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ABSTRACT 

In this thesis an investigation into the behaviour of thin 

walled lipped channel columns under combined end compression and 

bending is reported. 

The thesis begins with a short introduction, followed by a 

review of the relevant published literature. In the introduction an 

outline is given of the different buckling characteristics associated 

with Euler, local and coupled Euler-local modes of behaviour. The 

scope of the literature review spans from the early development work 

on coupled mode buckling through to the wide variety of interaction 

problems covered in present day studies. An introduction to the 

basic differential equations and elastic strain energy expressions 

used in the theoretical approach of the lipped channel problem is 

then briefly outlined. 

Theoretical analyses of local instability and post-local 

buckling interaction behaviour are presented. The local buckling 

analysis is undertaken for the section using the Rayleigh-Ritz 

method. In this, the cross-sectional deflected shape is taken as 

a series of algebraic polynomials and each polynomial set in the 

series is arranged to satisfy all compatibility and equilibrium boundary 

conditions at the plate junctions and at the free edges of the lip. 

The analysis is carried out for various values, of section length, to 

obtain that value for which the lowest buckling load is induced. 

From this multi-term buckling analysis a very accurate approximation 

is used as the first term in the subsequent semi-energy post-buckling 
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analysis, which incorporates also an additional set of algebraic 

polynomials to take account of changes in the deflected form in the 

post-buckling range. Thus, the deflection functions postulated are 

extremely accurate at the point of buckling and have a built-in 

facility to change in the post-buckling range. The numerical work 

involved in the analysis was carried out in the University's ICL 1904 S 

computer for which a program was written using the FORTRAN IV 

programming language. 

Details are given of an experimental investigation which 

was carried out to obtain information on the interactive buckling 

behaviour of lipped channel columns and to provide experimental 

results to authenticate the validity of the theoretical solutions. A 

description of the loading rig and its. operation is presented in 

conjunction with a full set of assembly and component design 

drawings. In general, the procedure used in the -investigation was 

to load columns of various section dimensions and with various 

loading eccentricities to collapse, recording strain measurements 

and overall deflections as loading progressed. A strain investigation 

was carried out to obtain knowledge of the stress variations at the 

centre of the column at various stages of loading. 

A comparison of experimental results with theoretical 

predictions is given. The agreement between theory and experiment 

is good in general, and in particular for the comparisons of stress 

variations with progressive loading. 



(iii) 

A summary of the investigation is included, together with 

conclusions and suggestions for further research and extension of 

the analysis. 

The publications discussed in the literature review appear 

in a chronological bibliography list at the end of the text. 

The thesis is concluded by six short appendices which 

supplement the main text and enlarge on some aspects of the 

investigation. 
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NOMENCLATURE 

An Coefficient in flange deflection function 

an Arbitrary integer used as exponent 
in flange deflection function 

Bn Coefficient in flange deflection function 

b Width of flange 

bf Half width of flange 

bb Width of lip 

bn Arbitrary integer used as exponent 
in flange deflection function 

bw Width of web 

E t3 
D Plate flexural rigidity D= 

12 (l -v2) 
Dn Coefficient in the web deflection function 

d Distance of section neutral axis from lips 

prior to local buckling 

d* Distance of section neutral axis from lips 
after local buckling 

E Youngs modulus of elasticity 

e Eccentricity of applied load 

ec =y Non dimensional eccentricity 9-c 

Fit Fil, Fit Stress Function 
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G Modulus of elasticity in shear 

Gn Coefficient in the web deflection function 

Gnm Lip potential energy integral 

gnl ... gn4 Coefficients in the flange deflection function 
after local instability 

hnl ... hn6 Coefficients in the web deflection function 
after local instability 

I Second moment of area 

I* Reduced second moment of area 

i Suffix relating to particular plate element of section 
(flange: i=1, web: i=2, lip: i= 3) 

Kf Flange buckling coefficient 

Kn Coefficient in the web deflection function 

kn 
t 

Arbitrary integer used as exponent 
in web deflection function 

L Column length 

M Moment, about section lips 

MX Moment per unit width of plate perpendicular 
to the x direction 

MY Moment per unit width of plate perpendicular 
to the y direction 

MXy 
. 

Twisting moment per unit width of plate 
perpendicular to the x direction 
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Nx Mid-plane force per unit width of plate 
in x direction 

NX* Average compressive edge force on flange 

Nx 
crit 

Critical average compressive edge force 
for local instability 

Ny Mid-plane force per unit width of plate 
in y direction 

Nxy Mid-plane shearing force per unit width of plate 

P Axial load on column 

Non-dimensional axial load P= 
Tr2 

Pb 

Pcrit Critical local buckling load 

Pcrit Non-dimensional critical local buckling load 

Pt Euler load 

PE Non-dimensional Euler load 

PE* Reduced Euler load 

pnl "" Pn6 Coefficients in the lip deflection function 
after local instability 

Qn ý Coefficient in the lip deflection function 

Qx ; Shearing force parallel to the z axis per unit width 
of plate perpendicular to the x axis 

Qy z axis per unit width Shearing force parallel to the' 
of plate perpendicular to the y axis 

Rn Coefficient in the lip deflection function 
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S Half-wavelength of column central buckle 

Tn Coefficient in lip deflection function 

TM Web potential energy integral 

t Plate thickness 

to Arbitrary integer used as exponent 
in lip deflection function 

u --- Displacement of a point in the middle plane 
of a plate in the x direction 

u* Compressive end displacement of flange at 
node of a central buckle 

VB Strain energy of bending and twisting 

VM Strain energy of mid-plane forces 

VT Total strain energy VT = VB + VM 

v Displacement of a 'point in the middle plane 
of a plate-In the y direction 

Wn Local deflection coefficient 

w, wi Deflection of plate in z direction, 

x Cartesian co-ordinate 

Yi, Yin Local deflection functions for plate i 

y Cartesian co-ordinate 

yi Cartesian co-ordinate for plate i 

y Distance of section neutral axis from flange 
prior to' local buckling 



(xi) 

Znm Lip bending strain energy integral 

z Cartesian co-ordinate 

oc Compression eccentricity factor 

Pn Coefficient in the web deflection function 
after satisfaction of the edge boundary conditions 

Membrane strain energy integral for plate i 
inmrp 

rn Flange potential energy integral 

Xn Coefficient in the web deflection function 
after satisfaction of the edge boundary conditions 

Kxy Shear strain in xy plane 

Sc Central deflection of column 

x Direct strain in the x direction 

y Direct, strain in the y direction 

0 
inm 

Membrane strain energy integral 

ýnm Summation of potential energy integrals 
E)= - rnm + Tnm + Gnm 

Summation of the bending strain energy integrals 
nm 

nm =Tnm+'nmnm X 

An' Coefficient in the web deflection function 
after satisfaction of the edge boundary conditions 

Poisson's ratio 

gn Coefficient in the flange deflection function 
after satisfaction of the edge boundary conditions 
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Qn 

dX 

ex 
I 

6y 
Txy 

Tn 

Tinmrp 

ýnm 

'Vnm 

An 
. 

Coefficient in the lip deflection function 
after satisfaction of the edge boundary conditions 

Direct stress in the x direction 

Average compressive edge stress on flange 

6* = Nx* * 
X 

Direct stress in the y direction 

Shear stress in xy plane 

Coefficient in the lip deflection function after 
satisfaction of the edge boundary conditions 

Membrane strain energy integral for plate i 

Web bending strain energy integral 

Flange bending strain energy integral, 

Coefficient in the lip deflection function after 
satisfaction. of the edge boundary conditions 

Symbols not listed in, the Nomenclature 

are defined throughout the text where 

they first appear. 
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1.0 INTRODUCTION AND REVIEW OF THE RELEVANT LITERATURE 

1.1 INTRODUCTION 

Column flexural buckling is characterised by a lateral 

movement of the column cross-section whereby the cross-sectional 

shape is substantially unaltered. This type of buckling occurs 

when the length of a structural element is much greater than its 

cross-sectional dimensions and is known as Euler, or sometimes 

overall, buckling. 

when the length of column is of the same order as the cross- 

sectional dimensions, local buckling will occur. This type of 

buckling is characterised by out of plane deflections of the column 

walls, causing a substantial change in shape of the cross-section 

and a redistribution of the stress system across the widths of its 

component plate elements. 

In Euler buckling the straight form of the column becomes 

unstable at the critical load and the column deflects laterally, 

perpendicular to the axis of least second moment of area of the 

section. While the magnitude of the column deflection tends to 

become very large, the maximum load. the column cah attain is its 

critical buckling load. This behaviour is classified as neutral 

buckling. 

In local buckling the flat form of the plate elements of the 

cross-section become unstable at the critical load and the plates 
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develop out of plane deflections. Unlike Euler buckling, however, 

the column can sustain loads greater than the critical buckling load, 

i. e. the column has a post local buckling reserve of strength. This 

type of behaviour is classified as stable buckling. 

Although these two modes of buckling have been described 

independently, there are certain combinations of dimensions and 

structural forms which provide coupled buckling or interaction 

behaviour between the two modes. It is this type of behaviour 

which is the subject of examination in this thesis. 

The ratio of load carrying capacity to structural weight of a 

thin walled member is often denoted as a measise of its practical 

structural efficiency. Increasing the structural efficiency, however, 

tends to lead to geometrical configurations which, although they 

make efficient use of material, become increasingly liable to exhibit 

complicated buckling behaviour. Since structural forms which 

provide high strength to weight ratios are becoming more widely used 

in present day practical applications, a knowledge and understanding 

of buckling behaviour due to interaction between different buckling 

modes has become essential. 

The work presented in this thesis describes the' mechanics of the 

interaction between the local and overal flexural behaviour of a thin 

walled lipped channel column when subjected to end compression and 

bending. Although much of the published works on interaction 

buckling deal extensively with columns whose critical buckling loads 

I- 
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are relatively close and which are therefore highly susceptible to 

geometrical imperfections and unstable post interaction behaviour, 

the work in this thesis deals in the main with columns whose 

critical loads are sufficiently far apart. that stable post interaction 

behaviour is experienced. Columns in this range are not as 

sensitive to geometrical imperfections regarding their ultimate loads 

as are those which have nearly simultaneous buckling loads. 

The characteristic behaviour- of a lipped channel column when 

loaded through its centroid and designed such that it lies in the 

stable interaction range is such that the column takes load with no 

column or local deflections up to the initial local buckling load. 

Further increase in load then leads to an elastic interaction phase 

whereby column and local deflections grow simultaneously, and the 

load tends asymptotically towards a reduced Euler load based on the 

tangent bending stiffness of the locally buckled section. Since, 

however, the locally buckled form does not remain constant during 

loading, the reduced Euler load becomes continually smaller as the 

loading increases. Finally, the elastic interaction phase terminates 

when the stresses within the column reach the yield stress of the 

material. The' column then enters an elasto-plastic phase, of 

behaviour which, although short, results in further loss of section 

stiffness and eventual column collapse. 

f 
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Apart from some isolated works in the early 1950's and 

early 1960's, knowledge of the problem of non-linear interactive 

buckling has come to light and received widespread attention in only 

the last ten years or so. This growing interest in non-linear 

buckling phenomena is the result of a quest by researchers to gain a 

full understanding of the possible catastrophic elastic buckling 

failures which can exist in a structure due to the coupling or 

interaction of buckling modes. Buckling of this type is characterised 

by a structure with close critical loads, which in themselves are 

essentially stable, but which interact to produce a highly unstable 

non-linear buckling behaviour. 

1.2 REVIEW OF THE EARLY DEVELOPMENT WORK 

The local instability and post buckling behaviour of plates in 

compression under a wide variety of loading and boundary conditions 

has been thoroughly investigated over the years by numerous 

researchers. The buckling and post-buckling behaviour of systems 

of plates forming a wide variety of cross-sectional shapes has also 

received a great deal of attention over the years and the findings are 

well documented in the literature. In view of this the author 

feels justified in referring the reader to the works of Titmshenko and 

Woinowsky-Krieger (1), Bleich (3), Walker (12), Bulson (13) and 

Rhodes (19) in which the main results of such investigations are 

I 
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presented and to restrict his own attention to the review of literature 

pertaining to the interaction of local buckling with other buckling 

modes. 

One of the earliest publications on interaction buckling was 

presented by Bijlaard and Fisher (4) in 1952. In this work 

Bijlaard considered theoretically the interaction at buckling of 

centroidally loaded box, I, H, T and angle section columns, while 

co-author Fisher carried. out tests for a considerable range of 

slenderness ratios of two aluminium alloy box sections. For one of 

these the local buckling stress was in the plastic domain, and for 

the other in the elastic domain. In the introduction to their work 

the authors suggest that although buckling is supposed to occur at 

the lower of the two critical stresses, column or local for a given 

column, in reality there was an interaction of these two modes such 

that the real buckling stress C'CR would be smaller than either of , 

the buckling stresses corresponding to column or local modes of 

behaviour. By his method of split rigidities Bijlaard then developed 

simple formulae which expressed the actual buckling stress 
eCR 

directly in terms of the column and local buckling stresses. He 

found from his analysis that for the box, I and H sections considered, 

stress reduction due to interaction of the buckling modes was non- 

existent. He did find, however, that for sections which have a 

tendency to behave in a torsional manner, such as the T and angle 

sections analysed, significant interaction effects were predicted. 
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The results by Bijlaard' yielding non-existent interaction effects 

are, of course, due to the fact that the sections considered have 

minimum buckling stresses for the individual modes of local and 

column buckling which require quite different buckle half 

wavelengths. For such cases the actual buckling stress is simply 

the lower of either the column or local buckling stresses. If, 

however, the buckling modes occur at the same stress, or nearly 

the same stress, the unstable nature of the post-buckling interaction 

behaviour of the column causes a high sensitivity to imperfections 

which can result- in failure of the column at a much lower stress. 

This, however, is not particularly evident from the experimental 

results of Fisher since the columns he tested were manufactured 

from 22" square (outside dimensions) aluminium drawn tubing which 

exhibited extremely good accuracy regarding imperfections. The 

results; as shown in Figure 1.2.1, do indicate however that in the 

area of near simultaneous buckling stresses the ultimate stress of 

the column is in the region of the local buckling stress, which shows 

the unstable post-buckling interaction behaviour in this area. 

Harvey (5) in 1952 studied the local instability of various 

structural sections when subjected to column and beam loading 

respectively. For a detailed description of the method used by 

Harvey to obtain the section buckling coefficients and corresponding 

local buckling loads of plain and lipped channel sections in 

I 
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compression the reader is referred to reference (5). In his 

treatment of centroidally loaded plain and lipped channel columns 

Harvey, after obtaining the local buckling stress, considered failure 

of the column to occur when the edge membrane stress of the plate 

element initiating section buckling reached the yield stress of the 

material. Using an effective -width equation which incorporated the 

section buckling coefficient he then obtained the average ultimate 

stress of this plate element and compared this with the experimental 

ultimate stress derived by dividing the ultimate load by the column 

cross-sectional area. 

Of particular interest to the author is the experimental work 

by Harvey on centroidally loaded lipped channel columns whereby the 

slenderness ratio of the columns tested was varied with change in 

the web dimension bw. The choice of dimensions by Harvey were 

such that both stable and unstable post-buckling interaction 

behaviour, as well as neutral column buckling, were exhibited during 

test. His results, in the form of an. ultimate load-slenderness plot, 

are presented in Chapter 6 where comparison is made with the 

theoretical predictions obtained from the interaction analysis presented 

in Chapters 3 and 4 of this thesis. 

In the light of their previous experimental work (4), Bijlaard 

and Fisher (6), in 1953, focussed their attention on the strength of 

columns whose component plate elements buckled locally before the 
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ultimate column load was reached. The first authors method of 

split rigidities was used in the theoretical part of this work to 

compute the column buckling stress for centroidally loaded box and 

H sections which, after buckling locally, remain straight up to the 

point of incipient column buckling. In the elastic range a simple 

formula was developed expressing the apparent bending stiffness of 

the locally buckled section in the form of an equivalent modulus of 

elasticity Eeq. The stiffness values obtained from this formula 

lay between the secant and tangent stiffnesses of the section and 

reduced to Young's modulus E at the local buckling stress. The 

ultimate column stress in the elastic range is then given by the 

formula Csu = 
L, ý2 

. In the plastic range Bijlaard accounted 

for the influence of plastic deformations by using an appropriate 

Johnson parabola depending partly for its location on the empirical 

crushing strength of short columns in which only plate buckling and 

no column buckling can occur. The ultimate stress curve, by 

Bijlaard, is therefore one of a double branched nature consisting of 

a Johnson parabola with its apex at the section crushing strength at 

L=0 
and which joins tangentially the elastic buckling stress 

r 

curve, obtained by the method of split rigidities, at some intermediate 

slenderness ratio between zero and that at which the local and Euler 

buckling stresses are equal. This two-part curve is shown in 

Figure 1.2.2 In comparison with the experimental results obtained 

by Fisher on 22 11 x22" aluminium box section tubing having a wall 
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thickness of 0.047". The results presented by Fisher, with the 

exception of that at r= 
58, are those obtained in his earlier 

investigation (4) carried out in 1952 (see Figure 1.2.1). In 

comparing Figures 1.2.1 and 1.2.2, however, a difference in the 

theoretically computed local buckling stress is apparent and since 

the ultimate stress curve by Bijlaard depends partly for its location 

on the local buckling stress, this would tend to cast some doubt on 

the claimed accuracy shown in Figure 1.2.2. In the region of near 

simultaneous buckling stresses the theory of Bijlaard predicts 

ultimate stress values in excess of the local buckling stress, 

indicating that in this area initially stable post-buckling interaction 

behaviour is exhibited. 

In 1954, Seidenfaden (7) attempted a theoretical analysis of 

the interaction behaviour of centroidally loaded, pin ended, plain 

channel columns. An energy method of solution was employed by 

Seidenfaden in which the energy expressions for bending and mid- 

surface stretch were utilised in terms of the derivatives of the 

displacements u, v and w. By postulating expressions for 

u, v and w in terms of both local and overall deflection coefficients 

and by subsequent minimisation of the strain energy with respect 

to these coefficients, Seidenfaden obtained the behaviour of the 

column in the interaction range. His treatment of the problem, 

however, can only be described as inadequate, and consequently 

his results as inaccurate. One of the main factors contributing to 
I 
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the inadequacy of Seidenfaden's solution is that his analysis was 

applied to columns whose ends were constrained to remain straight 

and the resulting definitive equations were modified to account for 

pinned end conditions. The modifications, however, took absolutely 

no account of the quite different post local buckling behaviour which 

exists between uniformly compressed sections and those whose ends 

are allowed to rotate. 

Chevy (8) in 1960 investigated the influence of local buckling 

on the lateral stability of thin walled beams. The beams investigated 

were of I and T section and of such dimensions that local buckling 

was confined to occur in the compression flange. The loading applied 

to the beams was that of equal end moments in the plane of the web. 

By means of an empirically based effective width equation for the 

compression flange, Cherry obtained modified flexural, torsional 

and warping stiffness values for the locally buckled section resulting 

in an elastic lateral buckling curve which showed good agreement 

with experiment. His experiments showed, however, that in the 

region of near simultaneous critical moments, the actual moment to 

cause failure was less than the theoretical local buckling moment. 

This is due, of course, to the sensitivity of the buckling in this 

region to initial imperfections. The reason that Cherry obtained 

good agreement in this area is due to the fact that his effective 

width equation was obtained by trial and development on the basis 

of the experimental evidence obtained from the beams tested. 
0 
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From a compression test on a short aluminium alloy square tube, 

the result of which is shown in Figure 1.2.3, Jombock and Clark (9), 

in 1961, obtained the variation in section tangent stiffness from the 

onset of local buckling to final collapse or crippling of the section. 

Through a suitable choice of effective width expression which 

allowed an approximate simulation of this stiffness variation the 

authors then examined the effect of local buckling on longer lengths 

of section in which column buckling becomes an increasingly more 

influential factor. This was achieved quite simply by replacing 

Young's modulus in the Euler column formula with the section tangent 

stiffness corresponding to a particular average stress and obtaining 

the required slenderness value to*initiate column buckling at this 

stress. The ultimate stress curve obtained in this way showed 

that in the region of nearly simultaneous local and column buckling 

loads, the capacity of the column was limited to its local buckling, 

load. This result differed from that of Bijlaard (6) due to the fact 

that Dombock and Clark (9) did not consider the effect on section 

stiffness of a modification in local mode shape due to interaction 

with the overall bending mode. 

The following year Koiter and Skaloud (10) contested the 

then generally accepted opinion that the optimum design of a 

compression member'was one in which local buckling and overall 

buckling occurred at the same stress. Koster pointed out, with 

ol 
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reference to a compressed integrally stiffened panel, that as soon 

as the plate buckles locally between the stiffeners its rigidity is 

reduced by about half, which means that the bending rigidity of the 

entire panel is also considerably reduced, resulting in a structure 

whose equilibrium at buckling is unstable and which is exceedingly 

sensitive to imperfections. Koiter showed qualitatively that, for 

structures with an unstable bifurcation point, the effect of initial 

imperfections was to considerably reduce the ultimate load. These 

remarks by Koiter on the questionable validity of the optimality of 

simultaneous mode designs were to be corroborated some years 

later by several investigators. 

Using an exact determinantal method Bulson (13) in 1967 

obtained the variation in buckling stress with change in flange width 

for uniform thickness T sections loaded in pure compression and 

having an imposed hinge support condition along the web-free edge. 

In his analysis Bulson considered the effect of mode coupling on the 

stability for such a problem and found that, in the area of close 

torsional and local modes of behaviour, a considerable reduction in 

buckling stress, due to interaction, was apparent. It should be 

pointed out, however, that Bulson's theory is limited to the 

evaluation of interaction in which the mode of local buckling is given 

by a single half wave. Figure 1.2.4 shows his results for T 

sections whose length to web ratio 16 is equal to four. It is 

clearly indicated in this figure that interaction has its strongest 
If 
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effect in the region of near simultaneous torsional and local 

buckling modes. 

Bulson used the same method of analysis in his consideration 

of the interaction at buckling between the local and overall flexural 

modes of behaviour for a uniform thickness I section. For a section 

whose cross-sectional dimensions were of such proportions as to 

preclude the occurrence of torsional instability he showed that, for 

column lengths in which overall buckling was predominant, his inter- 

action analysis gave values for the buckling stress which were marginally 

smaller than the Euler buckling stress. 

In the same year a theory was presented by Graves Smith (14) 

for predicting the ultimate strengths in compression of locally 

buckled box section columns, the author giving due consideration to 

the effects of plasticity and to the interaction of column and plate 

behaviour. Zn his compression analysis of short columns free from 

bending he obtained, through the use of a relaxation process, an 

approximate solution to von Karman's equations whereby displacement 

functions for the locally deflected shape were realised in terms of 

unknown parameters. After satisfaction of the kinematic boundary 

conditions at the plate junctions' the resulting deflected form obtained 

was constrained to retain its shape during post local buckling and 

could change in magnitude only by means of a single deflection 

parameter. 

0 
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When considering plasticity Graves Smith assumed that the 

section material behaved in an elastic-perfectly plastic manner and 

that the extent of the plastic zones within the section were governed 

by the von Mises Criterion. By numerically integrating discrete 

expressions for the plastic and elastic components of strain energy 

he obtained the total strain energy stored in the section corresponding 

to any particular value of applied axial strain and by minimising this 

energy with respect to the unknown deflection parameter achieved an 

approximate equilibrium state corresponding to the applied strain 

considered. 

Results from this analysis are shown in Figure 1.2.5 in the 

form of post buckling stiffness curves for various values of material 

yield stress, these curves pertaining to a square section with width 

to thickness ratio of the plates equal to 58.8. From this figure a 

considerable loss in section stiffness due to plasticity is apparent 

and the theory is seen to be able to describe the region of load 

shedding typically observed in actual tests. Cf. the work of Dombock 

and Clark (9), Figure 1.2.3. 

In his interaction analysis, associated with longer columns 

which have the tendency to buckle Euler-wise under axial load, 

Graves Smith considered the application of an infinitesimal bending 

strain to the column for each value of axial strain considered in his 

compressional analysis. By solving modified von Karman equations 
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to describe this situation he evaluated the bending stiffness of the 

column during the application of this strain. The variation in 

bending stiffness with average column stress is shown in Figure 

1.2.6 in the form of corresponding apparent Young's Modulus curves 

and the bending stiffness is seen to drop considerably as the ultimate 

load is approached, and in the purely elastic case is seen to level 

out at a reduced value as the average column stress is increased. 

In support of his theory Graves Smith carried out a fairly 

extensive series of tests on model columns cut from thin walled steel 

and aluminium drawn tubing. This work is described in another 

paper (15). Figure 1.2.7 shows the comparison of his theory with 

tests carried out on 2" square (outside dimensions), 0.04" thick 

aluminium specimens and it will be seen that they compare well. 

It should be noted, however, that the interaction curve developed by 

Graves Smith is similar to that of Bijlaard (6) on the same problem in 

that it suggests that in the region of near simultaneous local and 

Euler buckling stresses the equilibrium at buckling is initially stable. 

Although the analysis by Graves Smith has the facility of 

allowing for the effects of local imperfections, it is evident from 

his work that he did not fully realise'the significance of such 

imperfections in the range of near simultaneous mode behaviour. 

This is indicated in the comparison of his theory, as presented in 

reference (15), with tests carried out on steel specimens in which 
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his results are generally poorer than those obtained from his 

aluminium tests. Graves Smith attributed the scatter In his results 

to the initial variation in material yield stress from column to 

column where in actual fact his results are pporest in the region of 

simultaneous buckling modes where the buckling is entirely elastic. 

The ultimate average stress for columns in this region. were as 

much as 16% below the local buckling stress. 

1.3 THE ONSET OF A GROWING INTEREST IN NON-LINEAR 

BUCKLING PHENOMENA 

In 1968 van der Neut (17) used a simple two-flange column 

model to examine the equilibrium state at bifurcation for columns 

subject to the interaction of local and overall buckling. Figure 1.3.1 

shows some typical structural forms and. the representative model used 

by van der Neut to describe the phenomena under consideration. 

The model, as depicted, consists of two load carrying flanges of 

width b and thickness h connected at a distance 2c by fictitious 

webs, the webs having no longitudinal stiffness but being rigid 

laterally and considered to provide simple support conditions to the 

edges of the load carrying flange elements. 

To aid in the solution of his column interaction buckling 

problem van der Neut (16) first examined the post local buckling 

behaviour of a simply supported imperfect plate in compression, the 
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plate having stress-free boundary conditions prevailing on the 

unloaded edges. For the perfect plate he obtained the deflected 

form at buckling by solving von Kaman's equilibrium equation 

corresponding to a uniform longitudinal compressive stress and 

subsequently satisfying the relevant equilibrium and compatibility 

requirements at the plate boundaries. The post-buckling behaviour 

of the plate was then obtained by postulating deflections in this range 

tohave the same form as that attained at buckling and solving von 

Karman's compatibility equation exactly, subject to the relevant 

in-plane movement and stress boundary conditions, to obtain 

membrane stresses which were in compliance with the assumed 

deformations. The final relationships between compressive strain 

and out of plane deformations and hence between plate load and 

compressive strain were then realised by solving the equilibrium 

equation approximately using the Ritz-Galerkin technique. For the 

imperfect plate van der Neut assumed the imperfection to have the 

same form as the buckling mode for the perfect plate. 

Using the relationships developed in his plate analysis (16), 

van der Neut established the elastic buckling capacity Kb of his 

two flange column model (17) by evaluating the bending stiffness of 

the column in terms of the local tangent stiffness of the material in 

the dross-section. Hence for the load carrying flanges in the 

locally buckled state he used the elastic tangent modulus I 

in place of the full material stiffness E, which from the bending 
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stiffness point of view can be interpreted as replacing the actual 

plate of width b by one having an effective width 
I b. The 

elastic tangent modulus 
IE is defined as the local slope of the 

curve relating the average strain along the length of the load 

carrying flanges to the average applied stress. 

For the ideal model with perfectly straight axis and perfectly 

flat plate elements the buckling load Kb, for a column whose flanges 

have undergone local buckling, is given by Kb =I KE where KE 

is the classical Euler load for the locally unbuckled column and 
j, 

as defined previously, is the ratio of the post to pre-local buckling 

tangent stiffness of the load carrying flanges. At the local 

buckling load K= KL, however, the bending stiffness of the section 

on the application of an infinitesimal column deflection, is given 

not as EI but as 
2 EI due to the fact that as the column 
+ 

bends at this load one flange gets increased post local buckling 

strain whereas the other flange returns to the locally unbuckled 

condition. Using the value of 0.4083 for I from his plate 

analysis van der Neut found that column buckling. occurred at the 

local buckling load for the perfect model when 1<<2.45 

and that the character of the equilibrium at buckling was unstable, 

i: e. explosive collapse, when 1< 11 < 1.725. 

To study the effects of local imperfections in the design 

region of near simultaneous buckling modes van der Neut 
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considered an equal imperfection parameter 0< applied to each 

flange of the column, c< being the ratio of the imperfection 

amplitude to the flange thickness. Figure 1.3.2 shows the 

relationship obtained between Kb 
and 

KL for several values of 0< 

where it can be seen that the reduction in buckling strength due to 

o< is more severe in the vicinity of 
! LE 

= 1, e. g. for 0< = 0.2 

the reduction in strength is 30%. By using a truncated Taylor- 

expansion to represent the relation between flange load and strain 

in the direct vicinity of the buckling load Kb van der Neut 

ascertained the character of the equilibrium at bifurcation for those 

columns with initial imperfections, finding that the equilibrium was 

unstable, i. e. explosive collapse, over a range of the extent 

of which depended on the degree of imperfection. 

Although the work by van der Neut deals with a hypothetical 

structural form and is basically illustrative, the findings from his 

analysis were the first concrete step in confirming the suspicions of 

Koster and Skaloud (10), regarding the imperfection sensitivity of 

structures with an unstable bifurcation point. His work can also be 

said to be responsible for creating the subsequent interest shown by 

a great many researchers' in non-linear buckling behaviour. 

Further contributions using the same model have been 

presented by Meijer and van der Neut (20) in 1970, Koster and 

Kuiken (22) in 1971, Thompson and Lewis (26) in 1972, van der 
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Neut (31) in 1973, Gilbert and Calladine (33) in 1974 and in 1975 

by Svensson and Croll (42). 

Meijer and van der Neut (20) examined the effect of 

imposing unequal flange imperfections 0(1 and o(2 in the load 

carrying elements of the model, considering the problem to be again 

one of bifurcation by choosing restrained boundary conditions at the 

column ends in conjunction with a column length twice that of a 

column having the same section and with simply supported ends. 

For this situation the point of application of the compressive force 

K moves such that the column remains straight during the process of 

loading up to the buckling load Kb. Figure 1.3.3 shows some 

results from this analysis for o(1 = 0.05 and 0.4 > 0<2 > 10-7. 

It will be seen from this that Kb <1 when <2 for the values 

of oC 1 and' o< 2 considered and that the unfavourable effect of 

reduction in buckling strength is maximal at 
KL 

= 1. It is also 

interesting to note that when o< 2 approaches zero the same kind 

of degeneration of the buckling curve appears as with the column 

the ratio without imperfections, i. e. over a certain range of. 
KE 

Kb has almost constant value. Meijer and van der Neut also 

found that over a range of KL 
explosive collapse was induced due 

to *the unstable nature of the equilibrium at bifurcation and that the 

instability was more severe with smaller imperfections. 

Koiter and Kucken (22) presented a somewhat more 

mathematically elegant treatment of the two flange column problem 
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with equal flange imperfections. Their energy approach, based 

on Koiter's general non-linear theory of elastic stability, provided 

almost identical numerical solutions with those of van der Neut (17), 

as well as useful asymptotic formulae. Although their analysis 

does not yield significant new-results the authors point out that it 

requires far less numerical work than other available methods and that 

the simple and new asymptotic formulae developed enable the effect 

of equal imperfections to be readily assessed in individual cases. 

Thompson and Lewis (26) investigated the optimality of the 

two flange column model with the view to obtaining the highest 

possible buckling load subject to the constraint that the structural 

weight of the column be held constant. Using the results of van 

der Neut (17) the authors showed that a local optimum existed when 

the buckling load Kb = KE = KL but due to imperfection sensitivity 

in this region the optimum shifts to some value 
KL <1 depending 

on the imperfection value c< while the buckling magnitude 

diminishes with increasing c< . The optimisation scheme was 

such that the column had a prescribed length L, the web width 2C 

connecting the load carrying flange elements was set equal to the 

flange width b so that the section under consideration would be 

square at all times and the structural weight held constant by 

maintaining constant cross-sectional area, i. e. the area of the 

flange elements bh = constant. Using this scheme higher values 
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of Kb can be obtained for the perfect model, for the same structural 

weight, by making 
1 large. It should be noted, however, that 

in this region local deformation of the flanges will be increasingly 

severe before the onset of column buckling. In such a case the 

post buckling stiffness of the flanges will change with load, due to 

changes in the locally deflected form, thus leading to a considerable 

reduction in Kb from that which would be obtained by approximating 

the post buckling stiffness of the flanges to be constant. By 

postulating this elastic deterioration in stiffness to be represented 

by a relaxed linear relationship with load, Thompson and Lewis found 

that the local optimum of the perfect model at Kb = KE = KL 

resulted in the complete optimum, while allowing for the possible 

erosion of this by initial imperfections. The authors concluded 

that it pays to make KE <KL. This is contrary to the simple 

argument that, since local buckling does not exhaust the load carrying 

capacity, it would be best to make. KE > KL. 

Although van der Neut, in his earlier reconnaissance 

work (17), considered imperfection sensitivity to both local and column 

axis imperfections, the effect of the latter was studied only in brief. 

As a result, some uncertainty' in respect of his numerical evaluations 

was apparent and consequently only a qualitative picture of the 

response to imperfections in the overall mode was presented. To 

rectify this van der Neut carried out a more in depth investigation (31) 
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pertaining to a column with clamped ends in which the column axis 

imperfection was assumed to correspond to the Euler buckling mode. 

The required relationship between column strength and imperfection 

magnitude was attained by van der Neut through the satisfaction of 

the governing non linear differential equations, this being achieved 

by postulating column deflections under load to be simulated by a 

trigonometric cosine series. 

The main findings from this more complete analysis are 

depicted in Figures 1.3.4 and 1.3.5. Figure 1.3.4 shows the column 

strength parameter /\ = plotted as a function of the imperfection 

parameter 
ß=C° for various values of R= KL 

and a fixed 

value of the local imperfection parameter o( = 0.025 ( eo = half 

the imperfection magnitude at the column centre and C= half the 

web width). From this figure it is seen that for the smaller R 

values any imperfection yields reduction of the failure load 

as compared to the buckling load Kb 
of the perfectly straight 

column. For larger R values it is seen that there is again , 

reduction of strength provided P exceeds some critical value 

CR% however, for ß<P 
CR the maximum load tends to 

/fib = 
KL 

as the column deflection tends to 00 . This is 

analogous, as pointed out by van der Neut, with the behaviour of 

rotating shafts whereby, due to initial deflection or eccentric 

masses, the shaft experiences a dynamic jump, when accelerated 

slowly, as it traverses the critical speed. Figure 1.3.5 shows 
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as a function of R for several values of ß and two values of 

0 sai 0.0125 and 0.025. The upward sweep of the ultimate load 

curves, for constant , towards the Kb 
curve (ß= 0) occurs at 

the value of R for which CR. In comparing Figures 1.3.5 

and 1.3.2 it can be said that by taking the practical limit of P to 

be in the region of '6 or 7 per cent, local (c) and overall (ß ) 

imperfections yield about equal strength reduction in the region of 
KE 

;= 1 whereas the reduction due to is more important when KL 
P 

R 1. 

Other work associated with the two flange column model 

was carried out by Gilbert and Calladine (33) and Svensson and 

Croll (42). The first authors used a graphical method, in conjunction 

with the stress-strain relations from the , elastic plate analysis of van 

der Neut (16), to obtain the sensitivity response corresponding to 

arbitrary combinations of local and overall imperfections while the 

second authors used a combined perturbation/Newton-Raphson 

approach to test the reliability of the van der Neut model in 

constituting a valid basis for obtaining quantitative. strength estimates 

of thin walled box columns. In considering ultimate column strength 

Svensson and Croll used the criteria, as is used in this thesis, that 

the strength is exceeded when the average flange stress in the 

concave flange at the middle of the column reaches a certain value 

(: 3, '*"Ult, this being attained when the value of the maximum edge 
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stress de reaches the yield stress Ci Y. To give a more 

complete presentation of their work they developed, on the basis of 

the van der Neut model and the strength criterion previously 

mentioned, a generalised version of the well known Perry-Robertson 

formula, using this to give a realistic estimate of the ultimate 

carrying capacity of square box columns. Figure 1.3.6 shows some 

results whereby the column strength P is plotted as a function of 

the plate width to thickness ratio 
X 

such that the structural 

weight remains constant for a specific column length. From this 

figure it can be seen that the effect on carrying capacity of increasing 

length is considerable, especially for the smaller 
% 

values 

encompassing the range which provides near simultaneous mode 

behaviour for each perfect structure. It will also be noticed that 

increasing length shifts the optimum geometrical design, in respect 

of strength, to cross-sectional configurations with higher values of 
%ý 

. The theoretical curves presented by Svensson and Croll 

are seen to be comparable with those of the earlier work by Kloppel 

and Schubert mentioned in the same paper. 

1.4 COUPLED BUCKLING BEHAVIOUR OF STIFFENED PANELS 

Now that researchers were aware of the possible dangers 

associated with coupled mode buckling and the manner in which a 

conventional buckling analysis could overestimate structural strength, 
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concentrated efforts were made to investigate the interactive 

behaviour of more practical structural shapes. 

One such configuration which received widespread 

attention was the stiffened plate panel with plain flat outstands. 

Panels of this nature are used essentially in situations where high 

strength to weight ratio is important, as for example in box girder 

bridges or the superstructures of off-shore oil platforms. Figure 

1.4.1 shows a typical panel geometry and Figure'l. 4.2 shows 

schematically the cross-section geometry of a box girder. 

After the Second World War many of the road bridges built 

throughout Europe utilised the box girder in their construction. A 

series of failures, however, occurring in the late 1960's, raised 

some doubts about the ability of existing analytical methods to 

predict the carrying capacity of these bridges. Although there is 

no single criterion which can be used as an overriding factor in the 

design of box girders, it is not difficult, using present-day 

knowledge, to envisage some form of interactive buckling as being 

the initiating factor in causing failure. 

Tvergaard (30), in 1973 investigated the initial post 

buckling bd-aviour of wide integrally stiffened panels loaded in 

compression. The panels investigated had the geometry and 

geometrical notation shown in Figure 1.4.1 and were simply 

supported along the edges on which the compressive load acts. 
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Although his analysis could account for the torsional behaviour of 

the stiffeners, Tvergaard found that this effect could be neglected 

for a large range of practical structures having small values of 

stiffener eccentricity. Special attention was directed to panel 

designs in which the Euler and local buckling modes occur 

simultaneously with a view to establishing the imperfection 

sensitivity that may be inherent in these designs. 

Tvergaard determined the behaviour of the panels by using 

the general initial post buckling theory of elastic structures as 

developed by Koiter (11), this being essentially a perturbation 

technique which relies for its solution on the principle of stationary 

potential energy. The resulting asymptotic equilibrium expressions 

obtained from his analysis, relating the applied load to local and 

overall displacements and local and overall imperfections, demonstrated 

that the simultaneous mode design was very sensitive to geometrical 

imperfections and that the panel was more sensitive to imperfections in 

the shape of the local buckling mode than to imperfections in the shape 

of the. Euler buckling mode. It should be emphasised,, however, as 

mentioned by Tvergaard, that for panels with near simultaneous buckling 

modes the single mode initial post buckling analysis Is only adequate in. 

the immediate vicinity of the critical bifurcation point. This is due, of 

course, to the presence of the other buckling mode corresponding to a 

buckling stress. only slightly above the critical stress, with a non-linear 

coupling between the two buckling modes. 
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Having established that in cases when Euler type 

buckling and local buckling occur at the same critical stress, the 

stiffened panel structure is particularly imperfection sensitive, 

Tvergaard (32) focussed his attention on the influence of post 

buckling behaviour on the optimal design of these panels. Since, 

however, the asymptotic results of his earlier work (30) are not 

applicable for this purpose, as the adequacy of the single mode 

initial post buckling analysis is limited to very small deflections, 

Tvergaard based his analysis on an approximate solution of the non- 

linear differential equations by application of the Galerkin method. 

Some of the results obtained by Tvergaard are shown in 

Figures 1.4.3 and 1.4.4. From these figures it can be seen that 

the optimum design, from the point of view of post buckling 

behaviour, often differs significantly from the design with two 

simultaneous buckling stresses. Figure 1.4.3 indicates that for 

the panel geometry considered, the highest carrying capacities are 

predicted in the range where the local buckling stress has been 

exceeded, where in fact the ultimate load can be larger than the 

critical load of the perfect structure in the simultaneous buckling 

case. In this stable range, however, the limit load corresponds 

to quite large mode deflections and in practice plastic deformations 

may often reduce the maximum load as predicted by Tvergaard's 

elastic theory. 
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From the point of view of retaining a high section stiffness 

at the highest possible load level, Tvergaard points out that the 

best design is usually one in which the critical stress for Euler type 

buckling is smaller than that for local buckling and that in some 

cases the optimum design has a local buckling stress that is more 

than twice the Euler buckling stress. Figure 1.4.4 shows the 

ultimate loads attainable for designs in this region. It can be 

seen from this figure that local mode imperfections of a given 

amplitude have a more serious effect than Euler type imperfections 

of the same amplitude and it may be said that if imperfections can 

be kept small, the optimum design will correspond to values of the 

ratio of local buckling stress to Euler buckling stress slightly higher 

than unity, but for larger imperfections the ratio for optimum design 

increases considerably. Although Tvergaard uses a simplified 

structural model 'in his analysis, in that the stiffeners do not participate 

in local buckling but may buckle torsionally, his work must be 

regarded as a useful first reconnaissance in an attempt to establish 

the significance of mode interaction in stiffened panels. 

It is not surprising that the work by Tvergaard caught the 

attention of several researchers already working in the field of non- 

linear buckling and induced them to apply some of their efforts to the 

stiffened panel problem. This was apparent from the number of 

papers (34,, -, 35,, 36,, 37) presented to the IUTAM Symposium on Buckling 
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of Structures, held at Harvard University, Cambridge, USA, in June 

1974. Van der Neut (34) examined the mode interaction of panels 

stiffened by top hat stringers and with rigidly restrained boundary 

conditions at the panel ends. Koster and Pignataro (35) used an 

approach similar to that used in Koiter's earlier work (22) to examine 

the interactive behaviour of stiffened panels of the type investigated 

by Tvergaard (30,32). Thompson, Tulk and Walker (36) made use 

of small scale epoxy plastic models in their experimental 

investigation of the imperfection sensitivity of stiffened panels, 

while Tvergaard and Needleman (37) studied the effect of mode 

interaction on the plastic bifurcation of stiffened panels. 

Although Van der Neut (34) included the participation of 

local buckling of the stiffeners in his analysis, the structural model 

employed for the panel overestimates the adverse effect of interaction. 

This is due to the fact that the webs of the top hat stiffeners are 

neglected in the post buckling range and serve only to maintain the 

structural integrity of the assembly. The model employed is 

essentially a two-flange column with unequal flanges and with 

rotational edge restraints obtained from a linear buckling analysis 

of the full panel cross-section. The coefficients of edge restraint 

of the flanges are assumed to be constant through the whole range 

of applied edge strains and equal to their values obtained at buckling. 

On the other hand, the analysis by Koster and Pignataro (35) 

underestimates the adverse interaction behaviour of panels with solid 
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integral stiffeners, due to its assumption that the local mode shape 

of the cross-section remains unaltered in the post buckling domain. 

Of particular interest in the work by Thompson, Tulk and 

Walker (36) was the use of an epoxy plastic in the manufacture of 

small scale test models. The low modulus of elasticity of this 

material allowed the models to be tested on a simple hand-operated 

rig, while the material had the added advantage of remaining elastic 

up to large strains so that yielding was avoided and the models 

could be tested repeatedly. Another advantageous property of the 

epoxy plastic is that the material suffers from a considerable amount 

of creep at elevated temperatures. Thus, if a panel was loaded to 

its local buckling load and then heated, it was possible to induce 

local imperfections having a geometric form corresponding precisely 

to the local buckling mode. 

Tvergaard and Needleman (37) investigated the plastic 

buckling of wide integrally stiffened panels of the type investigated 

in Tvergaard's earlier work (30,32). In order to make the panels 

bifurcate at plastic strains, these had been given a relatively larger 

plate thickness and stiffener eccentricity than those in (32). The 

initial post bifurcation behaviour in the plastic range was determined 

using an asymptotic analysis to obtain approximate results for the 

ultimate panel load and for the corresponding buckling mode 

deflections. ' An interesting feature of the work by Tvergaard and 

Needleman is that in the plastic range the propagation of elastic 
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unloading zones into the material play an important role in the 

subsequent panel behaviour after bifurcation. In a further paper, 

Tvergaard and Needleman (43) presented a more detailed description 

of their bifurcation and post bifurcation analyses together with details 

of their numerical procedure. Some results for the effect of plastic 

yielding on imperfect panels designed so that bifurcation of the 

perfect- structure occurs in the elastic range were also presented. 

Further work on the elastic buckling of panels with heavy 

stiffener outstands was carried out by Walker (40) and Walker and 

Davies. (41) in 1975 and by Tulk and Walker (45) in 1976. 

In the analysis by Walker (40), the behaviour of the plate 

between the stiffeners was described by two simple expressions 

relating the local deflection amplitude w and the corresponding end 

shortening displacement 6 to the applied stress CS" on the plate. 

From these relationships, however, the resulting reduction in section 

flexural rigidity, which is responsible for the adverse non-linear 

interaction between local and overall buckling, is found to remain 

constant for all values of load in the post critical range of local 

buckling. This is due, of course, to the implied assumption in 

the simple plate expressions used that the locally deflected form 

remains constant during loading, as has also been-the case in the 

work of previous researchers. For perfect panels, Walker (40) 

shows all load-overall deflection curves tending asymptotically 

towards a.. constant reduced Euler load based on the tangent bending 
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rigidity of the section after the occurrence of local buckling. The 

ultimate elastic load that a panel, designed in the stable range, can 

therefore attain is the reduced Euler load and theoretically its post 

interaction behaviour will always be stable. If, however, his 

analysis had the facility of allowing the locally deflected form to change 

during loading then the initially stable behaviour of the panels would 

eventually'become unstable. Walker's analysis included the effect 

on ultimate load of overall imperfections and he compared his 

theoretical findings with previous experimental work (36) on small 

scale models. The models, however, had imposed local mode 

imperfections and the effect of these is clearly indicated in his 

comparison. 

Walker and Davies (41) Used a similar approach to that of 

Walker (40) in their elastic buckling analysis of stiffened panels. 

This time, however, the simple parametric relationships employed 

included terms which took into account the effect of local 

Imperfection's. The local imperfection parameters in the relationships 

were based on the assumption that the initial local deflections had 

the same form as the critical mode shape and the complete expressions 

implied that the locally deflected form altered with increasing load. 

The inclusion of local imperfections in their analysis provided good 

agreement between theory and experiment (36). Walker and 

Davies (41) considered, experimentally, the behaviour of panels 
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having torsionally flexible stiffeners (see also reference (36) ) 

and of panels under combined longitudinal and shear displacements. 

From this, it was found that the interaction of the stiffener torsion 

mode and the panel overall mode gives rise to a very violent type of 

buckling and a high degree of imperfection sensitivity and that shear 

displacements also considerably reduce the panel ultimate load. 

The work presented by Tulk and Walker (45) on the model 

elastic studies of stiffened panels gives more details of the 

experimental work of reference (36). 

Up to this point, studies of the interaction of local 

buckling and Euler buckling in stiffened panels have in the main 

considered panels which have relatively stocky compact stiffeners, 

thereby causing local buckling effects to occur solely in the plate 

between the stiffeners which lies parallel to the axis about which the 

panel bends. In the case of thinner and deeper stiffening members, 

however, local buckling may have its predominant effects in the 

stiffeners which are perpendicular to the bending axis of the panel, 

resulting in a substantially different post-buckling interaction 

behaviour. A consequence of designs with thinner and deeper 

stiffening members is, of course, the introduction of a third mode of 

buckling associated with the local-torsional behaviour of the 

stiffeners. The effect of this mode on the overall behaviour of 

stiffened panels was investigated in 1976 by Fok, Rhodes and 
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Walker (44). A simplified mathematical model, based on a semi- 

energy post local buckling analysis of the stiffener in which the 

stiffener was considered to be fully rotationally fixed to the plate, 

was used to describe the buckling process of the panel. Fok, 

Rhodes and Walker (44) considered the effect of overall imperfections 

in their analysis and the comparison of their theoretical results with 

experiment was shown to be good for load deflection behaviour but 

less accurate regarding imperfection sensitivity. Although the 

mathematical model retains only certain of the physical attributes 

of the real structure, their analysis led to a sufficiently accurate 

description of the buckling process and provided a basis for further 

investigation. In 1977 Fok, Walker and Rhodes (53) extended their 

previous work (44) to include the effect of local imperfections in the 

stiffener outstands. From this, more accurate panel sensitivity 

curves could be obtained. 

Having examined the behaviour of stiffened panels with 

solid stiffeners (35), Koster and Pignataro (47), in 1977, turned their 

attention to those with thin walled stringers. To evaluate the 

reduction in panel flexural rigidity due to local buckling, Koiter 

and Pignataro used a lower bound approach in which the strain energy 

due to transverse normal stresses and shear stresses is neglected. 

Although the approach used gives an overestimate of the effects of 

interaction, their results show that for top hat stiffened panels 

interaction is much less severe than that predicted by van der 
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Neut (34). The exaggeration of the adverse interaction behaviour 

in the work of van der Neut (34) is due to the fact (as previously 

implied) that the flanges of his representative two flange model are 

elastically uncoupled and therefore behave independently in local 

buckling. 

Van der Neut (52) in 1977 and, more recently, Koiter and 

van der Neut (57) in 1979 have investigated the effect of allowing 

changes in the local mode shape after the occurrence of local 

instability. To account for the interdependence in local buckling of 

the plate elements in real structural forms, van der Neut (52) and 

Koster and van der Neut (57) used a two flange rrodel in which the 

flanges were coupled by an elastic medium having a constant stiffness 

per unit area. The model allowed a rather simple analytical 

treatment, however, in that the flanges were treated as being simply 

supported on their unloaded edges with either stress-free or straight 

edge boundary conditions. 

From these works (52,57) it followed that changes in the 

local mode pattern were insignificant for the panel with top hat 

stiffeners (52), but quite significant for the square tube section (57) 

in which a modification of the local mode shape due to interaction 

with the overall bending mode was apparent. In the region of near 

simultaneous local and overall buckling modes, the model predicts 

initially stable post-buckling interaction behaviour, indicating that 
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in this region the local buckling load is not the ultimate load. The 

eventual column buckling load is, however, unstable in this region and 

continues to be so over a range of Euler to local buckling stress up to 

about two. The results from the model for square tubes (57) are 

` indicative of those obtained from the much earlier work of Bijlaard 

and Fisher (6) and from the later work of Graves Smith (14) - see 

Figures 1.2.2 and 1.2.7. 

1.5 LOCAL AND OVERALL BUCKLING OF BEAMS AND COLUMNS 

As has been shown in the previous section, a considerable 

amount of work on interactive buckling has been associated with the 

stiffened panel structural configuration. In parallel with this, 

however, the interactive buckling behaviour of beams and columns 

having various cross-sectional shapes and under several loading 

conditions, have been examined. 

Using a unified matrix approach, Ghobarah and Tso (18), in 

1969, investigated the stability of uniformly compressed plain channel 

columns, their analysis including the interaction of overall flexural 

and local buckling modes of behaviour but precluding overall 

torsional behaviour. The matrix formulation used by these authors, 

however, which expresses the state vector at any particular point 

(in terms of deflection, slope, moment and shear) as a linear 

combination of the same quantities at another point, was applied, not 
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to the channel section, but to a rather crude intuitive structural 

model, the critical load of which was assumed to give a realistic 

estimate of the buckling stress of the channel. The theoretical 

results obtained from their analysis therefore can only be regarded 

as approximate. 

Skaloud and Zornerova (21), in 1970, carried out an 

extensive experimental investigation to study the interaction of the 

buckling of compressed columns with the buckling of their plate 

elements. The columns tested were fabricated from top hat sections 

having very small lips and joined together at the lips to form closed 

tubes, as shown in Figure 1.5.1. Due to this method of manufacture 

local buckling was initiated by the flange plates, since the small 

lips give added buckling strength to the webs. From the results of 

their investigation the authors confirmed that, due to initial 

irregularities of column axis and plate flatness as found in real 

structures, the ultimate column stress was lower than either the plate 

stress or the Euler stress for columns with nearly simultaneous 

buckling modes. 

The stability behaviour of plain channels in compression was 

examined by Wittrick and Williams (24) in 1971. The authors used 

a matrix approach, treating each individual flat wall of the section as 

a single element. In their analysis the buckling stress was 

ascertained from the determinant of the overall stiffness matrix of the 

structure, this single equation containing all the possible buckling 
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modes whether local, Euler or torsional. Due to the exact nature 

of their theory Wittrick and Williams accounted fully for the 

possibility of mode interaction. They found, however, that all 

buckling modes obtained contained mixtures of local and overall 

deformations although one mode may only have been present in 

negligible proportion. Figure 1.5.2 shows the results of their 

exact solution compared with those of Ghobarah and Tso (18) on the 

same problem and although Ghobarah and Tso did not account for 

torsional behaviour in their analysis, appreciable differences in the 

other two modes are evident. 

As an extension of his earlier work (14,15), Graves Smith 

(25), in 1971, examined the effect of residual stresses, as well as 

geometrical imperfections, on the strengths of thin', walled welded 

box columns. Using a variational approach in conjunction with 

modified elastic stress-strain relations, which took account of the 

residual stresses caused by welding, ' he found that column strength 

reduction due to the welding stresses was of the same order of 

magnitude as the residual compressive stress in the plates. 

In 1973 contributions to the knowledge of interactive beam 

and column behaviour were made by Rajasekaran'and Murry (27) using 

a finite element method, Hill (28) using the semi energy method of 

analysis'as is essentially employed in this thesis, and Wang and 

Tien (29) using the concept of effective width in conjunctionwith a 

numerical iteration procedure. 
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Rajasekaran and Murry (27) studied the interaction of local 

plate buckling with overall member buckling for axially loaded 

columns and transversely loaded beams of I-shaped cross-section. 

Their analysis precluded post local -buckling interaction behaviour 

and consideration was given to the interaction of local and Euler 

buckling and of local and lateral buckling at the initial instability 

stress only. The inability of their finite element model, however, 

to predict the uncoupled critical local buckling stress of sections 

with small flange to web ratios, restricted the authors in their 

interaction analysis to sections having wide flanges only. The 

reason for this rather unfortunate feature of their work lies in the 

fact that the assumed local displacement shape functions used by 

them were not general enough to describe the fundamental local 

buckling mode for sections whose buckling is initiated by the web. 

Hill (28) examined the local-Euler interactive buckling 

behaviour. of lipped channel columns by selecting displacement 

functions in the post local buckling range to describe the local form 

of the column cross-section in terms of one unknowncxefficient and 

by assuming the form of the column lateral deflection to be sinusoidal. 

In his analysis, however, he neglects the complementary function 

solution of von Karman's compatibility equation and, due to the fact 

that local deflections are controlled by a single coefficient, he 

constrains the buckled form to remain constant throughout all stages 

of loading in the post local buckling range. Although the application 
I 
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of the semi-energy method yields, in general, an upper bound 

solution for stiffness, the use of a single "gues. sed" term by Hill 

in the post-buckling solution, i. e. the deflected form used, was 

not obtained from a Rayleigh-Ritz local buckling analysis or the like, 

along with the disregard of the complementary function solution of 

von Karman's equation and the assumed form for column lateral 

deflection, renders his solution to be of only an approximate upper 

bound nature. 

Wang and Tien (29) determined the elastic column instability 

stress of locally buckled centroidally loaded rectangular columns 

using Winter's effective width expression to account for the post 

local buckling strength of the plate elements of the section and a 

numerical iteration procedure to predict the critical column stress. 

By careful selection of the geometrical parameters, however, 

solutions were obtained for columns in which local buckling was 

confined to occur theoretically in the wider plate elements of the 

cross-section only, the other plate elements remaining flat. As 

confirmatory evidence of the reliability of their method it would 

perhaps have been better if they could have obtained results for 

centroidally loaded square box sections in which all plate elements 

buckle simultaneously and compared these with the well established 

experimental work of Bijlaard and Fisher (4) and Graves Smith (15) 

whose theoretical work they mention in the introduction of their 

paper. 
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A brief state-of-the-art review of interactive buckling 

behaviour in plate structures was presented in 1974 by Maquoi and 

Massonnet (38), this being a consequence of a commitment by one 

of the authors in the drafting of structural codes at Belgian and 

European level. The main aim of their paper was to examine the 

validity of the academic criticisms presented in the literature against 

the classical naive simultaneous mode approach in design. The 

authors concluded that although imperfections reduce considerably 

the ultimate strength in this area and in many cases result in an 

optimum shift to designs in which the ratio of overall mode to local 

mode is less than one, in the case of box columns the so-called 

naive approach still constitutes an acceptable tool for selecting 

plate thickness. This conclusion, however, is not surprising since 

academic arguments against simultaneous mode design, on the basis 

of optimum shift caused by imperfections, were set up from either the 

consideration of an idealised two flange model which disregards the 

presence of webs and their interaction with the other plate elements 

of the cross-section, 'or on the stiffened panel type of configuration 

in which local mode deflections are largely confined to one side of 

the cross-section' leading to substantially different behaviour than that 

of the box section in which the primary local mode in compression 

displays' significant deflections on both sides of the neutral axis. 

J 
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In the same year De Wolf, Peokoz and Winter (39) tackled 

the problem of columns subject to local buckling by means of a 

semi-empirical approach utilising the concept of effective width. 

Test columns were manufactured from plain channels connected to 

form rectangular and I-shaped cross-sections and due to this local 

buckling was confined to occur in the wider plate elements for 

rectangular sections and in the unstiffened plate elements for the 

I-shaped sections. The analytical approach used by De Wolf et 

al was based on the Engesser-Shanley tangent modulus equation for 

the bifurcation stress of a column, this equation being suitably 

modified to account for the effects of non-uniform material properties 

and local buckling, the latter being included by means of the effective 

width expressions developed by the third writer in the 1940 's . 

The authors found that the effective width approach used gave 

reasonably good predictions of the ultimate strengths; of the columns 

tested. 

An interesting comparison was made by Rhodes and Harvey (46) 

in 1976, in their analysis of the local and post local buckling 

behaviour of plain channel struts in compression. Although no 

account was taken of other forms of buckling in their analysis, a 

reasonable estimate of the effects of Euler buckling was obtained 

by evaluating the Euler stresses from simple theory and superposing 

these on the local buckling stresses from their energy analysis. 

Figure 1.5.3 compares the results from this simple method with those 
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of the more rigorous interaction approach used by Wittrick and 

Williams (24). For the strut length to flange ratios of 7.5 and 

15 it can be seen that the Euler, torsional and local buckling modes 

act separately with no stress reduction occurring due to mode 

interaction. On the other hand, for the length to flange ratio of 2 

stress reduction due to interaction of local and Euler buckling is 

clearly indicated, this being due to the buckle half wavelengths of 

the two modes being of the same order. The comparison of results 

shown is very good and would tend to highlight the approximate nature 

of the work by Ghobarah and Tso (18) as shown in the comparison 

by Wittrick and Williams (24). The slight differences in the local 

buckling curves are due. to the different values of Poisson's ratio 

used in' each analysis. 

Continued interest in non-linear coupled buckling behaviour 

was apparent from the papers (48,49,50) presented at the Second 

International Collogtiium, on the Stability of Steel Structures held in 

Liege im 1977. Skaloud and Naprstek (48), working at the 

Czechoslovak Academy of Sciences in Prague, used the concept of 

effective width and a numerical technique combining the methods of 

successive approximation and Runge-Kutta to determine the equilibrium 

state of rectangular box section columns, the authors terminating the 

elastic solirtion at the onset of yielding to obtain an estimate of 

column capacity, Figure 1.5.4 shows some results from this simple 
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approach, the ultimate load N being plotted as a function of the 

column length for columns loaded centroidally and having pinned ends. 
e 

The curve NCR (el) is the classical Euler value and the curve 
e 

NCR (pl) indicates the onset of yielding, both these curves being 

depicted for locally buckled columns without Imperfections. The 

curve N is the limiting load caused by yielding for columns having 

an overall imperfection in the form yo = fo sin 
LX 

and whose 

amplitude fo is realistically based on statistical observations. 

As is shown in Figure 1.5.4, the method used by these authors 

predicts substantial strength reductions due to this type of imperfection; 

some comparison with experimental work would, however, determine 

its reliability. 

Reis and Roorda (49) examined the sensitivity of. the buckling 

load to changes in design and imperfection parameters in their study 

concerning the interaction of lateral torsional and local plate buckling 

in thin walled beams. As a special case of the relevant governing 

differential equilibrium equations they obtained the uncoupled non- 

linear equilibrium path for a simply supported T-section beam 

subjected to-increasing applied end moments in the plane of the web 

and having overall lateral torsional imperfections. Along this 

uncoupled path the compound bifurcation moment 
Ab 

was determined 

by means of a generalised Rayleigh-Ritz analysis which obtained the 

local plate stability of a beam element at mid-span of the beam. 
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Figure 1.5.5 shows qualitatively the equilibrium behaviour obtained 

by Reis and Roorda of a thin walled T-section beam subject to mode 

interaction. In this figure the parameter 
AI is the critical load 

parameter associated with torsional buckling of the perfect or ideal 

beam, A YI the critical local parameter, Ab the compound 

parameter and 
'-r the reduced parameter towards which all 

are equilibrium paths are asymptotic. The parameters E and P 

Imperfection and design parameters respectively. Figure 1.5.6 

shows the local co-ordinate system of the beam element considered 

by Reis and Roorda and the assumed local form at instability along 

the uncoupled equilibrium path. Comparison of theoretical buckling 

moments with experimental results are shown in Figure 1.5.7, where 

it is seen that simultaneous mode designs are highly imperfection 

sensitive. 

The work by Rhodes and Harvey (50) examined the interactive 

behaviour of plain channel columns under eccentric loading, their 

approach taking into consideration local buckling in all elements of 

the section and also allowing for variation in the locally deflected 

form after buckling. In their approach the buckling load and shape 

of the local buckles' were obtained very accurately using a multi-term 

energy analysis and, the deflected form so obtained then used in a 

semi-energy post buckling analysis. Although the load-deflection 

equilibrium equation developed by Rhodes and Harvey for the locally 

0 
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buckled column was derived on the basis that only the magnitudes 

of the local buckles changed after buckling, the authors, while 

still retaining the simple form of this equation, took into account 

changes in local form by setting up a large number of such equations 

corresponding to the initial compression eccentricity applied and 

also for a range of other eccentricities. The authors then chose 

the lowest envelope of all such curves as being the most accurate 

solution based on the premise that due to the relationship between 

load point displacement and column deflection it prescribes 

approximately the least value of the potential energy of the system. 

Figure 1.5.8 shows some interesting points highlighted from their 

results. Figures (a) and (b) indicate the geometrical notation and 

positive sense for overall deflections employed in their analysis 

while figures (c) and (d) show the reduction in Euler load and neutral 

axis shift at buckling. NCR is the Euler load for locally unbuckled 

columns while NCR and e* are the reduced Euler loads and 

new neutral axis position respectively at buckling. In figure (c) 

the full line indicates the immediate reduction in NCR at buckling 

and the dotted line the asymptotic value well into the post buckling 

range. For columns with narrow flanges, h/hw 0.325, overall 

deflections will develop in the negative direction at the point of 

local buckling as is indicated in figure (d) by the neutral axis 

moving further away from 'the web. For columns with wide flanges, 
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h/hw > 0.325, the neutral axis approaches the web after local 

buckling and the column buckles in the positive direction. 

Figure (c) shows greater reduction in Euler load for columns which 

deflect in the positive direction than those for negative direction 

buckling. 

The finite element method was used by Wang and Wright 

(51) in 1977 to determine the torsional flexural behaviour of locally 

buckled beams. In their analysis, the resulting determinantal 

equation, in which the coefficients of the elastic stiffness matrix 

were computed on the basis of the effective cross-section 

corresponding to the current moment distribution in the beam, was 

solved iteratively to obtain the lateral buckling strength of the 

beams. Figure 1.5.9 shows some results for simply supported 

continuous beams loaded, uniformly along the centre span. A 

reduction in lateral buckling strength due to local buckling is 

indicated. 

Several of the experimental results of this thesis were 

published in 1978 in the work by Thomasson (54) for the Swedish 

Council for Building Research in Stockholm. Thomasson carried 

out many tests on lipped channel columns with single and double tree ; 

stiffener grooves running along the flange and also without 

stiffeners. His test rig, however, was limited to the application 

of concentric loads only and to supplement his results the test 
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work of this thesis was made available. Thomasson found that 

increasing the section stiffness through the provision of one or two 

stiffeners in the flange was not entirely favourable. The 

consequence of the higher stiffness was that the column remained 

straight up to a load level which was higher than that for a similar 

column without stiffeners but which resulted in higher stresses in 

the webs and the subsequent introduction of a local torsional 

buckling mode. Thomasson found that this type of buckling caused 

collapse and in several cases the collapse was of a violent character. 

The columns tested without stiffeners were found to have 

large local flange imperfections of the order of 2 to 32 times the 

flange thickness and this, coupled with the high flange width to 

thickness ratios tested (as high as 475), resulted in very pronounced 

local buckling effects in the flange at relatively low loads. In his 

conclusions Thomasson states that for all the columns tested without 

stiffeners collapse occurred as a result of loss of stability and that 

a dynamic jump occurred when the stability limit was reached. 

He did not state, however, the nature of the instability. Preliminary 

calculations have shown that even if the whole flange was ineffective 

insofar as carrying load is concerned, then the reduced 'Euler load 

would still be in excess of the actual collapse loads occurring 

experimentally and therefore some other type of instability must 

have taken place. Figure 1.5.10 shows the distribution of axial 
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membrane stresses obtained from strain readings for two of the 

columns tested by Thomasson from the onset of loading to final 

collapse. It can be seen that the highest membrane stresses 

occur at the flange web junction and that the magnitude at collapse 

is of the order of half the yield stress. It would appear from these 

stress distributions that due to the high ineffectiveness of the 

flange, coupled with overall column deflections, loading on the 

cross-sections is concentrated in the main at the flange-web 

junctions and it would seem reasonable therefore that some sort of 

corner instability could have caused collapse of the columns. In 

fact, Thomas son. mentions that at collapse the load decreased by 

50% in some cases and at the same time a mechanism was formed 

at the point of failure, this being due to the increased column 

deflections during load reduction. From several of the photographic 

plates in his report the failure point would appear to be indicated 

by buckled corners of the "crinkly" collapse mode as recently 

examined by Graves Smith and Sridharan (60) whose work will be 

discussed later. 

The work, of this thesis has been presented in two papers 

(55, '56), one in 1978 to the Annual Conference of the Stress 

Analysis Group of the Institute of Physics, held at University 

College , in Cardiff (55), and one in 1979 to the International 

Conference on Thin Walled Structures, held at the University of 
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Strathclyde (56), and organised in association with Constrado and 

the Institution of Structural Engineers. Both these papers are to 

be published in the conference proceedings. The first paper (55) 

outlines the theoretical approach used in the thesis and pays 

special attention to the study of columns with coincident or nearly 

coincident local and Euler buckling loads, while in the second paper 

(56) a more deteailed development of the approximate governing 

differential equation is presented and results are shown for columns 

which retain post-local buckling stiffness. 

The International Conference at Strathclyde received several 

other contributions (58,59,60,61) on non-linear coupled buckling 

behaviour. Wang and Pao (58) examined the stability of locally 

buckled plain channel columns, Reis and Branco (59) studied the 

lateral-local stability of plain channel section beams eccentrically 

loaded with respect to the shear centre, Graves Smith and Sridharan 

(60) analysed the elastic collapse of thin walled box columns in which 

failure is initiated through instability of the corners in the post local 

buckling range while Konig and Thomasson (61) reviewed some of the 

earlier results by Thomasson (54) on lipped channels subject to 

axial compression and also some results for pure bending. 

Perhaps the most interesting contribution was that of 

Graves Smith and Sridharan (60), the authors using the finite strip 

method to determine the elastic collapse loads of thin walled box 
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columns giving due consideration to the geometrical instability of 

the section corners associated with their waviness in the post local 

buckling range prior to failure. In order to account for the 

instability of the corners, Graves Smith and Sridharan enforced 

compatibility between the in plane and out of plane displacements 

at the junctions and included second order terms of the in plane 

local displacements in the large deflection strain-displacement 

relations' since these terms become important when considering the 

effect of , 
the waviness of the corners of the columns, Le. the 

destabilising effects of the transverse in plane displacements. In 

their analysis the authors specified series solutions for the in plane 

and out of plane local displacements and used these in conjunction 

with the more complete form of the large deflection strain-displacement 

relations to evaluate the internal strain energy for a prescribed end 

compression. The equilibrium paths of the columns were then found 

by the usual procedure of differentiating the strain energy with 

respect to , the global degrees of freedom and equating the resulting 

derivatives to zero. It should be noted, however, that in order to 

satisfy in plane equilibrium, at the boundaries many higher harmonics 

were needed for the transverse in plane displacement series than for 

the out of plane series and due to this the analysis contains some 

approximation in the form of, minor incompatibilities at the corners 

due to unmatched harmonics. The post critical behaviour of square 
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box section columns with various b/t ratios are shown in Figure 

1.5.11. The effects of corner waviness along the post local 

buckling paths is clearly indicated and the ability of the theory to 

predict the maxima on these paths clearly demonstrated. Although 

' Graves Smith and Sridharan use these maxima as the theoretical 

prediction of the failure loads of the columns, their experimental 

work on columns manufactured from a commercially available curing 

silicone rubber suggests that the actual failure is associated with 

a further bifurcation involving collapse of the corners in the so-called 

"crinkly" mode. The authors, however, have not yet been able 

to model this behaviour theoretically. It is the writer's opinion 

that corner instability of this nature was responsible for the 

elastic-dynamic collapse behaviour of the columns tested by 

Thomasson (54) in which, due to the pronounced local buckling effects 

in the compression flanges coupled with overall deflections, stresses 

on the cross-sections, as discussed previously and shown in 

Figure 1.5.10, were concentrated at the section corners. 

1.6 CONCLUDING REMARKS 

The literature review has shown that over the last decade 

a wide variety of interaction problems have been studied and the 

effects of various design and imperfection parameters on the buckling 

behaviour Investigated. A considerable amount of work has been 
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published on the interactive buckling behaviour of structural 

designs with close critical loads, most of these using simplified 

structural models to highlight the susceptibility of such designs to 

geometrical imperfections and unstable post buckling behaviour. 

In this thesis the interactive behaviour of pin ended lipped channel 

columns is studied, consideration being given to the interaction of 

local plate buckling with overall column flexural behaviour. The 

work deals in the main with column designs whose critical loads are 

far apart in order that stable post-local interactive behaviour is 

exhibited. The ultimate loads of columns in this range are far 

less sensitive to geometrical imperfections than those with close 

critical loads which lie in the unstable domain. Local buckling in 

all elements of the section are taken into consideration and changes 

in the locally deflected form after buckling also considered. The 

analysis describes the mechanics of the interaction of the modes 

and examines the growth of deflections and stress variations with 

applied loading. The work precludes the effects of column 

torsional buckling and of web-lip local torsional buckling. 
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2.0 INTRODUCTION TO THE BASIC THEORY 

2.1 VON KARMAN'S EQUILIBRIUM AND COMPATIBILITY 

EQUATIONS 

Consider an element cut out of a plate by two pairs of planes 

parallel to the xz and yz planes, as shown in Figure 2.1 . 1. The 

element is acted upon by moments and vertical shearing forces, the 

positive directions of these moments and forces being as indicated. 

The element also has a distributed load over its upper surface, the 

intensity of this loading being denoted by q, so that the load acting 

on the element is q dx dy. 

From consideration of the equilibrium of the element in the 

z direction, moment equilibrium with respect to the x axis and 

moment equilibrium with respect to the y axis, the following three 

equations are obtained. 

v Qz + =ýý- + c, 
=O (2 . 1.1) ca ) 

ax 

DN. 
+ Qý 

ax aý 

0Mpc + 
_) ,x 

Qj, 
-= 

o (2.1.1) (c) 

dý ax 
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Expressions for the moments MX, My, Mxy and Myx can be 

obtained (see Timoshenko and Woinowsky-Krieger (1 )) in terms of 

the plate deflections in the z direction as follows. 

M= _p 
a_ 

x axe 

äur Mý _--D a2 

ALT 
(2.1.2) (a) 

Ad 
(2.1.2) (b) 

OX 

Mx =- Mýx =D CI-v) azur (2.1.2)W c) (d) 
ý axaý 

Determination of the shearing forces Qx and Qy from equations 

(2.1.1) (b) (c) and substituting into equation (2.1.1) (a) gives the 

equation of lateral equilibrium in the z direction in the following form . 

a2 22 Hx+a Mw 
_2 

iý*g 
_- 1ý c2.1.3 

i)%2 aZ axa 

Up to this point the bending of a plate due to lateral loads 

only has been contemplated. If in addition to these loads there are. 

forces acting in the middle plane of the plate, then these forces must 

be taken into account when deriving the differential equation of 

lateral equilibrium. 

Consider then a plate element acted on by middle surface forces 

as shown in Figure 2.1.2. Equilibrium of the element in the x and y 
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directions gives rise to the following two equations 

aNx 
. ý.. at'& =p (2. ß. 4)(a) ax aý 

3 X3 +_=o (2.. 4) (b) ax aý 
It should be noted that these equations are completely independent of 

the three equations of equilibrium (2.1 . 1) considered earlier and due 

to this independence may be treated separately. Considering the 

projection of the forces shown in Figure 2.1.2 on the z axis and 

taking into account, the bending of the plate, the following three 

expressions, which describe the projection of the normal forces Nx 

and Ny and the shearing forces Nxy and Nyx on the z axis, are 

obtained. 

Nx 
1 dx. c1 -)- 

ä J)C aWI dx. du 
. 

(2.1.5) (a) 
ax arc ax 

2 

Na2 dXCf 
. -}- 

N. a UI. dX. d (2.1.5) ýb ) 

2 

ZNc&. cI +aNXýaý JJ +a Xgau-dxj x xa, ax aý a ax j (2.1.5)(c) 
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Adding expressions (2.1.5) and utilising equations (2.1.4) 

gives an expression for the projection of all mid-surface normal and 

shearing forces in the z direction. This expression is now added to 

the load q dx dy acting on the element to obtain, instead of equation 

(2.1 . 3), the following equation of lateral equilibrium. 

2 

__ axe _2aMXý +a2Mý _ axaý a2 - +N äý +N aý +2NX ý aý ý aý2 ý 
1 

a'ý (2.1.6) äýý 
Substitution of equations (2.1.2) for the moments MX, My and 

Mxy enables the left hand side of equation (2.1.. 6) to be written 

purely in terms of the deflections Ur. The stress resultants NX, Ny 

and Nxy can be replaced by a stress function F such that 

=Nx=ö2F, _Ný. ö2F . Nx . _aF (2.1. x) x 6ý 1r aý t ax t aXaý 
This form of stress function automatically satisfies the equations of 

equilibrium (2.1.4). 

Assuming now that q is zero, the following equilibrium equation, 

initially derived by Von Karman, describing the deflection of a plate 

subjected to mid-plane forces only is obtained. 

ýU+Z&r 41UT t 9FAT+äFäß-_2a_2F 
. 
äý 

ax aX 2 aý4 o aý2ax2 a aý2 axag xb 
This is known as Von Karman's equilibrium equation. 

Considering now the x, y and z components of displacement 

-that a point in the middle plane of the plate experiences during 
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buckling, expressions may be stated for the strains in terms of these 

displacements (Timoskenko and Woinowsky-Krieger (1 )) 

2 
e 'a LL + 

kr 
(2.1.9) (a) 

tl tl 

bý 6)L ax '3T 

Taking the second derivatives of (a) w. r. t. y, (b) w. r. t. x and 

(c) w. r. t. x and y and adding, gives a single differential equation 

linking the mid-surface strains to the lateral displacements. 

2 
aýx äý 

_X= 
2_ äßr äßr 1 ziz axa ýa22 X2.1 " °' ýxý ax aý 

The two dimensional stress strain relationships for a linear 

elastic material are now used to describe the strains in terms of the 

stresses 

(2.1.11) (a ) 

ýý =E (6ý 
- Vex J c2. ý. ý1) (b) 
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= 
1-Eý 2(1+V) (2.1.11)(c) 

Substitution of equations (2.1.11) and (2.1.7) into (2.1.10) 

yields the final equation 

bF ; 3F + 4F 
=äg_a te-, a 

ax4+2 axa 4E x- i- 33 
- 

This equation was first derived by Von Karman and since it is derived 

from compatibility considerations is known as Von Kannan's 

compatibility equation. 

2.2 ELASTIC STRAIN ENERGY STORED IN A SYSTEM OF PLATES 

DUE TO BENDING AND TWISTING 

Consider an element under the action of moments Mx and My 

as shown in Figure 2.2.1. The elastic strain energy stored due to Mx 
2 

is given by -21- Mx G- per unit volume, where G., =- 
äX 

dx as shown 

in Figure 2.2.2. Similarly the strain energy stored per unit volume due 

to My is My 0y where &y dy, the negative sign for &x 

and 8-y being due to the sign convention chosen for UI. 

The strain energy' contained in . the element due to Mx and My is 

therefore 
IIK 

i ýýw' äur 
dV =-2 Mx-a--X ,+M2 dxdý ýaý 
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substituting for the moments from equations (2.1 . 2) gives 

2Z1 a', ý. D dý% =a 
Wý + 

ý2 
-2 

(1-v) 2"adxdj (2.2.1) 

2 ax ax 
Consider now the same element loaded by twisting moments 

Mxy and Myx as shown in Figure 2.2.3, the strain energy due to Myx 

is given by 2 Myx dx dy where___ 
3 

(bur) 

äur " 
#X- 

BE bx- 15V - 
Similarly the strain energy due to Mxy is given by 2 MXy dx dy 

22 where =aga a xuT aa 
uýaTx- 

axaý . The strain energy due to 

Mxy is the same as the strain energy due to Myx hence the total strain 

energy due to twisting is therefore 

dV= Mx 
2 

dx 
aX ý 

dý 

Substituting for Mxy from equation (2.1.2) gives 

gur 2 

Bxbo 
The strain energy due to both bending and twisting is obtained from 

the sum of (2.2.1) and (2.2.2) to give 

dUB= dV + dV2 

dV bur 
+ä ur ? 

21_v ur. äur ur dzdlý (a .a. a) B x2 2C ýX2 a2 aý(' G 2a aý ýý 
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For a system of plates connected at their edges to form a 

section, used perhaps as a column or beam, expression (2.2.3) is 

integrated over each plate and summed for all plates to give the total 

strain energy in the section due to plate bending and twisting. This 

expression takes the form: 

i-Q 

V_R? zý +äw2 
?2 (i-v) äusý ä ur" - 

(WL ý dxd (a .2 . 4) 
B2 ax aL axa .! 

ý, ý, J 140 

Av being the number of plates in the system, and the limits of 

integration being the boundaries of each plate. 

2.3 ELASTIC STRAIN ENERGY STORED IN A SYSTEM OF 'PLATES 

DUE TO FORCES ACTING IN THE MIDDLE SURFACE 

Consideration is now given to the strain energy stored in an 

element of linear elastic material subjected to stresses 
&, dg 

and l. xý as shown in Figure 2.3.1. The strain energy in the 

small element due to these mid-surface stresses is given by the 

following expression. 

d'M 
2ýý 

Integrating over the plate gives the total strain energy due to mid- 

surface stresses as 

V= tVx ýx t 'ý- ýx ox ciz ci (2.3.2 ) 
2ýýýý 
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Substitution of equations (2.1.11) and (2.1.7) into (2.3.2) yields 

the strain energy in terms of the stress function F in the following 

form. 

V= t 
fL23 

z aý 1-v a2 z +a? s aý 1-v 9z +2 (ý+v) ä 
jIdx (Z .3 .s 

Rearranging equation (2.3.3) and considering a system of plates 

gives the final expression for the total strain energy in a section due 

to mid-surface stresses in the component plates. 

22 
ta F1 + 2E 

a' F2 2(1+x ý. a? F1 a. 
ýiFr" 

dXä (2.3.4) YM ýx a ax a 
(ax 

ö 
ýý 

The total strain energy stored in the section is given by the 

sum of expressions (2.2.4) and (2.3.4), the stress function F having 

satisfied Von Karman's compatibility equation. Consider now a 

system of plates used as a column under an eccentrically applied 

axial load. It is required to find the critical load at which initial 

plate instability of the section occurs. To do this consider the 

section to be under an end displacement system such that the section 

is just on the point of buckling locally but is still in the plane 

undeflected state. At this point the force system acting on the ends 

of the plates is known, since it is directly related to the displace- 

ment system. The loss in potential of the applied end force system 

at the instant of section local buckling is; 
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2 

_1^ 
Öllf; 

ý, vX ý1 (2.3.5) 

the negative sign indicating a potential loss. The total potential 

change in the system at the instant of local buckling is now given by 

the sum of expressions (2.2.4) and (2.3.5). 

is 

_o 
äw1+äur11 ? 

2ýi-v) 
ätýS 

1 
;ý_ 

äßr 1 
_[r4 

] aý' 1 dxd (z s s) V2xaý! ýýýýa 
2 

1X 

In order to find the critical local buckling load for the column 

the deflections UrL are represented by a series of functions which 

satisfy the boundary conditions of displacement and moment equili- 

brium at the plate junctions, each function being associated with an 

unknown deflection coefficient. The deflection functions W) are 

substituted into (2.3.6) and the total potential is minimised by 

differentiating (2.3.6) with respect to each deflection coefficient in 

turn. This results in a series of N simultaneous equations known as 

an eigenproblem, which in matrix notation takes the form (A -X B)X =0 

where A is a real symmetric matrix, Ba real symmetric positive 

definite matrix, 
A is the eigenvalues of the problem and X the 

corresponding eigenvectors. The lowest eigenvalue, corresponding 

to the lowest buckling stress, is required to evaluate the column local 

instability load, the corresponding eigenvector specifying the buckled 

form of the section at this load. In the post local buckling analysis 
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the buckled form from the eigen solution is used, multiplied by an 

unknown coefficient, as the first term in the deflection functions UJ'.. 

Subsequent terms and corresponding coefficients are added to this in 

order to obtain the best buckled form using the principle of minimum 

strain energy. 

The method used in the post local buckling analysis is to obtain 

the stress functions Fi in terms of the deflection coefficients in WI, 

by solving equation (2.1.12) (Von Karman's compatibility equation) 

and satisfying the relevant stress conditions at the plate boundaries. 

The deflection functions Wi.. and the stress functions Fi are now 

substituted into equations (2.2.4) and (2.3.4) respectively in order 

to evaluate the total strain energy V in terms of the unknown 

deflection coefficients. The determination of these coefficients 

follows from the minimisation of the total strain energy expression 

with respect to each coefficient in turn. Knowledge of the values of 

the deflection coefficients permits the evaluation of the lateral 

deflections of all plates (buckled form) and the stresses within the 

section. The applied load on the column can be evaluated by inte- 

gration of the in-plane stresses in the axial direction around the 

section. 



89. 

X 

i. 

Hz 

aý. 

FIG. 2.1.1 

ý Mý 

0 

Mx a_x cix 
ax 

Qx 
ax 

aX 

NX 

ýdl 

' 
I 

Ný. 

x 

Nx. }. ýNx dx 
ax - x 

My %ehL dx 
ax 

-i. 
ý''INxý 

-1- aNxý äx 

Nix + dý- 
aý- 

Ný. + 

FIG. 2.1.2 



90. 

Jý 

Mx 

tý 

FIG. 2.2.1 

dx 

Mx 

dxX 

Mx 
Mx. 

-b our ý}X= 
ax ax x 

Lr 

FIG. 2.2.2 
II 

dx. 

.x 

FIG. 2.2.3 

U1- 



91. 

dJ 

dx 
r 

cx 

I. oll' I 

ýr 

FIG. 2.3.1 

iýý -X 

x Xý d 
dý/ý 



CHAPTER THREE 

ANALYSIS OF THE INITIAL INSTABILITY LOAD 

FOR AN ECCENTRICALLY LOADED COLUMN 



92. 

3.0 ANALYSIS OF THE INITIAL INSTABILITY LOAD FOR AN 

ECCENTRICALLY LOADED COLUMN 

3.1 INSIGHT TO THE PROBLEM 

It is required to evaluate the initial local instability load for 

a thin walled column under the action of an eccentrically applied 

axial load. The boundary conditions at the ends of the column are 

taken as those of pin joints. The theoretical analysis is described 

with reference to a lipped channel section, Figure 3.1.1, this being 

treated as a system of thin plates joined at the edges and acted upon 

by an in plane axial stress system. 

Consider a lipped channel column loaded eccentrically towards 

the flange by an amount e which has just developed. local buckles 

along its length, Figure 3.1.2. It is assumed that a local buckle at 

the centre of the column has a sinusoidal form in the x direction, 

with half-wavelength S. Just at the point of initial instability the 

stress system along the column at the nodes of the central buckle 

will be as depicted in Figure 3.1.3, c< being, a compression 

eccentricity factor. The method of analysis is-to consider the total 

potential content of the central buckle of the column as distinct 

from the column as a whole. To do this it is necessary to think-of 

the centre buckle as a short strut of length S acted on externally by 

the force system shown in Figure 3.1.3. The deflection functions 
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LO 
, are now prescribed in terms of unknown deflection coefficients, 

and equation (2.3.6) (Chapter 2) used to evaluate the total potential 

of the system in terms of these coefficients. Minimisation of this 

potential with respect to each coefficient results in the eigenproblem 

mentioned in Chapter 2, the lowest eigenvalue yielding the critical 

flange stress dcrit to cause local buckling. It should be noted at 

this point that values of S and o< must be prescribed before 

evaluation of O'1 t is possible. 

As a first approximation to the correct value of S, the length 

of the column L is divided by the flange width b, the nearest integer 

below the value obtained being taken as a first approximation to the 

number of buckles along the column. Using this number of buckles 

a first value of S is obtained from which (:: 5crit is found when using 

a specific value of 0< . The number of buckles is now increased by 

one and a new value of C50'crit found for the same value of oC . 

This process is repeated by adding more buckles to the column and 

determining new values of 
'crit 

corresponding to the number of 

buckles postulated. The column will naturally assume the number 

of buckles which yields the lowest value of C 'crit 
' hence when 

the minimum value of C"crit " is reached this gives the correct 

number of buckles and the correct value of S. 

At this point the critical flange stress and hence the critical 

load are evaluated for a specific value of . 0< . It is now necessary 

to establish whether this value of o< provides equilibrium of the 
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internal stress system at C 'crit with the externally applied load P 

on the column. With reference to Figures 3.1.2 and 3.1.3, axial 

equilibrium produces the following equation 

P` N*RIT 6+26w(i- 2ý+26, x(1-ýcý (3.1.1) 

while moment equilibrium about the lips of the section gives 

M=N * 6w 6 +6ý(1- 3) = P[e+d+Sc (3.1.2) 

The equation for the central deflection Se 
of an eccentrically 

loaded column is given from the simple "Engineers Theory of 

Bending" as 

d=e sec .P 
-- 

1 (3.1.3 ) 
P 

where PE is Euler's critical column load. 

Substituting equation (3,1.3) into equation (3.1.2) and then 

substituting equation (3.1.1) into the result, allows equation (3.1.2) 

to be written for a specified column geometry and eccentricity of 

applied axial load, as a function of 0< and Nxcrit as follows. 

nJX Lw(6+6w -a 
3W (b+26, 

r+2be -c (bw+2bp1 
GRIT // 

+ exsecM 
N"CRIT r6+2bw+26 

-o bw+26 = (3.1.4) 
P 
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Equation (3.1 . 4) is solved numerically to obtain the value of 

o< and hence the value of Nx crit which produces both axial and 

moment equilibrium of the column. The technique used in the solution 

is known as the so-called "regula falsi" or the method of false 

position which approximates the given curve by a chord in the vicinity 

of the required root. 

Knowing the equilibrium values of oC and NX crit the initial 

local buckling load and central deflection for the column are obtained 

from equations (3.1.1) and (3.1.3) respectively. 

3.2 DEFLECTION FUNCTIONS AND BOUNDARY CONDITIONS 

The buckled shape of the column central cross section at the 

instability load will be of the form shown in Figure 3.2.1, the positive 

directions for the plate deflections being as indicated. 

The local out of plane displacements of the plate components of 

the section as shown in Figure 3.2.1 may be described by 

U1,,,, Y(L)cos(h1) x (3.2.1) 

n_N 

=, 
E 

where 
VN-. 

I 
Y. () 

. I. 
(3.2.2) 

n=t 
N being the number of terms used in the solution and ia particular 

plate element in the section. 

The deflection functions Yin are given the following form 
bn, 

Yjp _A1_ 
bb; 

i 'ý- 
BR I_ 19, bh 

(3.2.3) (a) 
bf 
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(3 .2 . 3) (b) Y2= p1 -- 
Kýý 

rul) 
6ur 

Y 
t- 

R -+ 
R+ T (3.2.3) (a ) Q6 (-b 

ý 
)J 

The coefficients Bn, Dn, Gn, Kn, Qn, Rn and Tn are evaluated 

in terms of the coefficient An through satisfaction of the boundary 

conditions at the plate junctions and the lip free edge. The indices 

an, bn, kn, to are arbitrary integers subject to certain restrictions 

which will be mentioned later. 

With reference to Figure 3.2.1 the boundary conditions to be 

satisfied at the flange-web junction are 

(a) the local deflections of both flange and web are zero 

(b) the slopes are equal at the junction 

(c) -there is moment equilibrium about the junction. 

These conditions are met by satisfaction of the following equations 

at y1 = bf, Y2 =by 

uf, = U. T2 =O 

a ads ad2 

(3.2.4)(a)(b) 

(3.2.4)(c) 

a2ul LLr, 3.2 .4 
)(d ) 

aý2 v ax +v axe c 
z 

Using equations (3.2.1) and (3.2.2), equations (3.2.4) take 

the following form 
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yirt 
= 

Yr 0 (3.2.5)(a)(b) 

I/ 

Yr _ 
YM (3.2.5)(c) 

º, º, 

Yn. -Y (3.2.5)(d) Y, 2n. 

The primes denote differentiation with respect to yi. 

Satisfaction of equations (3.2.5)(a) and (b) results in the 

simplified form of equation (3.2.5)(d) as shown. 

Similar conditions exist at the junction of the web and lip 

Y2 = 0, y3 = 0. - The equations to be satisfied at this junction are as 

follows 

Y2r. 13rL 
0 (3.2.6)(a)(b) 

Y2rt. = (3.2.6)(c) Y3r. 
11 11 

y2m 3m 
(3.2.6)(d) 

The boundary conditions at the free edge of the lip Y3 = b, eare zero 

moment and zero shear stress. These are written in the form 

21r3 
a ra F 

2+v aX2 =Q (3.2.7)(a) 
ý3 

[a3ara C1U3 
a3+0 

(3.217)(b) 

using equations (3.2.1) and (3.2.2), equations (3.2.7) are simplified 
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as follows 

E2 y 
(3.2.8)(a) Y 

n. S 3n. 

III / 
- 

(z_v)L2. Y -0 (3.2.8)(b) Y3rx. 
S 3YL 

All the boundary conditions at the plate edges have now been 

stated and the relevant equations necessary to satisfy these conditions 

have been developed. A series of compatible deflected forms Yn for 

the section will be obtained on satisfaction of the above conditions, 

and the most accurate buckled shape for the section is then realised 

from the minimisation of the total- potential. 

So far the conditions at the plate edges only, have been 

considered. Consider now the end displacements of the plates at the 

nodes of the central buckle of the column, Figure 3.2.2, the flange 

is compressed by an amount u *, the web compression varying from 

U* at the flange to U* (1 - c() at the lips, and the lips compressed 

by this same amount. The displacements of the plate ends at the 

nodes of the central buckle are as follows. 

flange compression = U' (3.2.9)(a) 

web compression = U*( _ o< + o( 21 (3.2.9)(b) 
\ 6ur 

lip compression =UC 1-- oC (3.2.9)(c) 

This compression being measured over one half of the length of the 

central buckle. 
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3.3 SATISFACTION OF THE BOUNDARY CONDITIONS 

All the boundary conditions have now been stated and the 

deflection functions for each plate prescribed. These functions are 

now used with their derivatives to satisfy equations (3.2.5), (3.2.6) 

and (3.2.8). Equation (3.2.5)(a) is satisfied automatically by the 

choice of equation (3.2.3)(a) for Yin, since this equation has the 

value zero at yl = bf. The remaining three equations of (3.2.5) take 

the following form on substitution of the relevant Yin. - Yiri and Yin 

Dr% ++ KR =0 (3.3.1)(a) 

bur 
Ar,. q 

n, '+" BM16n. =- 
[DýK] 

K (3.3 . 1)(b) 
bfn, nnn 

6"r 
aa -i +q 66 

-i =r6 -1 ß. 3.1)(c) 2 
AR 

RC n' 

J 

"'R RC RJ 
ý'^Rý ýR"RCýn J 

6 

Equations (3.2 . 6) (a) and (b) are automatically satisfied at the 

lip-web junction by the choice of equations (3.2.3) (b) and (c) for Y2n 

and Y3n, provided the values for kn and tn: yL 0. The remaining two 

equations of (3.2.6) are written in the following form after substitution 

of Yin and Yin 

DrL 
= bur 

QM 
(3.3.2)(a) 

6j 

Gru 
bur 

Rti (3.3.2)(b) 
61 

, 
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the previous expressions being true provided kn and to = 1,2 . 

Substitution of Yin, Y3n, Y3n and Yin in equations (3.2.8) 

yields the following two expressions representing the conditions at 

the lip free edge 

T RR'ý'TntR (tc- 1, - ý% 2 
[cýR+T, j 

0 (3.3.3)(a) 
bz S 

[Tmtn(tti 
1) (t ti 2ý - 

(2-v) 
2 

[QnZRri±Tr= 
0 (3.3.3)(b) 

b, 
,s 

After some manipulation of equations (3.3.1), (3.3.2) and 

(3.3.3) expressions are obtained for Bn, Dn, Gn, Kn, Qn, Rn and 

Tn in terms of An. These are described as follows. 

BM (3.3.4) 

where 

bý bur 
NýA] (2bO 7 Cfb (3.3.5 ) 

hýý(knkn2[2 R +6ýý6R Lt 
- (-2) 

bur 
and 

2 ffbL 
.2 F2(%17) t]. 

(3.3.6) 

, 
It qt 2 \))[t"(tc, ) 1) (t wl) 

6, ( 

KR = ýýAR (3.3.7) 
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where 

burl 26, 
b a(4ý 6ý 

k6 
n C4 C ff =R 

(ýR 1) (k 2) 
(3.3.8) 

(ý 
,=- 

Xr, Aru (3.3.9) 

where 

bur 
arc- 1 

6]+p,. 
L(krc 

(3.3.10) pn 6 f 

p, = f, 
Ati (3.3.11) 

where U B (3.3.12) 

(3.3.13) 

where 
Q= 
`n, 

6ý 

bur 
(3.3.14) 

Rm _ Rm AR (3.3.15) 

where _ 
6& 2 

(3.3.16) 
-r 

l1P. ̂ bur 
Xn- 

T, 
= 

ýn Ar (3.3.17) 

ft 6 
h. 

where 
T= 

&4-AJ 

(3.3.18) 
R t4tn i_ (-n-S 2 
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Substitution of equations (3.3.4), (3.3.7), (3.3.9), (3.3.11), 

(3.3.13), (3.3.15) and (3.3.17) into equations (3.2.3) gives a 

buckled shape for the section in terms of one unknown deflection 

coefficient An, this buckled shape satisfies compatibility and 

equilibrium at the plate junctions and also the lip free edge conditions 

of zero moment and zero shear stress. The deflection functions for 

the plate elements are now written in the following manner. 

Y, 

M 6f 
Y, )GI 

_ 
[I ry. 16r flA 

ä2 
_YrtV&r) 

ö2 2 %. kn, 
(3.3.19)(b) 

n burl 
+ Pn A 

n. Yý. 1-ý b am) 
QM 

ý3 VR 
(3.3.19)(c) - -}- 

f In +'C"(61) 

ý6 
YUL 

As stated earlier the indices used in the deflection functions are 

arbitrary with the values of kn and to being subject to certain restrict- 

ions, the only restriction imposed on the values of an and bn is that 

they are even integers to ensure symmetry of the buckled form. Since 

the indices are arbitrary a variety of deflected forms can be specified 

for the section simply by choosing different values for the indices. 

3.4 MINIMISATION OF THE TOTAL POTENTIAL 

Equation (2.3.6) (Chapter 2) is now used to evaluate the total 

potential change at buckling in terms of the deflection coefficients An. 
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Substituting (3.2.1) into (2.3.6) and integrating in the x direction 

between the limits + S/2 gives 

61 
[[[-p [[Y;. 

'' 2Y +z-v) [YY,. " N (3.4.1) 

4s ( X)ýX. 4t (Ho (Y. 1) 

, ý, ai DO 

where bo and bl are the plate boundaries in the y direction. For the 

flange and web the integral 
f ,, 

(Yi Yiit + (Y, ')2) dyi is equal 
bo 

to Vi 
61 

and is therefore zero for both these plates since [�(it bo 
Yi is zero at their boundaries. The expressions to be used for (Nx)i 

take the following form for the flange, web and lip respectively. 

flange (NX)l = Nx (3.4.2)(a) 

web (NX)2 = (vom( 1- o( .a 
ý2 

(3.4.2)(b) 
x` bur 

lip (NX)3 = (vx - (3.4.2)(c) (10<) 
Using equations (3.2.2), (3.3.19), 

. 
(3.4.1) and (3.4.2) expressions 

are obtained for the change in potential of each plate as follows 

A=N Mss 

c2A -- 
SD- IT 

- (3.4.3) VFLANrvE ýý" 

"ý 4- hflti 4S 
X hý 

r%al MCI 
where 

bf 

nnt- 6f 2 6f 
o 

QRCaý-ý) ý°R-2 
bf 

]X 
-\S /2 

[i 
-t 

(*)Q f Pia ($) 



104. 

a. (aft-1 
X 6 f2 6. f2 bf 

Tr ýi Qm I6 --1- 
ýý- 

-+ -- (3.4.4) 
s b{ 

ý01 
bf 

and 

6f 
ý, r1()+ 61bb °ý ý1 (3.4.5) 

ff nm. ff 
0 

Similarly for the change in potential of the two webs the expressions 

are 
n =N m=N 

VWEB- 
h=l m=I 

where 

SD 1T2 * 
AnAn 4r 4c, Nx nrn 

6ur 
ßnß^tkM1 [rd) 6W. bW nm 

0 

(3.4.6) 

` ,2 ýý_ý, 2LnldW1_öý(6ý1+ý1r1JX 

` kOC2 

-y z2k ßm Mý nº 
ý ý2 

_. _ I2 
]]c 

(3.4.7) ý2 
b but g;; Pm bur but +ýý^ but 

and 

bw 

ýý. IL-a+a(ýJl. 
ýýal 

bey +p n +ß L3. a. e) bT bW '^ bw 
J 

0 
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The expressions for the two lips being 
n=N m=N 

ýjD Ir \1=2) 
"A4 

Znm Nx 
`^nm 

(3.4.9) 

n= i m=1 
where 

tm 2 

_ 2nn +Tmtýctý g3 t^ 2 2nm+ T L(t1: I) ý3 
bý2 b, e2 bi WW b. nm 

0 
t 

. t, (tt1) 
+ 61 JLht 

m 

11z +\tirl s /4 
4j)+nn(bR)+Tý(bfJtn 

LnbR1ý-f 
lml6ýJý'ýmýbR1t ( RS) 

t, ý , tom- ý 
FL m. 

(3.4.10) X 
n bý bý bý "' bk 

6, L 
dý3 

and I(i_c) y3 +fl V3 d3{n ä3 n äß It) 1 (3411) 
ýaº - n+ bý an 

Fl 

0 

Adding equations (3.4.3), (3.4.6) and (3.4.9) gives the total potential 

change at the instant of local buckling as 
n=Nmsi4 

_ 
5D AnAmXn 

DSVnti 2 
NXP (3.4.12 ) 

n=i "tai 

Zý (3.4.13)(a) where ++ Xrlm 

nm e+nt nm 

and &nm _ Fnm + Tnm. +G 
nm 

(3.4.13)(b) 
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using now a flange buckling coefficient, defined by the relationship 

62 Nx 
cR lT 

-F VD 

equation (3.4.12) can be written 
n=N m=N 

V=AA, Kz2 8-- 2n ný -f 6S1 
n. --i m=i 

Minimisation of the above equation with respect to An gives 

(3.4.14) 

(3.4.15) 

m=N 
-6V 4= 

SD A-=Q (3.4.16) K 62s2 ýM. 
X nm a 

XnrA 
f ArL 

nm mit 
m_ i where ä 

nm =2 

Equation (3.4.16) gives a series of N simultaneous equations 

which can be expressed in the following matrix form 

Kf býs2 o) + CýIN Kf 
6154 

ýIN) 

.I 

4 
1 

ZýN, `ýNI 
Kj pt-5, L)`------- 

(X,, 
N 

Kf 
61 

Ai' 
At 

AN 

=o 

(3.4.17) 

To obtain the initial local instability load for the column it is 

necessary to find the lowest eigenvalue of the system of equations 

(3.4.17), the corresponding eigenvector giving the buckled shape of 

-the section. 

The method used to find the required elgenvalue is the same as 

that employed in the solution of equation (3.1.4), whereby an 
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iterative approach to the evaluation of the flange buckling coefficient 

Kf is employed using the following equation. 

Kf _K+' 

X11+1 

x(K+ Kf) 
i 0 

X 
ft and Xn+º being the values of the determinant of equation (3.4.17) 

on substitution of the approximations Kfn and Kfn+l respectively. 

To start the iterative scheme (3.4.18) two approximations Kf1 

and Kf2 are required, the closer these approximations are to the exact 

value the faster will be the convergence of the scheme. 

The first approximation Kfl is found by considering only two 

terms in the buckling solution, the determinant of equation (3.4.17) 

when equated to zero reducing to a quadratic equation in Kf. The 

lower root of this equation being assigned to Kfl as a first approx- 

imation to the required buckling coefficient. Knowing that this 

approximation will be higher than the exact value due to the upper 

bound nature of the energy method used, a second approximation is 

made in the form Kf2 = 0.9 Kfl. 

The iterative scheme (3.4.18) is now used until the difference 

between two consecutive approximations is within a specified 

accuracy, i. e. when Kfn+2 - Kfn+1 ^ 0, the accuracy of the buckling 

coefficient Kf depending on the suitability of the functions Yn used 

and the number of terms in the solution. 

Knowing the value of Kf, the local instability load Pcrit can be 

evaluated using equations (3.4.14) and (3.1 . 1) in the following 
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non-dimensionalised form 

2K1+ 
but (1 o 

PCRITLD 
11 PJT 

,- 
6ý (1= (3.4 . 19 ) 

2\2/I -I` Df266 CR 
The initial buckling solution was programmed in the FORTRAN 

language for the University's ICL 1904S computer: the use of four 

terms in the solution proving to give highly accurate values for the 

buckling coefficient Kf. 

To test the accuracy of this solution, different integers were 

used for the arbitrarily imposed indices in the -deflection functions 

(3.2.3). It was found that changing the values of these indices had 

no effect on the subsequent solution for Kf, this being evaluated to 

six decimal places. 

For a given section geometry and length of column the time 

taken by the computer to evaluate the buckling load was approximately 

four seconds. 

3.5 THEORETICAL CURVES 

The following theoretical curves show the effect on the 

buckling load of varying independently the geometrical parameters 

involved in the column problem. 

Figure 3.5.1 shows the variation in the non dimensional load 

parameter Pont with variation in slenderness ratio 
(L) 
rfor various 

values of eccentricity factor e`c. 
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The variation in 
Pc t 

with ec is shown in Figure 3.5.2 for 

various values oft , while Figures 3.5.3 and 3.5.4 show the 

variation in Pcrit with ec for various 
(L) 

band b values 

respectively. 
ff-) 

The effect of changing is shown in Figure 3.5.5 where 

Pcrit is plotted against 
b) 

ý. .J 
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4.0 POST LOCAL BUCKLING ANALYSIS 

4.1 INTRODUCTION 

After the initiation of the local instability load the column can 

continue to carry increased loads causing out of plane deflections 

in the column walls and stress distributions which are non-linear. 

These out of plane deflections weaken both the compressional 

and bending stiffness of the column and reduce considerably its 

ultimate load carrying capacity. The theoretical work presented in 

this chapter is aimed at predicting the elastic post buckling 

behaviour for the lipped channel column. Characteristics such as 

the local stresses and deformations occurring within the column, and 

the change in overall lateral column deflection with increased load 

are presented. These characteristics give an understanding of the 

mechanics of the columns elastic post buckling behaviour. 

In the post local buckling analysis, equation (2.2.4) is still 

used for the strain energy due to plate bending, but due to the non- 

linear stress distributions set up after local buckling, the strain 

energy due to in plane forces is now described by equation (2.3.4)' 

This equation is rewritten as follows. 
+x/2 6, 

222 

V=tF +at -2 
(14-') äF. aýF,: aF1 dxd (4.1.1) M 2E ax2 

[ij2ý 
1 axa ý; 

60 
The stress functions Fj are found in terms of the coefficients in the 

deflection functions UT i by solving Von Karman's compatibility 

0 
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equation (2.1 . 12) and satisfying the boundary conditions for the 

stresses and in plane deformations. Von Karman's equation is 

rewritten here for convenience. 

aF. ºa4F. t 
4 F"ý. 

_4 

(ýI 
- . 

i. 
2 

atur,;,. 
ä 

Uf. ý. 

2 X4.1.2) 24 V j) E a 
(- _ x4+2a)Ca ä1a aza axe 33 

Taking the general expression for the out of plane deflections 

IUTi in the form W1= Yi (yi) cos sX and substituting in equation 

(4.1.2), the following relationship is obtained. 

A,;, 
4+2aFý 

aF44_ E 22 X, (YL, ýl-, YLYL%Y; 
-, 
)], O,, ll14 c4. ß. 3) 2s ax aua aýA. 

The solution of the above equation may be written in the following 

form 

Fk = F, ± F2 C0S 2 sx (4.1.4) 

where Fil and F12 are functions of yi only. Substitution of equation 

(4.1.4) into equation (4.1.3) and separating the final equation into 

its component parts gives the following two equations from which the 

solutions of Fil and F12 are obtained. 

F ,v E-T Y; 

' 
YL 11 .2 + (4.1.5) 

2s 

iv212 2114 
= 

E*W 
. 
1I 

.Iz416 -i) F2 (zL)"ý c5ý21 52Y0A ý .. 
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The solutions of the two previous equations yield the final solution 

Fi of Von Karman's equation. In order to solve Von Karman's equation 

it is necessary to postulate compatible deflection functions Yi, these 

functions containing unknown deflection coefficients whose magnitude 

will be obtained from the minimisation of the total strain energy. 

4.2 DEFLECTION FUNCTIONS 

The general expression chosen for the deflection functions Yi 

in the post buckling analysis is as follows. 
n=N 

YWM KrK (4.2.1) 

n-ý 
N being the number of terms in the post buckling solution and Wn the 

deflection coefficient associated with the nth term. 

The first term in the deflection series (4.2.1) is taken as the 

actual shape' obtained from the relevant eigenvector of the buckling 

solution in equation (3.4.17), this shape being multiplied by the 

deflection coefficient W1. Subsequent terms in the series are made 

effective by choosing arbitrary values for the An n=1,2,3,4 In 

equations (3.3.19). This produces a completely compatible deflected 

form satisfying the necessary boundary conditions at the plate 

junctions and at the lip free edge, while also providing the facility 

. of allowing the buckled form to change as the local deflections 

-increa se . 

0 
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Expanding equations (3.3.19) to four terms and using the 

following values for the indices an, bn, kn, tn, n=1,2,3,4. 

n an bn kn to 

12433 

24644 

32455 

44666 

provides the deflection functions Yi in the post buckling range for 

the flange, web and lip respectively, these are 

n=N 
246 

Y= At änß+ gn2 + 
dns + 2n4 (4.2.2) (a) 

bf 6f F6ff) 

n=N 
2 
r4ra 

2 
-'4 W 

+ýiý4 b, v 'ý', ýh5 
6ý fýjnG (4.2.2) (b) 

n=i 
n=N 

1u u23456 
1_ /n d3 d3 3 

(3\hb g, 3 (4.2.2) (c) Wý '" be 6ý n3 bß bL ns 6 1.6ý 

n=1 
In order that the initial buckled form be incorporated in the 

first term of the post buckled deflection series, the following must be 

true 

A, (IA)+A, (0, )+Aj(iA) +A4(i-ý4-) 

0 
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9 

12. : --- - 
(A, + A, ) 

g, 
3 = 

(A11-A+A3-A4) 

`ß14 = 
(A2% + A44) c4.2.3> 

II) (A, kt, +r 
'21 2+ 

A3)J3 + A4p4 

(A1, + A+A3'4+A4'4) 

X13 = A, p, 

-A2 ýý. 
A3 

(4.2.4) ýtlb = A4 P4 

I= 
ýAýQý +A2Q2+A3Q3+ A4Q4ý 
(AIAI±AJ12. ýA13+A4rL4) 

X13 ̀- A, 
ý14 ° A2, T2 

15 = A3 T3 

16 ._ 
A4 4t4 (4.2.5) 

where the coefficients An n=1,2,3,4 are the values obtained from 

the eigenvector of the buckling solution. As stated earlier subsequent 

terms in the series are generated by choosing arbitrary values for the 

An in equations (3.3,19). 

Now that the deflection functions have been developed and 

described in detail, equations (4.1.5) and (4.1.6) may now be solved 

for Fil and F12 respectively in terms of the deflection coefficients Wn. 

op 
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4.3 SOLUTION OF VON KARMAN'S EQUATION 

Using the relationships between the stresses and the stress 

function as described in equation (2.1.7) it should be noted that 

since Fil is a function of yi only, then a F"_ 
= 

a2FM 
_O axau aX2 

2 

Fil producing a stress in the x direction only, this being a Fei 

a 
or Fil ". 

Since the function of interest for this part of Fi is Fil " then 

the function Ffl need not be evaluated. 

The function Fil " is found by integrating equation (4.1 . 5) 

twice, utilizing the standard procedure for integration by parts. 

Integrating once gives 

Ill F. 
A. 

Integrating again gives 

ETrI C 
2S2. Y; _ Y+ 

11 Ei'2 2 
FY Cý + C2 (4.3.1) 
ý. lS2 :t 

The constants of integration Cl and C2 are used to satisfy the 

boundary conditions regarding in-plane movements at the nodes of 

the centre buckle of the column. Knowing the function Yj in terms of 

yi Fi1 11 is obtained directly from equation (4.3.1). 

Equation (4.1.6) can now be solved for the flange, web and lip 

respectively. The solutions are obtained in the following manner: 

Flange Solution 

Substitution of equation (4.2.2) (a) into equation (4.1.6) 

produces the following relationship 

0 
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2 11 F iv 2 2(2sý 
12 1 2 + 21ý 14 

sý iz 

n-N m-N 

ElT2 
= 252b f 

nil mil 

WnWm 1 Ginrrt+G2nm 
6f `'l3nýR b 

ýVIML(6f) 
f- 

5nWLbf bnrnbf 
where 

"ýInm. -L dnL dmI 

G2nm,, = 
(l2rm32, 

mt) 

G3nm. (3ofl4+4U2U3'_ 6%n3%, 
2 

G4nm = 
(I8g,, %, 4-42n'39tn3 IO tn4I mt 

) 

GSnm 
( 4n3U+- 12 ýnOm3) 

(4.3.2) 

G6nm. =~6` n4 9mq- (4.3.3) 

n=N m=N 
putting F WW() 

2s6. ß n=i m=i 
and substituting in equation (4.3.2) gives the following expression 

IV 
_ 

21T 2 Ii' 21T' 4_i2 
25 Yji 

inrrl 
+ 

Inne = 
Glnm + Ginm 

6f) 

(4.3.4) + 
3nm 6+ F6f + F61, + ýGnm6f 

f 
Putting y2 4g 

ýnm °rinýn + dtnn mill. d3nm ý' + c14 . E, oýsnnq '+ olbnm 
ý 

ýf ýf bf bf 
substituting in -equation (4.3 . 4) and equating the coefficients of the 

, resulting equation gives the particular integral solution of equation 

0 



127. 

(4.3.2) in the form 

n=N m=N 

ETrt , 
$2 $4 

F2 = --- 2 
wn Wm ýinm + d2nm 

- 
d3nm 

P. I. 2S bf 6f 
n-im=i , 

44nm g, 6 
cisnm 91 a dbnrn 

Aý 'o 
(4.3.5) 

6f 6f f 
where 

6nrri NIFT 
G6nf 

d5nm. =5 2Tr 
G5nm, 

d4nrrý _- 
S4 
21ý' L'- 
I\4r d3n_. 
2ýtj" 

G 
Wit 

dznm. =S4 2if 
G2nrri 

%54 di 
nn = 12. E 

GI 
nrrL 

+ 180 d6nm 12.1r )l 
6f2 s 

+ 112. cJsn- 2T d6n 
6f 2- 5 -6f 4 

+ 6Od4nn 2'1f 2 1680 d5 m. 6ý2 S 614 

+ 24dß (. ir\ 2 360 d4nm 
6f ts 6f4 

,,. 
4d 

6f 
v. 2Ti' ? 

bf 
24 

ns 2S4 
d3 m. (4 .) 

The complementary function solution of equation (4.3.2) is 
, 

n=N m=N 

12C. F` 2 s26ý2 

n=1 m=I 

-}- Wn Wrix 
[tInrrC05' 

CoSý (4.3.7) 
MIN llrýl t2nm Sln +'t3RmStR -}- -t4nm rbf 

0 
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The general solution F12 is given by the sum of the particular 

integral and complementary function solutions, 

i. e. F12 = F12p. I. + F12C. F. 

n=N m=N 

EM 24 
F' 2w 

ý% Jinm + dznm ̀9' 
12 2.526. nm bf' bf 

=i m=i 

b gl 8 lo 
-{- d4nm - -}- Ann 

6f-}- ol6hm fý+ 
tinmCoSý 

6ý s 

ýý 
sinit2Tfýý + -t 45,11k 

2=! tznm 
6S 3nm s f 

4n m 
C05k 

2ý (4.3.8) i- bfS 

The constants tlnm t4nm are evaluated from the stress 

boundary conditions, and will be considered later. 

The -solutions of equation (4.1.6) for the web and the lip are 

obtained by exactly the same method as that used for the flange, 

substitution of the functions Y2 and Y3 from equations (4.2.2 ) 

produces the'solutions F22 and F32 in the following form. 

0 



129. 

Web Solution 

n=N m= N 
22 

= 
Eý 6inm + 62nm + 63nm F2 

z ným bur 6ur 2S bw 

3 
n=1 m=1ý 

S67 
+ b4nm 

-}- 
bsnm 

-}- 
66nm 

-}- 
b7nm + 68nm 2 

bar F6ur) 
(TV 

bar bý 

ý2 8 
ion a96 t1 nm, ̀r2 lo +6q 4- 6 pT) nm + 

+ CinmCoSR 2ý Ir ý2' 
'i' C 2nm. Slný 2ZT U 

55 

4-C 3 nm`2 cosk2.1ýz F6,,, ) 5 

The coefficients Clnm 

+ C4n"q 
NO 

slnfl 
2-= 

(4.3.9) 
6ur S 

C4nm are obtained from the stress 

boundary conditions at the web-flange junction and at the web-lip 

junction. 

The coefficients binm - bllnm are as follows. 

()4Riinn 611nox = 
(Tslr-l, 

610 WTI = 205 
' 

T. 
()4R%onm. 

S4r bgnm = 
(2ý) 

Lgnnt + 

(iswý, 4 

z 18 ° 6unm 2ý' 
bw S 

'* 61onax2Zlr 
b-W, z ýS 
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42 
6700L =sý 

[R7nm 
+ II 269nm 2 5044 6ýtnrt 

bw 6 UY 

-S 
84 . (. ir)2. 

- 
3024- 

tonen. bbný - 2. ý 
RG nnj 

+8 ' 6wß 
6 8º1m 46 buy 

()4 bsnm. = -f - 
co 62 6-7nm 1680 

qnm 
(-, 
I. - R5nm 

6uß 6w 

64-nm. 
= 2Tf 

()4[R4nnt+ 40 
2 

66nm 
5- 6849 w4 

banrrL 
6R4 

s4_2 63nm = 2. ý 
R3nm +24bw265ntn 360 

S- 6ý 4 6-7nm. 

54 12 2l1' 
2.120 

62nm = r2-1r) R2nmý 6w264nm MY - 6W4 
66nrn. 

ýr 2 24 5nnL (4.3 ,i o) öýnrrL (TsTr 
- ()I m -{- 263nrrt 

2s 
-6 6 

q- 

ý 
TW4 

where R1 nm - Rl l nm are related to the coefficients hnl - hn6 in the 

deflection function Y2 by the following expressions 

Rii nnx =-6 -Rnb2mb 

Rionm = -- IO URm5 

Rgnm = (6&4m6 - 5LJms - 
0n eAm4) 

RSnan. _ (I2. Rn31Rn6- Uns, Rcn4 
- I2, Rn&:. Rm3) 

R7nrri = (I81nzm6 + 5ln3Sm5- 4..? nJm4 -- 91ns. Rm3 
- 10 Rnb8m2 

R6ncn = 
(241nRmb + I0in2im5- 6, Rn42m3 - 8ý &5ßm2 -61Rn6loll 
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RSnm = 
(5ni5 

-}- 4n2iM4--MnJm3 - UnJm2 - 5. Rn5Rml 

R4nm (8RniJm4 - 4n3ým2 
-- 4SR41Rnu 

R3nm = 
(3RniJ? m3 -21Rn2. 

Km2 -- 3. Kn3jm1 

Rum =-2. Rnz A nv 

Rinm =- Rn1 
, -Km, (4.3.11) 

Lip Solution 

The solution of equation (4.1 . 6) for the lip is of the same form 

as that for the web since the deflection functions Y2 and Y3 have the 

same form. 
n=N m-N 

E1T ý2 
2 S26, e2 

EwnWm. 

n=j m=1 

% Mi+ Mzm 
R+ 

M3f) 

3457 

-i- M4nm(b 
e) -I-M7(ft)'+ Menm(bk) 

93 8 ý3 9h 10 
ýOSR 

2-= 

+M 9nm 6 -ý M1ohm F6 M linrrx 6 -ý- N, 
nm S 

'TO , e) 
++N 

SIRýL 2ý ý3 
-}' 

MCOS 21T ̀ _ 
2nm. S 3nrR 6ý s 

fN 
ý3 

SIrIR 
Ir ý3 

(4.3.12) 
4nm 6ý S 
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The coefficients Nlnm - N4nm are obtained from the stress 

boundary conditions at the web-lip junction and at the lip free edge. 

Since the solutions F22 and F32 are of exactly the same form, 

equations (4.3.10) and (4.3.11) are used to evaluate the coefficients 

M1nm - Ml lnm " This is achieved simply by replacing binm with 

Minm and bur with bp in equations (4.3.10), while in equations 

(4.3 , 11) hni hm j is replaced with pni pm j. 

To fully specify the form of F12, F22 and F32 in equations 

(4.3.8), (4.3.9) and (4.3.12) respectively, it remains only to 

evaluate the constants tlnm - t4nm, Clnm - C4nm and Ninm - N4nm" 

These constants are obtained by satisfaction of the stress conditions 

at the boundaries of each plate element. 

4.4 CONDITIONS AT THE NODES OF THE CENTRE BUCKLE 

The in-plane movements at the nodes of the centre buckle are 

as specified by equations (3.2.9) of Chapter 3 (see also Figure 3.2.2). 

In order to obtain the stress conditions which comply with these 

movements, equation (2.1.9) (a) is utilized in the following form. 
S 

LL [E-1) 1 =4.4.1ax 

2 
C 

Substituting the strain 
Ex in terms of the stresses gives 

2i aFý. jI aUrý. 2 l. ý _ 2--v 2 .- 
dX 

(4.4.2) 
±2 E aß; 2 ax 2 ax 

0 
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Using equation (4.1 . 4) for Fi and the general expression for 

UJ'i in the form Llr; ý, = 
Y() 

CS 1V X' the integral of 
S 

equation (4.4.2) gives the following relationship for the in-plane 

movements at the nodes of the centre buckle. 

S -W 2 U 

. --l-S 
= E" 2.. i 8S ft (4.4.3) 

Equation (4.3.1) gives Fil" in terms of Yi and the unknown 

constants Cl and C2, substitution into equation (4.4.3) gives 

u LL S [c±c2j (4.4.4) 

To obtain the constants Cl and C2, expression (4.4.4) is 

equated to the applied displacements as described by equations 

(3.2.9). Noting that the flange displacement or compression U* is 

negative the following relationships for the flange, web and lip are 

obtained. 

Flange 5C+C 
2E 1i2 

Web 
-u 

1-o( -F- °C= 
'-c, 

ö2 
+ c2 

bur 2E 

Li Ll 1_ o< = 
SE CIu3, ý C2 

2, 
(4.4.5) 

The constants Cl and 02 can now be evaluated for each plate by 

manipulation of equations (4.4.5), these are 
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Flange Cl C2 =- 
2E 

LL-* s 

Web C ---? 
E cu? l'c C2=. 2E 1_ ýýYc SC 5 6ý 

Lip "Cý °0, C2--2E 
S 

1_OC U. 
(4.4.6) 

The stress conditions necessary to comply with the specified 

in-plane movement system at the nodes of the centre buckle have now 

been satisfied. 

4.5 CONDITIONS AT THE PLATE EDGES 

It is assumed that there is no normal stress on the edges at all 
2, 

plate junctions, i . e. a F2 
_ 

du -o, using equation 
ax d 

(4.1.4) this is written as 

a F;. 2IT 2.1t' ýC 
- a x2 

cos s Fti2 -0 
and since this must be true for all x, then F12 must equal zero at all 

edges, this gives 

ýý =Oo 

ý2 =O at 

ýI - 61 

k=o, bur 

F32 0Aý. 
3 = O, 6, p, (4.5.1) 

The shear flow and longitudinal direct stress at the junctions 

must be equal for adjacent plates. This gives the following equations 
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for the flange-web junction. 

a2F + axDý, 

gF, a2F2 
2.2. 

431 «a 2 

F2 
ax aý2 at ý2 6ur3 ýý _ý 6f 

at 6ul 

(4.5.2) 

Since F11 "= F21 " automatically by the use of equations (4.4.6), 

the satisfaction of equations (4 .5 . 2) is simplified to the following 

ý F, 
2' ct 6w- I12 -, d2 

F2' -F ot 
dl 
u= 6-c, %. = 

6Ul (4.5.3) 

The same conditions of shear flow and longitudinal direct stress 

exist at the web-lip junction as did those at the web-flange junction. 

These conditions result in the following. 

a2 F2' o2 F3_ 
t C, 

2.3 
00 

ax ý2 axaJ3 

CLt a2 F2 _ a2 F3 
a2 _" a2 

Uý _' 3 ý2 ý3 
(4.5.4) 

Using equations (4.4.6) sets F21" = F31 11 automatically at the 

web-lip junction and reduces equations (4.5.4) to the following form 

Fz =- F2 .ý ý2 0, ý3 0 

= o, ý3 O Fý'ý = F3: at 92- 
(4.5.5) 
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The last boundary condition to be satisfied is that of zero 

shear stress at the lip free edge, this gives 

u3 - 
9F3 2ý- 2Trx. =O4.5.6 ýz ý2 Snc) d ax aý ss 

-Since equation (4.5.6) has to be true for all x, the. shear stress 

boundary condition at the lip free edge simplifies to 

F2 =b CLr ý3. be, (4.5.7) 
All the boundary conditions have now been stated and the 

relevant equations to satisfy these conditions have been developed, 

it remains now to solve these equations by utilizing the unknown 

constants contained in F12 " 

4.6 SATISFACTION OF THE STRESS CONDITIONS AT THE 

PLATE EDGES 

Due to the symmetry of the flange out of plane deflections and 

stress distributions about the axis yl = 0, the constants t3nm and 

t4nm in equation (4.3.8) must be zero, since they are associated with 

anti-symmetrical functions. This leaves ten undetermined constants 

tlnm, t2nms Clnm - C4nm, Nlnm - N4nm with which to satisfy the 

boundary equations (4.5.1), (4.5.3), (4.5.5) and (4.5.7). 

The conditions of zero normal stress in the yi direction as 

described by equations (4.5.1) result in the development of the 

following five equations, these equations being obtained after 
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substitution of the relevant yi boundaries in equations (4.3.8), 

(4.3.9) and (4.3.12). 

cosý21r61. + -t sink 21t6 f=- li 
nm S 2nm s nm+d2nm+ d3nm -+ ý d4nm + dsnm, 
I 

Gºntn =- 6ºnm. 

ý' 2ý6ý [c1cosk 2n + Cznm. 5lnk `ý C3nrr1 S 
SSS 

-}- C4nm. 5ink 
2= 

_- 6inch 
'I' 

b2nnL63nm, + b4nnt 
-ý 

+65flm. +66nnt +6,7nm +b nn - 69nm. +6ionm. + 6i1nrr 

Ninas -M mm. 

ý- Ntnm CýStý. + N2nrn, Slflýl + N3nm, C0 5h S 

+ 'nhM + J4flfl 
Rs 

[Minnt+ 
M2nm. 3nm 

M4nm. 

+ Msnm, + Menm + M-7nm, + Menm. + M9nrrL + Mionrq + Kinm. 

(4.6.1) 

The equality of shear flow and longitudinal direct stress at the 

flange-web junction, produces the following two equations on 
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substitution of the relevant F12', Fit " in equations (4.5.3) at 

yl =bf, Y2 =b LLr . 

(ý) t sºnh innS S+ 2nrr1 S. 56 f 
+1 2r sljj ý r6us ,+-C (2t) cask 2W l tT [ 

6 w2 
CIMR 

S5 2nm sc-,,, n -,,, n 

i 
cosk 2ýr6ýr zý' sink 1 

bur S+ SS+ "m us 
SS 

(T)cosK 3 
b2nnL ý- 3nnt +' + 29'iIJ 

=- 26 36nm. 
6uß 

46snm + 566nm. +6 6-7nm+7 68nrn 4 8bcnt i+9 6tonnt + lo6a nrn 

-6f3 Ldanm -I-4dsnm -}- 6 d7nm -I- 8 dgnm -{- lo älinm] 

- 1 t1nmS 5ý ýosiý2s -I- t2nm [25) 
ink -f- 

*(2)coský gý 

by+ 21ý ý2Cinm (S) 
C0SýL2 S C2nm(5) SI(IiL s -F' C3nm. E 

(stnh-+ (fcosPJ 
-f - C4nm Eb t2S )Co. 

Rý 
ý 

2Tf' 2 2Tf 6Ui3' 
_1 nm -}- Smý -- 263rtrrt -}- 6 64. nm + 12.65 + SS 6urA' 

2o66nn. +3 o6inr. + 4268nrn + 56 69nm. -}- 72 6%onoi4 gobnnm. 

i 
3nvi+ l9- 1sfl 

n+ 30 d. 
nnl + S- Jgnn + 90 JIM ' 

61411 
. 

(4.6.2) 
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Using equations (4.5.5) and substituting the relevant 1712 of 

Fit" at y2 = 0, Y3 =0 gives the following two equations for the 

shear flow and direct stress conditions at the web-lip junction. 

12 C2 
nm 

2ýS- C3 
nm 6'1 uýr% 

i EN 
2nm 

21T +N 
3nm 

'i 
6w 6j2 S 6, ý 

3 =-61 M2nn -- -- 62ncn 
%w 3 

1C 2ý 2+ 2 C4nm 2TT 
_iN 

2T1' - 2. N4n rn. 2ý 
2 

[nný) bur S2 inm Sbs 6w 6, ý b, ý 

=21 
[4M3_ 14 63nrI, 

(4.6.3) 

Substitution of F32' at y3 = b,, in equation (4.5.7) gives the 

equation to be satisfied for the condition of zero shear stress at the 

lip free edge, this is 

NInmf25 Slnh2s6 -+ -N2nm 
sý)Co$ý12s6ý-FN3nra[25ýsinhzS 

+6RCOSh256ý]--N, ýnm[s)cosIý2S6R+ 
A 256R] 

_ -- 
i M2hm+ 2M3nm, + 3M4nm, + 4Msnm 5Mbnn 6ý 'i' 

+6 M7nm +7 M ann +8 M9nm; +9M ionm - t0 M imm (4.6.4) 
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The ten constants tlnm" t2nm, Clnm - C4nm, Ninm - N4nm 

contained in equations (4.6.1), (4.6.2), (4.6.3) and (4.6.4) are 

evaluated numerically on the University's I. C. L. 1904S computer, 

use being made of a standard subroutine which gives the solution of 

a set of real linear equations with multiple right hand sides. The 

method of solution used by the subroutine is as follows: 

Equations (4.6.1), (4.6.2 ), (4.6.3) and (4.6.4) are written in 

the matrix form AX = B, where B represents the known right hand 

sides given in these equations, A represents the coefficients of the 

unknown constants and X is the vector of unknown constants. 

The matrix A is decomposed into triangles, A= LU, where L is 

lower triangular and U is unit upper triangular. 

An approximation to X is found by back substitution and the 

residual matrix R=B- AX evaluated. A correction D to X is then 

found by back substitution in LUD = R, the vector X is now replaced by 

(x + D) and the process repeated until D becomes negligible. 

The stress function F12 is now completely known and the strain 

energy for the section can be evaluated in terms of the unknown 

coefficients W. 

4.7 MINIMISATION OF THE TOTAL STRAIN ENERGY 

Substitution of equation (4.1 . 4) in equation (4.1 . 1) gives, 

upon expansion and integration in the x-direction, the following 

equation for the strain energy due to mid-plane stresses 
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1=3 61 
vM ts [s )4ýF2ý? 2FZF2 s )2+ 2Fu 

ý=1 60 

+2(i+v) ýF2F2ýý725 )2 + 

2 2T- 2 
F2 5d 
The second part of the integral 

(4.7.1) 

(4.7.1) reduces to Fi2J 
be ft12 ý 
bo 

and since F12 is zero at all boundaries then this part is zero for all 

plate elements. 

The strain energy due to mid-plane stresses is now given by 

the following expression 

J.. =3 61 

V=tS [r' M A. E 

ýL0 

Substitution for Fit, 

21T 22- (F: ')j d (4.7.2 ) 

Fit " and Fill' in equation (4.7.2) and 

, where bi using F12 in the general form F2-= E2 wnZWn'VAm 

`, / 
2 5%b? 

and ý/ inm are obtained from equations (4.3.8), (4.3.9) and (4.3.12) 

respectively, gives the total strain energy in the centre buckle of the 

column due to in plane stresses as 
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The total strain energy in the centre buckle due to plate bending is 

obtained, as in the initial buckling solution by the use of equation 

(2.2.4), Chapter 2. 

This produces the following expression. 
1=3 nýN rn 4 

SD 

V=- WrtW«. QL 
nm 

(4.7.5) 

B2 
M=j 

where 

1T (4.7.6) Vit gi+ 2Tt 2ýR 
C1 ý 

Jo 

The total strain energy VT is now given by the summation of 

equations (4.7.3) and (4.7.5), i. e. 

VT = VM +V (4.7.7) 

By applying the principle of minimum strain energy to the centre 

buckle of the column the coefficients Wn in the deflection functions 

can be evaluated. This is achieved by differentiating equation 

(4.7.7) with respect to each coefficient in turn and equating to zero 

to give N simultaneous equations in the unknown Wn. 
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At this stage it is necessary to decide on the number of terms 

. to be used in the post buckling solution. Since care has been 

taken to specify suitable compatible deflection functions, good 

accuracy can be obtained from the use of a small number of terms. 

The complexity of the energy expressions show also that the labour" 

and computation time involved will increase rapidly with the increase 

in the number of terms used. 

From consideration of the above points, it is thought that the 

use of two terms Wn will describe sufficiently accurately the 

column's post buckling behaviour. Differentiation of equation (4.7.7) 

with respect to the coefficients Wl and W2 respectively, and equating 

to zero gives the following two equations in Wl and W2. 

4W13O + 3Wj W1 1 +2 WýWZ ®3+ W2 ©4, + 9-WI©5''W2 ®6 

W3pz+2W2ý1203+3W\4G4+4W 7 +W, ý6+2W1pg= 0 (4.7.8) 

where 
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Dividing equations (4.7.8) throughout by W13, 
W 2 
W , yields the following equations 

1 
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and putting 
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i 

Cross multiplication of these equations eliminates Wl and 

produces a quartic in A, i. e. 

RA) 
= E, + E2Q3'% F3y+ 

40 
+5 
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Equation (4.7.11) is solved for a value of U* just above that 

required to initiate instability, The required root is known from the 

buckling solution to be approximately equal to zero since at 

buckling Wl =1 .0 and W2 = 0. The solution is thus obtained very 

quickly using a starting value 
Qn=0 in conjunction with Newtons 

Method of Successive Approximations, i. e. 
(An) 

Subsequent solutions of equation (4.7.11) for further increments of 

U* are obtained by setting the starting value 'A n equal to the 
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solution from the previous increment. 

Knowing the solution for 0, the value of Wl can be found 

by substitution in either of equations (4.7.10). W2 is then 

obtained from W2 =L Wl 0 

Using these values of Wl and W2, the local deflections, 

membrane stresses, and bending stresses can be evaluated at any 

point within the centre buckle of the column. 

4.8 SATISFACTION OF OVERALL EQUILIBRIUM 

At this stage a solution has been obtained for a particular end 

movement system at the nodes of the central buckle. It is now 

necessary to examine the stress system caused by this end move- 

ment system to determine, as in the buckling solution, whether the 

internal stresses provide equilibrium with the externally applied 

load P on the column. 

The membrane stresses in the x-direction, along the column 

length, only need be considered in establishing this equilibrium, 

these stresses taking the following form for any plate element I In 

the section. 

LG'xIl a2=F, + F2 cos 5 (4.811) 
A 0. 

The total load P on the column is given by the integration of 

the ex stresses around the section as 

p= It [Ö'x1d. 
(4.8.2) 

A. = 1 -0 0 
where bl = bf, b2 = blLT, b3 = bý,. 
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Substitution of equation (4.8.1) into equation (4.8.2) and 

summing gives 

6f 
ý/ 

f dr ýx48.3 [ju1+jh1ýj 
000 

P= 2t Fý d3+ 
[j+[]+cos 

.) 

since F12' _- F22' at yl = bf, y2 = bW 

F22' =- F32' at y2 =0, Y3 =0 

F12' =0 at yl =0 

F32'=0 aty3=bß, 

then the term in equation (4.8.3) which varies with x reduces to 

zero to give the following equation for the column axial load 
ý. =3 6, L 

P =. 2ý cll d (4.8.4) I. 
ý. i c7, t, 

To develop an expression for the moment on the section caused 

by the membrane stresses e., 
moments are taken about an axis 

through the lips to give 

6f 
fl 6f hur 

M= 2t 
[burj 

d+ 6ur Fco2 F0 
0 

6ur 
2ý'x 2'ßx 

bur 
-}' 

F, 
L 

COS - 
[F,,, 

COS 
5 

(4.8.5) 

0 
Using the boundary conditions for F12', F22' and F22 equation 

(4.8.5) simplifies to give the final expression for the moment M as 

6ur bf 
9 M= Zt 6ül F dtl, 

-}- %dl1 (4.8.6) 
d ti 2 

o0 
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It can be seen from this analysis of the ex 
membrane stresses that 

the load P and the moment M on the column cross section are 

completely independent of the second part of the stress function 

Fit cos 
2ýX 

in Fi, the only stresses contributing to the load and 

the moment. being those obtained from Fil 'ý " 

Figure 4.8.1 shows the stress distribution around the section 

due to. Fil 11 on* the crest of a- local buckle at the columns central 

using the cross section. Substitution of equation (4.3.1) for Fil of 

constants C1 and C2 from equations (4.4.6) into equation (4.8.4) and 

integrating gives the equation for the total axial load as 

P=W *6 +26ur l- B -2B -283 (4.8.7) xfC 2) C) I 61 
2 

where g, = 
EIT 

d, (4.8.8) 
z Y; 

6 0 
the limits of integration being the boundaries of each plate. The Bi 

are as depicted in Figure 4.8.1 and represent the loss in load of 

each plate element due to local buckling. 

Substitution of the relevant Fil " in equation (4.8.6) and 

integrating gives a more simplified expression for the moment 

about the lips of the section as 

fýl = Nx bur 6+bur(i- 3 3) -Bi-2B2 

M 

(4.8.9) 

where B1 and B2 are the moments about the lips caused by Bl and B2 

respectively, and are obtained from 
6iE1r L2I B. =2Yý. 

d. 
(4.8.10) 

bo 45 
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To obtain equilibrium of the internal stress system with the 

externally applied load P, an expression for the column's lateral 

deflection S 
must be known, this expression being given by the 

solution of the differential equation of equilibrium for the locally 

buckled column. 

Due to the rather lengthy nature of the work required in the 

development and solution of the differential equation of equilibrium, 

the lateral deflection Sc 
is simply stated at this point, and its 

derivation given in Appendix 1. This is 

ýc 
= [eý(d-d)+j[secfK P-1 c4. ß . 11) 

P2 PE 

- 
ZT 2EZ* 

where PE 
-- LIZ 

The physical significance of the terms d*, M*, I* and PE* in 

equation (4.8.11) are given as follows: 

(a) d* is the position of the neutral axis, from the section 

lips, in the post local buckling range. 

(b) M* is an internal moment caused by the effects of 

local buckling. ++ 

(c) I* is the reduced second moment of area of the section 

in the post local buckling range. 

(d) PE* is denoted as the reduced Euler load of the column, 

the load-deflection equilibrium path being asymtotic 

towards this value after local buckling takes place. 

++ see Appendix II for a more detailed explanation of the physical meaning 
of M* 
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If the effects of local buckling were not present then d* is 

equal to d, the neutral axis position of the unbuckled section, I* is 

equal to I, the second moment of area of the unbuckled section, M* 

is equal to zero and equation (4.8.11) reduces to equation. -(3.1.3) 

(Chapter 3) which describes the pre-local buckling load -cffh ction 

equilibrium path of the column. 

The equilibrium of the internal stress system caused by a 

given compression U* and a given eccentricity of compression 

is obtained by equating the internal moment due to the O', stresses 

to the external moment. This gives 

SIE 2 
NX bw(b+burý-a 63 

-B, -2B2 -Pe+d+ 
ý'c 

=0 (4.8.12) 

Substituting now equation (4.8.11) for the central deflection 

Ec in equation (4.8.12) and then substituting equation (4.8.7) 

for the load P in the result, gives the equilibrium equation as a 

function of 0C in the following form 
2 

NX 6ur(6+6ur) -c< ya _ g'1 _2B 32 

-M Sect N- (hur+2j_B1-2B-2B3' 
-1 2 Pý 

-N 6+26ur+26, ý --ýc bar+26ý -B -2Rý B3 Xd+ e+ 

(cl-d*)]secT Nz (6+26ur+2a(bur+26, e -B, -2B2--2B3 - ýP 
E 

(o() 0 
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Equation (4.8.13) is solved numerically to obtain the 

equilibrium value of oC for any given flange compression U*, the 

technique used being the same as that employed in the solution of 

equation (3.1 . 4) (Chapter 3). 

Consider a discrete value of U* just above that obtained at 

the initiation of local buckling, i. e. U* = Ucrit +S U* " As a first 

approximation to the equilibrium value of aC for this U* the critical 

local buckling solution is used, i. e. OC= oll =« rit" 
Using 

this U* and aC 1 equations (4.7.10) and (4.7.11) are generated 

and solved simultaneously to provide the deflection coefficients 

Wl and W2. Knowing the coefficients Wl and W2 the parameters d*, 

M*, PE*, Bi and Bi are evaluated and the function f(OC) as described 

by equation (4.8.13) takes the value f1 (O<1) 1 O. 

A second approximation to the equilibrium value of oC for the 

same U* is now used in the form of 2= col + 0.5 say, ' and the 

process previously described is repeated to obtain f2 (o< 2) 
+ 

O. 

The values of oC 1, o<2, fl and f2 are now used as the starting 

points in the iteration scheme 

O<n+2 ^ cwz n+º + -fn+1 (o( 
n f n+i- 

frt n+I 
(4.8.14) 

and the correct value of oO for the given U* is very quickly obtained 
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by terminating equation (4.8.14) when the difference between two 

consecutive values of aC is approximately equal to zero. 

i. e. when 0C n+2 -O< n+1 -0.00001. 

The solution is now complete for this particular value of U*, 

the column's axial load, central deflection, buckled form and stress 

'distributions being obtained from the relevant equations developed 

in this chapter. To obtain the complete post-buckling equilibrium 

path for the column the procedure outlined is repeated for a number 

of discrete increments of compression U* applied to the flange. 

As well as the facility of the theoretical solution to provide 

a continually changing buckled form throughout the post local 

buckling range, change in buckle half-wavelength S may also be 

taken into account. This can be achieved by obtaining several 

solutions' of the column's complete load-deflection equilibrium path 

for various values of half-wavelength S, and choosing the lowest 

envelope pf all such curves as being the most accurate. i. e. For 

any given column deflection 
Sc 

the solution which gives the 

lowest axial load P is the most accurate. 

It has been shown by several investigators (17), (32), (40) 

that the post local buckling equilibrium path is very dependent on 

the ratio of the critical local buckling load to the Euler load of the 

column. If the critical load is equal to or near the Euler load then 

the maximum load the column can take is the critical local buckling 

load and the subsequent equilibrium path is unstable. These types 

I 
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of columns are very imperfection sensitive and their maximum loads 

are very quickly eroded by the effects of both local and overall 

imperfections. Alternatively, if the critical load is considerably 

less than the Euler load, the column will buckle locally and 

subsequently follow a stable equilibrium path which will culminate 

in an ultimate load caused by the effects of plasticity. These 

columns are not as imperfection sensitive regarding their ultimate 

loads as those described previously with unstable equilibrium paths. 

Since a rigorous elasto-plastic analysis to describe the 

column's behaviour when parts of the material are undergoing plastic 

deformations, would be very time consuming, a simple collapse 

criterion is used to signify the ultimate load of the column. The 

ultimate load is taken as that load which makes the maximum total 

membrane stress, along the column's length, reach the yield stress 

of the material at the web-flange junction or the web-lip junction, 

whichever is applicable. This criterion does not, of course, take 

account of the loss in section stiffness due to plasticity, but 

provides a reasonable estimate of the 'ultimate load carrying capacity 

for such columns. 

The theoretical work in this chapter is presented for the "ideal" 

or "perfect" column, i. e. the column whose axis is perfectly straight 

and whose constituent plate elements are perfectly flat. In the 

practical case however, the "perfect" structure is never realised: 

imperfections of a local or overall nature being inherent probably in 

0 
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the manufacturing process. The effects of such imperfections on 

the lipped channel column are not covered in this thesis but will 

be studied by the author at a later date. Appendices III and IV 

supplement the theoretical work by giving the solutions of the 

energy integrals developed in the instability analysis of Chapter 

Three and the post local buckling analysis of this chapter 

respectively. 

4.9 TYPICAL INTERACTION CURVES 

To enable the reader to visualise the behaviour of the 

column during loading, the results of the foregoing analysis are 

presented in graphical form at the end of this chapter. The 

numerical work involved in the analysis was carried out 'in the 

University's, ICL-1904S computer for which a program was written 

using the "high level" Fortran N language. The various equations 

derived throughout the analysis were arranged in the 'computer 

program as they appear in the theory. Due to its rather lengthy 

nature however, the program is not listed in the thesis. A 

detailed flow chart "showing the logic paths contained within the 

program is given in Appendix V. 

Although an extensive amount of data is available from the 

computer, the author has restricted his presentation to a selection 

of results which he considers will be of most interest to the reader. 

0 
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The majority of the curves are presented in non-dimensional form 

and are intended to provide the reader with an understanding of the 

complicated behaviour which exists in the presence of both local 

and Euler buckling modes. Such interaction behaviour is depicted 

in Figures 4.9.1 to 4.9.27, where the effect of changing such 

factors as column load position, material yield stress, and the 

various geometrical parameters, on column behaviour is shown. 

Each figure will now be discussed separately and the salient points 

noted. 

Figure 4.9.1 shows several column load-deflection curves 

corresponding to various values of the eccentricity parameter 

ec Of particular interest is the centroidally loaded column ec = T. 

where it can be seen that the column deflections remain zero until 

the local buckling load is reached. For the section under consider- 

ation local buckling occurs mainly in the flange b and the section 

neutral axis position moves effectively towards the lips. Due to 

this the concentrically loaded column becomes effectively an 

eccentrically loaded one and for loads greater than the local 

buckling load the column begins to deflect in an overall manner. 

From the local buckling load onwards the curve is known as, an 

interaction curve since both local and overall deflections occur 

simultaneously during loading. 

For eccentricity values other than zero the column starts to 

deflect from the onset of loading. This is shown in Figure 4.9.1 

0 
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- where it can be seen that load eccentricity towards the lips results 

in increased local buckling strengths whereas load eccentricity 

towards the flange gives substantially reduced initial buckling 

loads. The increased buckling strength for eccentricity values 

less than zero is, of course, for this particular case, due to the 

flange plate initiating the section's instability. This factor is 

further indicated by the change in direction of the column's 

deflection 
Sc 

after local buckling takes place. 

If the yield stress of the column material had an infinite value 

then the various curves of Figure 4.9.1 would tend towards the 

, and since reduced Euler load of the column PE* _ L2 2 
I* 

this quantity is continually reducing due to changes in the locally 

deflected form during loading, the stable load-deflection equilibrium 

paths of Figure 4.9.1 would eventually become unstable and the 

column load would begin to fall with increasing deflection. This 

behaviour has been shown by Rhodes and Harvey (50) in their 

investigation of plain channel columns and is covered later in more 

detail in the authors work. In the practical case however, the 

material will have a finite value of yield stress and 'the ultimate 

load of the column of Figure 4.9.1, with its stable load-deflection 

behaviour after local buckling, will result from an elasto-plastic 

mechanism of failure. 

As previously mentioned in Section 4.8, an analysis of the 

column's plastic behaviour is not attempted in this thesis. 

IF 
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Instead, the ultimate load of the column is assumed to be reached 

when the maximum membrane stress at the flange-web junction along 

the columns length reaches the yield stress of the material. This 

simple collapse criterion will be shown later, in Chapter Six 

to give a reasonable estimate of the ultimate loads of the 

columns tested in the authors experimental work. 

Figure 4.9.2 shows column load-deflection curves for 

various values of the parameter 
b. The column cross sectional 

dimensions are the same as those of Figure 4.9.1 and the load is 

applied eccentrically towards the lips by an amount 0.1 Y. Four 

cases of the ratio 
b 

are considered, viz b= 12.0,14.4,16.8 

and 19.2. In all four cases the deflection of the column is seen 

to change direction after local buckling and the post local 

buckling equilibrium paths are of a stable nature. The curve for 

L= 19.2 is seen to give the highest ratio of critical local 
b 

buckling load to column Euler load, this being PCR = 0.535. 
E 

This curve has an initially steep equilibrium path after local 

buckling and is seen to "flatten out" thereafter for increasing 

column deflections. This is due to the column load P closely 

approaching the reduced Euler load PE*, i. e. *=0.94 
for 

PEa 

column deflection of 
Sc 6w 

= 0.2. Although it is not apparent 

from Figure 4.9.2, due to the column load being plotted in the 

form PE , increasing the column length results in increased local 

0 
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buckling strength for the particular geometry considered in this 

case, but the ultimate load of the column reduces with increasing 

length. 

Figures 4.9.3 and 4.9.4 show the effects of column length 

. when the load is positioned on the centroid of the section and at 

0.1 37 towards tho flange respectively. In these figures the 

curves for high b lie above those for lower b '. This is of 

course, due to the non-dimensional form chosen for the loading, 

i. e. PE and does not imply higher absolute load values for 

longer columns. 

From the information given on Figure 4.9.3 for the 

centroidally loaded case the local buckling load is seen to be 

independent of the column length whereas the ultimate load 

reduces with. increasing b. From the data supplied on 

Figure 4.9.4 for the eccentrically loaded case towards the flange 

both the local buckling load and the ultimate load may be seen 

to reduce with increasing 
b. In both these cases the b 

values 

considered provide stable equilibrium behaviour after the occur- 

rence of local buckling. The effect of increasing 
b 

still 

further would be to eventually induce unstable behaviour, this 

will be shown later in Figure 4.9.24. 

Figures 4.9.5,4.9.6 and 4.9.7 show the effect on 

column behaviour of changing the lip dimension b, e Three 

I 
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different load positions are considered cc = -0.1,0.0 and 0.1 

and the load is plotted in the non dimensional form of 
ý2D 

. The 
bý 

values shown in Figures 4.9.5 to 4.9.7 

are of such proportions that the critical stress for the flange is 

less than the critical value for the lips and for the load cases 

considered the flange initiates the local instability of the section. 

This obviously means, as is seen from the figures, that increased 

local buckling strength will be experienced with increase in 
b- 

After local buckling the load deflection equilibirum paths and 

the ultimate loads for all three cases of loading are seen to be 
b 

lower for smaller values of . It should be pointed out 

however, that for certain cross sectional geometries and load 

positions the lips of the section will govern the local buckling 

strength of the column. In such cases column deflections will 

proceed in the negative direction and the loads will tend -towards 

the reduced Euler loads pertaining to locally buckled forms 

dominated by lip deflection. Rhodes and Harvey (50) in their 

analysis of the plain channel column showed the positive and 

negative equilibrium paths taken after bifurcation depending on 

whether the flanges or the web of the section initiates local 

instability. 

The effect on column behaviour of changing the web width 

bW is shown in Figures 4.9.8 to 4.9.10 where column load- 
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deflection curves for a range of web width to flange width ratios 

are presented. The load positions previously used for changes 

in b 
and 

b=ý 
are again used for changes in 

bb 
and the column b 

load is plotted-in terms of the parameter I. For all three load 

cases considered lower local buckling loads, equilibrium paths 

after local buckling and subsequently lower ultimate loads are 
bw 

seen to result from reducing values of b 

Figures 4.9.11 to 4.9.13 show column load-deflection 

behaviour for various values of flange width to thickness ratios 

t' 
As in previous results loading towards the lips, on the centroid 

b 

and towards the flange of the section are considered and in the 

figures the load is plotted in the form of 
P. In all three load- 
PE 

ing cases and for all values of 
b 

considered the ratio of critical 

local buckling load to Euler load is seen to be very small and 

subsequently the equilibrium paths after local buckling are stable. 

Reducing values of 
b 

are seen to result in increased local 

buckling and ultimate strength values. 

Up to this point results have been presented in the form of 

load-deflection curves describing the stable behaviour of columns 

for given ranges of the various geometrical parameters. Attention 

is now focussed on local deflections and stresses, unstable 

column behaviour and ultimate carrying capacity. 

I 
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Figure 4.9.14 shows the local deflections of a centroidally 

loaded column of given dimensions for various values of axial 

load P. The deformations shown are those occurring at the crest 

of the central buckle of the column and for the sake of clarity the 

web and lip deflections are depicted for the maximum load case 

considered only. The column has cross sectional dimensions of 

such proportions that section instability is initiated by the flange 

and after buckling local deflections are seen to be predominant in 

the flange. The maximum deflections in the web and the lip under 

an axial load of 38.16 kN are seen to be of the same magnitude, 

whereas the maximum deflection of the flange is about 7.6 times that 

of the web for the same load. Compatibility of rotations is seen 

to exist at the flange-web junction and the web-lip junction for 

the axial load case of 38.16 kN and change in local buckled form 

during loading is also indicated. 

Figures 4.9.15,4.9.16 and 4.9.17 show the distribution of 

surface and membrane stresses, at the crest of the central buckle, 

corresponding to the five axial loads and buckled forms of the 

column of Figure 4.9.14. For clarity stress distributions across 

the lip are shown for the first two or three axial load cases only. 

The axial load value of 19.32 kN, which is approximately 2.2% 

greater than the critical local buckling load, is seen from 

Figure 4.9.17 to produce membrane stresses along the column 

0 
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which are fairly constant across the section, slight reductions in 

stress being noticeable over the central portion of the flange' and 

along part of the web nearest the flange. The surface stresses 

however, as shown in Figures 4.9.15 and 4.9.16, are seen to be 

more compressive on the inside of the section, over the central 

'portion of the flange, than corresponding values on the outside 

surface. The surface stresses across the web are seen to be more 

compressive on the outside of the section than on the inside where- 

as those across the lip are seen to have practically the same value, 

as the membrane stress, indicating that the lips have hardly 

buckled under the applied axial load of 19.32 kN. The higher 

compressive stresses at the inside surface of the flange, and those 

on the outside surface of the web, are the result of the flange plate 

buckling outwards and the web plate buckling inwards, as shown 

in Figure 4.9.14, causing compressive bending stresses to occur 

on the inside of the flange and outside of the web respectively. 

Further increase in load through stages 2,3,4 and 5 results, 

not only in the growth of local deflections as shown in Figure 4.9.14, 

but also in the growth of overall column deflections as can be seen 

from the lower curve of Figure 4.9.3. These two modes of buckling 

acting together result in the increased stress distributions 

represented by curves 2,3,4 and 5 in Figures 4.9.15,4.9.16 

and 4.9.17. - Due to the positive direction of column deflection, 

stresses in the flange are seen to be very much higher than those 
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in the lips, and increased local buckling is seen to produce high 

tensile stresses on the outside surface of the flange over the 

central portion where a considerable reduction in membrane stress 

is also indicated. 

Figures 4.9.18,4.9.19 and 4.9.20 show the surface and 

membrane stress distributions occurring at a cross section of the 

column mid-way between the crest and node of the central buckle. 

Since the locally buckled form at this cross section is less pro- 

nounced than that at the centre of the column, the surface stresses 

are seen to be similar in form to those of the central cross section 

but generally smaller in magnitude. Of particular interest are the 

membrane stress distributions at this cross section as shown on 

Figure 4.9.20: these stresses being the average axial membrane 

stresses of those occurring at the crest of the buckle and those 

occurring at the node. The average membrane stresses across the 

flange are seen to result in zero slope at the flange-web junction 

and a considerable reduction in stress is indicated over the central 

portion. The average membrane stresses across the web and lip 

however, show a negligible stress reduction due to local buckling, 

and are practically linear. Integration of the average axial 

membrane stresses of Figure 4.9.20 across the section gives the 

applied load P acting on the column. 

At the cross section of the column containing the central 

buckle node, local out-of-plane deflections are absent, resulting 
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in longitudinal stress distributions which are constant across the 

plate thickness of the column. Figure 4.9.21 shows the growth 

of membrane stresses during loading at the node of the central 

buckle, the inside and outside surface stresses having the same 

values as those shown. 

The change in position of the section neutral axis after 

local buckling is shown for a typical column in Figure 4.9.22. 

The column considered is loaded eccentrially towards the flange 

by an amount 0.2 7 and has cross sectional dimensions such that 

local deflections are predominant in the flange. For the initially 

unbuckled section, P< Pcr, the distance of the neutral axis 

from the section lips is d, but as soon as the section begins to 

buckle, P= Pcr, the neutral axis position reduces to about 82% 

of this value, that is d* = 0.82 d. Further increase in load, 

P> Pcr' is seen to result in continual and more gradual movement 

of the neutral axis towards the lips. 

Figure 4.9.23 shows the variation in theoretical ultimate 

load with slenderness ratio for centroidally loaded columns with 

the same cross sectional dimensions. It is seen from this figure 

that the ultimate load can occur in one of three different ways 

depending on the slenderness value of the column. If r is less 

than 150, the ultimate load is assumed to be that load which 

makes the maximum membrane stress at the flange-web junction 

reach the yield stress of the material, this is represented by the 
I 
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yield criterion curve on Figure 4.9.23 and it is seen that for 

small values of slenderness ratio a considerable amount of post 

local buckling takes place before the ultimate load is reached. 

If, however, the slenderness ratio lies between 150 and 176 the 

ultimate load of the column is the criticallocal buckling load, and 

for slenderness values greater than 176 the ultimate load is the 

Euler buckling load. These three ranges of slenderness ratio 

result in three different types of column load-deflection behaviour. 

For r values less than 150, the column load-deflection curves 
r 

after local buckling are of a stable nature whereas for r 
values 

between 150 and 176 the load deflection paths are unstable. 

Slenderness values greater than 176 result in load-deflection 

curves whose equilibrium paths are neutral until such times as 

column deflections initiate local buckling and the equilibrium 

becomes unstable. 

Figure 4.9.24 shows a selection of load deflection curves 

for columns whose slenderness ratios are within the three ranges 

previously discussed in Figure 4.9.23. The shaded area shown 

in Figure 4.9.24 represents the band width of the reduced Euler 

load curves` for the range of slenderness ratios considered. The 

top and bottom limits of the band width are the reduced Euler 

loads for the columns with slenderness values of 186 and 101 

respectively, and from these, a continual reduction in reduced 
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Euler load with increasing deflection is clearly indicated. 

Columns with slenderness values less than 150 are seen to buckle 

locally and tend towards their reduced Euler loads in a stable 

equilibrium path, the steepness of the curves becoming less 

pronounced with increasing deflection. Slenderness values 

within the range 150 to 176 are seen to have unstable load 

deflection paths after buckling, these curves tending downwards 

towards their reduced Euler loads, requiring load reduction with 

increasing deflection to maintain equilibrium. The slenderness 

value of 176 is seen to result in simultaneous local and Euler 

buckling. Columns with slenderness values greater than 176 are 

seen to buckle in an Euler fashion and deflect at constant load: 

this deflection continues until the stress in the flange reaches 

its instability value and the section buckles locally. At this 

stage the state of equilibrium of the load deflection curve changes 

from being neutral to unstable. 

Figure 4.9.25 shows the ultimate loads attainable for 

centroidally loaded columns whose slenderness ratios change with 

web dimensions bw. For this situation the local buckling curve 

naturally reduces with increasing slenderness values or alter- 

natively with reducing web dimension bW . For slenderness values 

in the range 147 to 173 the ultimate load the column can attain is 

its local buckling load and the subsequent load-deflection path 
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after buckling is unstable. For slenderness values less than 

147 stable load-deflection behaviour exists after local buckling 

whereas neutral behaviour occurs after Euler buckling for r 

values grater than 173. 

Figure 4.9.26 shows column load-deflection curves for 

several values of the parameter 
bw 

such that column slenderness 

ratios cover the three ranges previously mentioned in Figure 4.9.25. 

, Stable behaviour after local buckling is clearly indicated for the 

L 
values less than 147 whereas unstable behaviour is seen to 

.r 

occur for those in the range 147 to 173. Slenderness values 

greater than 173 are seen to result in neutral behaviour after 

Euler buckling with subsequent unstable behaviour after the 

occurrence of local buckling. 

So far, theoretical results have been presented showing the 

effect on column behaviour, of changing the various geometrical 

parameters and the applied axial load position. Attention is now 

focussed however, on the effect that changing the material yield 

stress has on the ultimate carrying capacity of the column. 

Figure 4.9.27 shows the ultimate load curves corresponding to 

various values of yield stress 
&y. It is seen from this figure 

that for the lower slenderness ratios, where a considerable amount 

of post local buckling exists, higher yield stresses result in 

substantially increased ultimate loads. As the slenderness values 
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increase, the effect of yield stress becomes less and less until 

eventually all the ultimate load curves converge at a common 

point. This point occurs of course, at the slenderness ratio 

corresponding to the equality of the local buckling load and the 

reduced Euler load of the column. Here the ultimate load of 

the column is the local buckling load with subsequent unstable 

load-deflection behaviour after buckling, and due to this is 

independent of the value of material yield stress. 

The theoretical curves presented in this Chapter have been 

chosen by the author as those exhibiting the most interesting and 

varied behaviour. In Chapter Six comparisons of the authors 

theory and experimental work are presented and discussed. 

lp 



170. 

Nx( \ 

ýý Nxýlýý) 

ý3 

Bi 

Ba 

Nx. 

S 

Ný x 

FIG. 4.8.1 AVERAGE STRESS SYSTEM AFTER THE 

OCCURRENCE OF LOCAL BUCKLING. 



171. 

cG 

OO O, 
p 

O 

O \\ 

ý. ý 
b Co 

O 
N4 ýO 

.. 

OO -i' O 

-o II (I II II 

(D 

O 

L) M 

OOO 

o 

(V V- 

OO 

1 
N' 
OW 

D 
J 

N> 

>- 
0 

F- 
U_ 

cLý a 
E- 

OW 

U 
U 

NW 
r- N 
OD 

O 

CC) 
O 
O0 

U- 

O 
Oý 

4 
I-o 

u 

Z 
OO 

F- 
U 
W 
J 

-W 
OW 0 Ö 

0 
Q 
O co 

OJ 
O" 

" 
NO 

O 

O 

lD LL 
v7 

O0 I 



172. 

0.8 

0.7 

0.6 

0.535 

0.5 

P 
P 

0.4 
0.391 

0.3 
0.277 

0.2 
0 . 192 

0.1 

0 

6, . 
t 6u 
6ý 

ILA 

.0 . 100 

. 
ý, 

ýýý 

19.2 

1 E, b 

1ti% 

6ur 
= 0.4 b 

62 
= 0.2 b 

t 
0.008 

b 
ec = -0.1 

-0.05 0 0.05 0.1 0.15 0.2 

FIG. 4.9.2. LOAD '- DEFLECTION CURVE FOR 

VARIOUS VALUES OF COLUMN LENGTH. 

(ECCENTRICITY TOWARDS LIPS 

I 



173. 

D"8 

0.7 

0-6 

005 
P 
pE "4406 

0.4 

-3375 
0.3 

"248 
0.2 
"1723 

0.1 

bz 

6 

g ýý 

PI ýý 

bei, 

00 ei ý 1 

b 19.2 

14.4 

1 Zi 

`u 6' 
_ 0.4 

6 
6z 

= 0.2 6 
t 

= "008 ý 
6 

ec == 0.0 

0 

0 0.05 0.1 0.15 0.2 0.25 0.3 

SCA, 
FIG. 4.9.3 . LOAD-DEFLECTION CURVES FOR 

VARIOUS VALUES OF COLUMN LENGTH. 

(COLUMN LOADED CENTROIDALLY ) 



174. 

0.8 

0.7 

0.6 

0 .5 
P 
P 

0.4 
0-395 

0.30S 
0.3 

0.231 
0.2 

0.164 

0.1 

0 

--ýt 
ý 6w 

6 

_ X6.0 

ýbti 

L X9.2 

6 

12l 

bw 
= 0.4 6 

62, 
= 0.2 

6 
t=0.0 08 
6 

ec = 0.1 

0 0.05 - 0.1 0.15 0.2 0.25 0.3 

-Sc FIG. 4.9.4. LOAD -DEFLECTION CURVES FOR 

VARIOUS VALUES OF COLUMN LENGTH. 

(ECCENTRICITY TOWARDS FLANGE) 



175. 

40 

35 
bz 

--Lt 
I 6ur 

6 
30 

25 

P 
20 

15 

10 

5 

3 
0ý 

0 

ý6ý 

,3b3 

6u 
= 0.42 6 

L 
= 14-0 

6 

ec = -0.1 
t 

= 0.0066 
6 

01 

-0.02 0 0-02 0-04 
sc 

6u 

0.06 0.08 0.1 

FIG. 4.9.5. 

LOAD - DEFLECTION CURVES FOR VARIOUS VALUES 

. 0F 6Q. (ECCENTRICITY TOWARDS LIPS ) 



17G. 

40 

35 

30 

25 

P 
20 

15 

10 

5 

0 

&cA,. 
FIG. 4.9.6. LOAD -DEFLECTION CURVES FOR 

VARIOUS VALUES OF 61. (COLUMN LOADED CENTROIDALLY ) 

0 0.02 0.04 0.06 0.08 0.1 * 0.12 



177. 

40 

35 

30 

25 

P 
20 

15 

10 

5 

n 

6ý . 

uf 

33 
bjýý"25 0" b 61 0 "ý 

0.0 83 3. 

bur 
= 0-42 

14-0 

ec = 0.1 

t=0.0066 

6 

0 0.02 0.04 0.06 0.08 0.1 0.12 
ýc 

bw 

FIG. 4.9.7. LOAD - DEFLECTION CURVES FOR 

VARIOUS VALUES OF 6k. (ECCENTRICITY TOWARDS FLANGE) 



178. 

4 5 

4 0 

--ý- 

3 5 

3 0 

2 5 

P 
2 0 

1 5 

1 0 S 

5 

Ii 

C; v CO 
CS p' 

3 

0"Zi 

6t 

t 6u 

6 

-O"02 0 0-0 2 0.04 0.06 0-08 0.1 
Sc /bw 

FI G. 4.9.8. LOAD - DEFLECTION CURVES FOR 

VARIOUS VALUES OF 6w (ECCENTRICITY TOWARDS LI PS) 

6ý 
= 0.143 6 

t 
= 0.0057 

L 
= 10.286 

6 6 

ec = -0.1 



179. 

45 

40 

35 
3ý 40 

rl) 

ýýb 

30 

25 

P 
03 7 

20 

15 

10 

5 

0 

6. ý ýt 6ur 
b 

6 
'ý = 0.14 3 

0.0057 

10.286 

ec = 0.0 

0.0.02 0.04 0.06 0.08, - 0.10 0.12 
scAW- 

FIG. 4.9.9. LOAD -DEFLECTION CURVES FOR 

VARIOUS VALUES OF bw. ( COLUMN LOADED CENTROIDALLY ) 



1$U. 

45 

4o 

35 

30 

25 

P 

In 
OI 

\ý 

bý 

0.2g 

20 

15 

10 

5 

0 

kk 
= 0.143 6 

t=0.005 7 
6 
L= 

10-286 
6z 6 

ec=0.1 

6 

0 0-02 0-04 0-06 0-08 0.1 0.12 

SC/6,, 
FIG. 4.9.10. LOAD -=- DEFLECTION CURVES FOR 

VARIOUS VALUES OF bw: (ECCENTRICITY TOWARDS FLANGE) 



181. 

0.4 

0.35 

0-3 

0.25 

P 
P 

0.2 

0.15 

0.1 

0.05 

1 

bur 

6 
1, 
ý/ 

4ý 

ýýý 

3 

r ýZ 

0L .1 

-0.02 0 0.02 0-04 0.06 0.08 
Sc/ 6, 

FIG. 4,9.11. LOAD - DEFLECTION CURVES FOR 

VARIOUS VALUES OF PLATE THICKNESS. 

(ECCENTRICITY TOWARDS LIPS) 

6w 
0-428 b 

0.2 85 tR- 
= 

L 
6= 12.0 

ec = -0.1 



18... 

0.4 

0.35 

bz 
t bur 

66 

0.3 

0.25 

P 
P 

0.2 

0.15 

0.1 

0.05 

0 

, L3j 

6". 
= 0.428 6 

6L 
= 0.285 6 

L= 12.0 

0III1 

0 0.02 0.04 0.06 0.08 

FIG. ' 4.9.12. LOAD - DEFLECTION CURVES FOR 

VARIOUS VALUES OF PLATE THICKNESS. 

(COLUMN LOADED CENTROIDALLY) 

b 

ec = 0.0 

0.1 



183. 

0.4 

0.35 

0.3 

0-25 
P 
P 

0.2 

0.15 

0.1 

0.05 

bz 

6ur 

6 

ý6 
b %ý 

, ýý0 

1ý 

2 

r 
6u 

. = b 
0.428 

6 
= 0.285 b 

L 
= b 12.0 

eC = 0.1 

0riiiii 

0 0.02 0.04 0.06 0.08 0.1 0.12 
Sc/t 

ur 
FIG. 4.9.13. LOAD -DEFLECTION CURVES FOR 

VARIOUS VALUES OF PLATE THICKNESS. 

(ECCENTRICITY TOWARDS FLANGE ) 



1. 

2. 

3. 

4. 

AXIAL LOAD = 19.32 kN 

AXIAL LOAD 25. 01 kN 

AXIAL LOAD = 29 " ý5 kN 

AXIAL LOAD = 34. 15 kN 

AXIAL LOAD = 38. 16 kN 

18-1. 

WEB (6u) 

0 

6L 
6 
6, P- b 
t_ 
6 
L 
b 

ec = 

0.4 
1.0 0"s 0 

0 .2u! 2 mm 

o "006 
12 -0 

0 "0 

FIG. 4.9.14. 

GROWTH OF BUCKLED FORM AT CREST 

OF CENTRAL BUCKLE. 

)"S 

1.0 

lu3 MM 



85. 

FIG. 4.9.15. 

GROWTH OF INSIDE SURFACE STRESS 

DISTRIBUTION AT CREST OF CENTRAL 

BUCKLE. 



N /m m2 

compression. 

186. 

140 

105 

70 

35 
35 70 105 140 175 210 245 280 315 350 38S 

0 

35 

"1o 

105 

140 -1 

175 

2I0 

245 

280 

I G. IIJIV UI 

FIG. 4.9.16. 

N , 
/m m2 

compression. 

GROWTH OF OUTSIDE SURFACE STRESS DISTRIBUTION 

AT CREST OF CENTRAL BUCKLE. 

I L/11`IVLL 



FIG. 4.9.17. 

GROWTH OF MEMBRANE STRESS DISTRIBUTION 

AT CREST OF CENTRAL BUCKLE. 



FIG. 4.9.18. 

GROWTH OF INSIDE SURFACE STRESS 

DISTRIBUTION MID-WAY BETWEEN CREST 

AND NODE OF CENTRAL BUCKLE. 



0 

35 

70 

Ios 

140 

175 

210 

FIG. 4.9.19. 

GROWTH OF OUTSIDE SURFACE STRESS 

DISTRIBUTION MID-WAY BETWEEN CREST 

AND NODE OF CENTRAL BUCKLE. 

189. 



190. 

FIG. 4.9.20. 
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5.0 EXPERIMENTAL INVESTIGATION 

5.1 OBJECTS OF THE INVESTIGATION 

An experimental investigation was carried out to obtain 

information on the interactive buckling behaviour of thin walled 

lipped channel columns under concentric or eccentric loading. 

To carry out the tests in the investigation a rig was 

designed by the author and manufactured in the University's 

laboratories. The rig was capable of providing pinned conditions 

at the column ends and of applying accurate uni-axial eccentri- 

cities about the axis of least second moment of area of the 

section. The dimensions of the columns tested were such that the 

local buckling loads were much smaller than the Euler buckling 

loads thus providing stable interaction behaviour after initial 

instability. 

The general aim of the investigation was to observe the 

behaviour of the columns during their entire loading history and 

to provide experimental results to authenticate the validity of 

the theoretical solutions developed in Chapters Three and ., Four. 

The main objectives within this general aim are listed as follows . 

1. To determine the values of the loads to initiate 

local instability in the columns. 

2. To observe the column load-deflection behaviour 

throughout all stages of loading. 

I 
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3. To determine the variation of the stress distributions 

throughout loading by means of strain gauges. 

4. To obtain the values of the loads required to 

collapse the columns. 

5.2 TEST SPECIMENS 

The lipped channel columns were manufactured by cold 

pressing from mild steel sheet, thirty three columns in all being 

tested to collapse. 

A check was made for "springback" of the right angle bends 

between the flange and web and between the web and lip at 

various positions along the lengths of several columns. The 

accuracy of the bends was found to be good. To eliminate any 

torsional effects during loading, the ends of the columns were 

filed accurately square with the column axis. 

The sheet thickness and the outside dimensions of the 

flange, web and lip were measured at twelve different cross 

sections along the length of each column and the average of the 

values obtained taken as the cross sectional dimensions for the 

'particular column considered. In this way the average centre 

line dimensions were obtained for each cross section for use as 

data in the computer solution o 

I 
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The columns were manufactured in three different lengths 

1219 mm, 1524 mm and 1829 mm and four different flange widths 

102 mm, 127 mm, 152 mm and 178 mm. Two thicknesses of 

sheet were considered, 0.79 mm and 1 .6 mm, two values of the 

web dimension, 51 mm and 64 mm, and two values of lip 
I 

dimension 19 mm and 25 mm. These variations in dimensions 

were chosen so that stable column behaviour would be exhibited 

after the initiation of local buckling, since such columns are 

more likely to be used practically than those exhibiting unstable 

behaviour. 

Values of yield stress and Young's Modulus were obtained 

from a number of standard tensile tests carried out on specimens 

cut from the flanges and webs of the columns tested. A Tinius 

Olsen testing machine was used to apply the loads while elong- 

ation of the specimens was measured by an electronic extenso- 

meter, fitted over a 50 mm gauge length of the specimens. 

Movements of the extensometer during loading were auto- 

matically plotted in the form of load-strain curves on the pen- 

recorder drum of the Tinius Olsen's loading system. From these 

curves the values of Young's Modulus and material yield stress 

were obtained. 

A total of 16 specimens in all were tested, 8 specimens 

for each thickness of sheet considered. The average values of 

each parameter for use in the theoretical computer solutions were 
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as follows. 

Material Thickness 

0.79 mm 

1,6 mm 

Young's Modulus 

2 01 kN/mm2 

208 kN/mm2 

Yield Stress 

242 N/mm2 

233 N/mm2 

Poisson's Ratio was obtained from a number of tensile tests 

using strain gauges to measure the longitudinal and transverse 

surface strains at the centre of each specimen gauge length. 

The average value of v obtained from these tests and the value 

used in the theoretical calculations was U=0.3. 

5.3 TEST RIG AND LOADING MACHINE 

The test rig consists basically of two identical locating 

units which transmit the applied loading from the loading machine 

to the ends of the constituent plate elements of the column. 

Figure 5.3.1 shows the two locating units with a column in 

position while Figure 5.3.2 shows the plan and elevation of one 

of the units indicating the various component parts. 

The basic principle of operation of the test rig is the move- 

ment of an end plate assembly unit, which locates and clamps the 

column ends, within a main base assembly unit, which has the 

load applied through its centroid. The end plate assembly can 

therefore be positioned such that the column centroid is coincident 

with the load centroid or at any desired eccentricity. 

0 
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With reference to the general assembly of Figure 5.3.2, 

the main base assembly consists of the base plate of 

Figure 5.3.3, the guide bars of Figure 5.3.6, the datum block 

of Figure 5.3.9 änd the loading block of Figure 5.3.13. To 

ensure good alignment with the end plate assembly the surfaces 

of the base plate and guide bars were accurately ground to size, 

the guide bars being positioned on the base plate with two 10 mm 

diameter dowels and held in position with three 10 mm diameter 

screws. 

The loading block is fitted to the underside of the base 

plate with four 12 mm diameter screws and is positioned such 

. that the load from the loading pin, Figure 5.3.12, is applied 

through the centroid of the base plate. 

The datum block which, in conjunction with the calibrated 

positioning handle of Figure 5.3.10, measures the relative move- 

ment 'between the two assemblies, is fitted to the front side of 

the base plate with two 6 mm diameter screws as shown in 

Figure 5.3.2. 

Due to the high bearing pressures between the loading pin 

and loading block, the spherical nose of the pin and the spherical 

recess of the block were hardened and polished. The spherical 

connection between the loading pin and block satisfying the 

theoretical requirement of pinned conditions at the column ends. 

0 
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Again with reference to Figure 5.3.2, the end plate 

assembly consists of the end plate of Figure 5.3.4, the web and 

flange locating bars of Figure 5.3.5, the clamping plate of 

Figure 5.3.7; the wedge clamping pads of Figure 5.3.8 and the 

calibrated positioning handle of Figure 5.3.10. 

The surfaces of the end plate were accurately ground to 

size to produce an easy sliding fit between the guide bars of the 

main base assembly. Fitted to the end plate, by means of 6 mm 

diameter screws, are the web and flange locating bars which 

locate the outside surfaces of the webs and flange along a line 

contact as can be seen from the detail of Figure 5.3.5. The 

webs and flange of the column are clamped against the web and 

flange locating bars by means öf the clamping plate and wedge 

clamping pads of Figures 5.3.7 and 5.3.8 respectively. The 

clamping plate is fixed to the end plate by means of a 10 mm 

diameter screw and washer-assembly; the screw fitting in a 

clearance slot in the clamping plate which allows perpendicular 

movement of the plate to the axis of the column. 

When the clamping plate is pushed forward against the 

inside of the flange, it clamps the flange against the flange 

locating bar. In this position the screw and washer assembly 

are tightened and the wedge clamping pads are forced outwards 

to clamp the webs against the web locating bars. Due to the line 

contact on the inside and outside surfaces of the flange and webs, 
0 
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this system of clamping the column ends provides simple support 

conditions to the flange and web plate elements of the section. 

The system however, does not clamp the lip plate element of the 

section. 

Once the column has been located and clamped in the end 

plate assembly it is then positioned relative to the load centre 

of the main base assembly with the desired eccentricity by means 

of the calibrated positioning handle and datum block. The 

column is then locked in this position by means of the clamping 

screws of Figure 5.3.11 which are screwed into the end plate 

assembly through slots in the main base plate. 

By manufacturing different sizes of clamping plates and 

wedge clamping pads as indicated in Figures 5.3.7 and 5.3.8, 

and by being able to fix the web locating bars in several positions 

on the end plate as shown by the various sets of tapped holes in 

Figure 5.3.4, the test rig was made capable of accommodating 

the variations in column cross sectional dimensions considered 

in the experimental investigation. 

Figures 5.3.14 and 5.3.15 show pictorially the top and 

bottom connections respectively of a column under test in the 

loading machine. The figures show each locating unit in three 

dimensions and clearly indicate the end plate assembly unit, 

complete with its clamping system, housed in the main base 

assembly unit. 
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The machine used to apply the loads in the experimental 

investigation was a Tinius Olsen electro-mechanical testing 

machine. This machine is equipped with four load ranges and 

has a maximum capacity of 890 kN. The crosshead of the 

machine is raised and lowered by means of four pulling screws; 

these screws rotating in opposite directions which virtually 

eliminates the possibility of torsional stresses being applied 

to test specimens. 

Figure 5.3.16 shows the Tinius Olsen indicating and 

control unit. The range selector switch changes the capacity 

range of the indicating system and the dial automatically shows 

the maximum value of the chosen range and the value of each 

scale division. Having chosen the load range the scales on 

the indicating dial'are adjusted by means of the zero indicating 

knobs. 

Testing speeds 'are electrically selected by means of the 

speed control dial and are infinitely variable within the speed 

range of the machine. Speeds in excess of 50 mm per minute 

are normally employed for simply raising or lowering the machine 

crosshead to accommodate specimens of varying length. 

The high magnification recorder unit as shown in 

Figure 5.3.16 was used to plot load-strain curves of the several 

tensile tests carried out in the experimental investigation. This 

instrument has six magnifications ranging from 5: 1 to 200: 1, the 
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magnification used in the series of tensile tests being 5 :1 

which permitted a plot of the entire deformation to failure to 

be recorded. The rotation of the recorder drum is in direct 

proportion to the elongation of the specimen while the recorder 

pen moves across the drum in direct proportion to the increasing 

load applied to the specimen. This dual motion, the rotation 

of the recorder drum and the pen movement, produces a highly 

magnified and extremely accurate load-strain diagram. 

5.4 EVALUATION OF EXPERIMENTAL BUCKLING LOAD 

Although the theoretical solution of the column's load- 

deflection behaviour depicts a distinct discontinuity at the initial 

instability load, this point cannot be realised experimentally. 

Due to the slightest deviation from flatness of the plate elements 

of the section and to the incremental 'nature of the applied loading, 

a gradual transition between the pre and post local buckling 

curves replaces the bifurcation point obtained from the ideal 

theoretical solution. As a result of this gradual transition the 

accuracy and reliability with which the buckling loads can be 

obtained from the experimental load-deflection curves is 

considerably affected. 

To obtain accurate estimates of the buckling loads it was 

necessary to measure the strains at the inside and outside 

surfaces of the flange at the central cross section of the column. 

I 
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During loading the strains on both these surfaces would be 

reasonably similar before the occurrence of local buckling, but 

would vary to a large extent after buckling due to the high bend- 

ing stresses -caused by local out of plane deflections. 

From the measured longitudinal surface strains at the 

centre of the flange, a plot of axial load against membrane strain 

can be constructed. In such a plot the membrane strain increases 

gradually in compression until the onset of local buckling, after 

which it becomes more tensile due to the stretching of mid- 

surface fibres. 

The method used in the determination of the buckling loads 

was to consider that buckling takes place at the load corresp- 

onding to the intersection of the tangents to the pre and post local 

buckling paths of the membrane strain curve. This method, 

among others, is described by Coan (2 ) in his consideration of 

the buckling of flat plates, and was found by Rhodes (19) to give 

accurate results when applied to the local buckling of thin walled 

beams. It was on the basis of the work by these authors that 

the method was adopted for 'use in the present column work. 

The strains were measured by using small electrical 

resistance strain gauges fixed to each surface of the flange and 

connected to an 'Elcomatic' strain recording unit. A description 

of the strain gauges and the strain recording equipment is given 

I 
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in Section 5.6. Plots showing the variation in membrane and 

surface strains with increase in applied loading are shown and 

discussed in Chapter Six. 

5.5 TEST PROCEDURE 

The specimen under investigation was fitted horizontally 

in the locating units of the test rig and the required eccentricity 

of loading set at each end of the column. The complete assembly 

was then lifted into the testing machine and located on the 

bottom loading pin situated centrally on the machine base. 

With the column held in this position, the top loading pin, fixed 

centrally in the machine crosshead, was gradually lowered until 

the load-indicating dial was just beginning to register. At this 

point all axial play between the loading pins is eliminated. It 

is possible however, since the column is under zero load, for 

rotation of the complete assembly to occur about the loading axis. 

To facilitate in the measurement of column deflections, care 

was taken at the beginning of loading to ensure that the principal 

axes of the test rig and the principal axes of the testing machine 

were coincident, i. e. to ensure that rotation of the assembly is 

zero and that the column is placed squarely in the testing 

machine. This was achieved by marking centre lines on the top 

and bottom locating units of the test rig and aligning them with 

those marked on the base and crosshead of the testing machine. 

I 
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Overall deflections were measured by means of two 50 mm 

travel dial gauges, one placed at each flange-web junction at 

the central cross-section of the column. In this way the 

readings obtained were simply column deflection values and 

were not falsified by local deformations. For any particular 
j 

value of load considered the average of the two gauge readings 

was taken as the column central deflection. 

With the aid of a rigid upright stand and by the use of 

magnetic bases, the dial gauge spindles were set parallel to 

the principal axis plane of the testing machine and perpendicular 

to the axis of the column. By, doing this the effect of cosine 

errors occurring in the deflection readings is eliminated. 

Once the column was squarely positioned in the testing 

machine, the strain gauges were connected to the Elcomatic 

strain recording unit and all strain, and dial gauges were set to 

zero'. Loading to the column was then effected by setting the 

speed control dial on the Tinius. Olsen's control unit to the 

required loading speed. The movement of this dial initiating 

rotation of the machines four pulling screws which in turn lower 

the machine crosshead at the selected speed. At the beginning 

of loading, the column was loaded in equal increments and at a 

steady loading speed, the increments being equivalent to about 

8% of the theoretically estimated collapse load and the crosshead 

speed being 0.8 mm per minute. As the loading increased 
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however, and the bending stiffness of the section steadily 

reduced, the increments of loading and the loading speed were 

made progressively smaller. In this way an accurate measure- 

ment of the collapse load of the column could be obtained. At 

each load increment the column was allowed to settle and readings 

from the dial gauges and strain recording unit were noted along 

with the corresponding load value. The readings obtained in 

this way furnished the required information for predicting the local 

buckling load of the column and providing the load-deflection 

behaviour of the column throughout loading. 

5.6 STRAIN INVESTIGATION AND STRAIN RECORDING 

EQUIPMENT 

To determine the variation of the stress distributions during 

loading and to compare them with those predicted theoretically, a 

column was strain gauged at its central cross-section and loaded 

incrementally under various values of the eccentricity parameter 

ec. To ensure that the stresses within the column remained 

elastic, loading was limited to approximately 2 to 22 times the 

theoretically estimated local buckling load for each eccentricity 

value considered. 

The column tested was 1066.8 mm long and had nominal 

flange, web, lip and thickness dimensions of 177.8 mm, 63.5 mm, 

25.4 mm and 0.79 mm respectively. The gauges used in the 

0 
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investigation were manufactured by the Showa Measuring 

Instruments Company Limited and were of the two-gauge, 900 

rosette type having a gauge length of 5mm, a resistance of 

120 ohms and a gauge factor of 2.12. Figure 5.6.1 shows the 

layout of the strain rosettes round the central cross-section, 

25 rosettes being fixed on the inside surface and 25 on the outside, 

a total of 100 gauge readings in all. Figure 5.6.2 depicts the 

column under test showing the strain gauges at the column centre 

and the necessary wiring leading to the strain recording unit. 

The strain gauge recorder used was manufactured by 

Elcomatic Limited and was capable of accommodating up to 100 

gauges. Figure 5.6.3 shows the recorder depicting its various 

component parts. At any particular load value, output of the 

gauge readings was obtainable from the tape output unit which 

provided a printed record of all 100 strain values corresponding 

to the selected load. In order to obtain mid-surface values of 

the strain pattern, the strain gauge rosettes were used in pairs 

such that, for a given load, each reading from the outside surface 

gauges had a corresponding reading from'the same position on the 

inside surface. 

The column under investigation was loaded firstly through 

its centroid and at each load, increment up to approximately 22 

times the theoretically estimated local buckling load; the strain 

readings from the Elcomatic were recorded. The column was then 
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unloaded, a new value of eccentricity applied to its ends, and 

the process repeated. The eccentricity values considered in the 

investigation were ec = 0.0,0.1,0.2,0.3 and 0.4. 

By dividing the readings from the Elcomatic at each load 

increment by the gauge factor to obtain the strains, evaluation of 

the experimental stresses could then be obtained from the stress 

strain relationships, that is 

xý_vx 'i' 

The experimental stresses obtained in this way are presented and 

discussed in Chapter Six where comparison with the theoretically 

predicted stresses is also presented. 

The strain gauges used in the general investigation to aid 

in the prediction of the experimental local buckling loads, were 

also manufactured by the Showa Measuring Instruments Company 

Limited. Two gauges were used for this purpose, one fixed to 

each surface at the centre of the flange on the columns central 

cross-section. The gauges measured the longitudinal surface 

strains at the centre of the flange, from which a plot of the growth 

in membrane strain could be obtained and hence a prediction of 

the columns local buckling load. The gauges had a5 mm gauge 

length, a resistance of 119.7 ohms and a gauge factor of 2.10. 

I 
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6.0 COMPARISON OF EXPERIMENTAL RESULTS 

WITH THDORETIICAL PREDICTIONS 

6.1 
. 

LOCAL BUCKLING LOADS 

As previously mentioned, estimates of the local buckling 

loads in the experimental investigation were obtained from longitudinal 

surface strain measurements taken at the centre of the flange at the 

central cross-section of the column. Using these strains it was 

considered that the local buckling load was that which corresponded 

to the intersection of the tangents to the pre- and post- local buckling 

paths of the membrane strain curve in a load-strain diagram. Of the 

33 columns tested in the experimental program, strain results from 8 

were chosen to depict the membrane-tangent method of predicting 

local buckling loads, the strain curves from the 8 selected being 

typical of those of all the columns tested. 

Figures 6.1.1 to 6.1.8 show the load-strain curves, 
E1 

indicating strain values measured on the inside surface of the flange 

and E2 those measured on the outside surface. The membrane 

strain is the average of the two surface strains. With the exception 

of Figure 6.1.7, all the curves show that the outside surface strain 

continually. increases in compression with increase in load, whereas 

the inside surface strain, after initial compression, becomes tensile. 

This indicates that, at the centre of the column, the flange has 

buckled inwardly towards the lips of the section whereas the curves 
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of Figure 6.1.7 show that the flange has buckled outwardly. 

It will be realised that the membrane-tangent approach is 

merely a definition of the local buckling load and the results obtained 

from the method serve only as an approximate guess to the true 

buckling load. There are, however, other definitions of the local 

buckling load. Thomasson (54 ) used the membrane strain reversal 

method, according to which the local buckling load is approximately 

equal to the load which coincides with the maximum compressive 

membrane strain. The accuracy of this approach, however, 

diminishes with imperfections since these tend to result in a gradual 

change of slope of the membrane strain curve. The abrupt change 

of slope that would be experienced from the perfect plate or flange is 

therefore replaced by a gradual change of slope which tends to flatten 

out the membrane strain curve in the vicinity of slope change. It 

is this flattening out effect which adds to the difficulty in picking 

the load which corresponds to the maximum compressive membrane 

strain. The method, in general, gives results which are higher than 

those obtained from the membrane-tangent approach. Another 

definition of the local buckling load is the load at which the strain 

in one of the faces shows a maximum, i. e. the surface strain 

reversal approach. This method tends to give results which are 

lower than those obtained from the membrane-tangent approach, 

especially in the presence of imperfections. 
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Figures 6.1.1/2/3/4/7/8 show that the membrane strain reversal 

method would yield buckling loads higher than those obtained from the 

membrane-tangent approach. Figure 6.1.5 indicates that the membrane 

strain reversal method would yield a buckling load smaller than that 

obtained from the membrane-tangent method while Figure 6.1.6 shows 

that both methods would yield practically the same result. In the case of 

the surface strain reversal approach Figures 6.1.1 to 6.1.8 show that In 

all cases tlis method would yield buckling loads smaller, to varying degrees, 

than those obtained from the tangent method. The membrane-tangent 

method was described by Coan (2) as being accurate but consistently under- 

estimating the buckling loads in his investigation of plate buckling, while 

Rhodes (19) obtained very accurate results when applying the method to the 

buckling of thin walled beams under pure moment loading. It appears that the 

membrane-tangent method is less sensitive to local imperfections than the 

membrane and surface strain reversal approaches previously discussed. 

The method has, however, the disadvantage of requiring accurate deter- 

inination of the correct points of tangency to the pre- and post-buckling-parts 

of the membrane strain curve. In view of the points discussed it can be said 

that, although in general the results obtained from the different methods 

agree reasonably well, it is clear that the various definitions of the experi- 

mental buckling load are not free from some arbitrariness. 

Due to the high flexibility in the choice of locally deflected 

forms at buckling, it will be realised that the theoretical buckling 

loads obtained from the Rayleigh-Ritz analysis of Chapter 3 will 
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indeed be very accurate approximations to the true buckling loads. 

In view of this and also the arbitrariness of the experimental approaches 

discussed, it would appear that any comparison between theory and 

experiment would serve only to illustrate the reliability of the 

experimental method rather than the accuracy of the theoretical 

approach. Such a comparison has been made, however, and the 

results are shown in Table 6.1.1. Although the theoretical buckling 

loads are output from the computer to six decimal places, these 

are rounded to two places and compared with the values from the 

membrane-tangent method. The dimensions and eccentricity of loading 

of each column tested are given in Appendix W. Table 6.1.1 indicates 

good agreement between theory and experiment and also that no 

consistent pattern exists, as was found by Coan (2 ), for plates in 

compression. The experimental buckling loads are seen to be 

sometimes above and sometimes below the theoretical values, and in 

two cases are almost identical to the theoretical values. 

6.2 COLUMN LOAD-DEFLECTION BEHAVIOUR 

Comparisons between theoretical and experimental load-deflection 

behaviour give an indication of the accuracy with which the theoretical 

solution can predict changes in section bending stiffness and neutral 

axis shift during local buckling, these of course depending on how 

well the solution is able to represent the locally deflected form at 
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all stages of loading. This is fairly evident from equation 4.8.11, 

derived in Appendix I, for the central lateral deflection of the 

column in the post-local buckling domain. From this equation it 

can be seen that for a given load the lateral deflection at the centre 

of the column is clearly dependent on the values of section neutral 

axis position and tangent bending stiffness in the post-local buckling 

range. These in turn, along with the term ME in the solution, 

are shown in Appendix I to be related to the current locally deflected 

shape and are therefore variable throughout the analysis. The 

accuracy of column load-deflection behaviour is therefore seen to be 

highly dependent on the accuracy of the deflection functions in 

approximating the actual local form during loading. 

Although an energy type of solution could be expected to 

yield an upper estimate of the column's flexural stiffness, i. e. 

theoretically predicted deflections for a given loadwould be less 

than those obtained experimentally, approximations introduced in the 

analysis to aid in the satisfaction of overall equilibrium add further 

complications and the theoretical deflections may or may not exceed 

those from experiment. The approximations introduced stem from 

the use of equation I. 15 of Appendix I for section curvature along the 

column. For a locally buckled column this relationship is really 

only true at the buckle nodes and due to this the requirement of the 

theoretical solution to give an upper bound to the column's stiffness 

does not hold. 
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To save repetition, the load-deflection results of only 16 

of the 33 columns tested have been selected for comparison. These 

are shown in Figures 6.2.1 to 6.2.16, where good agreement between 

theory and experiment is indicated. In all cases the load-deflection 

comparison prior to local buckling is extremely good, showing the 

accuracy with which the eccentricities of loading were applied by 

the experimental loading rig. After local buckling the initial 

comparison between theory and experiment is seen to be good in all 

cases, although in some the theory is seen to overestimate column 

stiffness and in others the stiffness is underestimated. In each 

figure the load value at failure is shown and the final experimental 

point indicated was the last to be taken before failure. As the 

ultimate load of each column is approached the experimental points 

show a further reduction in section stiffness than that shown in the 

earlier part of the post-buckling curve. This is caused by the 

effects 'of plasticity and is depicted in the various figures by the 

greater inaccuracy of the elastic solution to predict column deflections 

in the region approaching collapse, i. e. the elastic solution 

overestimates column stiffness in this region. The theoretical 

curves of Figures 6.2.1 to 6.2.16 are terminated when the maximum 

membrane stress at the flange-web junction on the central buckle 

reaches the yield stress obtained from tensile tests of the column 

material. 
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Figures 6.2.10 and 6.2.11 show the results of two 

centroidally loaded columns. Deflection values obtained from 

experiment are seen to remain zero, or nearly so, up to the point of 

local buckling and thereafter to follow the theoretical curve fairly 

closely in each case throughout the post-local buckling phase. The 

theory is seen to underestimate column flexural stiffness in the 

initial post-buckling range and, due to this, deflection comparison in 

the region just before collapse is enhanced and the weakening 

effects of plasticity masked. Typical comparisons in which the 

theory overestimates column flexural stiffness are shown in 

Figures 6.2.1 and 6.2.8. In these the comparison prior to local 

buckling is excellent. From the onset of local buckling, however, 

theoretical deflections are seen to be less than those from experiment 

and due to this the effects of plasticity appear magnified in the region 

just before collapse. As mentioned earlier, the approximations 

introduced by using equation I. 15 for curvature nullify the approximate 

upper bound requirement on flexural stiffness that would be expected 

from an energy type of solution. This has been substantiated by the 

comparisons shown in Figures 6.2.1 to 6.2.16. In some cases the 

theoretical predictions of column deflections are greater than those 

obtained from experiment, and in others less. This indicates that 

the solution is not bounded. 



6.3 STRESS VARIATIONS 

To-further substantiate the theory, comparisons were made 

between the actual stresses under load at the centre of a column with 

those derived theoretically at the local buckle crest. Experimental 

stresses were obtained from the measured strain variations during 

loading of the column tested in the strain investigation of the 

experimental program. The dimensions of the column tested are 

given in Chapter S. To provide a wide range for comparison and to 

test the consistency of agreement, stress variations were obtained for 

various degrees of loading eccentricity. In each case the column 

was loaded to about 2 to 22 times the theoretical local buckling load, 

with strain measurements being recorded at regular intervals. Careful 

checks were made to ensure that the maximum loads in each case did 

not cause yield at any point on the column. Figures 6.3.1 to 

6.3.15 show the comparison of the growth in surface and membrane 

stresses corresponding to the various loading eccentricities considered. 

Due to the symmetry of stresses about the flange centre line, only 

one half of the section has been depicted in the figures. For each 

eccentricity value considered stress comparisons have been made at 

three load levels. One comparison is made slightly above the 

local buckling load, one at approximately 2 to 23- times the local 

buckling load and one intermediate to these. 

Figures 6.3.1,6.3.2 and 6.3.3 show the growth in stresses 

for the centroidal loading case. In Figure 6.3.1 the stress comparison 
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is at a load level just 8% above that to cause local buckling. From 

this the theoretical membrane stress is seen to be fairly constant 

around the section, although some loss in linearity is indicated 

over the central portion of the flange and very slightly across the 

web. It would appear from the comparison in Figure 6.3.1 that a 

slight local imperfection was present in the flange. This is 

substantiated by the comparisons shown at the higher load levels in 

Figures 6.3.2 and 6.3.3 from which it is evident that, while the 

magnitudes of the stresses are significantly affected around the 

local buckling load, they are less affected at the higher loads. The 

inside surface stress comparison over the central portion of the 

flange, however, is seen from the figures to be less accurate at the 

higher loads. Although the theory has the same general form as 

the experimental pattern in this region, the stress values are noted 

to be higher by some 12 to 20%. This dipping of the compressive 

surface stress pattern across the central portion of the flange is the 

consequence of the centre of the flange becoming less effective at 

higher loads and shedding load towards the flange edges. It would 

appear from Figure 6.3.3 that the theory has the tendency to 

slightly underestimate this ineffectiveness for the column considered, 

indicating that although the two term post-buckling solution allows 

for change in buckled form, perhaps the flexibility is not quite high 

enough to accurately predict the actual form. The effect of overall 

column deflections after local buckling is clearly indicated in 
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Figures 6.3.2 and 6.3.3 where it can be seen that, due to overall 

bending,. stress variations across the web are more compressive at 

the flange-web junction than those at the web-lip junction. It will 

also be noted that local buckling effects occur predominantly in the 

flange. The stress predictions across the webs and lips are seen 

to be fairly accurate at all load levels and the comparisons shown 

for-the centroidally loaded column can be said, in general, to 

support the theory. 

Figures 6.3.4 to 6.3.15 show the consistency of agreement 

between theory and experiment of the results obtained for eccentric 

loading of the strain gauged column. The eccentricities of loading 

considered were ec = 0.1,0.2,0.3 and 0.4. In all loading 

cases the agreement is seen to be good except for that of the 

compressive inside surface stress over the central portion of the 

flange. Regarding this, the'same comments apply as those made in 

relation to the centroidal case. 
. 

Figures 6.3.13 to 6.3.15 show 

the comparisons of the growth in stress variations corresponding to 

the highest loading eccentricity considered. From these the 

eccentricity of compression across the section web is seen to be 

more susceptible to change than that corresponding to the 

centroidally loaded case depicted in Figures 6.3.1 to 6.3.3. This 

more rapidly changing compression eccentricity across the web is 

a characteristic associated with load eccentricity, as are the higher 

local bending stresses depicted across the flange. The effect of 
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load eccentricity is illustrated by comparing directly Figures 6.3.3 

and 6.3.15, which show stress comparisons for the highest load 

level considered in the centroidal loading case and the highest 

eccentricity case respectively. It will be noted that the load on 

the column is approximately the same in each case, 11.125 kN for the 

centroidal loading and 11.57 kN for the eccentrically loaded case. 

The stress variations, however, are seen to be quite different. 

The membrane stress variation across the flange is seen to be 

slightly more reduced over the central portion and substantially 

increased towards the edges in the eccentric loading case. The 

magnitudes of the bending stresses are seen to be significantly 

higher in the eccentric loading case, in particular over the central 

portion of the flange. The eccentricity of compression across the 

web is seen to be much greater in the eccentric loading case, 

producing a high membrane stress at the flange-web junction and a 

low value at the web-lip junction. From this and the comparison 

shown in Figure 6.3.15 it can be said that although quite different 

stress variations are obtained for the eccentric loading case, the 

reliability of the theory to predict these is good. The comparison 

between theory and experiment for the other loading eccentricities 

considered is seen from the various figures to be fairly accurate and 

consistent, which, along with the load-deflection comparisons of the 

previous section, may be regarded as due corroboration of the 

theoretical approach. 
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6.4 COLLAPSE LOADS 

As mentioned in section 6.2, the theoretical solution is 

terminated when the maximum membrane stress on the central buckle 

reaches the yield stress obtained from tensile tests of the column 
I 

material. By postulating that failure ensues when this occurs it was 

found that a relatively close estimate of the failure load could be 

obtained from the elastic analysis. Table 6.4.1 shows the 

comparison between theory and experiment for the 33 columns tested 

in the experimental program. Although no account is taken of the 

weakening effects of plasticity it can be said, from the results shown, 

that failure is predicted with engineering accuracy on the assumption 

that collapse ensues when the maximum membrane stress reaches 

yield. 

Figure 6.4.1 shows the comparison between the theoretical 

ultimate load prediction using the yield ', criterion for collapse, and 

the experimental work by Harvey (5) on centroidally loaded columns. 

The slenderness values: of the volumns tested were varied with 

change in the web dimension bw and due to this the theoretical local 

buckling loads are seen to reduce with increased slenderness. The 

web dimensions of the nine columns tested were 0.63,0.83,1.01, 

1.17,1.39,1.74,1.83,2.08 and 2.51 inches. The experimental 

work by Harvey covered both stable and unstable post buckling 

behaviour as well as neutral column buckling and (with the exception 

of three results which seem to deviate to some extent from the general 
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trend) the comparison can be said to be good. 

Figures 6.4.2 and 6.4.3 show comparisons of theoretical 

ultimate load predictions using the yield criterion, with collapse 

values obtained by McCall (23) from tests on centroidally and 

eccentrically loaded columns. The slenderness values of the 

columns tested were varied with change in column length and due to 

this the theoretical local buckling loads are seen from the figures to 

be unaltered with change in slenderness for the centroidal loading 

case and reduced with increase in slenderness for the eccentric 

loading case. The lengths of the columns tested in each case were 

24.0,36.0,48.0,60.0 and 72.0 inches. The experimental work 

by McCall covered stable post buckling behaviour only and, with 

the exception of two points in the centroidal loading case and one 

in the eccentric loading case the theory may be said to be able to 

predict ultimate loads with engineering accuracy. 
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, 
7.0 SUMMARY AND CONCLUSIONS 

7.1 GENERAL SUMMARY 

A semi-energy method has been used for the analysis of 

column behaviour in which both local and overall deformations occur 

simultaneously during loading. The analysis has been carried out 

with reference to pin ended lipped channel columns under concentric 

or eccentric loading. The theoretical solution, as developed in 

Chapters 3 and 4, has been shown to exhibit good accuracy when 

compared with the behaviour of actual columns tested. 

In the semi-energy approach used the facility available, of 

flexibility of choice in the local mode deflections, has been shown to 

provide a continually changing locally buckled form during loading, 

resulting in a continual shift in section neutral axis and a reduced 

Euler load for the column which constantly becomes smaller. The 

analysis also indicates, that under completely elastic conditions all 

post-local buckling load-deflection paths eventually become unstable, 

although they may be initially stable. The theory has been shown 

to be 'capable, of predicting both stable and unstable column load- 

deflection behaviour as associated with columns having critical loads 

relatively far apart and coincident, or nearly so, respectively. 

From the experimental investigation it was found that both local 

buckling and eventually partial plasticity were instrumental in 

contributing to the weakening of the bending stiffness of the columns 
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tested although the latter was present only in the final stages of 

loading. The specially designed end locating units for the columns 

were found to be capable of transmitting the applied loading from the 

loading machine and of applying accurately the specified loading 

eccentricities relative to the minor principal axis of the section. 

The locating units were also found to maintain pinned conditions at 

the column ends. The strain investigation described in Chapter 5, 

although by no means comprehensive, showed clearly the effects of 

local buckling on the stress variations across the section at the centre 

of the column. The membrane-tangent method used in the 

experimental investigation for predicting local buckling loads has 

been shown to provide reasonably accurate estimates, although no 

consistent pattern was found to emerge. 

The comparisons between theory and experiment, as 

illustrated and discussed in Chapter 6, have shown good agreement in 

relation to column load-deflection equilibrium paths and stress 

variations with applied loading. The simple collapse criterion of 

assuming failure to occur when the maximum membrane stress at the 

section junctions reaches the yield stress of the material, gave close 

estimates of the, failure loads of the columns tested in the experimental 

program. A comparison of the theory with experimental ultimate 

loads from independent sources also shows good agreement. 
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7.2 SUGGESTIONS FOR FURTHER RESEARCH 

The author realises that the work presented in this thesis 

by no means completes the picture of the interaction buckling 

behaviour of lipped channel columns. He feels, however, that a 

good elastic analysis is necessary to form the basic foundation for 

a more complete and in-depth study of the mechanics of the problem 

and from the, results obtained in his investigation would suggest 

that the semi-energy method employed shows considerable expectation. 

As has been shown in Chapter 1, a large proportion of the 

work presented on coupled mode buckling deals in the main with the 

effects of imperfections on the buckling behaviour of simultaneous 

mode designs. Many of these investigations, however, have dealt 

with hypothetical structural forms or simplified mathematical models 

of actual forms and as such the findings from them must be regarded 

within the context wherein they were obtained, and treated as basically 

illustrative of the type of behaviour associated with unstable 

bifurcation. On the other hand, unless material properties are such 

that completely elastic conditions prevail, columns whose critical 

loads are relatively far apart can exhibit stable post-local buckling 

behaviour and will eventually collapse due to the weakening effects 

of partial plasticity. . Since a rigorous analysis of the column's 

behaviour when the material is undergoing plastic deformations is 

exceedingly difficult, and since the increase in load carried by the 

column between the onset of plasticity and final collapse is not very 
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large, work presented in the literature dealing with this type of non- 

linearity has used approximate methods. Among these have been 

the semi-empirical approach to the problem as well as that of 

idealising the stress-strain characteristics of the material as being 

elastic-perfectly plastic. Even if the stress-strain characteristics 

of the material could be readily represented by the assumed elastic- 

perfectly plastic ideal, however, the accuracy of any subsequent 

elasto-plastic analysis would depend to some degree on the accuracy 

with which the solution could describe stress variations during the 

completely elastic stages of loading and hence care would have to 

be taken to ensure that the elastic analysis was as accurate as 

possible. 

The author feels that the time spent by him in obtaining a good 

elastic analysis for the lipped channel problem paves the way for an 

extension of his theory to include the effects of plasticity. 

With regard to imperfections, the effects of Euler mode 

imperfections are similar to those of load eccentricity and due to 

this can be accounted for quite easily. The problem of local 

imperfections is, however, slightly more complex, due mainly to the 

fact that the buckled form is allowed to change during loading and 

this is at present under examination. 

Other aspects of the work, apart from those of imperfections 

and plasticity, which the author suggests for further research, and 

feels would provide beneficial knowledge of interactive buckling 
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behaviour, are listed as follows: 

1) The-application of the semi-energy method to a wider variety of 

cross-sectional shapes. 

2) The adaptation of the theory to predict the buckling 

behaviour of columns having fixed end boundary conditions. 

3) A theoretical consideration of the local torsional buckling 

mode of the web and lip about the flange-web junction, 

especially for the cases of eccentric loading towards the lips 

and for wide webs. 

4) A comprehensive experimental strain investigation, although 

costly, would be advantageous in obtaining knowledge of 

the stress variations at various sections along the length of 

the column as loading progresses:, 

5) A theoretical consideration of the variation in local deflection 

magnitudes along the column length. In practice it has 

been observed that the local buckle magnitudes decrease as 

the distance from the column centre increases. 

6) The use of more terms in the post-buckling solution with the 

view to increasing the accuracy of the elastic analysis. 

This would involve a considerable increase in labour and 
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computation time with perhaps a very small increase in 

accuracy. Nevertheless, it would be interesting to 

ascertain the effect, in particular for sections whose 

compression flanges have exceptionally high width to 

thickness ratios. 

7) A design approach to the coupled mode buckling problem 

based on the findings of the more elaborate semi-energy 

analysis. 

The author is presently involved in some of these aspects 

and the findings from these works will be published on completion. 

7.3 CONCLUSIONS 

Based on the findings of the investigation carried out in 

this thesis, the author makes the following conclusions: 

1) Local buckling causes reductions in the compressive and 

bending stiffnesses of the entire cross-section. It is the 

reduction of bending stiffness, however, which is responsible 

for the unfavourable non-linear interaction between the local 

and overall buckling modes of thin-walled columns having 

near simultaneous critical loads. 
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2) In the case of centroidally loaded columns designed in the 

near simultaneous mode region and whose local buckling 

load is less than its Euler value, column buckling occurs at 

the local buckling load and the equilibrium at bifurcation is 

unstable. This is in contrast to the behaviour of centroidally 

loaded box columns in the same area of design and is due 

simply to the fact that the lipped channel section has local 

mode deflections largely confined to one side of the cross- 

section. The modification in local mode shape due to the 

interaction at buckling with the overall bending mode has a 

quite different effect in this case than in the situation where 

the primary local mode in compression displays significant 

deflections on both sides of the neutral axis, in which case 

an initially stabilising effect will prevail. 

3) The flexibility of choice in local mode deflections has shown 

that the asymptotic approach to a reduced Euler load based 

on an unchanging locally deflected form is an approximation 

and that the reduced Euler load constantly becomes smaller 

as loading progresses. 

4) The theoretical analysis presented has been shown to 

accurately describe the load-deflection paths of lipped 

channel columns which have stable post-local buckling 

behaviour and to give stress distributions which agree well 

with those obtained experimentally. 
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5) The results of the experimental programme have shown that 

although the behaviour of a thin-walled column is influenced 

to a large extent by the effects of local buckling, the onset 

of plasticity further reduces the bending stiffness of the 

section and hence the ultimate strength of the column. 

6) For columns which exhibit stable post-local buckling 

behaviour, failure is predicted with engineering accuracy on 

the assumption that when the maximum membrane stress at 

the section junctions reaches the yield stress, collapse 

ensues. 

7) It has been shown that for the lower values of column 

slenderness, where a considerable amount of post-local 

buckling exists, higher values of material yield stress result 

in substantially increased ultimate loads. For the 

intermediate slenderness ratios, however, the effect of yield 

stress on ultimate load diminishes and in the region of near 

simultaneous mode designs the ultimate load is independent 

of the value of material yield stress, so long as the yield 

(stress is substantially greater than the critical stress. 

8) The equilibrium paths of columns loaded eccentrically 

towards the lips, but whose local buckling effects are most 

significant on the flange, may change directional sense 
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with the onset of local buckling, depending on column 

geometry. 

9) The effect of load eccentricity is, in general, to reduce the 

I 

local buckling capacity and the ultimate strength of a column. 

In cases where loading eccentricity is towards the lips, 

however, these may be increased if geometry is such that 

local buckling effects are' predominant on the flange. 

I 
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APPENDIX I 

DERIVATION AND SOLUTION OF THE DIFFERENTIAL EQUATION 

OF EQUILIBRIUM FOR THE LOCALLY BUCKLED COLUMN 

The first step in the derivation of the differential equation of 

, equilibrium is to consider the local buckling deflections to be 

described by the following expression 

ýý ý A()cos sx (I. 1) 

The functions Yj specify the shape of the local buckles across 

each plate while the coefficient A gives the magnitude of the 

deflections in all plates. 

The accuracy of the solution'of the differential equation is, 

of course, dependent on the accuracy with which the functions Yi 

describe the actual deflections across each plate. It is absolutely 

necessary therefore, that these functions are well chosen and it is 

assumed at this stage that they describe extremely accurately the 

local deflections of each plate. 

Substitution of equation (I. 1) Into Von Karman's Compatibility 

Equation (4.1.2) gives the stress function Fi in terms of the', 

coefficient A. The parts of the stress function Fil and F12 of Fi 

being obtained from the solutions of 

Iv Eß-2 2 It 2 

S2 YýY+ (Y'")q 2 
(I. 2)(a) 

iv 2-ý- 2 II 2-ý 4 
_E-ß-2 

2 II 12 
-- ýI. 2)(b) ý2 2S Fý+ 5 ý2 2A YýYý, - zs 
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From equations (I. 2) the following two equations are obtainod 

if E11 22 FI 
2A 

'I + CI 
.u, ', +" C2 

Ts IL 'L 
a (I. 3) (a) 

ETf2 
'"- 

A2 Y-1, ̀
dot., 

(1.3) ro) 
2 s2 ý. 2 

The constants [Ci] 
i and [c2] 

i, for any particular plate 1, 

are obtained from equations (4.4.6) and the function- i (yi) given 

by the solution of the following equation 

2u 2-ý.. 4 
(1 

tv 21r [y'L 
.4) (Y1)J 

The strain energy due to mid-plane stresses is now obtained by 

substituting equations (1.3) into equation (4.7.2) to give 
. ý. =3 

V_ts\ 2E 
ýz 

s2ý A fý' 

+ ES A e, 

Elf 224 

+2(Sý A ý; 

+K, 
-0-1 

where 6 ý. 
F 

6. 
Y q. 0 

A. 

22ý 

ý-ý [N-iK +IC1; Y 
.o 

(I. 5) 

(I. 6)(a) 

(I. 6. )(b) 

(I. 6. )(ß) 

Kj= 
rb~L2CC]ý1''4CC]ýCC]ýtý, 

''2CC2. 
`-1 

ddb (I. 6. )(a) 

Jo J 
I 
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Substituting equation (I. 1) into equation (2.2.4) (Chapter 2, 

Section 2) gives after integration in the x direction the strain energy 

of bending as follows 

V= 
i=3 

5D A2>I 

where the Qi are obtained from 

_, 
Týd 

r[y ý, - 
+-52 () [«ý (YL) jý. 

0 The total strain energy VT is now given in terms of the 

coefficient A from the sum of equations (I. 5) and (I. 7). 

(I. 7) 

('. 8) 

Minimising the total strain energy with respect to A by differentiating 

VT with respect to A and equating to zero gives 
1=3 

L.: ' D Q. + e- 
2 

ýý 
2 ý' 2S A= (1.9) 

. ý. =34.1r 
Et 2f+. 

,L 853 ý- 
Substituting equations (4.4.6) for the constants Cl and 'C2 

into equation (I. 6)(c) allows equation (I. 9) to be written as follows 

2 lTEt q 
6S a, +Q2+ a3 + ESC a4-a2 a, ab (r. a) A 2q 1 

where is the strain value corresponding to the flange 

compression U* and 
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6f 6t 6ý 

a= i a= Jo 
YZ 2a3 

= dtý i 13 d2 d3 
Jo o 

6ul ý. =3 

p_ ý2 2d 
a_so Q4 6 uT 22 Sý ý, ý. 

o 

4 

C1 [zr + 
-' (1.11) 

e8s . ý. 
The expressions for the column load P and the moment about 

the lips M, as given by equations (4.8.4) and (4.8.6), can now be 

written in terms of the coefficient A by means of substituting Fil 11 

in the form of equation (I. 3) (a) to give i 

4 

p ... Et e[6+26u'+26, 
t-Ea[6w+26]-TA[al+P2+ a] (1.12) 5-2 

= Et 906a 6+6ý 2 
uflrA2 a+a - e++Sc (1.13) M3 252 aP 

Substituting now equation (I. 10) for A2 into equation (I. 12) 

gives the strain E in terms of the load P and E oC in the 

following form 

ýý 
P- E 

24 

ý2 

2 
(a+at+a3/ 

CI6- E 
[(2t) 

4 CJaI+C3Z+03)((; 
a. - a3]] 

Et[(6+2bur+2b2) ? t'4Et (q,, + , Q2, + , Q3)2 
453Ab J 

(I. 14) 
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From the assumption that plan© sections remain plane during 
W 

local buckling the following equation for F- °C Is obtained 

cl X2 
(1.15) 

Substituting equation (I. 10) into equation (1.13) and then 

substituting equation (1.14) into the result gives, after utilising 

equation (1.15), the differential equation of equilibrium for the 

lateral deflection of the locally buckled column in the form 

ß+ri2_ 
m+ 

where n= EI* and _ 

w ý, %K 
(d-cl )+ 7ý7 U. 1 6) 

bus 6+6u, ) (ci1i-+a +ýc 
,, S3 ab ý2 3ý d4 (I. 17) (a) 

[(6+26w+26Y-) 
- (01+02+ci, ) 

53 C1 46 

baut [R+2+ jT a= 
peC a 1+ o2+ a 3, 

C4 
a-a 2- dl ci I3'! / 45 

6 6ý, ýýr4ýt ---'4- ------ 
(Cl 

,+ C14. ) (C'47 q2- a 3ý (t . 17) (b ) 
4 g3 g 

Wj 

m =jrEt(O+c1+Q 
as 

_ 
(14) 17) c 

252 
)ab 

(ql+02. + a3) 
The general solution of equation (1.16) for the lateral deflection 8 is 

S= 
E«d_d*)ýP M 

SeC nL Co S(nx) -- (I. 1 s) 
2 
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Substituting x=0 in equation (1.18) gives the lateral deflection 

Sc 
at the centre of the column as 

gc= [e+(-d*). ][secJE' (I. 19) 

where PE* _ 
X22 I* 

L 

As stated earlier the accuracy of equation (I. 19) depends solely 

on the accuracy of the functions Yj in approximating the actual local 

buckling deflection of the column. If the functions Yi were of a 

fixed form which changed in magnitude only by means of the 

coefficient A, then the values of d*, I*, PE* and M* would remain 

constant throughout buckling at the values obtained from the initial 

instability solution. In the practical case however, the buckled 

form changes and the values of d*, I*, PE* and M* change 

continually throughout loading. 

This change in form is taken into account by utilizing the 

functions Yi from the two term post-buckling solution in the general 

form of equation (4.2.1), the specific forms being given by 

equations (4.2.2). These functions, having been developed through 

the necessary satisfaction of the relevant compatibility and equili- 

brium boundary conditions existing at the plate junctions of the 

section, automatically provide a fairly accurate representation of 

the local deflections occurring within the section. 

Using the functions Yj from the two term post-buckling 

solution results in the ai of equations (1.11) taking the following form 
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n=14 m=14 6f 

Wrwn Y dý (I. 20)(a) 
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20)(f) 
$S {' 6L 4 

LcI Rat m=I rat -h=1 
The solution of the differential equation of equilibrium for the 

locally buckled column is now complete, the load-deflection 

equilibrium path being described by equation (1.19) used in 

conjunction with equations (I. 17) and (I. 20). 
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APPENDIX II 

PHYSICAL MEANING OF THE TERM M IN THE SOLUTION OF THE 

DIFFERENTIAL EQUATION OF EQUILIBRIUM 

The term M was defined generally in chapter four as 

being an internal moment caused by the effects of local 

buckling. After some rather lengthy algebraic manipulation 

however the physical meaning of M* can be shown more 

specifically to be 

M* = PCR(d*-d) ---- --- (II. 1) 

where PAR is the critical load to cause local buckling of 

a uniformly compressed column, according to the current 

locally deflected form. 

To prove equation (II-1), use is made of the equations 

already developed in appendix I. For the sake of expediency 

and to simplify the algebraic manipulations in the proof, 

equations (I. 11), of appendix I are utilized in the following 

manner 

al + a2 + 'a3 = rl 

al + a4 = r2 

tr4Et a5 
8S3 

r3 

a= i4Et. r 6 8S3 k 

where 
S! et2 1=3 

r3 3 (1- v, 21r )4 ill 
Qj 

i=3 
r,, = 

1E=1 
r2ri + 0i] 
L 

----- (11.2) 

- -- - --- (II. 3) 
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using equations (11.2), equations (I. 10), (1.17)(a) and 

(I. 17) (c) of appendix I take the following form 

A2 - 24 
r4 LE*r1 

+ e*a (r2-ri) - ----(11.4) 

* 
[bb+bw) 

- 2bw r4 

d 
l+2bw+2bb 

-2 wl 

rr (ý 
_ 

rlr2 
*- zEt r4 

4 
Lb+bw 2r r2r M-bt- -(II. 6) 

2S2 W L+2bw+2bß 
-2]r 4 

By considering equation (11.4) with A=0 and a= 0, the 

critical value of e* to cause local buckling for a 

centroidally loaded section can be obtained. This is 

* n2 Ei 
CCR = 4S2 rl -- -----(11.7) 

The critical load to cause local buckling is obtained from 

PCR = CCR xEx cross sectional area 

(b + 2bw + 2bß) =- - (IT. 8) 
690 pCR = 4S2 ' T, 

The position of the neutral axis from the section lips for 

a locally unbuckled section is 

d= 
bw(b + bw) 

--------(II. 9) 
b+ 2bw + 2bt 
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using equations (11.5), (11.8) and (11.9), the following 

can be written 

2 bIW(b+bW)_2bWn1 r bw(b+bw) 
P (d*-d) _ 

Et 3 (b+2b +2b ) r4- - CR 4S2 71- w 
b+2bw+2bß, - 

2x12 b+2bw+2bR 
4 

--- -(11.10) 

By re-arranging the parameters on the right hand side of 

equation. (II. 10) it can be shown that this is equal to that 

of equation (11.6) and hence equation (II. 1) is true. 

Writing the terms in square brackets in common denominator 

form and taking the common parameter bw outside the brackets 

gives 

PCR(d*-d) -2 4S2 
bW rrl(b+2bw+2b, )X 

(b+2bw+2bL), (b+bý, - 
2r r r2 

)-(b+2bw+2bL -2? (b+bw) 
XL4 

(b+2bw+2bL - 
2r12) (b+2bw+2b t) 

Multiplying out the numerator of the term in square brackets 

and cancelling like terms allows the above equation, after 

some rearranging, to be written in the following form 

PCR(d*-d) 

1 

7T 2Et 
(b+bW) rr4 3- (b+2bw+2bß) rr 

(b+2bw+2bß -2r, 
2) 
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To complete the proof use is made of a mathematical subtlety 

in the form of adding and subtracting the term 
2r12r2r3 

r42 
to the numerator of the term in square brackets as follows 

PCR (d*-d) _ . 7r 
2 Et bw 

2S2 

r1r, (b+bW)-2r12r2r3 - (b+2bw+2b ) r2r3 
+2r12r, 

ra 
--- r4 r42 ß r4 r42 

) 
2 

(b+2bw+2bb - 
x14 2 

The terms of the numerator are then regrouped to give 

rlrg 2rir2 2r 2rr 

jr Et 

[rk 
(b+bw- 

r4 
)- (b+2bw+2bR -r 

44 
PCR (d -d) 2S2 

bw 
2r 2 

(b+2bw+2bn - 
2r 

which, after some rearrangement, can be written finally as, 

r1r3 b+bw 
2r1r2 

jr2Et 
F 

PCR(d-d) = ;7 
r4 r4 

_ 
r2r3 

---(II. 11) 22 r4 2S 
b+2bw+2bL - 

2r14 

. Comparison of equations (11.6) and(II. 11) completes the 

proof of equation (II. 1). It should be clearly understood 

however, as mentioned previously, that PAR is the buckling 

load of a centroidally loaded section, according to the 

current locally deflected form. 

Finally, by using equation (II-1) for M*, equations 

(1.19) of appendix I and (4.8.11) of chapter four, for the 

lateral central deflection of the column may be written 

dc = 
Le 

+ (d - d*) (1 - 
PP 

sec 2 
P_ -1 -(II. 12) 

E 

ýý 



APPENDIX III 

SOLUTION OF THE ENERGY INTEGRALS 

IN THE INITIAL INSTABILITY ANALYSIS. 



309. 

APPENDIX III 

SOLUTIONS OF THE ENERGY INTEGRALS IN THE INITIAL 

INSTABILITY ANALYSIS 

This appendix gives the solutions of the bending 

strain energy integrals ýnm' 4nm' Znm and the potential 

energy integrals r, Tnm' Gnm in the initial instability 

analysis of chapter three. Knowing these, the total 

strain energy and potential energy integrals Anm and 0nm 

can be set up (see equations 3.4.13, chapter three) and 

evaluated for: any nm, n=1,2, ---- N., m=1,2, ---- N. 

The Anm and 6nm so obtained are then used to formulate 

equations 3.4.17, chapter three and the initial local 

instability load for the column determined by finding the 

lowest'eigenvälue of these equations. The buckled form at 

instability is obtained from: the corresponding eigenvector. 

I 
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Flange bending strain energy integral (equation 3.4.4, 
chapter three) 

1 bn (bn-1)bm(bm 1) EnEm 
*nm bf3 (bn + bm - 3) 

am(am- 1)bn (bn-1) &n an (an-1)bm(bm 1) Cm 
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Flange potential energy integral (equation 3.4.5, chapter 
three) 

r nm =bf1-(1 am+1) m+ 
m1 

(bm+1) (an+1) + 

1 zm Cm 
-+ 

Cn 
(an+am+1) + (an+1) (an+bm+1) ýn (am+1) 

+ Cngm _ 
CnCm + Cn 

_ 
Cn 

- (bm+1) (bn+1) (am+bn+l ) 

+ 
CnCm 

bn+l ) (bn+bm+1) __ ý'_ _, (I I I. 2 ) 

Web bending strain energy integral (equation 3.4.7., 
chapter three) 

1 ßn' ßm kn km (kn-1) (km-1) 
enm = bW (kn+km 3) 
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(kn+1) S4 34 (k 

Ynum YnYm 
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Ynßm ßnum ßnYm 
4+5 (km+3) + (kn+2) (kn+3 ) 

ßnßm 
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3) -- ---(III. 
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Web potential energy integral (equation 3.4.8, chapter three) 

T=b (1-a) anum 
- 

unYm 
+ 

unßm 
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Ynym 
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Yny 
nm w34 (km+2) 45 
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ßnum 
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ßnYm ßnßm 
+ (kn+3) (kn+4) + (kn+km+2) ____ -(III. 4) 

Lip bending strain energy integral (equation 3.4.10 
chapter three) 

Znm = b&3 4t2nnm + 2flnTmtm + 2s2mTntn 

+ 
TnTmtntm(tn-1) (tm l) 2vir2 P+PTt 1) 

[mn 
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+3+ (tm+l) + (tn+l) + (tn+tm 1) 

'r4bje PnPm Pnsim PnTm ýnpm nným 
+ Ste 3+4+ (tm+2) +4+5 

nn'ým TnPm Tným TnTM 
+ (tm+3) + (tn+2) + (tn+3) + (tn+tm+l) 

24 f2 n 
+ 

2nbLS2v) 
PnPm + Pnm + Pntm + Pm 'n +3m 

+ 
2flnTmtm 

+ Pm + 
2DmTntn 

+ 
TntnTmtm 

(tm+l) Tn (tn+l) (tn+tm 1) 

Lip potential energy integral (equation 3.4.11., chapter three) 

G=b (1-a) 
IPnPm 

+ 
Pným 

+ 
PnTm 

+ 
_npm 

+ 
ýnnm 

nm 34 (tm+2) 5 

+ 
S2nTm 

+ 
TnPm 

+ 
Tnf2m+ TnTm 

(tm+3) (tn+2) (tn+3) (tn+tm+l) 
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APPENDIX IV 

SOLUTION OF THE ENERGY INTEGRALS IN THE POST LOCAL 

BUCKLING ANALYSIS 

This appendix gives the solutions of the energy 

integrals rinmrp' Oinmrp' einm'and Qinm as formulated in 

the post local buckling analysis of chapter four by 

equations 4.7.4 and 4.7.6. The integrals rinmrp' 0inmrp 

and einen are associated with the. strain energy of mid plane 

forces while the integral Qi relates to the strain 

energy of plate bending and twisting. The solutions of the 

energy integrals as given in this appendix were evaluated 

by the computer and the results used to formulate the c 

coefficients in equation 4.7.11, the quartic for A, for a 

given value of flange compression u*. Solving equation 

4.7.11 for A, the ratio of the local deflection 

coefficients -WU in the two term post, buckling solution, 
W1- 

leads, after consideration of overall equilibrium, to the 

elastic solution for a particular value of u*. To obtain 

the complete post-local-interactive equilibrium path, the 

solution procedure is simply repeated-for a number of 

discrete increments of compression u* applied to the flange. 
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bf 
11 2n 2 

rlnmrp ö[ lnm ý'lrpli _ (S) 
1nm11 *1rp 

(S 
2ý'lnm1'lrpll 

+ (s) 
44lnm4'1rp 

dy1 

b1 -y 
[ 

4d3nmd3rp + 3(24d3nmd5rp + 24d5nmd3rp) 

+ 5(6Ud3nmd7rp + 144d5nmd5rp + 60d7nmd3rp) 

+ 
4112d (d + 360d d+ 360d d 3nm 9rp 5nm 7rp 7nm 5rp 

+ 112d9nnmd3rp) + g(180d3nmdllrp + 672d 5nm d9rp 

+ 900d7nmd7rp + 672d9nmd5rp + 180dllnmd3rp) 

+ 1(1080d5nmdllrp 
+ 1680d7nmdgrp + 

+ 108Odllnmd5rp) + 13(2700d7nmdllrp 

+ 2700dllnmd7rp) + 15(504Od 9nm d11rp 

+ 
17 (8100d llnmdllrp) (2S )2 bf 

+ 3(2d3nmd3rp + 12d5nmdlrp) + 5(2d3: 

1680d9nmd7rp 

+ 3136d9nmd9rp 

+ 5040d11nmd9rp 

2d3nmdlrp 

nmd5rp 

+ 12d5nmd3rp + 30d7nmdlrp) + 7(2d3nmd7rp 

+ 12d5nmd5rp + 30d7nmd3rp + 56d9nmdlrp) 

+ (2d3nmd9rp + 12d5nmd7rp + 30d7nmd5rp 

+ 56ä9nmd3rp + 90dllnmdlrp) + 11(2d3nmdllrp 

+ 12d5nmd9rp + 30d7nd7rp + 56d9nm 5rp 

+ 90d11nmd3rpý + 13(12d5nma11rp + 30d7nmd9rp 

+ 56d9nmd7rp + 90dllnmd5rp) + 15(30d7nmdllrp 

+ 56d9nmd9rp + 90dllnmd7rp) + 
17(56d9nmdllrp 

12 1 
+ 90dllnmd9rp) + 19 

(90dllnmdllrp) (2S bf 
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2d3rpolnm + 3(2d3rpd3nm + 12d&rpolnm) 

+ 5(2d3rpd5nm + 12d5rpd3nm + 30d7rpolnm) 

+ 7(2d3rpd7nm + 12d5rpd5nm + 30d7rpd3nm 

+ 56d9rpolnm) + 9(2d3rpd9nm + 12d5rpd7nm 

+ 30d7rpd5nm + 56d9rpd3nm + 9Odllrpdinm) 

+ li(2d3rpollnm + 12d5rpd9nm + 30d7rpd7nm 

+ 56d9rpd5nm, + 90dllrpd3nm) + 13(12d5rpollnm 

+ 30d7rpd9nm: + 56d9rpd7nm + 90dllrpd5nm) 

+ 15(30d7rpollnm. + 56d9rpd9nm + 90dllrpd7nm) 

+ 17(56d9rpollnm 90dlirpd9nm) + 9(90d llrp ollnm) 
4 

+ (Sr) bf alnmdlrp +3 (dlnmd3rp + d3nmdirp) 

+ 5(dlnmd5rp + d3nmd3rp + d5nmalrpý + 7(dlnmd7rp 

+ d3nmd5rp + d5nmd3rp + d7nmdlrý) + 9(dlnmd9rp 

+ d3nmd7rp + d5nmd5rp + d7nmd3rp + d9nmdirp) 

+ 1(dinmdilrp + d3nmd9rp + d5nmd7rp + d7nmd5rp 

+ d9nmd3rp + dllnmalrp)+ 
13(d3nmdllrp +d 5nm d9rp 

+ d7nmd7rp + d9nma5rp + dllnmd3rp) 

+ 15 (d5nmdllr + dd9r + 
. 9nmd7r + dlInmd5r ) 

P 7nm PPP 

+ 7(d7nind llr+ dd9r + dd ) 
P 9nm P llnm 7rP 

+ 19(d9nmdllrp + dllnmd9rp) +2 (d llnm dllrp) 

+ (2; r) 
2 [c3 

nm 
+ 4d5nm + 6d7nm + 8d9nm 

+ 10d1lnm X COSH 2 
Sý - (2 7r) 22b rp 

f 
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dlnm + d3nm + d5nm + d7nm + d9nm + dllnm x 

X SINN 2Sf+ (2S) 
2t2nm 

2d3rp + 4d5rp + 6d7rp C 
+ 8d9r + 10d X COSH 2 bf 

- (2S) 
2 2t2nm 

bp llrp f 

dlrp + d3rp + d5rp + d7rp + d9rp + dllrpI X 

X SINN 2nb +2 2n 2S 4nb 
f 

(S) t2nmt2rp 
, qn SINH S 

f+ bf 

------(IV. 1) 

lnrarp ff Yln Ylm Y1r Ylp dy1 

bf [cuinmirp + 13 (glnmq2rp + g2nmqlrp 

+ (glnmg3rp + g2nmq2rp + g3nmqlrp) + 
4(1fl4p 

1 
+ g2nmq3rp + g3nmq2rp + g4nmqlrp) +9 (glnmq5rp 

+ g2nmq4rp + g3nmq3rp + g4nmq2rp + g5nmqlrp) 

+ ll(glnmq6rp + g2nmq5rp + g3nmq4rp + g4nmq3rp 

+ g5nmq2rp + g6nmqlrp) + 
113(g1nmq7rp 

+ g2nmq6rp 

+ g3nmq5rp + g4nmq4rp + g5nmq3rp + g6nmq2rp 

+ g7nmqlrp) + 
115(g2nmq7rp 

+ g3nmq6rp + g4nmq5rp 

1 
+ g5nnq4rp + g6nmq3rp + g7nmq2rpý+ 17ýg3nmq7rp 

+ g4nmq6rp + g5nmq5rp + g6nmq4rp + g7nmq3rp) 

+ 19(g4nmq7rp + g5nmq6rp + g6nmq5rp + g7nmq4rp) 

+2 (15nmg7rp + g6nmq6rp + g7nmq5rp) + 3(g6nmq7rp 

+ g7nmq6rp) + 25(g7nmq7rp) 

--------(IV. 2) 



JI'l 0 

einm = p bf yinYim dyi 

11 
bf [inm + 3g2nm + 5g3nm + 7g4nm + 9g5nm 

11 
+ llg6nm +1 l7nm] -"--'--'r 

where 

glnm gnlgml 

g2nm (gnlgm2 + gn2gml) 

g3nm (gnlgm3_+ gn2gm2 +, gn3gml) 

g4nm = (gnlgm4 + gn2gm3 +, 9 n3gm2 
+ gn4gml) 

g5nm (gn2gm4 + gn3gm3 + gn4gm2) 

g6nm = (gn3gm4 + gn4gm3) 

g7nm (gn4gm4) 

_ = Q 
T2nm T3nm' T4nm T5nm T6nm 

bf Tlnm +3+5+7+9+ 11 inm 

+ 
T7nm 

-- --- - -i -(iv. 5) 
13 

where 

Tlnm 
424 gn2gm2 S2bf2(gn2gml: 

+ gnlgm2 + $4 gnlgml bf f 

T2nm 
24 7r 2 

b (gn2gm3 + gn3gm2) S(4gn2gm2 

+ 12(gn3gml + gnlgm3 + S4(gnlgm2. + gn2gml) 

T3nm b (60gn4gm2 + 144gn3gm3 + 60gn2gm4) 

Sn 2(14 (gn2gm3 + gn39m2 + 30(g 
n4gm1 

+ gnlgm4) 

+ Sq(gnlgm3 + gn2gm2 + gn3gml) 



318. 

T4nm - b+360 
?r2 (gn3gm4 + gn4gm3) -5 

f2(32( n2gm4 
+ gn49m2 

4 
+ 24gn3gm3) + S4(gnlgm4 + gn2gm3 + gn3gm2+ gM ml 

T5nm bf4 gn4gm4 S2bf2(42(gn35m4 + gn4gm3 
f 
n4 

"+ S4(gn2gm4 
+ gn3gm3 + gM 

m2? 

r 4 7r 2 
T6nm ST' (gn3gm4 + gn4gm3) S7(60gn4gm4) 

ý4 T7nm - S4 gn4gm4 ------ (IV. 6) 

fbw , ýý1 ý 11 _ (2n) 
2ý, ii ,y_ (2n) 

2ý, 
ý, ii 

2nmrp oC 2nm 2rp s 2nm 2rp S 2nm 2rp 

2n 
+ý 2nm*2rp] dy2 

= bw 
[4b3nmb3rp + 2(12b3nmb4rp + 12b4nmb3rp) 

+ 3(24b3nmb5rp + 36b4nm b 
4rp + 24b5nmb3rp) 

+ 4(40b3nmb6rp + 72b4nmb5rp + 72b5nm 4rp 

+ 40b6nb 3rp) + 5.1(6 + 120b4nm 6rp 

+ 144b5nm b 5rp + 120b6nm b 4rp + 60b7nm 3rp 

+ 6(84b3ýb8rp + 180b4nm b 7rp + 240b5nm 
6rp 

+ 240b6n b5rp + 180b7nm 4rp + 84b8nm 3rp) 

+ +(ll2b3nmb9rp + 252b4nm b 8rp + 360b5nm 7rp 

+ 400b6 
nm 

b 6rp + 360býnm b 5rp + 252b8nm 4rp 

+ 112b9 
nm 

b 3rp + 8(144b3nm lO rp 
+ 336b4nm 9rp 

+ 504b5nm Brp + 600b6nm 7rp + 600b7nm 6rp 

+ 504b8nm 
5rp + 336b9nm 4rp + 144b10nm 3rp) 
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+ 9(18Ob3nmbllrp + 432b4nmblOrp + 672b5nm b9rp 

+ 840b6nmb8rp + 900b7nmb7rp + 840b8nmb6rp 

+ 672b9nmb5rp + 432b10nmb4rp + 180bllnmb3rp) 

+ 1O(540b4nmbllrp + 864b5nmblOrp + 1120b6nmb9rp 

+ 1260b7nm b8rp + 1260b8nmb7rp + 1120b9nmb6rp 

+ 864b10nmb 5r+ 54Obb )+ il(108Ob 
5nm b llr P llnm 4rP P 

+ 1440b6nmb1Orp + 1680b7nmb9rp + 1764b8nmb8rp 

+ 1680b9nmb7rp + 1440b10nmb6rp + 1080bllnmb5rp) 

+ 12(1800b6nmbllrp + 2160b7nmblOrp + 2352b8nmb9rp 

+ 2352b9nmb8rp + 2160b10nmb7rp + 1800bllnmb6rp) 

+ 
13(2700b7nmbllrp 

+ 3024b8nmblOrp + 3136b 9nm b9rp 

+ 3024b10nmb8rp + 2700bllnmb7rp) + 14(3780b8nmbllrp 

+ 4032b9nmblOrp + 4032b10nmb9rp + 3780bllnmb8rp) 

+ 15(5040b9nmbllrp + 5184b10nmblOrp + 5040bllnmb9rp) 

+ 16(648Ob10nmbllrp + 6480b11nmb10rp) 

+ 17 (8100bllnmbllrp) (? S 
)2 bw 

[2)1nm)3rp 

+ 2(6binmb4rp + 2b2nm b3rp) + 3(12b inm b5rp 

+ 6b2nmb4rp + 2b3nmb3rp )+ 4(20binmb6rp 

+ 12b2nmb5rp + 6b3nmb4rp + 2b4nmb3rp) 

+ 5(30binmb7rp + 20b2nmb6rp + 12b 3nm b5rp 

+ 6b4nmb4rp + 2b5nmb3rp) + 6(42binmb8rp + 30b 2nm b7rp 

+ 20b3nmb6rp + 12b4nmb5rp + 6b5nmb4rp + 2b6nmb3rp) 

+ 7(56binmb9rp + 42b2nmb8rp + 30b 3nm b7rp 
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+ 20b4nmb6rp + 12b5nmbSrp + 6b6nmb4rp + 2b7nmb3rp) 

+ 8(72binmblOrp + 56b2nmb9rp + 42b3nmb8rp 

+ 30b4nm 7rp + 20b5nm 6rp + 12b6nm 5rp + 6b7nmb4rp 

+ 9(90binm 
b 

llrp + 72b2nm b 
lOrp + 56b3nm 9rp 

+ 42b4nmb8rp + 30b5nmb7rp + 20b6nm 6rp + 12b7nmb5rp 

°. 

+ 6b8nm b 4rp + 2b9nm b3rp )+ 10(9Ob2nmb11rp 

+ 72b3nmblOrp + 56b4nmb9rp + 42b5nm 8rp 

+ 30b6nm 7rp + 20b7nmb6rp + 12b8nm 5rp + 6b9nmb4rp 

+ 2b1 
nm 3rp) + 11(9Ob3nm ll rp 

+ 72b4nmblOrp 

+ 56b5nmb9rp + 42b6nm 8rp + 30b7nmb7rp 

+ 20b8nmb6rp + 12b9nm 5rp + 6b1Onm 4rp 

+ 2bllnmb3rp) + 12(90b4nmbllrp + 72b5nm lOrp 

+ 56b6nmb9rp + 42b7nm 8rp + 30b8nm Grp 

+ 20b9nmb6rp + 12b10nm 
5rp + 6b11nm 4rp) 

+ 13(9Ob5nm b llrp + 72b6nmb10rp + 56b7nm 9rp 

+ 42b8nm 8rp + 30b9nmb7rp + 20b10nm 6rp 

+ 12bllnmb5rp) + 14 (9Ob6nmb11rp + 72b7nmblOrp 
, 

+ 56b8nmb9rp + 42b9nmb8rp + 30b10nmb7rp 

+ 2Obllnm b 6rp) + 15(90b7nmbllrp + 72b8nmb10rp 

+ 56b9nm b 9rp + 42b10nm b 8rp + 30b11nm 7rp 

+. 16(90b8nm b llrp + 72b9nm lOrp + 56b10nmb9rp 

+ 42b b)+ 4(9Ob9flbp + 72b b llm 8rp 10nm lOrp 

+ 56bllnmb9rp) + 4(9Obi0nmbiirp + 72bllnmblOrp) 



321. 

+ 19 (9Ob11nmb11r ýS2 1 
2b3 b b 

p W nm lrp 

+ 2(2b3nm b 2rp + 6b4nm b 
lrp + 3(2b3nm 

b3rp 

+ 6b4nm b 
2rp + 12b5nm b lrp) + 

14(2b3nmb4rp 

+ 6b4nmb3rp + 12b5nm 2rp + 20b6nmblrp) 

+ 5(2b3nmb5rp + 6b4nm 4rp + 12b5nmb3rp 

+ 20b6nm b 
2rp + 30b7nm b lrp) + 6(2b3nmb6rp 

+ 6b4nm 5rp + 12b5nmb4rp + 20b6nm 3rp+ 30b7nmb2rp 

+ 42b8nmb lr) + 7(2b 3nm b 
7r P 

+ 6b4nm b 
6rp P 

+ 12b5nm b5rp + 20b6nm b 4rp + 30b7nm 3rp 

+ 42b8nm b 
2rp + 56b9nm b 

lrp + 18(2b3nm 
8rp 

+ 6b4nm 7rp + 12b5nm 
6rp + 20b6nmb5rp 

+ 30b7nm 4rp + 42b8nm 3rp + 56b9nm 2rp) 

+ 9(2b3nm 
b 9rp + 6b4nm b Brp + 12b5nm 7rp 

+ 20b6nm 6rp + 30b7nm 5rp + 42b8nmb4rp 

+ 56b9nm 3rp + 72b10nm 2rp + 90bllnmblrp) 

+ 1 (2b3nm b lOrp + 6b4nm b 
9r + 12b5nmb 

8rp p 

+ 20b6nm 7rp + 30b7nmb6rp + 42b8nmb5rp 

+ 56b9. 
nmb4rp 

+ 72b10nm 3rp + 90bllnm 2rp) 

+ + 12b5 + 6b4nm b lOr b ll 11(2b3 m9 
r nm p p n rp 

+ 20b6nm 8rp + 30b7nmb7rp + 42b8nm 6rp 

+ 56b9nmb5rp + 72b10nm 4rp + 90b11nm 3rp) 

+ 12 (6b4nm b llrp +.. 12b 5nm b lOrp + 20b6nm b9rp 

+ 30b7nib8rp + 42b8nmb7rp + 56b9nm 6rp 



322. 

+ 72b b+ 90b b)+ 4l2bsnmbiirp 
lOnm 5rp llm 4rp 

+ 20b6nm lOrp + 30b7nm 9rp+ 42b8nm 8rp 

+ 56b9nmb7rp + 72blOnmb6rp + 90bllnmb5rp) 

+ 14(2Ob6nmbllrp + 3Ob7nmblOrp + 42b8nmb9rp 

+ 56b9nm 8rp + 72b10nmb7rp + 90bllnmb6rp 

+ 15(30b7nm llrp + 42b8nmblOrp + 56b9nm 9rp 

+ 72bionm b 8rp + 90bllnm b 7rp) + 16(42b8nm llrp 

+ 56b9nm b lOrp + 72blOnm b 9rp + 90b11nm 8rp 

+ 17(56b9nm b llrp + 72b10nm b lOrp + 90bllnmb9rp 

+ 1$(72b10nm 
b 

llrp + 90bllnm b lOrp) + 19(90b11nm llrp) 

(1r. 
4 

+S bw binm lr+ 2 (b inm 2r+ bm lrp PP 2n 

+ 3(binm 
b 3rp + b2nm b 2rp +b 3nm b lrp + 4(binm 4rp 

+ b2nm b 3rp + b3nm b 2rp + b4nm b lrp + 5(binm 5rp 

+ b2nm 4rp + b3nm 
3rp + b4nmb2rp + b5nm lrp 

+6 (binm b 
6r + bm b 

5r + bm b 
4r + bm 3r P 2n m 3n m 4n m 

+ b5nm b 
2rp + b6nm b 

lrp + 7ýbinmb7rp 

+ b2nmb6rp + b3nm 
5rp + b4nmb4rp + b5nm 

3rp 

+ b6nm b 2rp + b7nm b lrp + 8(binm b 8rp + b2nm 7rp 

+ b3nm b 6rp + b4nm b 5rp + b5nm b 4rp + b6nm 3rp 

+ b7nm b 2rp + b8nm b lrp + 9(binm b 9rp + b2nm 8rp 

+ b3nm 7rp + b4nm 6rp + b5nm 5rp + b6nm 4rp 

+b .b +b b +b b)+ 1(b b 
7nm 3rp 8nm 2rp 9nm lrp 10 lnm lOrp 

+ b2nm b 9rp + b3nm b 8rp + b4njnb7rp + b5nmb6rp 



323. 

+ b6nm 5rp + b7nm 4rp + b8nm 3rp + b9nmb2rp 

+ b10nm lrpý + IT lnm llrp + b2 
nm lOrp 

+ b3nm 9rp + b4nm 8rp + b5nm 7rp + b6nmbGrp 

+ b7nm 5rp + b8nm 4rp + b9nm 3rp + b10nm 2rp 

+ b11nm lrpý + 12ýb2nm llrp + b3nm lOrp 

+ b4nm 9rp + b5nm 8rp + b6nm 7rp + b7nm 6rp 

+ bsnm 5rp + b9nm 
4rp + b1Onm 3rp + b11nm 2rp) 

+1 (b3nm b 
11rp + b4nmb 

lOr+ b5nm b 
9rp + b6nm 8rp P 

+ b7nm 7rp + b8nmb6rp + b9nmb5rp + b1Onm 4rp 

+ b11nm b 3rp) + 4ýb4nm b 
llrp + b5nmbiOrp 

+ b6nmb9rp + b7nm 8rp + b8nm 7rp + b9nm 6rp 

+ b10nmb5rp + b11nm b 4rp + 115(b5nm 
llrp + b6nmb1Orp 

+ b7nm b 9rp. + b8nm b 8rp + b9nm b 7rp + b10nm 6rp 

+ bllnm 5rp) + 16l(b6nb lirp + b7nm lOrp 

+ b8nm b 9rp b9nm b 8rp + blOnmb 7rp + b11nm 6rp 

+ 7(b7nm b llrp + b8nm b lOrp + b9nm b 9rp + b10nm 8rp 

1 + bllnm b 
7rp + (b8nb llrp + b9nm lOrp 

b10nm 9rp 
,+ 

b11nm 8rp) + 19 (b9nmb11rp 

± b10nm lore + bllnm b 9rp ý+ 20 ýb10nm llrp 

+ bllnmblOrp + 21(bllnmbllrp) + (2nS) 2 
bw2 

b2nm +2b3nm + 3b4nm + 4b5nm + 6b7nm + 7b8nm 

+ 8b9nm + 9b10nm + bObllnm X C4rp COSH 
2nbw 

s 

, ff) 2 + C3rp SINH 2Sw- (2S 
bwZ b2nm Corp 
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(S)2 bw 
2 binm + b2nm + b3nm + b4nm + b5nm 

+ b6nm + b7nm + b8 
m+ 

b9 + blO 
m+ 

bll X n n nm nm 

x Cor SINH 2S w+ Ca COSH 2Sw 
p rp 

+ 
2 

(2S ) (bw) binmC3rp + b2rp + 2b3rp ?Sb2 

+ 3b4rp + 4b5rp + 5b6r 
p+ 

6b7rp + 7b8rp + 8b9rn 

+ 9b + 10b x lOr llr C COSH 
27rbw 

S 4 p p nm 

+ -ff 2 C3nm SINH 2S w1 
- (2S) b= b2rpC4nm 

- (? 'r)2 2b+b 
s bw lrp 2rp +b+b+b 3rp 4rp 5rp 

+ b6rp + b7rp + b8rp + b9rp +. blOrp + bllrp X 

x COSH 
2Sw C4 SINH 2S 2wC3 

nm nm 

+ (. 2-7r) 22 
(S) (bw) b1r C3 

m+ 
2 27r2 

bw2 (S) [C4 
mC4 p n n rp 

(4, 
- 

SINH 4Sw+ bw) + C3nmC3rp (4ý SINH 
4Sw 

- bw) + (C4nmC3rp + C3nmC4rp) (41r) COSH 4Sw 

2 2w 2 
bwý( S 

(C4nmC3rp + s C3nmC4rp) (4ýr) 

------- --- (IV. 7) 

= ý2nmrp ö bw Y2n '2m2r Y2p dy2 

= bw 51 
+6 2 +7 3+8J4+9 5+106 

+ 11J7 + 1 J8 + 3J9 +A 10 + 15J11 + 16J12 

+ 17`13 + -118- 1 +1 J15 +2 16 + 21`717 

+2 18 +2 3"19 +f 4-j20 + 25"21 `- -' ( IV .B) 

where 

J1 (Zlnmzlrp) 

12 (ZlnmZ2rp + Z2nmZlrpý 
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I 

J3 (Zlnmz3rp + Z2nmz2rp + Z3nmzlrp) 

J4 (ZlnmZ4rp + Z2nmz3rp + Z3nmz2rp + Z4nmzlrp) 

15 (ZlnmZ5rp + Z2nmZ4rp + Z3nmZ3rp + Z4nmZ2rp 

+ z5nmZlrp) 

J6 - (Zlnmz6rp + Z2nmz5rp + Z3nmZ4rp + Z4nmZ3rp 

+ Z5nmZ2rp + Z6nmZlrp) 

J7 - (Zlnmz7rp + z2nmz6rp + z3nmz5rp + z4nmz4rp 

+ z5nmz3rp + z6nmz2rp + z7nmzlrpý 

J8 - (ZlnmZ8rp + Z2nmZ7rp + Z3nmZ6rp + Z4nmZ5rp 

+ Z5nmz4rp + Z6nmz3rp + Z7nmZ2rp + ZBnmZlrp) 

19 (ZlnmZ9rp + Z2nmz8rp + Z3nmz7rp + Z4nmz6rp 

+ z5nmz5rp + z6nmz4rp + z7nmz3rp + z8nmz2rp 

+ z9nmzlrpý 

110 (Z1nmzlOr + Z2nmz9r + Z3nmz8rP + Z4nmz7r 
PPP 

+ z5nmz6rp + z6nmz5rp + z7nmz4rp + z8nmz3rp 

+ Z9nmZ2rp + Z1OnmZlrp) 

J11 = (zlnmz +Z zz + zz9r + ZZ 
P 2nm lOrp 3nm P 4nm 8rp 

+ z5nmz7rp + z6rimz6rp + z7nmz5rp + z8nmz4rp 

+ Z9nmZ3rp +, Z10nmZ2rp +Z llnm Zlrp) 

p 3nm 10rP P 5nm 8rp J12 = (Z2nmZ llrp ZZ + Z4nmZ9r + ZZ 

+ Z6nmz7rp + Z7nrn 6rp + Z8nmZ5rp + Z9nmZ4rp 

Z1OnmZ3rp + Z11nmZ2rp) 
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I 

113 (Z3nmZllrp + Z4nmZlOrp + Z5nmZ9rp + Z6nmz8rp 

+ Z7nmZ7rp + Z8nmZ6rp + Z9nmZ5rp + ZlOnmZ4rp 

+ ZllnmZ3rp) 

J14 = (Z4nmZllrp + Z5nmZlOrp + Z6nmz9rp + Z7nmz8rp 

+ Z8nmZ7rp + Z9nmZ6rp + ZlOnmZ5rp + ZllnmZ4rp) 

115 = (Z5nmZllrp + Z6nmZlOrp + Z7nmZ9rp + Z8nmZ8rp 

+ Z9nmZ7rp + ZlOnmZ6rp + ZllnmZ5rp) 

116 = (Z6nmzllrp + Z7nmZlOrp + Z8nmZ9rp + Z9nmZ8rp 

+ ZlOnmZ7rp + ZllnmZ6rp) 

J17 - (Z7nmZllrp + Z8nmZlOrp + Z9nmZ9rp + ZlOnmZ8rp 

+ ZllnmZ7rp) 

118 (Z8nmZllrp + Z9nmZ10rp + Z10nmZ9rp + Z11nmZ8rp) 

J19 = (Z9nmZ11rp + Z10nmZ10rp + ZllnmZ9rp) 

120 = (Z10nmZllrp + Z11nmZ10rp) 

121 (ZlinmZllrp) 

-------- (IV. 9) 

and 

z lnm 
h 

nl 
hml 

Z2nm (hnlhm2 + hn2hml) 

Z3nm - (hnlhm3 + hn2hm2 + hn3hm1) 

Z4nm (hnlhm4 + hn2hm3 + hn3hm2 + hn4hml) 

Z5nm - (hnlhm5 + hn2hm4 + hn3hm3 + hn4hm2 + hn5hml) 

Z6nm - (hnlhm6 + hn2hm5 + hn3hm4 + hn4hm3 + hn5hm2 

+ hn6hml) 
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Z7nm (hn2hm6 + hn3hm5 + hn4hm4 + hn5hni3 + hn6hm2) 

z8nm - (hn3hm6 + hn4hm5 + hn5hm4 + hn6hm3) 

Z9nm (hn4hm6 + hn5hm5 + hn6hm4) 

z10nm (hn5hm6 + hn6hm5) 

Zllnm (hn6hm6) 
------- (IV. 1O) 

62nm 
bw bw 

_ (1-a) t Y2nY2mdy2 + bw 
C, f 

0 y2Y2nY2mdy2 ö0 

bw 3zlnm + 4z2nm + 5z3nm + 6Z4nm + 7z5nm 

+ 8z6nm +' 9z7nm + 1028nm + llz9nm +1 z1Onm 

1111 
+ 13zllnm + abw 4z1nm + 5z2nm + 6z3nm 

11111 
+ 7z4nm + 8z5nm + 9z6nm + l0z7nm + 11z8nm 

4Z9nm 
++ 13z10nm + 14? 11nm 

--- -. -(IV. 11) 

42nm bw3 Llnm + 2L2nm + 3L3nm + 4L4nm + L5nm 

2 
+ 6L6nm, +'7L7nm + 8L8nm + 9L9nm S2-bw 

2 Ilnm + Alnmý +3 I2nm + A2nmý +4 I3nm + A3nmý 

+ 5(I4nm + A4nm) + 65nm + ASnmý + 4(16nm 
+ A6nmý 

+8 (I7nm + A7nm) +9 (I8nm + A8nmý + 10 (I9nm + A9nm 

+ 11(I10nm 
4 

+ A10nm) + ýs 
3Z 1nm + 4Z2nm 

+ 5Z3nm + 6Z4nm + 7Z5nm + 8Z6nm + 9Z 7nm + 10Z8nm 

1 + 11Z9nm + 
1 

: 12Z 10nm + 13Z11nm 

--- - -(IV. 12) 
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where 

Llnm = 4hn2hm2 

L2nm = (12hn2hm3 + 12hn3hm2) 

L3nm - (24hn2hm4 + 36hn3hm3 + 24hn4hm2 

L4nm = (40hn2hm5 + 72hn3hm4 + 72hn4hm3 + 40hn5hm2) 

L= 5nm (60h h+ 
n2 m6 

120h h 
n3 m5 

+ 144h h+ 120h h 
n4 m4 n5 m3 

+ 60hn6hm2) 

L6nm = (180hn3hm6 + 240hn4hm5 + 240hn5hm4 + 180hn6hm3) 

L7nm = (360hn4hm6 + 400hn5hm5 + 360h 6h 4) m n 

L8nm = (600hn5hm6 + 600hn6hm5 ) 

L9nm = (900h 6h 6) -- ---- -(IV. 13) 
n m 

and 

Ilnm ( 2hmlhn2 ) 

I2nm (6hmlhn3 + 2hm2hn2) 

3nm = (12hmlhn4 + 6hm2hn3 + 2hm3hn2 

4nm = (20hmlhn5 + 12hm2hn4 + 6hm3hn3 + 2hm4hn2 

; I5nm = (30hmlhn6 + 20hm2hn5 + 12hm3hn4 + 6hm4hn3 

+ hm5h 2) n 

z6nm = (30hm2hn6 + 20hm3hn5 + 12hm4hn4 + 6hm5hn3 

+ 2hm6h 2) I n 

I7nm = (30hm3hn6 + 20hm4hn5 + 12hm5hn4 + 6hm6hn3) 

I8nm = (30hm4hn6 + 20hm5hn5 + 12hm6hn4) 
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I9nm - (30hm5hn6 + 20hm6hn5 

I1Onm - (30hm6hnd 

and 

Alnm 

A2nm 

A3nm 

A4nm 

A5nm 

A6nm 

A7nm 

A8nm 

A9nm 

A10nm 

---- -(IV. 14) 

(2hnlhm2) 

lhm3 + (6h 2hn2hm2ý 
n 

(12hnlhm4 + 6hn2hm3 + 2hn3hm2 

(20hnlhm5 + 12hn2hm4 + 6"hn3hm3 + 2hn4hm2 

(30hn1hm6 + 20hn2hm5 + 12hn3hm4 + 6hn4hm3 

+ 2hn5hm2) 

(30hn2hm6 + 20hn3hm5 + 12hn4hm4 + 6hn5hm3 

+ 2hn6hm2) 

(30hn3hm6 20hn4hm5 + 12hn5hm4 + 6hn6hm3 

(30hn4hm6 + 20hn5hm5 + 12hn6hm4) 

(30h 5hm6 + 20hn6hm5) 
n 

(30h 6h 6) n m 

r3nmrp is of exactly the same form as r2nmrp, equation IV. 7, 

and is evaluated in the computer simply by re-formulating 

r2nmrp and replacing bw with bR, binm . with Minm N. 

Cinm with Ninm and Carp with Njrp. i. e. 

r3nmrp = r2nmrp provided 

bW = bt 
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binm jrp 
Minmmjrp 

Cinm Ninm 

Cjrp = Njrp - --- 

where 
S4 

Mllnm (2n) R11nm 

S4 
M10nm (2 

Tr 
) R10nm 

M_(S )4 R+ 180 M21nm 
(2 7r )2 

9nm 21r 

[ 
9nm b RS 

S4+ 144 MlOnm 
(2, r )21 M8nm ý2n) 

LR8nm bL2 S 

S4 112 M9 nm 2n 2 5040 Mlinm 
M7nm = (27r) 

[ 
R7nm +bt am (S) - bR 

S4R+ 84 08nm 
(2, r)2 - 

3024 MlOnm 
M6 

nm 
(21r) 

[6 
nm bR 2S bR 

S4+ 60 M7nm 
(2ir2 _ 

1680 M9nm 
M5nm R 

2n) 

[ 
5nm b2S bR ̀4 

R 

S4 40 M6nm 27r 2_ 840 M8nm 
M4nm 2n) 

R4nm +bR2 (S) bR`' 

M 3nm, _ (S )4 R+ 24 M5nm (2i)2 _ 
360 M7nm 

21r L 3nm bR 2Sb 

_ (S )4 
jýR 

+ . 12 
(2, ý 2_ 120 M6nm 

2 nm', 2 7r 
L2 

nm bR S bR 

M= (S )4 R+4 M2 nm (2? r)2 
_ 

24 M5nm 

lnm 2 7r lnm bR Sb 

---- --(zv. 17) 

and 

Rlnm Pnl ml 

R2nm 2Pn2Pm1 

R3nm (3PnlPm3 2Pn2Pm2 3Pn3pm1ý 
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R 4nm 

R 5nm 

R 6nm 

(8pnlpm4 4pn3pm2 4pn4pml) 

_ (15pn1pm5 + 4pn2pm4 3pn3pm3 6pn4Pm2 5pn5pml 

= (24pnlpm6 + lopn2pm5 6pn4pm3 - 8pn5pm2 

6Pn6Pm1) 

R7nm 

R8nm 

R 9nm 

R10nm 

R11nm 

(18Pn2Pm6 + 5Pn3Pm5 4Pn4Pm4 9pn5Pm3 lopn6pm2) 

(12pn3pm6 8pn5pm4 12pn6Pm3) 

(6pn4pm6 5Pn5Pm5 12pn6pm4) 

_- 10pn6pm5 

6Pn6Pm6 -- - -- (iv. 18) 

ý3nmrp bbl 5E1 + 6E2 + 7E1 3+ 8E4 + 9E5 + 10 E6 + 11E7 

+ + E E + E E + + E E 8 12 13 9ý 14 10 15 1], 12 16 17 13 

+ E + E + E + E E + + E 14 18 19 15 16 O 21 17 22 18 19 3 

+ 24E20 + 25E21 -' --- -i IV. 19 ) 

where 

E (Zz 1nmlrp 

E2 (Z1nmZ2rp + Z2nmZlrp) 

E3 ýZ1nmZ3r + + Z2nmZ2 ) Z3nmZlr 
p rp p 

E4 ýZ1nmZ4rp + Z2nmZ3rp + Z3nmZ2rp + Z4nm l rp 

E5 - (Z1nmZ5r + Z2nmZ4r + Z3nmZ3r + Z4nmZ2 
r p p p p 

+ Z5nmZlrp) 
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E6 = (ZlnmZ6rp + Z2nmZ5rp + Z3nmZ4rp + Z4nmZ3rp 

+ Z5nmz2rp + Z6nmzlrp) 

E7 = (ZlnmZ7rp + Z2nmZ6rp + Z3nmZ5rp + Z4nmZ4rp 

+ z5nmz3rp + Z6nmz2rp + Z7nmzlrp) 

E$ - (ZlnmZ8rp + Z2nmZ7rp + Z3nmZ6rp + Z4nmZ5rp 

+ 25nmz4rp + Z6nmz3rp + Z7nmz2rp + Z8nmzlrp) 

E9 
-(ZlnmZ9rp 

+ Z2nmZ + Z3nmZ7rp + Z4nmZ6rp 

+ Z5nmz5rp + Z6nmz4rp + Z7nmz3rp + Z8nmz2rp 

+ Z9nmzlrp) 

E10 (Z1nmZlOrp + Z2nmZ9rp + Z3nmZ8rp + Z4nmZ7rp 

+ Z5nmZ6r + Z6nmZ5r + Z7nmZ4r + Z8nmZ3r 
PPPP 

+ Z9nmZ2rp + Z1OnmZlrp) 

E11 (Z1nmZllrp + Z2nmZlOrp + Z3nmZ9rp + Z4nmZ8rp 

+ Z5nmz7rp + Z6nmz6rp + Z7nmz5rp + Z8nmz4rp 

+ Z9nmz3rp + z10nmz2rp + ZllnmZlrp) 

E12 = (Z2nmZllrp + Z3 
nmZlOrp: 

+ Z4 
nmZ9rp 

+ Z5 
nmZ8rp 

+ Z6 
nmZ7rp 

+ Z7 
nmZ6rp 

+ Z8nmZ5rp + Z9n 
mZ4rp 

Z1Onmz3rp + Z11nmz2rp) 

E13 (Z3nmZllrp + Z4nmZ10rp + Z5nmZ9rp + Z6nmZ8rp 

+ Z7nmz7rp + Z8nmz6rp + Z9nmz5rp + Z10nmz4rp 

+ Z1lnmZ3rp) 
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E14 - (Z4nmZllrp + Z5nmZlOrp + Z6nmZ9rp + Z7nmZ8rp 

+ Z8nmZ7rp + Z9nmZ6rp + ZlOnmZSrp + ZllnmZ4rp) 

E15 (Z5nmZllrp + Z6nmZlOrp + Z7nmZ9rp + Z8nmZ8rp 

+ Z9nmZ7rp + ZlOnmZ6rp + Z11nmZ5rp) 

E16 (Z6nmZllrp + Z7nmZlOrp + Z8nmZ9rp + Z9nmZ8rp 

+ ZlOnmZ7rp + Z11nmZ6rp) 

E17 . (Z7nmZllrp + ZBnmZlOrp + Z9nmZ9rp + ZlOnmZ8rp 

+ ZilnmZ7rp) 

E18 (Z8nmZllrp + Z9nmZlOrp + ZlOnmZ9rp + Z11nmZ8rp) 

E19 (Z9nmZllrp + Z10nmZlOrp + Z11nmZ9rp) 

E20 - (Z10nmZllrp + Z11nmZ10rp ) 

E21 (ZllnmZllrp) ---- "' --(IV. 20) 

and 

Z1nm Pn1pm1 

Z2nm (Pnlpm2 + Pn2Pm1) 

Z3nm (Pn1Pm3 + Pn2Pm2 + Pn3Pm1 

Z4nm (p 
n]Ym4 

+ Pn2Pm3 + Pn3Pm2 + Pn4Pm1 

Z5nm (Pn1Pm5 + Pn2Pm4 + Pn3Pm3 + Pn4Pm2 + Pn5Pml 

Z6nm (Pn] 
m6 

+ Pn2Pm5 + Pn3Pm4 + Pn4Pm3 + Pn5Pm2 

+ Pn6Pm1) 

Z7nm (Pn2Pm6 + pn3Pm5 + Pn4Pm4 + Pn5Pm3 + Pn6Pm2ý 
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Zgnm = (Pn3Pm6 + Pn4Pm5 + Pn5Pm4 + Pn6Pm3) 

Z9nm = (Pn4Pm6 + Pn5Pm5 + Pn6Pm4) 

Z10nm (Pn5Pm6 + Pn6Pm5) 

Zllnm (Pn6Pm6) --'--'-'--(IV. 21) 

g' _ 3nm 
(1-a)b 

t 

['! 
3Zlnm + 1Z 

+ 4 2nm 
1Z + 

1Z 
+ 

1Z 
5 3nm 6 4nm 7 5nm 

1 
+ 8Z6nm 

1 + 9Z7nm + 1 
1OZSnm 

11 + 11Z9nm + 12Z10nm 

1 
+ 13Zllnm ------- (IV. 22) 

Q3nm b3 ßlnm + 2ß 2nm + 3ß3nm + 4ß4nm + 5ß5nm 

+ 66nm + . 
1a 
77nm 

1 + 8ß8nm + 1_n 
99nm S2bj 

2plnm + 3p2nm + 4p3nm + 5p4nm + 6p5nm + 76nm 

+ 8p7nm + 9p8nm 
1 

+ lOp9nm 
1 n4bp + 11p10nm + S4 

Z + Z + Z+ 5 Z+ 7Z 64 3 lnm 4 2nm 5 3nm" nm nm 

+ Z + Z 1 
+ Z 

11 + 12Z10 Z + 6nm 8 9 7nm 10 8nm nm 11 9nm 

+ 13Zllnm 
] 

+2 7r 2 
(1-v) T3 sr nm - _(Iv. 23) 

where 

ßlnm 4Pn2Pm2 

ß2nm (12Pn2Pm3 + 12pn3pm2) 

ß3nm (24pn2pm4 + 36pn3Pm3 + 24pn4pm2) 

ß4nm (40pn2pm5 + 72pn3Pm4 + 72pn4pm3 + 40pn5Pm2) 

ß5nm (60pn2pm6 + 320pn3Pm5 + 144pn4pm4 + 120pn5pm3 

+ 60pn6pm2) 
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ß6nm (180pn3pm6 + 240pn4pm5 + 240pn5pm4 + 180pn6Pm3) 

ß7nm = (360pn4pm6 + 400pn5pm5 + 360pn6Pm4) 

ß8nm = (600pn5pm6 + 6OOpn6Pm5) 

ß9nm (90Opn6Pm6) 

and 

plnm (2pm1Pn2 + 2pn1pm2) 

----- (IV. 24) 

p2nm (6Pn1Pm3 + 2Pn2Pm2 + 6Pm1Pn3 + 2Pm2Pn2) 

P3nm (12pn1pm4 + 6Pn2Pm3 + 2Pn3Pm2 + 12pm1Pn4 

+ 6pm2pn3 + 2pm3Pn2) 

p4nm 
I 

(20PnlPm5 + 12pn2pm4 + 6pn3pm3 + 2Pn4Pm2 

+ 20pmlpn5 + 12pm2pn4 + 6pm3pn3 + 2pm4pn2) 

p5nm (30Pn1Pm6 + 20pn2Pm5 + 12pn3Pm4 + 6pn4Pm3 

+ 2pn5pm2 + 30pmlpn6 + 2Opm2pn5 + 12pm3pn4 

+ 6pm4pn3 + 2pm5Pn2) 

p6nm (30pn2pm6 + 2Opn3pm5 + 12pn4Pm4 + 6pn5Pm3 

+ 2pn6pm2 + 30pm2pn6 + 20pm3Pn5 + 12pm4pn4 

+ 6pm5pn3 + 2pm6pn2) 

p7nm (30pn3pm6 + 20pn4pm5 + 12pn5pm4 + 6pn6Pm3 

+ 30pm3pn6 + 20pm4Pn5 + 12pm5Pn4 + 6pm6Pn3) 

p8nm = (30pn4pm6 + 20pn5pm5 + 12pn6pm4 + 30pm4Pn6 

+ 20pm5pn5 +'12p 
m6pn4ý 
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P9nm _ (30pn5pm6 + 20pn6pm5 + 30pm5pn6 + 20pm6pn5) 

0lOnm (30pn6Pm6 + 3Opm6Pn6) -'" -"-- (IV. 25) 

T3nm bR PnlPml + (2Pnlpm2 + pn2Pm1) + (3PnlPm3 

+ 2Pn2Pm2 + 13 n3Pml) 
+ (4Pn1Pm4 + 3pn2Pm3 

+ 2pn3pm2 + pn4pml) + (5pnlpm5 + 4pn2Pm4 

+ 3pn3pm3 + 2pn4pm2 + pn5pml) + (6pnlPm6 

+ 5pn2Pm5 + 4pn3pm4 + 3pn4pm3 + 2pn5pm2 + pn6Pm1) 

+ (6pn2Vm6 + 5pn3Pm5 + 4pn4Pm4 + 3pn5Pm3 

+ 2pn6pm2) + (6pn3pm6 + 5pn4pm5 + 4pn5pm4 

+ 3pn6pm3) + (6pn4pm6 + 5pn5pm5 + 4pn6pm4) 

+ (6pn5pm6 + 5pn6pm5) + (6pn6pm6) 

--- -(IV. 26) 

1) 
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APPENDIX V 

FLOW DIAGRAM OF COMPUTER SOLUTION 

As will be realised, the buckling and post buckling interaction 

analyses involved the writing and development of a rather lengthy 

computer program and because of its length the program has not been 

reproduced in the thesis. The steps taken in the computer solution, 

however, are shown in the flow diagram of Figure V. 1, which indicates 

clearly the logic paths contained within the program and, hopefully, 

enables the reader to understand more easily the incremental solution 

process of the analysis. 
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START 

READ DATA 

a , 
b, k, tn n =1,2,3,4 

U, E, t, b, bW, b. C, L, ec,, ay. 

SET a EQUAL TO SOME 

REALISTIC ARBITRARY VALUE 

oeo 

SET N°- OF BUCKLES =L b 
AND EVALUATE S S. 

SET Cl = 1000 ' C2 = 1. 

SET UP AND EVALUATE ENERGY 

INTEGRALS FOR, BUCKLING 
SOLUTION. 

SET UP DETERMINANT AND 

FIND VALUE OF BUCKLING 

COEFFICIENT Kf WITH CORRE 

=SPONDING BUCKLED FORM. 

FIG. V. 1 FLOW DIAGRAM OF COMPUTER 
SOLUTION. 
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YES 
IS C2 = 50 

SET C., =K{ 
ADO 1 TO N9 OF t NO 
BUCKLES AND 
RE-EVALUATE S 

YES 
S Kf ý ýI 

NO 

SET C2 = 50 
SUBTRACT 1 FROM N° OF 

BUCKLES AND RE-EVALUATE 
S. 

EVALUATE COMPRESSIVE EDGE 

FORCE Nx CRIT. 
FIND VALUE OF d= °<EQ. 
WHICH, IN CONJUNCTION WITH 

N CRIT. PRODUCES AXIAL AND 

MOMENT EQUILIBRIUM OF 
THE COLUMN. 
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f 

' NO iS «EQ. -°iý0 
, 0.00001 

YES 

EVALUATE P CRIT. ) 
uCRIT., aC 

CRR. 

BUCKLING SOLUTION 
COMPLETE. 

PRINT OUT RESULTS. 

SET «o °(EQ. 

SET FLANGE COMPRESSION 
u UCRIT + aU 

SET COMPRESSION ECCENT 

- RICITY FACTOR --- 
°ý = °c0 «CRIT 
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SET UP AND EVALUATE 
ALL INTEGRALS FOR POST 
BUCKLING SOLUTION. 
EVALUATE LOCAL DEFLECTIONS, 
MEMBRANE STRESSES. 
BENDING STRESSES AND 
COLUMN LOAD. 

FIND VALUE OF ° =«EQ 
WHICH, IN CONJUNCTION WITH 
ux- PRODUCES AXIAL AND 
MOMENT EOUILIBRIUM OF 
THE COLUMN. 

NO SET SdEQ - oCo 
o -oooo1 

°`0=°CEQ. 

YES 



34 2. 

. 17 

POST -BUCKLING SOL 
-UTION COMPLETE FOR 
SPECIFIED VALUE OF U 
PRINT OUT RESULTS 
P, 6c 

, PE*, ETC. 

YES SET <IS 
ay Lu +aU 

N0 

NO SET 
IS vom-Qy QyS 

ZEA 

YES 

(ENDJ 
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APPENDIX VI 

LIST OF TEST COLUMNS, DIMENSIONS 

AND LOADING ECCENTRICITIES 

In this appendix the dimensions and loading eccentricities of 

the 33 columns tested in the experimental program are given. The 

cross-sectional dimensions shown in Table VI. 1 are the average centre 

line values obtained from outside dimensions of the flange, web and lip 

measured at 12 different cross-sections along the length of each column. 

The values shown in the table are those used In the computer solution to 

determine the behaviour of each column theoretically. 
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TEST COLUMN DIMENSIONS AND 
LOADING ECCENTRICITY 

COLUMN 
NQ ec b 

mm) 
bW 

m) 
bl 

I 

mm) 
t 

(mm) 
L 

(mm) 

1 0.4 101.55 50.57 18.85 0.81 1828.80 

2 0.4 101.12 50.50 19.24 0.79 1219.20 

3 0.4 102.74 62.77 25.44 0.79 1828.80 

4 0.4 101.98 62.79 25.40 0.81 1524.00 

5 0.4 101.63 62.99 25.74 . 0-79 1219.20 

6 0.1 127.86 50.60 18.68 0.79 1828.80 

7 0.1 126.39 50.47 18.86 0.79 1524.00 

8 0.1 126.47 50.55 19.14 0.80 1219.20 

9 0.2 127.79 
. 
62.71 25.42 0.80 1828.80 

10 0.2- 127.36 63.02 25.50 Q"80 1524.00 

11 0.2 126.75 62.92 25.56 . 0.81 1219.20 

12 0.3 151.92 50.75 18.95 0.81 1828.80 

13 0.3 152.20 50.60 19.66 0.81' 1524.00 

14 0.3 151.74 50.47 19.02 0.81 1219.20 

15 0.0 153.95 62.79 25.37 0.80 1828.80 

16 0.0 153.95 62.89 25.60 0.81. 1524.00 

17 0.0 152.02 62.97 25.57 0.80 1219.20 

18 0.4 178.03 50.17 18.86 0.80 1828.80 
19 0.4 177.1.7 50.47 18.94 0., 80 1524.00 

20 0.4 177.67 50.50 19.58 0.81 1219.20 

TABLE- VI. 1 
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TEST COLUMN DIMENSIONS AND 
LOADING ECCENTRICITY 

COLUMN 
N2 

ec b 
(mm) 

bw 
(mm) 

b, f 
(mm) 

t 
(mm) 

L 
(mm) 

21 0.2 178.31 62.94 25.23 0.79 1828.80 

, 22 0.2 178.33 62.97 25.32 0.80 1524.00 

23 0.2 176.53 63.02 25-85 0.80 1219.20 

24 0.0 152.30 49.28 17.74 1.64 1828.80 
25 0.1. 152.25 61.72 24.58 . 1.66 1828.80 
26 0.1 152.04 61.67 24.74 1.68 1524.00 

27 0.1 151.38 61.82 24.86 1.66 1219-20. 

28 0.2 178.05 49.25 17.99 1.64 1828.80 

29 0.2 177.75 49.38 17.97 1.65 1524.00 

30 0.2 176.10 49.10 18.10 1.65 1219.20 

" 31 . 0.0 178.23 61.85 24.62 1.63 1828.80 

32 0.0 177.93 61.62. 24.77 1.64 "1524.00 
33 0.0 176.73 61.98 25.71 1.64 1219.20 


