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Abstract

This work is a theoretical investigation of the process of spontaneous parametric

down-conversion, which consists in pumping a crystal with a laser to create en-

tangled pairs of photons. In particular, it is an investigation of the properties of

the entangled pairs that are created and on how their entanglement can be mea-

sured. We approach some of these questions both analytically and numerically.

The work is divided in three parts. The first is an introductory part, that con-

sists of three chapters in which we set the framework and give the tools that are

needed to understand the rest of the work. The second part consists of two chap-

ters and it is concerned with the bi-photon states that are generated in down-

conversion, in particular it approaches the problem of quantifying the amount of

entanglement that those pairs carry and to understand on what parameters it

depends in an analytical (chapter 4, based on the paper EPJD 66 (7) 183 (2012))

and a numerical way (chapter 5, based on the paper “Spatial Schmidt modes in

parametric down-conversion”, submitted to EPJD, in press (2012)). The numeri-

cal approach allows to overcome all the approximations previously employed. We

will learn that the strength of the entanglement depends on quantities such as

the size of the crystal, the size of the pump and the phase mismatch between

the photons. The third part is written over three chapters and it is concerned

with detecting the entangled pairs in a way that exposes the highest amount of

entanglement possible. Various strategies will be analysed, ranging from projec-

tive measurements (chapter 6, based on the paper Physical Review A 83, 033816

(2011), and chapter 7, based on the paper EPJD 66 (7), 178 (2012)), to the use

phase masks (chapter 8, based on the paper New J. Phys. 14, 073046 (2012) and

on my master thesis [1]). We will learn that in certain situations, the most com-

mon approximations found in literature can be quite restrictive and we address

the problem of understanding under what conditions they could or shouldn’t be

used. The thesis ends with chapter 9, which is a resumé of the work, and an

outlook to future developments, which then blurs into the acknowledgments.
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Chapter 1

Introduction

If nature were not beautiful, it

would not be worth knowing, and

life would not be worth living.

(Henri Poincaré

Science et méthode, 1908, p.22)

1.1 Themes and structure

1.1.1 Down-conversion

The main subject of this thesis is spontaneous parametric down-conversion (SPDC).

SPDC is a way of creating highly entangled systems. It consists in pumping a

nonlinear crystal with a laser (details in chapter 3) to create pairs of photons. A

crystal is called “nonlinear” depending on the symmetry properties of its lattice.

In particular, it is called nonlinear if in order to express the polarisation density,

one needs to use higher order susceptibilities, on top of the linear susceptibil-

ity. This is a consequence of the symmetry of the crystal lattice. The result of

the nonlinearity of the crystal and the strong pumping light are terms in the

hamiltonian which annihilate a pump photon and create down-converted pho-

tons [2].The first nonlinear term destroys one photon with momentum k and cre-

ates two photons (from now on called signal and idler, indicated with subscripts

i and s) with momenta that satisfy momentum conservation ki +ks = k. At the

end of chapter 3 we will see more in detail how these terms arise. The impossi-

bility of telling where and when the photon pair was created inside the crystal is

deeply linked to the amount of entanglement. Down-conversion is a reliable way

of creating entangled pairs of photons, and the rate at which they can be created
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(up to hundreds of thousands per second in a narrow (∼ 10 nm) frequency band

[2]) makes it extremely interesting for practical implementations [3, 4], hence

the interest, but we will see that apart from practical uses, down-conversion can

provide quantum states that will help the study of quantum mechanics and en-

tanglement themselves.

1.1.2 Orbital angular momentum

Orbital angular momentum is a very convenient quantum observable, in the

sense that it has advantageous properties that make it a good choice for being an

entangled quantity, especially if one is seeking high dimensional entanglement.

The reason for this is that it is a spatial observable which relies on a compact

support, i.e. the conjugate variable to OAM is an angle, which is a coordinate

that lies on the circle [5]. As a consequence, eigenstates of orbital angular mo-

mentum can be manipulated with relative confidence even with optics of limited

size, even though it is a spatial observable. Additionally, its spectrum is discrete

and unbounded, therefore the entanglement in OAM can span in principle an in-

finite number of different modes [6, 7]. Another reason why OAM is convenient

is that the azimuthal dependence, at the level of sheer mathematics, can be han-

dled very straightforwardly; this gives a great advantage when manipulating the

equations. We will explore the properties of OAM in details in chapter 3.

In addition to OAM we will consider also the radial degree of freedom, to

make our treatment of the subject more complete, but mainly to make it possi-

ble to understand radial modes and having a chance to exploit them, which is

something that is still not common practice. In fact, experimentally, addressing

the radial modes is affected by technical difficulties due to their representation

in real and momentum space as wave functions. However, it is an important step

that ought to be made: as the equations of motion for optical states are separa-

ble in polar coordinates, the dimensionality of the Hilbert space that hosts the

OAM part of the system is multiplied by the number of radial modes that can

be used. This can lead to a realisable spatial entanglement made of hundreds or

even thousands of joint modes [8].

1.1.3 Thesis structure

As the description of SPDC can become rather complicated, various different

assumptions and approximations are made throughout the chapters. The aim of

this section is to summarise them and to put them into a structured table, so that
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the reader will have in mind where to find the chapters he or she is interested in.

The various approximations of the SPDC state that will be used are presented

for the first time in this section, in order to deliver a basic notion of which states

will be used and how.

A fairly general wavefunction for the SPDC state comprises two terms1: one

that states that the down-converted photons “originate from a pump photon” via

a parametric process (i.e. that leaves the crystal invariant and therefore that

conserves the properties of the pump photons) and one that states their phase

matching relation. Accounting analytically for both terms is very hard, and we

adopted some strategies to avoid getting stuck. These strategies are always ad-

dressing the phase matching function. In chapter 4 we replace the phase match-

ing function, which is a sinc function, with a gaussian. This is known as the

gaussian approximation. In chapter 5 we compare numerically the gaussian ap-

proximation and the sinc form of the phase matching, and we will see what are

the consequences of employing the gaussian approximation. Another approxi-

mation that can be chosen is to remove the phase matching function entirely (i.e.

setting it to 1), which is equivalent to stating that we have an infinitely thin crys-

tal. This is known as the thin crystal approximation. In chapter 6 we use this

approximation and in chapter 7 we remove it by restricting the projection basis,

i.e. by keeping only those basis elements that allow a closed form of the projec-

tion amplitudes without using the thin crystal approximation or the gaussian

approximation. Anticipating some of the conclusions of chapter 7, we will see

that an infinitely thin crystal generates an infinite number of entangled modes,

but the detection apparatus will set an upper bound to the detectable ones. In

real life experiments we will have both effects at the same time: the source will

produce a limited number of modes, and the detection apparatus will be able to

see some of them. In chapter 7 we also give an intuitive way of calculating the

strength of the entanglement that will be measured in an experiment.

Let’s see now more precisely where these approximations fit. The thesis is

separated into a background part, a generation part and a detection part. In

the background part we set the scene by introducing the subject, by explaining

how to approach this thesis (chapter 1), and by giving some fundamental tools on

quantum mechanics (chapter 2) and optics (chapter 3). In the generation part we

are concerned with understanding what the Schmidt modes are, i.e. how strong

the entanglement is, without worrying about how to measure it: in chapter 4

1The most general description of the SPDC state is not used in this thesis. For instance we
are not treating the temporal dependence of the state, nor azimuthal anisotropies, nor transverse
phase matching.
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we answer analytically using the gaussian approximation and in chapter 5 we

remove the approximation, but we will answer numerically. Here ends the gen-

eration part. In the detection part we are concerned with understanding how

much entanglement we would see if we were to detect the SPDC state under var-

ious circumstances. The detection part starts with chapter 6, where we project

the SPDC state onto a doubly-complete family of joint Laguerre-Gauss modes

and to do this we employ the thin crystal approximation. This allows us to find

an analytical result, but crystals realistically are not infinitely thin, and this ef-

fect, although small, could be noticed. In chapter 7 we remove the thin crystal

approximation, we restore the sinc phase matching (albeit without any phase

mismatch) and we analytically calculate the projection amplitudes on a partial

family of joint LG modes, i.e. for p = 0, where p is the radial mode number. Al-

though this is an incomplete result, as it doesn’t address projection on higher p
modes, it gives us great insight on the detection of perfectly phase matched down-

converted pairs. Very interestingly, we also provide a geometrical argument that

reaches the same conclusions. Being a heuristic argument, we consider it an ap-

proximation and call it the “geometrical approximation”. Chapter 8 is treating

detection from a different perspective, as it presents a way of measuring the az-

imuthal part of the entanglement, using sector phase plates, a technique which

allows to address spatial correlations without affecting the overall count rate.

The approximations used in this thesis, the consequent restrictions and the

analytical (A) or numerical (N) results can be summarised in the following table:

Chapter Approximation Restriction Result

4 gaussian no mismatch A

5 none none N

6 thin crystal no mismatch, no thick crystals A

7 p = 0/geometrical no mismatch, no higher p modes A

The first two (4 and 5) being concerned with the generation of entangled

modes and the second two (6 and 7) with their detection.

1.2 A bit of history

In this section I will contextualise this thesis by giving a historical introduction

to entanglement, to downconversion and to orbital angular momentum. I’d like to

mention that the way I like to think about the history of entanglement is not as a

research for a mean to be exploited for technological purposes, but as something
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much deeper and honourable: a quest for something still indecipherable, yet in

front of our eyes, as clear as the sun, but utterly obscure to our intellect. During

the years, are we getting a hold of more and more pieces of the puzzle, or are we

plunging into a bottomless cave, the end of which will always be out of reach for

our limited brains?

1.2.1 Ancient history

In the beginning was Einstein. Or at least, it was him to strongly support the

claim that there was a problem with quantum mechanics. In 1927, at the Solvay

conference he pointed out: [9, 10] “The scattered wave moving towards P [the

screen] does not show any preferred direction. If |ψ|2 were simply regarded as

the probability that at a certain point a given particle is found at a given time,

it could happen that the same elementary process produces an action in two or
several places of the screen. But the interpretation, according to which |ψ|2 ex-

presses the probability that this particle is found at a given point, assumes an

entirely peculiar mechanism of action at a distance which prevents the wave

continuously distributed in space from producing an action in two places on the

screen.”

What this implies is that locality2, together with the predictions of quantum

mechanics, together with the assumption that quantum mechanics is complete

(meaning that ψ contains everything there can be about a system, in Einstein’s

example about the scattered matter wave) yields a contradiction, because if we

call eA the event of particle being detected at A, and e′B the event of the particle

being detected at B we have:

0= P(eA & e′B|ψ)= P(eA|e′B,ψ)P(e′B|ψ) (1.1)

= P(eA|ψ)P(e′B|ψ)= 1
2
× 1

2
= 1

4
(1.2)

The use of ψ comes from the completeness assumption, the first and second

equality signs come from the statistics of quantum mechanics and the request

for simultaneous detection, the third from locality, the fourth from quantum me-

chanics. If one wants to save locality and one cannot deny the way nature ap-

pears to work, the conclusion is that quantum mechanics is incomplete, i.e. there

2which can be thought of a property of the way probabilities work in quantum mechanics,
in particular if A and B are two spacelike separated regions of spacetime, the probability of an
event e happening in A, P(eA) is equal to the probability of e happening in A given that another
event e′ happened in B: P(eA)= P(eA |e′B)
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is something beyond ψ, in other words ψ is not what should be used in the series

of equations above, so that the fourth equality wouldn’t give 1
2 × 1

2 .

The view of Einstein changed during the subsequent years, in particular he

appears, in the context of the EPR paradox, to have stumbled across the concept

of steering (the effect that a choice of measurement in A can result in the system

in B being described by one of two (or many) states) in 1935: [11] “Now what

is essential is exclusively that ψA and ψB are in general different from one an-

other. I assert that this difference is incompatible with the hypothesis that the

description is correlated one-to-one with the physical reality (the real state). Af-

ter the collision, the real state of (AB) consists precisely of the real state of A and

the real state of B, which two states have nothing to do with one another. The
real state of B thus cannot depend upon the kind of measurement I carry out on
A. But then for the same state of B there are two (in general arbitrarily many)

equally justified ψB, which contradicts the hypothesis of a one-to-one or complete

description of the real states.”

In even simpler terms than the previous argument Einstein here realises that

locality and the statistics of quantum mechanics imply that there can be more

than one real states of affairs to be associated with a quantum system. Not only

this is an argument for incompleteness, but it’s an argument for epistemicity, i.e.

for the property of states of reality not to be unique.

1.2.2 Medieval history

In 1964 John Bell wrote the historical paper “On the Einstein Podolsky Rosen

paradox” [12]. In this paper he showed that a local theory cannot reproduce the

predictions of quantum mechanics. The logic of his reasoning goes as follows: in

the EPR state a measurement upon a subsystem makes it possible to predict the

result of a parallel measurement on the other subsystem. If we accept the fact

that spacelike separated events cannot influence each other, it seems that par-

allel measurement results should be locally predetermined3. But this leads to

a contradiction with quantum statistics when we address non parallel measure-

ments, therefore we cannot exclude that a measurement on one subsystem does

not influence a measurement on the other anymore. The theorem applies to any

local theory in which properties are assumed possessing a value as such, there-

fore it also applies to hidden variable theories, so that if one considers a hidden

variable model, in which the measurement outcomes are elements of reality, one

3being predetermined does not imply being determinable, i.e. there is nothing in Bell’s argu-
ment that is concerned with determinism
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has to drop the locality assumption anyways, i.e. we must drop P(x|y,λ)= P(x|λ)

where x and y belong to spacelike separated regions X and Y and λ might be

ψ (in which case we would not be dealing with a hidden variable theory) or a

more general object. The derivation of Bell’s inequalities (his 1971 derivation, to

be precise) is rather straightforward. It is presented here for completeness, and

because I like it.

Consider a measurement whose outcome can take two values, ±1. This is a

more general situation than we can naively think, as quantum measurements

correspond to propositions about the system so they can be put in a form that,

logically, implies a question with a yes/no answer, a simple example being “will

this measurement give a result in this range?”. Imagine having a system made

of two parts A and B which interacted some time in the past, but design the ex-

periment so that we have two instances of such measurement, performed in two

spatially separated regions of spacetime. Call A(a,λ) and B(b,λ) the results of

the measurements. Here a and b are the locally and freely chosen measurement

settings and λ is the set of real values that characterise the system, may we or

may we not have access to λ. We have made a locality assumption here: A does

not depend on b and B does not depend on a. While it is natural to assume that

the past interaction between the subsystems will correlate the measurement re-

sults in some way, any additional randomness of subsystems A and B has to be

fully accounted for by something else, which we call λ, and consider it any sort of

ontological entity, even just the wave function, interpreted in a realistic way. As

the measurement can be repeated over and over we consider in full generality λ

as a random variable, which therefore has some probability distribution ρ(λ).

Define the expected value of the quantum correlation E(a,b) := P(A = B)−
P(A 6= B), which represents the difference between the probability that A will

give the same result as B and the probability that A will give the opposite result

of B. Clearly E(a,b) is just a function of the measurement settings:

E(a,b)=
∫
Λ

A(a,λ)B(b,λ)ρ(λ)dλ (1.3)

Now we play a bit with some algebra. We can consider two additional measure-

ment settings a′ and b′ and write E(a,b)+E(a′,b) as

E(a,b)+E(a′,b)=
∫
Λ

[A(a,λ)B(b,λ)+ A(a′,λ)B(b,λ)]ρ(λ)dλ (1.4)

For simplicity of notation I will indicate ρ(λ) with ρ, A(a,λ) and A(a′,λ) with A
and A′ and similarly with B and B′. Now we make the reality assumption that is
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key to the theorem: we add and subtract the same term ABA′B′, and this term

contains values that must be all possessed, i.e. they must be real:

E(a,b)+E(a′,b)=
∫
Λ

(AB+ A′B+ ABA′B′− ABA′B′)ρdλ (1.5)

=
∫
Λ

AB[1+ A′B′]ρdλ+
∫
Λ

A′B[1− AB′]ρdλ (1.6)

The triangle inequality tells us that

|E(a,b)+E(a,b′)| ≤
∣∣∣∣∫
Λ

AB[1+ A′B′]ρdλ
∣∣∣∣+ ∣∣∣∣∫

Λ
A′B[1− AB′]ρdλ

∣∣∣∣ (1.7)

Thanks to the absolute value, we can discard AB and A′B in the integrals, be-

cause their value will be either +1 or −1. Moreover, the values in square bracket

are either 0 or 2, so we can discard the absolute values. We are left with

|E(a,b)+E(a′,b)| ≤
∫
Λ

[1+ A′B′]ρdλ+
∫
Λ

[1− AB′]ρdλ (1.8)

= 1+
∫
Λ

A′B′ρdλ+1−
∫
Λ

AB′ρdλ (1.9)

= 2+E(a′,b′)−E(a,b′) (1.10)

which includes the CHSH inequality. As quantum mechanics can yield a value

of E(a,b)+E(a′,b)−E(a′,b′)+E(a,b′) which exceeds 2, this inequality is violated,

therefore its premises must have something wrong, and our initial discussion

applies. What I like about Bell’s theorem, and that perhaps is often overlooked,

is that it is not a result about local hidden variable theories, it is a result about

any local theory that is interpreted realistically, i.e. any local theory in which the

properties posses definite values, independently of wether we can or cannot know

or predict them. This class of theories is much wider than just hidden variable

theories and this is perhaps what makes Bell’s theorem one of the most profound

results in science.

1.2.3 Modern history

I think of a big gap between the sixties and the following couple of decades,

because at some point technology allowed to drop the ‘gedanken’ from gedanken-

experiment. The first convincing experiment in favour of Bell’s theorem is de-

scribed in the 1981 paper by Aspect, Grangier and Roger [13]. In their experi-

ment they used an atomic source of photons, in particular a cascade in calcium

atoms, which produced pairs of photons entangled in their polarisation. The suc-
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cess of their experiment is considered a milestone in the history of science, for its

significance: mankind had a first tangible proof that nature is really nonlocal, a

formidable feature which, if you think of it, was never experienced ever before, by

any human being, in all history. This is one of my favourite arguments in favour

of our possible lack of the kantian categories needed to understand how entan-

glement works. Aspect’s experiment was also a very stringent test of quantum

mechanics, which proved to model reality astonishingly well.

Polarisation of photons is a quantity whose basis is made of two elements,

therefore the Hilbert space of two such systems is four-dimensional. In contrast

to this kind of source there are other kind of sources which emit states whose

description is a state vector that needs many more basis vectors. This is why

these sources are said to emit high-dimensional states. SPDC is amongst these

sources, and a remarkable one of such kind, for its luminosity [14] and for the

different types of quantities that are simultaneously entangled [2]. The high di-

mensionality of the Hilbert space is due to entanglement in spatial degrees of

freedom, temporal degrees of freedom and polarisation degree of freedom at the

same time [15]. The strength of the entanglement is extremely high and the con-

sequences can be very interesting, we will talk about these all throughout the

thesis, in particular we will talk about shared information and imperfect mea-

surements in chapter 4.

1.2.4 Contemporary history

When I think of “contemporary history” I think of a way of approaching the topic

of high dimensional entanglement and SPDC which follows a pattern which is

comparable with the one that is currently used now in 2012. Looking back some

years, we can track how high dimensional spatial entanglement, orbital angular

momentum and SPDC all came together. We can start in 1985 with the work

on the theory of parametric down-conversion by Hong and Mandel [16]. In their

work, the most important result was that when two ideal photodetectors were

appropriately located, the joint probability of two-photon detection can equal the

single-photon detection probability, a feature that suggests the presence of en-

tanglement.

In 1992, Les Allen, Marco Beijersbergen, Robert Spreeuw, and Han Woerd-

man [6] showed that Laguerre-Gaussian modes of light carry a definite amount

of orbital angular momentum, and in 1995 the seminal work by Miles Padgett

and Les Allen [7] on the Poynting vector of of Laguerre Gaussian modes started

to clarify some fundamental properties of these modes of light.
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SPDC was used as a reliable source of entangled photons (albeit still for po-

larisation) in 1995 by Kwiat et al. [14], while the spatial coherence properties

of down-converted light was extensively studied in 1996 by Joobeur et al. [17].

In 1998 Carlos Monken et al. [18] showed transfer of pump properties to down-

converted photons. Step by step, the scientific community was getting closer

and closer to understanding high dimensional entanglement of orbital angular

momentum in down-conversion.

It was 2001 (not at all long ago!) when Mair et al. from the Zeilinger group

[19] discovered that entanglement in SPDC is much more structured than it was

believed before, demonstrating entanglement between orbital angular momen-

tum eigenstates. Since then, the research in this field has seen numerous ad-

vances, on the theoretical side by analysing the modal content of down-converted

states, in particular we mention the seminal works by Torres, Alexandrescu and

Torner (2003) on the spiral bandwidth (i.e. the profile of orbital angular momen-

tum entanglement in down-converted states) [20], the famous work by Law and

Eberly [21] where they address the Schmidt number and the difference between

gaussian approximation and sinc form of the phase matching function.

The state of the art is held by a few groups. The Leiden group leads the

way in the theory of phase masks, used in conjunction with measurements of

entanglement in the orbital angular momentum space [22–25], while Miles Pad-

gett’s group in Glasgow University is on the cutting edge of entanglement mea-

sures utilising spatial light modulators to perform standard analysis of down-

converted light, as well as more exotic measurements, such as the demonstration

of entangled singularity knots [26] or violation of Bell’s inequalities in a high di-

mensional space [27]. In chapter 8 we will see these two methods come together,

namely the implementation of sector phase plates with spatial light modulators.

The state of the art experimental research now revolves around pushing the lim-

its of entanglement strength [8] and on utilising SPDC states for technological

applications, while the state of the art theoretical research revolves around un-

derstanding how deeply entangled the SPDC state really is, by addressing both

the time and the space parts of the state [28–33].

1.2.5 Future history

Many other groups in the world are currently investigating down-conversion

sources also for their entangled temporal properties [28, 30, 31]. Putting together

temporal and spatial entanglement leads to hyperentanglement (just entangle-

ment, but spread across multiple types of degrees of freedom) [15], which is a
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promising way of generalising high dimensional entanglement. There are still

open questions, in particular the role of phase matching approximations, how far

we can stretch them and the question of how the entangled eigenmodes depend

on the phase matching function. Also, there isn’t yet a full analytical description

of the Schmidt modes with a nonzero phase mismatch parameter.

The future of research in down-conversion and entanglement will surely push

to even higher figures for entangled modes, for control over the spatial shape

of Schmidt modes, for an analytic theory of total rate of emission, optimised

detection schemes and applications that are offered by having such an easy to

manipulate, and entanglement-rich system.
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Chapter 2

Entanglement

[...] note that the idea of an object

bearing properties is encoded in

the structure of our language

itself: the subject-predicate form

of simple sentences reflects the

idea of properties adhering to

things, and thereby our

comonsense understanding of the

question: “what is a thing?”

(Chris Isham, Lectures on

quantum theory, 1995, p. 68)

In the following sections I will introduce a bit of quantum mechanics, with an

emphasis on the concepts that are more important to understand the rest of the

thesis, namely entangled states, orbital angular momentum, and entropic entan-

glement measures. I will start with some explanation of the concept of state in

quantum mechanics (without entering the hazardous field of its interpretations

and assuming an epistemological one), then I will introduce the concept of mea-

surement in a fairly general way, and finally I will proceed to entanglement and

entanglement measures.

2.1 Pure states and mixed states

The concept of state in quantum mechanics can be expressed in various different

ways, depending on which kind of depth one is looking for. We can describe, in a

fairly general way, a quantum state by using the density operator, ρ̂. Such oper-

ator is a map between Hilbert spaces. In particular it’s a linear endomorphism
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of H . In fact, it’s a hermitian, trace 1, compact operator on a Hilbert space that

maps vectors of a Hilbert space into vectors of a Hilbert space:

ρ̂ : H →H (2.1)

All states are therefore vectors of the vector space B(H )⊂Hom(H ,H ) of bounded

operators on a Hilbert space H 1. The kernel of an operator ρ̂ is a subspace of

H . We say that ρ̂ represents a generalised state in the sense that it can ac-

count for a lack of knowledge. Dirac’s “bra-ket” notation without outer product

cannot include lack of knowledge, and is therefore limited to the description of

states about which we know everything that there is to know, i.e. “pure states”.

In other words, a state is pure when everything about the system that can be

known is taken into account. If a state is pure, we have

ρ̂2 = ρ̂ (2.2)

Which means that pure states are idempotent endomorphisms. On the other

hand, if there is any attribute of the system which is unknown, the state presents

itself as a mixed state and eq. (2.2) won’t hold anymore. Such relation implies

Tr(ρ̂2)=Tr(ρ̂)= 1 for pure states. For mixed states one has Tr(ρ̂2)<Tr(ρ̂)= 1 and

we can finally understand that a mixed state ρ̂ can be thought as a probability

distribution over pure states ρ̂n (where the summation can be replaced by an

integration, were the pure states labelled by a continuous parameter):

ρ̂ =∑
n

pnρ̂n
∑
n

pn = 1 (2.3)

This form clearly indicates a certain lack of knowledge, as we are assigning prob-

abilities to different pure states to describe the system, thus we know that the

state really is described by only one of such pure states, but we are missing the

information that is required to identify it.

On the other hand, a pure state contains all the possible knowledge about a

state. The fact that Quantum Mechanics is a theory that can predict outcomes of

measurements probabilistically and not deterministically has nothing to do with

the completeness of the information that a pure state stores, but rather with the

way nature works the way she works.

Using Dirac’s notation, which defines vectors in a Hilbert space as
∣∣ψ〉 ∈ H ,

and linear functionals as
〈
ψ

∣∣ ∈ H ∗ : H → C, we can write a pure state by using

1Technically, they are nuclear operators, which is a subset of B(H )
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the outer product in the following way:

ψ̂= ∣∣ψ〉〈
ψ

∣∣ (2.4)

If the pure state
∣∣ψ〉

is written in a complete basis of eigenkets of an operator Â,

i.e.
∣∣ψ〉=∑

aλa |a〉, then the pure state expressed with a density operator would

be

ψ̂= ∑
a,a′

λaλ
∗
a′

∣∣a 〉〈
a′∣∣ (2.5)

The density operator is called sometimes density matrix because the values λaλa′

can be arranged in a square matrix, and the probability normalisation condition∑
a |λa|2 = 1 is equivalent to requiring that the trace of the density matrix be

equal to 1. Such requirement remains valid in the case of a mixed state, as it

becomes
∑

n pn
∑

a |λa,n|2 =∑
n pn = 1.

2.2 Measurements

Measurements in Quantum Mechanics have always carried the burden of inter-

pretation. After almost a century from the beginning of the Quantum Theory,

there is still an ongoing debate. The so called measurement problem is a beauti-

ful and utterly interesting subject, but it will be skipped in this introduction for

the sake of clarity, as no discussion on the measurement problem that I know of

can make one’s mind less baffled than it was before.

Similarly to the way states were introduced, I will introduce quantum mea-

surements in a general way. The measurement of an observable quantity of a

state is a probabilistic operation that maps an initial state ψ̂ onto an element

of the set of possible final states {σ̂ j} with a finite probability p j = pψ̂→σ̂ j , with∑
j p j = 1. Such probabilities depend on the initial state and on the final state

and they are given by the squared modulus of the inner product between these

two states, according to the Born rule: the inner product is calculated through

the trace in B(H )

|〈ψ̂, σ̂〉|2 =Tr(ψ̂†σ̂) (2.6)

We are allowed to do this because B(H ) is a complete inner product space (it

is a Hilbert space too), whose norm follows from its inner product (in this case

the Hilbert-Schmidt norm). In case of pure states we obtain the familiar pψ̂→σ̂ =

15



Tr(ψ̂†σ̂)= |〈ψ|σ〉|2.

2.2.1 Projective measurements

If we consider a physical quantity A, which represents a property of a physical

system, such as its position, its momentum, its energy and so on, we can asso-

ciate to A a hermitian operator Â, which represents the property A in the quan-

tum formalism. Given a system with states in a Hilbert space H , it’s possible

to group together all the pure state vectors that satisfy the following functional

equation:

Â|ψ〉 = An|ψ〉 (2.7)

for some real (recall that Â is hermitian) values An. We can then call |ψn〉 the

vectors associated to the eigenvalue An, they may span a one-dimensional space

or a multi-dimensional space. The set of eigenvalues {An} is called spectrum of Â
and indicated by Sp(Â), and in general it can be discrete, continuous or mixed.

We interpret the states |ψn〉 as those that possess the value An of the property

A. The set {|ψn〉}n∈Sp(Â) is the set of eigenstates of Â. A set of eigenstates is

called complete if every one of them spans a one-dimensional space. If a set of

eigenstates is not complete it is possible to use other observables B, C and so on

until we have a (complete) set of eigenstates that span one-dimensional spaces

and that all together generate H . The choice of a complete set of eigenstates is

not unique. From a set of eigenstates it is possible to build a set of projectors

Pn = |ψn〉〈ψn|, the action of which is to project any state |φ〉 into its component in

the subspace of H generated by |ψn〉. States which are not eigenstates, i.e. that

are superpositions of eigenstates will not have a sharp value of the observable in

question, and will probabilistically give one of the eigenvalues in the superposi-

tion with a probability that follows the Born rule, mentioned above. The state

after the measurement will be a pure state and in particular the eigenstate rel-

ative to the eigenvalue just measured. The complete set of projectors has the

following four properties:

1. P̂n = P̂†
n (hermiticity)

2. P̂n ≥ 0 (positivity)

3.
∑

n P̂n = 1̂ (completeness)

4. P̂nP̂m = δmnP̂n (orthogonality)
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However, the last condition is not a fundamental property for an operator to

represent a measurement. Probability Operator Measures (POM), also known

as Positive Operator-Valued Measures (POVM) are a generalisation of projective

measurements, but although they ought to be explained in a textbook on quan-

tum mechanics, they are superfluous for the arguments in this thesis and their

treatment will be skipped.

Therefore, a simple measurement of a property A on a state |φ〉 can be de-

scribed by a projective measurement in the following way. We can write |φ〉
as a superposition of its components on the subspaces of eigenstates of Â, i.e.

|φ〉 = ∑
n Pn|φ〉, and then what happens (to the embarrassment of the physics

community) is still a bit of a mystery, namely the state vector is randomly ro-

tated to one of the eigenstates, although the randomness follows the probabilities

given by the Born rule:

|φ〉→ |ψn〉 with probability |〈ψn|φ〉|2 (2.8)

Many and many more pages could be devoted to the interpretation of the term

randomly above and to the significance of the passage from the ‘possible’ (i.e.

with probabilities given by the Born rule) to the ‘actual’ (i.e. to the actual final

result and resulting state), but of course this is not the place for such pages.

2.3 Entanglement

2.3.1 The idea

Entanglement is perhaps the most dazzling property of quantum systems. It is

what makes quantum fundamentally different from classical. The interest that

it generates comes from deep philosophical questions and from practical uses for

eventual future technologies. Entanglement is a hot topic in quantum founda-

tions, quantum information, quantum computation, quantum optics, quantum

control and metrology, engineered quantum systems, and recently one can hear

biologists starting to mumble about entanglement [34].

Entanglement comes in multiple flavours, depending on which property is
entangled. However, the mathematical framework of quantum mechanics allows

one to treat all entangled systems in a general way. One of the various properties

that characterises a quantum system is the dimensionality of the Hilbert space

H that embeds its description. If the system is an entangled one, the dimension-

ality of H obtains a particular role, as we shall see in a moment. This will be a
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fundamental concept in this thesis. Indeed, the content of the next chapters will

orbit around the topic of high dimensional entanglement, where high refers to

the dimensionality of the Hilbert space of an entangled system. At this point the

reader might reply that the dimensionality of a Hilbert space could be trivially

extended, simply by adding new orthogonal basis vectors. This trivial extension

enlarges the dimensionality of H by working on the way we write the states: it

is not this trivial extension that we are interested in! Instead, we are interested

in the effective minimal dimensionality that a Hilbert space has to have in order

to embed the allowed states of the system. Such dimensionality is known as the

Schmidt number, and we aim at maximising it, i.e. (roughly speaking) we let the

system obtain new states, so that consequently the minimal dimensionality of

H has to increase, and with it, the strength of the entanglement. The Schmidt

number is not the only way of measuring entanglement, there are many types

of measure. In our case, however, of a bipartite system, things are much eas-

ier in this regard, and the Schmidt number is chosen for both its advantageous

calculation and its intuitive significance of “number of entangled eigenstates”.

Some of the reasons why high dimensional entanglement is a topic worth at-

tention and time and efforts is that highly entangled systems have a behaviour

that is favourable over systems with low dimensional entanglement when the

application of a quantum technology is eventually realised. In particular, one

finds that highly entangled states can tolerate imperfect measurements better

than less entangled states [32], or that when they propagate in a turbulent at-

mosphere, they retain some properties better than less entangled states [35]. The

main reason, though, to favour high dimensional entanglement is based on the

fact that an n-dimensional vector space has a basis of n independent vectors, and

this means that one can implement quantum algorithms that involve entangled

states with up to n different possible joint states [3, 4]. The more joint states one

can use, the more powerful and complex the algorithm can be, and this can be a

great advantage for future technologies.

2.3.2 Entanglement strength

The strength of the entanglement depends on the process that one uses to pro-

duce an entangled state. As anticipated, the quantity that we will use to gauge

the strength of the entanglement is called Schmidt rank or Schmidt number and

we indicate it by K . The only possible value of the Schmidt number for a sepa-

rable state (a non-entangled state) is 1, all numbers above 1 indicate entangled

states. Schmidt numbers of less than 1 cannot exist, as one cannot have “less
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than one state”. This is a consequence of its definition for bipartite states:

K = Tr(ρ̂)2

Tr(ρ̂2)
(2.9)

where ρ̂ is any of the two reduced density matrices. The numerator can be set

to 1 if the density matrices are normalised. The reason why K ≥ 1 is that the

denominator reaches the maximum of 1 if ρ̂ is a normalised pure state; and

considering that here ρ̂ is a reduced density matrix, it follows that the minimum

of K = 1 is reached if the reduced density matrix is a pure state, which happens

only if the whole system is not entangled. To better understand what it means,

we make use of a simple example.

Example: Consider the state

p
1−ε |0,1〉+p

ε |1,0〉

where ε is any number between 0 and 1. This state is made of two vectors, which
lives in a four dimensional vector space, as it is spanned by |0,0〉 , |0,1〉 , |1,0〉 and |1,1〉.
For ε = 0 and for ε = 1 the state is separable, while for all the other values of ε,
the state is entangled. How can we calculate the Schmidt number? For this par-
ticular example the Schmidt number is K = (|p1−ε|4 +|pε|4)−1 = (2ε2 −2ε+1)−1

which is plotted in figure 2.1 (For details on the definition of the Schmidt number
we need to introduce the Schmidt decomposition, however one could briefly jump
to section 2.3.4 for explicit calculations).

The minimal dimensionality for a Hilbert space to host a bipartite entangled

state is 4, because a 1-dimensional Hilbert space cannot even hold two systems,

and as we saw in the example, 2- and 3-dimensional spaces can only host separa-

ble states, which are not entangled. On the other hand, we can say that here is

no fundamental upper limit. The only upper limit depends on the quality of the

instruments used for preparing the state, and it depends on each different imple-

mentation. It is interesting to recall that different flavours of entanglement can

be combined together (spatial, temporal, spin/polarisation) to yield hyperentan-

glement, in which the dimensionalities of the Hilbert spaces holding the spatial,

temporal and spin representations multiply together to give a possibly extremely

large Hilbert space and an extremely high entanglement.
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Figure 2.1: Schmidt number K as a function of ε for the state in the example

2.3.3 Bipartite entanglement and composition of Hilbert spaces

Entanglement is a nonclassical property of quantum states, that appears to us

in the form of correlations. Correlations due to entanglement are stronger than

correlations given by classical systems, because they persist even if the measure-

ments are performed in different bases. This fact is the basis of Bell’s theorem.

The most simple form of entanglement happens between two quantum systems,

and it is this class of entangled systems that will be at the core of the main topic

of this thesis. Entanglement has a very close relation with separability, and the

mathematical framework behind separability is embedded in the type of vector

space operations that determine the unification of two systems. To explain this

concept through an example, let’s consider a system of two photons, and let’s

examine the polarisation degree of freedom. Call the complex Hilbert spaces of

the polarisation states H1 and H2. To understand dimensionality in the correct

way, I should specify the difference between complex dimension and real dimen-

sion: a complex space of dimension d has real dimension 2d, this is simply a

consequence of the fact that two real numbers are needed to specify a complex

number. The state of polarisation can be considered as a qubit: it can take all

the normalised complex combinations of two basis vectors. Therefore, the Hilbert

space of a qubit is isomorphic to C2 and has complex dimension 2. However, to

talk about the state space we need to fix normalisation and global phase, because

it’s not true that different points in C2 always correspond to different states, and

instead we would like to have an injective map from H to the state space. After
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we introduce these two constraints we have separated the qubit Hilbert space

into equivalence classes, each representing a state. The state space can be rep-

resented as the surface of a sphere of real dimension 2, which is called Bloch

sphere2. In fact, any pure state of the polarisation of a photon can be repre-

sented as a point on the surface of the Bloch sphere, which needs 2 coordinates

to be specified. This was the description of one qubit, but what is the correct way

of combining H1 and H2, in order to deal with a state of two qubits? Let’s start

by looking at what not to do, i.e. at what it is done for two classical states.

×

S1 S2

Figure 2.2: The space of separable states S×. Although it consists of two Bloch
spheres it is not the space that can host entangled states, because what is really
needed is the tensor product of the Bloch spheres.

The cartesian product space H× = H1 ×H2 is the space of pairs: each point

of H× is a pair of vectors (h, g), where h ∈ H1 and g ∈ H2. Each point in H× is

a separable state by definition (it is made by picking a state from each Hilbert

space3) and therefore cannot represent an entangled state. However, this is the

right way of combining two independent classical systems. This fact alone sets

entangled states in a different class with respect to classical states.

How is it possible that H× has a vector space structure and yet cannot in-

clude entangled states? The answer is that its vector space structure is carried

by the structure of the components, in a component-wise way: the operations

that make H× a vector space are (h, g)+ (h′, g′) = (h+ h′, g+ g′) and the linear

multiplication by scalars. It’s straightforward to see that any linear combination
2The Bloch sphere for a qubit is homeomorphic to U(2)/(U(1)×U(1)), where U(2) is the group

of transformations on the Hilbert space of the 2-level system, and the two U(1) factors form the
isotropy group of a 1-dimensional complex subspace of a state vector and of its complement. For
a general n-level system the Bloch sphere is homeomorphic to U(n)/(U(1)×U(n−1)).

3Formally, there is a unique projection map on the factors H1 and H2
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of separable states would be mapped to another separable state, and clearly this

is not what we want! So although all the states contained in H× are valid states,

the cartesian product cannot be the correct operation, because we wouldn’t be

able to include entangled states. The correct operation is the tensor product

H =H1 ⊗H2, which can be understood as the cartesian product, but with some

restrictions. The restrictions are that the operations that make H a vector space

are (h, g)+ (h′, g) = (h+ h′, g), (h, g)+ (h, g′) = (h, g+ g′) and linear scalar multi-

plication. Note how these differ from the ones that make H× a vector space, in

particular the combination (h, g)+(h′, g′) is not mapped to any vector in the form

(a,b). So separable states are still members of H× ⊂H , but with the restricted

operations there are states that cannot be written as a pair, and these are the

entangled states. Notice that with the restricted operations H× is not a proper

subspace of H .

If we regard H1 and H2 as two copies of C2, H has complex dimension 4.

After fixing global phase and normalisation, a state vector now belongs to the

tensor product of two Bloch spheres, S , and it needs six real numbers to be spec-

ified. Generalising this, a state of n qubits would live in a n-fold tensor product

of C2, which has complex dimension 2n, and if we take into account normalisa-

tion and global phase, it would have real dimension 2n+1 −2. generalising even

further, a state of n m-level states would live in a n-fold tensor product of Cm,

which has complex dimension mn, so the state space would have real dimension

2mn −2.

Example: A state |H〉⊗ |V 〉, that lives in H×, is not entangled, because it is sep-
arable. Likewise, the state |H〉⊗

( |V 〉+|H〉p
2

)
is not entangled, because it is separa-

ble. But outside H×, we can find for instance states like 1p
2

(|H〉⊗ |H〉+ |V 〉⊗ |V 〉),
which, in a 4-dimensional complex Hilbert space, is entangled. Such state lives
outside H× because with the restricted vector space operations it cannot be identi-
fied with any vector in H×. Such entangled state is the linear superposition of two
of the four vectors that form a possible basis for the joint Hilbert space (|H〉⊗|H〉,
|H〉⊗|V 〉, |V 〉⊗|H〉, |V 〉⊗|V 〉) and the squares of the coefficients sum to one. Thus
the Schmidt number of this state is 2. The Schmidt number cannot be larger than
the complex dimension of the smaller Hilbert space of the single subsystems.
In this example, each photon polarisation lives in a copy of C2, therefore the

Schmidt number cannot be larger than 2. This also means that the state in

the example was maximally entangled. To show what happens if one tries to

use more than two joint states, imagine we used all four states in the basis:
1
2 (|H〉 ⊗ |H〉 + |H〉 ⊗ |V 〉 + |V 〉 ⊗ |H〉 + |V 〉 ⊗ |V 〉). This state is separable, because
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even with the restricted operations, it can be written as 1
2 (|H〉+ |V 〉)⊗ (|H〉+ |V 〉)

and thus it belongs to H×. If we take the previous example to a higher level

and consider H1 and H2 to have a much greater dimensionality and if we add

some constraints on the type of entangled states that can be built (for instance,

the constraint that the sum of the eigenvalues of the entangled observable of the

pairs of states has to be 0) we obtain a framework which is very similar to the

one that this thesis is built around. In down-conversion, the entangled systems

are 2, so n = 2, and the number of possible states of each system is unbounded,

so the dimensionality of the Hilbert space of the photon pairs is also unbounded.

However, not all states are equally probable. Some of them are so unlikely to be

measured that they can be safely ignored. How do we deal with this? The answer

is given by the Schmidt decomposition.

2.3.4 Partial traces

After a bipartite entangled state has been written as a sum over joint states

∣∣ψ〉= ∑
n,n′

cn,n′ |an〉⊗ |bn′〉 , (2.10)

it’s possible to calculate what state we should assign to each individual system,

which is equivalent to ask the question: “how would system A be described by an

experimenter that didn’t know that it is entangled with system B?” The answer

to this question is found by projecting the part B of the system onto any possible

state, i.e. taking the partial trace over B.

TrB
∣∣ψ〉〈

ψ
∣∣=∑

k
〈bk

∣∣ψ〉〈
ψ

∣∣bk〉 (2.11)

=∑
k
〈bk|

 ∑
n,n′

m,m′

cn,n′ c∗m,m′ |an〉〈am|⊗ |bn′〉〈bm′ |

 |bk〉 (2.12)

= ∑
m,n,k

cn,kc∗m,k |am〉〈an| (2.13)

The purity of the density matrix given by summing over the index k is inversely

proportional to the entanglement of the initial state. Although it might seem ob-

vious after we have calculated partial traces numerous times before, it is rather

puzzling to think about: what it means is that system A was a statistical mix-

ture of states all along, and the same is true for B, as the same calculation can

be done on B. Even more puzzling is the fact that even though the states are
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mixed, there are cases in which it is impossible to assign prior values to some

observables (see GHZ paradox [36]), this is why reduced density matrices are

referred to as improper mixtures. This leads to the obvious question: “how in

the world can nature make the entanglement correlations work?” [37]. Nobody

knows, yet. Similarly to the partial trace over system B, the partial trace over

system A gives:

TrA
∣∣ψ〉〈

ψ
∣∣= ∑

m′,n′,k
ck,n′ c∗k,m′ |bn′〉〈bm′ | (2.14)

2.3.5 Schmidt decomposition

The following proof of the Schmidt decomposition follows Ekert and Knight’s in

[38]. Consider a state
∣∣ψ〉

in the space HA ⊗HB. The form of its density matrix

ψ̂ is the same as the density matrix in brackets in eq. 2.12:

ψ̂= ∑
n,n′

m,m′

cn,n′ c∗m,m′ |an〉〈am|⊗ |bn′〉〈bm′ | (2.15)

We will show now that there is a basis {|ui〉} in HA and a basis {
∣∣v j

〉
} in HB such

that the state
∣∣ψ〉

can be written as

∣∣ψ〉=∑
i

√
λi |ui〉⊗ |vi〉 (2.16)

or in terms of its density matrix,

ψ̂=∑
i j

√
λiλ j |ui〉

〈
u j

∣∣⊗|vi〉
〈
v j

∣∣ (2.17)

with the coefficients all real and normalised, i.e. such that λi is a discrete prob-

ability distribution.

Choose a basis {|ui〉} of HA such that TrBψ̂=∑
m,n,k cn,kc∗m,k |um〉〈un| is diag-

onal, i.e.
∑

k cn,kc∗m,k = λnδm,n, where the λi coefficients are a probability distri-

bution. We can now rewrite the initial state where λi 6= 0:

ψ̂= ∑
n,n′

m,m′

√
λm

√
λn

cn,n′√
λn

c∗m,m′√
λm

|un〉〈um|⊗ |bn′〉〈bm′ | (2.18)

= ∑
n,m

√
λm

√
λn |un〉〈um|⊗ |vn〉〈vm| (2.19)

where
∑

n′
cn,n′p
λn

|bn′〉 = |vn〉 and similarly for the sum over m′. The proof ends here.
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Once we have written the state in this form it is interesting to address the

probability distribution {λi}, as we have that the Schmidt number can be readily

found from it: K = (∑
iλ

2
i
)−1 for a normalised initial state.

2.3.6 Entanglement strength

The way to understand how much a state is entangled could be to address some

metric distance from the space of separable states H×, and in a way the Schmidt

number is doing exactly this. The way the Schmidt decomposition works is by

using a particular basis for the joint Hilbert space that allows to re-write the en-

tangled state with the least number of basis elements. Calculating the Schmidt

number then boils down to counting the minimum number of basis elements that

are needed to write the state. If this number is greater than 1, the state is en-

tangled. The calculation of the Schmidt number is less trivial than it might seem

at first glance. In fact, the elements of the basis to use have to be custom built:

there is no “one size fits all” basis that will do the job.

A few pages back, in equation (2.9) we defined K in terms of a reduced den-

sity operator. Instead, the definition K = (∑
iλ

2
i
)−1, which is simpler, requires

normalisation of the reduced density matrix, and requires a decomposition to be

calculated first, so that the state can be written in the form (2.16). In chapter

4, this is precisely the path that we will take. The reason why K has this form

is rather intuitive: what we are doing is a weighted sum of the basis elements,

by assigning to each basis element a weight proportional to its probability. The

result is the average probability of a basis element,
∑

kλ
2
k. The Schmidt number

is then the total number of basis elements that a flat probability distribution

with the same average would have to have, in order to be properly normalised.

In other words, it’s the width of a normalised flat distribution of the same aver-

age probability of the distribution {λi}. As it is using the least number of basis

elements it automatically follows that the Schmidt basis is the basis that max-

imises the shared information between the entangled systems. It is interesting

to notice that the Schmidt number shares some characteristics of entropic mea-

sures of entanglement (in chapter 4 we will see that its logarithm is the Rényi

entropy of order 2), in fact it is a very good measure of the “compactness” of a dis-

tribution: suppose we have a distribution which is peaked in two distant places,

the variance of such distribution fails to gauge the fact that, although the peaks

are far they might be very narrow. An entropic measure overcomes this problem

and what it really does is it measures how much the distribution gathers around

some points, regardless of how distant they might be in the domain. The Schmidt
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number shares this characteristic with entropic measures, which makes it a good

tool to gauge an effective number of dimensions: a relabelling of their represen-

tation on one or multiple axes (to assign them a probability distribution) should

leave their effective number invariant.

More details on the Schmidt number will be found in chapter 4, where a full

Schmidt decomposition is analytically calculated.
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Chapter 3

Orbital angular momentum and
down-conversion

The topics in this thesis are mainly concerned with generation, propagation and

detection of particular states of light. Although they will be treated from a quan-

tum mechanical point of view, many are closely linked to topics in classical optics,

such as paraxial modes, spatial light modulators, optical fibres and photon coun-

ters. To give the necessary tools to fully understand the next chapters, I will

start by introducing paraxial field modes and in particular Laguerre-Gauss and

Hermite-Gauss modes.

3.1 Paraxial field modes

Paraxial fields are fields which propagate mainly in one direction. In this thesis,

paraxial field modes are fundamental to describe all the possible modes that a

propagating beam can be decomposed into. There are various families of paraxial

fields, depending on which coordinate system one chooses to solve the paraxial

Helmholtz equation, which is the spatial part of the wave equation of a field

which propagates along a preferred axis.

3.1.1 Helmholtz equation

Let’s start by deriving the Helmholtz equation. We are describing a field of light

and we are interested in the amplitude of the field (not on its polarisation), there-

fore we can start with the d’Alambert wave equation for a scalar field:

∇2φ− 1
c2 φ̈= 0 (3.1)
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we assume that the solution is separable between time and space coordinates,

i.e. φ(r, t)= u(r)T(t). If we substitute this form of φ(r, t) and simplify we obtain

∇2u
u

= 1
c2

T̈
T

(3.2)

The left-hand side depends only on r and the right-hand side only on t, so the

whole equation holds if the two sides are equal to a constant value. We choose

the value to be −k2 for later convenience. Being interested in the spatial part we

write

(∇2 +k2)u = 0 (3.3)

which is known as Helmholtz equation, and depending on the coordinate system

in which it is solved and on the boundary conditions, it will lead to common plane

waves, but also Hankel functions, Bessel functions, Mathieu functions and other

special functions.

3.1.2 Paraxial approximation

A sufficient condition for a field to carry a finite amount of energy is to be “mod-

square integrable”, i.e. to belong to an L2 space. Fields that are solutions of the

Helmholtz equation might not be L2, in which case they would not physically

realisable, or are only approximately realisable. A way to overcome this problem

is to solve instead the paraxial approximation of the Helmholtz equation [39].

We start by writing the field in form u(x, y, z) = E(x, y, z)eikz. Substituting in eq.

(3.3) we get

∇2E+2ik
∂

∂z
E = 0

where eikz is factored out.

The paraxial approximation consists in assuming that the beam will vary slowly

in the coordinates orthogonal to z. This justifies the form for u(x, y, z) above, and

leads to the approximation ∣∣∣∣∂2E
∂2z

∣∣∣∣¿ ∣∣∣∣k∂E
∂z

∣∣∣∣ (3.4)
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that allows us to neglect the term ∂2E
∂2z and write the paraxial approximation of

the Helmholtz equation: (
∇2
⊥+2ik

∂

∂z

)
E = 0. (3.5)

If cartesian coordinates are used, a family of solutions of this equation will be

the Hermite-Gaussian (or Hermite-Gauss) modes. But of course other coordinate

systems can be chosen and different solutions will arise.

3.1.3 Hermite-Gaussian modes

To show how Hermite-Gauss and Laguerre-Gauss modes are found, I follow the

illuminating paper by Pampaloni and Enderlein in [40].

In general, a paraxial field in momentum space, written as a superposition of

plane waves, is:

E =
∫ dkxdky

2π2 A(kx,ky)eikxx+iky y+i(k− k2
x+k2

y
2k )z, (3.6)

where A(kx,ky) is the amplitude of the plane wave with wave vector k= (kx,ky,k−
k2

x+k2
y

2k ). The third component has that form because by the paraxial approx-

imation k ' kz, so kx and ky are small with respect to k. This means that

kz =
√

k2 − (k2
x +k2

y) can be approximated to the first order. If one seeks the beam

that minimises the transversal extension while minimising the divergence one

finds the fundamental gaussian mode E0:

E0 =
∫ dkxdky

2π2 e−
w2

0
4 (k2

x+k2
y)eikxx+iky y+i(k− k2

x+k2
y

2k )z. (3.7)

So for this mode, the amplitude function of plane waves follows a gaussian shape:

A(kx,ky) = e−
w2

0
4 (k2

x+k2
y). The simplest way to find Hermite-Gaussian modes is

to use the rectangular symmetry of cartesian coordinates and include the addi-

tional modulation (ikx)m(iky)n in the amplitude A(kx,ky). It is easy to see that

the same modulation can be obtained by introducing the following differential

operator acting on the fundamental gaussian mode:

∂m+n

∂xm∂yn E0. (3.8)

If we use the closed gaussian solution to the integral in (3.7) we will encounter
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an expression like

∂m

∂xm e−αx2
, (3.9)

and similarly for the y coordinate. We can therefore use the definition of Hermite

polynomials

Hm(x)= (−1)mex2 ∂m

∂xm e−x2
(3.10)

to simplify the result and finally obtain a closed expression for the Elegant

Hermite-Gaussian mode of order (m,n):

EHGm,n(x, y,ζ)= 1

w(ζ)
m+n

2 +1
Hm

(
x

w0
√

1+ iζ

)
Hn

(
y

w0
√

1+ iζ

)
e

ikz− x2+y2

w2
0(1+iζ)

−iψ̃m,n

(3.11)

where ζ = z/zR , with zR = πw2
0

λ
the Rayleigh length of a Gaussian beam of width

w0 and wavelength λ. We also have defined w(ζ) = w0
√

1+ζ2. ψ̃m,n is the modi-

fied Guoy phase ψ̃m,n = (1+ m+n
2 )arctanζ. However, it would be more convenient

to have complex values only in the exponential, in order to distinguish between

the field amplitude and its phase. To do this we use a modulation in the form

(ikx + 1
u∂kx)

m(iky + 1
u∂ky)

n for a constant u that we are free to choose and decide

to set to −iw2
0 for later convenience. This modulation can be achieved by acting

with the following differential operator on the fundamental gaussian mode:

f m+ne
x2+y2

2w2
0 f ∂m

∂xm
∂n

∂xn e
− x2+y2

2w2
0 f E0, (3.12)

where f = 1− w2
0(1+iζ)
2iu . With this choice of modulation and constant u we obtain

the standard Hermite-Gaussian modes:

HGm,n(x, y)= 1
w(ζ)

Hm

(p
2x

w(ζ)

)
Hn

(p
2y

w(ζ)

)
e

ikz− x2+y2

w2
0(1+iζ)

−iψm,n
, (3.13)

where the phase now is given by the exponential, which contains the usual

Guoi phase ψm,n = (1+m+n)arctanζ.
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3.1.4 Laguerre-Gaussian modes

In a very similar manner Laguerre-Gaussian (or Laguerre-Gauss) modes can be

found, the difference being using polar coordinates instead of cartesian. The

chosen modulation is separated into a radial and an angular contribution:

(k2
x +k2

y)p+ `
2 ei`arctan

( ky
kx

)
= (kx + iky)p(kx − iky)p+` (3.14)

Using the same ideas as before we find that the same modulation can be found

with the following differential operator acting on the fundamental Gaussian

mode:

∂p

∂(x+ i y)p
∂p+`

∂(x− i y)p+`E0 (3.15)

Using the definition of the generalised Laguerre polynomials and supposing that

the Rayleigh range is big, we can write the Laguerre-Gaussian modes in the

pupil plane:

LG`,p(ρ,φ)= 1

w|`|+p+1
0

L|`|
p

(
ρ2

w2
0

)
ρpe

− ρ2

w2
0 e−i`φ (3.16)

Also here a normalisation factor has to be imposed in an analogous way. These

are the only two families of solutions of the paraxial Helmholtz wave equation

that will be mentioned in the rest of this thesis.

These families are complete, which means that any paraxial field can be de-

composed into a suitable superposition of Laguerre-Gauss modes or of Hermite-

Gauss modes, in other words they form complete bases for the Hilbert space

L2(R2) of almost-everywhere mod-square integrable functions on R2, amongst

which elements one finds also all possible finite-energy paraxial fields.

3.2 Orbital angular momentum

Something remarkable happens when we switch to polar coordinates. In polar

coordinates one coordinate is compact (the angle), as it is formally a coordinate

in S1, i.e. the circle. Just as position and momentum are conjugated variables,

angle and angular momentum also are [4]. This topic can become very compli-

cated very easily, for the sake of clarity I will keep it brief and intuitive. Since

S1 is circle, which is compact, we can calculate Fourier series on it, and in this

way we can relate conjugate variables with each other. The Fourier transform
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on S1 yields a discrete set of integer values which span the integer numbers, and

we can interpret them as the orbital angular momentum (OAM) of a photon if

we consider the coordinate on the circle as the azimuthal coordinate of the wave

function written in polar coordinates. [5].

The fact that the phase structure of a mode with a certain OAM does not de-

pend on the radial coordinate means that if we choose to address the angle-OAM

conjugated variables only (this request is very important for the point here),

changing between the two representations with a Fourier lens, or an equiva-

lent setup, can be done with the contribution of very high-order modes, because

their angular features won’t fall out of our lenses, mirrors and detectors (here

is where the request of addressing exclusively the angular degree of freedom be-

comes fundamental). Even though the radial distribution of the amplitude of a

mode is OAM-dependent (the radial position of the peak of the intensity grows

like
p|`|+1 where ` is the OAM eigenvalue of the mode), if outer parts of the

wave function fail to overlap with a detector, the detected mode is still the same

eigenfunction of the OAM operator.

This suggests that radial modes are more difficult to handle, and in fact this

is the drawback of using modes based on polar coordinates. There is a limitation

on the order of radial eigenmodes that can be addressed by the experimental

apparatus. In other words, the modes can be too big: if some outer part of the

wave function fails to overlap with the detector, the detected mode corresponds

to a superposition of different radial modes. As one gets close to the “limit”,

using smaller laser beams and larger optics helps, but eventually diffraction sets

a hard bound.

To understand the meaning of OAM, we can visualise what transformations

it generates. Let’s start by considering rotations about the propagation axis of a

vector field V , say the z axis. The generator of rotations about z is the z compo-

nent of the total angular momentum operator Jz, this is a simple consequence

of Stone’s theorem. As the field that we rotate using Jz is a vector field, the ro-

tation can be separated into two parts. Intuitively, the two parts are a spatial

rotation of the field, which rotates about the z axis the origin of each vector, but

that leaves the direction where they are pointing (their polarisation) fixed, and a

inner rotation of the field, which rotates the polarisation of each vector, but that

leaves their origin fixed. Now the question is: is this a fancy and useless decom-

position or are there hermitian operators that generate such transformations? It

turns out that the answer is positive, although there are some subtleties. The

inner rotation is generated by Sz, the component of the spin along z, while the
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spatial rotation is generated by the z component of the OAM, Lz. I would like to

say a few words about why it’s important to consider a particular axis, and this is

one of the subtleties of OAM and rotations of massless vector fields. If the field V
is a massless spin-1 field, like a photon field, although a spin 1 field should have

three eigenstates of Sz, there are just two projections of the spin along the propa-

gation axis, and this is because the photon has no mass, i.e. there is no reference

frame in which the photon is at rest, so the spin is always parallel or antiparal-

lel to the direction of propagation. This fact has some interesting consequences.

For instance, the three components Sx, Sy and Sz of the spin commute, which

means that they are not true angular momenta [41, 42]. The orbital part Lx, L y

and Lz also do not follow the commutation relations of an angular momentum.

However, the sums Sx +Lx, Sy +L y and Sz +Lz are true angular momenta, as

they should be, being the components of the total angular momentum, which is

a true angular momentum. As a consequence, we have that OAM and spin are

well defined quantities only in the direction of propagation [41–43].

What are the characteristics of eigenstates of the OAM? To answer this ques-

tion it is sufficient to have a look at the representation of the operator in spher-

ical coordinates: Lz = −i∂/∂φ where φ is the azimuthal angle. Lz has this form

because it is the conjugated quantity to the azimuthal angle and therefore gen-

erates angular rotations about the azimuthal axis, and it follows from the con-

siderations, above, about the Fourier series on the circle. The fields that are

eigenstates must therefore have an azimuthal dependence that is proportional to

exp(i`φ) for some integer value `. As it is possible to see in eq. (3.16), Laguerre-

Gauss modes are indeed eigenmodes of the OAM. The particular form of the

phase turns out to be also rather suggestive.

3.3 Optical fibres

The detection of single photons requires photon counters. In many cases the pho-

tons are guided to the photon counters via optical fibres. The physics of optical

fibres is a fairly wide area, with contributions from materials physics, engineer-

ing and optics [44]. Without covering unnecessary details, I will introduce optical

fibres in connection with Part 3 of this thesis, i.e. that concerned with detection.

An optical fibre is a flexible fibre, usually made of silica, that acts as a waveg-

uide for light. Fibres are characterised by the optical properties of their core and

of the cladding that surrounds it. An important parameter that characterises

the properties of optical fibres is the size of the core, which determines if a fibre
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(a) A surface of constant phase of an LG
beam with `= 1.

(b) A surface of constant phase of an LG
beam with `= 3.

Figure 3.1: Two examples of surfaces of constant phase of LG beams

is Single Mode (SMF) or Multi Mode (MMF) fibre. A SMF lets only the funda-

mental gaussian mode propagate, while a MMF can carry multiple modes. This

optical property of SM fibres becomes important when one wants to measure sin-

gle photons in exactly one eigenstate, or as it will be explained in detail in the

next chapters, by using a pair of fibres, when one wants to measure exactly one

joint mode of an entangled pair of photons.

Light needs to be coupled into the fibre and from the end of the fibre to the

photon counter. In order to do so one has to demagnify the beam to fit in the

core of the fibre. Additionally, one has to make sure that the angle of incidence

is appropriate, giving in total 6 degrees of freedom (3 spatial and 3 angular)

to properly align a fibre and couple the signal in. Different setups can employ

different alignment techniques, some of which can be automated. Bad alignment

can be a major problem and a potential source of error, especially when counting

is set up in coincidence. More details of particular implementations will be given

in Part 3 of this thesis.

3.4 SPDC state and its approximations

3.4.1 General form of the interaction hamiltonian

As anticipated in chapter 1, the origin of the SPDC effect is due to the particu-

lar form of the polarisation density inside the crystal medium. The interaction

hamiltonian that gives origin to the down-converted pairs can be written in this
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(a) Intensity structure of an LG beam
with p = 1, ` = 0 and gaussian width
w0 = 1. Notice that having no OAM
gives no phase singularity at the center,
and that p = 1 gives one dark ring.

(b) Intensity structure of an LG beam
with p = 3, ` = 3 and gaussian width
w0 = 1. Notice that p = 3 gives 3 dark
rings.

Figure 3.2: Two examples of intensity structure of LG beams. The intensity scale
follows this color bar: min max.

way (I’m using Einstein’s notation for tensor sums):

HI =
∫

L3
d3xPkEk =

∫
L3

d3xχ(2)
i jkViVjEk (3.17)

Where χ(2)
i jk is the second order susceptibility tensor; L3 is the integration volume,

i.e. the crystal; E is the field of the pump, V is the field of the generated signal-

idler pairs. Being V a very weak field we can quantise it, while maintaining E a

classical field, and obtain

ĤI =
∫

L3
d3x

∑
k′,s′

∑
k′′,s′′

â†
k′,s′ε

∗
k′,s′ â

†
k′′,s′′ε

∗
k′′,s′′χ

(2)
i jkEkei(ωt−k·r) (3.18)

If χ(2)
i jk does not depend on r we can integrate and obtain

ĤI =
∑
k′,s′

∑
k′′,s′′

â†
k′,s′ε

∗
k′,s′ â

†
k′′,s′′ε

∗
k′′,s′′χ

(2)
i jkEkeiωt

3∏
m=1

sinc
(
1
2

(k−k′−k′′)mLm

)
(3.19)

If we follow the paraxial prescription and concentrate on the z direction and if we

don’t use polarisation-dependent detectors, we can simplify the above expression
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to obtain

ĤI =
∑
k′

∑
k′′

â†
k′ â

†
k′′χ

(2)
i jkEkeiωtsinc

(
1
2
∆kzL

)
(3.20)

In realistic conditions the spatial part of the field E is a gaussian laser pump

field, and interference filters are employed in order to work at degeneracy, i.e.

so that signal and idler have the same frequency, to reach indistinguishability

in the frequency domain. More general kinds of interaction hamiltonians can be

achieved by engineering the susceptibility of the crystal, so that the integration

would give a different function than the sinc. The χ(2) susceptibility, given its

small numerical value, yields the low efficiency of the down-conversion process

(roughly one photon in 1012 is down-converted), so the SPDC states are to be

interpreted as “conditional” on the success of the down-conversion process.

3.4.2 SPDC states used in this thesis

It is probably best to show the most general form of the SPDC state that will be

used in this thesis and its approximations in quick succession, and then in each

chapter we will justify and explain where exactly they come from. In this way

the reader knows what he or she is going to read about, and it will be possible

to concentrate in each chapter on just what is important for the time being. In

chapter 4 we derive the gaussian approximation, in chapter 5 (which of all the

chapters is the one that approaches the problem of Schmidt decomposition in the

most general way) we give a very detailed justification of the general form of the

state, in chapter 6 we carefully introduce the geometry of the beams that allows

us to set up the projection integral onto LG modes, and during the calculations

we will take the limit that generates the thin crystal approximation and finally

in chapter 7 we will show how to set up and use the geometrical approximation.

The SPDC states that will be used throughout the rest of the thesis are:

Full SPDC state

ψ(qi,qs)=N exp

(
−

w2
p

4
|qs +qi|2

)
︸ ︷︷ ︸

pump

phase matching︷ ︸︸ ︷
sinc

(
L|qs −qi|

4kp
+Φ

)
(3.21)
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Gaussian approximation

ψ(qi,qs)=N exp

(
−

w2
p

4
|qs +qi|2

)
︸ ︷︷ ︸

pump

phase matching︷ ︸︸ ︷
exp

(
−L|qi −qs|2

4kp

)
(3.22)

Thin crystal approximation

ψ(qi,qs)=N exp

(
−

w2
p

4
|qs +qi|2

)
︸ ︷︷ ︸

pump

(3.23)

In the full SPDC state there is a constant term in the sinc function, Φ, which

represents a constant phase mismatch between the down-converted photons. It

can be achieved either by tilting the crystal, or by changing its temperature,

depending on the type of crystal employed. Notice that in the Gaussian approx-

imation we set to 0 the phase mismatch: Φ = 0, so the state written under this

approximation cannot account for a phase mismatch. A workaround is to use an-

other approximation, known as “double gaussian” (or “supergaussian”) approxi-

mation, but as we will see in chapter 5, it would be an unnecessary complication.

The argument of the phase matching function in these forms of the SPDC

state is written making the assumption that the angle between the down-converted

photons is not too large. This assumption is conceptually similar to the paraxial

approximation. More about it in the next chapters.

To repeat once more what will be done in the next chapters, in chapter 4 we

will use the state (3.22) and separate the signal and idler contributions using

the smallest number of terms (i.e. we will perform a Schmidt decomposition).

In chapter 5 we will do the same, this time numerically, for the state (3.21). In

chapter 6 we will project the state (3.23) onto a complete family of LG modes

(precisely, we will start with the state (3.21) and then take the limit L → 0 in

order to get past the last integration). In chapter 7 we will project the state

(3.21) for Φ= 0 onto a p = 0 family of LG modes.

As we would like chapters to be roughly self-contained, so that a reader

wouldn’t need to go back and forth between this introductory chapter and the

chapter being read, we will state the relevant notions at the beginning of each

chapter, especially if some particular notation is needed, instead of putting ev-

erything here. As anticipated, this decision is also motivated by the fact that

different chapters need different parts of the description of the SPDC state and
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in general none needs everything.
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Part II

Generation of high dimensional
entanglement
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Chapter 4

Analytical Schmidt
decomposition, Gaussian
approximation

Ah, but if less is more, then just

think of how much more “more”

will be!

(Dr. Frasier Crane, Frasier, 7.13,

2000)

4.1 Introduction

This chapter is based on the paper “Cartesian and polar Schmidt bases for down-

converted photons”, EPJD 66 (7) 183 (2012) [32]. It consists in a detailed study of

the two-photon state that is generated in SPDC. In order to study the entangle-

ment between the two photons, an analytical calculation of the Schmidt decom-

position is performed. The conditions under which this can be accomplished are

to approximate the phase matching function with a gaussian function. This does

not allow to include a phase mismatch, but in a collinear regime (the regime in

which there is no phase mismatch) it constitutes a way of proceeding smoothly

towards the Schmidt decomposition. One of the results that follows from having

an analytical form of the Schmidt decomposition is a closed form of the shared

information. We can then investigate how such quantity would change in case of

imperfect measurements.
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4.2 The SPDC state

In spontaneous parametric down-conversion (SPDC) two lower-frequency pho-

tons, commonly referred to as signal and idler, are generated when a pump

field interacts with a nonlinear crystal [16]. The spatial structure of the down-

converted biphotons depends both on the pump field and on the phase matching.

For a gaussian pump beam it can be written as[18]

ψ(qi,qs)=N exp

(
−

w2
p

4
|qs +qi|2

)
sinc

(
L∆kz

2
+Φ

)
(4.1)

where qs,i are the transverse components of the wave vectors ks,i for the signal

and idler fields, ∆kz is the longitudinal component of the wave mismatch be-

tween the pump wave vector kp and the down-converted photons wave vectors

∆kz = (kp−ki−ks)z '
(|qi −qs|2

)
/kp, where we have made use of the paraxial ap-

proximation. Φ is an additional phase mismatch which depends on the internal

refractive indices (i.e. its value can be tuned by tilting the crystal or by changing

its temperature). For the current analysis Φ= 0.

Near the collinear phase matching regime the analysis can be simplified by

using a gaussian approximation of the phase matching term [18, 21] so the state

can be written in the form:

ψ(qi,qs)∝ exp
(
−|qi +qs|2

σ2

)
exp

(−b2|qi −qs|2
)

(4.2)

where b and σ depend on the pump waist, wp, and wave number, kp, and on the

crystal length, L, in the following way

b = 1
2

√
L
kp

; σ= 2
wp

. (4.3)

If we scale the wavevectors qi,s by a factor Γ′ =p
b/σ such that q=q′/Γ′ then we

can re-write (4.2) as

ψ(q′
i,q

′
s)∝ exp

(
−|q′

i +q′
s|2

bσ

)
exp

(−bσ|q′
i −q′

s|2
)

(4.4)

where

bσ=
√

L
2zr

(4.5)
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with zr =πw2
0/λ the Rayleigh range of the pump beam. Writing (4.2) in this form

allows us to see the symmetry between the two parts of the wave function and

will help explain some of the later results. In particular, we can see that the

results will depend on the product bσ and not b and σ independently.

4.3 Schmidt decomposition

As was anticipated in the first chapter, a useful, and experimentally convenient,

measure of the entanglement is the Schmidt number, K . In order to calculate

this we first need to calculate the Schmidt decomposition of the down-converted

state, which is done by writing it in the form

|Ψ〉AB =∑
i

√
λi|αi〉A|βi〉B, (4.6)

where |αi〉A, |βi〉B are the Schmidt modes, defined by the eigenvectors of the re-

duced density matrices, and the real and positive Schmidt coefficients,
√
λi, are

the corresponding eigenvalues, with each of the factors in the normalized set {λi}

representing the probability of detecting the entangled state in the ith entangled

Schmidt mode |αi〉A|βi〉B. If all of the coefficients
√
λi are different, then the

Schmidt decomposition is unique. Whenever some of the coefficients
√
λi are

equal, one has a choice of infinitely many different Schmidt bases, as the degen-

erate vectors form a vector space for which a basis can be chosen at will and the

Schmidt decompositions are connected by a unitary transformation.

The Schmidt decomposition provides insights into the nature of the bipar-

tite entanglement by determining the natural set of biorthogonal mode pairs (or

orthonormal bases) for the two systems [3, 21, 38, 45, 46] while the coefficients

allow us to calculate the Schmidt number, K (i.e. the average number of modes in

the state) and the entropy of entanglement. By knowing the Schmidt decomposi-

tion explicitly in HG and LG modes, one can easily implement an ideal detection

basis.

As the SPDC state can be equivalently described using either HG or LG

modes it is interesting to perform the Schmidt decomposition in the two cor-

responding coordinate systems. By approximating the biphoton state as a Gaus-

sian in (4.2) it is possible to calculate the Schmidt decomposition in an analytical

form for both. Their relationship can be shown by using the well-known rela-

tionship between HG and LG modes [47]. Note that in both cases, the Schmidt

modes for the SPDC state will have the same form for both signal and idler, due

42



to symmetry requirements [46] and so we will obtain a decomposition of the form:

ψ(qi,qs)=
∑
a,b

√
λa,b ua,b(qi)u∗

a,b(qs), (4.7)

where the functions ua,b depend on the coordinate system employed, and the

labels a and b correspond to different degrees of freedom: in the cartesian case a
and b will be replaced with m and n, in the polar case with ` and p. The m and n
quantum numbers label the two transverse degrees of freedom, while the ` and p
quantum numbers label the angular and radial degrees of freedom, respectively.

The sum is calculated on two indices because we perform the decomposition in

the two-dimensional plane perpendicular to the direction of emission.

4.3.1 Decomposition in cartesian coordinates

In a recent paper, Straupe et al. [48] reported a proof-of-principle experiment

demonstrating that an appropriately chosen set of HG modes constitutes a Schmidt

decomposition for transverse momentum states of biphotons generated by SPDC.

For clarity and completeness we perform an equivalent Schmidt decomposition

in cartesian coordinates before extending our analysis to polar coordinates in the

next section and then demonstrating their equivalence.

The cartesian decomposition requires a separation of each of the variables qi

and qs into a pair of orthogonal variables, q and q⊥, so that the wave function

assumes the form ψ(qi,qs) →ψ(qi, qs, qi⊥, qs⊥). We define the cartesian basis of

HG modes as

hn(Γq)=
p
Γe−Γ

2q2/2Hn(Γq)
(n!2npπ)1/2 (4.8)

where Γ= 2
√

b
σ
= wp

4
√

L
2zr

is the width of the HG modes. If we express the wave

function (4.2) in terms of this basis we obtain

ψ= (1−µ2)
∑

m,n≥0
µm+nhmn(qi, qi⊥)hmn(qs, qs⊥), (4.9)

where

hmn(x, y)= hm(Γx)hn(Γy) (4.10)

and

µ=
∣∣∣∣bσ−1
bσ+1

∣∣∣∣ . (4.11)

Expression (4.9) is the cartesian Schmidt form for the SPDC state with cor-
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responding coefficients:

√
λm,n = (1−µ2)µm+n = 4bσ

(1+bσ)2

∣∣∣∣bσ−1
bσ+1

∣∣∣∣m+n
. (4.12)

Note that these are exactly equivalent to those given in equation (5) of [48].

The way this result was obtained required the following mathematical result:

e−G(x2+y2−2ηxy) =
√

1−|µ|2
∞∑

n=0
µnhn(Γx)hn(Γy) (4.13)

for |η| < 1, G > 0 and where

hn(Γw)=
p
Γe−Γ

2w2/2Hn(Γw)
(n!2npπ)1/2 ,

where Hn(v) are Hermite polynomials. A proof of this formula can be easily

obtained with the use of generating functions for the Hermite polynomials.

In order to apply this result to the state (4.2) we set G = b2 +1/σ2 and η =
(b2σ2 −1)/(b2σ2 +1). A bit of algebra gives the relations

µ=
∣∣∣∣ Gη
(G+Γ2/2)

∣∣∣∣= ∣∣∣∣bσ−1
bσ+1

∣∣∣∣ ;Γ=
√

4b
σ

. (4.14)

Equation (4.2) can thus be written in the form

ψ=N e−G(q2
i +q2

s−2ηqi qs)e−G(q2
i⊥+q2

s⊥−2ηqi⊥qs⊥)

= (1−µ2)
∑
m,n

µmµnhm(Γqi)hm(Γqs)hn(Γqi⊥)hn(Γqs⊥) (4.15)

Let hmn(x, y) = hm(Γx)hn(Γy). Using the properties of Hermite polynomials one

can verify that these functions form a complete orthonormal set for L 2(R2) and

the result in eq. (4.9) follows.

4.3.2 Decomposition in polar coordinates

As LG modes are currently the preferred basis for many spatial entanglement

experiments we also calculate the Schmidt decomposition in polar coordinates.

The polar decomposition requires a separation of each of the variables qi and

qs into a pair of polar variables, so that the wave function assumes the form

ψ(qi,qs) →ψ(ρ i,ρs,ϕi,ϕs), where ρ and ϕ are the radial and angular variables.
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We take the LG modes to have the standard definition in momentum space, and

we add the same scaling factor Γ as in the cartesian case:

LG`
p(Γρ,ϕ)=

√
Γ2 p!

π(p+|`|)! e−
Γ2ρ2

2
(
Γρ

)|`| L(|`|)
p

(
Γρ2) ei`ϕ (4.16)

where L(`)
p are generalized Laguerre polynomials. One can express the wave

function (4.2) in terms of LG modes, of width Γ/
p

2

ψ= (1−µ2)
∞∑

`=−∞

∞∑
p=0

µ2p+|`|LG`
p(Γρ i,ϕi)LG−`

p (Γρs,ϕs). (4.17)

where Γ= 2
√

b
σ
= wp

4
√

L
2zr

.

The above expression is the polar coordinate form for the Schmidt decom-

position of the SPDC state, where µ is defined in (4.11) and the polar Schmidt

coefficients are given by

√
λ`,p = (1−µ2)µ2p+|`| = 4bσ

(1+bσ)2

∣∣∣∣bσ−1
bσ+1

∣∣∣∣2p+|`|
, (4.18)

to be compared to (4.12).

Unlike for the cartesian decomposition, which was performed in one step be-

cause cartesian orthogonal degrees of freedom play the same role, for the polar

decomposition it is necessary to separate the angular variables and the radial

variables in a different way. The angular variables will be separated with the

Fourier transform, while the radial variables will be separated with a variation

of formula (4.13).

As the first step, we can rewrite the wave function (4.2) in polar coordinates

and show that it is a function of the difference of the angular variables. This

fact enforces the conservation of OAM and allows to write it as a sum over the

Fourier components of the difference of the angular variables:

ψ=N exp
[
− 1
σ2

(
ρ2

i +ρ2
s +2ρ iρs cos(ϕi −ϕs)

)
−b2 (

ρ2
i +ρ2

s −2ρ iρs cos(ϕi −ϕs)
)]

(4.19)

= 1
2π

∑
`

√
P`F`(ρ i,ρs)ei`(ϕi−ϕs) (4.20)
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where the sum runs over all integers. The Fourier components are easily found:

√
P`F`(ρ i,ρs)=N e−

(
b2+ 1

σ2

)(
ρ2

i +ρ2
s
)
I|`|

[
2

(
b2 − 1

σ2

)
ρ iρs

]
, (4.21)

where I`(·) is the `th order modified Bessel function of the first kind.

The next step is to decompose each angular eigenfunction into a radial super-

position of orthogonal modes. The mathematical result needed to proceed is:

∞∑
p=0

µ2pr(`)
p (x)r(`)

p (y)= |µ|−|`|
1−µ2 e

− x2+y2
2

1+µ2

1−µ2 I|`|
(
2xy

|µ|
µ2 −1

)
(4.22)

a proof of which can be found in [49]. Here the r(`)
p functions are given by

r(`)
p (x)=

√
2p!

(p+|`|)! e−
x2
2 x|`|L(|`|)

p (x2) (4.23)

where L(`)
p are generalized Laguerre polynomials.

We apply the formula (4.22) to the functions in eq. (4.21). A bit of algebra

yields the correct value of the parameter µ and the correct scaling, Γ, of the

r(`)
p

(
Γρ

)
functions:

µ2 =
(
1−bσ
1+bσ

)2
;Γ=

√
4b
σ

. (4.24)

Notice that the values are analogous to the cartesian case.

Applying these results and normalizing the radial modes, the result in eq.

(4.17) follows. It’s interesting to note how easy it is to get rid of the pair of

angular degrees of freedom. This is a consequence of the mathematical form of

LG modes.

4.3.3 Equivalence of Schmidt bases

The expressions calculated above are equivalent descriptions of the entangled

state and, just as it is possible to transform HG modes into LG modes [47] and

vice versa [6], we are also able to convert between our two Schmidt bases. In

fact, it is straightforward to convert the Schmidt decomposition in cartesian co-

ordinates, equation (4.8), into that in polar coordinates, (4.16). The first step is to

notice that the values of m and n that satisfy m+n = N yield the same Schmidt

coefficient (1−µ2)µN ; for the polar case this happens for all the values of ` and

p that satisfy |`| +2p = N. The number N is called the mode order. We previ-
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ously mentioned that whenever there was a degeneracy of a Schmidt coefficient,

each degeneracy subspace could be used for writing a different Schmidt decom-

position. The mode order labels the degeneracy subspaces, and this is what is

needed for passing between the cartesian and the polar Schmidt bases. The re-

lation between the cartesian basis (4.8) and the polar basis (4.16) is [47, 50]

LG(`)
p (ρ)=

N∑
k=0

b(N)
p,khN−k,k(q, q⊥) (4.25)

where the relation between cartesian and polar coordinates is the canonical one.

Notice how the above formula takes place in a modal order subspace. The b co-

efficients are grouped by the mode order and they span the degeneracy subspace

through the label k, and are given by

b(N)
p,k = ik(−1)p+k

2N/2k!
dk

dµk [(1−µ)n(1+µ)m]t=0 (4.26)

where m+n = |`|+2p = N. This fact enforces the conservation of the mode order

when changing Schmidt basis.

4.4 Analysis of the entanglement

We now look at two ways of assessing the amount of entanglement in the down-

converted state. The first is the Schmidt number, defined in (2.9), the second is

the Rényi entropy.

4.4.1 Schmidt number

The entanglement of a state can be quantified by the probability distribution

of the modes it contains. Intuitively, a state is more entangled whenever this

probability distribution is more ‘spread out’. A particularly important measure

of entanglement is the Schmidt number, K , which corresponds to the number

of significant modes in the Schmidt decomposition [38, 46]. We remind that for

states in the form (4.7), it is defined as

K = Tr[ρ̂]2

Tr[ρ̂2]
≡ 1∑

a,bλ
2
a,b

(4.27)

where ρ̂ is the reduced state formed by tracing over one part of a pure bipartite

state and
√
λa,b are the Schmidt coefficients that appear in the Schmidt decom-
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position of the bipartite state. One can immediately see that the eigenvalues of

the reduced state are just the square of the Schmidt coefficients. A state will

be separable when K = 1 and entangled if K > 1. Applying this to the Schmidt

decompositions calculated earlier, gives

K =
[ ∞∑

m=0

∞∑
n=0

λ2
m,n

]−1

=
[ ∞∑
`=−∞

∞∑
p=0

λ2
`,p

]−1

= 1
4

(
bσ+ 1

bσ

)2
. (4.28)

This result agrees with previous calculations of K [21] and, as is clear from eq.

(4.28) that is independent of the Schmidt basis used, as it should be. This means

that one has the freedom to choose the basis that best matches the experimental

conditions with no consequence on the dimensionality of the Hilbert space that

is spanned by the detection basis.

The effect of the experimental parameters can be seen more clearly if, as in

(4.5), we write bσ = wp
√

L/kp =
√

L/2zr where L is the crystal thickness, wp

and kp are the width and wave number, respectively, of the pump and zr is its

Rayleigh range. Note that K = 1 (which means that the state is not entangled)

whenever bσ = 1, which corresponds to choosing experimental parameters such

that the crystal length is twice the Rayleigh range (L = 2zr).

4.4.2 Rényi entropy

An alternative approach to quantifying the entanglement of an SPDC state is to

calculate its entropy. The most famous entropic function is the Shannon entropy,

which appears in information theory and statistical mechanics [51, 52]. A more

general measure, however, is the Rényi entropy, which is obtained by neglecting

the grouping property of entropy [53, 54]. For a probability distribution {pk} the

Réyni entropy of order α is defined as

Hα({pk})= 1
1−α log2

(∑
k

pαk

)
, α> 0. (4.29)

Convergence of the series above has to be ensured when dealing with values of α

between 0 and 1. Note that when α→ 1 one regains the Shannon entropy.

A simple calculation shows that the Rényi entropy of the Schmidt coefficients
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in either eq. (4.12) or (4.18) is

Hα(bσ)= 2
α−1

log2
(4bσ)α

|1+bσ|2α−|1−bσ|2α . (4.30)

Using equation (4.28) we can rewrite the parameter bσ in terms of the Schmidt

number, K , as bσ = p
K −p

K −1 and hence find the Rényi entropy in terms of

the Schmidt number. Replacing bσ with
p

K −p
K −1 in (4.30) gives the Rényi

entropy as a function of K , which can be approximated by

Hα(K)' log2 K − f (α) (4.31)

where f (α)= 2−log2(α2)/(α−1). For a discussion of the quality of this approxima-

tion, see the next subsection. This tells us that, to a good approximation, valid

for sufficiently high K , different orders of the Rényi entropy differ by a constant

value. Note that f (2) = 0 and thus H2 = log2 K , in fact the Schmidt number is

related to the Rényi entropy of order 2 by K = 2H2 , and H2 can be interpreted as

the number of bits needed to express K .

4.4.3 Von Neumann entropy

For quantum systems we can write the quantum Rényi entropy as

Hα[ρ̂]= 1
1−α log2

[
Tr

(
ρ̂α

)]
, α> 0, (4.32)

where ρ̂ is the reduced density matrix [55]. An important special case of the

Rényi entropy is when one takes the limit α→ 1 in which case (4.32) reduces to

the von Neumann entropy of the reduced state [3, 45]

S[ρ̂]=−Tr[ρ̂ log2 ρ̂], (4.33)

as it should be, the von Neumann entropy being the quantum version of the

Shannon entropy. The entropy of a reduced state is known as either the in-

dex of correlation [56] or the entanglement entropy and the importance of the

entanglement entropy stems from the fact that it quantifies the number of en-

tangled bits (or ebits) within the state [3, 45, 57]. This is very important in case

of qubits: means that if one has n copies of an entangled qubit, with entangle-

ment entropy 0 < S < 1, then one can asymptotically convert this collection to

approximately nS maximally entangled states, for instance using Bennett’s con-

centration algorithm [57, 58]. It has been shown that the maximum amount of
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shared information that two parties can extract from an entangled pure state is

given by entanglement entropy of their state [56, 59–61]. Our results thus enable

us to determine the maximum amount of shared bits per photon pair that two

parties can extract from SPDC states. Using our results, one can also see how

changing the parameters of the pump or the crystal affects the amount of shared

information.

Taking the limit α→ 1 in (4.31), shows that the entanglement entropy for the

SPDC state can be approximated by a logarithmic relation:

S(K)= lim
α→1

Hα ' 1+ log2(K). (4.34)

Such a relation is an approximation that holds well for large enough values of K .

In fact, a Taylor expansion of the non approximated von Neumann entropy for

large K yields

S(K)= 2
log2

−2︸ ︷︷ ︸
∼0.9

+ log2 K − 1
K log8

+O
(

1
K

)2
(4.35)

Without considering such a power expansion, it is not immediately obvious how

much the relation between Schmidt number and von Neumann entropy differs

from a purely logarithmic approximation. As an example of the failure of the

approximation (4.34), note that in the regime where the state is not entangled,

i.e. if there is only one joint mode (and so K = 1) the amount of quantum corre-

lation in the state has to be 0 (dashed line in Fig. 4.1) and not 1 (solid line in

Fig. 4.1). Common experimental conditions where one seeks high dimensional

entanglement are in the range of bσ¿ 1, where the relation (4.34) is accurate.

However, experiments with a tightly focussed pump, or a long crystal, may fall

in the region closer to bσ ∼ 1, where it fails. A plot of the von Neuman entropy

and of its approximation are given in figure 4.1.

An interesting feature of figure 4.1 is that the results are symmetric un-

der the substitution bσ→ 1/bσ. This can be explained by reference to equation

(4.22) which describes the correlations in the two conjugate planes (q′
i+q′

s) and

(q′
i −q′

s). Interchanging bσ and 1/bσ corresponds to ‘squeezing’ in one plane

but ‘expanding’ in the other: the product of the two is constant. Physically this

means that an experiment with a crystal of length L and Rayleigh range zr is

equivalent to an experiment with crystal length azr and Rayleigh range of L/a.

We expect this symmetry to be no longer exact outside the approximation of the

gaussian phase matching function.
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Figure 4.1: A plot of the shared bits of information per photon pair, given in eq.
(4.34), plotted against bσ=

√
L/2zr (solid line) and of the non approximated Von

Neumann entropy (dashed line). Note that they match for large values of K , that
is for small or very large values of bσ.

As we already mentioned, the value of the shared bits reaches its minimum

for bσ = 1. In this regime the state is separable, i.e. not entangled. In fact, for

such a value of bσ, the Schmidt number K is also 1, which means that the state

can be written using only one Schmidt mode, which is separable by definition.

We will now assume a large enough Schmidt number to safely use the definition

(4.34) of the entanglement entropy.

The logarithmic dependence of S(K), for large K , has two important conse-

quences. Both are due to the small value of the slope of the logarithm curve for

large values of the argument. The first is that if we can prepare an SPDC state

with a large number of modes, and thus large Schmidt number, any further in-

crease in the number of modes will provide only a modest increase in both the

entanglement and the number of shared bits that one can extract. The second

consequence is concerned with the non-ideal detection of the entangled state and

is discussed in the following subsection.

It is interesting to compare this result with the work in ref. [29], in particular

the isotropic case, but also [28], where a relation between spectral entanglement

and a control parameter similar to (4.28) is found. In particular we note that

in their assessment of the spectral-temporal part of the down-converted state,

the entanglement strength has its minimum at a value considerably larger than

zero, meaning that spectral entanglement is never small. In our case, however,
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the state is spatially separable when bσ = 1. In both cases, the control param-

eters depend upon the characteristics of the crystal and of the pump beam and

this could have an implication on the extent of hyperentanglement.

4.4.4 Non-ideal detection

There can be many sources of non-ideal detection. These can range from defects

in the measuring apparatus (which give rise to cross-talk between channels, acci-

dental coincidences, dark counts, etc.) to turbulence (that can affect the propaga-

tion of the states), to non-ideal choices of the optical elements in the setup (which

determine a mismatch between the Schmidt modes and the detection modes and

therefore impairs the ability to detect high order modes). We concentrate, in

particular, on cases in which the number of modes that a measurement appa-

ratus can detect is less than the number of modes that the source is producing.

This type of experimental inaccuracy is fundamentally different from the others,

which have been studied for instance in [62, 63], the difference being that in the

previous work it was always assumed that a detector could have access to all the

modes that are produced by the source. Detection of entangled states by projec-

tion onto modes that match the Schmidt modes, such as the ones given by eqs.

(4.12) and (4.18), will yield the maximum amount of shared bits. However, if the

detection basis does not exactly match the Schmidt basis, the effective number of

Schmidt modes that are measured, Keff, will be less than K . Provided the state

is highly entangled (i.e. large K), the logarithmic relationship between the num-

ber of shared bits and the Schmidt number, given in equation (4.34), means that

even if the fraction of entangled modes that are detected, η = Keff/K , is small,

this need not be too detrimental to the fraction of shared bits S(ηK)/S(K) that

one can extract. This result may seem counter-intuitive, however, the key point

to note is that information is measured by entropy, not by the number of modes

[51, 53]. For example, the number of different messages that one could encode

using 4 modes can be described using 2 binary digits, while 8 modes require 3

binary digits, i.e. the information increases by one bit every time the number of

different messages doubles.

To illustrate this idea consider the following example. Suppose that one can

generate a state with a large Schmidt number, K , but that imperfections in the

detection of the modes means that the number of effective modes that can be

accessed is only K /2, i.e. η= 1/2. The number of shared bits will then be S(K /2)=
S(K)−1: every time K is halved, one shared bit is lost. As we see in figure 4.2,

the reduction in the entropy will be negligible for large enough values of K .

52



2�

5
%

l�
o�

s�

50 % loss

75 % loss

25 % loss

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1.0

K

SΗ

S

Figure 4.2: A plot of the fraction of shared bits per photon pair as a function of
K for three types of measurements that yield different amounts of loss of joint
modes. The solid lines are derived from the logarithmic approximation (4.34),
the dashed lines are derived from the non-approximated Von Neumann entropy.

If one is interested in determining the experimental parameters needed to

retain a certain amount of shared bits, in Fig. 4.3 we recast Fig. 4.2 in terms of

bσ. To give some realistic numbers, even if the detection basis allows only half of

the modes to be detected, it is still possible to retain more than 90% of the shared

bits, if states with more than ∼ 500 entangled modes are used, which corresponds

to bσ∼ 0.02. Values of hundreds of entangled modes can be produced within the

limitations of experimental equipment [64].

4.5 Conclusions

We have seen how an analytical Schmidt decompositions for the biphoton state

produced using SPDC can be derived in both cartesian and polar coordinates

for cases in which the sinc phase matching term can be approximated with a

gaussian. The resultant modes exhibit either the orthogonal characteristics of

Hermite-Gauss modes of width Γ or the angular and radial characteristics of

Laguerre-Gauss modes of width Γ/
p

2, respectively, and can be shown to be equiv-

alent using the transformation relations between HG and LG modes. An entropic

analysis of these different derivations confirms that the strength of the spatial

entanglement is independent of the choice of coordinates and gives the freedom
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Figure 4.3: A plot of the fraction of shared bits per photon pair as a function of
bσ for three types of measurements that yield different amounts of loss of joint
modes. The solid lines are derived from the logarithmic approximation (4.34),
the dashed lines are derived from the non-approximated Von Neumann entropy.

to choose the Schmidt basis that is most appropriate for given experimental con-

ditions. We have seen that an insight into the strength of the entanglement

can be gained by calculating the Schmidt number or the Rényi and von Neu-

mann entropies for the SPDC state. We saw under what conditions it is safe to

use a logarithmic relation between the number of Schmidt modes and the maxi-

mum number of bits per photon that one can extract. Such logarithmic relation

demonstrates that, for highly entangled states, the information loss due to non-

ideal measurements can be only a small fraction of the maximum information.

We finally showed, given any non-ideal measurement, which will allow to detect

a smaller number of entangled modes Keff, what is the Schimdt number K that

is needed in order to retain a given fraction of shared bits, and from this what is

the experimental parameter bσ that one should look for.
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Chapter 5

Numerical Schmidt
decomposition

5.1 Introduction

This chapter is based on the paper “Spatial Schmidt modes in parametric down-

conversion”, submitted to EPJD, in press (2012) [33]. In this chapter we will see

how a numerical approach can yield more insight on the entanglement between

down-converted pairs. In particular, the issue of being able to take into account a

phase mismatch between the photons, when calculating entanglement strength

and detection probabilities, has not yet found a full resolution. Approximations

have been made, and with these, very interesting analytical results have been

found [32, 48]. However, approximations naturally restrict the domain of valid-

ity of the results. The most common approximation used in SPDC theory (replac-

ing a sinc function with a Gaussian function) is discussed in this chapter. Our

key challenge is how to decompose (with numerical tools) the two-photon field

A(q1,q2) into its Schmidt modes ui(q1) and vi(q2):

A(q1,q2)=∑
i

√
λiui(q1)vi(q2), (5.1)

without the aid of the gaussian phase matching approximation. We will look at

a numerical analysis of the entanglement strength, of the Schmidt modes, and

of the detection amplitudes without the usual approximations. The first part is a

discussion of the physical system under study and a presentation of the meaning

of the Schmidt decomposition. In the second part we will analyse the numerical

results, and study some interesting features of the structure of the entanglement.
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5.2 Theory

5.2.1 Generated two-photon field

We consider the generation of entangled photon pairs via the nonlinear optical

process of SPDC, where single pump photons which propagate through a nonlin-

ear crystal occasionally split in two photons of lower energy. We operate in the

quasi-monochromatic frequency-degenerate limit, by combining a narrow-band

cw pump laser at frequency ωp with narrow-band spectral filters at the degener-

ate frequency ω1 =ω2 =ωp/2. When the pump field is spatially coherent and the

spectral filtering is sufficiently narrow, the generated two-photon state (ignoring

polarisation and therefore describing both type-I and type-II down-conversion) is

pure and has the general form [4]

|Ψ〉 =
∫ ∫

A(q1,q2)â†(q1)â†(q2)dq1dq2|0〉, (5.2)

where â†(qi) is the creation operator of a plane wave with transverse momentum

qi and i is the photon label.

Formally, the two photon amplitude A(q1,q2) is just the SPDC wavefunction.

Notice that we are using the transverse coordinates in momentum space. In

chapter 4, as we set up in detail the geometry of the beams, we will start from

a more general amplitude which is a function of the complete k vectors (not just

their transverse component q), and then show how the transverse part is indeed

the one that matters most to us.

One of the factors of the two-photon amplitude A(q1,q2) in eq. (5.2), is the

phase matching function, which describes the efficiency of the down-conversion

process, as a function of transverse k-vectors. The longitudinal phase match-

ing function in the two-photon amplitude is a sinc function, being the Fourier

transform of the step function that represents the uniform amplitude of creating

the photon pair along the crystal. It is usually approximated with a Gaussian

function if no or very little phase mismatch (indicated by Φ) is present, as it

was done in chapter 2. However, the description that derives from such approx-

imation cannot account for an arbitrary phase mismatch. Moreover, even in the

regime where Φ= 0, the difference in shape of the approximated amplitude from

its complete form has an effect in the analysis of the down converted state, as it

will be shown.

The the two-photon amplitude in the far field, or in momentum space, presents

a ringed pattern, due to the sinc function. If the phase is matched (Φ = 0) the
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sinc gives a bright spot in the centre and secondary rings around it. Most of the

intensity of the field is concentrated in the central area, and it is for this reason

that in the case of perfect phase matching it is possible to roughly approximate

the phase matching function with a gaussian function (see below for more de-

tails). We would like to analyse also situations in which Φ 6= 0. In this case the

argument of the sinc function is modified by a constant value, see eq. (5.4). The

effect in the amplitude for negative and decreasing Φ is to lose the central spot

and obtain a more divergent field, in fact every secondary ring obtains a larger

radius the lower the value of Φ. On the other hand, for positive and increasing Φ

the effect is to obtain an overall weaker field, less divergent, with a central spot

intensity that depends on the value of Φ. We will refer to the effect of tuning Φ

as “opening and closing the rings”.

Sinc phase matching

The complete form of the two photon amplitude is [21]

A(q1,q2)∝ Ep(q1 +q2)sinc
(
1
2
∆kzL

)
, (5.3)

where Ep(q1 +q2) is the transverse momentum profile of the pump beam (qp =
q1 +q2). The function sinc

(1
2∆kzL

)
quantifies the influence of phase matching,

where L is the crystal length and where the projected wave-vector mismatch

∆kz =∆kz(q1,q2) is a function of q1 and q2.

We make the general Eq. (5.3) more specific by inserting a (rotationally-

symmetric) Gaussian pump profile. Other, more general, types of pump profiles

can be treated analytically in the limit for a short crystal [65]. We also assume

non-critical phase matching, to remove any linear dependence of ∆kz on qi, and

perform a Taylor expansion of ∆kz(q1,q2), neglecting a small term that scales

with the difference between the refractive indices at the pump and SPDC wave-

length multiplied by |q1 +q2|2. Following the notation of Law and Eberly [21],

we thus rewrite Eq. (5.3)

A(q1,q2)∝ exp
(−|q1 +q2|2/σ2)×sinc

(
b2|q1 −q2|2 +Φ

)
, (5.4)

where σ = 2/wp, for a Gaussian pump profile Ep(x) ∝ exp(−|x|2/w2
p), and b2 =

L/(4kp), where kp = nωp/c is the momentum of a pump photon in the crystal

[18], and Φ is the collinear phase mismatch. Note that σ and b have the exact

same meaning as in the previous chapter, but now they belong to the general

SPDC state.
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Although this challenge has been tackled mathematically by Law and Eberly

[21], several aspects and physical implications of the Schmidt decomposition re-

mained undiscussed and are still a topic of active research [32, 48]. The work

that is summarised in this chapter aims to be as complete as possible in this

discussion.

Gaussian phase matching

As we saw previously, to obtain analytic solutions, many authors [18, 21, 32]

replace the sinc-type phase matching function at Φ= 0 by its Gaussian approxi-

mation, using the substitution sinc
(
b2|q1 −q2|2

)≈ exp
(−b2|q1 −q2|2

)
. The Gaus-

sian approximation, as explained in chapter 2, allows an exact Schmidt decompo-

sition with Hermite-Gaussian or Laguerre-Gaussian eigenmodes [21, 32, 48, 66].

The Schmidt number of this decomposition, i.e., the effective number of modes

that participate in the modal decomposition, is [21]

K = 1
4

(
bσ+ 1

bσ

)2
. (5.5)

Most experiments operate in the weak-focusing limit (large wp, long Rayleigh

range), where bσ¿ 1 and K ≈ 1/(2bσ)2. The generic beam waist of all Hermite-

Gauss (HG) or Laguerre-Gauss (LG) modes, defined by the fundamental mode

u0,0(q) = exp(−q2/q2
0), is q0 = p

σ/(2b) being the geometric mean between the

width of the pump profile and the Gaussian phase matching function.

The eigenmodes of the Gaussian Schmidt decomposition are not unique (be-

cause of the degeneracy of all the eigenmodes belonging to a fixed mode or-

der) and, for example, can equally well be taken as the Hermite-Gaussian or

Laguerre-Gaussian set of modes.

The numerical results presented in section 3 suggest that the Gaussian ex-

pansion can be improved somewhat by writing sinc
(
b2|q1 −q2|2

)≈ exp
(−α2b2|q1 −q2|2

)
,

where α is a (scaling) constant chosen such that both functions satisfy some com-

mon criterium. This modified scaling results in a replacement of b → αb in all

expressions that originate from the Gaussian approximation. We postpone the

discussion on the rescaling factor α at the end of the chapter, as additional con-

cepts have to be introduced first. In Figure 5.1 we plot the sinc phase matching

(solid green line), comparing it to its Gaussian (red dashed) and supergaussian

(or “double gaussian”, blue dashed) approximations. Notice that the Gaussian

approximation exp(−q2) scales very rapidly, thus missing out high-q modes. The

sinc function sinc(q2), instead, has a 1/q2 overall scaling, letting high-q modes
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have an effect on the Schmidt decomposition. The supergaussian exp(−bq4) with

b = 0.193 is a better approximation than the Gaussian, as it captures the central

scaling of the sinc much better [67, 68]. This is due to the Taylor expansion of the

supergaussian having the same powers as the sinc. However, there are two main

problems associated with the supergaussian approximation. The first is that al-

though it models the central scaling for a wider range of q values, it misses the

1/q2 overall scaling too, failing to carry high-q modes, and it does not display any

ring structure. The second problem is that analytically it is not an advantage:

for perfect phase mismatch it is possible to find angular Schmidt modes in terms

of Bessel functions of two variables, which are defined in [69, 70], but as the lit-

erature on generalised Bessel functions is poorer than the literature on single

variable Bessel functions, it is perhaps an unprofitable effort to try to find the

full analytical Schmidt decomposition using the supergaussian approximation,

and as we will show in section 3.3, a heuristic rescaling of the Gaussian approx-

imation is sufficient to express the Schmidt number correctly for a perfect phase

mismatch.

-4 -2 2 4

0.5

1

Figure 5.1: (colour online) Comparison between the three different phase match-
ing functions. The solid line is the full sinc form sinc(q2), the dashed lines are the
gaussian (red, narrower) exp(−q2) and optimised supergaussian (blue) approxi-
mation exp(−0.193q4). The similarity between the Gaussian and sinc functions
is questionable, as it is the similarity between supergaussan and sinc for the
overall scaling and for the oscillations at q & 2.
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5.2.2 Schmidt decomposition and Entanglement

For the arguments in this chapter it is sufficient to recall that the Schmidt de-

composition of an entangled state is its representation in the joint basis that

maximises the mutual information. Notice that in Eq. (5.1) the joint modes are

the product of one mode per subsystem (hence each Schmidt mode is separa-

ble). The decomposition, in fact, also specifies the weights
√
λi of single joint

modes ui(q1)vi(q2), the square of which is interpreted as the normalised prob-

ability (via
∑
`λ` = 1) of detecting the i-th joint mode, were we to measure in

the Schmidt basis. The more the distribution of the probabilities {λi} is “spread

out” the more entangled the state is. This leads to the natural choice of choosing

entropic measures to quantify entanglement. In our case we choose the Schmidt

number K = 1/
∑

iλ
2
i , where the probabilities are normalised:

∑
iλi = 1.

The Schmidt decomposition of the state (5.2) can be thought as made of two

stages, because we are working with two pairs of coordinates: an angular coor-

dinate per subsystem and a radial coordinate per subsystem. In the first stage

we separate the angular variables, in the second stage we separate the radial

variables. The decomposition will have therefore two sums, and the weights and

joint modes will have two indices [32].

We start with the two-photon amplitude A(q1,q2) and we write it in polar

coordinates (which we call q1,2 and θ1,2). The rotational symmetry of A(q1,q2)

limits the angular dependance to a function of (θ1−θ2) only. The orthogonality of

the azimuthal functions ei`(θ1−θ2) allows for an easy extraction of the quantity

√
P`F`(q1, q2)=

∫ 2π

0
A(q1,q2)e−i`(θ1−θ2)d(θ1 −θ2). (5.6)

This means that with a Fourier transform we can write the two photon am-

plitude in a joint basis of the OAM:

A(q1,q2)= 1
2π

∑
`

√
P`F`(q1, q2)ei`θ1 e−i`θ2 , (5.7)

where P` is the probability of measuring a pair of photons with OAM ` and

−`, were we to measure in the joint OAM basis, and the radial amplitude is

normalised by imposing
∫ |F`(q1, q2)|2q1q2 dq1dq2 = 1. In this way we have sep-

arated the two angular variables, and each joint OAM mode is labelled by an

integer number `. We can therefore proceed to the second stage and consider the

functions
√

P`F`(q1, q2) and separate the radial variables. In order to make this

separation easy and truly one-dimensional, we follow the reasoning of Law and
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Eberly [21] by introducing a prefactor
pq1q2, to account for the Jacobian of the

transformation q→ (q,θ), and separating the radial function as

p
q1q2

√
P`F`(q1, q2)= ∑

p≥0

√
λ`,pφ`,p(q1)φ−`,p(q2). (5.8)

Symmetry considerations also lead to the separated functions to be equal, i.e. we

use φ(q1) as well as φ(q2). The prefactor
pq1q2 is needed to facilitate the simple

normalisation of the eigenfunctions (
∫
φ`,p(q)φl,p′(q)dq = δp,p′) that is required

for the numerical decomposition that we discuss later on. For convenience, we

will also define u`,p(q)≡φ`,p(q)/
pq such that

∫
u`,p(q)ul,p′(q)qdq = δp,p′ .

Note that we had to introduce the non negative, integer label p. Such quan-

tum number labels radial eigenmodes. The numerical analysis will lead to some

more insight on this quantum number, as we will show in section 5.3. After

putting these two results together we obtain the full two-dimensional Schmidt

form of the two-photon amplitude

A(q1,q2)=
∞∑

`=−∞

∞∑
p=0

√
λ`,pu`,p(q1)u−`,p(q2). (5.9)

Note that this form is analogous to Eq. (5.1) with ui(q)≡ u`,p(q)ei`θ.

The radial shape φ`,p(q) of these profiles depends strongly on the collinear

phase mismatchΦ; it resembles the well-known Laguerre-Gaussian (`, p)-profiles

only for Φ≈ 0, but deviates strongly from these profiles at Φ 6= 0 (see below). As

anticipated, the effective number of spatial modes (which can be thought of as

the strength of the entanglement) is given by the Schmidt number

K =
(∑
`,p
λ2
`,p

)−1

(5.10)

where the probabilities are normalised:
∑
`,pλ`,p = 1.

A simple scaling argument shows that the outcome of the decomposition de-

pends only on two dimensionless parameters. The first parameter is the product

bσ=
√

L
w2

pkp
=√

LR /2 where we define LR to be the crystal thickness normalised

to the Rayleigh range of the pump beam, LR ≡ L/zR . The second parameter is

the collinear phase mismatch Φ.
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Entanglement in orbital angular momentum

The rotational symmetry of the considered geometry and the associated conser-

vation of OAM makes the azimuthal component of the entanglement easier to

address and more fundamental than its radial counterpart. Hence, most experi-

ments have concentrated on the OAM part of the spatial entanglement. In this

context we are interested in the probability P` (which appears in Eq. (5.7)) of

detecting a pair of photons with OAM, respectively, ` and −`. Such probability is

related to the weights λ`,p via P` =∑
pλ`,p. P` is called the spiral weight, its full

distribution {P`} is called the spiral spectrum, and the width of this distribution

is called the spiral bandwidth [20]. The dimensionality of the generated OAM

entanglement is defined by the azimuthal Schmidt number

Kaz =
(∑
`

P2
`

)−1

. (5.11)

In case of high-dimensional spatial entanglement (K À 1) and Φ≈ 0, the relation

between both forms of entanglement is Kaz ≈ 2
p

K , as the effective range of the

` labels is typically ≈ 4× as large as that of the p labels. This statement is exact

for the Gaussian approximation of the two-photon field, where [66]

λ`,p = C1 exp(−(2p+|`|)/C2), (5.12)

where C1 and C2 are two constants. However, it does not apply to the full ex-

pression for Φ 6= 0. Our numerical approach allows us to analyse what happens

also in such regime.

5.2.3 Optical etendue

The Schmidt decomposition of the two-photon field is equivalent to a coherent

mode decomposition of the coherence function of the reduced one-photon state.

The reduced one-photon operator ρ̂(1), obtained by tracing |Ψ〉〈Ψ| over all possi-

ble states of the second photon, is an incoherent (and weighted) mixture of all of

all Schmidt states. The extent to which the reduced density operator is mixed re-

flects the degree of entanglement for the pure two-photon state |ψ〉. The Schmidt

number K can thus be estimated by comparing the one-photon coherence of the

SPDC emission with that of more standard optical sources.

At sufficiently large K À 1, the reduced one-photon field is quasi-homogeneous,

i.e., the reduced one-photon density matrix ρ(1)(q1,q′
1) factorizes in a product of
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an intensity function of sum coordinate (q1+q′
1) and a coherence function of dif-

ference coordinate (q1 −q′
1). The Schmidt number K of the quantum state then

reduces to the normalised optical etendue N ≡ AΩ/λ2 of the one-photon field,

where A is the effective area of the source and Ω is its effective (solid) opening

angle [64, 66]. The optical etendue quantifies the effective number of transverse

modes contained in a partially-coherent beam. The relation K ≈ N becomes ex-

act if the source is quasi-homogeneous and if the effective area A and opening

angle Ω are defined in a convenient way [64].

The relation between K and N yields an easy and intuitive interpretation

of the Schmidt dimension. For this, we convert the opening angle of the source

Ω into a transverse coherence width wcoh in the source plane, which we conve-

niently define as

wcoh ≡ 4b =
√

Lλ0

πn
, (5.13)

where L is the crystal length, λ0 is the emission wavelength in vacuum and n is

the refractive index. The transverse coherence width wcoh of the one-photon field

is similar to the width of the two-photon coherence function V (~x1−~x2) defined in

refs. [64, 71] as the Fourier-transform of the sinc-type phase matching function.

With the above definition of wcoh, the Law-and-Eberly expression for the Schmidt

number at bσ¿ 1 reduces to the logical form

K ≈
(

1
2bσ

)2
=

( wp

wcoh

)2
, (5.14)

which shows that the Schmidt number K simply counts the number of “inde-

pendent" coherent regions in the source. The above definition of wcoh also pro-

vides for an easy rewrite of the results of the Gaussian expansion discussed in

subsection (2.1.2). The width w0 of the fundamental Gaussian Schmidt mode

u0,0(~q) ∝ exp−|~q|2/q2
0 in real space is w0 = 2/q0 = pwpwcoh, being the geomet-

ric mean between the pump waist and the transverse coherence length of the

generated field. The modal amplitude of the Gaussian u`,p mode is√
λ`,p ≈ exp[−(2p+|`|)/K1D], (5.15)

where K1D = wp/wcoh is the one-dimensional equivalent of the Schmidt number.
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5.2.4 Projective measurement of OAM entanglement

In this subsection, we will briefly compare two experimental techniques that

have been developed to characterise in particular the OAM contents of two-

photon sources. We distinguish between measurements with bucket detectors,

which record the complete field, and measurements with single-mode detectors,

which record projected components of the field.

A Schmidt analysis of the two-photon field with bucket detectors, which by

definition have no spatial sensitivity, requires two-photon interference before

measurement. More specifically, one should measure the visibility of the famous

two-photon (Hong-Ou-Mandel) dip [72] as a function of the relative alignment of

the interfering beams. Measurements with one beam rotated with respect to the

other provide complete and unbiased information on the azimuthal part of the

entanglement [73, 74], as the visibility of the observed two-photon interference

is

V (∆θ̃)∝
∫ ∫

A∗(q1, q2;∆θ)A(q1, q2;∆θ+∆θ̃)q1q2dq1dq2

=
∞∑

`=−∞
P` exp(i`∆θ̃), (5.16)

where ∆θ̃ is the rotation angle between the interfering two-photon fields, which

is twice the rotation angle applied in a single arm of the interferometer. This

angular dependence originates from the interference between two-photon fields

with either the ` or the −` photon in arm 1 and the other photon in arm 2, i.e. the

azimuthal terms both contribute of the same amount. Equation (5.16) is based on

the entanglement between these contributions and the natural symmetry P−` =
P`.

A Schmidt analysis of the two-photon field with single-mode detectors, each

comprising a single-mode fiber positioned in front of a detector, requires some

form of mode transformation before projection. This mode transformation is typ-

ically performed with (a set of) fixed phase plates or an (adjustable) spatial light

modulator (SLM). The combined transformation-projection technique has been

used successfully for the analysis of the OAM contents of the two-photon field

[64]. The generated two-photon field is then typically projected onto two modes

of the form φd(q)exp(i f (θ)), where φd(q) is the (image of the) mode profile of

the fiber and exp(i f (θ)) is the phase profile imposed by the phase-transforming

element, which typically has the standard form exp(i`θ). The rotational sym-

metry of the generated field A(q1,q2), which manifests itself in the generation of

photon pairs with opposite OAM only, allows one to derive simple expressions for
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the projected two-photon field. It is easy to show that the maximum information

contained in these projections, for any combination of azimuthal phase profiles

f (θ), is contained in the function

gproj(∆θ)=
∫ ∫

A(q1,q2)u∗
d(q1)u∗

d(q2)q1q2dq1dq2

∝
∞∑

`=−∞

∞∑
p=0

C`,p

√
λ`,p exp(i`∆θ), (5.17)

where ∆θ ≡ θ1 −θ2. The projection coefficients

C`,p =
∣∣∣∣∫ u`,p(q)ud(q)q dq

∣∣∣∣2 ≤ 1, (5.18)

quantify the spatial overlap between each generated Schmidt mode and detector

mode. They also quantify the bias imposed by the mode projections.

As an example, let us consider the projection on a detector mode ud(q) that is

much wider than a range of lower-order u`,p(q) modes. Under these conditions,

the projection coefficients will have a strong bias towards the p = 0 modes, as all

u`,p(q) with p ≥ 1 modes exhibit at least one oscillation (in the radial direction)

making C`,p 6=0 ¿ C`,p=0. Hence, projection experiments are mainly sensitive

to the p = 0 components of the two-photon field. A calculation of the projection-

imposed bias on the `modes is more complicated. A rigorous analysis, in terms of

Lerch transcendent functions, is presented in [75], which is discussed in chapter

7.

5.3 Numerical results

In this section we will present the numerical results for the general Schmidt de-

composition of Eq. (5.4) into Eq. (5.9). The topics that it allows us to address

are the distribution of the modal weights λ`,p and their separation over the az-

imuthal and radial degrees of freedom, the shape of the Schmidt modes u`,p(q),

and the influence of the collinear phase mismatch Φ.

The numerical analysis is relatively straightforward. We start from the gen-

erated two-photon field A(q1,q2) defined by Eq. (5.4) and perform an OAM de-

composition into radial-only function
√

P`F`(q1, q2) using Eq. (5.6). The an-

alytical integration is performed using an approximation that works well for

bσ . 0.2, which is the most relevant experimental situation as it corresponds

to a weakly focused pump. Employing the analytical integration of the angu-

lar variable yields analogous final results in much less time, as the numerical
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methods consist only in a diagonalisation of matrices. The prescribed radial

integration is performed on a discrete equidistant grid of q-values. After mul-

tiplication by a factor
pq1q2, to account for the Jacobian of the transformation,

we obtain the scaled N × N matrix F with a dimension set by the required ac-

curacy (N is typically in the order of the hundreds). The Schmidt decomposition

in Eq. (5.8) of
√

P`F`(q1, q2) is equivalent to the diagonalisation of the matrix

F. To avoid potential complications associated with the two-particle nature of

the φ(q1)φ(q2) phase space, we first multiply F by its transpose F†, in order to

obtain the equivalent of the reduced one-photon density matrix, and diagonalize

the matrix FF† = F2. The diagonalisation of the matrix F2 yields three matrices:

F2 = MEMT , two of which represent the modes (M) and one of which is diagonal

(E) and represents the eigenvalues. The resulting eigenvalues are λ`,p (at fixed

`); the resulting eigenmodes are φ`,p =pqu`,p(q).

In the following subsection we present the weights in the matrix E and we

show what are the consequences of having a nonzero phase mismatch. Similarly,

we also present the modes in the matrix M, and we show the consequences of

having a nonzero phase mismatch.

5.3.1 Schmidt weights

As a typical example we will concentrate on the case bσ = 0.05, which for in-

stance corresponds to a 2 mm thick PPKTP pumped by a wp = 230 µm diameter

pump laser at a pump wavelength of 413 nm.

Phase mismatch Φ= 0

Figure 5.2 is a false-colour plot of the probabilities λ`,p of the modal decompo-

sition for bσ = 0.05 and Φ = 0. The Schmidt numbers deduced from this calcu-

lation are K ≈ 231 and Kaz ≈ 32, respectively. These numbers satisfy the ap-

proximate relation Kaz ≈ 2
p

K associated with the triangular mode spectrum in

figure 5.2. They are, however, considerably larger than the values of K ≈ 100

and Kaz ≈ 20 expected from a simple Gaussian expansion based on the approxi-

mation sinc(q2) ≈ exp(−q2). The reason for this difference, as anticipated, is the

fact that the Gaussian approximation is missing high-q transverse modes.

Phase mismatch Φ< 0

We consider now geometries with non-perfect phase matching and in particular

the case Φ < 0 for which the SPDC rings have opened up. The choice of Φ = −4
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Figure 5.2: False colour plot of the modal spectrum λ`,p (with p horizontal and `
vertical) for bσ= 0.05 and Φ= 0. Note the typical triangular form and the ≈ 4×
larger range of relevant ` values as compared to p-values. The intensity scale
follows this colour bar: min max.

is a compromise between having a low enough value to show the different distri-

bution of Schmidt weights and avoiding an excessive computational complexity.

Figure 5.3 is a false colour plot of the probability λ`,p of the modal decompo-

sition calculated for bσ = 0.05 and Φ = −4. On account of phase mismatch, the

full 2-dimensional Schmidt number has increased by a factor ≈ 2× to K ≈ 425.

This increase coincides with a similar increase in the space angle and the angu-

lar integrated output of the SPDC source. Most noticeably, the spread in OAM

values is now much larger then in the Φ= 0 case, at the expense of the spread in

p values. The azimuthal Schmidt number has increased from its prior value of

32 at Φ= 0 to Kaz ≈ 72.

Phase mismatch Φ> 0

For the sake of completeness we consider now the case of positive phase mis-

match, Φ > 0. Similarly to the case of negative phase mismatch, the choice of
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Figure 5.3: False colour plot of modal spectrum λ`,p (with p horizontal and `

vertical) for bσ = 0.05 and Φ = −4. Note the elongated form in the ` direction
and the reduced width in p. The intensity scale follows this colour bar: min

max.

Φ= 4 is a compromise between having a high enough value to show the different

distribution of Schmidt weights and avoiding an excessive computational com-

plexity. In this case the SPDC rings have closed, and the efficiency of the down-

conversion process is considerably lower, normally by two orders of magnitude,

which degrades the S/N ratio by a large extent.

Figure 5.4 is a false colour plot of the eigenvalue λ`,p of the modal decompo-

sition calculated for bσ = 0.05 and Φ = 4. As compared to the case of negative

detuning, we find that the width in the p direction has increased at the expense

of the width in the `-direction. In this example we calculated values of K ≈ 625

and Kaz ≈ 57.

The optical etendue argument presented in Sec. (5.2.3) allows one to explain

why the spatial entanglement gets concentrated in the azimuthal degree of free-

dom, instead of the radial one, forΦ< 0 and why this concentration hardly occurs

for Φ > 0. Our geometric argument is based on the notion that the transverse

coherence width in the azimuthal and radial directions are comparable, being
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Figure 5.4: False colour plot of modal spectrum λ`,p (with p horizontal and ` ver-
tical) for bσ= 0.05 and Φ= 4. Note the strongly elongated form in the p direction
and the reduced width in ` as compared to the case Φ=−4. The intensity scale
follows this colour bar: min max.

Fourier related to the size of the pump beam. At negative detuning Φ< 0, where

the fundamental SPDC ring opens up, the circumference of this SPDC increases

with phase mismatch while the radial thickness of the ring decrease accordingly.

As a result, the number of spatial modes that fit in the azimuthal (`) direction,

increase while the number of modes in the radial (p) direction decrease. The to-

tal area of the open SPDC ring at Φ¿−1 is approximately twice as large as the

area of central emission at Φ = 0, making the 2-dimensional K also about two

times larger. At positive detuning Φ> 0 the fundamental SPDC ring disappears

and only weak secondary rings remain. As these rings are numerous and have

similar intensities, the number of spatial modes in the Schmidt decomposition

can be quite large and is more evenly distributed over ` and p mode numbers.

However, we stress once again that if Φ> 0 the down-conversion process is inhib-

ited, as the phase matching function is a measure of efficiency, so even though

the single pairs are more entangled, their number can decrease considerably.

Next we single out the OAM part of the entanglement for the considered
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cases Φ= 0,−4 and 4. We do so by summing the modal weights λ`,p, depicted in

figures 5.2, 5.3 and 5.4, over its radial quantum number p. What one then ob-

tains are three different probability distributions that show different behaviour

over the same range of ` values. Figure 5.5 shows the modal weights (
∑

pλ`,p)

of the OAM modes. Note that the behaviour changes from Lorentzian-like to

Gaussian-like as the phase mismatch goes from positive to negative values [74].

We stress that the case of positive detuning is experimentally unfavorable on

account of the limited brightness of a source where the fundamental SPDC ring

has closed/disappeared.

-100 -50 0 50 100

0.02

0.04

Figure 5.5: Probability distributions of OAM modes (summing over p). The
Lorentzian-like distribution (red) is for positive mismatch (Φ = 4) and the
Gaussian-like distribution (blue) is for negative phase mismatch (Φ=−4).

5.3.2 Schmidt modes

In this subsection we will present a series of numerical results that show the

radial profile of the Schmidt modes in momentum space. The profile of the modes

is influenced by the presence of a phase mismatch, and as anticipated the modes

resemble the LG modes only at Φ= 0.

Phase mismatch Φ= 0

Figure 5.6 shows the result of the singular value decomposition for bσ = 0.05.

What is represented is a portion of the matrix M corresponding to a value of the

OAM of 10. This choice gives a good example of the radial displacement in k-

space between Schmidt modes that we observe. Such behaviour will become clear
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below, where we compare modes from a perfect phase matched case to modes

from a negatively detuned phase mismatch. Each horizontal line represents the

intensity profile |φ`,p(q)|2 of a radial mode φl,p(q) with fixed ` and a different

radial quantum number p. The first three modes in figure 5.6 are plotted in

figure 5.7.

We would like to give an interpretation of the behaviour of the Schmidt modes

in figure 5.6. Notice that each eigenmode resembles a common eigenmode from

the family of Hermite-Gauss modes, only centred at specific distances from the

origin. There is a one to one correspondence between a family of modes and a

region between zeros in the function
√

P`F`(q1, q2). Such function represents

the joint amplitude density of the photons having radial momentum q1 and q2,

respectively (examples are given in figures 5.12 and 5.13). Therefore it’s also

closely related to the radial sinc profile of the down-converted beam. Such cor-

respondence might be explained by considering the size of the coherence length

compared to the size of the nonzero regions in
√

P`F`(q1, q2): if the coherence

length is smaller than the thickness of a ring, there can be no strong coherence

between photons in different rings, and any wave function in a single ring can be

written in terms of a set of fundamental modes of fixed OAM and variable p.

We find the organisation of the eigenmodes in groups quite remarkable. Each

of the groups looks like a local complete family of HG-like modes, giving the im-

pression of the existence of an additional symmetry and therefore of a quantum

number that could be specified to identify each group. This can be explained if the

matrix F2 is taken into account and in particular the shape of the lobes that form

along the diagonal, as in figure 5.12 and 5.13. They can be thought of as potential

wells, which have to be filled by eigenmodes. For each of them the eigenmodes

build in local families because from the Taylor expansion of the neighbourhood of

the bottom of any potential well we can infer that the HG modes form a natural

set of local modes for each well. The potential walls between neighbouring wells

could be tunneled by the modes, if their size were large enough to reach over to

the next well. In practice, the size of each mode is small enough and the families

are well confined within individual lobes of the sinc-fucntion if the pump beam

is not too focussed. It would be interesting to look at modes with high values of

p, in which case they could be large enough for a tunneling to take place. I plan

to do so in a future work.
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Figure 5.6: A part of the matrix M for `= 10 is plotted in a black and white array
plot. The intensity profile |φl,p(q)|2 of a single radial eigenmode is represented in
each horizontal series. The radial quantum number p labels the different series.
They are organised from top to bottom in order of contribution to the total wave
function. In this example the radial field that was decomposed was the one in
figure 5.12. The intensity scale follows this colour bar: min max.

Phase mismatch Φ 6= 0

Figure 5.8 shows the calculated radial profile |φ`,p(q)|2 of the eigenmodes at `=
10 for the detuned case Φ=−4. At Φ¿ 0, where the SPDC ring has opened, even

the fundamental `= p = 0 Schmidt mode is ring-shaped and has a wide region of

zero intensity around the central axis. As with the zero mismatch example, we

also plot the first three modes of figure 5.8 in figure 5.9. Note that although the

nonzero phase mismatch, the shape of the first three eigenmodes is remarkably

similar to the one in figure 5.7, the difference being just an offset with respect to

the origin.

This happens because in the two cases the radial functions that are being

decomposed are remarkably similar. The modes firstly fill the largest ring, until

the difference between their combined intensity and the intensity of the main
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Figure 5.7: Amplitudes in the form φ`,p(q) of the first three p-modes in figure
5.6
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Figure 5.8: A part of the matrix M for ` = 0 in case of phase mismatch Φ = −4.
In this example the radial field that was decomposed was the one in figure 5.13.
The intensity scale follows this colour bar: min max.
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ring is small enough to be less than the intensity of secondary rings. When

this happens we see that the subsequent modes fill different rings, and jump

discretely between them. This is in accordance with the explanation that we

gave at zero phase mismatch: the modes are compact enough to be well contained

within individual rings.
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Figure 5.9: Amplitudes in the form φ`,p(q) of the first three p-modes in figure
5.8

5.3.3 Heuristic rescaling of Gaussian approximation

In this section we conclude the argument, anticipated in the previous sections,

on the scaling factor α. Such scaling factor would allow us to describe more

accurately, for Φ = 0, the Schmidt number when approximating the sinc phase

matching with a Gaussian phase matching. Below, we present two arguments

for why we think it is better to replace the function sinc(b2q2) by exp(−α2b2q2)

rather than by exp(−b2q2). There are experimental results that support our

claims, for instance see [76].

Figure 5.10 depicts the numerically-calculated Schmidt number K and its

azimuthal counterpart Kaz as functions of bσ for the exact sinc phase matching.

In order to numerically calculate these curves we had to abandon momentarily

the faster approach used to find the Schmidt modes, as bσ in figure 5.10 is not

restricted to small values. The Gaussian approximation of the phase matching

function results in expressions that are symmetric under the exchange bσ↔ 1
bσ .

The same argument cannot be applied to the sinc phase matching, as it’s possible

to see from figure 5.10: the graph is symmetric with respect to a point between
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1 and 2, meaning that there could be an extra factor α such that the symmetry

now reads bσα↔ 1
bσα , representing a reflection around the point 1/α. If it were

so, the factor α should have a value around α' 0.85. However, the introduction

of α alone is not enough to obtain the correct K values. There are two ways to

proceed, either to choose a simple modification, like bσ→ bσα, or to add also a

second multiplicative factor β. We find that the relation

K = β

4

(
1

bσα
+bσα

)2
(5.19)

fits extremely well the values in figure 5.10 for α = 0.85 and β = 1.65. How-

ever, if one is only interested in the regime bσ. 1, which experimentally is the

most relevant, there is no need to introduce β and the relation K ≈ 1/(2bσα′)2

works well for α′ ≡ α/
√
β ≈ 0.65, as it is possible to see in figure 5.11. The α-

modification is a consistent choice for replacing the sinc phase matching with a

Gaussian phase matching, as it is implemented by modifying the width of the

Gaussian and not by modifying the relation between K and the product bσ ad

hoc, as in (5.19).

The second argument relays on a common criterion to choose a sensible value

for α without recurring to ad hoc arguments. The common criterion is equal

width at 1/e from the peak intensity [17]. This criterion yields again a value of

α≈ 0.65.
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Figure 5.10: K and Kaz as functions of bσ for Φ= 0.
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Figure 5.11: K in green and the two different modifications of the law (5.5).
The dashed red line is the (α,β)-modification, the solid blue line is the α-only
modification. The fits obviously match for bσ. 1.

5.4 Conclusions

We saw how a fast numerical approach to perform a numerical Schmidt decom-

position without approximating the phase matching function, and for any phase

mismatch, gave us insight on the entanglement between SPDC pairs. Thanks to

the numerical approach the limitations of the Gaussian approximation were in-

vestigated and a scaling b → bα, for α' 0.65 was proposed. Such scaling allows

the Gaussian approximation with no phase mismatch to reproduce the results of

the more complete sinc phase matching. The etendue argument was successfully

verified by calculating K and Kaz for different values of the phase mismatch.

The Schmidt modes that were found exhibit numerous features, the most re-

markable being the grouping in local families of HG-like modes and the fact that

they don’t span more than one lobe on the diagonal of the matrices of joint ra-

dial probability density. We gave an interpretation of these features by using the

meaning of coherence length and the way of naturally assigning eigenmodes to

potential wells. In fact, the other sets of HG-like radial modes are simply shifted

by different amounts into other rings of the sinc-type SPDC emission. These

other sets have similar HG-like radial structures but lower modal weights. The

rather strict separation in discrete sets suggests that we might want to use the

set number as third quantum number, i.e. to split the radial quantum number p
in two quantum numbers instead.
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Figure 5.12: Joint radial probability density of generating a pair of photons with
OAM `= 10 and radial momentum q1 and q2. This is the matrix F for Φ= 0 used
in the examples. The intensity scale follows this colour bar: min max.

5.5 Appendix

Here we report more in detail the function that was used to fill the matrix F. To

avoid confusion between the azimuthal coordinate ϕ and the phase mismatch,

here we indicate the latter with Φ. We start with the following two-photon wave

function

Ψ(q1,q2)=N e−
w2

0
4 |q1+q2|2sinc

(
Φ+ L

4kp
|q1 −q2|2

)
(5.20)
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Figure 5.13: Joint radial probability density of generating a pair of photons with
OAM ` = 10 and radial momentum q1 and q2. This is the matrix F for Φ = −4
used in the examples. The intensity scale follows this colour bar: min
max.

which can be written in cylindrical coordinates:

Ψ(q1,ϕ1, q2,ϕ2)=

=N exp

−w2
0

4
(q2

1 + q2
2)− w2

0

2
q1q2︸ ︷︷ ︸
α

cos(ϕ1 −ϕ2)



×sinc

Φ+ L
4kp

(q2
1 + q2

2)︸ ︷︷ ︸
β

− L
2kp

q1q2︸ ︷︷ ︸
γ

cos(ϕ1 −ϕ2)

 (5.21)

=N ′exp(−αcos(ϕ1 −ϕ2))sinc(β−γcos(ϕ1 −ϕ2)) (5.22)

where N ′ =N exp(−w2
0

4 (q2
1 + q2

2))

Similarly to what was done for the exp phase matching, we begin the evalua-

tion of the Fourier transform with exp(−i`(ϕ1−ϕ2)) as the Fourier kernel, which
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will give the eigenfunctions of a state of OAM ±`.

√
P`F(q1, q2)= 2πN ′

∫ 2π

0
e−αcosϕsinc(β−γcosϕ)e−i`ϕdϕ︸ ︷︷ ︸

H`

(5.23)

We have

H` =
∫ 2π

0
e−αcos(ϕ)sinc(β−γcos(ϕ))e−i`ϕdϕ (5.24)

= 1
L

∫ L/2

−L/2
e

2iβ
L t

∫ 2π

0
e−(α+ 2iγ

L t)cos(ϕ)−i`ϕdϕdt (5.25)

= 2π
L

∫ L/2

−L/2
e

2iβ
L tI|`|(−α− 2iγ

L
t)dt (5.26)

=π
∫ 1

−1
eiβtI|`|(−α− iγt)dt (5.27)

This last form of the integral can be approximated if the product bσ can be

considered sufficiently small. The amount of precision sought restricts the maxi-

mum value of LR , but at LR < 0.1 (which corresponds to bσ. 0.2) the maximum

error is less than 1%. The approximating function of e−
w2

0
4 (q2

1+q2
2)H` is found to be

f (q1, q2)= 2πe−(q2
1+q2

2)I`(2q1q2)sinc
[√

2LR
(
q2

1 + q2
2
)+Φ]

(5.28)

A matrix F is filled with entries (i, j) = s
√

i j f (is, js), where s is the step, until

the size N of the matrix is reached. Then F2 = FF† is used in the singular

value decomposition. The resulting eigenvalues are λ`,p (at fixed `); the resulting

eigenmode are φ`,p(q)=pqu`,p(q).

At sufficiently large x, the modified Bessel function can be expanded as I`(x)≈
ex/

p
2πx. By combining this expansion with the mentioned multiplication by

pq1q2, we find that the matrix F has a similar appearance as the original two-

photon field of Eq.(4), but with the roles of (q1−q2) and (q1+q2) interchanged and

a removal of the vector character. After Taylor expansion of the sinc-function,

which works best in the considered limit LR << 1 for Φ < 0, the resulting bi-

exponential function yields a set of Hermite-Gaussian radial Schmidt modes cen-

tered around a displaced maximum.
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Part III

Detection of high dimensional
entanglement
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Chapter 6

Projection on LG modes, thin
crystal approximation

All this theory is fine, but is

useless unless you know how to

apply it.

(John Baez, Lectures on classical

mechanics, 2005, p. 27)

6.1 Introduction

This chapter is based on the paper “Full characterisation of the spiral bandwidth

of entangled biphotons”, Physical Review A 83, 033816 (2011) [77]. In this work

we investigated the detection of a down-converted state generated using a Gaus-

sian pump beam via projection onto Laguerre-Gaussian modes. We derived an

expression for the simultaneous correlations in the orbital angular momentum

modes and radial modes of the down-converted beams. We showed that, with the

usual paraxial, collinear and Gaussian phase matching approximations, a fully

analytic expression for the correlations can be derived in the limit for a short

crystal. For comparison, in chapter 7 we will see how the thin crystal approxi-

mation can be analytically overcome, at the expense of projecting only onto the

p = 0 subset of the LG modes, but with the advantage of using the full phase

matching term.
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6.2 Coincidence amplitudes on pairs of LG modes

6.2.1 Geometry and notation

We now describe the geometry of the beams, so that setting up the projection

integral will be straightforward. A typical SPDC setup consists of a continuous-

wave Gaussian pump beam propagating in the z direction, as shown in figure

6.1, incident on a short (typically 1–5mm) nonlinear crystal of length L. This

produces two highly-correlated, lower-frequency photons. Energy is conserved in

this process so that ωp = ωs +ωi, where the subscripts p, s, i refer to the pump,

signal and idler, respectively. The photons are emitted at angles ϑs,i to the direc-

tion of propagation of the pump, ẑ, and the components qs,i (perpendicular to the

z axis) of their ks,i vectors are at angles ϕs and ϕi to the x axis. This means that

ϕ is an azimuthal coordinate and this will play a central role in the description

of the orbital angular momentum. The q components can be decomposed, on the

planes perpendicular to the z axis, as

qs,i =


ρs,i cosϕs,i

ρs,i sinϕs,i

0

 , (6.1)

where the radial variable ρ extends outwards from the z axis. The magnitude

of the wave-vector inside the medium is ωn/c and for type-I phase matching

(eoo) the extra-ordinary and ordinary refractive indices are ne(ωp) and no(ωs,i).

Typical values, for example for β-barium borate (BBO), are: at λ = 1064nm,

no = 1.65,ne = 1.54 and at λ= 532nm, no = 1.67,ne = 1.55 [78].

At the output of the nonlinear crystal the two-photon state in the wave-vector

domain is given by [20, 79]

|ψ〉 =
∫ ∫

dksdki A(ks,ki)â†
s(ks)â

†
i (ki)|0〉, (6.2)

where A(ks,ki) describes the mode function of the pump and the phase matching

conditions (as seen in more detail in chapter 3), |0〉 is the multimode vacuum

state and â†
s(ks), â

†
i (ki) are creation operators for the signal and idler modes with

wave vectors ks,ki, respectively.

Photon pairs generated by parametric down-conversion are entangled in ar-

bitrary superpositions of OAM modes and we aim to complete this description

by including the radial behaviour that can be experimentally probed by detect-

ing the state in joint pairs of LG modes. A natural way to do this is to directly
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Figure 6.1: Sketch of the SPCD process. A gaussian pump propagating in the z
direction is incident on a short nonlinear crystal. Signal and idler photons are
produced at angles ϑs and ϑi to the pump direction.

describe the down-converted photons in terms of the LG modes, LG`
p. As usual,

` corresponds to the angular momentum carried by the mode, `~, and describes

the helical structure of the wave front around a wave front singularity and p is

the number of radial zero crossings.

6.2.2 Calculation of the coincidence amplitudes

The coincidence probability for finding one signal photon in a given LG mode

characterized by the `s and ps numbers and one idler photon in a given LG

mode characterized by the `i and pi numbers is P`s,`i
ps,pi =

∣∣∣C`s,`i
ps,pi

∣∣∣2, where the

coincidence amplitudes C`s,`i
ps,pi are given by the overlap integral

C`s,`i
ps,pi = 〈LG i,LGs|ψSPDC〉

=
∫ ∫

d3ksd3ki A(ks,ki)
[
LG`s

ps(ks)
]∗ [

LG`i
pi (ki)

]∗
(6.3)

The pump profile and phase matching condition were shown in previous chap-

ters, but in those discussions their form was simplified. Here we need to set

up a projection integral onto LG modes, and it is the best occasion to specify why

those simplifications are enough for us. Most of what follows comes from geomet-

rical considerations about the shape of the beams and separation of transverse

and longitudinal quantities. We therefore start from a rather general spatial
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amplitude [79]:

A(ks,ki)=
∫

d3kpẼp(kp)ξ(kp −ks −ki)δ(ω−ωs −ωi), (6.4)

where the δ term enforces energy conservation and the ξ term arises due to phase

matching. We can simplify this if, instead of the wave vector k, we use its trans-

verse component q and the corresponding frequency ω. As we have assumed a

monochromatic gaussian pump of frequency ωp =ωi +ωs we can write

Ẽp(kp)= Ẽp(q)δ(ω−ωp) (6.5)

where Ẽp(q) is the Fourier transform of

Ep(r,φ)=
√

2
π

1
wp

exp

(
−r2

w2
p

)
, (6.6)

the spatial distribution of the pump at the input face of the crystal.

For a crystal of finite thickness, L, in the longitudinal direction and trans-

verse length much larger than the pump beam size, the phase matching condi-

tion is [79]

ξ(kp −ks −ki) = δ(qp − qs − qi)

×
√

L
πkp

sinc
(

L∆kz

2

)
exp

(−iL∆kz

2

)

where ∆kz = kp,z − ks,z − ki,z and kz =
√

n2(ω)ω2/c2 − q2 is the longitudinal com-

ponent of the wave vector, k, with transverse component q, angular frequency ω

and refractive index n(ω).

If the angle between signal and idler beams is small enough that the z-

component of the momentum vector (
√

k2 − q2) can be approximated by k−q2/2k,

where q = |q|, we can write the phase matching function as

A(ks,ki)= Ẽ(qs + qi)

√
2L
π2kp

sinc
(

L∆k
2

)
e−i L∆k

2 (6.7)

where

∆k = |qi −qs|2
2kp

. (6.8)
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Explicitly:

A(qs,qi)=

Pump︷ ︸︸ ︷
wpp
2π

e−
w2

p
4 |qs+qi |2 ×

×
√

2L
π2kp

sinc
(

L|qi −qs|2
4kp

)
e−i L|qi−qs |2

4kp︸ ︷︷ ︸
Phase Matching

(6.9)

We now calculate the projection amplitudes onto a pair of LG modes in a

cylindrical coordinate system, so we re-express (6.3) as:

C`s,`i
ps,pi ∝

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0
A(ρ i,ρs,ϕi,ϕs)

[
LG`s

ps(ρs,ϕs)
]∗

×
[
LG`i

pi (ρ i,ϕi)
]∗
ρ iρs dρ idρsdϕidϕs, (6.10)

where ρ and ϕ are the modulus and azimuthal angle, respectively, of the trans-

verse component q of the wave vector and the normalized LG modes in k-space

are given by

LG`
p(ρ,ϕ) =

√
w2 p!

2π (p+|`|)!
(
ρwp

2

)|`|
exp

(−ρ2w2

4

)
× (−1)p L|`|

p

(
ρ2w2

2

)
exp

[
i`

(
ϕ+ π

2

)]
. (6.11)

Here w is the beam waist (we have assumed z = 0) and L|`|
p (·) is an associated

Laguerre polynomial.

The pump and phase matching functions in (6.9) can be written in cylindrical

coordinates by performing the substitution

|qi ±qs|2 = ρ2
i +ρ2

s ±2ρ iρs cos(ϕi −ϕs) (6.12)

to obtain

A(ρ i,ρs,ϕi,ϕs)=
wpp
2π

e−
w2

p
4 (ρ2

i +ρ2
s+2ρ iρs cos(ϕi−ϕs))

√
2L
π2kp

sinc

(
L
ρ2

i +ρ2
s −2ρ iρs cos(ϕi −ϕs)

4kp

)
e−iL

ρ2
i +ρ

2
s−2ρiρs cos(ϕi−ϕs)

4kp (6.13)

It is then straightforward to see that A(ρ i,ρs,ϕi,ϕs) depends on the radial co-

ordinates in the momentum space, ρ i and ρs, and on the difference between the
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azimuthal angles, ϕi −ϕs. This allows the function to be written as a superposi-

tion of plane waves with phase exp(i`(ϕi −ϕs)):

A(ρ i,ρs,ϕi −ϕs)=
∞∑

`=−∞
f`(ρ i,ρs)ei`(ϕi−ϕs). (6.14)

Using this in (6.10), the angular integral becomes

∞∑
`=−∞

f`(ρ i,ρs)
∫ 2π

0

∫ 2π

0
ei`sϕs ei`iϕi ei`(ϕi−ϕs)dϕi dϕs ∝ δ`,−`iδ`,`s , (6.15)

which clearly enforces the angular momentum conservation, `i +`s = 0.

We also re-write the sinc function as the inverse Fourier transform of the step

function:

sinc
( |qi −qs|2L

4kp

)
= 1

L

∫ L/2

−L/2
dtexp

(
− i|qi −qs|2t

2kp

)
. (6.16)

In this way we calculate

C`,−`
pi ,ps ∝ K |`|

pi ,ps

∫ L/2

−L/2
dt

B|`|(1− 4I
T )ps(1− 4S

T )pi

T |`|+1

× 2F1

[ −pi,−ps

−pi − ps −|`| ;
T(T −4I −4S+4)
(T −4S)(A−4I)

]
(6.17)

where the combinatorial coefficient K |`|
pi ,ps is given by:

K |`|
pi ,ps

= (pi + ps +|`|)!√
pi!ps!(ps +|`|)!(pi +|`|)!

. (6.18)

B, I, S and T are functions of the dummy variable t:

B =−
(

2t
wiwskp

+ L
wiwskp

+
iw2

p

wiws

)
T = 4IS+B2 (6.19)

I =
w2

p

2w2
i
+ 1

2
+ it

w2
i kp

+ iL
2w2

i kp

S =
w2

p

2w2
s
+ 1

2
+ it

w2
s kp

+ iL
2w2

s kp

and 2F1 is the Gauss hypergeometric function. Although this integral is too

complicated to be calculated analytically, it is simple enough to be evaluated

numerically. However, this is not what we would like to do, as we are interested

in an analytical result.
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As we show now, rather conveniently, in the limit of a thin crystal we can solve

the integral analytically (because the integration limits depend on the crystal

length). This gives

C`,−`
pi ,ps ∝ K |`|

pi ,ps

(1−γ2
i +γ2

s )pi (1+γ2
i −γ2

s )ps(−2γiγs)|`|

(1+γ2
i +γ2

s )pi+ps+|`|

× 2F1

[
−pi,−ps

−pi − ps −|`| ;
1− (γ2

i +γ2
s )2

1− (γ2
i −γ2

s )2

]
(6.20)

where γi and γs are the ratios wp/wi and wp/ws, so that the two γ factors are the

inverse signal and idler widths normalized to the pump width. This means that

every amplitude is invariant under the joint scaling of signal, idler and pump

widths. Of course, the same result can be achieved by starting directly with the

state (3.23), i.e. with the thin crystal approximation of the SPDC state.

Comparing (6.20) with the numerical evaluation of (6.17) we find excellent

agreement. The exact conditions in which such agreement is met will be explored

in the next chapter. We will see that in normal experimental conditions these

results are valid, but it is important to have a feeling for when such conditions

are not met anymore.

6.3 Interpretation of the projection amplitudes

The advantage of an analytical result over an integral one, such as (6.17), is that

it allows us to see more easily the role that each parameter plays in determining

the state of the down-converted photon and the resulting ` distribution, or spiral

bandwidth [20]. Full knowledge of this allows the quality of the entangled state

to be determined and also allows us to compare the width of the distribution of

` modes of different states. From (6.20) it is clear that the distribution of modes

is determined by the ratio of the signal and idler widths to the pump width. We

can see this more clearly, and also investigate more the effect of taking the radial

modes into account, if we consider some special cases.

6.3.1 Comparison with published results

Note that for the specific case of ps = pi = 0 eq.(6.20) reduces to

|C`,−`
0,0 |2 ∝

(
2γiγs

1+γ2
i +γ2

s

)2|`|
. (6.21)
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Figure 6.2: Normalised spiral bandwidth for γs = γi = 1 and ps = pi = 0. Results
from eq. (10) in [20] are in red (large dots). The blue line is only a guide for the
eye.

If we further choose the signal and idler widths to be equal, which is a common

experimental condition, so that γi = γs = γ, then this simplifies to

|C`,−`
0,0 |2 ∝

(
2γ2

1+2γ2

)2|`|
. (6.22)

Note that this result has been calculated in the thin crystal approximation,

whereas the same result (i.e. with ps = pi = 0 and γi = γs = γ) without the thin

crystal approximation is described in the next chapter. This agrees with the re-

sult found in [20] as depicted in figure 6.2:

Although the form of eq.(6.22) is very simple, it is remarkably precise when it

is compared to the numerical evaluation of eq.(6.17), where the signal and idler

sizes are equal and if the eigenstates of pi = ps = 0 have been selected.

6.3.2 Correlation between p i and ps

It is possible to have an extended view of the structure of the entangled system

with an array plot that shows the contribution P`,−`
ps,pi = |C`,−`

ps,pi |2 for each pair of

modes.

88



(b) γ = 5

(c) γ = 2 (d) γ = 1

0 15105

0

5

10

15

p
s

p
i

0 15105

0

5

10

15

p
s

p
i

0 15105

0

5

10

15

p
s

p
i

0 15105

0

5

10

15

p
s

p
i

(a) γ = 10 Max

0

Figure 6.3: P0,0
ps,pi for 0< pi < 15 and 0< ps < 15, for different pump sizes.

Effect of the pump width on the correlation between pi and ps when
`= 0 and signal and idler have the same size.

We show in figure 6.3 the probabilities of projecting onto modes in the form

|pi,0〉 ⊗ |ps,0〉. Since γi = γs in this case, we will omit the subscript and sim-

ply write γ. On the axes we are scanning the discrete values of pi and ps. In the

limit of an infinite pump width pi and ps are delta correlated. Notice how the

correlation between pi and ps breaks down as the pump beam size approaches

that of signal and idler. (This corresponds to γ→ 1).

In an experiment it is not possible to use a pump with arbitrarily large beam

waist because the crystal size places an effective upper limit. It is also not pos-

sible to shrink the size of signal and idler enough so that γ >> 1 (although we

will see in chapter 5 that it is in this direction that it is interesting to move).

Therefore, the experimental scenario will be closer to the bottom right graph

rather than the top left. This means that cross correlations between eigenstates

of different p are to be expected. This relates closely with what we anticipated

in chapter 1, namely that orthogonality between radial modes is much harder to

achieve than orthogonality between OAM modes.
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Figure 6.4: Correlations between 0 < pi < 15 and 0 < ps < 15, for different |`|
values and a pump of the same size as signal and idler.

Effect of ` on the correlation between pi and ps.

In the previous section we described the p correlations between states of OAM

with `= 0. We now consider the case ` 6= 0. It is worth recalling that (in general)

the probability of selecting a joint state of a given OAM, |`|, decreases as the

value of |`| increases. For this reason, if we select a specific value of `, as is done

with SLMs, the average rate of coincidence counts will be lower than the rate

measured after selecting states with a lower value of |`|. If the value of the se-

lected |`| is too large, the rate could drop too much to obtain a meaningful signal

to noise ratio and the effects could be masked by noise. This is why we show the

effect only up to the value |`| = 6. The reason why the maximum probability of

detecting modes of similar p shifts to a higher value of p for states of a higher

OAM can be found by considering what happens to the product of the pump mode

with specific signal and idler modes. In this case the key idea is that when we

calculate the overlap integral between the pump and modes with a given `, there

is an optimal combination of ps and pi that maximizes the overlap. The higher

the value of `, the higher the optimal value of the combination of radial indices.
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Figure 6.5: The overlap between LG0
0 and LG`

pLG−`
p is best achieved at an opti-

mal value of p (indicated by red disks), once |`| is fixed.

To show how this happens, consider the product of the fundamental pump mode

with two pi = ps modes (i.e. the integrand of (6.10) in the short crystal limit). If

we calculate the (unnormalised) overlap integral, although the effect of increas-

ing the radial indices moves the inner rings towards the origin of the coordinates

(where the maximum value of the gaussian mode of the pump is), the radius of

the main ring reduces and consequently the overlap reduces. Thus, as the num-

ber of rings increases, an optimal value of the overlap integral is reached and

subsequently it drops, which is exactly what happens along the diagonals of the

graphs in figure 6.4, which are also shown in figure 6.5.

Effect of signal-idler size mismatch on the correlation between pi and
ps.

In the analysis of the correlations between states of different p index we assumed

signal and idler fields to have the same size (γi = γs). Although detection systems

are generally set to detect fields of the same size to maximise coincidences, it is

worth having a look at what could in principle happen with detection modes

of different size. When the sizes of signal and idler beams begin to differ, the

main correlation “direction” (namely the main diagonal in the correlation matrix)

between modes of pi and ps shifts towards one or the other axis, depending which

of the beams is larger, thus yielding the highest correlations between modes of
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different radial indices rather than between modes of equal radial indices. Figure

6.6 is a group of four graphs, each featuring the probabilities of detecting an state

in the form |pi,0〉⊗|ps,0〉, where the size of the idler beam increases to twice the

size of the signal beam, which remains of the same size of the pump.
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Figure 6.6: These graphs show that the effect of a width mismatch yields a higher
probability of finding a state with different radial indices. If, instead, the value of
γs were larger than γi the graphs would be mirrored with respect to the leading
diagonal.

It is clear from the graphs that we can increase the detection probability of

modes of very different values of p simply by changing the relative size of signal

and idler modes. The consequence of selecting a different ` mode is analogous to

what is shown in figure 6.4.

As we are able to calculate the amplitudes for any values of the beams sizes,

it is interesting to see what the effects of the beams sizes are on the spiral band-

width. We will discuss this in the next section and give multiple examples of the

effect of varying the beams sizes.
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6.3.3 Effect of modes widths on the spiral bandwidth.

We now want to see the effects of the beams sizes on the spiral bandwidth (SB).

In this context, the SB is the collection of detection probabilities in the form

P`,−`
ps,pi , where the radial indices pi and ps have been fixed and we scan the `

eigenvalues in an interval (in our case of ±20) around `= 0. Unlike the previous

graphs, each graph now does not represent the structure of the SPDC state, but

rather a collection of “slices” of the total modal content, each slice representing

the SB, i.e. each graph features only the ` eigenvalues.

Each group of graphs will highlight a particular feature of the SB determined

by the radial indices. Note that the normalization has to be performed on each

individual horizontal line and not on the graph as a whole, because the beam

size is just a parameter of the detection basis. We stress that each value in the

graphs corresponds to the integral over the whole area where the pump overlaps

with the detection mode.

We will divide the effects into four families, each one corresponding to equal

or different radial indices and equal or different signal-idler sizes. In this way

we can cover all the experimentally interesting effects on the SB.

Equal radial indices - Equal signal-idler sizes.

This case is of particular importance because now the ratio between pump and

signal-idler beams size is the only feature that influences the detection of the

SPDC state. It is a quantity that is relatively easy to manipulate, for example

by choosing an initial pump beam size and then magnifying or de-magnifying

the signal and idler beams. We acknowledge that it can be hard to achieve a

particular magnification, because of limiting apertures in the setup, especially

between the crystal and the detection instrumentation. Such finite apertures will

give a limit on the maximum size of the beams, and also losses if this maximum

size is exceeded.

The graphs on the left-hand side of figure 6.7 show the SB (horizontally) for

different values of the ratio of the pump width to the signal-idler width, i.e. γ

(which changes on the vertical axis). The positions where the bandwidths on

the right are taken are marked on the graphs at positions γs = 0.5 red, γs = 2

green, γs = 4 blue. Note that the blue bandwidth on the right is indicated in

yellow (γs = 4) on the left. The same goes for all the graphs in this chapter with

analogous structure.

A larger pump width (or smaller signal and idler widths) increases the width

of the SB. Also, measuring on a basis with larger radial indices gives a larger SB.
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Figure 6.7: Dependence of the SB on the pump width and radial number.
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In fact, modes with more rings still give a significant overlap with the gaussian

pump for larger values of ` than modes with less rings.

Equal radial indices - Different signal-idler sizes.

A rather different and interesting effect is achieved when the size of signal and

idler differ by some amount. figure 6.8 shows similar graphs to figure 6.7, but

here the signal and idler beams now have different widths.
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Figure 6.8: These graphs show how the difference in the width of signal and idler
influences the SB.

A physical explanation of the multiple-branched SBs in figure 6.8 is given

by the fact that the joint detection mode is made out of two modes with different

widths (therefore it will consist of concentric rings of positive and negative value)

and by the consequence of increasing `: the rings in the modes move further

away from where the pump mode is concentrated, but since they have a different
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width their product will change shape, becoming alternately mostly negative or

mostly positive. The higher the width difference, the higher number of times this

process takes place in the same amount of ` values.

The consequence is that the value of the overlap with the pump mode (which

is always positive) increases and decreases alternately as higher and higher `

modes are chosen, because the mostly positive or mostly negative part of the

joint detection mode, since they are moving away from the center of the beam,

will cease to have a substantial overlap.

The number of branches in the graphs in figure 6.8 depends on the relative

dimensions of signal and idler, and also on the number of rings in the joint de-

tection mode, as mostly positive and negative parts can co-exist in the same

detection mode over many rings. If the pump is too small (top of the graphs on

the left-hand side, and red SB in the graphs on the right-hand side) the effect

can’t be noticed because the gaussian pump always stays mostly inside the first

ring (so it doesn’t matter now many there are outside the first one, or their val-

ues). However, for a larger value of the pump (bottom of the graphs), it initially

overlaps with many rings, whose overlap can then be lost, in the way explained,

while we consider higher and higher values of |`|. The blue SB in the right-hand

side graphs portrays this effect.

Different radial indices - Equal signal-idler sizes.

We now consider the case of different values of the radial indices pi and ps. Since

the probability of detecting modes of different radial index depends on the ratios

of the beam sizes, there are choices of widths that may significantly increase the

probability of detecting some particular output modes, as seen in figure 6.6.

In figure 6.9 we show the effect of increasing the pump width while main-

taining the signal and idler at the same size, but with different radial indices.

As long as signal and idler beams retain the same width, the number of branches

will be always two, independent of the values of pi and ps. This behavior is due

to the fact that the beams have the same width, therefore, as higher and higher

values of ` are reached, the rings in the joint detection mode will be moved away

from the pump “rigidly”, i.e. maintaining the same shape and thus delivering a

smooth decay of the overlap.

Different radial indices - Different signal-idler sizes.

We showed that a multiple-branched SB can be obtained when signal and idler

beams have different sizes, now we show the same effect while also varying pi
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Figure 6.9: Joint effect of a signal and an idler mode with different radial indices.

and ps. To give a more complete description of the possible SBs we will now

consider the difference between γi and γs, rather than the ratio. In the first

four graphs the ratios of the pump width with signal and idler widths have a

difference (i.e. γi −γs) of 0.5, 0.75, 1 and 2. The pump width indicated on the left

axis of the graphs is relative to the signal width.

The physical explanation for the shapes of the SBs is similar to the one sup-

plied in the case of equal radial indices and different signal-idler sizes. The effect

is dependent on both the relative size of signal and idler and on the number of

rings in the modes. The fact that the number of branches depends on the smaller

of pi and ps clarifies what is stated above, namely that it all depends on how the

rings in the modes overlap: if the joint detection mode consists of two modes with

ps +1 and pi +1 rings, the rings will overlap more or less effectively depending

on both the relative size and the intensity of the modes. Therefore, it’s the mode

with less rings that counts. When ` is scanned, the two modes, having a dif-

ferent width, will shift the rings away from the center at different rates, giving

alternating mostly positive or mostly negative groups of rings. Since the total

number of rings depends on the lowest of the radial indices, the mode with less

rings will determine the maximum number of branches in the SB, as is shown in

figure 6.10.
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Figure 6.10: Joint effect of a signal and an idler mode with different radial
indices and different widths.
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6.4 Conclusion

We have shown the overlap of the SPDC state produced with a Gaussian pump

beam with a set of LG modes and investigated the resulting correlations in the

OAM and radial momentum. The results show excellent agreement with previ-

ous works on SPDC [20] and extend them to a much more general case, albeit

at the cost of considering thin crystals only, which is equivalent to considering a

source producing an infinite number of Schmidt modes. We will see in the next

chapter what “thin crystal” really means and where the various bounds come

into play.
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Chapter 7

Projection of the full state onto
pure OAM modes

I respect conscious guessing,

because it comes from the best

human qualities: courage and

modesty.

(Imre Lakatos, Proofs and

Refutations, 1976, p. 30)

7.1 Introduction

This chapter is based on the paper “Bounds and optimisation of orbital angular

momentum bandwidths within parametric down-conversion systems”, EPJD 66
(7) (2012) [75]. The measurement of high-dimensional entangled states of orbital

angular momentum prepared by spontaneous parametric down-conversion can

be considered in two separate stages: a generation stage and a detection stage.

Given a certain number of generated modes, the number of measured modes

is determined by the measurement apparatus. We derive a simple relationship

between the generation and detection parameters and the number of measured

entangled modes. We overcome the limitation of the Gaussian approximation

of the phase matching function while still obtaining analytical results, at the

expense of addressing only the p = 0 subspace.

The OAM is conserved in the down-conversion process and hence for a Gaus-

sian (` = 0) pump, the OAM of the signal and idler fields are perfectly anticor-

related. There are also correlations on the radial direction, but these will not
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concern us in this chapter. Our central concern will be the number of entangled

lowest order (p = 0) Laguerre-Gaussian modes generated in a down-conversion

experiment. The typical setup that we consider is a type-I or type-II, degenerate

SPDC setup. We work in the regime of undepleted pump and we neglect eventual

anisotropies of the down-converted beams.

We find that, for any given set of generation parameters (pump waist wp,

wavelength λ, crystal length L) the detection apparatus can be prepared in a

way that maximises the measured number of entangled modes and that two im-

portant parameters are γ, the ratio of the width of the pump beam to the width of

the detection modes, and LR , the length of the crystal normalised to the Rayleigh

range of the pump beam:

γs,i =
wp

ws,i
and LR = L

zR
, (7.1)

where the Rayleigh range, as previously stated, is zR = πw2
p

λ
. We assume that the

signal and idler modes have the same width so that ws = wi and γs = γi = γ.

The precise calculation of ws,i depends upon the details of the detection sys-

tem. Our analysis can be applied if the back-projected fundamental detection

mode size, wi,s, is approximately `-independent over the range of OAM of inter-

est, and if the modes with p 6= 0 couple only weakly with the fundamental mode

of the fibre that carries the signal to the coincidence counter. We can investi-

gate the LR dependence of the OAM bandwidth, while recognising that many

experiments operate in a regime where LR ¿ 1 [15, 19, 27, 80, 81]. In the short

crystal limit and near to collinearity the familiar sinc phase can be dropped [82].

One can then obtain an analytical form for the down-converted state (chapter 6

of this thesis and [77, 83]) and its extension to non-Gaussian pump beams [65].

Our aim in this chapter is to go beyond these existing analyses and to explore

regimes in which the sinc phase matching term becomes significant, which leads

to the exact analytical expression (7.6) and to the characterisation of the detec-

tion parameters. We present both an analytical treatment and also a simple

geometrical argument for our results.

The second section of the chapter specifies the definitions of the various band-

widths which are used. The third section contains the analytical approach to

calculate the projection amplitudes. The fourth section contains the geometrical

approach to calculate a simple formula that gives the measurement bandwidth.

The fifth section contains the interpretation of the results and the conclusions.
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7.2 Definition of bandwidths

For a distribution of probabilities, in our case for the OAM of the signal and

idler photon in SPDC, we can define a number of statistical measures. For high-

dimensional entanglement we require as many modes as possible to contribute

to the state and, moreover, for these to contribute strongly, that is to have a

significant probability. As before, we will use the Schmidt number [21, 25]:

K({pi}) := 1∑
iλ

2
i
, (7.2)

where the probabilities {λi} are, in our case, those for each of the joint OAM

modes. The measure K gives the effective number of contributing modes and

hence the effective dimensionality of the system. In experiments, it is typical to

quote the full-width at half maximum as the measure of the bandwidth (FWHM)

so as to include only modes that are well above the noise floor. FWHM should

not be confused with K . For simple, symmetrical and single-peaked probabil-

ity distributions, the FWHM provides a convenient measure of the bandwidth,

but for more complicated distributions, the Schmidt number is a more accurate

measure. The precise relationship between the Schmidt number and the FWHM

depends upon the detailed shape of the distribution but typical of our systems is

that the K exceeds the FWHM, see figure 7.1. For a distribution like this we can

define an effective range of modes contributing to the state ranging from `max to

`min =−`max such that K = 1+2|`max|.
The generation bandwidth is the effective number of entangled modes gener-

ated in the SPDC process. As it does not depend on the detection apparatus, it is

a function only of the crystal length and of the size of the pump beam, combined

into the quantity LR , defined in eq. (7.1). This bandwidth can be thought of as

the dimensionality of the entanglement in OAM and can be calculated through

the Schmidt decomposition of the SPDC state [32].

The measurement bandwidth represents the number of modes that a detector

will measure in an experiment and depends on both the generated modes and on

the overlap of these with the detection modes. In doing so, we need to consider

the optics used to image the light onto the detectors and any restriction arising

from this, such as a restriction to p = 0 Laguerre-Gaussian modes. The overlap

between the generated modes and the back-projected detection modes needs to

be maintained both in the image plane and in the far field plane of the crystal:

a setup with high overlap in the image plane may still suffer from low overlap

in the far field or vice versa and this would translate into a decreased modal

102



sensitivity. This overlap requirement has a central role in the derivation of eq.

(7.10), which is based on the argument that the angular spread of a generated

mode cannot exceed the natural spread of the down-conversion cone. In the next

sections we will define an image plane bandwidth and a far field bandwidth and,

as we shall show, there is a natural way of combining the two. This geometrical

result is strongly supported by the more complicated analytic result, which we

evaluate numerically for a comparison in figure 7.3.

7.3 Analytical treatment

A direct calculation of the measurement bandwidth needs to consider the overlap

between the SPDC state and a pair of joint detection modes [20, 77]. This yields a

series of complex measurement amplitudes {C`} where ` labels each value of the

OAM that was measured. The measured Schmidt number (or the measurement

bandwidth) is therefore given by the measure K applied to the set of projection

probabilities

K({P`}), where P` = |C`|2. (7.3)

We seek to evaluate this quantity for a Gaussian pump laser, taking full account

of the sinc phase-matching term. In this way we extend the regime of validity of

earlier calculations.

We consider the measurement modes for the signal and idler fields to be a pair

of Laguerre-Gaussian modes. The LG modes are characterised by two integers `

and p and a real positive number w, which represent the OAM quantum number,

the radial quantum number and the Gaussian modal width, respectively. For

simplicity, we set p = 0, which limits our analysis to modes with a single bright

ring in the transverse plane. Many of our experiments are designed to detect

p = 0 modes with a higher efficiency, moreover, than higher-order modes. We

note however, that modes with non-zero p are produced in the SPDC process

[77] and, indeed, it is these that makes it possible to observe entanglement of

three-dimensional vortex knots in SPDC [26].

The SPDC wave function ψ(qi,qs), in momentum space, is written in the

following way, where the subscripts s and i refer to signal and idler modes [20]:

ψ(qi,qs)= Ne−
w2

p
4 |qi+qs|2sinc

(
L

4kp
|qi −qs|2

)
. (7.4)
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Here q is the transverse component of the momentum vector k, wp is the pump

width, L is the crystal thickness, kp is the wave vector of the pump. The first

term corresponds to the transverse wavevector components of the pump, while

the second term represents the phase-matching imposed on the down-conversion

process by the nonlinear crystal.

We consider each detection mode to be an LG mode with radial quantum

number p = 0. In polar coordinates (ρ,ϕ) in momentum space it has the form

LG`(ρ,ϕ)=
√

w2

2π|`|!
(
ρwp

2

)|`|
e−

ρ2w2
4 ei`ϕ. (7.5)

The projection amplitude is therefore calculated by evaluating the overlap inte-

gral of ψ with two LG modes of opposite OAM (because of angular momentum

conservation) [19, 20, 84]. The result is found to be (from eq. (6.20) for pi = ps = 0)

CLR ,γ
`

= N

LR

(
2γ2

1+2γ2

)|`| [
ξ|`|+1Φ

LR ,γ
`

−Φ0,γ
`

]
. (7.6)

We note that the first term in brackets corresponds to that obtained previously

[77], specialised to equal signal and idler widths and p = 0 modes. Here the func-

tion ΦLR ,γ
`

is the Lerch transcendent function of order (1, |`| +1) and argument

−2γ2ξ [85]:

Φ
LR ,γ
`

=Φ(−2γ2ξ,1, |`|+1), ξ= i+LR

i−2γ2LR
. (7.7)

Note that ξ= 1 for LR = 0.

Once LR and γ are specified, the amplitudes CLR ,γ
`

are to be used in eq. (7.3),

in order to calculate the measurement bandwidth. The dependence of the projec-

tion amplitudes on a transcendent function makes further analytical calculation

difficult, and a numerical approach has to be employed. However, as the tails of

the distribution of projection probabilities have a slow decay and therefore an ef-

fect on the width even at high |`|, the numerical approach is slow, if an accurate

result is sought.

In figure 7.1 we give the probabilities for the angular momentum values ` for

LR = 0.001 and γ = 2. In this parameter range existing analytical expressions

provide an excellent approximation [20, 77].
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Figure 7.1: An example of a distribution of |CLR ,γ
`

|2 for LR = 0.001 and γ= 2. The
FWHM and the measurement bandwidth K are shown in blue and red, respec-
tively.

7.4 Geometrical argument

In this section we find an upper (and therefore lower) bound for the generated

OAM values, and for the measured OAM values. The measurement bandwidth

that we calculate from such bounds matches the analytic result of the previous

section and therefore allows to avoid calculating numerically the distribution of

projection probabilities.

ki

Α kp

ks

Dkz

Figure 7.2: The relation between α and ∆kz sets a natural upper bound to α for
near-collinear emission.

The phase-matching efficiency of the down-conversion process depends upon

the axial mismatch ∆kz between wave vectors of the pump, signal and idler

fields, and it is given by sinc2 (L∆kz/2). When optimised for degenerate, near-

collinear phase-matching, the signal and idler output is obtained over a narrow

range of angles, α, for which L∆kz . π. With reference to figure 7.2, for small α

105



(which corresponds to being near to collinearity) we can write

∆kz '
α2kp

2
. (7.8)

It follows, therefore, that the allowed values of α are bounded from above:

α2 .
2π

kpL
. (7.9)

For Laguerre-Gaussian modes, in the paraxial regime, we can define an ef-

fective local wavevector associated with the gradient of the phase. The helical

form of the wavefronts gives rise to an angular spreading of these such that at

a distance r from the mode axis, the angular spread is β ' `/kr [7], which can

be interpreted as the local spreading angle from the optical axis. The natural

restriction on α imposed by the phase matching therefore sets a limit β. α on

the efficiency of production of the OAM carrying beams, imposing a restriction on

the generated OAM bandwidth. Such restriction is a natural consequence of the

fact that a generated mode cannot be more divergent than the down-conversion

cone. The relation β.α, using the definitions and bounds given above for β and

α, can be rewritten as

`. r

√
πkp

2L
, (7.10)

where we have made the approximation that ks,i ≈ kp/2. This relation is the

starting point to calculate the generation bandwidth and for the analysis in the

far field of the image plane of the crystal.

7.4.1 Generation bandwidth

The beam size can be no bigger than that of the pump beam, i.e. r . wp. Applying

this bound to eq. (7.10) we obtain an upper bound for the generated OAM value:

`gen . wp

√
πkp

2L
=

√
π

LR
. (7.11)

It follows, therefore, that the generation bandwidth is

Kgen = 1+2
√

π

LR
. (7.12)
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This number represents the effective number of entangled OAM modes gener-

ated by the source.

7.4.2 Image plane bandwidth

As anticipated in section 2, to calculate the measurement bandwidth we need to

consider the overlap of the generated field with the detection modes in the image

plane of the crystal and in its far field. Intuitively, a detection system which

has a good overlap in the image plane, but that detects light that only comes

from a narrow spread of directions would restrict the measured bandwidth. A

similar restriction would occur for one that has a good overlap with the typical

incoming angles of LG beams, but that has a poor overlap with the intensity in

the image plane. It is clear that in order to optimise a detection system, both

these quantities have to be taken into account.

To calculate the overlap in the image plane it suffices to note that a p = 0

Laguerre-Gaussian mode with OAM number ` and width w has its maximum

intensity at a radius

r = w

√
`

2
. (7.13)

For efficient conversion of pump to signal and idler we require that the pump,

single and idler beams should all overlap, giving a restriction on the maximum

size of the down-converted beams (rs,i . wp) and hence an upper bound to the

value of OAM in the plane of the crystal corresponding to

rs,i = ws,i

√
`

2
. wp. (7.14)

In terms of γ, this gives an upper bound of the value of the OAM in the plane

of the crystal:

`ip . 2γ2 (7.15)

and hence an image plane bandwidth

Kip = 1+4γ2 . (7.16)
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7.4.3 Far field bandwidth

It is clear that in the far field of the plane of the crystal, instead of a real space

argument, we need to use the angular relationship β . α, expressed in (7.10),

where we apply the restriction for the maximum width of the detection modes

given in (7.14):

`. ws,i

√
`

2

√
πkp

2L
. (7.17)

From which, replacing ws,i with wp/γ, we obtain an upper bound of the value of

the OAM in the far field of the plane of the crystal:

`FF .
π

2γ2LR
(7.18)

and therefore a far field bandwidth

KFF = 1+ π

γ2LR
. (7.19)

7.4.4 Measurement bandwidth

If Kip and KFF are very different from each other, the resulting measurement

bandwidth is given by the smaller of the two. For cases where the bandwidths

are similar it is sensible to combine them. The convolution of two normal distri-

butions of widths k and k′ gives a normal distribution of width (k−2 + k′−2)−1/2.

Similarly, we can get an estimate of the total measurement bandwidth by con-

sidering the convolution of two normal distributions of widths Kip and KFF. The

bandwidth of the resulting distribution is

K =
(
K−2

ip +K−2
FF

)−1/2

=
((

1+4γ2)−2 +
(
1+ π

γ2LR

)−2)−1/2

. (7.20)

7.5 Analysis of the results

For a comparison between the analytic and geometric arguments, we calculate

the width of the distribution given by the modulus squared of the coefficients in

(7.6) and compare it to (7.20). In figure 7.3 we plot the two bandwidths as func-

tions of LR for γ= 3, γ= 5 and γ= 7. The solid curves (red online) represent the

measurement bandwidth calculated from the numerical evaluation of the ana-
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Figure 7.3: The blue line (uppermost) is the generation bandwidth defined in
(7.12), the green curves (dashed) are calculated from our analytical treatment ,
and the red curves (solid) are the result of our geometrical argument.

lytical model. The dashed curves (green online) are the same bandwidths calcu-

lated with our geometrical argument. The uppermost solid line (blue online) is

the generation bandwidth. Note that to achieve high dimensional entanglement

the crystal length should be a small fraction of the Rayleigh range.

We see that the geometrical argument is in excellent agreement with the

numerical evaluation of our analytical result. The effect of increasing γ yields

a higher measurement bandwidth for very small values of LR , but for large

enough values of γ and for fixed LR , the measurement bandwidth eventually

drops. Therefore it reaches a maximum value for a particular crystal length.

Under all conditions the measurement bandwidth never reaches that of the gen-

eration bandwidth, because we are restricting the measurement to modes with

p = 0. Note, however, that the full generation bandwidth does not arise explicitly

from additional values of the OAM but rather from entanglement in the radial

quantum number p.

Differentiation of eq. (7.20) with respect to the crystal length gives an esti-

mate of the value of γ corresponding to the highest measurement bandwidth for

a given LR . In this way we find

γopt ≈ 4

√
π

4LR
. (7.21)

It is worth noting that for such value of γ we have that Kip = KFF = Kgen, where
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Figure 7.4: An example of a measurement bandwidth as a function of γ for three
different values of LR : 0.001, 0.002 and 0.003.

Kgen is defined in (7.12). Therefore in the optimal case we have K = Kgen/
p

2.

We define short crystal lengths as LR ¿π/4γ4, for which the generation band-

width is large, meaning that the measurement bandwidth is dominated by the

image plane overlap of the detection modes with the pump. This gives a mea-

surement bandwidth of

K ≈ Kip = 1+4γ2. (7.22)

Note that this short crystal limit is characterised by an independence of K on the

crystal length. In fact, it can be seen in figure 7.3 that the leftmost part of the

measurement bandwidth curves is flat (for the γ = 7 curve this is not visible in

this plot, but the slope of eq. (7.20) near the origin is zero for any γ), and that the

range of values of LR over which they stay flat is inversely proportional to γ4.

For much longer crystals, LR Àπ/4γ4, the measurement bandwidth, as modified

by the limiting overlap in the far field, becomes dominant, giving

K ≈ KFF = 1+ π

LRγ2 . (7.23)

In figure 7.4 we plot three different curves, that describe the value of the

measurement bandwidth as a function of γ, for three different values of LR . Note

that for each choice of LR there is always an optimal value of γ which maximises

K , and it corresponds to the optimal value given in (7.21).
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It is not an easy matter to determine the requisite parameters for existing

experiments. Most of our own experiments, however, correspond to values of γ in

the range 1.5 up to about 4. In order to achieve higher degrees of entanglement

in OAM, corresponding to larger Schmidt number, our analyses suggest that it

would be desirable to press towards higher values of γ.

7.6 Conclusions

We have shown that two parameters determine the OAM bandwidth for entan-

gled states produced by parametric down-conversion. These parameters are the

ratio of the widths of pump and detection modes γ = wp/ws,i, and the crystal

thickness normalised to the Rayleigh range of the pump LR = L/zr.

A simple geometrical argument approximates the analytical results extremely

well and allows us to suggest what needs to be adjusted in order to enhance the

dimensionality of the entanglement. We have restricted our analysis to a detec-

tion system that is sensitive to the LG p = 0 modes only. It is for this reason that

the measurement bandwidth can never reach that of the generation bandwidth

for any combination of parameters. It is possible, however, to identify an opti-

mum value of γ to maximise the measurement bandwidth for any normalised

crystal length LR . We would like to stress that we didn’t employ the thin crystal

approximation nor the gaussian approximation of the phase matching function.
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Chapter 8

Sector phase masks approach to
spiral bandwidth analysis

And now for something

completely different

Monty Python, Monty Python’s

Flying Circus, 1969

8.1 Introduction

This chapter is based on the paper “Determining the dimensionality of bipartite

orbital-angular-momentum entanglement using multi-sector phase masks”, New

J. Phys. 14, 073046 (2012). This work was a joint effort of all the authors, and I

do not take credit for the experimental activities.

The dimensionality of orbital angular momentum (OAM) entanglement pro-

duced in spontaneous parametric down-conversion can be probed by using multi-

sector phase masks. In this chapter we show how it’s possible to use a spatial

light modulator to implement these analysers [86], and use them to measure a

Schmidt number of about 50. As we saw in the introduction, the OAM of light

is a property that is associated with phase structures of the form ei`φ, where `~
is the OAM carried by each photon [6]. As ` is an integer and is theoretically

unbounded, OAM offers a natural discrete space for exploring high-dimensional

entanglement [65]. And as we saw in the previous chapters, in SPDC with a

Gaussian pump, the spectrum of OAM correlations between the signal and idler

photons is peaked at ` = 0, with tails towards high |`| values. The width and

shape of the spectrum, and therefore the number of joint OAM modes that con-
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stitute the two-photon entangled state, can be engineered directly by manipulat-

ing the structure of the beam pumping the crystal [20, 65, 77] or by tuning the

phase-matching conditions in SPDC [87], which will be the solution adopted in

the experimental procedure described here.

Although it was the central concern of chapter 7, it is important to stress

once more the distinction between between the entanglement that is generated

in SPDC, and the entanglement that is detected by the measurement stage of the

system [24]. The effective number of entangled OAM states that are ultimately

measured is in fact dependent upon both the generated down-converted OAM

spectrum and the detection capabilities of our analysers. The Schmidt number K
is introduced as a measure of the generated entanglement [21], while the Shan-

non dimensionality D represents a measure of the detection capabilities of the

analysers [25]. The measured dimensionality M of the system generally depends

on both K and D, via a relationship M(K ,D) that will be specified below. It may

however be more difficult to measure K directly than it is to determine M and

D. In those cases, we can first determine M (from a direct measurement) and D
(which is fixed by the design of the phase masks), and invert the relation for M,

from which the Schmidt number K(M,D) can then be deduced.

Determining the measured dimensionality M of tailored high-dimensional

entangled states can be carried out by performing appropriate selective projec-

tive measurements [57], i.e. different joint eigenstates can be singled out and

detected, the rates of coincidence counts will then give the spiral bandwidth.

This method, however is wasting many of the photons, as single eigenstates are

being measured for each setting. An alternative method is based on pairs of

multi-sector phase masks, placed in the two arms of a down-conversion system.

Each mask has N azimuthal angular sectors, each of which introduces in an al-

ternating way a π phase shift or no phase shift at all. The number and angular

width of the sectors of the phase analysers placed in each of the signal and idler

arms define the superposition of OAM eigenmodes in which the two-photon state

produced by down-conversion is projected. It is clear that any design which is

strictly azimuthal will not affect the radial components of a field. By optimising

the binary phase profile of the phase analysers, it is possible to maximise the

Shannon dimensionality D of the measurement apparatus, for any number of

sectors N of the two masks [88]. The optimisation can be performed by writing

D as a function of the set of 2N −1 free angles that determine the position and

size of each sector, and then by running a simulated annealing algorithm that

maximises D by moving the 2N−1 angular variables around the circle. We have
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no certainty about the optimality of the results, but they are good enough to be

successfully implemented. We will spend some words on that below.

By using angular phase analysers we infer the Schmidt number K , charac-

terising the effective number of azimuthal entangled OAM modes. In contrast

to previous works, which used quartz phase masks prepared with optical lithog-

raphy [88], we can implement N-sector angular phase analysers using spatial

light modulators (SLMs) [89]. Computer-controlled SLMs provide a fast, con-

venient and reliable way of producing holographic phase masks with arbitrary

orientations and numbers of sectors, to be used in the measurement of the dimen-

sionality of OAM entanglement. The use of multi-sector phase masks to probe

high-dimensional states, as opposed to narrow single-sector analysers [27, 90],

allows the measurements of tight angular correlations whilst maintaining high

optical throughput.

8.2 Theory

8.2.1 Amplitude and phase masks

The angular measurement of a light field can be achieved by employing an an-

gular slit. The idea behind this approach is the angular analog of a linear slit:

a linear slit measures a field at one linear coordinate, with an uncertainty that

depends on the width of the slit. An angular slit, on the other hand, measures a

field at one angular coordinate with an uncertainty that depends on the angular

width of the slit. As the angular position and orbital angular momentum form a

pair of conjugate observables, the tighter the angular correlations, the larger the

spread in the OAM observable [91, 92]. If one seeks high measurement accuracy,

the angular slit has to be very narrow and, in turn, this means that much of the

light is blocked, yielding the problem of lower number of counts as the measure-

ment uncertainty is decreased. The solution to this problem is to employ phase

masks, instead of amplitude masks.

The design of the phase mask consists of an angular step mask, which is

characterised by a number of sectors N and by a set of 2N−1 angles that describe

the position and width of each sector [88]. Each alternate sector applies a π phase

shift. The overall action of a phase mask of this kind is therefore to flip the phase

of a light field in each sector, about the centre of the mask, and to leave the phase

unchanged everywhere else. Note that the action of a phase mask does not affect

the radial degree of freedom, as the design is radially invariant. This means

that there is no coupling between different eigenmodes of the radial degree of
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freedom, which allows us to restrict ourselves to the azimuthal content of the

measured state. This effect can be described in terms of OAM. A plane wave

is turned into a superposition of different OAM eigenstates. The range of OAM

eigenstates of which the superposition consists depends on the number of sectors

and on their relative positions and widths [88]. Such effect is analogous to the

effect of an amplitude mask, without the drawback of letting less and less light

through as the angular uncertainty is decreased.

8.2.2 Measurement of Hilbert space dimensionality

In order to optimise the azimuthal profile of a sector mask the most useful fact to

keep in mind is precisely that we are trying to place the phase shifts so that the

beams are localised within a narrow angle. If we indicate the azimuthal phase

shift with a 2π periodic function A(θ,α), where θ is the azimuthal angle and α is

the angle of rotation of the whole phase mask with respect to a fixed position, the

projection of a flat field that passed through a phase mask onto a second phase

mask is given by

γ(θ1,θ2)=
∫ 2π

0
A(θ1,α)A∗(θ2,α)dα (8.1)

The symmetry of the problem gives γ(θ1,θ2) = γ(θ1 −θ2,0). We have therefore a

function that indicates how much of the light that passed through the first phase

mask passes through a second phase mask, oriented at an angle with respect to

the first one. The optimisation procedure involves precisely minimising the “area

under the curve”, i.e. by making the localisation more peaked at one specific

location.

This is the idea of how we proceed: with a pair of optimised identical phase

masks we can probe the OAM content of the SPDC state by putting one on each

“arm” of the system and then detecting the pairs in coincidence while rotating

one of the phase masks. The area under the curve will be a consequence of both

the design of the mask and of the OAM content. What’s fundamental here is that

the design (i.e. the function A) can be represented in Fourier space, and each

coefficient simply multiplies the relative OAM coefficient of the SPDC state to

deliver the coincidence curve. Hence, knowing one of the two “widths”, given by

the design, D, the other (the Schmidt number K) can be immediately retrieved.

In other words, we start from an SPDC state

|Ψ〉 =
∞∑

`=−∞
c` |`〉s ⊗|−`〉i (8.2)
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described exclusively in the OAM basis, where |`〉s and |`〉i correspond to the

states of the signal and idler photons respectively. By expressing the projection

state associated with a phase-mask analyser oriented at an angle α as the super-

position
|A(α)〉 =∑

`

λ` |`〉 ei`α, (8.3)

the coincidence probability for a pair of identical analysers, oriented at α and β

respectively, is given by

P(α,β)= ∣∣〈A(α), A∗(β)
∣∣Ψ〉∣∣2 , (8.4)

where
〈
A(α), A∗(β)

∣∣ = 〈A(α)| ⊗ 〈
A∗(β)

∣∣. The coefficients γ` = |〈`|A(0)〉|2 = |λ`|2
(with

∑
`γ` = 1), defined by the profile of the N-sector phase masks, determine

the respective OAM spectrum. It is possible to design the arc sectors of each N-

sector phase mask in a way that maximises the dimensionality D of the analyser,

which is given by

D = 1∑
`γ

2
`

(8.5)

much alike the Schmidt number. For each N we used the optimal arrangement

of sectors, based on results from [88]. The maximum number of modes D that

can in principle be measured by each of such optimal N-sector masks can then

be inferred from the theoretical distribution of eigenmodes γ`, as shown in [88].

The maximal dimensionality D of each N-sector mask used here was found

through a numerical model. It was found that D increases linearly with N, in

particular it was found that adding a pair of π/0 sectors can lead to a different

optimal design that adds about 6 extra modes to the dimensionality D. The nu-

merical simulation considered the distribution of the overlap between two iden-

tical N-sector masks within a two-dimensional region with a Gaussian profile,

as the orientation β of one of the masks was rotated with respect to the other, α.

Given the coincidence probability distribution P(α−β) obtained from the numer-

ical model, the Shannon dimensionality can also be directly calculated as

D = 2π∫ 2π
0 P(α−β)d(α−β)

, (8.6)

where angle β is measured with respect to α. We implemented multi-sector

masks with a number N of sectors between 1 and 16. The dimensionalities D
obtained from the numerical and theoretical models, the latter obtained from the
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Figure 8.1: Experimental setup implementing SLM-based coincidence detection
with angular-sector phase masks (see text for details).

decomposition of each N-sector mask into eigenmodes γ`, were found to differ by

less than 2.5%, meaning that SLMs do indeed deliver a reliable representation

of a phase mask.

8.3 Experimental results

8.3.1 Experimental setup

Implementing phase-mask analysers using computer-controlled spatial light mod-

ulators allows for quick and effective measurement of the Schmidt number K of

the entangled state produced by SPDC. No optical elements need to be fabri-

cated, physically rotated or replaced when using a different multi-sector mask,

as the measurement process simply involves displaying one of a set of different

rotated N-sector holograms on the SLMs and performing coincidence detection.

A 5mm-thick β-barium borate (BBO) non-linear crystal cut for type-I collinear

SPDC acts as our source of entangled photon pairs. The crystal is pumped by a

1W UV laser to produce frequency-degenerate entangled photon pairs at 710nm.

The co-propagating signal and idler photons are separated by a non-polarizing

beam splitter, and redirected to SLMs. The SLMs, onto which the crystal output

face is imaged by a 2× telescope, are encoded with N-sector phase holograms.

The SLMs are then imaged onto single-mode fibers (SMFs), which couple the

SLM output to single-photon photo-diode detectors (figure 8.1), whose output is
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Figure 8.2: Typical best Gaussian fits of coincidence probability distributions
P(α−β) are shown for N = 5,8,10 and φ = 0. The inset shows the full −180° <
α−β< 180° range used in the measurements, for the aforementioned values of N.
Background subtraction was performed by assessing the experimental accidental
coincidences.

routed to coincidence-counting electronics. The coincidence counting has a tim-

ing window of 10ns. Narrow-band, 2nm interference filters are placed in front of

the detectors to ensure that the frequency spread of the detected down-converted

fields is small compared to the central frequencies. SLMs introduce great flexibil-

ity in our measurements, but this comes at the price of an overall lower detection

efficiency, as the diffraction efficiency of SLMs is around 50%.

This detection configuration is insensitive to any overall phase factors. There-

fore, while the conservation of OAM in the SPDC process would require placing

mutually phase-conjugate N-sector phase masks in the detection arms (i.e., the

0 and π phase-shifted sectors are inverted between the two masks), two identical

phase masks can be used instead. These phase masks are self-conjugate in case

of a π phase shift. The finite pixel size of the SLMs places a restriction on the

width of the sectors that can be displayed on the holograms. We show that we

can implement optimal multi-sector phase masks with N = 1, . . .16. Suppressing

the centres of the holograms, where the N angular sectors meet in a very limited

spatial region of the SLM displays, did not turn out to be necessary.

The phase-matching conditions of the down-conversion process for the BBO

crystal were adjusted by slightly changing the orientation of the crystal with

respect to the propagation direction of the pump beam [26]. This allowed to in-
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Figure 8.3: Detected orbital angular momentum spectrum with projective mea-
surements. Shown is the coincidence probability P(`i,`i =−`s) for `s ∈ [−30,30],
for collinear (φ= 0) and near-collinear (φ=−2.3) phase-matching conditions.

crease the width of the orbital angular momentum spectrum, and thus decrease

the width of the angular correlations distribution. The intensity profile of the

down-conversion emission can be expressed as: I ∝ |E|2 ∝ sinc(φ+ cξ)2, where

ξ is the external emission angle in air, c = (|k|s + |ki|)L/(2n)2 is a constant de-

pending on the experimental parameters, and φ = (|kp| − |ks| − |ki|)L/2 (with L
length of the crystal) determines the degree of non-collinearity of the process [88].

Measurements were performed for collinear (φ= 0) and near-collinear (φ=−2.3)

phase-matching conditions.

The coincidence probability distribution P(α−β) was obtained by changing

the orientation β of the second phase mask over the range α±180°, where α is

the orientation of the first. We found that, for the purposes of the experiment,

a Gaussian distribution is an excellent empirical fit for the coincidence probabil-

ity distributions (figure 8.2). The detected number of modes M, dependent on

both the source and the detectors’ properties, was obtained by substituting the

Gaussian fit of the measured coincidences to P(α−β) in eq. 8.6.

8.3.2 Results and discussion

The phase masks used have no radial structure. Any sensitivity of the detection

apparatus to the radial quantum number p is therefore due to the spatial se-

lectivity of the SMF coupling. Unlike full projective measurements of the down-

conversion entangled state over a range of OAM eigenstates |`〉, a phase-mask

determination of the dimensionality K of the source does not provide any direct
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information on the shape of the OAM spectrum.

We consider the OAM spectrum generated by the source and the coincidence

probability obtained from the numerical model, both fitted with Gaussian distri-

butions, from which the dimensionalities K and D can respectively be obtained.

We performed projective measurements of idler and signal over |`〉 and |−`〉 re-

spectively to verify the validity of the assumption concerning the OAM spectrum

(figure 8.3). The numerical model, from which the values of D for different N
are obtained, calculates the overlap in eq. 8.4. Although the theoretical shape

of the distribution of the coefficients γ`, which characterise the action of a phase

mask on a light field, has own distinctive features, its implementation on an

SLM makes it possible to approximate it with a Gaussian distribution. In fact,

as the hologram representing the phase mask is rotated on the surface of the

SLM, any imperfections (finite pixel size, surface roughness, slight unevenness

of the phase shift, electrical fluctuations) influence the effect of the phase mask

in a stochastic fashion. As this a very small overall effect, it does not change the

dimensionality of the phase mask but rather smooths out the distribution of the

γ` coefficients.

The measured dimensionality M is given by the normalised convolution of the

two other distributions (namely, the coincidence distribution associated with the

effective Schmidt number of the system and that obtained from the numerical

model for the sector phase masks), as the coincidence probability depends on the

properties of both the source and the detectors. M can then be approximated by

the following formula, valid in the case of two gaussian distributions:

M ' DKp
D2 +K2

, (8.7)

from which the Schmidt number K can be derived:

K ' DMp
D2 −M2

. (8.8)

Consequently, the source dimensionality K can be inferred from the theoreti-

cal coincidence probabilities and measured coincidence distribution. The cal-

culated dimensionality for each N-sector phase mask is shown in figure 8.4

(collinear phase-matching) and 8.5 (near-collinear phase-matching). We mea-

sured Schmidt numbers of 35± 2 for collinear down-conversion, and 49± 2 in

the near-collinear case. The results for source dimensionality obtained from the

phase-mask analysis are compatible with the Schmidt number derived from pro-

jective spiral bandwidth measurement (figure 8.3), with the assumption of per-
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Figure 8.4: Collinear phase-matching conditions. Phase mask dimensionality D
from numerical model (blue points), measured M (red squares), and calculated
dimensionality K (gray circles). We observe that D < K for N < 7; therefore, the
calculated M saturates to D for any given N < 7. The solid gray line shows the
best estimation for the number of modes K of the source, 35±2.

fect single-mode detection.

The mean visibility achieved in the experiment, defined here as the ratio be-

tween the mean baseline of the measured coincidence probability and the peak at

α−β= 0, without background subtraction, is 90% for collinear phase-matching,

and 92% for near-collinear. Systematic errors due to misalignment are found to

be much larger than photon statistics uncertainties.

8.4 Conclusions

In conclusion, we have shown how multi-sector phase-mask analysers can be

implemented using spatial light modulators, and used them to probe the effective

number of modes in the high-dimensional bi-photon entangled state produced by

parametric down-conversion. We used a set of several multi-sector analysers to

infer the Schmidt number for different phase-matching conditions, and therefore,

different widths of the OAM spectrum of the source.
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Figure 8.5: Near-collinear phase-matching conditions. See caption of figure 8.4.
Given the wider spiral bandwidth in the near-collinear regime, K saturates to D
for N < 9. The solid gray line shows the best estimation for the number of modes
K of the source, 49±2.

8.5 Appendix: optimisation of phase masks

For completeness we add this appendix on the optimisation of sector phase plates.

The material in this appendix is taken and adapted from my master thesis “High

dimensional photon entanglement and the design of sector phase plates” [1], com-

pleted in Leiden University in 2009.

8.5.1 Description of a phase mask

A phase mask is an object which purpose is to shift the phase of an incoming

wavefront. In a quartz phase mask the shift will happen due to different path

lengths in the medium, that will slow down the propagation of the wave, in an

SLM-reproduced phase mask, the orientation of the liquid crystals are responsi-

ble for the phase shift. The design on the surface will be radially invariant, as

we want to produce purely azimuthal phase shifts.

The plane wave that approaches the phase mask will have a different shift

according to the point where it will enter, either 0 or π.
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Figure 8.6: Quartz phase mask with greatly exaggerated slice thickness. The
real thickness is around 800nm, while the total thickness is around 2mm. The
diameter is 2.5cm.

8.5.2 Optimisation procedure

The problem of optimising a phase mask has been addressed before [25], but the

results were not optimal. The process can be split into an analytical part and

a numerical part: although an analytical expression for the Shannon number D
for any number of sectors is found, its full expression is too complicated to work

with, therefore a numerical approach is the fastest way to retrieve a solution.

Here we describe the details of a single sector mask, the generalisation will be

straightforward. We want to show a way to optimise a phase mask of N sectors.

By optimisation we mean the maximisation of the measure that corresponds to

the number of modes of OAM that a phase mask can reach, namely the Shannon

number D. There is therefore an optimal way of choosing the angles between

the sectors, and their size too that will maximise the Süssmann measure of the

distribution of the γm factors, defined below. We start by describing a general

sector phase mask.

Given the angle β of the sector, we define the normalised profile function

Aβ(θ,α)= 1p
2π

tβ(θ,α) (8.9)

where tβ(θ,α) is a sum of Heaviside theta functions that jumps between +1 to
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Figure 8.7: Example of 3-sectors phase mask. In this representation we show
the phase shift that different parts of the mask will imprint on the wave front.
Note that there is no radial dependence: the phase shifts are a purely angular
feature of the design of the mask.

-1 when the variable θ becomes equal to the parameter α and jumps back to +1

when θ =α+β. The function t is periodic in 2π: we have

tβ(θ,α)= H[(θ−α)mod 2π]−H[(θ−α)mod 2π−β] (8.10)

For the rotational nature of the problem, all the angles can be shifted together

by the same amount without giving any change in the final result of our com-

putation. This fact allows us to set the parameter α at will, and in particular

we have that A(θ,α)= A(θ−α,0). Such a sum of distributions describes how the

phase of a wavefront gets shifted according to the position and size of the sectors

in a sector phase mask. Define the function γ(θ1,θ2):

γ(θ1,θ2)=
∫ 2π

0
A(θ1,α)A∗(θ2,α)dα (8.11)

This function represents the angular correlation of two superposed phase masks,

each one rotated by an angle θi, with i = 1,2. This function can be used to study

the angular localisation of a phasemask with respect to its twin. For the problem

that we need to solve, the function γ is a hermitian Hilbert-Schmidt kernel (it is

continuous in a compact interval), positive semidefinite. Therefore it is possible
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Figure 8.8: The angle β that appears in the description below is represented in
this picture. Notice that the first edge of the first sector corresponds to an angle
φ0 = 0.

Figure 8.9: The function tβ(θ,0) varying with respect to θ. The value of α deter-
mines the overall position, here is set to 0, the value of β determines for how long
the function stays in -1.

to choose a complete othonormal basis {um(θ)} and expand γ(θ1,θ2) in this basis:

γ(θ1,θ2)=∑
`

γ`u`(θ1)u∗
`(θ2) (8.12)

As we are interested in the orbital angular momentum decomposition we will

choose the OAM eigenfunctions as a basis for the expansion, u`(θ)= 1p
2π

ei`θ. The

eigenvalues γ` are found by solving the Fredholm (because γ defines a compact

operator) integral equation [24]:∫ 2π

0
γ(θ,θ′)u`(θ′)dθ′−γ`u`(θ)= 0 (8.13)
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We solve it by substituting the definition of γ(θ,θ′) into the equation, changing

the variable from θ′ to x = θ′−α as well as y= θ−α:

γ` = u−1
` (θ)

1
2π

∫ 2π

0
A(θ,α)ei`α 1p

2π

∫ 2π

0
A∗(x,0)ei`θ′dθ′ dα (8.14)

=
p

2πe−i`θF∗[A(x,0)](`)
1

2π

∫ 2π

0
A(θ,α)ei`αdα (8.15)

= e−i`θF∗[A(x,0)](`)
1p
2π

ei`θ
∫ 2π

0
A(y,0)e−i`yd y (8.16)

=F∗[A(x,0)](`)F [A(y,0)](`)= |F [A](`)|2 (8.17)

Where the F denotes the Fourier Transform. Here we showed that the expansion

coefficients are indeed the Fourier transforms of the normalised profile function

A, evaluated in the discrete modes `. We give a new name to the coefficients, for

convenience of notation: F [A](`)= c`.
The eigenvalues γ` represent the coupling strength of the analyser (the phase

mask) to the field mode u`(θ). The set includes the natural normalisation condi-

tion
∑∞
`=−∞γ` = 1.

We have shown that γ` = |F [A](`)|2 = |c`|2, we now calculate the coefficients

c`. For ` 6= 0, using 8.9 and 8.10

c` = 1p
2π

∫ 2π

0
A(θ,0)e−i`θdθ (8.18)

= 1
2π

[
−

∫ φ1

φ0=0
e−i`θdθ+

∫ φ2

φ1

e−i`θdθ−
∫ φ3

φ2

e−i`θdθ+·· ·+
∫ 2π

φ2N−1

e−i`θdθ
]
(8.19)

= 1
2π

[
− ei`φ1 − ei`φ0(=0)

−i`
+ ei`φ2 − ei`φ1

−i`
− ei`φ3 − ei`φ2

−i`
· · ·+ ei`2π− ei`φ2N−1

−i`

]
(8.20)

= i
2π`

[
1+ ei`2π−2

(
e−i`φ1 − e−i`φ2 + e−i`φ3 −·· ·+ e−i`φ2N−1

)]
(8.21)

= i
π`

[
1+

2N−1∑
n=1

(−1)ne−i`φn

]
(8.22)

so we can multiply the Fourier transform of the profile by its complex conjugate

(for the passage to the second line remember that we set φ0 = 0. We now add the
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subscript N to stress the dependence to the total number of sectors):

γ`,N = 1
π2`2

[
1+

2N−1∑
n=1

(−1)ne−i`φn

][
1+

2N−1∑
n=1

(−1)nei`φn

]
(8.23)

= 1
π2`2

[
2N−1∑
n=0

(−1)ne−i`φn

][
2N−1∑
n=0

(−1)nei`φn

]
(8.24)

= 1
π2`2

2N−1∑
n,k=0

(−1)n+ke−i`(φn−φk) (8.25)

= 1
π2`2

2N−1∑
n,k=0

(−1)n+k cos[`(φn −φk)] (8.26)

This last passage is justified by the fact that we are summing over all possible

pairs of {n,k}, so we get a factor 1/2 because we need only half of the terms and

a factor 2 from the cosine representation of the real part, that cancel out. If one

wants to plot the distribution of the γ` coefficients (that are equal to |c`|2), this

expression is not computationally convenient, because given N sectors, for each

γ` factor one has to evaluate and sum 4N2 terms. There is a way to express the

same coefficient evaluating and summing 4N factors, as we will show now. If we

write the cosine of the difference that appears in eq 8.26, we obtain:

γ` = 1
π2`2

2N−1∑
n,k=0

(−1)n+k cos[`(φn −φk)] (8.27)

= 1
π2`2

2N−1∑
n,k=0

(−1)n+k[cos(`φn)cos(`φk)+sin(`φn)sin(`φk)] (8.28)

=
(

2N−1∑
n=0

(−1)n cos(`φn)
`π

)2

+
(

2N−1∑
n=0

(−1)n sin(`φn)
`π

)2

(8.29)

For the last passage notice that the double sum is on two different indices.

Now that we have introduced two expressions for the γ` factors, we introduce the

Süssmann measure as a measure of width of the distribution of modes generated

by a phase mask. It has a profound similarity with the Schmidt number.

8.5.3 Süssmann measure

As we mentioned above, the dimensionality value associated to a given sector

phase mask is the Shannon number of distinct eigenstates that such a mask
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could address and is defined as [24]:

DN = 1
∞∑

`=−∞
γ2
`,N

(8.30)

so we need to calculate the square of the γ` factors. To do it we keep the first

form 8.26, as it contains a single occurrence of the cosine, although the sum is

performed on two indices.

The square of a sum can be written by doubling the indices and squaring the

argument:

γ2
`,N = 1

π4

2N−1∑
n,k,n′,k′=1

(−1)n+k+n′+k′ cos[`(φn −φk)]cos[`(φn′ −φk′)]
`4 (8.31)

We can perform the sum over ` first, as there is a convenient closed form for it.

We start by cutting the sum in half and keeping only the terms with positive `,

as they are symmetric about the value `= 0:

∞∑
`=−∞
m 6=0

cos[`(φn −φk)]cos[`(φn′ −φk′)]
`4 (8.32)

= 2
∞∑
`=1

cos[`(φn −φk)]cos[`(φn′ −φk′)]
`4 (8.33)

Let’s take a simple version of the sum we are about to perform:

∞∑
`=1

cos`x
`4 (8.34)

This sum converges if −2π≤ x ≤ 2π to a fourth degree polynomial in x:

∞∑
m=1

cos(`x)
`4 = π4

90
− π2x2

12
+ π|x|3

12
− x4

48
(8.35)

We cannot apply it as straight away to the sum 8.31, because of the double cosine.

But by the trigonometric identities we can write

cos[`(φn −φk)]cos[`(φn′ −φk′)]
`4 = cos[`(φn −φk +φn′ −φk′)]+cos[`(φn −φk −φn′ +φk′)]

2`4

(8.36)

So now we have two sums, each one is written in the form 8.34. The domain of

the sums, though, is different: now the angles can range between −4π and 4π, so
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we need to make the argument periodic by hand.

That is accomplished by using modulus functions (x → x mod 2π) so that the

sum 8.34 can be made valid for every x:

∞∑
`=1

cos(`x)
`4 = π4

90
− π2(x mod2π)2

12
+ π|x mod2π|3

12
− (x mod2π)4

48
(8.37)

so that the original sum can be written in the following form:

2
∞∑
`=1

cos[`(φn −φk)]cos[`(φn′ −φk′)]
`4 (8.38)

=
(
π4

90
− π2χ2+

12
+ πχ3+

12
− χ4+

48

)
+

(
π4

90
− π2χ2−

12
+ πχ3−

12
− χ4−

48

)
(8.39)

where the χ+ and χ− are the periodicised sums of the angles:

χ± = (±φn ±φk ∓φn′ ∓φk′) mod 2π (8.40)

Since we have to perform a sum over all possible values of the indices of the

angles, every permutation of every set of choices is present in the sum, so it is

possible to take only one of the two parts of eq (18) and multiply by 2:

D−1
N = 1

π4

2N−1∑
n,k,n′,k′=0

(−1)n+k+n′+k′
(
π4

45
− π2χ2+

6
+ πχ3+

6
− χ4+

24

)
+γ2

0,N (8.41)

γ2
0,N is the `= 0 term, which is trivial to calculate: we just need to set ` to zero

in equation 8.18:

γ2
0,N =

(
1+ 1

π

2N−1∑
n=1

(−1)nφn

)4

(8.42)

Equation 8.41 is usable by numerical optimisation software until a maximum

number of variables around 15, with more variables the software is not efficient

anymore and the result is not optimal.

It is possible to simplify it though, allowing a faster optimisation and the han-

dling of a higher number of variables.

8.5.4 How to simplify the computational optimisation

By separating the sum of the polynomial in four sums of the four parts it’s easy to

notice that it’s possible to eliminate the factor π4

45 because the sum of (−1)n+k+n′+k′

is equal to zero.
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Then let’s take what we’re left with and let’s concentrate on the set of the four

indices. Since all possible combinations are present, and since some of them

produce a null result, or the same result, or pairs of them give opposite results

that cancel out, we can reduce the set.

We need to look at the symmetries of the function

(
π2χ2+

6
− πχ3+

6
+ χ4+

24

)
= (8.43)

= 1
24
χ2
+(2π−χ+)2 = χ2+χ2−

24
(8.44)

So that equation 8.41 becomes

D−1
N = 1

24π4

2N−1∑
n,k,n′,k′=0

(−1)n+k+n′+k′
χ2
+χ

2
−+γ2

0,N (8.45)

It is much easier now to reduce the set {{n,k,n′,k′}|n,k,n′,k′ ∈ 1,2, . . .2N −1} of

all the possible combinations of the indices. Below we list a series of rules that

we can use to eliminate single occurrences:

1. the elements {a,a,a,a} give 0

2. the elements {a,b,a,b} give 0

3. if we swap the first and second index, or the third and the fourth or both,

the result is the same. So the elements {a,b, c,d}, {b,a, c,d}, {a,b,d, c} and

{b,a,d, c} give the same result

4. if we swap the first and the second with the third and fourth, the result is

the same. So the elements {a,b, c,d} and {c,d,a,b} give the same result

5. if two indices cancel out, the result is independent on their specific value,

so the elements {a,b, c,b}, {b,a,b,d}, {a,b,b,d} and {b,a,d,b} (for each of

them we can also apply rules 3 and 4) not only give the same result, but

also are independent on the value of b.

By using these rules we get from a number of 256 possible combinations for

a given set of four different values to a set of 27 (per set of four different indices,

even less if the set contains less different values). Defining a function Z(a,b, c,d)

that counts the multiplicity of the same occurrences (accordingly with rules 3, 4

and 5), then we can multiply the argument of the sum by the function Z and we

can sum only over different indices (
∑

n,k,n′,k′ → ∑
n<k<n′<k′). This can computa-

tionally be accomplished, and the huge speedup that we obtain comes from the
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fact that now, instead of 16N4 terms in the sum for an N sectors mask, we have

216N terms. When N ≥ 3 the number of sets of indices is larger than 1 and it’s

possible to apply the rules above to eliminate terms that belong to different sets.

This process reduces the size of the function D−1
N and reduces the computational

complexity of the optimisation process. The optimisation procedure that the soft-

ware applies (a customised simulated annealing algorithm) becomes much faster

than before, especially for a large number of sectors. The simulated annealing al-

gorithm used starts 50 evaluation points at the same time in the variables space

and moves them like they are particles in a potential, according to the value of a

parameter that simulates the temperature during the cooling of a piece of mate-

rial. Suppose that a point is stuck in a local minimum, then if the temperature

is high enough it could (statistically) hop out and proceed for a better minimum.

This process eventually ends when the temperature is low enough to consider

sufficiently unlikely that a jump could occur. The results of simulated annealing

are not guaranteed to be optimal, as the search tree is not completely probed, but

the speed and overall quality of the results are satisfactory enough. Without the

simplification we were able to find the optimal mask for N = 9 in almost three

days, while with the simplification we could find the optimal mask for N = 10 in

less than three minutes.

By means of equation 8.45 we were able to calculate the optimal set of angles for

phase masks with up to 16 sectors.
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Chapter 9

Conclusions and Outlook

9.1 Summary of the results

In the course of this thesis several results were obtained. The structure of the

thesis reflects the way such results can be grouped together, namely we have two

main results about the SPDC state and three main results on the detection of en-

tanglement in the SPDC state. The two main results on the SPDC state are the

analytical Schmidt decomposition, which is described in chapter 4, and the nu-

merical Schmidt decomposition, which is described in chapter 5. The difference

between these two forms of the Schmidt decomposition, a part from their analyt-

ical or numerical nature, is that the former employs the gaussian approximation

of the phase matching function (a consequence of which is the impossibility of in-

cluding a phase mismatch), while the latter makes use of the most general form

of the phase matching function.

The main results on the detection of entanglement in SPDC are two sets of

projections, either on a complete LG family (chapter 6), or on p = 0 LG modes

(chapter 7), and a different approach of measurement, namely with sector phase

masks (chapter 8). The difference between the two chapters on projection, a

part from the type of LG modes, is that the former employs the thin crystal

approximation, while the latter uses the full sinc form (albeit with no phase

mismatch). Chapter 7, in particular, is very interesting because it shows how

a complex task like the projection onto LG modes of a rather complicated wave

function (the sinc is a function which turned out to be mathematically hard to

handle) can be reached by simple heuristic reasoning. Chapter 8 is a realisation

of my master thesis, which was centred on the optimisation of phase masks, and

it was an extraordinary personal gratification to see those results in action.
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9.2 Outlook and Acknowledgements

As we anticipated in the historical section in chapter 1, there are still unan-

swered questions on SPDC. In the future I would like to concentrate my efforts

on hyperentanglement, where I hope I will be able to use my expertise on spatial

entanglement. Quantities like crystal size, beam width and wavelength, can af-

fect the temporal part of the entanglement too, and it is likely that optimality of

spatial entanglement does not mean optimality of temporal entanglement. The

compromise will lay somewhere in between, and it will be a major opportunity to

be able to address this problem as a whole. However, there are still unanswered

question exclusively on the spatial part, which I am going to summarise below.

It is certain that some of the results that we have found in this couple of years

will have an important future, i.e. those results that can be immediately used,

results that are useful for further enquiry into the SPDC state. in particular I

would mention the Schmidt decompositions. Both the analytical and the numer-

ical versions will hopefully give useful insight on how to perform ideal measure-

ments. Once the settings for an experiment are ready, the recipes for Schmidt

modes are in chapters 4 and 5. If the phase mismatch is zero the solution is even

analytical.

I think the outlook of the results in chapter 4 are on the experimental side,

as Schmidt modes are the ideal modes to use in order to maximise the shared

information. It would be extremely interesting to check the results on imperfect

measurements. If it is feasible to implement initial states with strong entangle-

ment, an imperfect measurement could in any case yield a fraction of shared bits

that can be large enough for the purpose. Experimental conditions to generate

very high dimensional entanglement are relatively easy to achieve, especially if

one is not concerned with luminosity: a short crystal would be enough to gener-

ate enough initial modes. The choice of detection basis, however, should try to be

as close to the Schmidt basis as possible.

There are several points raised in chapter 5 that are worth further investi-

gation: the question if a simple, heuristic rule like the α-modification that com-

prises a phase mismatch Φ 6= 0 exists, the physical intuition about the families

of displaced HG-like modes that fill the radial sectors and their properties as

field modes. However, perhaps the most interesting is the actual behaviour of

the radial modes, especially at high p. The proposed splitting of p in two differ-

ent quantum numbers might be valid up to a limited upper value of p, but this

precise behaviour, could be used to explore the meaning and the validity of the ra-

dial modes. The plots in figures 5.6 and 5.8 make one wonder about the problem
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of tunnelling between different sites, and its similarity with topics in quantum

integrable systems, quantum chaos and the Berry-Tabor conjecture [93], in ref-

erence to the potential impossibility of telling in which site the wavefunction is

going to jump as the value of p is increased.

Chapter 6 raises some interesting points that find significance in the context

of thin crystals, i.e. when the source can be considered to produce an infinite

number of modes. In particular, questions like the behaviour of the results in the

absence of OAM, i.e. equation (6.20) for ` = 0, the optimal size that maximises

the overlap between pump and generated modes for a fixed |`|, and potential

benefits of sudden splittings like the ones observed in figures 6.9 and 6.10, which

could be used to detect a difference in beam size. Additionally, the relations that

determine the branching in figure 6.10 could be potentially easy to find using the

properties of Laguerre polynomials.

The geometrical result in chapter 7 might feel a bit of a “disappointment”,

for its incredible simplicity and ability of reproducing the results found with

much harder calculations. However, it is regarding only the p = 0 subspace. A

similar result for p 6= 0 might not be as easy to find, but it is certainly worth

some thought. A way of checking the eventual findings is clearly at hand, by

numerically evaluating the amplitudes. Even if a result for any p is found, the

hardest step would probably be putting together the results in a meaningful way,

and to yield similar curves for a general Φ = 0, sinc phase matching generation

and detection scheme.

I’m particularly proud of chapter 7, for two reasons. The first is that the

results were unexpected. It is by working with the full sinc and the gaussian

approximation of the phase matching together that we realised their true differ-

ence. The second reason is that I learned a lot by working in close contact with

an experimental group. The ability of an experimentalist of approaching prob-

lems is remarkable, the method itself is what I admired most and I hope I’ll be

able to use the same intuition and build a model of reality in my head and use it

with the same passion and effectiveness as I’ve seen people doing so often during

those weeks of intense collaboration.

Chapter 8 is a different take on the topic of detection. Its advantage is that

it might greatly speed up the process of characterisation of a source of OAM

entanglement, both for the fact that it focusses on K directly, without inferring

it from a set of projection amplitudes, and because it is not affected by the same

problem of an amplitude mask, so the coincidence rate is maximised. As the

technology of spatial light modulators becomes better and better, might it even be
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superseded, the basic idea of employing an azimuthal phase structure can always

be used, and masks that span a D-dimensional Hilbert space can in principle be

prepared for any D. The bottom line of chapter 8 is that we showed a proof

of principle of a technique that in the future might be perfected and used to

characterise sources in a very fast and reliable way.
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interpersonal relations, and of making the right choices at the right time, and

these aspects require the skill and wisdom that I hope I will have, as well, one

day. I am still in the process of learning the ever unreachable skill of “writing

clearly”.

Last but not least, I thank my family, which although some thousands kilo-

metres away, always supported me, and on which I can always count, and my

friends, here in Glasgow and back home, for helping me maintain, I assume, my

sanity.

135



Bibliography

[1] F. M. Miatto. High dimensional photon entanglement and the design of
sector phase plates. Leiden: Master thesis, 2009.

[2] R. W. Boyd. Nonlinear Optics. Academic Press, 2008.

[3] M. Nielsen and I. Chuang. Quantum computation and quantum informa-
tion. Cambridge: Cambridge University Press, 2000.

[4] L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cam-

bridge Univ. Press, 1995.

[5] A. K. Jha et al. “Fourier relationship between the angle and angular mo-

mentum of entangled photons”. In: Physical Review A 78 (2008), p. 43810.

[6] L. Allen et al. “Orbital angular momentum of light and the transforma-

tion of Laguerre-Gaussian laser modes”. In: Physical Review A 45 (1992),

pp. 8185–8189.

[7] M. J. Padgett and L. Allen. “The Poynting vector in Laguerre-Gaussian

laser modes”. In: Optics Communications 121 (1995), pp. 36 –40.

[8] V. D. Salakhutdinov, E. R. Eliel, and W. Löffler. “Full-Field Quantum Cor-

relations of Spatially Entangled Photons”. In: Physical Review Letters 108
(2012), p. 173604.

[9] G. Bacciagaluppi and A. Valentini. “Quantum Theory at the Crossroads:

Reconsidering the 1927 Solvay Conference”. In: quant-ph/0609184v2 (2006).

[10] N. Harrigan and R. Spekkens. “Einstein, Incompleteness, and the Epis-

temic View of the Quantum States”. In: Foundations of Physics 40 (2 2010),

pp. 125–157.

[11] D. Howard. “Einstein on locality and separability”. In: Studies In History
and Philosophy of Science Part A 16 (1985), pp. 171 –201.

[12] J. Bell. “On the Einstein-Podolsky-Rosen paradox”. In: Physics 1 (1964),

pp. 195 –200.

136



[13] A. Aspect, P. Grangier, and G. Roger. “Experimental Tests of Realistic Lo-

cal Theories via Bell’s Theorem”. In: Physical Review Letters 47 (1981),

pp. 460–463.

[14] P. G. Kwiat et al. “New High-Intensity Source of Polarization-Entangled

Photon Pairs”. In: Physical Review Letters 75 (1995), pp. 4337–4341.

[15] J. T. Barreiro et al. “Generation of Hyperentangled Photon Pairs”. In: Phys-
ical Review Letters 95 (2005), p. 260501.

[16] C. Hong and L. Mandel. “Theory of parametric frequency down conversion

of light”. In: Physical Review A 31 (1985), pp. 2409–2418.

[17] A. Joobeur et al. “Coherence properties of entangled light beams generated

by parametric down-conversion: Theory and experiment”. In: Physical Re-
view A 53 (1996), pp. 4360–4371.

[18] C. H. Monken, P. H. S. Ribeiro, and S. Pádua. “Transfer of angular spec-

trum and image formation in spontaneous parametric down-conversion”.

In: Physical Review A 57 (1998), pp. 3123–3126.

[19] A. Mair et al. “Entanglement of the orbital angular momentum states of

photons”. In: Nature 412 (2001), pp. 313–316.

[20] J. P. Torres, A. Alexandrescu, and L. Torner. “Quantum spiral bandwidth of

entangled two-photon states”. In: Physical Review A 68 (2003), p. 050301.

[21] C. Law and J. Eberly. “Analysis and Interpretation of High Transverse En-

tanglement in Optical Parametric Down Conversion”. In: Physical Review
Letters 92 (Mar. 2004), p. 127903.

[22] S. S. R. Oemrawsingh et al. “How to Observe High-Dimensional Two-Photon

Entanglement with Only Two Detectors”. In: Physical Review Letters 92
(2004), p. 217901.

[23] A. Aiello et al. “Nonlocality of high-dimensional two-photon orbital angular

momentum states”. In: Physical Review A 72 (2005), p. 052114.

[24] B. Pors et al. “Angular phase-plate analyzers for measuring the dimension-

ality of multimode fields”. In: Physical Review A 77 (Mar. 2008), p. 033845.

[25] J. B. Pors et al. “Shannon Dimensionality of Quantum Channels and Its

Application to Photon Entanglement”. In: Physical Review Letters 101 (2008),

p. 120502.

[26] J Romero et al. “ntangled Optical Vortex Links”. In: Physical Review Let-
ters 106 (2011), p. 100407.

137



[27] A. C. Dada et al. “Experimental high-dimensional two-photon entangle-

ment and violations of generalized Bell inequalities”. In: Nature Physics 7
(2011), pp. 677–680.

[28] Y. M. Mikhailova, P. A. Volkov, and M. V. Fedorov. “Biphoton wave pack-

ets in parametric down-conversion: Spectral and temporal structure and

degree of entanglement”. In: Physical Review A 78 (2008), p. 062327.

[29] M. V. Fedorov et al. “Spontaneous parametric down-conversion: Anisotrop-

ical and anomalously strong narrowing of biphoton momentum correlation

distributions”. In: Physical Review A 77 (2008), p. 032336.

[30] E. Brambilla et al. “Spatiotemporal structure of biphoton entanglement

in type-II parametric down-conversion”. In: Physical Review A 82 (2010),

p. 013835.

[31] A. Gatti et al. “X Entanglement: The Nonfactorable Spatiotemporal Struc-

ture of Biphoton Correlation”. In: Physical Review Letters 102 (2009), p. 223601.

[32] F. M. Miatto, T. Brougham, and A. M. Yao. “Cartesian and polar Schmidt

bases for down-converted photons”. In: European Physics Journal D 66 (7

2012), p. 183.

[33] F. M. Miatto et al. “Schmidt modes generated in parametric down-conversion”.

In: European Physics Journal D (in press) (2012).

[34] E. M. Gauger et al. “Sustained Quantum Coherence and Entanglement in

the Avian Compass”. In: Physical Review Letters 106 (2011), p. 040503.

[35] B. J. Pors et al. “Transport of Orbital-Angular-Momentum Entanglement

through a Turbulent Atmosphere”. In: Opt. Express 19 (2009), pp. 6671–

6683.

[36] D. M. Greenberger, M. A. Horne, and A. Zeilinger. “Going Beyond Bell’s

Theorem”. In: quant-ph/0712.0921v1 (2007).

[37] N. Gisin. “Quantum Nonlocality: How Does Nature Do It?” In: Science 326
(2009), pp. 1357–1358.

[38] A. K. Ekert and P. L. Knight. “Entangled quantum systems and the Schmidt

decomposition”. In: American Journal of Physics 63 (1995), p. 415.

[39] A. E. Siegman. Lasers. Sausalito: University Science Books, 1986.

[40] F. Pampaloni and J. Enderlein. “Gaussian, Hermite-Gaussian, and Laguerre-

Gaussian beams: A primer”. In: arXiv:physics/0410021 (2004).

138



[41] S. J. Van Enk and G Nienhuis. “Commutation Rules and Eigenvalues of

Spin and Orbital Angular Momentum of Radiation Fields”. In: Journal of
Modern Optics 41 (May 1994), pp. 963–977.

[42] S. J. V. Enk and G Nienhuis. “Spin and Orbital Angular Momentum of

Photons”. In: EPL (Europhysics Letters) (EPL) 25 (Mar. 1994), pp. 497–

501.

[43] R. P. Cameron, S. M. Barnett, and A. M. Yao. “Optical helicity, optical

spin and related quantities in electromagnetic theory”. In: New Journal
of Physics 14 (2012), p. 053050.

[44] G. P. Agrawal. Applications of Nonlinear Fiber Optics, second edition. El-

sevier, 2008.

[45] S. M. Barnett. Quantum information. Oxford: Oxford University Press,

2009.

[46] C. K. Law, I. A. Walmsley, and J. H. Eberly. “Continuous frequency entan-

glement: effective finite Hilbert space and entropy control”. In: Physical
Review Letters 84 (June 2000), pp. 5304–7.

[47] E. Abramochkin and V. Volostnikov. “Beam transformations and nontrans-

formed beams”. In: Opt. Commun. 83 (1991), p. 123.

[48] S. S. Straupe et al. “Angular Schmidt modes in spontaneous parametric

down-conversion”. In: Physical Review A 83 (2011), p. 060302.

[49] G. N. Watson. In: Journal of the London Mathematical Society (1933),

pp. 189 –192.

[50] S. J. Habraken. Light with a twist (ray aspects in singular wave and quan-
tum optics). Leiden: PhD thesis, 2011.

[51] C. E. Shannon and W. Weaver. The Mathemtiatical Theory of Communica-
tion. Urbana: University of Illinois Press, 1949.

[52] E. T. Jaynes. “Information Theory and Statistical Mechanics”. In: Physical
Review 106 (1957), p. 620.

[53] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley

and Sons, 1991.

[54] A. Réyni. In: Proceedings of the 4th Berkeley Symposium on Mathematics,
Statistics and Probability (1960), p. 567.

139



[55] S. T. Flammia et al. “Topological Entanglement Rényi Entropy and Re-

duced Density Matrix Structure”. In: Physical Review Letters 103 (2009),

p. 261601.

[56] S. M. Barnett and S. J. D. Phoenix. “Entropy as a measure of quantum

optical correlation”. In: Physical Review A 40 (1989), p. 2404.

[57] C. H. Bennett et al. “Concentrating partial entanglement by local opera-

tions”. In: Physical Review A 53 (1996), p. 2046.

[58] C. H. Bennett et al. “Mixed-state entanglement and quantum error correc-

tion”. In: Physical Review A 54 (1996), p. 3824.

[59] S. M. Barnett and S. J. D. Phoenix. “Information theory, squeezing, and

quantum correlations”. In: Physical Review A 44 (1991), p. 535.

[60] M. J. W. Hall. “Quantum information and correlation bounds”. In: Physical
Review A 55 (1997), p. 100.

[61] M. J. W. Hall, E. Andersson, and T. Brougham. “Maximum observable cor-

relation for a bipartite quantum system”. In: Physical Review A 74 (2006),

p. 062308.

[62] T. Brougham and S. M. Barnett. “Information communicated by entangled

photon pairs”. In: Physical Review A 85 (2012), p. 032322.

[63] X. Ma, C.-H. F. Fung, and H.-K. Lo. “Quantum key distribution with en-

tangled photon sources”. In: Physical Review A 76 (2007), p. 012307.

[64] H. Di Lorenzo Pires, C. H. Monken, and M. P. van Exter. “Direct measure-

ment of transverse-mode entanglement in two-photon states”. In: Physical
Review A 80 (2009), p. 22307.

[65] A. M. Yao. “Angular momentum decomposition of entangled photons with

an arbitrary pump”. In: New Journal of Physics 13 (2011), p. 053048.

[66] M. P. van Exter et al. “Effect of spatial filtering on the Schmidt decomposi-

tion of entangled photons”. In: Physical Review A 74 (2006), p. 012309.

[67] A. B. U’Ren, K. Banaszek, and I. A. Walmsley. “Photon engineering for

quantum information processing”. In: Quantum Information and Compu-
tation 3 (2003), p. 480.

[68] L. E. Vicent et al. “Design of bright, fiber-coupled and fully factorable pho-

ton pair sources”. In: New Journal of Physics 12 (2010), p. 093027.

[69] H. J. Korsch, A. Klumpp, and D. Witthaut. “On two dimensional Bessel

functions”. In: quant-ph/0608216v1 (2006).

140



[70] G. Dattoli et al. “Advances on the Theory of Generalized Bessel Functions

and Applications to Multiphoton Processes”. In: Journal of Scientific Com-
puting 8 (1993), pp. 69 –109.

[71] H. Di Lorenzo Pires and M. van Exter. “Observation of near-field correla-

tions in spontaneous parametric down-conversion”. In: Physical Review A
79 (2009), p. 041801.

[72] C. Hong, Z. Ou, and L. Mandel. “measurement of subpicosecond time in-

tervals between two photons by interference”. In: Physical Review Letters
59 (1987), pp. 2044–2046.

[73] R. Zambrini and S. M. Barnett. “Quasi-Intrinsic Angular Momentum and

the Measurement of Its Spectrum”. In: Physical Review Letters 96 (2006),

p. 113901.

[74] H. D. L. Pires, J Woudenberg, and M. P. van Exter. “Measurement of the or-

bital angular momentum spectrum of partially coherent beams.” In: Optics
letters 35 (2010), pp. 889–91.

[75] F. M. Miatto et al. “Bounds and optimisation of orbital angular momen-

tum bandwidths within parametric down-conversion systems”. In: Euro-
pean Physics Journal D 66 (7 2012), p. 178.

[76] S. S. Straupe et al. “Spatial Correlations and Angular Schmidt Modes

in Spontaneous Parametric Down-Conversion”. In: quant-ph/1112.3806v1
(2011).

[77] F. M. Miatto, A. M. Yao, and S. M. Barnett. “Full characterization of the

quantum spiral bandwidth of entangled biphotons”. In: Physical Review A
83 (2011), p. 033816.

[78] D. N. Nikogosyan. “Beta Barium Borate (BBO)”. In: Applied Physics A 52
(1991), p. 359.

[79] B. E. A. Saleh et al. “Duality between partial coherence and partial entan-

glement”. In: Physical Review A 62 (2000), p. 043816.

[80] B. Jack et al. “Entanglement of arbitrary superpositions of modes within

two-dimensional orbital angular momentum state spaces”. In: Physical Re-
view A 81 (2010), p. 043844.

[81] S. S. R. Oemrawsingh et al. “Experimental Demonstration of Fractional

Orbital Angular Momentum Entanglement of Two Photons”. In: Physical
Review Letters 95 (2005), p. 240501.

141



[82] B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics. New York:

Wiley, 2007.

[83] R. S. Bennink. “Optimal collinear Gaussian beams for spontaneous para-

metric down-conversion”. In: Physical Review A 81 (2010), p. 053805.

[84] S. Franke-Arnold et al. “Two-photon entanglement of orbital angular mo-

mentum states”. In: Physical Review A 65 (2002), p. 033823.

[85] G. N. Watson. A treatise on the theory of Bessel functions. Cambridge Math-

ematical Library. Cambridge University Press, 1995.

[86] B. J. Pors. Entangling light in high dimensions. Leiden: PhD thesis, 2011.

[87] H. Di Lorenzo Pires, H. C. B. Florijn, and M. P. van Exter. “Measurement of

the Spiral Spectrum of Entangled Two-Photon States”. In: Physical Review
Letters 104 (Jan. 2010), p. 020505.

[88] B.-J. Pors et al. “High-dimensional entanglement with orbital-angular-momentum

states of light”. In: Journal of Optics 3 (2011), p. 064008.

[89] J. Leach et al. “Violation of a Bell inequality in two-dimensional orbital an-

gular momentum state-spaces”. In: Optics express 17 (May 2009), pp. 8287–

93.

[90] J. Leach et al. “Quantum Correlations in Optical Angle-Orbital Angular

Momentum Variables”. In: Science 329 (2010), pp. 662–665.

[91] S. M. Barnett and D. T. Pegg. “Quantum theory of rotation angles”. In:

Physical Review A 41 (1990), p. 3427.

[92] S. Franke-Arnold et al. “Uncertainty principle for angular position and

angular momentum”. In: New Journal of Physics 6 (2004), p. 103.

[93] M. Berry and M. Tabor. “Level clustering in the regular spectrum”. In:

Proc. Roy. Soc. A 356 (1977), pp. 375–394.

142


