 

The resulting simplified equivalent circuit is shown in Figure 9. Typical 

parameters are shown in Table 2. 
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Parameter Description Value 

Lc Parasitic capacitor 
inductance 

20 nH  

C Variable Capacitor 80 – 300 pF  
(0-55mm stroke) 

Ls Strap Inductance 100 nH (50cm of 
200 nH/m) 

R Coupling Resistance 0.6 – 0.9 Ω  
(2-3 Ω/m) 

 

 

f Frequency 30 – 55 MHz 

Figure 13: Simplified equivalent 
circuit 

Table 2: Typical circuit parameters 

For modelling purposes, the strap inductance includes 20cm of transmission 

line connected to the capacitor. This explains the discrepancy between lengths used 

for the calculation of strap resistance and inductance. For modelling purposes, strap 

inductance and capacitor parasitic inductance were combined to form one inductor. 

The capacitor construction is summarised in section 2.3.2, where the stroke is 

linearly proportional to the capacitance. Therefore, the capacitor was modelled as the 

following simple linear relationship between stroke range & capacitance range, 

where ‘s’ is the stroke in millimeters, and ‘C’ is in Farads: 

( ) 121080074.4 −×+= sC  [9] 

The modelling of the mutual coupling is summarised in section 3.1.3 

3.1.2. Definition of resistive asymmetry 

Resistive asymmetry affects the antenna performance, and so a mathematical 

definition of this was required for modelling purposes. This study defines resistive 

asymmetry as a symmetrical skewing of resistance about a predefined average 

coupling. Therefore, the strap resistance of section 3.1.1 can be described as: 
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RbR
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[10] 

 

where R  is the average strap resistance, and ‘a’ and ‘b’ are skewing coefficients. 

Therefore, the percentage asymmetry, ‘p’, is defined as: 

p
a

ba =−
 [11] 

 

where 0 indicates a symmetrical circuit, and 1 an infinitely asymmetric circuit. The 

requirement for resistance to be symmetrical about a defined average coupling,R , 

implies: 
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[12] 

 

Combining equations 11 & 12 provides the definition of the skewing 

coefficients with respect to the asymmetry circuit parameter: 
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[13] 

 

[14] 

 

 

3.1.3. Equivalent circuit model including mutual co upling 

The antenna straps are not perfectly shielded one from another, and so 

electrically interact. The presence of these mutual impedances can drastically affect 

the electrical characteristics of the RDL. Mathematically, the action of mutuals is 

defined as follows: 
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where ‘VT’ is the voltage at the T point, ‘Zn’ the impedance of arm ‘n’, and ‘Z12’ the 

mutual impedance between the two straps. It should be noted that the Z matrix 

includes the action of the matching capacitors. The mutual impedance contains both 

real and imaginary parts, and the circuit assumes coupling symmetry, i.e. plasma 

gyrotropic effects are negligible for poloidal neighbors. Applying Kirchoff’s current 

law to the T point junction yields: 

( )21 IIZV TT +=  [16] 

where ‘ZT’ is the Thevinin impedance of the RDL as a lumped element. Combining 

equations 15 & 16 yields two simultaneous equations: 
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Therefore, the equivalent Thevinin impedance of the antenna can be derived, and 

all analysis of the circuit replaces the antenna as a lumped impedance at the end of a 

given matching network. 

( )2112

21
2
12

2 ZZZ

ZZZ
ZT +−

−=  [19] 

 As can be seen, the above expression decomposes to the conventional 

( )2121 ZZZZ +  of a parallel circuit when mutuals tend to zero. It should be noted that 

for this study, only one RDL was considered, and therefore the approach does not 

include inter RDL mutual coupling. 
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 Values of ‘Z12’ were provided by the JET ILA team from physical calibrations 

performed on the antenna. For this study, the mutual coupling impedance was 

represented by a percentage of the strap base load impedance for the purposes of 

parameter scans. The impedance matrix supplied for the whole antenna is shown in 

Appendix B. Representative values of Z12 were extracted from this. 

3.2. 2nd Stage Matching Circuits 

Two methodologies were adopted for modelling the action of the 2nd stage 

matching circuit.  

The first is valid only with purely resistive changes to the straps. Mathematically, 

if the second stage transforms a given impedance to the line characteristic impedance 

when viewed from the generator, then it must also transform the line characteristic 

impedance to a matched T point impedance when viewed from the antenna. 

Thus, a simple approach to modelling the action of the 2nd stage match is to 

replace the second stage with a transmission line of characteristic impedance equal to 

the Thevinin impedance of the antenna in the matched state. Thus: 

( )MSMS

MSMS
MST ZZZ

ZZZ
ZZ

_2_112

_2_1
2
12

_0 2 +−
−

==  
[20] 

where the subscript ‘MS’ denotes the match set-point values required for the 

correctly configured CT circuit (where ( ) 0Im _ =MSTZ ), which are derived for the 

ideal circuit in section 4. 

However, for reactive changes to the load (where( ) 0Im _ ≠MSTZ ) the above 

method proved problematic, as it creates a negative resistance, and so for such 

circuits a more accurate model was required. The JET ILA has a more sophisticated 
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2nd stage match involving fixed sections of a 1/4λ transformer and stub, and a classic 

stub-transformer match. This confers superior bandwidth and reduced strokes for the 

dynamic sections, however for the purposes of this study the solution was simplified 

to a basic transformer & shunt stub match of unlimited stroke with characteristic 

impedance ‘Z0’ of 30Ω. 

The required transformer length ‘d’ to match to the real part of the antenna 

Thevinin impedance ‘RL+jXL’ was calculated by: 

for t>=0 
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


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for t<0 

[21] 

where ‘t’ is defined as the lower of the following two possible values: 
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[22] 

The required stub length ‘l’ to cancel the residual imaginary part of the 

transformed antenna Thevinin impedance was calculated by: 


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[23] 

where ‘Bs’ is defined as: 

( )( )
( )[ ]2
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2
00

tZXRZ
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B

LL

LLL

++
−+−=  

[24] 

The full derivation is a standard RF solution, and is included for completeness 

alongside the associated matlab code in Appendix A. The equivalent antenna model 

was thus: 
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Figure 14: Equivalent circuit for one RDL 

3.3. Models of plasma disturbance 

Coupling models are based on experimental data, rather than analytical models. 

Therefore, base load is defined as a constant combination of arm resistance and 

reactance with complex mutual interaction. The base values can be modified by a 

coefficient representing transient events, as shown in equations 25 & 26. These 

transients are assumed to be i) faster than the reaction of the tuning elements, and 

therefore these remain fixed, and ii) significantly slower than the electrical transient 

response of the circuit, as discussed in section 2.4. Therefore steady state analysis is 

used to assess the impact. 

Two models were used for evaluating disturbances. The first assumes that the 

disturbance is purely resistive. This is consistent with early CT circuit assessments 

(Evrard 2005). Therefore the strap loading may be represented as: 

snns jXRZ += λ,  [25] 

where ‘Zs,n’ is the strap impedance, ‘n’ the arm I.D. (1 or 2), ‘Xs’ the strap reactance, 

and ‘λ’ a real scaling coefficient > 1 called the load multiplication factor. 

A second more realistic model allows for variation in reactance. In this case  

snns jkXRZ += λ,  [26] 

where ‘k’ is a real scaling factor coefficient < 1. It should be noted that in the 

modeling ‘Xs’ was a lumped parameter including feeder & capacitor parasitic 

inductance for simplicity. 
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No published data exists for the ILA on the disturbance due to ELMs. In the 

absence of experimental data, or analytical models of ELM behavior the following 

assumptions were made: 

• This study adopts values for λ & k consistent with ITER studies for a 

similar short strap design (Lamalle 2005). Therefore,  λ is approximately 

4-5, and k is approximately 0.75 – 0.9 

• Monakhov (2003) reports that for the JET A2 antenna that the dynamic 

relationship between λ & k is not constant during an ELM and varies 

from ELM to ELM . 

• Monakhov reports no influence on mutual coupling, therefore Z12 is 

assumed ELM invariant 

• Monakhov reports mild variable effects on asymmetry. These have been 

neglected in this study for simplicity 

The above assumptions are not ideal, and should be reassessed once experimental 

data on the ILA is collected. 
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4. Resilience performance indicator 

4.1. Definition of resilience 

The CT circuit was conceived to improve resilience of circuits when exposed to a 

variation in real loading. Therefore, this study began with that assumption and 

adopted a plasma disturbance as per equation 25. This is consistent with earlier 

modeling of the ILA for control purposes (Durodie Memo 65 & 68). 

The critical reflection limit used by Durodie was a Voltage Standing Wave Ratio 

(VSWR) of 1.5. This corresponds to the generator steady state reflection rating, 

which is adopted for this analysis. 

Therefore, this study defined resilience as the load multiplication factor (‘λ’as 

per equation 25) necessary for the VSWR to exceed the critical limit of 1.5. 

4.2. Derivation of optimal set-points for ideal cir cuits 

In this analysis ‘optimal’ is defined as maximally resilient for a given perfectly 

matched system. To derive the set-points required to deliver this state for a generic 

CT circuit is exceedingly complicated. Therefore, set-points are here derived for an 

‘ideal’ circuit, with no mutual impedance, symmetrical resistive loading, & purely 

resistive load variations. 

For such a circuit, the set points for the arm impedances may be derived from the 

following constraints: 

1. The CT circuit Thevinin impedance should be real (this assumption is validated 

later – see section 4.3.1) 
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2. The real component of the circuit impedance should equal the system 

characteristic impedance (no reflections at design load) 

3. The characteristic impedance is chosen to maximise resilience. 

Consider first the CT circuit in terms of admittance: 

( ) 2121 ).(. BjGBjGYYYT +++=+=  [27] 

where: 
22 XR

R
G

+
=  

[28] 

and: 
22 XR

X
B

+
=  

[29] 

For a perfect match the CT impedance should be real (as per constraint #1 

above). Therefore equating the imaginary part of equation 27 to 0 and substituting in 

for equations 28 & 29 yields: 
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A second solution of 1
2

2 XRX −= is excluded, as with this solution the 

admittance of the RDL is invariant of arm reactance X, and hence overly constrained. 

Therefore, for the ideal CT circuit the net arm reactances should be equal and 

opposite, and YT becomes: 

22

2
XR

R
YT +

=  
[31] 

where 21 XXX == . Applying the philosophy of the simple 2nd stage match as in 

section 3.2, the correct value of characteristic impedance can be derived from 

considering the reflection coefficient, Γ. 
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[32] 
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Substituting equation 31 into equation 32 yields: 

22
0

22
0

2

2

XRRZ

XRRZ

++
−−=Γ  

[33] 

The VSWR, (‘S’ in this nomenclature) is defined as: 

Γ−
Γ+

=
1

1
S  

[34] 

Plotting VSWR against strap loading ‘R’ illustrates the relationship between 

branch impedance ‘X’ (and hence antenna Thevinin impedance) and resilience. The 

following figure displays a variety of response plots. The x axis captures the load 

multiplication factor ‘λ’ from equation 25. Hence all plots are perfectly matched at 

‘1’.  

Resilience is expressed in load multiplication factor, as in section 4.1, and is 

denoted by an arrow on the diagram. The critical VSWR limit is denoted by the 

horizontal line. 

 

Figure 15: VSWR vs. λλλλ for a selection of arm reactances 

As |X| increases (i), resilience initially increases until the local maxima VSWR is 

equal to the critical maximum VSWR of 1.5 (ii). Further increase in |X| results in a 

catastrophic collapse of resilience (iii). 

Therefore for maximum resilience the characteristic impedance at the T point 

should be selected such that the local maximum of |Γ| (and hence VSWR) coincides 
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with the critical cut off reflection coefficient, defined as |Γc| (and by definition at the 

critical VSWR, Sc). 

Therefore to identify the local maxima of S, the derivative of |Γ| (equation 33) 

with respect to strap resistance shall be zero, thus: 
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[35] 

This simplifies to: 

XR =  [36] 

Therefore, the optimal value of the antenna Thevinin impedance (and desired 

characteristic impedance) can be derived by setting |Γ| to |Γc| when R = X, thus: 
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=

+

−
=Γ  

[37] 

Substituting equation 36 in to equation 37 yields: 

cSXZ ⋅=
0

 [38] 

Finally, the optimal value of X may be deduced by equating the real part of the 

antenna Thevinin impedance (equation 31, where TT YZ 1= ) to the calculated 

optimal characteristic impedance. Thus, combining equations 31 & 38 yields: 

( )12 −±= cc SSRX  
[39] 

Substituting equation 39 into equation 38 expresses the required characteristic 

impedance in terms of fixed circuit parameters, as in equation 40 below. Therefore 

the conditions for an optimal ideal CT circuit are summarised in Table 3. 

 The derivation was successfully validated by plotting VSWR against load 

multiplication factor for a range of strap design resistances (an example of which is 
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shown above, Figure 15(ii)). This validated the approach for solutions along the X1=-

X2 locus.  

Requirement Equation Equation I.D. 

CT impedance is real X1 = -X2 [30] 

Zero reflection at design load ( )12 −±= cc SSRX  [39] 

Maximum resilience at design 

load 

( )12
0 −±= ccc SSRSZ  [40] 

Table 3: Optimal set-points for the ideal CT circuit 

However, to confirm the algebraic approach detailed above was consistent for all 

combinations of arm reactance, a full 2D investigation of the solution space was 

required. Additionally, the derivation of ideal set-points for the antenna including 

resistive asymmetries and mutual impedances was judged too difficult for an 

analytical solution. Therefore, a numerical solver was required. 

There are two distinct requirements for numerical modelling of resilience with 

the CT circuit. Firstly, a numerical solution of resilience is required to accommodate 

the effects of the numerous non ideal parameters on the circuit behavior. Secondly, 

an optimisation routine is required to derive the optimal set points that maximise 

resilience of any given CT circuit. 

4.3. Derivation of numerical solution algorithms 

4.3.1. Resilience solver 

The resilience solver accepts as its input a given set of circuit parameters, this 

being average strap resistance, % asymmetry, real & reactive mutuals and an 
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arbitrary pair of capacitor values for assessment. Mutuals are expressed as a 

percentage of the fixed arm impedance (Strap R, strap L, feeder & capacitor L) and 

thus do not include the matching reactance Xc. λ (as per equation 25) is initially set to 

1. 

The solver thus models the antenna as its Thevinin impedance, given by equation 

19, terminating a transmission line of characteristic impedance derived using 

equation 20. 

The solver then enters a loop where λ is increased iteratively, and the resulting 

VSWR calculated using equations 32 & 19, where TT ZY 1= . The incremental step 

in λ is dependant on the proximity to the target VSWR of 1.5, decreasing in step as 

the target approaches. This feature reduces the solve time. Once a crossing of the 

VSWR=1.5 locus is detected, the solver converges using Newton Raphson. 

Unique features of the problem, which forced the writing of a custom solver, are 

that i) the solution is only valid for λ>1, ii) there may be more than one solution for 

VSWR=1.5, yet only that with the smallest λ is desired, and iii) the desired solution 

often lies on a local maximum (as per Figure 15 (ii)). Therefore, solvers regularly 

miss this solution and overshoot to the next intersection, erroneously returning 

resilience values significantly greater than would be achieved. 

Knowledge of the solution locality enabled the solver to specifically 

accommodate this effect. The solver would detect the presence of a local maximum 

within a vicinity of the critical VSWR. If detected, the solver would break off 

searching for the VSWR=1.5 intersect, and instead solve for the local maxima. If this 

was greater than 1.5 the program would engage the Newton Raphson routine; 

whereas if the maxima was <1.5 the solution would re-engage the variable solver. 
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Using this approach the solution for critical VSWR could be resolved to a fine 

accuracy within a short solve time. 

The solver code and an associated description are recorded in Appendix C. 

Using this code, the resilience could be plotted for a selection of total arm 

reactances (including Xc), as shown in Figure 16 for an ideal CT circuit (load 0.8Ω, 

resolution 0.125Ω). 

 

Figure 16: Resilience plotted in arm reactance space 

The following conclusions can be drawn from the above plots. Firstly, there are 

only two equivalent solutions, both lying on the 21 XX −= locus, as predicted in 

section 4.2, and confirming assumption #1 made therein. Secondly, the location of 

the optimal set-points is highly localised, placing tight accuracy demands on any 

controller. 

4.3.2. Optimal set point derivation 

As can be seen from Figure 16, the optimal solution for VSWR lies on a 

mathematical discontinuity. This effect is caused by the local maximum resilience 

illustrated in Figure 15 coinciding with the VSWR limit. Increasing |X| further results 
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in the first VSWR=1.5 intersect jumping from the second positive gradient to the 

first. This results in a “cliff edge” in solution space. 

As the solution is i) highly localised, ii) has multiple local maxima, & iii) lies on 

a mathematical discontinuity, a custom optimisation routine was required to derive 

the appropriate set points for configuring the CT circuit. 

As traditional gradient ascent methods would be inappropriate given the above 

constraints, an adaptive mesh solver was developed. The methodology took the 

design space available to the CT circuit, and meshed it in 2D to form a grid. The 

resilience at each node was then calculated using the method derived in section 4.3.1, 

and the maximum value identified. 

A window of +/- 2x the initial resolution was then formed around the maximum 

value, and the design space re-meshed at double the former resolution. At 2x 

resolution the window was oversized to ensure local maxima did not confuse the 

solver. 

This process was repeated iteratively until a predefined resolution had been 

achieved. Consequently, a very large solution space could rapidly be assessed and 

optimal values calculated, without resorting to very fine initial grids. An example of 

the output of the solver for a non ideal RDL illustrates the adaptive mesh capability. 

The solver code and an associated description are recorded in Appendix D. 



 

54

 

Figure 17: Output of adaptive mesh solver 

This code was validated by comparing analytically predicted set-points for a 

symmetrical ideal RDL, as defined in Table 3, with those numerically derived as 

above. The results are shown in Figure 18, with spot values compared in Table 4.  

 

Figure 18: Validation data of adaptive grid solver 

Algebraic optimal resilience Numerical optimal resilience Strap 
Resistance 

X1 X2 X1 X2 

0.5 -1.3090 1.3090 -1.3063 1.3062 

1 -2.618 2.618 -2.6121 2.6125 

1.5 -3.9271 3.9271 -3.9187 3.9192 

Table 4: Adaptive grid solver validation data 
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As can be seen the two results closely parallel one another. Figure 18(ii) 

illustrates the mild discrepancies between the algebraic & numerical solutions 

( 121 −=XX  algebraically). Such discrepancies may be attributed to the ~0.001Ω 

resolution on X & 0.5% error band on VSWR with the numerical resilience solver.  
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5. Feedback control of optimal resilience 

5.1. ILA Control System – Fixed T resilience contro l 

5.1.1. Shortcomings 

As discussed in section 2.6.2, the present ILA control methodology has two 

components, an open loop resilience control system, and a closed loop matching 

control system. 

For resilience control, the second stage circuit is configured pre-pulse to match 

the optimal antenna Thevinin impedance (equation 40 for an ideal RDL). For 

matching control the two capacitors of the RDL are varied under closed loop to 

deliver the pre-calculated T point impedance, where measurements of the real part of 

the equivalent impedance control the difference in capacitor settings, and the reactive 

part controls the sum of capacitance settings (Durodie M65). 

The algorithm does not necessarily target the matched load, but instead may 

match to impedances lower than expected. Therefore, this “offset matching” 

functionality enables greater resilience to increasing loads at the penalty of a fixed 

VSWR at base load. 

However, this open loop approach to controlling resilience suffers from several 

disadvantages. These are broadly: 

1. The average load presented by the plasma changes throughout the pulse, most 

notably in the L-H transition. An open loop system can only be optimally 

resilient for one value of load. 

2. It is not possible to predict with a high degree of accuracy the actual plasma 

loading due to the complexity of modelling the plasma. Loading is dependant 
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on numerous variables as discussed in section 2.4. Therefore the suitability of 

the pre-calculated T point impedance set point is not guaranteed. 

3. Non ideal effects such as RDL resistive asymmetry and strap mutual 

impedance have a strong influence on the optimal T point impedance set point. 

These effects complicate the pre-calculation of the optimal set point, as 

discussed in section 4.3. 

4. The non ideal effects are a function of plasma parameters, and as such 

arguments 1&2 hold when attempting to calculate the optimal T point 

impedance set point when including the non ideal effects. 

If the optimal T point impedance has a low sensitivity to plasma load, asymmetry 

and mutual impedance, the fixed T approach may be acceptable. The tools discussed 

in section 4.3 were developed to address this issue. 

5.1.2. Fixed – T performance model 

A model of the ILA matching algorithm was required to serve as datum for any 

assessment of performance. This reference model is discussed below. 

The selection of offset in the ILA algorithm was at operator discretion and 

represented another variable for assessment. Therefore, for the purpose of this study 

the offset was assumed to be 0, enabling a consistent comparison with the automatic 

matching algorithm. 

This study concerned the steady state performance of the control algorithms. 

Because the dynamics at this stage were not of interest, the ILA control algorithm 

was not replicated; rather the action of the system in steady state was modelled as 

follows. 
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A conventional gradient descent solver was used to derive the values of X1 & X2 

necessary to give the target T point impedance. This enabled an efficient method so 

as to minimise computational time and convergence path issues (a source of 

difficulty with the ILA algorithm development-Durodie M68) 

The optimal values of arm reactances 21
ˆ&ˆ XX  were derived for an arbitrary CT 

circuit using the adaptive mesh numerical method of section 4.3.2. The target T point 

impedance for optimal resilience was then calculated using equation 19. 

The fixed T solver took an initial combination of target arm reactance X1,i &  X2,i. 

About this value a further two “test” reactance combinations were declared, at (X1,i, 

1.01X2,i), and (1.01X1,i, X2,i). This formed a triangular sample area for analysis. 

The local T point impedance surface for the three points was then calculated 

using equation 19. The errors in the solutions were calculated by subtracting them 

from the target T point impedance. Therefore, this yielded a 3 dimensional error 

surface which the algorithm sampled at 3 locations. 

To determine the correct route to 0 error, partial gradients were taken between 

the centre reactance combination and the two “test” reactance combinations. The 

direction of the gradient was extracted only. 

Finally, a new arm reactance combination was generated by incrementing X1,i & 

X2,i by a variable step, using the gradients derived to drive the error toward zero. The 

step size was dependant on the proximity to 0. This process was iterated until the 

numerical solution lay within a deadband of the target T point impedance. 

As this method can be prone to trapping in local minima, the error space was first 

plotted to ensure that none were present. The fixed T algorithm is summarised in 

Appendix E. 
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5.2. Arm phase control 

As the resilient location of the CT circuit is highly localised, it is desirable that, 

unlike the ILA [at present], the system should bring resilience under closed loop 

control. As matching is also under closed loop control, this necessitates the inclusion 

of the 2nd stage match in the real time control system. 

Such a system would use the in vessel capacitors to deliver a resilient T point 

impedance dependant on actual plasma parameters, and the second stage would 

match the generators to the resulting floating T point impedance. 

Matching control of the 2nd stage would be conventional, using a simple PI loop 

on the stub and trombone. The T point impedance would be measured, and the real 

part controlled by the trombone to deliver Z0, and the imaginary part controlled by 

the stub to deliver 0 reactance. As this solution is conventional this study will not 

investigate the matching algorithm. Instead, this study shall investigate the control of 

the CT circuit to deliver optimal resilience. 

Offset matching (deliberately not matching the floating Tpoint impedance to 

further enhance resilience) will not be investigated at this stage so as to limit the 

scope of the problem. 

The absolute definition of optimal resilience can be derived from analysis of an 

ideal lumped element conjugate T circuit, of symmetrical resistance, and no mutual 

coupling. The phasor diagram for the two arms of the circuit is shown in Figure 19: 
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Figure 19: phasor plot for the CT arm impedance 

The optimal values of arm reactance are derived as in equation 39, section 4.2. 

Therefore, the optimal phase of each arm relative to the T point is given by equation 

41. As can be seen, this target is independent of plasma parameters, and as such 

represents the definition of a resilient CT circuit for resistive disturbances. 
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Therefore, it is proposed that the conjugate T circuit shall be controlled to deliver 

the correct arm phase targets to deliver optimal resilience, and not a predefined fixed 

T point. 

However, rather than control to the phase across each arm (which would be 

subject to calibration errors) the algorithm controls to gross and net angle (‘θG’ & 

‘θN’). As gross angle should be 0 this presents an unambiguous target for the 

controller. Therefore, the capacitor control set points can be described as the sum 
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between an average (A) and a difference (D) signal, where the average is the 

controlled with θG as its argument, and the difference with θN as its argument. 

( ) ( )NG ffDAX θθ +=+=1  [42] 

( ) ( )NG ffDAX θθ −=−=2  [43] 

It should be noted that the relationship between arm reactance and the required 

capacitor set point is not linear. Therefore a formula derived from the calibration 

model is used to translate the impedance target Xn from the resilience algorithm into 

a capacitor demand signal. Capacitance as described in equation 9 can be re written 

as  

minCx
s

C
C nn +∆=  [44] 

 

where ‘Cn’  is the capacitance of arm ‘n’ (1 or 2 from nomenclature of equations 

2&3), ‘∆C’ the capacitance range, ‘Cmin’  the minimum capacitance, ‘s’ the actuator 

stroke and ‘xn’  the capacitor demand signal. 

Arm reactance can be expressed as the sum of the variable capacitance and a 

fixed inductance as in the model in section 3.1.1. Therefore, 

( )
n

CSn C
LLX

ω
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Substituting equation 44 into equation 45 and solving for the capacitor demand 

yields 
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As can be seen the position demand is inversely proportional to the reactance set 

points, with a fixed offset. At present this equation was used to convert the reactance 
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demand of the algorithm, ‘Xn’ , into the position demand of the capacitor, ‘xn’ , and so 

linearise the actuator. However, this approach assumes a perfect calibration, and 

consequent perfect compensation. The physical system cannot guarantee this, and so 

future studies must assess the algorithm stability with i) no compensation, and ii) 

sensitivity to imperfect compensation. 

It should also be noted that an alternative capacitor configuration where 

capacitance is varied by adjusting the distance between plates rather than varying the 

overlapping area requires no linearisation, as reactance demand would be directly 

proportional to capacitor distance demand, x. However this is applicable only to 

capacitor matched architectures and presents practical challenges. 

Thus, for an ideal stub-transformer matched CT circuit of optimal resilience and 

zero reflections, the control heuristics are 

1. A gross arm impedance phase of 0 

2. A net arm impedance phase of 138.2o with reference to the T point (for a 

maximum VSWR limit of 1.5) 

3. A second stage transformer to convert the resulting T point resistance of 

constraints 1&2 to the transmission line characteristic impedance 

4. A second stage stub to cancel the resulting reactance of the T point (if any) to 

0. 

5.3. Sensitivity studies 

5.3.1. Rationale 

As observed in section 4.3.1, the set-points for optimal resilience are highly 

localised. This suggests a tight accuracy requirement for any controller. As discussed 
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in section 3.1, the ideal circuit is subject to several non ideal parameters. Numerical 

methods described in section 4.3.2 were developed to quantify this influence of the 

non ideal parameters. Therefore, a sensitivity study was required to i) ascertain if a 

fixed T algorithm could capture the uncertainty of plasma loading with one target T 

point impedance, and, ii) determine if the ideal set-points for arm phase control 

derived in section 5.2 require modification in the presence of non ideal parameters.  

However, as discussed in section 5.2, the least ambiguous definition of resilience 

is in terms of arm phase angle. Therefore, the solvers of section 4.3 were modified to 

map reactance space into arm phase space. For this, equation 15 may be re organised 

to read 
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Therefore, taking the phase of VT as reference, the arm phase expressions θG and 

θN are given by 
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Applying this conversion, the resilience space can be represented as follows: 
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Figure 20: Resilience intensity maps illustrating conversion from reactance (i) to phase space (ii) 

 
As can be seen from Figure 20, the optimal resilience lies at θG=0o, and θN 

=±138o in phase space for an ideal RDL, as predicted in section 5.2.  

The sensitivity study has two components. Firstly, the location of the optimal 

phase targets shall be assessed with respect to a non ideal parameter to ascertain if 

that parameter must be compensated for in any control regime. In this study, only 

first order interactions are considered – second order interactions (one non ideal 

parameter to another) were neglected for simplicity. 

Secondly, a critical minimum performance indicator was required to ascertain by 

what margin the set-points could drift from optimal. This contour was taken as 5=λ  

in equation 25, as in the upper expected ELM disturbance (Lamalle 2005). 

The ranges of non ideal parameters were taken from the measured antenna 

impedance matrix included in Appendix B. Comparing between RDL’s at 42.5MHz, 

the maximum asymmetry was taken to be +/-50%, the maximum resistive mutuals 

were -50% of strap resistance, and the maximum mutual reactive part 2% of strap 

reactance. In all cases, frequency was assumed mid band at 42.5MHz, as this simply 
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varies the phase angle. As long as the capacitor set points remain within the physical 

range of the actuator this parameter will not affect performance. 

5.3.2. Mutual Reactance 

The critical contour of λ=5 for varying mutual reactance is illustrated in Figure 

21. As can be seen, the accuracy requirement for net angle is significantly less than 

that for gross angle, as the solution locus is elongated in θN. Additionally, there is no 

overlap in loci across the range of variation, and therefore the controller will be 

required to compensate for mutual reactance. It should also be noted that the optimal 

solution always occurs at the far left edge of the locus (see Figure 22) and therefore 

on a ‘cliff edge’. This feature is common to all the contour plots in this study. 

The trends of the location of the optimal set-points are shown in Figure 22. This 

quantifies the observations above, indicating a strong sensitivity of θG to mutual 

reactance, and a very weak sensitivity to θN. 

 

 

Figure 21: Critical contour evolution with mutual r eactance 
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Figure 22: Optimal set-points for varying mutual reactance, (i) gross angle, (ii) net angle 

 

5.3.3. Mutual Resistance 

The critical contour of λ=5 for varying mutual resistance is illustrated in Figure 

23. The accuracy requirement for net angle is again significantly less than that for 

gross angle. Additionally, there is significant overlap in loci across the range of 

variation, and therefore the controller may be able to neglect compensation for 

mutual resistance. 

 

Figure 23: Critical contour evolution with mutual r esistance 
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The trends of the location of the optimal set-points are shown in Figure 24. This 

indicates an invariance of mutual resistance with θG (neglecting the numerical error), 

and a weak sensitivity to θN. 

 

Figure 24: Optimal set-points for varying mutual resistance (i) Gross angle, (ii) net angle 

 

5.3.4. Asymmetry 

The critical contour of λ=5 for varying asymmetry is illustrated in Figure 25. The 

accuracy requirement for net angle is again significantly less than that for gross 

angle. Additionally, although there is some overlap in loci across the range of +ve 

asymmetry variation, if asymmetry is negative the gross phase loci decreases 

(response is mirrored in θN = 0). Therefore, there is no overlap in the range -50% < 

asymmetry < 50% and thus the controller may need to compensate for asymmetry. 
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Figure 25: Critical contour evolution with mutual asymmetry 

The trends of the location of the optimal set-points are shown in Figure 25. This 

indicates strong sensitivity of θG to asymmetry and a weak sensitivity to θN. 

 

5.3.5. Summary of effects & proposals 

The following table summarises the influences on the RDL optimal resilience 
setpoints. 
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Variable Gross phase Net phase Comments 

Strap resistance Invariant, 
nominally 

 0 

Invariant, 
nominally 138.2o 
for vswr limit of 
1.5 

 

% Strap 
asymmetry 

If θN>0: linear 
decrease 

If θN<0: linear 
increase 

Insensitive (within 
range modelled) 

Gradient average 
resistance 
dependant 

Invert relationship 
if asymmetry -ve  

% Resistive 
mutuals 

Insensitive (with 
no asymmetry) 

Decreases linearly 
with increasing 
resistance 

Always negative. 
Gradient resistance 
dependant 

% Reactive 
mutuals 

Linear decrease, 
regardless of 
quadrant 

Insensitive (within 
range modelled) 

Always inductive. 
Gradient 
Resistance 
dependant 

Table 5: Summary of observations from sensitivity study 

As can be seen, the behaviour of an RDL is complex. It should be stressed that 

interactions between non ideal parameters, and additionally loading and frequency 

have not been investigated, due to the multidimensionality of the problem. However, 

this study is sufficient to identify the following:  

• Optimal resilience occurs on a cliff edge in resilience space. Operation 

near this value will not be robust 

• The accuracy requirements of net angle are relatively benign in 

comparison to gross angle 

• No overlap exists in the range of loci for mutual reactance and 

asymmetry. Therefore a control algorithm with fixed T impedance or 

fixed arm phase targets will be very challenging 

• As θN is i) near invariant for mutual reactance and asymmetry, ii) displays 

low sensitivity to mutual resistance, yet with large overlap in loci, and, iii) 
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requires a low accuracy for all non ideal parameters; it is proposed that 

the θN set-point can be fixed with no compensation 

• As θG is i) very sensitive to mutual reactance and asymmetry, and, ii) 

displays no overlap in loci; it is proposed that any controller must 

compensate for these effects 

• As θG for mutual resistance is invariant, no compensation is necessary 

5.4. Non Ideal parameter compensation 

By definition, resilience cannot be measured directly. Therefore, in order to 

control for optimal resilience, an indicator for resilience must be found. As discussed 

in section 5.2, this indicator can be expressed in two parts: 

Net phase angle:   θL-θC  138.2o 

Gross phase angle:   θL+θC   0o 

Where θL is the phase angle of the current across the inductive arm, and θC is the 

phase angle of the current across the capacitive arm. Phases are expressed relative to 

the voltage at the T point.  

Sensitivity studies of section 5.3 demonstrate that the gross arm phase target is 

strongly dependant on resistive asymmetry and reactive mutuals, and can lead to 

drifts of up to 10o - 15o from the ideal CT circuit settings. 

The net arm phase target displays sufficiently low sensitivity that this can be 

captured by a fixed target, not compensated for by the control system. However, to 

avoid the “cliff edge” in resilience performance it is proposed that the target of 

138.2o is reduced to 135.5o. This has a moderate reduction in baseline resilience, but 

ensures that the system should remain resilient across the range of mutual resistance. 
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However, due to the strong variation in the gross arm target of 0o, an alternative 

measurable indicator for θN must be derived that is a function of asymmetry and 

mutual reactance. 

The θG = 0 constraint is equivalent to the locus X1 = -X2. The conjugate T circuit 

has the property that the T point impedance, ‘|ZT|’,  when viewed as a function of 

frequency has a local maxima on a locus that can be approximated by X1 = -X2 for 

the given functional range of the lumped elements representing the RDL. 

Moreover, it can be shown that this locus is a function of asymmetry and reactive 

mutuals. Consequently, an algorithm can compensate for non ideal variables by 

replacing the θG = 0 locus with the locus of d/df (ZT) = 0. 

The resulting locus for d/df (ZT) = 0 is shown for the solution space of the ILA at 

midband frequency of 42.5MHz in Figure 26. 

 

Figure 26: Plots of the locus dZT/df=0 for a variety of CT circuits 
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Superimposing the locus of the net arm phase target on the gross phase target 

yields a singular intersection, demonstrating unambiguous convergence. This is 

shown in Figure 27. 

 

Figure 27: Intersection of gross and net angle target loci 

However, there remains spurious contours of d/df (ZT) = 0 that do not correlate to 

the desired gross angle locus (lying approximately along the locus X1=0 & X2 = 0). 

These pose traps for any convergence trajectory that must cross them. 

This issue is resolved by disabling the gross phase target aspect of the algorithm 

when the net phase is less than 90o. This excludes all undesirable contours from the 

search area, and ensures clear convergence, as shown in Figure 28. 

d/df (ZT) = 0 can be measured by amplitude modulation. A diagnostic signal of 

frequency fd is mixed with the main heating carrier frequency fc, to produce 

sidebands at fc+/-fd. The amplitude of fd is minimised to maximise power to the 

carrier, and minimise resultant increase in electric field. 
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Figure 28: Intersection of loci, showing θθθθn<90o exclusion zone 

A filter is used to discriminate one sideband reflection from the other, and the T 

point impedance is calculated for each frequency. The algorithm varies θG such that 

the amplitude of both sideband impedances are equal. This is shown in Figure 29. 

 

Figure 29: Tpoint Impedance as a function of frequency, showing location of possible sidebands 

The algorithm used a 0.5% modulation index, so that the discrete approximation 

of d/df (ZT) was not affected by any possible asymmetry about the maximum, and so 

ensure the accurate resolution of the ZT peak. However, in reality this would require 

high performance filters with consequentially large phase delay. This could lead to 

instability in the controller. Consequently, future studies are required to calculate the 
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sensitivity of the modulation index to ZT peak resolution, so that the modulation 

index can be relaxed. 

An alternative method of scanning the carrier frequency sinusoidally could be 

used, however, this approach has an inferior time resolution (one period of the scan 

is necessary to resolve dZ/df =0) and the consequential phase delay will reduce the 

controller phase margin. Additionally, as the main power carrying frequency is being 

varied from the match, this may confuse the 2nd stage match, and will also reduce 

power to plasma. The algorithm code realisation, with comments, is included in 

Appendix F. 

5.5. Algorithm assessment 

This chapter has thus far: 

• Outlined the fixed T point impedance algorithm of the reference ILA for 

matching control (section 5.1) 

• Proposed an alternative arm phase algorithm for resilience control (section 

5.2) 

• Conducted a study that demonstrated the high sensitivity of the CT circuit to 

non ideal parameters & consequential need for compensation (section 5.3) 

• Proposed a modification to the arm phase algorithm that compensates for non 

ideal parameters (section 5.4) 

Therefore, the performance of the two algorithms, arm phase/AM and fixed T 

shall be assessed to establish their steady state performance with respect to varying 

plasma parameters 
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5.5.1. Base load variation 

Figure 30 shows the performance of the two algorithms against the theoretical 

maximum performance given by the adaptive grid solver of section 4.3.2. As can be 

seen the AM algorithm displays broadband high resilience, but reduced from the 

theoretical maximum. 

The near load invariance is a consequence of the second stage match being able 

to compensate for any T point impedance presented. It should be noted that there is a 

very mild decrease in performance as resistive load increases. This is due to the fact 

that dZT/df=0 approximates X1=-X2 for low values of loading. However, this effect 

remains negligible for all values in the range of interest, as can be seen. 

The reduction in performance of the AM algorithm with respect to the theoretical 

maximum is a consequence of the θN target being reduced from its optimal to 135.5o. 

This avoids the cliff edge in performance associated with the theoretical maximum 

(blue line) but results in a mild reduction in overall performance. 

The fixed T algorithm has been designed to have the maximum performance 

possible at the design load. However, as a consequence all loadings below the design 

value have crossed the “cliff edge” in the solution space and display very poor 

resilience. 

Loadings above the design load show a pronounced roll off in performance. 

Consequentially, the design impedance should be chosen with care to avoid the cliff 

edge. Unfortunately, this will entail accepting significantly reduced performance at 

the design load (dependant on the uncertainty in expected base load resistance). 
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Figure 30: Algorithm performance against varied base load 

What is happening in this instance is the CT optimum is tracking along the X1=-

X2 locus as base load is increased. As the fixed T algorithm does not track this 

movement, the set points cross the maximum location, showing the cliff edge and the 

reduced performance “tail” associated with the X1=-X2 locus. This effect is illustrated 

in Figure 31.  However, the AM algorithm with a floating T point can successfully 

follow the optimum location. 

 

Figure 31: Explanation of resistive load sensitivity behavior 

5.5.2. Mutual reactance variation 

The results of the mutual reactance comparison are shown in Figure 32 . 



 

77

 

Figure 32: Algorithm performance against varied mutual reactance 

As can be seen, the AM algorithm shows only a slight decrease in performance 

across the operational envelope, demonstrating the accurate and successful tracking 

of the maximum resilience point by the algorithm. 

The fixed T algorithm again shows a pedestal response. In this case less mutual 

reactance than the design value results in immediate loss of performance. A second 

cliff edge is present if mutuals are increased above a certain level. 

 

Figure 33: Explanation of reactive mutual pedestal behavior 

The pedestal effect is similar to that found in resistive asymmetry, and is due to 

the cliff edge in the resilience surface extending onto the flanks of the maximum 

resilience island. The combined movement of the resilient island and T point 
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impedance adjustments moves the operating set point across the island, encountering 

two sets of “cliffs” on opposing flanks. This is shown in Figure 33. 

5.5.3. Mutual resistance variation 

The results of the mutual resistance comparison are shown in Figure 34. Neither 

the AM or fixed T algorithms compensate for resistive mutuals. 

 

Figure 34: Algorithm performance against varied resistive mutuals 

The AM algorithm successfully demonstrates broadband high resilience, showing 

a pronounced increase in performance with resistive mutuals. However, as this 

performance converges on the theoretical maximum, it will inevitably intersect at 

which point performance will collapse as the system encounters a cliff edge in 

resilience space. However, the study shows that a net angle target of 135.5o is 

appropriate to avoid this in the range up to -50% mutual resistance. 

The fixed T algorithm has been configured to deliver maximum resilience at 

midband. Consequently, for mutual resistance beneath the design value the system 

has encountered a cliff edge in the resilience response. Above this the performance is 
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steady. For this case, broad band compensation for resistive mutuals may be 

achieved by reducing the generator vswr limit in calculating the optimal set points. 

This would give broad band resistive mutual tolerance to the system, but entail an 

associated reduction in performance. (This is the equivalent of reducing the θN target 

in the AM algorithm). 

This response can be explained by considering the peak of the resilience island 

tracks along the X1=-X2 locus, increasing |X| with decreasing mutual resistance. This 

reduces the net phase angle, and so will converge on the AM fixed θN target of 

135.5o. In so doing, the performance increases as the two θN set points converge. 

As mutual resistance decreases, maximum resilience increases (mutual resistance 

being negative). The fixed T algorithm holds a contour on the island’s resilient tail, 

as shown by its flat resilience response. Below the design value, the resilient peak 

will move across the fixed T operating point and resilience will collapse. This is 

shown in Figure 35. 

 

Figure 35: Explanation of resistive mutual performance 

5.5.4. Asymmetry variation 

The results of the mutual resistance comparison are shown in Figure 36 
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Figure 36: Algorithm performance against resistive asymmetry 

As can be seen, the AM algorithm shows a mild drop off in performance as 

the resistive asymmetry increases, displaying a ~20% decrease in performance across 

the range of interest. However, the algorithm successfully tracks the location of the 

maxima, which is clearer when compared with the fixed T algorithm. 

The fixed T algorithm is designed to have maximum performance for 

midband asymmetry. However, for asymmetry greater than the design value the 

system falls off the cliff edge and displays poor resilience. If the asymmetry is less 

than designed for, the resilience remains high, yet then collapses as it encounters 

another cliff edge. 

This pedestal performance can be interpreted by noting that the cliff edge in 

response extends on to the flanks of the CT optimum. Varying asymmetry causes the 

maximum to move off the X1=-X2 locus. As the fixed T algorithm responds to 

deliver a pre-defined T point impedance, the relative motion results in the operational 

point traversing the peak in resilience and so encountering two cliff edges, as shown 

in Figure 37. 



 

81

 

Figure 37: Explanation of asymmetric load pedestal behavior 

5.6. Discussion 

The following conclusions can be drawn from the algorithm comparative study of 

this chapter: 

• The fixed T algorithm with its dependence on open loop resilience control is 

shown to display a very narrow band of acceptable resilience about the 

loading design case. Given this performance, successfully achieving a 

resilient match is challenging. 

• The fixed T algorithm should adopt a lower vswr limit in calculating the 

optimal T point impedance in order to increase the resilience bandwidth and 

better centre its passband with respect to non ideal parameters. This, 

however, will result in a much reduced performance at design load, and will 

still result in pedestal behaviour as demonstrated by the lack of common set 

point loci in section 5.3. 

• The AM algorithm successfully demonstrated a broadband high resilience 

with respect to all parameters investigated. 

However, there remain outstanding issues to be resolved. These are: 
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• The conversion from impedance demand to hydraulic actuator demand uses 

the inverse of the model of the system to linearise. The accuracy of this 

translation may not be assured, and so the algorithm must be assessed for 

stability using no linearisation. However, this is relevant for the tuning of the 

dynamic response. 

• A very small modulation index was used for the above study to ensure 

accurate resolution of the dZT/df =0 locus. This ensured that the principle of 

the AM algorithm was tested, not the realisation of it. It is desirable to have a 

relaxed modulation for practicality, and therefore further study is required to 

assess the sensitivity of modulation index to dZT/df =0 resolution. 

• The above study is underpinned by the assumption that plasma disturbances 

are resistive in nature, an assumption explained in section 4.1. As discussed 

in section 3.3, reactive elements to disturbance are present, and the impact of 

this change to the AM algorithm must be assessed 

• The above study assumes that mutual impedance is invariant with 

disturbance, as discussed in section 3.3. However, it seems plausible that 

resistive mutuals may be affected by plasma disturbance. Therefore, the 

impact of this possibility on the AM algorithm should be assessed. 

• The VSWR = 1.5 critical reflection limit as discussed in section 4.1 results in 

the cliff edge in resilience space. This hard limit does not exist in reality, with 

interlock trips, as discussed in section 2.3.2, engaging at a VSWR of 3. 

Therefore, a modified and more sympathetic measure of circuit performance 

is required. 
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6. Average coupled power performance indicator 

6.1. Reactive disturbances 

As discussed in section 5.6, the measure of ELM performance as per section 4.1 

is incomplete in that reactive ELM components have been neglected, and circuit 

interlocks simplified. Moreover, the philosophy does not readily lend itself to 

incorporating such effects. This chapter sets out an alternative performance measure 

that is more comprehensive and robust with respect to a multidimensional ELM 

model. 

Present studies which address the issue of a reactive ELM (Lamalle 2005) 

assume a fixed relationship between the resistive and reactive disturbances. This 

‘fixed path’ method is problematic as, i) a multidimensional disturbance’s resilience 

performance can only be assessed for a predefined trajectory, ii) this becomes very 

limiting as dimensions increase, and iii) the method is still dependant on the 

declaration of a simple VSWR limit.  

This leads to ambiguity, for as discussed in section 2.4, disturbance trajectories 

are i) uncertain, ii) vary between disturbances & iii) are multidimensional. 

Additionally, as discussed in section 2.3.2, VSWR limits are soft, not abrupt, in that 

power is limited in response to high reflections, up to a limit of VSWR of typically 3. 

The critical contour approach cannot capture this “soft stop” functionality and is 

consequently overly pessimistic. 

6.2. Average coupled power model  

An alternative performance measure is required to accommodate the ability of the 

system to achieve greater resilience, but at reduced power. This is possible by 
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assessing the coupled power during a disturbance, rather than the vswr. Thus, higher 

vswr ratings than 1.5 are possible, but with a marked decrease in performance as 

generator protection interlocks ramp down the driving voltage (see section 2.3.2). 

The performance measure for a given disturbance trajectory is thus the average 

coupled power for the period of one disturbance expressed as a percentage of the 

base load coupled power.  

Additionally, the method must be able to account for multiple dimensions in the 

disturbance, and accommodate the uncertainty in possible disturbance trajectories. 

This is achieved by defining the multi-dimensional region in which a disturbance 

trajectory may exist. This is illustrated in Figure 38 for an ELM disturbance. 

 

Figure 38: 2D illustration of ELM space 

The resulting region (area in 2D ELM, volume in 3D ELM etc) can then be 

meshed, and the coupled power calculated at each node. The generic performance 

measure is then the average coupled power across the entire region. This method is 

particularly robust, as additional dimensions can be added without reappraising the 

assessment methodology. 

An additional feature of the performance is the requirement that the system does 

not trip protection interlocks, as this results in a large reduction in duty cycle and 
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hence average delivered power as the system executes safety time outs for each trip. 

Consequently, if any part of the ELM region causes a trip, the average performance 

measure is automatically set to zero, i.e. the solution is unacceptable. 

As discussed in section 2.4, knowledge of the influence of ELMs is limited. For 

this study the bounds on reactive and resistive variations shall be assumed to be λ = 5 

and k = 0.75 as in equation 26 in section 3.3. Variations in resistive asymmetry were 

neglected for lack of measured data to set realistic bounds. No variations in mutuals 

were considered, as discussed in section 3.3. It is assumed that ∆R% is always 

greater than ∆X% as per reported by Monakhov (2003).  

Thus, with these simplifications it can be assumed that an ELM has 3 

dimensions, resistance, reactance, and time. This could be calculated as a series of 

frames as shown in Figure 39, where when viewed in the X-R plane the resulting 

overlap of uncertainty ranges approximates to Figure 38. 

 

Figure 39: Graphical representation of the solution method for a 3D time dependant ELM 

However, for this study time was neglected, and coupled power calculated for 

one area as per Figure 38.  

This was for two key reasons. Firstly, insufficient data was available to assign 

uncertainty ranges per time slice. Secondly, approximating an ELM by a triangle as 
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shown in Figure 38 is simpler computationally, and sufficient information is 

available to put bounds on the region. Additionally, as steady state analysis is used, 

time is not a variable in the coupled power calculation so considering only the X-R 

plane is sufficient.  

However, the resulting average coupled power calculation is inaccurate, as there 

is equal weighting applied to all coupled power values, regardless of the overlapping 

of the R-X uncertainty ranges between time slices. This also affects the location of 

the true optimal, as including time would bias the average coupled power toward the 

region of lower disturbance. This is because ELMs classically display a high peak 

with an exponential roll off. Therefore they spend most time at lower disturbance 

values. This will move the average coupled power optimal along the X1=-X2 locus 

toward the origin (assuming the ideal CT & ELM models). It is also likely to result in 

reduced set point sensitivity to disturbance, as the extremes of the ELM have less of 

an influence on the overall performance. 

Therefore, in addition to asymmetry and mutual variations, future ELM 

experiments should seek to capture time dependency information to enable more 

accurate CT circuit performance predictions. 

6.3. Coupled power modelling 

6.3.1. Derivation of coupled power performance meas ure 

The model for coupled power includes both power limitation and interrupt 

interlock features, as summarised in section 2.3.2. The settings used in this study are 

those reported by Sibley & Wade (1999). Therefore, coupled power to plasma has 

three distinct states as follows: 
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• Below a reflected power of 130kW the coupled power is a function of the 

load and corresponding reflection.  

• Above 130kW, but below a vswr of 3, the driving voltage is reduced such 

that there is constant reflected power. The response time on this interlock is 

0.5ms, which is fast in comparison to the ELM duration of 2.5-4ms. 

Therefore for simplicity, the steady state coupled power is always used. 

• For a reflection of greater than or equal to 3 the power is tripped and coupled 

power is thus 0. 

This behavior was modelled as follows. Consider the definitions for forward and 

reflected power  

0

2

Z

V
P i

i =  
[50] 

0

2

Z

V
P r

r =  
[51] 

where P is power, V voltage, Z0 the characteristic impedance and the subscripts i & r 

denote incident and reflected respectively. 

In the region of no interlock intervention (P<130kW) the coupled power Pc is 

thus 
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Substituting in the definition ir VV Γ=  into equation 52, where ‘Γ’ is the 

reflection coefficient, yields: 

( ) ( )22

0

2

11 Γ−=Γ−= i
i

c P
Z

V
P  [53] 
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Therefore coupled power may be expressed as a function of VSWR by 

substituting equation 34 into equation 53 

( ) 

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PP ic  [54] 

For interlock intervention the reflected power is maintained at a given critical 

setpoint, Pr_max=130kW. By definition the limiting reflected voltage ‘Vr_max’  is 

defined from equation 51 as 

crr ZPV ⋅= max_max_  [55] 

Therefore the maximum incident power can be determined by combining 

equations 50 & 55 
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Thus, for interlock intervention, the maximum coupled power is obtained by 

substituting equations 56 & 34 into equation 54. Thus 
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The critical VSWR crossover point, Scrit, can be determined from equating 

equations 54 & 57. Therefore 
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[58] 

Therefore, the coupled power can be modelled as a piecewise function 

summarised in Table 6. 

The valid inputs are summarised in Table 7, with the resulting waveform 

illustrated in Figure 40. 

 



 

89

Region of validity Coupled Power 

VSWR <= Scrit 

( ) 

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
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Pi  

Scrit <VSWR < 3 
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
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

− 2max_
1

4

S

S
Pr  

VSWR>=3 0 

Table 6: Summary of coupled power relationships 

 
 

 
Figure 40: Coupled power vs. VSWR 

 

Nomenclature Description Value 

Pi Incident Power 2MW 

Pr_max Maximum permissible reflected power 130kW 

Scrit The critical value of VSWR for power 

limitation max_

max_

ri

ri

PP

PP

−

+
 

Table 7: Parameter description for coupled power analysis 
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6.3.2. Numerical average X-R performance model 

The above performance measure was therefore applied to predicting CT 

performance for any given arbitrary combination of capacitor set points. 

Thus, using the candidate capacitor set point positions, the capacitance was 

derived using equation 9. The equivalent Thevinin antenna impedance was thus 

calculated using equation 19. Due to the presence of reactive disturbance, it was 

found that a more sophisticated 2nd stage model as discussed in section 3.2 was 

required. Therefore, the 2nd stage transformer and stub settings were calculated using 

equations 21 & 23 respectively. 

Plasma disturbances were considered two dimensional as in section 6.1, and were 

modelled using equation 26. The instantaneous VSWR was calculated using equation 

34, and consequently the resulting coupled power was derived using the relations 

summarised in Table 6. This was repeated for all nodes in the meshed ELM X-R 

space and averaged to give the overall performance.  

An ELM was considered to exist within a triangular locus when drawn on the X-

R plane, with nodes (1,1), (1,5) & (0.75,5) where (1,1) represents the nominal ‘ELM 

free’ state. The ELM area was always meshed with 55nodes. The code for the X-R 

average coupled power performance is detailed in Appendix G. 

As an initial test, the new performance was assessed for an ELM with no reactive 

component (k=0), and λ=5. The results are shown in Figure 41 for a midband 

frequency of 42.5MHz, and a coupling resistance of 0.75Ω: 

As can be seen, the optimal lies on the X1=-X2 locus as expected (dotted red line), 

which is consistent with previous assessment methodologies. Additionally, as 
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intended the optimum lies away from any discontinuities in the solution, as the cut 

off now appears on the edge of the cyan coloured region as shown top right.  

 

Figure 41: Surface plots of the X-R average coupled power performance measure for an ideal 
RDL with no reactive disturbance 

 
However, with a reactive component of k=0.75 to the ELM enabled, the response 

is significantly changed, as shown in Figure 42. 

 

Figure 42: Surface plots of the X-R average coupled power performance measure for an ideal 
RDL including reactive disturbance 

 
As can be seen, the performance has decreased with reactive ELMs. 

Additionally, the optimal set points are significantly altered, with the optimum no 

longer located on the X1=-X2 locus. Finally, it appears the optimum again lies on or 

close to a mathematical discontinuity. 
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These alterations are more apparent when considering the phase plots of the same 

two candidate solutions as shown in Figure 43. 

 

Figure 43: Phase plots for average X-R performance model 

As can be seen the valid region is significantly reduced, the gross phase has 

reduced from 0 to approximately -10o, and the net phase angle has increased from 

approximately 130o to 140o. Clearly the effects of ELMs are pronounced, and the 

highly localised nature of the resulting set point presents a distinct control challenge, 

more demanding than previously encountered. Additionally, a numerical solver is 

again required to derive set points for optimal RDL performance. 

6.3.3. Numerical Set point solver 

Section 6.3.2 outlined the requirement for a solver to extract the optimal 

configuration for an RDL using the average X-R coupled power performance model. 

It has been observed that the solution again may occur on, or adjacent to, a 

mathematical discontinuity. Therefore, to prevent solving errors, the numerical 

solver developed in section 4.3.2 was adapted. This method searched the solution 

space with a course mesh, identified a local maximum and then re-meshed at twice 

the resolution in a locality of +/- 2x the previous resolution about the maximum. This 
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process was repeated iteratively until a predefined resolution had been reached. The 

following modifications were necessary to the code: 

1. The algorithm uses the X-R averaged coupled power performance 

measure, rather than the former resilience measure. This is described in 

section 6.3.2. 

2. The average X-R performance model uses capacitor stroke rather than arm 

reactance as its input. 

3. Previous code searched only one quadrant of the solution space in the 

reactance plane as solutions were symmetrical about X1=X2. This 

symmetry does not hold for reactive ELMs, and so the code was modified 

to search a user defined quadrant so that each quadrant can be 

independently assessed in turn to determine the true global maximum. As 

stroke is used rather than reactance, arm reactance search “quadrants” have 

been mapped into the capacitor stroke domain. 

4. Previous code would return an error if the search window was too close to 

the edge of the initial search area (code would try to read a matrix with 

index 0 or negative). Code now warns that the solution is too close to the 

edge. 

5. The revised X-R performance model yields highly localised solution 

“islands” Therefore, the code now warns users if the initial search is too 

course, i.e. all performance values were calculated 0 and the island was 

missed. 

The resulting code is recorded in Appendix H. 



 

94

7. Implications of reactive ELMs 

7.1. Sensitivity studies 

It is necessary to repeat the sensitivity study of section 5.3 to establish the extent 

of influence the reactive component to the ELM has on the arm phase set points. 

Therefore, an indication of the adjustments required to the AM algorithm may be 

determined. Specifically, this study will address whether: 

1. Optimal gross and net angles remain load invariant 

2. Net angle retains a sufficiently low sensitivity to variables that its set point may 

be fixed 

3. Gross phase angle can still be approximated by the indicator dZT/df =0 

Sensitivity studies adopting the resilience approach set out in 5.3 adopted a 

critical contour of λ=5 to described the possible set point loci. This is not transferable 

to the average coupled power model, and so an alternative critical measure must be 

applied. Consequently, this analysis applied an arbitrary cut off of 50% average 

coupled power. 

7.1.1. Phase load invariance 

The arm phase control algorithm is conceived from the logic that for a resistive 

disturbance the optimal resilience is a function of arm relative current phasing, and 

invariant with loading as discussed in section 4.1. For a reactive disturbance it must 

be assessed if this definition holds. 
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Using the solver summarised in section 6.3.3, the optimal set points for the arm 

phases using the average coupled power performance were calculated for i) a purely 

resistive disturbance, and ii) a resistive and reactive disturbance. 

The resulting solution for the purely resistive model is shown in Figure 44. As 

can be seen, there is a degree of numerical noise in the solution. On inspection of the 

solution locality in Figure 41, the local gradient is flat, which provides a poor target 

for the optimisation routine. However, it is clear that the performance and the 

optimal set points of the circuit are load invariant, as predicted by the former 

resilience method of section 5.2. Additionally, the gross phase target approximates to 

0, as expected. The net angle phase target differs, in that it reduced from 138o to 

127o. This is because the modified method is optimising within a bounded range of λ 

between 1 and 5. The optimal resilience method discussed in section 5.2 is optimised 

for an unbounded disturbance. 

 
Figure 44: Illustration of loading invariance for real disturbance 
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The simulation was repeated, including a reactive component on the disturbance 

of up to k=0.75. The results are shown in Figure 45. As can be seen, all parameters 

show significant sensitivity to loading. 

 
Figure 45: Illustration of load dependency for reactive ELMs 

Performance, formerly load invariant, now shows a strong dependence on strap 

resistance. Performance favours higher coupling which is unfortunate, as disturbance 

tolerance is mostly required at low coupling (H mode). Additionally, it can be seen 

that for the majority of the resistance scale, performance is less than the critical 

VSWR setting for power limitation (0.935 for 2MW). Therefore, operation for 

reactive ELMs with up to 25% variation from base load is not possible within the 

VSWR<1.5 limit adopted for the ILA. 

The gross angle illustrates a pronounced offset from the ideal 0o, of 

approximately -10o. This can be rationalised, as if the circuit were pre-configured 

with +25% additional reactance on each arm, the resulting -25% reactive disturbance 

would rebalance the circuit. However, the solution also shows a weak sensitivity of 

offset to loading, of approximately 2o over the range of coupling. 
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The net angle also shows a pronounced offset from 127o to up to 145o. This can 

be rationalised as the reactive component is reducing overall performance, and so 

pushes the system toward maximal resilience (i.e. optimised for an unbounded 

disturbance). Using equation 41 the set point for an unbounded disturbance may be 

calculated for and a critical VSWR of 1.5 (free operation) and 3 (cut off). The results 

are compared with those derived by the average coupled power model. As can be 

seen, the ratio is similar. Although this does not amount to a proof, it suggests that 

the drift to 144o from 127o is due to the average power lying mostly in the power 

limited region for reactive ELMs, and not the free reflection region as for purely 

resistive ELMs. 

Critical VSWR Optimal Theory 
(unbounded disturbance, 

equation 41) 

Bounded Disturbance 
(average coupled power 

model) 

ratio 

1.5 138o 127o (purely resistive elm) 0.92 

3 160o 144o (reactive elm) 0.9 

Table 8: Conceptual justification of net angle set points 

The critical contours of 50% power are plotted across the resistance range in 

Figure 46. 

As can be seen, the critical contour for the lowest coupling satisfies the locus for 

all coupling. Therefore, unless the setpoints become load dependant (an added 

complexity avoided in algorithms discussed thus far) it is most appropriate to use the 

lowest intended coupling as target in any control system. 

Additionally, the accuracy required for net angle is typically lower than that for 

gross angle, as encountered before. 
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Figure 46: Critical contours for varying resistance 

Finally, comparing the drift in gross angle set point shown in Figure 45 with the 

locus shown in Figure 46, it can be concluded that the >2o drift is within the solution 

locus, offering the possibility that no compensation is required. 

7.1.2. Mutual reactance sensitivity 

Mutual Reactance of the CT circuit was varied between 0 and 2% on a circuit 

with coupling of 0.75 ohm with no resistive mutuals or asymmetry. The trend of 

performance versus reactive mutuals is shown in Figure 47. 

 
Figure 47: Performance vs. reactive mutuals 
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The 50% power contour drift is shown in Figure 48. As can be seen, there is no 

overlap in loci and therefore compensation is required. 

 
Figure 48: Critical contour for reactive power variations 

The optimal set point trends with mutual reactance are illustrated in Figure 49. 

As can be seen, net angle remains invariant. However, gross angle, as illustrated in 

Figure 48 and consistent with previous findings shows a pronounced drift.  However, 

it should be noted that i) as discussed in section 7.1.1, there exists an offset in gross 

angle, and ii) the parameter is almost twice as sensitive as per the sensitivity study of 

section 5.3. 

 
Figure 49: (i) Gross angle (ii) Net angle optimal set point trends with mutual reactance 
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7.1.3. Mutual resistance sensitivity 

Mutual resistance of the CT circuit was varied between 0 and -50% on a circuit 

with coupling of 0.75 ohm with no resistive mutuals or asymmetry. The trend of 

performance versus reactive mutuals is shown in Figure 50. As can be seen, 

performance improves for decreasing mutual resistance. 

 
Figure 50: Performance vs. resistive mutuals 

The 50% power contour drift is shown in Figure 51. There is very little overlap in 

loci and therefore, unlike with purely resistive ELMs, compensation is required. 

 
Figure 51: Critical contour for mutual resistance variations 
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The optimal set point trends with mutual reactance are illustrated in Figure 52. 

There is pronounced drift for both gross and net angle set points. Unlike in section 

7.1.1, gross angle appears to have a strong effect, rebalancing the circuit. 

Additionally, net angle is approximately twice as sensitive.  

Therefore, increasing the magnitude of mutual coupling appears to drive the 

system toward the ideal reactive ELM free state. However, this should be interpreted 

with caution, as the model assumed no disturbance to reactive mutuals as discussed 

in section 6.2. 

 
Figure 52: (i) Gross angle (ii) Net angle optimal set point trends with mutual resistance 

 

7.1.4. Resistive asymmetry sensitivity 

Resistive asymmetry of the CT circuit was varied between 0 and 50% on a circuit 

with coupling of 0.75 ohm with no mutual impedance. However, pronounced 

differences were encountered between the performances of the two possible 

solutions. For positive asymmetry, solutions with a negative net angle (θN) set point 

improved their performance. However, for the mirror solution with a positive θN the 

performance was degraded, before disappearing altogether. The converse is true for 

negative asymmetry.  

The trend of performance versus asymmetry for the two quadrants is shown in 

Figure 53. As can be seen, performance improves with increasing asymmetry. Where 
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the solution disappears (for the sub optimal solution) the graphs show a sharp drop to 

0 for all parameters 

 
Figure 53: Performance vs asymmetry (i) – θθθθG quadrant, (ii) +θθθθG quadrant 

The 50% power contour drift is shown in Figure 51 for the dominant solution. As 

can be seen, there is very little overlap in loci and therefore, as before, compensation 

is required. 

 
Figure 54: Critical contour for asymmetry variations 

The optimal set point trends with asymmetry are illustrated in Figure 55 for the 

dominant quadrant. There is pronounced drift for both gross and net angle set points. 

Unlike in section 7.1.1, net angle is now very sensitive to asymmetry. Additionally, 

gross angle is approximately four times as sensitive as previously.  
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Figure 55: (i) Gross angle (ii) Net angle optimal set point trends with asymmetry 

7.1.5. Summary of sensitivity study findings 

The following conclusions can be drawn from the sensitivity study of 

performance with reactive ELMs to non ideal parameters. 

Firstly, the optimal gross and net angle targets are no longer load invariant. There 

is a prominent offset in θG from its nominal value of 0, with additional mild 

sensitivity to load. There is also a pronounced sensitivity of θN to load resulting in 

approximately ~17o of drift across the scale of resistance.  

Optimal algorithms may seek to design for the lowest level of coupling, as the 

lowest and highest set point loci entirely overlap. 

The net angle cannot be approximated by a fixed target. Mutual resistance and 

asymmetry both account for drifts of order 6o-8o across the parameter range, and 

there is no overlap in set point loci. 

The gross angle set point cannot be approximated by the dZT/df =0 locus, due to 

the prominent offset from its nominal value of 0. 

The gross angle is significantly more sensitive to mutual reactance and 

asymmetry than for the resistive ELM, and is now sensitive to mutual resistance in 

addition. 
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Asymmetry promotes one quadrant solution, while suppressing its mirror. 

Dominant solutions for positive asymmetry occur for solutions with negative net 

angle. 

The loci for all cases is more localised than for the resilience model, placing an 

exceptionally tight accuracy requirement on any control algorithm. Additionally, the 

X-R averaged coupled power is almost always in the power limitation region. 

Therefore, the amplitude modulation arm phase control algorithm proposed in 

section 5.2 requires modification to operate with ELMs of reactive loads up to -25%. 

Additionally, it can be concluded that fixed set point control is not acceptable, and 

that resilience must be brought under feedback control. 

7.2. Proposals 

7.2.1. Gross angle compensation 

The sensitivity study of section 7.1.1 illustrated that i) there is a prominent offset 

in the gross angle from the nominal θG=0, and, ii) there is a weak sensitivity of that 

offset with loading. 

Firstly, because the load sensitivity is weak, of order 2o, and small in comparison 

to the solution locus, it is proposed that load compensation for the θG offset is not 

required. 

Secondly, a constant offset from the nominal suggests that a fixed amount of 

reactance has been added to both arms. As one arm is capacitive and the other 

inductive, this skews the circuit so that |||| 21 XX ≠ . As the reactance of each arm 

may be added to by altering the frequency, it is proposed that a modification to the 
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AM control algorithm may be able to capture the required offset. The principle is 

illustrated in Figure 56. 

 
Figure 56: Offsetting frequency to capture gross angle locus (i) controlling to centre frequency; 

(ii) controlling to sideband 

The above figures illustrate a contour plot of dZT/df, where ‘f’ is the main driving 

frequency. Overlaid on the contours are the loci of arm reactance set points for 

varying base load. In Figure 56 (i) the heavy blue trace, representing a resistive 

ELM, follows the X1=-X2 locus as expected. As can be seen, this coincides with 

dZT/df = 0. The bold red trace reactive ELM maps out a locus offset and not truly 

parallel (this is the mild sensitivity of offset to load discussed above) 

In Figure 56 (ii), the set point loci remain the same, however, the contour plot is 

that of dZTm/dfm, that is the derivative of the sideband T-point impedance. As can be 

seen, the modulation index (in this case 1.06%) can be chosen to replicate the 
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required fixed offset in θG. The AM control algorithm can thus control to 

dZT(fm)/dfm=0, thus treating the side band as a “handrail” so that the driving 

frequency can operate with the required fixed offset in θG. This principle is 

illustrated in Figure 57. 

 
Figure 57: "handrail" principle of proposed modifie d AM algorithm 

In the proposal above, rather than set the sideband on the maximum itself, the 

modulation index is twice the requirement. Therefore, dZTm(fm)/dfm=0 can be 

approximated by ZT(fd)-ZT(fm)=0, and the filter requirements are reduced. The value 

of fm would be a constant, and its magnitude pre-calculated from the required gross 

angle set point for a symmetric circuit with no mutual impedance (in this case 2.12% 

modulation index). 

Thus, this approach enables the algorithm to compensate for i) the fixed offset in 

θG, and ii) as before the dZTm(fm)/dfm locus is sensitive to mutual reactance and 

asymmetry, and thus provides automatic compensation. 

However, an avenue for compensating for mutual resistance variations still needs 

to be found. 



 

107

7.2.2. Net angle compensation 

By considering the loci of optimal set-points, it is clear that for all but the lowest 

coupling, the accuracy target for θN is far lesser than that for θG as the loci are 

elongated with θN. This again opens the possibility for a fixed target. With regards to 

asymmetry and mutual reactance, valid solutions exist for all ranges of parameter if 

the target was simplified to a fixed value of approximately 145o.  

However, for the lowest coupling it is unlikely this method would offer sufficient 

accuracy. 

Additionally, to compensate for resistive variations, the overlapping θN < 145o, 

yet for low coupling the target θN>0o. This exclusive nature suggests that some 

indicator is required to compensate θN for mutual coupling. 
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8. Future work 

This study captures initial development of a control methodology, and significant 

further work is required to realise such a system. The following key issues require 

further attention: 

Excess reactive disturbance: The above study assumed a 25% drop in arm 

inductance. However, in the model arm inductance is a lumped element comprising 

strap inductance, strap feeder inductance and capacitor parasitic inductance. The 

strap itself only accounts for 50% of this lumped element. Therefore, applying an 

ELM disturbance of 0.75 to the entire arm is overly pessimistic, and if strap 

inductance alone were influenced this factor should be changed to 0.875. 

Considering Figure 41 & Figure 42, reducing the reactive component has a very 

strong beneficial influence on the set point solution loci. Therefore, this will cause 

the solution for reactive ELMs to converge with that for purely resistive ELMs, and 

the issues of excessive accuracy requirements and resistive mutual compensation 

identified in section 7.2 less critical. 

“Handrail” AM algorithm testing : The handrailing control method for 

capturing the fixed offset in θG set point requires validation. This is particularly 

necessary, as the sensitivity of set point to asymmetry and mutual reactance is 

increased with reactive ELMs. It has not been established that tracking the 

dZT(fm)/dfm=0 provides sufficient compensation for the larger set point drifts 

involved. 

Mutual impedance ELM components: This study has considered that mutual 

impedance is ELM invariant, based on the observations of Monakhov (2003) on the 
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JET A2 antennae. However, Lamalle (2003) assumes that strap loading and mutual 

resistance are both scaled by the same factor during an ELM. Given the difficulties 

described in section 7.2 with compensating for mutual resistance induced drifts in set 

point location, it must be established how mutual resistance behaves during an ELM, 

and the sensitivity studies repeated capturing this effect so that set point trends are 

known definitively. 

Multi-dimensional disturbances: This study considered an ELM affecting arm 

reactance and resistance only. In reality, ELMs occupy more dimensions, including 

time, asymmetry, and most likely mutual impedance. Experiments are required to 

establish by measurement disturbance models for the JET ILA, so that realistic 

bounds may be placed on them, and the correct dimensions modelled. 

L-H transitions:  The disturbance modelled in section 6.2 assumed an ELM as 

the only disturbance. The bounded disturbance area should be increased to include 

the L-H transition, as the response of the CT circuit to decreasing coupling is 

significantly different, and less tolerant, than that for increasing coupling. 

Dynamic modelling: With an overarching control methodology established (AM 

phase control) dynamic models of the actuators and the associated control systems 

are required to demonstrate matching within the target settling time. This is 

particularly relevant for the 2nd stage match, which on the ILA is not yet available or 

configured for speed. On an arbitrary antenna design, however, it is proposed that the 

second stage should use an alternative fast matching network of which there are a 

variety of candidate architectures (capacitor loaded stubs, fast ferrite tuners etc). As 

part of the dynamic modelling, it should be noted that the actuators are all strongly 

non linear. 
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Amplitude modulation realisation: The study at present assumes that amplitude 

modulation has perfect accuracy and filtering. In reality, selective filters introduce 

phase delays that must be captured in the dynamic control algorithm. Additionally, 

the gain on the sideband must be such that the signal may be extracted from noise. 

However, larger sidebands are limited by the system maximum voltage, and thus 

coupled power will be reduced as more power is directed to sidebands. 

Inter RDL mutual coupling:  The AM control algorithm has been shown to 

offer promise in compensating for mutual impedance between the two straps of one 

RDL. However, in any antenna, RDLs shall be mounted adjacent to one another, and 

so compensation is required for inter RDL mutual coupling. The sensitivity of the 

system to this additional disturbance must be assessed. 
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9. Conclusions 

This study has investigated control aspects of the conjugate T resilient in-vessel 

matching architecture for ICRH antennae. 

The CT circuit achieves high levels of resilience to loading disturbances by 

configuring two identical straps in parallel, fed from a common T point. If the phase 

is appropriately configured between the two arms, a symmetrical disturbance at the 

load will result in destructive interference at the T point. 

This study identified that the definition of resilience was a function of arm 

relative phasing, and not of the T point impedance as conventionally used. The target 

angles were derived algebraically for an ideal circuit. 

The optimal phase was validated using custom written numerical solvers, 

necessary due to the presence of mathematical discontinuities in the solution for 

resilience. Using these tools, sensitivity studies of circuit response revealed a strong 

dependence of optimal configuration to non ideal parameters. 

An alternative algorithm based on controlling the arm phase angle was proposed. 

An additional diagnostic of antenna state by amplitude modulation was also 

suggested to provide compensation for non ideal parameters. Matching control 

required the inclusion of the second stage match in the real time control system. This 

methodology was compared with the pre existing T point impedance control method 

and was shown to offer significant performance enhancement in response to resistive 

disturbances. 

However, it is known that reactive disturbances are also present. This report 

proposed a novel assessment methodology capable of incorporating the real “soft 
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stop” action of interlocks, and readily scalable with additional disturbance 

dimensions. This used a disturbance space averaged coupled power measure, and 

solvers were developed to assess reactive ELM behavior. 

Sensitivity studies repeated for the reactive ELM suggest that performance of the 

CT circuit is strongly degraded, and set point solutions are highly localised. This 

presents a key accuracy challenge for any controller. They also suggest the additional 

requirement for compensation of mutual resistance terms, and the imposition of a 

fixed offset in the gross angle target. However it was noted the levels of reactive 

disturbance used were pessimistic. 

This report proposes that the fixed offset may be compensated for by using an 

appropriately chosen sideband of the AM diagnostic to guide the gross angle target 

of the circuit, much like a handrail. 

Finally, this study identified various key areas where future work must 

concentrate. Of these, the most important is to develop a better understanding by 

measurement on the JET ILA of the bounds and relevant dimensions of plasma 

disturbances. 
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11. Appendix A: Derivation of 2 nd Stage Match 

Parameters 

The required phase shifter length, d, and stub length, l, for the second stage match 

were calculated as follows1: 

The T point impedance, RL+jXL, seen through the phase shifter of length d is given 

by the expression: 
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Now d (which implies t) is chosen such that 01 ZG = for a perfect match. From equ 

(2a) this results in a quadratic equation for t: 
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These two solutions for t can then be used calculate d as follows and the smaller of 

the two solutions is then selected (as it displays a higher bandwidth). 

                                                 
1 Chapter 6.2 Single-Stub Tuning, Pozar 
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for t>=0 
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The stub length l is then calculated by using the value of t obtained above and 

calculating the stub insertion point susceptance B using equation (12b). The desired 

stub susceptance Bs is thus BBs −=  for a perfect match. Then, for a short circuited 

coaxial stub: 
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λ/2 is added to the solution if the calculated length is negative. 

The MATLAB code realisation was tested for all combinations of arm reactance in 

the solution space and successfully demonstrated a VSWR of 1 (i.e successfully 

matched) for all test cases. It is shown below: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the 2nd stage match para meters d (length 
% of transformer TL required, & Zs the impedance of  the parallel  
% short circuited stub required                                               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [d,Zs] = SSM(Z0,RL,XL,B) 
% Z0 – characteristic impedance,  
% RL – load resistance,  
% XL – load reactance 
% B – phase shift index Beta 
 
% calculate two versions of parameter ‘t’ 
t1=(XL+(RL.*((Z0-RL).^2+XL.^2)./Z0).^0.5)./(RL-Z0);  
t2=(XL-(RL.*((Z0-RL).^2+XL.^2)./Z0).^0.5)./(RL-Z0);  
  
%Calc two candidate transformer lengths, adding pi/ B if lengths 
negative  
d1=(atan(t1)+pi*(t1<0))/B;  
d2=(atan(t2)+pi*(t2<0))/B;  
s1=(d1<d2); % calculate relative length flags 
s2=(d2<d1);  
d=s1.*d1+s2.*d2;    %select lower distance  
  
%calc stub length  
t=s1.*t1+s2.*t2;    %select correct t value 
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% calculate required stub susceptance 
Bs = ((Z0-XL.*t).*(XL+Z0.*t)-RL.^2.*t)/Z0./(RL.^2+( XL+Z0.*t).^2);  
ls = -atan(1./Bs/Z0)/B; % use the correct for for a short circuited 
stub  
ls = ls+(ls<0)*pi/B;    %if negagtive length, add half wavelength  
  
%calc stub impedance  
Zs = j*Z0*sin(B*ls)./cos(B*ls);  
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12. Appendix B 

Impedance Matrix Supplied by the ILA commissioning team: 

f=41.976MHz 

Dataset JET 2006/Measurements/Tank_ChickenWire_13.09.06/549mm 

Measurements on JET-EP antenna, water tank at (589 - 549) * 0.1 = 4cm from the 

closest position 

Data processed to remove measurement adapters, the following impedance matrix is 

at the capacitor insertion points. 

The straps are numbered as follows: 

1 5 
2 6 
3 7 
4 8 
 
Resistance matrix R: 
 
    0.3953   -0.1193    0.0885   -0.1134    0.0582   -0.0678    0.0753   -0.1093 
   -0.1193    0.3494   -0.1652    0.1641   -0.0677    0.0747   -0.0943    0.1486 
    0.0885   -0.1652    0.3732   -0.2358    0.0743   -0.0920    0.1104   -0.1826 
   -0.1134    0.1641   -0.2358    0.6013   -0.1085    0.1452   -0.1818    0.2811 
    0.0582   -0.0677    0.0743   -0.1085    0.3432   -0.1200    0.0927   -0.1185 
   -0.0678    0.0747   -0.0920    0.1452   -0.1200    0.3076   -0.1680    0.1681 
    0.0753   -0.0943    0.1104   -0.1818    0.0927   -0.1680    0.3404   -0.2268 
   -0.1093    0.1486   -0.1826    0.2811   -0.1185    0.1681   -0.2268    0.5691 
 
Reactance matrix X: 
 
   25.8622    0.4600   -0.0575    0.0508    0.7876   -0.0575   -0.0144    0.0455 
    0.4600   23.1897    1.1654   -0.1014   -0.0590    0.5465   -0.1058   -0.0573 
   -0.0575    1.1654   23.3284    0.4564   -0.0150   -0.1043    0.4965    0.0065 
    0.0508   -0.1014    0.4564   26.4483    0.0453   -0.0573    0.0101    0.8361 
    0.7876   -0.0590   -0.0150    0.0453   25.9228    0.4622   -0.0600    0.0537 
   -0.0575    0.5465   -0.1043   -0.0573    0.4622   22.9934    1.1850   -0.1058 
   -0.0144   -0.1058    0.4965    0.0101   -0.0600    1.1850   23.3915    0.4754 
    0.0455   -0.0573    0.0065    0.8361    0.0537   -0.1058    0.4754   26.6804 
 
Impedance matrix = R + j X 
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13. Appendix C 

This code calculates the resilience of a given CT circuit, in response to resistive 

disturbances. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the resiliance of an asy metric RDL with 
% no cross coupling. Resilience is defined as the 1 st critical vswr        
% crossing. It starts from the matched condition, &  initially scans 
% for  sign change to avoid local minima, then converges w ith Newton 
% raphson  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  

 function  [resilience] = Load_tolerance(r,XX1,XX2,ZZm,Scref, acc,Zm) 
% This function requires an input of strap resistan ce (in the form 
[r1;r2]), branch1 reactance XX1, branch2 reactance XX2, the 
characteristic impedance ZZm, a critical vswr Scref , a solution 
tolerance acc, and a mutual impedance Zm. It return s the resilience 
of the resulting RDL.  

 
 solve = 1;              % set numerical solver flag = 1  
 VS = 1;                 % set solver engine to variable step 
initially  
 P = 0;                  % solver will not initially look for peaks  
 NR = 0;                 % solver will not initially use newton 
raphson  
 suppress = 0;           % solver will not suppress peak detection  
  

s = 0.5;                   % reference step of 0.5 on lambda. This 
sets the initial search resolution. Deliberately co urse.  

 count=1;                    % initialise count  
 lp = (1+s);                 % initialise predicted lambda. This is 
the first “guess” lambda so that we can initialize the input and 
output variables. Lambda is the definition of resil ience  
 rs = [r,lp*r];              % set initial guess to matched 
solution. This uses lambda to initialize the resist ance register. 
The first entry is the former resistance, the 2 nd entry the current 
solution. Rs is the instantaneous strap resistance,  and so is equal 
to resilience*strap base load. NOTE THAT THIS DEFIN ITION IGNORES ANY 
SCALING OF INDUCTANCE, AND MUTUALS 
 lambda = [1,lp];      % initialise load scaling 
factor lambda. The first entry is the former lambda , the 2 nd the 
current  
         
 %calculate vswr for the 1st two guesses%  
 vswr(1) = CT(rs(1:2,1),XX1,XX2,ZZm,Zm);  % matched solution  
 vswr(2) = CT(rs(1:2,2),XX1,XX2,ZZm,Zm);  % guess 1 solution  
  
 %calculate initial gradient in the solution. Use a local resolution 
of +/-0.005% on resistance. This is used in the sol ver algorithm  
 l1 = lambda(2)+0.005;  
 l2 = lambda(2)-0.005;  
 v1 = CT(l1*r,XX1,XX2,ZZm,Zm);  
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 v2 = CT(l2*r,XX1,XX2,ZZm,Zm);  
 gradient = (v2-v1)/(l2-l1)*ones(2,1); % this is the local 
gradient of the vswr solution at the latest guess o f lambda  
         
while  solve == 1            

% this loop will run until the value of lambda that  produces 
a critical vswr is derived.  

       % solution possibilities %  
       peak_detect = (gradient(2)<0)&&(gradient(1)> =0);                     

% this flag shows that the solution has encountered  a peak 
(gradient always starts +ve, as the search always s tarts from 
the matched position)  

       close = (vswr(2)<1.5)&&(vswr(2)>1.45);                               
% this flag shows that the latest guess is in close  proximity 
to the solution  

       between = (vswr(1)<Scref)&&(vswr(2)>Scref);                          
% this flag shows that the solution lies between th e last two 
guesses  

       soln = (vswr(2)<Scref*(1+acc/200))&&(vswr(2) >Scref*(1-
acc/200));     

% this flag shows that the solution has been found,  within 
acc% margin of error  

        
% the following code selects the correct solver str ategy dependant 
on the solution flags: 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if target is between latest two guesses on a posi tive gradient, % 
% OR if already tracking intersection                             %   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       if  ((between==1)&&(gradient(2)>=0))||(NR==1)  

VS = 0;  P = 0;  NR = 1;  %select newton raphson solver – 
most robust at tracking a direct intersection 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if local peak detected in vicinity of target, OR if already     %  
% tracking local peak AND peak tracking not suppres sed             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
       elseif  ((peak_detect==1)&&(close==1)&&(suppress==0))||(P= =1)  

VS = 0;  P = 1;  NR = 0;  %select peak solver. critical 
resilience coincides with a local peak hitting crit ical 
vswr. In this case N-R does not converge well. Howe ver, 
do not track local peaks if not in vicinity of solu tion, 
as this wastes time 

       else  
           VS = 1;  P = 0;  NR = 0;  %select the default variable 
step solver  
       end  
        
       %numerical iterations  
       if  (soln == 1)&&(gradient(2)>=0)          

% vswr within solution deadband, and on a positive gradient. 
Therefore solution found, break loop and record result  

          solve = 0;                       % crossing found, break 
loop  
          resilience = lambda(2);          % resilience found   
       elseif  NR == 1 
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% apply Newton raphson numerical iteration 
          grad = 1/gradient(2);            % calc gradient in 
solution  
          lp = grad*(Scref-vswr(2))+lambda(2);  % new predicted 
critical lambda                             
       elseif  P == 1                             

% investigate local maxima to see if it is the solu tion 
 
% calculate flag to determine if local gradient of latest 
guess is within the solution deadband – (ie local m axima 
found)  

           P = (gradient(2)>-0.001)&&(gradient(2)<0 .001);  
           P=P-1;  
           if  P == 0 % maximum found, we are beneath solution, so 
select variable step solver and proceed  
               VS = 1;  P = 0;  NR = 0;          

suppress = 1;                    % suppress peak 
solve   (initially) to enable solution to break out  
of peak mode  

           else 
% find local peak by using N_R to converge on local  
gradient = 0.  
grad = (lambda(2)-lambda(1))/(gradient(2)-
gradient(1));       % calc gradient in the gradient 
solution  
lp = grad*(0-gradient(1))+lambda(1);                          
% new predicted crit lambda  

           end  
       elseif  count>300                         % stuck in loop  
          solve = 0;                            % break loop  
          sprintf( 'failed to converge within 300 cycles' )  
       elseif  VS==1                              

% use variable step to find solution locality INITI ALY. 
Resolution increases as solution approaches.  
lp = lp+2*(0.1-s)*(vswr(2)-1)+s;      % variable step 
search, reduces step size from 0.5 to 0.1 when clos e to 
critical vswr to prevent oscillation. overshoot 
compensation as steps reverse if overshoot occurs ( but this 
should trigger NR solve in any case)  
suppress = 0;                         % If solution has 
just moved away from a local maxima, this command r e-arms 
the peak detection algorithm in case another local maxima 
is encountered  

       end  
rs = [rs(1:2,2),lp*r];                   % update resistance 
register. Note that the notation for r is [r1;r2] a nd for rs 
is [rs1(i),rs1(i+1);rs2(i),rs2(i+1)]. This code shi fts 
register values left, and introduces the latest cal culation 
in the 2 nd entry  

       lambda = [lambda(2),lp];                 % update lambda 
register  

vswr(1) = vswr(2);                       % update vswr 
solution register  
vswr(2) = CT(rs(1:2,2),XX1,XX2,ZZm,Zm);  % calculate new 
guess vswr  

       gradient(1) = gradient(2);             % update gradient 
register  
       %calc new gradient at latest guess  
       l1 = lambda(2)+0.005;  
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       l2 = lambda(2)-0.005;  
       v1 = CT(l1*r,XX1,XX2,ZZm,Zm);  
       v2 = CT(l2*r,XX1,XX2,ZZm,Zm);  
       gradient(2) = (v2-v1)/(l2-l1);  
       count = count+1;                         % increment 
iteration count  
 end  
  
%-------------------------------------------------- -----------------  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the vswr for an Asymmetr ic RDL with cross      
% coupling                                                        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [vswr] = CT(rs,XX1,XX2,ZZm,Zmutual)  
  
z1 = rs(1,1)+XX1*j;                  % branch impedance 1  
z2 = rs(2,1)+XX2*j;                  % branch impedance 2  
zct = (Zmutual^2-z1*z2)/(2*Zmutual-(z1+z2)); % CT total impedance 
including mutuals  
G = (ZZm-zct)/(ZZm+zct);             % calc reflection coeficient  
vswr = (1+abs(G))/(1-abs(G));        % calc vswr 
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14. Appendix D 

This code extracts the required net and gross phase angles for optimal resilience 

performance of any given CT circuit in response to resistive disturbances. 

The following code is recorded with added commentar y in green  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program numerically calculates the maximum r esilience for a      
% asymmetrical CT circuit with cross coupling betwe en straps and a      
% perfect 2nd stage matching circuit                                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  [max_resilience,x1_max,x2_max,thN,thG] = 
resilience_calc(p,e,f,strap)  
%This code accepts a strap average loading called “ strap”, a 
percentage asymmetry “p”, a percentage resistive mu tual “e” and a 
percentage reactive mutual “f”. it returns the maxi mum value of 
resilience, the corresponding arm reactance setpoin ts x1max & x2max, 
& phase setpoints thN (net phase) and thG (gross ph ase)  
 
%define degree of mutual coupling – turn variables e&f into ohms 
with reference to average strap load  
Zm = e*real(strap)+f*imag(strap)*j;  
%define load – obtain values of branch resistance t o meet asymmetry 
criteria.  
r1 = 2/(2-p);  
r2 = 2*(1-p)/(2-p);  
r = real(strap)*[r1;r2];        % nominal strap resistance  
  
%define VSWR limit  
Scref = 1.5;                    % max tolerable VSWR  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
variable resolution solver – this solver forms an i nitially course 
mesh for the whole solution space in X1 & X2 and ca lculates the 
resulting vswr at each node. The maximum value is t hen obtained. The 
solver then selects an area +/- 2 node around this maximum, and re-
meshes this window at double the resolution. This p rocess is 
repeated until the necessary resolution on X has be en met, and so 
homes in on the maxima. This approach is necessary,  as the maxima 
exists on a discontinuity. Therefore traditional gr adient ascent 
methods are not possible.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
optimise = 1;                  % set optimisation flag  
count = 1;                     % initialise count  
%form initial course grid  
grid = 0.75;                   % initialise grid resolution to 0.75 
ohms 
% 1 solution known to exist in upper left quadrant – limit search to 
this area  
X1 = -10:grid:0;                        
X2 = 0:grid:10;  
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x1,x2] = meshgrid(X1, X2);      % form grid between orthogonal 
vectors X1 and X2  
 % calculate 2nd stage match parameters. This simpli fication ignores 
the design of the 2 nd stage circuit, but rather assumes that whatever 
impedance the resulting parallel combination yields , a hypothetical 
2nd stage has equalized this with the line characteris tic impedance. 
Therefore, for all combinations of X the vswr is 0.  
z1 = r(1,1)+x1.*j;             % branch impedance 1  
z2 = r(2,1)+x2.*j;             % branch impedance 2  
zm = (Zm^2-z1.*z2)./(2*Zm-(z1+z2)); % this is the total T point 
impedance, and is taken as the characteristic imped ance.  
  
a=size(x1);                    % obtain array dimensions of grid  
resilience = zeros(a(1),a(2)); % preallocate resilience for speed  
 
while  optimise == 1 

% stay within this loop until optimum required reso lution found.  
    if  grid<=0.001              %last resolution sufficient at 0.001 
ohm. Therefore finish optimization and break loop 
        optimise = 0;  
        [re,rr] = max(resilience);  
        [Re,column] = max(re);  
        row = rr(column);  

max_resilience = Re;        % output global maximum 
resilience 

        x1_max = x1(row,column); % obtain X1 coordinate of global max 
        x2_max = x2(row,column); % obtain X2 coordinate of global max 

 
elseif  count == 1                  % establish initial sweep. 
The grid will cover the whole solution space. Solve r tolerances 
are relaxed to gain speed.  

        for  m = 1:1:a(1)               % scan the rows of x1  
            for  n = 1:1:a(2)           % scan the columns of x1  
      % calculate the resilience for course grid, 1% erro r on result  

[resilience(m,n),record] = 
Load_tolerance(r,x1(m,n),x2(m,n),zm(m,n),Scref,1,Zm
);  

                count = count+1;  
            end  
        end  
      
    else  

% initial grid is complete. obtain maxima from cour se mesh. 
Re – maximum value, row, & column the matrix addres s in the 
solution  

        [re,rr] = max(resilience);  
        [Re,column] = max(re);  
        row = rr(column);  
         

% obtain local grid. Grid space is x coordinate of maximum 
+/- 2*current grid resolution  

        X1LL = x1(row,column)-2*grid;   %x1 lower limit  
        X1UL = x1(row,column)+2*grid;   %x1 upper limit  
        X2LL = x2(row,column)-2*grid;   %x2 lower limit  
        X2UL = x2(row,column)+2*grid;   %x2 upper limit  

grid = grid/2;      % double resolution for next iteration 
 
% form new mesh 9x9 window around current maximum             
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XX1 = X1LL:grid:X1UL;            
        XX2 = X2LL:grid:X2UL;  
        [xx1,xx2] = meshgrid(XX1,XX2);  
         

% insert window into exisitng grid, and return the new 
vectors that describe the window location – ro & co  

        [resilience,ro,co] = 
refine_grid(resilience,row,column,zeros(9,9));  
        [x1,ro,co] = refine_grid(x1,row,column,xx1) ;  
        [x2,ro,co] = refine_grid(x2,row,column,xx2) ;  
        

% enlarge 2 nd stage match (insert ones – values outwith 
window are not considered from now on)  

        a=size(x1);  
        z1 = ones(a(1),a(2));  
        z2 = ones(a(1),a(2));  
        zm = ones(a(1),a(2));  

% populate window with updated 2nd stage match para meters 
(assuming an ideal 2nd stage circuit) %  

        z1(ro,co) = r(1,1)+x1(ro,co).*j; % branch impedance 1  
        z2(ro,co) = r(2,1)+x2(ro,co).*j; % branch impedance 2  
        zm(ro,co) = (Zm^2-z1(ro,co).*z2(ro,co))./(2 *Zm-
(z1(ro,co)+z2(ro,co))); % 2nd stage match including mutuals  

%calculate values of resilience in the window. Redu ce error 
to 0.1% for less numerical noise in solution.  

        final=zeros(a(1),a(2));  
        for  m = ro             % scan the rows of window  
            for  n = co         % scan the columns of window  
     % calculate the resilience for the window, 0.1% err or on result  
                [resilience(m,n),record,final(m,n)]  = 
Load_tolerance(r,x1(m,n),x2(m,n),zm(m,n),Scref,0.1, Zm);    
            end  
        end  
        count = count+1;  
    end   
end  
  
%calculate phase of max solution%  
armz1 = r(1,1)+j*x1_max;  
armz2 = r(2,1)+j*x2_max;  
q1 = (Zm-armz2)/(Zm^2-armz1*armz2);    %a quantity of same phase as 
I1 (phase referenced to Tpoint voltage)  
q2 = (Zm-armz1)/(Zm^2-armz1*armz2);    %a quantity of same phase as 
I2 (phase referenced to Tpoint voltage)  
qth1 = atan2(imag(q1),real(q1))/pi*180;  %extract phase angle of I1  
qth2 = atan2(imag(q2),real(q2))/pi*180;  %extract phase angles of I2  
%remember that angles are of opposite sign - so gro ss + net angle 
definitions have been inverted  
thG = qth1-qth2;      %output gross phase coord of global max 
thN = qth1+qth2;     %output net phase coord of global max 
 
  
%-------------------------------------------------- -----------------  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function accepts a nxn matrix & an index and  inserts 4 rows &    
% columns about the index. values are filled by dup licates of the       
% adjoining rows and columns. A refined local grid is then inserted     
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% around the maxima location                                            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [output,ro,co] = refine_grid(input,row,column,locl _grid)  
     
    % insert new rows in “input”  
    upper = input(1:(row-2),:);  
    upper_v = input((row-1),:);  
    centre_r = input(row,:);  
    lower_v = input((row+1),:);  
    lower = input((row+2):end,:);  
    output = 
[upper;upper_v;upper_v;centre_r;centre_r;centre_r;l ower_v;lower_v;lo
wer];  
     
    % insert new columns  
    left = output(:,1:(column-2));  
    left_v = output(:,(column-1));  
    centre_c = output(:,column);  
    right_v = output(:,(column+1));  
    right = output(:,(column+2):end);  
    output= 
[left,left_v,left_v,centre_c,centre_c,centre_c,righ t_v,right_v,right
];  
     
    % insert local mesh  
    row = row+2;     % convert maxima location indices to new 
enlarged matrix  
    column = column+2;  
    %new search window description vectors  
    ro = (row-4):(row+4);  
    co = (column-4):(column+4);  
    output(ro,co) = locl_grid; 
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15. Appendix E 

This code extracts the required gross and net angle set points to deliver a pre declared 

target T point impedance. It simulates the action of the fixed T control algorithm 

The following code is recorded with added commentar y in green 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This algorithm calculates the optimal arm reactan ce set points for  
% the fixed T point impedance algorithm. It accepts  frequency (w),  
% strap resistance (r), resistive mutual (r_mutual) , inductive 
% mutual (L_mutual)& target T point impedance z_ft                              
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [x1_FT,x2_FT] = fixdT(w,r,r_mutual,L_mutual,z_ft)  
  
% calculate mutual impedance %  
Z_mutual = r_mutual+L_mutual*w*j;   
            
%define arbitrary starting point for algorithm%  
%initial arm reactance   
X1=-2;  
X2=2;  
% initialise data  
count = 1;               
%start solve  
solve = 1;              % solver flag  
while  solve==1  
    %calc error & gradients  

% assign neighboring X values to operating point to  make 
triangular sample region. Coordinates are red in co lumns, 
(X1,X2), (1.001*X1,X2) etc 

    xreg = [X1,1.001*X1,X1;X2,X2,1.001*X2];  
    %calc arm impedances on triangle nodes  
    zreg = [r,r,r]+j*xreg;  
    %calc T point impedance on triangle nodes  

zt = (Z_mutual^2-zreg(1,1:end).*zreg(2,1:end))./(2* Z_mutual 
-(zreg(1,1:end)+zreg(2,1:end)));     
%calculate real & imaginary part of the error betwe en actual 
impedance 
and target impedance for all nodes of the triangle % 

    E_real = real(z_ft)-real(zt);   % real part  
    E_imag = imag(z_ft)-imag(zt);   % imaginary part  
    E_T = (E_real.^2+E_imag.^2).^0.5;  % magnitude of error  
    % calc partial gradients in error space  
    d_e_x1 = (E_T(1)-E_T(2))/(xreg(1,1)-xreg(1,2));  

d_e_x2 = (E_T(1)-E_T(3))/(xreg(2,1)-xreg(2,3)); 

 
    % iterate solution  

k = 0.05;                % variable step convergence coefficient 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% calc step size. note that sign of gradient used o nly to give 
% the iteration step the correct polarity. Step siz e is then a  
% function of absolute error only, and not the grad ient             
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
dX1_t = E_T(1)*d_e_x1/abs(d_e_x1);  % calc step in X1 

    dX2_t = E_T(1)*d_e_x2/abs(d_e_x2); %calc step in X2  
    %calc new X  
    X1 = X1-k*dX1_t;  

X2 = X2-k*dX2_t; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% declare solution definitions % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% current T point resistance within +/- 0.013 ohm  
real_locus = (E_real(1)>=-0.0065)&&(E_real(1)<=0.00 65);  
% current T point reactance within +/- 0.013 ohm  

    imag_locus = (E_imag(1)>=-0.0065)&&(E_imag(1)<= 0.0065);      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if the operating point lies on intersect of real & imaginary % 
% T point loci         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if  (real_locus==1)&&(imag_locus==1)                   

solve = 0;  % solution found, break loop  
        x1_FT = X1;        % declare capacitive arm reactance  
        x2_FT = X2;        % declare inductive arm reactance  
    elseif  count == 1000 % if solver stuck in loop  
        solve = 0;    % exit solver  
        sprintf( 'fixd T failed to converge' ) % report error  
    end  
    count = count+1;   % increment counter  
end 
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16. Appendix F 

Amplitude Modulation Algorithm for automatic non ideal parameter compensation 

of θG. 

The following code is recorded with added commentar y in green  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program returns the optimal x set points usi ng the frequency     
% stabilised algorithm for a single RDL asymmetrica l with mutuals. 
% It accepts as arguments frequency (w), Strap fixe d inductance 
% (strap_L), arm resistance (r), resistive mutual ( rm), mutual 
% inductance (Lm), & the maximum vswr tolerable (vs wr_target)                           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [x1_max,x2_max] = algorithm(w,strap_L,r,rm,Lm,vswr _target)  
  
% calculate mutual impedance %  
Z_mutual = rm+Lm*w*j;  
  
% define gross angle target %  
ThG_trget = 135.5; % maximum possible of ~138.2 o; for ideal 

circuit & vswr limit of 1.5  
%define arbitrary starting point for algorithm%  
%initial arm reactance  
a=-2;  
b=2;  
% calculate initial Capacitor values  
C1s = 1/w/(w*strap_L-a);  
C2s = 1/w/(w*strap_L-b);  
% calculate initial stroke values for actuators  
s1 = (C1s*1e12-80)/4.0740741;  
s2 = (C2s*1e12-80)/4.0740741;    
% initial reactance demand signals  
average = (a+b)/2;              %initial average demand signal  
differential = abs((a-b)/2);    %initial differential demand signal  
% initialise counter  
count = 1;               
  
%start solve  
solve = 1;              %solver flag  
while  solve==1  

% calc arm impedances at all frequencies. Note the use of 0.5% 
modulation index %  

    z1 = Zarm(s1,strap_L,w,r(1,1));        % branch impedance 1 - 
centre  
    z2 = Zarm(s2,strap_L,w,r(2,1));        % branch impedance 2 - 
centre  

z1f1 = Zarm(s1,strap_L,1.005*w,r(1,1)); % branch impedance 1, 
upper sideband 
z1f2 = Zarm(s1,strap_L,0.995*w,r(2,1)); % branch impedance 1, 
lower sideband 
z2f1 = Zarm(s2,strap_L,1.005*w,r(1,1)); % branch impedance 2, 

upper sideband 
z2f2 = Zarm(s2,strap_L,0.995*w,r(2,1)); % branch impedance 2, 

lower sideband 
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    %calc dz/dw of T point  
zt_f1 = ZTF(z1f1,z2f1,rm,Lm,1.005*w);     % calc upper frequency 

impedance magnitude  
zt_f2 = ZTF(z1f2,z2f2,rm,Lm,0.995*w);     % calc lower frequency 

impedance magnitude 
dz = zt_f1-zt_f2;                         %  calculate the 

difference in sideband T point impedances.(should b e 0 when properly 
configured)  
    %calculate phase angles%  

q1 = (Z_mutual-z2)/(Z_mutual^2-z1*z2);    % a quantity of same 
phase as I1 (phase referenced to T point voltage) 

q2 = (Z_mutual-z1)/(Z_mutual^2-z1*z2);    % a quantity of same 
phase as I2 (phase referenced to T point voltage) 
    qth1 = atan2(imag(q1),real(q1))/pi*180;  %extract phase angle of 
I1  
    qth2 = atan2(imag(q2),real(q2))/pi*180;  %extract phase angles 
of I2  

gross_angle = qth1-qth2;                 % Angles are of 
opposite sign, hence negative 

er = ThG_trget-gross_angle;     % Calculate the error in θG 
solution 
  
    %declare solution definitions%  
    valid_region = (gross_angle>=90);       % valid region of 
convergence for θN 

thN_locus1 = (dz>=-0.005)&&(dz<=0.005);     % within +/- 0.01 
ohm of 

dz/df = 0  
thN_locus = thN_locus1&&valid_region;       % operating point 

must lie on net angle solution locus in region of v alidity 
thG_locus = (er>=-0.005)&&(er<=0.005);      % operating point 

must be within +/- 0.01 deg of gross angle target 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if the operating point lies on the intersect of g ross & net angle 
% loci 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

if  (thN_locus==1)&&(thG_locus==1)           
        solve = 0;  % solution found, exit iterative 
solver  
        x1_max = X1d;        % capacitive reactance solution  
        x2_max = X2d;        % inductive reactance solution  
     

elseif  count == 500  % if solver stuck in loop  
        solve = 0;        
  % exit solver  
        sprintf( 'failed to converge' ); % report error  
     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if solution not found, iterate reactance demand s ignals % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
else  
% update net angle by variable step. Maintain value  if outside 
thevalid region  

        average = average + 0.01*dz*valid_region;    
 % update gross angle by variable step.  
 differential = differential + 0.01*er;       

        % calculate the resulting reactance demand signal  
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        X1d = (average-differential);          % capacitive  
        X2d = (average+differential);          % inductive 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       % use the inverse of the model to translate reactiv e demand 

 % to capacitive demand                                             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        C1d = 1/w/(w*strap_L-X1d);  
        C2d = 1/w/(w*strap_L-X2d);  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      % use the inverse of the model to translate capacit ive demand 

% to position demand                                                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        s1 = (C1d*1e12-80)/4.0740741;  
        s2 = (C2d*1e12-80)/4.0740741; 
 
        count = count+1; % increment counter  
    end  
end  
  
%-------------------------------------------------- ----------------%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates a CT arm impedance for a  given capacitor 
% stroke (s), frequency (w), strap inductance (stra p_L) & strap 
% resistance,(r)                                                         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [z] = Zarm(s,strap_L,w,r)  
x = reactance(s,w,strap_L);         % branch reactance  
z = r+x*j;                          % branch impedance  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the magnitude of the CT Tpoint impedance  
% for 2 branch impedances, (z1 & z2), mutual induct ance (L_mutual) &  
% mutual resistance (R_mutual) at a given frequency  (w)                                                             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [z] = ZTF(z1,z2,R_mutual,L_mutual,w)  
ZM = R_mutual+j*L_mutual*w;               %define mutual  
z = (ZM.^2-z1.*z2)./(2*ZM-(z1+z2));        %calc t point 
impedance  
z = abs(z);                               % extract magnitude  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates a CT arm reactance for a  given capacitor 
% stroke,(s), frequency (w),  & strap inductance (strap_L)                                               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [x] = reactance(s,w,strap_L)  
C = (4.0740741*s+80)*1e-12;   %capacitance  
x = (w.^2*strap_L*C-1)./(w*C); % branch reactance 
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17. Appendix G 

This code calculates the resilience performance of any given CT circuit using the 

average coupled power measure. 

The following code is recorded with added commentar y in green 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program calculates & plots CT performance wi th a triangular 
% ELM locus. It assumes mutuals are fixed in ELMs. a stub & line  
% transformer 2 nd stage match are used                                             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [] = ELM_model3()  
  
%declare parameters  
Sc=3;           %cutoff vswr  
Prm=130e3;      %maximum allowable reflected power Watts  
Pi=2e6;         %input power Watts  
Z0=30;          %characteristic impedance of system Ohms  
  
%calculate power limit vswr  
Sl=(Pi^0.5+Prm^0.5)^2/(Pi-Prm);  
  
%define second order effects for both arms%  
p = 0;          % resistive asymmetry (0 = symmetrical, 1 = 
asymmetric)  
e = 0;          % percentage of real mutual impedance between strap s  
f = 0;          % percentage of imaginary mutual impedance between 
straps  
  
% define match frequency  
Hz = 42.5e6;                    % midband frequency Hz  
w = 2*pi*Hz;                    % frequency in radians  
B = w/3e8;                      % phase shift constant in vacuum  
  
%define average strap impedance  
strap_L = 120e-9;  % 50cm of 200nH/m plus 20nH capacitor parasitic 
inductance  
strap_R = 0.75;    % midband resistance of 30cm of 2-3 ohm/m     
  
%calculate asymmetry coefficients (average strap re sistance held 
constant)  
r1 = 2./(2-p);  
r2 = 2*(1-p)./(2-p);  
  
%define degree of mutual coupling  
L_mutual = f*strap_L;        
Z_mutual = e*strap_R+w*L_mutual*j;  
  
%define ELM values  
Rfactor=5;                    %elms increase resistance by up to 5 
times  
Xfactor=0.75;                 %elms decrease reactance by up to 25%  
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Rmax = Rfactor*strap_R;       %max assumed resistive ELM disturbance  
Lmin = Xfactor*strap_L;       %max assumed reactive ELM disturbance  
resolution=10;  % define resolution for meshing ELM area  
ELMR = (strap_R+(Rmax-strap_R)/resolution):(Rmax-
strap_R)/resolution:Rmax; %generate resistance variation vector 
excluding matched value, would otherwise give NaN  
if  Xfactor == 1  % special case of no reactive components to 
ELM 
    ELML = Lmin*ones(1,resolution); % use strap_L for all coupled 
power calcs  
Else 
%generate reactance variation vector excluding matc hed value, would 
otherwise give NaN  

ELML = (strap_L+(Lmin-strap_L)/resolution):(Lmin-
strap_L)/resolution:Lmin; 
end  
[elmR,elmL] = meshgrid(ELMR,ELML); %generate mesh from the X&R 
variation vectors  

 
%elm space  
elmspace=zeros(resolution,resolution); %define a region for ELM 
variation  
i=0; 
%form a Boolean operator in the form of a triangle to select the ELM 
valid area. Count the node number for future averag ing calcs%  
for  o=1:1:(resolution) %rows 
    for  q=1:1:(resolution) %columns  
        if  q>=o  
            elmspace(o,q)=1;  
            i=i+1;  
        end  
    end  
end  
  
  
% define the design space %  
s = 5:0.05:15;    % define capacitor stroke, full design space is 
0:54mm 
x = reactance(s,w,strap_L);  %convert stroke to arm reactance  

 
[SS1,SS2] = meshgrid(s,s);        %define capacitor stroke space  
[XX1,XX2] = meshgrid(x,x);        %define reactance space  
[row,col] = size(SS1);            %get the size of the solution 
space  
  
%2nd stage match  
zT = Timpedance(r1,r2,strap_R,XX1,XX2,Z_mutual);  %calc Tpoint 
impedance  
[d,Zs] = SSM(Z0,real(zT),imag(zT),B);             %calc matching 
parameters d (length of transformer, and Zs stub im pedance  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%check success of 2nd stage match – this code demon strated the 2 nd 
% stage match successfully matched for all the solu tion space                  
%ZL = load(d,Zs,zT,B,Z0);                                               
%swr = VSWR(Z0,ZL);                                                     
%surf(XX1,XX2,swr);                                                     
%shading interp                                                         
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%%%%%%%%%%%%%%%%%%%%%%% 
%calculate performance%  
%%%%%%%%%%%%%%%%%%%%%%% 
  
%preallocate for speed  
Cav=zeros(row,col);  %declare matrix to hold average 
coupling  
performance=zeros(row,col);   %declare matrix to hold performance  
 
for  m = 1:1:row               % scan the rows  
    for  n = 1:1:col           % scan the columns  
    %calc vswr for each position in ELM space  
        X1_N = reactance(SS1(m,n),w,elmL); %calc arm reactance during 
ELM 
        X2_N = reactance(SS2(m,n),w,elmL); %calc arm reactance during 
ELM 

%calc the Tpoint impedance during ELM  
        ZT = Timpedance(r1,r2,elmR,X1_N,X2_N,Z_mutu al);  

%calc the load seen through 2nd stage match during ELM 
 ZL = load(d(m,n),Zs(m,n),ZT,B,Z0);                   

        swr = VSWR(Z0,ZL);                 %calc the vswr due to elm 
%calc the coupling for each node in rectangular gri d containing 
ELMspace 

        C = coupling(swr,Pi,Sl,Sc,Prm);          
        C=C.*elmspace; %select triangular ELMspace from rectangular 
grid  
        %establish if cut off occurs in elmspace (matrix va riable)  

 Ctest = ((C>0)==elmspace); 
        minCtest = min(min(Ctest));  %1 - cut off, 0 –  no cut off                             
        Cav(m,n) = sum(sum(C))/i;    %calc average coupling for ELM 
area  
         
        performance(m,n)=Cav(m,n)*minCtest; %calc elm performance 
measure  
    end  
end  
  
% display results  
plot_flag = 1;     %1 = phase plot, 0 = reactance plot  
if  plot_flag == 0   %plot results in X space  
    surf(XX1,XX2,performance);  
elseif  plot_flag == 1  %plot results in phase space  
    %calculate phase%  
    zarm1 = r1*strap_R+XX1.*j;            % branch impedance 1 over 
grid  
    zarm2 = r2*strap_R+XX2.*j;            % branch impedance 2 over 
grid  
%a quantity of same phase as I1 (phase referenced t o Tpoint voltage)  

q1 = (Z_mutual-zarm2)./(Z_mutual^2-zarm1.*zarm2);  
%a quantity of same phase as I2 (phase referenced t o Tpoint voltage)  

q2 = (Z_mutual-zarm1)./(Z_mutual^2-zarm1.*zarm2);  
%extract phase angle of I1   

    qth1 = atan2(imag(q1),real(q1))/pi*180; 
%extract phase angles of I2  

    qth2 = atan2(imag(q2),real(q2))/pi*180;       
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%remember that angles are of opposite sign - so gro ss + net angle 
definitions have been inverted  

  gross_angle = qth1-qth2;       
net_angle = qth1+qth2; 
 

    surf(net_angle,gross_angle,performance);  
end  
shading interp  
 
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates a CT arm reactance for a  give capacitor 
% stroke frequency & strap inductance                                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [x] = reactance(s,w,strap_L)  
C = (4.0740741*s+80)*1e-12;  % calculate the capacitance using a 
linear model  
x = (w^2*strap_L.*C-1)./(w*C); % calc branch reactance as series sum 
of capacitor & strap  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the vswr                                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [vswr] = VSWR(Z0,ZL)  
  
G = (ZL-Z0)./(ZL+Z0);                   % calc reflection 
coefficient  
vswr = (1+abs(G))./(1-abs(G));          % calc vswr  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the coupling ratio as a function of vswr     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [coupling] = coupling(vswr,Pi,Sl,Sc,Prm)  
a=vswr<Sl; %flag for reflections less than power limit (full p ower 
mode)  
b=vswr>=Sl; %flag for reflections greater than or equal to powe r 
limit  
c=vswr<Sc;  %flag for reflections less than power cut off limit  (cut 
off mode)  
d=b.*c;     %flag for reflections in power limit mode 
%calculate the coupled power  
Pc=a.*(Pi*4*vswr./(1+vswr).^2)+d.*(Prm*4*vswr./(vsw r-1).^2);  
coupling=Pc/Pi;                         %normalise coupled power  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the 2nd stage match para meters d (length 
% of transformer TL required, & Zs the impedance of  the parallel 
% short circuited stub required                                               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [d,Zs] = SSM(Z0,RL,XL,B)  
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See Appendix A 
 
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the T point impedance in c mutuals            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [ZT] = Timpedance(a1,a2,R,X1,X2,Zmutual)  
  
z1 = a1*R+X1*j;                  % branch impedance 1  
z2 = a2*R+X2*j;                  % branch impedance 2 
% calc Tpoint impedance including effect of mutuals  
ZT = (Zmutual^2-z1.*z2)./(2*Zmutual-(z1+z2));  

 
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the impedance seen throu gh the 2nd stage 
% match assumes a line transformer and short circui t shunt stub         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [ZL] = load(d,Zs,ZT,B,Z0)  
  
%calc load seen through transformer  
Zin = Z0*(ZT.*cos(B*d)+j*Z0*sin(B*d))./(Z0*cos(B*d) +j*ZT.*sin(B*d));  
%calc effective load as parallel combination of tra nsformed load and 
stub  
ZL =  Zin.*Zs./(Zin+Zs); 
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18. Appendix H 

This code extracts the required gross and net angle set points for optimal resilience 

performance using the average coupled power measure. It is configured to do this to 

either a vector of input parameters (used for sensitivity studies), or a single value. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program calculates the sensitivity of the av erage coupled 
% power ELM model to resistive asymetry. It detects  & prompts if 
% initial search not correctly bounded.individual q uadrants are 
% searched. The full domain of 0- 54mm is included (not so in v4)                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  [thG_register,thN_register,performance_register] =  
asymetry_trends5()  
  
%declare parameters  
Sc=3;           %cutoff vswr (due to interlock interrupt)  
Prm=130e3;      %maximum allowable reflected power  
Pi=2e6;         %input power  
Z0=30;          %characteristic impedance of system  
  
%calculate power limitation interlock vswr cut in p oint  
Sl=(Pi^0.5+Prm^0.5)^2/(Pi-Prm);  
  
%define average strap impedance  
strap_L = 120e-9;             % 50cm of 200nH/m plus 20nH capacitor 
parasitic inductance  
strap_R = 0.75;            % midband resistance of 30cm of 2-3 ohm/m     
  
%define varied parameter  
para = 4;  %1 - asymmetry, 2 - real mutual, 3 - imaginary mutu al, 4 
– single circuit to be assessed. 
 
%define parameter range  
if  para==1 %asymetry range 0 - 60%  
    range = 0:0.05:0.6;  
elseif  para==2 %real mutuals range 0 - -60%  
    range = 0:-0.05:-0.6;  
elseif  para==3 %imaginary mutuals range 0 - 0.02%  
    range= 0:0.00125:0.02;  
else  %calculate on one value only  
    range = 1;  
end  
%get size of range  
[range_ro,range_co]=size(range);  
  
%define variable parameters for both arms% 
% use Boolean selectors to define a vector if varia ble has range  
p = (para==1)*range+(para~=1)*0*ones(range_ro,range _co);    % 
resistive asymmetry (0 = symetrical, 1 = asymetric)  
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e = (para==2)*range+(para~=2)*0*ones(range_ro,range _co);    % 
percentage of real mutual impedance between straps  
f = (para==3)*range+(para~=3)*0*ones(range_ro,range _co);    % 
percentage of imaginary mutual impedance between st raps  
  
% define match frequency  
Hz = 42.5e6;                    % midband frequency  
w = 2*pi*Hz;                    % frequency in radians  
B = w/3e8;                      % phase shift constant in vacuum  
  
%calculate asymmetry coefficients  
r1 = 2./(2-p);  
r2 = 2*(1-p)./(2-p);  
  
%define degree of mutual coupling  
L_mutual = f*strap_L;  
Z_mutual = e*strap_R+w*L_mutual*j;  
  
%define ELM values  
Rfactor=5;                     %elms increase resistance by upto 5 
times  
Xfactor=0.75;                  %elms decrease reactance by upto 25%  
Rmax = Rfactor*strap_R;        %max assumed resistive ELM 
disturbance  
Lmin = Xfactor*strap_L;        %max assumed reactive ELM disturbance  
resolution=10;    %mesh ELMspace with 55 nodes  
ELMR = (strap_R+(Rmax-strap_R)/resolution):(Rmax-
strap_R)/resolution:Rmax; %define a range of R for elms, excluding 
matched value, would otherwise give NaN  
if  Xfactor == 1         %if no reactive ELM compoinent  
    ELML = Lmin*ones(1,resolution); %use strap_L for all range or 
disturbance  
Else       %define a range of strap_L for elms  
    ELML = (strap_L+(Lmin-strap_L)/resolution):(Lmi n-
strap_L)/resolution:Lmin;  
end  
[elmR,elmL] = meshgrid(ELMR,ELML);  
  
%elm space – form a boolean selection matrix to sel ect a triangular 
half of the matrix (as ∆R is always larger than ∆X)  
elmspace=zeros(resolution,resolution); %pre allocate size for speed  
i=0;         % initialise count  
for  o=1:1:(resolution) % scan rows  
    for  q=1:1:(resolution) %scan columns  
        if  q>=o  
            elmspace(o,q)=1;    % select triangle  
            i=i+1;  
        end  
    end  
end  
  
%preallocate for speed  
s1_register = zeros(range_ro,range_co); %optiaml stroke 1 record  
s2_register = s1_register;              %optimal stroke 2 record  
x1_register = s1_register;              %optimal arm reactance 1 
record  
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x2_register = s1_register;              %optimal arm reactance 2 
record  
performance_register = s1_register;     %maximum performance 
register  
  
%calc optimal locations  
for  m = 1:1:range_ro               % scan the rows  
    for  n = 1:1:range_co           % scan the columns  
        %calc optimal setpoints & peformance for the variab le range  
        
[s1_register(m,n),s2_register(m,n),x1_register(m,n) ,x2_register(m,n)
,performance_register(m,n),XX1,XX2,performance] = 
set_points(w,B,strap_R,strap_L,r1(m,n),r2(m,n),Z_mu tual(m,n),elmR,el
mL,Z0,Pi,Sl,Sc,Prm,elmspace,i); 
 
    end  
end  
 
%now map reactance set points into phase space  
[thG_register,thN_register] = 
XtoP(x1_register,x2_register,r1,r2,strap_R,Z_mutual ); 

 
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates a CT arm reactance for a  give capacitor 
% stroke frequency & strap inductance                                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [x] = reactance(s,w,strap_L)  
C = (4.0740741*s+80)*1e-12;   %capacitance  
x = (w^2*strap_L.*C-1)./(w*C); % branch reactance  
  
%-------------------------------------------------- ----------------% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the vswr                                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [vswr] = VSWR(Z0,ZL)  
  
G = (ZL-Z0)./(ZL+Z0);                   % calc reflection coef  
vswr = (1+abs(G))./(1-abs(G));          % calc vswr  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the coupling ratio as a function of vswr     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [coupling] = coupling(vswr,Pi,Sl,Sc,Prm)  
a=vswr<Sl;                    %flag for reflections less than power 
limit (full power mode)  
b=vswr>=Sl;                   %flag for reflections greater than or 
equal to power limit  
c=vswr<Sc;    %flag for reflections less than power 
cut off limit (cut off mode)  
d=b.*c;                       %flag for reflections in power limit 
mode 
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Pc=a.*(Pi*4*vswr./(1+vswr).^2)+d.*(Prm*4*vswr./(vsw r-1).^2);  
coupling=Pc/Pi;                         %normalise coupled power  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the 2nd stage match para meters d (length 
% of transformer TL required, & Zs the impedance of  the parallel 
% short circuited stub required                                               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [d,Zs] = SSM(Z0,RL,XL,B)  
  
See Appendix A 
 
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the T point impedance in c mutuals            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [ZT] = Timpedance(a1,a2,R,X1,X2,Zmutual)  
  
z1 = a1*R+X1*j;                  % branch impedance 1  
z2 = a2*R+X2*j;                  % branch impedance 2  
ZT = (Zmutual^2-z1.*z2)./(2*Zmutual-(z1+z2)); % CT total impedance 
including mutuals  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the impedance seen throu gh the 2nd stage 
% match assumes a line transformer and short circui t shunt stub         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [ZL] = load(d,Zs,ZT,B,Z0)  
  
%calc load seen through transformer  
Zin = Z0*(ZT.*cos(B*d)+j*Z0*sin(B*d))./(Z0*cos(B*d) +j*ZT.*sin(B*d));  
%calc effective load as paralel combination of tran sformed load and 
stub  
ZL =  Zin.*Zs./(Zin+Zs);  
  
%-------------------------------------------------- ----------------%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function calculates the performance of a CT circuit in 
% response to ELMs for a given capacitor stroke loc ation                         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [performance] = 
performance_calc(w,B,s1,s2,r1,r2,Z_mutual,elmR,elmL ,d,Zs,Z0,Pi,Sl,Sc
,Prm,elmspace,i)  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% w- frequency (rad), B- phase shift constant, s - capacitor stroke,       
% r - asymetry coefficient, Z_mutual - strap mutual  impedance              
% elmR - range of resistance in ELM, elmL - range o f inductance in 
% ELM, d - 2nd stage transformer length, Zs - 2nd s tage shunt stub 
% impedance, Z0 - line characteristic impedance, Pi  -  input power,                   
% Sl - vswr crossover value, Sc - cutoff vswr, Prm - max reflected 
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% power , elmspace - boolean matrix to select elm values, i –  number 
% of nodes in elmspace                                                           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%calc vswr for each position in ELM space  
X1_N = reactance(s1,w,elmL);                        %reactance with 
ELM 
X2_N = reactance(s2,w,elmL);  
ZT = Timpedance(r1,r2,elmR,X1_N,X2_N,Z_mutual);     %Tpoint 
impedance with ELM  
ZL = load(d,Zs,ZT,B,Z0); %load seen through 2nd stage match with ELM  
swr = VSWR(Z0,ZL);           %VSWR due to elm  
C = coupling(swr,Pi,Sl,Sc,Prm);       %instantaneous coupling in elm 
 
%at this point we have a square matrix of coupled p ower, We need to 
select from this matrix the bounded region relevant  to ELM 
disturbances 
 
C=C.*elmspace;                     %select valid region for ELMs  
Ctest = ((C>0)==elmspace);         %establish if cut out interlock 
occurs in selected matrix  
minCtest = min(min(Ctest));         %Cut out flag: 1 - cut off did 
not occur, 0 - cut off occurred                              
Cav = sum(sum(C))/i;                %calc average coupling for ELM 
area  
performance=Cav*minCtest;           %calc elm performance measure  
  
%-------------------------------------------------- ----------------%  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function accepts a nxn matrix & an index and  inserts 4 rows &    
% columns about the index. values are filled by dup licates of the       
% adjoining rows and columns. A refined local grid is inserted 
around   
% the maxima location. This padding out of the matr ix enables former 
values to be retained, and plotted to illustrate th e adaptive 
meshing   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  [output,ro,co] = refine_grid(input,row,column,locl _grid)  
     
    % insert new rows  
    upper = input(1:(row-2),:);  
    upper_v = input((row-1),:);  
    centre_r = input(row,:);  
    lower_v = input((row+1),:);  
    lower = input((row+2):end,:);  
    output = 
[upper;upper_v;upper_v;centre_r;centre_r;centre_r;l ower_v;lower_v;lo
wer];  
     
    % insert new columns  
    left = output(:,1:(column-2));  
    left_v = output(:,(column-1));  
    centre_c = output(:,column);  
    right_v = output(:,(column+1));  
    right = output(:,(column+2):end);  
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    output = 
[left,left_v,left_v,centre_c,centre_c,centre_c,righ t_v,right_v,right
];  
     
    % insert local mesh around former maxima  
    row = row+2;   % calc new maxima indices after padding operation  
    column = column+2;  
    %new search window  
    ro = (row-4):(row+4);  
    co = (column-4):(column+4);  
    output(ro,co) = locl_grid;  
  
    %-------------------------------------------------- ------------%  
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% variable resolution solver - iterate mesh resolut ion in locality 
% of latest global maxima to find optimal resilienc e                      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    function  
[s1_opt,s2_opt,x1_opt,x2_opt,max_performance,XX1,XX 2,performance] = 
set_points(w,B,strap_R,strap_L,r1,r2,Z_mutual,elmR, elmL,Z0,Pi,Sl,Sc,
Prm,elmspace,i)  
   
    % design space - define initial search area %  
    grid_res = 200; %define an initial course search resolution  
    quadrant_flag=1;    %toggle to switch between quadrants for 
search 
 

%map capacitor stroke space to reactance space and select the 
correct search quadrant, as asymmetry creates one d ominant 
solution. 

 
%calc stroke required for resonant arm (X = 0 locus )  

    s_crit = (1-(w^2*strap_L*80e-12))/4.0740741e-12 /w^2/strap_L; 
    % ensure that quadrants are possible – eg at high f requency  
    if  (s_crit<0)||(s_crit>54)  
        sprintf( 'warning, critical stroke outwith total search 
area' )  
    end  
     
    %calc the resulting search domains for 0mm to s_cri t, & s_crit 
to 54mm. use  different resolutions to have same size of vectors  
    inc1 = s_crit/grid_res;  % define increment 1  
    inc2 = (54-s_crit)/grid_res; % define increment 2  
    grid = (inc1+inc2)/2;    % extract average resolution 
 
% define a vector of stroke values equivalent to av ailable +ve 
reactance design space:  
    SA = 0:inc1:s_crit;   
% define a vector of stroke values equivalent to av ailable -ve 
reactance design space:  
    SB = 54:-inc2:s_crit;  
     
    %select quadrant – i.e. mapping from desired reacta nce design 
space space to stroke space complete  
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    stroke1=SA*(quadrant_flag==1)+SB*(quadrant_flag ==0);  
    stroke2=SB*(quadrant_flag==1)+SA*(quadrant_flag ==0);  
     
    %calc arm reactances for selected stroke vectors  
    x1 = reactance(stroke1,w,strap_L);                
    x2 = reactance(stroke2,w,strap_L); 
    % define assessed stroke space  
    [SS1,SS2] = meshgrid(stroke1,stroke2);   
    % define assessed reactance space  
    [XX1,XX2] = meshgrid(x1,x2);         
    [row,col] = size(SS1);       %get the size of the assessed space  
  
    %calculate the required 2nd stage match for assesse d space 
    %calc Tpoint impedance  
    zT = Timpedance(r1,r2,strap_R,XX1,XX2,Z_mutual) ;     
    %calc matching parameters  
    [d,Zs] = SSM(Z0,real(zT),imag(zT),B);     
            
    %%%%%%%%%%%%%%%%%%%%%%% 
    %calculate performance%  
    %%%%%%%%%%%%%%%%%%%%%%% 
  
    %preallocate for speed  
    performance=zeros(row,col);  
     
    %initial sweep of total design quadrant – course re solution  
    for  m = 1:1:row               % scan the rows  
        for  n = 1:1:col           % scan the columns  
            %calc performance for each position in design space  
            performance(m,n) = 
performance_calc(w,B,SS1(m,n),SS2(m,n),r1,r2,Z_mutu al,elmR,elmL,d(m,
n),Zs(m,n),Z0,Pi,Sl,Sc,Prm,elmspace,i);  
        end  
    end  
    % obtain maxima & address from course sweep  
    [re,rr] = max(performance);  
    [Re,COLUMN] = max(re);  
    ROW = rr(COLUMN);  
     
    % detect if max is on edge of search & prompt actio n 
    EF1 = (ROW==1)||(ROW==row)||(COLUMN==1)||(COLUM N==col);  
    EF2 = (ROW==2)||(ROW==(row-1))||(COLUMN==2)||(C OLUMN==(col-1));  
    EF = EF1||EF2;  
    if  (EF == 1)&&(Re>0)  
        grid = 0.01;   % break loop  
        sprintf( 'solution too close to edge, enlarge search area' )  
    elseif  Re==0  
        grid = 0.01;    % break loop  
        sprintf( 'grid too course, OR, not in search area' )  
    end  
     
    % systematically refine grid about location of maxi mum 
performance, until last resolution sufficient at 0. 01 mm, 
10xaccuracy of actuators.  
 
    while  grid>0.01          

  % obtain local grid round maximum location  
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        S1LL = SS1(ROW,COLUMN)-2*grid;   %stroke1 lower limit  
        S1UL = SS1(ROW,COLUMN)+2*grid;   %stroke1 upper limit  
        S2LL = SS2(ROW,COLUMN)-2*grid;   %stroke2 lower limit  
        S2UL = SS2(ROW,COLUMN)+2*grid;   %stroke2 upper limit  
        grid = grid/2;                   % double resolution  
        LGs1 = S1LL:grid:S1UL;           % define stroke vector +/- 
2x former grid about maxima       
        LGs2 = S2LL:grid:S2UL;  
        LGx1 = reactance(LGs1,w,strap_L); % calc reactance vector +/- 
2x former grid about maxima  
        LGx2 = reactance(LGs2,w,strap_L);  
        [ss1,ss2] = meshgrid(LGs1,LGs2); % form Local Grid (LG) 9x9 
round maximum  
        [xx1,xx2] = meshgrid(LGx1,LGx2);  
         
% calculate new grids, where ro,co is the new addre ss of the  
inserted grid  

  %insert blank grid into results  
        [performance,ro,co] = 
refine_grid(performance,ROW,COLUMN,zeros(9,9)); 

  %insert local grid into previous capacitor stroke  mesh  
        [SS1,ro,co] = refine_grid(SS1,ROW,COLUMN,ss 1);     
        [SS2,ro,co] = refine_grid(SS2,ROW,COLUMN,ss 2);  
        %insert local grid into previous arm reactance mesh  
 

  [XX1,ro,co] = refine_grid(XX1,ROW,COLUMN,xx1);      
        [XX2,ro,co] = refine_grid(XX2,ROW,COLUMN,xx 2);  
         
        % calculate 2nd stage match for window only    
        %form dummy matrices of same dimension as design sp ace to 
hold  
        %2nd stage match parameter local grids  
        zT = ones(size(SS1));   %Tpoint impedance matrix  
        d = zT;                 %transformer length matrix  
        Zs = zT;                %stub impedance matrix 

  %calc Tpoint impedance for window only  
        zT(ro,co) = 
Timpedance(r1,r2,strap_R,XX1(ro,co),XX2(ro,co),Z_mu tual);  

  %calc matching parameters for window only  
        [d(ro,co),Zs(ro,co)] = 
SSM(Z0,real(zT(ro,co)),imag(zT(ro,co)),B);     
         
        %calculate performance in the window  
        for  m = ro             % scan the rows of window  
            for  n = co         % scan the columns of window  
                performance(m,n) = 
performance_calc(w,B,SS1(m,n),SS2(m,n),r1,r2,Z_mutu al,elmR,elmL,d(m,
n),Zs(m,n),Z0,Pi,Sl,Sc,Prm,elmspace,i);    
            end  
        end  
        % obtain maxima & address from course mesh  
        [re,rr] = max(performance);  
        [Re,COLUMN] = max(re);  
        ROW = rr(COLUMN);  
    end  
     
    %obtain global maximum & setpoints  
    [re,rr] = max(performance);  



 

146

    [Re,column] = max(re);  
    row = rr(column);  
    max_performance = Re;                     
    s1_opt = SS1(row,column);  
    s2_opt = SS2(row,column);  
    x1_opt = reactance(s1_opt,w,strap_L);  
    x2_opt = reactance(s2_opt,w,strap_L);  
     
     
    %-------------------------------------------------- ------------%  
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% reactance to phase space calculator                                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    function  [thG,thN] = XtoP(x1,x2,r1,r2,strap_R,Z_mutual)  
     
    %calculate phase%  
    zarm1 = r1*strap_R+x1.*j;             % branch impedance 1  
    zarm2 = r2*strap_R+x2.*j;             % branch impedance 2 
%a quantity of same phase as I1 (phase referenced t o Tpoint voltage)  
    q1 = (Z_mutual-zarm2)./(Z_mutual.^2-zarm1.*zarm 2);     
%a quantity of same phase as I2 (phase referenced t o Tpoint voltage)  
    q2 = (Z_mutual-zarm1)./(Z_mutual.^2-zarm1.*zarm 2);    
 
    qth1 = atan2(imag(q1),real(q1))/pi*180;  %extract phase angle of 
I1  
    qth2 = atan2(imag(q2),real(q2))/pi*180;  %extract phase angles 
of I2  
    thG = qth1-qth2;      %remember that angles are of opposite sign 
- so gross + net angle definitions have been invert ed 
    thN = qth1+qth2;  
 
 
 
 
 

 
 

 

 

 

 

 
 

 


