
Delegated Private Set Intersection On
Outsourced Private Datasets

Aydin Kheirbakhsh Abadi

Department of Computer and Information Sciences

University of Strathclyde

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

Submitted in November, 2016

http://www.eng.cam.ac.uk
http://www.cam.ac.uk

This work was carried out under the supervision of

Dr Changyu Dong (1st supervisor) and Dr Sotirios Terzis.

I would like to dedicate this thesis to my loving parents.

Declaration of Authenticity and Author’s Rights

This thesis is the result of the authors original research. It has been com-
posed by the author and has not been previously submitted for examination
which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde
Regulation 3.50. Due acknowledgement must always be made of the use
of any material contained in, or derived from, this thesis.

Aydin Kheirbakhsh Abadi

Signed:

Date:

Acknowledgements

I would like to express my sincere gratitude to Dr Changyu Dong and
Dr Sotirios Terzis for their outstanding supervision and valuable guidance
throughout my PhD. I would like to express my great appreciation for the
love and support of my family, for their help and support.

Publications

• O-PSI: Delegated Private Set Intersection on Outsourced Datasets.
Aydin Abadi, Sotirios Terzis, and Changyu Dong. In ICT Systems
Security and Privacy Protection - 30th IFIP TC 11 International Con-
ference, SEC 2015, Germany, pages 317, 2015. 46, 128.

• VD-PSI: Verifiable Delegated Private Set Intersection on Outsourced
Private Datasets. Aydin Abadi, Sotirios Terzis, and Changyu Dong.
In Financial Cryptography and Data Security - 20th International
Conference, FC 2016, Barbados, 2016. 107, 130.

• Efficient Delegated Private Set Intersection on Outsourced Private
Datasets. Aydin Abadi, Sotirios Terzis, Roberto Metere and Changyu
Dong. IEEE Transactions on Dependable and Secure Computing,
submitted on July 18, 2016.

Abstract

The significance of cloud computing is increasing and the cloud is receiv-
ing growing attention from individuals and companies. The cloud enables
ubiquitous and on-demand access to a pool of configurable computing re-
sources that can be scaled up easily. However, the cloud is vulnerable to
data security breaches such as exposing confidential data, data tampering,
and denial of service. Thus, it cannot be fully trusted and it is crucial for
the clients who use the cloud to protect the security of their own data.

In this thesis, we design cryptographic protocols to allow clients to out-
source their private data to the cloud and delegate certain computation to
the cloud securely. We focus on the computation of set intersection which
has a broad range of applications such as privacy-preserving data mining,
and homeland security. Traditionally, the goal of Private Set Intersection
(PSI) protocols has been to enable two parties to jointly compute the in-
tersection without revealing their own set to the other party. Many such
protocols have been designed. But, in the cases where data and compu-
tation are outsourced to the cloud, the setting and trust assumptions are
considerably changed. The traditional PSI protocols cannot be used di-
rectly to solve security problems, without sacrificing the advantages the
cloud offers.

The contribution of this thesis is a set of delegated PSI protocols that meet
a variety of security and functional requirements in the cloud environment.
For most clients, the most critical security concern when outsourcing data
and computation to the cloud is data privacy. We start from here and de-
sign O-PSI, a novel protocol in which clients encrypt their data before
outsourcing it to the cloud. The cloud uses the encrypted data to com-
pute the intersection when requested. The outsourced data remain private
against the cloud all the time since the data stored in the cloud is encrypted
and the computation process leaks no information. O-PSI ensures that the

computation can be performed only with the clients’ consent. The proto-
col also takes into account several functional requirements in order to take
full advantage of the cloud. For example, clients can independently pre-
pare and upload their data to the cloud, and the clients are able to delegate
to the cloud the computation an unlimited number of times, without the
need to locally re-prepare the data. We then extend O-PSI in several ways
to provide additional properties:

* EO-PSI is a more efficient version of O-PSI that does not require
public key operations.

* UEO-PSI extends EO-PSI with efficient update operations, making
it possible to efficiently handle dynamic data.

* VD-PSI extends O-PSI with verifiability, i.e. the clients can effi-
ciently verify the integrity of the computation result.

For each protocol, we provide a formal simulation-based security analysis.
We also compare the protocols against the state of the art. In addition to
that, we have implemented the O-PSI and EO-PSI protocols and provide
an evaluation of their performance based on our implementation.

Contents

Contents i

List of Figures iv

Nomenclature v

1 Introduction 1
1.1 Background . 1
1.2 Requirements . 3
1.3 Contributions of the Thesis . 5
1.4 Roadmap . 7

2 Preliminaries 9
2.1 Notation and Definitions . 9
2.2 Homomorphic Encryption . 10
2.3 Pseudorandom Functions . 14
2.4 Pseudorandom Shuffle . 14
2.5 Representing Sets by Polynomials 15
2.6 Polynomials in Point-value Form . 17
2.7 Hash Tables . 19
2.8 Adversary Types . 21
2.9 Security Models . 22

2.9.1 Security in the Presence of Semi-honest Adversaries 22
2.9.2 Security in the Presence of Malicious Adversaries 23

3 Related Work 26
3.1 Cloud Computing Overview . 26
3.2 Traditional PSI Protocols . 28

i

Contents

3.3 Delegated Private Set Intersection Protocols 37
3.3.1 Protocols Supporting only One-off PSI Delegation 37
3.3.2 Protocols Supporting Repeated PSI Delegation 42

3.4 Concluding Remarks . 46

4 Delegated PSI on Outsourced Private Datasets 47
4.1 Introduction . 47
4.2 O-PSI: Delegated Private Set Intersection on Outsourced Private Datasets 48

4.2.1 An Overview of O-PSI . 48
4.2.2 O-PSI Protocol . 49
4.2.3 Extensions . 54

4.2.3.1 Multi-client O-PSI 54
4.2.3.2 How to Avoid Client-to-client Interaction in O-PSI . 55

4.2.4 Security Definition . 55
4.2.5 O-PSI Security Proof . 57

4.3 EO-PSI: Efficient Delegated Private Set Intersection on Outsourced
Private Datasets . 60
4.3.1 An Overview of EO-PSI . 61
4.3.2 EO-PSI Protocol . 61
4.3.3 Extensions . 66

4.3.3.1 Multi-client EO-PSI 66
4.3.3.2 How to Avoid Client-to-client Interaction in EO-PSI 67

4.3.4 EO-PSI Security Proof . 68
4.4 Delegated PSI Protocol Comparison 72
4.5 Performance Evaluation . 77

4.5.1 Choice of Parameters . 77
4.5.2 Implementation . 80
4.5.3 Performance Comparison . 81

4.6 Concluding Remarks . 82

5 Delegated PSI on Outsourced Dynamic Private Datasets 84
5.1 Introduction . 84
5.2 UEO-PSI: Efficient Delegated Private Set Intersection on Dynamic

Outsourced Private Data . 85
5.2.1 Data Update in O-PSI and EO-PSI 85

ii

Contents

5.2.2 An Overview of UEO-PSI 86
5.2.3 UEO-PSI Protocol . 87
5.2.4 Extensions . 95

5.2.4.1 Multi-client UEO-PSI 96
5.2.4.2 Reducing Authorizer’s Required Storage Space . . 97

5.3 Security Definition . 98
5.4 UEO-PSI Security Proof . 100
5.5 Updatable Delegated PSI Protocol Comparison 105
5.6 Concluding Remarks . 109

6 Verifiable Delegated PSI on Outsourced Private Datasets 110
6.1 Introduction . 110
6.2 VD-PSI: Verifiable Delegated Private Set Intersection on Outsourced

Private Datasets . 111
6.2.1 An Overview of VD-PSI . 111
6.2.2 VD-PSI Protocol . 113
6.2.3 Extensions . 119

6.2.3.1 Multi-client VD-PSI 119
6.2.3.2 Reducing Authorizer’s Required Storage Space . . 120

6.3 Security Definition . 121
6.4 VD-PSI Security Proof . 122
6.5 Verifiable Delegated PSI Protocol Comparison 129
6.6 Concluding Remarks . 132

7 Conclusions 133
7.1 Contributions . 133
7.2 Directions for Future Research . 134

References 136

A O-PSI Implementation Class Diagram 152

B EO-PSI Implementation Class Diagram 154

iii

List of Figures

1.1 An outline of the thesis contributions. 8

4.1 The left-hand side figure: party interactions at data outsourcing phase in O-

PSI; the right-hand side figure: party interactions at the computation delega-

tion phase in O-PSI. 49
4.2 The left-hand side figure: party interactions at data outsourcing phase in EO-

PSI; the right-hand side figure: party interactions at the computation delega-

tion phase in EO-PSI. 62
4.3 The Key Tree virtually constructed in steps c.4a-c.6 65
4.4 The average time taken to factorize polynomials of degree n defined over Fp,

where p is an 112-bit prime number. 78
4.5 The relation between the number of bins, h, and the size of each bin, d, for

different set size upper bounds, c. 78
4.6 The average time taken to factorize h polynomials of degree n = 2d+ 1, for

different set size upper bounds, c. The polynomials are defined over the field

Fp, where p is an 112-bit prime number. 79
4.7 Performance comparison of EO-PSI and O-PSI protocols 81

5.1 Cloud-Side Computation, step e.2: given the permutation map and the clients’

permuted datasets, the cloud matches one client’s bins to the other client’s

bins, such that matched bins had the same index before they were shuffled.

Note, in the figure, the left hand-side tables are not given to the cloud. . . . 93

6.1 The left-hand side figure: party interactions at data outsourcing phase; the

right-hand side figure: party interactions at computation delegation phase. . 112

A.1 O-PSI protocol implementation class diagram 153

iv

List of Figures

B.1 EO-PSI protocol implementation class diagram 155

v

Chapter 1

Introduction

1.1 Background

Cloud computing offers flexible and cost effective storage and computation resources
to clients, and has been attracting the attention of individuals and businesses as a crucial
enabling technology [83]. A study by the IBM Institute for Business Value in 20121

suggested that cloud computing, as a game-changing technology, is leading business
innovation in a number of dimensions. There are many benefits for businesses to adopt
the cloud, e.g. cost flexibility, business scalability, and increased collaboration with
external partners [15]. Over time, the cloud has become a pool of sensitive data where
running computation on the data is prevalent [92, 58]. The data stored in the cloud can
be of different kinds such as financial data (e.g. price fixing data from stock markets,
revenues of companies), sensitive biological data (e.g. personal genetic data) [42], etc.
Moreover, a broad range of computation is performed on the data in the cloud, such
as computing intersection or union of sets [23], computing statistics (e.g. averages,
variances) [42], etc.

One of the major operations commonly performed in the cloud is computing the in-
tersection of sets [23, 78, 50]. In this case, clients store their data in the cloud and later
on ask the cloud to compute the intersection of their sets. There are various real-world
applications in which set intersection is needed such as data mining to find common
rules [70], authenticated email search [25], range queries over outsourced databases
[92], finding the common records or keyword search in outsourced databases [22, 78],
verifiable web-content search [54], relationship path discovery in social networks [86],

1http://www.ibm.com/cloud-computing/us/en/assets/power-of-cloud-for-bus-model-innovation.pdf

1

1. Introduction

and queries on human genome [10].
However, past incidents [57, 41] and current research [103, 64, 119, 122] suggest

that the cloud is vulnerable to information security breaches. Security breaches could
result in unauthorized disclosure of confidential information, data tampering, data loss
and denial of service. Furthermore, data protection laws (e.g. [97, 17, 24]) obligate
individuals and organizations to secure data. Therefore, when outsourcing data and
computation to the cloud, it is imperative for the clients to protect their data.

Secure Multi-Party Computation (MPC) protocols are cryptographic protocols that
have been designed to allow distributed computation on private data. In particular,
these protocols enable two or more parties to jointly run an operation on the sensitive
inputs such that each party receives the correct output while the privacy of each party’s
input is preserved, even in the presence of adversarial behavior. There are generic
MPC protocols that can compute any function, however they are often not efficient
[68, 34]. Often, for specific computation tasks, special-purpose protocols are more
efficient and protocols for electronic auctions, private information retrieval, and private
set intersection are examples of that [60].

Private set intersection (PSI) is a vital instance of secure MPC [8, 38, 31]. PSI
allows two mutually distrusting parties, each having a private set, to compute the in-
tersection of the sets without revealing any information, about the set elements that
are not in the intersection, to the other party [46, 96]. PSI has a wide range of real-
world applications. For instance, consider the scenario in which two companies want
to compare their respective lists of customers to find customers in common. This may
help them to learn about the online shopping behavior of their customers and to make
certain offers for joint purchases. As another example, consider the situation where
a social welfare organization wants to know whether any of its members receives in-
come from another such organization. In both cases, due to the privacy laws or lack of
trust, neither of the parties can reveal its client list to the other party. In such scenarios,
PSI can be used to address the problem. Due to its importance and wide applicability,
researchers have designed several PSI protocols (see chapter 3 for a survey). However,
in the classical MPC and PSI setting where data and computation are not outsourced,
data owners use locally stored data and jointly run the computation. When data and
computation are outsourced to the cloud, the setting and trust assumptions drastically
change. Therefore, these classical protocols cannot directly be used to address security
problems in the cloud.

As traditional PSI protocols are not suitable for the cloud setting, where data stor-

2

1. Introduction

age and computation are outsourced to a cloud that is not fully trusted, in this thesis,
we investigate delegated PSI computation on private data stored in the cloud and we
design new protocols that allow clients to fully benefit from the cloud’s storage and
computation capabilities, while protecting the privacy of data. For example, consider
the case in which different online shopping companies keeping their customers’ shop-
ping histories on cloud storage (e.g. Amazon S3 1) want to find out the customers who
purchase from all the companies for joint discount offers. In this case, companies can
ask the cloud to run the computation on the data already stored in it. However, due
to data protection laws (and the company regulations), the cloud should not learn any
information about their customers’ shopping behavior and the other companies should
not learn more than the computation result. In this scenario, the use of the cloud en-
ables the parties (i.e. companies) to access their outsourced data from any location and
remove the need to maintain a local copy of the data. Moreover, in this setting, they
can use a delegated PSI protocol to delegate computation of PSI on their private data
to the cloud, while the data security is preserved.

1.2 Requirements

In the delegated private set intersection setting, there are primary security and func-
tional requirements that must be satisfied. What follows is a list of the requirements
and their significance in such setting.

• Security Requirements:

* Protecting Dataset and Result Privacy.

This feature guarantees that the cloud cannot figure out the clients’ sensi-
tive dataset elements, the dataset intersection, and the intersection cardinal-
ity. Furthermore, the result recipient cannot learn anything about the other
clients’ dataset elements beyond the intersection.

* Requiring Computation Authorization.

This feature guarantees that only an authorized party can obtain the result
of the computation and without all clients’ consent no party can carry out
the computation. If this property is not satisfied, for example, the cloud (or

1https://aws.amazon.com/s3/

3

1. Introduction

any party) can generate a dataset, run the computation, and learn the private
data (or the computation result) without their permission.

* Verifying the Correctness of the Computation Result.

The cloud is prone to various misbehaviors, attacks and incidents that can
lead to data corruption, data tampering or incorrect computation results.
For instance, the cloud may not carry out the entire computation in order
to cut some cost [93] and this may yield a false computation result, or the
data stored in the cloud may be corrupted as a result of hardware malfunc-
tioning [28], or tampered with as a result of (inside or outside) attacks [7].
Therefore, using a verifiable delegated PSI protocol, clients can check the

integrity of the result of the delegated computation.

• Functional Requirements:

* Supporting Outsourcing of both Dataset Storage and PSI Computation to

the Cloud.

This property allows clients to fully benefit from the advantages the use of
the cloud’s storage and computation capabilities offers (e.g. business scala-
bility, increased collaboration with external partners, elasticity, economies
of scale, and higher robustness and availability). The clients can outsource
their datasets in the cloud once, delete any local copy of them, and ask the
cloud to run PSI on the outsourced data. Therefore, the clients do not need
to have a large local storage to maintain a copy of the data, and also they
do not need to download, re-prepare and upload their outsourced datasets,
each time the computation is delegated.

* Having a Non-interactive Setup.

With this property, clients can prepare and upload their datasets indepen-
dently at different points in time, without the need to interact with each
other, or even know anything about others. This also enables clients to form
new collaborations without the need to coordinate with existing clients. As
a result the protocol becomes suitable for real-world applications where
such flexibility is essential.

4

1. Introduction

* Efficiency.

Efficiency in both computation and communication is desirable in gen-
eral. Ideally, a secure protocol should have lightweight building blocks
that do not impose a high cost. For instance, a protocol that avoids using
expensive building blocks and operations (e.g. fully or partially homomor-
phic encryption or exponentiations) would have lower overall computation
cost than those utilizing them. Since designing efficient secure protocols
is very challenging, researchers first design secure protocols and then im-
prove their efficiency.

* Supporting Dynamic Data.

There are numerous PSI applications that rely on frequently updated datasets,
such as secure file sharing [66], consumer behavior prediction [116] or can-
cer research on genomic datasets 1. In these cases, it is vital for the dele-
gated PSI schemes to efficiently support update on the outsourced private
datasets. Otherwise, they would impose large communication, storage and
computation costs, when big data needs to be updated regularly. It should
be noted that a trivial secure way to update outsourced private data is to
download the entire data, locally update them and re-upload them to the
cloud, but this approach is not efficient. Therefore, a delegated PSI pro-
tocol that can do so, more efficiently without sacrificing the privacy of the
data or the efficiency of the PSI computation, would be desirable.

1.3 Contributions of the Thesis

In general, our contributions center around developing new protocols for delegated
private sets intersection on outsourced private datasets. In section 1.2, we listed the
requirements for delegated PSI. Ideally, we would like one protocol that satisfies all
requirements. However, such a protocol would be dauntingly complex and difficult
to design. The resulting protocol is also likely to be inefficient due to too many con-
straints. Thus, we adopt an incremental design approach in the sense that we start from
a small set of core requirements, and then extend it iteratively when designing proto-
cols. Our study starts from delegated PSI that protects data privacy against the cloud
(O-PSI). We then improve the protocol’s efficiency and develop a new one (EO-PSI)

1http://epi.grants.cancer.gov/dac/

5

1. Introduction

and then extend it to a protocol that efficiently supports dynamic datasets (UEO-PSI)
too. To achieve better security, we also investigate delegated PSI that protects data
privacy and allows verification of the computation result (VD-PSI). More specifically,
the contributions that each protocol makes are as follows:

• O-PSI Protocol. The first contribution of this thesis includes the design of the
first efficient delegated PSI protocol that allows multiple clients to independently
store their private data in the cloud. At a later point in time, they can get together
and ask the cloud to perform PSI on their private data. The protocol also allows
sets to be used an unlimited number of times securely without the need to down-
load and re-prepare the data. In this process, the cloud cannot learn the client
set elements, the intersection and the intersection cardinality, and also the result
recipient cannot learn anything beyond the intersection. The protocol ensures
that intersections can only be computed with the permission of the clients. The
protocol uses a single cloud and it does not involve a trusted party (to gener-
ate and distribute keys among parties). In this protocol, clients can prepare and
outsource their data independently without interacting with each other or having
any knowledge of others. The computation and communication costs of O-PSI
are linear to the set cardinality. The protocol leverages a public key encryption
scheme, a blinding technique and the mathematical properties of polynomials to
achieve its goal. The O-PSI protocol, as a full paper, has been published in [1].

• EO-PSI Protocol. The next contribution of the thesis includes the development
of an efficient delegated PSI protocol that does not use any public key encryption
or other expensive operations like exponentiations. Moreover, it enables the
result recipient to retrieve the computation result faster than it could do in O-
PSI. The protocol preserves all O-PSI’s advantageous features. The protocol
mainly uses the mathematical properties of polynomials, a blinding technique
and a hash table to attain its goal. We also implemented both O-PSI and EO-
PSI and analyzed their performance. The analysis showed that EO-PSI is 1-2
orders of magnitude faster than O-PSI. The EO-PSI protocol, as a full paper, has
been submitted to the IEEE Transactions on Dependable and Secure Computing
journal [3].

• UEO-PSI Protocol. Another contribution of the thesis comprises the design of
UEO-PSI, the first delegated PSI protocol that efficiently supports dynamic data.

6

1. Introduction

It allows clients to update outsourced datasets with low computation and commu-
nication costs, and without leaking any information about the dataset elements
to any party. UEO-PSI preserves the efficient aspects of EO-PSI (i.e. it does
not use public key encryption and allows faster result retrieval) and preserves its
appealing properties. UEO-PSI is based on a hash table, the mathematical prop-
erties of polynomials, a blinding technique, a permutation map, (pseudo)random
labels and a (pseudo)random shuffle.

• VD-PSI Protocol. The final contribution of the thesis is the design of the first
delegated PSI protocol that enables clients to efficiently verify the correctness of
the computation result. VD-PSI considers the scenario where the cloud is an
active adversary (i.e. it may try to arbitrarily deviate from the protocol or tam-
per with the result) and it also possesses the appealing properties of O-PSI. The
main novelty of VD-PSI is a lightweight verification mechanism that allows the
client to efficiently verify the correctness of the result without the need to ac-
cess its outsourced dataset, and have any knowledge of the other client’s dataset
elements. The verification cost of the protocol is at the most linear to the inter-
section cardinality. VD-PSI is based on public key encryption, the mathematical
properties of polynomials, a blinding technique and a verification mechanism
that utilizes a trap-like value to detect the cloud’s misbehavior. The VD-PSI
protocol, as a full paper, has been published in [2].

The above contributions are outlined in Fig 1.1.

1.4 Roadmap

Chapter 2 presents notations, definitions and technical tools we use throughout the
rest of the thesis. Chapter 3 provides some background on cloud computing, and a
survey of protocols designed to address the PSI problem. Chapter 4 presents the O-
PSI and EO-PSI protocols. It provides a detailed description of the protocols, their
extensions, their security definition and analysis, a comparison to other delegated PSI
protocols and a study of their performance. Chapter 5 presents UEO-PSI protocol.
The chapter comprises a detailed description of the protocol, its extension, its security
definition and analysis, and its communication and computation complexity analysis,
and a comparison with the other protocols. Chapter 6 presents our VD-PSI protocol, its

7

1. Introduction

Satisfies

Satisfies

Satisfies

Satisfies

Extension Extension

Extension

Security Requirements:

 Protecting Data and Result Privacy.
 Requiring Computation Authorization.

Functional Requirements:

 Outsourcing Data and Computation.
 Non-interactive Setup.

Security Requirements:

 Verifiability.

Functional Requirements:

 Efficiency.

Functional Requirements:

 Dynamic Data.

O-PSI

VD-PSI

UEO-PSI

EO-PSI

Figure 1.1: An outline of the thesis contributions.

security definition and analysis. The chapter analyses the protocol’s complexities and
compares it with the other verifiable delegate PSI protocols. The thesis conclusion and
directions for future work are provided in chapter 7. Appendices A and B represent
the class diagrams of the O-PSI and EO-PSI implementation respectively.

8

Chapter 2

Preliminaries

2.1 Notation and Definitions

In this thesis, for universe U of set elements, we assume that there exists a sufficiently
large public finite field, Fp, to encode all elements of the universe, where p is a large
prime number. Also, we denote the multiplicative inverse and additive inverse of value
vi, by (vi)

−1 and −vi respectively. Also, by a||b we mean a is concatenated with b, by
|c| we mean the bit-wise size of c, by | #»v | we mean the size of vector #»v and by e(I) we
mean that value e belongs to client I .

In cryptography, we do not require an event to happen with zero probability, or
an adversary to always fail. But, we allow the event to happen, (or the adversary to
succeed) with some very small non-zero probability. It is denoted by the function of
the security parameter: ε(n), and defined as follows, i.e. the following definitions are
according to [51].

Definition 1. (Negligible Function): We call a function ε : N → R negligible if for

every positive polynomial poly(.), there exists a m ∈ N such that for all n > m,

ε(n) <
1

poly(n)

Several cryptographic primitives and protocols (including ours) rely on the notion
of computation indistinguishability. We use this concept extensively in the security
analysis of our protocols. Before we formalize the computation indistinguishability
concept, we provide two notions used in the definition of the concept.

Definition 2. (Random Variable): A random variable is a function, X : Ω → R from

9

2. Preliminaries

the set of possible outcomes to real numbers.

Random variables are used when we are more interested in the consequence of
experiment than the experiment itself (e.g. appearance of a number of heads when a
coin is tossed twice). The probability that random variable X takes value ω ∈ Ω is
denoted by Pr[X = ω]. In this thesis, we are dealing with only finite spaces, so Ω is
a finite set. A random variable X is uniformly distributed over a finite set Ω if it has
equal value on every element in Ω, i.e. ∀ω ∈ Ω, P r(X = ω) = 1

|Ω| .

Definition 3. (Ensemble): Any X = {Xn}n∈N, where each Xn is a random variable, is

an ensemble indexed by N.

In other words, a sequence of (possibly infinite) random variables is called a (prob-
ability) ensemble.

Definition 4. (Computationally Indistinguishable): Two ensembles, X = {Xn}n∈N
and Y = {Yn}n∈N, are computationally indistinguishable, denoted by X

c≡ Y, if for

every non- uniform probabilistic polynomial time algorithmB, there exists a negligible

function ε(.) such that for every sufficiently large n ∈ N:

∣∣∣∣Pr[B(Xn, 1
n) = 1]− Pr[B(Yn, 1

n) = 1]

∣∣∣∣ <
1

ε(n)

2.2 Homomorphic Encryption

The goal of encryption schemes is to ensure confidentiality of data in communication
and storage processes. There are two types of encryption schemes: public key schemes
(or asymmetric key schemes) and private key schemes (or symmetric key schemes).
A public key encryption scheme has three components, the key generation function
Gen(), the encryption function Epk(), and the decryption function Dsk(). In a public
key encryption scheme, the key generation function, generates a key pair (pk, sk),
where pk is the public key (and known to public), also sk is the private key (and
kept secret). Anyone knowing the public key can encrypt, but only one who has the
corresponding private key can decrypt. In a symmetric key scheme, the encryption and
decryption keys are the same and secret.

Since in this thesis we use a public key encryption scheme, we first explain the basic
security requirement that the scheme should satisfy that is indistinguishability under

10

2. Preliminaries

chosen-plaintext attack (IND-CPA). Informally, a cryptosystem is considered secure
in terms of indistinguishability if no probabilistic polynomial-time (PPT) adversary,
given an encryption of a message randomly chosen from a two-element message space
(determined by the adversary), can identify the message with probability significantly
better than random guessing (i.e. 1

2
). The adversary has access to the public key and can

encrypt any messages of its choice. As [71] states, this definition is formally presented
as a game (or experiment) PubKA,Π(n), for any public-key encryption scheme Π =

(Gen,E,D), any adversary A, and any value n for the security parameter:

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk. The adversary outputs a pair of messages m0,m1 of
the same length.

3. A random bit b ← {0, 1} is chosen, and then a ciphertext c ← Epk(mb) is
computed and given to A.

4. A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b = b′, and 0 otherwise.

Definition 5. A public key encryption scheme Π = (Gen,E,D) has indistinguishable

encryptions under a chosen-plaintext attack (or is CPA secure) if for all probabilistic

polynomial-time adversary A, there exists a negligible function, ε(.), such that:

Pr[PubKA,Π(n) = 1] ≤ 1

2
+ ε(n).

Indistinguishability under chosen plaintext attack is equivalent to the property of
semantic security, and many cryptographic proofs use these term interchangeably [71].

There are situations where operations should be performed on encrypted data (i.e.
ciphertext). The encryption schemes that allow such operations on ciphertexts are
called Homomorphic Encryption (HE) schemes. They allow certain computations to be
carried out on ciphertexts and generate an encrypted result that, when decrypted, equals
the result of operations performed directly on the messages (i.e. plaintexts). Due to
this essential feature that HE schemes offer, they are extensively used to create secure
voting systems, private information retrieval schemes, enable widespread use of the
cloud when the confidentiality of processed data is required, and design secure Multi-
Party Computation (MPC) protocols (see [121] for more applications of HE schemes).

11

2. Preliminaries

HE cryptosystems are categorized into two main groups: Partially Homomorphic
Encryption and Fully Homomorphic Encryption. The encryption schemes that sup-
port only limited operations (e.g. multiplication or addition) on ciphertexts are called
Partially Homomorphic Encryption; and those that allow arbitrary operations on ci-
phertexts are called Fully Homomorphic Encryption. Below, we explain briefly each
group.

Fully Homomorphic Encryption (FHE). The notion of encryption schemes that per-
mit arbitrary computation on encrypted data was first proposed by Rivest et al. [105].
Since then, there has been intensive work to design a FHE scheme and the problem fi-
nally was solved by the breakthrough work of Gentry [48]. Following his work, a set of
other FHE schemes have been proposed (e.g. [108, 113]). Since FHE can support any
computation on ciphertexts, it has numerous applications such as delegating privacy
preserving computation to the cloud against which plaintexts must be protected.

In spite of many attempts made to improve the efficiency of FHE schemes (e.g.
[109, 49]), they are still too inefficient to be practical and are not used in the real world
[114, 69, 67].

Partially Homomorphic Encryption (PHE). Unlike FHE, PHE supports limited op-
erations on ciphertexts. For instance, (unpadded) RSA [104] and El-Gamal [47] en-
cryptions support homomorphic multiplication, Goldwasser-Micali encryption [53] al-
lows homomorphic XOR and Paillier encryption [91] supports homomorphic addition.
PHE schemes are more efficient than FHE [19]. In this thesis, we make use of Paillier
encryption scheme due to its efficiency, so we explain the scheme in more details.

Paillier Encryption. The semantic security of Paillier encryption is based on a well-
known mathematical problem: Decisional Composite Residuosity Assumption (DCRA).
In order to explain the assumption, we need the following definition.

Definition 6. Let N be the product of two large primes. The value i ∈ Z∗
N2 is said to

be an eth residue modN 2 if there exists a value j such that i = je mod N 2; where j ∈
Z∗
N2 , ZN = {g|g ∈ Z, 0 ≤ g < N} and Z∗

N2 = {g|g ∈ Z, 0 < g < N 2, gcd(g,N 2) =

1}.

DCRA states that, given N and i, there exists no polynomial time algorithm that
distinguishes eth residue from non-eth residues (i.e. it is hard to decide whether i is a

12

2. Preliminaries

eth residue modN 2). Now we present each of the three functions (i.e. key generation,
encryption, and decryption) of Paillier encryption scheme.

• Key Generation: To Generate public and private keys do the following.

* Choose two random large primes q1 and q2 according to a given security
parameter and set N = q1 · q2.

* Pick a uniformly random value g such that g ∈ Z∗
N2 .

* Ensure that s = (L(gu mod N 2))−1 mod N exists where L(x) = (x−1)
N

, u
is the Carmichael value of N , i.e. u = lcm(q1 − 1, q2 − 1) and lcm stands
for the least common multiple.

* Set pk = (N, g) as the public key, and sk = (u, s) as the secret key.

• Encryption: To encrypt a plaintext m ∈ ZN do the following.

* Pick a uniformly random value r such that r ∈ Z∗N .

* Compute the ciphertext: C = Epk(m) = gm · rN mod N 2.

• Decryption: To decrypt the ciphertext, C, do the following.

* Dsk(C) = L(Cumod N 2) · s mod N = m.

The scheme has two interesting homomorphic features.

• If we compute the product of two ciphertexts, after decrypting we will have the
sum of their corresponding plaintexts:

Dsk(Epk(a) · Epk(b)) = a+ b

• If we raise a ciphertext to the power of a constant value, after decrypting we will
have the product of constant value and the corresponding plaintext:

Dsk(Epk(a)b) = a · b

13

2. Preliminaries

2.3 Pseudorandom Functions

Informally, a pseudorandom function (PRF) is a deterministic function that takes a key
and an input; and outputs a value indistinguishable from that of a truly random function
with the same input. Pseudorandom functions have many applications in cryptography
as they provide an efficient and deterministic way to turn an input into a value that
looks random. A PRF is formally defined as follows [71].

Definition 7. Let W : {0, 1}n × {0, 1}t → {0, 1}m be an efficient keyed function. It

is said W is a pseudorandom function if for all probabilistic polynomial-time distin-

guishers B, there is a negligible function, ε(.), such that:

∣∣∣∣Pr[BWk(.)(1n) = 1]− Pr[Bw(.)(1n) = 1]

∣∣∣∣ ≤ ε(n),

where the key, k R← {0, 1}n, is chosen uniformly at random and w is chosen uniformly

at random from the set of functions mapping t-bit strings to m-bit strings.

In practice, the pseudorandom function can be obtained from an efficient block
cipher [71]. Also, we require the output of the pseudorandom function to be different
with a high probability when two different distinct secret keys are used, i.e. collision-
resistant PRF.

Definition 8. (collision-resistant PRF) Let PRF be a pseudorandom function defined as

above. It is said PRF is collision-resistant if:

Pr[PRF(k, i) = PRF(k′, i)] ≤ ε(n),

where k, k′ R← {0, 1}n, k 6= k′ and m (i.e. the output bit-length) is a function of the

security parameter, n.

A collision-resistant PRF can be constructed using the schemes proposed in [43].

2.4 Pseudorandom Shuffle

A pseudorandom shuffle (permutation), π(k, #»v), is a deterministic function that per-
mutes the elements of vector #»v , where | #»v | = m, pseudorandomly using a secret key
k, and the output vector has the same size, m. In general, it is used in cases where a set

14

2. Preliminaries

of vectors should be permuted in the same way; but given the permuted vectors, a PPT

adversary (who does not know the secret key) cannot figure out the original ordering
of the vectors. A π is formally defined as follows.

Definition 9. Let π : {0, 1}n × #»v → #»v ′ be an efficient keyed permutation, | #»v | =

| #»v ′| = m. We say that π is a pseudorandom permutation if for all probabilistic

polynomial-time distinguisher, B, there exists a negligible function ε(.), such that:

∣∣∣∣Pr[Bπk(.)(1n) = 1]− Pr[Bw′(.)(1n) = 1]

∣∣∣∣ ≤ ε(n),

where the key, k R← {0, 1}n, is chosen uniformly at random, and w′ is chosen uniformly

at random from the set of permutations on vectors of size m.

The random shuffle algorithms, in [76] can permute the vector #»v = [x1, ..., xm] of
m elements in O(m) time. The algorithm works as follows.

1. Set: j ← m.

2. Pick a value, u, uniformly at random from the range (0, 1).

3. Set: k ← bjuc+ 1.

4. Exchange the values at position k and j: xk ↔ xj.

5. Set: j ← j − 1.

6. If j > 1 return to step 2; exit otherwise.

In order to turn the above random shuffle protocol into a pseudorandom one, we
can use a pseudorandom function to generate the value u (i.e. a pseudorandom value
uniformly distributed over the same range). Note, given the permuted vector, one who
possesses the secret key can figure out the original ordering of the vector elements in
O(m) time.

2.5 Representing Sets by Polynomials

The idea of using a polynomial to represent a set was put forth by Freedman et al.

in [46]. Since then, the idea has been widely used (e.g. [75, 37, 88, 78]). In this
representation, set elements are represented as elements in a finite field Fp and the set

15

2. Preliminaries

is represented as a polynomial ρ(x) over the field. For the universe of set elements, U,
we define a public field R = Fp that is big enough to encode all elements in U. For
every ui ∈ U, we encode it as:

si = ui||G(ui), (2.1)

where G is a cryptographic hash function with sufficiently large output size, e.g. |G(.)| >
80-bit. So given the field’s arbitrary element, s ∈ Fp, and G’s output size, we can parse
s into a and b, such that s = a||b and |b| = |G(.)|. Then, we check b ?

= G(a). If b = G(a)

then we say s is valid; otherwise, it is invalid (note that if |s| ≤ |G(.)| then the element
is invalid and no further check is required). Note that the bit-length of each si ranges
over (|G(.)|, z+ |G(.)|], where z is maximum bit-length that an element can have in the
set universe.

From now on by set element, we actually mean the encoded form of the element.
Shortly, we will explain why this encoding is needed. We can represent a set, S =

{s1, ..., sd}, by a polynomial:

ρ(x) =
d∏

i=1

(x− si),

where ρ(x) ∈ R[x], R[x] is the polynomial ring that consists of all polynomials with
coefficients from the field, si ∈ Fp and |S| = d. For two sets S(A) and S(B) represented
by polynomials ρ(A) and ρ(B) respectively, polynomial ρ(A)·ρ(B) represents the set union,
(i.e. S(A) ∪ S(B)). Also, gcd(ρ(A), ρ(B)) represents the set intersection (i.e. S(A) ∩ S(B)),
where gcd stands for the greatest common divisor. For two degree d polynomials ρ(A)

and ρ(B), and two degree d random polynomials γ(A) and γ(B) whose coefficients are
picked uniformly at random from the field, it is proved in [75, 20] that:

θ = γ(A) · ρ(A) + γ(B) · ρ(B) = µ · gcd(ρ(A), ρ(B)), (2.2)

where µ is a uniformly random polynomial. In other words, if ρ(A) and ρ(B) are the
polynomials representing sets S(A) and S(B), then polynomial θ contains only informa-
tion about S(A) ∩ S(B) and no information about other elements in S(A) or S(B).

In order to find the intersection, one can extract the roots of polynomial θ, and
then consider the set of valid roots as the intersection 1. Note that the polynomial θ

1To find the roots of a polynomial over a field, we can first factorize it to get a set of monic polyno-

16

2. Preliminaries

contains the roots of both polynomials gcd(ρ(A), ρ(B)) and µ. Polynomial gcd(ρ(A), ρ(B))

represents the two sets intersection and we are interested in its roots, but the roots of
µ should be discarded. Therefore, we need a way to distinguish which roots should be
retained and which should be discarded. To this end, we use the encoding technique,
presented in equation 2.1, to give a structure to each set element. In particular, the
probability that the random polynomial, µ, has any root having the above structure is
negligibly small (e.g. lower that 2−80) if G’s output size is large enough (e.g. |G(.)| >
80-bit). Thus, the encoding allows us to effectively eliminate the invalid roots [75]. It
should be noted that the encoding increases the bit-length of set elements; therefore,
when the set elements are encoded a bigger field size is needed than when the elements
are not encoded (e.g. 80-bit bigger).

2.6 Polynomials in Point-value Form

In section 2.5, we showed that a set can be represented as a polynomial and set in-
tersection can be computed by polynomial arithmetic. The previous PSI protocols
(e.g. [46, 75, 37]) using polynomial representation of sets, represent a polynomial as
a vector of the polynomial’s coefficients, i.e. they represent a degree d polynomial

ρ(x) =
d∑
i=0

aix
i as a vector #»a = [a0, ..., ad]. This representation, while it allows the

protocols to correctly compute the result, has a major disadvantage. The complexity of
multiplying two polynomials of degree d in this form is O(d2). In PSI protocols, this
leads to significant computational overheads. Usually, in these protocols, one polyno-
mial needs to be encrypted and the polynomial multiplication has to be done homo-
morphically. Homomorphic multiplication operations are computationally expensive
as they require exponentiation operations. Thus, PSI protocols using the coefficient-
based polynomial representation are not scalable.

We can solve this problem by representing polynomials in another well-known
form: the point-value form. A degree d polynomial ρ(x) can be represented as a set
of m (m > d) point-value pairs {(x1, y1), ..., (xm, ym)} such that all xi are distinct
and yi = ρ(xi) for all i, 1 ≤ i ≤ m. If xi are fixed, we can omit them and represent
polynomials as a vector #»y = [y1, ..., ym]. As stated in section 2.5, the bit-length of each
encoded element si ranges over (|G(.)|, z + |G(.)|], where z is maximum bit-length of
element in the set universe. Therefore, if we pick values xi (uniformly at random)

mials (see [72] for some algorithms), then find the monic degree-1 polynomials’ roots.

17

2. Preliminaries

from the elements whose bit-length range over [1, |G(.)|], then xi would not represent
any encoded set element (and xi would not be a root of polynomial representing the
set).

As the theorem of interpolating polynomial states for a set {(x1, y1), ..., (xm, ym)}
(where xi 6= xj), there exists a unique polynomial, ζ(x), of degree at most m− 1, such
that ∀i, 1 ≤ i ≤ m : ζ(xi) = yi. In other words, a polynomial in point-value form can
be converted into coefficient form by polynomial interpolation [4, 16]. To this end, we
can use the modified (or improved) Lagrange formula:

ζ(x) = η(x)
m∑

i=1

ψi
x− xi

· yi

where η(x) =
m∏
i=1

(x− xi) and ψi = 1
m∏
i=1
i 6=k

(xi−xk)
.

It is well known that when the values ψi are precomputed, then the polynomial ζ(x)

can be interpolated with O(m) computation complexity [4, 16]. Also, the computation
complexity of evaluating a degree m polynomial at value xi is O(m) and it involves m
multiplication and m addition operations (using Horner’s rule) [76].

We can add or multiply two polynomials (represented in point-value form) by
adding or multiplying their corresponding y-coordinates; for two degree d polynomials
ρ(A) and ρ(B) represented in point-value form by two vectors #»y (A) = [y(A)

1 , y(A)
2 , ..., y(A)

m]

and #»y (B) = [y(B)
1 , y(B)

2 , ..., y(B)
m], the sum of the two polynomials is computed as:

ρ(A) + ρ(B) = (y(A)

1 + y(B)

1 , y
(A)

2 + y(B)

2 , ..., y
(A)

m + y(B)

m),

and the product of the polynomials is calculated as:

ρ(A) · ρ(B) = (y(A)

1 · y(B)

1 , y
(A)

2 · y(B)

2 , ..., y
(A)

m · y(B)

m).

It should be noted that the product ρ(A) · ρ(B) is a polynomial of degree 2d, so each
polynomial ρ(A) and ρ(B) must be represented by at least 2d + 1 points to allow the
correct result to be interpolated. The key benefits of point-value representation are
that multiplication complexity is reduced to O(d). Furthermore, all the process (e.g.
multiplication or addition) on a pair of y-coordinates (e.g. (y(A)

i , y
(B)
i)) can be done in

parallel and independent of the other y-coordinates. Such features make our protocols
much more scalable.

18

2. Preliminaries

2.7 Hash Tables

In this thesis, we use a hash table for two reasons; namely, to achieve efficiency when
(a) computing PSI, and (b) updating data.

In our protocols, a c-element set is represented as a polynomial that needs to be
factorized by the result recipient to retrieve the intersection, at the end of the protocols.
However, the computation complexity of polynomial factorization is quadratic in the
degree of the polynomial being factorized, so it is O(c2). To improve performance,
we can use a hash table to break down a large set into h smaller sized subsets, and
represent each subset as a polynomial. Roughly speaking, each client distributes its
set elements among the hash table bins, represents each bin as a polynomial, secures
them and outsources the entire hash table to the cloud. In this setting, at the end of
the protocols, the result recipient factorizes h polynomials of degree c

h
. Thus, the total

cost is reduced from O(c2) to O(c
2

h
).

Moreover, we can leverage set partitioning to achieve reduced update cost. In order
for a client to insert/delete an element into/from the outsourced dataset (partitioned as
above), it only needs to access the bin that should contain the element. Thus, the client
accesses and updates only one bin of the hash table. In contrast, when the whole set
is encoded as one polynomial, the entire polynomial needs to be downloaded for data
update and this costs O(c).

In general, the hash table in the PSI protocols is used as follows. First, public
parameters including a random hash function H, the number of bins in the hash table
and max bin size are picked. For the parties to compute the sets intersection, each party
I maps its set element s(I)

i to the table by computing an address j = H(s(I)
i), using the

hash function whose output is modeled as a uniform random number. Then, it inserts
s(I)
i into the corresponding bin HTj. Because the hash function is deterministic, if an

element is in the intersection, both parties map it to the same bin. In this case, if the
PSI protocol runs on that bin, it will include the element in the result. In our protocol,
for the security reasons, the cloud should not learn the original address of a bin, e.g. j.
For the client to securely update each bin, it initially tags each bin with a deterministic
unique label, lj, using a secret key at setup phase. The client sends the bins and labels
(shuffled) to the cloud. Then, each time the client wants to update a bin, it sends to the
cloud the label associated with the bin.

The hash table approach requires pre-determined parameters (e.g. a bin maximum
capacity, the maximum number of bins) in order for the PSI to be computed correctly.

19

2. Preliminaries

Since the hashing process is probabilistic, we need to avoid overloading the bins, i.e.
we need that with a high probability each bin receives at most a specific number of
elements. Hash table parameters can be determined by analyzing it under the balls into
bins model which has been extensively studied in the literature [100, 14]. The aim
of algorithms following this paradigm is to assign a set of independent objects (tasks,
balls) to a set of resources (servers, bins), and this enables the load to be distributed
among them as evenly as possible. The model is used in a variety of areas such as
online load balancing protocols (see [14] for a survey and analysis), oblivious ram
protocols (e.g. [107]), etc. According to this model, given the maximum number of
elements (or balls), c, and the probability that a bin receives more than d elements, we
can determine the number of bins as follows.

Theorem 1. (Upper Tail in Chernoff Bounds) LetXi be a random variable defined as

Xi =
c∑
i=1

Yi, where Pr[Yi = 1] = pi, Pr[Yi = 0] = 1− pi, and all Yi are independent.

Let the expectation be µ = E[Xi] =
h∑
i=1

pi. Then:

Pr[Xi > d = (1 + σ) · µ] <
(eσ

(1 + σ)(1+σ)

)µ
,∀σ > 0 (2.3)

Note that in the balls and bins model, the expectation is µ = c
h

, where c is the
number of balls and h is the number of bins. Inequality 2.3 provides the probability
that bin i gets more than (1 + σ) · µ balls. In order to determine such probability for
any bin, we need the following lemma.

Lemma 1. (The Union Bound) Let E1, ..., Eh be any collection of events. Then

Pr[E1 ∨ ... ∨ Eh] ≤
h∑
i=1

Pr[Ei]

If we combine the Theorem 1 and Lemma 1, then we can calculate the probability
that any bin receives more than d = (1 + σ) · c

h
balls (or elements) as below.

Pr[∃i,Xi > d] ≤
h∑

i=1

Pr[Xi > d]

≤ h ·
(eσ

(1 + σ)(1+σ)

) c
h

(2.4)

Thus, if we know the number of elements c, we can find the number of bins h and
σ such that the probability of any bin exceeding the maximum size d = (1 + σ) · c

h
is

negligibly small (e.g. 2−40) using the inequality 2.4.

20

2. Preliminaries

2.8 Adversary Types

A cryptographic protocol is formalized, and proven secure in the presence of certain
type of adversaries such as semi-honest, covert and malicious [52]. In the following,
we give the intuition behind semi-honest and malicious adversaries that we consider in
this thesis.

Semi-honest Adversaries. They are also known as “passive” or “honest-but-curious”
adversaries. In the semi-honest adversarial model, the party corrupted by such adver-
saries correctly follows the protocol specification. Nonetheless, the adversary obtains
the internal state of the corrupted party, including the transcript of all the messages
received, and tries to use this to learn information that should remain private. This
model covers many typical practical settings such as protection against insider attacks,
or cases where the parties essentially trust each other but want to ensure that nothing
beyond the protocol output is leaked. Designing and evaluating the performance of
protocols in the semi-honest model is the first step towards protocols with stronger se-
curity guarantees. Most protocols for practical privacy-preserving applications focus
on the semi-honest model as it is more efficient (e.g. [11, 95, 96]).

Malicious Adversaries. They are also called “active adversaries”. The malicious
adversarial model considers the strongest type of adversaries, which are allowed to
arbitrarily deviate from the protocol in order to learn private inputs of the other parties,
to influence the outcome of computation, etc. Not surprisingly, protection against such
adversaries is more challenging and protocols that achieve this level of security are
usually much less efficient [60].

Moreover, typically there are two corruption models: static (or non-adaptive) and
dynamic (adaptive). In the static corruption model, the adversaries have a fixed set of
parties that they control. In this model, honest and corrupted parties remain the same
throughout the protocol. On the other hand, in the dynamic corruption model, adver-
saries have the capability of corrupting parties during the computation. The choice
of whom to corrupt, and when, can be arbitrarily decided by the adversaries and may
depend on what they have seen throughout the protocol execution. As highlighted in
[61], in general, dynamic adversaries are much harder to protect against and protocols
secure against dynamic adversaries are more complex and less efficient. In this thesis,
we consider the static model for the sake of simplicity.

21

2. Preliminaries

2.9 Security Models

The security definition of a PSI protocol follows the standard ideal/real simulation
paradigm of secure computation [52]. Accordingly, we follow the same definition and
model in this thesis. The model that we consider in this research is that of multi-party
computation in the presence of static adversaries. All the definitions in this section are
according to [52].

Two-party Computation. A two-party protocol problem is captured by specifying
a random process that maps pairs of inputs to pairs of outputs, one for each party.
Such process is referred as a functionality, and denoted by F : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗×{0, 1}∗, where F = (f1, f2). More specifically, for every pair of inputs (x, y),
where x, y ∈ {0, 1}n, the output-pair is a random variable (f1(x, y), f2(x, y)) ranging
over pairs of strings. The party, whose input is x, wishes to obtain f1(x, y), and the
other party, whose input is y, wishes to obtain f2(x, y).

2.9.1 Security in the Presence of Semi-honest Adversaries

Loosely speaking, a protocol is secure, in the semi-honest adversarial model, if what-
ever can be computed by a party in the protocol can be computed using its input and
output only. This statement is formalized according to the simulation paradigm. Intu-
itively, we require that a party’s view in a protocol execution can be simulated given
only its input and output. This implies that the parties learn nothing from the protocol
execution.

Let F be a probabilistic polynomial-time functionality defined as above and Γ be
a two-party protocol for computing F . The party i’s view (during an execution of the
protocol, Γ) on input tuple (x, y) is denoted by VIEWΓ

i (x, y) and equals (w, ri,mi
1, ...,m

i
t)

where w ∈ {x, y} is the input of the ith party, ri is the outcome of the ith party’s inter-
nal random coin tosses and mi

j represents the jth message that the party received. The
output of the ith party during an execution of Γ on (x, y) is denoted by OutputΓi (x, y) and
can be generated from its own view of the execution. The joint output of both parties
is denoted by OutputΓ(x, y) = (OutputΓ1 (x, y), OutputΓ2 (x, y)).

Definition 10. (Privacy with Respect to Semi-honest Behavior): Let F = (f1, f2) be a

functionality. We say that a protocol Γ securely computes F in the presence of static

22

2. Preliminaries

semi-honest adversaries if there exists probabilistic polynomial-time algorithms SIM1

and SIM2 such that:

{(SIM1(x, f1(x, y)), F (x, y))}x,y
c≡ {(VIEW

Γ

1 (x, y), Output
Γ(x, y))}x,y,

{(SIM2(y, f2(x, y)), F (x, y))}x,y
c≡ {(VIEW

Γ

2 (x, y), Output
Γ(x, y))}x,y,

where x, y ∈ {0, 1}∗ and |x| = |y|.

In other words, the view of a party can be simulated by a probabilistic polynomial-
time algorithm given access to the party’s input and output only. For the case where
the functionality F is deterministic, F (x, y) = Output Γ(x, y), it would suffice to show
that:

{SIM1(x, f1(x, y))}x,y
c≡ {VIEW

Γ

1 (x, y)}x,y,
{SIM2(y, f2(x, y))}x,y

c≡ {VIEW
Γ

2 (x, y)}x,y.

It should be noted that the PSI protocol’s functionality is deterministic and we can
use the latter definition.

2.9.2 Security in the Presence of Malicious Adversaries

Now we turn our attention to the security definition for the case of malicious adver-
saries who may use any efficient attack strategy and thus may arbitrarily deviate from
the protocol specification. In this case, in contrast to the case of semi-honest adver-
saries, the adversary may not use the input that is provided. Therefore, beyond the
possibility that a corrupted party may learn more than it should, we also require cor-
rectness, that means a corrupted party cannot cause the output to be incorrectly dis-
tributed. Moreover, we require independence of inputs meaning that a corrupted party
cannot make its input depend on the other party’s input. In order to capture the threats,
the security of a protocol is analyzed by comparing what an adversary can do in the
protocol to what it can do in an ideal scenario that is secure by definition. This is for-
malized by considering an ideal computation involving an incorruptible trusted third
party (TTP) to whom the parties send their inputs. The TTP computes the functionality
on the inputs and returns to each party its respective output. Intuitively, a protocol is
secure if any adversary interacting in the real protocol (where no TTP exists) can do
no more harm than if it were involved in the ideal computation (with the involvement
of TTP). Here we consider a simpler definition of security in the case of single-output

23

2. Preliminaries

functionalities (i.e., functionalities in which only one party obtains an output). For the
sake of simplicity and without loss of generality, assume that only the first party, P1

obtains an output (from the functionality F); that is, F (x, y) = (f1(x, y),Λ), where Λ

denotes an empty string.

Execution in the Ideal Model. Let P1, and P2 be the parties participating in the
protocol, i ∈ {1, 2} be the index of the corrupted party, and SIM be a non-uniform
probabilistic polynomial-time adversary (or simulator). Also, let x and y be the input
of party P1 and P2, respectively. And let z be an auxiliary input given to the adversary
A. The honest party, Pj, sends its received input to the TTP. The corrupted party, Pi,
controlled by the adversary, may either abort (by replacing the input with a special
abort message ⊥), send its received input, or send some other input of the same length
to the trusted party. This decision is made by the adversary and may depend on the
input value of Pi and the auxiliary input. Upon obtaining an input pair, (x, y), the
trusted party replies to the first party with f1(x, y). If it receives an abort messages
from any party, it outputs ⊥ to the first party. An honest party always outputs the mes-
sage it has obtained from the trusted party. A malicious party may output an arbitrary
(polynomial-time computable) function of its initial input (auxiliary input and its coin
tosses) and the message it has obtained from the trusted party. The ideal execution of
F on inputs (x, y) and auxiliary input z is denoted by IDEALFSIMi(z)

(x, y) and is defined as
the output pair of the honest party and the adversary from the ideal execution.

Execution in the Real Model. In the real model, a real two-party protocol Γ is exe-
cuted and there exists no TTP. In this setting, the adversary A sends all messages on
behalf of the corrupted party, and may follow an arbitrary polynomial-time strategy.
Whereas, the honest party follows the instructions of Γ. Let i ∈ {1, 2} be the index of
the corrupted party. The real execution of the protocol, Γ, is denoted by REALΓ

Ai(z)
(x, y),

which is the joint output of the parties engaging in the real execution of the protocol,
in the presence of the adversary Ai.

Security in the Malicious Model. Having defined the ideal and real models, we can
now define the security of protocols. Loosely speaking, the definition asserts that a
secure protocol (in the real model) emulates the ideal model. This is formulated by
stating that adversaries in the ideal model are able to simulate executions of the real-
model protocol.

24

2. Preliminaries

Definition 11. Let F be a two-party functionality and let Γ be a two-party protocol

that computes F . It is said protocol Γ securely computes F with abort in the presence

of static malicious adversaries if for every non-uniform probabilistic polynomial-time

adversary Ai for the real model, there exists a non-uniform probabilistic polynomial-

time adversary SIMi for the ideal model, such that for every i, i ∈ {1, 2}:

{IDEAL
F

SIMi(z)
(x, y)}x,y,z

c≡ {REAL
Γ

Ai(z)
(x, y)}x,y,z

where x, y, z ∈ {0, 1}∗ and |x| = |y|.

25

Chapter 3

Related Work

In this chapter, we begin with an overview of cloud computing including its deploy-
ment models, the services it offers and its vulnerabilities. Then, we provide a survey of
protocols designed to address the problem of private set intersection. We categorize the
protocols into two groups: (1) traditional PSI protocols requiring data owners to in-
teract directly with each other to compute the intersection, (2) delegated PSI protocols

enabling data owners to take advantage of the cloud capabilities for PSI computation.
Our main focus, in this thesis, is on the second group. We briefly describe each of
the protocols, their building blocks, the security model(s) they consider, their security
flaws (if any) and we review their suitability for the cloud computing setting.

3.1 Cloud Computing Overview

Cloud computing is a specialized distributed computing paradigm. The cloud provides
a virtualized pool of computing resources (e.g. storage, processing power, memory,
applications, and so on). It can provide a variety of vital services to a wide range of
clients. In general, the services can be grouped into three categories [117]: Software as
a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

1. SaaS refers to providing applications to clients who can access them through
the Internet. Rackspace 1, Google Compute Engine 2, and Salesforce.com 3 are
examples of SaaS providers.

1http://www.rackspace.co.uk/
2https://cloud.google.com/compute/
3http://www.salesforce.com/

26

3. Related Work

2. PaaS refers to providing a platform (including programming languages, libraries,
operating systems, etc) allowing clients to develop, run and manage their own
applications. Google App Engine 1 and Microsoft Windows Azure 2 are exam-
ples of PaaS providers.

3. IaaS refers to providing (virtualized) computing resources (e.g. storage, net-
works, memory, processors) to clients who can provision them via a user inter-
face. Amazon EC2 3 and GoGrid 4 are examples of IaaS providers.

Cloud computing is currently offered in four deployment models: private, public,
community, and hybrid [117, 65, 112]. A public cloud may be owned, or managed
by a business, academic or government organization or a combination of them. The
cloud infrastructure, in this model, is on the premises of the cloud provider or a third
party. This model targets a wide range of customers, including the general public.
Microsoft Windows Azure and Amazon EC2 are examples of public cloud. A private
cloud is provided exclusively to one client (e.g. government). In this model, the in-
frastructure can be hosted on-premises or off-premises at the service provider’s side.
Examples of private cloud include Amazon Virtual Private Cloud 5 and IBM Private
Cloud 6. A community cloud is used for a specific community of clients (e.g. a set of
researchers, or companies) who have common interests and concerns. Google Apps
for Government 7 and Microsoft Government Community Cloud 8 are two examples of
the community model. A hybrid cloud is a composition of two or more distinct cloud
models (private, community, or public). Examples of hybrid cloud include Microsoft
hybrid cloud 9 and VMware vCloud Air 10.

The cloud can benefit clients in different ways. For example, clients no longer
need to worry about software updates or component upgrades, as all are maintained by
the cloud provider, while the resources can be scaled up dynamically on demand. In
order for clients to get access to these services, in most cases, they need only Internet
access and this makes the services accessible from different geographical locations.

1https://cloud.google.com/appengine/
2https://azure.microsoft.com/en-gb/
3https://aws.amazon.com/ec2/
4https://www.datapipe.com/gogrid/
5https://aws.amazon.com/vpc/
6https://www.ibm.com/cloud-computing/solutions/private-cloud
7https://www.google.com/work/apps/government/
8https://azure.microsoft.com/en-gb/overview/clouds/government/
9https://www.microsoft.com/en-gb/cloud-platform/hybrid-cloud

10http://www.vmware.com/cloud-services/infrastructure.html

27

3. Related Work

Thus, instead of buying hardware and software that could be outdated, and depreciated,
clients pay only for the services they use. These investments are made by the service
providers and this paradigm could be cost effective for both clients and cloud (service
providers), due to economies of scale.

Due to the benefits that the cloud can offer to individuals, educational organizations
[84] and businesses [83], use of cloud computing is swiftly gaining momentum among
them. A study by IDG in 2014 1 suggested that 69% of enterprises have either appli-
cations or infrastructure running in the cloud. Despite the numerous advantages that
the cloud offers, some clients avoid adopting such paradigm, due to a series of serious
concerns. The concerns mainly stem from the belief that the clients would lose control
of their data after the data is outsourced. In other words, in the current cloud setting,
the clients have to fully trust the cloud provider, and hope it protects their sensitive
data. But, with increasing cloud adoption, the cloud has become an appealing target
of (insider or outsider) attacks, e.g. [120, 57, 41, 103, 64, 119, 122, 87], that result in
information security breaches, unauthorized disclosure or modification of confidential
information, data stealing, denial of service, violation of service level agreement, etc.
In this thesis, by the cloud we mean the public cloud that can be utilized by the general
public, and widely used, but its infrastructure is managed by a service provider who
cannot be fully trusted (as we outlined above).

3.2 Traditional PSI Protocols

Computing the intersection of private sets is a special case of the more general secure
multi-party computation problem. The techniques and protocols designed for the gen-
eral case allow parties to jointly run a certain function on private inputs contributed by
mutually distrustful parties. Most PSI variations can be realized via this general se-
cure multi-party techniques [68]. However, researchers have realized that it is usually
more efficient to design special-purpose protocols, as highlighted in [33, 46, 75, 68].
Therefore, they have proposed protocols specifically designed to address the private set
intersection problem, considering the same setting as traditional secure MPC protocols
where data owners jointly run the operation.

Private Set Intersection (PSI) protocols were introduced by Freedman et al. in [46].
They initially proposed a protocol for semi-honest adversaries that is mainly based on

1http://www.idgenterprise.com/resource/research/idg-enterprise-cloud-computing-study-2014/

28

3. Related Work

two primitives: Paillier homomorphic encryption, and polynomial representation of
sets. The basic protocol supports two parties: A and B. Party A represents its set,
S(A) = {s(A)

1 , s(A)
2 ..., s(A)

v }, as a polynomial ρ(x) whose roots are the set elements:

ρ(x) = (x− s(A)

1)(x− s(A)

2)...(x− s(A)

v) =
v∑

i=0

aix
i.

Then, it encrypts the coefficients of the polynomial Epk(ai) (∀i, 0 ≤ i ≤ v) and
sends them to party B. Upon receiving the message, party B homomorphically evalu-
ates the encrypted polynomial at each element of its set, S(B) = {s(B)

1 , s(B)
2 ..., s(B)

w }, as
follows.

∀j, 1 ≤ j ≤ w : vj = Epk(rj · ρ(s(B)

j) + s(B)

j),

where each rj is a random value. It sends the encrypted values to client A. If the two
sets have any elements in common, they would appear in an encrypted form in the
result. Whereas, for other elements not in the intersection, encrypted random values
would appear in the result. The protocol has been proven secure in the standard model.
In general, protocols security is considered in the standard model when it relies on
some well-known computational problems, e.g. the RSA, discrete logarithm, factoring
assumptions.

In the above protocol (i.e. [46]), since partyB does not know the secret key and the
encryption is semantically secure, it cannot learn anything about the other party’s set
elements. Also, the fresh random values hide partyB’s elements not in the intersection
from party A, so party A learns only the intersection. The authors improved the basic
protocol’s performance, by using a hash table. Since evaluating a large degree polyno-
mial at a value requires expensive exponentiations, linear to the polynomial degree, at
party B side, they use a hash table to break down party A’s set into smaller subsets. In
this case, the parties first fix the hash table parameters (e.g. hash function, the number
of bins). Then, party A can represent each subset as a small degree polynomial, and
send the encrypted polynomials to party B who can now evaluate the small degree
encrypted polynomials at the corresponding elements of its set, which costs less than
the basic scheme. Also, they extended the two-party protocol to a multi-party scheme
by sending all the encrypted polynomials along with some random matrix to one of the
parties who obliviously combines them and sends them to each party. For the two-party
case, the communication complexity of the scheme is O(v+w), where v and w denote
the cardinality of party A’s and B’s sets, respectively. The computation complexity for

29

3. Related Work

party A involves O(v + w) (modular) exponentiation operations, and for B involves
O(w log log v) exponentiation operations.

The same authors, in [45] provided a complex protocol to accommodate malicious
adversaries. In general, to prevent malicious behavior, in protocols the parties must
demonstrate that they are well-behaved. To this end, protocols normally use a standard
zero-knowledge proof (of knowledge) in the semi-honest protocols, as it is done in
[45] (i.e. for proving the correctness of (a) the polynomials sent by party A, (b) the
computation performed by party B). Informally, a zero-knowledge proof (ZK) proto-
col (e.g. [27, 35]) enables one party, called prover, to convince another party, called
verifier, that it knows some facts (e.g. a secret value) without revealing to the veri-
fier any information about its knowledge. Protocols designed for secure multi-party
computation, can use ZK to enable each party to convince the others that it follows
the protocol correctly. The ZK protocols generally involve exponentiation operations
that are computationally expensive. The above PSI protocol for malicious adversaries
has been proven secure in the non-standard random oracle model. In general, proto-
cols security is considered in the non-standard model when the security relies on some
idealized model of computation, e.g. random oracle [12, 71] or ideal cipher model
[30]. In the following we briefly explain the (non-standard) random oracle model as
it is used more often in PSI protocol design than other non-standard assumptions. In
the random oracle model, a hash function is modeled as a publicly accessible random
function [12]. A proof in the random oracle model is not fully satisfactory, and con-
sidered heuristic, because the proof does not imply that the scheme will remain secure
when a concrete hash function is used instead of the random oracle (as a hash function
cannot fully perform the role of random oracle); however, it is still used as protocols
using this model are often more efficient [71]. In [45] , for the two-party case, the over-
all communication cost is O(v + w) and the computation involves O(v + w log log v)

exponentiation operations.
Following the original work, Kissner et al. in [75] proposed a number of privacy-

preserving protocols for set intersection, cardinality set intersection and over-threshold
set union. The protocols allow each party to have a multiset, i.e. a set that may contain
many replicas of an element. The protocol for cardinality set intersection, as its name
indicates, allows parties to learn only the number of elements common in the sets,
while the over-threshold set union protocol enables parties to learn which elements
appear in the union of the parties’ multisets at least a threshold number of times, and
the number of times these elements appeared in the union of the multisets, without

30

3. Related Work

gaining any other information.
The protocols initially consider the semi-honest adversarial model and they are

mainly based on threshold Paillier encryption [44], polynomial representation of sets,
and polynomial properties. Threshold Paillier encryption is a variant of Paillier encryp-
tion that requires a pre-determined number of decryption parties to jointly decrypt a
message. Any collusion between fewer than the specified number of decryption parties
does not result in a complete decryption and the parties cannot learn any information
about the plaintext. This encryption scheme requires parties to jointly share a secret
key among them, or a trusted party does that for them before the protocol starts. The
protocols in [75] can support multiple parties each of which encrypts the polynomial
(representing its set) and broadcasts it to the other parties who can use the encryption’s
homomorphic features to obliviously perform a certain operation on the received poly-
nomials and send them back to the other parties. At the end of each protocol, the
parties combine the resulting polynomials together and jointly decrypt the result.

In the two-party PSI protocol proposed in [75], each party I , I = {A,B}, encrypts
its polynomial ρ(I) and sends Epk(ρ(I)) to the other party. Then, upon receiving the
other party’s encrypted polynomial, the party picks a random polynomial γ(I) and mul-
tiplies the encrypted polynomial by it, i.e. party A computes Epk(ρ(A) · γ(B)) and party
B computes Epk(ρ(B) · γ(A)). After that, they homomorphically sum the products to
compute the encrypted polynomial whose roots are the set intersection:

Epk(ρ
(A) · γ(B) + ρ(B) · γ(A)).

Next, they jointly decrypt the result: δ = ρ(A) · γ(B) + ρ(B) · γ(A). In order for client
I , I ∈ {A,B}, to find the intersection, it evaluates δ(x) at every element, s(I)

i , of its
set. If the result is zero (i.e. δ(s(I)

i) = 0) , it considers s(I)
i as one of the elements

in the intersection. In [75], they proved that polynomial δ contains only information
about the intersection and each party cannot decrypt the intermediate result. Due to the
threshold property of the encryption, the scheme is secure and leaks nothing beyond
the intersection to the other party. This PSI protocol also enables the parties to find
the minimum number of times the common elements appear in the sets. This feature
is due to the protocol design that allows the resulting polynomial to have the form
δ(x) =

∏
(x − si). In order for a party to determine the minimum number of times

a common element appears in the sets, it computes value a satisfying the following

31

3. Related Work

conditions:
(x− e(I)

i)a | δ(x) ∧ (x− e(I)

i)a+1
∣∣- δ(x),

where | denotes division. The authors prove the security of the above protocol in the
standard model.

The communication complexity of the scheme, for the two-party case, isO(v+w),
while the computation complexity is O(vw), for each party. They also utilize zero-
knowledge proof to extend the PSI protocol security against a malicious adversary and
prove the protocol security in the standard model. In this case, the communication and
computation complexity of the protocol is O(vw).

Since then, many PSI protocols (e.g. [33, 32, 38, 96, 95]) have been proposed
to improve performance. The PSI protocol in [33], which considers only the semi-
honest model, makes use of hash functions and blind RSA signatures to construct an
oblivious pseudorandom (OPRF) function. A blind signature scheme enables one to
sign a message in a way that its content is blinded before being signed. The resulting
signature can be publicly verified against the original blinded message. Knowledge of
the blinding factor allows one to remove the blinding of the blind signature and obtain a
(message, signature) pair that cannot be correlated to its original (blinded) counterpart
[26]. Furthermore, OPRF is a two-party protocol (between a sender and a receiver)
that securely computes a pseudorandom function fk(.) on a key, k, contributed by the
sender, and input, x, contributed by the receiver, such that the sender learns nothing
from the interaction and the receiver learns only value fk(x). The PSI protocol based
on OPRF works as follows. Party B who holds the secret random key, k, computes
uj = fk(s

(B)
j) for each element of its set s(B)

j ∈ S(B), where |S(B)| = w. Then, it sends
set U = {u1, ..., uw} to party A. Next, the parties engage in the OPRF computation
of fk(s

(A)
i) for each element of party A, s(A)

i ∈ S(A), where |S(A)| = v. In the end,
party A learns that s(A)

i ∈ {S(A) ∩ S(B)} if fk(s
(A)
i) ∈ U . In this process, party B

learns nothing about S(A) (except the size) and party A learns fk(s
(A)
i). The protocol

has been proven secure in the random oracle model. The computational complexity
of this PSI protocol involves O(v + w) and O(v) exponentiations operations for party
B and party A, respectively. The communication cost of the protocol is O(v + w).
Since the protocol invokes OPRF multiple times and OPRF involves exponentiation
operations, the protocol is not very efficient.

Later on, the authors in [32], added zero-knowledge proofs to the protocol to pre-
vent parties from deviating from the protocol, so the protocol becomes secure in the

32

3. Related Work

presence of malicious parties. The authors prove the protocol security in the random
oracle model. The communication cost of this PSI scheme is O(v + w), while the
computation involves O(v) and O(v + w) exponentiation operations, for party A and
B, respectively.

Recently, Dong et al in [38] proposed two efficient two-party protocols for the
semi-honest and malicious models. They are mainly based on oblivious transfer (OT),
garbled Bloom filters and a (XOR) secret sharing technique. The protocols are ef-
ficient because they leverage efficient building blocks, and significantly reduce the
involvement of (expensive) public key encryption or exponentiation operations. We
first briefly explain the building blocks and then outline how the protocols work. The
(1-out-of-2) OT [101, 40] is a two-party protocol in which a sender inputs two l-bit
strings {x0, x1} ∈ {0, 1}l and the receiver inputs a bit b. At the end of the protocol, the
receiver obtains xb but learns no information about x1−b; whereas, the sender learns no
information about b. A Bloom filter [18] is a compact data structure for probabilistic
efficient set membership testing. The Bloom filter is an array of m bits (initially all set
to zero), that can represent a certain number of elements. It is accompanied with a set
of k independent hash functions each of which maps elements to index numbers over
the range [0,m − 1] uniformly. To insert an element, all the indices (or hash values)
of the element are computed and their corresponding bits in the filter are set to 1. To
check membership of an element, all its indices are re-computed and checked whether
all are set to one in the filter. If all the corresponding bits are one, then the element
is probably in the filter; otherwise, it is not in the filter. In this data structure, a false
positive is possible, i.e. it is possible that an element is not in the set, but the mem-
bership query indicates it is. But, with the right choice of parameters the probability
of this error can be made negligible. The secret sharing scheme [106] allows a secret
holder to split a secret, d, into n shares such that the secret can be recovered efficiently
with any t or more shares. However, given less than t shares, one cannot recover the
secret, or learn any partial information about it. In [38], the authors extend the regular
Bloom filter to a garbled Bloom filter that uses an array of λ-bit strings, where λ is a
security parameter, as opposed to the regular Bloom filter that uses an array of bits. In
order to insert an element, b, we first split the element into k λ-bit shares. Then, we
hash b using the k hash functions to get k indices. Next, the shares of b are stored in
the garbled Bloom filter at the corresponding indices (i.e. one share at each index). In
order to check if element b is in the filter, we hash b using the k hash functions. After
that, we retrieve all strings at the locations equal to b’s hashes, and combine the shares

33

3. Related Work

together. At the end, element b is compared against the result, if they are not equal then
b is not in the filter; otherwise, the element is probably in the filter.

Now we explain how the semi-honest secure PSI in [38] works. First, party A

encodes its set elements into a Bloom filter and party B computes a garbled Bloom
filter that encodes its set elements. Then, they engage in the oblivious transfer protocol
and they use their filters as the input; such that, party B plays the sender role and party
A acts as the receiver. After the OT ends, for each bit of party A’s Bloom filter set to
one, the party receives a share. So for those elements in the intersection, it receives all
the shares of the elements. But the party does not receive all shares of any element not
in the intersection with a high probability (as the authors prove). Therefore, it learns
only the intersection. At the end, party A has a garbled Bloom filter encoding the
intersection. Party A can check membership of its set elements in the resulting garbled
Bloom filter to find out the intersection. The protocol has been proven secure in the
random oracle model. The communication cost of this PSI scheme is linear to the set
cardinality, O(w). The protocol involves O(λ) public key encryption operations, and
O(w) efficient private key encryptions, where λ is the security parameter (i.e. λ ∈
[80, 256]). Therefore, it involves a small number of public key encryption operations.
They extend the semi-honest secure protocol to a protocol secure against malicious
adversaries. To this end, they add primitives such as the OT that is secure against
malicious adversaries, and private key encryption to the semi-honest secure protocol.
This protocol has been proven secure also in the random oracle model. The additional
tools used in the malicious variant of the protocol increase the communication and
computation complexity of it by a factor of 1.4λ compared to the semi-honest scheme.
Both protocols are designed for the two-party case and cannot directly support multiple
parties.

Later on, the performance of the semi-honest secure protocol in [38] was improved
by Pinkas et al. in [96]. To this end, they benefited from recent performance improve-
ments of the oblivious transfer [6] and combined it with a garbled Bloom filter. The
protocol considers only the two-party case under the semi-honest model. They use the
idea of an oblivious pseudorandom generator (OPRG), a protocol that takes as inputs
bits b(A) and b(B) from party A and B respectively. It generates a random string r, and
outputs to party I , I ∈ {A,B}, value r if the party’s input equals 1 (i.e. b(I) = 1). Oth-
erwise, the protocol outputs nothing to the party. However, in this process, one party
cannot figure out whether the other party learns r. They construct an efficient OPRG,
using the OT protocol. The PSI protocol based on OPRG works as follows. First, each

34

3. Related Work

party I , I ∈ {A,B}, having a set S(I), where |S(A)| = w, |S(B)| = v, constructs the
Bloom filter, BF (I). Then, they run OPRG using the bits of BF (I) as inputs. Next,
each party inserts the random strings, it received from OPRG, into its garbled Bloom
filter, GB(I). After that, party A computes set P whose elements are:

p(A)

j = ⊕k

j=1GB
(A)[hj(s

(A)

i)],

where s(A)
i ∈ S(A), S(A) is party A’s set, ⊕ denotes the XOR operation, k denotes the

total number of hash functions used for the (garbled) bloom filters, and GB(A)[hj(.)]

means the value of the filter at position j. Next, party A randomly shuffles the set, so
it obtains P = {p(A)

j , ..., p(A)

k } (for some j and k, where 1 ≤ j, k ≤ w), and sends it to
the other party. In order for party B to find the intersection, for every element of its
set, s(B)

i ∈ S(B), it checks:

⊕k

j=1GB
(B)[hj(s

(B)

i)]
?∈ P.

If the check is positive, it considers s(B)
i as an element in the set intersection. The

main advantage of the protocol is that all its operations can be parallelized. The pro-
tocol’s overall computation and communication complexities remain the same as the
semi-honest protocol in [38], but the runtime is reduced by up to 55%-60%.

The authors also proposed a new scalable PSI protocol for the semi-honest model
that supports two clients. The protocol is based on the most efficient OT extension
techniques [90, 6] and a hash table, without the involvement of a (garbled) Bloom filter.
They introduce the concept of private equality test (PEQT), a protocol that enables
parties A and B to check whether their α-bit elements, s(A) and s(B), are equal by
engaging in an efficient 1-out-of-2 OT protocol. In the PEQT protocol, party B uses
each bit b(B)

i of its element as input and party A uses two uniformly random strings
(ri0, r

i
1) as inputs. After each OT run, party B obtains the random string corresponding

to its bit (e.g. it obtains ri0 if b(B)
i = 0). Next, party A XORs the random strings

corresponding to its bits: u(A) = ⊕α
i=1r

i
j, where the ith bit of s(A) is j, j ∈ {0, 1}. Then,

it sends the result to the other party. Party B also XORs the random strings obtained
from OT, to get a value, u(B), and then compares it to the value that party A sent:
u(B) ?

= u(A). If the equality holds, the two elements (s(A) and s(B)) are equal; otherwise,
they are unequal. Note that, the PEQT protocol enables them to fully enjoy the recent
OT efficiency. The PEQT is extended to efficiently support PSI computation, i.e. to

35

3. Related Work

check whether any set element of party A equals any set element of party B and this
can be done in parallel. In order to further improve the performance of the protocol,
they make use of a hash table in the PEQT-based PSI protocol. In this case, first each
party maps its set elements to the bins of the hash table, and then the above basic
protocol runs on each bin. The authors prove the two protocols security in the random
oracle model. The protocol based on PEQT is up to five times faster than the one based
on OPRG [96]. The protocol’s computation cost is linear in the bit-length of the input
elements, and the overall computation complexity is O(w logw logw). Moreover, the
communication complexity is O(w logw), where w is set cardinality.

The notable difference between the PEQT-based PSI protocol and the one based
on OPRG is the dependence of the performance on the security parameter λ. In the
OPRG-based protocol, the number of OT invocations is independent of the bit-length,
but it scales linearly with λ. On the other hand, the number of times OT is invoked in
the PEQT-based PSI protocol is independent of λ, but linear to the bit-length. There-
fore, the performance of the latter protocol would degenerate if the input elements are
of large size.

Pinkas et al. later on in [95] further improved the performance of their previous
efficient protocol proposed in [96], by representing each set element as a short length
value in a bin. This protocol also considers the semi-honest model for the two-client
case. The main technique used in the new protocol is permutation-based hashing pro-
posed in [5]. This hashing technique works as follows. Let e = e1||e2 be the bit
representation of an element, where |e1| = log2 h, h is the total number of bins in a
hash table, and for the sake of simplicity let h be a power of two. Also, let Q(.) be a
random function whose output range is [0, h−1] (i.e. a hash function). When inserting
an element, e, into the hash table, we compute its address as: j = e1 ⊕ Q(e2), and
store e2 in that address, i.e. in the jth bin. Thus, instead of inserting the entire element,
we store a shorter representation of it in the table. To compute the intersection, each
party utilizes this hashing technique to map its elements into its hash table, and then
run the PEQT-based protocol on each bin. This protocol has also been proven secure
in the random oracle model. The protocol has 60%-70% less computational overhead
than their previous protocol that directly utilizes PEQT [95]. The protocol’s computa-
tion and communication complexity is O(w logw), where w is the set cardinality. The
above protocol, which uses a combination of permutation-based hashing and PEQT, is
the most efficient traditional PSI protocol to date.

Nonetheless, all the aforementioned PSI protocols, including those based on the

36

3. Related Work

generic MPC that can support PSI, have been designed for scenarios where data owners
interact directly with each other to jointly compute the intersection, by using a data
(representation) that must be locally available.

3.3 Delegated Private Set Intersection Protocols

Delegated private set intersection protocols are designed for scenarios where clients
do not trust the cloud with their data. The privacy and integrity of the data and the
correctness of the computation matter to the client. This setting is the main focus of
this thesis. Delegated PSI protocols can be categorized into two main groups:

1. The protocols that support only one-off PSI delegation. These protocols allow
the clients to send encoded (or secured) data to the cloud and the cloud computes
the intersection. The clients need to re-encode their data for each PSI compu-
tation thus the delegation is one-off. Because each time the data needs to be
re-encoded, the clients either need to keep a copy of the data locally or have to
download and re-encode the data every time.

2. The protocols that support repeated PSI delegation. In these protocols, clients
outsource their encoded data to the cloud. This is done only once. Later on, the
cloud can use the outsourced data to compute the intersection, without requiring
the clients to keep a copy of the data locally or to download and re-encode the
data.

In the following, we review existing work in both groups.

3.3.1 Protocols Supporting only One-off PSI Delegation

In this section, we briefly describe the protocols designed to support only one-off PSI
delegation. In these protocols, clients encode their data and send them to the cloud
each time they want to delegate to it the computation of the intersection.

Two variants of delegated PSI protocol were proposed in [73]. They consider the
case where the cloud computes the result honestly. One variant of the protocol is based
on a keyed hash function andXOR operations. The protocol works as follows. Clients
first agree on a secret key, k, and a keyed hashed function H(.) that maps an m bits

37

3. Related Work

string to an m+ l bits string. Next, client A computes set:

S ′(A) = {H(s(A)

1), ..., H(s(A)

v)},

where s(A)
i ∈ S(A), and S(A) is the client’s original set. On the other hand, client B

generates the set:

S ′(B) = {s(B)

1 ⊕H(s(B)

1), ..., s(B)

w ⊕H(s(B)

w)},

where s(B)
i ∈ S(B), and S(B) is the client’s set. Then, the clients send the new sets S ′(A)

and S ′(B), to the cloud. After that, the cloud computes the set:

S(C) = {s′(B)

1 ⊕ s′(A)

1 , ..., s′(B)

1 ⊕ s′(A)

v , ..., s′(B)

2 ⊕ s′(A)

1

, ..., s′(B)

2 ⊕ s′(A)

v , ..., s′(B)

w ⊕ s′(A)

1 , ..., s′(B)

w ⊕ s′(A)

v },

where s′(A)
1 ∈ S ′(A) and s′(B)

1 ∈ S ′(B). For each value s(C)
j ∈ S(C) the cloud checks if

the first l bits are all set to 0, if they are then it considers value zj represented by the
remaining m bits as one of the elements in the intersection. The cloud sends the sets
intersection in plaintext to the client(s). As it is evident from the protocol’s description,
the cloud can figure out the set elements that are in the intersection. Accordingly, it
can figure out some elements of the sets. The protocol’s computation complexity is
O(w + v), and its communication complexity is O(z), where z is the intersection
cardinality. This variant is efficient as it does not involve any public key encryptions
or any other expensive operations. However, the protocol is not fully private and leaks
the set elements in the intersection to the cloud. Thus, this protocol does not protect
the privacy of the computation’s input and output from the cloud.

The other variant of the protocol is based on public key encryption, i.e. RSA
encryption [105], and uses the encryption’s multiplicative homomorphic feature. The
protocol proceeds as follows. The clients first jointly compute an RSA modulus, N =

pq, along with four values b, f , d and e such that (b+ d)e = f mod ((p− 1)(q − 1)),
such that neither party knows q and p. The cloud obtains e, client A obtains b and f ,
and client B gets d and f . Next, client A and B compute sets:

S ′(A) = {(s(A)

1)b, ..., (s(A)

v)b}, S ′(B) = {(s(B)

1)d, ..., (s(B)

w)d},

respectively. The clients send the sets, S ′(A) and S ′(B), to the cloud. Given the sets, the

38

3. Related Work

cloud computes a new set:

S(C) = {(s′(B)

1 · s′(A)

1)e, ..., (s′(B)

1 · s′(A)

v)e, ..., (s′(B)

2 · s′(A)

1)e

, ..., (s′(B)

2 · s′(A)

v)e, ..., (s′(B)

w · s′(A)

1)e, ..., (s′(B)

w · s′(A)

v)e}.

Note that if two elements of the clients’ sets, e.g. s(A)
1 and s(B)

1 are equal, then their
corresponding value in S(C) would have the following form: s(C)

1 = (s(A)
1)e(b+d), where

s(C)
1 ∈ S(C). Therefore, in order for clientA to find the intersection, it generates another

set S ′′(A) = {(s(A)
1)f , ..., (s(A)

v)f} and compares the set elements with the elements of
S(C) . To do so, client A and the cloud engage in a traditional interactive PSI protocol,
using S ′′(A) and S(C) as the inputs. The other client can generate S ′′(B) using its original
set and value f , and run the interactive PSI protocol with the cloud to learn the result.
In the latter protocol, the cloud learns nothing about the computation’s input/output.
Nevertheless, it is much less efficient than the former one as it involves expensive pub-
lic key operations. Both protocols support multiple clients and their security proofs are
based on the random oracle model. The RSA-based protocol’s overall communication
and computation complexity is O(wv). It should be noted that in the RSA-based pro-
tocol, each time the computation is delegated all clients need to jointly choose the new
secret parameters and encode their set elements all over again, otherwise, the process
would become deterministic. In this case, if client A and B, and then client A and D
engage in the protocol, the cloud would learn whether the sets of client B and D have
any elements in common, and it can figure out the number of common elements, with-
out the clients’ consent. So, in this protocol the clients cannot outsource their private
datasets to the cloud once and ask the cloud to run the computation on their private
data securely many times.

The delegated PSI protocol presented in [74] considers semi-honest adversaries
and is designed for the two-client case. It utilizes Bloom filters and BGN public key
encryption scheme [21] that supports homomorphic addition and only one homomor-
phic multiplication operation. What follows is a high-level description of the protocol.
A trusted party first generates the public and secret parameters and distributes them
among the other parties. Then, client A generates a Bloom filter and inserts its set
elements into it. Next, it encrypts every bit of the Bloom filter and sends it to the
cloud. Client B, constructs w Bloom filters, BF (B)

j (∀j, 1 ≤ j ≤ w), and inserts
each set element s(B)

j into the corresponding Bloom filter, BF (B)
j . It encrypts every bit

of the Bloom filters, and every bit of each element in its set. After that, it sends all

39

3. Related Work

the encrypted values to the cloud. The cloud uses the homomorphic property of the
encryption scheme to perform operations on the encrypted values. Next, it sends the
encrypted result to client A, who can decrypt it, and retrieve the result.

The protocol preserves the clients’ sets privacy and the cloud cannot learn anything
about them. The protocol has been proven secure in the standard model. The proto-
col’s communication complexity is O(w2), while its computation complexity is also
quadratic, as it involves O(wv) public key operations. It should be noted that client
B needs to encrypt its set representation under the result recipient’s (i.e. client A’s)
public key. Therefore, if client B wants to engage in the protocol with a different re-
sult recipients each time it needs to re-encode (i.e. re-encrypt) its data representation.
This feature does not allow them to store their data in the cloud once and delegate
PSI computation to the cloud when it is needed. In addition to that, since every bit
of the elements is encrypted, and public key encryption is used, the protocol is not
computationally efficient.

In the same line of work, Kamara et al. proposed a set of PSI protocols in [68]
allowing multiple clients to offload some portions of the computation to the cloud in
the presence of the semi-honest and malicious adversaries. In general, the protocols
are based on pseudorandom permutations (PRP) [71], i.e. informally, an invertible
pseudorandom function. The semi-honest protocol works as follows. The clients first
agree on a secret key k, and a PRP, fk(.). Each party, I , having a private set, S(I),
generates set:

S ′(I) = {fk(s(I)

1), ..., fk(s
(I)

v)},

where s(I)
i ∈ S(I) and |S(I)| = v. Then, each client sends its set representation, S ′(I),

to the cloud. Since PRP is a deterministic function, and both clients use the same key,
the cloud can find the elements common in the outsourced sets, and send them to the
clients who can reverse the PRP and retrieve the actual set elements in the intersection.
The protocol’s communication complexity is O(z) and the computation complexity is
O(v), where z is the intersection cardinality.

The authors propose another variant of the protocol that enables the clients to detect
if the cloud provides an incorrect result, i.e. the malicious model. The protocol requires
the clients to agree on a secret key: k, a security parameter: λ, and three sets: P0, P1

and P2 of random elements, where |Pu| = t, ∀u, 0 ≤ u ≤ 2. Then, client A uses the
sets P0 and P1 and it encodes each element pi,j of the sets as:

∀z, 1 ≤ z ≤ λ : pi,j||z

40

3. Related Work

where 1 ≤ i ≤ v and 0 ≤ j ≤ 1. This yields a set, P ′(A), containing the encoded
elements of the two sets. Client B uses P1 and P2, encodes the elements of the sets as
above and inserts them in P ′(B). After that, each client encodes each element s(I)

i of its
original set as {s(I)

i ||1, ..., s(I)
i ||λ}, then evaluates the PRP on each value. This yields

a set S ′(I). Finally, each client inserts the elements of P ′(I) into S ′(I), permutes them
and sends them to the cloud. Similar to the above semi-honest secure protocol, the
cloud compares the encoded elements, finds the intersection and sends it back to the
clients. When the client receives the result it ensures all encoded elements of P1 are in
the result and neither of P0 and P2 has any encoded element in the result. After that,
it can remove the elements of P1 from the result, and for every element of its original
set it checks whether all λ copies of it are in the result. If all copies exist, then the
element is in the intersection. If h copies, where 1 ≤ h < λ, exist then the result was
computed incorrectly, and if there is no copy of an element, then that element is not
in the intersection. The communication and computation cost of the malicious secure
protocol is O(λz) and O(λv), respectively. Both protocols are efficient, as they are
based on PRP that is efficient.

As PRP is deterministic, and both clients use the same key, in both protocols the
cloud can figure out the intersection cardinality. The authors suggest that in order to
hide the intersection cardinality, the clients can send their set representations to one of
the clients, e.g. client A, who compares the clients set representations and broadcasts
the result to the other clients. So, in this case, the burden of computation (in addition
to communication and storage) is offloaded to this client. The cloud only re-encodes
client A’s set representation and sends it back to it, to ensure it does not learn anything
beyond the intersection about the other clients’ set elements. In other words, in such
setting, the clients do not delegate the computation to the cloud. Instead, with its minor
assistance, they interactively compute the result.

Note that, the three protocols in [68] require the clients to agree on the new param-
eters and re-encode their sets each time they delegate the computation to the cloud.
Also, in the protocol that hides the intersection size, one client receives all the en-
coded elements of the other clients. The three protocols have been proven secure in
the standard model.

41

3. Related Work

3.3.2 Protocols Supporting Repeated PSI Delegation

Now, we analyze the PSI protocols designed to support repeated PSI delegation. In
these protocols, clients outsource their encoded data to the cloud only once. Later on,
the cloud can use the outsourced data to compute the intersection. Clients do not need
to keep locally a copy of the data or to download and re-encode the data.

The protocol proposed in [81] considers the semi-honest adversarial model, and
is based on a hash function: h(.), and public key and secret key encryption schemes.
More specifically, each client I , I ∈ {A,B}, first generates three vectors:

#»
t (I) = [Psk(s

(I)

1), ..., Psk(s
(I)

w)], #»e (I) = [h(s(I)

1) + r(I)

1 , ..., h(s(I)

w) + r(I)

w],
#»

d (I) = [Psk(r
(I)

1), ..., Psk(r
(I)

w)],

using its original set S(I) = {s(I)
1 , ..., s

(I)
w }, where the values r(I)

i are picked uniformly at
random, Epk(a) and Psk(a) denote the ciphertext of public key and secret key encryp-
tion scheme respectively. Each client outsources the three vectors,

#»
t (I), #»e (I) and

#»

d (I),
to the cloud. When client A gets intersected in the intersection of its set and client B’s
set, it downloads the entire vector

#»

d (A), decrypts the vector elements to get the values
r(A)
i . Then, it picks a single random value, b, and sums it with every r(A)

i as follows.
∀i, 1 ≤ i ≤ w : g(A)

i = b + r(A)
i . It encrypts b under client B’s public key: EpkB(b).

Then, it sends vector #»g (A) = [g(A)
1 , ..., g(A)

w] and EpkB(b) to the cloud who sends
#»

d (B)

and EpkB(b) to client B. Client B decrypts the vector elements and EpkB(b). Next, it
computes a new vector #»g (B) = [g(B)

1 , ..., g(B)
w], where g(B)

i = b + r(B)
i . It sends #»g (B) to

the cloud. Given the two vectors, #»g (A) and #»g (B), the cloud computes two new vectors:

#»g (C1) = [e(A)

1 + g(B)

1 , ..., e(A)

1 + g(B)

w , ..., e(A)

w + g(B)

1 , ..., e(A)

w + g(B)

w]

#»g (C2) = [e(B)

1 + g(A)

1 , ..., e(B)

1 + g(A)

w , ..., e(B)

w + g(A)

1 , ..., e(B)

w + g(A)

w].

Then, it computes vector #»g (C3), where g(C3)

i = Psk(s
(A)
i) if and only if |g(C1)

i −
g(C2)

j | = 0, where i, j ∈ [1, w]. It sends vector #»g (C3) to client A who can decrypt it
and find the intersection. The protocol’s communication complexity is O(w) and its
computation involves O(w2) modular addition operations.

Although the protocol is efficient (as it mainly uses a hash function and secret key
encryption) and can support multiple clients, it suffers from a set of major problems.
First, each time the computation is delegated, every client needs to download the en-
crypted vector,

#»

d (I), whose size is equal to the client’s set size. Also, each element in

42

3. Related Work

the vector has the same size as the elements of the outsourced set. This is equivalent
to the case where every client first downloads its outsourced set, prepares and uploads
it before the cloud computes the result.

Second, in the protocol, value b is used as a one-time pad and according to its def-
inition it must be used only once [71, 52]. But, the same pad is used multiple times,
in the protocol, to blind the elements of the vectors #»g (A) and #»g (B). This approach is
not secure and leaks information about the values r(I)

i supposed to be protected from
the cloud. Knowledge of the values r(I)

i allows the cloud to figure out the hash values
of each client’s set elements, h(s(I)

i), that should be protected by r(I)
i . Third, since the

encoding scheme used in the protocol is deterministic, the cloud learns (from vectors
#»g (C1) and #»g (C2)) the intersection cardinality, and whether the two sets have any ele-
ments in common. Fourth, due to the deterministic characteristics of the scheme, if
client A and B and then client A and C delegate the computation to the cloud, the
cloud can learn whether the sets of client B and C have any elements in common, and
how many elements are in common, without the clients’ consent. The authors have not
provided the protocol’s security proof.

Another delegated PSI protocol is proposed in [123] that supports multiple clients
who can verify the integrity of the computation result. The protocol utilizes a cryp-
tographic accumulator [36, 89] scheme, and the idea of proxy re-encryption [9]. The
cryptographic accumulator scheme allows accumulation of a set of elements into a
short value called accumulator, such that each of the elements has a short witness
that can be used to verify its membership in the set. However, it is computationally
infeasible to find a witness for any non-accumulated value. Moreover, a proxy re-
encryption scheme is a public key encryption scheme that allows client A to encrypt
a message under its public key, and send it to an untrusted proxy server. Later on,
client A can provide a key (other than its private key) to the proxy server who can use
the key and ciphertext to generate another ciphertext that can be decrypted by client
B using its own secret key. But, the proxy server learns nothing about the plaintext in
this process. There is a major difference between the standard (semantically secure)
proxy re-encryption scheme and the technique used in this protocol. In particular, the
re-encrypted ciphertext generated in the protocol contains no random value, so the
scheme is not semantically secure.

In the following, we provide a high-level description of the protocol. First, a trusted
third party generates the secret and public parameters and distributes them among the
clients. Next, given the parameters and set S(I), each client I independently encrypts

43

3. Related Work

its set elements as follows. ∀i, 1 ≤ i ≤ w : t(I)i = EpkI (s
(I)
i), where s(I)

i ∈ S(I).
Moreover, it generates an accumulator α(I) and witnesses for its set, and then sends the
encrypted values T (I) = {t(I)1 , ..., t

(I)
w } and the witnesses to the cloud. It keeps locally

the accumulator, α(I). When the clients want to delegate PSI computation to the cloud,
each client computes a token q(I) that allows the cloud to re-encrypt its outsourced
ciphertexts, t(I)i to different ciphertexts, t′(I)i . So, if there is an element in common in
the sets, its re-encrypted ciphertexts would be the same in both sets, i.e. if s(A)

i = s(B)
j

then t′(A)
i = t′(B)

j . Given q(I) and the clients’ outsourced datasets, the cloud performs
the re-encryption and then sends to client A those outsourced ciphertexts whose re-
encrypted ciphertexts are equal. Also, it uses the clients’ witnesses to generate a proof
of the computation correctness. The client who knows the secret key decrypts the re-
sult, and then uses the accumulator and the proof to verify the result integrity. The
protocol’s communication complexity is O(z), where z is the intersection cardinality,
and involves O(w) public key encryption operations, where w is the set cardinality.
The protocol suffers from the same security issues as [81] mentioned above, due to
its deterministic nature. Besides, as we mentioned earlier, the re-encryption scheme is
not semantically secure. Hence, the cloud after computing t′(I)i , can perform a “plain-
text guessing” attack to determine the corresponding set element (or plaintext), s(I)

i .
Such attack is feasible (i.e. can be carried out in polynomial time) when the message
universe is small. The authors used the standard model to prove the protocol’s security.

Although the protocol proposed by Qiu et al. in [99] is very similar to the protocol
in [123] stated above, for the sake of completeness we briefly present it. The protocol
considers the semi-honest adversarial model, supports multiple clients, and uses also
a trusted third party to generate and distribute a set of public and private parameters
among clients. This protocol uses the same idea as in [123] that each set element is
encrypted separately by its owner and uploaded to the cloud. Later on, when the clients
want to delegate the computation, they provide a token and the cloud can re-encrypt
the cihpertexts and compares them and then return the result to the clients. However,
in this protocol, each client includes its ID when it generates the ciphertexts and the
token. The authors analyzed the protocol’s security in the random oracle model. The
communication complexity of the protocol isO(z), and its computation involvesO(w)

public key encryption operations. In this scheme, in order for the ciphertext to be
secure, the set universe U must be sufficiently large (e.g. |U| > poly(λ), where λ is
the security parameter). Otherwise, the cloud can carry out a brute-force attack on the
encrypted set elements and figure them out. But, this requirement cannot be met in

44

3. Related Work

numerous real-world applications (e.g. short digits in the stock market, or names, etc).
In this protocol, similar to the one in [123], the cloud learns the intersection cardinality
and can figure out whether two clients have any elements in common even though they
did not together delegate the computation to the cloud.

The only protocol that can securely support delegation of both storage and compu-
tation to an untrusted cloud is the one proposed by Lopez-Alt et al. in [82] which is
designed for generic multi-party computation. Nonetheless, the protocol is very ineffi-
cient due to its computationally expensive building blocks. The protocol considers both
the semi-honest and malicious adversarial models. The authors introduce a variant of
fully homomorphic encryption (FHE), called multi-key FHE and use it to construct a
generic delegated multi-party computation protocol. Multi-key FHE enables different
ciphertexts encrypted under different public keys to be homomorphically combined
together, even though the public keys have been generated independently. In other
words, given the ciphertexts, the cloud can perform any arbitrary computation on them
without learning the computation inputs and outputs. What follows is an overview of
the protocol that considers the semi-honest model. First, each client generates its key
pair independently without interacting with the other clients or having a prior knowl-
edge about them. After that, the client encrypts its inputs, and sends the ciphertexts to
the cloud who homomorphically operates on the client ciphertexts and computes the
result. Then, it broadcasts the result to the clients who engage in a multi-party compu-
tation and use their secret keys and the ciphertexts to obtain the result. The scheme’s
overall communication complexity is O(w), and its computation requires O(w) FHE
operations. As it is highlighted in [98, 94, 85], the scheme is far from being practical
and the main reason is that it leverages a FHE scheme that is computationally very
expensive.

The authors also use generic zero-knowledge proofs to turn the semi-honest secure
protocol to the protocols secure in the presence of malicious parties. In one variant, at
the end of the protocol, the cloud broadcasts all the encrypted inputs to all clients and
uses zero-knowledge proofs to prove that the result has been computed correctly. In
another variant, each client after encrypting its inputs, computes a hash value of each
ciphertext using a keyed hash function. Then, it sends a copy of the hash values (along
with the ciphertexts) to the cloud and keeps a copy of the hash values locally. Then, at
the end of the protocol, the cloud broadcasts all the hash values and the computation
result to all clients and proves that it computed the result correctly. So, this scheme
also imposes high communication and storage costs to the participants especially when

45

3. Related Work

the number of inputs is high. The overall computation and communication complexity
of the malicious protocols is also O(w); nevertheless, they involve expensive generic
proofs systems (in addition to FHE operations) which make the verification procedure
very inefficient. Due to the nature of FHE, in this protocol, the outsourced data can
be updated securely. Both protocols in [82] have been proven secure in the standard
model.

3.4 Concluding Remarks

The cloud is receiving considerable attention from individuals and companies due to
the benefits and services it offers. Clients can outsource their data to the cloud, and ask
it to run computation on the outsourced data. However, the cloud is vulnerable to data
security breaches and is not fully trusted. PSI is a vital cryptographic protocol that has
many real world applications, but existing PSI protocols cannot be used securely in a
setting where the computation and storage are outsourced to the cloud. In particular,
traditional PSI protocols allow clients to jointly run the computation. These protocols
preserve client data privacy, and can be very efficient. However, they require clients
to have their data locally. On the other hand, there are also some protocols allowing
clients to take advantage of the cloud’s computation power, however they support only
one-off PSI delegation and the clients have to re-encode the data every time PSI com-
putation is delegated to preserve their data privacy. In these protocols, the clients have
to either keep locally a copy of the data or download it every time the computation is
delegated. In contrast, those protocols that support repeated PSI delegation can sup-
port outsourcing of both data storage and the computation. However, most of these
protocols cannot fully protect the privacy of data from the cloud. The only protocol
that allows secure delegation of data storage and PSI computation uses FHE and is
very inefficient.

46

Chapter 4

Delegated PSI on Outsourced Private
Datasets

4.1 Introduction

As we have shown in section 3, existing PSI protocols cannot be used securely on out-
sourced private data. In particular, the traditional PSI protocols require parties to have
their sets locally and mutually compute the result. Moreover, the protocols proposed to
take advantage of the cloud’s computation capabilities support only one-off delegation
and clients need to re-prepare the data every time PSI is delegated. Also, the protocols
that support repeated PSI delegation and allow outsourcing of both data storage and
the computation are not fully private. Although the protocol based on fully homomor-
phic encryption can securely support repeated PSI delegation, it is computationally
expensive.

In this chapter, we first propose O-PSI, a protocol that efficiently supports secure
outsourcing of data storage and the computation. The protocol does not require FHE,
instead it uses an additive homomorphic encryption scheme that is more efficient.
However, additive homomorphic operations are still costly and have a major impact
on the protocol’s performance. To mitigate this problem, we propose a more efficient
protocol, EO-PSI, that preserves all O-PSI’s desirable characteristics, while requires
no public key encryption or exponentiation operations. The material about O-PSI pro-
tocol comes from the published paper titled “O-PSI: Delegated Private Set Intersection

On Outsourced Datasets” [1] and that about EO-PSI protocol comes from the paper
titled “Efficient Delegated Private Set Intersection on Outsourced Private Datasets”

47

4. Delegated PSI on Outsourced Private Datasets

[3].
This chapter is organized as follows. Section 4.2 starts with a high-level overview

of O-PSI followed by a detailed description of the two-client O-PSI, an outline of the
multi-client case, the security definition for the protocol and a formal security analysis
of O-PSI. Section 4.3 comprises a high-level description of EO-PSI, a detailed expla-
nation of the two-client and multi-client case, and a formal security analysis of the
protocol. In section 4.4, we compare our protocols with the outsourced PSI protocols
presented in chapter 3. In section 4.5, we explain how the right parameters for EO-PSI
can be chosen, we provide an overview of O-PSI and EO-PSI code design, and we
compare their performance. Finally, we conclude the chapter in section 4.6.

4.2 O-PSI: Delegated Private Set Intersection on Out-
sourced Private Datasets

In this section, we provide our first delegated PSI protocol that supports secure repeated
PSI delegation. It allows two clients to delegate both data storage and PSI computation
to the cloud. In particular, the protocol enables clients to independently outsource their
private datasets to the cloud. Once the clients outsource their data, they can delegate
PSI computation on the outsourced data to the cloud an unlimited number of times
while the privacy of the data and the computation result is protected in the cloud. The
clients can delete any local copy of their datasets once they upload them. To achieve
our goal, we use partially homomorphic encryption (i.e. Paillier encryption) that is
more efficient than fully homomorphic encryption, and widely used in secure multi-
party computation protocols (e.g. [46, 79, 39, 62]). The protocol, in addition to the
encryption scheme, is based on point-value set representation and a blinding technique.

4.2.1 An Overview of O-PSI

The interaction between the parties in the protocol is depicted in Fig 4.1. At a high
level, O-PSI works as follows. First, each client represents its set as a point-value
polynomial representation to get a vector of y-coordinates. Then, it independently
blinds the vector elements and sends the vector of blinded values to the cloud. As the
vector elements have been blinded the cloud cannot figure out the set elements. When
client B wants the intersection of its outsourced set and client A’s outsourced set, it

48

4. Delegated PSI on Outsourced Private Datasets

Client A Client B Client A Client B

(1)

(2)

(3)

#» o
(
A

)
=

[o
(
A

)
1

,.
..
,o

(
A

)
n

]

#» o
(
B

)
=

[o
(
B

)
1

,.
..
,o

(
B

)
n

]

#» o
(
A

)
=

[o
(
A

)
1

,.
..
,o

(
A

)
n

]

#» o
(
B

)
=

[o
(
B

)
1

,.
..
,o

(
B

)
n

]

ID(A)

ID(B)

#» e
(
B

)
=

[e
(
B

)
1

,.
..
,e

(
B

)
n

]

#» e
(
A

)
=

[e
(
A

)
1

,.
..
,e

(
A

)
n

]

#»e (B) = [e(B)
1 , ..., e(B)

n]

#»e (A) = [e(A)
1 , ..., e(A)

n]

#»t
=

[t
1 ,...,t

n
]ID

(
A

)

ID
(
B

)
ID

(
A

)

ID
(
B

)

Figure 4.1: The left-hand side figure: party interactions at data outsourcing phase in O-PSI;
the right-hand side figure: party interactions at the computation delegation phase in O-PSI.

first sends an encrypted message to clientA to obtain its permission. If clientA agrees,
it performs some (homomorphic) operation on the encrypted message and sends the
result to the cloud. Upon receiving the message, the cloud uses it to switch client A’s
dataset blinding factors such that after the switching the blinding factors of client A’s
outsourced data would be the same as that of client B’s. After the switching process,
client A’s data would be in an encrypted form. Then, the cloud uses the homomorphic
feature of the encryption scheme to combine client A’s switched data with client B’s
outsourced data. Next, it sends the result to clientB. Given the cloud’s response, client
B decrypts it to get a vector of y-coordinates. Then, it uses the vector to interpolate
a polynomial and considers the polynomial’s roots as the sets intersection. In this
process, the cloud learns nothing about the clients’ sets and client B learns only the
sets intersection.

4.2.2 O-PSI Protocol

In the following, we first present the two-client O-PSI protocol in detail, where the
cloud C, and clients A and B engage in the protocol. Then, we explain the ratio-
nale behind the protocol design. We use EpkI (hi) and DskI (hi) to say that value hi is
encrypted using client I’s public key, and decrypted using his secret key, respectively.

a. Cloud-Side Setup. The cloud constructs a field Fp, where p is a large prime
number. Then, it sets c as an upper bound of the set cardinality. The cloud
constructs a vector, #»x , of n = 2c + 1 distinct elements chosen uniformly at
random from the field. Moreover, it picks a pseudorandom function, PRF, which

49

4. Delegated PSI on Outsourced Private Datasets

takes an l-bit key and b-bit message, and maps the message to an element in the
field pseudorandomly: PRF : {0, 1}b × {0, 1}l → Fp, where |p| = l′ and l, l′ are
security parameters. The cloud publishes the description of the field along with
vector #»x such that all the clients can access them.

b. Client-Side Setup and Data Outsourcing. This step is the same for both
clients. Let S(I) be client I’s set, where I ∈ {A,B} and |S(I)| ≤ c. Client I
performs as follows.

1. Generates a Paillier key pair (pkI, skI) and publishes the public key. It also
chooses a random private key k(I) for the pseudorandom function, PRF. All
keys are generated according to a given security parameter. It makes sure
values xi ∈ #»x are not equal to its set elements; otherwise, it aborts.

2. Constructs a polynomial τ (I)(x) that represents its set S(I).

τ (I)(x) =

|S(I)|∏

m=1

(x− s(I)

m).

3. Generates a set of y-coordinates associated with τ (I)(x). To do so, it eval-
uates τ (I)(x) at each element of vector #»x (already published by the cloud).
This yields n values τ (I)(xi), where 1 ≤ i ≤ n.

4. Computes a set of n pseudorandom values, given the key k(I).

∀i, 1 ≤ i ≤ n : z(I)

i = PRF(k(I), i).

5. Blinds the y-coordinates, by using the pseudorandom values:

∀i, 1 ≤ i ≤ n : o(I)

i = z(I)

i · τ (I)(xi).

6. Sends the vector containing the blinded values, #»o (I) = [o(I)
1 , ..., o

(I)
n], to the

cloud.

c. Set Intersection: Computation Delegation. This phase starts when client B
becomes interested in the intersection of its set and client A’s set.

1. Client B re-generates the blinding factors, z(B)
i , it used (in step b.4) to pro-

tect its outsourced data. Then, the client encrypts each of the blinding

50

4. Delegated PSI on Outsourced Private Datasets

factors.
∀i, 1 ≤ i ≤ n : e(B)

i = EpkB(z(B)

i).

2. ClientB sends its id, ID(B) and the vector comprising the encrypted blinding
factors, #»e (B) = [e(B)

1 , ..., e(B)
n], to client A.

3. When client A receives the other client’s message, it first re-generates the
blinding factors, z(A)

i , it used (in step b.4) to secure its outsourced data.
Next, it creates new encrypted values, given client B’s message:

∀i, 1 ≤ i ≤ n : e(A)

i = (e(B)

i)(z
(A)
i)−1

= EpkB(z(B)

i · (z(A)

i)−1).

4. Client A sends #»e (A) = [e(A)
1 , ..., e(A)

n], ID(A), ID(B) and a request message:
Compute to the cloud.

d. Set Intersection: Cloud-Side Result Computation.

1. After receiving client A’s message, the cloud picks two degree c random
polynomials ω(A)(x) and ω(B)(x) (one for each client), where each polyno-
mial coefficients are chosen uniformly at random from the field, Fp. After
that, it evaluates each of the random polynomials ω(I)(x) at every element
xi ∈ #»x . This results in the y-coordinates, ω(I)(xi), where I ∈ {A,B}.

2. The cloud fetches clientA’s outsourced dataset #»o (A) and then (given vector
#»e (A)) it switches clientA’s blinding factors to clientB’s, and multiplies the
result by the y-coordinates of the random polynomial, ω(A)(xi).
∀i, 1 ≤ i ≤ n :

(e(A)

i)o
(A)
i ·ω

(A)(xi) = EpkB(z(B)

i · (z(A)

i)−1 · z(A)

i · τ (A)(xi) · ω(A)(xi)).

3. The cloud fetches client B’s outsourced dataset, multiplies its elements by
the y-coordinates of the corresponding random polynomial, ω(B)(xi), and
then encrypts each value.

∀i, 1 ≤ i ≤ n : EpkB(o(B)

i · ω(B)(xi)) = EpkB(z(B)

i · τ (B)(xi) · ω(B)(xi)).

4. The cloud homomorphically sums the values generated in step d.2 with
those computed in step d.3.

51

4. Delegated PSI on Outsourced Private Datasets

∀i, 1 ≤ i ≤ n :

ti = EpkB(z(B)

i · (z(A)

i)−1 · z(A)

i · τ (A)(xi) · ω(A)(xi)) · EpkB(z(B)

i · τ (B)(xi) · ω(B)(xi))

= EpkB(z(B)

i · (z(A)

i)−1 · z(A)

i · τ (A)(xi) · ω(A)(xi) + z(B)

i · τ (B)(xi) · ω(B)(xi)).

5. The cloud sends the vector containing the encrypted elements,
#»
t = [t1, ..., tn],

computed in the previous step to client B.

e. Set Intersection: Client-Side Result Retrieval

1. Client B decrypts every element in
#»
t and removes the blinding factors:

∀i, 1 ≤ i ≤ n :

gi = DskB(ti) · (z(B)

i)−1 = τ (A)(xi) · ω(A)(xi) + τ (B)(xi) · ω(B)(xi).

2. Given n pairs of (xi, gi), it interpolates a polynomial, φ(x), and considers
the (valid) roots of φ(x) as the elements of the set intersection.

Remark 1: In step a, the cloud publishes vector #»x that contains 2c + 1 elements,
because the polynomial φ(x), in step e.2, is of degree 2c and at least 2c + 1 points are
needed to interpolate it. The elements in #»x are picked uniformly at random from a
sub-set of Fp that is disjoint from the (field sub-) set containing the encoded element;
therefore, xi will not be a root of a client’s polynomial (as explained in section 2.6).

Remark 2: In step b.5, if the client does not blind the y-coordinates and stores τ (I)(xi)

directly without protecting them in the cloud, then the cloud could use n pairs of
(xi, τ

(I)(xi)) to interpolate the client’s polynomial (recall #»x = [x1, ..., xn] is public
and known to all parties). As a result, the client’s set would be revealed to the cloud.
Whereas, when they are blinded the cloud cannot learn anything about the client’s set
unless it knows the pseudorandom function key used by the client. The client blinds
the values by multiplication. Multiplication cannot blind τ (I)(xi) = 0. This is why we
require that xi ∈ #»x to be unequal to a root of a client’s polynomial (or one of its set
elements). Recall, in section 2.6 we showed how xi can be picked such that it does not
equal any set elements.

52

4. Delegated PSI on Outsourced Private Datasets

Remark 3: The data stored in the cloud are independently blinded by its owner. In par-
ticular, each client I , where I ∈ {A,B}, independently picks the pseudorandom key,
k(I), so different clients have different keys. Consequently, they would have a different
set of pseudorandom values with a high probability (i.e. PRF(k(A), i) 6= PRF(k(B), i)).
On the other hand, in order to correctly compute the result, the datasets must have the
same blinding factors (z(I)

i in the protocol) before they are combined with each other.
Moreover, the factors must be eliminated at the end of the protocol by the result recipi-
ent. Hence, to ensure result correctness, during the computation delegation, the clients
compute vector #»e (A) that enables the cloud to obliviously “switch” client A’s blinding
factors to client B’s. In step d.2, the cloud uses the vector to insert the values that
can eliminate client A’s blinding factors, z(A)

i , from its dataset, and insert client B’s
blinding factors, z(B)

i , into it. After that, it combines the datasets together and sends
the result to client B. In step e.1, client B can eliminate all the blinding factors. Note
that since the values in #»e (A) are encrypted and only client B knows the secret key, the
cloud learns nothing in this process.

Remark 4: The clients’ original blinded datasets remain unchanged in the cloud. In
fact in steps d.2 and d.3, the cloud multiplies a copy of the client’s blinded dataset by
the vector of ω(I)(xi).

Remark 5: The only information that the cloud learns about the clients’ datasets is
the upper bound on the dataset cardinality (i.e. value c) that was initially set by it.
Thus, the cloud learns nothing about: (a) the sets’ elements, (b) the exact number of
set elements, (c) the intersection, and (d) the intersection cardinality.

Remark 6: Unlike the schemes that use polynomials in coefficient form to represent a
set, e.g. [46, 75], we represent the polynomials in point-value form. The point-value
representation brings two advantages in our protocol. First, all the steps between step c
and e.1 (inclusive) can be done in parallel. In particular, an operation on each element
of a vector (i.e. y-coordinate) can be done independently without the involvement of
the rest of the vector’s elements. This property relieves clientA from needing to have a
local storage linear to the set cardinality. Instead, it can receive the elements in stream-
ing mode (from clientB), and compute each y-coordinate separately. Furthermore, the
cloud who has numerous computation cores can work on each y-coordinate in paral-
lel resulting in a speed up of the computation. Second, the point-value representation

53

4. Delegated PSI on Outsourced Private Datasets

reduces the overall computation cost as the computation complexity of multiplying
two polynomials of degree m in point-value from is O(m), whereas it is O(m2) in
coefficient form. However, the communication cost in both point-value and coefficient
representations is O(m).

4.2.3 Extensions

4.2.3.1 Multi-client O-PSI

Before we show how the two-client O-PSI can be turned into multi-client O-PSI, we
briefly outline why multi-client O-PSI, or in general multi-client PSI, matters. At first
glance, in order to compute the intersection of multiple clients’ sets, any two-client
PSI protocol (regardless whether it is classical PSI or delegated one) can be directly
used multiple times. For example, client B who has set S(B) = {a, b, c} uses two-
client PSI, and engages in the protocol with client A whose set is S(A) = {a, b}, and
then it extracts the intersection which is S(B) ∩ S(A) = {a, b}. Next, client B uses the
intersection, as its input and participates in the protocol with client C whose input is
S(C) = {a, d}. At the end, client B finds S(B) ∩ S(A) ∩ S(C) = {a}. Nonetheless, in
this process, client B learns more information than the intersection of the sets. For
instance, it learns S(A) has element b whereas S(C) does not have this element. This
leakage may discourage some clients to participate. In contrast, if the protocol could
support multiple clients and a client would not engage if only two of them participate
(i.e. no two-client PSI is allowed), then client B would only figure out the final result,
i.e. S(B)∩S(A)∩S(C) = {a}. In addition to that, the (communication and computation)
cost of running multiple clients PSI protocol once may be less than the cost of running
two-client PSI multiple times.

In the following, we explain how two-client O-PSI can be adjusted to support m-
client O-PSI, where m > 2. In the multi-client case, all the clients prepare their data in
the same way as in the two-client case. Also, the client interested in the intersection,
clientB, sends the same request (step c.2) to all other clients, Aq, where 1 ≤ q ≤ y and
y = m− 1. The protocol for each client Aq remains unchanged. However, the compu-
tation at the cloud side slightly changes. Specifically, the cloud separately switches the
blinding factors of the dataset of each client Aq, and multiplies each dataset by a ran-
dom polynomial, ω(Aq)(x), using vector e(Aq)

i provided by the client (step d.2). Finally,
the cloud combines the values, generated in the previous step, with the other clients’
datasets (step d.4).

54

4. Delegated PSI on Outsourced Private Datasets

∀i, 1 ≤ i ≤ n:

ti = EpkB(ω(B)(xi) · o(B)

i) ·
y∏

q=1

(e
(Aq)

i)o
(Aq)

i ·ω(Aq)(xi)

= EpkB(z(B)

i · (ω(B)(xi) · τ (B)(xi) +

y∑

q=1

ω(Aq)(xi) · τ (Aq)(xi))).

The rest of the steps remain the same. Note that in the multiple clients setting, even
if client B colludes with y − 1 clients, it could not infer the set elements of the non-
colluding client, as the random polynomials ω(Aq) and ω(B) are picked by the cloud, and
are unknown to the clients.

4.2.3.2 How to Avoid Client-to-client Interaction in O-PSI

The protocol can be made more flexible by avoiding the direct communication between
the clients. In this case, in step c.2, client B can send vector #»e (B) and ID(B) to the cloud
(instead of sending them to client A). Then, it can go offline. When client A comes
online it downloads the vector from the cloud and (similar to the original protocol) it
locally performs the operation on the vector and sends #»e (A) to the cloud. This approach
is also secure as vector #»e (B) contains the encrypted elements and the cloud cannot
figure out the original message. Moreover, the overall computation remains unchanged
and although the overall communication increases the communication complexity does
not change.

4.2.4 Security Definition

In this chapter, for both O-PSI and EO-PSI, we consider a setting where static semi-
honest adversaries, who corrupt one party at a time, are present [52]. We assume
the cloud does not collude with the clients. This is reasonable as it is often a well
established IT company and such collusion will jeopardize its reputation, as there is
always a risk that the client (or any party) may expose its collusion with the cloud and
this potentially will have a negative impact on the cloud’s revenue. The non-collusion
assumption is widely used in the literature [111, 102, 68, 67, 20, 118, 77].

For the sake of simplicity, we assume there are three parties, the cloud C and
clients A and B, engaging in the protocol where client A authorizes the computation
and client B is interested in the result. We need a mechanism that allows client A to

55

4. Delegated PSI on Outsourced Private Datasets

identify a legitimate client, so it can verify its true identity. Such mechanism can help
the client avoid engaging in the protocol with those clients it does not want to, e.g. its
rival or the cloud. To address this issue, similar to [29, 55], we can assume that there
exists an infrastructure, like public key infrastructure PKI (or Kerberos, etc), such that
every party has a unique public key/ID and digitally signed certificate. Given one’s
public key/ID and certificate, a party can verify its identity. Let Authen(.) be such an
authentication function that authenticates a user ui, and defined as:

Authen(ui) =





1 if authentication succeeds

0 otherwise

That means client A can always authenticate client B via the infrastructure. We
also assume client A has an authorization policy: Policy(.), defined by client A that
can be viewed as an internal subroutine of client A. The policy function, similar to
authentication function, returns a binary decision on any request received by client A.
The function returns 1 if the requesting client, ui ∈ U , meets client A’s policy and
returns 0 otherwise. It totally depends on client A how to define the policy function.
For instance, the client can maintain a set, U ′, of clients with which it is not interested
in engaging in the protocol and the function returns 0 if the requesting client (i.e. client
B) is ui ∈ U ′. As another example, client A can maintain a set of clients who have
already engaged in the protocol and the function returns 0 if the requesting client is
one of them. Client A authorizes the computation and the protocol proceeds, if (a)
the other client’s identity is approved, i.e. authentication succeeds, and (b) the client
meets client A’s policy; otherwise, client A rejects the computation and the protocol
aborts. The parties would output message authorization failed if client A rejects the
computation. In the simulation, the simulator only needs to simulate the view up to the
point where the above message (i.e. authorization failed) is observed.

Definition 12. Let Policy(.) and Authen(.) respectively be policy and authentication

functions defined as above. We say client A authorizes the computation with client ui
iff:

Authen(ui) ∧ Policy(ui) = 1

otherwise client A rejects it.

A three-party delegated PSI protocol computes a function that maps the inputs to

56

4. Delegated PSI on Outsourced Private Datasets

some outputs. We define this function as F : Λ × 2U × 2U → Λ × Λ × f∩, where Λ

denotes the empty string, 2U denotes the powerset of the set universe and f∩ denotes the
set intersection function. For every tuple of inputs Λ, S(A) and S(B) belonging to C the
cloud, client A and client B respectively, the function outputs nothing to C and A, and
f∩(S

(A), S(B)) = S(A) ∩ S(B) to B. Following the standard model (presented in section
2.9), the protocol is secure in the semi-honest adversarial model if whatever can be
computed by a party in the protocol can be obtained from its input and output only.
This is formalized by the simulation paradigm such that a party’s view in a protocol
execution should be simulatable given only its input and output. The party I’s view
on input tuple (x, y, z) is denoted by VIEWI(x, y, z), where w ∈ {x, y, z} is the input of
party I and I ∈ {A,B,C}.
Definition 13. Let F be a deterministic function defined above. We say that the pro-

tocol securely computes F in the presence of static semi-honest adversaries if there

exists a probabilistic polynomial-time algorithm SIMI, I ∈ {A,B,C}, such that given

the input and output of a party, it can simulate a view that is computationally indistin-

guishable from the party’s view in the protocol:

{SIMB(S(B), f∩(S
(A), S(B)))}S(A),S(B)

c≡ {VIEWB(Λ, S(A), S(B))}S(A),S(B)

{SIMA(S(A),Λ)}S(A),S(B)

c≡ {VIEWA(Λ, S(A), S(B))}S(A),S(B)

{SIMC(Λ,Λ)}S(A),S(B)

c≡ {VIEWC(Λ, S(A), S(B))}S(A),S(B)

4.2.5 O-PSI Security Proof

Now we sketch the proof of the O-PSI security in the presence of static semi-honest
adversaries. We conduct the security analysis for the three cases where one of the
parties is corrupted. We use the security model presented in 4.2.4 for the analysis.

Theorem 2. If the homomorphic encryption scheme is semantically secure and PRF is

a collision-resistant pseudorandom function, then the O-PSI protocol is secure in the

presence of static semi-honest adversaries.

Proof. We will prove the theorem by considering in turn the case where each of the
parties has been corrupted. In each case, we invoke a simulator with the corresponding
party’s input and output. Our focus is on the case where party A wants to engage in
the computation of the intersection, i.e. it authorizes the computation. If party A does
not want to proceed with the protocol, the views can be simulated in the same way up
to the point where the execution stops.

57

4. Delegated PSI on Outsourced Private Datasets

Case 1: Corrupted Cloud. In this case, we show that we can construct a simulator,
SIMC , that can produce a view computationally indistinguishable from an adversary’s
view in the real model, given its input and output. In the real execution, the cloud’s
view, is:

VIEWC(Λ, S(A), S(B)) = {Λ, rC, #»o (A), #»o (B), #»e (A), ID(A), ID(B), Compute,Λ}.

In the above view, rC is the outcome of internal random coins of the cloud, #»o (A) and
#»o (B) are the clients’ outsourced datasets, and #»e (A) is the vector of encrypted elements.

To simulate this view, SIMC does the following:

1. Creates an empty view and appends to it Λ and uniformly at random chosen
coins r′C .

2. Constructs two vectors, #»o ′(A) and #»o ′(B) where each of them contains n values
picked uniformly at random from the field, Fp. Then, it appends #»o ′(A) and #»o ′(B)

to the view.
3. Generates a vector, #»e ′(A), comprising n encrypted random values. Afterwards, it

inserts the vector to the view.
4. Constructs also four strings, ID(A), ID(B), Compute and Λ. It appends them to the

view and outputs the view.

Now we argue that the simulated view is computationally indistinguishable from
the real view. In both views, the input parts are identical (i.e. both are Λ), the random
coins are both uniformly random, and so they are indistinguishable. Client I , (for all
I , I ∈ {A,B}), blinds the elements of #»o (I) with the outputs of the pseudorandom
function, PRF. On the other hand, each vector #»o ′(I) contains n elements picked uni-
formly at random from the same field. Since the output of the pseudorandom function
is indistinguishable from a random value, vectors #»o (I) and #»o ′(I) are computationally
indistinguishable. Furthermore, as the encryption scheme is semantically secure, the
encrypted elements of vectors #»e (I) and #»e ′(I) are also computationally indistinguish-
able. Moreover, values xi are not equal to any set elements (as shown in section 2.6).
Finally, the strings ID(A), ID(B), Compute and Λ are identical in both views. Thus, we con-
clude that the two views are computationally indistinguishable.

58

4. Delegated PSI on Outsourced Private Datasets

Case 2: Corrupted Client A. In the real execution, client A’s view is:

VIEWA(Λ, S(A), S(B)) = {S(A), rA,
#»e (A), ID(B),Λ}.

The simulator, SIMA, who receives client A’s input, S(A), and output, Λ, does the
following.

1. Creates an empty view and appends the party’s input to it.
2. Inserts coins r′A, uniformly at random chosen, to the view.
3. Constructs vector #»e ′(A), containing n encrypted random values, and inserts it

into the view. Finally, it inserts the strings ID(B) and Λ into the view and outputs
the view.

We now explain why the two views are computationally indistinguishable. In both
views, the client’s input, S(A), is identical. Moreover, both rA and r′A are picked uni-
formly at random so they are indistinguishable, too. Vectors #»e (B) and #»e ′(B) contain-
ing the encrypted elements are computationally indistinguishable, as the encryption
scheme is semantically secure. Also, the strings ID(B) and Λ are identical in both views.
Hence, the views are computationally indistinguishable.

Case 3: Corrupted Client B. In the real execution, client B’s view is:

VIEWB(Λ, S(A), S(B)) = {S(B), rB,
#»g , f∩(S

(A), S(B))}.

The simulator SIMB receives the party’s input, S(B), and output, f∩(S(A), S(B)), and
performs as follows.

1. Creates an empty view and appends the client’s input, S(B), and uniformly at
random chosen coins, r′B, to the view.

2. Chooses two sets, S ′(A) and S ′(B), such that S ′(A) ∩ S ′(B) = f∩(S
(A), S(B)) and

|S ′(A)|, |S ′(B)| ≤ c.
3. Represents each set S ′(I), (for all I , I ∈ {A,B}), as a polynomial:

τ ′(I)(x) =

|S′(I)|∏

m=1

(x− s′(I)m),

where s′(I)m ∈ S ′(I).
4. Picks two random polynomials ω′(A)(x) and ω′(B)(x) of degree c.

59

4. Delegated PSI on Outsourced Private Datasets

5. Multiplies each polynomial, τ ′(I)(x), by the random polynomial, ω′(I)(x), and
then sums up the products:

φ′(x) = τ ′(A)(x) · ω′(A)(x) + τ ′(B)(x) · ω′(B)(x).

6. Evaluates polynomial φ′(x) at every element of vector #»x . This results:

∀i, 1 ≤ i ≤ n : g′i = φ′(xi).

7. Inserts #»g ′ = [g′1, ..., g
′
n] along with the client’s output, f∩(S(A), S(B)), into the

view and outputs the view.

In the following, we discuss why the two views are computationally indistinguish-
able. In both models S(B) is identical, also rB and r′B are chosen uniformly at random,
therefore they are indistinguishable. The polynomial φ′(x), interpolated from n pairs
(g′i, xi), has the form τ ′(A)(x) ·ω′(A)(x)+τ ′(B)(x) ·ω′(B)(x) = µ′ ·gcd(τ ′(A)(x), τ ′(B)(x)).
On the other hand, in the real view, polynomial φ(x) interpolated from n pairs (gi, xi)

has the form τ (A)(x) · ω(A)(x) + τ (B)(x) · ω(B)(x) = µ · gcd(τ (A)(x), τ (B)(x)). As it
has been proven in [75, 20], µ and µ′ are uniformly random polynomials and indistin-
guishable, and the probability that their roots represent set elements is negligibly small.
Moreover, polynomials gcd(τ ′(A)(x), τ ′(B)(x)) and gcd(τ (A)(x), τ (B)(x)) represent the
intersection: f∩(S(A), S(B)). Therefore, #»g ′ and #»g are computationally indistinguish-
able. Finally, the output part, f∩(S(A), S(B)), in both views is identical. Thus, the two
views are computationally indistinguishable.

4.3 EO-PSI: Efficient Delegated Private Set Intersec-
tion on Outsourced Private Datasets

In this section, we introduce EO-PSI that preserves all O-PSI’s desirable properties
and is more efficient. EO-PSI improves O-PSI from two perspectives. First, unlike O-
PSI, EO-PSI does not use any public key encryption that is not computationally very
efficient. In O-PSI, the public key encryption is mainly used to prevent the cloud from
eventually learning any information about the blinding factors (and set elements) dur-
ing the cloud-side switching of the blinding factors, especially when the computation
is delegated multiple times. Recall that in O-PSI, given vector #»e , the cloud can switch

60

4. Delegated PSI on Outsourced Private Datasets

one client’s blinding factors to another’s. In contrast, in EO-PSI no such switching is
required. Therefore, no public key encryption is needed. In order to achieve this, we
slightly change the way each client blinds its polynomial. In EO-PSI, instead of mul-
tiplying value τ(xi) by a pseudorandom value, the client adds a pseudorandom value
to it. Moreover, the interaction between the clients is changed, in the sense that client
A sends a message to both the cloud and client B when it authorizes the computation.
Second, EO-PSI allows each client to break down its original polynomial into smaller
degree polynomials. This allows the result recipient to factorize a set of smaller degree
polynomials rather than one of very large degree. As a result, (as we discussed in sec-
tion 2.7) it can find the roots of the polynomials (i.e. the set intersection) faster than it
could in O-PSI. To achieve this, the protocol gets each client to insert its elements into
the bins of a (fixed-size) hash table.

4.3.1 An Overview of EO-PSI

The interaction between parties in EO-PSI is depicted in Fig. 4.2. In order for each
client to prepare its set, first it constructs a hash table whose parameters are published
by the cloud. Then, it inserts its set elements into the hash table bins, represents the
set of elements in each bin as a point-value polynomial representation to get a vector
of y-coordinates using xi values provided by the cloud. It blinds the y-coordinates by
adding pseudorandom values to them and then it sends them to the cloud. When client
B becomes interested in the intersection of its own set and client A’s set, it obtains
client A’s permission by sending a message to it. Also client B sends a message to
the cloud. If client A agrees, it generates a set of vectors and sends them to client B.
The vectors will help client B to unblind the cloud’s response. Client A also sends a
key for a pseudorandom function to the cloud. The key is generated on the fly and can
be discarded when the protocol ends. The cloud uses the key to multiply each client’s
hash table’s bin by a pseudorandom polynomial and then it combines them together.
It sends a set of bins containing the result to client B. Given the cloud’s response
and client A’s message, client B unblinds them, interpolates a set of polynomials and
considers the union of the polynomials’ (valid) roots as the sets intersection.

4.3.2 EO-PSI Protocol

Similarly, here we first consider the two-client case, where clients A and B, and the
cloud engage in the protocol.

61

4. Delegated PSI on Outsourced Private Datasets

#» o
(A

)
=

[#» o
(A

)
1

,.
..,

#» o
(A

)

h
]

#» o
(B

)
=

[#» o
(B

)
1

,.
..,

#» o
(B

)

h
]

#» o
(A

)
=

[#» o
(A

)
1

,.
..,

#» o
(A

)

h
]

#» o
(B

)
=

[#» o
(B

)
1

,.
..,

#» o
(B

)

h
]

Client A Client B Client A Client B

(2)
(1)

(2)

(3)

(1)

mk(B)

#»q = [#»q1, ...,
»qh]

tk

mk(B)

#»q = [#»q1, ...,
»qh]

tk

#»t
=

[
#»
t
1 ,...,

#»
t
h]

ID
(
A

)

ID
(
B

)
ID

(
A

)

ID
(
B

)

m
k(B

)

#» q
=

[#» q 1
,.
..,

» q h
]

tk

m
k(B

)

#» q
=

[#» q 1
,.
..,

» q h
]

tk

ID(A)

ID(B)

#»r (B) = [#»r (B)
1 , ..., #»r (B)

h]

tk(B)

tk(A)

#»r (B) = [#»r (B)
1 , ..., #»r (B)

h]

tk(B)

tk(A)

#»r (B) = [#»r (B)
1 , ..., #»r (B)

h]

tk(B)

tk(A)

#» r
(
B

)
=

[#» r
(
B

)
1

,.
..
,

#» r
(
B

)

h
]

tk
(
B

)

tk
(
A

)

Figure 4.2: The left-hand side figure: party interactions at data outsourcing phase in EO-PSI;
the right-hand side figure: party interactions at the computation delegation phase in EO-PSI.

a. Cloud-Side Setup. The cloud sets c as an upper bound of the set cardinality.
Given c, it uses equation 2.4 to set parameters for a hash table. In particular,
it sets d as the maximum load that a bin in the hash table can have, and h as
the hash table length (or a total number of bins). Moreover, it chooses a cryp-
tographic hash function, H. The cloud constructs a field Fp, where p is a large
prime number. It also generates a vector, #»x , containing n = 2d + 1 distinct
non-zero xi values chosen uniformly at random from Fp. Furthermore, it picks a
pseudorandom function PRF defined as in O-PSI protocol. The cloud publishes
the parameters of the hash table, the description of the field, the value n, vector
#»x , the pseudorandom function PRF, and the hash function H.

b. Client-Side Setup and Data Outsourcing. This step is the same for both
clients. Let client I have a set S(I), where I ∈ {A,B} and |S(I)| ≤ c. Each
client I performs as follows.

1. It makes sure values xi ∈ #»x are not equal to its set elements; otherwise, it
aborts. Then, given the hash table parameters, generates a hash table and
inserts its set elements into it.

∀s(I)

i ∈ S(I) : H(s(I)

i) = j, s(I)

i → HT(I)

j ,

where 1 ≤ j ≤ h.
2. Assigns a key (for the pseudorandom function) to each bin in the hash table

by picking a master key mk(I), and generating h pseudorandom values (or

62

4. Delegated PSI on Outsourced Private Datasets

keys):
∀j, 1 ≤ j ≤ h : k(I)

j = PRF(mk(I), j).

3. For every bin HT
(I)
j , if it has less than d set elements, pads it with random

elements. So each bin would have d elements in total. Then, it encodes the
bin elements as below.

(a) Constructs a polynomial representing the elements in the bin.

τ (I)

j (x) =
d∏

m=1

(x− e(I)

m),

where e(I)
m ∈ HT

(I)
j and e(I)

m is either a set element or a random value.
(b) Generate a set of y-coordinates associated with each τ (I)

j (x). To do
that, it evaluates each τ (I)

j (x) at every elements xi ∈ #»x . This yields n
values τ (I)

j (xi) for each bin, where 1 ≤ i ≤ n.
(c) Blinds every value τ (I)

j (xi). To do so, it first generates a pseudorandom
value z(I)

j,i = PRF(k(I)
j , i), where key k(I)

j was generated in step b.2.
After that, it sums the pseudorandom value with the corresponding
y-coordinate.

∀i, 1 ≤ i ≤ n : o(I)

j,i = z(I)

j,i + τ (I)

j (xi).

By the end of this step, the elements in each bin, HTj, are represented
as a vector, #»o (I)

j = [o(I)
j,1 , ..., o

(I)
j,n].

4. Sends #»o (I) = [#»o (I)
1 , ...,

#»o (I)

h] to the cloud.

c. Set Intersection: Computation Delegation. This phase starts when client B
wants the intersection of its set and clientA’s set. The phase proceeds as follows.

1. Client B picks a temporary key tk(B). Also, it regenerates z(B)
j,i , the blind-

ing factors it used to blind each element in bin HTj in step b.3c. Then, it
computes vectors #»r (B)

j whose elements are computed as below.

∀j, 1 ≤ j ≤ h,∀i, 1 ≤ i ≤ n : r(B)

j,i = z(B)

j,i + PRF(tk(B)

j , i),

where tk(B)
j = PRF(tk(B), j).

63

4. Delegated PSI on Outsourced Private Datasets

2. ClientB sends #»r (B) = [#»r (B)
1 , ..., #»r (B)

h] and its id, ID(B), to clientA, and tk(B)

to the cloud.
3. Client A upon receiving the other client’s request, regenerates keys k(A)

j

(see step b.2), where 1 ≤ j ≤ h.
4. Client A assigns three fresh keys to each bin HTj. To do that, first it picks a

temporary key, tk(A), and then carries out the following (steps c.4a-c.6 are
depicted in Fig 4.3).

(a) It uses the key, tk(A), to generate three pseudorandom values kt.

∀t, 1 ≤ t ≤ 3 : kt = PRF(tk(A), t).

(b) It uses each kt to compute h pseudorandom values.

∀j, 1 ≤ j ≤ h : k1,j = PRF(k1, j), k2,j = PRF(k2, j), k3,j = PRF(k3, j).

5. For each bin, HTj, client A uses key k1,j to generate a set of pseudorandom
values aj,i.

∀i, 1 ≤ i ≤ n : aj,i = PRF(k1,j, i).

6. Client A uses keys k2,j and k3,j to generate two degree d pseudorandom
polynomials ω(A)

j (x) and ω(B)
j (x) for each bin, HTj.

∀i, 0 ≤ m ≤ d : b(A)

j,m = PRF(k2,j,m), b(B)

j,m = PRF(k3,j,m),

where

ω(A)

j (x) = b(A)

j,0 · x0 + ...+ b(A)

j,d · xd,
ω(B)

j (x) = b(B)

j,0 · x0 + ...+ b(B)

j,d · xd.

7. Client A, for each bin HTj, regenerates the pseudorandom values z(A)
j,i using

the keys it derived in step b.2. Then, it computes vectors #»qj as follows.

∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i ≤ n : qj,i = ω(A)

j (xi) · z(A)

j,i + ω(B)

j (xi) · r(B)

j,i + aj,i,

where values r(B)
j,i ∈ #»r (B)

j were sent to clientA in step c.2. Note that vectors
#»qj allow client B to remove the blinding factors from the cloud’s response
without learning the pseudorandom polynomials.

64

4. Delegated PSI on Outsourced Private Datasets

k2k1 k3

PRF
(tk

, 1)

P
R
F
(t
k
,2
)

PRF(tk, 3)

PR
F(
k 1
, 1
) PRF(k

1 , h)

PRF(k
2 , h)PR

F(
k 2
, 1
)

PR
F(
k 3
, 1
) PRF(k

3 , h)

k1,h

k2,h

k3,h

k1,h

k2,h

k3,h

k1,h

k2,h

k3,h

a1,1

a1,n

ah,1

ah,n

a1,1

a1,n

ah,1

ah,n

a1,1

a1,n

ah,1

ah,n

a1,1

a1,n

ah,1

ah,n

k2,1

k3,1

k2,1

k3,1

c1,0

b1,0

bh,0

ch,0

c1,0

b1,0

bh,0

ch,0

c1,0

b1,0

bh,0

ch,0

c1,0

b1,0

bh,0

ch,0

k1,1

kh,1

k1,2

kh,2

k1,3

kh,3

PR
F(
k 1

,1
, 1
)

PR
F(
k 1

,1
, n

)

PR
F(
k 1

,h
, 1
)

PR
F(
k 1

,h
, n

)

PR
F(
k 2

,1
, 0
)

PR
F(
k 2

,1
, n

)

PR
F(
k 2

,h
, 1
)

PR
F(
k 2

,h
, n

)

PR
F(
k 3

,1
, 1
)

PR
F(
k 3

,1
, n

)

PR
F(
k 3

,h
, 1
)

PR
F(
k 3

,h
, n

)

PRF(k
1
,1 , 1)

PRF(k
1
,1 , n

)

PRF(k
1
,h , 1)

PRF(k
1
,h , n

)

PRF(k
2
,1 , 0)

PRF(k
2
,1 , n

)

PRF(k
2
,h , 1)

PRF(k
2
,h , n

)

PRF(k
3
,1 , 1)

PRF(k
3
,1 , n

)

PRF(k
3
,h , 1)

PRF(k
3
,h , n

)

PR
F(
k 1

,1
, 1
)

PR
F(
k 1

,1
, n

)

PR
F(
k 1

,h
, 1
)

PR
F(
k 1

,h
, n

)

PR
F(
k 2

,1
, 0
)

PR
F(
k 2

,1
, n

)

PR
F(
k 2

,h
, 1
)

PR
F(
k 2

,h
, n

)

PR
F(
k 3

,1
, 1
)

PR
F(
k 3

,1
, n

)

PR
F(
k 3

,h
, 1
)

PR
F(
k 3

,h
, n

)

PRF(k
1
,1 , 1)

PRF(k
1
,1 , n)

PRF(k
1
,h , 1)

PRF(k
1
,h , n)

PRF(k
2
,1 , 0)

PRF(k
2
,1 , n)

PRF(k
2
,h , 1)

PRF(k
2
,h , n)

PRF(k
3
,1 , 1)

PRF(k
3
,1 , n)

PRF(k
3
,h , 1)

PRF(k
3
,h , n)

PR
F(
k 1

,1
, 1
)

PR
F(
k 1

,1
, n

)

PR
F(
k 1

,h
, 1
)

PR
F(
k 1

,h
, n

)

PR
F(
k 2

,1
, 0
)

PR
F(
k 2

,1
, n

)

PR
F(
k 2

,h
, 1
)

PR
F(
k 2

,h
, n

)

PR
F(
k 3

,1
, 1
)

PR
F(
k 3

,1
, n

)

PR
F(
k 3

,h
, 1
)

PR
F(
k 3

,h
, n

)

PR
F(
k 2

,h
, 0
)

PR
F(
k 3

,1
, 0
)

PR
F(
k 3

,h
, 0
)

PR
F(
k 2

,h
, 0
)

PR
F(
k 3

,1
, 0
)

PR
F(
k 3

,h
, 0
)

PR
F(
k 2

,h
, 0
)

PR
F(
k 3

,1
, 0
)

PR
F(
k 3

,h
, 0
)

ω(A)
1 (x)

ω(A)

h (x)

ω(B)
1 (x)

ω(B)

h (x)

ω(A)
1 (x)

ω(A)

h (x)

ω(B)
1 (x)

ω(B)

h (x)

ω(A)
1 (x)

ω(A)

h (x)

ω(B)
1 (x)

ω(B)

h (x)

ω(A)
1 (x)

ω(A)

h (x)

ω(B)
1 (x)

ω(B)

h (x)

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

...

c1,1

c1,n

ch,1

ch,n

c1,1

c1,n

ch,1

ch,n

} } } }b1,d

bh,d

c1,d

ch,d

c1,0

b1,0

bh,0

ch,0

b1,d

bh,d

c1,d

ch,d

b1,d

bh,d

c1,d

ch,d

c1,0

b1,0

bh,0

ch,0

b1,d

bh,d

c1,d

ch,d

b1,d

bh,d

c1,d

ch,d

b1,d

bh,d

c1,d

ch,d

tk(A)

PRF(k
2
,1 , d)

PRF(k
2
,h , d)

PRF(k
3
,1 , d)

PRF(k
3
,h , d)

PRF(k
2
,1 , d)

PRF(k
2
,h , d)

PRF(k
3
,1 , d)

PRF(k
3
,h , d)

PRF(k
2
,1 , d)

PRF(k
2
,h , d)

PRF(k
3
,1 , d)

PRF(k
3
,h , d)

PRF(k
2
,1 , d)

PRF(k
2
,h , d)

PRF(k
3
,1 , d)

PRF(k
3
,h , d)

tk
(A

)

tk (A)

tk
(A

)

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

b(A)
1,0

b(B)
1,0

Figure 4.3: The Key Tree virtually constructed in steps c.4a-c.6

8. Client A sends #»q = [#»q1, ...,
#»qh] to client B. Also, client A sends key tk(A)

(generated in step c.4), ID(A), ID(B), and Compute message to the cloud.

d. Set Intersection: Cloud-Side Result Computation. This phase starts when the
cloud receives the messages computed in the previous step.

1. Given the temporary key, tk(A), the cloud derives the three keys, k1,j, k2,j

and k3,j, for each bin HTj, where 1 ≤ j ≤ h. Using the three keys, the
cloud regenerates the set of pseudorandom values aj,i (∀i, 1 ≤ i ≤ n) and
the two pseudorandom polynomials, ω(A)

j (x) and ω(B)
j (x), for each bin HTj,

where 1 ≤ j ≤ h (see step c.4a-c.6).
2. The cloud computes the result as follows. For each bin, it fetches the

clients’ outsourced datasets #»o (A)
j and #»o (B)

j . Next, it computes the result
vector

#»
tj for the bin.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

tj,i = ω(A)

j (xi) · o(A)

j,i + ω(B)

j (xi) · (o(B)

j,i + PRF(tk(B)

j , i)) + aj,i

where tk(B)
j = PRF(tk(B), j) and key tk(B) was sent to the cloud in step c.2.

3. The cloud sends
#»
t = [

#»
t1, ...,

#»
th] to client B.

e. Set Intersection: Client-Side Result Retrieval

1. Client B removes the blinding factors from each vector
#»
tj (∀j, 1 ≤ j ≤ h),

using the corresponding vector #»qj (provided by client A in step c.8). The
result is vectors #»gj computed as follows.

65

4. Delegated PSI on Outsourced Private Datasets

∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i ≤ n:

gj,i = tj,i − qj,i = ω(A)

j (xi) · τ (A)

j (xi) + ω(B)

j (xi) · τ (B)

j (xi).

2. Given vectors #»gj and #»x , it interpolates the polynomials, φj(x) (∀j, 1 ≤ j ≤
h).

3. It extracts the roots of each polynomial, and considers the union of the
(valid) roots as the intersection of the sets.

Remark 1: In EO-PSI, the client needs to find the roots of h polynomials of degree 2d,
where d is a fixed value picked by the cloud and it is much smaller than the maximum
number of elements, c. In contrast, in O-PSI the client receives only one polynomial
of degree 2c. As we explained in section 2.7, finding roots of h polynomials of small
degree 2d is much faster than finding the roots of one polynomial of large degree 2c.

Remark 2: In both EO-PSI and O-PSI, the cloud-side setup is performed only once,
when the cloud comes online. After that, no further computation is needed in this step.

4.3.3 Extensions

4.3.3.1 Multi-client EO-PSI

With minor adjustments, the protocol can support m > 2 number of clients. In the
following, we outline how this can be done. Here, we denote the result recipient by
clientB and the other clients byAq, where ∀q, 1 ≤ q ≤ y and y = m−1. In this setting,
client B sends a single key to the cloud and it sends the same message as it does in the
two-client case to the other clients. Also, each client Aq sends to the cloud a temporary
key tk(Aq) that lets the cloud generate for each bin HTj the set of pseudorandom values
a

(Aq)

j,i and two pseudorandom polynomials ω(Aq)

j (x) and ω(Bq)

j (x). However, as its shown
below, the cloud-side computation in step d.2 is slightly changed.
∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

tj,i = ω(B)

j (xi) · (o(B)

j,i + PRF(tk(B)

j , i)) +

y∑

q=1

a
(Aq)

j,i +

y∑

q=1

ω
(Aq)

j (xi) · o(Aq)

j,i ,

66

4. Delegated PSI on Outsourced Private Datasets

where ω(B)
j (x) =

y∑
q=1

ω
(Bq)

j (x).

Note that in the above step, the cloud first adds all the pseudorandom polynomials,
ω

(Bq)

j (x), together and then it evaluates the resulting polynomial at every element in
#»x . Consequently, client B in step e.1 removes the blinding factors from vector

#»
tj as

follows.
∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

gj,i = tj,i −
y∑

q=1

q
(Aq)

j,i

= ω(B)

j (xi) · τ (B)

j (xi) +

y∑

q=1

ω
(Aq)

j (xi) · τ (Aq)

j (xi).

In the multiple clients EO-PSI, even if client B colludes with y − 1 clients, it
cannot learn any information about the non-colluding client’s set elements. The reason
is that, as it is shown in [75], the polynomial ω(B)

j (x) is always a uniformly random
polynomial even if only one of the polynomials ω(Bq)

j (x) is uniformly random, and
unknown to client B.

Remark 1: In the multi-client EO-PSI, the communication and computation complex-
ities for those clients who authorize the computation (i.e. clients Aq) are independent
of the number of clients participating in the protocol. In other words, the computation
and communication complexities for clientA in the two-client case are similar to client
Aj’s in the multiple clients case. Note that the same holds for multi-client O-PSI.

Remark 2: Another advantage of using a hash table is that the operations on the bins
can be carried out in parallel. This results in faster computation run-time when multiple
cores are used (especially at the cloud-side). In addition to that, such approach allows
each of client Aq to have local storage equal to 2d+ 1, that is much less than the upper
bound of the sets’ cardinality, c.

4.3.3.2 How to Avoid Client-to-client Interaction in EO-PSI

In EO-PSI, with minor adjustments, the direct communication between the clients can
be avoided. Note that in the protocol, if client B, in step c.2, sends vector #»r (B) =

[#»r (B)
1 , ..., #»r (B)

h] to the cloud, instead of client A, then the cloud would be able to learn

67

4. Delegated PSI on Outsourced Private Datasets

clientB’s set elements, because the cloud who knows key tk(B), can unblind each value
r(B)
j,i = z(B)

j,i + PRF(tk(B)
j , i), where r(B)

j,i ∈ #»r (B)
j , tk(B)

j = PRF(tk(B), j), and recover the
blinding factors z(B)

j,i used to blind the client’s y-coordinates. Also, if client A in step
c.8, sends #»q = [#»q1, ...,

#»qh], where qj,i = ω(A)
j (xi) · z(A)

j,i + ω(B)
j (xi) · r(B)

j,i + aj,i and
qj,i ∈ #»qj, to the cloud instead of client B, then the cloud who knows tk(A) might be
able to learn the clients blinding factors. As a result, it may be able to figure out the
clients set elements.

We now outline how we can slightly adjust the protocol to let clients avoid com-
municating directly with each other without leaking any information. Each client first
picks a symmetric key, and uses it to encrypt the vector that used to be sent to the
other client in the original protocol. Then, it encrypts the symmetric key under the
other client’s public key, and uploads the encrypted vector and the encrypted key to
the cloud. Next, each client downloads the encrypted key and vector uploaded by the
other client and decrypts them. The rest of the protocol remains the same. In the above
scheme, since the keys and vectors are encrypted, the cloud cannot learn anything
about clients’ set elements. It should be noted that the number of public key operations
in the above scheme is constant; in particular, each client encrypts/decrypts only one
value using public key encryption. Therefore, although the computation and communi-
cation cost slightly increases, the overall computation and communication complexity
remains the same.

4.3.4 EO-PSI Security Proof

Now we sketch the protocol security proof in the presence of static semi-honest ad-
versaries. We analyze the security of the protocol in the three cases where one of the
parties is corrupted. We use the model presented in 4.2.4 for the analysis.

Theorem 3. If PRF is a collision-resistant pseudorandom function, then the EO-PSI

protocol is secure in the presence of a semi-honest adversary.

Proof. In order to prove the above theorem, we consider the case where each of the
parties has been corrupted. In each case, we invoke a simulator with the corresponding
party’s input and output. Our focus is on the case where party A wants to engage in
the computation of the intersection, i.e. it authorizes the computation. If party A does
not want to proceed with the protocol, the views can be simulated in the same way up
to the point where the execution stops.

68

4. Delegated PSI on Outsourced Private Datasets

Case 1: Corrupted Cloud. In this case, we show that we can construct a simulator,
SIMC , that can produce a computationally indistinguishable view to the real model view.
In the real execution, the cloud’s view is:

VIEWC(Λ, S(A), S(B)) = {Λ, rC, #»o (A), #»o (B), tk(A), tk(B), ID(A), ID(B), Compute,Λ}.

In the above view, rC is the outcome of internal random coins of the cloud, #»o (A), #»o (B)

are the hash tables that comprise the blinded set representations of A’s and B’s sets,
respectively. Also, tk(A) and tk(B) are l-bit random keys used in the protocol to gen-
erate the pseudorandom polynomials and the blinding factors used to mask the result
generated by the cloud. To simulate this view, SIMC does the following:

1. Creates an empty view and appends to it Λ and uniformly at random chosen
coins r′C .

2. Uses the public parameters and the hash function to construct two hash tables
HT′(A) and HT′(B). Then, it fills each bin of the hash tables with n uniformly
random values picked from the same field Fp, so each bin HT

′(I)
j (∀I, I ∈ {A,B})

contains a vector #»o ′(I)j of n random values.
3. Chooses two keys, tk′(A) and tk′(B), chosen uniformly at random and appends

vectors #»o ′(A) = [#»o ′(A)
1 , ..., #»o ′(A)

h], #»o ′(B) = [#»o ′(B)
1 , ..., #»o ′(B)

h] and the keys to the
view.

4. Constructs strings ID(A), ID(B), Compute, appends them along with Λ to the view and
outputs the view.

We now show why the two views are computationally indistinguishable. In both
views, the input parts are identical (i.e. both are Λ) and the random coins (rC and
r′C) are both uniformly random, so they are indistinguishable. In the real model, the
elements in each vector #»o (I)

j (∀I, I ∈ {A,B}) are blinded with the outputs of a pseu-
dorandom function. Also, the elements in #»o ′(I)j are random elements of the field. As
the blinded values and random value are indistinguishable, vectors #»o (I)

j and #»o ′(I)j are
not distinguishable. Thus, the vectors #»o (I) and #»o ′(I) are indistinguishable. Further-
more, as keys tk(A), tk(B), tk′(A) and tk′(B) are picked uniformly at random, they are
computationally indistinguishable as well. Also, ID(A), ID(B), and Compute in both models
are identical, and the output parts in both views are identical (i.e. both are Λ). We
conclude that the two views are indistinguishable.

69

4. Delegated PSI on Outsourced Private Datasets

Case 2: Corrupted Client A. In the real execution, client A’s view is as follows:

VIEWA(Λ, S(A), S(B)) = {S(A), rA,
#»r (B), ID(B),Λ},

where #»r (B) = [#»r (B)
1 , ..., #»r (B)

h] is the message sent by client B to client A. The simula-
tor, SIMA, who receives the party’s input, S(A), and output, Λ, does the following.

1. Creates an empty view and appends the party’s input, S(A), to it.
2. Inserts coins r′A, chosen uniformly at random, to the view.
3. Constructs vector #»r ′(B) = [#»r ′(B)

1 , ... #»r ′(B)

h] where each of the vectors, #»r ′(B)
j , con-

tains n uniformly random elements of the field. It appends #»r ′(B) to the view.
4. Adds the strings, ID(B) and Λ, to the view, and outputs it.

In the following, we explain why the two views are computationally indistinguish-
able. In both models S(A) is identical. Moreover, both rA and r′A are picked uniformly
at random so they are indistinguishable. The elements of vectors #»r (B)

j are blinded by
the uniformly random elements that are outputs of a pseudorandom function. So the
blinded values are distributed uniformly at random over the field. On the other hand,
vectors #»r ′(B)

j contain random elements of the field. Since, pseudorandom values of
a field are indistinguishable from random values of the same field, vectors #»r (B)

i and
#»r ′(B)
i are indistinguishable. Therefore, vectors #»r (B) and #»r ′(B) are indistinguishable as

well. Moreover, ID(B) and Λ are identical in both models. Therefore, the two views are
computationally indistinguishable in this case.

Case 3: Corrupted Client B. In the real execution, client B’s view is as follows:

VIEWB(Λ, S(A), S(B)) = {S(B), rB,
#»g , #»q , f∩(S

(A), S(B))}.

The simulator, SIMB, who receives the party’s input, S(B), and output, f∩(S(A), S(B)),
performs as follows.

1. Creates an empty view, then it appends S(B) and uniformly at random chosen
coins r′B to it.

2. Chooses two sets S ′(A) and S ′(B) such that |S ′(A)|, |S ′(B)| ≤ c and S ′(A) ∩ S ′(B) =

f∩(S
(A), S(B)).

3. Constructs hash tables HT′(A) and HT′(B) using the public parameters, and maps
the elements in S ′(A) and S ′(B) to the bins of HT′(A) and HT′(B), respectively.

70

4. Delegated PSI on Outsourced Private Datasets

∀I, I ∈ {A,B}, ∀s′(I)i ∈ S ′(I) :

H(s′(I)i) = j, s′(I)i → HT′(I)j ,

where 1 ≤ j ≤ h.
4. For each bin constructs a polynomial representing its elements. If a bin contains

less than d elements, it is padded with random values to d elements.
∀I, I ∈ {A,B}, ∀j, 1 ≤ j ≤ h :

τ ′(I)j (x) =
d∏

m=1

(x− e(I)

m),

where e(I)
m ∈ HT

′(I)
j , e(I)

m is either the set element or a random value.
5. Assigns a random polynomial, ω′(I)j , of degree d to each bin, HT′(I)j (∀j, 1 ≤ j ≤
h), of the hash table, HT′(I) (∀I, I ∈ {A,B}).

6. Constructs vectors #»g ′j whose elements are computed as follows.
∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i ≤ n :

g′j,i = τ ′(A)

j (xi) · ω′(A)

j (xi) + τ ′(B)

j (xi) · ω′(B)

j (xi),

where τ ′(I)j (x) is the polynomial representing the set of elements contained in bin
HT

(I)
j .

7. Picks a key, mk′, and derives h keys, k′j, from it as below.

∀j, 1 ≤ j ≤ h : k′j = PRF(mk′, j).

8. Uses each key k′j to generate vector #»q ′j whose elements are computed as follows.

∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i ≤ n : q′j,i = PRF(k′j, i).

9. Adds #»g ′ = [#»g ′1, ...,
#»g ′h] and #»q ′ = [#»q ′1, ...,

#»q ′h] to the view. Also, it inserts to the
view the party’s output, f∩(S(A), S(B)), and outputs it.

In the following we show why the two views are computationally indistinguishable.
In both models S(B) is identical. As rB and r′B are chosen uniformly at random, they are
indistinguishable as well. Furthermore, in the real model, given each unblinded vector
#»g j, the adversary interpolates a polynomial of the form φ(x)j = ω(A)

j (x) · τ (A)
j (x) +

71

4. Delegated PSI on Outsourced Private Datasets

Property EO-PSI O-PSI [68] [73] [81] [74] [123] [99]

Private Against the Cloud X X X X × X × ×

Client-to-client Computation Authorization X X X X X X X X

Non-interactive Client-side Setup X X × × X X X X

Secure Repeated PSI Delegation X X × × × × × ×

Multiple Clients X X X X X × X X

Not Requiring a Trusted Third Party X X X X X X × ×

Communication Complexity O(hd) O(c) O(c) O(c2) O(c) O(c2) O(k) O(k)

Computation Complexity O(hd2) O(c) O(c) O(c2) O(c2) O(c2) O(c) O(c)

Table 4.1: Comparison of different delegated PSI protocols. Set cardinality upper bound and
intersection cardinality are denoted by c and k, respectively. Also, h is the length of hash table
and d is a bin’s maximum load.

ω(B)
j (x) · τ (B)

j (x) = µj · gcd(τ (A)
j (x), τ (B)

j (x)). Similarly, in the ideal model, each
polynomial φ′j(x) interpolated from vector #»g ′j has the form φ′j(x) = ω′(A)

j (x)·τ ′(A)
j (x)+

ω′(B)
j (x) ·τ ′(B)

j (x) = µ′j ·gcd(τ ′(A)
j (x), τ ′(B)

j (x)). As we discussed in section 2.5 (and it is
proven in [75, 20]), µj and µ′j are uniformly random polynomials and indistinguishable.
Besides, only with negligible probability their roots represent set elements.

Moreover, polynomials gcd(τ ′(A)
j (x), τ ′(B)

j (x)) and gcd(τ (A)
j (x), τ (B)

j (x)) represent
the intersection, f∩(S

(A)
j , S(B)

j). Therefore, #»g ′ and #»g are computationally indistin-
guishable. In the real model, the elements in #»q j are blinded by the outputs of a pseu-
dorandom function. So the blinded elements are uniformly random values. On the
other hand, in the ideal model the elements in #»q ′j are the outputs of a pseudorandom
function. So, the elements in both vectors #»q and #»q ′ are computationally indistinguish-
able. Moreover, values xi are not equal to any set elements (as shown in section 2.6).
Finally, in both views the output part (i.e. f∩(S(A), S(B))) is the same. Hence, the two
views are computationally indistinguishable. Combining the above, we conclude the
protocol is secure and complete our proof.

4.4 Delegated PSI Protocol Comparison

We first evaluate EO-PSI and O-PSI by comparing their properties to those provided by
other protocols that delegate PSI computation to a cloud. We also compare these pro-
tocols in terms of communication and computation complexity. Table 4.1 summarizes
the results.

72

4. Delegated PSI on Outsourced Private Datasets

Properties. When PSI computation is delegated to the cloud that is not fully trusted,
protecting the privacy of the computation inputs and output from it, is crucial. Proto-
cols like the size-hiding variation of [68], those in [73, 74], O-PSI and EO-PSI protect
the privacy of the computation inputs and output. However, as we discussed in section
3.3.2, the protocols in [81, 123, 99] do not fully preserve data privacy.

Another desirable security property is that PSI computation is only possible with
the explicit authorization from all the clients. But, this property is not fully satisfied
in [81, 123, 99] and the cloud can use the outsourced data to compute PSI without
clients’ permission. Although the cloud cannot decrypt the data and the result, it can
learn some information about the intersection. In particular, if the intersection between
the sets of client A and B is computed, followed by that between the sets of client A
and C, then the cloud will also find out whether some elements are common in the sets
of client B and C without their consent. However, this is not the case for the other
protocols. Because these protocols are fully secure and protect clients’ data and the
computation result from the cloud. Furthermore, all the protocols can enforce client-
to-client authorization by using an infrastructure such as PKI.

The protocols in [68, 73] require clients to interact with each other at setup. In
[68] clients need to jointly compute the key for the pseudorandom permutation used to
encode the datasets, while in [73] they need to jointly compute the parameters used to
encrypt their datasets. In contrast to these protocols, in [81, 123, 74, 99], O-PSI and
EO-PSI the clients can independently prepare and outsource their private datasets.

Moreover, only O-PSI and EO-PSI support secure repeated PSI delegation, so
clients can store their private data in the cloud and delegate the computation to the
cloud an unlimited number of times without leaking any information about the set el-
ements. Nevertheless, this is not the case for any of the other protocols. Because they
either support one-off PSI delegation or leak information about clients’ set elements to
the cloud (see section 3 for an elaborate discussion).

As we illustrated in sections 4.2.3.1 and 4.3.3.1, O-PSI and EO-PSI can be ex-
tended to support multiple clients. The same holds for [68, 73, 81, 123, 99]. In
contrast, [74] does not support multiple clients, as it requires an additional logical
operation that is not supported by the homomorphic encryption scheme it uses. The
protocols in [99, 123] require a trusted third party to initialize, and distribute a set of
(private) parameters among parties, whereas the rest of the protocols do not need such
assistance.

73

4. Delegated PSI on Outsourced Private Datasets

Communication Complexity. The communication complexity of two-client O-PSI
for the client who receives the result, client B, is O(c), where c is the upper bound
of the set cardinality (or the set maximum size). Because client B sends, to client A,
n = 2c + 1 encrypted random values EpkB(r(B)

i) for 1 ≤ i ≤ n, in step c.2. The
communication complexity for client A, who authorizes the operation on its dataset,
is also O(c), as it sends n values of the form EpkB(r(B)

i · (r(A)
i)−1), 1 ≤ i ≤ n to the

cloud, in step c.4. The communication complexity for the cloud is O(c) too. Because,
it sends to client B the result vector

#»
t of size n, in step d.5. Moreover, in multi-client

O-PSI, client B’s communication cost is O(c · (m− 1)) as it sends n encrypted values
to each client Aq, where 1 ≤ q ≤ m − 1 and m is total number of clients. However,
the communication cost of client A and the cloud remains the same as that of in the
two-client case.

In the following, we evaluate EO-PSI communication complexity. In step c.2,
clientB sends a single key to the cloud, and h bins to clientA, where each bin contains
n = 2d+ 1 elements. So its communication cost is O(hd). Client A sends a single key
to the cloud, and h bins to client B in step c.8, where each bin contains n elements.
Therefore, client A’s communication complexity is O(hd). The cloud’s communica-
tion complexity isO(hd) as well, because in step d.3, it sends h bins to clientB, where
each bin comprises n elements. Note that each message in this protocol is a random
element of the field (i.e. an output of a symmetric key encryption). In multi-client
EO-PSI, the communication cost of the cloud and the clients who authorize the com-
putation remains the same as that of in two-client case. But, in multi-client EO-PSI,
client B’s communication cost is O(hd(m − 1)) as it sends h bins to each client Aq,
where each bin contains n = 2d+ 1 elements.

In [73] for each set intersection, the client engages in a two-round protocol, one
round to upload its elements in the form of RSA ciphertexts to the cloud with O(c)

communication complexity, and another to interactively compute the private set in-
tersection with the cloud with O(c2) communication complexity. For the protocol in
[74], the communication complexity is also quadratic O(sc2), where s is the number
of hash function used for the bloom filter, and the messages contain BGN encryption
ciphertexts. On the other hand, the protocols in [68, 81] have O(c) communication
complexity with messages containing symmetric key encryption ciphertexts. Finally,
the protocols in [123, 99] have O(k) complexity with messages containing public key
encryption, where k is the intersection size.

74

4. Delegated PSI on Outsourced Private Datasets

In conclusion, the two protocols in [123, 99] have smaller communication com-
plexity but they are not fully secure. The protocol in [81] has linear communication
complexity but it is not fully private too. On the other hand, similar to the secure PSI
protocol [68], O-PSI and EO-PSI have linear communication complexity. However,
the message size in O-PSI is larger than the message sizes in [68] and EO-PSI.

Computation Complexity. We evaluate the computation cost of O-PSI by counting
the number of exponentiation operations, as their cost dominates that of other oper-
ations in the protocol. In two-client O-PSI, client B performs n exponentiations to
encrypt the random values in step c.1, and needs another n exponentiations to decrypt
the polynomial sent by the cloud in step e.1. So, in total it carries out 2n exponentia-
tions. Client A performs n exponentiations to authorize the set intersection in step c.3.
The cloud carries out n exponentiations to encrypt client B’s dataset and n exponenti-
ations to operate on client A’s dataset in step d.2 and d.3. Furthermore, it performs n
exponentiations in step d.4. It is interesting to note that although using the point-value
representation moderately increases the overall storage costs at the cloud-side, it brings
a significant decrease in the computational costs, from O(c2) (when using encrypted
coefficients such as in [75]) to O(c). Furthermore, in multi-client O-PSI, clients com-
putation cost remain the same as their cost in two-client case. But, in multi-client case,
the cloud computation cost is O(cm). Because, it performs n exponentiation opera-
tions on each client Aq dataset, performs n exponentiation operations to encrypt client
B dataset, and then combines them together.

Now we analyze the computation complexity of EO-PSI. In our analysis, we do not
consider the pseudorandom function invocation cost as it is a fast operation, and domi-
nated by the other operations (e.g. modular arithmetic, interpolation and factorization)
in our protocol. ClientA, performs 2hnmodular multiplication and 2hnmodular addi-
tion operations to blind the values, in step c.7. Also, in order to evaluate the two poly-
nomials allocated to every bin, it carries out 2hnd modular multiplication and 2hnd

modular addition operations, in step c.7. So, the computation complexity of client A
is O(hd2). Also, the cloud carries out 2hn modular multiplication and 3hn modular
addition operations to blind the values in step d.2. Moreover, for the cloud to evaluate
the two polynomials assigned to every bin, it performs 2hnd modular multiplication
and 2hnd modular addition operations, in step d.2. Therefore, the computation com-
plexity for the cloud is O(hd2). Client B executes hn modular addition operations to
blind the messages in step c.1. Moreover, it performs hn modular addition operations

75

4. Delegated PSI on Outsourced Private Datasets

to unblind the cloud’s response, in step e.1. Furthermore, in step e.2, it interpolates h
polynomials where each polynomial interpolation costs O(d). In step e.3, it factorizes
h polynomials where each polynomial factorization costs O(d2). Hence, in total client
B’s computation cost is O(hd2). Also, in multi-client EO-PSI, client B’s computation
cost is O(hd2m). As, in order for it to remove the blinding factors, it needs to com-
bine the messages sent by the other clients and this introduces O(hd2(m − 1)) cost in
addition to its cost in two-client setting. The cloud’s computation cost in multi-client
setting is O(hd2m), because it needs to perform on each client message separately and
then it combines them together to compute the result. However, the other clients (i.e.
Aq) computation cost remain the same as in two-client case. Shortly, we will show that
in our protocol (with the right choice of parameters) d = 100 and hd ≤ 4c.

The semi-honest variant of the protocol in [68] has linear complexity O(c), as
the client computing the result and the cloud invokes the pseudorandom permutation
(PRP) c times, while the other client invokes the PRP, 2c times. On the other hand,
the computational overhead in [73] is quadratic and it involves O(c2) RSA encryption
operations. The protocol in [74] also has quadratic complexity, and it involves O(c2)

BGN public key encryption operations. In [81] the client performs O(c) modular ad-
ditions, while the cloud carries out O(c2) operations to compare the expanded sets of
the users. The protocol in [123] is based on bilinear maps and requires 6c pairings at
the cloud-side and 2k exponentiations at the client side, resulting in O(c) and O(k)

computation complexity at the cloud and client side respectively. The protocol in [99]
is also based on bilinear maps, it requires 6 exponentiation operations at client-side, k
pairing for decrypting the result at the client-side, and 8c pairing at the server-side. So
the overall computation cost of the protocol is O(c).

We highlight that there exists a generic protocol in [82] that allows clients to in-
dependently outsource both data and computation to the cloud. But, the protocol is
based on FHE scheme that is computationally very expensive; and the overall number
of FHE operations, in this protocol, is linear to the inputs size, c. So it involves at
least O(c) fully homomorphic operations. Furthermore, the communication cost of the
protocol is at least O(c) where each message is the FHE ciphertext (whose length is
higher than partially homomorphic encryption ciphertext’s length). However, as the
protocol is designed for generic computation, a precise complexity evaluation for PSI
has not been defined.

In conclusion, O-PSI and EO-PSI, similar to [82, 123, 81, 99, 73] have linear com-
putation complexity. However, the protocols in [123, 81, 99] are not fully secure. The

76

4. Delegated PSI on Outsourced Private Datasets

computation in [82] involves expensive fully homomorphic encryption, the computa-
tion in O-PSI involves partially homomorphic encryption that is cheaper. Moreover,
the dominant operation in EO-PSI is polynomial factorization and in [73] is symmet-
ric key encryption, and the latter protocol is more efficient than the other protocols,
however it lacks some properties that O-PSI and EO-PSI offer.

4.5 Performance Evaluation

In this section, we first show how in EO-PSI, with the right choice of parameters, we
can keep the overall cost optimal. After that, we outline the code design of O-PSI and
EO-PSI, and then we provide the performance analysis of the protocols.

4.5.1 Choice of Parameters

In EO-PSI, with the right choice of parameters, the cloud can keep the overall costs
optimal, while keeping the overflow probability negligibly small, e.g. 2−40. In this
section, we show how the parameters can be chosen. As before, let c be the upper
bound of the set cardinality, d be the bin size, and h be the number of bins. Recall
that in our protocol, as we have shown, the overall (computation, communication and
storage) cost depends on the product, hd (i.e. the total number of elements, including
set elements and random values stored in the hash table). Furthermore, the computation
cost is dominated by factorizing h polynomials of degree n = 2d+ 1. In order for the
cloud to keep the costs optimal, given c, it uses inequality 2.4, to find the right balance
between parameters d and h, in the sense that the cost of factorizing a polynomial of
degree n = 2d+ 1 is minimal, while hd is close to c.

At a high level, we do the following to find the right parameters. First, we measure
the average time, t, taken to factorize a degree n = 2d + 1 polynomial for different
values of n (see Fig. 4.4). Then, for each c, we compute h for different values of d
(see Fig. 4.5). Next, for each d we compute ht, after that for each c we find minimal
d whose ht is at the lowest level (see Fig. 4.6). In the experiments, similar to [96, 38],
the number of set elements upper bound ranges over [210, 220], and the bit length of set
elements is 32. Furthermore, we use 80 bits for padding. Therefore, the bit length of
p would be 112, i.e. |p| = 32 + 80 = 112. In this experiment, the pad, bi, for each
element, si, is computed as bi := H(si) mod 280, where |bi| = 80 and H(.) is a fixed
cryptographic hash function (as we stated in 2.5). Then, each set element is encoded

77

4. Delegated PSI on Outsourced Private Datasets

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

Av
er

ag
e

po
ly

no
m

ia
lf

ac
to

riz
at

io
n

tim
e

(in
se

c)
:t

Po
ly

no
m

ia
l’s

de
gr

ee
:n

=
2d

+
1

Average polynomial factorization time (in sec): t

Polynomial’s degree: n = 2d+ 1

Figure 4.4: The average time taken to factorize polynomials of degree n defined over Fp,
where p is an 112-bit prime number.

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300 350

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300 350

0

200000

400000

600000

800000

1000000

1200000

0 50 100 150 200 250 300 350

c = 2 13

c = 2 15

c = 2 17

c = 2 20

c = 2 15

c = 2 17

c = 2 20

c = 2 17

c = 2 20

c = 2 20

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

To
ta

ln
um

be
ro

fb
in

s:
h

Bi
n’

ss
iz

e:
d

c
=

21
0

c
=

21
3

c
=

21
5

c
=

21
7

c
=

22
0

To
ta

ln
um

be
ro

fb
in

s:
h

Bi
n’

ss
iz

e:
d

c
=

21
0

c
=

21
3

c
=

21
5

c
=

21
7

c
=

22
0

To
ta

ln
um

be
ro

fb
in

s:
h

Bi
n’

ss
iz

e:
d

c
=

21
0

c
=

21
3

c
=

21
5

c
=

21
7

c
=

22
0

To
ta

ln
um

be
ro

fb
in

s:
h

Bi
n’

ss
iz

e:
d

c
=

21
0

c
=

21
3

c
=

21
5

c
=

21
7

c
=

22
0

To
ta

ln
um

be
ro

fb
in

s:
h

Bi
n’

ss
iz

e:
d

c
=

21
0

c
=

21
3

c
=

21
5

c
=

21
7

c
=

22
0

To
ta

ln
um

be
ro

fb
in

s:
h

Bi
n’

ss
iz

e:
d

c
=

21
0

c
=

21
3

c
=

21
5

c
=

21
7

c
=

22
0

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

4194300

41943

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Total number of bins: h

Bin’s size: d

c = 210

c = 213

c = 215

c = 217

c = 220

Figure 4.5: The relation between the number of bins, h, and the size of each bin, d, for
different set size upper bounds, c.

78

4. Delegated PSI on Outsourced Private Datasets

c = 2 10

c = 2 13

c = 2 15

c = 2 10

c = 2 13

c = 2 15

c = 2 17

c = 2 20

c = 2 10

c = 2 13

c = 2 15

c = 2 17

c = 2 20

c = 2 15

c = 2 17

c = 2 20

c = 2 20

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350

20

40

60

80

100

150

200

250

300

350

400

450

600

800

1000

1200

1400

1600

1800

4000

6000

8000

10000

12000

14000

16000

Bin’s size: d

Time (in sec) to factorize h polynomials of degree n = 2d+ 1: ht

Bin’s size: d

Time (in sec) to factorize h polynomials of degree n = 2d+ 1: ht

B
in

’s
si

ze
:
d

T
im

e
(i

n
se

c)
to

fa
ct

o
ri

ze
h

p
o

ly
n

o
m

ia
ls

o
f

d
eg

re
e
n
=

2
d
+
1

:
h
t

Figure 4.6: The average time taken to factorize h polynomials of degree n = 2d + 1, for
different set size upper bounds, c. The polynomials are defined over the field Fp, where p is an
112-bit prime number.

as s′i = si||bi. In this setting, the probability that an arbitrary element of the field
represents the encoded elements of the correct form is at most 2−80.

First, we determine the running time of polynomial factorization, t. To calculate
the running time, we factorize random polynomials of degree n = 2d+ 1, for different
values of n, where n ∈ [20, 1000], so n can have small and large values. The result of
the experiment 1 is depicted in Fig 4.4. As we can see in the figure, when n > 600 the
time grows rapidly. This means, if we put so many elements in a bin, it would take too
long to factorize a bin’s polynomial. So we set n < 600 (i.e. d < 300).

Second, for each value of c ∈ {210, 213, 215, 217, 220}, and d ∈ [20, 290], we use the
inequality to find their corresponding number of bins, h; while keeping the probability
(of bin overloading) below 2−40. The result is depicted in Fig 4.5. Interestingly, as it is
evident in the figure, (for all c ∈ {210, 213, 215, 217, 220}) h grows rapidly when d < 50

decreases; however, such growth is much slower when d > 100 reduces.
Third, given t and h, for each c we calculate the time of factorizing h polynomial

1The experiment is implemented in C++, and conducted on Ubuntu 14.04 desktop PC with an Intel
Core i5-3570@3.4 GHz CPU and 16 GB RAM. We use the NTL library for factorizing the polynomials
defined over a field, Fp, where p is an 112-bit prime number. Furthermore, to obtain the average time,
for each polynomial’s degree, n, we run the experiment 100 times using distinct random polynomials
whose coefficients are picked uniformly at random from the field.

79

4. Delegated PSI on Outsourced Private Datasets

of degree n = 2d + 1 for different d (i.e. we calculate ht). The result is illustrated in
Fig 4.6. It is evident in the figure that, for all c, when 100 ≤ d ≤ 110 the computation
cost is at the lowest level, so we set d = 100. In this case, as can be seen in figure 4.5,
hd ≤ 4c. For example, as we show in the graph at the bottom left of the figure (i.e.
c = 220 = 1048576), for d = 100, we have h = 41943, so hd = 4194300 ≈ 4c.

In conclusion, in the protocol, the cloud can set d = 100 for all values of c. In this
setting, hd is at most 4c and only with negligibly small probability, 2−40, a bin may
receive more than d elements.

4.5.2 Implementation

In the following, we provide an abstract overview of the O-PSI and EO-PSI code de-
sign. The protocols have been implemented in C++. The implementations use the
NTL 1 and GMP 2 libraries for polynomial factorization and big integer operations,
respectively. The running time of polynomial factorization for the NTL library is a
factor of 2-3 faster than the FLINT library 3. The implementation of O-PSI also uti-
lizes a Paillier homomorphic encryption library 4.

The O-PSI protocol implementation has three main classes Client, Server and
Polynomial as well as a Random class that provides functions to generate truly
random values. Furthermore, the protocol implementation contains three structures
carrying the set of messages exchanged between the parties. The structures are: (1)
CompPerm Request that contains the messages sent by client B to client A when
client B wants to obtain its permission, (2) GrantComp Info carrying the messages
sent by client A to the cloud to delegate computation to it, and (3) Server Result

which comprises the result sent to client B by the (cloud) server. The class diagram
for O-PSI is provided in appendix A.

On the other hand, the EO-PSI implementation has five classes Client, Server,
Polynomial, Hashtable and Random. The implementation involves four struc-
tures where CompPerm Request, GrantComp Info and Server Result have
the same responsibilities as they do in O-PSI, but they carry different types of messages
than in O-PSI. In EO-PSI, there is an additional structure called Client Dataset

1http://www.shoup.net/ntl/
2https://www.gmplib.org/
3Detailed evaluation can be found on http://www.shoup.net/ntl/. We also ran an experiment and

compared the two libraries’ performances for the factorization, and reached the same conclusion.
4Advanced Crypto Software Collection: http://acsc.cs.utexas.edu/libpaillier/

80

4. Delegated PSI on Outsourced Private Datasets

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

210

211

212

213

214

215

216

217

218

219

220

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

10000

20000

30000

40000

50000

60000

70000

EO-PSI

O-PSI

Time (in sec)

Number of set elements

T
im

e
(i

n
se

c)

N
um

be
r

of
se

t
el

em
en

ts

Time (in sec)

Number of set elements

Figure 4.7: Performance comparison of EO-PSI and O-PSI protocols

that contains the blinded polynomials, in the hash table, outsourced by the client to the
server. It should be noted that the member functions of Client and Server classes
in O-PSI and EO-PSI have different implementations (as the underlying protocols are
different), even though they may have the same names and responsibilities in both
protocols implementations. The class diagram for EO-PSI is provided in appendix B.

4.5.3 Performance Comparison

In the following, we report the performance analysis of the two protocols based on the
experiments we conducted. The experiments were carried out on Ubuntu 14.04 desktop
PC with an Intel Core i5-3570@3.4 GHz CPU and 16 GB RAM. All the polynomials
and plaintexts are defined over the field, Fp, where p is an 112-bit prime number. Also,
for O-PSI that uses Paillier encryption, we set the size of the public key,N , 512 bits. In
the experiments, the number of set elements ranges over [210, 220], whose size is 32-bit.
For EO-PSI, as we discussed in section 4.5.1, we set the hash table bin size, d, to 100

and the probability of overflow to less than 2−40.
In Fig. 4.7, we show the performance comparison of the two protocols. It is evident

in the figure that the performance of EO-PSI is much better than OPSI. In particular,
EO-PSI is about 1-2 orders of magnitude faster than O-PSI. For O-PSI we skipped
tests with set size over 215 as the running time would be too long. As we highlighted
earlier, there are two reasons why EO-PSI outperforms O-PSI, (1) no use of public key
encryption, (2) the result recipient factorizes a set of smaller degree polynomials.

Furthermore, in Table 4.2, we show the time taken for each main step of the EO-

81

4. Delegated PSI on Outsourced Private Datasets

Main Steps 210 211 212 213 214 215 216 217 218 219 220

Data Outsourcing 0
.0

8

0
.1

7

0
.3

3

0
.6

8

1
.3

7

2
.8

1

7
.7

6

1
6
.6

3

3
7
.5

6

7
4
.5

4

2
5
8
.4

4

Computation Delegation 0
.2

1

0
.4

4

0
.8

8

1
.7

7

3
.5

3

7
.1

3

1
9
.1

9

3
8
.1

8

7
6
.0

2

1
5
2
.9

4

3
0
2
.3

5

Cloud-side Computation 0
.1

8

0
.3

8

0
.7

6

1
.5

3

3
.0

6

6
.1

8

1
6
.5

8

3
2
.9

9

6
5
.6

9

1
3
7
.7

8

2
6
1
.6

7

Client-side Result Retrieval 3
.0

6

6
.3

1

1
1
.5

5

2
4
.5

1

4
9
.9

6

9
7
.4

7

2
0
8
.8

3

4
3
4
.6

5

8
5
8
.2

3

1
3
8
6
.4

7

3
4
1
3
.5

7

Total 3
.5

3

7
.3

0

1
3
.5

2

2
8
.4

7

5
7
.9

2

1
1
3
.5

9

2
5
2
.3

6

5
2
2
.4

5

1
0
3
7
.5

0

1
7
5
1
.7

3

4
2
3
6
.0

3

Table 4.2: EO-PSI Performance: performance time (in second) for each step.

PSI protocol. As the table and Fig 4.7 show, the performance time increases when the
number of set elements grows. The growth is steady when the set size is smaller than
219, but faster when the set size becomes larger than 219. Moreover, the performance in
each of the first three steps is faster than the last step, the result retrieval. In the last step,
client B unblinds the data received, interpolates the polynomials, and extracts roots
from the polynomials by factorizing them. In this process, the polynomial factorization
takes most of the time (the other operations are very fast).

4.6 Concluding Remarks

In this chapter, we presented two protocols, O-PSI and EO-PSI, that support secure
repeated PSI delegation. They allow multiple clients to independently outsource their
private data to the cloud and at any point in time, can delegate PSI computation on
their data to it. In this process, the cloud learns nothing about the dataset elements,
the intersection, and the intersection cardinality. Furthermore, the protocols ensure
that the cloud can compute the intersection only when all the clients agree, and the
clients can securely delegate PSI computation on the outsourced datasets an unlimited
number of times with no need to download and re-prepare the datasets. We showed
that our protocols are secure in the presence of semi-honest parties. O-PSI is based
on point-value polynomial representation, a blinding technique and partially homo-
morphic encryption (i.e. Paillier encryption) that is widely used in secure multi-party
computation protocols. Although O-PSI allows secure outsourcing of data storage and

82

4. Delegated PSI on Outsourced Private Datasets

the computation, it utilizes a public key encryption scheme which is not very efficient
in general. Therefore, we proposed EO-PSI that is much more efficient than O-PSI
for two reasons. First, it does not use any public key encryption, and second it lets
clients retrieve the result faster by utilizing a hash table. We implemented both proto-
cols and analyzed their performance. The analysis showed that EO-PSI is 1-2 orders
of magnitude faster than O-PSI.

83

Chapter 5

Delegated PSI on Outsourced
Dynamic Private Datasets

5.1 Introduction

In the previous chapter, we proposed two protocols, O-PSI and EO-PSI, that support
secure repeated PSI delegation. The protocols allow clients to outsource their private
datasets to the cloud and later on they can delegate PSI computation on the data to
it. The protocols ensure that the privacy of client’s data and computation result are
preserved in the cloud and the result recipient cannot learn anything beyond the inter-
section. However, these protocols are suitable for static data. While the static model
fits some application scenarios (e.g. libraries and scientific datasets), it will impose
large communication, storage and computation costs when big data needs to be up-
dated regularly.

In this chapter, we present UEO-PSI, an efficient protocol that supports secure
repeated PSI delegation on dynamic data. It lets multiple clients independently out-
source their private data to the cloud; and over time, they can efficiently update their
outsourced data. At any point in time, they can get together and delegate PSI com-
putation to the cloud. In these processes, the cloud cannot learn anything about the
clients’ set elements and the computation output 1. The protocol preserves the desir-
able features and efficiency of EO-PSI, as it does not require any (expensive) public
key encryption, and in practice it could also yield efficient implementation.

1Although the cloud learns the query and access pattern in this process, it cannot infer anything
about the computation input and output from the patterns.

84

5. Delegated PSI on Outsourced Dynamic Private Datasets

The rest of this chapter is organized as follows. Section 5.2 starts with a discussion
about update operations in the delegated PSI protocols we designed so far, and contin-
ues with an overview and a detailed description of UEO-PSI including the protocol’s
extensions. In section 5.3, we define the security model for our protocol followed by
section 5.4 that contains the security analysis of UEO-PSI. In section 5.5, we compare
the protocol with the other secure delegated PSI protocols. Finally, in section 5.6, we
provide concluding remarks of this chapter.

5.2 UEO-PSI: Efficient Delegated Private Set Intersec-
tion on Dynamic Outsourced Private Data

In this section, we first explain why our two previous protocols cannot directly support
efficient data update, and then we provide an overview of UEO-PSI protocol followed
by a detailed description of it. After that, we outline the rationale behind the protocol
design, and the protocol’s extensions.

5.2.1 Data Update in O-PSI and EO-PSI

Although the two delegated PSI protocols, O-PSI and EO-PSI, we designed so far can
securely delegate PSI computation on the outsourced data to the cloud, they cannot
efficiently support data update and therefore they are suitable for static data.

In O-PSI protocol, the entire set is represented as one blinded polynomial that is
outsourced to the cloud. Since a client does not have any local copy of the data, it does
not know whether the elements it wants to update (i.e. insert or delete) exists in the
outsourced data. Hence, in order for the client to update the outsourced data, it needs
to download the entire outsourced dataset, check whether the update is required, and if
it is needed, update the data locally, and upload it to the cloud. But this is not efficient
(in terms of communication, computation and storage costs).

Recall that our EO-PSI protocol uses a hash table and at first glance in order for
a client to update its outsourced data, it can efficiently update only one bin (i.e. it
retrieves a bin, checks if the update is needed, if so it updates it locally and sends it
back to the cloud). However, in this protocol, if the client naively updates one bin, the
cloud might be able to learn some of its set elements. In particular, since the hash table
bins are in their original order, and each bin’s address is the hash value of an element in

85

5. Delegated PSI on Outsourced Dynamic Private Datasets

the bin, if the client retrieves one bin, then the cloud would learn what element is being
updated in a bin with a non-negligible probability when the set universe is not big. In
this case, the cloud can carry out a brute force attack. To do that, it can enumerate
the elements of the set universe and then it can determine to which bin each element
is mapped. This will allow the cloud to figure out exactly which elements and how
many of them are mapped to a specific bin. Therefore, in the update phase, if a client
accesses a bin and updates it, the cloud would learn with probability at least 1

v
that a

specific element is being updated, where v is the total number of elements mapped to
that bin. Therefore, in EO-PSI too, the secure way for a client to update the outsourced
dataset is to retrieve the entire dataset, update it locally and send it back to the cloud.

5.2.2 An Overview of UEO-PSI

We design UEO-PSI on top of the EO-PSI protocol. In UEO-PSI, in order for a client,
to hide the original address of the hash table bins from the cloud, it pseudorandomly
permutes the bins and then sends them to the cloud.

As in EO-PSI, for each client to prepare its set, it constructs a hash table whose
parameters are published by the cloud. Then, it maps the set elements into the hash
table bins and pads the bins with random elements to the bin’s maximum size. Af-
terwards, it represents the elements in each bin as a blinded point-value polynomial.
The difference is that each client now needs to assign a unique random label to each
bin, where each label is a (pseuo)random string of length l, where l is a security pa-
rameter. Then, it pseudorandomly permutes the hash table bins, and the labels. The
client retains the label-to-bin mapping and the permutation, by keeping only two secret
keys. Then, it sends the permuted hash table (with the bin labels) to the cloud. The
random mapping and permutation prevent the cloud from learning anything about the
bins’ original order.

In order for the client to insert/delete an element, it first determines to which bin
the element belongs. After that, the client recomputes the corresponding label, sends
the label to the cloud and asks it to send the bin tagged with the label. Upon receiving
the bin, the client decodes it and checks if the element exists in the bin. It updates the
elements (if it is needed), pads and re-encodes the bin’s content, and sends it back to
the cloud. Therefore, the client needs to access only one bin to update it.

Now we explain how the clients delegate the computation to the cloud. When client
B wants the intersection of its set and client A’s set, it sends a message to client A to

86

5. Delegated PSI on Outsourced Dynamic Private Datasets

obtain its permission. If client A agrees, it generates two sets of messages, one for
client B and the other for the cloud. It sends a message containing unblinding vectors
to client B, and a message including a permutation map to the cloud. The vectors help
client B to unblind the cloud’s response. The map lets the cloud associate one client’s
bins to the other client’s bin, while it cannot learn their original order. The cloud uses
clientA’s message and the outsourced datasets to compute a set of blinded polynomials
and sends them to client B. Given the polynomials and client A’s message, client B
unblinds them and retrieves the intersection of the sets.

5.2.3 UEO-PSI Protocol

In this section, without loss of generality, we consider the two-client case, where client
A, client B and the cloud engage in the protocol.

a. Cloud-Side Setup. The cloud in this phase, similar to EO-PSI protocol, sets c
as an upper bound of set cardinality, and it sets the parameters for the hash (h,
H and d). Also, it picks pseudorandom functions PRF : {0, 1}b × {0, 1}l → Fp
and PRF′ : {0, 1}b × {0, 1}l → {0, 1}l, where |p| = l′ and l, l′ are the security
parameters. Also, it picks a vector #»x of n = 2d + 1 distinct non-zero values,
xi. Also, it chooses a pseudorandom shuffle, π, that permutes the elements of an
input vector pseudorandomly. The cloud publishes c, the parameters of the hash
table, the description of the field, value n, vector #»x , pseudorandom functions
PRF, PRF′, pseudorandom shuffle π along with hash function H.

b. Client-Side Setup and Data Outsourcing. Let client I ∈ {A,B} have a set
S(I), where |S(I)| < c. Each client I performs the following:

1. In this step, the client checks that value xi are not equal to its set elements,
inserts its set elements to a hash table and encodes the elements in each bin
as a point-value polynomial representation. This step is similar to steps b.1-
b.3b in EO-PSI protocol and here we briefly explain. The client constructs
a hash table HT(I) and inserts its set elements into the table. Then, it assigns
a key to each bin, by picking a master key mk(I), and then generating h
pseudorandom keys k(I)

j . After that, it pads every bin with random elements
to d elements (if needed), then it constructs polynomial τ (I)

j (x) representing
the elements in the bin, and evaluates each polynomial at every elements of
#»x . This yields a vector of n y-coordinates: τ (I)

j (xi), for each bin.

87

5. Delegated PSI on Outsourced Dynamic Private Datasets

2. Blinds every value τ (I)
j (xi). To do so, first it generates a pseudorandom

value z(I)

j,c
(I)
j
,i

= PRF(k(I)
j , i), where key k(I)

j was generated in step b.1. Then,

it computes o(I)

j,c
(I)
j
,i

as follows.

∀i, 1 ≤ i ≤ n : o(I)

j,c
(I)
j
,i

= τ (I)

j (xi) + z(I)

j,c
(I)
j
,i
.

Note, c(I)
j (∀j, 1 ≤ j ≤ h) is a counter initially set to 0 and is incremented

in the update phase when the client accesses the contents of HT(I)
j . At the

end of this step, the elements in bin HT
(I)
j are represented as a vector #»o (I)

j,c
(I)
j

containing elements o(I)

j,c
(I)
j
,i
.

3. Assigns a pseudorandom label to each bin.

∀j, 1 ≤ j ≤ h : l(I)j = PRF′(lk(I), j),

where lk(I) is a fresh label key.
4. Chooses a permutation key, pk(I), and then constructs

»po(I) = π(pk(I), #»o (I)),
#»

pl(I) = π(pk(I),
#»

l (I)),

where #»o (I) = [#»o (I)

1,c
(I)
1

, ..., #»o (I)

h,c
(I)
h

] and
#»

l (I) contains the labels generated in
step b.3.

5. Sends # »po(I) and
#»

pl(I) to the cloud.
6. Constructs and maintains a set C(I) of (small sized) counters c(I)

i initially
set to zero. Also, it picks a fresh counter key, ck(I). Each counter c(I)

i keeps
track of the number of times a bin HT

(I)
i in the outsourced hash table has

been retrieved by the client for an update. The client after a number of
updates can reset all the counters c(I)

i to zero (shortly we will show how
it can do that). The counter and the key allow the client to regenerate the
most recent blinding factors used to secure the outsourced data. The use of
them will become clearer at the update and set intersection phases.

c. Update. In this phase, client I wants to insert/delete element s(I) to/from its
outsourced dataset. It does as follows.

1. Recomputes the label for the corresponding bin by generating the bin’s

88

5. Delegated PSI on Outsourced Dynamic Private Datasets

index:
H(s(I)) = j,

and then computing the label:

l(I)j = PRF′(lk(I), j).

Sends l(I)j to the cloud and receives (the contents of) the corresponding bin,
#»o (I)

j,c
(I)
j

.

2. Removes the blinding factors from #»o (I)

j,c
(I)
j

as follows.

(a) Regenerates the blinding factors for the bin.

If c(I)
j = 0, then ∀i, 1 ≤ i ≤ n : z(I)

j,c
(I)
j
,i

= PRF(k(I)
j , i).

If c(I)
j 6= 0, then ∀i, 1 ≤ i ≤ n : z(I)

j,c
(I)
j
,i

= PRF(k(I)
j + PRF(ck(I)

j , c
(I)
j), i),

where ck(I)
j = PRF(ck(I), j) and c(I)

j is the counter for bin HTj.
(b) Removes the blinding factors.

∀i, 1 ≤ i ≤ n : y(I)

j,i = o(I)

j,c
(I)
j
,i
− z(I)

j,c
(I)
j
,i
.

At the end of this step, the client has a vector #»y (I)
j of the unblinded

values, y(I)
j,i .

3. Uses the n pairs of (y(I)
j,i , xi) to interpolate a polynomial, ψj(x).

4. Increments the corresponding counter by one: c′(I)j = c(I)
j + 1.

5. Checks whether s(I) is a root of the polynomial, by checking: ψj(s(I))
?
= 0.

If the update is element insertion:

(a) If ψj(s(I)) 6= 0, then it does the following. First, it extracts the existing
set elements from ψj(x), i.e. it finds the roots of polynomial ψj(x).
Then, using the existing set elements (if there are any), and the element
to be inserted (and random elements to pad the elements in the bin to
d, if necessary) it constructs polynomial

α(I)

j (x) =
d∏

m=1

(x− s′(I)m),

where s′(I)m ∈ HT
(I)
j , i.e. s′(I)m is a set element or random value. Next, it

89

5. Delegated PSI on Outsourced Dynamic Private Datasets

evaluates the polynomial at every element in #»x . This yields a vector,
#»u (I)

j,c
′(I)
j

, of elements u(I)

j,c
′(I)
j
,i
.

(b) If ψj(s(I)) = 0, then it constructs vector #»u (I)

j,c
′(I)
j

= #»y (I)
j , where #»y (I)

j was
generated in step c.2b. Note, in this case the element already exists in
the set, so no element insertion is required.

If the update is element deletion:

(a) If ψj(s(I)) 6= 0, then it constructs vector #»u (I)

j,c
′(I)
j

= #»y (I)
j , where #»y (I)

j was
generated in step c.2b. Note, in this case the element does not exist in
the set, so no element deletion is required.

(b) If ψj(s(I)) = 0, then it does the following. First, it constructs two
polynomials

α(I)

j (x) = (x− s(I)), β(I)

j (x) = (x− r(I)),

where r(I) is a fresh random value. Next, it removes the set element
and inserts the random value. This yields vector #»u (I)

j,c
′(I)
j

of elements

u(I)

j,c
′(I)
j
,i

computed as follows.

∀i, 1 ≤ i ≤ n : u(I)

j,c
′(I)
j
,i

= y(I)

j,i · (α(I)

j (xi))
−1 · β(I)

j (xi).

6. Blinds the elements of vector #»u (I)

j,c
′(I)
j

generated in step c.5, as follows.

(a) Computes fresh pseudorandom values.

∀i, 1 ≤ i ≤ n : z(I)

j,c
′(I)
j
,i

= PRF(k(I)

j + PRF(ck(I)

j , c
′(I)
j), i),

where k(I)
j = PRF(mk(I), j) and ck(I)

j = PRF(ck(I), j).
(b) Constructs vector #»o (I)

j,c
′(I)
j

containing the blinded values.

∀i, 1 ≤ i ≤ n : o(I)

j,c
′(I)
j
,i

= u(I)

j,c
′(I)
j
,i

+ z(I)

j,c
′(I)
j
,i
.

7. Sends #»o (I)

j,c
′(I)
j

, l(I)j along with an Update message to the cloud who replaces
the bin contents with the new ones.

d. Set Intersection: Computation Delegation. This phase starts when client B
wants the intersection of its set and client A’s set.

90

5. Delegated PSI on Outsourced Dynamic Private Datasets

1. Client B regenerates vector #»z (B) = [#»z (B)

1,c
(B)
1

, ..., #»z (B)

h,c
(B)
h

] where the elements

of vector #»z (B)

j,c
(B)
j

were used by the client to blind its outsourced set. Then, it

computes a shuffled vector: π(pk(B), #»z (B)).
2. Client B blinds the shuffled vector with blinding factors that are indepen-

dent of the original ordering of the #»z (B) elements. To do that, it picks a
temporary key tk(B), and computes vectors #»r (B)

g whose elements r(B)
g,i are

generated as follows.

∀g, 1 ≤ g ≤ h, ∀i, 1 ≤ i ≤ n : r(B)

g,i = z(B)

a,c
(B)
a ,i

+ PRF(tk(B)

g , i),

where tk(B)
g = PRF(tk(B), g) and vector #»z (B)

a at position a (1 ≤ a ≤ h) in
#»z (B) has been moved to position g after shuffling, in step d.1. Note, vectors
#»r (B)
g allow clientA to compute a vector that will be used, later on, by client

B to unblind the result sent by the cloud. But, vector #»r (B)
g will not leak any

information about client B’s update pattern to client A.
3. ClientB sends lk(B), pk(B), #»r (B) = [#»r (B)

1 , ..., #»r (B)

h], and its id, ID(B), to client
A. It sends tk(B) to the cloud.

4. Upon receiving client B’s message, client A computes a mapping vector
that allows the cloud to match one client’s bins to the other client’s bin. To
do so, it first generates vector # »mA→B whose elements, mi, are computed as
follows.

∀i, 1 ≤ i ≤ h : l(A)

i = PRF′(lk(A), i), l(B)

i = PRF′(lk(B), i),mi = (l(A)

i , l(B)

i).

Then, client A randomly permutes the elements of vector # »mA→B. This
yields mapping vector # »pmA→B.

5. In this step, client A assigns n pseudorandom values ag,i and two poly-
nomials ω(A)

g (x) and ω(B)
g (x) to each index g, where 1 ≤ g ≤ h. This

step is similar to steps c.4-c.6 in EO-PSI protocol and in the following we
briefly outline how it can be done. It first picks a temporary key tk(A),
then it derives three keys k1, k2 and k3. Next, it uses each kt to compute
h pseudorandom values k1,g. For each index g, client A generates a set of
pseudorandom values ag,i by using key k1,g. Moreover, it uses keys k2,g

and k3,g to generate two degree d pseudorandom polynomials ω(A)
g (x) and

ω(B)
g (x) for that index.

91

5. Delegated PSI on Outsourced Dynamic Private Datasets

6. Client A regenerates vector #»z (A) = [#»z (A)

1,c
(A)
1

, ..., #»z (A)

h,c
(A)
h

] where the elements

of each vector #»z (A)

j,c
(A)
j

were used by the client to blind its outsourced set.

After that, it computes shuffled vector π(pk(A), #»z (A)).
7. ClientAmultiplies each element at position g (1 ≤ g ≤ h) in π(pk(A), #»z (A))

and #»r (B), by the pseudorandom polynomials ω(A)
g (x) and ω(B)

g (x), respec-
tively. To do so, it generates #»v (I) = [#»v (I)

1 , ...,
#»v (I)

h] where the elements of
each vector #»v (I)

g , (where I ∈ {A,B}) are computed as follows. ∀g, 1 ≤
g ≤ h and ∀i, 1 ≤ i ≤ n :

v(A)

g,i = ω(A)

g (xi) · z(A)

j,c
(A)
j
,i

v(B)

g,i = ω(B)

g (xi) · r(B)

g,i = ω(B)

g (xi) · (z(B)

a,c
(B)
a ,i

+ PRF(tk(B)

g , i)),

where vector #»z (A)
j at position j (1 ≤ j ≤ h) in #»z (A) has been moved to

position g after shuffling, in step d.6.
8. Given keys pk(A) and pk(B), for each vector #»v (A)

g ∈ #»v (A) it finds vector
#»v (B)
e ∈ #»v (B) such that v(A)

g,i = ω(A)
g (xi) · z(A)

j,c
(A)
j
,i

and v(B)
e,i = ω(B)

e (xi) · r(B)
e,i =

ω(B)
e (xi) · (z(B)

j,c
(B)
j
,i

+ PRF(tk(B)
e , i)), i.e. blinding factors z(A)

j,c
(A)
j
,i

and z(B)

j,c
(B)
j
,i

belong to the same index j. Next, it computes vectors #»qe as follows. ∀i, 1 ≤
i ≤ n :

qe,i = v(A)

g,i + v(B)

e,i + ag,i

= ω(A)

g (xi) · z(A)

j,c
(A)
j
,i

+ ω(B)

e (xi) · (z(B)

j,c
(B)
j
,i

+ PRF(tk(B)

e , i)) + ag,i.

Note that in the above, values z(A)

j,c
(A)
j
,i

and z(B)

j,c
(B)
j
,i

belong to the same bin: HTj,
before they were permuted. Moreover, vectors #»qe will allow client B to
remove the blinding factors from the cloud’s response without learning the
pseudorandom polynomials.

9. Client A sends #»q = [#»q1, ...,
#»qh] to client B. Also, it sends tk(A), ID(B), ID(A),

»pmA→B along with a Compute message to the cloud.

e. Set Intersection: Cloud-Side Result Computation.

1. Given key tk(A), the cloud derives three keys k1,g, k2,g and k3,g for each in-
dex g, where 1 ≤ g ≤ h. Then, it uses the keys to regenerate the set of
pseudorandom values ag,i (∀i, 1 ≤ i ≤ n) and two pseudorandom polyno-
mials ω(A)

g (x) and ω(B)
g (x) for each index g, where 1 ≤ g ≤ h (similar to

92

5. Delegated PSI on Outsourced Dynamic Private Datasets

... ...

... ...

:

... ...

... ...

...

l(A)
1

l(A)
j

l(A)

h

l(A)
e

l(A)
g

l(A)
1

l(A)
j

l(A)

h

l(A)
e

l(A)
g

l(A)
1

l(A)
j

l(A)

h

#»o (A)

1,c
(A)
1

#»o (A)

h,c
(A)
h

#»o (A)

e,c(A)
e

#»o (A)

g,c(A)
g

#»o (A)

j,c
(A)
j

:




o(A)

j,c
(A)
j

,1

...
o(A)

j,c
(A)
j

,n




#»o (B)

j,c
(B)
j

:




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (A)

j,c
(A)
j

:




o(A)

j,c
(A)
j

,1

...
o(A)

j,c
(A)
j

,n




#»o (B)

j,c
(B)
j

:




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (A)

e,c(A)
e

#»o (A)

g,c(A)
g

#»o (A)

1,c
(A)
1

#»o (A)

h,c
(A)
h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

...

...

:

... ...

... ...

...

l(A)
1

l(A)
j

l(A)

h

l(A)
1

l(A)
j

l(A)

h

l(A)
1

l(A)
j

l(A)

h

#»o (A)

1,c
(A)
1

#»o (A)

h,c
(A)
h

#»o (A)

j,c
(A)
j

:




o(A)

j,c
(A)
j

,1

...
o(A)

j,c
(A)
j

,n




#»o (B)

j,c
(B)
j

:




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (A)

j,c
(A)
j

:




o(A)

j,c
(A)
j

,1

...
o(A)

j,c
(A)
j

,n




#»o (B)

j,c
(B)
j

:




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (A)

1,c
(A)
1

#»o (A)

h,c
(A)
h

#»o (A)

k,c
(A)
k

#»o (A)

s,c(A)
s

l(A)

k

l(A)
s

l(A)

k

l(A)
s

#»o (A)

k,c
(A)
k

#»o (A)

s,c(A)
s

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

...

...

...

... ...

...

... ...

...

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




:

#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

.

...

...

...

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

l(B)
1

l(B)
g

l(B)
j

l(B)
e

l(B)

h

#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




#»o (B)

1,c
(B)
1

#»o (B)

g,c(B)
g

#»o (B)

e,c(B)
e

#»o (B)

h,c
(B)
h

#»o (B)

j,c
(B)
j




o(B)

j,c
(B)
j

,1

...
o(B)

j,c
(B)
j

,n




...

l(B)
8

l(B)

b

#»o (B)

8,c
(B)
8

#»o (B)

b,c
(B)
b

l(B)
8

l(B)

b

#»o (B)

8,c
(B)
8

#»o (B)

b,c
(B)
b

l(B)
8

l(B)

b

#»o (B)

8,c
(B)
8

#»o (B)

b,c
(B)
b

l(B)
8

l(B)

b

#»o (B)

8,c
(B)
8

#»o (B)

b,c
(B)
b

:

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

1

g

j

e

h

∀i, 1 ≤ i ≤ n:

te,i = ω(A)

g (xi) · o(A)

j,c
(A)
j

,i
+ ω(B)

e (xi) · (o(B)

j,c
(B)
j

,i
+ PRF(tk(B)

e , i)) + ag,i,

#»o (A)

#»o (B)

π(pk(A), #»o (A))

π(pk(B), #»o (B))

#»

pl(A)

#»

pl(B)

π(pk(A),
#»

l (A))

π(pk(B),
#»

l (B))

»po(A)

»po(B)

#» o
(
A

)

#» o
(
B

)

π
(p
k

(
A

)
,

#» o
(
A

)
)

π
(p
k

(
B

)
,

#» o
(
B

)
)

#
» p
l(

A
)

#
» p
l(

B
)

π
(p
k

(
A

)
,

#» l
(
A

)
)

π
(p
k

(
B

)
,

#» l
(
B

)
)

 »

p
o

(
A

)

 »

p
o

(
B

)

#» o
(A

)

#» o
(B

)

π
(p
k(

A
)
,#» o

(A
)
)

π
(p
k(

B
)
,#» o

(B
)
)

#» p
l(

A
)

#» p
l(

B
)

π
(p
k(

A
)
,#» l

(A
)
)

π
(p
k(

B
)
,#» l

(B
)
)

 » p
o

(A
)

 » p
o

(B
)

{

{

{

{

{

{{ In
de

x

{

{
{{ In

de
x

{

{
{{ In

de
x{{ In

de
x

#» o
(
A

)

#» o
(
B

)

π
(p
k

(
A

)
,

#» o
(
A

)
)

π
(p
k

(
B

)
,

#» o
(
B

)
)

#
» p
l(

A
)

#
» p
l(

B
)

π
(p
k

(
A

)
,

#» l
(
A

)
)

π
(p
k

(
B

)
,

#» l
(
B

)
)

 »

p
o

(
A

)

 »

p
o

(
B

)

#» o
(
A

)

#» o
(
B

)

π
(p
k

(
A

)
,

#» o
(
A

)
)

π
(p
k

(
B

)
,

#» o
(
B

)
)

#
» p
l(

A
)

#
» p
l(

B
)

π
(p
k

(
A

)
,

#» l
(
A

)
)

π
(p
k

(
B

)
,

#» l
(
B

)
)

 »

p
o

(
A

)

 »

p
o

(
B

)

#» o
(
A

)

#» o
(
B

)

π
(p
k

(
A

)
,

#» o
(
A

)
)

π
(p
k

(
B

)
,

#» o
(
B

)
)

#
» p
l(

A
)

#
» p
l(

B
)

π
(p
k

(
A

)
,

#» l
(
A

)
)

π
(p
k

(
B

)
,

#» l
(
B

)
)

 » p
o

(
A

)

 » p
o

(
B

)

#»o (A)

#»o (B)

π(pk(A), #»o (A))

π(pk(B), #»o (B))

#»

pl(A)

#»

pl(B)

π(pk(A),
#»

l (A))

π(pk(B),
#»

l (B))

»po(A)

»po(B)

#»o (A)

#»o (B)

π(pk(A), #»o (A))

π(pk(B), #»o (B))

#»

pl(A)

#»

pl(B)

π(pk(A),
#»

l (A))

π(pk(B),
#»

l (B))

»po(A)

»po(B)

#»o (A)

#»o (B)

π(pk(A), #»o (A))

π(pk(B), #»o (B))

#»

pl(A)

#»

pl(B)

π(pk(A),
#»

l (A))

π(pk(B),
#»

l (B))

»po(A)

»po(B)

#»o (A)

#»o (B)

π(pk(A), #»o (A))

π(pk(B), #»o (B))

#»

pl(A)

#»

pl(B)

π(pk(A),
#»

l (A))

π(pk(B),
#»

l (B))

»po(A)

»po(B)

#» o
(A

)

#» o
(B

)

π
(p
k(

A
)
,#» o

(A
)
)

π
(p
k(

B
)
,#» o

(B
)
)

#» p
l(

A
)

#» p
l(

B
)

π
(p
k(

A
)
,#» l

(A
)
)

π
(p
k(

B
)
,#» l

(B
)
)

 » p
o

(A
)

 » p
o

(B
)

#»o (A)

#»o (B)

π(pk(A), #»o (A))

π(pk(B), #»o (B))

#»

pl(A)

#»

pl(B)

π(pk(A),
#»

l (A))

π(pk(B),
#»

l (B))

»po(A)

»po(B)

#» o
(
A

)

#» o
(
B

)

π
(p
k

(
A

)
,

#» o
(
A

)
)

π
(p
k

(
B

)
,

#» o
(
B

)
)

#
» p
l(

A
)

#
» p
l(

B
)

π
(p
k

(
A

)
,

#» l
(
A

)
)

π
(p
k

(
B

)
,

#» l
(
B

)
)

#

»

p
o

(
A

)

#

»

p
o

(
B

)

#» o
(A

)

#» o
(B

)

π
(p
k(

A
)
,#» o

(A
)
)

π
(p
k(

B
)
,#» o

(B
)
)

#» p
l(

A
)

#» p
l(

B
)

π
(p
k(

A
)
,#» l

(A
)
)

π
(p
k(

B
)
,#» l

(B
)
)

 » p
o

(A
)

 » p
o

(B
)

#» o
(
A

)

#» o
(
B

)

π
(p
k

(
A

)
,

#» o
(
A

)
)

π
(p
k

(
B

)
,

#» o
(
B

)
)

#
» p
l(

A
)

#
» p
l(

B
)

π
(p
k

(
A

)
,

#» l
(
A

)
)

π
(p
k

(
B

)
,

#» l
(
B

)
)

#

»

p
o

(
A

)

#

»

p
o

(
B

)

∀i, 1 ≤ i ≤ n:

te,i = ω(A)

g (xi) · o(A)

j,c
(A)
j

,i
+ ω(B)

e (xi) · (o(B)

j,c
(B)
j

,i
+ PRF(tk(B)

e , i)) + ag,i,

(l(A)
j , l(B)

j) ∈ # »pmA→B

Figure 5.1: Cloud-Side Computation, step e.2: given the permutation map and the clients’
permuted datasets, the cloud matches one client’s bins to the other client’s bins, such that
matched bins had the same index before they were shuffled. Note, in the figure, the left hand-
side tables are not given to the cloud.

step d.5).
2. To generate the computation result, the cloud first uses the mapping vector,

»pmA→B, that allows it for each index g in # »po(A) to find the corresponding
index e in # »po(B), where 1 ≤ g, e ≤ h. As it is depicted in Fig 5.1, if the
cloud behaves honestly, then # »po(A)

g = #»o (A)

j,c
(A)
j

and # »po(B)
e = #»o (B)

j,c
(B)
j

(for some

j, 1 ≤ j ≤ h). Next, it computes result vectors
#»
te .

∀g, 1 ≤ g ≤ h, ∀i, 1 ≤ i ≤ n:

te,i = ω(A)

g (xi) · o(A)

j,c
(A)
j
,i

+ ω(B)

e (xi) · (o(B)

j,c
(B)
j
,i

+ PRF(tk(B)

e , i)) + ag,i,

where tk(B)
e = PRF(tk(B), e), o(A)

j,c
(A)
j
,i
∈ #»o (A)

j,c
(A)
j

, o(B)

j,c
(B)
j
,i
∈ #»o (B)

j,c
(B)
j

, and tk(B) was
given to the cloud in step d.3.

3. The cloud sends
#»
t = [

#»
t1, ...,

#»
th] to client B.

f. Set Intersection: Client-Side Result Retrieval. In this phase, client B wants
to find out the computation result, so it operates as follows.

1. Removes the blinding factors from each vector
#»
te (∀e, 1 ≤ e ≤ h,

#»
te ∈ #»

t)
by using the corresponding vector #»qe (given by client A in step d.9). This
yields vectors

#»

fe whose elements are computed follows.

93

5. Delegated PSI on Outsourced Dynamic Private Datasets

∀e, 1 ≤ e ≤ h, ∀i, 1 ≤ i ≤ n:

fe,i = te,i − qe,i = ω(A)

g (xi) · u(A)

j,c
(A)
j
,i

+ ω(B)

e (xi) · u(B)

j,c
(B)
j
,i
,

where 1 ≤ g, j ≤ h.
2. Interpolates polynomial φe(x) (∀e, 1 ≤ e ≤ h), given vectors

#»

fe and #»x .
3. Extracts the roots of each polynomial and considers the union of the (valid)

roots as the intersection of the sets.

Remark 1: The counter set, C(I), helps client I to regenerate the blinding factors. The
client can always reset its counter (i.e. it sets all its counters c(I)

j to zero). To do so,
it regenerates the vector #»z (I) = [#»z (I)

1,c
(I)
1

, ..., #»z (I)

h,c
(I)
h

] where the elements of each vector
#»z (I)

j,c
(I)
j

were used by the client to blind its outsourced set (i.e. ∀j, i, 1 ≤ j ≤ h, 1 ≤
i ≤ n : z(I)

j,c
(I)
j
,i
∈ #»z (I)

j,c
(I)
j

). Also, it picks a fresh master key mk′(I) and generates vector
#»z ′(I) = [#»z ′(I)

1,c
(I)
1

, ..., #»z ′(I)
h,c

(I)
h

] such that ∀j, i, 1 ≤ j ≤ h, 1 ≤ i ≤ n : z′(I)
j,c

(I)
j
,i
∈ #»

z′(I)
j,c

(I)
j

and fresh pseudorandom values z′(I)
j,c

(I)
j
,i

are generated the same way as the ones in step

b.2, with the difference that here the master key mk′(I) is used. After that, it computes
vector #»z ′′(I) = [#»z ′′(I)

1,c
(I)
1

, ..., #»z ′′(I)
h,c

(I)
h

] where values z′′(I)
j,c

(I)
j
,i

are computed as follows.

∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i : z′′(I)
j,c

(I)
j
,i

= z′(I)
j,c

(I)
j
,i
− z(I)

j,c
(I)
j
,i
.

It sends
#»

b = π(pk(I), #»z ′′(I)) to the cloud and asks it to sum (component-wise) each
elements in the vector with the elements in the outsourced dataset. The cloud performs
as below.

∀g, 1 ≤ g ≤ h,∀i, 1 ≤ i ≤ n : og,i + bg,i = u(I)

g,c
(I)
g ,i

+ z′(I)
g,c

(I)
g ,i
.

As it is evident above, the old blinding factors are replaced with the fresh ones.
Finally, the client needs to keep the new master key, mk′(I), and discard the old one,
mk(I), and set its entire counter to zero. It should be noted that, although the num-
ber of counters (i.e. h in total) is linear to hash table length, each counter bit-size is
independent of (and smaller than) the bit-size of each element in the hash table.

94

5. Delegated PSI on Outsourced Dynamic Private Datasets

Remark 2: In the update phase, the time taken to insert, delete or check element
membership (but doing no element update) varies. So, by timing the client’s response,
the cloud might be able to learn what kind of updates the client performed. To mitigate
such attack, the client can delay its response and send the message after a fixed time.

Remark 3: Since the client, in the update phase, refreshes the blinding factors each
time it retrieves a bin, the cloud cannot figure out whether it inserts or deletes an
element. Also, as the original index of each bin is hidden from the cloud, it cannot
learn which element has been updated in the bin.

Remark 4: Since the clients do not interact with each other at setup and they permute
their datasets independently, the permuted datasets do not have the same order. For
instance, as Fig 5.1 shows, client A’s and B’s bin at position j may reside at position g
and e, respectively, after the permutation. In order for the cloud to compute the correct
result, it needs to combine the right bins that had the same index before they were per-
muted, e.g. both belong to index j. To this end, clientA provides the permutation map,
»pmA→B, that enables the cloud to match the correct bins and perform computation on
them.

Remark 5: In the protocol, the client does not need to recompute the hash table as long
as each client’s set cardinality remains smaller than the upper bound: c, irrespective
of the number of updates performed on its outsourced data. Note that only in the
case where a bin exceeds its capacity the client would need to recompute the hash
table. However, as shown in section 2.7, given the upper bound c, we can set the hash
table parameters (i.e. total number of bins and bin capacity) in such a way that a bin
overflows only with negligibly small probability. Thus, if (at any point in time) the
total number of the client’s set elements in the hash table remains smaller than c, then
the hash table does not need to be restructured.

5.2.4 Extensions

In this section, we first show how the two-client UEO-PSI protocol can be extended
to a multi-client one. Recall that if client B runs a two-client PSI protocol multiple
times with different clients it would learn more information than the information it can
learn if it engages in a multi-client PSI protocol (see section 4.2.3.1 for a detailed dis-

95

5. Delegated PSI on Outsourced Dynamic Private Datasets

cussion). Therefore, it is vital that a PSI protocol supports multiple clients. Then, we
outline how we can reduce the storage space that a client who authorizes the computa-
tion requires, in UEO-PSI .

5.2.4.1 Multi-client UEO-PSI

In the following, we explain how the two-client UEO-PSI can be modified to support
m-client UEO-PSI, where m > 2. Here, we denote the result recipient by client B and
the other clients by Al, where 1 ≤ l ≤ y, y = m − 1, and m is the total number of
clients.

Similar to the two-client case, here each client Al sends to the cloud a temporary
key tk(Al). To generate the computation result, the cloud uses each # »pmAl→B that allows
it for each index e in # »po(B) to find an index g(Al) in # »po(Al), where 1 ≤ e, g(Al) ≤ h. The
cloud uses each tk(Al) to generate values a(Al)

g(Al),i
(∀i, 1 ≤ i ≤ n) for each index g(Al).

Additionally, using key tk(Al), it generates two pseudorandom polynomials ω(Al)

g(Al)
(x)

and ω(Bl)
e (x) for each index g(Al) and e, respectively. Next, it computes result vectors

#»
te as follows. ∀e, 1 ≤ e ≤ h, ∀i, 1 ≤ i ≤ n :

te,i = ω(B)

e (xi) · (o(B)

e,i + PRF(tk(B)

e , i)) +

y∑

l=1

a
(Al)

g(Al),i
+

y∑

l=1

ω
(Al)

g(Al)
(xi) · o(Al)

g(Al),i
,

where ω(B)
e (x) =

y∑
l=1

ω(Bl)
e (x), o(B)

e,i ∈ # »po(B), o(Al)

g(Al),i
∈ # »po(Al), o(B)

e,i = u(B)

j,c
(B)
j
,i

+ z(B)

j,c
(B)
j
,i

and

o
(Al)

g(Al),i
= u

(Al)

j,c
(Al)
j

,i
+ z

(Al)

j,c
(Al)
j

,i
for some j (1 ≤ j ≤ h). So, client B in step f.1 removes the

blinding factors from each vector
#»
te as follows. ∀e, 1 ≤ e ≤ h, ∀i, 1 ≤ i ≤ n :

fe,i = te,i −
y∑

l=1

q
(Al)

e,i = ω(B)

e (xi) · u(B)

j,c
(B)
j
,i
(xi) +

y∑

l=1

ω
(Al)

g(Al)
(xi) · u(Al)

j,c
(Al)
j

,i
(xi).

It should be noted that in the multi-client case, even if client B colludes with y− 1

clients, it cannot learn anything about the non-colluding client’s set elements. Be-

cause, as it is shown in [75], polynomial ω(B)
e (x) =

y∑
l=1

ω(Bl)
e (x) is always a uniformly

random polynomial even if only one of the polynomials ω(Bl)
e (x) is a uniformly random

polynomial unknown to client B.

Remark: In our multi-client protocol, the communication and computation complexity
of those clients who authorize the computation (i.e. client Al) is independent of the

96

5. Delegated PSI on Outsourced Dynamic Private Datasets

number of clients in the protocol. So, the computation and communication complexity
of client A in the two-client case is similar to client Al’s in the multi-client case.

5.2.4.2 Reducing Authorizer’s Required Storage Space

Now, we show how, with minor adjustment, we can reduce the storage space that
client A who authorizes the computation requires. Here, for the sake of simplicity we
consider the two clients case, but the modification can directly be applied to the multi-
client case. The main idea is that client B sends one bin at a time to client A when
they want to delegate the computation. The client A can work on only one bin, and
generate the corresponding messages to be sent to client B and the cloud.

In step d.1, client B for each vector #»z (B)

j,c
(B)
j

, where #»z (B)

j,c
(B)
j

∈ #»z (B), finds index e that

is the index of vector #»z (B)

j,c
(B)
j

after #»z (B) is permuted. Next, in step d.2, for each #»z (B)

j,c
(B)
j

it

computes #»r (B)
e whose elements are computed as follows.

∀i, 1 ≤ i ≤ n : r(B)

e,i = z(B)

j,c
(B)
j
,i

+ PRF(tk(B)

e , i).

Then, it constructs a vector of h tuples (#»r (B)
e , j, e) (where 1 ≤ e, j ≤ h), and

permutes the vector. Client B, in step d.3 sends lk(B), pk(B) and ID(B) to client A. Then,
it sends each tuple in the permuted vector to client A. Therefore, in this process,
instead of sending the entire vector, #»r (B) = [#»r (B)

1 , ..., #»r (B)

h], it sends a tuple (including
one of the vectors in #»r (B)) at a time. Client A finds index g the position where a value
at index j (after permutation) would move to, when client A’s permutation key is used.
Then, it regenerates vector #»z (A)

j,c
(A)
A

. After that, in step d.7, it computes values v(A)
g,i and

v(B)
e,i as follows.
∀i, 1 ≤ i ≤ n :

v(A)

g,i = ω(A)

g (xi) · z(A)

j,c
(A)
j
,i

+ ag,i,

v(B)

e,i = ω(B)

e (xi) · r(B)

e,i = ω(B)

e (xi) · (z(B)

j,c
(B)
j
,i

+ PRF(tk(B)

e , i)).

Also, client A in step d.8, computes vector #»qe whose elements are computed as
below.

∀i, 1 ≤ i ≤ n : qe,i = v(A)

g,i + v(B)

e,i .

It sends #»qe to client B. Finally, client A computes (l(A)
j , l(B)

j) and sends it to the

97

5. Delegated PSI on Outsourced Dynamic Private Datasets

cloud. Note that client B sends the tuples in a random order to client A, therefore the
tuples that the cloud receives (i.e. (l(A)

j , l(B)
j)) are also in a random order.

Hence, the above modification reduces the required storage space at the client-side
from O(hd) to O(d).

5.3 Security Definition

In this section, we provide the security definition for our protocol. For UEO-PSI, simi-
lar to O-PSI and EO-PSI, we consider a static semi-honest adversary who controls one
of the parties at a time (i.e. non-colluding semi-honest adversaries) [52, 67]. However,
the protocol’s security definition is more involved than the security definition provided
for O-PSI and EO-PSI. Here, for the sake of simplicity and without loss of generality
we assume there are three parties, cloud C and clients A and B, engaging in the proto-
col, where client A authorizes the computation and client B is interested in the result.
Here also, similar to O-PSI and EO-PSI, we assume there exists an infrastructure, e.g.
PKI, via which client A can authenticate, and then authorize the other client. To re-
tain efficiency, we allow some information to be leaked to the cloud. This approach
is widely used in the literature, e.g. [115, 69, 59, 110]. We say the protocol is secure
as long as the cloud does not learn anything about the computation inputs and output
despite this leakage and client does not learn anything beyond the intersection about
the other client’s set elements.

The leakage includes the query and access patterns. The protocol involves two
types of operations: dataset update: Upd, and delegated PSI computation: D-PSI. We
define the query pattern

#»

T to be a vector of strings such that | #»T | = poly(λ) = Υ,
where λ is a security parameter, the vector element is defined as Ti ∈ {Upd(I)

t , PSI-Com},
1 ≤ t ≤ p, value p is the total number of update queries issued by each client and
I ∈ {A,B}. So,

#»

T contains clients A and B request strings for update as well as
request string for the computation issued by clientA. Intuitively, in the protocol clients
need to ask explicitly the cloud for a certain operation, so the cloud learns, whether the
client’s ith query is for update or PSI computation, i.e. the query pattern.

The access pattern is more complex. In our protocol, a dataset is encoded as a
hash table and each bin of the hash table is tagged with a unique deterministic label,
in a form of pseudorandom binary string of length l, where l is a security parameter.
Without loss of generality, we assume in each update query only one element is in-
serted/removed to/from the set. Each update query always involves the client sending

98

5. Delegated PSI on Outsourced Dynamic Private Datasets

a label to the cloud, receiving the bin (tagged with the label), and then rewriting the
contents of the bin. Therefore, in the update process the cloud (from the sequence of
update queries sent by clients) can see what part of the outsourced data is updated.
Nevertheless, it cannot associate that part with the sets elements (or the computation
output). In particular, given a sequence of client’s queries, the cloud can see that a bin
is updated but it does not learn the original address of the bin (or the hash value of the
set elements mapped to the bin) because the bins are pseudorandomly permuted. Also,
9it cannot figure out whether the update is an insertion or deletion.

Definition 14. (Access Pattern) Let HT(I) be client I’s hash table containing h bins

where each bin, HT(I)
i , is tagged with a unique label l(I)i . Moreover, let #»o ′(I) = π(k(I), #»o (I))

be shuffled data, where k(I) is a secret key and #»o (I) = [(HT(I)
1 , l

(I)
1), ..., (HT(I)

h , l
(I)

h)]. The

access pattern, for the shuffled data, induced by p-update queries is a symmetric bi-

nary matrix M(I) such that for 1 ≤ i, j ≤ p, the element in the ith row and jth column

is 1, M(I)
i,j = 1, if the ith query equals jth query (i.e. both queries have the same label)

and 0 otherwise (where I ∈ {A,B}).

Similar to O-PSI and EO-PSI, here the delegated PSI computation involves the
three parties. The three-party delegated PSI protocol, D-PSI, computes a function that
maps the inputs to some outputs. We define this function as F : Λ × 2U × 2U →
Λ × Λ × f∩, where Λ denotes the empty string, 2U denotes the powerset of the set
universe and f∩ denotes the set intersection function. For every tuple of inputs Λ, S(A)

and S(B) belonging to C,A and B respectively, the function outputs nothing to C and
A, and outputs f∩(S(A), S(B)) = S(A) ∩ S(B) to B. Note, for PSI computation we do
not have any data leakage. In the security model, we define the leakage function as
leak(#»o ′(I),

»

upd(I)) = [M(I),
#»

T] that captures precisely what is being leaked by the
update operation. The function takes as input clients’ outsourced data, and p update
queries. It outputs two different types of information; namely, the access pattern (i.e.
the matrix) and the query pattern for clients A and B.

We say the protocol is secure if (1) nothing beyond the leakage is revealed to the
cloud; (2) whatever can be computed by a client in the protocol can be obtained from
its input and output only. This is formalized by the simulation paradigm. We require a
client’s view during an execution of D-PSI to be simulatable given its input and output.
As one client’s update pattern is not leaked to the other client, the scheme is secure as
long as the PSI computation result does not leak any information to the client. Also,
we require that the cloud’s view can be simulated given the leakage. The party I’s view

99

5. Delegated PSI on Outsourced Dynamic Private Datasets

on input tuple (x, y, z) is denoted by VIEW t
I(x, y, z) (as it is defined in section 2.9), and

if I ∈ {A,B} then t : D-PSI; if I = C, then t : UEO-PSI.

Definition 15. Let UEO-PSI = (Upd, D-PSI) be the scheme defined above. We say that UEO-

PSI is secure at the client side in the presence of static semi-honest adversaries if there

exist probabilistic polynomial-time algorithms SIMA and SIMB that given the input and

output of a client, can simulate a view that is computationally indistinguishable from

the client’s view in the protocol:

{SIMA(S(A),Λ)}S(A),S(B)

c≡ {VIEW
D-PSI
A (Λ, S(A), S(B))}S(A),S(B)

{SIMB(S(B), f∩(S
(A), S(B)))}S(A),S(B)

c≡ {VIEW
D-PSI
B (Λ, S(A), S(B))}S(A),S(B) ,

where D-PSI was defined above. Also, UEO-PSI is secure, at the cloud side, in the presence

of static semi-honest adversaries if there exists probabilistic polynomial-time algo-

rithm SIMC that given the leakage function, can simulate a view that is computationally

indistinguishable from the cloud’s view in the protocol:

{SIM
leak()
C (Λ,Λ)}S(A),S(B)

c≡ {VIEW
UEO-PSI
C (Λ, S(A), S(B))}S(A),S(B)

5.4 UEO-PSI Security Proof

In this section, we sketch the protocol’s security proof in the presence of static semi-
honest adversaries. We conduct the security analysis for the three cases where one of
the parties is corrupted at a time.

Theorem 4. If PRF and PRF′ are collision-resistant pseudorandom functions, and π is

a pseudorandom permutation, then UEO-PSI protocol is secure in the presence of a

semi-honest adversary.

Proof. We will prove the theorem by considering in turn the case where each of the
parties has been corrupted. In each case, we invoke the simulator with the correspond-
ing party’s input and output. Our focus is on the case where partyA wants to engage in
the computation of the intersection, i.e. it authorizes the computation. If party A does
not want to proceed with the protocol, the views can be simulated in the same way up
to the point where the execution stops.

100

5. Delegated PSI on Outsourced Dynamic Private Datasets

Case 1: Corrupted Cloud. In this case, we show that given the leakage function we
can construct a simulator SIMC that can produce a view computationally indistinguish-
able from the one in the real model. In the real execution, the cloud’s view is:

VIEW
UEO-PSI
C (Λ, S(A), S(B)) = {Λ, rC, # »po(A),

#»

pl(A), # »po(B),
#»

pl(B), (Q1, ..., QΥ),Λ}.

In the above view, rC is the outcome of internal random coins of the cloud, (∀I, I ∈
{A,B}) # »po(I) are the permuted hash tables containing the clients’ blinded datasets and
#»

pl(I) are the permuted labels. Moreover, if the query is for PSI delegation then

Qi = {tk(B), tk(A), ID(A), ID(B), # »pmA→B, Compute},

otherwise (if the client I’s query is for update),

Qi = { #»o (I)

j,c
(I)
j

, l(I)j , Update},

for some j, 1 ≤ j ≤ h.
Now we construct the simulator SIMC in the ideal model which executes as follows.

1. Creates an empty view and appends Λ and uniformly random coin r′C to it.
2. Uses the public parameters and the hash function to construct two hash tables

HT′(A) and HT′(B). It fills each bin of the hash tables with n uniformly random
values picked from the field Fp. So each bin HT

′(I)
j (∀I, I ∈ {A,B}) contains a

vector #»o ′(I)j of n random values.
3. Assigns a pseudorandom label to each bin HT

′(I)
j (∀I, I ∈ {A,B}). To do so,

it picks fresh label-keys, lk′(I), and computes the labels as ∀I, I ∈ {A,B} and
∀j, 1 ≤ j ≤ h : l′(I)j = PRF′(lk′(I), j).

4. Constructs two vectors of the form [(#»o ′(I)1 , l′(I)1), ..., (#»o ′(I)h , l′(I)h)] for each I , where
I ∈ {A,B}. Then, it randomly permutes each vector. Next, it inserts each
element #»o ′(I)g (∀g, 1 ≤ g ≤ h) of the permuted vector into # »po′(I). Also, it inserts
each element l′(I)g of the permuted vector into

#»

pl′(I). Therefore, it has constructed
four vectors: # »po′(A),

#»

pl′(A), # »po′(B) and
#»

pl′(B). It appends the four vectors to the
view.

5. Given the leakage function [M(I),
#»

T], it first uses each matrix M(I) to construct
the corresponding vector #»v (I) that will contain a set of labels l′(I) ∈ #»

l ′(I), and
has the same access pattern as the one indicated by the matrix. In order for it

101

5. Delegated PSI on Outsourced Dynamic Private Datasets

to generate this vector, it first constructs vector #»v (I) of zeros, where | #»v (I)| = p.
Then, for every row i (1 ≤ i ≤ p) of the matrix M(I), it performs the following:

(a) If there exists at least one element set to 1 in the row and if the ith element
in the vector #»v (I) is zero, then it finds a set G such that ∀g ∈ G : M(I)

i,g = 1.
Next, it picks a label l′(I) ∈ #»

l ′(I) and inserts it into all ith, gth positions
of the vector #»v (I). The label must be distinct from the ones used for the
previous rows i′, where i′ < i. Otherwise, if the ith element in the vector is
non-zero, it moves on to the next row.

(b) If all the elements in the row are zero and if the ith element in the vector
#»v (I) is zero, then it picks a label l′(I) ∈ #»

l ′(I) and inserts it at position ith of
the vector, where the label is distinct from the ones used for the previous
rows i′, where i′ < i. Otherwise, if the ith element in the vector is non-zero,
it moves on to the next row.

6. Uses
#»

T and checks Ti (∀i, 1 ≤ i ≤ Υ) as follows:

(a) if Ti = PSI-Com, then sets:

Q′i = {tk′(B), tk′(A), ID(A), ID(B), # »pm′
A→B, Compute},

where # »pm′
A→B contains tuples (l′(A)

i , l′(B)
i) randomly permuted. Also, tk′(B)

and tk′(A) are fresh random keys, and labels l′(I)i were generated step 3.
Next, it appends Q′i to the view.

(b) if Ti = Upd(I)
t , then sets:

Q′i = { #»o ′′(I), l′(I)t , Update},

where #»o ′′(I) contains n uniformly random values picked from the field Fp
and l′(I)t is the tth element in the vector #»v (I). After that, it appends Q′i to the
view.

7. Appends Λ to its view and outputs the view.

We are ready now to show why the two views are indistinguishable. In both views,
the input and output parts (i.e. Λ) are identical and the random coins are both uniformly
random, and so they are indistinguishable. Each vector # »po(I)

i ∈ # »po(I), (∀i, 1 ≤ i ≤ h

and ∀I, I ∈ {A,B}), contains n values blinded with pseudorandom values (that are
the outputs of a pseudorandom function), also each vector # »po′(I)i ∈ # »po′(I) contains n

102

5. Delegated PSI on Outsourced Dynamic Private Datasets

random values sampled uniformly from the same field. Since the blinded values and
random values are not distinguishable, the elements of vectors # »po(I) and # »po′(I) are in-
distinguishable too. Also, labels l(I)i ∈

#»

pl(I) and l′(I)i ∈ #»

pl′(I), (∀i, 1 ≤ i ≤ h and
∀I, I ∈ {A,B}), are the outputs of a pseudorandom function and they are indistin-
guishable. Therefore, the elements of vectors

#»

pl(I) and
#»

pl′(I) are indistinguishable.
Furthermore, since a pseudorandom permutation is indistinguishable from a random
permutation, permuted vectors # »po(I) and

#»

pl(I), in the real model, and permuted vectors
»po′(I) and

#»

pl′(I), in the ideal model, are indistinguishable.
Since sequence Q′1, ..., Q

′
Υ is generated given the leakage function, its access and

query patterns are identical to the access and query patterns of Q1, ..., QΥ. Now we
show that Qi is indistinguishable from Q′i, (∀i, 1 ≤ i ≤ Υ). First we consider the
case where Ti = PSI-Com. In this case, keys tk(I) and tk′(I), (∀I, I ∈ {A,B}), are
random values, so they are indistinguishable. Also, messages ID(A), ID(B) and Compute are
identical in both views. Moreover, in the real model each pair in randomly permuted
vector # »pmA→B has the form (l(A)

g , l(B)
g) where (∀g, 1 ≤ g ≤ h and ∀I, I ∈ {A,B})

l(I)g ∈
#»

l (I) and each l(I)g is a pseudorandom string. Similarly, in the ideal model each
pair in randomly permuted vector # »pm′

A→B has the form (l′(A)

g′ , l
′(B)

g′) where l′(I)
g′ ∈

#»

l ′(I)

and each l′(I)
g′ is a pseudorandom string, so # »pmA→B and # »pm′

A→B are indistinguishable.
Hence, Qi is indistinguishable from Q′i.

Now we move on to the case where Ti = Upd(I)
t . In the real model, #»o (I)

j,c
(I)
j

contains n

elements blinded with pseudorandom values, while in the ideal model #»o ′′(I) comprises
n random values. Since the random values and blinded values are indistinguishable
vectors #»o (I)

j,c
(I)
j

and #»o ′′(I) are indistinguishable. In the real model, l(I)j is a pseudorandom

string and it belongs to vector
#»

l (I). In the ideal model, l′(I)j is a pseudorandom string
and it belongs to vector

#»

l ′(I). Therefore, the labels have the same distribution and are
indistinguishable. Also, message Update is identical in both models. So, Q′i and Qi

are indistinguishable in this case too. From the above, we conclude that the views are
indistinguishable.

Case 2: Corrupted Client B. In the real execution client B’s view is defined as:

VIEW
D-PSI
B (Λ, S(A), S(B)) = {S(B), rB,

#»q ,
#»

f , f∩(S
(A), S(B))}.

The simulator SIMB who receives pk(B), lk(B), S(B) and f∩(S(A), S(B))) does the fol-
lowing:

103

5. Delegated PSI on Outsourced Dynamic Private Datasets

1. Creates an empty view, and appends S(B) and uniformly at random chosen coins
r′B to it. Then, it chooses two sets S ′(A) and S ′(B) such that S ′(A) ∩ S ′(B) =

f∩(S
(A), S(B)) and |S ′(A)|, |S ′(B)| ≤ c.

2. Constructs HT′(A) and HT′(B) using the public parameters. Next, it maps the el-
ements in S ′(A) and S ′(B) to the bins of HT′(A) and HT′(B), respectively. ∀I, I ∈
{A,B} and ∀s′(I)i ∈ S ′(I): H(s′(I)i) = j, then s′(I)i → HT

′(I)
j , where 1 ≤ j ≤ h.

3. Constructs a polynomial representing the d elements of each bin. If a bin con-
tains less than d elements first it is padded with random values to d elements.

∀I, I ∈ {A,B} and ∀j, 1 ≤ j ≤ h: τ ′(I)j (x) =
d∏

m=1

(x− e(I)
m), where e(I)

m ∈ HT
′(I)
j .

4. Assigns a random polynomial ω′(I)j of degree d to each bin HT
′(I)
j (∀I, I ∈

{A,B}). Next, it constructs vectors
#»

f ′j whose elements are computed as ∀j, 1 ≤
j ≤ h and ∀i, 1 ≤ i ≤ n: f ′j,i = τ ′(A)

j (xi) · ω′(A)
j (xi) + τ ′(B)

j (xi) · ω′(B)
j (xi), where

n = 2d+ 1.
5. Generates vector #»q ′ = [#»q ′1, ...,

#»q ′h] where each vector #»q ′i contains n random val-
ues picked from field Fp. Then, it appends #»q ′′ = π(pk(B), #»q ′),

#»

f ′′ = π(pk(B),
#»

f ′)

and f∩(S(A), S(B)) to the view and outputs it.

Now we show that the two views are computationally indistinguishable. The entries
S(B) and Λ are identical in both views. In the real model, the elements in #»q j are blinded
with pseudorandom values, so the blinded elements are uniformly random values. On
the other hand, in the ideal model the elements in #»q ′j are random values drawn from the
same field. Moreover, both vectors are permuted in the same way. Hence, the vectors
#»q and #»q ′ are computationally indistinguishable.

Furthermore, in the real model, given each unblinded vector
#»

f j, the adversary in-
terpolates a 2d-degree polynomial of the form φj(x) = ω(A)

j (x) · τ (A)
j (x) + ω(B)

j (x) ·
τ (B)
j (x) = µj · gcd(τ (A)

j (x), τ (B)
j (x)), where polynomial gcd(τ (A)

j (x), τ (B)
j (x)) repre-

sents intersection of the sets in the corresponding bin, HTj. Similarly, in the ideal
model, each 2d-degree polynomial φ′j(x) interpolated from vector

#»

f ′j has the form
φ′j(x) = ω′(A)

j (x) · τ ′(A)
j (x) + ω′(B)

j (x) · τ ′(B)
j (x) = µ′j · gcd(τ ′(A)

j (x), τ ′(B)
j (x)), where

gcd(τ ′(A)
j (x), τ ′(B)

j (x)) represents the sets intersection in the corresponding bin, HT′j.
Also, as we discussed in section 2.5, µj and µ′j are uniformly random polynomials and
the probability that their roots represent set elements is negligible, thus φj(x) and φ′j(x)

only contain information about the set intersection and have the same distribution in
both models [75, 20]. Moreover, since the same hash table parameters were used, the
same elements would reside in the same bins in both models, therefore polynomials

104

5. Delegated PSI on Outsourced Dynamic Private Datasets

gcd(τ (A)
j (x), τ (B)

j (x)) and gcd(τ ′(A)
j (x), τ ′(B)

j (x)) represent the set elements of the inter-
section for that bin. Moreover, both vectors

#»

f and
#»

f ′ are permuted in the same way.
So,

#»

f and
#»

f ′ are indistinguishable as well. Also, the output, f∩(S(A), S(B)), is identical
in both views. Thus, the two views are computationally indistinguishable.

Case 3: Corrupted Client A. In the real execution client A’s view is defined as:

VIEW
D-PSI
A (Λ, S(A), S(B)) = {S(A), rA, lk

(B), pk(B), #»r (B), ID(B),Λ}.

The simulator, SIMA, who receives S(A) performs as follows. It constructs an empty
view, and adds S(A) and uniformly at random chosen coins r′A to the view. It picks
two random keys lk′(B), pk′(B) and adds them to the view. Then, it constructs #»r ′(B) =

[#»r ′(B)
1 , ..., #»r ′(B)

h], where each vector #»r ′(B)
i contains n random values picked from the

field. It also appends #»r ′(B), ID(B) and Λ to the view and outputs the view.
In the following, we will show why the two views are indistinguishable. In both

views, S(A), ID(B) and Λ are identical. Also rA and r′A are chosen uniformly at random so
they are indistinguishable. Moreover, values lk(B), pk(B), lk′(B) and pk′(B) are the keys
picked uniformly at random, so they are indistinguishable, too. In the real model, each
vector #»r (B)

i contains n values blinded with pseudorandom values. On the other hand,
in the ideal model, each vector #»r ′(B)

i comprises n random elements of the field. Since
the random values and blinded values are indistinguishable, vectors #»r (B) and #»r ′(B) are
indistinguishable. Hence, the two views are indistinguishable.

5.5 Updatable Delegated PSI Protocol Comparison

We compare the properties and costs of the UEO-PSI scheme with EO-PSI, O-PSI and
[82], i.e. the protocols that support secure repeated PSI delegation and can support
update. In table 5.1, we summarize the comparison results. All the four protocols
are fully private and they preserve clients’ data privacy; therefore, the cloud cannot
learn anything about the client’s data. Also, they ensure that only an authorized client
receives the computation result. Moreover, the protocols support secure repeated PSI
delegation, and support multiple clients. However, UEO-PSI and EO-PSI (unlike the
other two protocols) do not use any public key encryption.

It should be noted that the analysis we carried out, in section 4.5.1, to determine the
right parameters for the hash table in EO-PSI, can be applied to UEO-PSI as well, as

105

5. Delegated PSI on Outsourced Dynamic Private Datasets

Property UEO-PSI [82] O-PSI EO-PSI
Private Against the Cloud X X X X

Client-to-client Computation Authorization X X X X

Non-interactive Client-side Setup X X X X

Secure Repeated PSI Delegations X X X X

Multiple Clients X X X X

Without Involving Public Key Encryption X × × X

Overall Communication Complexity O(hd) O(c) O(c) O(hd)

Update Communication Complexity O(d) – O(c) O(hd)

Overall Computation Complexity O(hd2) O(c) O(c) O(hd2)

Update Computation Complexity O(d2) – O(c) O(hd2)

Table 5.1: Comparison of the properties and costs of the protocols supporting secure repeated
PSI delegation. We denote set cardinality’s upper bound by c. In the table, h denotes the hash
table length and d denotes bin’s maximum load.

the hash tables in both protocols have the same structure. Therefore, for both of them
we can set d = 100. In this setting, hd ≤ 4c and the probability that a bin receives
more than d elements is lower than 2−40.

Communication Complexity. First we evaluate the communication cost of UEO-PSI
protocol when PSI is delegated. Client B, in step d.3, sends a single value tk(B) to the
cloud. In the same step, it sends two constant values, pk(B) and lk(B), and vector #»r (B) of
h bins to client A, where each bin contains n = 2d+ 1 elements. Therefore, client B’s
communication cost is O(hd). In step d.9, client A sends single value tk(A) and vector
π(pk(A), # »mA→B) containing 2h elements to the cloud. In the same step, it sends vector
#»q containing h bins to client B, where each bin contains n elements. So, client A’s
total communication complexity is O(hd). The cloud’s communication complexity is
O(hd), as in step e.3, it sends vector

#»
t of h bins to client B, where each bin contains

n elements. Moreover, multi-client UEO-PSI’s overall communication complexity is
similar to the multi-client EO-PSI’s.

Now we evaluate the communication complexity of UEO-PSI in the update phase.
For client I (I ∈ {A,B}) to update its outsourced set, it sends to the cloud two labels,
one in each of steps c.1 and c.7. Moreover, it sends vector #»o (I)

j,c
(I)
j

of n = 2d+1 elements

in steps c.7. So, in totalO(d) elements are sent by the client. Also, the cloud in step c.1
sends vector #»o (I)

j,c
(I)
j

of n elements to the client. Therefore, the cloud’s communication

cost is O(d), too.
The overall communication cost of O-PSI and EO-PSI are O(c) and O(hd) respec-

106

5. Delegated PSI on Outsourced Dynamic Private Datasets

tively. Also, the protocol in [82] has at least linear communication cost, O(c). As we
stated earlier in section 5.2.1, in O-PSI protocol, in order for a client to update the
data it needs to download them, update locally, and upload them to the cloud, so its
update cost is O(c). Also, in EO-PSI, if client simply updates one bin it would leak
non-negligible information about set elements to the cloud (see section 5.2.1 for dis-
cussion). So, in EO-PSI, the secure way for the client to update the outsourced dataset
is to retrieve the entire dataset and update it locally and send it back to the cloud.
However, such approach imposes O(hd) communication cost. On the other hand, the
protocol in [82] that utilizes FHE can support data update by using the FHE’s capa-
bilities. But, the protocol is designed for generic computation and the complexity of
update in delegated PSI has not been defined. Note that each message in EO-PSI and
UEO-PSI protocols is a random element of a field (e.g. p is about 112 bits), whereas
the messages in the other two protocols are ciphertexts of public key encryption that
operate in a much larger group/ring.

Hence, only in UEO-PSI the client can securely update its dataset with commu-
nication cost of O(d), while such operation cost is O(c) and O(hd) for O-PSI and
EO-PSI respectively, where d < c < hd.

Computation Complexity. We first analyze the computation cost of UEO-PSI proto-
col when the clients delegate PSI to the cloud. In our analysis, we do not count the
pseudorandom function invocation cost, as it is a fast operation, and dominated by the
other operations (e.g. modular arithmetic, shuffling and factorization) in our protocol.
In step d.1, client B executes h modular additions, and shuffles a vector of h elements
where the cost of such operation is O(h). Also, it performs nh modular additions in
each of steps d.2 and f.1 to blind and unblind the hash table elements, respectively.
Furthermore, in step f.2 it interpolates h polynomials where each interpolation costs
O(d). In step f.3, it factorizes h polynomials where each factorization costs O(d2). So
in total client B’s computation cost is O(hd2). Client A in step d.4 shuffles a vector of
h elements that costs O(h) and also in step d.6 it does h modular additions, and shuf-
fles a vector of h elements. In step d.7, it performs 2hnd modular multiplications and
2hnd modular additions to evaluate the pseudorandom polynomials. In the same step,
to generate vectors #»v (A) and #»v (B), it performs 2nh modular multiplications. In step
d.8, it carries out 2nh modular additions to generate vectors #»qe. Thus, in total O(hd2)

modular operations are involved. The cloud in step e.2 does 2hnd modular multipli-
cations and 2hnd modular additions to evaluate the pseudorandom polynomials. In

107

5. Delegated PSI on Outsourced Dynamic Private Datasets

the same step, it performs 2nh modular multiplications and 3nh modular additions to
generate the vectors

#»
te . Thus, in total the cloud’s computation involves O(hd2) mod-

ular operations. Also, multi-client UEO-PSI’s computation complexity is similar to
multi-client EO-PSI’s.

Now we analyze the computation complexity of our scheme in the update phase.
Client I carries out n+ 1 modular additions in step c.2. It interpolates a polynomial in
step c.3 which costs O(d). In step c.5, it executes d modular additions and d modular
multiplications to evaluate the polynomial at s(I). In the same step, when the update is
element insertion, the client extracts a bin’s set elements that costs O(d2), and carries
out nd modular multiplications and nd modular additions to evaluate the polynomial.
In this case, its total computation cost isO(d2). While, if the update is element deletion
it performs 2n modular additions to evaluate the two polynomials and 2n modular
multiplications to generate values u(I)

j,c
(I)
j
,i
. Finally, in step c.6, the client performs n +

1 modular additions. Therefore, in this case, the client’s computation complexity is
O(d).

To approximate the overall time taken for the update operation in UEO-PSI, we can
focus on the average time needed to factorize the polynomial in a bin. The reason is
that the polynomial factorization is the dominant operation in this process and the rest
of operations are very fast. As Fig 4.4 indicates, this operation takes only 0.25 seconds
(recall that d = 100), and this time is for the element insertion operation that involves
polynomial factorization. Nonetheless, the element deletion process takes even less
than that, as there is no factorization operation involved and all the operations are very
fast.

O-PSI protocol uses Paillier homomorphic encryption and its computation cost is
dominated by the encryption operations. The number of such operations is linear to
c, so it is O(c). Furthermore, EO-PSI computation complexity is O(hd2) and involves
no public key encryption operations. Also, the overall computation complexity of
the protocol in [82] is dominated by FHE operations and the overall number of such
operations is linear to the inputs size, c. So the protocol’s computation cost is at least
O(c).

In O-PSI, the update cost for a client to update an element, it needs to download the
dataset, check the element membership in the set, construct a polynomial, evaluate it
at m = 2c+ 1 values, encode it and then upload it. So, the protocol’s computation cost
for the update is O(c). Moreover, as we discussed earlier, in EO-PSI, for the client to
securely update its outsourced data, it needs to download the entire dataset and apply

108

5. Delegated PSI on Outsourced Dynamic Private Datasets

the update locally and this costs O(hd2). As the protocol in [82] is based on FHE, it
can support data update due to the nature of FHE. But, the protocol is designed for
generic computation and the computation complexity of update in delegated PSI has
not been defined for the protocol.

Although EO-PSI and UEO-PSI have the same complexities, EO-PSI is slightly
more efficient than UEO-PSI. The reason is that in UEO-PSI, when the computation
is delegated, client A sends two sets of messages to the cloud while in EO-PSI it
sends only one set. Also, in UEO-PSI, client A pseudorandomly permutes two sets
of messages and this introduces additional computational cost to the client while this
computation is not needed in EO-PSI (however pseudorandom permutation is a fast
operation).

Thus, EO-PSI and UEO-PSI are computationally more efficient than the two pro-
tocols using a public key encryption scheme. Moreover, UEO-PSI supports update
operations efficiently with a cost of at most O(d2), while this is not the case for the
other three protocols.

5.6 Concluding Remarks

In this chapter, we presented a protocol that efficiently supports secure repeated PSI
delegation on dynamic data. In the protocol, multiple clients can independently store
their private data in the cloud, efficiently update the outsourced data at any time, and
delegate computation of private dataset intersection to the cloud (an unlimited number
of times). The clients prepare their data independently without interacting with each
other. Once the clients outsourced the data, they do not need to keep a local copy
of it to perform the computation. The protocol guarantees the cloud learns no infor-
mation about the computation inputs and output, and the result recipient only learns
the intersection. It utilizes a combination of a hash table and permutation techniques
to support efficient data update without leaking information about the set elements.
Another advantage of the protocol is that it does not use any public key encryption
operation which makes it more efficient. We defined the security model in the pres-
ence of semi-honest adversaries, and analyzed the protocol’s security in the standard
model. The analysis showed that the protocol is secure in the presence of semi-honest
adversaries.

109

Chapter 6

Verifiable Delegated PSI on
Outsourced Private Datasets

6.1 Introduction

In chapters 4 and 5, we proposed protocols that support secure repeated PSI delegation,
and enable clients to outsource data storage and PSI computation to the cloud. The
main focus of those protocols is on data privacy. However, (as we discussed in section
3.1) there are cases where the cloud may arbitrary misbehave, and provide an incorrect
result.

In this chapter, we provide VD-PSI, a protocol that, in addition to supporting se-
cure repeated PSI delegation, allows clients to efficiently verify the correctness of the
computation result provided by the cloud. If the cloud misbehaves (e.g. by deviating
from the protocol, tampering with the clients’ data or computation result, etc) and pro-
vides an incorrect result, it would be detected by the client who receives the result. The
main novelty of VD-PSI is a lightweight verification mechanism that allows a client to
efficiently verify the result correctness without having access to its outsourced dataset
or having any knowledge of the other client’s dataset. The VD-PSI protocol has been
published in a paper titled “VD-PSI: Verifiable Delegated Private Set Intersection on

Outsourced Private Datasets” [2].
The rest of this chapter is organized as follows. Section 6.2 includes a brief ex-

planation of the challenges that VD-PSI should address, an overview of the protocol,
an elaborate description of two-client VD-PSI, and its extensions. In section 6.3, we
provide the security definition of VD-PSI followed by section 6.4 that contains a se-

110

6. Verifiable Delegated PSI on Outsourced Private Datasets

curity analysis of the protocol. In section 6.5, we provide a comparison between the
verifiable delegated PSI protocols and in section 6.6 we conclude the chapter.

6.2 VD-PSI: Verifiable Delegated Private Set Intersec-
tion on Outsourced Private Datasets

We start this section by briefly outlining a set of challenges that the protocol must deal
with. First off, the protocol needs to make sure the cloud uses datasets correspond-
ing to the participating clients, as a malicious cloud may use a dataset belonging to a
different client who is not participating in the protocol, or it may use its own dataset.
Also, it needs to ensure that the cloud uses the clients’ original datasets intact, be-
cause a malicious cloud may use the participating clients’ datasets but it may modify
them. Moreover, the protocol needs to ensure that the cloud executes the protocol cor-
rectly, as the cloud may use the clients’ intact datasets but it may misbehave during
the computation of the result and generate an incorrect result. As the clients, in the
data preparation phase in VD-PSI, do not interact with each other, they do not know
(and should not know) what exactly the other client’s set elements are. This makes
the previous challenges even more difficult to address. Roughly speaking, the client
who receives the result must be able to detect the cloud if the cloud misbehaves, and
provides an incorrect result. In addition to that, the privacy of the datasets must be
protected from the cloud and the result recipient should not learn anything beyond the
intersection about the other client’s set elements.

6.2.1 An Overview of VD-PSI

VD-PSI’s main building blocks include Paillier homomorphic encryption, point-value
polynomial representation of sets, a blinding technique, and a verification mechanism
that leverages a value that acts as a trap to detect the cloud’s misbehavior. However, the
way the elements are blinded in VD-PSI is different than they are in O-PSI, EO-PSI
or UEO-PSI. The reason is that in VD-PSI both data integrity and privacy are security
concerns; whereas, in the other three protocols only data privacy is. So, in VD-PSI we
blind the elements in a way that can help to satisfy both needs.

We first consider the two-client case, where the cloud along with client A and
B engage in the protocol. The interaction between the parties is depicted in Fig 6.1.

111

6. Verifiable Delegated PSI on Outsourced Private Datasets
#»e (B), β, k(B)

a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

#»e (B), β, k(B)
a , k(B)

b , k(B)

r′ , k(B)
z , ID(B)

#»
t (C3)

ID(A)

#»v (A)

#»v ′(A)

#»v (B)

#»v ′(B),

Client A Client B Client A Client B
(1)

(2) (3)

#» o
(A

)
=

[o
(A

)
1

,.
..,

o(
A

)
n

]

#» o
(B

)
=

[o
(B

)
1

,.
..,

o(
B

)
n

]
#» o

(
A

)
=

[o
(
A

)
1

,.
..
,o

(
A

)
n

]

#» o
(
B

)
=

[o
(
B

)
1

,.
..
,o

(
B

)
n

]

Figure 6.1: The left-hand side figure: party interactions at data outsourcing phase; the right-
hand side figure: party interactions at computation delegation phase.

Similar to the other protocols we designed, in the setup phase each client independently
prepares and stores its dataset in the cloud. Later on, when clientB becomes interested
in the intersection of its dataset and client A’s, it obtains client A’s permission by
sending a message to it. Client A authorizes the computation by using the message
sent by client B to compute a new message that it sends to the cloud. The cloud
uses the message and the clients’ outsourced datasets to compute the intersection, and
sends the result to client B. When client B receives the cloud’s response it decodes the
elements, retrieves the intersection and checks its correctness. If the result is correct
then the client accepts it; otherwise, it realizes the cloud has misbehaved.

The main novelty of VD-PSI is its lightweight verification mechanism that allows a
client to efficiently verify the correctness of the result without having access to its own
outsourced dataset and having any knowledge of the other client’s dataset. To achieve
this, when the clients decide to delegate the computation of the set intersection, they
agree on a secret value β and provide β in an encoded form to the cloud, while the en-
coded data reveals nothing about β to the cloud. The cloud uses the clients’ outsourced
datasets and the encoded β to generate the result. In fact, the value, β, acts as a “trap”
which means if the cloud behaves honestly, β will be inserted into the intersection and
the client can retrieve it. However, if the cloud misbehaves or tampers with the result,
then after unblinding client B gets a random set, which would not contain β with a
high probability. In particular, in order for the cloud to modify or replace the client(s)
data, it needs to know the blinding factors the clients used to protect the datasets but it
does not. Due to the way the data and the intermediate message are blinded, and our
vital observation (stated in section 6.3, Lemma 3) any tampering with the data (without
knowing the blinding factors) makes the result recipient receive a set of random ele-
ments among which value β would not be, with a high probability. Furthermore, the

112

6. Verifiable Delegated PSI on Outsourced Private Datasets

case where the cloud does not carry out the computation correctly, would be equivalent
to the previous scenario (i.e. data tampering) and has the same consequence. Thus, by
checking whether β is included in the result, client B knows whether the result set
is correct. The verification is very lightweight because the only overhead is to check
whether β is included in the result.

6.2.2 VD-PSI Protocol

What follows is a detailed description of VD-PSI protocol followed by the rationale
behind it. We first consider the two-client case, where client A, client B and the cloud
engage in the protocol. We use EpkI (h) and DskI (h) to say that value h is encrypted
using client I’s public key, and decrypted using its secret key, respectively.

a. Cloud-Side Setup. The cloud picks a public parameter: c, that is an upper bound
of the set cardinality. It constructs a field Fp and a pseudorandom function PRF

(similar to our previous protocols). Also, it constructs a vector #»x containing
n = 2c + 3 distinct non-zero random values: xi. Note that after inserting β

in the protocol, the result polynomial (in point-value form) becomes of degree
2c+2; therefore, client needs n = 2c+3 distinct xi values to interpolate a correct
polynomial (in coefficient form), at the end of the protocol. The cloud publishes
the description of the field, value n, vector #»x along with pseudorandom function
PRF.

b. Client-Side Setup and Data Outsourcing. Let client I ∈ {A,B} have a set
S(I), where |S(I)| ≤ c. Each client I performs as follows.

1. Computes a key pair (pkI, skI) for Paillier encryption and publishes the
public key pkI . Also, it picks two random private keys, k(I)

r and k(I)
z for the

pseudorandom function, PRF. All keys are generated according to given
security parameters. Furthermore, it makes sure values xi are not equal to
its set elements.

2. Generates a polynomial representation of the set.

τ (I)(x) =

|S(I)|∏

m=1

(x− s(I)

m),

where s(I)
m ∈ S(I).

113

6. Verifiable Delegated PSI on Outsourced Private Datasets

3. Represents the polynomial in point-value form by evaluating τ (I)(x) at ev-
ery element xi in vector #»x . This yields a vector of y-coordinates: τ (I)(xi),
where xi ∈ #»x .

4. Blinds every y-coordinate, τ (I)(xi). To do that, it first computes pseudoran-
dom values r(I)

i = PRF(k(I)
r , i) and z(I)

i = PRF(k(I)
z , i), and then uses them

to blind the y-coordinates.

∀i, 1 ≤ i ≤ n : o(I)

i = r(I)

i · (τ (I)(xi) + z(I)

i).

5. Sends the blinded dataset, #»o (I) = [o(I)
1 , ..., o

(I)
n], to the cloud.

c. Set Intersection: Computation Delegation. This phase starts when client B
wants the intersection of its set and client A’s set.

1. Client B picks a uniformly random value β R← F∗p that will be inserted into
the two datasets and chooses three fresh keys k(B)

a , k(B)

b and k(B)

r′ that are
used to blind the messages sent by client A to the cloud.

2. Client B constructs a vector, #»e (B). Later on, client A will modify the vec-
tor, and send it to the cloud who can utilize the vector to insert β into client
A’s dataset and switch the client’s blinding factors.

∀i, 1 ≤ i ≤ n : e(B)

i = EpkB(σ(xi) · r′(B)

i · r(B)

i),

where σ(xi) = (xi − β), values r(B)
i are the blinding factors used by client

B in step b.4 and r′(B)
i = PRF(k(B)

r′ , i).
3. Client B sends to client A: #»e (B), β, k(B)

a , k(B)

b , k(B)

r′ , k(B)
z , and its id, ID(B).

4. Client A uses the multiplicative homomorphism of the encryption scheme
to generate #»v (A) and #»v (B) that enable the cloud to multiply each client’s
dataset by a random polynomial and insert β into it. Also, #»v (A) allows the
cloud to switch the blinding factors of client A’s dataset.
∀i, 1 ≤ i ≤ n :

v(A)

i = (e(B)

i)ω
(A)(xi)·(r

(A)
i)−1

= EpkB(r(B)

i · r′(B)

i · ω(A)(xi) · σ(xi) · (r(A)

i)−1),

v(B)

i = ω(B)(xi) · σ(xi) · r′(B)

i ,

where r′(B)
i = PRF(k(B)

r′ , i), key k(B)

r′ was sent by client B in step c.3, r(A)
i

114

6. Verifiable Delegated PSI on Outsourced Private Datasets

are the blinding factors used by clientA in step b.4, ω(A)(x) and ω(B)(x) are
two random polynomials of degree c+ 1 and σ(xi) = (xi − β).

5. ClientA generates #»v ′(A) and #»v ′(B) (using the multiplicative homomorphism
of the encryption scheme). The vectors enable the cloud to preserve the
correctness of the result.
∀i, 1 ≤ i ≤ n:

v′(A)

i = (e(B)

i)ω
(A)(xi)·(−z

(A)
i)+ai

= EpkB((−z(A)

i) · r(B)

i · r′(B)

i · ω(A)(xi) · σ(xi) + ci),

v′(B)

i = (e(B)

i)ω
(B)(xi)·(−z

(B)
i)+bi

= EpkB((−z(B)

i) · r(B)

i · r′(B)

i · ω(B)(xi) · σ(xi) + di),

where ci = ai ·r(B)
i ·r′(B)

i ·σ(xi), di = bi ·r(B)
i ·r′(B)

i ·σ(xi), ai = PRF(k(B)
a , i),

bi = PRF(k(B)

b , i), keys k(B)
a and k(B)

b were sent by client B in step c.3, and
z(I)
i are the values used by client I ∈ {A,B} in step b.4.

6. Client A sends to the cloud: #»v (A), #»v ′(A), #»v (B), #»v ′(B), ID(B), ID(A) , and a re-
quest message, Compute.

d. Set Intersection: Cloud-Side Computation. In this phase, the cloud lever-
ages the additive and multiplicative homomorphism of the encryption scheme to
combine the clients’ datasets with the messages client A sent, and generate the
result.

1. When the cloud receives client A’s message, it uses #»v (A), #»v ′(A) and client
A’s outsourced dataset #»o (A) to switch the dataset’s blinding factors, insert
β to the dataset, and multiply it by a random polynomial: ω(A)(x). This
results in

#»
t (C1) whose elements are computed as follows.

∀i, 1 ≤ i ≤ n:

t(C1)

i =(v(A)

i)o
(A)
i · v′(A)

i

=EpkB((−z(A)

i) · r(B)

i · r′(B)

i · ω(A)(xi) · σ(xi)+

z(A)

i · r(B)

i · r′(B)

i · ω(A)(xi) · σ(xi) · (r(A)

i)−1 · r(A)

i +

r(B)

i · r′(B)

i · σ(xi) · (r(A)

i)−1 · r(A)

i · (ω(A)(xi) · τ (A)(xi) + ai)))

2. The cloud uses #»o (B), #»v (B), #»v ′(B) to insert β into client B’s dataset, and
multiply it by a random polynomial: ω(B)(x). This yields

#»
t (C2).

115

6. Verifiable Delegated PSI on Outsourced Private Datasets

∀i, 1 ≤ i ≤ n:

t(C2)

i =v′(B)

i · EpkB(v(B)

i · o(B)

i)

=EpkB((−z(B)

i) · r(B)

i · r′(B)

i · ω(B)(xi) · σ(xi)+

z(B)

i · r(B)

i · r′(B)

i · ω(B)(xi) · σ(xi)+

r(B)

i · r′(B)

i · σ(xi) · (ω(B)(xi) · τ (B)(xi) + bi)))

3. The cloud combines the values computed in steps d.2 and d.1 to produce
the final result

#»
t (C3).

∀i, 1 ≤ i ≤ n : t(C3)

i = t(C1)

i · t(C2)

i .

4. The cloud sends to client B vector
#»
t (C3) = [t(C3)

1 , ..., t(C3)
n].

e. Set Intersection: Client-Side Result Verification and Retrieval.

1. Client B decrypts the cloud’s response,
#»
t (C3). Then, it unblindes the de-

crypted values using its knowledge of (−ci), (−di), (r(B)
i)−1 and (r′(B)

i)−1.
This yields vector #»g of the following elements.
∀i, 1 ≤ i ≤ n:

gi = (DskB(t(C3)

i) + (−ci) + (−di)) · (r(B)

i)−1 · (r′(B)

i)−1

= ω(B)(xi) · σ(xi) · τ (B)(xi) + ω(A)(xi) · σ(xi) · τ (A)(xi)

2. Client B interpolates a polynomial, φ(x), using n point-value pairs (xi, gi),
extracts its roots, and checks whether β is among them. If it is, it considers
the rest of the (valid) roots as elements of the intersection; otherwise, it
aborts.

Remark 1: In step b.4, client I ∈ {A,B} blinds its private data τ (I)(xi) as o(I)
i =

r(I)
i · (τ (I)(xi)+z(I)

i) to preserve their privacy and to detect unauthorized modifications.
In our protocol, the way each blinded y-coordinate is computed has some similarity
to the way an information-theoretic message authentication code (MAC) is generated,
e.g. in [13], with the difference that we use pseudorandom values rather than truly
random ones. It should be noted that if the client does not blind τ (I)(xi), the cloud can
interpolate the polynomial τ (I)(x) and find the client’s set elements. After blinding,

116

6. Verifiable Delegated PSI on Outsourced Private Datasets

every o(I)
i is a uniformly random value and does not leak any information about τ (I)(xi).

As we will show shortly in section 6.3, if the cloud changes a subset of elements in
#»o (I), in step e.1 after client B unblinds the cloud’s response, it would get vector #»g of
elements some of which would become uniformly random values. However, in this
case, the polynomial interpolated from n pairs of (xi, gi) will not have root β (with
a high probability) if some of gi values are random values. Therefore, the client can
detect the misbehavior. Also, the case where the cloud deviates from the protocol
would be similar to the above scenario and the client can detect it too.

Remark 2: We set n = 2c+3, because in step e.2, polynomial φ(x) is of degree 2c+2

and at least 2c + 3 pairs of (xi, yi) are required to interpolate it. Therefore, given n
pairs of (xi, yi), if they are computed correctly, client B can interpolate φ(x).

Remark 3: In section 2.5, we saw that the set of all roots of polynomial ω(B)(x) ·
τ (B)(x) +ω(A)(x) · τ (A)(x) represents the intersection: S(A) ∩S(B). Note that β is also a
root of polynomial φ(x) = σ(x)·(ω(B)(x)·τ (B)(x)+ω(A)(x)·τ (A)(x)) that clientB gets
after unblinding, where σ(x) = x − β. Hence, a correctly computed result contains
the intersection and value β.

Remark 4: Similar to our previous protocols, for each computation, fresh random
polynomials ω(A)(x) and ω(B)(x) are used, so the result recipient cannot find out any-
thing beyond the intersection about the other client’s set. Also, the cloud cannot learn
the exact number of elements in the client’s set; it only knows the upper bound of the
set cardinality (i.e. c).

Remark 5: Every client I , after outsourcing its private dataset needs to keep locally
only two secret keys, k(I)

r and k(I)
z . Moreover, client B who is interested in the result

generates keys k(B)
a , k(B)

b , k(B)

r′ and value β on the fly for each run of the protocol and it
can discard them after the protocol ends. Furthermore, given p each client I can always
independently generate its own public key NI , such that NI > p+ 2p2 + p3 to preserve
the computation correctness (i.e. to prevent any overflow during homomorphic opera-
tions). To determine the lower bound of NI , we can calculate the maximal value that
message mi in EpkI (mi) may take on as a result of the homomorphic operations in the
protocol. To do so, we start from step c.2 and calculate upper bound of value mi in
each step (note that o(I)

i ∈ Fp). We proceed this up to step d.4, and then we set the

117

6. Verifiable Delegated PSI on Outsourced Private Datasets

lower bound of NI to maximal upper bound of mi, that is p+ 2p2 + p3.

Remark 6: We stress that in VD-PSI (similar to O-PSI, EO-PSI and UEO-PSI) the
clients’ outsourced datasets remain unchanged. Also, at the end of the protocol all
parties can discard all intermediate messages they received.

Remark 7: Similar to most PSI protocols, e.g. [68, 56, 81, 123, 99], we considered
a static malicious cloud. However, there are cases where the cloud can be corrupted
by a stronger, dynamic (or adaptive) malicious adversary. For example, an external
adversary (e.g. a hacker) corrupts the cloud and then a client or the cloud penetrates
the other client’s machine, during the protocol execution. We highlight that at the cur-
rent stage, our protocol cannot withstand such adversaries. For instance, if the cloud
could get access to client B’s machine, then it would be able to learn both clients out-
sourced set elements, the computation result and it could tamper with the computation
result without being detected. It would be desirable to have a protocol that is secure
against adaptive malicious adversaries. However, since the adversary is more power-
ful, it is much harder to protect against. In consequence, protocols secure against these
adversaries can be more complex and less efficient. Also, in some cases, it is even
impossible to protect against these adversaries [56]. At this stage, we have to make a
trade-off between security and efficiency, and assume the adversary is static. We hope
we can address this problem in future work.

Remark 8: VD-PSI does not deal with malicious clients. The protocol would have pro-
vided stronger security, if it could withstand malicious clients too. A malicious client
may behave arbitrarily e.g. to affect the result correctness. For instance, in the protocol,
a malicious client A can set the messages, sent to the cloud, in a way that the intersec-
tion always looks empty to client B while the verification output indicates the result
has been computed correctly. Therefore, as a result of clients misbehaviours, the result
correctness can be affected. In order to make a multi-party protocol secure against ma-
licious parties, researchers usually utilize techniques such as zero-knowledge proofs
[75] or cut-and-choose approach [80] that make the parties follow the protocol cor-
rectly and VD-PSI can adopt these techniques too. Nevertheless, these techniques
often introduce high (communication or computation) costs [45].

118

6. Verifiable Delegated PSI on Outsourced Private Datasets

6.2.3 Extensions

In this section, we first outline how the two-client VD-PSI protocol can be extended
to multi-client VD-PSI. After that, we show how in our VD-PSI we can reduce the
storage space that client A who authorizes the computation needs.

6.2.3.1 Multi-client VD-PSI

In the following, we show how we can turn two-client VD-PSI into m-client VD-PSI,
where m > 2. We denote the result recipient by client B and the other clients by Al,
where 1 ≤ l ≤ y, y = m− 1.

In step c.3, clientB sends to every clientAl the same message as it does in the two-
client setting. Also, each clientAl takes the same steps as it does in the previous setting,
except steps c.4 and c.5. In step c.4, it replaces #»v (B) with #»v (Bl) containing elements
v

(Bl)

i = EpkB(ω(Bl)(xi) ·σ(xi) ·r′(B)
i). Moreover, in step c.5, it replaces #»v ′(B) with #»v ′(Bl)

that comprises elements v′(Bl)i = EpkB((−z(B)
i) · r(B)

i · r′(B)
i ·ω(Bl)(xi) ·σ(xi) + di). Note

that ω(Bl)(x) is a random polynomial picked by client Al. Similar to the two-client
case, in step d.1, the cloud computes

#»
t (C1)

l for each client Al. Also, in step d.2, the
cloud computes

#»
t (C2) as follows.

∀i, 1 ≤ i ≤ n : t(C2)

i = v′(B)

i · (v(B)

i)o
(B)
i ,

where v′(B)
i =

y∏
l=1

v
′(Bl)
i and v(B)

i =
y∏
l=1

v
(Bl)

i . We highlight that in the above, client B’s

polynomial, τ (B)(x), is multiplied by the sum of the random polynomials picked by
the other clients (i.e. client Al, ∀l, 1 ≤ l ≤ y). Accordingly, in step d.3, the cloud
computes the elements of

#»
t (C3) as follows.

∀i, 1 ≤ i ≤ n : t(C3)

i = t(C2)

i ·
y∏

l=1

t(C1)

l,i

Then, it sends
#»
t (C3) to client B. Finally, in step e.1, client B computes #»g whose

elements are generated as below. ∀i, 1 ≤ i ≤ n:

gi = (DskB(t(C3)

i) + y · (−ci) + y · (−di)) · (r(B)

i)−1 · (r′(B)

i)−1

= ω(B)(xi) · σ(xi) · τ (B)(xi) +

y∑

l=1

ω(Al)(xi) · σ(xi) · τ (Al)(xi),

119

6. Verifiable Delegated PSI on Outsourced Private Datasets

where ω(B)(x) =
y∑
l=1

ω(Bl)(x). The rest of the steps remain unchanged. As we explained

in section 4.2.3.1 and it is proven in [75], in the multi-client setting, even if client B
colludes with y − 1 clients, it cannot learn any information (beyond the intersection)
about the non-colluding client’s set elements.

Remark 1: In the multi-client case, each client encrypts the elements of vector #»v (B)
j ;

whereas, in the two-client case it does not need to do that. Nonetheless, regardless of
the number of clients, every client’s computation complexity is O(c).

Remark 2: Interestingly, verification complexity at the verifier-side is independent of
the number of clients. Also, the number of messages every client, except the client who
is interested in the result, sends and receives is independent of the number of clients,
too. However, the client who is interested in the result sends the same message to all
other clients.

6.2.3.2 Reducing Authorizer’s Required Storage Space

In VD-PSI, similar to EO-PSI and UEO-PSI, we can leverage a hash table to reduce
the storage space that client A needs to authorize the computation (also the use of a
hash table reduces the computation cost of the result retrieval for client B). In the
following, we briefly outline how this can be done. For the sake of simplicity we
consider the two-client case, but the adjustments can be directly applied to the multi-
client setting. In the beginning, the hash table parameters are picked and made public
by the cloud. In the client-side setup phase, each client first maps its set elements to
the hash table bins, pads each bin up to d elements and then encodes the elements of
each bin in the same way as they do in VD-PSI. In this case, the clients (when they
delegate the computation) insert a random βj in each outsourced bin HTj, to ensure the
operation on each bin is performed correctly. In order for the clients to generate βj,
they can use a shared key, βk, where βj = PFR(βk, j). Client B keeps the key that
allows it to regenerate βj in the verification phase. When it receives the result from the
cloud, it checks whether each bin HTj contains βj. This setting enables clientB, in step
c.3, to send only one bin at a time to client A who operates on the bin and forwards
it to the cloud who similarly operates on each bin and sends the result to client B. As
a result, the storage space client A needs to authorize the computation reduces from

120

6. Verifiable Delegated PSI on Outsourced Private Datasets

O(c) to O(d) (as we showed in section 4.5.1, d = 100 and d < c).

6.3 Security Definition

In this chapter, similar to our previous protocols, we consider a static adversary who
controls one of the parties at a time (i.e. non-colluding static adversaries). The defini-
tion and model are according to [52, 67]. Without loss of generality, we consider three
parties engaging in the protocol, a cloud C, and two clients, A and B, where client A
authorizes the computation and client B is interested in the result. Similar to O-PSI
and EO-PSI, we assume there exists an infrastructure, e.g. PKI, via which client A
can authenticate, and then authorize the other client. We allow an adversary who cor-
rupts C to be malicious. So it may arbitrarily deviate from the prescribed protocol.
Moreover, we allow an adversary who corrupts a client to be semi-honest.

We define a three-party protocol, VD-PSI, computing function F where F : Λ×2U×
2U → Λ×Λ×f∩. Also, Λ denotes the empty string, 2U denotes the powerset of the set
universe and f∩ denotes the set intersection function. For every tuple of inputs Λ, S(A)

and S(B) belonging to C,A and B respectively, the function outputs nothing to C and
A, and outputs f∩(S(A), S(B)) = S(A) ∩ S(B) to B. To show the protocol is secure, we
define an ideal model, which satisfies all the security needs. In the ideal model, there
is an incorruptible trusted third party (TTP) which helps with the functionality. As it
is defined in section 2.9, a protocol is said to be secure if for every adversary in the
real model there is an adversary in the ideal model that can simulate the real model’s
adversary.

Real Model: In this setting, protocol VD-PSI is executed between partiesA,B, C and an
adversary denoted by AJ that is allowed to corrupt one party, where J ∈ {A,B,C}.
In the beginning of the protocol, each party I ∈ {A,B} receives its private input
S(I), the protocol’s public parameters, random coins r, and an auxiliary input z, while
the cloud C receives the public parameters, a set of random coins r, and an auxiliary
input z. At the end of the execution, an honest party outputs whatever is prescribed
by the protocol and the adversary outputs its view. The joint output of the real model
execution of VD-PSI between the parties in the presence of the adversary AJ is defined
as REAL VD-PSI

AJ (z) (Λ, S(A), S(B)).

Ideal Model: The ideal model takes place between parties A, B, C and a simulator

121

6. Verifiable Delegated PSI on Outsourced Private Datasets

SIMJ that is allowed to corrupt at most one party at a time. Each party receives the same
input as the corresponding party in the real model. An honest party always sends its
input to the TTP. The corrupted party may abort or send arbitrary input. The cloud,
C, receives c (i.e. c ≥ |S(I)|, I ∈ {A,B}) from the TTP. The TTP computes the set
intersection and sends the result to B. If the TTP receives an abort message as an input,
it sends B the special symbol ⊥. The joint output of the parties in the ideal model in
the presence of SIMJ is defined as IDEALFSIMJ (z)(Λ, S

(A), S(B)).

Definition 16. Let VD-PSI be a protocol and F a deterministic function defined as above.

Protocol VD-PSI is said to securely compute F in the presence of static adversaries if for

every probabilistic polynomial time (PPT) adversary AJ in the real model, there exists

a PPT adversary SIMI in the ideal model such that ∀J, J ∈ {A,B,C} :

{IDEAL
F

SIMJ (z)(Λ, S
(A), S(B))}S(A),S(B)

c≡ {REAL
VD-PSI
AJ (z)(Λ, S

(A), S(B))}S(A),S(B)

6.4 VD-PSI Security Proof

In this section, we sketch the security proof of the protocol. To this end, first we show
that the cloud’s misbehaviors can be detected with a high probability, and then we
provide the main theorem.

Recall, the client encodes its set as blinded y-coordinates having the following
form:

oi = ri · (τ(xi) + zi),

where oi 6= 0, ri = PRF(kr, i) and zi = PRF(kz, i). If oi = 0 the client replaces kr and
kz with new random keys and encodes τ(xi) again until ∀i, 1 ≤ i ≤ n : oi 6= 0. Note
that oi is uniformly distributed in F∗p. We show that if the cloud applies any change to
oi, this will make the y-coordinate a uniformly random value.

Lemma 2. Given oi = ri · (τ(xi) + zi), where ri and zi are two independent pseu-

dorandom values that are unknown to the cloud, if the cloud changes oi to o′i, then

τ ′(xi) = r−1
i · o′i − zi becomes a uniformly random value.

Proof. Since values ri and zi are picked uniformly at random and independently of
each other, their (multiplicative and additive) inverse are uniformly random values too.
Therefore, when oi 6= o′i, value τ ′(xi) is a uniformly random value in Fp.

122

6. Verifiable Delegated PSI on Outsourced Private Datasets

In the protocol, in step e.1, client B after decrypting the cloud’s response obtains
blinded values of the form fi = ei ·gi+zi, where ei and zi are pseudorandom values. If
the cloud misbehaves (e.g. deviates from the protocol, modifies the outsourced client
datasets, etc), some fi are changed to f ′i , and Lemma 2 implies that g′i = e−1

i · (f ′i − zi)
will be a uniformly random value. So, any misbehavior of the cloud turns some of
values gi into uniformly random values.

Now, we show that given a set of y-coordinates some of which are uniformly ran-
dom values, client B interpolates a polynomial (in step e.2 in the protocol), that will
not contain the specific root, β, with a high probability.

Lemma 3. Let polynomial τ(x) be interpolated from S = {(x1, y1), ..., (xn, yn)},
and have root β (where β ∈ F∗p) such that ∀i, 1 ≤ i ≤ n : β 6= xi. Let S ′ =

{(x1, y
′
1), ..., (xn, y

′
n)}, where at least one of y′i is a uniformly random value and the

rest of them are equal to the y-coordinates in S (i.e. y′j = yj). Let polynomial τ ′(x) be

interpolated from S ′. The probability that τ ′(x) has root β is negligible.

Proof. Given S ′, we interpolate a unique polynomial, τ ′(x), of degree at most n − 1.
According to the Lagrange interpolation, the polynomial is

τ ′(x) =
n∑

i=1

y′i ·
n∏

k=1
i 6=k

x− xk
xi − xk

We evaluate τ ′(x) at β:

τ ′(β) =
n∑

i=1

y′i ·
n∏

k=1
i 6=k

β − xk
xi − xk

As ∀i, 1 ≤ i ≤ n : β 6= xi, we would have
n∏
k=1
i6=k

β−xk
xi−xk

6= 0. Since, at least one of

y′i is uniformly random, value y′i ·
n∏
k=1
i 6=k

β−xk
xi−xk

is uniformly random. Therefore, τ ′(β) is

uniformly random. Thus, Pr[τ ′(β) = 0] = 1
p

which is negligible.

Now we are ready to prove that the client can detect cloud misbehavior with high
probability.

123

6. Verifiable Delegated PSI on Outsourced Private Datasets

Theorem 5. Let clients A and B have sets S(A) and S(B) respectively, also let S∩ =

S(A) ∩ S(B). In the VD-PSI protocol, if the cloud sends S ′ (where S ′ 6= S∩) to client,

the client can detect it with high probability.

Proof. Due to Lemma 2, the cloud’s misbehavior turns some of the y-coordinates (rep-
resenting S∩) into uniformly random values. Also, in the protocol, β is chosen uni-
formly at random from F∗p, so the probability that β = xk for some k, 1 ≤ k ≤ n, is
negligible. Due to Lemma 3, if the client interpolates a polynomial by using a set of
y-coordinates where at least one of them is a uniformly random value, the probability
that the polynomial would have β as a root is negligible. Thus, if the cloud computes
an incorrect intersection the client can detect this with high probability through the
absence of β from the intersection.

Finally, we prove our main theorem.

Theorem 6. If the homomorphic encryption scheme is semantically secure and PRF is

a collision-resistant pseudorandom function, then the protocol is secure in the presence

of (1) a malicious cloud and honest clients, (2) a semi-honest client and honest cloud.

Proof. We consider three cases where each party is corrupted at a time. We consider
the case where all parties want to engage in the computation of the intersection. If
one party does not want to continue in the protocol, the views can be simulated in the
same way up to the point where the execution stops. This includes the case where
party A wants to engage in the computation of the intersection, i.e. it authorizes the
computation. If party A does not want to proceed with the protocol, the views can be
simulated in the same way up to the point where the execution stops.

Case 1: Cloud is Corrupted. We construct a simulator, SIMC , in the ideal model that
uses the adversary, AC , as a subroutine. Simulator SIMC executes as follows.

1. Picks two random sets S(E) and S(D), where |S(E)|, |S(D)| ≤ c. Also, it chooses
keys k(E)

r , k(E)
z , k(D)

r , k(D)
z , k(E)

b , k(E)
a , k(E)

r′ .
2. Generates polynomials τ (E)(x) and τ (D)(x) representing the sets.

τ (I)(x) =

|S(I)|∏

m=1

(x− s(I)

m),

124

6. Verifiable Delegated PSI on Outsourced Private Datasets

where I ∈ {D,E} and s(I)
m ∈ S(I). Then, it evaluates the polynomials at every

element in #»x and blinds the evaluated values. The results are two vectors #»o (E)

and #»o (D) whose elements are generated as below.
∀i, 1 ≤ i ≤ n :

r(I)

i = PRF(k(I)

r , i), z
(I)

i = PRF(k(I)

z , i), o
(I)

i = r(I)

i · (τ (I)(xi) + z(I)

i).

3. Picks a random non-zero value: β′, and constructs polynomial σ′(x) = (x−β′).
Then, it picks two random polynomials, ω(E) and ω(D), of degree c + 1, and
computes #»v (E) and #»v (D) as follows. ∀i, 1 ≤ i ≤ n:

v(D)

i = EpkE(r(E)

i · r′(E)

i · ω(D)(xi) · σ′(xi) · (r(D)

i)−1),

v(E)

i = r′(E)

i · ω(E)(xi) · σ′(xi),

where r′(E)
i = PRF(k(E)

r′ , i).
4. Computes two vectors #»v ′(E) and #»v ′(D) whose elements are computed as follows.
∀i, 1 ≤ i ≤ n :

a(E)

i = PRF(k(E)

a , i), b(E)

i = PRF(k(E)

b , i), z(I)

i = PRF(k(I)

z , i),

v′(D)

i = EpkE((−z(D)

i) · r(E)

i · r′(E)

i · ω(D)(xi) · σ′(xi) + c(E)

i),

v′(E)

i = EpkE((−z(E)

i) · r(E)

i · r′(E)

i · ω(E)(xi) · σ′(xi) + d(E)

i),

where I ∈ {D,E}, c(E)
i = a(E)

i · r(E)
i · r′(E)

i ·σ′(xi), d(E)
i = b(E)

i · r(E)
i · r′(E)

i ·σ′(xi).
5. Invokes AC and feeds it with #»o (D), #»o (E), #»v (D), #»v (E), #»v ′(D), #»v ′(E), ID(A), ID(B),

message Compute. Then, it receives
#»
t (C) from AC , decrypts the elements, and

removes the blinding factors. This yields vector #»g ′.
6. Interpolates a polynomial using the n point-value pairs (xi, g

′
i) (where g′i ∈ #»g ′),

and extracts the roots of the polynomial. It checks whether β′ is among the roots.
If it is not, aborts and instructs the TTP to send the abort message, ⊥, to client B.
Otherwise, it asks TTP to send the result to the client.

7. Outputs whatever the adversary outputs and terminates.

First, we consider the adversary’s output. In the real model its view contains #»o (A),
#»o (B), #»v (B), #»v (A), #»v ′(A), #»v ′(B), ID(A), ID(B), Compute and Λ. In the real model, the elements
in #»o (A), #»o (B), #»v (B) are blinded by the outputs of a pseudorandom function using ran-
dom secret keys. The same is true in the ideal model for the elements in #»o (D), #»o (E),

125

6. Verifiable Delegated PSI on Outsourced Private Datasets

#»v (E). Since the outputs of the pseudorandom functions are computationally indistin-
guishable, the distributions of #»o (A), #»o (B), #»v (B) and #»o (D), #»o (E), #»v (E) are computation-
ally indistinguishable, too. If the homomorphic encryption is semantically secure then
#»v (A), #»v ′(A), #»v ′(B) and #»v (D), #»v ′(D), #»v ′(E) are computationally indistinguishable, as they
contain the elements encrypted using the homomorphic encryption scheme. Moreover,
in both models, the protocol outputs Λ (i.e. empty) to the adversary. Furthermore,
strings ID(A), ID(B) and Compute are identical in both models, so they are computation-
ally indistinguishable. We conclude that the adversary’s outputs in both models are
computationally indistinguishable.

Now we consider client B’s output. We show the honest client B aborts with the
same probability in both models. In the ideal model, if the cloud misbehaves, SIMC

would detect it with a high probability according to Theorem 5. In this case, it will
send ⊥ to the client and accordingly the client will abort. Note that in this case, SIMC

has not found the value β′ in the intersection. In the real model, since the client knows
the value β it can do the same checks as SIMC does. So in both models, the client
aborts with the same probability if the cloud misbehaves. Finally, since client A has
no output, its output is identical in both models.

From the above we conclude that:

{IDEAL
F

SIMC(z)
(Λ, S(A), S(B))}S(A),S(B)

c≡ {REAL
VD-PSI
AC(z)

(Λ, S(A), S(B))}S(A),S(B) .

Case 2: Client B is Corrupted. In this case, we consider a semi-honest adversary
that controls client B. In the real execution, the joint outputs of the parties include
only client B’s view containing vector

#»
t (C3), where the vector comprises the set inter-

section. Now we construct a simulator, SIMB, in the ideal model that uses adversary AB

as a subroutine. The simulator executes as follows.

1. Invokes adversary AB, and receives #»e ′(B), S(B), β′, k(B)

a′ , k(B)

b′ ,k(B)

r′′ , k(B)

z′ from it.
2. Sends S(B) to TTP and receives the result f∩(S(A), S(B)). It picks two random

sets S(E) and S(D), where S(E) ∩ S(D) = f∩(S
(A), S(B)) and |S(D)|, |S(E)| ≤ c. It

constructs two polynomials τ (E)(x) and τ (D)(x) representing set S(E) and S(D),
respectively.

3. Picks two uniformly random polynomials, ω(E)(x) and ω(D)(x) of degree c + 1.
Moreover, it picks two keys k(A)

r′ and k(A)

z′ .
4. Computes two vectors #»v (D) and #»v ′(D) whose elements are computed as follows.

126

6. Verifiable Delegated PSI on Outsourced Private Datasets

∀i, 1 ≤ i ≤ n :

v(D)

i = (e′(B)

i)ω
(D)(xi)·(r

′(A)
i)−1

,

v′(D)

i = (e′(B)

i)ω
(D)(xi)·(−z

′(A)
i)+a′i ,

where a′i = PRF(k(B)

a′ , i), r′(A)
i = PRF(k(A)

r′ , i) and z′(A)
i = PRF(k(A)

z′ , i).
5. Computes vector

#»
t ′(C1) whose elements are computed as follows.

∀i, 1 ≤ i ≤ n : t′(C1)

i = v′(D)

i · (v(D)

i)r
′(A)·(τ (D)(xi)+z

′(A)
i)

6. Generates vectors #»v (E) and #»v ′(E) whose elements are computed as below.
∀i, 1 ≤ i ≤ n:

v(E)

i = (e′(B)

i)ω
(E)(xi)·(τ (E)(xi)+z

′(B)
i)

v′(E)

i = (e′(B)

i)ω
(E)(xi)·(−z

′(B)
i)+b′i ,

where b′i = PRF(k(B)

b′ , i) and z′(B)
i = PRF(k(B)

z′ , i).
7. Computes vector

#»
t ′(C2) comprising the following elements.

∀i, 1 ≤ i ≤ n : t′(C2)

i = v(E)

i · v′(E)

i .

8. Generates
#»
t ′(C3) containing elements t′(C3)

i computed as follows.

∀i, 1 ≤ i ≤ n : t′(C3)

i = t′(C1)

i · t′(C2)

i .

9. Feeds
#»
t ′(C3) to AB. Then, it outputs whatever the adversary outputs.

Since the other parties have output Λ (i.e. empty), we only need to consider the
adversary’s view. In the real model, given vector

#»
t (C3), the adversary decrypts and un-

blinds it to get vector #»g . Then, the adversary interpolates a polynomial of degree 2d+3

of the form: φ(x) = ω(A)(x) · τ (A)(x) + ω(B)(x) · τ (B)(x) = µ · gcd(τ (A)(x), τ (B)(x)),
where polynomial gcd(τ (A)(x), τ (B)(x)) represents the intersection. Similarly, in the
ideal model, given

#»
t ′(C3), the adversary decrypts, unblinds it and then interpolates

a polynomial of degree 2d + 3 which has form φ′(x) = ω(D)(x) · τ (D)(x) + ω(E)(x) ·
τ (E)(x) = µ′ ·gcd(τ (A)(x), τ (B)(x)). Also, as it was proven in [75, 20], µ and µ′ are uni-
formly random polynomials and the probability that their roots represent set elements
is negligible; thus, φ(x) and φ′(x) only contain information about the set intersection

127

6. Verifiable Delegated PSI on Outsourced Private Datasets

and have the same distribution in both models. Furthermore, random values β and β′

have the same distribution in both models, as they are picked by a semi-honest adver-
sary. Finally, the output, f∩(S(A), S(B)), is identical in both views. From the above we
conclude that:

{IDEAL
F

SIMB(z)
(Λ, S(A), S(B))}S(A),S(B)

c≡ {REAL
VD-PSI
AB(z)

(Λ, S(A), S(B))}S(A),S(B) .

Case 3: Client A is Corrupted. In this case, we consider a semi-honest adversary
which controls client A. We construct a simulator, SIMA, that can simulate client A’s
view in the ideal model. The simulator uses adversary AA as a subroutine. Then, we
show that the views in the real and ideal model are indistinguishable. The simulator
performs as follows.

1. Picks n values and encrypts them using the encryption scheme. The result is
vector #»e ′(B) of n encrypted values.

2. Chooses four random keys: k(B)

a′ , k
(B)

b′ , k
(B)

r′′ and k(B)

z′ . Also, it picks a value, β′,
uniformly at random from the field: β′ R← F∗p.

3. Invokes adversary AA, and feeds it with k(B)

a′ , k
′(B)

b′ , k(B)

r′′ , k
(B)

z′ , β
′ and ID(B).

4. Outputs whatever the adversary outputs.

Now we explain why the two views are indistinguishable. In the real model, keys
k(B)
a , k(B)

b , k(B)

r′ and k(B)
z are random keys for a pseudorandom function. Similarly, in

the ideal model, keys k(B)

a′ , k
(B)

b′ , k
(B)

r′′ and k(B)

z′ are random values for the pseudorandom
function. So, the keys are computationally indistinguishable. Moreover, both β and β′

are picked uniformly at random from the same field, therefore they are indistinguish-
able. Furthermore, the id, ID(B), is identical in both views. Also, the client receives
empty output from the protocol in both models. From the above discussion we con-
clude that:

{IDEAL
F

SIMA(z)
(Λ, S(A), S(B))}S(A),S(B)

c≡ {REAL
VD-PSI
AA(z)

(Λ, S(A), S(B))}S(A),S(B) .

128

6. Verifiable Delegated PSI on Outsourced Private Datasets

Property VD-PSI [68] [82]
Private Against the Cloud X X X

Client-to-client Computation Authorization X X X

Non-interactive Client-side Setup X × X

Secure Repeated PSI Delegation X × X

Multiple Clients X X X

Verifying the Computation Integrity X X X

Not Using Expensive Generic Proof Systems (e.g. Zero Knowledge) X X ×

Overall Communication Complexity O(c) O(c) O(c)

Overall Computation Complexity O(c) O(c) O(c)

Verification Computation Complexity O(k) O(λk) O(c)

Table 6.1: Comparison of the properties of verifiable delegated PSI protocols. We denote the
set cardinality upper bound by c, set intersection cardinality by k, and the security parameter
by λ.

6.5 Verifiable Delegated PSI Protocol Comparison

We evaluate VD-PSI by comparing its properties to those protocols that support verifi-
able delegated PSI [68, 82] and preserve the privacy of the intersection in the cloud. We
also compare the protocols in terms of communication, computation and verification
complexity. Table 6.1 summarises the results.

Properties. All the three protocols protect clients data privacy, ensure that the com-
putation can be carried out with the clients’ consent, and only an authorized client
receives the result. In VD-PSI and [82], clients can independently prepare and upload
their private data, while this is not the case in [68], because it requires clients to interact
with each other in order to jointly generate a key for the pseudorandom function used
to encode the datasets. Both VD-PSI and [82] support secure repeated PSI delegation,
so clients can prepare and upload their private data to the cloud once, but delegate the
computation to it an unlimited number of times without leaking any information to
the cloud. Nevertheless, [68] supports only one-off PSI delegation, so clients need to
locally re-prepare their data each time they delegate the computation. Also, all the pro-
tocols support multiple clients, and allow the result recipient to verify the correctness
of the computation result.

Communication Complexity. In VD-PSI, the communication complexity for clientB
who receives the result is O(c), where c is the upper bound of set cardinality. Because
client B sends to client A vector #»e (B) containing n = 2c + 3 encrypted values, in

129

6. Verifiable Delegated PSI on Outsourced Private Datasets

step c.3. The communication complexity for client A who grants the computation is
O(c), because the client, in step c.6, sends to the cloud #»v (A), #»v ′(A), #»v ′(B), #»v (B) where
each of the first three vectors contains n encrypted elements and the last one contains
n random elements of the field. The communication complexity for the cloud is O(c).
As, in step d.4, it sends to client B vector

#»
t (C3) that contains n encrypted elements.

Hence, the overall communication complexity of our protocol is O(c). The parties
overall communication complexity in multi-client VD-PSI is also linear and similar to
theirs in multi-client O-PSI.

The protocol in [68] has also O(c) communication complexity. In [82], two pro-
tocols dealing with a malicious adversary are proposed. The overall communication
complexity of each protocol is linear to the total number of computation inputs, so it
is O(c). In one of the protocols, the cloud broadcasts all the encrypted inputs to the
clients, while in the other, the cloud broadcasts the hash value of the encrypted inputs.

Although all the three protocols have overall linear communication complexity,
most messages in VD-PSI are ciphertext of Paillier encryption, in [82] ciphertext of
fully homomorphic encryption, and in [68] ciphertext of symmetric key encryption.

Computation Complexity. Since computation complexity of VD-PSI is dominated
by the exponentiation operations, we evaluate its computational cost by counting the
number of such operations. Client B in step c.2 carries out n exponentiations to en-
crypt the elements of #»e (B). Furthermore, in step e.1 it performs n exponentiations to
decrypt the elements of

#»
t (C3). Client A carries out n exponentiations in steps c.4 and

2n exponentiations in step c.5. The cloud carries out 2n exponentiations in step d.1, 2n

exponentiations in step d.2, and n exponentiations in step d.3. In total, 10n exponen-
tiation operations are carried out, so the overall computation complexity is O(c). In
VD-PSI, the verifier only checks whether β is among the elements of the intersection.
Therefore, the verification computation complexity involves at most O(k) compari-
son operations. The parties overall computation complexity in multi-client VD-PSI is
linear too and it is similar to the parties computation complexity in multi-client O-PSI.

The computation complexity of the two protocols dealing with a malicious ad-
versary in [82] is dominated by fully homomorphic encryption operations. In each
protocol, the overall number of such operations is linear to the size of the inputs, O(c).
Note, the protocols are designed for generic computation and the exact computation
complexity for PSI is not clear. Therefore, the overall computation complexity for
each protocol is at least O(c). Moreover, in order for each client to verify the com-

130

6. Verifiable Delegated PSI on Outsourced Private Datasets

putation correctness, it needs to access all the (encrypted) inputs and perform generic
proof system operations linear to the number of inputs. Therefore, the verification
complexity at the verifier-side is O(c), too. While, in [68] each participant’s over-
all computation complexity is O(c). In order for the client to verify the integrity of
the result, it checks whether λ copies of all intersection elements exist in the result.
So, its verification complexity is O(λk) where λ and k are the security parameter and
intersection cardinality, respectively.

Thus, the overall computation complexity of all the schemes is linear, where VD-
PSI uses Paillier encryption, [82] uses fully homomorphic and [68] uses symmetric
key encryption. The verification mechanisms in [82] is based on expensive generic
proof systems, while [68] and VD-PSI utilize lightweight mechanisms.

It should be noted that, in VD-PS, after client outsources its dataset, it has to keep
locally only two secret keys. During the computation, the client who is interested in
the result generates four values that it needs to keep until it retrieves the result. At the
end of the protocol, it can discard the four values. In contrast, a variant of the protocol
in [82] requires clients to have the hash value of their encrypted inputs for verification.
This introduces storage overhead linear to the number of its outsourced inputs. Similar
to VD-PSI, clients in [68] need to locally store only the secret keys for a pseudorandom
function in order to verify the computation result.

Moreover, we highlight that even though O-PSI and VD-PSI have the same (com-
munication and) computation complexities, O-PSI is more efficient than VD-PSI. The
reason is that in VD-PSI, in the computation delegation phase, client A sends four
vectors to the cloud, while in O-PSI it sends only one vector. Therefore, in VD-PSI,
the cloud receives more messages from the clients and it performs more homomorphic
operations on them. So its computation cost is more than its cost in O-PSI.

In conclusion, although [68] is faster than the other two protocols, VD-PSI enjoys
two properties that [68] lacks. First, it allows clients to outsource their datasets once
but verifiably delegate the computation to the cloud an unlimited number of times (i.e.
it supports secure repeated PSI delegation). Second, it supports non-interactive setup
at the client-side. As we explained in chapter 1, these properties are vital in the real
world cloud computing setting. Compared to [82], VD-PSI offers the same security
properties much more efficiently.

131

6. Verifiable Delegated PSI on Outsourced Private Datasets

6.6 Concluding Remarks

In this chapter, we proposed VD-PSI, a protocol that supports secure repeated PSI
delegation and also allows clients to efficiently verify the correctness of the compu-
tation result that the cloud generates. As we have shown, the protocol also protects
the confidentiality of the outsourced data and the computation result. The protocol
allows clients to independently outsource their private data to the cloud, and later on
verifiably delegate the computation of PSI to it. VD-PSI enables a result recipient to
efficiently verify the correctness of the result, without the need to know its own out-
sourced dataset and the other clients’ datasets. VD-PSI offers a combination of features
that allows businesses to get the full benefits of the cloud in a more cost-effective way.

132

Chapter 7

Conclusions

7.1 Contributions

Outsourcing data storage and computation to the cloud are becoming common practice.
PSI is a key protocol with a broad range of applications that parties want to outsource.
Nonetheless, existing PSI protocols cannot be run securely on outsourced private data.
In particular, traditional PSI protocols require parties to have their sets locally and
jointly compute the result. Furthermore, those PSI protocols designed to take advan-
tage of the cloud’s computation capabilities, support only one-off PSI delegation, so
clients need to either download, locally re-prepare, and upload the data each time the
computation is delegated or have a local copy of the data. Moreover, those protocols
that support repeated PSI delegation are either very inefficient or not fully private and
leak information to the cloud. Therefore, there is a pressing need for efficient protocols
that enable the clients to run PSI on their outsourced data while protecting data privacy
from the cloud.

The main contribution of this thesis is the design of four protocols that support
repeated PSI delegation. Our first protocol, O-PSI [1], enables multiple clients to in-
dependently store their private data in the cloud. Later on, the clients can get together
and delegate to the cloud the computation of PSI on their private data. The protocol
also allows the outsourced sets to be utilized securely an unlimited number of times
without the need to download and re-prepare them again. In this process, the cloud
cannot figure out the clients’ set elements, the intersection and the intersection cardi-
nality, and also the result recipient cannot learn anything beyond the intersection. The
protocol enables the clients to prepare, and outsource their data independently without
interacting with each other or having any knowledge of others. Our protocol ensures

133

7. Conclusions

that the intersections can only be computed with the clients’ consent. The protocol
uses a single cloud and it does not involve a trusted third party.

Our second protocol, EO-PSI [3], is more efficient than O-PSI, as it does not use
any public key encryption scheme and the result recipient can retrieve the intersection
faster than it can do in O-PSI. We implemented both protocols and analyzed their per-
formance. The analysis indicates that EO-PSI is 1-2 orders of magnitude faster than
O-PSI. The third protocol is UEO-PSI, a protocol that supports dynamic data, and al-
lows clients to update their outsourced data with low communication and computation
costs.

We also proposed VD-PSI [2], a protocol that lets clients efficiently verify the
integrity of the computation delegated to the cloud. The protocol considers scenarios
where the cloud may arbitrarily misbehave (e.g. deviate from the protocol, tamper with
the clients’ outsourced data, the computation result) and provide an incorrect result.
The main novelty of this protocol is a lightweight verification mechanism.

7.2 Directions for Future Research

One direction of future research is to improve the performance of the protocols. One
possible technique is to use permutation-based hashing [95] to reduce the bit-length of
the set elements. In the following, we briefly explain the technique and our suggestion.
Let e = e1||e2 be the bit representation of element e, H be a hash function and ⊕ be
the XOR operation. To insert element e into the hash table, we compute its address as:
j = e1⊕H(e2), and store e2 in that address. Thus, instead of inserting the entire element,
we store a shorter representation of it in the table. Permutation-based hashing allows
us to use a smaller field to represent elements. With a smaller field, the polynomial
operations, especially factorization, would be faster.

Another possible future research direction is to extend UEO-PSI protocol in a way
that can support computation verification without leveraging any public key encryption
scheme (i.e. a combination of VD-PSI and UEO-PSI that does not use a public key
encryption scheme). One way to do is to use a (non-colluding) proxy server that is
not necessarily trusted. In this setting, the clients distribute the messages, sent in the
computation delegation phase, over the cloud and the proxy server. This will eliminate
the need for a public key encryption scheme used in VD-PSI and prevent the cloud
from learning information from the messages sent to it. In the new variant, the client

134

7. Conclusions

will be able to securely update its outsourced data, delegate PSI to the cloud and ef-
ficiently verify the computation result. To verify the integrity of a bin’s contents, the
client can pick random value β, encode it and send it to the cloud. The cloud combines
the encoded message with the content of the related bin and sends the result back to the
client. Given the result, the client decodes it, interpolates a polynomial and evaluates
the polynomial at β. If the result is zero, the bin’s content is intact, otherwise it has
been tampered with.

Another potential direction is to design delegated privacy preserving protocols that
support more set operations on outsourced private data, such as delegated set union
that has applications such as data collection for statistics. For example, a research
group wants to collect information from different hospitals about patients with a sparse
disease, while the hospitals want to protect their data privacy [63] and do not want to
reveal what parts of the information belong to them. A combination of polynomial
properties and homomorphic encryption (e.g. partially or somewhat homomorphic
encryption) will be a suitable building block for the delegated set union protocol.

Furthermore, strengthening the security of the protocols is another direction for
future research. In particular, we can improve our protocols to withstand malicious
clients (in addition to the malicious cloud) who may deviate from the protocol. Tech-
niques like zero-knowledge proofs could help in dealing with malicious parties but
impose high costs. Designing mechanisms that could provide similar guarantees in
a more efficient manner would be desirable. Moreover, we could extend the proto-
cols to deal with dynamic adversaries who are stronger than the static ones which we
considered in this research.

135

References

[1] AYDIN ABADI, SOTIRIOS TERZIS, AND CHANGYU DONG. O-PSI: delegated
private set intersection on outsourced datasets. In ICT Systems Security and Pri-

vacy Protection - 30th IFIP TC 11 International Conference, SEC 2015, Ger-

many., pages 3–17, 2015. 6, 47, 133

[2] AYDIN ABADI, SOTIRIOS TERZIS, AND CHANGYU DONG. VD-PSI: verifiable
delegated private set intersection on outsourced private datasets. In Financial

Cryptography and Data Security - 20th International Conference, FC 2016,

Barbados., 2016. 7, 110, 134

[3] AYDIN ABADI, SOTIRIOS TERZIS, ROBERTO METERE, AND CHANGYU

DONG. Efficient delegated private set intersection on outsourced private
datasets. IEEE Transactions on Dependable and Secure Computing, Submit-
ted on July 18, 2016. 6, 48, 134

[4] ALFRED V. AHO AND JOHN E. HOPCROFT. The Design and Analysis of Com-

puter Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1974. 18

[5] YURIY ARBITMAN, MONI NAOR, AND GIL SEGEV. Backyard cuckoo hash-
ing: Constant worst-case operations with a succinct representation. In 51th

Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,

October 23-26, 2010, Las Vegas, Nevada, USA, pages 787–796, 2010. 36

[6] GILAD ASHAROV, YEHUDA LINDELL, THOMAS SCHNEIDER, AND

MICHAEL ZOHNER. More efficient oblivious transfer and extensions for faster
secure computation. In 2013 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
535–548, 2013. 34, 35

136

References

[7] GIUSEPPE ATENIESE, RANDAL C. BURNS, REZA CURTMOLA, JOSEPH HER-
RING, LEA KISSNER, ZACHARY N. J. PETERSON, AND DAWN XIAODONG

SONG. Provable data possession at untrusted stores. In Proceedings of the 2007

ACM Conference on Computer and Communications Security, CCS’07, Alexan-

dria, Virginia, USA, October 28-31, 2007, pages 598–609, 2007. 4

[8] GIUSEPPE ATENIESE, EMILIANO DE CRISTOFARO, AND GENE TSUDIK. (if)
size matters: Size-hiding private set intersection. In Public Key Cryptography

- PKC 2011 - 14th International Conference on Practice and Theory in Public

Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings, pages 156–
173, 2011. 2

[9] GIUSEPPE ATENIESE, KEVIN FU, MATTHEW GREEN, AND SUSAN HOHEN-
BERGER. Improved proxy re-encryption schemes with applications to secure
distributed storage. In Proceedings of the Network and Distributed System Se-

curity Symposium, NDSS 2005, San Diego, California, USA, 2005. 43

[10] PIERRE BALDI, ROBERTA BARONIO, EMILIANO DE CRISTOFARO, PAOLO

GASTI, AND GENE TSUDIK. Countering GATTACA: efficient and secure test-
ing of fully-sequenced human genomes. In Proceedings of the 18th ACM Con-

ference on Computer and Communications Security, CCS 2011, Chicago, Illi-

nois, USA, October 17-21, 2011, pages 691–702, 2011. 2

[11] MAURO BARNI, PIERLUIGI FAILLA, VLADIMIR KOLESNIKOV, RICCARDO

LAZZERETTI, AHMAD-REZA SADEGHI, AND THOMAS SCHNEIDER. Secure
evaluation of private linear branching programs with medical applications. In
Computer Security - ESORICS 2009, 14th European Symposium on Research in

Computer Security, Saint-Malo, France, September 21-23, 2009. Proceedings,
pages 424–439, 2009. 21

[12] MIHIR BELLARE AND PHILLIP ROGAWAY. Random oracles are practical: A
paradigm for designing efficient protocols. In CCS ’93, Proceedings of the 1st

ACM Conference on Computer and Communications Security, Fairfax, Virginia,

USA, November 3-5, 1993., pages 62–73, 1993. 30

[13] RIKKE BENDLIN, IVAN DAMGÅRD, CLAUDIO ORLANDI, AND SARAH ZA-
KARIAS. Semi-homomorphic encryption and multiparty computation. In Ad-

vances in Cryptology - EUROCRYPT 2011 - 30th Annual International Con-

137

References

ference on the Theory and Applications of Cryptographic Techniques, Tallinn,

Estonia, May 15-19, 2011. Proceedings, pages 169–188, 2011. 116

[14] PETRA BERENBRINK, ARTUR CZUMAJ, ANGELIKA STEGER, AND

BERTHOLD VÖCKING. Balanced allocations: the heavily loaded case. In Pro-

ceedings of the Thirty-Second Annual ACM Symposium on Theory of Comput-

ing, May 21-23, 2000, Portland, OR, USA, pages 745–754, 2000. 20

[15] SAUL J BERMAN, LYNN KESTERSON-TOWNES, ANTHONY MARSHALL,
AND ROHINI SRIVATHSA. How cloud computing enables process and business
model innovation. Strategy & Leadership, pages 27–35, 2012. 1

[16] JEAN-PAUL BERRUT AND LLOYD N. TREFETHEN. Barycentric lagrange in-
terpolation. SIAM Review, pages 501–517, 2004. 18

[17] ERROL A BLAKE. Network and database security: Regulatory compliance, net-
work, and database security-a unified process and goal. The Journal of Digital

Forensics, Security and Law: JDFSL, page 77, 2007. 2

[18] BURTON H. BLOOM. Space/time trade-offs in hash coding with allowable er-
rors. Commun. ACM, pages 422–426, 1970. 33

[19] SONIA BOGOS, JOHN GASPOZ, AND SERGE VAUDENAY. Cryptanalysis of a
homomorphic encryption scheme. Cryptology ePrint Archive, Report 2016/775,
2016. 12

[20] DAN BONEH, CRAIG GENTRY, SHAI HALEVI, FRANK WANG, AND DAVID J.
WU. Private database queries using somewhat homomorphic encryption. In
Applied Cryptography and Network Security - 11th International Conference,

ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 102–
118, 2013. 16, 55, 60, 72, 104, 127

[21] DAN BONEH, EU-JIN GOH, AND KOBBI NISSIM. Evaluating 2-dnf formu-
las on ciphertexts. In Theory of Cryptography, Second Theory of Cryptography

Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceed-

ings, pages 325–341, 2005. 39

[22] JOSHUA BRODY, AMIT CHAKRABARTI, RANGANATH KONDAPALLY,
DAVID P. WOODRUFF, AND GRIGORY YAROSLAVTSEV. Beyond set disjoint-

138

References

ness: the communication complexity of finding the intersection. In ACM Sym-

posium on Principles of Distributed Computing, PODC ’14, Paris, France, July

15-18, 2014, pages 106–113, 2014. 1

[23] RAN CANETTI, OMER PANETH, DIMITRIOS PAPADOPOULOS, AND NIKOS

TRIANDOPOULOS. Verifiable set operations over outsourced databases. In 17th

IACR International Conference on Theory and Practice of Public-Key Cryptog-

raphy, pages 113–130, 2014. 1

[24] FRED H CATE. Eu data protection directive, information privacy, and the public
interest, the. Iowa Law Review, page 431, 1994. 2

[25] SANJIT CHATTERJEE, SAYANTAN MUKHERJEE, AND GOVIND PATIDAR. Ef-
ficient protocol for authenticated email search. In Security, Privacy, and Applied

Cryptography Engineering - 5th International Conference, SPACE 2015, Jaipur,

India, October 3-7, 2015, Proceedings, pages 1–20, 2015. 1

[26] DAVID CHAUM. Blind signatures for untraceable payments. In Advances in

Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA,

August 23-25, 1982., pages 199–203, 1982. 32

[27] DAVID CHAUM AND TORBEN P. PEDERSEN. Wallet databases with observers.
In Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptol-

ogy Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceed-

ings, pages 89–105, 1992. 30

[28] BO CHEN AND REZA CURTMOLA. Auditable version control systems. In 21st

Annual Network and Distributed System Security Symposium, NDSS 2014, San

Diego, California, USA, February 23-26, 2014, 2014. 4

[29] SEUNG GEOL CHOI, JONATHAN KATZ, RANJIT KUMARESAN, AND CARLOS

CID. Multi-client non-interactive verifiable computation. In Theory of Cryptog-

raphy - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan,

March 3-6, 2013. Proceedings, pages 499–518, 2013. 56

[30] JEAN-SÉBASTIEN CORON, JACQUES PATARIN, AND YANNICK SEURIN. The
random oracle model and the ideal cipher model are equivalent. In Advances in

Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference,

139

References

Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 1–20, 2008.
30

[31] EMILIANO DE CRISTOFARO, PAOLO GASTI, AND GENE TSUDIK. Fast and
private computation of cardinality of set intersection and union. In Cryptology

and Network Security, 11th International Conference, CANS 2012, Darmstadt,

Germany, December 12-14, 2012. Proceedings, pages 218–231, 2012. 2

[32] EMILIANO DE CRISTOFARO, JIHYE KIM, AND GENE TSUDIK. Linear-
complexity private set intersection protocols secure in malicious model. In
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference

on the Theory and Application of Cryptology and Information Security, pages
213–231, 2010. 32

[33] EMILIANO DE CRISTOFARO AND GENE TSUDIK. Practical private set inter-
section protocols with linear complexity. In 14th International Conference on

Financial Cryptography and Data Security, pages 143–159, 2010. 28, 32

[34] DANA DACHMAN-SOLED, TAL MALKIN, MARIANA RAYKOVA, AND MOTI

YUNG. Efficient robust private set intersection. In Applied Cryptogra-

phy and Network Security, 7th International Conference, ACNS 2009, Paris-

Rocquencourt, France, June 2-5, 2009. Proceedings, pages 125–142, 2009. 2

[35] IVAN DAMGÅRD AND MADS JURIK. A generalisation, a simplification and
some applications of paillier’s probabilistic public-key system. In Public Key

Cryptography, 4th International Workshop on Practice and Theory in Public

Key Cryptography, PKC 2001, Cheju Island, Korea, February 13-15, 2001, Pro-

ceedings, pages 119–136, 2001. 30

[36] IVAN DAMGÅRD AND NIKOS TRIANDOPOULOS. Supporting non-membership
proofs with bilinear-map accumulators. IACR Cryptology ePrint Archive, page
538, 2008. 43

[37] CHANGYU DONG, LIQUN CHEN, JAN CAMENISCH, AND GIOVANNI RUS-
SELLO. Fair private set intersection with a semi-trusted arbiter. In Data and

Applications Security and Privacy XXVII - 27th Annual IFIP WG 11.3 Confer-

ence, DBSec 2013, USA., pages 128–144, 2013. 15, 17

140

References

[38] CHANGYU DONG, LIQUN CHEN, AND ZIKAI WEN. When private set intersec-
tion meets big data: an efficient and scalable protocol. In 20th ACM Conference

on Computer and Communications Security, pages 789–800, 2013. 2, 32, 33,
34, 35, 77

[39] ZEKERIYA ERKIN, MARTIN FRANZ, JORGE GUAJARDO, STEFAN KATZEN-
BEISSER, INALD LAGENDIJK, AND TOMAS TOFT. Privacy-preserving face
recognition. In Privacy Enhancing Technologies, 9th International Symposium,

PETS 2009, Seattle, WA, USA, August 5-7, 2009. Proceedings, pages 235–253,
2009. 48

[40] SHIMON EVEN, ODED GOLDREICH, AND ABRAHAM LEMPEL. A randomized
protocol for signing contracts. Commun. ACM, pages 637–647, 1985. 33

[41] A. FERDOWSI. The dropbox blog: Yesterdays authentication bug @ .
https://blog.dropbox.com/?p=821, 2011. 2, 28

[42] DARIO FIORE, ROSARIO GENNARO, AND VALERIO PASTRO. Efficiently ver-
ifiable computation on encrypted data. In 21st ACM Conference on Computer

and Communications Security, Scottsdale, AZ, USA, pages 844–855, 2014. 1

[43] MARC FISCHLIN. Pseudorandom function tribe ensembles based on one-way
permutations: Improvements and applications. In Advances in Cryptology -

EUROCRYPT ’99, International Conference on the Theory and Application of

Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceed-

ing, pages 432–445, 1999. 14

[44] PIERRE-ALAIN FOUQUE, GUILLAUME POUPARD, AND JACQUES STERN.
Sharing decryption in the context of voting or lotteries. In Financial Cryp-

tography, 4th International Conference, FC 2000 Anguilla, British West Indies,

February 20-24, 2000, Proceedings, pages 90–104, 2000. 31

[45] MICHAEL J. FREEDMAN, CARMIT HAZAY, KOBBI NISSIM, AND BENNY

PINKAS. Efficient set intersection with simulation-based security. J. Cryp-

tology, pages 115–155, 2016. 30, 118

[46] MICHAEL J. FREEDMAN, KOBBI NISSIM, AND BENNY PINKAS. Efficient pri-
vate matching and set intersection. In EUROCRYPT 2004, International Confer-

141

References

ence on the Theory and Applications of Cryptographic Techniques, Interlaken,

Switzerland, pages 1–19, 2004. 2, 15, 17, 28, 29, 48, 53

[47] TAHER EL GAMAL. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in Cryptology, Proceedings of CRYPTO

’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, pages
10–18, 1984. 12

[48] CRAIG GENTRY. Fully homomorphic encryption using ideal lattices. In Pro-

ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC

2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178, 2009. 12

[49] CRAIG GENTRY, SHAI HALEVI, AND NIGEL P. SMART. Homomorphic eval-
uation of the AES circuit. In Advances in Cryptology - CRYPTO 2012 - 32nd

Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.

Proceedings, pages 850–867, 2012. 12

[50] ESHA GHOSH, OLGA OHRIMENKO, DIMITRIOS PAPADOPOULOS, ROBERTO

TAMASSIA, AND NIKOS TRIANDOPOULOS. Zero-knowledge accumulators
and set operations. IACR Cryptology ePrint Archive, page 404, 2015. 1

[51] ODED GOLDREICH. The Foundations of Cryptography - Volume 1, Basic Tech-

niques. Cambridge University Press, 2001. 9

[52] ODED GOLDREICH. The Foundations of Cryptography - Volume 2, Basic Ap-

plications. Cambridge University Press, 2004. 21, 22, 43, 55, 98, 121

[53] SHAFI GOLDWASSER AND SILVIO MICALI. Probabilistic encryption and how
to play mental poker keeping secret all partial information. In Proceedings of

the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San

Francisco, California, USA, pages 365–377, 1982. 12

[54] MICHAEL T. GOODRICH, DUY NGUYEN, OLGA OHRIMENKO, CHARALAM-
POS PAPAMANTHOU, ROBERTO TAMASSIA, NIKOS TRIANDOPOULOS, AND

CRISTINA VIDEIRA LOPES. Efficient verification of web-content searching
through authenticated web crawlers. PVLDB, pages 920–931, 2012. 1

[55] S. DOV GORDON, JONATHAN KATZ, FENG-HAO LIU, ELAINE SHI, AND

HONG-SHENG ZHOU. Multi-client verifiable computation with stronger secu-

142

References

rity guarantees. In Theory of Cryptography - 12th Theory of Cryptography Con-

ference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II,
pages 144–168, 2015. 56

[56] S. DOV GORDON, JONATHAN KATZ, FENG-HAO LIU, ELAINE SHI, AND

HONG-SHENG ZHOU. Multi-client verifiable computation with stronger secu-
rity guarantees. In 12th Theory of Cryptography Conference, TCC , Poland.,
pages 144–168, 2015. 118

[57] THE GUARDIAN. Playstation network hack: Why
it took sony seven days to tell the world @
http://www.guardian.co.uk/technology/gamesblog/2011/apr/27/playstation-
network-hack-sony, 2011. 2, 28

[58] HAKAN HACIGÜMÜS, SHARAD MEHROTRA, AND BALAKRISHNA R. IYER.
Providing database as a service. In Proceedings of the 18th International Con-

ference on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002,
pages 29–38, 2002. 1

[59] FLORIAN HAHN AND FLORIAN KERSCHBAUM. Searchable encryption with
secure and efficient updates. In Proceedings of the 2014 ACM SIGSAC Confer-

ence on Computer and Communications Security, Scottsdale, AZ, USA, Novem-

ber 3-7, 2014, pages 310–320, 2014. 98

[60] CARMIT HAZAY AND YEHUDA LINDELL. Efficient Secure Two-Party Proto-

cols - Techniques and Constructions. Information Security and Cryptography.
Springer, 2010. 2, 21

[61] CARMIT HAZAY AND MUTHURAMAKRISHNAN VENKITASUBRAMANIAM.
On the power of secure two-party computation. In Advances in Cryptology -

CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Bar-

bara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 397–429, 2016.
21

[62] WILKO HENECKA, STEFAN KÖGL, AHMAD-REZA SADEGHI, THOMAS

SCHNEIDER, AND IMMO WEHRENBERG. TASTY: tool for automating secure
two-party computations. In Proceedings of the 17th ACM Conference on Com-

puter and Communications Security, CCS 2010, Chicago, Illinois, USA, Octo-

ber 4-8, 2010, pages 451–462, 2010. 48

143

References

[63] JEONGDAE HONG, JUNG WOO KIM, JIHYE KIM, KUNSOO PARK, AND

JUNG HEE CHEON. Constant-round privacy preserving multiset union. IACR

Cryptology ePrint Archive, page 138, 2011. 135

[64] MOHAMMAD SAIFUL ISLAM, MEHMET KUZU, AND MURAT KANTAR-
CIOGLU. Access pattern disclosure on searchable encryption: Ramification,
attack and mitigation. In NDSS, 2012. 2, 28

[65] S. ISLAM, M. OUEDRAOGO, C. KALLONIATIS, H. MOURATIDIS, AND

S. GRITZALIS. Assurance of security and privacy requirements for cloud de-
ployment model. IEEE Transactions on Cloud Computing, pages 1–1, 2015.
27

[66] MAHESH KALLAHALLA, ERIK RIEDEL, RAM SWAMINATHAN, QIAN

WANG, AND KEVIN FU. Plutus: Scalable secure file sharing on untrusted stor-
age. In Proceedings of the FAST ’03 Conference on File and Storage Technolo-

gies, March 31 - April 2, 2003, Cathedral Hill Hotel, San Francisco, California,

USA, 2003. 5

[67] SENY KAMARA, PAYMAN MOHASSEL, AND MARIANA RAYKOVA. Outsourc-
ing multi-party computation. IACR Cryptology ePrint Archive, page 272, 2011.
12, 55, 98, 121

[68] SENY KAMARA, PAYMAN MOHASSEL, MARIANA RAYKOVA, AND SAEED

SADEGHIAN. Scaling private set intersection to billion-element sets. In 18th

International Conference on Financial Cryptography and Data Security, pages
863–874, 2014. 2, 28, 40, 41, 55, 72, 73, 74, 75, 76, 118, 129, 130, 131

[69] SENY KAMARA AND CHARALAMPOS PAPAMANTHOU. Parallel and dynamic
searchable symmetric encryption. In Financial Cryptography and Data Security

- 17th International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013,

Revised Selected Papers, pages 258–274, 2013. 12, 98

[70] MURAT KANTARCIOGLU. A survey of privacy-preserving methods across hor-
izontally partitioned data. In Privacy-Preserving Data Mining - Models and

Algorithms, pages 313–335. 2008. 1

[71] JONATHAN KATZ AND YEHUDA LINDELL. Introduction to Modern Cryptog-

raphy. Chapman and Hall/CRC Press, 2007. 11, 14, 30, 40, 43

144

References

[72] KIRAN S. KEDLAYA AND CHRISTOPHER UMANS. Fast polynomial factor-
ization and modular composition. SIAM J. Comput., pages 1767–1802, 2011.
17

[73] FLORIAN KERSCHBAUM. Collusion-resistant outsourcing of private set inter-
section. In 27th ACM Symposium on Applied Computing, Riva, Trento, Italy,
pages 1451–1456, 2012. 37, 72, 73, 74, 76, 77

[74] FLORIAN KERSCHBAUM. Outsourced private set intersection using homomor-
phic encryption. In Computer and Communications Security, ASIACCS ’12.,
pages 85–86, 2012. 39, 72, 73, 74, 76

[75] LEA KISSNER AND DAWN XIAODONG SONG. Privacy-preserving set oper-
ations. In CRYPTO 2005, 25th International Cryptology Conference, pages
241–257, 2005. 15, 16, 17, 28, 30, 31, 53, 60, 67, 72, 75, 96, 104, 118, 120, 127

[76] DONALD E. KNUTH. The Art of Computer Programming, Volume II: Seminu-

merical Algorithms, 2nd Edition. Addison-Wesley, 1981. 15, 18

[77] VLADIMIR KOLESNIKOV, RANJIT KUMARESAN, AND ABDULLATIF SHIKFA.
Efficient verification of input consistency in server-assisted secure function eval-
uation. In Cryptology and Network Security, 11th International Conference,

CANS 2012, Darmstadt, Germany, December 12-14, 2012. Proceedings, pages
201–217, 2012. 55

[78] AHMED E. KOSBA, DIMITRIOS PAPADOPOULOS, CHARALAMPOS PAPA-
MANTHOU, MAHMOUD F. SAYED, ELAINE SHI, AND NIKOS TRIANDOPOU-
LOS. TRUESET: faster verifiable set computations. In Proceedings of the 23rd

USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014., pages
765–780, 2014. 1, 15

[79] YEHUDA LINDELL AND BENNY PINKAS. Privacy preserving data mining. In
Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings,
pages 36–54, 2000. 48

[80] YEHUDA LINDELL AND BENNY PINKAS. Secure two-party computation via
cut-and-choose oblivious transfer. J. Cryptology, 25[4]:680–722, 2012. 118

145

References

[81] FANG LIU, WEE KEONG NG, WEI ZHANG, DO HOANG GIANG, AND

SHUGUO HAN. Encrypted set intersection protocol for outsourced datasets.
In IEEE International Conference on Cloud Engineering, IC2E ’14, pages 135–
140, Washington, DC, USA, 2014. IEEE Computer Society. 42, 44, 72, 73, 74,
75, 76, 118

[82] ADRIANA LÓPEZ-ALT, ERAN TROMER, AND VINOD VAIKUNTANATHAN.
On-the-fly multiparty computation on the cloud via multikey fully homomor-
phic encryption. In Symposium on Theory of Computing Conference, USA.,
pages 1219–1234, 2012. 45, 46, 76, 77, 105, 106, 107, 108, 109, 129, 130, 131

[83] SEAN MARSTON, ZHI LI, SUBHAJYOTI BANDYOPADHYAY, AND ANAND

GHALSASI. Cloud computing - the business perspective. In 44th Hawaii Inter-

national International Conference on Systems Science (HICSS-44 2011), USA,
pages 1–11, 2011. 1, 28

[84] M. A. H. MASUD, J. YONG, AND X. HUANG. Cloud computing for higher
education: A roadmap. In 2012 IEEE 16th International Conference on Com-

puter Supported Cooperative Work in Design (CSCWD), pages 552–557, May
2012. 28

[85] LUCA MELIS, GEORGE DANEZIS, AND EMILIANO DE CRISTOFARO. Effi-
cient private statistics with succinct sketches. CoRR, 2015. 45

[86] GHITA MEZZOUR, ADRIAN PERRIG, VIRGIL D. GLIGOR, AND PANOS PA-
PADIMITRATOS. Privacy-preserving relationship path discovery in social net-
works. In Cryptology and Network Security, 8th International Conference,

CANS 2009, Kanazawa, Japan, December 12-14, 2009. Proceedings, pages
189–208, 2009. 1

[87] T. MOYO AND J. BHOGAL. Investigating security issues in cloud computing.
In Complex, Intelligent and Software Intensive Systems (CISIS), 2014 Eighth

International Conference on, pages 141–146, July 2014. 28

[88] ARVIND NARAYANAN, NARENDRAN THIAGARAJAN, MUGDHA LAKHANI,
MICHAEL HAMBURG, AND DAN BONEH. Location privacy via private prox-
imity testing. In Proceedings of the Network and Distributed System Security

Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th Febru-

ary 2011, 2011. 15

146

References

[89] LAN NGUYEN. Accumulators from bilinear pairings and applications. In Topics

in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA Confer-

ence 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings, pages
275–292, 2005. 43

[90] JESPER BUUS NIELSEN, PETER SEBASTIAN NORDHOLT, CLAUDIO OR-
LANDI, AND SAI SHESHANK BURRA. A new approach to practical active-
secure two-party computation. In Advances in Cryptology - CRYPTO 2012 -

32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,

2012. Proceedings, pages 681–700, 2012. 35

[91] PASCAL PAILLIER. Public-key cryptosystems based on composite degree resid-
uosity classes. In EUROCRYPT ’99, International Conference on the Theory

and Application of Cryptographic Techniques, Prague, Czech Republic, pages
223–238, 1999. 12

[92] DIMITRIOS PAPADOPOULOS, STAVROS PAPADOPOULOS, AND NIKOS

TRIANDOPOULOS. Taking authenticated range queries to arbitrary dimensions.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-

munications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 819–
830, 2014. 1

[93] BRYAN PARNO, MARIANA RAYKOVA, AND VINOD VAIKUNTANATHAN. How
to delegate and verify in public: Verifiable computation from attribute-based en-
cryption. In Theory of Cryptography - 9th Theory of Cryptography Conference,

TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 422–
439, 2012. 4

[94] ANDREAS PETER, ERIK TEWS, AND STEFAN KATZENBEISSER. Efficiently
outsourcing multiparty computation under multiple keys. IEEE Trans. Informa-

tion Forensics and Security, pages 2046–2058, 2013. 45

[95] BENNY PINKAS, THOMAS SCHNEIDER, GIL SEGEV, AND MICHAEL

ZOHNER. Phasing: Private set intersection using permutation-based hashing.
In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,

USA, August 12-14, 2015., pages 515–530, 2015. 21, 32, 36, 134

147

References

[96] BENNY PINKAS, THOMAS SCHNEIDER, AND MICHAEL ZOHNER. Faster pri-
vate set intersection based on OT extension. In 23rd USENIX Security Sympo-

sium, San Diego, CA, USA. USENIX, 2014. 2, 21, 32, 34, 36, 77

[97] TINA PIPER. Dalhousie Law Journal, page 253, 2000. 2

[98] RALUCA ADA POPA, EMILY STARK, STEVEN VALDEZ, JONAS HELFER,
NICKOLAI ZELDOVICH, AND HARI BALAKRISHNAN. Building web applica-
tions on top of encrypted data using mylar. In Proceedings of the 11th USENIX

Symposium on Networked Systems Design and Implementation, NSDI 2014,

Seattle, WA, USA, April 2-4, 2014, pages 157–172, 2014. 45

[99] S. QIU, J. LIU, Y. SHI, M. LI, AND W. WANG. Identity-based private matching
over outsourced encrypted datasets. Cloud Computing, IEEE Transactions on,
pages 1–1, 2015. 44, 72, 73, 74, 75, 76, 118

[100] MARTIN RAAB AND ANGELIKA STEGER. Balls into bins - A simple and tight
analysis. In Randomization and Approximation Techniques in Computer Sci-

ence, Second International Workshop, RANDOM’98, Barcelona, Spain, pages
159–170, 1998. 20

[101] MICHAEL O RABIN. How to exchange secrets with oblivious transfer. IACR

Cryptology ePrint Archive, page 187, 2005. 33

[102] MARIANA RAYKOVA, BINH VO, STEVEN M. BELLOVIN, AND TAL MALKIN.
Secure anonymous database search. In First ACM Cloud Computing Security

Workshop, Chicago, IL, USA, pages 115–126, 2009. 55

[103] THOMAS RISTENPART, ERAN TROMER, HOVAV SHACHAM, AND STEFAN

SAVAGE. Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In Proceedings of the 16th ACM conference on Computer

and communications security, pages 199–212. ACM, 2009. 2, 28

[104] RONALD L RIVEST, LEN ADLEMAN, AND MICHAEL L DERTOUZOS. On data
banks and privacy homomorphisms. Foundations of secure computation, pages
169–180, 1978. 12

[105] RONALD L. RIVEST, ADI SHAMIR, AND LEONARD M. ADLEMAN. A method
for obtaining digital signatures and public-key cryptosystems. Commun. ACM,
pages 120–126, 1978. 12, 38

148

References

[106] BRUCE SCHNEIER. Applied cryptography - protocols, algorithms, and source

code in C (2. ed.). Wiley, 1996. 33

[107] ELAINE SHI, T.-H. HUBERT CHAN, EMIL STEFANOV, AND MINGFEI LI.
Oblivious RAM with o((logn)3) worst-case cost. In Advances in Cryptology

- ASIACRYPT 2011 - 17th International Conference on the Theory and Appli-

cation of Cryptology and Information Security, Seoul, South Korea, December

4-8, 2011. Proceedings, pages 197–214, 2011. 20

[108] NIGEL P. SMART AND FREDERIK VERCAUTEREN. Fully homomorphic en-
cryption with relatively small key and ciphertext sizes. In Public Key Cryptog-

raphy - PKC 2010, 13th International Conference on Practice and Theory in

Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings, pages
420–443, 2010. 12

[109] NIGEL P. SMART AND FREDERIK VERCAUTEREN. Fully homomorphic SIMD
operations. Des. Codes Cryptography, pages 57–81, 2014. 12

[110] EMIL STEFANOV, CHARALAMPOS PAPAMANTHOU, AND ELAINE SHI. Prac-
tical dynamic searchable encryption with small leakage. In 21st Annual Network

and Distributed System Security Symposium, NDSS 2014, San Diego, Califor-

nia, USA, February 23-26, 2014, 2014. 98

[111] EMIL STEFANOV AND ELAINE SHI. Multi-cloud oblivious storage. In 20th

ACM Conference on Computer and Communications Security, Berlin, Germany,
pages 247–258, 2013. 55

[112] SUBASHINI SUBASHINI AND VEERARUNA KAVITHA. A survey on security
issues in service delivery models of cloud computing. Journal of network and

computer applications, pages 1–11, 2011. 27

[113] MARTEN VAN DIJK, CRAIG GENTRY, SHAI HALEVI, AND VINOD VAIKUN-
TANATHAN. Fully homomorphic encryption over the integers. In Advances in

Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, French Riviera, May 30

- June 3, 2010. Proceedings, pages 24–43, 2010. 12

[114] MARTEN VAN DIJK AND ARI JUELS. On the impossibility of cryptography
alone for privacy-preserving cloud computing. In 5th USENIX Workshop on

149

References

Hot Topics in Security, HotSec’10, Washington, D.C., USA, August 10, 2010,
2010. 12

[115] PETER VAN LIESDONK, SAEED SEDGHI, JEROEN DOUMEN, PIETER H.
HARTEL, AND WILLEM JONKER. Computationally efficient searchable sym-
metric encryption. In Secure Data Management, 7th VLDB Workshop, SDM

2010, Singapore, September 17, 2010. Proceedings, pages 87–100, 2010. 98

[116] ALKA VARMA CITRIN, DAVID E SPROTT, STEVEN N SILVERMAN, AND

DONALD E STEM JR. Adoption of internet shopping: the role of consumer
innovativeness. Industrial management & data systems, pages 294–300, 2000.
5

[117] TOBY VELTE, ANTHONY VELTE, AND ROBERT ELSENPETER. Cloud Com-

puting, A Practical Approach. McGraw-Hill, Inc., New York, NY, USA, 1 edi-
tion, 2010. 26, 27

[118] BOYANG WANG, MING LI, SHERMAN S. M. CHOW, AND HUI LI. A tale of
two clouds: Computing on data encrypted under multiple keys. In IEEE Con-

ference on Communications and Network Security, CNS 2014, San Francisco,

CA, USA, October 29-31, 2014, pages 337–345, 2014. 55

[119] ZHANG XU, HAINING WANG, ZICHEN XU, AND XIAORUI WANG. Power
attack: An increasing threat to data centers. In The Proceedings of the 2014

Network and Distributed System Security Symposium, NDSS, 2014. 2, 28

[120] YU YANG, CHENGGUI ZHAO, AND TILEI GAO. Cloud computing: Security
issues overview and solving techniques investigation. In Intelligent Cloud Com-

puting - First International Conference, ICC 2014, Muscat, Oman, February

24-26, 2014, Revised Selected Papers, pages 152–167, 2014. 28

[121] XUN YI, RUSSELL PAULET, AND ELISA BERTINO. Homomorphic Encryption

and Applications. Springer Briefs in Computer Science. Springer, 2014. 11

[122] YINQIAN ZHANG, ARI JUELS, MICHAEL K. REITER, AND THOMAS RIS-
TENPART. Cross-vm side channels and their use to extract private keys. In 19th

ACM Conference on Computer and Communications Security, pages 305–316,
2012. 2, 28

150

References

[123] QINGJI ZHENG AND SHOUHUAI XU. Verifiable delegated set intersection op-
erations on outsourced encrypted data. IACR Cryptology ePrint Archive, page
178, 2014. 43, 44, 45, 72, 73, 74, 75, 76, 118

151

Appendix A

O-PSI Implementation Class Diagram

As it is shown in Fig A.1, the O-PSI implementation has four classes Client, Server,
Polynomial and Random. Furthermore, the protocol implementation contains three
structures carrying the set of messages exchanged between the parties. The structures
are: (1) CompPerm Request, (2) GrantComp Info, and (3) Server Result.

152

A. O-PSI Implementation Class Diagram

 Server_Result

paillier_ciphertext_t * result;

 GrantComp_Info

paillier_ciphertext_t * e;
paillier_pubkey_t * pub_k;

string *id;
int set_size;

 CompPerm_ Request

paillier_ciphertext_t * enc -rand;
paillier_pubkey_t * pub_k;
string id;

 Polynomial

 Private Variables:

bigint *values;
int val_size;
string poly_ID;

Public Functions:

Polynomial ();
Polynomial (bigint * elem, string
poly_ID, bigint *x, int elem_size, int
x_size, bigint pubmod);
bigint *evaluate (bigint *y, bigint *x , int
y_size, int x_size, bigint pubmod);
bigint *get_values ();
string get_poly_ID ();
void blind_poly (bigint seed, bigint
pubmod);
void unblind_poly (bigint seed, bigint
pubmod);

 Random

Public Functions:

Random ();
void get_rand_devurandom(char * buf,
int len);
void init_rand (gmp_randstate_t & rand,
bigint ran, int bytes);
void get_rand_file (char * buf, int len,
char * file);

 Client

Private Variables:

bigint seed; paillier_prvkey_t *sk;
paillier_pubkey_t * pk; bigint *elem;
int elem_size;
string outpoly_ID;
Server *serv;
bigint * xpoints;
bigint pubmodulous;
int xpoint_size;

Public Functions:

Client ();
Client (Server *serv, bigint * elem, int elem_size);
void outsource_poly (string & poly_ID);
CompPerm_Request * gen_compPerm_req ();
GrantComp_Info * grant_comp (CompPerm_Request * req, bool
accept);
void find_intersection (Server_Result *req, int & size);

Private Functions:

void get_pubmodulous ();
void get_xpoints (int &size);
bigint * interpolate (int size,bigint * x, bigint * y, bigint pubmod);
void gen_keys ();

 Server

Private Variables:

bigint * xpoints;
int xpoint_size;
bigint * pubmodulous;
Polynomial *poly;
int poly_size;
int count;
int pubmodulous_bitsize;

Public Functions:

Server ();
Server (int num_x, int poly_size, int pubmod_bitsize);
bigint * get_xpoints (int & size);
Server_Result *compute_result (GrantComp_Info * grant_info);
bigint * send_pubmodulous ();
void store_poly (Polynomial & poly);
void set_poly (int index, Polynomial &p);
Polynomial get_poly (int index);

Private Functions:

bigint * gen_randSet (int size, int max_bitsize);
int find_polyindex (string id);

Figure A.1: O-PSI protocol implementation class diagram

153

Appendix B

EO-PSI Implementation Class

Diagram

As it is depicted in Fig B.1, the EO-PSI implementation has five classes Client,
Server, Polynomial, Hashtable and Random. Moreover, the implementa-
tion involves four structures: (1) CompPerm Request, (2) GrantComp Info, (3)
Server Result, and (4) Client Dataset.

154

B. EO-PSI Implementation Class Diagram

 Server_Result

bigint ** result;

 Client_Dataset

Polynomial *poly;

 GrantComp_Info

bigint seed;
string *id;

 Client

Private Variables:

bigint *elem;
int elem_size;
string outpoly_ID;
Server *serv;
bigint * xpoints;
bigint pubmodulous;
int xpoint_size;
bigint seed;
int NoElem_in_bucket;
int table_size;
int hash_length;

Public Functions:

Client ();
Client (Server *serv, bigint *elem, int elem_size, int hash_len);
void outsource_poly (string & poly_ID);
CompPerm_Request * gen_compPerm_req ();
GrantComp_Info * grant_comp (CompPerm_Request *, bigint
**&qq, bool);
void find_intersection (Server_Result *, int *& size, bigint **q);

Private Functions:

void get_tablesize ();
bigint * encode (bigint * a, int a_size);
void get_NoElem_in_bucket ();
bigint ** decode (bigint *a, int a_size);
bool verify (bigint * a);
void get_pubmodulous ();
void get_xpoints (int &size);
bigint * interpolate (int size, bigint * a, bigint * b, bigint pubmod);
void extract (char * source, char * destination);

 Server

Private Variables:

bigint * xpoints;
int xpoint_size;
bigint * pubmodulous;
Client_Dataset *db;
int db_size;
int count, table_size;
int pubmodulous_bitsize;
int max_setsize, NoElem_in_bucket;

Public Functions:

Server ();
Server (int num_xpoints, int dbs_size, int pubmod_bitsize, int
maxSetsize, int NoEl_bucket, int tb_size);
bigint * get_xpoints (int & size);
Server_Result * compute_result (GrantComp_Info *
grantComp_info);
Bigint * send_pubmodulous ();
void store_poly (Client_Dataset& db);
int get_table_size ();
int get_maxSetsize ();
int get_NoElem_in_bucket ();

Private Functions:

bigint * gen_randSet (int size,int max_bitsize);
Client_Dataset get_db (int index);
void set_db (int index, Client_Dataset &p);
int find_db_index (string id);

 Hashtable

Private Variables:

bigint **T;
int *oc_buckets;
int oc_buckets_size;
int T_size;
int max_bucket_load;

Public Functions:

Hashtable (int elem_in_bucket, bigint *
elemen, int elem_size, int table_size);
bigint* get_bucket (int index);

Private Functions:

int *find_oc_buckets (int *b, int size, int
& new_size);
bool exits (int b, int *a, int size);

 Polynomial

 Private Variables:

bigint *values;
int val_size;
string poly_ID;

Public Functions:

Polynomial ();
Polynomial (bigint * elem, string
poly_ID, bigint *x, int elem_size, int
x_size, bigint pubmod);
bigint *evaluate (bigint *y, bigint *x , int
y_size, int x_size, bigint pubmod);
bigint *get_values ();
string get_poly_ID ();
void blind_poly(bigint seed, bigint
pubmod);

 Random

Public Functions:

Random ();
void get_rand_devurandom (char * buf,
int len);
void init_rand (gmp_randstate_t & rand,
bigint ran, int bytes);
void get_rand_file (char * buf, int len,
char * file);

 CompPerm_ Request

bigint **req;
string id;

Figure B.1: EO-PSI protocol implementation class diagram

155

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Requirements
	1.3 Contributions of the Thesis
	1.4 Roadmap

	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Homomorphic Encryption
	2.3 Pseudorandom Functions
	2.4 Pseudorandom Shuffle
	2.5 Representing Sets by Polynomials
	2.6 Polynomials in Point-value Form
	2.7 Hash Tables
	2.8 Adversary Types
	2.9 Security Models
	2.9.1 Security in the Presence of Semi-honest Adversaries
	2.9.2 Security in the Presence of Malicious Adversaries

	3 Related Work
	3.1 Cloud Computing Overview
	3.2 Traditional PSI Protocols
	3.3 Delegated Private Set Intersection Protocols
	3.3.1 Protocols Supporting only One-off PSI Delegation
	3.3.2 Protocols Supporting Repeated PSI Delegation

	3.4 Concluding Remarks

	4 Delegated PSI on Outsourced Private Datasets
	4.1 Introduction
	4.2 O-PSI: Delegated Private Set Intersection on Outsourced Private Datasets
	4.2.1 An Overview of O-PSI
	4.2.2 O-PSI Protocol
	4.2.3 Extensions
	4.2.3.1 Multi-client O-PSI
	4.2.3.2 How to Avoid Client-to-client Interaction in O-PSI

	4.2.4 Security Definition
	4.2.5 O-PSI Security Proof

	4.3 EO-PSI: Efficient Delegated Private Set Intersection on Outsourced Private Datasets
	4.3.1 An Overview of EO-PSI
	4.3.2 EO-PSI Protocol
	4.3.3 Extensions
	4.3.3.1 Multi-client EO-PSI
	4.3.3.2 How to Avoid Client-to-client Interaction in EO-PSI

	4.3.4 EO-PSI Security Proof

	4.4 Delegated PSI Protocol Comparison
	4.5 Performance Evaluation
	4.5.1 Choice of Parameters
	4.5.2 Implementation
	4.5.3 Performance Comparison

	4.6 Concluding Remarks

	5 Delegated PSI on Outsourced Dynamic Private Datasets
	5.1 Introduction
	5.2 UEO-PSI: Efficient Delegated Private Set Intersection on Dynamic Outsourced Private Data
	5.2.1 Data Update in O-PSI and EO-PSI
	5.2.2 An Overview of UEO-PSI
	5.2.3 UEO-PSI Protocol
	5.2.4 Extensions
	5.2.4.1 Multi-client UEO-PSI
	5.2.4.2 Reducing Authorizer's Required Storage Space

	5.3 Security Definition
	5.4 UEO-PSI Security Proof
	5.5 Updatable Delegated PSI Protocol Comparison
	5.6 Concluding Remarks

	6 Verifiable Delegated PSI on Outsourced Private Datasets
	6.1 Introduction
	6.2 VD-PSI: Verifiable Delegated Private Set Intersection on Outsourced Private Datasets
	6.2.1 An Overview of VD-PSI
	6.2.2 VD-PSI Protocol
	6.2.3 Extensions
	6.2.3.1 Multi-client VD-PSI
	6.2.3.2 Reducing Authorizer's Required Storage Space

	6.3 Security Definition
	6.4 VD-PSI Security Proof
	6.5 Verifiable Delegated PSI Protocol Comparison
	6.6 Concluding Remarks

	7 Conclusions
	7.1 Contributions
	7.2 Directions for Future Research

	References
	A O-PSI Implementation Class Diagram
	B EO-PSI Implementation Class Diagram

