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Abstract 

In Non-Destructive Evaluation (NDE) inspection, a range of materials exist that 

exhibit a heterogeneous or acoustically scattering microstructure, for example 

austenitic steels and Inconel alloys, and are used extensively across many industrial 

sectors. When inspected using conventional ultrasound techniques, defect signals are 

significantly corrupted by noise from randomly distributed scatterer associated with 

the material microstructure. In some cases, even defects that are much larger than the 

grain size distribution in the microstructure can be difficult to detect. This Thesis 

presents an investigation into the development of new algorithms to suppress 

backscattering noise in the received ultrasonic echoes associated with both individual 

transducers and phased arrays. 

Using the fact that structural noise in these difficult materials is frequency coherent, 

frequency diversity based techniques like the well-known Split Spectrum Processing 

have been developed. However, conventional algorithms are either ineffective or 

sensitive to the variations of material characteristics, especially when the signal to 

noise ratio (SNR) is low. 

A frequency diversity based technique, Moving Bandwidth Split Spectrum 

Processing (MB-SSP), has been developed, which is less influenced by material 

characteristics. MB-SSP first selects an ascending series of frequency bands and a 

trace is reconstructed for each selected band in which a defect is present: this occurs 

when all frequency components are in uniform sign. Combining all reconstructed 

signals through averaging gives a probability profile of potential defect positions. 

A range of supervised machine learning techniques has also been employed to 

further improve detect capability, if the pre-acquired training data is available. 

Instead of investigating the structure and pattern of the spectrum of an individual 

echo, the proposed method focuses on the distinction between the ensembles of 
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defect signals and clutter noise. A training process is used to establish the statistical 

analysis, based on which a hypothesis test is then applied to the received echoes to 

indicate defects. The approach is designed to be adaptive to the material 

microstructure and characteristics due to the statistical training aspect of the 

technique. 

The concept of applying clustering algorithms to further reduce the influence of 

artefact noise remaining in A-scan data after processing by MB-SSP or a 

conventional defect detection algorithm is also discussed. The segmental signals that 

potentially contain defects in the processed A-scans are clustered into groups. The 

distinction and similarity between each group and the ensemble of randomly selected 

noise segments can be observed by applying a classification algorithm. Each class 

will then be labelled as either a 'legitimate reflector' or 'artefact' based on this 

observation and the expected probability of detection (PoD) and the probability of 

false alarm (PFA) determined. 

Finally, the developed A-scan based noise reduction algorithms have been extended 

into phased array imaging. Here the techniques are applied to the raw Full Matrix 

Capture (FMC) datasets prior to processing by an appropriate imaging algorithm. 

Total Focusing Method (TFM) and the focused B-scan imaging is applied to both 

standard and pre-processed FMC datasets on both simulated data and experimental 

data from coarse-grained materials. Importantly, the background noise is 

significantly suppressed in every case using the pre-processed FMC data. 
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Chapter 1  

Introduction 

This Chapter states the motivation for the work, contribution to knowledge, list of 

publications, and finally, provides a synopsis of each Chapter in the Thesis.  

1.1 Motivation for the work 

Non-Destructive Evaluation (NDE) plays an essential role in modern engineering. 

Contemporary NDE techniques are widely used in a range of fields, such as civil 

engineering, aerospace, manufacturing and power generation [1]. It is important for 

industry to maintain structural integrity of safety critical components like turbine 

blade, aircraft wings, and high-pressure pipes [2]. One of the major techniques used 

in NDE is Ultrasonic Testing (UT), which uses high frequency sound waves to 

conduct inspections and make measurements. These include flaw 

detection/evaluation, dimensional measurement and material characterization [3].  

However, many materials used in industry exhibit heterogeneous or acoustically 

scattering properties which inhibit conventional ultrasonic inspection techniques. For 

example, new 'superalloys' that have been developed to operate in environments of 

extreme high pressure and heat [4], and the alloys used in aircraft engine turbines to 

resist a large amount of stress. These materials are critical to safety and must be test 

regularly [5]. However, the grain size in these materials are usually comparable in 

scale to the propagating ultrasonic wavelength, which results in interaction between 

the ultrasonic waves and the granular microstructure [6]. Figure 1.1 illustrates the 

microstructure distribution for an Inconel 617 sample [7]. Figure 1.1(a) shows the 

highly polished surface required for analysis using Spatially Resolved Acoustic 
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Spectroscopy (SRAS) [8] and Figure 1.1(b) presents the measured spatial distribution 

of the grains within the material microstructure. Interestingly, this sample is 

representative of an equiaxed-grain material exhibiting macroscopically isotropy but 

microscopically randomly oriented grains. This material belongs to a class of 

materials often referred to as ‘difficult materials’ in ultrasound NDE. 

  

(a) Cut and polished section of sample (b) SRAS surface acoustic wave map 

Figure 1.1. SRAS image of the Inconel 617 sample illustrating the distribution of the material 

microstructure [6]. 

 

The granular microstructures of materials are formed in metalworking processes such 

as casting and welding. During the solidification process, atoms of the molten metal 

start to bond together at random nucleation sites and begin to form crystals. As the 

solidification continues, the crystals grow separately in size until adjacent crystals 

come into contact with each other. Due to the randomness of the locations of the 

nucleation sites and the growth direction of the crystals, the crystals are formed with 

various geometries and orientations [9]. These crystals are usually referred to as 

grains in engineering materials and the interface between adjacent grains is named a 

grain boundary. When inspecting with ultrasound, these grain structures can cause 

wave scattering and hence, they have also been referred as scatters. Importantly, for 

Ultrasonic NDE, the grain structure of the materials can generate strong coherent 

noise, which can significantly distort or mask the echoes of interest. Unlike 
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electronic noise which is usually caused by thermal effects on electronic circuits of 

ultrasonic devices, grain noise is time invariant and cannot be simply removed by 

applying time domain averaging. One way to reduce the effect of scattering is to 

lower the frequency of the inspection ultrasound wave and hence, increase the 

acoustic wavelength of the propagating ultrasonic energy. However, the resolution of 

received signals will be reduced and inhibit the inspection of small targets. To detect 

and size these small targets, a sufficiently high frequency must be selected. Moreover, 

since the flaw echoes and grain noise occupy similar portions of the frequency band 

of the transduction system, conventional bandpass filtering techniques also fail to 

suppress grain noise without affecting the information comprising the flaw echoes 

[10].  

With the presence of strong grain noise, the detection capability of target echoes can 

be significantly decreased. In this Thesis, a number of advanced signal-processing-

based techniques are proposed to overcome the challenges associated with inspection 

using conventional ultrasonic methods. Note that the targets of interest within a 

component (for example flaws, side-drilled holes, and component back wall) will be 

referred as a ‘legitimate reflector’ throughout this Thesis. 

1.2 Contributions to knowledge 

 A new frequency diversity based signal processing algorithm named Moving 

Bandwidth Split Spectrum Processing (MB-SSP) was developed to overcome 

the well-known parameter sensitive issue of Split-Spectrum Processing (SSP). 

This algorithm was inspired by medical imaging literature where target 

information with different spectrum characteristics is extracted in a 'local' 

frequency range. MB-SSP maintains a comparable signal-to-noise ratio (SNR) 

level compared with SSP, but it is less sensitive to material properties.  

 Most of the previous research focused on pattern recognition and/or machine 

learning techniques have been rarely explored in the field of grain noise 

reduction in ultrasonic NDE. The implementation and analysis of a number of 

supervised classification algorithms (Naïve Bayes (NB), k-Nearest Neighbors 
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(kNN), Support Vector Machine (SVM), and Multilayer Perceptron (MLP)) 

with different feature extraction approaches has been evaluated. With a 

training process using pre-acquired data, classification algorithms can 

distinguish legitimate reflectors from noise and hence, improve defect 

detection ability.  

 In recent years, Deep Learning has become more popular in a variety of 

applications. In this Thesis, combining Deep Learning with ultrasound signal 

processing has resulted in the feature within the ultrasound signals being 

automatically extracted. This leads to a better defect detection capability and 

enhanced SNR in the generated results.  

 Another contribution of this research is to investigate how artificial neural 

networks can be used to prune the wavelet coefficients, in an attempt to 

increase detection capability. Importantly, this approach is computationally 

efficiency compared with techniques that using neural networks as a classifier. 

 Development of a new algorithm based on unsupervised clustering, Potential 

Real Defect Miner (PDRM), to improve ultrasound signal/image clarity for 

inspection of difficult materials. With the help of a clustering algorithm (k-

means), the false alarm echoes (artefect echoes) which remain in the results 

processed by other algorithms can be further eliminated.  

 A new imaging algorithm, Frequency Spatial Polarity Coherence (FSPC) was 

developed to produce images with reduced grain noise compared with 

conventional imaging algorithms, like focused B-scan and TFM. This 

algorithm is an extension of MB-SSP and both frequency diversity and spatial 

diversity information from the raw dataset have been combined to improve 

image SNR. 

1.3 List of publications 

1. R. Gongzhang, M. Li, T. Lardner and A. Gachagan, “Robust defect detection 

in ultrasonic non-destructive evaluation (NDE) of difficult materials,” 
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Ultrasonics Symposium-2012., IEEE International, Dresden, 2012, pp. 467-

470.  

2. R. Gongzhang, M. Li, B. Xiao, T. Lardner and A. Gachagan, “Robust 

frequency diversity based algorithm for clutter noise reduction of ultrasonic 

signals using multiple sub-spectrum phase coherence,” Review of Progress in 

Quantitative Nondestructive Evaluation-2013, AIP Conference Proceedings 

1581, American Institute of Physics, Baltimore, MA, 2013, pp. 1948-1955.  

3. R. Gongzhang, A. Gachagan, B. Xiao, “Clutter noise reduction for phased 

array imaging using frequency-spatial polarity coherence,” Review of 

Progress in Quantitative Nondestructive Evaluation-2014, AIP Conference 

Proceedings 1650, American Institute of Physics, Boise, ID, 2014, pp. 1648-

1656.  

4. R. Gongzhang, A. Gachagan, “Advanced defect detection algorithm using 

clustering in ultrasonic NDE,” Review of Progress in Quantitative 

Nondestructive Evaluation-2015, AIP Conference Proceedings 1706, 

American Institute of Physics, Minneapolis, Minnesota, 2015, pp. 180009-1-9.  

5. B. Xiao, M. Li, R. Gongzhang, R. O'Leary, and A. Gachagan, "Image de-

noising via spectral distribution similarity analysis for ultrasonic non-

destructive evaluation," Review of Progress in Quantitative Nondestructive 

Evaluation-2013, AIP Conference Proceedings 1581, American Institute of 

Physics, Baltimore, MA, 2013, pp. 1941-1947.  

6. T. Lardner, M. Li, R. Gongzhang, and A. Gachagan, "A New Speckle Noise 

Suppression Technique Using Cross-correlation of Array Sub-apertures in 

Ultrasonic NDE of Coarse Grain Materials," Review of Progress in 

Quantitative Nondestructive Evaluation-2013, AIP Conference Proceedings 

1511, American Institute of Physics, Denver, CO, 2013, pp. 865-871.  

7. B. Xiao, R. Gongzhang, T. Lardner, R. L. O’Leary and A. Gachagan, 

“Ultrasonic imaging of coarse-grained materials using adaptive frequency 

compounding,” IEEE Transactions on Ultrasonics, Ferroelectrics and 

Frequency Control, 2017. (Submitted) 

 



6 

 

1.4 Structure of Thesis 

The body of research work is presented over eight Chapters.  

Chapter 2 introduces background knowledge related to the research topics associated 

with the Thesis. The general concept of ultrasound inspection including ultrasonic 

devices and data presentation are explained. Signal processing tools like Fourier 

Transform (FT) and Wavelet Transform (WT) are also introduced. Existing grain 

noise reduction algorithm approaches are also reviewed. Finally, experimental 

arrangements and the specifications of a number of material samples to be used for 

experimental validation later in the Thesis are also described.  

Chapter 3 introduces a novel and reliable A-scan based signal processing technique 

that can be used to reduce grain noise. An analytic model is presented to analyse the 

algorithm and generate simulation data. Signal to Noise ratio (SNR), Probability of 

Detection (PoD), and Probability of False Alarm (PFA) are also defined to quantify 

the performance of the proposed algorithm.  

Chapter 4 introduces the basic concept of combining ultrasound noise reduction and 

pattern recognition / machine learning techniques. Three different supervised 

classification techniques are applied, with two different feature extraction methods. 

Scenarios with different training condition are analysed and discussed.  

Chapter 5 further explores the application of supervised classification. Artificial 

Neural Networks (ANN) is introduced to improve the defect detection capability and 

grain noise reduction in ultrasound inspection of difficult materials. Multilayer 

Perceptron (MLP) is initially used to demonstrate the concept. Deep Learning 

network is also investigated later in this Chapter. In addition, an advanced wavelet 

filtering technique combine with MLP is presented.  

Chapter 6 presents another new algorithm development that can further reduce 

artefact noise in the results which were generated by other algorithms. It employs the 

concept of unsupervised clustering and can also be used to identify the best region to 

select training data for other classification algorithms. 
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Chapter 7 shows the extension of A-scan based algorithms that are covered in 

Chapters 3 – 6 into advanced phased array imaging. This results in a new algorithm 

designed for phased array imaging being presented. The new algorithm investigates 

the polarity coincidence for both different frequency components and signals 

received by different array elements to eliminate the grain noise in array images. 

Chapter 8 concludes the Thesis and provides suggestions for future work towards the 

goal of enhanced UT inspection of difficult materials. 

In ultrasonic NDE, signal and imaging processing can be used in many different 

applications, such as defect characterisation, defect classification, super-resolution 

imaging, and phase aberration correction. It should be noted that the work presented 

in the Thesis is focussed on improving defect detection only and is not concerned 

with conventional array signal and image processing techniques. However, it can be 

considered as complementary since the higher sensitivity and SNR exhibited through 

the application of improved defect detection can undoubtedly facilitate the cross-

fertilization into other areas. 
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Chapter 2  

Background review 

This Chapter reviews the background knowledge related to the research undertaken 

in the Thesis. The concept of ultrasonic devices is first introduced, along with the 

basic knowledge of different NDE scans and imaging algorithms. Basic signal 

processing tools and some advanced grain noise reduction algorithms are then 

introduced. Finally, the experimental configuration, modelling and processing 

platforms used in the Thesis are described.  

2.1 Ultrasonic devices 

In NDE, a typical ultrasonic inspection system contains three functional units: 

transducer; electronic instrumentation; and display. A concept diagram is shown in 

Figure 2.1. 

 

Figure 2.1. Schematic diagram of a typical ultrasonic inspection system. 
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A transducer is a device that converts one physical quantity into another [11]. An 

ultrasonic transducer is an electromechanical device that converts an electrical 

voltage into a mechanical pressure wave or vice versa. An ultrasonic probe can either 

contain one single transducer or a group of transducers which is known as an array 

probe [12]. An individual transducer in the array is usually referred as an element.  

A pulser/receiver is an electronic device that can produce high voltage electrical 

pulse excitation, such as a signal generator when using a single element transducer, 

or a phased array controller (PAC) for an array probe. A PAC contains multiple 

channels which can be actively controlled, simultaneously. The received signals 

usually require a computer with an appropriate installed (manufacturer’s) software to 

display the received echoes.  

For a typical system operation, the transducer is driven by the pulser and transmits a 

high-frequency ultrasonic wave packet/burst into the specimen. If a reflector (for 

example, a flaw) is present within the propagation path of the wave in the specimen, 

a proportion of the sound energy will be reflected and/or diffracted by the flaw and 

then captured by the receiver. In many cases, coupling media including gels, various 

oils and water may be applied between the transducer and specimen surface to 

enhance the ultrasound energy transfer efficiency. 

The reflected wave is received by the system and is then displayed on an appropriate 

device, such as an oscilloscope or a monitor of a computer. Relevant information 

such as location or size of the reflector can then be determined. 

2.1.1 Concept of an ultrasonic transducer 

The core of an ultrasonic transducer is its active component that converts energy 

between electrical and mechanical domains. The most common material chosen for 

this active part is a piezoelectric material.    

A schematic diagram of the piezoelectric transducer is shown in Figure 2.2. 
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Figure 2.2. Schematic diagram of an ultrasonic transducer 

 

A piezoelectric ultrasound transducer contains several layers, along with a case to 

provide electrical shielding and a cable to provide connection to appropriate 

electronic hardware. The piezoelectric material deforms when a voltage is applied 

across its electrodes, known as the inverse piezoelectric effect, and will generate a 

voltage when subjected to an external pressure stimulus through the direct 

piezoelectric effect [13-15]. The backing layer is used for absorbing energy 

emanating from the rear face of the piezoelectric layer, to minimise reverberation 

within the transducer. In addition, one or more matching layers are attached at the 

front of the transducer to ensure a better acoustic impedance match between the 

piezoelectric layer and the inspection material [16-18]. For many applications a 

single quarter wavelength matching layer solution is used, where the material (𝑍2) is 

effectively the geometric mean between the active layer acoustic impedance (𝑍1) and 

the load impedance (𝑍3), as shown in Eq. (2.1), 

 𝑍2 = √𝑍1 × 𝑍3 (2.1) 

where 𝑍 = 𝜌𝑣, 𝜌 is the density of the material and 𝑣 is the sound velocity. 
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2.1.2 Transducer parameters selection  

The parameters of the transducer should be properly chosen to match the inspection 

scenario. Usually, the most important parameters are the centre frequency of the 

transducer and the operational bandwidth.  

The centre frequency of the transducer is a critical parameter as it influences the 

spatial resolution of the received signals. High-frequency waves have a smaller 

wavelength and can interact with smaller particles/features which will benefit the 

inspection of small defects. Generally, particles with a size greater than half of the 

wavelength will interact with the incident waves. However, higher frequency waves 

are usually more attenuated compared with lower frequency waves, especially for 

coarse-grain materials where the grain size is comparable or larger than the 

ultrasonic wavelength. On the contrary, lower frequency waves are less attenuated 

but result in a lower spatial resolution and small features will not be resolved [19]. 

Transducers with a lower centre frequency typically also have a longer ring-down 

time [20], which is the time that the transducer reaches equilibrium after excitation. 

During the ring-down time, any signals received by the transducer will be masked by 

this ring-down ‘signal’, as the excitation signal has much higher energy compared 

with the received echoes.  

The bandwidth of a transducer reflects the effective operating range of the transducer 

frequency response. The bandwidth is measured at a certain drop-off point from the 

maximum amplitude of the frequency response spectrum, typically at 50% drop-off 

point, or -6dB. The bandwidth can be expressed using either Hertz or as a fraction of 

the centre frequency. Commercial transducers usually have a fractional bandwidth 

between 30% to >100% [21]. Transducers with a wider bandwidth can significantly 

benefit the grain noise reduction techniques, as the grain noise is more sensitive to 

different frequencies while any features in the sample will be coherent across the 

operating frequency range. Details will be discussed further in Section 2.5.2. 
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2.1.3 Single transducer probe and phased array probe 

Conventional ultrasonic probes are generally monolithic and contain only one 

transducer, or active element. The detection using single transducer probe is 

relatively simple and easy to be applied, as it only requires a pulser-receiver 

instrument and an oscilloscope.   

However, due to the dispersion of the wave, reflectors that are not directly under the 

probe may also be detected [9]. This increases the difficulty of inspection due to the 

effect of the off-axis reflectors [22]. One way to reduce this effect is by adding a 

physical focusing to the probe by curving its surface [12]. The direction of the 

reflector is more certain in this case as the energy leaking to off-axis reflectors has 

been reduced [23].   

Another way to focus the ultrasonic beam is by introducing a phased array probe. 

Phased array probe is constructed by grouping a number of transducers into a single 

transducer housing. Typically, a phased array probe can contain between 16 to 256 

transducers, with each individual transducer called an element of the array. When 

connected to a phased array controller, the elements in the array can be activated in a 

desired order, to manipulate the mechanical wavefront propagating from the front 

face of the device to produce electronic beam steering. Different configurations of 

array elements are implemented; it can be arranged in either 1-D, 2-D or annularly 

[24], where Figures 2.3-2.5 show the schematic diagram of each configuration, 

respectively.  

 

Figure 2.3. Schematic diagram of 1-D array layout, where blue indicates an active array element. 
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Figure 2.4. Schematic diagram of 2-D array layout, where blue indicates an active array element. 

 

Figure 2.5. Schematic diagram of annular array layout, where blue indicates an active array element. 

 

The most commonly used commercial array configuration is the 1-D array, which 

has linearly distributed elements, as shown in Figure 2.3. Generally, the length of an 

element in a 1-D linear array is much larger than the width of the element. This 

means the element in a 1-D array is usually larger than those in a 2-D array 

configuration, hence 1-D elements can generate higher energy into the inspection 

median and can result in a higher sensitivity. Additionally, the long rectangular shape 

of the array element makes the ultrasound beam more directional, which avoids the 

off-axis echoes from reflectors that lie outside the inspection plane.  

Compared with a 1-D array, a 2-D array, as illustrated in Figure 2.4, can generate 3-

D volumetric images and provide more explicit defect information. A 2-D array 
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configuration can have a more complicated element arrangement to adapt to different 

situations, for example a sparse array element layout.  

An annular array, as illustrated in Figure 2.5, can be used to provide a range of on-

axis focal depths, which in effect is simulating the performance of different single 

element devices [24]. 

The design of the phased array should avoid producing grating lobes [25]. Grating 

lobes are the unwanted energy emitted from the array off-axis which may occur 

when the pitch size between elements in an array is greater than half a wavelength 

[26]. As grating lobes are beam patterns formed at an angle to the (on-axis) mainlobe, 

the angular positions of the grating lobe can be calculated as: 

 𝛽𝑔𝑟𝑎𝑡𝑖𝑛𝑔 = sin−1
𝑚𝜆

𝑝
,𝑚 = ±1,±2,⋯ (2.2) 

where 𝜆 is the ultrasound wavelength of the array centre frequency, 𝑝 is the array 

element pitch size. To avoid the generation of grating lobes, the element pitch must 

be smaller than half a wavelength of the array centre frequency. 

Compared with conventional signal element probes, the phased array is more 

convenient and flexible at inspections, as it can easily focus the ultrasound beam at 

different points by simply changing the delay law. Phased array can quickly inspect a 

larger area by steering the beam without physically moving the probe. Additionally, 

with the help of Full Matrix Capture (FMC) [27], many advanced imaging 

algorithms can be applied to post-processing of the dataset and improving the quality 

of the images. More details about array imaging algorithms will be discussed in 

Section 2.3.  

However, the phased array is more complicated to design and manufacture compared 

with conventional single element transducer designs, and hence the cost of the 

phased array is more expensive. In addition, the inspection using a phased array 

requires the help of a phased array controller (PAC) to coordinate the 

transmitting/receiving of each element. Most PACs are bundled with the 

manufacturer's software which is used to drive the array. Raw data is often difficult 

to be export from the software into a file that can be used by other programs. Another 
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drawback of phased array probe is that the element size is limited to avoid issues like 

grating lobes generation. Also, for the ease of inspection, the overall size of the probe 

cannot be too large which also limit the size, and number of the elements. Compared 

with a single transducer probe configuration, the small element size reduces the 

energy transmitted into the sample and the corresponding receive sensitivity.  

2.2 Data presentation 

Ultrasonic data can be collected and displayed in a number of different formats in 

NDE. This Section will briefly introduce the commonly used formats like A-scan, B-

scan, and C-scan [28], along with a new data acquisition technique named Full 

Matrix Capture (FMC) [27]. 

2.2.1 A-scan Representation 

Amplitude scan (A-scan) is the most straightforward method to express the 

information received by the transducer. It is the basic way to store the received raw 

signal. An A-scan is the amplitude distribution of echo signals along the depth of test 

specimen when the transducer remains at a static point on the surface of the 

specimen. A typical A-scan is shown in Figure 2.6 as an example. 

The depth of a reflector in the specimen can be calculated from its echo in the A-scan, 

based on the wave propagation time and the sound velocity in the material. The 

location of the reflector can be estimated based on the direction that the transducer is 

facing, especially if the ultrasonic beam is well focused. However, off-axis reflectors 

often contribute to the response due to the beam spread, hence it makes the absolute 

positioning of a reflector difficult for a single A-scan. Additionally, these off-axis 

scatterers can easily mask the echo of the reflector if the material contains large 

grains. 
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Figure 2.6. An example of A-scan plot, where the red line indicates the backwall reflection and the 

green line illustrates the reflection from the defect. 

 

2.2.2 B-scan Image 

The B-scan is a 2-D profile image; it presents the cross-sectional view of the test 

specimen, as illustrated in Figure 2.7. The B-scan image can be seen as a group of 

parallel aligned A-scans, which can either be displayed as a waterfall plot or by 

plotting the signals in each A-Scan which exceed a set threshold value. In a B-scan 

image, the two axes are the time-of-flight of the ultrasonic wave and the position of 

the transducer. The example illustrated in Figure 2.8 effectively presents an A-scan 

Reflection from a defect 

First back wall reflection 

Second back wall 

reflection 

(a
.u

.)
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(x-dimension) for every spatial position of the transducer (y-dimension). Compared 

with the simple A-scan representation, the B-scan image is more visual and can be 

used to locate and size a reflector. 

An example B-scan is also given in Figure 2.8, where each line/row is effectively a 

single A-scan at certain location relative to the sample. Compared with the simple A-

scan representation, the B-scan image is more visual and can be used to locate and 

size a reflector. 

 

Figure 2.7. Concept diagram of B-scan [29]. 

 

Figure 2.8. An example image of B-scan [30]. 

 

2.2.3 C-scan Imaging 

The C-scan is also a 2-D image that provides a profile view of a slice of the test 

specimen. The section plane is parallel to the probe surface and is orthogonal to the 
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ultrasonic beam, as shown in Figure 2.9. C-scan images are usually produced with an 

automated data acquisition system, like a computer-controlled immersion scanning 

system. The intensity of the received signal is expressed through a brightness map 

and it is usually gated, with the example shown Figure 2.10 presenting the amplitude 

variation from an air-coupled inspection of a carbon-fibre sample. The colour map of 

a C-scan image can also represent the received time-of-flight information [28].   

 

Figure 2.9. Concept diagram of C-scan [29]. 

 

 

Figure 2.10. An example image of C-scan [31]. This image is purely for illustrate purpose: defect are 

indicated by green colourscale and blue represent background. 
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2.2.4 Full Matrix Capture (FMC) 

The conventional use of the phased array probe is to emulate and improve the 

performance of a single element probe. To achieve this, the array elements are 

excited follow a series of pre-defined time delays (or focal laws) to physically form a 

focused beam, or steered the beam angle during the inspection. The received signals 

are summed and can be seen as one single A-scan similar to a conventional single 

element probe. The benefit of the phased array is that it is more flexible than the 

conventional monolithic probe which has a fixed focusing point and a non-adjustable 

beam angle.     

The Full Matrix Capture (FMC) approach [27] is an alternate way to achieve data 

acquisition and stores the received signals in a special format which can be used for 

post processing. It stores the A-scan of every combination of transmit-receive 

elements of the entire array elements in a matrix. 

Figure 2.11 shows the mechanism of the FMC approach. Only one element of the 

array is excited, while all elements including the excited one are used to receive the 

returning echoes from the propagating wave in the sample. This procedure is 

repeated for every element of the array until all A-scans for every possible 

combination of transmitter-receiver pairs have been recorded. 
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Figure 2.11. Schematic diagram of FMC. 

 

The data is saved in a matrix of A-scans as shown in Figure 2.12, in a specific order 

that is based on the index of the transmitting-receiving combinations. ℎ𝑡𝑥,𝑟𝑥 is the 

received A-scan signal of a  transmitting-receiving elements pair, 𝑡𝑥 is the index of 

transmitting element, 𝑟𝑥 is the index of receiving element. 

 

Figure 2.12. An illustration of an FMC dataset. ℎ𝑡𝑥,𝑟𝑥 is the A-scan trace of a  transmitting-reiceiving 

elements pair, 𝑡𝑥 is the index of transmitting element, 𝑟𝑥 is the index of receiving element. 
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Theoretically, any beamforming that is based on the superposition of signals from 

combinations of element channels can be transferred to post-processing via the FMC 

dataset. Also, with the use of FMC, imaging algorithms that can generate higher 

quality images but are difficult to be applied on-line using the conventional 

methods/hardware, can now be easily applied off-line.   

Compared with the conventional on-line inspection, the FMC does not require a pre-

calculated delay law to achieve focusing in the transmitting or receiving, which 

makes the inspection arrangement easier and can potentially produce a larger 

inspection range.  

Another advantage of using the FMC is that it can generate images with a much 

higher resolution. Although, this was, until recently, at the expense of time to 

conduct the NDE data collection due to low data transfer efficiency between the 

instrumentation and the host PC. Now, the introduction of fast optical 

communication links (Ultrasound FlexRIO modules, Diagnostic Imaging Ltd; 

www.diagnosticsonar.com) and increased computational power through GP-GPU 

hardware [32], it is possible to collect FMC and process into a high-resolution image 

in real-time. [33, 34] 

Additionally, if every element of an array has the same performance, the A-scan of a 

transmitter-receiver pair should be identical to the A-scan of the same element 

pairing but with a swapped transmitter-receiver order. When under this assumption, 

the FMC could be reduced into a half matrix captured (HMC) by effectively 

removing (approximately) one half (symmetric section) of the matrix. [33, 34] 

2.3 Array imaging 

Many array imaging algorithms have been developed and are widely used in industry, 

such as the plane B-scan, focused B-scan, sectorial B-scan, and the total focusing 

method (TFM) [27]. The first three algorithms can be considered as standard 

http://www.diagnosticsonar.com/
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inspection techniques in conventional phased array systems, but can also be 

implemented by post-processing FMC data. TFM constructs images from FMC data 

so that it can only be applied in post-processing. This Section will briefly introduce 

these algorithms, along with other advanced array imaging algorithms. 

2.3.1 Plane B-scan Imaging 

Plane B-scan is the simplest processing method among all these five methods. The 

approach is to scan the ultrasonic beam in a similar way to one transducer probe 

physically moving in one direction across the sample. Since the beam spread is 

significant if only one element is fired each time, several adjacent elements will be 

fired simultaneously as an effective transmitting aperture to enhance the energy of 

ultrasonic beam and reduce the beam divergence. The firing sequence for each array 

element in the aperture is called a focal law and the concept of the plane B-scan, 

which is the simplest focal law, is shown in Figure 2.13. The word ‘plane’ in its 

name means the wavefront of the beam is a plane wave, and the wavefront is parallel 

to the array surface since all elements in the aperture are fired at the same time. The 

aperture is moving from one side of the array to the other side, to scan the entire 

imaging area of the test specimen, under the array transducer. The scanning 

resolution of the plane B-scan is equal to the element pitch size. As all elements in 

the aperture are excited simultaneously, the beam has no focusing which results in a 

poor resolution when compared to other imaging algorithms. 

If producing a plane B-Scan image through post-processing, the image intensity at a 

certain point (𝑥, 𝑧) is calculated as: 

 𝐼(𝑥, 𝑧) = | ∑ ∑ ℎ𝑡𝑥,𝑟𝑥(
2𝑧

𝑣
)

𝑀2

𝑟𝑥=𝑀1

𝑀2

𝑡𝑥=𝑀1

| (2.3) 

where ℎ𝑡𝑥,𝑟𝑥 is the A-scan of a transmitter-receiver pair in the FMC dataset, 𝑡𝑥 and 

𝑟𝑥 denote the indices of the selected array element respectively, 𝑀1 and 𝑀2 are the 

indices of the starting and ending element of an aperture, 𝑧 is the axial distance into 

the sample from the array position, and 𝑣 is the sound velocity in the load material.  
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Figure 2.13. Schematic diagram of plane B-scan inspection. 

 

2.3.2 Focused B-scan Imaging 

The scan mechanism of the focused B-scan is similar to the plane B-scan, with the 

aperture moving from one side of the array to the other side, and the intensity of a 

point in the image is determined by the received signal of the elements inside the 

aperture. The improvement of the focused B-scan compared with the plane B-scan is 

to apply beam focusing inside the aperture.  

In conventional phased array systems, the elements within an aperture are applied 

with a symmetric focal law in transmission to focus the beam at a particular depth.  

The received signals are delayed with the same focal law as used in transmission. All 

received signals in the aperture will then be combined to form a single A-scan line of 

the B-scan image. The focusing depth is usually chosen at a particular depth of 

interest. The principle of the focused B-scan is similar to synthetic aperture focusing 

technique (SAFT) [35-38] and the concept of the focused B-scan is shown in Figure 
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2.14. Here, the wave front of this type of scan method has a spherical wavefront 

directly below the aperture, and the centre of the sphere is the focusing point. 

Importantly, the resolution of the focused B-scan should be better than the plane B-

scan at the focused depth.   

 

Figure 2.14. Schematic diagram of focused B-scan inspection. 

 

In conventional phased array systems, the transmission can focus on several different 

depths before moving to next aperture to improve the resolution over a larger area. 

This is usually referred as the Dynamic Depth Focusing [39]. Applying a set of 

different focal depths requires multiple excitations of the transmission aperture, 

which will reduce the scan speed and hence, the number of focal depths implemented 

is usually constrained. Interestingly, the reception focusing is achieved electronically 

and will not affect the frame rate significantly; therefore the focusing on the 

reception can be much finer [40].  

As both the transmission focusing and reception focusing can be simulated in post-

processing when using FMC data, the focal depths of both procedures can potentially 
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be unlimited. Therefore, the intensity of a point in the focused B-scan image can be 

calculated as:   

 𝐼(𝑥, 𝑧) = | ∑ ∑ ℎ𝑡𝑥,𝑟𝑥(
√(𝑥𝑡𝑥 − 𝑥)2 + 𝑧2 +√(𝑥𝑟𝑥 − 𝑥)2 + 𝑧2

𝑣
)

𝑀2

𝑟𝑥=𝑀1

𝑀2

𝑡𝑥=𝑀1

| (2.4) 

where  𝑥𝑡𝑥 and 𝑥𝑟𝑥 is the coordinate of the transmitting element and the receiving 

element, respectively and x represents the lateral distance from the point relative to 

the centre of the array.  

2.3.3 Sector B-scan Imaging 

The sector B-scan usually employs all array elements to steer the ultrasound beam 

for the purpose of inspecting areas that are not directly beneath the array. The array 

elements are excited following a sequence of time delays to adjust the angle of the 

wavefront in a conventional phased array system. Unlike the plane B-scan and the 

focused B-scan, a polar coordination system (𝑟, 𝜃) based on the depth and the beam 

angle is commonly employed to record the images. If the sequence of time delays 

applied to the array elements is linear, the steered wave front will be retained as 

plane since no focusing is involved. The received signals of all elements will then be 

summed up to generate one synthetic A-scan as an individual scan-line. Figure 2.15 

shows the concept diagram of the sector B-scan. 

In post-processing using the FMC data, the intensity of a point in a sector B-scan 

image can be expressed as: 

 𝐼(𝑟, 𝜃) = |∑ ∑ ℎ𝑡𝑥,𝑟𝑥(
2𝑟 + 𝑥𝑡𝑥 sin 𝜃 + 𝑥𝑟𝑥 sin 𝜃

𝑣
)

𝑁

𝑟𝑥=1

𝑁

𝑡𝑥=1

| (2.5) 

where 𝑁 is the total number of array elements.  

Like Dynamic Depth Focusing, the sector B-scan can also have a set of focused 

depths if multiple transmissions with different focal laws are applied. With the beam 

steered and focused, both the image resolution and the inspection range can be 

improved. 
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Figure 2.15. Schematic diagram of sector B-scan inspection. 

 

2.3.4 Total focusing method 

The TFM is an advanced imaging algorithm that can generate higher resolution 

images compared to all of the above conventional imaging algorithms. In a TFM 

image, every pixel is a focused point. This is a good example of using the benefits of 

FMC and post-processing, because a high density of focused points is unrealistic for 

online inspection that uses multiple transmissions and focal laws.  

The post-processing of TFM is similar to the focused B-scan, except all array 

elements are involved now for calculating the intensity of a single pixel. Figure 2.16 

shows the concept of the TFM algorithm. 
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Figure 2.16. Schematic diagram of TFM imaging algorithm. 

 

The equation for computing a TFM image is, 

 𝐼(𝑥, 𝑧) = |∑ ∑ ℎ𝑡𝑥,𝑟𝑥(
√(𝑥𝑡𝑥 − 𝑥)2 + 𝑧2 +√(𝑥𝑟𝑥 − 𝑥)2 + 𝑧2

𝑣
)

𝑁

𝑟𝑥=1

𝑁

𝑡𝑥=1

| (2.6) 

Literature has stated that the TFM image commonly has a better SNR compared with 

the three conventional imaging algorithms introduced in Sections 2.3.1-2.3.3, since 

the TFM has involved the maximum amount of information from all transmitter-

receiver pairs of the array for every imaging pixel [27, 41]. As grain noise is more 

spatially coherent than a legitimate reflector, involving a larger number of array 

elements means increasing the spatial diversity for the inspection and hence, the 

potential to suppress the grain noise.    

The higher spatial resolution of the TFM images compared with the conventional 

algorithms is also stated in the literature by Holmes et al. [27]. An array performance 

indicator (API) was defined based on the point spread function (PSF) to measure the 

imaging quality of a point-like reflector. It has been shown that the TFM image has 

an 80% reduction in API compared with the plane B-scan, indicating a better 

representation of the reflector in the TFM image. 
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2.3.5 Advanced imaging algorithms 

In addition to the discussed four imaging algorithms, many advanced techniques 

have been developed in recent years for ultrasonic phased array inspection, to adapt 

for various practical scenarios.  

The Vector Total Focusing Method (VTFM) is an extension from TFM and designed 

to detect the orientation of the reflector, as in practice the legitimate reflector is not 

always point-like. The process is similar to TFM, but sub-array imaging is used to 

detect the direction of energy contribution for each image pixel [42]. For the 

reflectors that are not directly covered by the array, Multi-mode TFM is developed 

that uses specific reflections and mode conversions to enhance the detectability of 

such reflectors [43]. Since the surface of a test specimen can sometimes be arbitrary 

which inhibit the normal application of the focal law, an autofocusing algorithm has 

also been developed [44]. 

Fan et al [45] pointed out that the spatial resolution of TFM images is diffraction 

limited, known as Rayleigh limit. This is improved by the super-resolution 

techniques such as the Time reversal with multiple signal classification (TR-MUSIC) 

[46, 47]. It has been proved that TR-MUSIC algorithm has a significantly lower API 

compared with the standard TFM approach [45]. 

Phase aberration correction methods have also been exploited to improve focusing in 

the inspection of coarse-grained materials, as such materials are inhomogeneous and 

the wave speed varies at different locations in the sample. The Nearest Neighbour 

Cross-Correlation (NNCC) algorithm can adjust the phase difference by measuring 

the similarity between the signals of adjacent elements [48-50]. Time reversal mirror 

(TRM) algorithm corrects the phase aberration by re-transmitting the time-reversed 

reflection signal that was previously received [51, 52]. However, for highly scattered 

materials an iterative inspection approach is usually needed [53]. The decomposition 

of the time reversal operator (DORT, abbreviated from French words) is extended 

from the TRM methodology and can avoid the iterative process of the TRM by 

eliminating the grain noise interference [53].  
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Sparse signal representation (SSR) algorithms have also been widely used in 

ultrasonic NDE for many applications, such as increasing image resolution and 

improving defect characterisation, as reviewed by Zhang et al [54].  

Defect characterisation is also an important area in ultrasonic NDE. Tant et al [55] 

have proposed an analytical approach to objectively size cracks using ultrasonic 

phased array data. Zhang et al [56] has also done research defect characterisation 

using scattering matrices.  

Defect classification is another important and challenging issue in ultrasonic NDE. 

Different defects exist in industrial materials, such as crack, stomata, incomplete 

penetration and slag inclusion. Many signal processing methods have been proposed 

to achieve automated classification for these defects. Haykin [57] has proposed a 

method to use Multilayer Perceptron (MLP) and Wavelet Transform (WV) to 

classify defects in welding. Chen et al [58] have provided an alternative way to 

achieve this by applying Layered Multiple Support Vector Machine (LMSVM) and 

Wavelet Packet. 

In addition, Pamel et al [59] has proposed a method to evaluate the defect detection 

performance in ultrasonic phased array imaging, based on the statistical tools 

including Probability of Detection (PoD), Probability of False Alarm (PFA) and the 

related Receiver Operating Characteristic (ROC) curve. 

A good review paper for ultrasound signal processing for NDE can be found in [60], 

which presents recent developments and describes many typical ultrasound signal 

processing techniques. 

Importantly, many algorithms have been developed for array imaging to reduce the 

effect of grain noise in the inspection of coarse-grained materials. Details will be 

further discussed in Section 2.5. 
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2.4 Signal processing tools 

Before discussing grain noise reduction algorithms for ultrasonic inspection of 

difficult materials in Section 2.5, several basic signal processing tools are introduced 

in this Section which will support the ongoing algorithm developments described 

later in the Thesis. 

2.4.1 Fourier transform 

The Fourier transform (FT) is named after the French mathematician, Fourier [61] 

and is a mathematical tool that decomposes a waveform (a function or a signal) into 

an alternate representation in the frequency domain, characterized by sinusoidal 

functions. It is similar to the way of expressing music using notes. The FT is not 

limited to time based signals, but in many cases, the raw signal is commonly referred 

to as the time domain signal. Detail techniques can be found in many text books, 

such as [62]. 

Short-time Fourier transform (STFT) is a modified version of FT which is usually 

used to analyse the localised segmental signal since the FT spectrum is an overall 

analysis of the entire signal. STFT reflects the local sectioning of a signal that 

changes over time into the frequency domain, by dividing the entire signal into short 

segments then transforming each segment into a spectrum. The STFT spectrum can 

be seen as a 2-D time-frequency representation of the original time domain signal. 

To divide the longer signal into shorter segments, STFT uses a fixed length function 

which usually referred as a window. STFT can be mathematically expressed as: 

 𝐹𝑠𝑡𝑓𝑡(𝜏, 𝜔) = ∫ 𝑓(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 (2.14) 

where 𝑤(𝑡) is the window function and 𝜏 is the time index of the STFT spectrum. 

Generally, a window function is a non-negative, smooth, “bell-shaped’ curve [63]. 

An example STFT of a quadratic chirp that starts at 100 Hz and crosses 200 Hz at t = 

1 s are shown in Figure 2.17. Red colour in the image represent higher energy. Since 
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the example chirp signal has an raising frequency, the highest energy at different 

time instants that shows in the STFT plot is moving from 100MHz at 𝑡 = 0𝑠 to 500 

at 𝑡 = 2𝑠. 

 

Figure 2.17. An example STFT of a quadratic chirp signal. 

 

2.4.2 Wavelet transform 

The Fourier transform is good for analysing smooth signals but has less optimal 

performance on fast changing signals and the analysis of localised signals, as it needs 

as infinite sinusoidal basis to construct the sharp changes. Although STFT has 

improved the capability of analysing localised signals, the analysis lacks flexibility 

since the spectrum resolution of the time axis is dependent on the window function, 

which is fixed during the configuration phase. The Wavelet transform (WT) has a 

better solution to these issues. The current WT theory was first proposed by Morlet 

in 1974 [64, 65]. Compared with FT, WT focuses more on the localised transform 
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between the time domain and frequency domain. WT is similar to STFT but has a 

more flexible resolution in both time and frequency domain. 

The wavelet spectrum is usually expressed as a 2-D spectrum like the STFT. The 

time axis is consistent with the original signal and the frequency axis is replaced by a 

similar factor depending on the type of the wavelet transform. 

To transfer the time domain signal into a frequency domain representation, the WT 

extracts details and information using a pre-set function by scaling [66]. This 

function is commonly referred as the mother wavelet. 

The mother wavelet can be any function ℎ(𝑡)  which satisfies the admissibility 

condition [67]: 

 ∫
|𝐻(𝜔)|2

𝜔
𝑑𝜔

∞

0

= 𝐶 < +∞ (2.15) 

where 𝐻(𝜔) is the spectrum of ℎ(𝑡), 𝐶 is a constant. Any continuous function which 

is band limited and has a zero D.C. value can thus be used as a mother wavelet [66]. 

Figure 2.18 gives some examples of the mother wavelets. 

The selection of a mother wavelet is typically based on the feature of the signal of 

interest. For example, a Haar(db1) wavelet [68] could be chosen for signals with 

sharp features and a higher order Daubechies [69] wavelet may have better 

performance for a smoother signal. 

The size of the window in the time domain when extracting the information in the 

wavelet transform is no longer constant as it is a function of scaling. This results in a 

more natural description of the signal. Weiss [70] proposes that the WT is the 

correlation between the input signal and a set of basic wavelets, which is usually 

referred as daughter wavelets. The daughter wavelets are the scaled and shifted 

version of the mother wavelets.  
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Figure 2.18. Examples of mother wavelet. (a) Morlet wavelet, (b) Haar (Daubechies 1) wavelet, (c) 

Daubechies 4 wavelet, (d) Mexican hat wavelet. 

 

Like the Fourier transform which is defined as the sum over all time of the product of 

the original signal 𝑓(𝑡) and a complex exponential, the continuous wavelet transform 

(CWT) is defined as the sum over all time of the product of 𝑓(𝑡) and the daughter 

wavelets [66]: 

 𝑊𝑆(𝑎, 𝑏) = ∫ 𝑓(𝑡)ℎ𝑎,𝑏
∗ (𝑡)𝑑𝑡

∞

−∞

 (2.16) 

where ℎ𝑎,𝑏(𝑡)  is the daughter wavelet, 𝑎 is the dilation factor (scaling) and 𝑏 is the 

shift (position). Note that ∗ denotes a complex conjugate operation. The output of the 

CWT 𝑊𝑆(𝑎, 𝑏) is called the wavelet coefficients, which is a function of both the 
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scaling and the shifting. The Shifts correlate with the time delays of the original 

signal, while the Scales function like the frequencies in the Fourier transform. Higher 

scales correspond to lower frequencies and vice versa. A pseudo-frequency which is 

deduced from the scale is sometimes used in the spectrum plot to improve 

understanding and comparison.  

The scale of the CWT can be chosen at any value hence has been named 

‘continuous.' An inverse transform function of the CWT can be defined as [66]: 

 𝑓(𝑡) = ∫ ∫ 𝑊𝑠(𝑎, 𝑏)ℎ𝑎,𝑏(𝑡)
𝑑𝑎

𝑎2
𝑑𝑏

∞

−∞

∞

−∞

 (2.17) 

Note that since the CWT is a redundant transform and there is not a unique way to 

define its inverse transformation [71]. 

An example time-frequency 2-D CWT plot of the chirp signal in Figure 2.17 is given 

in Figure 2.19. The time axis is same with the raw signal and the scales axis 

represent the spectrum energy distribution at different time instant. Higher intensity 

in the figure represent higher energy. 

 

Figure 2.19. An eample CWT of the chirp signal in Figure 2.17. 

 

As the number of scales in the CWT is large, since it can choose any possible value, 

the computation power required is correspondingly relatively large and it may also 
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generate redundant data. A discrete wavelet transform (DWT) [69] can be used to 

mitigate the above issues by only calculating certain scales and shifts based on the 

power of two. Mallat [72] has developed an efficient way to calculate the DWT by 

filtering and significantly increased the computational speed.  

Basically, in DWT a signal is filtered by a high pass filter and a low pass filter to 

generate two decomposed signals which are commonly referred as approximations 

and details. As for many signals, important information is usually in the lower 

frequency part; therefore the decomposed approximation signal can be further 

filtered into a second level approximation and detail. This process can be iterated, as 

shown in Figure 2.20. 

To avoid generating redundant data, for each level of decomposition, the signal is 

downsampled to half of its original length. The 2-D spectrum of the DWT is usually 

illustrated by times and levels. 

For those interested in analysing the higher frequency components of the signal, a 

wavelet packet [73] can be applied. The wavelet packet is similar to the DWT, but 

instead of discarding the detail signals, the wavelet packet also decomposes the detail 

into a new pair of approximation and detail at each level. Compared with the DWT, 

the wavelet packet is more generalised and can offer a richer possibility for signal 

analysis.   

 

Figure 2.20. Discrete wavelet transformation decomposition tree.  
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2.4.3 Other signal processing tools 

The Hilbert transform is often applied in practice when imaging [74]. It extends a 

real signal into the complex plane to derive its analytic representation. In ultrasonic 

signal processing and imaging, the Hilbert transform is usually used to calculate the 

envelope of a signal to smooth it and to neutralise the effect of wave fluctuations [75].  

Filtering is also important in ultrasonic inspection as the raw signal often contains a 

D.C. component and high-frequency electronic noise. A bandpass filter can be 

applied to the raw signal before continuing with any further processing to remove 

these unwanted components.  

Additionally, logarithmic algebra is often used to express the final images to reduce 

the dynamic range of image intensity. Generally, this is achieved by: 

 𝐼𝑙𝑜𝑔 = 20𝑙𝑜𝑔10(𝐼𝑚) (2.18) 

where 𝐼𝑙𝑜𝑔 is the logarithmically compressed image, 𝐼𝑚 is the modulus of the input 

image, which is usually normalised to its maximum value before the calculation.  

2.5 Noise reduction algorithms 

As discussed in Chapter 1, many materials used in industry often exhibit 

heterogeneous or acoustically scattering properties, which constrain ultrasonic NDE 

techniques. Target echo pulses can be embedded in a strong grain noise background, 

even if the defect is much larger in size than the grain boundaries surrounding it.  

A range of techniques have been developed to achieve noise reduction in ultrasound 

inspection applications along with other similar areas such as radar [76, 77], sonar 

[78], and communications [79-81]. Most of the existing methods are spatial diversity 

based or frequency diversity based. This Section will review some of these methods. 
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2.5.1 Spatial diversity based techniques 

Spatial diversity based techniques require multiple A-scan traces that were emitted 

from different locations and orientations. Typically, the echoes of a legitimate 

reflector are more consistent when received at different locations/orientations 

compared with the echoes associated with the grain noise. A simple example of using 

spatial diversity to achieve noise reduction is to average several A-scans that were 

acquired in close proximity but from slightly different source locations [82, 83]. 

Basically, beamforming techniques that using delay and sum [84] such as 

conventional SAFT and the advanced array imaging algorithm TFM intrinsically 

operate with spatial diversity. However, the SNR improvement by this averaging 

process is limited if the grain noise is spatially correlated [85]. Wilhjelm et al. has 

proposed other combination operators in addition to averaging, including median and 

geometric mean. [86]. 

The dual apodization with cross-correlation (DAX) [87] has shown promise in 

reducing speckle noise in biomedical ultrasound. DAX uses two apodization 

functions that can be seen as spatial filters alongside basic delay and sum 

beamforming to create opposing signals with out-of-phase grating lobes, which are 

then cross-correlated. A high correlation coefficient at a certain point means that both 

of the signals are similar and that the signal at the point is likely to be from a 

reflector. Conversely, a low correlation coefficient will mean that the signals are 

unrelated and are likely to be either contribution from the sidelobe or speckle noise. 

The DAX can also be further combined with the nearest neighbour cross-correlation 

to improve robustness [88]. Lardner et al. have exploited the Sub-Aperture Spatially 

Averaged Correlation Imaging (SASACI) [89] algorithm and the Correlation for 

Adaptively Focused Imaging (CAFI) [90] algorithm which were inspired by the 

DAX approach, for grain noise reduction in the field of NDE. Li et al. have also 

proposed an adaptive beamformer that applies a lateral spatial filter to the delayed 

array data based on the statistical analysis to achieve noise suppression [91]. 

Phase coherence imaging (PCI) also originated from biomedical ultrasound [92] and 

had been extended to NDE [10]. Instead of using the summation of the signal 

amplitude, like conventional delay and sum techniques, the PCI calculate special 
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factors which are based on the statistical property (e.g. standard deviation) of the 

phase. Theoretically, a legitimate reflector has a more consistent phase distribution  

across A-scans from different elements compared with the grain noise, if the beam is 

well focused. A plane-wave phase-coherence imaging has also been developed by 

Cruza et al [93], to achieve ultrafast imaging and to improve dynamic range 

compared with TFM.  

2.5.2 Frequency diversity based techniques 

As discussed in Section 2.5.1, spatial diversity based techniques require multiple 

acquisitions from different transducer positions. This can be straight-forward to 

achieve by employing phased array techniques. However, phased array is not always 

available, e.g. in the case of low-frequency applications.  

Grain noise in the coarse-grain material is not only coherent to different inspection 

orientations and locations, but also coherent to the inspection wave frequency 

[94].This phenomenon was originally used in radar system to achieve noise 

suppression and latterly has been introduced into ultrasound [95]. 

Techniques using this phenomenon are frequency diversity based, which distinguish 

legitimate reflectors from grain noise by analysis of the differences between their 

spectral characteristics. The grain noise is more sensitive to frequency than a 

legitimate reflector, as the echo from grain boundaries is a collective interference 

result of a group of spatially unresolvable grain scatterers. As the echo of each 

scatterer has its own amplitude and phase, the interference echo may have 

constructive or destructive amplitude at certain frequencies. This will result in the 

echo associated with grain noise commonly containing fewer frequency components 

than a legitimate reflector. In addition, as the frequency diversity based techniques 

require analysis of spectrum characteristics, a wider frequency band transducer is 

usually required. 

One of the well-known frequency diversity based techniques is the split spectrum 

processing (SSP) technique, which was first published in 1979 [96, 97]. The process 

of SSP includes four steps and is described by the flowchart in Figure 2.21: 
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 Transform the original broadband signal into frequency domain; 

 Decompose the frequency domain signal by multiplies of a set of pass-band 

filters; 

 Apply the Inverse Fourier Transform to each filtered spectrum; 

 Recombine these time domain signals using appropriate algorithms. 

The decomposing of the raw A-scan trace can be achieved by conventional filtering 

techniques but it is commonly done by multiplies of a set of windows in the 

frequency domain.  

Five filter (or window) specifications that may affect the results of SSP are listed 

below: 

 The number of band-pass filters 

 Total filter bandwidth 

 Filter type 

 The bandwidth of each filter 

 Overlap of filter pass-bands 
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Figure 2.21. Flowchart of Split Spectrum Processing methodolgy. 

 

Literature has shown that the number of filters can be varied in a large range, from 

three [98] to two hundred [99, 100]. Technically, increasing the number of filters will 

result in an increase in SNR. However, the computational complexity is also 

increased with each additional filter, while the relative SNR improvement decreases 

rapidly if the filter number is greater than 10 [98]. In addition, the improvement in 

SNR using extra filters is also limited by the frequency resolution of the spectrum. 

The total bandwidth of all filters is commonly chosen to be the same with the 

bandwidth of the transducer at its –6dB drop-off point. For materials with strong 

grain noise, the upper frequency band can be selected lower than that of the 

transducer since higher frequencies are usually more attenuated [100], see Section 

3.1.3 and Figure 3.6. Gaussian filters are commonly used in most of the literature 

[97-99, 101, 102]. Conventionally the bandwidth of each filter is chosen to be 

equally sized, and all filters are uniformly distributed across the entire processing 
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frequency range [97, 98, 103].  Rodriguez et al. have recently proposed a new 

method that assigns the bandwidth of each filter to be proportional to its centre 

frequency [104]. Importantly, the overlap between filter bands should not be too 

large, or the effect of SSP may be reduced, while no overlap will result in missing 

information in certain frequencies. Commonly, the overlap is chosen between 0% 

and 25% in most of the literature [98, 100, 105], calculated at the 50% drop-off point.   

After the filtered sub-spectrum has been transferred back to time domain sub-signals, 

the recombination algorithms will be applied to generate the result. There are mainly 

two types of recombination: based on order statistic or phase observation [106]. 

Order statistic based recombination algorithms using the inequivalent statistical 

information of the filtered channels to separate the legitimate reflector from grain 

noise, based on a particular rank (e.g. minimum, median, maximum) [103]. These 

algorithms are based on the coherence of the amplitude of the filtered channels, such 

as the Minimization (MIN) [105] algorithm and the Normalised Minimization 

(NMIN) [107] algorithm, as given in Eq. (2.19) and Eq. (2.20). 

 Minimisation: 

 𝑅(𝑛) = min⁡(|𝑍1(𝑛)|, |𝑍2(𝑛)|,⋯ , |𝑍𝑗(𝑛)|) (2.19) 

 Normalised minimization: 

 𝑅(𝑛) =
min⁡(|𝑍1(𝑛)|, |𝑍2(𝑛)|,⋯ , |𝑍𝑗(𝑛)|)

max⁡(|𝑍1(𝑛)|, |𝑍2(𝑛)|,⋯ , |𝑍𝑗(𝑛)|)
 (2.20) 

where 𝑅(𝑛) is the reconstructed signal, 𝑍𝑗(𝑛) is the split time domain sub-signal, and 

𝑗 is the index of the sub-signal. 

Phase observation based recombination algorithms like the polarity thresholding (PT) 

[101] algorithm and the polarity thresholding with scaling (PTS) [108] algorithm 

detect the echoes of legitimate reflectors based on the phase coincidence of the 

filtered channels.  
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 Polarity Thresholding: 

 

𝑅(𝑛) = min(|𝑍1(𝑛)|, |𝑍2(𝑛)|,⋯ , |𝑍𝑗(𝑛)|), 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑎𝑙𝑙⁡𝑍𝑗(𝑛) > 0⁡𝑜𝑟⁡𝑖𝑓⁡𝑎𝑙𝑙⁡𝑍𝑗(𝑛) < 0 
(2.21) 

 Polarity Thresholding with Scaling: 

 𝑅(𝑛) =
𝐽𝑃 − 𝐽𝑁
𝐽

∙ min(|𝑍1(𝑛)|, |𝑍2(𝑛)|,⋯ , |𝑍𝑗(𝑛)|),⁡ (2.22) 

where 𝐽 is the total number of the sub-signals, 𝐽𝑃 is the number of sub-signals that 

have positive amplitude at 𝑛, and 𝐽𝑁 is the number of sub-signals that have negative 

amplitude at 𝑛. 

The SSP was initially applied to single A-scans application, but later been extended 

to improve SAFT images by applying the SSP to each image column [109]. Dantas et 

al. has also extended the SSP in 2-D image processing in the medical field by 

applying Gabor filters [110].  

One drawback of the SSP is that the output signal of the conventional SSP algorithm 

may suffer a decreased axial resolution due to the use of narrow bandpass filters [95]. 

Interestingly, a coded excitation technique has been combined with SSP to enhance 

the axial resolution [111].  

Another commonly known drawback of the SSP is its sensitivity to parameter tuning 

[112], such as the range of the total bandwidth, filter number etc. This parameter 

setting is usually tuned through a trial-and-error process, and it is varied for different 

materials in practice, even for the same material with a different propagation distance. 

The output of SSP can be easily ruined by an inappropriate parameter setting, 

especially when the SNR of the received signal is low.  

Many efforts have been made to address this drawback. Karpur et al. has suggested 

the optimal number of filters for MIN algorithm implementation [100]. Li et al. 

proposed a method to determine the optimal total processing bandwidth by analysing 

the spectral histogram of the signal [113]. Tian et al. also suggest a method to locate 
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the optimal processing bandwidth by using group delay moving entropy with target 

spectral characteristics known a priori [114].  

Advanced SSP has also been exploited to reduce the parameter sensitivity problem. 

Erisson et al. developed a new method using a band stop filter to extract sub-signals 

instead of bandpass filtering [115]. Yuan et al. suggest a phase observation based 

method by counting the consecutive coincidence polarity at a certain time delay of 

the signal [116].  However, both algorithms still require a carefully selected 

threshold.  

Another frequency diversity based algorithm has also been developed to enhance the 

detection capability and reliability. Gustafsson proposed a model based algorithm 

that defines optimal filter bands according to the statistical property of the simulated 

signal and noise [112]. The result is promising as the optimal filter band is adapted to 

the test signal, but the algorithm is strongly related to the signal and noise model 

which is difficult to achieve in practice. Izquierdo et al. exploited an advanced 

filtering technique that filters the signal with a changing bandwidth which is 

estimated by autoregressive techniques. The algorithm can address the frequency 

dependent attenuation issue which is caused by the scattering property of materials. 

However, it may not be suitable for highly scattering materials, which have a more 

complicated spectral characteristic [117]. Zhang et al [118] have also used Sparse 

Signal Representations algorithms to achieve grain noise reduction and ultrasonic 

flaw detection. 

Many techniques have employed the wavelet transform as it is a more natural way to 

represent the signal since the selection of the mother wavelet is flexible. Abbate et al. 

developed an algorithm to eliminate grain noise by pruning and thresholding certain 

CWT coefficients [66]. Song et al. uses the wavelet transform as filters, but the 

results were only based on white noise simulation and high SNR experimental data 

[119]. Pardo et al. discussed the use of two undecimated DWT for ultrasonic NDT 

noise reduction [120]. Matz et al. also show a similar technique but using the wavelet 

packet [121].  
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Other techniques have also been developed that use pre-existing knowledge of the 

materials and signals. These techniques can adjust themselves to adapt the data by a 

training process. The training process allows the algorithm to capture essential 

characteristics of the legitimate reflector and grain noise echoes. Sun et al. proposed 

advanced algorithms that combine the SSP with the artificial neural network (ANN) 

[122] and adaptive-network-based fuzzy inference system (ANFIS) [123, 124]. Liu 

et al. also developed a similar technique using ANN [125].  

In addition, frequency diversity based techniques can also be combined with spatial 

diversity based techniques [126]. As frequency diversity based techniques require 

information from different frequencies, a wider band transducer is more desirable. 

Mulholland et al. attempted to increase the transducer bandwidth by attaching 

multiple matching layers in the front face of a transducer [17]. 

2.6 Data acquisition, modelling, and processing 

This Section introduces the experimental configuration, material specimens, 

modelling, and processing platform that is used throughout the Thesis.  

2.6.1 Data acquisition 

Figure 2.22 shows the commercial single element probe and the phased array probe 

used in the Thesis, along with their respective details in Table 2.1 and 2.2.  

Two PACs were employed during this PhD research work, the DYNARAY-

256/256PR (Zetec, Snoqualmie, USA, S/N: DYN-0052) and the FlawInspecta 

FIToolbox (Diagnostic Sonar Ltd., Livingston, UK, S/N: 150020). The DYNARAY 

contains 256 channels which can be active simultaneously and is shown in Figure 

2.23. The sampling frequency can be selected at 25MHz, 50MHz, or 100MHz. The 

DYNARAY is driven by a Matlab (The MathWorks Inc., Natick, USA) script to 

acquire FMC datasets. This script was developed in the Centre for Ultrasonic 

Engineering (CUE) and uses the Dynaray open source feature.  The FlawInspecta, 

shown in Figure 2.24, is configured with 64 simultaneously active channels and so a 
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multiplexing system is present to enable the 128-element phased array to be 

controlled. The sampling frequency of the FlawInspecta is fixed at 40MHz. The 

FlawInspecta is driven by a Labview (National Instruments Corporation, Austin, 

USA) program, again bespoke software was developed within CUE for FMC data 

capture.  In this work, a -40V negative square pulse with a pulse length of 100ns was 

used to excite the array elements for both PACs.  

Three different material samples are used in the Thesis, as listed and illustrated in 

Table 2.3. The materials presented have been measured at University of Strathclyde 

as the full material properties were not available from E.oN and Siemens. 

 

Figure 2.22. The commercial single element probe (top) and the phased array probe (bottom) used in 

the Thesis. 
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Table 2.1. Specifications of the single element probe. 

Manufacture OLYMPUS 

Part No. A320S 

Serial No. 718359 

Element size 0.75 Inch (Diameter) 

Centre frequency 5 MHz 

Fractional bandwidth 49.61% 

 

Table 2.2. Specifications of the phased array. 

Array type 1-D Linear array (Vermon) 

Array size 128 elements 

Element pitch 0.7 mm 

Centre frequency 5 MHz 

Fractional bandwidth 63% 
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Figure 2.23. Phased array controller: DYNARAY. 

 

Figure 2.24. Phased array controller: FlawInspecta. 
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Table 2.3. Specification of the experimental samples. 

1 

Austenitic steel sample 

 

Composition: 

~8% Mn, ~4% Cr 

This sample was provided by E.ON Technologies and contains no flaw. The 

height of the sample varies (nominally around 50mm) and the width is 79mm. 

The longitude wave propagation speed in this material is ~5262m/s. Austenitic 

stainless steels are favoured for the use as the primary coolant piping of 

pressurised water reactors in nuclear power plants and pipe work, plus pressure 

vessels in the petrochemical industry due to their outstanding resistance to 

corrosion and oxidation as well as better plasticity and higher strength versus 

typical carbon steels [127].  

 

2 

Inconel 617 sample 

 

Composition: 

~60% Ni, ~20% 

Cr, ~10% Co 

This sample is also provided by E.ON Technologies and contains no flaw. The 

sample is keystone-shaped which has a height around 40mm, and a width 

linearly varies between 20mm and 40mm. The longitude wave propagation 

speed in this material is ~5679m/s. Inconel alloys are attractive construction 

material components in industries such as aerospace and power plants due to an 

exceptional combination of oxidation resistance and high-temperature modulus 

[128]. Material Specifications of Inconel 617 can be found at [129]. 
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3 

Inconel 625 sample 

 

 

Composition: 

~60% Ni, ~20% 

Cr, ~10% Mo 

This step wedge sample is provided by Siemens AG (Berlin, Germany) and 

contains three side-drilled holes (SDHs). The chemical compositions of this 

sample are slightly different from the Inconel 617 sample. This is a large 

sample where the top height is 160mm. The three SDHs are at 10mm, 60mm 

and 105mm depth from the top surface, respectively. The longitude wave 

propagation speed in this sample varies across a large range, from 5200m/s to 

5900m/s. Material Specifications of Inconel 625 can be found at [130]. 

 

2.6.2 Modelling 

Modelling is an important tool to simulate different scenarios conveniently. It can be 

used to validate and analyse algorithms with multiple configurations which may not 

be available experimentally due to the manufacturing time and costs. In this work, an 

analytic model is used to simulate signals received from difficult materials. Details of 

the model will be further discussed in Chapter 3 and Chapter 7. 

2.6.3 Processing platform 

The algorithms proposed in this work are developed using Matlab (The MathWorks 

Inc., Natick, USA, Version 8.6.0.267246) script. As the processing of data can take a 

significant amount of time, Compute Unified Device Architecture (CUDA) [131] is 

employed to accelerate the computational efficiency, where appropriate. The CUDA 

Toolkit version used in this work is v6.5. CUDA is a parallel computing program 

that can run multiple treads simultaneously on a General Purpose Graphical 
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Processing Unit (GP-GPU). A modern NVidia graphics cards contain GPUs with 

2880 cores, which is significantly more when compared to modern CPU 

configurations. As a trade-off, the cores in GPU are much simpler than those in a 

CPU. Parallel computing using GPU is suitable for simple iterative tasks that can be 

calculated separately without affecting the final result; thus, it is an efficient tool for 

ultrasound imaging algorithms [132]. 
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Chapter 3  

Moving Bandwidth Split Spectrum Processing 

As introduced in Chapter 2, many techniques have been developed to achieve noise 

reduction. Phased array imaging techniques such as the widely used Focused B-scan 

[27], and Total Focusing Method (TFM) [27] have already achieved great success. 

However, phased array techniques are not always available, e.g. in the case of low 

frequency inspection.  

Based on the fact that structural noise in difficult materials is frequency coherent, 

frequency diversity based techniques like the well-known Split Spectrum Processing 

(SSP) have been developed [108]. However, as discussed in Chapter 2, the sensitivity 

of the parameter selection for SSP is well known in literature, especially when the 

SNR is low [112]. 

Other frequency diversity based algorithms such as the Wavelet Transform (WT), are 

also based on the spectrum differences between the grain noise and target echoes. 

However, the characteristic of the spectrum varies for different materials and hence, 

limits the versatility of these methods. 

To adapt to the properties of different materials, model based frequency diversity 

techniques have been developed, such as Optimal Detection (OD) [112]. These 

techniques can adjust themselves by learning the pre-knowledge of materials. 

However, the learning requires a high fidelity dataset, otherwise their performance 

will deteriorate. 

Therefore, the motivation of this Chapter is straightforward: to develop a robust 

frequency diversity based technique which is less affected by material properties, 

without the necessity of a training process. Although grain noise is generally more 

sensitive to frequency compared with echoes from a defect, different load materials 
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may have different absorbing and attenuation properties, which causes the energy 

spectrum of the defect signal to be distributed differently depending on the material 

under inspection. Moreover, even for the same material, the grain size may be vary 

across different regions. In addition, the propagation distance can also affect the 

characteristic of the received spectrum. Hence, to achieve the stated requirements, 

this algorithm must consider all the possibilities of energy distribution on the 

spectrum and extract the target echo correctly. This is difficult to achieve without 

knowing the spectrum characteristics in the first place. 

A spectrum based technique in the field of medical imaging [133] introduced the 

concept of 'moving bandwidth' which can capture the target echoes with different 

spectrum characteristics and reduces the grain noise in 'localised frequencies'. This 

concept should also be suitable for NDE, and the 'moving bandwidth' can be used to 

achieve the proposed objective. 

In this Chapter, a new frequency diversity based algorithm named Moving 

Bandwidth Split Spectrum Processing (MB-SSP) for structural noise reduction is 

presented. The algorithm is inspired by the concept of ‘moving bandwidth’, but 

focused on the reduction of the effect of phase dispersion. It uses the phase 

coherence to eliminate the grain noise for different frequencies and reconstruct the 

signal to extract useful information. 

3.1 Principle and methodology of Moving Bandwidth Split 

Spectrum Processing 

3.1.1 Summary of methodology 

The procedure of the proposed MB-SSP algorithm can be summarized in four steps. 

A flow chart and a concept diagram are given in Figure 3.1 and Figure 3.2 to show 

the relationship between each step. 



53 

 

 

Figure 3.1. Flowchart of MB-SSP. 

 

Figure 3.2. Concept figure for MB-SSP 
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i. Spectrum partition by a moving bandwidth 

To extract the 'localised information', the proposed algorithm firstly filters the 

acquired A-scan data into a set of sub-signals which contain different frequency 

components. A sub-signal is a time domain signal filtered from the raw A-scan signal.  

This is achieved by transforming the acquired RF signal into the frequency domain, 

using the Fourier Transform, and then applying moving window functions with 

bandwidth 𝐵𝑆 to partition the spectrum, before finally applying the Inverse Fourier 

Transform. This procedure describes the concept of ‘moving bandwidth’, i.e. a set of 

overlapped bandpass filters. To include more information from the raw signals, the 

range of total processed bandwidth 𝐵𝑇, i.e. the span of the moving bandwidth 𝐵𝑆, 

should be chosen to be as wide as possible: typically approximately equal to 200% 

fractional -6dB bandwidth of the transducer centre frequency. Meanwhile, the 

bandwidth 𝐵𝑆 of each filter or window cannot be too narrow, or too wide, generally 

selected around 80% of the fractional bandwidth of the transducer centre frequency.  

𝐵𝑆 should be moved at even intervals inside the total processed bandwidth 𝐵𝑇, and 

should overlap with ~50% of its previous location. The sub-signals extracted from 

each 𝐵𝑆 will be denoted as 𝑌𝑗(𝑛), n is the sampled time delay, j is the index of the 

sub-signals, with maximum value of J. 

ii. Sign Detection in Localisation Spectrum 

For each sub-signal 𝑌𝑗(𝑛) obtained from the previous step, each potential legitimate 

reflector location is detected as the 'localised' information of a related frequency band 

𝐵𝑆,𝑚, by further filtering the signal into narrow band frequency channels 𝑟𝑚(𝑛), and 

using Eq. (3.1).  

 𝑍(𝑡) = {
1,⁡⁡⁡𝑖𝑓⁡𝑎𝑙𝑙⁡𝑟𝑚(𝑡) > 0⁡𝑜𝑟⁡𝑟𝑚(𝑡) < 0
0,⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 (3.1) 

This is similar to Polarity Thresholding (PT), but the bandwidth of each frequency 

channel is narrower and no amplitude information is included. Since the spectrum 

characteristic of a signal varies when acquired from different locations, depth and 

materials, for example, the number of the frequency channels may affect the 

correctness of the 'localised' defect extraction. Hence, different numbers of channels 



55 

 

are generated to make sure all useful information is included. This can be done by 

repeating the above process with a different number of filters.  

iii. Probability Profile Generation 

After all sub-signals have been processed, a probability profile 𝑃(𝑛)  will be 

generated to show how likely a point in the raw signal is to be a legitimate reflector 

echo. The 'detector' is a small window which travels along the time domain signals. 

The peaks contained in the window for all 𝑍𝑗(𝑛) at the same time delay decides the 

value in 𝑃(𝑛), as shown in Eq. (3.2). Assume 𝐽 sub-signals have been processed, for 

a certain time delay 𝑛; 𝐿𝑤 is the length of a segmental signal containing point n. 

 

𝑃(𝑛) = ∑ 𝑆𝑗(𝑛),⁡⁡⁡𝑗 = 1,2⋯ 𝐽𝐽
𝑗=1

𝑤ℎ𝑒𝑟𝑒⁡𝑆𝑗(𝑛) = {
0, 𝑖𝑓⁡𝑎𝑙𝑙⁡𝑍𝑗(𝑛 + 𝑙 − 𝐿𝑤 2⁄ ) = 0,⁡⁡⁡𝑙 = 1,2⋯𝐿𝑤
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 
(3.2) 

The length of the detecting window 𝐿𝑤 generally should equal to 2𝐿, i.e. 2 ∗ 2𝑣/𝑓𝑐, 

𝐿  is the range cell, which will be discussed in Section 3.1.2.  

iv. Reconstruction 

The probability profile implies the position of a defect but is not intuitive for 

inspection. Further processing is required to extract useful information. This can be 

achieved by weighting the raw signal using the probability profile with a threshold 

𝑇ℎ. The threshold 𝑇ℎ should be set between 0 and 1. Generally 𝑇ℎ should be around 

0.5 to balance the Probability of Detection (PoD) and Probability of False Alarm 

(PFA). 

If the attenuating property of the test material is known a priori, then a scaling 

function 𝐴𝑑𝑗(𝑛)  should be applied on each 𝑆𝑗(𝑛) to reduce the influence of grain 

noise at high frequencies due to long path lengths. The scaled 𝑆𝑗(𝑛),  𝑆𝑐𝑗(𝑛) is given 

by, 

 𝑆𝑐𝑗(𝑛) = 𝐴𝑑𝑗(𝑛) ∙ 𝑆𝑗(𝑛) (3.3) 

and the threshold 𝑇ℎ is adjusted accordingly, 
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 𝑇ℎ(𝑛) =
1

2𝐽
∙∑𝑆𝑐𝑗(𝑛)

𝐽

𝑗=1

 (3.4) 

In this case the threshold 𝑇ℎ(𝑛) will be frequency dependent.  

3.1.2 General model analysis 

In this Section and Section 3.1.3, the proposed MB-SSP algorithm will be explained 

mathematically. 

The proposed algorithm aims to reduce grain noise and detect the presence of 

legitimate reflector echoes.  Typically, an ultrasonic radio frequency A-scan signal 

received by a transducer may be expressed as, 

 𝑟(𝑡) = 𝑟𝑆𝑖𝑔(𝑡) + 𝑟𝑁𝑜𝑖(𝑡) (3.5) 

where t is time, 𝑟(𝑡)  is the received signal,  𝑟𝑆𝑖𝑔(𝑡)  contains legitimate reflector 

echoes and 𝑟𝑁𝑜𝑖(𝑡)  is the additive grain noise. System electronic noise is not 

considered in this model. 

Importantly, for a given time instant, a legitimate reflector echo may or may not be 

present. Therefore two possible hypotheses are assumed, 

 {
𝑟(𝑡) = 𝑟𝑆𝑖𝑔(𝑡) + 𝑟𝑁𝑜𝑖(𝑡),⁡⁡⁡⁡𝐻1

𝑟(𝑡) = 𝑟𝑁𝑜𝑖(𝑡),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐻0
 (3.6) 

The noise signal 𝑟𝑁𝑜𝑖(𝑡)  in Eq.(3.1) and Eq.(3.2) can be modelled as the 

superposition of echo signals reflected back from random distributed scatters. 

Considering the ultrasonic pulse ℎ(𝑡)  emitted from the transduce has it Fourier 

transform 𝐻(𝜔), where 𝜔 is angular frequency. Then the spectrum of an echo 𝑅(𝜔) 

from a distant reflector can be expressed as, 

 𝑅(𝜔) = 𝜎𝐻𝑡𝑟𝑎𝑛(𝜔)𝐻𝑟𝑒𝑓𝑙(𝜔)𝑒
−𝑖𝜔𝜏 (3.7) 

where 𝐻𝑡𝑟𝑎𝑛(𝜔)  is the frequency response of transducer, 𝐻𝑟𝑒𝑓𝑙(𝜔)  refers to the 

frequency response of the material, 𝜎 is the reflection coefficient, 𝜏 = ⁡ (2𝑥/𝑣) is the 

propagation time where 𝑥 is the transmitting distance and 𝑣 is the sound velocity.  
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Since grain noise can be seen as the superposition of backscattered echoes from 

different scatterers, the received noise signal can be written as: 

 𝑅𝑁𝑜𝑖(𝜔) = ∑𝜎𝑘𝐻𝑡𝑟𝑎𝑛(𝜔)𝐻𝑟𝑒𝑓𝑙(𝜔)𝑒
−𝑖𝜔𝜏𝑘

𝐾

𝑘=1

 (3.8) 

𝐾 is the total number of the scatterers.  

Based on the assumption in frequency diversity techniques that grain noise 

components are uncorrelated in different frequency channels [101], if we filtering the 

received signal by a set of narrow bandpass filters 𝐻𝑓𝑖𝑙(𝜔 − 𝜔𝑚), then the spectra of 

each filtered frequency channels can be represented as: 

 𝑅𝑁𝑜𝑖,𝑚(𝜔) = ∑𝜎𝑘𝐻𝑡𝑟𝑎𝑛(𝜔)𝐻𝑟𝑒𝑓𝑙(𝜔)𝐻𝑓𝑖𝑙(𝜔 − 𝜔𝑚)𝑒
−𝑖𝜔𝜏𝑘

𝐾

𝑘=1

 (3.9) 

where 𝑚 is the index of the filter and 𝜔𝑚 is its centre frequency.  Let 

 𝐺𝑚(𝜔 − 𝜔𝑚) = 𝐻𝑡𝑟𝑎𝑛(𝜔)𝐻𝑟𝑒𝑓𝑙(𝜔)𝐻𝑓𝑖𝑙(𝜔 − 𝜔𝑚) (3.10) 

then 

 𝑅𝑁𝑜𝑖,𝑚(𝜔) = ∑𝜎𝑘𝐺𝑚(𝜔 − 𝜔𝑚)𝑒
−𝑖𝜔𝜏𝑘

𝐾

𝑘=1

 (3.11) 

Applying inverse Fourier transform,  

 𝑟𝑁𝑜𝑖,𝑚(𝑡) = ∑𝜎𝑘𝑔𝑚(𝑡 − 𝜏𝑘)𝑒
−𝑖𝜔𝑚(𝑡−𝜏𝑘)

𝐾

𝑘=1

 (3.12) 

where 𝑔𝑚(𝑡) is the inverse Fourier transform of 𝐺𝑚(𝜔). 

Similarly, an echo from a legitimate reflector can be expressed as 

 𝑟𝑆𝑖𝑔,𝑚(𝑡) = 𝑔𝑚(𝑡 − 𝜏)𝑒
−𝑖𝜔𝑚(𝑡−𝜏) (3.13) 

For a given time instant 𝜏, the value of the received echo signal can be seen as the 

phasor sum of scatterers distributed in its range cell. A range cell is a time domain 

window that contains all the echoes of scatterers which can affect the amplitude and 
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phase of the centre time instant of the window. The length of the range cell is 

approximately equal to 

 𝐿 =
2𝑣

𝑓𝑐
 (3.14) 

where 𝑓𝑐 is the centre frequency of the transducer. Let  

 𝑎𝑚(𝑡 − 𝜏)𝑒
𝑖𝜃𝑚,𝜏 =∑𝜎𝑘𝑔𝑚(𝑡 − 𝜏𝑘)𝑒

−𝑖𝜔𝑚(𝜏−𝜏𝑘)

𝐾

𝑘=1

 (3.15) 

𝜃𝑚,𝜏 is the equivalent phase angle at 𝜏 for frequency channel 𝑚, 

 

𝜃𝑚,𝜏 = 𝑎𝑡𝑎𝑛2 {∑𝐴𝑘,𝑚𝑠𝑖𝑛⁡[𝜔𝑚(𝜏 − 𝜏𝑘)]

𝐾

𝑘=1

,∑𝐴𝑘,𝑚𝑐𝑜𝑠⁡[𝜔𝑚(𝜏 − 𝜏𝑘)]

𝐾

𝑘=1

} 
(3.16) 

where 𝐴𝑘,𝑚 = 𝜎𝑘𝑔𝑚(𝑡 − 𝜏𝑘). All scatterers 𝑘 are inside the range cell. Therefore, for 

the given time instant 𝜏, substitute Eq. (3.12), (3.13) and (3.15) back into Eq. (3.6), 

the hypotheses H1, H0 become, 

 {
𝑟𝑚(𝑡) = 𝑔𝑚(𝑡 − 𝜏)𝑒

𝑖𝜔𝑚(𝑡−𝜏) + 𝑎𝑚(𝑡 − 𝜏)𝑒
𝑖[𝜔𝑛(𝑡−𝜏)+𝜃𝑚,𝜏],⁡⁡⁡⁡𝐻1

𝑟𝑚(𝑡) = 𝑎𝑚(𝑡 − 𝜏)𝑒
𝑖[𝜔𝑛(𝑡−𝜏)+𝜃𝑚,𝜏],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐻0

 (3.17) 

When 𝑡 = 𝜏, 𝑔𝑚(𝑡) reaches its maximum value and 𝑒𝑖𝜔𝑚(𝑡−𝜏) = 1; this corresponds 

to where the peak of the legitimate reflector echo occurs. For noise signals, since 

𝜃𝑚,𝜏 is related to the centre frequency and amplitude of each frequency channel, and 

the distances between the given point and the scatterers, it can be treated as a random 

distribution across 0~2𝜋, for different frequency channels at the same time delay.  

Let 𝐻𝑟𝑒𝑓𝑙(𝜔) = 1, i.e. no frequency dependent attenuation is considered. Figure 3.3 

shows a concept diagram of 𝑟𝑚(𝑡) for four different frequencies (simply identified 

using the m index) at a given time instant 𝜏, under the condition of H0. 

The diagram used in Figure 3.3 is a representation of Euler’s formula in the complex 

plane. Euler’s formula can be expressed as 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃, as shown in Figure 

3.4. In the case of this Section, the complex plane of Euler’s formula is used to 

describe the phased angle of a signal at a certain time instant. For example, when 
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𝜃 = 90°, 𝑒𝑖𝜃=1, the signal has reaches its positive peak value at the given time 

instant. 

 

Figure 3.3. Diagram of 𝒓𝒎(𝒕) for four different frequencies channel (m=1, 2, 3, 4) at 𝝉, under the 

condition of H0. Only grain noise is present in this case. The phase in different frequency channel at 

time instant 𝝉 is randomly distributed. 

 

Figure 3.4. Euler’s formula presents in the complex plane 

 



60 

 

When under the condition of H1, since the peak of a legitimate reflector echo is 

present at 𝜏, the amplitude and angle of 𝑟𝑚(𝑡) at 𝜏 will mainly be depended on the 

presented echo peak, especially for the situation when the echo signal from the 

legitimate reflector is much stronger than the noise component (SNR >>1), as can be 

seen in Figure 3.5.  

As shown in Figure 3.5, it can be easily found that with the presence of the legitimate 

reflector echo, all frequency channels have same sign (in this representative case all 

of them are positive). Hence, we can detect all present legitimate reflector echoes in 

the signal by finding the time instance that all frequency channels are positive or 

negative, and subsequently remove the noise, as shown in Eq. (3.1).  

The phase of each frequency channel is also a factor that can be used, since their 

distribution range is narrowed down when a legitimate reflector echo is present, as 

shown in Figure 3.5. However only sign information will be considered in this 

algorithm and the reason behind this will be explained in the next Section.   

3.1.3 Frequency dependent attenuation and phase dispersion 

The assumption that was made in Figure 3.3 and 3.3 assumed there is no frequency 

dependent attenuation. Unfortunately, an important fact is that the reflection and the 

propagation of ultrasonic wave in materials are both frequency dependent. For 

difficult materials, echoes reflected back from a distant legitimate reflector are 

typically significantly distorted. Importantly, parts of its frequency components are 

highly attenuated, and the legitimate reflector spectrum can no longer ‘predominate’ 

the entire bandwidth of the transducer. Generally, higher frequency components of 

an echo spectrum are more attenuated.   

In addition, the spectrum energy of an echo signal reflected back from a grain is 

more focused on the higher frequencies. According to [134], in the Rayleigh region 

the amplitude frequency response is approximately in proportion to the square of 

frequency. An illustrative example of legitimate reflector and grain noise spectra are 

shown in Figure 3.6. 
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Figure 3.5. Diagram of 𝒓𝒎(𝒕) for four different frequency channels (m=1, 2, 3, 4) at 𝝉, under the 

condition of H1. Both grain noise and legitimate reflector signal are presented at 𝝉. The blue arrows 

represent the legitimate reflector signal, which ideally would have same energy level and same phase. 

Black arrows represent grain noise, and the red arrows represent 𝒓𝒎(𝒕) which is obtained by adding 

the legitimate reflector signal and grain noise at different frequencies. The polarity of  𝒓𝒎(𝒕) at 

different frequencies is agreed with legitimate reflector signal since it is larger than grain noise. 

 

As can be seen in Figure 3.6, the spectra of legitimate reflector echoes can be 

significantly distorted, sometime its centre frequency may even go beyond the -6dB 

bandwidth of the transducer. Importantly, the noise from a difficult material can be at 

the same level as the legitimate reflector signal (SNR = 1), that means the legitimate 

reflector echo in some frequency channels may be easily buried by a strong noise 

component. As can be seen in Eq. (3.1), even only one channel containing no target 

echo is sufficient to violate the algorithm operation. Based on the analysis above, this 

issue is especially serious for the higher frequency channels, as can be seen in the 

concept diagrams shown in Figure 3.7. 
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To maintain the performance of the algorithm, one can apply a large set of narrow 

filter bands within a wider processing bandwidth to cover all the frequency range that 

may contain legitimate reflector echoes, and determine the time instances with the 

majority demonstrating coincident sign. Such similar concepts have been applied on 

algorithms like Scaled Polarity Thresholding and Consecutive Polarity Coincidence 

[108]. However, two problems arise. Firstly, with the increasing number of filter 

bands of the reconstructed signal will suffer a significant loss in detail, since only 

limited points of the signal can pass such a harsh requirement of sign coincidence for 

a large number of frequency channels. Secondly, an important fact has not been 

considering so far is that the phase velocity of each frequency channel is slightly 

different which will cause phase dispersion [135], as illustrated in Figure 3.8. Phase 

dispersion is a phenomenon that the phase velocity of a wave depends on its 

frequency. This will result in echo peaks from the same reflector appearing at 

different time instants for different frequency channels, as shown in Figure 3.9. With 

a wider processing bandwidth, this effect is no longer negligible. 

 

 

Figure 3.6. Spectrum example of legitimate reflector and grain noise.  
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Figure 3.7. Diagram of 𝒓𝒎(𝒕) for four different frequencies (m=1, 2, 3, 4) at 𝝉, under the condition of 

H1, for frequency dependent materials. Both grain noise and legitimate reflector signal are presented 

at 𝝉. The blue arrows represent the legitimate reflector signal, black arrows represent grain noise, and 

the red arrows represent 𝒓𝒎(𝒕) which is obtained by adding the legitimate reflector signal and grain 

noise at different frequencies. The polarity of  𝒓𝒎(𝒕) at different frequencies is no longer agreed with 

legitimate reflector signal since it sometimes has smaller magnitude than noise due to the frequency 

dependent attenuation.  

 

Figure 3.8. Phase velocity as a function of frequency. 
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Figure 3.9. Echo peaks from the same reflector appeared at different time instant for different 

frequency channels. Frequency channel with higher index has a higher frequency hence a higher phase 

velocity.   

 

Another way to consider this is to adjust the centre and the width of the total 

processing bandwidth of Eq. (3.1), in order to fit the characteristic of the legitimate 

reflector spectrum and let it ‘predominate’ the entire processing bandwidth. In this 

case since the processing bandwidth is reduced, the influence of phase dispersion is 

diminished. Also, there will only be a reduced number of filter bands inside the 

processing bandwidth, hence avoiding loss in detail. A knowledge of the exact 

frequency response of the legitimate reflector echo and the noise spectrum 

distribution, enables proper adjustment of this processing bandwidth of the algorithm 

to promote a good result. Unfortunately, the frequency response of the legitimate 

reflector echo and the noise cannot be explicitly known. In fact processing signals 

with no pre-knowledge of the legitimate reflector echo is one of the motivations of 

the algorithm. Hence, to avoid missing information from the raw signal and promote 

detection of all potential legitimate reflectors, Eq. (3.1) should be applied repeatedly 

across a wide frequency range with a reduced processing bandwidth and varied 

centre frequency to extract ‘localised information’ from different frequency bands of 

the spectrum. This procedure acts like a ‘moving bandwidth’. Again, each time the 

processing bandwidth is moved, it must has an overlap with its previous location, to 

ensure no information is missing. This is also the reason why Eq. (3.1) only includes 



65 

 

sign information, as sign is more tolerant than phase for legitimate reflector echo 

detection.  

However, the reduced bandwidth for each individual process leads to another 

problem.  Based on Eq. (3.16), 𝜃𝑚,𝜏  in different frequency channels are more 

coherent to each other since the reduced bandwidth minimises the difference of 𝐴𝑘,𝑚 

and 𝜔𝑛 in different channels. This lowers the noise reduction capability of Eq. (3.1). 

As discussed previously, a wider processing bandwidth will include more noise since 

the legitimate reflector spectrum cannot dominate the entire processing bandwidth. 

Thus, a compromise must be made that the processing bandwidth of Eq. (3.1) cannot 

be too wide or too narrow.  

The moving bandwidth processing using Eq. (3.1) yields a set of processed sub-

signals, containing echo peaks that potentially could be a legitimate reflector echo 

and artefact peaks caused by the remaining noise. Hence, further processing is 

required to extract the legitimate reflector echo and minimise the remaining noise 

components.   

A simple and direct way to reconstruct a signal that indicates the location of the 

legitimate reflector echo is to combine all the sub-signals generated by the moving 

bandwidth via averaging. However with the above analysis, it can be shown that 

echo peaks from the same reflector are not present at the same time instance for 

different frequency channels. Thus, a time domain detection window is introduced to 

solve this. The detection window will move along the time axis, every peak covered 

by it will be counted. The more peaks identified, the higher value will be attributed to 

the reconstructed signal, hence the higher likelihood to be the location of a legitimate 

reflector echo.  

Introducing the detection window instead of directly averaging all points at the same 

time instance means there is a risk to include extra noise when counting the 

legitimate reflector echoes, if the noise peaks are too close to the legitimate reflector. 

Hence the detection window length is critical to the algorithm success: too short and 

legitimate reflector echoes may not be counted; and must be long enough to maintain 
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the signal resolution. For these reasons, the length of the detection window is chosen 

as double length of the range cell 𝐿, in Eq. (3.14). 

The reconstructed signal generated by the detection window is like a probability 

profile of the raw signal, and indicates the locations that are more likely to be a 

legitimate reflector. However this probability profile still has a lot of noise and it 

does not contain the detailed characteristic of the legitimate reflector signal. To solve 

this, the probability profile is truncated by a threshold to remove the noise, and then 

multiplied with the raw signal to produce the final result.  

Since the attenuation is frequency dependent, if we know the attenuation property of 

the material, then each higher frequency channel is reduced accordingly. The new 

threshold level is based on the attenuation knowledge of each frequency channel. 

3.2 Analysis of simulation approach 

3.2.1 Simulation models 

To generalize the study of the algorithm, simulated signals have been generated 

using analytical models.    

According to Eq. (3.8), grain noise can be seen as the superposition of the echoes 

from different scatterers in the materials. It has been stated in literature [43] that the 

density of scatterers in the materials has to be greater than 5 scatterers/wavelength
2
 in 

order to simulate Rayleigh distributed grain noise. 

The energy distribution of an echo from a scatterer is determined by it reflection 

coefficient 𝜎  and the material frequency response 𝐻𝑟𝑒𝑓𝑙(𝜔) . 𝐻𝑟𝑒𝑓𝑙(𝜔)  is mainly 

dependent on the attenuation during propagation for different frequencies. Assuming 

a material has a constant attenuation coefficient 𝛼 [134], 

 𝐻𝑟𝑒𝑓𝑙(𝜔) = 𝑒−𝛼𝜔
4𝑥 (3.18) 

where 𝑥 is the propagation distance. 
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In the Rayleigh region, the frequency response of an echo reflected back from a 

distant scatterer can be expressed as [134] 

 𝜎(𝜔) = 𝛾
𝑉𝜔2

𝑥𝑣2
 (3.19) 

where 𝛾 is a constant coefficient and 𝑉 is the volume of the scatterer.   

The phase shifting factor 𝜏 in 𝑒−𝑖𝜔𝜏 in Eq.(3.3) which models the delay caused by the 

propagation is usually assumed to be linear with no frequency dependency. However, 

for highly attenuated material with large 𝛼, the phase dispersion is not negligible, 

and hence the phase velocity 𝑣 in 𝜏 = ⁡ (2𝑥/𝑣) should also be a function of 𝜔, noted 

as 𝑣(𝜔). Here a model, Nearly Local model, that calculates the dispersion based on 

the local attenuation is applied [136], 

 
1

𝑣(𝜔)
=

1

𝑣(𝜔0)
−
2𝛼 ∙ (𝜔3 − 𝜔0

3)

3𝜋
 (3.20) 

where 𝜔0 is a reference angular frequency, 𝑣(𝜔) is the calculated phase velocity at 

an arbitrary frequency 𝜔. 

Let 𝛽 = 𝛾𝑉/𝑣2, then Eq. (3.8) can be rewritten as, 

 𝑅𝑁𝑜𝑖(𝜔) = 𝐻𝑡𝑟𝑎𝑛(𝜔)∑𝛽
𝜔2

𝑥𝑘
𝑒−𝛼𝜔

4𝑥𝑘𝑒
−2𝑖𝜔𝑥𝑘[

1
𝑣(𝜔0)

⁡−⁡
2𝛼∙(𝜔3−𝜔0

3)
3𝜋

]
𝐾

𝑘=1

 (3.21) 

Under general conditions, 𝛽 is assumed to follow a normal distribution when there is 

large amounts of scatterers [134]. Similarly, the spectrum of the echo from a 

legitimate reflector is, 

 𝑅𝑆𝑖𝑔(𝜔) = 𝑠 ∙ 𝐻𝑡𝑟𝑎𝑛(𝜔)𝑒
−𝛼𝜔4𝑥𝑒

−2𝑖𝜔𝑥[
1

𝑣(𝜔0)
⁡−⁡
2𝛼∙(𝜔3−𝜔0

3)
3𝜋

]
 (3.22) 

where 𝑠  is the defect amplitude factor which indicates the ratio between the 

legitimate reflector echo amplitude and the noise level. The reflection coefficient  

𝜎 in Eq. (3.7) is removed, since it is a constant number for a legitimate reflector 

signal.  
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Since this model assumes that scattering and attenuation are frequency dependent, 

hence the transmitted signal suffers a significant distortion after it propagates for a 

distance. Accordingly, this non-linear model is referred to as a high dispersion model 

(HDM) in this Thesis. 

As a comparison, a low dispersion model (LDM) is also used, which assumed that 

the ultrasonic pulse remains essentially the same after propagates an equivalent 

distance, 

 𝑟𝑁𝑜𝑖(𝑡) = ∑𝜌 ∙ 𝛿(𝑡 − 𝜏𝑘)

𝐾

𝑘=1

 (3.23) 

 𝑟𝑆𝑖𝑔(𝑡) = 𝑠 ∙ 𝛿(𝑡 − 𝜏) (3.24) 

where 𝜌 is the reflection coefficient of LDM. 

3.2.2 Definition of Signal to Noise Ratio, Probability of Detection and 

Probability of False Alarm 

Signal to Noise Ratio (SNR), Probability of Detection (PoD) and Probability of False 

Alarm (PFA) is used for quantifying analysis of the performance of the algorithm.  

SNR is one of the most general methods used to quantify the quality of signals and 

images. Since the signal and noise are measured across the same impedance (they are 

acquired by the same device from the same material), amplitude is used in this work 

rather than power. Maximum amplitude of the signal is used in this work and many 

previous works [101, 108] to analyse grain noise reduction techniques since these 

techniques are usually processed non-linearly and they represent indicators of the 

defect locations, rather than defect characterisation. 

In this work, the signal to noise ratio is defined as, 

 𝑆𝑁𝑅 =
𝑝𝑒𝑎𝑘⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑠𝑖𝑔𝑛𝑎𝑙

𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑛𝑜𝑖𝑠𝑒
 (3.25) 

All SNR in this work will be shown in decibel units computed by 20𝑙𝑜𝑔10(𝑆𝑁𝑅).  
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PoD and PFA, along with receiver operating characteristic (ROC) curve, are 

successfully been used for statistic reliability measurement in a variety of areas 

related to detection problems.  

PoD calculates the probability of when a target is detected at the location where it 

should present. It indicates the ability that an algorithm can successfully find the 

desired targets. The higher the PoD value, the greater chance that the desired targets 

can be detected. 

False alarm rate is also an important indicator since it shows the accuracy of an 

algorithm when detecting targets. PFA is the probability of when a target is detected 

at the location where no target should present. Higher PFA means more noise signals 

have been misclassified as legitimate reflector signals. Generally, output signals with 

higher PoD and lower PFA indicates a more appropriate parameters setting.  

PoD and PFA can also be plotted against each other as a ROC curve that illustrates 

the performance of an algorithm at various settings of a certain parameter. ROC is a 

useful tool to optimize the setting of a parameter by finding the compromise point, if 

the parameter causes trade-off between PoD and PFA. 

3.2.3 Simulated results 

This Section shows the simulated MB-SSP results of modelled signals, as well as 

some SSP results for the purpose of comparison and analysis. Note that only PT has 

been applied to generate SSP results, since MB-SSP also uses polarity information to 

process data. 

i. Influence of frequency dependent attenuation 

Figure 3.10 and Figure 3.12 present the modelled signals using LDM and HDM 

respectively, along with their SSP results in Figure 3.11 and Figure 3.13. Four 

example signals are given in each case. Both models use simulated signals with 

5MHz centre frequency, 50% transducer bandwidth at -6dB and 100MHz sampling 

frequency. The attenuation factor 𝛼  for the HDM is 10−31 , based on empirical 

findings from [134]. Generally, for typical alloys used in NDE, the attenuation factor 
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should be in the range from 10−31 to 10−28. The legitimate reflector was placed at 

45 mm, with detection amplitude factor 𝑠 = 1.5. For the purpose of comparison, the 

SNR of the two models has been set at same level, though in practice the SNR level 

of high dispersive materials is usually much lower than low dispersive materials. The 

parameters of SSP in both cases are exactly same, with a processing bandwidth equal 

to 50% of the transducer bandwidth at -6dB and a filter number of 9. As can be seen 

in Figure 3.11 and Figure 3.13, where legitimate reflector echoes are successfully 

been detected in both cases and grain noise has been significantly been reduced, 

illustrating that SSP works well in both cases.  

Note that the peaks appeared at locations other than 45mm in the SSP processed A-

scans shown in Figure 3.11 is the noise signals that fail to be eliminated. This is 

referred to as artefact noise signal in this Thesis. Same issues also appeared in other 

processed A-scan signals which shown are Figure 3.13 and Figure 3.23. 

However, for materials that have higher attenuation factor, SSP results become 

unstable. Figure 3.14 shows the HDM results with same parameters as Figure 3.12, 

except for attenuation factor 𝛼 which is increased to 5 ∗ 10−29. As can be seen in 

Figure 3.15, all four peaks of legitimate reflectors in the SSP results are missing, 

while the parameters setting of SSP is exactly the same as Figure 3.13. This is caused 

by the significant frequency dependent attenuation which distorted the spectrum of 

the legitimate reflector and hence, the legitimate reflector spectrum can no longer 

dominate the entire processing bandwidth. However, if the processing bandwidth of 

SSP is slightly adjusted, e.g. move the centre frequency of processing bandwidth 

from 5MHz to 4MHz in this case to ensure the predomination of legitimate reflector 

spectrum, then all the missing legitimate reflector echoes will be detected, as shown 

in Figure 3.16. 
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Figure 3.10. Four A-scan examples which simulated by LDM, with detection amplitude factor 𝑠 = 1.5. 

The legitimate reflector echo in each A-scan is set at 45mm. 
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Figure 3.11. SSP results of the four A-scan signals which shown in Figure 3.10. 
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Figure 3.12. Four A-scan examples which simulated by HDM, with 𝑠 = 1.5, 𝑎 = 10−31. The 

legitimate reflector echo in each A-scan is set at 45mm. 
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Figure 3.13. SSP results of the four A-scan signals which shown in Figure 1.10 
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Figure 3.14. Four A-scan examples which simulated by HDM, with 𝑠 = 1.5, 𝑎 = 5 ∗ 10−29. The 

legitimate reflector echo in each A-scan is set at 45mm. 
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Figure 3.15. SSP results of the four A-scan signals which shown in Figure 3.14. 
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Figure 3.16. Alternative SSP results of Figure 3.14, in which a lower processing bandwidth was 

selected. 
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the legitimate reflector for some frequency channels. As can be seen in Figure 3.18, 

only two signals show the correct legitimate reflector location (45mm). The 

parameters setting of SSP is consistent with those used in Figure 3.13. 

 

Figure 3.17. Four A-scan examples which simulated by HDM, with 𝑠 = 1, 𝑎 = 10−31. The legitimate 

reflector echo in each A-scan is set at 45mm. 
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Figure 3.18. SSP results of the four A-scan signals which shown in Figure 3.17. 
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increasing the number of filters), basically nothing will be detected since the phase is 

slightly shifted in different frequency channels, plus the increasing number of filters 

make the polarity coincidence less possible. However, the results are also not 

acceptable if the number of the filters are maintained the same and have a wider 

bandwidth for each filter, as shown in Figure 3.20. Although three of the legitimate 

reflector has been barely detected (the narrow, pulse-like legitimate reflector echo 

also indicates that the phases of each frequency channel are not identical), the noise 

reduction ability of the algorithm is significantly reduced. As can be seen in Figure 

3.20, many artefact echo peaks have been introduced. 

 

Figure 3.19. Alternative SSP results of Figure 3.14: with wider bandwidth & increased filter number. 
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Figure 3.20. Alternated SSP results of Figure 3.14, with a wider bandwidth and wider filters. 
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reflectors in each case while significantly reducing noise. Compared with SSP results, 

MB-SSP demonstrates a more stable detect capability. 

 

Figure 3.21. MB-SSP results of the four A-scan signals which shown in Figure 3.12. 
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Figure 3.22. MB-SSP results of the four A-scan signals which shown in Figure 3.14. 
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Figure 3.23. MB-SSP results of the four A-scan signals which shown in Figure 3.17. 

 

3.2.4 Parameter analysis of MB-SSP 

In this Section the PoD and PFA will be used to make the comparison and analysis of 
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respectively. 𝑠 in each group was chosen at 1, 1.5 and 2 to simulate different noise 

levels. For each 𝛼 and 𝑠 combination 1000 signals were simulated to calculate PoD 

and PFA. Each A-scan contains a legitimate reflector echo at ~45mm. The 

bandwidth at -6dB, the centre frequency and the sampling frequency of both groups 

are 50%, 5MHz and 100MHz, respectively. 

If not specified, the parameters of MB-SSP are chosen as: 80% of the transducer’s 

bandwidth at –6dB for 𝐵𝑆 , up to 10 filters inside each 𝐵𝑆 , 75% overlap between 

adjacent 𝐵𝑆, 80 sample points length for detecting window, and 0.5 for threshold 𝑇ℎ. 

The following parameters of MB-SSP will be compared and analysed:  

 Overlap 

 Number of filters 

 Bandwidth of 𝐵𝑆 

 Length of detecting window  

 Threshold level 

 

i. Overlap 

Figure 3.24 and Figure 3.25 show the PoD and the PFA for different percentage 

overlap of Bs. Both figures indicate that PoD has a higher value at higher overlap, 

while PFA remain the same. PoD reaches a relatively stable and acceptable value at 

around 30% for Figure 3.24 and 50% for Figure 3.25. However, a larger overlap 

means more Bs partitions required, hence it will need more computation power. For 

this reason, the overlap should be generally chosen between 50% to 75%. 
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Figure 3.24. PoD and PFA for different percentage overlap of Bs, 𝜶=10
-29

. 

 

Figure 3.25. PoD and PFA for different percentage overlap of Bs, 𝜶=10
-28

. 

 

ii. Number of filters 

As can be seen in Figure 3.26 and Figure 3.27, the PFA has a high value when the 

maximum filter number inside each 𝐵𝑆  is low, since the polarity is easier to be 

coincident when using small number of frequency channels. The PFA is decreasing 
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as the maximum filter number is increasing, but an increased filter number will lead 

to a lower PoD, especially when the noise level is high. This is because although the 

increased number of frequency channels enhances the noise removal capability, it is 

also lower than the detection capability. As a compromise, the maximum filter 

number inside a 𝐵𝑆 should be chosen at a balance point around 10. 

 

Figure 3.26. PoD and PFA for different number of filters used, 𝜶=10
-29

. 

 

Figure 3.27. PoD and PFA for different number of filters used, 𝜶=10
-28

. 
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iii. Bandwidth of Bs 

As discussed in Section 3.1.1, the bandwidth of 𝐵𝑆 should be chosen at around 80% 

of the -6dB bandwidth of transducer. This is clearly reflected from the PoD and the 

PFA results shown in Figure 3.28 and Figure 3.29. All PoD curve reach their peak at 

around 80%, with low PFA values. The performance of the algorithm is poor when 

the bandwidth of 𝐵𝑆  is narrow, since the benefit of frequency diversity is not 

included. While it is also not acceptable if the bandwidth is too wide, since the 

influence of phase dispersion is increased, especially for a higher attenuation factor 𝛼. 

 

Figure 3.28. PoD and PFA for different Bandwidth of Bs, 𝜶=10
-29

. 
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Figure 3.29. PoD and PFA for different Bandwidth of Bs, 𝜶=10
-28

. 

 

iv. Length of detection window 

In this Section, the effect of the detection window length will be discussed. The 

detection window is a time domain window that travels along the time axis to 

generate the probability profile, as described in Eq. (3.2).  

Figure 3.30 and Figure 3.31 show the ROC of different detecting window lengths for 

different 𝛼 and 𝑠. It can be seen in the two figures that the optimum operating points 

between PoD and PFA corresponds to when window length equals to 2𝐿. This is 

coincident with the theoretical suggestion that the window length should be twice of 

the range cell. 

Since the attenuation property of the modelled signals was known a priori, we can 

also compare the benefit of using a frequency dependent threshold. Let 

 𝐴𝑑𝑗(𝑛) = 𝑒
𝛼
(𝜔1

4−𝜔𝑗
4)∙𝑣(𝜔𝑐)∙𝑛

𝑓𝑠  (3.26) 

where 𝑓𝑠  is the sampling frequency, 𝜔𝑐  is the centre angular frequency of the 

transducer, 𝜔1 and 𝜔𝑗 are the centre angular frequency of 𝑌1(𝑛) and 𝑌𝑗(𝑛). 
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Figure 3.30. ROC for different lengths of detecting window, 𝜶=10
-29

. 

 

Figure 3.31. ROC for different lengths of detecting window, 𝜶=10
-28

. 
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v. Threshold level 

As can be easily seen from the ROC in Figure 3.32 and Figure 3.33, PoD and PFA 

reach the compromise point when the threshold level Th is ~0.5. In both Figures, the 

PoD at 𝑇ℎ = 0.5 is near 100% and PFA is less than 10%. 

 

Figure 3.32. ROC for different threshold level, 𝜶=10
-29

. 

 

Figure 3.33. ROC for different threshold level, 𝜶=10
-28
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Figure 3.34 shows the PoD and the PFA calculated from two different legitimate 

reflector locations, one at 30 mm and one at 90 mm, with the noise signal region 

selected to be close to these legitimate reflector regions. In this case, 𝛼 was chosen at 

10−29 and 𝑠 = 1.5. From Figure 3.34 it can be see that though PoD of both regular 

threshold and frequency dependent threshold are at the same level, PFA is lower if 

frequency dependent threshold was applied. This indicates that using frequency 

dependent threshold can further improve the performance of the algorithm. 

 

Figure 3.34. PoD and the PFA for regular threshold and frequency dependent threshold. 

3.3 Experimental validation 

To validate the proposed algorithm, a number of experimentally acquired A-scan 

traces for three different samples have been used. The austenitic steel sample and the 

Inconel 617 sample that were described in Section 2.6 are used. The Full Matrix 
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in Figure 3.35(b), with threshold 𝑇ℎ set at 0.5. Note the original A-scan is shown in 
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Gaussian filters with total bandwidth equal to the transducer bandwidth at -6dB 

(approximately from 3MHz to 6MHz) was used and the recombination algorithm is 

Polarity Thresholding (PT). The parameter for SSP is a commonly selected based on 

the transducer bandwidth, when the properties of the test specimens are assumed to 

be not known. The array was directly placed on the surface of the sample, and the 

depth of the back wall is 80mm in this case. From Figure 3.35(b) it can be seen that 

the echo most likely to be a defect (back wall) which is buried in the raw signal 

remains, while the grain noise around it has been removed. In the SSP A-scan result, 

the back wall is not positioned correctly and strong artefact signals have been 

introduced. 

 

 

Figure 3.35. Single A-scan of Austenitic steel processed using MB-SSP and SSP 

 

A single A-scan trace for one sample is clearly not enough for the validation 

purposes. Hence, B-scan images of MB-SSP for both the Inconel 617 sample and the 

austenitic steel sample are given in Figure 3.36 and Figure 3.37, respectively, as well 

as the raw data and the SSP results for comparison. All parameter settings remain the 

same as previously described. Interestingly, in both MB-SSP B-scan images a dark 

line is visible at around 50mm and 80mm respectively, corresponding to the depth of 

back wall for each of the two samples. Compared with SSP B-scan images, only the 

one for the Inconel 617 sample correctly shows a dark line, while the one for the 

20 40 60 80
0

1000

(a) Raw A-scan

distance(mm)

|a
m

p
li
tu

d
e

|

20 40 60 80
0

500

1000
(b) MBPT

distance(mm)

|a
m

p
li
tu

d
e

|

20 40 60 80
0

5

10

(c) SSP

distance(mm)

|a
m

p
li
tu

d
e

|

|A
m

p
lit

u
d

e
| 
(a

.u
.)

 

|A
m

p
lit

u
d

e
| 
(a

.u
.)

 

|A
m

p
lit

u
d

e
| 
(a

.u
.)

 

Distance (mm) 

Distance (mm) Distance (mm) 

(b) MB-SSP  



94 

 

austenitic sample has failed completely. In both the MPBT and SSP images, there are 

also many artefacts but the overall image quality from the original B-scan image is 

significantly improved. 

 

Figure 3.36. B-scan Images of the Inconel 617 sample processed using MB-SSP and SSP. 

 

Figure 3.37. B-scan Images of the austenitic steel sample (see Table 2.3) processed using MB-SSP 

and SSP. 

 

3.3.2 Comparison 

Further comparison is now considered to show the robustness of the proposed MB-

SSP method. Table 3.1 gives the Signal to Noise Ratio (SNR) of each case in Figure 

3.36 and Figure 3.37. The SNR in Figure 3.36 and Figure 3.37 is the average value 

from all A-scan traces in the B-scan image, calculated by using the peak value of the 
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region of ±3mm around the position of back wall, and the noise was chosen from the 

region between the array and 10mm above the back wall. From Table 3.1 it can be 

seen that the proposed MB-SSP algorithm enhances SNR by approximately 16dB for 

both samples and consequently, defects are more visible compared with SSP images, 

while SSP is shown to fail on the austenitic steel data, but achieves 14dB SNR 

enhancement on the Inconel 617 sample data. 

 

Table 3.1. SNRs of images in Figure 3.36 and Figure 3.37 

Inconel 617 B-scan images Austenitic steel B-scan images 

Raw image 7.51dB Raw image 9.82dB 

MB-SSP 22.94dB MB-SSP 26.50dB 

SSP 21.57dB SSP -0.97dB 

 

It is considered that SNR is not sufficient to describe the performance since the 

resolution of the SSP varies as a function of parameter setting. Moreover, both MB-

SSP and SSP contain non-linear processing. To further compare the performance of 

MB-SSP and traditional SSP with different conditions (different materials, different 

propagation distances and parameters setting etc.), PoD and PFA are used, with each 

PoD and PFA calculated from 700 A-scan traces. Echoes from the back wall were 

used for the PoD calculation. 

Figure 3.38 shows the robustness of the proposed MB-SSP algorithm in bandwidth 

selection. MB-SSP is less sensitive to frequency, since it uses a fixed wide 

bandwidth as default. In Figure 3.38, each column represents specially tuned SSP 

results, where the maximum indicates PoD and minimum indicates PFA. The 

parameters setting for all five columns are the same, except the bandwidth selection. 

Obviously, the performance of SSP is closely related to its bandwidth selection. In 

this case, the Inconel 617 sample was tested, and the best performance for SSP 

results appeared when the bandwidth is selected as 50% at -6dB with the centre 

frequency at 2MHz. For MB-SSP results, the fixed bandwidth avoids this frequency 

sensitivity while maintained a related higher performance without losing information 

in the raw signal, since it selects a bandwidth approximately equal to the widest one 

of SSP case (the leftmost column, 100% bandwidth at -6dB, 5MHz centre frequency), 
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and its PoD is higher than all SSP cases, while its PFA is only higher than one SSP 

result. This is because MB-SSP reduces the structural noise for different frequencies 

respectively before reconstruction.  

 

Figure 3.38. PoD and PFA of MB-SSP and SSP with Different Bandwidth Selection. Each bar 

represent a SSP results, with maximum indicates PoD and minimum indicates PFA. The red line and 

the green line indicate PoD and PFA of MB-SSP, respectively. 

 

Figure 3.39 shows the performance of MB-SSP using different material properties, as 

well as SSP for comparison. The parameters set in both Figure 3.39(a) and Figure 

3.39(b) are the same, where MB-SSP settings are the same as previously described 

and SSP settings at 50% bandwidth at -6dB with a 3MHz bandwidth. Figure 3.39(a) 

shows the performances of the two algorithms at different depths, and Figure 3.39(b) 

is the result when applied on different materials. For the result of MB-SSP in Figure 

3.39(a), The PoD only dropped by 14% when compared the 30mm group to the 

50mm group, and the PFA raised by 1%; while in the result of SSP, the PoD dropped 

by 24% and the PFA raised by 2%. Similarly, as shown in Figure 3.39(b), the PoD 

difference between the two materials is only 9% for the result of MB-SSP and 41% 

for the result of SSP; while the PFA difference of the two materials are 2% for MB-

SSP and 3% for SSP, respectively.  By comparing the PoD and PFA, MB-SSP is 

more stable when applied to test echoes from different depths or even different 

materials. 
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3.4 Summary 

This Chapter presents a new spectrum based algorithm, Moving Bandwidth Split 

Spectrum Processing (MB-SSP), based on A-scan signal processing. It uses the 

polarity coherence for different frequency components to achieve structural noise 

reduction and enhanced defect detection.  

 

Figure 3.39. PoD and PFA of MB-SSP and SSP with Different Depth (left) and Different Materials 

(right). The material tested in (left) is Inconel 617. 

 

Modelled signals were used to analyse the performance and parameters setting of the 

algorithm. A HDM model was developed to simulate the fact that ultrasonic waves 

propagating in difficult materials are usually highly frequency dependent. The HDM 
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which is also an important factor for signals acquired from difficult materials. LDM 

was also introduced as a comparison.  

Experimental data from two different samples are also used to validate the proposed 

MB-SSP algorithm. By comparing the SNR, PoD, and PFA, it has been shown that 

the proposed algorithm is much less sensitive to material property variation 

compared with Split Spectrum Processing (with Polarity Thresholding as the 

reconstruction method), while the performance is maintained.  

The main advantage of MB-SSP is its insensitivity to different materials. However, 

from the results it can be seen that there are still a lot of artefacts on the processed 

signals. This is because the aim of MB-SSP focuses on the improvement of 

reliability, hence the noise reduction and legitimate reflector detection ability is not 

optimised. In the next Chapter, a model based algorithm (using pre-knowledge of the 

materials) will be introduced. This algorithm will optimise the processing based on a 

priori training signals from the legitimate reflectors.  For array applications, an 

improvement of the algorithm to include the spatial variance of the signal is needed 

in order to further improve the robustness of the algorithm. This will be further 

discussed in Chapter 7. 
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Chapter 4  

Advanced A-scan Based De-noising Techniques 

using Supervised Learning Part I: Classification 

Chapter 3 introduced a new algorithm named Moving Bandwidth Split Spectrum 

Processing (MB-SSP), which aims to enhance the reliability of detection when pre-

knowledge of the test material is lacking. Unfortunately, although the performance of 

MB-SSP is good compared with conventional algorithms, it is not optimised. Hence, 

if there was pre-acquired knowledge of the material, such as the spectrum 

distribution of the target echo, statistical based algorithms can then be applied to 

further improve the detection capability. 

In contrast to MB-SSP, statistical based algorithms investigate the stochastic 

behaviour of the pre-acquired data, to design a specific prototype which can adapt to 

certain type of materials. For example, it can estimate the spectrum characteristic of 

the material of interest based on this pre-acquired knowledge, to configure the 

parameters of the algorithm [134]. Furthermore, the statistical characteristics of the 

grain noise and the flaw can be observed separately, and used to classify signals into 

either group based on their similarity.  

Recently, a new technique has been developed for target detection and identification 

in the area of distributed sensor networks [137]. Acoustic and seismic signals have 

been acquired from different types of vehicles. By analysing the spectra of the 

collected signals and applying select pattern recognition techniques, these vehicles 

have been successful detected and classified. 

The idea of applying pattern recognition techniques can also be introduced into 

ultrasound non-destructive inspection. With multiple A-scan traces (acquired by a 

single transducer or array) as training data, the new echoes with undetermined 
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information can be characterized by pattern recognition techniques, and as a result, 

flaw signals and grain noise will be potentially be distinguishable. 

The idea of using pattern recognition to classify ultrasound echoes from different 

types of reflectors has also appeared in the literature [138]. 

Pattern recognition is considered by some to be nearly synonymous with machine 

learning in computer science [139], is widely used in applications in the fields of 

medical, industry and finance. As the core capabilities of artificial intelligence, 

pattern recognition and machine learning have developed rapidly and their related 

applications have become ever more popular. This has led to the idea of combining 

ultrasound de-noising techniques for difficult material inspection with pattern 

recognition and machine learning. This Chapter will introduce the conventional 

supervised classification algorithm, and the subsequent two Chapters will then follow 

this with Artificial Neural Networks (ANN) techniques and unsupervised clustering 

techniques.  

4.1 Pattern recognition / Machine learning techniques 

One major field in pattern recognition and machine learning is to analyse, recognize 

and classify objects. These include images, signals or any measureable objects that 

need to be classified. These objects are generally identified as a 'pattern'. For 

example, in handwriting recognition system, each handwriting character is a specific 

and unique pattern. The system classifies each handwriting character to the related 

ASCII table using pattern recognition algorithms. Another important application is 

voice recognition technology. The voice assistant application in the smart phone can 

extract useful patterns from the input signals acquired from the microphone, and 

correctly match the voice with words. Importantly, pattern recognition algorithms 

can classify input patterns with small differences accurately into their related group, 

if the fundamental characteristic of each group was known a priori. 

In ultrasonic NDE applications, it is difficult to distinguish target signals from grain 

noise when inspecting difficult materials. However, there are still differences 
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between them as discussed in Chapter 2. In particular, the frequency components in 

the spectra of target signals and grain noise are inherently different. 

Like images and voice signals, ultrasound signals can also be treated as patterns. 

Therefore, the classification issue of different ultrasound signals can potentially be 

solved by introducing appropriate pattern recognition techniques.  

Although non-statistical based algorithms like SSP and MB-SSP can distinguish the 

target echoes from noise in some cases, it is difficult to set a specific 'threshold' to 

optimally separate the target and noise due to the variability of their spectral 

characteristics. For example, target spectra reflected from different distances may 

have different bandwidth due to the effects of attenuation. However, assuming there 

is sufficient pre-acquired signals that have already been identified as containing 

target echoes or only containing grain noise, then pattern recognition algorithms can 

classify future experimental data signals associated with the material precisely after 

learning the behaviour from the two groups of pre-acquired signals. 

Pattern recognition systems comprise the following aspects when implemented as a 

classification algorithm: feature extraction, training and classification. The 

classification algorithm is supervised and sometimes referred as classifier. 

Training is the process that allows the classification algorithm to learn the 

characteristic of the test dataset. For this work, the test data is defined as any input 

dataset input into the classification algorithm and subsequently, classified to a 

labelled group. In the case of ultrasound NDE of difficult materials, the labelled 

groups are the legitimate reflector group and the grain noise group. Importantly, the 

label of the test data is unknown (or assumed to be unknown) before being input to 

the classifier. On the contrary, the label of training data must been known a prior.  

The information in the input data is usually large and redundant. Feature extraction is 

required to reduce the dimension of raw input and concentrate the information to a 

higher level.  

Details of the implementation of the classification algorithm will be described in 

Section 4.2. 
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4.2 Methodology 

A new method termed Segment Recognition Classifier (SRC) is developed in this 

Chapter, and its flowchart is shown in Figure 4.1. The block marked by blue is the 

standard methodology. Green blocks contain new approaches that are proposed in 

this Thesis. The red block evaluates several standard classification algorithms to 

achieve optimum performance in different scenarios.   

In this Thesis, a segment or a segmental signal refer to a short period of signal; it 

usually has the length equal to several wavelengths of the signal. Each aspect of the 

SRC algorithm will now be discussed. 

 

Figure 4.1. Flowchart of Segment Recognition Classifier (SRC). 

 

4.2.1 Pre-processing 

Signals collected from the ultrasound probe should be initially pre-processed to 

produce high fidelity input signals for the SRC system. This step depends on the 

specific situation, for example a filter can be applied if the original signal contains 

strong high frequency electronic noise. 

As the algorithm requires a prior knowledge, training data should be prepared 

initially. Training is process to ‘teach’ the algorithm key characteristics of the input 

data and in this case, the training data must include two groups. One group should 
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only contain grain noise signals, which usually can be randomly selected from the 

raw dataset since most of the segmental signals contain only grain noise. The other 

group contains the legitimate reflector training data. The signals in this group are 

selected from the locations in the raw dataset where legitimate reflector echoes are 

known to exist. For example, if the distance of the legitimate reflector is already 

known, then its training data can be selected according to the distance and wave 

velocity.  

4.2.2 Feature extraction 

Once the pre-processing is complete, the algorithm will progress forward to feature 

extraction, which will be used for both training and classification purposes. In 

ultrasonic inspection, useful information corresponding to echoes from legitimate 

reflectors is typically only contained within small segments relative to the entire 

waveform. Note that the length of these small segments must contain the entire 

signal length associated with the legitimate reflector echo, to ensure all relevant 

information is included. Therefore, the size (number of samples) of the segment 

relies on the acquired signal conditions, e.g. the probe frequency, the sampling rate 

and length of the emitted signal. Typically, the size of the segment should cover five 

wavelengths (or five periods in time domain) of the transducer centre frequency. In 

this way the whole A-scan trace will be divided into small segments and analysed. 

There are many ways to do this, such as using Short Time Fourier Transform (STFT) 

or Wavelet Transform (WT). More details about feature extraction will be given in 

Section 4.3-4.5. 

The extracted data can be treated as an M-dimensional vector: 

 𝑉 = {𝑣1, 𝑣2⋯𝑣𝑀} (4.1) 

where 𝑉 is the extracted feature vector corresponding to a segment. 
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4.2.3 Classification 

The extracted feature vectors can now be classified using pattern recognition 

algorithms. For each M-dimensional vector obtained, it must be categorised as a 

legitimate reflector or grain noise. The first stage to achieve this is to use the 

segments that have already been clearly identified as a reflector or as grain noise to 

train the system. After the system has learned the characteristic differences between 

the two categories, further (unknown) data can be input to the system for 

classification. 

There are many well-developed pattern recognition techniques, such as Naive Bayse 

(NB) classifier, k-Nearest Neighbor (kNN), and Support Vector Machine (SVM) 

[140], which will be introduced in Section 4.3.2 – 4.3.4, respectively. The 

performance of these classifiers will be analysed in the remainder of this Chapter. 

4.2.4 Reconstruction 

Assuming the legitimate reflector segments is labelled as '1' and noise is labelled as 

'0'. When every small segment in an A-scan trace has been classified, an indicated 

signal only consisting of 1 and 0 will be generated. This indicated signal will simply 

imply the positions of the legitimate reflectors. However, this indicated signal is too 

dictatorial to clearly identify a segment in the A-scan trace as belonging to a 

legitimate reflector or noise, as ‘false alarm’ indications, which can be negligible in 

the original dataset, may also been displayed as ‘1’, i.e. the same as for a legitimate 

reflector echo. An improved method is to consider all the segments that contain this 

point, and average their classification results. 

 𝑝(𝑘) =
∑ 𝐶{𝑉𝑛}
𝑘
𝑛=𝑘−𝐿

𝐿
 (4.2) 

where 𝑝(𝑘) is the probability profile, 𝑘 is a point in the A-scan trace, 𝑉𝑛 is the feature 

vector of a segment which has a starting point at 𝑛  and a length of 𝐿 . 𝐶  is the 

classification result of the vector, either '0' or '1'.  
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As the legitimate reflector will be labelled as '1', the output in Eq. (4.2) can be seen 

as a probability profile of the original signal, which implies the possibility that the 

points in the original signal can be a legitimate reflector. This 'detection probability 

profile' is the core operator of the algorithm and can be further processed, for 

example to achieve noise reduction as discussed in the experimental results in 

Section 4.6. Here, the processed A-scan can be calculated by multiply the probability 

profile signal with the original raw signal. 

4.3 Performance analysis: extracting features by STFT 

As stated previously, the frequency characteristic of a legitimate reflector and grain 

noise are different. Therefore, a feature vector can be extracted from the spectrum of 

a segmental signal that may or may not contain a legitimate reflector. One way to 

achieve this is to apply the Short Time Fourier Transform (STFT).  

Take the austenitic steel sample which introduced in Section 2.6 as an example. Two 

groups of normalized spectra of segmental signals are shown in Figure 4.2, one is 

from legitimate reflectors and one is from grain noise. The legitimate reflectors in 

this case are the back wall signals of the austenitic steel sample.  The signals were 

collected by using a 5MHz array as described in Section 2.6. As can be seen in 

Figure 4.2, the frequency spectra in the reflector group are more consistent compared 

to the noise group. In the reflector group, the maximum points appear at around 

2MHz in most cases. Although in the higher frequencies region, between 4-8MHz, 

there is also strong energy peaks which are contributions by grain noise. However, 

the maximum points in the noise group can be observed as randomly distributed 

between 3MHz to 8MHz. This phenomenon implies that the reflector echo spectra 

have common characteristics which are inherently different from the noise spectral 

characteristics and that the higher order frequency components in the reflector data 

can be attributed to grain noise. 

Obviously, these differences can benefit the classification algorithm approach. 

Therefore, feature vectors can be assembled using discrete points chosen 
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equidistantly from the spectral profiles. Importantly, the selected extraction range of 

frequency should be wider than the transducer bandwidth, in order to get more 

spectral information.  

For example in the case of Figure 4.2, it can be seen that most of the energy is 

distributed below 10MHz. Hence, 8 points have been extracted from 1MHz to 9MHz 

equidistantly, to reduce the feature dimensions while maintaining the algorithm 

accuracy. Importantly, in this way the frequency difference between each point is 

1MHz, which is exactly the frequency resolution of STFT when the segment length 

is selected as 5 periods of the transducer centre frequency. Note that when extracting 

features using STFT, the segment length is the same with the STFT time window. 

In addition, to reduce the effect of attenuation and beam divergence, all spectra are 

normalized before extracting feature vectors. 

 

Figure 4.2. Spectra examples of both backwall and grain noise signals from the austenitic steel sample. 
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4.3.1 Generating simulated signals 

A suitable classifier should be chosen to ensure the performance of the algorithm is 

optimized. For the purpose of analysis, simulated signals are required for this work 

and the simulation model introduced in Chapter 3 was used. Within the high 

dispersion model (HDM), the parameters were set as 5MHz centre frequency, 50% 

transducer bandwidth at -6dB and 100MHz sampling frequency. The attenuation 

factor 𝑎 is chosen as 𝛼 = 10−29, and the detect amplitude factor 𝑠 is chosen as 1.5. 

Unless otherwise specified, all simulated signals in this Chapter use the above 

configuration. In the cases where 𝛼 = 10−30 , this has been selected to produce 

closely matched spectra between the legitimate reflector and noise; hence ensuring a 

more challenging processing scenario for the algorithm. The following Sections 

(4.3.2-4.3.4) describe three different classification algorithms and uses, where 

appropriate, the simulated datasets. 

4.3.2 Naive Bayes classifier 

Let 𝑤1 denote the reflector group and 𝑤2 denote the grain noise group. By learning 

the stochastic behaviour of the two groups, it is easy to calculate their prior 

probability 𝑃(𝑤1) and 𝑃(𝑤2), 

 𝑃(𝑤1) =
𝑁1
𝑁
, 𝑃(𝑤2) =

𝑁2
𝑁

 (4.3) 

where 𝑁  is the total number of training samples, 𝑁1  and 𝑁2  are the number of 

samples in 𝑤1 and 𝑤2. 

According to Bayes rule, the posterior probabilities of each class, 

 𝑃(𝑤𝑖|𝑉) =
𝑃(𝑤𝑖)∏𝑃(𝑣𝑗|𝑤𝑖)

∑𝑃(𝑤𝑖)∏𝑃(𝑣𝑗|𝑤𝑖)
 (4.4) 

where 𝑉 is the feature vector of an observation as stated in Eq. (4.1), 𝑖 is the index of 

the class, 𝑣𝑗  is an element in the feature vector, and j is the index of the element.  
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The classification result of an observation is based on estimating of the posterior 

probability for each class. The one with larger posterior probability is more likely to 

be the class of the observation. 

Naive Bayes is a classification algorithm that applies density estimation to the data. 

It (naively) assumes that the predictors are conditionally independent, hence the 

name. Although this assumption is usually violated in practice, Naive Bayes has 

robust performance in many complex situations [140]. 

The likelihood function 𝑃(𝑣𝑗|𝑤𝑖)  in Eq. (4.4) is usually evaluated by Maximum 

Likelihood Estimation [140]. However, the type of the probability distribution of 

𝑃(𝑣𝑗|𝑤𝑖)  needs to be known in advance in order to estimate their parameters. 

According to the literature [134], ultrasound signals generally follow a normal 

distribution. This can be validated using the Kolmogorov-Smirnov test (KS test) 

[141], with the practical dataset acquired from the austenitic steel sample which 

described in Section 2.6 with the 5MHz linear array as the evaluation dataset. The 

one-sample KS test is a nonparametric test of the null hypothesis that the population 

Cumulative Distribution Function (CDF) of the data is equal to the hypothesized 

CDF. It quantifies a distance between the Empirical Cumulative Distribution 

Function (ECDF) of the evaluation dataset and the CDF of the reference 

hypothesized distribution, as shown in Figure 4.3. In this case, the feature vector is 

constructed using 8 elements between 2MHz to 9MHz. Each plot in Figure 4.3 shows 

the ECDF of an individual frequency component, with the standard normal CDF as a 

comparison.   
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Figure 4.3. KS test of different frequency components of the austenitic steel sample.  
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The KS test statistic 𝐷𝑛 is defined by, 

 𝐷𝑛 = 𝑠𝑢𝑝𝑥|𝐺(𝑥) − 𝐹(𝑥)| (4.5) 

where 𝑠𝑢𝑝 is the supremum of the set of distances. 𝐹(𝑥) is the ECDF of the tested 

data which is empirical measured and define as, 

 𝐹(𝑥) =
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑠𝑎𝑚𝑝𝑙𝑒⁡ ≤ 𝑥

𝑡𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟
 (4.6) 

and 𝐺(𝑥) is the CDF of the reference distribution, 

 𝐺(𝑥) = ∫ 𝑓𝑥(𝑡)𝑑𝑡
𝑥

−∞

 (4.7) 

where 𝑓𝑥(𝑡)  is the density function of the reference distribution. 𝐺(𝑥)  can be 

calculated by the integral of the density function of the reference distribution, which 

in this case is the normal distribution. 

KS test then decides to reject or accept the null hypothesis by interpolation 𝐷𝑛 in a 

table or using an approximation formula [142]. 

Generally speaking, the smaller distances between the two CDF indicates the 

distribution of the two data sets are similar. From Figure 4.3 it can be seen that the 

ECDF and CDF are relatively close and that indicates all the elements of the feature 

vectors follow normal distributions.  

4.3.3 k-Nearest Neighbors 

Although it has been shown that the elements in the feature vector follow normal 

distribution, see Figure 4.3, the likelihood function is however still estimated 

approximately. In practice, the situation may be more complex, hence the k-Nearest 

Neighbors (kNN) algorithm is introduced for comparison. The steps of kNN can be 

expressed as, 

 Calculate the distances between the input vector and the vectors in the 

training sets in close proximity, regardless of class.  
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 Choose the 𝑘 vectors in the training sets that have smallest distances to the 

input vector. In the case of two classes, 𝑘 should be an odd number. 

 Count the number of vectors that belongs to each class respectively, from the 

chosen 𝑘 vectors.  

 The input vector is then classified to the class with largest number. 

The principle of the kNN classifier is straightforward and importantly, it is not 

concerned about how the training sets are distributed.  

Based on the theoretical analysis [140], it is often suggest that kNN has optimised 

performance when the number of training samples 𝑁 →∞ and 𝑘 →∞. However 

this is difficult to achieve in practice. A large value of 𝑘 will significantly increase 

the computation complexity, and also for most of cases, such a large set with explicit 

training samples are not available. However, many practical situation are complex 

and the performance of kNN does not simply enhance with the increased 𝑘. In this 

work, 2000 simulated signals are used to evaluate the most suitable 𝑘 to adapt the 

classification for this simulated case.   

As can be seen in Figure 4.4, the probability of how many legitimate reflectors are 

correctly classified (known as true positive rate (TPR) or sensitivity [143]) is 

increased when 𝑘  is increased, but has no significant improvement after 𝑘 = 7 . 

While the probability of how many grain noise vectors are correctly classified 

(known as true negative rate (TNR) or specificity [143]) is decreased after the point 

when 𝑘 = 5. In addition, since larger values of 𝑘 require larger computation power, 

the 𝑘 parameter used in this work will be selected at 𝑘 = 5.  

4.3.4 Support Vector Machine 

In recent years, a new classification algorithm named Support Vector Machines 

(SVM) has been reported. It separates the classes in high dimensional space 

optimally using a hyperplane. SVM tends to find the largest separation, or margin, 

between two classes, as shown in Figure 4.5. 
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Figure 4.4. Analysis of kNN classification algorithm plotting TPR and TNR as a function of k. 

 

The purple line on the figure is the maximum-margin hyperplane. A hyperplane is 

expressed as, 

 𝑔(𝑥) = 𝑊𝑇𝑉 +𝑊0 = 0 (4.8) 

where 𝑊 and 𝑊0 are the weight and bias vector, respectively, V is the feature vector 

of an observation. 

The optimal solutions of finding the maximum-margin hyperplane can be evaluated 

by introducing a Lagrange function.  

The solutions, 

 𝑊 =∑𝜆𝑖𝑦𝑖𝑉𝑖 (4.9) 
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are the support vectors, i.e. the circled points in Figure 4.5, where 𝜆 is the Lagrange 

multiplier, 𝑦𝑖  is a label related to 𝑉𝑖 , 𝑦𝑖 = 1 when 𝑉𝑖  belongs to class 𝑤1, 𝑦𝑖 = −1 

when 𝑉𝑖 belongs to class 𝑤2, 𝑖 is the index of the support vector  

The maximum-margin hyperplane therefore is: 

 𝑔(𝑥) =∑𝜆𝑖𝑦𝑖𝑉𝑖
𝑇 𝑉 +𝑊0 = 0 (4.10) 

Traditional SVM is a linear classifier that assumes all data in different classes can be 

separated by a linear hyperplane, as in the case of Figure 4.5. However in practice, 

this is not always true. In the case shown in Figure 4.6, there are vectors that cannot 

be correctly classified no matter how or where the hyperplane is placed. 

 

Figure 4.5. Concept of SVM. Dots and crosses in the figure represents two different groups. The 

hyperplane is used to separate the two groups. SVM tends to determine the hyperplane with largest 

margins between the two groups. The circles in the figure are the support vectors. They are used to 

determine the boundary of each group, and hence determine the hyperplane. The axis label 𝑥 and 𝑦 

represent a two dimensional space. 

Hyperplane 

𝑥 

𝑦 
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Figure 4.6. Concept of SVM showing that classes that cannot be linearly separated. Linear hyperplane 

cannot completely separate the two groups, no matter where it is placed. The axis label 𝑥 and 𝑦 

represent a two dimensional space. 

 

One strength of SVM is that it can easily been expanded to a non-linear classifier 

without significantly increasing the computational complexity. This is achieved by 

replaced the inner product 𝑉𝑖
𝑇𝑉 in Eq.(4.10) by a kernel function [140]. 

This allows the algorithm to fit the maximum-margin hyperplane in a transformed 

higher dimensions feature space. Although the classifier is a linear hyperplane in the 

transformed feature space, it may be nonlinear in the original input space. 

The hyperplane function in the new feature space is, 

 𝑔(𝑥) =∑𝜆𝑖𝑦𝑖 𝑘(𝑉𝑖, 𝑉) +𝑊0 = 0 (4.11) 

where 𝑘(𝑉𝑖 , 𝑉) denotes the kernel function.  

There is an uncertain conclusion of how to choose the kernel function. For this work, 

the redial basis function (RBF) [140] approach has been chosen as the kernel.  

An evaluation of the linear and non-linear SVM approaches is shown in Figure 4.7. 

Nine groups of simulated data were used to test the performances, where each 

Hyperplane 

𝑥 

𝑦 
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contains 2000 samples. It can be seen that though the TPR of legitimate reflectors are 

fairly close in each simulation, the TNR of grain noise in the non-linear SVM is 

generally better when compared to the linear SVM case. Therefore, the non-linear 

SVM is more suitable to be used in the classification of legitimate reflector and grain 

noise. This also indicate the boundary between the two classes is non-linear. 

 

Figure 4.7. TPR and TNR for linear SVM and non-linear SVM . 

4.3.5  An example classification result 

Prior to evaluating the classifiers on simulation data, described later in Sections 4.3.6 

to 4.3.10, an intermediate evaluation was conducted to provide an initial validation of 

the three proposed classifiers using the practical dataset acquired from the austenitic 

steel with the 5MHz linear array described in Sections 2.6.  As can be seen in Figure 

4.8, TPR, TNR and Accuracy have been given for the three classifiers respectively, 

in the form of histograms. The Accuracy is the total percentage rate of the output that 

has been correctly classified to the related class [143], and hence, it indicates the 

overall performance of the classifier. It can been seen that all the three classifiers 

have satisfactory performance. Naive Bayes (NB) has the lowest overall percentage 

rate among the three classifiers, although it still correctly classified  for 96.6% of the 

data. Clearly, SVM has the best performance in this case among the three classifiers. 
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Figure 4.8. TPR, TNR, and Accuracy of the classification results using NB, kNN, and SVM for the 

austenitic steel sample. The legitimate reflectors are back wall echoes at 79mm; the grain noise 

segments are extracted randomly. 

 

4.3.6 Training data with different characteristics 

In practice, the training data that covers echo signals of different types such as 

echoes from different propagation distances, may not be easy to acquire, even if there 

are calibration samples which are manufactured from the same material. For example, 

the training data may be acquired from a shallow side-drilled hole but the flaw is 

hidden at a much deeper location. Another example is using back wall signals as 

training data, since back wall signals can be much easier to acquire. For this reason, 

the effect of training data acquired from different locations are analysed. Simulated 

signals are generated for three different cases.  

 Case 1: All legitimate reflectors are set at 75mm, grain noise segments are 

extracted from random distances. 

 Case 2: All legitimate reflectors are set at 125mm, all grain noise segments 

are extracted from random distances. 
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 Case 3: legitimate reflectors are set randomly between 75mm to 125mm, 

grain noise segments is extracted from random distances. 

An additional dataset is also simulated for the purpose of evaluation, described as the 

test data. The test data for all three groups have random distributed legitimate 

reflectors between 75 mm and 125 mm.  

From Figure 4.9, Figure 4.10 and Figure 4.11 it can be seen that case 3 has the 

highest Accuracy for all the three classifiers. This is predictable since the training 

data in this case mostly closely matches to the test data. Importantly, the Accuracy in 

the other two cases is also reasonably close to case 3. Especially for SVM, where the 

worst Accuracy (case 2, 87.55%) is still considered acceptable as it is only 4% lower 

than case 3. That means, the idea of using training data with slightly different 

characteristics is acceptable. Note that in this simulation, SVM has the best overall 

performance among the three classifiers. 

 

Figure 4.9. TPR, TNR, and Accuracy of NB classification results for 2000 simulated A-scans, with 

legitimate reflector training data collected at different distances. All legitimate reflectors in case 1 are 

at 75 mm, all legitimate reflectors in case 2 are at 125 mm, and the legitimate reflector in case 3 are 

randomly distributed between 75 mm and 125 mm. Grain noise training data are collected uniformly 

between 75 mm and 125 mm for all the three cases. The test data for all three groups are extracted 

randomly between 75 mm and 125 mm. The data is simulated using the high dispersive model with 

𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency.  
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Figure 4.10. TPR, TNR, and Accuracy of kNN classification results for 2000 simulated A-scans, with 

legitimate reflector training data collected at different distances. All legitimate reflectors in case 1 are 

at 75 mm, all legitimate reflectors in case 2 are at 125 mm, and the legitimate reflector in case 3 are 

randomly distributed between 75 mm and 125 mm. Grain noise training data are collected uniformly 

between 75 mm and 125 mm for all the three cases. The test data for all three groups are extracted 

randomly between 75 mm and 125 mm. The data is simulated using the high dispersive model with 

𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. 

 

Figure 4.11. TPR, TNR, and Accuracy of SVM classification results for 2000 simulated A-scans, with 

legitimate reflector training data collected at different distances. All legitimate reflectors in case 1 are 

at 75 mm, all legitimate reflectors in case 2 are at 125 mm, and the legitimate reflector in case 3 are 

randomly distributed between 75 mm and 125 mm. Grain noise training data are collected uniformly 

between 75 mm and 125 mm for all the three cases. The test data for all three groups are extracted 

randomly between 75 mm and 125 mm. The data is simulated using the high dispersive model with 

𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. 
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4.3.7 Size of the training data 

Generally, an increased number of samples can provide more accurate information 

for a statistical study. This can been seen in Figure 4.12, which shows the TPR, TNR 

and Accuracy for the three classifiers when the size of the training data is modified. 

The size of training data for each class is increasing from 10 to 1000. The Accuracy 

improves when the total number of training sets increases and becomes stable after 

~200. In this example, SVM has the best performance according to Figure 4.12.  

4.3.8 Balance between classes 

It is generally known that in practice, segmental signals that contains legitimate 

reflector are much rarer than segments containing grain noise components. An issue 

is therefore raised: with the limited available legitimate reflector training data, how 

to choose the appropriate number of training data in the noise class. As discussed in 

Section 4.3.7, increasing the number of training datasets generally offers an 

enhanced performance. However, since the number of training data in the reflector 

class is limited, it is unknown if the imbalance in the two training datasets will cause 

unexpected problems. Figure 4.13 shows the unbalanced training approach using a 

fixed number of noise training datasets of 1000 and an increased number of reflector 

training datasets from 10 to 1000. Compared with Figure 4.12, which illustrated the 

balanced situation but with a changing size population, the performance of SVM is 

much better in the region associated with low training numbers, and it almost reaches 

stable instantly when the training number grows. Therefore, for SVM, selecting extra 

noise training data will enhance the performance. NB has a similar performance 

compared with the balanced situation depicted in Figure 4.12. Unfortunately, the 

unbalanced training approach significantly reduces the performance of kNN, as can 

be seen in Figure 4.13. This is because kNN searches for the k nearest training 

vectors and determines the class that most of the vectors belong to. For an 

unbalanced training scenario, the density of the class with bigger size is naturally 

larger than the others, hence misleading the kNN classifier. When the number of 

reflector training datasets is low, almost all test data has been classified into grain 

noise. Note that kNN becomes very unstable in this case. The two spikes in the Grain 
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Noise trace in Figure 4.13, at around 250 and 690, are suspected to have been caused 

by the addition of non-uniform distributed training data.  

 

Figure 4.12. TPR, TNR, and Accuracy of NB, kNN, and SVM when the size of the training set is 

changing. The number of observations in both classes is equal, and is increasing from 10 to 1000. The 

data is simulated using the high dispersive model with 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. 
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Figure 4.13. TPR, TNR, and Accuracy of NB, kNN, and SVM when the sizes of the two classes in the 

training set are unequal. The number of observations in the grain noise class is fixed at 1000 while the 

number of observations in the legitimate reflector classes is changing from 10 to 1000. The data is 

simulated using the high dispersive model with 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. 

 

Figure 4.14 shows an additional example when the training data is slightly 

unbalanced. The noise training data is about 20% larger than the corresponding 

reflector group. It can be seen that this small imbalance does not cause significant 

detrimental effects compared with Figure 4.12. 
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Figure 4.14. TPR, TNR, and Accuracy of NB, kNN, and SVM when the sizes of the two classes in the 

training set are unequal. The number of observations in the grain noise class is 20% larger than the 

legitimate reflector classes. The size of the reflector training set is increasing from 10 to 1000. The 

data is simulated using the high dispersive model with 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. 
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4.3.9 Inaccurate training 

When acquiring training data in practice, noise segments can easily been mixed into 

the legitimate reflector group by mistake, as the segments containing only a 

legitimate reflector are difficult to find. Figure 4.15 shows the effect of inaccurate 

training for the three classifier algorithms. As can be seen in Figure 4.15, at most 50% 

of the training data of legitimate reflector has been replaced by noise, while the noise 

group remains the same. Interestingly, the performance of SVM is maintained 

despite the effective increase in noise. 

4.3.10 Effect of similar spectrum characteristic between two classes 

In some cases, the characteristic differences between a legitimate reflector spectrum 

and grain noise is not significant. Since the frequency resolution is limited by the 

length of segmental signals when applying STFT, the feature vectors of reflectors 

and noise may be similar. This may increase the difficulty of classification and 

reduce the accuracy/performance of the algorithm. Figure 4.16 illustrates an example 

under these conditions. The simulated signals are generated using the HDM model 

with 𝑎 = 𝑒−30, 𝑠 = 1.5, 5MHz centre frequency with 50% bandwidth, and 100MHz 

bandwidth, as discussed in Section 4.3.1. Again, 2000 signals are simulated to 

analyse the result. It can be seen in Figure 4.16 that the kNN approach has the best 

performance among the three classifiers. 
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Figure 4.15. TPR, TNR, and Accuracy of NB, kNN, and SVM when the legitimate reflector training 

set is mixed with a certain proportion of grain noise. The data is simulated using the high dispersive 

model with 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency 
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Figure 4.16. TPR, TNR, and Accuracy of an example classification results using MLP, kNN, and 

SVM when the spectrum characteristics of legitimate reflector and noise are close. The data is 

simulated using the high dispersive model with 𝜶 = 𝒆−𝟑𝟎, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. 

4.4 Performance analysis: extracting features by CWT 

Since the spectral characteristics are similar between groups in the case of Section 

4.3.10 and the frequency resolution is limited by STFT, other extraction methods 

should be considered. The limitation of frequency resolution is decided by the length 

of the signal. One way to solve this is, instead of applying STFT, filtering the whole 

signal into a set of different frequency channels to generate an alternate time-

frequency representation. However, this will greatly increase the computation cost, 

since many frequency channels are needed to increase frequency resolution.  

Another way to achieve this is to apply the continuous wavelet transform (CWT) 

instead of repeatedly filtering the signal. CWT has a higher frequency resolution 

compared with STFT. Theoretically, using CWT as the feature extraction method can 

help distinguish between the two classes of interest with a high degree of success.  

Unlike STFT, the time-frequency representation of CWT oscillates rapidly along the 

time axis and selection of feature vectors may be inconsistent. That means, for a 
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certain time slice, which is chosen to coincide when a legitimate reflector is present, 

the profile along its scales axis (similar to frequency axis) can still look like a noise. 

This is particularly true form the oscillatory nature of the CWT close to the zero 

crossings. Therefore, before extracting feature vectors, moduli and envelopes were 

initially added, by applied the Hilbert transform, to remove the effect of this 

oscillation. Otherwise, the data can contain strong nonlinearities. 

Figure 4.17 shows an example classification result using CWT as feature extraction 

method. The dataset used in Figure 4.17 is the same simulation dataset as used in 

Figure 4.16. The feature vector contains 64 elements in this case, which is also the 

number of scales in CWT.  

All feature vectors should be pre-processed by 

 
𝑽𝒏𝒐𝒓𝒎
(𝒏)

=
𝑽
(𝒏)

1
𝑆𝑐𝐿
∑ ∑ |𝑣𝑖

(𝑛)|
𝑛+

𝐿
2

𝑛=𝑛−
𝐿
2

𝑆𝑐
𝑖=1

 
(4.12) 

to remove the effect of attenuation, where 𝑽𝒏𝒐𝒓𝒎
(𝒏)

 is the processed feature vector, 𝑽
(𝒏)

 

is the original feature vector, 𝐿 is the calculation range which is chosen at four times 

of the wavelength of the centre frequency empirically, 𝑆𝑐  is the total number of 

scales, 𝑖 is the scale index, and 𝑛 is the current time instant.  

However, the performance when applying CWT is not as good as expected. The 

Accuracy of NB and SVM remains at the same level, but the performance of kNN 

has significantly dropped. This may be due to the averaging procedure, which also 

reduces the differences between the reflector and noise components.  

4.5 Additional feature: distance 

One important factor that affects the spectral characteristic of the echoes is 

attenuation. For this reason, spectra of legitimate reflectors and grain noise which is 

detected from different distances may have similar characteristics. Therefore, if the 

training data of legitimate reflector can be collected from a set of different distances, 
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then the distances can be treated as an additional feature and can be attached to 

feature vectors extracted by STFT or CWT.  

As can be seen in Figure 4.18, the overall performance of the three classifiers is 

improved when compared with case 3 shown in Figure 4.9, Figure 4.10 and Figure 

4.11, by introducing an additional distance to the STFT implementation. 

 

Figure 4.17. TPR, TNR, and Accuracy of an example classification results, to compare the 

performance of NB, kNN, and, SVM, with CWT as the feature extraction method, when the spectrum 

characteristics of legitimate reflector and noise are close. The data is simulated using the high 

dispersive model with 𝜶 = 𝒆−𝟑𝟎, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency 

 

Figure 4.18. TPR, TNR, and Accuracy of an example classification results, to compare the 

performance when the propagation distance of the received echo is included as an extra feature. The 

data is simulated using the high dispersive model with 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency 
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Note that only when the training data of legitimate reflectors covers all the possible 

distance locations, can this method be used to improve performance, otherwise it 

may cause an overfitting problem [140] that cannot classify the reflectors properly.  

4.6 Classifier evaluation with A-scan and B-scan results 

A-scan and B-scan simulations using the same HDM model parameters as described 

in Section 4.3.1 are presented in this Section to produce more visualised results. 

Moreover, experimental results using the austenitic steel and the Inconel 617 samples, 

see Section 2.6, are further used to validate the Segment Recognition Classifier (SRC) 

algorithm methodology (Section 4.2). 

4.6.1 Classifier evaluation: Simulation results 

The process through which SRC suppresses grain noise is achieved by assigning 

points more likely to be a real reflector with a higher value, and reducing points that 

more closely resemble noise. Figure 4.19 gives an example of how SRC reduces 

noise in a single A-scan trace. The data is simulated using the HDM model with 

α = e−29, s = 1.5,  5MHz centre frequency. After processing using the detection 

probability profile as stated in Section 4.2.4, the grain noise has been significant 

reduced and only the positions that are most likely to be a reflector remain, as shown 

in Figure 4.19. Interestingly, the peak signal appeared at 75mm, corresponding to the 

depth of back wall. Figure 4.20 shows an image generated by combining 2000 

individual A-scans. Each A-scan contains only one legitimate reflector. The location 

of the legitimate reflector in each A-scan is set uniformly between 75mm and 

125mm. The diagonal line in each image in Figure 4.20 is the collection of the 

legitimate reflector echoes. It can be seen that the original signals have a strong grain 

noise characteristic. The diagonal line of legitimate reflector echoes is completely 

hidden by the background noise. By applying the SRC method, the grain noise has 

been greatly reduced. From Figure 4.20 it can be seen that the B-scan processed by 

SVM has the lowest background noise, and the one processed by NB has the 
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strongest noise remaining among the three processed B-scan images. This is in 

agreement with the analysed results discussed in Section 4.3.6.  

 

Table 4.1 shows the calculated SNR for each image in Figure 4.20.  

 

 

Figure 4.19. A-scans results of the simulated data, with SVM as the classifier, STFT as the feature 

extraction method. High dispersion model (HDM) was used to simulate the data. The parameters of 

the HDM model are selected at 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓, 5MHz centre frequency with 50% bandwidth at -

6dB, and 100MHz sampling frequency. A reflector is set at 75mm 
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Figure 4.20. B-scans results of the simulated data, (a) Raw B-scan, (b) NB processed B-scan, (c) kNN 

processed B-scan, (d) SVM processed B-scan. The feature extraction method used is STFT. High 

dispersion model (HDM) was used to simulate the data. The parameters of the HDM model are 

selected at 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓, 5MHz centre frequency with 50% bandwidth at -6dB, and 100MHz 

sampling frequency. Absolute values of signals is used for all images. The diagonal line in the images 

are formed by the legitimate reflectors, from 75mm to 125mm. 
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Table 4.1. SNR for simulated results presented in Figure 4.20. 

Raw B-scan 10.08dB 

NB processed B-scan 36.20dB 

kNN processed B-scan 39.57dB 

SVM processed B-scan 41.30dB 

 

4.6.2 Classifier evaluation: Experimental results 

An experimental evaluation of the classifier methodology was undertaken on the 

three difficult material samples described in Section 2.6. For consistency, the 5MHz 

linear array has been used to acquire data, with sampling frequency of 100MHz. In 

each experimental measurement, B-scan images have been generated from the raw 

data and subsequently, processed using SVM. In all cases, the feature extraction 

method used is STFT. 

 

Austenitic Steel Sample 

Figure 4.21 and Figure 4.22 are the processed results from the austenitic steel sample. 

It can be seen that in the A-scan result, depicted in Figure 4.21, only the back wall 

signal at 79mm has been detected while the grain noise has been mostly removed. 

Figure 4.22 is the combination of 40 individual A-scans extracted from an acquired 

FMC dataset representing the same transmit-receive element pairs. From Figure 4.22 

it can be seen that the back wall is originally hidden in strong background noise in 

the raw A-scan image and is subsequently clearly visible in the processed image. 

Again, the SNR of image in Figure 4.22 has been calculated and is detailed in Table 

4.2. 

 

Table 4.2. SNR for simulated results presented in Figure 4.22. 

Raw B-scan 12.20dB 

SVM processed B-scan 43.57dB 
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Figure 4.21. A-scans of austenitic steel sample. Data was acquired using 5MHz linear array. A back 

wall echo is located at 79mm. 

 

Figure 4.22. B-scan results of the austenitic steel sample, (a) Raw B-scan, (b) SVM processed B-scan. 

The feature extraction method used is STFT. Data was acquired using 5MHz linear array.  Absolute 

values of signals is used for all images, darker colour represent higher amplitude. The line in the 

image is the backwall of the sample, at 79mm. 
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Inconel 617 Sample 

Figure 4.23 presents the B-scan images obtained from the Inconel 617 sample, with 

the resultant SNR figures shown in Table 4.3. Again, the back wall is buried in 

strong grain noise in the raw B-scan and the processed image has been able to 

identify the back wall, albeit with some imaging artefacts remaining. 

 

Figure 4.23. B-scan results of the Inconel 617 sample, (a) Raw B-scan, (b) SVM processed B-scan. 

The feature extraction method used in SVM is STFT. Data was acquired using 5MHz linear array. 

Absolute values of signals is used for both images, darker colour represent higher amplitude. The line 

in the images is the back wall of the sample, at 50mm. 

 

 

Table 4.3. SNR for simulated results presented in Figure 4.23. 

Raw B-scan 11.38dB 

SVM processed B-scan 37.35dB 
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Inconel 625 Sample 

Figure 4.24 presents the B-scan image from the Inconel 625 sample. The B-scan 

image comprises 140 individual A-scans which were acquired by placing the sample 

in a water tank, with a separation distance of 10cm to the transducer, with the spatial 

distance between each A-scan during the acquisition set at 10mm. The training data 

was selected from the location on the block corresponding to A-scan’s with index 60-

80, as shown in Figure 4.24. By applying the SRC algorithm, in addition to the back 

wall signal of A-scan 60-80 being enhanced, the second reflection of the back wall at 

160mm is now also evident. Note that this sample has two different grain size in 

different regions, which complicates the post-processing as the returning echoes will 

have different spectra characteristics. Importantly, the proposed SRC has proved its 

robustness by successfully enhanced these signals. Table 4.4 details the calculated 

SNR for each of these images. 

 

Figure 4.24. B-scan results of the Inconel 625 sample, (a) Raw B-scan, (b) SVM processed B-scan. 

The feature extraction method used in SVM is STFT. Data was acquired using 5MHz single 

transducer. Absolute values of signals is used for both images, darker colour represent higher 

amplitude. Back wall of the sample is at 80mm. The images also slightly shows the second reflection 

of the back wall at 160mm. 
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Table 4.4. SNR for simulated results presented in Figure 4.24. 

Raw B-scan 19.46dB 

SVM processed B-scan 38.75dB 

4.7 Summary 

A new method for grain noise reduction using pattern recognition techniques for 

ultrasonic inspection in NDE has been presented. Segments have been classified 

using pattern recognition techniques based on the spectral difference between the 

legitimate reflectors and grain noise. 

From the three classifiers evaluated in this work, Support Vector Machine (SVM) 

has been shown to be the best performer in most of the cases, since it can non-

linearly separate the data in a higher dimensional space, without concern for the 

statistic behaviour of the training data. k-Nearest Neighbors (kNN) can be selected 

for use in cases that the spectra difference between training classes are close. 

Although the performance of Naive Bayes (NB) classifier is not distinctive, it can be 

used in cases where training data is lacking, but the statistical distribution of their 

spectral characteristics can be estimated. Generally, large training datasets should be 

used to obtain better performance. Even for the case where legitimate reflector 

training data is limited, a large number of noise training data should still be used, 

unless the kNN classifier is selected.  

CWT offered the potential to improve the performance of the classifier algorithms 

since it has higher frequency resolution. However, the results show no improvement. 

The next Chapter will discuss the application of using CWT to enhance detectability. 

The propagation distances of received echoes can also be treated as a feature, if the 

size of the legitimate reflector training dataset is large and covers a wide range. 

Both simulation and experimental results were used to validate the proposed 

algorithm. Results have shown that the new method is effective for noise reduction 
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and is promising for legitimate reflector detection in the inspection of difficult 

materials. 
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Chapter 5  

Advanced A-scan Based De-noising Techniques 

using Supervised Learning Part II: Artificial Neural 

Networks 

Chapter 4 introduced three grain noise reduction algorithms using pattern recognition 

techniques: NB, kNN, and SVM.  Based on the discussion in Section 4.3.4, the 

pattern features of ultrasound signals in different classes are generally separated non-

linearly. Classifiers with non-linear decision hyperplane, therefore, have more 

accurate classification capability. With the develop of computer science, an 

interesting area has become more and more popular in machine learning and pattern 

recognition named Artificial Neural Network (ANN) [57]. ANNs are a family of 

models that are inspired by biological neural networks such as the brain. In the past 

decade, ANNs have achieved great success in many practical areas; it has been 

proved robust in many non-linear signal classification problems, due to their ability 

to generate arbitrarily complex decision boundaries [144].  

There are examples of using ANNs in both NDE inspection and biomedical 

ultrasound. Polikar et al. [138] has shown the application of using ANN in automated 

signal classification systems for ultrasound weld inspection. Different types of 

ultrasound echoes that reflect from cracks, counterbores, and root welds are 

classified using Multilayer Perceptron (MLP) [57], based on their wavelet extracted 

feature vectors. A number of other classification issues are also described by 

Margrave [145] and Liu [146]. 

ANNs have also been applied to noise reduction and flaw detection techniques in 

ultrasound NDE. Sun et al. [123] proposed an advanced frequency diversity based 

technique combined with Adaptive Network-based Fuzzy Inference System (ANFIS) 
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[124]. The features of input signals were extracted using fuzzy logic and the output 

was calculated by an adaptive network. Pita et al. [147] proposed an algorithm to 

enhance flaw detection capability by using Radial Basis Function Network [148], 

while Liu [125] and Sun [122] have also demonstrated algorithms with 

implementations of MLP.  

In this Chapter, applications using ANNs to improve the performance of ultrasound 

grain noise reduction and flaw detection algorithms will be introduced. MPL will be 

implemented to demonstrate the application of an ANN as the classifier in a Segment 

Recognition Classifier (SRC) algorithm, as described in Section 4.2. Moreover, an 

advanced wavelet based filtering technique will be combined with MLP and the 

concept of Deep Learning networks introduced for ultrasound noise reduction. 

Throughout the Chapter, a combination of simulation and experimental A-scan and 

B-scan images will be presented to illustrate the algorithm performance.  

5.1 Overview of Artificial Neural Networks 

ANNs are modelled using multiple neurons which are interconnected. A neuron is a 

node which contains a certain activation function. The connections between neurons 

are weighted, and the neurons can also be biased, acting as the ‘memory’ of the 

model. By adjusting the ‘memory’, i.e. the activation function, the weights and the 

biases, the ANN model can be treated as an algorithm or a function with a certain 

logic and can then adapt to a particular practical issue. 

Neurons are the basic components of the ANN.  Figure 5.1 shows the concept of a 

neuron. {𝑎1, 𝑎2, ⋯ , 𝑎𝑖} are the elements of an input vector, {𝑤1, 𝑤2,⋯ ,𝑤𝑖} are the 

weights of each input elements, where 𝑖 is number of elements, and 𝑏 is the bias. The 

output of the neuron is, 

 𝑥 = 𝑓(∑𝑤𝑖𝑎𝑖 + 𝑏) (5.1) 

where 𝑓 is the activation function of the neuron.  
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Figure 5.1. Concept diagram of a neuron in ANNs.  

 

ANNs are constructed by several layers of neurons. Figure 5.2 illustrates the 

structure of a three layer feed-forward ANN, which includes one input layer, one 

hidden layer, and one output layer. Note that there can be more than one hidden layer 

in some multilayer ANNs. A feed-forward ANN is that the neurons in each layer can 

only communicate with the neurons in its previous or next layer, and there is no 

feedback between layers. The outputs of the neurons in the previous layers can be 

treated as inputs to the neurons in the next layers until the final output is generated 

[149, 150].  

 

Figure 5.2. Example diagram of a three layer ANN.  
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The number of neurons in the input and output layers can be easily decided since 

they are equal to the number of elements in the input feature vector and the number 

of elements in the desired output. However, there are no specific rules to determine 

the number of neurons in the hidden layers. It has been reported that the hidden layer 

size should to be between  50% and  300% of the inputs size [151], with others  

suggesting an optimal number of hidden neurons is 75% of the number in the input 

layer [152]. However, neither of these are commonly accepted due to the insufficient 

theoretical foundation. Therefore, the number of neurons in the hidden layer is 

usually chosen empirically [153]. Generally, this number should not be too large as it 

can make the ANN too adaptive to a certain training dataset and should not be too 

small as the ANN model will not accurately learn the characteristic of the training 

data. 

5.2 Multilayer Perceptron, an example of using ANN classifier 

Multilayer perceptron (MLP) is a widely used, simple, yet powerful ANN model. In 

this Section, MLP has been selected as a demonstration of how ANNs are performed 

when used as a classifier for ultrasound grain noise reduction and flaw detection 

applications. Two different ways of extracting features are compared, using Short 

Time Fourier Transform (STFT) and Continues Wavelet Transform (CWT). MLP 

and Support Vector Machine (SVM) are compared in each case and also in different 

training scenarios.   

5.2.1 Concept of Multilayer Perceptron  

MLP has a typical feed-forward ANN structure as illustrated in Figure 5.2. After 

selecting an appropriate number of layers and neurons, the network assigns small 

random values to all weights and biases. The feed forward calculation will then be 

performed: for each input training vector, multiply its elements with the weights of 

each neuron in the first hidden layer; summation; and finally, substitute into the 



141 

 

activation function. Typically, log-sigmoid function, tan-sigmoid function, or linear 

function is chosen as the activation function of MLP, as shown in Table 5.1.  

 

Table 5.1. Commonly used activation functions in ANNs [154]. 

Log-sigmoid function 𝑓(𝑛) =
1

1 + 𝑒−𝑛
 

 

Tan-sigmoid function 𝑓(𝑛) =
2

1 + 𝑒−2𝑛
− 1 

 

Linear function 𝑓(𝑛) = 𝑛 

 

 

In this work, the tan-sigmoid function is selected to be implemented and demonstrate 

the concept. When all neurons outputs in a layer are calculated, they are then used as 

the inputs to the next layer. This process is repeated until the final output is generated. 

The output of a neuron in each layer is, 

 𝑥𝑗
(𝑙)
= 𝑓(∑𝑤𝑗𝑖

(𝑙)
𝑥𝑖
(𝑙−1)

𝑖

+ 𝑏𝑗
(𝑙)
) (5.2) 

where 𝑙 is the index of layers, 𝑖 is the index of neurons in the previous layer and 𝑗 is 

the index of neurons in the current layer. Therefore, 𝑤𝑗𝑖   denotes the weight of the 

𝑖th input element for the 𝑗th neuron in the current layer, i.e. the connection between 

the 𝑗th neuron in the current layer and the 𝑖th neuron in the previous layer. 
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Obviously, the output of the model, at this stage, is not likely to be the desired result, 

since all weights and bias parameters are randomly generated. The back propagation 

algorithm [155] is then used to minimize the error of outputs by adjusting the 

parameters (weights and biases) of the MLP. The back propagation algorithm applied 

here acts as a training procedure. It starts at the output layer by feeding the desired 

result into the network and proceeds back to the first hidden layer.  

Let  

 𝑠𝑗
(𝑙)
=∑𝑤𝑗𝑖

(𝑙)
𝑥𝑖
(𝑙−1)

𝑖

+ 𝑏𝑗
(𝑙)

 (5.3) 

The training error of each layer is calculated by 

 𝛿𝑗
(𝑙)
= [𝑑𝑗 − 𝑥𝑗

(𝑙)]𝑓′(𝑠𝑗
(𝑙)) (5.4) 

for the output layer, and 

 
𝛿𝑗
(𝑙)
= 𝑓′(𝑠𝑗

(𝑙))∑𝛿𝑘
(𝑙+1)

𝑤𝑘𝑗
(𝑙+1)

𝑘

 
(5.5) 

for the hidden layers, where 𝛿 is the error gradient, 𝑑 is the desired final output, 𝑘 is 

the index of neurons in the next layer. 𝑓′ is the derivative of  𝑓. 

After all 𝛿 are calculated, the weights and the biases are adjusted by 

 

𝑤𝑗𝑖
(𝑙)(𝑛𝑒𝑤) = 𝑤𝑗𝑖

(𝑙)(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝜇𝛿𝑗
(𝑙)𝑥𝑖

(𝑙−1)

+ 𝜂[𝑤𝑗𝑖
(𝑙)(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝑤𝑗𝑖

(𝑙)(𝑜𝑙𝑑)] 
(5.6) 

and 

 𝑏𝑗𝑖
(𝑙)(𝑛𝑒𝑤) = 𝑏𝑗𝑖

(𝑙)(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝜇𝛿𝑗
(𝑙)
+ 𝜂[𝑏𝑗𝑖

(𝑙)(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝑏𝑗𝑖
(𝑙)(𝑜𝑙𝑑)] (5.7) 

The symbols 𝜇 and 𝜂 are the learning rate and the momentum. Learning rate 𝜇 is a 

constant that decides the convergence rate of the back propagation algorithm. The 

value of 𝜇 must be small enough to ensure the convergence, but cannot be too small 
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or the convergence rate will be slow [140]. The aim of adding the momentum term is 

to smooth the oscillation and accelerate the convergence [156].  

After all the training data has gone through the above steps, the mean square error 

(MSE) of the network is calculated by 

 𝑀𝑆𝐸 =
1

2𝑄
∑∑(𝑑𝑗 − 𝑦𝑗 )

2

𝑗

𝑄

1

 (5.8) 

where Q is the number of training samples, 𝑦 is the calculated output of the network. 

The training stops when the MSE value becomes lower than the pre-set threshold or 

the maximum number of allowable iterations (epoch) is met. Otherwise, it is 

necessary to repeat Equations (5.2) through to (5.7) until these conditions are 

satisfied. 

5.2.2 Combining with Short Time Fourier Transform 

The procedure of using MLP as a classifier to achieve noise reduction for an 

ultrasound A-scan signal acquired from a difficult material sample is similar to the 

algorithms described in Chapter 4. One method is to partner MLP with STFT, which 

is similar to the approach described in Section 4.3.  

Segmental signals are first extracted from the pre-acquired A-scan data as the 

training data and labelled into two groups: a segmented group which contains only 

grain noise; and the other group which contains legitimate reflectors.   

The feature vector of a segmental signal is assembled using discrete points that are 

extracted from the normalized Fourier spectrum equidistantly. Again, in alignment 

with the example shown in Section 4.3, 8 points are extracted from 1MHz to 9MHz 

equidistantly to form an input feature vector, for the data acquired from the austenitic 

steel sample using the 5MHz array.    

The number of nodes in the input layer is equal to the number of elements in the 

feature vector, which is 8 in this case. A three layer MLP is chosen, and the neurons 

number in the hidden layer is selected at 10 empirically. An output layer with 2 
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neurons is used. If the input presents a legitimate reflector, the desired output is 

{1,0}, and if the input is pure grain noise, the desired output is {0,1}, respectively.  

Raw signals can then be input to the algorithm for noise reduction and defect 

detection after the network is trained. For each time instant 𝑡 in a raw signal, extract 

a segment from (𝑡 − 𝐿/2) to (𝑡 + 𝐿/2), where 𝐿 is the length of the segment. For 

each segment of length, L, apply the STFT and use the extracted feature vector in the 

frequency domain as the input to the network. The output of the algorithm should be 

a binary value: 1 denotes a legitimate reflector is present at the given time instant t; 

and 0 denotes only noise is present. This can be done by comparing the values of the 

two neurons in the output layer, if the value of the first neuron is larger, then output 1, 

otherwise output 0.  

A binary trace is generated after all time instants in the A-scan have been classified. 

This binary trace implies the positions where the legitimate reflectors may appear in 

the raw signal. However, this binary trace is too dictatorial for saying a segment in 

the raw A-scan belongs to a legitimate reflector or noise hence a smoothed version is 

designed by averaging the classification result of all the segments that covers a 

certain time instant, as described in Section 4.2.4.  

An example classification result using MLP is shown in the histogram in Figure 5.3, 

along with the classification result using SVM, as a comparison. The input data was 

acquired experimentally from the austenitic steel sample using 5MHz array, as 

described in Section 2.6. From the histogram in Figure 5.3, it can be seen that the 

performance of MLP is similar to SVM. The True Negative Rate (TNR) which 

indicates the percentage rate of how many desired grain noise segments have been 

correctly detected, is 98.3% for both MLP and SVM. The True Positive Rate (TPR) 

which indicates the percentage rate of how many desired legitimate reflector 

segments have been correctly detected, is 100% for MLP and 98.3% for SVM. The 

overall Accuracy (percentage rate of how many input segments have been classified 

into the correct class) of MLP is 99.1% which is slightly higher than SVM (98.3%).  

The performances of MLP with STFT under different conditions are analysed and 

shown in Fig 5.4. 2000 A-scans are simulated for each analysis, using the high 
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dispersion model (HDM), described in Section 3.2.1. Each A-scan contains a 

legitimate reflector. The centre frequency is chosen at 5 MHz with 50% transducer 

bandwidth at -6dB. And the sampling frequency is set at 100 MHz. The attenuation 

factor 𝛼 is chosen at10−29, and the defect amplitude factor is 1.5. Unless otherwise 

specified, all simulated signals in this Chapter use the above configuration. As stated 

in Section 4.3.1, there are some cases where 𝛼 = 10−30, this has been selected to 

produce closely matched spectra between the legitimate reflector and noise; hence 

ensuring a more challenging processing scenario for the algorithm. 

Figure 5.4 shows the TPR, TNR, and Accuracy of the classification results of MLP 

using training data with different legitimate reflectors. Three different cases here, 

simulate the situation that training data and test data are acquired from various 

propagation distances, as described in Section 4.3.6. All training data of legitimate 

reflectors in case 1 are collected at 75 mm, and at a distance of 125 mm in case 2. 

The training data for a legitimate reflector in case 3 is randomly distributed between 

75 mm and 125 mm. The training data of the grain noise for all the three cases are 

randomly selected since the noise signal from different locations is easier to acquire 

in practice. The test data for all three groups contains both legitimate reflectors and 

noise signals and are extracted randomly between 75 mm and 125 mm. The 

classification results of SVM using the same data are also given in Figure 5.4, as a 

comparison. 

Like the classifiers introduced in Chapter 4, the performance of MLP is optimised 

when the training data covers segments with a range of different characteristics.  It 

can be seen that the Accuracy of MLP in case 3 has the highest percentage rate at 

92.4% among all the three cases. Although not optimised, the Accuracy of MLP in 

case 1 and case 2 are still promising which implies that the MLP is capable of 

identifying legitimate reflectors even when the knowledge of the pre-acquired 

training data is inconsistent with the reflector data.  

From Figure 5.4, it can also be seen that the performance of MLP and SVM is 

similar; noting that SVM is considered superior to Naive Bayes (NB) and k-Nearest 

Neighbors (kNN). Figure 5.5 to Figure 5.9 explore the performance of MLP and 

compares the MLP algorithm with other classifiers for reference.  
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Figure 5.3. TPR, TNR, and Accuracy of the classification results using MLP and SVM for the 

austenitic steel sample. The legitimate reflectors are back wall echoes at 79mm; the grain noise 

segments are extracted randomly. 

 

Figure 5.5 illustrates a trend diagram of the Accuracy of MLP and SVM when the 

size of the training set is changing. The size of the training set for both classes is 

increasing from 10 to 1000. It can be seen that the Accuracy of both classifiers is 

growing with the size of the training set since usually large training sets provides 

more knowledge of the data. The performance of MLP is comparable to SVM when 

the training set is large. However, when the size of the training set is small, 

especially when under around 70, the performance of MLP becomes unstable. This is 

because the parameters of MLP are initialised randomly; if the training is insufficient, 

then the performance of the trained network will be variable. The insufficiently 

trained network is underfitted and it is not able to capture the differences between 

classes accurately.  
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Figure 5.4. TPR, TNR, and Accuracy of (a) MLP and (b) SVM classification results for 2000 

simulated A-scans, with legitimate reflector training data collected at different distances. All 

legitimate reflectors in case 1 are at 75 mm, all legitimate reflectors in case 2 are at 125 mm, and the 

legitimate reflector in case 3 are randomly distributed between 75 mm and 125 mm. Grain noise 

training data are collected uniformly between 75 mm and 125 mm for all the three cases. The test data 

for all three groups are extracted randomly between 75 mm and 125 mm. The data is simulated using 

the high dispersive model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. 
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Figure 5.5. Accuracy of MLP and SVM when the size of the training set is changing. The number of 

observations in both classes is equal, and is increasing from 10 to 1000. The data is simulated using 

the high dispersive model with 𝜶 = 𝒆−𝟐𝟗, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. 

 

Figure 5.6 and Figure 5.7 show the effect of unequal size of the two classes in the  

training set to the MLP algorithm performance. In Figure 5.6 the size of the grain 

noise training set is about 20% larger than the legitimate reflector training set. Like 

the previous results shown in Figure 5.5, the performances of MLP and SVM are 

similar, although MLP is not stable when the size of the training set is small. 

 

Figure 5.6. Accuracy of MLP and SVM when the sizes of the two classes in the training set are 

unequal. The number of observations in the grain noise class is 20% larger than the legitimate 

reflector classes. The size of the reflector training set is increasing from 10 to 1000. The data is 

simulated using the high dispersive model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. 

 

Figure 5.7 shows the TPR, TNR, and Accuracy of MLP and SVM using simulated 

data. Here, the size of legitimate reflector training set has been varied between 10 to 

1000 and the size of grain noise training set fixed at 1000, to replicate the fact that 

the grain noise training data is much easier to collect in practice. It can be observed 
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from Figure 5.7 that the performance of MLP is poor when the size of the legitimate 

reflector training set is small, although the two classifiers have similar performance 

when the size of the reflector training set is large. As can be seen in Figure 5.7(c), the 

Accuracy of MLP is low especially when the size of the reflector training set is lower 

than 100. Comparing Figure 5.7(a) and Figure 5.7(b), the TPR is at a significantly 

low level while TNR is nearly 100%. These indicate that the MLP network cannot 

capture the characteristic of the legitimate reflector as the training data is 

significantly weighted towards grain noise. 

Figure 5.8 shows the situation when the training set contains errors. The grain noise 

training set is unaffected while a certain proportion of grain noise data has been 

mixed into the legitimate reflector training set. At most, 50% of the training data for 

the legitimate reflector has been replaced by noise. The MLP used in Figure 5.8(a) 

has 50 neurons in its hidden layer as described in Figure 5.2. From Figure 5.8(a) it 

can be seen that the Accuracy of MLP and SVM are close when the error in the 

training set is small. However, the Accuracy of MLP decreases when the proportion 

of the grain noise observed in the reflector group increases. Both classifiers were 

trained by using 1000 training data per group. MLP has strong nonlinearity, hence it 

reduces its generalization capability, especially when the size of the network is large. 

If the training set contains errors, the strong nonlinearity may cause the network to 

adapt to the noise and not generalize. The MLP used in Figure 5.8(b) has 10 neurons 

in its hidden layer. Compared with Figure 5.8(a), the Accuracy of MLP is slightly 

increased when the proportion of mixed grain noise is high since it has a smaller 

network size. However, the performance of SVM is still superior.  

Usually, the nonlinearity of the network can benefit the classification process when 

the training set strongly represents the test set. However, strong nonlinearity along 

with an inaccurate training set data will lead the network start to learn the potential 

characteristic differences between the sub-groups of noise, hence, it will generate 

poor prediction results when classifying new data. Additionally, strong nonlinearity 

may cause the network to adapt to the training set, which is usually referred to as an 

overfitting problem.  
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Figure 5.7. TPR, TNR, and Accuracy of MLP and SVM when the sizes of the two classes in the 

training set are unequal. The number of observations in the grain noise class is fixed at 1000 while the 

number of observations in the legitimate reflector classes is changing from 10 to 1000. The data is 

simulated using the high dispersive model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. 
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Figure 5.8. Accuracy of MLP and SVM when the legitimate reflector training set is mixed with a 

certain proportion of grain noise. (a) MLP has 50 neurons in the hidden layer, and (b) MLP has 10 

neurons in the hidden layer. The data is simulated using the high dispersive model with 𝛼 = 𝑒−29, 

𝑠 = 1.5,  5MHz centre frequency. 

 

Overfitting occurs when the number of free parameters in the network is excessive 

(e.g. the neuron number of hidden layers is large), the training set is too large or the 

training set cannot represent the test data precisely. If the training set cannot 

represent the test set precisely, like the examples presented in Figure 5.8, or 

sometimes it is only a subset of the required training set and cannot teach the 

network all the characteristics of the test set, then the network will have a poor 

generalization. In this case, an overfitted network can accurately classify an input 

observation from the training set, but the probability of correctly classifying an input 

observation from other data sets may be low. 
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Similarly to Section 4.3.10, the performance of MLP in the case where the spectrum 

characteristics of the legitimate reflector and grain noise are similar, and cannot be 

easily distinguished by STFT, have been analysed and presented in Figure 5.9. Again 

the simulation parameter settings are 𝛼 = 𝑒−30 , 𝑠 = 1.5, 5MHz centre frequency. 

The results of SVM and kNN are also given as comparisons. It can be seen that the 

Accuracy of MLP is slightly higher than SVM, but lower than kNN ,which was also 

the best classifier in the earlier work presented in Section 4.3.10. 

 

Figure 5.9. TPR, TNR, and Accuracy of an example classification results using MLP, kNN, and SVM 

when the spectrum characteristics of legitimate reflector and noise are close. The data is simulated 

using the high dispersive model with 𝛼 = 𝑒−30, 𝑠 = 1.5,  5MHz centre frequency. 

 

5.2.3 Combining with Continuous Wavelet Transform 

Another way to extract features is to apply the Continuous Wavelet Transform 

(CWT), as described in Section 4.4. This option is considered as CWT offers a better 

time-frequency resolution and ability to distinguish more detailed differences 

between legitimate reflectors and grain noise, compared to STFT. However, the 

classification results using CWT as the feature extraction method is not always as 
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promising as expected, as discussed in Section 4.4, due to the envelopes of the 

transformed 2-D signals losing detail compared with the raw transformed 2-D signals. 

The combination of SVM and CWT demonstrates better performance compared with 

NB and kNN, yet its Accuracy is still lower than kNN with STFT when the spectrum 

characteristics of reflector and noise are similar. Figure 5.10 shows the classification 

result of MLP with the same conditions. The dataset is simulated by high dispersive 

model (HDM) using 𝛼 = 𝑒−30 , 𝑠 = 1.5 , 5MHz centre frequency, as applied in 

Section 4.4 and in Figure 5.9.  

CWT is initially applied to each raw A-scan to generate the 2-D time-frequency 

signal. The mother wavelet used in this work is the Morlet wavelet, and 64 scales are 

chosen linearly from 10 to 55. Hilbert transform is then applied to each scale of the 

transformed signal, and the absolute value is taken to smooth the oscillation between 

peaks. For each time instant, all scales are extracted and formed as the feature vector. 

In this case, 64 scales are calculated; therefore, the input layer of the MLP has 64 

neurons. A three layer MLP is selected here, and 100 neurons are used in its hidden 

layer, as determined empirically. The output layer contains two neurons, {1,0} as the 

legitimate reflector and {0,1} as the grain noise. The final output of the algorithm is 

binary and depends on which of the two neurons is larger: ‘1’ if the first neuron is 

greater; otherwise ‘0’.  

Figure 5.10 gives the results of the combination of MLP and CWT, together with the 

combination of SVM and CWT, and the combination of kNN and STFT as the base 

comparison. The training set for all the three cases is identical. It can be seen that 

though the Accuracy of MLP with CWT is higher than SVM with CWT, its Accuracy 

is still slightly lower than kNN with STFT. The same reasoning holds that the 

envelope generated by the Hilbert Transform has removed key details of the CWT 

transformed signal.    

As described in Section 4.4, modulus and envelopes were added when extracting the 

feature vectors to reduce the nonlinearity, since otherwise the data is too complex. 

One benefits of MLP is its strong nonlinearity performance, especially when the size 

of the network is large. Figure 5.11 shows the classification results of the MLP – 
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CWT combination when using the feature vector directly into the network without 

applying the Hilbert Transform or taking the modulus. The results of kNN – STFT 

combination and SVM – CWT are also given as a comparison. Again, the HDM is 

used to simulate the data, using 𝛼 = 𝑒−30, 𝑠 = 1.5, 5MHz centre frequency. Without 

the restriction of the envelopes and the modulus, more details of the feature vectors 

have been acquired by the network. It can be seen in Figure 5.11 that the TPR, TNR, 

and Accuracy of the MLP – CWT combination are close to that of the Knn – STFT 

combination, with only 1.2%, 0.5%, and 0.3% differences, respectively. 

 

Figure 5.10. TPR, TNR, and Accuracy to compare the performance of MLP with CWT, SVM with 

CWT, and kNN with STFT, with simlar spectrum characteristics for legitimate reflector and noise. 

Data is simulated using the high dispersive model with 𝛼 = 𝑒−30, 𝑠 = 1.5,  5MHz centre frequency. 

 

 

Figure 5.11. TPR, TNR, and Accuracy to compare the performance of MLP with CWT, SVM with 

CWT, and kNN with STFT, with simlar spectrum characteristics for legitimate reflector and noise. 

The feature vectors used in MLP are the original values, without been enveloped. Data is simulated 

using the high dispersive model with 𝛼 = 𝑒−30, 𝑠 = 1.5,  5MHz centre frequency. 
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Although the strong nonlinearity of MLP has benefited the classification result, it 

may also lead the network to be overfitted to a particular training set and hence can 

have a poor generalization. As a result, MLP is good for the case when the training 

set and the test set have similar characteristics, but not suitable to be used to classify 

when those characteristics vary significantly.  

5.3 Wavelet based filtering de-noising algorithm pruning by 

Artificial Neural Network 

The initial motivation for applying the continuous wavelet transform (CWT) as the 

feature extraction method is to use the advantage of its higher time-frequency 

resolution, to obtain more detailed differences between the legitimate reflector and 

the grain noise. However, as discussed in Section 4.4 and Section 5.2.3, using CWT 

as the feature extraction method does not improve the classification results, unless 

the training set is perfectly selected. CWT has also been shown to offer a generally 

worse performance than using STFT with kNN when the spectrum differences of the 

legitimate reflectors and the grain noise are close, although the CWT – MLP 

combination performed well. Moreover, for the purpose of extracting more details, a 

larger number of scales are used in CWT to assemble a feature vector compared with 

STFT, which takes more computational power.  

The Wavelet Transform has already been widely used as a filtering technique for 

ultrasound signal noise reduction [22, 66, 120, 121, 157], in addition to also being 

used as a feature extraction method. In general, these filtering techniques can be 

summarised as follows: 

 Filtering the raw A-scan input signal into a series of channels (usually 

referred as coefficients) with different ‘pseudo-frequencies’ (e.g. with 

different scales for the case of CWT). 

 Processing these channels using pruning (only retain a set of particular 

channels that most likely contains a legitimate reflector) and/or thresholding 
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(all channels whose modulus is smaller than the pre-defined threshold are 

discarded). 

 Reconstructing the output signal using the pruned/thresholded channels by 

the inverse wavelet transform. 

The purpose of the pruning and thresholding is to eliminate or suppress channels that 

have little contribution to the legitimate reflectors. Many rules have been suggested 

for the method of pruning/thresholding [66, 158-160]. However, most of the rules 

only involve the acquisition configuration parameters, like the centre frequency and 

bandwidth of the transducer; few have considered the information of the energy 

distribution of the legitimate reflectors and the grain noise, or only have used it 

empirically.  

An advanced method of pruning/thresholding rule is proposed in this work, using the 

pre-acquired training set to locate the wavelet coefficients with larger contributions 

to the legitimate reflectors accurately. On the other hand, this can be treated as a 

feature reduction issue of choosing the most effective features among all feature 

elements. In ANNs, this can be achieved by evaluating the weights that connect each 

neuron. Generally, a larger weight denotes that the connection is highly activated, 

and the connected neurons have more contribution to the classification. Therefore, 

let’s take the MLP as an example, the proposed method can be achieved by the 

following steps: 

 Filtering the raw A-scan signal that contains the training set into a series of 

coefficients 𝑊𝑐𝑜(𝑖, 𝑡) with different ‘pseudo-frequencies’, where 𝑖 is the index 

of scales, 𝑡 is the time instant. 

 Selecting coefficients from certain time instants to assemble the training set, 

then train the network. Each coefficient trace is related to an input neuron. 

 For each input neuron 𝑖, calculate the average value of all weight moduli that 

connect to it, noted as 𝑆𝑖.  

 Record the value of the (N+1)th largest 𝑆𝑖 as 𝑆𝑝. N scales will be selected by 

pruning the wavelet coefficients using: 
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 𝑊𝑐𝑝(𝑖, 𝑡) = {
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0; ⁡⁡⁡𝑓𝑜𝑟⁡𝑆𝑖 ≤ 𝑆𝑝

𝑊𝑐𝑜(𝑖, 𝑡) ∗ (𝑆𝑖 − 𝑆𝑝); ⁡⁡⁡𝑓𝑜𝑟⁡𝑆𝑖 > 𝑆𝑝⁡
 (5.9) 

 Setting a threshold level 𝑇. 𝑇 should be a fractional number between 0 to 1. 

Thresholding the pruned coefficients by: 

 𝑊𝑐𝑡(𝑖, 𝑡) = {

⁡0; ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡|𝑊𝑐𝑝(𝑖, 𝑡)| ≤ 𝑇 ∗ |𝑊𝑐𝑝(𝑖, 𝑡)|

𝑊𝑐𝑝(𝑖, 𝑡) − 𝑇 ∗ 𝑊𝑐𝑝(𝑖, 𝑡);⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡|𝑊𝑐𝑝(𝑖, 𝑡)| > 𝑇 ∗ |𝑊𝑐𝑝(𝑖, 𝑡)|

 (5.10) 

 Reconstructing the output result using the processed wavelet coefficients 

𝑊𝑐𝑡(𝑖, 𝑡) using the inverse wavelet transform. 

Different from the de-noising techniques that use classification, using ANNs to 

prune/threshold the wavelet coefficient is an easier and faster algorithm since the 

network is only involved once for the pruning/thresholding step and is then no longer 

required for the calculation of each time instant in the output signal. It is suitable for 

the case that no significant spectrum characteristic distortion has been observed in 

the dataset (e.g. no strong frequency dependent attenuation or highly inhomogeneous 

material property). Further discussion and results will be given in Section 5.5. 

5.4 Automatic feature extraction using the stacked autoencoders 

Automatically extract features from ultrasound segmental signals using a Deep 

Learning network is discussed in this Section.  

Based on the analysis from the above sections, the MLP approach has no significant 

advantage compared with other classifiers when the network only has three layers. 

Raising the numbers of layers may enhance the performance, but it will increase the 

complexity of training, and can easily cause overfitting.  

Another reason that may potentially limit the algorithm performance is the selection 

of features. Feature extraction is an important part of machine learning, as a precise 

and efficient representation of the pattern is essential for the accuracy of 

classification. In practice, this is usually done manually based on pre-acquired 
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knowledge and expertise. Whether appropriate features can be extracted or not 

mainly depends on experience. For example, the centre frequency and the bandwidth 

of the transducer are required to help to decide the extraction range for using both 

STFT and CWT; and the scales number of CWT is selected empirically. It is 

therefore considered that an automatic feature extraction method could potentially 

benefit the classification process. 

5.4.1 Background of Deep Learning 

In recent years, a field of research named Deep Learning has become popular and 

been widely used. Deep Learning can be treated as an extension of traditional ANNs. 

It is part of a broader family of machine learning methods based on learning 

representations of data [161] and was inspired by the mechanism of the brain. By 

studying the brains of cats, Hubel et al. [162] has discovered that the processing of 

visual signals in the brain is a series of abstraction and iteration. In other words, the 

information processing of the visual system is layered. Started from the lowest layer 

(pixels) the features of images are extracted step by step. The more abstract the 

feature is, the easier it can be classified by the brain. 

Like the visual system of the brain, the Deep Learning technique creates features 

using a layered approach. Let’s assume a Deep Learning system has a cascade of 

layers and by adjusting the parameters in each layer to make the output of the system 

equal to the input (i.e. the ideal scenario), then the output of each layer can be treated 

as a series of different features of the input, where each feature is an alternative 

expression of the original information. The main idea of Deep Learning is to use a 

cascade of many layers of nonlinear processing units for automatic feature extraction 

and transformation, where each successive layer uses the output from the previous 

layer as input. 

Compared with traditional shallow learning like SVM and the three layer MLP, 

which have been introduced in this work, Hinton et al. [163] has highlighted that 

networks with many layers have extraordinary learning ability. The features created 

by these networks are a more natural representation of the original information and 

are more beneficial for visualisation or classification. To overcome the difficulty of 
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training for multilayer networks, the Deep Learning approach uses a layer-wise pre-

training mechanism which is very different when compared to the traditional training 

methods.  

5.4.2 Principle of stacked autoencoders 

Stacked autoencoders (SAE) is a network that is targeted for learning efficient 

coding  [164] and is a simple model in terms of Deep Learning. The function of an 

autoencoder is to learn a representation of a dataset. Typically the autoencoder is 

used for the dimensionality reduction. SAE contains a cascade of autoencoders and 

the principle of the approach is now described. 

i. Unsupervised learning of the autoencoder.  

Feed the data in the training set into a three layer network without supplying the 

accompanying input labels. Set the number of neurons in the output layer equal to 

those in the input layer, and assume the number of neurons in the hidden layer is less 

than those in the input layer, as illustrated in Figure 5.12. The situations when the 

number of neurons in the hidden layer is larger than the input layer (sparse 

autoencoder [165]) will not be discussed in this work. Train the network using the 

back propagation algorithm methodology, to make the outputs and the inputs as 

equal as possible. Since the number of neurons in the hidden layer is less than the 

input layer, it forces the network to compress the input data and abstract the hidden 

structure inside. The values of the neurons in the hidden layer can be seen as an 

abstracted feature of the raw data. The hidden layer in the network can be considered 

as the encoder, and the output layer as the decoder.  
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Figure 5.12. Concept diagram of an autoencoder. 𝑖 is the neuron index in the input / output layer and 𝑗 
is the neuron index in the hidden layer, 𝑖 > 𝑗. The outputs of the autoencoder network are expected to 

be the same with the inputs. The values of the neurons in the hidden layer can be seen as the primary 

features of the raw input. 

ii. Layer based training. 

Using the values of the hidden layer neurons in Figure 5.12 as inputs, the 

methodology then creates a new three layer network. Train the network by letting the 

outputs equal to the inputs, and set the number of neurons in the hidden layer to be 

smaller than those in the input layer, to get the secondary features, as shown in 

Figure 5.13. Repeating this procedure will train the autoencoder layer by layer, until 

the pre-set layer number is reached.  
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Figure 5.13. An autoencoder network with pre-calculated primary features fed in as inputs. The values 

of the neurons in the hidden layer are the secondary features of the raw inputs. 𝑗 is the neuron index in 

the input / output layer and 𝒌 is the neuron index in the hidden layer, 𝑗 > 𝑘. 

 

iii. Supervised learning. 

Stacking all the hidden layers of the trained autoencoders into one network. The 

stacked autoencoders now have the ability to learn from the raw data and to abstract 

a good feature representation. However, it cannot be used directly to classify the raw 

data since it has no information of the class label yet. There are two ways to modify 

it. One is to use the output of the network in the form of the extracted feature vectors 

and feed into a classifier, then applying supervised training. The other way is to 

connect a classifier at the end of the network and subsequently tune the entire 

network finely by supervised training. The latter one is preferable if the size of the 
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training set is sufficiently large. A full view of the SAE network after all layers are 

connected is shown in Figure 5.14. 

 

Figure 5.14. Concept diagram of stacked autoencoders (SAE). Each hidden layer is pre-trained and a 

classifier is attached at the end of the network. 

 

5.4.3 Performance analysis of classification using features extracted by 

stacked autoencoders 

Unlike other classifiers, SAE extracts features automatically. Therefore, the input of 

the SAE network is the segmental signals segregated from raw A-scans. In this work, 

the length of the segmental signal is chosen at 100, to match the empirically chosen 

100 neurons input layer. Note that this length has been selected to match the time 

duration of the signal of interest associated with the A-scans collected in this work 

and would have to be modified if a different acquisition sampling rate was used. The 
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segmental signals should first be normalised to remove the effect of attenuation. 

Three encoders are stacked for the purpose of feature extraction, with the number of 

neurons in the three encoders being 50, 25 and 12 respectively. An additional layer is 

attached at the end of the network to simply perform the classification function. The 

classification layer is the output layer of the network which contains two neurons. As 

discussed previously for the MLP model in Section 5.2.2, the expected output of the 

SAE network is {1,0} for a legitimate reflector observation and {0,1} for a grain 

noise. 

Simulated data is again used in this Section to analyse the performance of SAE, with 

the high dispersion model (HDM) used to generate data. Unless otherwise specified, 

the parameters of the HDM model used for this aspect of the Thesis are 𝛼 = 𝑒−29, 

𝑠 = 1.5, 5MHz centre frequency with 50% bandwidth at -6dB, 100MHz sampling 

frequency. The same training and test data set up described in Section 4.3.6 and used 

in Figure 5.4 was used again to evaluate the SAE algorithm. 

Figure 5.15 illustrates the classification performance of SAE using training sets 

acquired at different depths, along with MLP and SVM for comparison. The feature 

extraction method used in MLP and SVM is STFT.  

SAE has accurately classified the segments into related classes in all three cases, 

with Accuracy at 97.4% for case 1, 97% for case 2, and 97.95% for case 3. As can be 

seen in Figure 5.15, the Accuracy of SAE is highest in case 3 which uses a training 

set covering segments from a range of different depths. Like the other classifiers, 

SAE has a better performance when the training set is perfectly matched with the test 

set. The Accuracy of SAE is better than SVM and MLP as shown in Figure 5.15, 

implying that the automatically extracted features have well represented the input 

segmental signals. 
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Figure 5.15. Accuracy of SAE, SVM, and MLP classification results for 2000 simulated A-scans, with 

legitimate reflector training data collected at different distances. All legitimate reflectors in case 1 are 

at 75 mm, and at 125 mm for case 2 and randomly distributed between 75 mm and 125 mm for case 3. 

Grain noise training data was collected uniformly between 75 mm and 125 mm for all the three cases. 

The test data for all three groups are extracted randomly between 75 mm and 125 mm. The data is 

simulated using the high dispersive model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. 

 

As shown in Figure 5.16, the Accuracy of SAE is slightly larger than SVM for all 

sizes of training sets. Similar to the MLP results in Figure 5.5, SAE may be 

underfitted when the training set is small and this manifests as significant 

fluctuations, as can been seen in Figure 5.16 when the number of observations in less 

than 200.  

 

Figure 5.16. Accuracy of SAE and SVM when the size of the training set is changing. The number of 

observations in both classes is equal, and is increasing from 10 to 1000. The data is simulated using 

the high dispersive model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. 

 

The comparison of SAE and SVM when the numbers of legitimate reflectors and 

grain noise in the training set are unequal is given in Figure 5.17. Figure 5.17(a) 
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shows the case when the size of the grain noise class in the training set is slightly 

larger (by 10%) compared to that of the legitimate reflector; and Figure 5.17(b) 

shows the case when the size of the two classes is significantly disproportionate: here 

the size of legitimate reflector class is variant from 10 to 1000, while the size of grain 

noise class is fixed at 1000. The Accuracy of SAE is higher than SVM in both 

scenarios when the size of the training set is large. It can be seen that the Accuracy of 

SAE is low and fluctuating in Figure 5.17(a) only when the size of the training set is 

small, as discussed previously like the situation in Figure 5.16. However, the 

performance of SAE is significantly unstable when the size of the two classes in the 

training set is greatly unbalanced, as can be seen in Figure 5.17(b), the Accuracy 

fluctuates heavily when the size of the reflector training set is less than half of the 

noise training set. 

 

Figure 5.17. Accuracy of SAE and SVM when the sizes of the two classes in the training set are 

unequal. (a) The number of observations in the grain noise class is 20% larger than the legitimate 

reflector classes, (b) the  number of observations in the grain noise class is fixed at 1000. The size of 

the reflector training set is increasing from 10 to 1000. The data is simulated using the high dispersive 

model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. 
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The Accuracy of SAE when the training set of a legitimate reflector is mixed with a 

certain proportion of grain noise has also been considered and Figure 5.18 presents 

these results along with the Accuracy of SVM. The grain noise training set is 

unaffected. The overall trend of Accuracy of SAE has only dropped slightly when the 

proportion of mixed noise is high and generally outperforms SVM. Although the 

inaccurate training data does not reduce the Accuracy significantly as observed for 

MLP in Figure 5.18, the Accuracy profile of SAE is increasingly fluctuated, implying 

that the mixed grain noise training makes the performance of SAE unstable.  

Figure 5.19 shows the classification results of SAE when the spectrum characteristics 

of legitimate reflectors and grain noise are similar. As was discussed for Figure 5.9, 

results for SVM and kNN approaches, using STFT as the feature extraction method, 

are also given for comparison. Interestingly, the Accuracy of SAE remains at a very 

high level compared to the other two techniques, which is in agreement with the 

earlier results shown in Figure 5.15. 

 

Figure 5.18. Accuracy of SAE and SVM when the legitimate reflector training set is mixed with a 

certain proportion of grain noise. The data is simulated using the high dispersive model with 𝛼 = 𝑒−29, 

𝑠 = 1.5,  5MHz centre frequency. 
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Figure 5.19. TPR, TNR, and Accuracy of an example classification results using SAE, kNN, and SVM 

when the spectrum characteristics of legitimate reflector and noise are close. The data is simulated 

using the high dispersive model with 𝛼 = 𝑒−30, 𝑠 = 1.5,  5MHz centre frequency. 

 

Another factor that may affect the performance of SAE is the position(s) of reflector 

echoes in the training segmental signals. In order to correctly detect the distance of a 

legitimate reflector, its echo peak should be at the centre of the range of the training 

segment, as shown in Figure 5.20(a). However, the echo of a legitimate reflector is 

easily distorted by grain noise in practice, making it difficult to select an accurate 

extraction range for the training segment. Usually, the segments that are to be used 

for the training datasets can be extracted based on the knowledge of the sound speed 

of the test material and the distance to the flaw or back wall, for example. However, 

the speed of the test material could vary in an inhomogeneous material, making the 

position of the legitimate reflector echo peak in the training segments unpredictable. 

The classification results will not be significantly affected if the position of the 

legitimate reflector echoes are distributed randomly but mostly focused at the centre 

as shown in Figure 5.20(b). The same philosophy can be applied when using the 

features that are extracted by STFT. If the positions of the legitimate reflectors 

echoes are all on one side of the training segments as shown in Figure 5.20(c), it is 

still possible to get a correct result using STFT, as the spectrum of the segmental 

signal will not be distorted as long as the segmental signal contains the legitimate 
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reflector. However, this can strongly affect the result when using SAE. The distance 

of the legitimate reflectors in the output results will be shifted since the input data 

using this training set is completely different compared with the training set extracted 

using the correct range. Details will be discussed further in Section 5.5.1. 

5.5 A-scan and B-scan Results 

Both simulation and experimental A-scan and B-scan results are presented in this 

Section to validate the algorithms discussed earlier in this Chapter. 

5.5.1 Results of classification algorithms 

Figure 5.21 shows the B-scan results of MLP and SAE, using simulated data. The B-

scan images of the raw signal and SVM are also given as comparisons. The feature 

extraction method used in both SVM and MLP is STFT. The data was simulated 

using the high dispersion model (HDM), using the following parameters: 𝛼 = 𝑒−29, 

𝑠 = 1.5, 5MHz centre frequency with 50% bandwidth at -6dB, 100MHz sampling 

frequency. Each B-scan image is formed by 2000 A-scans and each A-scan contains 

a legitimate reflector. The locations of these legitimate reflectors are distributed 

uniformly from 75mm to 125mm. As shown in Figure 5.21(a), the dark oblique line 

is assembled by the legitimate reflectors of each A-scan. Absolute values of the 

signals are used in all images, and darker colour in a B-scan image refers to higher 

amplitude in the related A-scan representation. 
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Figure 5.20. Segmental signal extracted from different ranges and its spectrum. (a) Echo of the 

legitimate reflector is at the centre of the segment, (b) acceptable extractions when the echoes are 

distributed around the centre, and (c) improper extraction range when echoes are not distributed 

around the centre.  



170 

 

 

Figure 5.21. B-scans results of the simulated data, (a) Raw B-scan, (b) SVM processed B-scan, (c) 

MLP processed B-scan, (d) SAE processed B-scan. The feature extraction method used in SVM and 

MLP is STFT. High dispersion model (HDM) was used to simulate the data. The parameters of the 

HDM model are selected at 𝛼 = 𝑒−29, 𝑠 = 1.5, 5MHz centre frequency with 50% bandwidth at -6dB, 

and 100MHz sampling frequency. Absolute values of signals is used for all images, darker colour 

represent higher amplitude. The dark line in the images are formed by the legitimate reflectors, from 

75mm to 125mm. 
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As can be seen in Figure 5.21, the noise level is greatly reduced, and the 

visibility/clarity of the legitimate reflector line is enhanced after the image has been 

processed by MLP or SAE. Table 5.2 shows the SNR calculated for each image.  

The SNR in each B-scan image is the average of the SNR of all A-scan traces, 

calculated using the peak value of the legitimate reflector echo divided by the mean 

value of noise, in dB. 

Compared with the raw B-scan image (Figure 5.21(a)), the images processed by 

MLP (Figure 5.21(c)) and SAE (Figure 5.21(d)) have significantly improved the 

SNR by 31.11dB and 38.59dB respectively. Interestingly, the SNR predicted for 

MLP is similar to that determined for SVM. Whereas the SAE algorithm has 

outperformed all other methodologies,  which is consistent with the analysis shown 

in Figure 5.4 and Figure 5.15. 

 

Table 5.2. SNR for simulated results presented in Figure 5.21. 

Raw B-scan 10.08dB 

SVM processed B-scan 41.30dB 

MLP processed B-scan 41.91dB 

SAE processed B-scan 48.67dB 

 

Figure 5.22 presents the experimental B-scan results from an austenitic steel sample 

for an image generated using the raw acquired data and three processed B-scans. 

Forty A-scans are shown in each B-scan and each one contains a back wall echo. The 

data was acquired using a 5MHz linear array, and sampling at 100MHz. The 

backwall of the sample is located at 79mm. In addition to the B-scan image, Table 

5.3 details the calculated SNR for each image. In all three cases, using a feature 

extraction method, the processed B-Scan is able to discern the backwall signal in the 

image, with SNR improvements of 31.37dB, 32.82dB and 41.07dB for SVM, MLP 

and SAE, respectively. Importantly, similar to the simulated data analysis, SAE has 

outperformed the other methodologies.  
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Figure 5.22. B-scan results of the austenitic steel sample, (a) Raw B-scan, (b) SVM processed B-scan, 

(c) MLP processed B-scan, (d) SAE processed B-scan. The feature extraction method used in SVM 

and MLP is STFT. Data was acquired using 5MHz linear array. Absolute values of signals is used for 

all images; darker colour represents higher amplitude. The dark line in the images is the back wall of 

the sample, at 79mm. 

Table 5.3. SNR for B-scan images presented in Figure 5.22. 

Raw B-scan 12.20dB 

SVM processed B-scan 43.57dB 

MLP processed B-scan 45.02dB 

SAE processed B-scan 53.27dB 
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As discussed in Section 5.4.3, the echo position of the legitimate reflector when 

selecting the training segmental signals for SAE could be critical to its performance. 

Figure 5.23 shows two different ways of selecting the legitimate reflector training 

segments. The positions of reflector echoes are distributed randomly, and mostly at 

the centre of the segments within the correct extraction range, while the positions of 

the reflector echoes are all located at the upper part of the segments with a shifted 

extraction range. 

 

Figure 5.23. Echo position of legitimate reflectors when selecting the segmental signals for training.  

 

Figure 5.24 shows the SAE B-scan results using the two different training sets 

related to the scenarios illustrated in Figure 5.23. 2000 A-scans are simulated using 

the high dispersion model (HDM), and all parameters are consistent with those used 

in Figure 5.21. The legitimate reflectors in all A-scans are located at 75mm. Figure 

5.24(b) illustrates the result related to the correct extraction range as shown in Figure 

5.23 and Figure 5.24(c) relates to the shifted extraction range. Although the 

legitimate reflectors (dark lines in the images around 75mm) are clearly shown in 

both SAE B-scans in Figure 5.24(b) and Figure 5.24(c) compared with the raw B-

scan, there is a significantly spatial shifting of the legitimate reflectors in Figure 

5.24(c) from 75mm to around 76.5mm due to the inappropriate selection of the 

training segments. 
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Figure 5.24. B-scans results of the simulated data, (a) Raw B-scan, (b) SAE processed B-scan, (c) 

SAE processed B-scan when the legitimate reflector echo in its training set are all shifted to one side. 

(b) and (c) are the binary output results of SAE that have not been smoothed. High dispersion model 

(HDM) was used to simulate the data. The parameters of the HDM model are selected at 𝛼 = 𝑒−29, 

𝑠 = 1.5, 5MHz centre frequency with 50% bandwidth at -6dB, and 100MHz sampling frequency. 

Absolute values of signals is used for all images, darker colour represent higher amplitude. The dark 

lines in the images are formed by the legitimate reflectors, at 75mm. There is a clear shifting of the 

legitimate reflectors in (c). 

5.5.2 Results of wavelet based filtering algorithm 

A simulated A-scan result is shown first to demonstrate the process of wavelet based 

filtering. HDM is then used to generate the simulation data, using 𝛼 = 𝑒−30, 𝑠 = 1.5, 

5MHz centre frequency with 50% bandwidth at -6dB, and 100MHz sampling 

frequency. A flaw echo is simulated at 75mm and it is masked by the strong grain 

noise, as can be seen in Figure 5.25(a). The contour plot of the modulus CWT 

coefficients of the raw A-scan signal is also shown in Figure 5.25(b). Morlet wavelet 
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[66] is chosen as the mother wavelet and 64 scales is used with a linear interval. The 

scales of the CWT are converted into pseudo-frequencies in Figure 5.25(b) to make it 

more visual.  

Considering the energy lost in higher frequency range due to the frequency 

dependent attenuation, the main energy of the signal should be distributed slightly 

below 5MHz, which is consistent with the energy distribution shown in the contour 

plot in Figure 5.25(b), the area with the highest energy has moved from 5MHz to 

4.5MHz. A conventional way to de-noise the signal using CWT is to filter the signal 

by pruning and thresholding based on this area [66]. Figure 5.26 shows the pruned 

and thresholded CWT coefficients using the following equations: 

 𝑊𝑐𝑝(𝑖, 𝑡) = {

0; ⁡⁡𝑓𝑜𝑟⁡𝑖 < 𝑖1
𝑊𝑐𝑜(𝑖, 𝑡); ⁡⁡𝑓𝑜𝑟⁡𝑖1 < 𝑖 ≤ 𝑖2⁡⁡⁡⁡⁡⁡

0; ⁡⁡𝑓𝑜𝑟⁡𝑖 > 𝑖2

 (5.11) 

 𝑊𝑐𝑡(𝑖, 𝑡) =

{
 
 

 
 
0; ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡|𝑊𝑐𝑝(𝑖, 𝑡)| ≤ 𝑇 ∗ max⁡|𝑊𝑐𝑝(𝑖, 𝑡)|

𝑊𝑐𝑝(𝑖, 𝑡) − 𝑇 ∗ max⁡|𝑊𝑐𝑝(𝑖, 𝑡)|;⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑊𝑐𝑝(𝑖, 𝑡) > 𝑇 ∗ max⁡|𝑊𝑐𝑝(𝑖, 𝑡)|

𝑊𝑐𝑝(𝑖, 𝑡) + 𝑇 ∗ max⁡|𝑊𝑐𝑝(𝑖, 𝑡)|;⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑊𝑐𝑝(𝑖, 𝑡) < −𝑇 ∗ max⁡|𝑊𝑐𝑝(𝑖, 𝑡)|

 (5.12) 

where 𝑖1 and 𝑖2 are the pruning range, and ‘max’ is the abbreviation of ‘maximum’. 

In this case, 𝑖1 and 𝑖2 are the 8
th

 scales and the 16
th

 scales, which relate to 3.9MHz 

and 5.6MHz respectively in their pseudo-frequency. The pseudo-frequency is a way 

to approximately convert wavelet scales to frequency, using the centre frequencies of 

related daughter wavelets. 𝑇 , the Threshold is chosen as 0.5 empirically for the 

remaining processing in this Chapter. An inverse CWT is then performed to 

reconstruct the signal. 

As can be seen in Figure 5.26, although there is energy distributed around 75mm, 

there are several areas that contains stronger energy, especially at around 47mm and 

61mm. This will cause the processed A-scan to incorrectly identify the flaw location 

as shown in Figure 5.28(a), where strong noise remains at 47mm, 61mm, and 117mm.  

Figure 5.28(b) is the reconstructed signal using the proposed new wavelet filtering 

algorithm from Section 5.3. The flaw echo at 75mm is successfully detected, and the 
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grain noise is greatly suppressed. As can be seen from the CWT contour plot in 

Figure 5.27, the scales with the largest contribution for distinguishing the flaw and 

the grain noise have been selected by MLP. Eight scales have been selected from the 

original 64 scales. Compared with Figure 5.25(b), the scales which have the highest 

energies are focused around 75mm are identified, with a 2MHz to 3MHz pseudo-

frequency, which is consistent with the pruned wavelet in Figure 5.27. Note that 

although it looks like most remaining scales are locating at around 7MHz to 8MHz, 

there are only two scales in that area. The confused appearance is caused by the non-

linear frequency resolution of the wavelet transform. The frequency resolution 

decreases when the pseudo-frequency increases.  

 

 

Figure 5.25. Raw A-scan and its modulus CWT contour plot. The data is simulated using the high 

dispersive model with 𝜶 = 𝒆−𝟑𝟎, 𝒔 = 𝟏. 𝟓,  5MHz centre frequency. The legitimate reflector is 

located at 75mm. 
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Figure 5.26. Contour plot of pruned and thresholded CWT of the A-scan in Figure 5.25, using a 

conventional method introduced in [66]. The threshold level is at 0.5. 

 

Figure 5.27. Contour plot of pruned and thresholded CWT of the A-scan in Figure 5.25, using the 

proposed new method which combined with MLP. The threshold level is at 0.5. 
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Figure 5.28. Reconstructed A-scans, (a) using the pruned CWT coefficients in Figure 5.26,  and (b) 

using the pruned CWT coefficients in Figure 5.27. The legitimate reflector is located at 75mm. 

 

Figure 5.29 shows the B-scan images of simulated signals, using the same parameter 

settings as used in Figure 5.25. Compared with the raw B-scan, the pruned B-scan 

with the help of MLP has a more visible feature at 75mm as can be seen in Figure 

5.29(c), which is formed by the flaw echoes in each A-scan. Although the line of 

flaw echoes can also be observed in Figure 5.29(b), which has been formed using the 

conventional method, this has a lower SNR and many flaw echoes have not been 

successfully detected. The SNR calculations for these images are given in Table 5.4. 

Experimental data is also used to demonstrate the performance of the proposed 

algorithms. Figure 5.30 presents the results of CWT filtering of data acquired from 

the austenitic steel sample. The data was acquired by a 5MHz linear array, at 

100MHz sampling frequency. Again, the back wall of the sample is at 79mm. 

Comparing Figure 5.30(a) and Figure 5.30(c), it can be seen that the back wall 

becomes more visible after been processed using wavelet filtering, while the 

conventional method fails to show the location of the back wall. The SNR 

calculations for the three images are shown in Table 5.5. Although the CWT filtered 

B-scan with the help of MLP has reduced the noise compared with the raw B-scan, 
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its SNR is lower than the B-scans processed by Segment Recognition Classifier 

(SRC), as presented in Figure 5.22 and Table 5.3. 

 

Figure 5.29. B-scan images simulated using the same settings used in Figure 5.25. Each A-scan 

contains a legitimate reflector at 75mm. (a) Raw B-scan, (b) processed B-scan using the conventional 

wavelet filtering, and (c) processed B-scan using the proposed wavelet filtering. All images are shown 

in modulus. Darker colour indicates higher amplitude.  

 

 



180 

 

Table 5.4. SNR calculations for B-can images presented in Figure 5.29 

Raw B-scan 9.00dB 

SVM processed B-scan 10.22dB 

MLP processed B-scan 23.61dB 

 

 

Figure 5.30. B-scan images of the austenitic steel sample. Each A-scan contains a back wall echo at 

79mm. (a) Raw B-scan, (b) processed B-scan using the conventional wavelet filtering, and (c) 

processed B-scan using the proposed wavelet filtering. All images are shown in modulus. Darker 

colour indicates higher amplitude.  
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Table 5.5. SNRs calculations for B-scan images presented in Figure 5.30 

Raw B-scan 12.20dB 

Pruned B-scan (conventional) 4.85dB 

Pruned B-scan (MLP) 22.66dB 

 

Figure 5.32 illustrates another example of processed experimental B-scan imaging. 

The data was acquired from the Inconel 617 sample with a 5MHz linear array. The 

schematic of the array and the sample is shown in Figure 5.31. Different from the 

results in Figure 5.30, both conventional and the wavelet filtering algorithms have 

reduced the noise level and successfully detected the back wall echoes (oblique dark 

lines in the images). However, the back ground (noise level) of Figure 5.32(c) is 

much clearer compared with Figure 5.32(b). The corresponding SNR calculations 

show that Figure 5.32(c) has a superior SNR compared to Figure 5.32(b). This SNR 

data is detailed in Table 5.6.  

 

Figure 5.31. Schematic plots of the array and the Inconel 617 sample geometry. 

 

Table 5.6. SNR calculations for B-scan images presented in Figure 5.32 

Raw B-scan 16.33dB 

SVM processed B-scan 20.70dB 

MLP processed B-scan 30.26dB 
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Figure 5.32. B-scan images of the Inconel 617 sample. Each A-scan contains a back wall echo, 

distributed between 20mm to 35mm. (a) Raw B-scan, (b) processed B-scan using the conventional 

wavelet filtering, and (c) processed B-scan using the proposed wavelet filtering. All images are shown 

in modulus. Darker colour indicates higher amplitude. 
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5.6 Summary 

This Chapter has developed the benefits of applying supervised machine learning and 

pattern recognition into ultrasound time domain signal de-noising techniques. A 

number of different artificial neural network (ANN) applications have been 

introduced and combined with appropriate signal processing techniques.  

Multilayer perceptron (MLP) has been chosen as an example of traditional ANNs. 

The classification performance of ultrasound segmental A-scan signals is generally 

similar to that of SVM. However, underfitting and overfitting problems could occur 

when the size of the training set is either too small or too large. Small training 

datasets may cause the performance of the MLP to be unstable; while large, 

inaccurate training sets may lead the MLP to start fitting to the unwanted noise 

characteristics of the signals. Like other classifiers, the features used by MLP can be 

extracted using either STFT or CWT. Although MLP has better performance using 

the features extracted by CWT compared with other classifiers based on its high 

nonlinearity, there is no significant improvement compared with those using STFT as 

its feature extraction method. 

A good way to combine ANNs and the wavelet transform is to use ANNs to search 

the wavelet coefficients that can best represent the differences between legitimate 

reflectors and grain noise, then prune the wavelet to filter the raw signal. Usually, 

these coefficients should have higher SNR than the other approches. A three layer 

MLP has been chosen as an example. By summing up the weights of all neurons in 

the hidden layer after training, the coefficients that have larger contributions can be 

pruned from the raw CWT coefficients matrix. Initial results show that the proposed 

algorithm can successfully detect the legitimate reflectors and has higher SNR 

improvement compared with a conventional method. 

Deep learning is an effective way to extract features automatically. The results of 

stacked autoencoders (SAE) are shown as an example of using Deep Learning as an 

ultrasound A-scan de-noising technique. The performance of SAE is promising, but 

inappropriate selecting of the training segmental signals may cause the detected 

legitimate reflector to be shifted. The automatic feature extraction function of SAE is 
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very similar to the well-known principal component analysis (PCA) [166]. However, 

experiences show that PCA is difficult to identify the difference between the 

legitimate reflector and grain noise when the SNR is low. The raw input is mainly 

represented by the first principal component and the second principal component 

after been processed by PCA since the levels of further components are significantly 

attenuated compared with the first two. This may not be enough to distinguish the 

noise and reflector groups due to their strong nonlinear boundary. Besides, 

Theodoridis and Koutroumbas  [140] have shown that the first principle component 

is not always the best feature to represent the difference between two classes, as 

illustrated in Figure 5.33. Additionally, compared with PCA, the parameters of SAE 

are much easier to tune after being attached to a classifier. 

 

Figure 5.33. An example that shows the first principle component is not always the best one for 

classification. 𝑎1 is the first principle component as the dataset has the largest projection on it. 

Apprently, the second principle component 𝑎2 is more suitable for classification as the projection of 

the two classes along 𝑎1 is overlapped [140]. 

Comparing all the proposed algorithms that use supervised learning in this Chapter 

and Chapter 4, SVM with STFT extracted features is suitable for most of the cases. 

SAE can also shown promise to further improve the SNR if the segmental signals in 

the training set are extracted properly. Although the noise reduction capability of the 

wavelet filtering algorithm is less optimal compared with classification algorithms, 

the wavelet filtering algorithm is much faster since it needs less computational power. 

Therefore, it is a good choice for the cases where the SNR of the raw signals is high.  
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Chapter 6  

Unsupervised clustering in ultrasound A-scan 

processing 

As discussed extensively in literature, traditional Split Spectrum Processing (SSP) 

algorithms are highly sensitive to their parameter tuning [112], which may result in 

the legitimate reflectors like flaws or backwall echoes not being detected, or even 

result in scattering noise not being fully eliminated and hence becoming classified as 

an artefact. Chapter 3 introduced an advanced frequency diversity based algorithm, 

Moving Bandwidth Split Spectrum Processing (MB-SSP), which was developed to 

avoid the parameter sensitivity problems of SSP. While the MB-SSP algorithm has a 

higher reliability in flaw detection, there are still many artefacts remaining in the 

processed signals, since the aim of MB-SSP was more focused on enhancing 

reliability rather than optimising noise reduction capability. 

To improve noise reduction and flaw detection capability, Chapters 4 and 5 have 

discussed algorithms using supervised pattern recognition techniques. These 

prototype based algorithms provide more accurate performance since they are able to 

self-regulate using the training process by adapting the signals acquired from 

samples with different properties. However, high-quality training data is not easy to 

be acquired. Consequently, the performance of prototype based algorithms may be 

less when compared with traditional techniques, if the training is inappropriate.  

To address these reasons, this Chapter presents a new algorithm named Potential 

Real Defect Miner (PRDM). Here, the term real defect refers to the legitimate 

reflector. The algorithm was inspired by the supervised classification algorithms that 

were introduced in Chapters 4 and 5. It uses an unsupervised clustering algorithm to 

help to remove artefacts in the signals that are introduced by A-scan based noise 

reduction techniques like MB-SSP, and improve the accuracy of the detection 
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without acquiring any advanced training data. It can also be used to accurately select 

training data for the classification algorithms described in Chapter 4 and Chapter 5. 

6.1 Concept of using unsupervised clustering in ultrasound A-scan 

de-noising processing 

The classification algorithms used in Chapters 4 and 5 are supervised and trained by 

labelled training data, to recognise whether a segmental signal contains a legitimate 

reflector or not. This labelled training data is critical when classifying observations 

into a related class; but unfortunately it is not always available. However, the 

characteristic differences between the legitimate reflector and grain noise exist 

independently of the label. These characteristic differences can be used by certain 

algorithms to gather such observations into groups. These algorithms are known as 

clustering analysis and are categorised as unsupervised learning algorithms. The aim 

of clustering analysis is to group similar observations together, without any concern 

for what label the group has. Importantly, the observations in a clustered group 

(sometimes referred as a cluster) are more similar to each other than to those in other 

groups. 

The characteristic differences of legitimate reflector and noise cannot be used to 

label the legitimate reflector echoes in the raw signals. However, this characteristic 

difference can be used to cluster segments of the raw signals into groups. As the 

segments containing legitimate reflectors are more similar to each other compared to 

those contain only grain noise, they will gather into one (or sometimes more) group. 

This cannot immediately benefit the de-noising methodology as the legitimate 

reflector group is unknown. However, since segments that contain legitimate 

reflectors are much rarer than segments that contain only grain noise, then the 

percentage of clustered groups within the whole dataset identified as containing a 

legitimate reflector is typically very low.  

Typically, the total number of segments within the entire dataset is usually large. 

This will force each clustered group to contain a large number of segments when the 
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number of groups is kept small. Since most of the segments in raw A-scans only 

contain noise, the significant imbalance between noise and legitimate reflectors will 

cause the legitimate reflector segments to be easily mismatched with one of the noise 

groups. If the number of groups is large, then the process of finding similar segments 

for each group will be too complex. 

Therefore, the idea of using clustering to find the legitimate reflector directly from 

the raw dataset is hard to achieve.  

However, assume the raw signals have already been processed by another A-scan 

based defect detection algorithm, and the processed signals show the location of the 

legitimate reflectors along with a few artefacts. Now, the clustering algorithm can be 

used to simply divide the segments that contain those echoes into several groups and 

pick out the specific group that contains only legitimate reflectors by comparing how 

many segments in the raw dataset have similar characteristic to the segments in this 

group. 

Another application of clustering is to use it to support the classification based 

algorithms (Chapters 4 and 5) to accurately locate the segments that contain 

legitimate reflector echoes for their use in training. As the legitimate reflector echoes 

are often buried by strong grain noise and the wave speed in inhomogeneous 

materials varies for different paths, it is difficult to accurate locate the position of 

legitimate reflector echoes even when the distance of the reflectors and the wave 

speed are known a priori. Hence, only an approximate range can be calculated. With 

the help of clustering, all segments inside this range can be regrouped based on their 

spectral characteristic similarity. Since the locations of legitimate reflector echoes in 

the adjacent A-scans are typically close, the legitimate reflector echoes of a group of 

A-scans that are acquired continuously in the same area in practice will form a 

consecutive line. If the segments in one of the clustered groups are distributed in this 

pattern, then the locations associated with those segments represent the most likely 

location of the legitimate reflectors. 
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6.2 k-means clustering 

There are many different ways to achieve clustering, for example sequential 

clustering algorithm [167], hierarchical clustering algorithms [168, 169] and 

algorithms based on cost function optimization [170, 171]. In this work, an algorithm 

named k-means which belongs to the latter category has been selected to illustrate the 

concept of clustering. k-means is one of the most widely used and well-known 

clustering algorithms [172-174]. It clusters the raw dataset by minimising the overall 

distance 𝐽 between each observation and the centre of its related group, 

 𝐽(𝑐1,⋯ , 𝑐𝑀) =∑∑‖𝑥𝑖
(𝑗)
− 𝑐𝑗‖

2
𝑁

𝑖=1

𝑀

𝑗=1

 (6.1) 

where 𝑐1, ⋯ , 𝑐𝑀 are the centroids of each group, 𝑥𝑖
(𝑗)

 is an observation that belongs 

to group 𝑗. 𝐽 is termed the within-cluster sum of squares (WCSS) function. In other 

words, the objective of k-means is finding the solution of (𝑐1,⋯ , 𝑐𝑀)  when 𝐽  is 

minimized. 

The k-means clustering can be achieved through the following steps, 

1) Randomly select 𝑀 observations as the initial centroids of 𝑀 groups, 

2) Assign an observation to the group whose centroid has the smallest Euclidean 

distance to it. Repeat this for all the observations. 

3) Update the centroid of each group by calculating the arithmetic mean of all 

observations in that group.  

4) Repeat steps 2 and 3 until the assignment is no longer changing (i.e. 𝐽 reaches 

a minimum value).   

6.3 Artefact noise echoes removal 

The procedure of using a clustering algorithm to remove artefacts in the processed A-

scans can be achieved in six steps, as illustrated in the flowchart presented in Figure 

6.1. 
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Figure 6.1. Flowchart of Potential Real Defect Miner (PRDM) when used to remove artefact noise 

echoes in processed A-scan signals. 

6.3.1 Pre-processing 

As discussed in Section 6.1, clustering algorithms are unsupervised and hence cannot 

classify the input data based on a priori knowledge. It can only divide the data into 

groups with similar characteristics. Therefore, raw A-scans are not suitable to be 

directly processed by the proposed algorithm and pre-processing is required using 

other A-scan based defect detection techniques, such as SSP and MB-SSP. This 

removes the majority of grain noise and only keeps echoes containing legitimate 

reflectors along with some remaining artefacts. 
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6.3.2 Feature extraction 

As with the feature extraction method used in Section 4.2.2, after the raw A-scans 

have been processed, segmental signals will be selected from all the locations which 

potentially to contain a flaw. Feature vectors can then be extracted from these 

segments using a range of different methods. A common way to achieve this is to 

apply a Short Time Fourier Transform (STFT). Extracted features can be treated as 

an N-dimensional vector, as described by Eq. (4.1). 

6.3.3 Clustering 

The aim of clustering is to regroup all the selected segmental signals into several 

groups, using their extracted feature vectors. Each group contains segmental signals 

with similar characteristics. Experience gained in this area suggests that to ensure the 

segments that contain real flaw signals will be separate from the artefact signals, the 

total number of groups should be greater than 10. 

6.3.4 Classification 

The clustered results can now be further processed using a classification algorithm. 

Unlike clustering algorithms, classification algorithms are supervised which requires 

pre-acquired data from each category to train the algorithms. In this case, there are 

two categories, segments which contain a legitimate reflector and segments 

containing grain noise. Since the legitimate reflector echoes should be contained in 

one (or more) clustered groups and in the pulse-echo mode, the majority part of the 

received signal contains no flaw echo. Hence, the training data required for these two 

categories can be selected from the clustered segments and the remaining part of the 

raw signal. In other words, a large set of segments randomly selected from different 

signals and different locations can be trained as the 'noise' category, and then a group 

can be chosen that was clustered in the previous step to be trained as a 'reflector'. The 

entire raw dataset can then be classified using the trained data and repeated for all 

clustered groups. 
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Most of the supervised classification algorithms that were introduced in Chapters 4 

and 5 are suitable for this application.  

6.3.5 Artefacts elimination 

For each group, if only a small number of segments in the raw dataset have been 

classified as a 'reflector', then the selected group contains the real flaw signals: this 

group should be labelled as 'legitimate reflector'; otherwise, label it as ‘artefact’. The 

decision of a classified 'reflector' group is small and is determined on the detection 

rate of the pre-processed algorithm. The detection rate is defined as, 

 𝑃𝑑𝑒𝑡𝑒𝑐𝑡 =
𝑐𝑜𝑢𝑛𝑡⁡𝑜𝑓⁡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑⁡𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑎𝑙𝑙⁡𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
× 100% (6.2) 

Since the proposed algorithm aims to remove artefacts from the pre-processed results, 

the count of classified 'reflectors' should not exceed the count of detected segments 

in the pre-processed results. Hence, if the percentage rate of classified ‘reflectors’ 

over all segments in raw data is larger than 𝑃𝑑𝑒𝑡𝑒𝑐𝑡, then this group is most likely to 

belong to ‘legitimate reflector’. If more the one group has been labelled as 

‘legitimate reflector’, these groups should be combined and repeat step ‘classification’ 

and step ‘artefacts elimination’. 

6.3.6 Reconstruction 

The classified 'legitimate reflector' is labelled as 1 and noise as 0. Hence, after every 

segment in an A-scan signal has been classified, a binary signal will be generated. 

This binary signal can be used to imply the position of the legitimate reflectors. 

However, this binary signal is too dictatorial for saying a fragment in the A-scan 

trace belongs to a legitimate reflector or noise. An improved method is to consider all 

the segments that contain this point and average their classification results, same as 

described previously by Eq. (4.2) in Section 4.2.4: 

After the binary signal has been smoothed, it can be used to reduce the artefact noise 

by weighting the raw signal. This will indicate the location of legitimate reflectors 
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while maintaining their original information, like amplitude and spectral 

characteristic. 

6.4 Accurately extracting training data 

As discussed in Section 6.1, clustering algorithms can also be used to identify 

training segments containing legitimate reflector echoes for the supervised 

classification algorithms that were introduced in Chapters 4 and 5. The concept of 

locating training segments is similar to that of artefact removal and the flowchart 

presented in Figure 6.2 illustrates this concept. There are six key procedures which 

are now described in more detail. 

6.4.1 Locating the area 

Based on the distance to a known structural feature (e.g. back wall) and knowledge 

of the appropriate wave speed, locating the range in each A-scan which should 

contain the legitimate reflector segment can be calculated. Aligning these ranges for 

every A-scan can form an area of interest. This area should slightly wider than the 

length of a segment (around three times of the length of a segment), to ensure all 

legitimate reflectors are captured. This area can then be sub-divided into a set of 

segments, as shown in Figure 6.2. 

6.4.2 Feature extraction, clustering, and classification 

After the signals in the area of interest have been divided into segments, extracting 

feature vectors from them and performing clustering, similar to those of the artefact 

removal algorithms described through Section 6.3.2 to Section 6.3.4, will be applied. 

A classification stage will then classify the segments in each area of interest using 

each clustered group as the ‘legitimate reflector’ training set and the randomly 

selected noise segments outside the area as the ‘grain noise’ training set. 
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6.4.3 Finding the line of legitimate reflectors 

Assign each ‘legitimate reflector’ segment in the area of interest as ‘1’ and each 

grain noise segment as ‘0’. Then use Eq. (4.2) to reconstruct the area of interest for 

each clustered group and produce an image of the reconstructed area for each 

clustered group. If the ‘legitimate reflectors’ in an image are distributed randomly, 

indicating no meaningful pattern, then the related cluster should be the noise cluster. 

If the image shows a clear identifiable feature, then the related cluster should contain 

the real legitimate reflector, and the position of the feature indicates where the 

training segments of legitimate reflector should be extracted. 

6.5 Advanced centroids initialising by genetic algorithm 

One of the important issues for k-means clustering is the selection of the group 

centroids. The initial centroid positions will directly affect the performance of the 

clustering as the algorithm may sometimes be limited to a less optimised local best 

solution during the convergence. A simple and traditional way to solve this issue is 

by repeatedly running the algorithm using different selections of centroids, and then 

searching for the best one. However, this search process is random in nature and this 

Section will address this issue by introducing an alternate method to search for an 

optimised solution by introducing a genetic algorithm (GA) approach [175]. 

GA was first inspired by Darwin’s natural selection theory [176]. It searches the 

optimised solution of a function by simulating the process of natural evolution. To 

achieve this, GA abstracts the candidate solutions (called individuals) as 

‘chromosomes’ and produces a new generation (prediction) which is more adaptive 

to the condition by heredity, mutation, and selection. Unlike the traditional methods 

that optimise the solution by processing a single initial solution iteratively, which is 

easy to stop at a locally optimised solution, GA has a group of initial solutions 

(population) that covers a broad range and hence, the approach is strong at searching 

for global optimised solutions. 
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6.5.1 Advanced centroids methodology 

In this work, an advanced algorithm is introduced that searches the optimised 

centroids positions in conjunction with GA, as illustrated in the flowchart presented 

in Figure 6.3. The following sub-sections provide details on the key process 

components identified in this flowchart. 

 

Figure 6.3. Flowchart of enhanced Genetic Algorithm (GA). 
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i. Initialization  

First, randomly select 𝐾 combinations of 𝑀 feature vectors from the dataset to be 

clustered as individuals of the first generation 𝑃𝑜(𝑡), 𝑡 = 1, where 𝑃𝑜 denotes the 

population and 𝑡 is the order of generation. 𝐾 is the population size and 𝑀 is the 

number of clusters. These individuals assemble the first generation and each 

individual will be treated as an initial group of centroids. It is then necessary to 

encode each individual to simulate the concept of a chromosome, which can be 

achieved by encoding the individual using an array of binary numbers [177], as 

shown in Figure 6.4. 

 

 

Figure 6.4. Encoding a feature vector using an array of binary number. 
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ii. Evaluating individuals  

It is appropriate to calculate how much each individual will adapt to the conditions. 

The more adaptive an individual is, the higher chance its ‘gene’ will pass onto next 

generation. The function to measure this is called a fitness function [175]. In this 

work, the fitness function is defined as, 

 𝑆𝑓(𝑥) =
𝐾 + 1

𝐾
×max[𝑎𝑙𝑙⁡𝐽(𝑥′)⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑐𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛] − 𝐽(𝑥′) (6.3) 

where 𝑥 is the coded chromosome of an individual (a group of centroids), 𝐽 is the 

within-cluster sum of squares (WCSS) function, 𝐾  is the size of the population, 

max[𝐽] denotes the max value of 𝐽 in the current generation, 𝑥’ is the chromosome of 

the centroids after been processed by the k-means algorithm, 𝑆𝑓 is called the fitness 

score. 

iii. Selection 

Replace the initial centroids 𝑥  with 𝑥’, as the new individuals of the population. 

Select an individual from the population based on the fitness score, where individuals 

with a higher fitness score are more likely to be selected. A common method that is 

used to select an individual is based on roulette wheel selection [178]. It assigns each 

individual to a slice of the wheel, with the size of the slice based on the fitness score, 

as shown in Figure 6.5. To select an individual, spin the wheel and pick the one 

selected by the needle. Repeat this process until 𝐾 individuals are selected. 

iv. Crossover 

This process pairs the selected individuals and then exchange (crossover) part of 

their chromosomes between each other, to produce two new individuals. Crossover is 

an important step of GA and is the major way to generate new individuals. In this 

work the crossover is taken at a randomly chosen point along the arrays of bits of the 

selected individual pair, which depends on a crossover rate. This operation is shown 

in Figure 6.6. 
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Figure 6.5. The concept of a roulette wheel. The size of each slice is based on the related fitness score. 

 

 

Figure 6.6. The concept of crossover. The two matched individuals will swap part of their array of bits 

at a randomly chosen point based on a crossover rate. 
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v. Mutation 

Based on a mutation rate, certain bits in the array of bits will be flipped, to generate 

new individuals. Mutation can enhance the capability of searching optimised 

solutions in a small area, while keeping the genetic diversity of the population. 

Figure 6.7 shows the concept of mutation. In this work, only one point in the array of 

bits may be flipped. The new generation 𝑃𝑜(𝑡 + 1) is produced after all the above 

steps are performed. 

 

Figure 6.7. The concept of mutation. One bit in the chromosome of an individual will be flipped based 

on a mutation rate. 

 

vi. Terminate condition 

Repeat steps i to v until 𝑡  reaches the pre-set value 𝑇 . 𝑇  is the total number of 

generations and should be chosen large enough to ensure the GA algorithm 

converges, noting that a larger 𝑇 is more computation expensive. In this work, 𝑇 is 

chosen at 60. Output the individual with the minimum 𝐽 value for all generations as 

the optimised solution and the centroids of each clusters. 
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6.5.2 Performance analysis 

Figure 6.8(a) and Figure 6.8(b) show the trend associated with the within-cluster sum 

of squares (WCSS) distance (i.e. 𝐽 in Eq. (6.1)) of the traditional method and the 

enhanced GA method illustrated in Figure 6.3. Both cases have used a dataset that 

contains 6000 segmental signals, which was extracted from MB-SSP processed A-

scans, as described in Section 3.3.1. The raw A-scans were acquired from the 

austenitic steel sample using a 5MHz linear array. The population size of GA in 

Figure 6.8(b) is 30, and there are 60 generations. Each individual in the population is 

constructed by 20 feature vectors as centroids of clusters. Figure 6.8(b) gives the 

individual with the smallest WCSS distance for each generation. To make a fair 

comparison, the iteration times of the traditional method has been set to 1800 times 

(30⁡ × ⁡60); i.e. for every 30 iterations, the smallest WCSS distance is recorded. In 

both cases the iteration times of k-means clustering is 100. The vertical axis, WCSS 

distance, in both Figure 6.8is the summation of distance from all observations to their 

related centroids; where smaller distances are indicative of more compact groups and 

signify highly suitable centroids. From Figure 6.8(a) it can be seen that the WCSS 

distance is randomly changing when using the traditional method. Although the 

WCSS distance also fluctuates before the 30
th

 generation, the overall trend then 

shows consistency and a gradual decrease, eventually becoming flat, as illustrated in 

Figure 6.8(b). Compared with the random approach, GA is stronger at finding an 

optimal solution. Although the traditional method can also find a relatively optimal 

solution, it is uncertain when the optimised solution will appear due to the 

randomness of the output. As shown in Figure 6.8(a), the lowest WCSS distance 

appeared in the second last group (59). Importantly, in this example, the lowest 

WCSS distance recorded by the traditional method (𝐽 = 1186.6) is still slightly 

higher than the GA enhanced method (𝐽 = 1186.3). Note that the most optimised 𝐽 

in theory should still have a large value (around 1186 based on personal experience), 

since the total number of observations (i.e. feature vectors of segments) is large 

(6000) and there are inherent differences in the distances between them and the 

centroids.  
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Figure 6.8. Comparison of the WCSS distance trend for the traditional method and the 

enhanced GA method. (a) The traditional method, the overall iteration is 1800 and been 

divided into 60 groups. The case with minimum WCSS distance is shown for each group. (b) 

Enhanced GA method. The population size is 30, and the total generation is 60. The k-means 

used in both figures have 100 iterations. 
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6.6 Results 

To validate PRDM, experimental data was acquired from two different samples: the 

Inconel 617 sample with a 46 mm back wall and the austenitic steel sample with a 79 

mm back wall. A-scan data was acquired by a 5MHz linear array. In addition, 

simulation data was generated using the high dispersive model (HDM), introduced in 

Chapter 3, where the centre frequency is chosen at 5 MHz with 50% transducer 

bandwidth at  -6dB; the sampling frequency is 100 MHz; the attenuation factor 𝛼 is 

chosen at 10−29; and the defect amplitude factor  is 1.5. 

6.6.1 Spectral analysis 

Segmental signals were acquired from the austenitic steel sample. After being 

processed by the MB-SSP algorithm, all segmental signals that contain echo peaks 

(could be either a legitimate reflector or artefact noise) were selected. STFT was 

used here to extract features from these test segmental signals. The lowest feature 

extraction frequency point was to be chosen at 1MHz and the highest frequency point 

was chosen at 9 MHz, to ensure that more features can be extracted from the 

spectrum. Initially, spectra are normalised to remove the influence of attenuation. 

Feature vectors are constructed by points that are extracted equidistantly from the 

spectra of segments. 

Figure 6.9 presents the normalised spectra from 6 different groups after clustering, 

with 10 individual spectra illustrated from each group. It can be easily seen that the 

spectra in each group have a similar characteristic, which is varies between the 

different groups. Table 6.1gives the percentage of segmental signals in the raw data 

that been classified as a 'reflector' within each group and this is compared to the 

detection rate (𝑃𝑑𝑒𝑡𝑒𝑐𝑡 in Eq. (6.3)) using MB-SSP. Only Group 4 has a significantly 

small percentage rate compared with the detection rate of MB-SSP, which indicates 

it should be the only group which belongs to the legitimate reflector. 
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Table 6.1. Detection rate for the clustered groups presented in Figure 6.9. Group 4 has a significantly 

small percentage rate compared with the detection rate of MB-SSP,  which indicates it should belongs 

to the legitimate reflector 

Detection rate of MB-SSP 24% 

Group 1 76.4% 

Group 2 49.1% 

Group 3 63.8% 

Group 4 9.3% 

Group 5 65.6 % 

Group 6 54.7% 

 

6.6.2 Results of artefact removal algorithm 

This Section describes the result of the artefact removal algorithm, using an 

experimental dataset acquired from the austenitic steel sample (experiment 1) and the 

Inconel 617 sample (experiment 2). The pre-processing algorithm used in experiment 

1 is the MB-SSP algorithm and for experiment 2 the traditional SSP with 

Minimization algorithm is used. 

i. Experiment 1: austenitic steel 

As discussed in Section 6.6.1, Group 4 from Figure 6.9 has the smallest percentage 

rate and it is most likely to belong to the legitimate reflector. A PRDM processed A-

scan example is shown in Figure 6.10(c), together with the raw A-scan signal, Figure 

6.10(a), and the corresponding MB-SSP results in Figure 6.10(b).  

Although MB-SSP has greatly eliminated the grain noise from the raw signal and 

correctly shows the location of the back wall at ~79 mm, many artefacts have been 

retained. It can be easily seen that after further processing by PRDM, most artefacts 

in the MB-SSP result have been removed, while the 79 mm back wall echo has been 

retained. Note that the echo signal of the back wall is slightly distorted because of the 

strong phase dispersion effect in this difficult material. In addition, the sound 
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velocity of the material is not a constant value, therefore the measurement of the 

echo peak is not exactly located at 79 mm. 

 

 

 

Figure 6.10. A-scan examples of the austenitic steel sample. (a) Raw A-scan. (b) MB-SSP processed 

A-scan. (c) PRDM processed A-scan. The back wall echo is at 79mm. 

 

Figure 6.11 shows the B-scan images from raw signals, MB-SSP results and PRDM 

results. Each B-scan image contains 32 parallel placed A-scans. As can be seen in 

Figure 6.11(b) and Figure 6.11(c), the B-scan images are consistent with the A-scan 

results in Figure 6.10. The B-scan image from MB-SSP processing still contains 

many artefacts, while most of them have been removed after processing using PRDM. 
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/    

  

Figure 6.11. B-scan images of the austenitic steel sample. (a) Raw B-scan. (b) MB-SSP processed B-

scan. (c) PRDM processed B-scan. The darker colour in the images refers to a higher amplitude. The 

back wall of the sample is at 79mm. 

 

The Probability of Detection (PoD) and Probability of False Alarm (PFA) of MB-

SSP and the proposed PRDM algorithm are given in Table 6.2, to quantify and 
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compare their performance. As stated in Chapter 3, PoD is the likelihood that an 

algorithm has correctly identified a legitimate reflector, while the PFA is the 

likelihood that an algorithm has incorrectly classified a noise peak as a defect. 

Interestingly, the PoD for both MB-SSP and PRDM are similar, but importantly the 

PFA for PRDM is significantly less when compared to the MB-SSP algorithm. 

 

Table 6.2. PoD and PFA calcualted for the MB-SSP and PRDM results presented in Figure 6.11 

 

Austenitic steel 

MB-SSP PRDM 

PoD 95.0% 97.5% 

PFA 12.4% 4.0% 

 

 

ii. Experiment 2: Inconel 617 

Figure 6.12 and Figure 6.13 provide additional experimental results using the Inconel 

617 sample and pre-processed using the Minimization algorithm. Interestingly, when 

compared with Figure 6.11, the proposed algorithm not only reduces the artefacts but 

also greatly enhances the visibility of the back wall. As can be seen in Figure 6.12(b), 

the echo peak of the back wall at around 46 mm is smaller in comparison to the noise 

peak in the data/signal preceding it, with the PRDM methodology producing a single 

back wall indication, as illustrated in Figure 6.12(c). Accordingly, the back wall 

feature presented in the B-scan image in Figure 6.13(c) is much clearer than that 

observed in Figure 6.13(b). As a comparison of the performance, PoD and PFA are 

given in Table 6.3 and in this case, PRDM outperforms Minimization in terms of 

both PoD and PFA. 
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Figure 6.12. A-scan examples of the Inconel 617 sample. (a) Raw A-scan. (b) Minimization processed 

A-scan. (c) PRDM processed A-scan. The back wall echo is at 46mm. 
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Figure 6.13. B-scan images of the Inconel 617 sample. (a) Raw B-scan. (b) Minimization processed 

B-scan. (c) PRDM processed B-scan. The darker colour in the images refers to a higher amplitude. 

The back wall of the sample is at 46mm. 
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Table 6.3. PoD and PFA calcualted for the Minimization and PRDM results presented in Figure 6.13 

 

Inconel 617 

Minimization PRDM 

PoD 87.5% 94.3% 

PFA 19.6% 8.9% 

 

6.6.3 Results of training data extraction algorithm 

This Section shows the experimental and simulation results demonstrating how 

clustering can be used to help to extract training data for classification algorithms. 

Figure 6.14 illustrates the areas of B-scan images that contains a back wall feature. 

The data was acquired from the austenitic steel sample and both B-scan images in 

Figure 6.14 are formed from 120 A-scans. Figure 6.14(a) is the raw image and Figure 

6.14(b) is one of the processed images which clearly shows an indication. Comparing 

the two B-scan images it can be seen that there is a clear indication in Figure 6.14(b) 

at the correct location of the back wall, which can only be faintly seen in the raw 

image in Figure 6.14(a). Importantly, this Figure is only used to indicate the best area 

to select training data and is not the image of de-noised reflector echoes.  

Simulation data is also used to validate the proposed algorithm, in the case that the 

echo location of the legitimate reflector in each A-scan is slightly different, which 

inhibits the direct observation of the flaw / back wall indication in the raw image. 

The data was simulated using the high dispersive model (HDM) with 𝛼 = 𝑒−29 , 

𝑠 = 1.5,  5MHz centre frequency. Figure 6.15(a) gives an example that the echo 

peak of the legitimate reflector in each A-scan is distributed randomly between 

74mm and 76mm. It can be seen that the legitimate reflectors indication in the raw 

image is completely hidden, which make the extraction of training segment difficult. 

After processing using the PRDM algorithm, the B-scan image shows a distinct 

feature at around 75mm, Figure 6.15(b), which is very likely to be the line of the 

legitimate reflectors and hence, can be used to guide the training segment extraction. 
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Figure 6.14. Using PRDM to find the training segments of the legitimate reflector. The data was 

acquired in the austenitic steel sample. (a) Raw B-scan image contains 120 A-scans. (b) One of the 

processed B-scan image using PRDM. The darker colour indicates higher amplitudes. The back wall 

echoes can be seen in the raw B-scan image in (a) at around 79mm, since their peaks aligned as a dark 

line. The processed B-scan in (b) correctly shows this distance.  

6.7 Summary 

This Chapter has discussed how unsupervised clustering algorithms can be used to 

support ultrasound A-scan signal processing to improve image clarity for difficult 

material inspections. With the help of clustering algorithms, segmental signals that 
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have similar characteristics can be grouped together and combined with classification 

algorithms to further eliminate artefact signals that typically remain from the A-scan 

signals processed by other algorithms. It can also be used to assist in accurately 

locating training segmental signals for the classification algorithms, which can feed 

into the work previously introduced in Chapters 4 and 5. 

 

 

 

Figure 6.15. Using PRDM to find the training segments of the legitimate reflector. The data was 

simulated using the high dispersive model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. (a) Raw 

B-scan image contains 2000 A-scans. (b) One of the processed B-scan image using PRDM. The 

darker colour indicates higher amplitudes. The legitimate reflector echoes are randomly distributed 

between 74mm to 76mm which are hidden in the raw image (a). The processed B-scan in (b) shows 

the location of the legitimate reflectors line. 

 

(a)  

(b)  
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k-means clustering was used as an example technique in this Chapter to demonstrate 

the proposed concept as it is one of the most well-known and commonly used 

clustering algorithms. k-means is simple and straightforward to be applied, but its 

performance relies on the initial location of the centroids of each cluster, with the 

initial location chosen randomly. Conventionally, an optimal location of centroids 

can be selected by trial-and-error. Here, an advanced method has been described 

which combines clustering with a genetic algorithm approach. Initial result shows 

that with the help of GA, an optimised centroids location is more easily found. 

Another issue that may affect the performance of k-means in this application is the 

number of clusters. As every test dataset is different, the best number of clusters is 

hard to determine. Ball and Hall have proposed an advanced algorithm based on k-

means named Iterative Self-Organizing Data Analysis Technique (ISODATA) [179], 

which can automatically decide the number of clusters by merging or splitting during 

the calculation. However, this requires presetting a threshold which is based on the 

expected density of each cluster. As the pre-knowledge of the test dataset is usually 

lacking for applications involving difficult material, this would difficult to implement 

for such NDE inspections. Experience suggests that the clusters should be not less 

than 10 in order to separate the legitimate reflector segments from grain noise 

segments. 

Experimental results demonstrated that the PRDM algorithm can further remove 

artefact noise signals by comparing the PoD and PFA to other approaches: MB-SSP 

and SSP algorithm (with Minimization as the reconstruction method). Overall, 

PRDM has outperformed both of these other techniques in terms of PoD and PFA, 

although the austenitic steel sample produced relatively close results for PoD from 

both MB-SSP and PRDM approaches. 

An addition benefit of the PRDM approach is for supporting the extraction of 

appropriate training data sets which are then used to train the classification 

algorithms. The PRDM algorithm was shown using both experimental and 

simulation data that is can be used to improve extremely low SNR raw B-scan 

images and support the identification of legitimate reflector echoes. 
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Chapter 7  

A-scan based noise reduction techniques in array 

imaging 

Chapters 3 to 6 introduced several different A-scan based defect detection techniques. 

These techniques are all frequency diversity (or using other spectrum-based 

characteristics such as wavelet) based algorithms. In recent years, phased array 

transducers have become more commonly used in industry. Phased array transducers 

have by their nature an advantage to include spatial diversity since they observe 

targets from different orientations. As introduced in Chapter 2, structural noise in 

coarse-grained materials is not only frequency sensitive, but also spatial sensitive. 

The influence of grain noise can be reduced by observing from different angles and 

positions, with an appropriate time delay introduced for each observation. The 

concept of spatial diversity is not new to array applications, with algorithms such as 

Synthetic Aperture Focusing Techniques (SAFT) widely used. With the possibility of 

different combinations of array elements, many array based imaging techniques have 

been developed and outclass the performance of SAFT, such as the classic focused 

B-scan which is also widely used in industry, and the golden standard imaging 

algorithm Total Focusing Method (TFM) [27]. Many advanced spatial diversity 

based algorithms have also been proposed recently, such as Spatially Averaged Sub-

Array Correlation Imaging (SASACI) [89] and Correlation for Adaptively Focused 

Imaging (CAFI) [90]. 

Based on array imaging applications, there are also advanced techniques using both 

spatial and frequency diversity that have been developed, such as Spectral 

Distribution Similarity Analysis (SDSA) [126] and Phase Coherence Imaging (PCI) 

[10]. SDSA calculates the spectrum similarity of A-scan segments across different 

transmitting-receiving pairs of array elements, while PCI uses the concept that grain 
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noise has a more random distributed phase compared with a target flaw across 

different A-scans. 

Since phased array probes are increasingly being used in many applications and 

importantly, the spatial diversity approach can potentially be applied to the A-scan 

data. This Chapter will investigate extending the A-scan based algorithms that have 

been introduced in Chapters 3-6 into phased array imaging techniques. 

7.1 Analytical modelling of 1-D linear phased array 

Before introducing and evaluating the array imaging algorithms, the frequency 

domain based analytical model that was introduced in Chapter 3 should be modified 

to adapt to the phased array configuration. Figure 7.1 shows a slice of an inspection 

medium attached to a 1-D phased array. A Cartesian coordinate system is implied, 

where x and z represent locations in the lateral and axial directions, respectively. The 

zero reference point (0,0) is assumed at the centre of the array. Figure 7.1 illustrates 

the ultrasound wave path from a transmit element 𝑡𝑥 at (𝑥𝑡𝑥, 0) to a point reflector (a 

legitimate reflector or a scatterer) at (𝑥𝑘, 𝑧𝑘), and reflected back to a receive element 

𝑟𝑥 at (𝑥𝑟𝑥, 0). 

 

Figure 7.1. Schematic diagram of a 1-D linear array and the wave propagation path for a point 

reflector. 
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Building on the discussion in Section 3.1, the frequency response of an echo 𝑅(𝜔) 

from a distant reflector can be expressed as, 

 𝑅(𝜔) = 𝜎𝐻𝑡𝑟𝑎𝑛(𝜔)𝐻𝑟𝑒𝑓𝑙(𝜔)𝑒
−𝑖𝜔𝜏 (7.1) 

where , 𝜎 is the reflection coefficient, 𝐻𝑟𝑒𝑓𝑙(𝜔) refers to the frequency response of 

the material, 𝐻𝑡𝑟𝑎𝑛(𝜔)  now contains the frequency response of the transmit and 

receive array elements, hence will be replaced as the product 𝐻𝑡𝑥(𝜔) and 𝐻𝑟𝑥(𝜔). 𝜏 

is the total wave propagation time from the transmit element to the point reflector 

and then to the receive element, which can be calculated as  

 
𝜏 =

𝑑

𝑣
=
𝑑𝑡𝑥 + 𝑑𝑟𝑥

𝑣
 (7.2) 

where 

 
𝑑𝑡𝑥 = √(𝑥𝑡𝑥 − 𝑥𝑘)2 + 𝑧𝑘2 (7.3) 

is the distance between the transmit element tx and the point reflector, 

 
𝑑𝑟𝑥 = √(𝑥𝑟𝑥 − 𝑥𝑘)2 + 𝑧𝑘2 (7.4) 

is the distance between the point reflector and the receive element 𝑟𝑥, and 𝑣 is the 

wave speed.  

A single element transducer is usually directional and has a relatively focused beam, 

whereas for array elements the energy distribution of the waves has a wider 

characteristic. For this reason, the model should include two additional factors, the 

directivity function, and the divergence factor to include the effect of beam 

directivity and beam spread, respectively [27]. According to McNab and Stumpf 

[180] and assuming the length of an element is much longer than the width, the 

directivity function of a single rectangular element in a 2-D model can be defined as 

 𝑃𝑡𝑥 = sinc (
𝜋𝑤 sin𝜑𝑡𝑥

𝜆
) (7.5) 

and 
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 𝑃𝑟𝑥 = sinc (
𝜋𝑤 sin 𝜑𝑟𝑥

𝜆
) (7.6) 

where 𝑤 is the width of an element, and 𝜆 is the wavelength of the ultrasonic wave. 

𝜑𝑡𝑥 and 𝜑𝑟𝑥 are the angles between the element normal and the wave path, for the 

transmit element and the receive element, respectively. 

The beam spread effect that reduces the wave energy at the location of a reflector can 

be simply estimated using the following equation, 

 𝐸𝑡𝑟 =
1

√𝑑𝑡𝑥𝑑𝑟𝑥
 (7.7) 

for the entire propagation distance of the ultrasonic wave. Here dtx and drx are the 

distances between the transmit element and the receive element to the reflector, as 

shown in Eq. (7.3) and (7.4), respectively.  

Therefore, the spectrum of a legitimate reflector 𝑅𝑆𝑖𝑔,𝑡𝑥,𝑟𝑥(𝜔) and the spectrum from 

grain noise 𝑅𝑁𝑜𝑖,𝑡𝑥,𝑟𝑥(𝜔) for each 𝑡𝑥-𝑟𝑥 pair can be simulated as 

 𝑅𝑆𝑖𝑔,𝑡𝑥,𝑟𝑥(𝜔) = 𝑠𝑃𝑡𝑥𝑃𝑟𝑥𝐸𝑡𝑟𝐻𝑡𝑥(𝜔)𝐻𝑟𝑥(𝜔)𝐻𝑟𝑒𝑓𝑙(𝜔)𝑒
−𝑖𝜔𝜏 (7.8) 

and 

 𝑅𝑁𝑜𝑖,𝑡𝑥,𝑟𝑥(𝜔) = 𝐻𝑡𝑥(𝜔)𝐻𝑟𝑥(𝜔)∑𝜎𝑘𝑃𝑡𝑥𝑃𝑟𝑥𝐸𝑡𝑟𝐻𝑟𝑒𝑓𝑙(𝜔)𝑒
−𝑖𝜔𝜏

𝐾

𝑘=1

 (7.9) 

respectively, where 𝑘 is the index of a scatterer and 𝐾 is the total number of the 

scatterers in the model. Again, the reflection coefficient 𝜎 in Eq. (3.7) is removed, 

since it is a constant number for a legitimate reflector signal. 𝑠  is the defect 

amplitude factor which is used to adjust the ratio between the legitimate reflector 

echo amplitude and the noise level, after both has been normalised.  

After substituting the material frequency response, Eq. (3.18), the scatterer frequency 

response, Eq. (3.19), and the Nearly Local model, Eq. (3.20),  into Eq. (7.8) and Eq. 

(7.9), an inverse Fourier transform is applied to complete the array high dispersion 

model (AHDM). The process of converting the low dispersion model (LDM) to the 
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array application is similar. In this Chapter, only the AHDM is used to evaluate the 

imaging algorithms. 

7.2 Array imaging using processed FMC 

A simple and direct way to combine the A-scan based noise reduction techniques to 

array imaging is by processing each raw A-scan individually before applying the 

imaging algorithm. This can be achieved by processing each raw A-scan in the FMC 

dataset and applying a post-processing algorithm, such as TFM, which will be used 

as the reference example in this Chapter.   

The first example combines MB-SSP (Chapter 3) and SRC (Chapter 4) processing of 

the individual A-scans in the FMC dataset with the TFM imaging algorithm. The 

FMC dataset was simulated using the AHDM model, with the centre frequency set at 

5MHz with 50% transducer bandwidth at -6dB. The sampling frequency is 100MHz. 

The attenuation factor 𝛼 is chosen at 10−29. A point reflector is simulated at 75mm 

depth, directly below the centre of the 1-D linear array, with a defect amplitude 

factor 𝑠 at 1.5, as defined by Eq. (3.22). The density of the scatterer field is simulated 

at 5 scatterers/wavelength
2
 to simulate Rayleigh distributed grain noise [41]. The 

array configuration is simulated with 64 elements, each with a 0.7mm element size. 

A representative schematic diagram is presented in Figure 7.2. 

As can be seen in Figure 7.3, the point reflector observed in the raw TFM image can 

be easily confused with grain noise. The intensity of the grain noise is close to that 

produced by the point reflector. Figure 7.4 is the TFM image after the FMC is 

processed by the MB-SSP. It can be seen that the noise level is lower than the raw 

TFM, and subsequently, the point reflector is more visible. Figure 7.5 is the TFM 

image after the FMC dataset has been processed by the SRC. The back ground noise 

in this image has been further reduced compared with Figure 7.4 since the SRC has a 

better noise reduction capability compared with the MB-SSP, as discussed in 

Chapters 3 and 4. Table 7.1 gives the calculated SNR for each of the three images in 

Figure 7.3-Figure 7.5. 
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Figure 7.2. Schematic diagram of the simulation model. A point reflector is set at (0mm, 75mm), and 

surrounded by scatterers with a density of 5 scatterers/wavelength
2
. 

 

Figure 7.3. Raw TFM image generated by the simulated FMC. The FMC is simulated using the high 

dispersive model with 𝛼 = 𝑒−29, 𝑠 = 1.5,  5MHz centre frequency. The array parameters are set at 64 

elements, 0.7mm element size. 
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Figure 7.4. MB-SSP processed TFM image generated by the simulated FMC. The FMC is the same 

one that was used in Figure 7.3 and pre-processed by MB-SSP before imaged using TFM. 

 

Figure 7.5. SRC processed TFM image generated by the simulated FMC. The FMC is the same one 

that was used in Figure 7.3 and pre-processed by SRC before imaged using TFM. 
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Table 7.1. SNR of images in Figure 7.3, Figure 7.4, and Figure 7.5. The SNR of FSPC image in 

Figure 7.8 is also given in this table for comparison. 

Raw TFM 10 dB 

MB-SSP processed TFM 26 dB 

SRC processed TFM 35 dB 

FSPC 49 dB 

 

The TFM algorithm and other traditional array imaging techniques can reduce grain 

noise and enhance legitimate reflectors since a legitimate reflector has a more 

coincident phase distribution among A-scans of different transmitter-receiver pairs 

compared to grain noise. The intensity of a point in the image where only grain noise 

is present would be counteracted when superposing the amplitude of the related 

points in each A-scan, as illustrated in Figure 7.7.6. However, this mechanism and 

the processed-FMC approach, using A-scan based noise reduction techniques, cannot 

fully benefit each other when producing images. The FMC still contains a few 

artefact echoes after processing by the A-scan based noise reduction techniques, and 

these artefacts are sometimes difficult to be reduced since the related point in other 

A-scans are zeros, as shown in Figure 7.7.6. 

Although the reduced noise in A-scans does improve the SNR in the related image, 

the background noise can still be clearly observed, as illustrated in the images shown 

in Figure 7.3 – Figure 7.5. 
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7.3 Frequency-spatial polarity coherence 

An alternative way to combine the MB-SSP technique with the array imaging is now 

introduced in this Section. As shown in Figure 7.4, although the MB-SSP processed 

TFM has an improved SNR, the background noise in the image is still strong. 

Another issue is the strong lateral noise near the point reflector. The high energy of 

this noise is leaked from the point reflector and is caused by the off-axis effect when 

imaging. Therefore, to further improve the image quality, a new algorithm named 

Frequency-Spatial Polarity Coherence (FSPC) has been developed that takes benefit 

of both spatial and frequency information. The FSPC achieves grain noise reduction 

in images by applying both frequency and spatial diversity. The entire procedure can 

be described in five steps, as illustrated in the flowchart presented in Figure 7.7. 

 Step 1: Partition each A-scan in the full matrix capture into a serial of 

overlapped frequency bands; 

 Step 2: Check the polarity coincidence inside each frequency band; 

 Step 3: Apply a focal law to generate a coefficient matrix within each 

frequency band; 

 Step 4: Combine all coefficient matrix to generate weighting matrix; 

 Step 5: Use the weighting matrix to reconstruct the final output image. 

Further details of each step in the FSPC algorithm will now be presented. 

7.3.1 FSPC Methodology 

i. Spectrum partition approach  

Like MB-SSP, for all A-scan traces in the acquired Full Matrix Capture (FMC) 

dataset, FSPC firstly divides the A-scan data into a set of sub-signals which contain 

different frequency bands. This is achieved by bandpass filtering the raw signal or 

applying a window function to its spectrum. The reason to divide the spectra of the 

raw signals into these sub-bands is that the attenuation and scattering of the 

transmitted ultrasound wave are highly frequency dependent. That means the energy 

of the target flaw can only partly dominate the frequency range of the received echo 
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spectrum. The aim of this spectrum partitioning is to determine the most effective 

frequency range to process. 

To avoid the possibility of failing to detect a flaw, there should be an overlap of at 

least 50% between adjacent filters/windows. Moreover, to enhance information from 

the raw A-scan signals, the spectral range of total processed bandwidth which 

contains all filters or windows, should be chosen as wide as possible: typically 

around 100% bandwidth of the transducer centre frequency. These sub-signals will 

be denoted as 𝑌𝑗(𝑛), where 𝑛 is the time delay and 𝑗 is the index of filter or window. 

 

Figure 7.7. Flow chart of Frequency-Spatial Polarity Coherence (FSPC) 

 

ii. Sign detection in localised spectrum 

For each sub-signal, 𝑌𝑗(𝑛), there is the possibility that the spectrum energy of the 

target flaw could fully dominate the bandwidth of 𝑌𝑗(𝑛) . Hence, the potential 

location of the target flaw can be detected by applying frequency diversity inside 
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𝑌𝑗(𝑛) itself. This is achieved by checking the polarity coincidence across different 

frequency channels inside 𝑌𝑗(𝑛): further splitting 𝑌𝑗(𝑛) into several channels within 

its own bandwidth. During this process, if all channels are positive/negative at a 

specific time delay, then this point is denoted by '1’ or ‘-1' as a potential flaw 

location, otherwise a '0‘ is recorded, as shown below: 

 𝑍𝑗(𝑛) = {
⁡⁡⁡⁡⁡1,⁡⁡⁡𝑖𝑓⁡𝑎𝑙𝑙⁡𝐶𝑚(𝑛) > 0⁡⁡

−1,⁡⁡⁡𝑖𝑓⁡𝑎𝑙𝑙⁡𝐶𝑚(𝑛) < 0
0,⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡

 (7.10) 

where 𝐶𝑚(𝑛) refers to a channel filtered by a Gaussian window, 𝑚 is the index of 

channels. 

Based on the principle that the spectrum of a legitimate reflector (flaw, back wall, 

etc.) is generally wider than the spectrum of grain noise, the bandwidth of 𝑌𝑗(𝑛) 

needs to be wide enough to ensure that the algorithm can distinguish the legitimate 

reflector from grain noise. However, for a coarse-grained material, if the bandwidth 

of  𝑌𝑗(𝑛)  is too wide, the spectrum of the legitimate reflector may become 

inconsecutive and hence will no longer predominate. This will cause a loss of 

detection capability. In this case, the bandwidth of the filters/windows in the 

previous step is critical for the algorithm performance and typically, this should be 

around 80% fractional bandwidth of the transducer centre frequency. 

iii. Beamforming in localised spectrum  

After all A-scans in the FMC have been processed, a set of coefficient matrices will 

be generated using all processed 𝑍𝑗(𝑛) values. Each coefficient matrix represents the 

polarity coherence of a certain frequency range.  

Generally, the echoes from a legitimate reflector have a more consistent phase across 

the A-scans received by different array elements after the focal law has been applied, 

while structural noise have a more random distributed phase. 

Ideally, the location of a flaw in the matrix will be enhanced due to the sign 

coincidence across different A-scans, while the grain noise will be suppressed. 

  



226 

 

iv. Weighting matrix generation 

When all coefficient matrices have been calculated, a weighting matrix will then be 

synthesized through compounding of the different frequency bands. This can be 

achieved in many different ways. A simple way to do this is by averaging all 

coefficient matrices and setting a suitable threshold. Alternative ways, including 

order statistics and scaled polarity thresholding, can also be considered and may 

provide benefits under certain conditions.  

Due to the scattering property of the coarse-grained material, the attenuation is 

highly frequency dependent. Hence, for the region close to the array, more 

coefficient matrices should be used to increase the imaging resolution, and for the 

region far from the array, only coefficient matrices in low-frequency bands should be 

included to maintain detection capability. The number of coefficient matrices 

included for a certain depth depends on the frequency of transmitted signals and the 

material attenuation property.  In this work, the number of coefficient matrices was 

chosen empirically. 

v. Reconstruction 

A weighting matrix can be used directly to indicate the defect locations, but this does 

not contain information on the amplitude associated with the defect response. 

Multiplying the weighting matrix with an image generated using the same focal law 

conditions, on the same datasets, will reduce the background grain noise while not 

compromising the important flaw information.  

7.3.2 Simulation result 

Figure 7.8 shows the FSPC image generated using the same FMC data used 

previously for Figures Figure 7.3-Figure 7.5. Compared with the MB-SSP and the 

SRC images, the FSPC image presents a lower background noise level and a higher 

SNR, as detailed in Table 7.1. Importantly, the lateral noise around the point reflector 

in the FSPC image is much lower, especially when compared with the MB-SSP 

image in Figure 7.4.   
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Figure 7.8. FSPC image generated by the TFM algorithm from simulated FMC data. The FMC dataset 

is the same one that was used in Figure 7.3.  

7.4 Experimental evaluation of array imaging approaches 

Experimentally acquired FMC datasets are used in this Section to validate the 

various algorithms developed in this Thesis. Two different samples have been used, 

the austenitic steel sample and the Inconel 625 sample, using a 5MHz 1-D linear 

array. The Dynaray phased array controller was used to capture the FMC datasets. 

Details of the experimental configuration are stated in Chapter 2.  

7.4.1 Experiment 1: SRC result of the austenitic steel 

As discussed in Section 7.2, after processing every A-scan in a FMC dataset, the 

revised FMC dataset can be further processed with imaging algorithms like the 

focused B-scan, TFM, etc. to achieve noise reduction in the resultant images. TFM 

results of the sample block have been used as a reference for comparison in this 
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Section. As shown in Figure 7.9, the array was put on the top of the sample block. At 

this position, the depth of the back wall is 52mm. 

 

Figure 7.9. Schematic plots of the array and the austenitic sample. 

 

Figure 7.10(a) presents the TFM image of the first back wall using all 64 array 

elements. Compared with the SRC result, the back ground grain noise has been 

suppressed in the SRC image shown in Figure 7.10(b). To evaluate the performance 

of the algorithm, the SNR has been defined as the average of noise area subtracted 

from the average of signal area; noting that the image is portrayed in dB. The signal 

area was chosen from the back wall location and the noise is attributed to a large area 

above the back wall. Importantly, the SNR of the SRC is approximately 20 dB higher 

than the original TFM image. Note that the noise near the back wall is not 

completely removed and is caused by the off-axis effects, similar to the lateral noise 

around the point reflector in Figure 7.4 and Figure 7.5. This effect is less significant 

for small legitimate reflectors (flaws, side-drilled holes, etc.) in the SRC processed 

images as can be seen in Figure 7.5, but is not negligible for strong reflectors such as 

the back wall. 
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Figure 7.10. TFM and SRC processed images of the austenicit steel sample, using 64 array elements. 

The back wall is at 52mm. Colourbar represents scale in dB. 

 

Figure 7.11 presents another pair of TFM and SRC images and shows the third 

reflection of the back wall generated by FMC data with 32 array elements, to 

demonstrate the performance of SRC in an extreme scenario. In this case, the SNR 

has been enhanced by 3dB. Although the SNR improvement is not significant, the 

SRC result clearly indicates the actual location of the feature (at around 156mm) 

among the artefact shadows. 

 

Figure 7.11. TFM and SRC processed images of the austenicit steel sample, using 64 array elements. 

The images show the third reflection of the back wall at 156mm, to demostrate an extreme scnario.  

Distance (mm)

D
is

ta
n
c
e
 (

m
m

)

Original TFM

 

 

-10 0 10

10

20

30

40

50

60

Distance (mm)

D
is

ta
n
c
e
 (

m
m

)

Processed TFM

 

 

-10 0 10

10

20

30

40

50

60

-60 -40 -20 0 -60 -40 -20 0

Distance (mm)

D
is

ta
n
c
e
 (

m
m

)

Original TFM

 

 

-10 0 10

130

140

150

160

170

Distance (mm)

D
is

ta
n
c
e
 (

m
m

)

Processed TFM

 

 

-10 0 10

130

140

150

160

170

-120 -100 -80 -60 -40 -120 -100 -80 -60 -40

(a) Raw TFM (b) SRC processed TFM 

(a) Raw TFM (b) SRC processed TFM 



230 

 

7.4.2 Experiment 2: FSPC result on the austenitic steel sample 

Figure 7.13 presents the FSPC image, and a classic focused B-scan image for 

comparison, from the austenitic steel sample taken from the opposite and thicker 

section of the sample as shown in Figure 7.12. The images are 140 mm in depth and 

contain two reflections of the back wall (located at 57 mm as shown in Figure 7.12) 

in the sample. The B-scan images were generated by the middle 64 elements of the 

array, with an aperture size of 16 elements. It can be easily seen that the sample 

contains strong grain noise, which reduces the visibility of the first reflection of the 

back wall and buries the second reflection in the classic focused B-scan. By applying 

FSPC, both reflections of the back wall are clearly evident and importantly, grain 

noise has been significantly reduced, and SNR is increased by 23dB, as shown in 

Table 7.2. 

Figure 7.14 shows the processed A-scan examples using the classic focused B-scan 

and the equivalent FSPC techniques (i.e. one of the vertical scan-lines from the 

images in Figure 7.13). Two back wall echoes are successfully detected for the FSPC 

while only the first reflection of the back wall can be observed in the focused B-scan. 

 

 

Figure 7.12. Schematic plots of the array and the austenitic sample. 
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Figure 7.13. Focused B-scan and FSPC images of the austenitic steel sample. 64 elements with an 

aperture size of 16 used. Two reflections of the back wall are shown in the images, at 57mm and 

114mm. 

 

 

Figure 7.14. Improvement in A-scan noise components when data processed using FSPC 
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7.4.3 Experiment 3: FSPC result of the Inconel 625 

Another experiment which compares the performance between TFM and FSPC 

algorithms is presented in Figure 7.16, using the Inconel 625 sample. The Inconel 

625 sample is 160mm thick and contains 3 side drilled holes (SDHs), with depth 

around of 7mm, 60mm and 110mm respectively, as illustrated in Figure 7.15. For 

this experiment, a 64 element aperture has been used to capture to FMC dataset from 

the 5MHz array. It can be clearly seen in Figure 7.16(b) that the background grain 

noise is predominantly removed, and the three SDHs and the back wall become 

clearer. Moreover, to show the performance and improvement of FSPC for these 

experimental results, the related SNR are given in Table 7.2. 

 

 

Figure 7.15. Schematic plots of the array and the Inconel 625 sample. 
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Figure 7.16. TFM and FSPC processed images of the austenicit steel sample, using 64 array elements. 

The back wall is at 160mm, and three SDHs at 7mm, 60mm, 110mm depth, respectively. 

 

Table 7.2. SNR calculated from the images presented in Figure 7.15 and Figure 7.16 

 SNR(dB) 

Sample Austenitic steel Inconel 625 

Focused B-scan / TFM 19 12 

FSPC 42 62 

 

7.4.4 Influence of frequency dependent attenuation in FSPC 

In course grained materials, the high frequency ultrasound components are more 

easily scattered and absorbed. Hence, for an imaging region near the array, a wider 

frequency range could be used for the coefficient matrix to improve the imaging 
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resolution. Figure 7.17 shows how the resolution increases as the processed 

frequency range is increased. The horizontal axis refers to the total included 

frequency range, e.g. 3MHz means all coefficient matrices from 0.5MHz to 3MHz 

are used to generate image. The vertical axis is the number of pixels above -6dB, 

where a lower value refers to a higher resolution. The test target is the 7mm deep 

SDH, with a 5mm diameter, as shown in Figure 7.15. Through the inclusion of 

higher frequencies, the processed images will have higher resolution and detection 

capability in the region near to the array. In Figure 7.17 the resolution stops 

increasing at around 4MHz due to frequencies higher than 4MHz being significant 

attenuated for this material. Hence, coefficient matrices higher than that 4MHz did 

not provide much helpful information. 

 

Figure 7.17. The effect of total processed frequency range. 

 

Figure 7.18 gives in indication of this resolution improvement. It shows the 

normalized weighting matrix combined using two different set of coefficient 

matrices. The dark regions in the images refer to the pixels which have a value larger 

than 0.3: this is an arbitrary threshold chosen to illustrate the influence of the 

frequency band selection on the performance of the imaging algorithm. Figure 7.18(a) 

only includes a coefficient matrix with the lowest frequency band (0.5MHz-2MHz), 

and Figure 7.18(b) uses all coefficient matrices from 0.5MHz to 6.5MHz. It can be 

seen that in Figure 7.18(b) the flaw size is closer to 5mm compared with Figure 

7.18(a) (as marked on the images), and importantly, its shape more closely resembles 

the spherical surface of the SDH.  

For imaging regions far from array, only coefficient matrices with lower frequencies 

should be used, to increase detection capability. Figure 7.19 compares the images of 
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the 160mm back wall of the Inconel 625 sample. The coefficient matrices used in 

Figure 7.19(a) is 0.5MHz-3MHz while in Figure 7.19(b) it is 1MHz-4MHz. It can be 

clearly seen that the visibility/clarity of the back wall is decreased significantly when 

higher frequencies are included in the FPSC algorithm. 

 

Figure 7.18. Normalized weighting matrices of a SDH with a threshold of 0.3. (a) with frequency 

range from 0.5MHz to 2MHz, (b) with frequency range from 0.5MHz to 6.5MHz 

 

Figure 7.19. FSPC images of back wall of the Inconel 625 sample. (a) with frequency range from 

0.5MHz to 3MHz, (b) with frequency range from 1MHz to 4MHz 
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7.5 Summary 

This Chapter has discussed the application of A-scan based grain noise reduction 

techniques in array imaging, which can be achieved in many different ways. The A-

scan based techniques can be used to process the raw signals first and the imaging 

algorithm can then directly be applied to the processed dataset. Thus, the extension 

of the MB-SSP and SRC algorithms into array imaging has been introduced. Both 

the simulation and the experimental results have shown that the back ground grain 

noise in the image is reduced when the FMC dataset is pre-processed by either the 

MB-SSP or SRC, with the SRC image demonstrating a higher SNR improvement. 

However, as the MB-SSP or SRC processed FMC dataset cannot fully benefit from 

the noise counteracting mechanism in the traditional imaging algorithms, like 

focused B-scan and TFM, and the back ground noise reduction in the image is 

therefore limited.   

An advanced spatial-frequency diversity based algorithm has also been proposed for 

array imaging applications, named Frequency Spatial Polarity Coherence (FSPC). 

The algorithm explores the polarity coherence among different frequency bands and 

different A-scan traces, to reduce grain noise in the image. Like MB-SSP, the FSPC 

is less sensitive to material properties compared with conventional frequency 

diversity based techniques. The focal law used to generate the coefficient matrix is 

the same as used with a conventional imaging algorithm; hence it can be adapted to 

many imaging applications. In this work, both focused B-scan and TFM have been 

used to validate the algorithm. It shows that the FSPC has significantly improved 

image clarity and compared with the MB-SSP and SRC results, the noise level has 

also been reduced.  
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Chapter 8  

Conclusion and Future Works 

This Chapter will firstly review the research highlights from this Thesis, and then 

will discuss potential future work in this area.  

8.1 Thesis summary 

The extensive use of difficult materials in industrial applications demands highly 

accurate and reliable NDE measurements. This Thesis has introduced a number of 

novel methodologies based on a range of signal/image processing and statistical 

techniques. 

Chapters 4 and 5 applied supervised classification techniques to improve ultrasound 

A-scan based noise reduction and subsequent defect detection. Supervised 

classification techniques can 'memorise' the characteristics of the dataset during a 

training process, and then classify the input data into related groups according to the 

pre-knowledge it has learned. In ultrasound inspection of difficult materials, if pre-

knowledge of the material can be obtained, the classifier can learn the difference 

between legitimate reflectors and grain noise.  

A new algorithm named Segment Recognition Classifier (SRC) was introduced, with 

five different classifiers (Naïve Bayes (NB), k-Nearest Neighbors (kNN), Support 

Vector Machine (SVM), Multilayer Perceptron (MLP), and Stacked Autoencoder 

(SAE)) applied in the SRC and analysed to assess their performance in grain noise 

reduction. Generally speaking, SVM has the most satisfied performance over all five 

classifiers. Although SAE can classify the noise and reflectors more accurately and 

potentially generate better results, its performance is highly dependent on the fidelity 
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of training data. MLP has a similar performance when compared with SVM in most 

of cases. However, underfitting and overfitting problems may occur for MLP, when 

the size of the training set is either too small or too large. kNN, on the other hand, 

should be selected for use in the cases where the spectral differences between 

training classes are minimal.  

Although using the classification algorithm to pick out legitimate reflectors from 

grain noise has shown promising results, the computational power required is usually 

large. For the scenario in which the grain structure of a material does not vary 

significantly, an advanced wavelet filtering technique can be used for efficient 

computation. Moreover, MLP is applied to prune and threshold the wavelet 

coefficient.  

It must be stated that training data is not always available in ultrasound inspection. 

For cases in which the pre-knowledge of the material is not known, Moving 

Bandwidth Split Spectrum Processing (MB-SSP) has been developed to improve the 

algorithm reliability. The advantage of MB-SSP is that it is less sensitive to 

parameter tuning when testing an unknown material, compared with traditional Split 

Spectrum Processing (SSP) techniques. Although, there is a minor SNR 

improvement for MB-SSP when compared with SSP, there are still many noise 

artefacts left remaining in the processed signals. 

By introduced unsupervised clustering, these artefact noise signals in the MB-SSP 

results can be further reduced through a new algorithm called Potential Real Defect 

Miner (PRDM). PRDM can also process the results of other techniques like SSP. 

One disadvantage of the PRDM is that the pre-processed input which generated by 

other algorithm must be reliable, or the PRDM result may fail.  

The classification and clustering algorithms considered in this Thesis were initially 

developed for application on A-scan signals. The concluding work presented in this 

Thesis then extended the application of these algorithms for use with phased array 

imaging. In addition, an advanced array imaging algorithm named Frequency Spatial 

Polarity Coherence (FSPC) was evaluated. FSPC demonstrated images with a good 

SNR, since it reduces grain noise using both frequency diversity and spatial diversity. 
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However, it requires large computation power to generate images, since it generates 

a set of sub-images before producing the final output. 

8.2 Overall conclusion 

This Thesis has presented an evolution of a suite of advanced signal processing 

algorithms and techniques to improve the SNR associated with ultrasonic inspection 

of difficult materials. The initial concept was to use spectrum based algorithms to 

reduce grain noise and improve the challenging ultrasonic inspection associated with 

difficult materials. The important factor in developing these algorithms is the 

difference in spectral characteristics between features of interest in a sample and 

grain noise. The features of interest were considered as legitimate reflectors and 

could include geometric features, for example the sample back wall, and 

defects/flaws. Interestingly, the high frequency dependent attenuation associated 

with difficult materials will modify the spectral characteristics depending on the 

propagation path and hence, is an additional parameter which influences the spectral 

characteristics on which the developed algorithms are designed to operate. 

The Thesis has presented grain noise reduction algorithms based on split spectrum 

techniques, pattern recognition and clustering. They all have demonstrated 

improvements over conventional imaging produced from the raw A-scan signals in 

terms of SNR, PoD and PFA. Albeit, their performance has varied depending on the 

material under inspection and the quality of training sets used to instruct the 

algorithms on the differences between legitimate reflectors and grain noise. An 

important factor to improve the performance of several of these algorithms is the 

combination of techniques and the application of the developed algorithms to 

improve the data quality for the training sets used to distinguish the key features in 

the A-scan signals. 

The extension of the noise reduction approaches to array imaging was an important 

output from this Thesis, as it translated the improvements demonstrated on 

conventional ultrasonic systems to the modern phased array system configurations. It 



240 

 

is clear that there is an excellent scope for improving array based capabilities for 

imaging in difficult materials when combining conventional array imaging 

approaches with these newly developed grain noise reduction techniques. The 

principal obstacle for implementing these techniques for array imaging is the 

computational demands associated with the noise reduction algorithms, which are 

currently only appropriate for off-line post-processing. Note that this issue is also 

relevant to conventional imaging approaches using a single transducer system, albeit 

with a lower impact on the system performance.  

Overall, the choice of noise reduction algorithm relates to a few key parameters and 

the quality of available training data. For inspection scenarios when the material 

properties are relatively well known and there are good quality training sets then 

SRC provides good results for both single element and array inspections. If the 

material properties are highly dispersive, in terms of either velocity or phase, then 

this is challenging for array imaging using FSPC to remove the grain noise. Although, 

the SRC algorithm would still be appropriate for use with such materials. 

Alternatively, when the quality of training datasets is poor it is recommended to use 

MPBT with a single transducer and FSPC with an array transducer system. Moreover, 

PRDM can be used with both of these to enhance SNR by removing additional noise 

artifacts. 

8.3 Future work 

One common issue of the algorithms proposed in this Thesis is their computational 

expense. Currently, all algorithms are implemented in MATLAB and typically take 

time to generate results. This limits the practical implementation of these algorithms. 

Fortunately, all these algorithms can be computed in a parallel way, as the processing 

of the data is repetitive. Therefore, parallel computing should be considered to 

accelerate the algorithms, and make them more computationally efficient. 
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8.3.1 Segment Recognition Classifier (SRC) 

Different training scenarios with simulation data have been analysed in the Thesis, 

along with the validation of experimental data. However, only back wall data has 

been employed in this work. It therefore would be obvious to extend the performance 

of SRC to practical defect types, such as cracks, slots, holes etc. Feature extraction 

methods other than STFT and CWT should also be investigated.  

When applied with array imaging, the SRC approach currently can only process 

spectrum features. Spatial information should also been included in addition to 

frequency information since many important features of the legitimate reflector are 

hidden spatially in different A-scan traces of different transmitter-receiver pairs. 

8.3.2 Deep Learning networks 

The type of the Deep Learning network can be further studied to make the 

classification performance more stable. In addition, Deep Learning should also been 

used to extract 2-D feature in array imaging. One of the well-known Deep Learning 

network named Convolutional Neural Network (CNN) can concentrate features in a 

high level from a significantly high dimensional input data. This can be used to 

automatically extract information of interest from a volume of FMC dataset when 

generating images. 

8.3.3 Wavelet filtering 

MLP has been used as an example to demonstrate the idea of using neural networks 

to select coefficients when applying wavelet filtering. Other networks may be more 

suitable for the coefficients selection and therefore should be further explored. One 

benefit of using wavelet filtering is that it can choose an arbitrary wave as mother 

wavelet. Future work would include the use different mother wavelets to adapt to the 

specific test material.  
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CWT used in this work is a redundant transform. Its inverse transform is difficult to 

calculate and hence, limited the selection of mother wavelet. Combining ANNs with 

other wavelet techniques like the wavelet package should also been considered. 

8.3.4 Potential Real Defect Miner (PRDM) 

Future works for PRDM include applying the clustering algorithm in array 

applications using the spatial information, to improve the quality of the array 

imaging algorithm. Other clustering algorithms should also be involved, like 

sequential clustering algorithms and hierarchical clustering algorithms. However, 

there are known difficulties of applying these algorithms. For sequential clustering 

algorithms, the difficulty is similar to ISODATA: it requires a pre-set threshold 

which is hard to determine. For hierarchical clustering algorithms, it is difficult to 

decide when to stop the merging (for agglomerative algorithms) or splitting (for 

divisive algorithms), as the process is irreversible while the best clustering may 

appear in an earlier hierarchy. 

8.3.5 Moving Bandwidth Split Spectrum Processing (MB-SSP) and Frequency 

Spatial Polarity Coherence (FSPC) 

As discussed in the Thesis, due to the frequency dependent attenuation property of 

difficult materials, the number of coefficient matrices for FSPC should be changed 

based on the wave propagation distance. This is currently done manually which 

required a trial-and-error process. A more general rule should be developed to better 

guide the inspection.  

Parametric studies of MB-SSP and FSPC should be carried out in the inspection of a 

wide range of materials and flaw characteristics. Although the performance for each 

individual parameter has been discussed in the Thesis, the conjunction effect 

between each parameter should be further analysed. The optimal number of filter 

channels for FSPC should also be exploited. 

The reconstruction of the weighting matrix is by a simple averaging of all the 

coefficient matrices. There are other comparison methods that may potentially 
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improve the performance of algorithm which can also been investigated, including 

order statistics, scaled polarity thresholding, and Best Linear Unbiased Estimator 

(BLUE) techniques.   
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