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Abstract

We formulate a fluid-dynamical model describing the behaviour of solutions con-

sisting of a fluid solvent and a dissolved solute, and whose surface tension depends

on the concentration of the solute. By considering the surface excess of the dis-

solved solute, this model can describe the Marangoni-driven flow both of fluids in

which there is a surfactant present (which decreases surface tension) and of fluids

in which there is an anti-surfactant present (which increases surface tension). By

investigating the linear stability of an initially quiescent fluid layer, we predict

a novel instability that is possible for anti-surfactant solutions, but not for sur-

factant solutions, and analyse the conditions for the onset of this instability. We

formulate the equations governing the flow of a thin film of surfactant or anti-

surfactant solution, and demonstrate the wide range of dynamical behaviour that

may be displayed by such solutions. In particular, we perform fully non-linear,

unsteady numerical computations, and compare the results obtained with the

linear approximation for an initially quiescent thin film subject to both small and

large perturbations. We analyse the difference in behaviour between surfactants

and anti-surfactants when the thin film is subject to large, local disturbances to

either the surface concentration or the bulk concentration. We also obtain ana-

lytical solutions to reduced versions of the equations governing the flow of a thin

film when the Marangoni effect is dominant. We focus on so-called “perfectly sol-

uble” anti-surfactants for which the surface concentration is identically zero. For

problems in which the initial condition is discontinuous, the method of character-

istics is employed to obtain simple-wave solutions. Finally, we derive a general,

doubly-infinite family of similarity solutions of the reduced (i.e., Marangoni-only)

equations, and investigate two of the most interesting cases in detail.
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Chapter 1

Introduction

1.1 Surface Tension and the Marangoni Effect

In this thesis we investigate the behaviour of solutions consisting of a fluid solvent

and a dissolved solute and whose surface tension depends on the concentration of

the solute. In particular, we focus on solutes that increase the surface tension of

the solution, and on scenarios in which the Marangoni effect (i.e., flow induced

by gradients in surface tension) plays a crucial role.

The surface tension of a fluid can depend on the temperature of the fluid,

or on the concentration of a dissolved solute or colloidal dispersion. Where the

temperature or concentration at the free surface of such a fluid is spatially non-

uniform, the resulting gradients of temperature or concentration cause gradients

of the surface tension of the fluid. These gradients of surface tension induce an

interfacial flow, and by viscous action this flow is transmitted into the bulk of the

fluid; this is the well-known Marangoni effect. Surface tension can also depend

on, for example, the orientation of the fluid molecules (say, in a liquid crystal),

or on an external electromagnetic field, but we do not consider these effects in

this thesis.

The first published discovery of flow induced by gradients of surface tension

was in 1855 by James Thomson (the elder brother of William Thompson, who

would later be known as Lord Kelvin), who noticed that when a drop of alcohol is

placed into water, a flow radiating outwards from the drop occurs [106]. Thomson
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also documented the phenomenon of the “tears”, or “legs”, of wine seen most

easily in wine with high alcohol content in a container such as a wine glass.

Where the wine meets the sides of the glass its free surface curves upwards (it

could, of course, curve downwards on some materials, but then the “tears” do not

form). The resulting curvature of the free surface increases the vapour pressure

of both the water and the alcohol that comprise the wine [110]. Both components

therefore evaporate at a faster rate than in the rest of the wine, and, moreover,

the alcohol, being more volatile than the water, evaporates at the fastest rate.

The wine near the sides of the glass therefore has a lower alcohol content than the

rest of the wine. A gradient in concentration, and thus a gradient in the surface

tension of the wine, results. This gradient causes more wine to be drawn up the

sides of the glass where it climbs to a maximum height, forms droplets, and falls

back into the bulk of the wine under its own weight: the so-called “tears”, or

“legs”, of wine.

In 1878, more than twenty years after Thomson, and unaware of his earlier

work, Carlo Marangoni [53] published his work on the same problem of alcohol

spreading on the surface of water and, perhaps unfairly to Thomson, the phe-

nomenon of flow induced by gradients in surface tension is now known as the

Marangoni effect. This thesis will principally be concerned with the Marangoni

effect due to concentration gradients (so-called solutocapillarity), but we will be-

gin with a brief discussion of the more widely studied thermal Marangoni effect

(so-called thermocapillarity) to provide important historical, physical, and math-

ematical context for this work.

1.2 Thermocapillarity

In 1900, Henri Bénard [7] performed his famous experiments in which a thin layer

of spermaceti oil was heated uniformly from below. Bénard noticed that when the

layer was heated sufficiently strongly, a pattern of roughly hexagonal convection

cells formed and, incorrectly (as shown almost 60 years later), attributed this

phenomenon solely to buoyancy effects, i.e., to variations in the density of the

2



Figure 1.1: Example of the stable hexagonal convective patterning of the type seen in

Bénard’s experiments, reprinted from [80], with permission from Cambridge University

Press.

fluid due to the thermal gradients. Bénard did, however, also theorise that surface

tension played some role because he saw a slight depression in the free surface

occurring in the centres of the convective cells. Figure 1.1 shows an example of the

stable hexagonal convective patterning of the type seen in Bénard’s experiments,

reprinted from [80].

In 1916, Lord Rayleigh [79] demonstrated theoretically, through a linear sta-

bility analysis of a flat layer of fluid using the Boussinesq approximation, that

buoyancy effects could cause the type of instability seen by Bénard. Lord Rayleigh

predicted that the layer is unstable when a critical value of what would later be

called the Rayleigh number (a ratio of destabilising buoyancy effects to stabilising

diffusive effects) is exceeded. In 1940, this analysis was extended by Pellew and

Southwell [71], who performed a much more comprehensive analysis, including

the effects of different boundary conditions on the critical Rayleigh number.

In 1958, Pearson [70] revisited the question of what caused the instability seen

in Bénard’s experiments. While Lord Rayleigh showed that an instability can be

caused by buoyancy effects alone, Pearson noted that instability can occur even

when the layer of fluid is on the underside of a solid substrate, and so buoyancy

cannot be the sole cause. In addition, given the values of the parameters of

Bénard’s experiments, the critical Rayleigh number calculated by Lord Rayleigh

3
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Figure 1.2: Marginal stability curve for the Marangoni number Ma as a function

of the wavenumber of the perturbation k in the limit of zero Biot number (a ratio of

heat transfer to thermal conductivity, denoted L by Pearson), given by equation (27)

in Pearson [70], with L = 0. Macrit ' 80 and kcrit ' 2 denote the critical Marangoni

number and the critical wavenumber, respectively.

was not, in fact, exceeded. Pearson believed that the Marangoni effect alone

was sufficient to explain the instability, and demonstrated using a linear stability

analysis of a flat layer that there is a critical Marangoni number (a ratio of surface

tension gradients to viscosity), above which the layer could be unstable, and even

with conservative estimates of the values of the physical parameters, this critical

value was exceeded in Bénard’s experiments. Figure 1.2 shows the marginal

stability curve for the Marangoni number Ma as a function of the wavenumber of

the perturbation k in the limit of zero Biot number (a ratio of heat transfer at the

free surface to thermal conductivity, denoted L by Pearson), given by equation

(27) in Pearson [70], with L = 0. Macrit ' 80 and kcrit ' 2 denote the critical

Marangoni number and the critical wavenumber, respectively.

Following the analysis by Pearson, a slew of publications emerged extending

the analysis in various ways.

Scriven and Sternling [88] extended the model used by Pearson to allow for

deformation of the free surface. While Pearson found that there is a non-zero

critical Marangoni number (namely Macrit ' 80) above which the layer is unsta-

ble, Scriven and Sternling found that when the free surface is allowed to deform
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this critical Marangoni number is zero (i.e., Macrit = 0 at kcrit = 0) and for

any positive Marangoni number the layer is always unstable for sufficiently small

wavenumbers.

Nield [62] extended the model used by Pearson to include the effects of buoy-

ancy. Nield demonstrated that both the Marangoni effect and buoyancy effects

can cause instability, and that the two effects reinforce each other. Nield [62] also

identified the important role of the depth of the fluid: for thin layers, surface

tension is the dominant cause of instability, whereas for thicker layers, buoyancy

dominates.

Disturbed by the result of Scriven and Sternling that a layer heated from below

is always unstable for sufficiently small wavenumbers, Smith [92] improved upon

their model by considering a two-layer model in which two layers of fluid (say,

water and air) are separated by a single free surface and each layer is bounded

above or below by a solid substrate. Smith found that, as predicted by Pearson,

a non-zero critical Marangoni number exists above which the system is unstable,

and recovered the value originally obtained by Pearson in the appropriate limit,

namely Macrit ' 80 and kcrit ' 2.

Vidal and Acrivos [109] showed numerically using the Pearson model that

the onset of convection is always steady when the layer is heated from below,

i.e., that the assumption of exchange of stabilities is valid (i.e., that the growth

rate of perturbation is a purely real quantity). Subsequently, Takashima [99,100]

performed a similar analysis to that of Vidal and Acrivos, but for the Nield model

rather than the Pearson model. Like Vidal and Acrivos, Takashima found that

the principle of exchange of stabilities holds.

Zeren and Reynolds [121] extended the Smith model to include the effects

of buoyancy, and found that when the layer is heated from below, the critical

Marangoni number is increased relative to the value obtained by Smith, and

when the layer is heated from above, the critical Marangoni number is decreased.

Zeren and Reynolds also found that when the layer is heated from above, only

the Marangoni effect causes instability, but when the layer is heated from below,

both the Marangoni effect and buoyancy effects can cause instability, and the

5



dominant effect depends on the wavenumber of the perturbation.

Takashima [101,102] published a two-part paper analysing the Pearson model

but allowing for surface deformation, and for the fluid layer to be suspended on

the underside of a horizontal substrate. In the first part [101], the principle of

exchange of stabilities was assumed to hold, and a critical Marangoni number was

derived which recovered the result obtained by Pearson when surface deformation

is neglected. In the second part [102], the principle of exchange of stabilities

was not assumed hold. Takashima showed that the onset of instability can be

oscillatory in nature, i.e., the layer can be overstable. Crucially, this overstability

occurs only when the layer is heated sufficiently strongly from above.

Cloot and Lebon [12] performed a comprehensive non-linear stability analysis

of the thermocapillary stability problem and obtained many results about the

stability, instability, or overstability of a fluid layer when heated from above or

below, and about the preferred convective patterns. In particular, Cloot and

Lebon determined that convective rolls and rectangular cells are unstable, but

that hexagonal cells are stable, and are therefore the preferred convective pattern.

In 1987, a comprehensive review of the large body of early work on this ther-

mocapillary stability problem was published by Davis [18], who included much

more than has been included in this brief overview of the problem. Since then

there has, of course, been much more work done on thermocapillary problems,

both in terms of linear and non-linear stability, and on dynamics (see, for ex-

ample, [30, 31]). Much of the more recent work is described in the more recent

review by Craster and Matar [15], or in the book by Kalliadasis et al. [44]. In

addition, the International Marangoni Association (IMA)1, an association dedi-

cated to interfacial fluid dynamics, organise biennial conferences at which many

presentations concern problems in which the Marangoni effect is a prominent

feature, including both the thermo- and soluto-capillary problems.
1http://marangoniassociation.com
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1.3 Solutocapillarity

The surface tension of a fluid may depend not only on the temperature of the

free surface, but also on the concentration of one or more dissolved species: the

solutocapillary effect. The variation of surface tension due to impurities in a

fluid was first described by Agnes Pockels (see [19] for a short biography of this

pioneering amateur surface chemist), who published fifteen papers between the

years of 1891 and 1933 documenting her measurements of the surface tension

of water in the presence of various solutes and dissolved species. Among these

findings was the fact that soaps and detergents tend to decrease the surface

tension of water when in solution, and that many salts tend to increase the

surface tension of water when in solution.

1.3.1 Surfactants

In the late 1920s the Swiss biologist Kurt von Neergaard identified the role of

so-called “surfactants” in the respiratory process, where they reduce the surface

tension of the thin films of mucus that line the pulmonary tracts, increasing the

pulmonary compliance of the lungs [111]. Some time later, these pulmonary sur-

factants were identified as consisting of the same general type of molecule as many

soaps and detergents. All of these molecules consist of two parts: a hydrophobic

“tail” which is typically a long carbon chain, and a hydrophilic “head” which

can be either ionic or non-ionic. These types of molecules, which decrease the

surface tension of a fluid by being positively adsorbed at the free surface (i.e., the

molecules preferentially accumulate on the free surface; see section 1.4 for more

information), were subsequently named surface active agents, or surfactants

for short [58].

The first mathematical treatment of the solutocapillary problem where the

solute is a surfactant was an investigation of the spreading of a localized monolayer

of insoluble surfactant (i.e., a surfactant whose molecules are present solely on

the free surface of the fluid) placed on top of a thin film of otherwise clean fluid.

The surface tension of the fluid was taken to be a decreasing function of the

7



concentration of surfactant on the free surface. This problem was considered first

by Borgas and Grotberg [8], who found steady state solutions in which diffusion of

the monolayer along the free surface is important, and a travelling wave solution

in which a shock (i.e., a discontinuity) exists in the film thickness when the

monolayer is scraped (rather than diffusing) along the surface by a blade.

The work of Borgas and Grotberg [8] was extended in various ways. Nu-

merical integration of the equations introduced by Borgas and Grotberg [8] was

performed by Gaver and Grotberg [24], who predicted that a localised initial dis-

tribution of insoluble surfactant induces a Marangoni flow which enhances the

spreading of the monolayer over the spreading that would be caused by diffusion

alone. As the surfactant spreads, a front forms at the leading edge of the spread-

ing monolayer, the film thins behind this leading edge, and surface diffusion is

found to have little effect on spreading. This spreading behaviour was confirmed

experimentally by Gaver and Grotberg [25]. However, as Swanson et al. [98] sub-

sequently demonstrated, the experiments performed by Gaver and Grotberg [25]

were performed for surfactant quantities much greater than is sufficient to form

a monolayer. This fact prompted Swanson et al. [98] to suggest that the equa-

tions originally formulated by Borgas and Grotberg do not, in fact, apply in the

monolayer regime in which they were intended to apply, and to suggest that the

model formulated by Thiele et al. [105] in terms of gradient dynamics may be

more appropriate. In this thesis, we do not use the Thiele et al. [105] model since

we will primarily be interested in situations in which the free surface is sparsely

populated of particles relative to the bulk of the fluid, and instead build upon

the model introduced by Borgas and Grotberg [8].

The spreading behaviour seen numerically and experimentally by Gaver and

Grotberg [24,25] was shown by Jensen and Grotberg [39] to be self-similar when

surface diffusion and capillarity (i.e., the effects of mean surface tension) are

neglected. Jenesen and Grotberg [39] derived an analytical similarity solution

for the spreading of the monolayer, and found that the front seen numerically

and experimentally may be mathematically idealised as a shock, which is locally

smoothed by weak diffusion and capillarity. Spreading laws were also derived,
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which show that the monolayer spreads as t 1
3 (where t denotes time) in a two-

dimensional geometry, and as t 1
4 in an axisymmetric geometry. When surfactant

is being supplied to the system as tm, these spreading laws become t 1+m
3 in a two-

dimensional geometry, and t 1+m
4 in an axisymmetric geometry. These self-similar

solutions correspond to special cases of a wider range of self-similar behaviour [38].

A closely related type of behaviour can be seen when a localized amount of

surfactant is removed from the system [97], where the system acts to fill in the

“hole” in the surfactant distribution [38].

The Borgas and Grotberg model [8] was extended by Jensen and Grotberg [40],

Espinosa et al. [23], and Jensen et al. [41] to include the effects of solubility, i.e.,

when the surfactant molecules are also present in the bulk of the fluid rather

than solely on the free surface. Crucially, the assumption was still made that

the surface tension is a function of the surface concentration only: we will ar-

gue in Chapter 2 that this is an appropriate assumption only when the surface

concentration is high relative to the bulk concentration. The bulk and surface

concentrations of surfactant are related by an adsorption law (i.e., a flux of solute

between the bulk and surface) at the free surface. When this adsorption process

is assumed to be rapid, the analysis is drastically simplified since only the bulk

concentration needs to be tracked; Howell et al. [34] and Morgan et al. [60] con-

sidered this regime. In comparison with the insoluble surfactant case, the rate

of spreading for a soluble surfactant is reduced, but the deformations of the free

surface are more pronounced at later times. Further information on the spread-

ing of insoluble and soluble surfactants in thin films is provided in the reviews by

Afsar-Siddiqui et al. [3], and Craster and Matar [15].

Surfactants are relevant not just biologically, but also in many industrial pro-

cesses such as coating flows [49,51,86,87], printing [27], oil recovery [28,29], and

processes that involve drops or bubbles [6,45,54,113], since they can have a strong

effect on the dynamical behaviour. The presence of surfactants is required in some

industrial coating processes, but can sometimes cause significant problems. For

example, the presence of a surfactant can cause wetting failure during coating

flows on rotating cylinders [49] or moving plates [51]. Surfactants can also cause

9



delays in the levelling of inkjet-printed patterns [27], leading to problems in the

production of microfluidic devices, for example.

The stability of a two-dimensional horizontal layer of soluble surfactant so-

lution was first analysed theoretically by Schwartz et al. [86, 87], who showed

that the levelling of the free surface is retarded when a surfactant is present [87],

but that the layer will always remain stable. In three dimensions, the layer may

be unstable to transverse perturbations, leading to the phenomenon of finger-

ing patterns [56, 57, 114]. Note that these fingering patterns are not the same

phenomenon as the well-known Saffman-Taylor fingering instability [82], which is

driven by differences in viscosity between two fluids, rather than by gradients in

surface tension.

The dynamics of spreading or evaporating droplets, or of bubbles travelling

along pipes for example, can also be profoundly changed by the addition of a

soluble surfactant. Spreading droplets without surfactant can spread as slowly as

t
1

10 [103], but the presence of a high-concentration surfactant can drastically in-

crease the rate at which the drop spreads, with spreading laws as fast as t1 or even

faster [6, 45]. The mechanism of this “superspreading” is not fully understood,

but the roles of micelles [93,94] and solubility of the surfactant were investigated

in the comprehensive work of Karapetsas et al. [45]. The role of surfactants in the

breakup and coalescence of droplets and bubbles is also of industrial interest [113],

as are the flow transitions that can be seen in droplets when the surfactant con-

centration is much higher than the critical micelle concentration (CMC) [54, 94]

(which will be discussed briefly in section 1.4).

1.3.2 Anti-surfactants

While surfactants decrease the surface tension of a fluid (by being positively

adsorbed), there are other solutes that increase the surface tension of a fluid, by

being negatively adsorbed (i.e., the molecules of these solutes are preferentially

expelled from the free surface). Most notably, this includes many salts when added

to water [52, 69, 89, 123], water added to short-chain alcohols such as ethanol

[33, 108], and certain resins that are included in solvent-based paints [35, 68,
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115, 118]. Such behaviour may be conveniently referred to as ‘anti-surfactant’

behaviour, and the solute as an ‘anti-surfactant’. We discuss the differences

between surfactants and anti-surfactants in section 1.4.

At first glance it may appear that a mathematical model describing the be-

haviour of surfactant solutions may also be used to describe the behaviour of

anti-surfactant solutions, except the we interchange the solute and solvent so

that the surfactant is now treated as the solvent, and the medium in which the

surfactant is dissolved is treated as the solute. However, this does not hold since

for surfactants (or anti-surfactants), the bulk (or surface) is sparsely populated,

and thus one cannot in general think of them as the solvent. Instead a two phase

model would be required. This would be the approach if we wished to model, say,

a water/alcohol system, where the line between solute and solvent is somewhat

more blurred.

In comparison with the large body of work on the effect of surfactants on

the stability and dynamics of fluids, there has been relatively little work done

on anti-surfactants from a mathematical point of view. The fact that salts, such

as sodium chloride, increase the surface tension of water was first published by

Pockels with the aid of translation by Lord Rayleigh [75]. Since then, many

authors have performed experiments measuring the surface tension of solutions

of many different salts, by a variety of methods [20, 52, 89, 108]. Similarly, the

Marangoni effect induced by alcohols in water has been studied since the time of

Thomson [106] and Marangoni [53], and the Marangoni effect induced by water

in alcohol is simply the reverse, with the water playing the role of the solute

rather than the solvent. The surface tension of certain binary mixtures of alcohol

and water, such as water and hexanol, can also be a non-monotonic function of

the temperature, with a well-defined minimum in surface tension at a critical

temperature [1,84,85]. Such binary mixtures are called self-rewetting fluids, and

have the potential to increase greatly the efficiency of heat transfer devices [83].

Aside from the experimental measurements of surface tension, there have been

relatively few investigations into the behaviour of anti-surfactant solutions. An-

alytical and numerical work has been carried out in the context of drying paint
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films, where the resin in certain solvent-based paints has anti-surfactant proper-

ties [35, 68, 115, 118]. Overdiep [68] developed a model to describe these solvent-

based paints, under the assumption that the resin molecules are completely ex-

cluded from the paint-air interface (i.e., the free surface). Overdiep determined

that, in the absence of evaporation, the surface of the paint levels as though

there was no resin present, and the resin itself becomes spatially uniform due to

diffusion. However, when the paint layer is evaporating, overstability can occur

— an unwanted phenomenon in the context of drying paint films. The Overdiep

model [68] was extended to include the effects of concentration-dependent viscos-

ity [118], and diffusivity [35]. Howison et al. [35] also showed that, in regimes

in which the flow is dominated entirely by the Marangoni effect, shocks can de-

velop in the film thickness, and these regimes should typically be avoided when

an aesthetically pleasing flat coat of paint is desired. Weidner et al. [115] demon-

strated that the levelling of a paint film attached to the underside of a horizontal

substrate can be carefully controlled through specific choices of the resin.

One of the main tools used to analyse the behaviour of anti-surfactant solu-

tions has been molecular dynamics (MD), which is a very useful computational

method for analysing the behaviour of physical systems at very small (i.e., nano)

scales. The effect of salt concentration on the wetting and evaporation of nan-

odroplets has been investigated using MD by Daub et al. [17], Caleman and van

der Spoel [10], Wang et al. [112], and Zhang et al. [122]. In particular, these MD

simulations correctly capture the increase in surface tension seen experimentally,

and also confirm that the molecules of these anti-surfactants tend to be expelled

from the free surface.

1.4 Comparison Between Surfactants and Anti-

surfactants

Surfactant molecules behave differently from anti-surfactant molecules in the

vicinity of a free surface. Specifically, as mentioned above, surfactant molecules

tend to be positively adsorbed (i.e., tend to accumulate at a free surface), whereas

12



anti-surfactant molecules tend to be negatively adsorbed (i.e., tend to be expelled

from the free surface). In general terms, this difference in behaviour is due to the

way in which the free energy in the solvent–solute system is minimised: surfactant

molecules accumulate at the free surface because it is energetically favourable to

do so, and anti-surfactant molecules tend to be expelled from the free surface for

the same reason. It is less clear why these respective behaviours are energetically

favourable, and also why they affect surface tension in the specific way that they

do. In order to elucidate this, we must consider the structures of the constituent

molecules of surfactants and anti-surfactants.

1.4.1 Surfactants

In general, surfactant molecules comprise two parts: a hydrophilic “head”, and

a hydrophobic “tail” [78, 81]. The hydrophilic head is much more variable that

the tail, and depends on the specific surfactant that is being considered, but is

generally small and inorganic (i.e., does not primarily consist of carbon and hy-

drogen). The hydrophobic tail is typically a medium- to long-chain hydrocarbon

(i.e., a chain of about 6 or more carbon atoms). Figure 1.3 shows the chemical

structure of four examples of industrially and biologically important surfactants2.

Figure 1.4, reprinted from [21], shows a plot of the surface tension of the surfac-

tant di(hexyl)glucoside, and the positive adsorption of the surfactant molecules

at the free surface, and demonstrates the decreasing surface tension that is the

defining characteristic of surfactants.

Surfactant molecules preferentially adsorb at the free surface, with the hy-

drophobic hydrocarbon tail pointing out of the fluid, and the hydrophilic head

pointing into the fluid and remaining completely submerged. Figure 1.5 shows

a schematic diagram of the preferred behaviour of surfactant molecules at a free

surface.

The relationship between surface tension and (positive or negative) adsorption

is given by the Gibbs isotherm, which is obtained by considering the surface
2The properties and uses of these chemicals can be found on, for example, the PubChem

website https://pubchem.ncbi.nlm.nih.gov/
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Figure 1.3: The chemical structure of four examples of industrially and biologically

important surfactants.

energy of a free surface on which solute molecules may adsorb (see, e.g., [89] for

a derivation of this equation), namely

c∗eq
dσ∗eq

dc∗eq
= −R∗T ∗Γ∗eq (1.4.1)

where the star denotes dimensional quantities, the subscript “eq” denotes that the

quantity is measured in equilibrium, c∗eq is the bulk concentration of the dissolved

solute directly beneath the free surface, R is the ideal gas constant, T is the

(constant) temperature, and Γ is the surface excess, defined to be the excess

surface concentration over that which would be present if the bulk concentration

prevailed as far as the free surface itself [47, 59]. This key quantity is essentially

the difference between the surface concentration s and the bulk concentration c,

and will be defined explicitly later. Since the molecules of a surfactant tend to

accumulate at the free surface, surfactants are characterised by a positive surface

excess. Thus, from equation (1.4.1), surfactants must decrease the surface tension

of the fluid. For present purposes we may treat both the positive surface excess

and the decrease in surface tension as equivalent characterisations of a surfactant,

since they are simply different ways of describing the same phenomenon.

The Gibbs isotherm (1.4.1) applies only for dilute solutions. For surfactants

this restriction is especially important. Since surfactant molecules tend to ac-
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Figure 1.4: The surface tension of the surfactant di(hexyl)glucoside, and the positive

adsorption of the surfactant molecules at the free surface, reprinted from [21], with

permission from Elsevier.

Air

Figure 1.5: Schematic diagram of the preferred behaviour of surfactant molecules at

a free surface.

cumulate at the free surface, and there is a limit to the amount of free space

on the free surface, there is a maximum packing surface concentration s = s∞,

beyond which any additional surfactant molecules must move into the bulk of

the fluid. Increasing the concentration further causes the surfactant molecules in

the bulk to start forming aggregate structures called micelles [93]. The critical

concentration beyond which micelles will form is referred to as the critical micelle

concentration (CMC), and is generally greater than the concentration required

for s = s∞. In this thesis we will assume that the concentration of surfactant or

anti-surfactant is far enough from the maximum packing concentration that we
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need not consider packing effects or the formation of micelles, i.e., we make the

assumption s� s∞.

1.4.2 Anti-Surfactants

In contrast to surfactant molecules, anti-surfactant molecules tend to be small,

relatively simple, and typically either charged or highly polar. Figure 1.6 shows

the chemical structure of three examples of industrially and biologically impor-

tant anti-surfactants3, but other types of anti-surfactants exist; as has already

been mentioned, the resin in certain high-gloss paints has anti-surfactant prop-

erties [35]. The most common examples of anti-surfactants, however, are sodium

chloride (common table salt) when added to water, and water when added to

short-chain alcohols such as ethanol. Figure 1.7, reprinted from [69], shows the

surface tension of several salts in water, and the (negative) adsorption of the salt

ions to the free surface. Figure 1.8 shows the variation in the surface tension

of water in ethanol, where χ is the mole fraction of water in the mixture, using

data taken from [108]. Both of these figures demonstrate the increasing surface

tension that is the defining characteristic of anti-surfactants. In extremely dilute

salt-water solutions, the phenomenon known as the Jones–Ray effect [42, 43, 73]

also occurs, where the surface tension decreases over the range of micromolar con-

centrations. However, we do not consider the Jones–Ray effect further here, as

the concentrations at which it occurs are very small, and the departure of surface

tension from the value of the pure solvent is typically no more than 0.0002%.

Anti-surfactant molecules, in contrast with surfactants, are preferentially ex-

pelled from the free surface, leaving the surface relatively sparsely populated, as

shown in the right-hand plot in Figure 1.7. The exact mechanism through which

this expulsion occurs is not completely understood, but present theory suggests

that the ions are repelled from any interface across which there is a change in di-

electric constant, through the interactions with image charges in the atmosphere

layer [16, 55, 65, 74]. Since the molecules are preferentially expelled from the free
3The properties and uses of these chemicals can be found on, for example, the PubChem

website https://pubchem.ncbi.nlm.nih.gov/
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Figure 1.6: The chemical structure of three examples of industrially and biologically

important anti-surfactants.

surface, anti-surfactants have a negative surface excess.

Regardless of the precise mechanism through which a non-zero surface excess

is produced, the effect on surface tension remains the same. If, by any process,

the surface excess of a dissolved solute is negative, then by the Gibbs adsorption

isotherm (1.4.1), the surface tension of the solution will necessarily be increased

relative to that of the pure solvent. This is the situation for anti-surfactants.

1.5 Outline of Thesis

In this thesis we construct a fluid dynamical model describing the free surface flow

of a solution in which a surfactant or anti-surfactant is dissolved. By considering

the surface excess of the dissolved solute, the model we formulate can describe not

only classical surfactants, whether soluble or insoluble, but also anti-surfactants
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Figure 1.7: Surface tension of several salts in water, and the (negative) adsorption of

the salt ions to the free surface, reprinted from [69], with permission from Elsevier.

Figure 1.8: Surface tension of water in ethanol, where χ is the mole fraction of water

in the mixture, with data taken from [108].
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in a thermodynamically consistent way. Using this model we investigate the

behaviour of anti-surfactant solutions and, where possible, compare it to the

behaviour seen in classical surfactant solutions. In particular, we perform a linear

stability analysis of a layer of arbitrary depth, and investigate the asymptotic

limits of an infinitely deep layer and a thin film. We also investigate the dynamical

behaviour of thin films of anti-surfactant solutions, and focussing particularly on

the case in which the solute is completely excluded from the free surface, such as

the resin in solvent-based paints [35].

In Chapter 2 we give a detailed derivation of the equations used to describe

a general surfactant or anti-surfactant. We discuss the hydrodynamics, which

is standard, briefly, and focus on the kinetics and transport of the solute. An

account of the derivation of this model was recently published in Physical Review

E [14].

In Chapter 3 we perform a comprehensive linear stability analysis of a surfac-

tant or anti-surfactant solution for a horizontal layer of arbitrary depth lying on

top of an impermeable substrate. We consider several special cases: a clean fluid,

an insoluble surfactant, and a “perfectly soluble” anti-surfactant, for all of which

a stationary layer is shown to be unconditionally stable. We then consider the

asymptotic limit of an infinitely deep layer, which we find can be unstable in cer-

tain cases; a mechanism for this instability is hypothesised. Through a marginal

stability analysis, and through considering several asymptotic limits such as the

long-wave limit, we derive conditions on parameters for which the layer will be

unstable, and comment on the nature of the instability; an account of this analy-

sis also appears in [14]. We then consider the effect of finite depth on the stability

of the layer; we find that the infinite-depth limit is singular, and that for any fi-

nite layer depth, oscillatory behaviour is possible, but is an inherently long-wave

phenomenon.

In Chapter 4 we derive the equations describing a thin film of surfactant or

anti-surfactant solution and perform a linear stability analysis. The stability

characteristics for a layer of arbitrary depth are much easier to determine in this

limit, and we derive several conditions on parameters for which the thin film will
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be unstable.

In Chapter 5 we numerically integrate the thin-film equations derived in Chap-

ter 4, both within and outwith the linear regime. We compare the results from

the linear stability analysis obtained in Chapter 4 with the numerical solutions

for the evolution of a sinusoidally perturbed layer, for perturbations with both

small and large amplitudes. The linear approximation is good for small-amplitude

perturbations, as expected, but also turns out to be accurate even for perturba-

tions with O(1) amplitudes. We also consider the evolution of a layer in which a

localized amount of surfactant or anti-surfactant is initially added to the surface

or bulk of the fluid, and find that there is a separation of timescales. Specifi-

cally, there is a short timescale over which the flux acts to bring the surface and

bulk concentrations into equilibrium, and a long timescale over which capillarity,

diffusion, and the Marangoni effect dominate.

In Chapter 6 we obtain analytical solutions in the special cases of an insoluble

surfactant and a “perfectly soluble” anti-surfactant when the Marangoni effect is

dominant, and both capillarity and solute diffusion are assumed to be negligi-

ble. We find that the equations describing this surface-tension-driven flow of a

“perfectly soluble” anti-surfactant can be written in characteristic form, and the

method of characteristics is used to solve a family of Riemann problems. Similar-

ity solutions are also obtained for both an insoluble surfactant and a “perfectly

soluble” anti-surfactant.

In Chapter 7 we summarise the analysis and results contained in the thesis,

present conclusions, and suggest possible directions for extensions to the model

and for future work.

1.6 Publications and Presentations

The work presented in Chapter 2 and in Section 3.5 was recently published in

Physical Review E [14]. In addition, much of the work described in this thesis

has been communicated through oral presentations at several local, national, and

international conferences. In particular, I have presented various aspects of this
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thesis at the following conferences and events: the British Applied Mathematics

Colloquium 2014, Cardiff; the 7th Conference of the International Marangoni As-

sociation 2014, Vienna; the annual Society for Industrial and Applied Mathemat-

ics (SIAM) Ph.D. Student Conference 2014, Reading; the 4th Joint British Ap-

plied Mathematics Colloquium and British Mathematics Colloquium 2015, Cam-

bridge; the 28th Scottish Fluid Mechanics Meeting 2015, Glasgow; the British

Applied Mathematics Colloquium 2016, Oxford; the 29th Scottish Fluid Mechan-

ics Meeting 2016, Edinburgh; the 8th Conference of the International Marangoni

Association 2016, Bad Honnef; and a Continuum Mechanics and Industrial Math-

ematics (CMIM) group research seminar in the Department of Mathematics and

Statistics in the University of Strathclyde in November 2016.

In addition, aspects of this thesis has been presented by my supervisors Prof.

Stephen K. Wilson (SKW) and Dr David Pritchard (DP) at the following con-

ferences and events: a research seminar in the BP Institute for Multiphase Flows

2014, Cambridge (DP); the 6th International Symposium on Bifurcations and

Instabilities in Fluid Dynamics 2015, Paris (SKW); the 68th Annual Meeting of

the American Physical Society Division of Fluid Dynamics 2015, Boston (SKW);

the 24th International Congress of Theoretical and Applied Mathematics 2016,

Montréal (SKW); and a research seminar in the Oxford Centre for Industrial and

Applied Mathematics 2016, Oxford (SKW).
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Chapter 2

Model Formulation

2.1 Introduction

In this Chapter, we formulate the model that will be used throughout this thesis

to describe the behaviour of surfactant or anti-surfactant solutions.

In section 2.2, we formulate the general problem that we will consider through-

out the rest of this thesis, define notation, and introduce the key concept of the

surface excess of a dissolved solute.

In section 2.3, we briefly discuss the hydrodynamics of the problem, and state

the appropriate hydrodynamical equations and boundary conditions, all of which

is standard for problems involving the Marangoni effect.

In section 2.4, we discuss the transport and adsorption of the dissolved solute,

and state the appropriate equations and boundary conditions governing these. We

also prescribe the key constitutive relation governing the flux of solute at the free

surface, and the surface tension of the solution as a function of the surface and

bulk concentrations.

Finally, in section 2.5, we discuss the dimensional parameters that appear

in the model formulated in the previous section, and give the values that these

parameters will take throughout the rest of this thesis.
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2.2 Problem Formulation

We begin by outlining the general model that will be used to describe the be-

haviour of anti-surfactants [14, 35, 123]. In the following, dimensional quantities

will be denoted with a superscript star, with dimensionless quantities shown with-

out. We initially formulate this model for the following problem: consider a layer

of surfactant or anti-surfactant solution of constant density, ρ∗, and viscosity, µ∗,

placed on top of a solid, impermeable, smooth substrate. We allow the particles

of surfactant or anti-surfactant to be present both on the free surface and within

the bulk of the fluid. We neglect any deposition onto the substrate, and also the

formation of micelle/vesicle structures within the bulk of the fluid, the latter of

which is only applicable to very high-concentration surfactants, above a critical

micelle concentration (CMC) [93], as mentioned in section 1.4.

We use Cartesian coordinates (x∗, y∗, z∗), with reference to which the fluid

velocity is denoted by

u∗ = (u∗ (x∗, y∗, z∗, t∗) , v∗ (x∗, y∗, z∗, t∗) , w∗ (x∗, y∗, z∗, t∗)), (2.2.1)

where time is denoted by t∗. The fluid–air interface (free surface) is denoted by

z∗ = h∗(x∗, y∗, t∗), and the substrate lies at z∗ = −d∗. The pressure in the fluid

is denoted p∗ (x∗, y∗, z∗, t∗), with the constant atmospheric pressure denoted p∗a.

Gravitational forces are ignored, which is reasonable since the gravitational Bond

number is small for length scales small than 10−5/2 m and we consider length

scales that are at largest 10−3 m. Figure 2.1 shows a schematic diagram of the

geometry considered.

Within the fluid there are two separate regions in which surfactant or anti-

surfactant particles may be present, namely the bulk region and the surface re-

gion, in which we denote their concentrations as follows: the volumetric bulk

concentration, c∗(x∗, y∗, z∗, t∗), measured in mol m−3; and the areal surface con-

centration, s∗(x∗, y∗, t∗), measured in mol m−2. Physically, there is, in addition,

a bulk region directly below the free surface called the subsurface region which

mediates solute transfer between the bulk of the fluid and the free surface [11];
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Figure 2.1: Schematic diagram of the geometry considered.

within this subsurface region there may be high gradients of bulk concentration,

but we assume that it may be described by the same equations as the rest of the

bulk.

We define the surface excess, Γ∗(x∗, y∗, t∗), to be the excess surface concen-

tration over that which would be present if the bulk concentration prevailed to

the surface itself [59]. As stated in the introduction, this key quantity is essen-

tially the difference between the surface concentration and the bulk concentration

directly beneath the free surface, and is written [47,59] as

Γ∗ = s∗ − η∗ c∗|z∗=h∗ , (2.2.2)

where η∗ is the notional thickness of the free surface and is taken to be of the

order of a few ångströms [11].

Recall from the introduction that surfactant molecules are preferentially pos-

itively adsorbed at a free surface and, consequently, Γ∗ > 0 for surfactants,

while anti-surfactant molecules are preferentially negatively adsorbed and, con-

sequently, Γ∗ < 0 for anti-surfactants.

Note that when the surface concentration is very high relative to the bulk

concentration (specifically when s∗ � η∗c∗), the surface excess is well approxi-

mated by s∗, which justifies the usual approach for surfactants. However, as we

describe soon, in general, and in particular for anti-surfactants, it is necessary to

distinguish between s∗ and Γ∗.
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2.3 Hydrodynamics

We begin the model formulation with the hydrodynamics, all of which is standard

(see, for example, Acheson [2]). We start with the balance of mass and balance

of linear momentum — the continuity and Navier–Stokes equations:

∇∗ · u∗ = 0, (2.3.1)

ρ∗
(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
+∇∗p∗ − µ∗∇∗2u∗ = 0. (2.3.2)

These two equations are subject to the following standard no-slip and no-penetration

boundary conditions at the substrate:

u∗ = 0 on z∗ = −d∗. (2.3.3)

At the free surface we have the balance of normal and tangential stresses, namely,

n ·T∗ · n = − (∇∗s · n)σ∗ on z∗ = 0, (2.3.4)

ti ·T∗ · n = ti · ∇∗sσ∗ on z∗ = 0, (2.3.5)

where n and ti, for i = 1, 2, are the unit normal and tangent vectors to the free

surface, respectively, T∗ is the total stress tensor, given by

T∗ = −p∗I + µ∗
(
∇∗u∗ + (∇∗u∗)T

)
, (2.3.6)

σ∗(x∗, y∗, z∗, t∗) is the surface tension of the fluid, and ∇∗s is the surface gradient

operator [96, 119] defined as

∇∗s = ∇∗ − n (n · ∇∗) . (2.3.7)

Along with these we have the kinematic boundary condition,

∂h∗

∂t∗
+ u∗

∂h∗

∂x∗
+ v∗

∂h∗

∂y∗
= w∗. (2.3.8)

By integrating the continuity equation (2.3.1) with respect to the vertical coor-

dinate z∗, and by making use of the no-penetration condition (2.3.3), we may

replace (2.3.8) by
∂h∗

∂t∗
+∇∗ ·Q∗ = 0, (2.3.9)
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where Q∗(x∗, y∗, t∗) is the horizontal volume flux, defined as

Q∗ =
∫ h∗

−d∗
u∗ dz∗. (2.3.10)

Equation (2.3.9) can often be more useful than (2.3.8), especially when consider-

ing flows of thin films of fluid.

2.4 Solute Kinetics and Transport

We have formulated all of the relevant hydrodynamical equations, along with

the appropriate boundary conditions, but we must still consider the kinetics and

transport of solute within the fluid. Questions to address include: how does the

concentration of surfactant or anti-surfactant within the bulk of the fluid evolve?

And in the free surface? What kind of adsorption/desorption occurs between the

bulk of the fluid and free surface? How does the surface tension depend upon

these concentrations?

In order to model how the solute behaves, we require transport equations

for the evolution of the bulk and the surface concentrations; we assume that the

only transport phenomena at work are advection, diffusion, and bulk–surface flux

between the bulk of the fluid and the free surface, the latter of which we denote

by J∗(x∗, y∗, t∗).

Thus, we have an advection–diffusion equation for the evolution of the bulk

concentration, namely

∂c∗

∂t∗
+ u∗ · ∇∗c∗ = D∗b∇∗2c∗, (2.4.1)

where D∗b is a bulk diffusion coefficient. Along with this equation we have two

boundary conditions. First, there is no flux of solute through the substrate, and

so on z∗ = −d∗ we have
∂c∗

∂z∗
= 0. (2.4.2)

Second, there is a flux of particles between the bulk of the fluid and the free

surface, with some bulk solute becoming surface solute, and vice versa, and so at

z∗ = h∗ we have

−D∗b∇∗c∗ · n = J∗. (2.4.3)
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Note that J∗ is defined to be the flux of solute moving from the bulk of the fluid

to the free surface, and has yet to be prescribed.

It is slightly more difficult to formulate the equivalent advection–diffusion

equation for the surface concentration, as the advective and diffusive transport is

restricted to the free surface. Nonetheless, as Pereira and Kalliadasis [72] show,

the evolution of the surface concentration is governed by

∂s∗

∂t∗
+ u∗ · ∇∗xys∗ + s∗∇∗s · u∗ = D∗s∇∗2s s

∗ + J∗, (2.4.4)

where D∗s is a surface diffusion coefficient, ∇∗s is, again, the surface gradient

operator, and ∇∗xy = (∂x∗ , ∂y∗). It should be noted that a slightly different equa-

tion governing the transport of surface concentration derived by, for example,

Stone [96] has been used extensively throughout the literature. However, there

are some ambiguities in the definition of the time derivative in the equation ar-

rived at by Stone, which were clarified by Wong et al. [119], who obtained (2.4.4)

using a differential geometrical argument. Periera and Kalliadasis [72] have, more

recently, given a much more straightforward derivation of (2.4.4), which highlights

the difference between it and the widely used equation. However, the two equa-

tions coincide in a linear regime, and at leading order in the thin-film limit, and so

for most cases studied in the literature the differences between the two equations

are inconsequential.

The question remains as to the exact form of the bulk–surface flux J∗. In

the present work we wish to capture the qualitative behaviour of the system, but

without, as mentioned earlier, the distracting complications of, for example, a

maximum surface concentration due to packing effects, or micelle formation in

the bulk of the fluid. Similarly, we do not attempt to represent the underlying

ionic interactions that control the surface excess and its effects [55], but in the

spirit of established surfactant models [8, 40, 45, 46, 57] we subsume these effects

into a simple flux between the bulk of the fluid and the free surface. Thus, we

consider the linear bulk–surface flux

J∗ = k∗1η
∗c∗ − k∗2s∗, (2.4.5)

where k∗1 and k∗2, both measured in s−1, are rate constants determining the rate
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of particle adsorption to, and desorption from, the free surface, respectively. It

is also possible to arrive at equation (2.4.5) from a purely chemical standpoint:

if nothing but the adsorption and desorption of solute is considered, then the

sorptive process may be regarded as a “chemical reaction”, namely

c∗
η∗k∗1−−−⇀↽−−−
k∗2

s∗. (2.4.6)

Applying the law of mass action, we may then write

ds∗
dt∗ = k∗1η

∗c∗ − k∗2s∗, (2.4.7)

and we can then identify that ds∗/dt∗ = J∗.

When J∗ = 0 the surface concentration is in equilibrium with the bulk con-

centration in the subsurface region, and this is a good approximation when flow

and transport processes are slow compared to the kinetics of bulk–surface so-

lute transfer. This state will be referred to as “surface–bulk equilibrium”, and it

should be noted that a system in surface–bulk equilibrium may still be evolving

through slow diffusion-controlled adsorption [9, 11, 60]. In surface–bulk equilib-

rium, J∗ = 0, and equation (2.4.5) recovers the Henry isotherm [11],

s∗eq = k∗1η
∗

k∗2
c∗eq = Kη∗c∗eq, (2.4.8)

where we have defined

K = k∗1
k∗2
, (2.4.9)

which is an equilibrium rate constant determining whether the rate of adsorption

to, or the rate of desorption from, the free surface is faster. The quantity Kη∗

is sometimes known as Henry’s adsorption constant. If the solute is a surfac-

tant then particles accumulate at the free surface and k∗1 > k∗2, giving K > 1;

alternatively, if the solute is an anti-surfactant then particles accumulate in the

bulk and k∗2 > k∗1, giving K < 1. Thus K is a single parameter that mathemati-

cally determines whether the solute is a surfactant or an anti-surfactant. In the

more general situation in which J∗ 6= 0 both kinetics and diffusion play a part

in bulk-surface solute transfer, a regime sometimes referred to as “mixed-kinetic

adsorption” [11].
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Finally, we require a constitutive relationship for surface tension as a function

of concentration, i.e., an equation of state. There are many different equations of

state in the literature, such as the popular Sheludko equation of state [45,90], but

all of them make the crucial assumption that surface tension is a monotonically

decreasing function of surface concentration only [15,39,40,45]. A näıve approach

is to make the same assumption for anti-surfactants, but this is not consistent

with the underlying physical chemistry [89].

Instead, we must consider the Gibbs adsorption isotherm [11,89], as mentioned

in section 1.4, namely

c∗eq
dσ∗eq

dc∗eq
= −R∗T ∗Γ∗eq, (2.4.10)

where R∗ is the ideal gas constant, T ∗ is the (constant) temperature, and the

subscript “eq” denotes that the quantity is measured in equilibrium. Equation

(2.4.10) is an equilibrium equation of state giving surface tension as a function of

the equilibrium surface excess Γ∗eq and not simply of the surface concentration s∗eq.

In equilibrium, the Henry isotherm (2.4.8) applies and we write s∗eq = Kη∗c∗eq;

solving (2.4.10) for σ∗eq we obtain

σ∗eq = σ∗solv −R∗T ∗Γ∗eq = σ∗solv −R∗T ∗η∗(K − 1)c∗eq, (2.4.11)

where σ∗solv is the surface tension of pure solvent. Note that if K > 1 then sur-

face tension will decrease with equilibrium bulk concentration, i.e., surfactant

behaviour, and similarly if K < 1 then surface tension will increase with equilib-

rium bulk concentration, i.e., anti-surfactant behaviour.

The equilibrium equation of state (2.4.11) can be extended to non-equilibrium

conditions in various ways. In general, we expect σ∗ to depend instantaneously on

both bulk and surface concentration; any function that reduces to (2.4.11) when

in surface-bulk equilibrium could, in principle, be considered. For simplicity and

definiteness, we therefore choose the following linear equation of state:

σ∗ = σ∗solv +R∗T ∗(1−K)
(

1− θ
K

s∗ + η∗θc∗
)
, (2.4.12)

where θ is an artificial tuning parameter that could, in principle, take any value

and (2.4.12) will still reduce to the Gibbs isotherm (2.4.10) in equilibrium. Choos-

ing θ = 0 will make σ∗ depend only on the surface concentration s∗, regardless
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of whether the solute is a surfactant or an anti-surfactant; choosing θ = 1 will

make σ∗ depend only on the bulk concentration c∗, again regardless of whether

the solute is a surfactant or an anti-surfactant. Perhaps more interesting is the

choice θ = 1/(1−K) which makes σ∗ a function only of the surface excess Γ∗. As

part of the present analysis, we will explore the differences that choosing these

different values of θ causes.

Equation (2.4.12) may also be written in the form

σ∗ = σ∗solv −R∗T ∗ (Γ∗ + aJ∗) , (2.4.13)

where

a = 1− θ
k1

+ θ

k2
(2.4.14)

is simply a rescaled version of θ. Equation (2.4.13) makes it much clearer that

our chosen equation of state reduces to the Gibbs adsorption isotherm (2.4.11)

in surface-bulk equilibrium, i.e., when J∗ = 0. Choosing a = 1/k∗1 will make

σ∗ a function of s∗ only; choosing a = 1/k∗2 will make σ∗ a function of c∗ only;

choosing a = 0 will make σ∗ a function of Γ∗ only.

2.5 Parameter Values

Within the model formulated in the previous sections, there appear a number of

dimensional parameters, whose values we now discuss.

Table 2.1 shows the values for the important physical parameters appearing

in the model, for four different solutions comprising salts dissolved in water that

exhibit the anti-surfactant effect.

Columns two and three give two different measures of concentration, with

column two giving percentage mass of solute in solution, and column three giving

molar concentration.

Columns four and five give the density and viscosity of the solution for each

concentration. Notice that, at a moderate concentration, say, of 1 mol m−3, the

density and viscosity of the salt solution is not significantly different from that

of pure water, and it then seems reasonable, simply for convenience, to estimate
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these two quantities as being equal to their values for pure water, and so we take

the density to be ρ∗ = 1000 kg m−3 and the viscosity to be µ∗ = 10−3 Pa s.

Column six gives the bulk diffusivity of each salt when in dilute solution

(i.e. in the limit as concentration goes to zero) with water, calculated using the

formula [32]

D∗b = (z+ + |z−|) D∗+ D∗−
z+ D∗+ +|z−|D∗−

, (2.5.1)

where z+, z− are the charges of the component cation and anion, respectively,

and D∗+, D∗− are the diffusion coefficients of the component cation and anion,

respectively. These diffusion coefficients range from about 1.5–3×10−9 m2 s−1, so

we estimate D∗b for all salts to be D∗b = 2 × 10−9 m2 s−1. Surface diffusivity, D∗s ,

is very difficult to measure experimentally, but the assumption that D∗s = D∗b is

justified when the diffusing particles are large [4, 26, 104]. We therefore assume

that surface diffusivity is equal to bulk diffusivity, i.e., D∗s = D∗b = 2×10−9 m2 s−1.

Column seven gives experimentally obtained values for the surface tension of

the solution, with the concentration at which the measurement was taken. Note

that all of these surface-tension values are increasing with concentration and are

greater than σ∗solv = 7.28× 10−2 N m−1, the surface tension of pure solvent (water

in this case), illustrating the anti-surfactant effect.

The surface thickness, η∗, is taken to be η∗ = 10−9 m, as we expect the free

surface to be a mono-layer of water/solute particles. The kinetic rate constants k∗1
and k∗2 are much more difficult to determine with certainty: a review by Noskov

[63] emphasises how difficult it is to measure these constants. For example, if

the kinetics are fast enough, then the dynamic surface tension will be completely

controlled by diffusion (often called the diffusion-limited regime [11]), and this

makes it very difficult to measure the values of the kinetic constants. In the

review by Chang and Franses [11], the Langmuir reaction rate constant for octanol

is found to be O(10−5) m s−1. The relevant length scale in order to compare

with our reaction rates (which are measured in s−1) is η∗; thus we obtain rate

constants that are O(104) s−1. As an upper bound on the values of k∗1 and k∗2,

Long and Nutting [52] state that surface–bulk equilibrium should theoretically

be established in O(10−10) s, and Noskov [63] offers the following explanation: if
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there are no energy barriers associated with the adsorption or desorption, then

these processes correspond simply to the diffusion of particles across the thickness

of the surface layer, and the timescale associated with this diffusion is η∗2/D∗s .

Taking D∗s and η∗ as above, this corresponds to rates that are O(1010) s−1. We

may therefore consider k∗1 and k∗2 to lie anywhere in the very wide range between

O(104) s−1 and O(1010) s−1.

Table 2.2 is the analogue of Table 2.1, but gives values of the physical param-

eters for a water/alcohol system, in which a low concentration of water acts as

a solute in small-chain alcohols, such as methanol or ethanol, which acts as the

solvent. The surface tension of this water/alcohol system behaves as a salt/water

system does, i.e., as an increasing amount of solute (water in this case) is added

to the solvent (alcohol in this case), the surface tension of the solution increases.

As Table 2.2 shows, the values of the physical parameters for a water/alcohol

system are of the same order of magnitude as for a salt/water system, and the

mathematical treatment of the two types of system will be identical. Thus, the

term “anti-surfactant” can be taken to apply to either of the above examples, i.e.,

salts in water, or water in small chain alcohols.

To summarise, representative values for the physical parameters are given in

Table 2.3, and these are applicable to both salt/water, and water/alcohol systems.

2.6 Summary

In this Chapter, we have formulated the model that will be used throughout

the thesis to describe the evolution of a layer of surfactant or anti-surfactant

solution with a single free surface, sitting on top of a horizontal, impermeable

substrate. In this model, the hydrodynamics is coupled to the transport of the

surface and bulk concentrations of the dissolved solute through the balance of

normal and tangential stresses at the free surface, i.e., through the Marangoni

effect. By considering the surface excess of the dissolved solute, and by choosing

a specific bulk–surface flux, we derived an equation of state relating the surface
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tension of the fluid to the concentrations of the dissolved solute from the Gibbs

isotherm. This equation of state can describe not only classical surfactants, but

also anti-surfactants.

The hydrodynamics and solute transport are governed by the continuity equa-

tion, the Navier–Stokes equation and advection–diffusion equations for the trans-

port of bulk and surface concentration,

∇∗ · u∗ = 0, (2.6.1)

ρ∗
(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
+∇∗p∗ − µ∗∇∗2u∗ = 0, (2.6.2)

∂c∗

∂t∗
+ u∗ · ∇∗c∗ = D∗b∇∗2c∗, (2.6.3)

∂s∗

∂t∗
+ u∗ · ∇∗xys∗ + s∗∇∗s · u∗ = D∗s∇∗2s s∗ + J∗. (2.6.4)

These equations are subject to the boundary conditions

u∗ = 0 on z∗ = −d∗, (2.6.5)

n ·T∗ · n = − (∇∗s · n)σ∗ on z∗ = h∗, (2.6.6)

t ·T∗ · n = t · ∇∗sσ∗ on z∗ = h∗, (2.6.7)
∂h∗

∂t∗
+∇∗ ·Q∗ = 0 on z∗ = h∗, (2.6.8)
∂c∗

∂z∗
= 0 on z∗ = −d∗, (2.6.9)

−D∗b∇∗c∗ · n = J∗ on z∗ = h∗, (2.6.10)

which are the no-slip and no-penetration conditions, the balance of normal stresses

at the free surface, the balance of tangential stresses at the free surface, the kine-

matic condition, no flux of solute through the substrate, and the flux of solute at

the free surface, respectively. The bulk-surface flux J∗ is given by

J∗ = k∗1η
∗c∗ − k∗2s∗, (2.6.11)

and the surface tension σ∗ is given by

σ∗ = σ∗solv +R∗T ∗(1−K)
(

1− θ
K

s∗ + η∗θ∗c∗
)
. (2.6.12)
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Parameter Value (SI units)

Surface tension of solvent σ∗solv = 7× 10−2 N m−1

Density ρ∗ = 103 kg m−3

Viscosity µ∗ = 10−3 Pa s

Bulk diffusivity D∗b = 2× 10−9 m2 s−1

Surface diffusivity D∗s = 2× 10−9 m2 s−1

Surface layer thickness η∗ = 10−9 m

Kinetic rate constants k∗1 = k∗2 = 104 − 1010 s−1

Gas constant R∗ ' 8 J mol−1 K−1

Temperature 300 K

Table 2.3: Representative values of the physical parameters applicable to both sodium

chloride dissolved in water and water dissolved in methanol.

36



Chapter 3

Linear Stability of a Quiescent

Layer

3.1 Introduction

In this Chapter, we investigate the linear stability of a quiescent layer of surfactant-

or anti-surfactant-laden fluid with uniform bulk and surface concentrations at

their equilibrium values, c∗i and η∗c∗i , respectively, throughout the fluid. We re-

strict the problem to two dimensions, and assume that the fluid layer is uniform

in the y-direction. The layer of fluid occupies the region −d∗ ≤ z∗ ≤ 0 in the

base state, with the substrate at z∗ = −d∗ and the unperturbed free surface at

z∗ = 0. Since gravity is neglected, the pressure is equal to pa throughout the fluid

layer. In the perturbed state, the free surface is at z∗ = h∗(x∗, t∗).

In section 3.2, we non-dimensionalise the system of equations and bound-

ary conditions (2.6.1)–(2.6.10), and give estimates of the values of the resulting

dimensionless parameters.

In section 3.3, we linearise about the static base state and seek normal-mode

solutions to the linearised system, in the usual manner. This gives a linear, alge-

braic system in terms of the amplitudes of the normal-mode perturbations and,

for non-trivial solutions, the determinant of the resulting coefficient matrix must

vanish. From this we obtain the dispersion relation of the system, relating the

growth rates of perturbations to their wavenumbers, and the physical parameters
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in the system.

In section 3.4, we consider four special cases: a pure solvent, an insoluble

surfactant, a “perfectly soluble” anti-surfactant, and an infinitely deep layer of

surfactant or anti-surfactant solution. In the former three cases the layer is uncon-

ditionally stable, but in the latter case it can be linearly unstable to perturbations

certain wavenumbers; a mechanism for this instability is hypothesised. Through

asymptotic analysis of the dispersion relation corresponding to the infinite-depth

case, we derive several conditions on when such a layer can be unstable.

Finally, in section 3.6, we consider the effects of finite depth on the instability

found in section 3.5. We find that the region of parameter space that leads to

instability is largest when the layer is infinitely deep; decreasing the depth of the

layer has the effect of stabilising the system. We note that oscillatory behaviour

is possible for a layer of finite depth (and discuss this in Appendix A), but that

it is an inherently long-wave phenomenon.

3.2 Non-Dimensionalisation

We begin by putting the model (2.6.1)–(2.6.10) into dimensionless form using the

following scalings, recalling that stars denote dimensional quantities:

(x∗, z∗, h∗, d∗) = L∗(x, z, h, d), t∗ = L∗

U∗
t,

(u∗, w∗) = U∗(u,w), p∗ = µ∗U∗

L∗
p, T ∗ = µ∗U∗

L∗
T

c∗ = c∗i c, s∗ = η∗c∗i s, σ∗ = σ∗solvσ.

(3.2.1)

Pressure is scaled in the expectation that viscous forces will dominate over inertial

forces. Surface tension is scaled by the surface tension of pure solvent, σ∗solv, and

the concentrations are scaled by the bulk concentration in the base state, c∗i .

Note that we scale the surface concentration by η∗c∗i since the dimensions of s∗

and c∗ differ by a factor of a length scale. We leave the velocity scale U∗, and

length scale L∗, arbitrary for the time being, and choose them later depending

on the relevant physical balances by, for example, setting a capillary number or

a Marangoni number equal to unity to choose U∗, and by setting the layer depth
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or a Péclet number equal to unity to choose L∗.

In the following we use subscript notation to denote differentiation. With the

scalings (3.2.1), the continuity equation (2.6.1) becomes

ux + wz = 0. (3.2.2)

The x- and z-components of the Navier–Stokes equation (2.6.2) become

Re (ut + uux + wuz) + px − uxx − uzz = 0, (3.2.3)

Re (wt + uwx + wwz) + pz − wxx − wzz = 0, (3.2.4)

where we have defined the Reynolds number, which is a measure of the ratio of

inertia to viscosity, as

Re = ρ∗U∗L∗

µ∗
. (3.2.5)

The bulk concentration evolution equation (2.6.3) becomes

ct + ucx + wcz −
1

Pb
(cxx + czz) = 0, (3.2.6)

where we have defined the bulk Péclet number, which is a measure of the ratio

of advection to diffusion of bulk solute, as

Pb = U∗L∗

D∗b
. (3.2.7)

Similarly, the surface concentration evolution equation (2.6.4) becomes

st + (us)x −
1
Ps
sxx −Daa(Kc− s) = 0, (3.2.8)

where we have defined the surface Péclet number, which is a measure of the ratio

of advection to diffusion of surface solute, as

Ps = U∗L∗

D∗s
, (3.2.9)

and the advective Damköhler number, which is a measure of the ratio of the rate

of bulk–surface solute transfer to advection of surface solute, as

Daa = k∗2L
∗

U∗
, (3.2.10)
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and K = k∗1/k
∗
2 is the equilibrium rate constant discussed in Chapter 2. The

above equations are subject to the no-slip and no-penetration conditions (2.6.5),

along with the no-flux condition (2.6.9), on the substrate z = −d:

u = w = 0 on z = −d, (3.2.11)

cz = 0 on z = −d. (3.2.12)

At the free surface z = h equations (3.2.3), (3.2.4), and (2.6.3) are also subject

to the balance of normal stresses (2.6.6) which, with (2.6.12), becomes

n ·T ·n + (∇s · n)
[

1
Ca + Ma(1−K)

(
1− θ
K

s+ θc

)]
= 0 on z = h, (3.2.13)

where we have defined the capillary number, which is a measure of the ratio of

viscosity to surface tension, as

Ca = µ∗U∗

σ∗solv
, (3.2.14)

and the Marangoni number, which is a measure of the ratio of surface tension

variation to viscosity, as

Ma = R∗T ∗η∗c∗i
µ∗U∗

. (3.2.15)

At the free surface we also have the balance of tangential stresses (2.6.7) which,

with (2.6.12), becomes

t ·T · n−Ma(1−K)t · ∇s

(
1− θ
K

s+ θc

)
= 0 on z = h, (3.2.16)

where the definition of ∇s in unchanged from the three-dimensional case, but we

redefine ∇ = (∂/∂x, ∂/∂z) to be the two-dimensional gradient operator.

The kinematic condition (2.6.8) scales straightforwardly to give

ht + uhx = w on z = h. (3.2.17)

Finally, we have the flux of solute between bulk and surface regions at the free

surface (2.6.10) which, with (2.6.11), becomes

∇c · n + Dad (Kc− s) = 0 on z = h, (3.2.18)
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where we have defined the diffusive Damköhler number, which is the ratio of the

rate of bulk–surface solute transfer to bulk diffusion, as

Dad = k∗2η
∗L∗

D∗b
. (3.2.19)

Throughout this scaling process we have left the horizontal length scale L∗

and the horizontal velocity scale U∗ arbitrary, but in order to determine the size

of each of the dimensionless parameters that have been introduced, and which

are summarised in Table 3.1 (with arbitrary U∗ and L∗), we now must choose

specific values of U∗ and L∗.

We consider two choices for U∗. We may choose U∗ to reflect the choice that

we consider flow driven by gradients of surface tension, i.e., by Marangoni effects,

and thus set Ma = 1 to obtain

U∗ = U∗Ma = R∗T ∗η∗c∗i
µ∗

. (3.2.20)

Alternatively, we may choose U∗ to reflect the choice that we consider flow driven

by mean surface tension, i.e., by capillarity, and thus set Ca = 1 to obtain

U∗ = U∗Ca = σ∗solv
µ∗

; (3.2.21)

this is the scale that will be used in, for example, the special case of a clean

solvent in which there are no Marangoni effects.

We also consider two choices for the length scale L∗. In general, we choose

L∗ to reflect the choice that we consider situations in which there is a balance

between advective and diffusive transport of solute by setting Pb = Ps = 1, i.e.,

L∗ = L∗Ps = D∗s
U∗

= D∗b
U∗

= L∗Pb
, (3.2.22)

for either U∗ = U∗Ma or U∗ = U∗Ca. In the special case in which there is no solute

present, i.e., for pure solvent, this length scale is not appropriate. Instead L∗ is

chosen so that the scaled depth of the undisturbed layer is d = 1, i.e., we choose

L∗ = d∗. In addition, we also make this choice in the special cases of an insoluble

surfactant, and of a “perfectly soluble” anti-surfactant.

Tables 3.2 and 3.3 show the values that will henceforth be used for each of the

dimensionless parameters in the system for different choices of U∗ and L∗, using
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Parameter Expression

Re ρ∗U∗L∗

µ∗

Pb
U∗L∗

D∗b

Ps
U∗L∗

D∗s

Daa
k∗2L

∗

U∗

Dad
k∗2η

∗L∗

D∗b

Ca µ∗U∗

σ∗solv

Ma R∗T ∗η∗c∗i
µ∗U∗

Table 3.1: Dimensionless parameters with arbitrary horizontal velocity scale U∗ and

horizontal length scale L∗.
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Parameter Expression Value Taken

U∗Ma
R∗T ∗η∗c∗i

µ∗
O(1) m s−1

L∗Ps

µ∗D∗b
R∗T ∗η∗c∗i

O(10−9) m

Re ρ∗D∗b
µ∗

O(10−3)

Pb 1 1

Ps 1 1

Daa
k∗2µ

∗2D∗b
(R∗T ∗η∗c∗i )2 0.05

Dad
k∗2µ

∗

R∗T ∗c∗i
0.5

Ca R∗T ∗η∗c∗i
σ∗solv

1

Ma 1 1

Table 3.2: Dimensionless parameters and the values that will be taken for each based

on the characteristic velocity scale U∗ = U∗Ma and the characteristic length scale L∗ =

L∗Ps
.
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Parameter Expression Value Taken

U∗Ca
σ∗solv
µ

O(101) m s−1

L∗Ps

µ∗D∗b
σ∗solv

O(10−8) m

Re ρ∗D∗b
µ∗

O(10−3)

Pb 1 1

Ps 1 1

Daa
k∗2D∗bµ∗2
σ∗2solv

0.05

Dad
k∗2η

∗µ∗

σ∗solv
0.5

Ca 1 1

Ma R∗T ∗η∗c∗i
σ∗solv

1

Table 3.3: Dimensionless parameters and the values that will be taken for each based

on the characteristic velocity scale U∗ = U∗Ca and the characteristic length scale L∗ =

L∗Ps
.
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the values in Table 2.3. In Table 3.2 we have chosen U∗ = U∗Ma and L∗ = L∗Ps , and

in Table 3.3 we have chosen U∗ = U∗Ca and L∗ = L∗Ps . Note that since Re� 1 in

both of these tables, we henceforth make the assumption that Re = 0 and neglect

inertial effects. It is also worth noting that the same parameter group that serves

as the capillary number Ca in Table 3.2 also serves as the Marangoni number Ma

in Table 3.3. In the three special cases in which we make the choice L∗ = d∗,

the values of the appropriate dimensionless parameters will be discussed in the

corresponding sections.

We proceed with both U∗ and L∗ kept arbitrary for the time being, and make

particular choices only when we consider specific cases. With U∗ and L∗ kept

arbitrary, both Ca and Ma will appear in the system of equations and boundary

conditions, but one or the other will be set to unity as appropriate depending on

the choice of U∗ and L∗ made.

3.3 Linear Stability Analysis

We now linearise and seek normal-mode solutions to the system of dimensionless

equations derived in section 3.2. To do so, we make the ansatz
u(x, z, t) = εφU(z), w(x, z, t) = εφW (z), p(x, z, t) = εφP (z),

h(x, t) = εφH, c(x, z, t) = 1 + εφC(z), s(x, t) = K + εφS,

(3.3.1)

where φ = eωt+ikx, k ≥ 0 is the wavenumber of the perturbations to the base

state, ω is the (in general, complex valued) growth rate of these perturbations, the

capital letters are the amplitudes of the perturbations, and ε is a small parameter.

Using the ansatz (3.3.1) the governing equations (3.2.2)–(3.2.4) and (3.2.6)

become, to O(ε) in the limit ε→ 0,

ikU(z) +W ′(z) = 0, (3.3.2)

ikP (z) + k2U(z)− U ′′(z) = 0, (3.3.3)

P ′(z) + k2W (z)−W ′′(z) = 0, (3.3.4)(
ωPb + k2

)
C(z)− C ′′(z) = 0, (3.3.5)
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while the surface concentration evolution equation (3.2.8) reduces to the boundary

condition (
ω + k2

Ps

)
S + ikKU(0)−Daa(KC(0)− S) = 0. (3.3.6)

The boundary conditions at the substrate (3.2.11)–(3.2.12) become

U(−d) = 0, (3.3.7)

W (−d) = 0, (3.3.8)

C ′(−d) = 0. (3.3.9)

The boundary conditions at the free surface (3.2.13)–(3.2.18) become

ωH −W (0) = 0, (3.3.10)

2W ′(0)− P (0) + k2
[ 1
Ca + Ma (1−K)

]
H = 0, (3.3.11)

U ′(0) + ikW (0)−Ma(1−K)ik
[

1− θ
K

S + θC(0)
]

= 0, (3.3.12)

C ′(0) + Dad(KC(0)− S) = 0. (3.3.13)

We may simplify the system (3.3.2)–(3.3.13) by solving for P and U in the Navier–

Stokes equations (3.3.3) and (3.3.4), and using the continuity equation (3.3.2), to

obtain

P (z) = 1
ik

(U ′′(z)− k2U(z)), (3.3.14)

U(z) = − 1
ik
W ′(z), (3.3.15)

and an equation for W (z),

W (4)(z)− 2k2W ′′(z) + k4W (z) = 0. (3.3.16)

The most general solution to (3.3.16) consistent with the substrate boundary

conditions (3.3.7)–(3.3.8) is

W (z) =
(
A1 + A2

z

d

)
sinh (k (z + d))

− kd (A1 − A2)
(

1 + z

d

)
cosh (k (z + d)) (3.3.17)
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where A1 and A2 are constants of integration, and, similarly, the most general

solution to (3.3.5) consistent with the substrate boundary condition (3.3.9) is

C(z) = A3 cosh
(√

ωPb + k2 (z + d)
)
, (3.3.18)

where A3 is a constant of integration. The free surface boundary conditions

(3.3.10)–(3.3.13) become

ωH −W (0) = 0, (3.3.19)

W ′′′(0)− 3k2W ′(0)− k4
[ 1
Ca + Ma (1−K)

]
H = 0, (3.3.20)

W ′′(0) + k2W (0)−Ma(1−K)k2
[

1− θ
K

S + θC(0)
]

= 0, (3.3.21)

C ′(0) + Dad(KC(0)− S) = 0, (3.3.22)

and the surface concentration boundary condition (3.3.6) becomes(
ω + k2

Ps

)
S −KW ′(0)−Daa(KC(0)− S) = 0. (3.3.23)

Substituting the solution for W (z), given by (3.3.17), and the solution for C(z),

given by (3.3.18), into the free surface boundary conditions (3.3.19)–(3.3.23)

yields a linear algebraic system for the integration constants A1–A3, and the

amplitudes of the initial perturbations to the film thickness, H, and the surface

concentration, S. In order for this linear system to have a non-trivial solution, the

determinant of the 5×5 coefficient matrix M must vanish, leading to a dispersion

relation which relates the growth rates of perturbations, ω, to the wavenumber

of perturbations, k. The entries of M are as follows:

M11 = kd cosh(kd)− sinh(kd), M12 = −kd cosh(kd),

M13 = 0, M14 = 0, M15 = ω, (3.3.24)

M21 = 2 (kd sinh(kd)− cosh(kd)) , M22 = −2kd sinh(kd),

M23 = 0, M24 = 0, M25 = −
[ 1
Ca + Ma (1−K)

]
k, (3.3.25)

M31 = 2k2d cosh(kd), M32 = −2(1 + k2d2)
d

cosh(kd)− 2k sinh(kd),

M33 = Makθ(1−K) cosh(ξd),

M34 = Mak(θ − 1)(K − 1)
K

, M35 = 0, (3.3.26)
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M41 = 0, M42 = 0,M43 = ξ sinh(ξd) + DadK cosh(
√
ωPb + k2d),

M44 = −Dad, M45 = 0, (3.3.27)

M51 = Kk2d sinh(kd), M52 = −K(1 + k2d2)
d

sinh(kd)−Kk cosh(kd),

M53 = −DaaK cosh(
√
ωPb + k2d), M54 = ω + k2

Ps
+ Daa, M55 = 0, (3.3.28)

where we have defined ξ =
√
ωPb + k2. The dispersion relation is then

MaPsk(1−K)
{
k
[( 1

Ca + Ma (1−K)
) (

1 + 2k2d2
)
− 4dω

]
− k

( 1
Ca + Ma (1−K)

)
cosh(2kd)− 2ω sinh(2kd)

}
×
[
DadK cosh(ξd) + (1− θ)ξ sinh(ξd)

]
+ 2

{
2ω
(
1 + 2k2d2

)
− 2

( 1
Ca + Ma (1−K)

)
k2d

+ 2ω cosh(2kd) + k
( 1

Ca + Ma (1−K)
)

sinh(2kd)
}

×
[
DadK

(
k2 + ωPs

)
cosh(ξd) + ξ

(
k2 + Ps (Daa + ω)

)
sinh(ξd)

]
= 0. (3.3.29)

The dispersion relation given by (3.3.29) is, in general, a transcendental equation

for ω as a function of k, but in certain special cases analytical solutions can be

found.

3.4 Special Cases

Before considering the general stability problem, we first consider some special

cases.

First, in section 3.4.1, we reduce our problem to that of the levelling of a layer

of pure solvent, i.e., of a fluid in which there is no solute present, so that the force

due to surface tension depends only on the local curvature of the free surface: the

only physical effect present is that of capillarity. Levelling of a clean solvent is a

classical problem, and we demonstrate that in this case our results reduce to the

classical results of Orchard [66].

Secondly, in section 3.4.2, we consider a layer of fluid with an insoluble surfac-

tant present, i.e., a solute all of whose particles are on the surface, and consider
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the effects of variable surface tension, without the added complication of solute

transfer to and from the bulk of the fluid. The stability of thin films of sol-

vent laden with insoluble surfactant has been studied previously by, for example,

Schwartz et al. [87], who found that the insoluble surfactant system is linearly

stable. A similar analysis has recently been carried out for a colloidal suspension

by Tsai et al. [107], where the colloidal particles are described by their surface

and bulk concentrations, and the problem in which all of the colloidal particles

are situated on the free surface is treated as a special case, as it is here. The

results obtained by Tsai et al. [107] for their “insoluble surface-active particles”

problem are identical to the results that have been obtained previously for the

insoluble surfactant problem.

Thirdly, in section 3.4.3, we consider, as a complement to the insoluble sur-

factant case, a layer of fluid in which there is dissolved a “perfectly soluble”

anti-surfactant, i.e., a solute that does not adsorb onto the free surface at all.

In this regime the system is always stable and, in fact, the evolution of the film

thickness decouples from that of the bulk concentration. Even though the bulk

concentration affects the surface tension of the fluid, it cannot by itself cause flow

in the surface layer, and so the concentration field and the film thickness evolve

independently. The stability of thin films of “perfectly soluble” anti-surfactant

solution with evaporation of the solvent was first considered by Overdiep [68],

and was subsequently extended by, for example, Wilson [118], and Howison et

al. [35]. We demonstrate that our model recovers the results of these studies

when evaporation is neglected.

Finally, in section 3.5, we consider the novel case of an infinitely deep layer of

surfactant- or anti-surfactant-laden fluid in which the solute is present in both the

surface and the bulk regions. In the limit d→∞, the boundary conditions at the

substrate become far-field conditions, simplifying the analysis somewhat. In this

infinite-depth regime a novel instability is predicted only for anti-surfactants, and

asymptotic analysis of the dispersion relation (3.3.29) leads to certain conditions

on when this instability can occur. In particular, we shall show that the value of

the ratio of the Damköhler numbers is crucial to the stability of the system.

49



3.4.1 Pure Solvent (No Solute)

In order to reduce the system described by the dispersion relation (3.3.29) to the

case in which there is no solute (henceforth called the Orchard problem [66]) we

set Ma = Daa = Dad = K ≡ 0, and take the limits Ps → ∞ and Pb → ∞. We

choose the horizontal velocity scale to be U∗ = U∗Ca so that Ca = 1, and choose

the horizontal length scale to be L∗ = d∗ so that d = 1. In this special case the

dispersion relation (3.3.29) becomes

2
(
cosh(2k) + 2k2 + 1

)
ω + k (sinh(2k)− 2k) = 0. (3.4.1)

Solving for ω we obtain the levelling rate of the free surface in the Orchard

problem (henceforth called the Orchard mode), ω = ωOrch, where

ωOrch = −k2
sinh(2k)− 2k

cosh(2k) + 2k2 + 1 . (3.4.2)

It is straightforward to show that ωOrch is real and negative for all k > 0, and

therefore that the system is unconditionally stable, and that the free surface

levels monotonically, i.e., that the amplitude of the free surface perturbation is

a monotonically decreasing function of time. Physically, this represents levelling

of the fluid layer due to mean surface tension, that is, due to the normal stresses

produced by the curvature of the free surface. Figure 3.1 shows the (negative)

growth rate ω = ωOrch of perturbations in the Orchard problem, given by (3.4.2).

Figure 3.2 shows a typical streamline pattern for the mode ω = ωOrch given by

(3.4.2) in the Orchard problem. Curvature of the perturbed free surface induces

normal stresses which drive a flow. Fluid leaves the peaks of the free surface

and flows into the troughs, thus re-distributing the fluid and flattening the free

surface. It should be noted that, along with the flow in the normal direction

away from the free surface, there is also a tangential flow along the free surface

produced by the normal stresses, which has the same effect of re-distributing fluid

from the peaks to the troughs of the free surface.

Asymptotically, ωOrch obeys

ωOrch = 1
3k

4 +O(k6) as k → 0, (3.4.3)
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ωOrch

k

Figure 3.1: The (negative) growth rate ω = ωOrch of perturbations in the Orchard

problem, given by (3.4.2).

ωOrch = −1
2k +O(k3) as k →∞. (3.4.4)

The long-wave limit k → 0 of ωOrch, given by (3.4.3), is simply the result that

one would obtain in the thin-film (i.e., small aspect ratio) limit of the Orchard

problem. Similarly, the short-wave limit k → ∞ of ωOrch, given by (3.4.4), is

simply the result that one would obtain in the infinite-depth (i.e., d→∞) limit

of the Orchard problem. To see why these equivalences hold, consider the quantity

kd, i.e., the product of the wavenumber with the undisturbed depth of the layer:

kd acts as an aspect ratio of the problem, with d the vertical length scale and k the

reciprocal of the horizontal length scale. Since the thin-film problem corresponds

to a small aspect ratio, this corresponds to the limit kd→ 0 but, since d has been

scaled to unity, this is equivalent to taking the limit k → 0. A similar argument

applies for the infinite-depth problem and the limit k → ∞, although, in all

but this simple Orchard case, the particular distinguished limit that is taken to

arrive at the appropriate infinite-depth case is more subtle, as we discuss later in

section 3.5.5. Figure 3.3 shows a comparison of the growth rate ω = ωOrch, given

by (3.4.2), in the Orchard problem, with its long- and short-wave asymptotic

approximations given by (3.4.3) and (3.4.4), respectively, and demonstrates the
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Figure 3.2: Typical streamline pattern for the mode ω = ωOrch given by (3.4.2) in

the Orchard problem with k = 1, where the flow is from the peaks to the troughs of

the perturbed free surface as shown by the arrows, and the thick solid line represents

the solid substrate.

good agreement that might be expected in these limits.

While the Orchard mode will feature heavily in the other problems we con-

sider, there are certain regimes, such as the general infinite-depth and the “per-

fectly soluble” anti-surfactant regimes, in which the evolution of the free surface

decouples from the evolution of the bulk and surface concentrations. In such cases

there is/are one or more modes with H = 0 (recall that H is the amplitude of the

perturbation to the film thickness), and a single mode with H 6= 0; the latter of

these is simply the Orchard mode ωOrch, and is therefore fully understood. In the

limit of strong mean surface tension, Ca → 0, the Orchard mode is lost without

affecting any of the other modes. In this limit, the leading order system is un-

changed, with the exception that the normal stress boundary condition (3.3.11)

becomes simply

H = 0, (3.4.5)

which means that any perturbation to the free surface must have zero amplitude,

i.e., the free surface remains flat.
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Figure 3.3: Comparison of the growth rate ω = ωOrch, given by (3.4.2), in the Orchard

problem, with its long- and short-wave asymptotic approximations given by (3.4.3) and

(3.4.4), respectively.

3.4.2 Insoluble Surfactant

To reduce the system described by the dispersion relation (3.3.29) to the case

in which the solute is an insoluble surfactant we set Daa = Dad ≡ 0, K = 1

(which is required due to the particular choice of scalings we have used), and

take the limit Pb →∞. We also choose θ = 0 so that the surface tension depends

solely on the surface concentration. We choose the horizontal velocity scale to be

U∗ = U∗Ca so that Ca = 1, and choose the horizontal length scale to be L∗ = d∗

so that d = 1. With these choices for U∗ and d∗, the order-of-magnitude values

of the two remaining parameters in the system are Ma = O(1) and Ps = O(106).

In this case the dispersion relation (3.3.29) becomes

4Ps
[
2k2 + 1 + cosh(2k)

]
ω2

+ 2k
{

Ps (Ma + 1) sinh(2k) + 2k
[
cosh(2k) + Ps (Ma − 1) + 1 + 2k2

]}
ω

+ k2
[
2k sinh(2k) + MaPs (cosh(2k)− 1)− (2MaPs + 4) k2

]
= 0. (3.4.6)

Solving (3.4.6) for ω we obtain two solutions for the growth rates, ω1 and ω2, both

of which are purely real and negative, where we take ω2 > ω1 without loss of gen-
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erality, and the system is always monotonically stable. The two levelling modes

ω1 and ω2 are coupled (i.e., do not change independently when any parameter

is varied) when Ma 6= 0, but when Ma = 0 they de-couple to give the Orchard

levelling mode (3.4.2), and a pure-diffusive mode given by ω = ωPD, where

ωPD = − 1
Ps
k2, (3.4.7)

respectively.

Insoluble Surfactant: Ps →∞, Ma = O(1), k = O(1)

Since Ps = O(106) we are motivated to take the limit Ps →∞. In this limit, the

dispersion relation (3.4.6) becomes

4
[
2k2 + 1 + cosh(2k)

]
ω2

+ 2k [(Ma + 1) sinh(2k) + 2 (Ma − 1) k]ω

+ Mak2
(
cosh(2k)− 1− 2k2

)
= 0. (3.4.8)

Figure 3.4 shows the growth rates (a) ω1, and (b) ω2, of perturbations in the case

of an insoluble surfactant in the limit Ps → ∞, as solutions to the dispersion

relation (3.4.8) for three different values of Ma. The thick solid lines in Figure

3.4 correspond to the case in which Ma = 0, with ω1 = ωOrch given by (3.4.2) in

Figure 3.4(a), and ω2 = ωPD given by (3.4.7) in Figure 3.4(b). Note that since

we have taken the limit Ps →∞, ωPD ≡ 0.

Numerical evidence suggests that, for any positive value of Ma, the rate of

levelling given by ω1 is faster than that given by the Orchard mode ωOrch, given

by (3.4.2), while the rate of levelling given by ω2 is slower than that given by the

Orchard mode. Both modes, however, are faster than the pure-diffusive mode

ωPD (≡ 0 since Ps → ∞) given by (3.4.7). The dominant mode (i.e., the least

negative ω) is always ω2, regardless of the value of Ma, and so this is the mode

that would be seen at large time in the physical system.

Insoluble Surfactant: Ps →∞, Ma→∞, k = O(1)

As Ma is increased, ω1 moves closer to the ω-axis (i.e., the vertical axis), while

ω2 moves towards a non-trivial O(1) limit. Specifically, in the limit as Ma→∞,
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Figure 3.4: Growth rates (a) ω1, and (b) ω2, of perturbations in the case of an

insoluble surfactant in the limit Ps →∞, as solutions to the dispersion relation (3.4.8),

for Ma = 0 (thick solid line), Ma = 1 (thin solid line), Ma = 10 (dashed line).

ω1 and ω2 satisfy

ω1 ∼ −
k

2
sinh(2k) + 2k

cosh(2k) + 2k2 + 1Ma→ −∞ as Ma→∞, (3.4.9)

ω2 ∼ −
k

2
(cosh(2k)− 2k2 − 1)

sinh(2k) + 2k = O(1) as Ma→∞. (3.4.10)

From (3.4.9) it is clear that ω1 → −∞ in the limit Ma → ∞, and is therefore

lost. Figure 3.5 shows a comparison of the growth rate ω2, given by (3.4.10), for

an insoluble surfactant in the limit Ps → ∞ and Ma → ∞ (dashed), with the

growth rate ωOrch given by (3.4.2) in the Orchard problem (solid). This figure

shows that the addition of an insoluble surfactant has the effect of slowing the

levelling compared to that of pure solvent; this corroborates the results obtained

by Schwartz et al. [87], though their work was done in the thin-film regime. Even

when the concentration of solute is very high (neglecting complicated packing or

electrostatic effects), or alternatively when the solute is strongly surface-active,

both of which are captured in the limit Ma→∞, the levelling rate is still slower

than that given by the Orchard mode. This can be proved directly since, from

(3.4.10) and (3.4.2), we have ω2 > ωOrch. In the long-wave k → 0 (strictly, in the

distinguished limit Ma →∞, k → 0, with the product Mak = O(1)), ω1 and ω2
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Figure 3.5: Comparison of the growth rate ω2, given by (3.4.10), for an insoluble

surfactant in the limit Ps →∞ and Ma→∞ (dashed), to the growth rate ωOrch given

by (3.4.2) in the Orchard problem (solid).

satisfy

ω1 ∼ −Mak2 → 0 as Ma→∞, k → 0, (3.4.11)

ω2 ∼ −
1
12k

4 → 0 as Ma→∞, k → 0. (3.4.12)

In fact, equations (3.4.11) and (3.4.12) correspond to the leading order long-wave

k → 0 behaviour of ω1 and ω2 regardless of the value of Ma.

Comparing (3.4.12) with (3.4.3) shows that, in the limit of large Ma, ω2 is

slower than the Orchard mode by a factor of four in the long-wave limit k → 0,

while Figure 3.5 shows that ω2 is slower than ωOrch for any wavenumber k. This

increased hindrance to levelling in the limit Ma → ∞ is due to the free surface

becoming a no-slip surface (rather than a no-shear surface, as in the Orchard

case). This can be confirmed analytically by a linear stability analysis of the

Orchard problem where the no-shear condition on the free surface is replaced by

a no-slip condition on the free surface, and the resulting growth rate is identically

ω = ω2 given by (3.4.10).
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Insoluble Surfactant: Ps →∞, Ma = O(1), k →∞

In the short-wave limit k →∞, the two modes ω1 and ω2 satisfy

ω1 ∼ −
1
2Mak →∞ as k →∞, (3.4.13)

ω2 ∼ −
1
2k →∞ as k →∞, (3.4.14)

which are a short-wave Marangoni mode, and the short-wave limit of the Orchard

mode ω = ωOrch given by (3.4.4), respectively.

Figure 3.6 shows a typical streamline pattern for the mode ω = ω2 in the limit

Ps →∞ (and for Ma = O(1)) for the dominant mode in the insoluble surfactant

problem. Figure 3.7 shows a typical streamline pattern for the mode ω = ω1

in the limit Ps → ∞ for the sub-dominant mode in the insoluble surfactant

problem. As in the Orchard case, the curvature of the perturbed free surface

induces normal stresses which drive flow from the peaks of the free surface to the

troughs. However, concentration gradients now induce tangential stresses which

drive flow tangentially to the free surface, in addition to the flow induced by

the normal stresses. Initially, at peaks of the free surface there are peaks of the

surface concentration, and hence there is initially low surface tension at the peaks,

and fluid flows away from the peaks and towards the troughs. As fluid enters the

troughs of the free surface, it leads to accumulation of surface concentration there,

decreasing the surface tension. This causes a tangential flow which opposes the

levelling of the free surface and explains why this insoluble-surfactant system

levels more slowly than the pure-solvent (i.e., the Orchard) system. Crucially,

even in the limit as Ma→∞, the flow induced by tangential stress that opposes

the levelling can never dominate the normal-stress-driven levelling, and so the

system is always stable, as evidenced by the (negative) growth rate obtained in

this limit, given by (3.4.10).

3.4.3 “Perfectly Soluble” Anti-Surfactant

To serve as the complement of the insoluble surfactant case in which solute is

present only on the surface, we consider the “perfectly soluble” anti-surfactant
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Figure 3.6: Typical streamline pattern for the mode ω = ω2 in the limit Ps →∞ (and

for Ma = O(1)) for the dominant mode in the insoluble surfactant problem, with k = 1

and Ma = 1, where the flow is from the peaks to the troughs of the perturbed free

surface as shown by the arrows, and the thick solid line represents the solid substrate.
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x

Figure 3.7: Typical streamline pattern for the mode ω = ω1 in the limit Ps →∞ (and

for Ma = O(1)) for the sub-dominant mode in the insoluble surfactant problem, with

k = 1 and Ma = 1, where the flow is from the peaks to the troughs of the perturbed free

surface as shown by the arrows, and the thick solid line represents the solid substrate.
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case in which the solute is completely excluded from the surface. This problem was

first considered by Overdiep [68], in the context of drying paint films, where the

resin in the paint is a “perfectly soluble” anti-surfactant. Overdiep’s analysis was

later extended by, for example, Wilson [118], and Howison et al. [35] to include

the effects of variable diffusivity and viscosity. When evaporation is neglected in

each of these papers, it is found that the thin paint film is stable, and in this

section, we recover the results reported in these papers exactly.

To reduce our model to that describing a “perfectly soluble” anti-surfactant we

must take the limit k2 →∞ so that the rate transfer of solute from the surface to

the bulk is infinitely fast, i.e., as soon as any solute particle enters the surface, it

is instantly expelled to the bulk region. In this limit, Daa, Dad →∞ and K → 0,

so that the system is always in surface-bulk equilibrium, and the equilibrium state

is such that S ≡ 0. We also choose θ = 1 so that the surface tension depends

solely on the bulk concentration. We choose the horizontal velocity scale to be

U∗ = U∗Ca so that Ca = 1, and choose the horizontal length scale to be L∗ = d∗

so that d = 1. With these choices for U∗ and d∗, the order-of-magnitude values

of the two remaining parameters in the system are Ma = O(1) and Pb = O(106).

In this regime the dispersion relation (3.3.29) becomes

sinh
(√

ωPb + k2
)√

ωPb + k2

×
[
2
(
cosh(2k) + k2 + 1

)
ω + (Ma + 1) k (sinh(2k)− 2k)

]
= 0. (3.4.15)

The root sinh
(√

ωPb + k2
)√

ωPb + k2 = 0 leads to a series of bulk-diffusive

modes

ω = − k
2

Pb
− n2π2, (3.4.16)

where n is any integer. When n = 0, equation (3.4.16) reduces to the pure

diffusive mode given by (3.4.7) (with Pb instead of Ps). These infinitely many

bulk-diffusive modes represent the vertical structure of the bulk concentration

throughout the layer.

The other root leads to a “modified” Orchard mode, namely

ω = −(Ma + 1)k2
sinh(2k)− 2k

cosh(2k) + 2k2 + 1 , (3.4.17)
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which is faster than the standard Orchard mode ω = ωOrch given by (3.4.2) for

any positive value of Ma. This is sensible since the bulk concentration increases

the surface tension of the fluid, and so it might be reasonably expected that the

layer would level at a faster rate that if there was no solute present.

It is interesting to note that the levelling rate of the free surface is independent

of how the bulk concentration evolves and vice versa. Since the bulk concentration

is perturbed there are bulk concentration gradients, and therefore surface-tension

gradients which induce flow tangential to the free surface, but these do not affect

the rate at which the free surface levels. The flow induced by concentration

gradients is simply superposed on to the Orchard levelling, but since no solute

accumulation can occur in the bulk, there is no feedback into the Orchard mode

that would change the rate at which the free surface levels, except for the increase

in mean surface tension (the factor (Ma + 1) acts as a capillary number in this

situation). The fact that no solute accumulation can occur in the bulk region

can be explained by a continuity argument: if solute is advected horizontally to a

particular position, the solute already present at that position would then advect

vertically, and vice versa. Since the bulk solute has the freedom to be transported

both vertically and horizontally, there can be no accumulation.

The mechanism through which the free surface of the “perfectly soluble” anti-

surfactant solution levels is identical to that of the Orchard problem, and so the

streamline pattern that is seen as the free surface levels is identical to that shown

in Figure 3.2. Ultimately, the concentration gradients decay simply through dif-

fusion.

3.5 Infinite-Depth Case

We now investigate the case of an infinitely deep layer of fluid in which the sub-

strate lies infinitely far away from the free surface. In this infinite-depth regime,

the substrate boundary conditions (3.3.7)–(3.3.9) become far-field conditions, ap-

plying as z → −∞. Since the depth of the layer is now infinite, we cannot use d∗

as a length scale; instead, we choose L∗ = L∗Ps so that Ps = Pb = 1. We also make
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the choice U∗ = U∗Ma so that Ma = 1, and so all of the dimensionless parameters

are as given in Table 3.2.

The non-dimensionalisation and linearisation of the infinite-depth problem

is very similar to that of the general finite-depth problem considered earlier in

this chapter with only one difference. The most general solution to (3.3.16) for

the amplitude of the vertical velocity component, and of (3.3.5) for the bulk

concentration, consistent with the new far-field conditions, are now

W (z) = (A1 + A2z) ekz, (3.5.1)

C(z) = A3eξz, (3.5.2)

respectively, and where we have defined ξ =
√
ω + k2. Substituting the solutions

(3.5.1) and (3.5.2) into the free surface boundary conditions (3.3.19)–(3.3.23)

yields a simplified linear system, and requiring non-trivial solutions yields the

dispersion relations

2ω +
( 1

Ca + 1−K
)
k = 0, (3.5.3)

and

2ξ3 + 2DadKξ
2 + [2Daa − (1− θ) (1−K) k] ξ −DadK (1−K) k = 0. (3.5.4)

The former of these conditions corresponds to a modified version of the short-wave

limit k → ∞ of the Orchard mode given by (3.4.4), and governs the levelling of

the free surface with no variation in either the bulk or the surface concentrations,

as discussed in section 3.4.1. The latter condition corresponds to the evolution

of the system with a flat free surface H = 0, with flow driven entirely by surface-

tension gradients.

We now focus solely on the second condition (3.5.4), corresponding to the case

in which the free surface remains flat. It is straightforward to obtain numerical

solutions to equation (3.5.4), and thus plot the perturbation growth rate ω.

Figure 3.8 shows plots of typical growth rates for an anti-surfactant with

K = 0.5, for various values of the ratio

δ = Dad

Daa
, (3.5.5)
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Figure 3.8: The growth rate of perturbations ω, i.e., the positive root of equation

(3.5.4), as a function of the wavenumber k in the infinite-depth regime, for Daa = 0.05,

Dad = 0.5 (thick solid), Daa = 0.1, Dad = 0.5 (thin solid), Daa = 0.1, Dad = 1

(dashed), K = 0.5, and (a) θ = 1/(1 − K) = 2, (b) θ = 1, (c) θ = 0, and all other

parameters given by Table 3.2.
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which will turn out to be important to the stability of the layer, and the parameter

θ. In all three plots the thick solid line corresponds to growth rates where Daa =

0.05 and Dad = 0.5 (i.e., δ = 10), the thin solid line corresponds to growth rates

where Daa = 0.1 and Dad = 0.5 (i.e., δ = 5), and the dashed line corresponds to

growth rates where Daa = 0.1 and Dad = 1 (i.e., δ = 10). Figure 3.8(a) shows a

plot of growth rates for θ = 1/(1−K) (= 2 since K = 0.5), i.e., when the surface

tension depends on the surface excess Γ. Figure 3.8(b) shows a plot of growth

rates for θ = 1, i.e., when the surface tension depends on the bulk concentration

only. Figure 3.8(c) shows a plot of growth rates for θ = 0, i.e., when the surface

tension depends on the surface concentration only.

Figure 3.8 shows that growth rates ω may, in fact, be positive, signifying that

the system may be linearly unstable. In particular, the system is unstable for large

enough values of δ = Dad/Daa, as shown by the fact that the thin solid lines,

corresponding to δ = 5, in each figure are negative for all k, and so the system is

stable, while the thick solid lines and dashed lines, both corresponding to δ = 10,

are positive, and thus unstable, for a range of wavenumbers k. This instability

occurs for all three values of the parameter θ, suggesting that the specific value of

θ is not crucial in triggering the instability. The effects of changing the Damköhler

numbers Dad and Daa, along with θ, will be investigated further below.

In all cases in which instability occurs, it does so only at sufficiently small

dimensionless wavenumbers, typically for k = O(10−1), while typical maximum

growth rates are of the order of ω = 10−4 to 10−3 and the corresponding di-

mensional timescales L∗/(ωU∗Ma) for the instability to develop are therefore of

the order of 10−8 to 10−7 s. Figure 3.8 is plotted for K = 0.5, i.e., for an anti-

surfactant, showing this novel instability occurs for anti-surfactant solutions. Nu-

merical evidence suggests that no instability is possible when K > 1, and thus

that surfactant solutions are unconditionally stable.

3.5.1 Marginal Stability Analysis

Numerical evidence suggests that the solutions for ω to (3.5.4) are always purely

real, and so we assume that the principle of exchange of stabilities holds, i.e., we
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assume that ω ∈ R. This allows us to obtain marginal stability curves for various

parameters by setting ω = 0 (or, equivalently, ξ = k) in equation (3.5.4), and

solving for the appropriate parameter.

Figure 3.9 shows typical marginal stability curves (solid) and curves of maxi-

mum growth rate (dash) for reference parameter values given by Table 3.2, with

K = 0.5 and θ = 1/(1−K) = 2 (where appropriate) so that the surface tension

depends only on the surface excess.

A key feature of Figure 3.9 is that in each case the unstable region is largest

when k = 0, and the transition to instability first occurs for long-wave perturba-

tions, i.e., for k = 0, although within the unstable region the maximum growth

rate generally occurs for a non-zero wavenumber, as shown by the numerically

calculated dashed curves.

Figure 3.9(a) shows the marginal stability curve for Daa, which is given by

Daa = k2 + 1
2 [θ (1−K) +K (2Dad + 1)− 1] k + 1

2DadK(1−K). (3.5.6)

In particular, it shows that larger values of Daa stabilise the system. There is a

critical value of Daa below which the system is unstable for a range of wavenum-

bers, which we denote by Daa,crit. This critical value occurs at k = 0 and is

therefore given by

Daa,crit = 1
2DadK (1−K) (3.5.7)

and is the maximum value of Daa for which instability is possible. Equation

(3.5.7) shows that instability becomes harder to trigger as K → 1, since Daa,crit →

0 in this limit, in which the anti-surfactant properties of the solute are lost.

Similarly, instability becomes harder to trigger asK → 0, since Daa,crit → 0 in this

limit, in which the solute becomes completely excluded from the free surface and,

as we have seen in section 3.4.3, the “perfectly soluble” anti-surfactant system

is unconditionally stable. Figure 3.9(a) also shows that there is a maximum

wavenumber, which we denote by kmax, which is the largest wavenumber that can

be unstable; for k > kmax the system is stable for all values of Daa. This kmax
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Figure 3.9: Marginal stability curves (solid) and curves of maximum growth rate

(dash) for (a) the advective Damköhler number Daa, given by (3.5.6), (b) the diffusive

Damköhler number Dad, given by (3.5.9), (c) the equilibrium rate constant K, given

as the solutions to (3.5.4) with ω = 0, (d) the parameter θ, given by (3.5.13), as a

function of the wavenumber k in the infinite-depth limit d → ∞, where K = 0.5,

θ = 1/(1−K) = 2, and all other parameters values are given by Table 3.2.
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satisfies Daa = 0 in equation (3.5.6), and solving for k we find

kmax = 1
4

√
(1−K) [(θ − 1)2(1−K) + 4Dad(θ + 1)K] + 4Dad

2K2

+ 1
4 [K(θ − 1)− θ + 1]− 1

2DadK. (3.5.8)

Figure 3.9(b) shows the marginal stability curve for Dad, which is given by

Dad = −2k2 + (θ − 1) (1−K) k + 2Daa

K [2k − (1−K)] . (3.5.9)

In particular, it shows that larger values of Dad destabilise the system. There is

again a critical value of Dad above which the system will be unstable for a range

of wavenumbers. This critical value again occurs at k = 0 and is therefore given

by

Dad,crit = 2Daa

K (1−K) , (3.5.10)

and is the minimum value of Dad for which instability is possible. As in the Daa

case, there is also a maximum wavenumber kmax, but in this case it is the value

of k for which the Dad marginal curve has a vertical asymptote, and is given by

kmax = 1
2(1−K). (3.5.11)

Figure 3.9(c) shows the marginal stability curve forK, which is the solution for

K of the dispersion relation (3.5.4) with ω = 0 when solved for K. In particular,

it shows that only a range of values of K will lead to instability. This is consistent

with the explanation given for the variation of Daa,crit with K, where in the limit

K → 1 the anti-surfactant properties of the solute are lost, and in the limit K → 0

the problem reduces to the “perfectly soluble” anti-surfactant case. The critical

values of K between which the system will be unstable for a range of wavenumbers

may be determined by considering the long-wave limit of the dispersion relation,

and are given by

K±crit = 1
2 ±

1
2

√
1− 8Daa

Dad
. (3.5.12)

As in the previous cases, there is also a maximum wavenumber kmax (which is

kmax ' 0.044 in the reference case shown in Figure 3.9); while it is possible to

find an analytical expression for kmax, it has been omitted for brevity.
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Figure 3.9(d) shows the marginal stability curve for θ, which is given by

θ = −2k2 + [2KDad − (1−K)] k −DadK (1−K)
(1−K) k (3.5.13)

In particular, it shows that larger values of θ tend to stabilise the system, but for

sufficiently small values of k, no choice of θ is sufficient to cause the system to

become stable. There is no critical values of θ for which the system is stable for all

wavenumbers (i.e., there is always a θ for which perturbations of any wavenumber

are unstable), nor is there a maximum wavenumber that might be unstable.

Since the typical unstable dimensionless wavenumbers are small, varying θ does

not alter the stability of the system, as long as it remains of order unity. The

particular value of θ chosen, be it θ = 0, 1, or 2 (for an anti-surfactant with

K = 0.5), therefore does not qualitatively matter.

Figure 3.10 shows how the Daa marginal curve changes as the parameters Dad

and K are varied, where the thick solid curves correspond to the reference case

as shown in Figure 3.9(a), and the arrows denote the direction of increasing value

of the parameter.

Figure 3.10(a) shows how the Daa marginal curve changes as Dad is varied

both above and below the reference value of Dad = 0.5. Increasing Dad desta-

bilises the system since the maximum value of Daa required to trigger instability

decreases as Dad increases. Varying Dad does not qualitatively change the Daa

marginal curve, but simply increases the width of the unstable region and the

range of unstable wavenumbers. Both Daa,crit given by (3.5.7) and kmax given by

(3.5.8) increase as Dad increases.

Figure 3.10(b) shows how the Daa marginal curve changes as K is varied

for K ≤ 0.5. As K is increased up to K = 0.5, the width of the unstable

region increases, reaching its maximum width at K = 0.5. The range of unstable

wavenumbers behaves in the same way. For 0 < K ≤ 0.5, both Daa,crit given by

equation (3.5.7), and kmax given by (3.5.8) increase monotonically with K and

are maximised at K = 0.5.

Figure 3.10(c) shows how the Daa marginal curve changes as K is varied for

K ≥ 0.5. As K is increased from K = 0.5, both the width of the unstable region
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Figure 3.10: Marginal stability curves for the advective Damköhler number Daa as

a function of the wavenumber k in the infinite-depth limit d → ∞, given by (3.5.6),

for (a) Dad = 0.3, 0.4, 0.5, 0.6, 0.7, (b) K = 0.1, 0.2, 0.3, 0.5, (c) K = 0.5, 0.7, 0.8,

0.9. All other parameter values are given by Table 3.2 with θ = 1/(1−K), and where

appropriate Dad = 0.5, K = 0.5. The thick solid curve corresponds to the reference

case shown in Figure 3.9(a). In each plot, the arrow denotes the direction of increasing

value of the variable.
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and the range of unstable wavenumbers decrease monotonically, and the unstable

region disappears completely in the limit K → 1. For 0.5 ≤ K < 1, both Daa,crit

given by equation (3.5.7), and kmax given by (3.5.8) decrease monotonically with

K.

Figure 3.11 shows how the Dad marginal curve changes as the parameters Dad

and K are varied.

Figure 3.11(a) shows how the Dad marginal curve changes as Daa is varied

both above and below the reference value of Daa = 0.05. Increasing Daa stabilises

the system since the minimum value of Dad required to trigger instability increases

as Dad increases. Varying Daa does not qualitatively change the Dad marginal

curve. In particular, only Dad,crit given by (3.5.10) varies with Daa; from (3.5.11),

kmax given by (3.5.11) is independent of the value of Daa.

Figure 3.11(b) shows how the Dad marginal curve changes as K is varied for

K ≤ 0.5. As K is increased up to K = 0.5, both Dad,crit and kmax decrease.

From equation (3.5.10), Dad,crit is minimised at K = 0.5, and takes the minimum

value Damin
d,crit = Daa whereas kmax given by (3.5.11) is a monotonically decreasing

function of K for 0 < K < 1, and so as K increases, the range of unstable

wavenumbers decreases.

Figure 3.11(c) shows how the Dad marginal curve changes as K is varied for

K ≥ 0.5. As stated for the K ≤ 0.5 case, Dad,crit is minimised at K = 0.5, and

so increasing K above this value causes Dad,crit to increase, and causes kmax to

decrease monotonically. In the limit K → 1, we have Dad,crit →∞ and kmax → 0,

illustrating that the system is stable for K > 1, i.e., that surfactant solutions are

always stable.

Figure 3.12 shows how the K marginal curve changes as the ratio δ = Dad/Daa

is varied, namely as δ is increased, both the range of K that lead to instability and

the range of unstable wavenumbers increase, i.e., both the separation between the

values of K±crit and the value of kmax increases. As δ → ∞, K±crit → 1/2 ± 1/2,

signifying that all values of 0 ≤ K ≤ 1 will lead to instability, and the range of

unstable wavenumber tends to a finite and non-zero limit, namely kmax → 0.5.
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Figure 3.11: Marginal stability curves for the diffusive Damköhler number Dad as

a function of the wavenumber k in the infinite-depth limit d → ∞, given by (3.5.9),

for (a) Daa = 0.005, 0.05, 0.1, 0.25, (b) K = 0.025, 0.05, 0.1, 0.5, and (c) K = 0.5,

0.6, 0.75, 0.9. All other parameter values are given by Table 3.2, with θ = 1/(1−K),

and where appropriate Daa = 0.05, K = 0.5. The thick solid curve corresponds to the

reference case shown in Figure 3.9(b). In each plot, the arrow denotes the direction of

increasing value of the variable.
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Figure 3.12: Marginal stability curves for the equilibrium rate constant K as a func-

tion of the wavenumber k in the limit d → ∞, given as the solutions to (3.5.4) with

ω = 0, for δ = 9, 10, 11, 12. All other parameter values are given by Table 3.2, with

θ = 1/(1−K). The thick solid curve corresponds to the reference case shown in Figure

3.9(d). The arrow denotes the direction of increasing value of the variable.

3.5.2 Instability Mechanism

As we have seen thus far in section 3.5, a novel instability is predicted in a layer

of anti-surfactant solution provided that certain conditions on the parameters

(determined in the marginal stability analysis in section 3.5.1) are satisfied. The

question therefore arises of what the mechanism of this instability is. In order for

an instability to occur there must be some self-reinforcing physical mechanism,

i.e., a positive feedback loop, in which growth causes further growth. Figure 3.13

shows a sketch of the mechanism of the instability. Since the solute is an anti-

surfactant, regions of the free surface in which there is a high concentration will

also be regions of high surface tension relative to the neighbouring free surface

and, similarly, regions in which there is a low concentration will also be regions

of low surface tension, relative to the neighbouring free surface. Since surface

tension gradients cause fluid to flow along the free surface from regions of low

surface tension to regions of high surface tension (i.e., the Marangoni effect), flow

converges in the regions of high concentration. As the flow converges, it advects

more solute into the already high concentration regions of the free surface which,
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Figure 3.13: sketch of the mechanism of the instability, highlighting the fact that

high concentrations correspond to high surface tension.

in turn, increases the surface tension further, and causes more flow convergence.

This forms a positive feedback loop in which regions of high surface tension

are reinforced to become regions of ever higher surface tension, i.e., to cause

instability.

The occurrence of a linear instability naturally raises the question of the final

(nonlinear) state towards which the perturbed system evolves. The instability is

driven mainly by perturbations to the surface and bulk concentrations and, in

fact, occurs even when the free surface is flat. We might speculate, therefore,

that the first variables to grow beyond the linear regime will be one or both

of the surface and bulk concentrations. The linear theory may possibly break

down as the concentrations become large near the free surface because of, for

example, packing effects on the free surface, changes in transport rates, or the

linear bulk-surface flux no longer being applicable. Ultimately, this instability

might manifest itself through precipitation of the solute at or near the free surface,

and this would be the experimental hallmark of the instability, in situations where

the bulk concentration is below the saturation concentration. In any case, a

nonlinear stability calculation would be necessary in order to properly determine

the nonlinear state to which the layer is evolving after the linear instability begins.
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3.5.3 The Long-Wave Limit of the Infinite-Depth Prob-

lem

One particularly important feature of the infinite-depth problem that was made

evident through the marginal stability analysis described in section 3.5.1, was

that the onset of instability occurs in the long-wave limit k → 0. Motivated by

this, and further supported by the small range of k for which instability occurs, we

now investigate this long-wave limit, in which the task of analysing the dispersion

relation (3.5.4) becomes somewhat easier.

When k = 0, the dispersion relation (3.5.4) reduces to the conditions

ξ = 0 or ξ2 + DadKξ + Daa = 0. (3.5.14)

The former condition ξ = 0 leads simply to ω = 0 and can therefore be discounted.

The latter condition has no solutions for which <(ξ) > 0, i.e., no solutions with

ω > 0. Since the näıve approach of simply taking the limit k → 0 does not pick

up any of the interesting behaviour that has been seen throughout the previous

section, we require a different ansatz. We therefore seek an asymptotic expansion

of ξ in the dispersion relation (3.5.4) of the form ξ ∝ kα for some α > 0 as k → 0.

Substituting this expansion into the dispersion relation (3.5.4) and seeking a

consistent balance of terms, it is straightforward to show that α = 1. This

motivates the expansion

ξ = ξ1k + ξ2k
2 +O(k3), (3.5.15)

where <(ξ1) > 0 so that the condition <(ξ) > 0 holds in the limit k → 0, or

equivalently so that ω > 0 in this limit. Substitution of the expansion (3.5.15)

into the dispersion relation (3.5.4) yields

ξ1 = DadK(1−K)
2Daa

, (3.5.16)

and

ξ2 = −DadK(1−K)2(Dad
2K2 + Daa(θ − 1))

4Daa
3 . (3.5.17)

When 0 < K < 1 the coefficient ξ1 is real and positive and so the expansion

(3.5.15) remains consistent with the condition <(ξ) > 0. However, when K > 1
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the expansion is no longer consistent with this condition. We therefore consider,

for now, only the case 0 < K < 1, corresponding to anti-surfactants. The case

K > 1, i.e., the surfactant case, will be considered later.

Using (3.5.15), the expansion for the actual growth rate ω = ξ2 − k2 (using

the definition of ξ) becomes

ω =
(

Dad
2K2(1−K)2

4Daa
2 − 1

)
k2

− Dad
2K2(1−K)3(Dad

2K2 + Daa(θ − 1))
4Daa

4 k3 +O(k4). (3.5.18)

The condition ω > 0 for the instability of long waves (i.e., in the limit k → 0) is

thus
Dad

2K2(1−K)2

4Daa
2 > 1 (3.5.19)

and, recalling that 0 < K < 1, equation (3.5.19) reduces to

δ = Dad

Daa
>

2
K(1−K) . (3.5.20)

The condition (3.5.20) shows that one of the crucial parameters controlling sta-

bility is the ratio of the Damköhler numbers, δ = Dad/Daa. This instability

condition also shows that instability becomes more difficult to trigger as K → 0

and as K → 1, mirroring what was seen in the marginal stability plots and, in

particular, in Figure 3.9(d).

When ξ2 > 0, we can also obtain an estimate for the typical unstable wavenum-

ber from (3.5.18), namely

ktyp '
1− ξ2

1
ξ1ξ2

= 2(Dad
2K2(1−K)2 − 4Daa

2)Daa
2

Dad
2K2(1−K)3(Dad

2K2 + Daa(θ − 1))
. (3.5.21)

Numerically, for the values of the parameters given by Table 3.2, ktyp is of the

order of 0.04, corresponding to dimensional wavelengths of the order 2πL∗/k '

5× 10−8 m. This is small, but remains significantly larger than the surface layer

thickness η∗ = 10−9 m, and so the distinction between surface and bulk regions

remains consistent.

We may rewrite the instability criterion (3.5.20) in terms of dimensional quan-

tities as
η∗∆σ∗solv
µ∗D∗b

>
2
K
, (3.5.22)
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where we have defined ∆σ∗solv = R∗T ∗η∗c∗i (1−K) to be the difference between the

equilibrium surface tension in the base state and the equilibrium surface tension

of pure solvent. It is informative to rearrange (3.5.22) further, noting that in

equilibrium experiments it is bulk quantities rather than surface quantities that

would be measured, and to write (3.5.22) as

∆σ∗solv
R∗T ∗µ∗D∗b

dσ∗eq

dc∗eq
>

2(1−K)
K

, (3.5.23)

where in our linear model dσ∗eq/dc∗eq = ∆σ∗solvc
∗
i . The left-hand side of (3.5.23) now

consists solely of experimentally measurable quantities, while the right-hand side

depends only on K, which in practice must be determined as a fitting parameter.

It is worth noting that the magnitudes of the adsorption and desorption rate

constants k∗1 and k∗2 do not affect the stability, since they enter (3.5.23) only

through their ratio K.

3.5.4 The Limit of Small Damköhler Numbers in the Infinite-

Depth Problem

The Damköhler numbers in the reference case for the infinite-depth problem (and

for the general finite-depth problem) are not far below unity, and correspond to

the upper limit of plausible values for the desorption rate constant k∗2. Since this

rate constant could be several orders of magnitude smaller than its upper value,

it is of interest to consider the predictions of the stability analysis for 0 < K < 1

as the Damköhler numbers become small, in the infinite-depth problem.

To obtain asymptotic results, we consider the limit in which both Damköhler

numbers become small, while their ratio remains O(1). Accordingly, we write

Dad = δDaa, and consider the limit Daa → 0 while δ = O(1). The dispersion

relation (3.5.4) then becomes

2ξ3 + 2δKDaaξ
2 + [(1−K)(θ − 1)k + 2Daa] ξ − δK(1−K)Daak = 0. (3.5.24)

We first consider a näıve expansion in which all quantities other than Daa remain

O(1). Seeking an expansion of the form

ξ = Ω0 + Ω1Daa +O(Daa
2), (3.5.25)
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where <(Ω0) > 0 is the condition that must be satisfied for instability to occur,

and taking the limit Daa → 0, we obtain the leading order equation

2Ω3
0 + (1−K)(θ − 1)kΩ0 = 0, (3.5.26)

and omitting the case Ω0 = 0 since it does not satisfy the condition <(Ω0) > 0,

equation (3.5.26) yields

Ω2
0 = (1−K)(1− θ)

2 k. (3.5.27)

Since 0 < K < 1, this is consistent with the condition <(Ω0) > 0 if and only if

θ < 1, and the corresponding asymptotic expansion for ω = ξ2 − k2 is

ω = (1−K)(1− θ)
2 k − k2 +O(Daa). (3.5.28)

Figure 3.14(a) shows a plot of the perturbation growth rates ω and illustrates how

well the asymptotic result (3.5.28) captures the behaviour of ω as the Damköhler

numbers become small. Although for the particular choice of δ = 5 used in

Figure 3.14(a), the system remains stable for small k, instability does occur for

intermediate wavenumbers k ' (1 − K)(1 − θ)/4, which in this case gives k '

0.125.

The näıve expansion given by (3.5.25) is not consistent with the condition

<(ξ) > 0 when θ ≥ 1, and as such we must seek alternative expansions to capture

the behaviour in this regime. We therefore scale k = Daa
αk̂ for some α > 0 and,

motivated by the long-wave asymptotic result (3.5.18), we scale ω = Daa
2αω̂, and

therefore also scale ξ = Daa
αξ̂. Substituting these scalings into the dispersion

relation (3.5.24), we obtain

2Daa
3αξ̂3 + 2δKDaa

2α+1ξ̂2 + (1−K)(θ − 1)Daa
2αk̂ξ̂

+ Daa
α+1

(
2ξ̂ − δK(1−K)k̂

)
= 0. (3.5.29)

Seeking a consistent balance of terms as Daa → 0, we find that there are three

possibilities for the value of α, namely α = 0, 1/2, and 1. The value α = 0

corresponds to the näıve expansion which remains consistent for θ < 1 and yields

the asymptotic result (3.5.28). The value α = 1 yields the leading order result

ξ̂0 = δK(1−K)k̂
(1−K)(θ − 1)k̂ + 2

, (3.5.30)
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Figure 3.14: Growth rates of perturbations (a) ω, (a) ω̂, (a) ω̄ as a function of the

wavenumber k in the infinite-depth regime for K = 1/2 and (a) θ = 0, δ = 5, Dad = 1,

0.1, 0.01, 0.001, (b) θ = 2, δ = 10, and Dad = 0.5, 0.1, 0.05, 0.005, (c) θ = 1, δ = 10,

and Dad = 0.1, 0.1, 0.001, 0.0001, all shown solid, along with the small Damköhler

number asymptotic results given by (a) equation (3.5.28), (b) equation (3.5.31), (c)

equation (3.5.35), all shown dashed. The arrow denotes the direction of decreasing

Daa.
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which remains finite for k̂ as long as (1−K)(θ− 1) > 0 and so, since 0 < K < 1,

the expansion with α = 1 is consistent only if θ > 1. The corresponding leading

order expression for the actual growth rate ω̂ = ξ̂2 − k̂2 is

ω̂ =

 δ2K2(1−K)2[
(1−K)(θ − 1)k̂ + 2

]2 − 1

 k̂2. (3.5.31)

Figure 3.14(b) shows a plot of the perturbation growth rates ω̂ and illustrates how

well the asymptotic result (3.5.31) captures the behaviour of ω̂ as the Damköhler

numbers become small.

When θ > 1, equation (3.5.31) successfully captures the behaviour of ω̂ and,

in particular, for small k̂ it predicts instability precisely when (3.5.20) holds, and

as k̂ → ∞ the growth rate decays as ω̂ ∼ −k̂2, which is the pure diffusive mode

of decay.

When θ = 1, equation (3.5.31) fails to capture the decay terms which deter-

mine the position of the maximum of ω̂, and it is necessary to seek a different

scaling of k and ξ. To this end, the third possible value of the exponent α is

α = 1/2; we use the scaling

k = Daa
1/2k̄, ω = Daaω̄, ξ = Daa

1/2ξ̄, (3.5.32)

and seek the expansion

ξ̄ = ξ̄0 + ξ̄1Daa
1/2 +O(Daa). (3.5.33)

Substituting this expansion into the dispersion relation (3.5.4), we obtain the

depressed cubic equation

ξ̄3 + ξ̄ − 1
2δK(1−K)k̄ = 0. (3.5.34)

The real root of equation (3.5.34) may be found explicitly using Cardano’s method,

and the corresponding expression for the actual growth rate ω̄ is

ω̄ =


q

2 +
√
q2

4 + 1
27

1/3

+
q

2 −
√
q2

4 + 1
27

1/3


2

− k̄2 +O(Daa
1/2), (3.5.35)

where we have defined q = δK(1−K)k̄/2 to be the coefficient of ξ̄0 in equation

(3.5.34).
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Figure 3.14(c) shows a plot of the perturbation growth rates ω̄ and illus-

trates how well the asymptotic result (3.5.31) captures the behaviour of ω̄ as the

Damköhler numbers become small.

In summary, we have shown that, while the stability of the system depends

on the Damköhler numbers, in the limit in which both Damköhler numbers be-

come small, while their ratio remains of order unity, the stability of the system

depends instead on the parameter θ. For θ < 1, so that the surface tension

depends principally on the surface concentration, instabilities occur at wavenum-

bers of order unity, corresponding to preferred wavelengths of roughly an order

of magnitude greater than the thickness of the surface layer, and can do so even

when the system remains stable as k → 0. In contrast, when θ ≥ 1, the preferred

wavenumbers k decrease along with the Damköhler numbers; thus the long-wave

stability criterion (3.5.20) continues to capture the behaviour of the system, and

the preferred wavelengths of instabilities become much larger than the thickness

of the surface layer.

3.5.5 The Infinite-Depth Limit, d→∞

In all of the previous parts of this section 3.5 we obtained results for the infinite-

depth problem by a priori postulating an infinitely deep layer. Alternatively,

we may seek asymptotic solutions to the general finite-depth problem in the

infinite-depth limit d → ∞. Solving the general finite-depth dispersion relation

(3.3.29) numerically, we typically find that if 0 < K < 1 then instability is

possible for a range of small k values, whereas if K > 1 then no instability

occurs. This is also typical of the infinite-depth problem. By postulating an

infinitely deep layer, we obtained a simplified dispersion relation (3.5.4) and saw

that the small-k expansion of ξ (and therefore of ω) is consistent only when

0 < K < 1; we therefore focussed only on the anti-surfactant case. In this

section, we also consider the surfactant case K > 1, in the limit as the depth of

the layer becomes infinite, i.e., we take the limit d→∞ in equation (3.3.29).

The form of the exponential terms in equation (3.3.29) makes it natural to

consider four distinguished limits, depending on the combination of k, kd, ξ, and
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ξd that is taken to remain finite and non-zero in this limit.

Case 1: <(ξ) and k remain finite and non-zero as d→∞

This is the case implicitly considered in all of the previous parts of section 3.5

by an a priori postulation of an infinitely deep body of fluid. In this limit we

may approximate all of the hyperbolic terms in (3.3.29) by exponential terms.

We must consider the cases <(ξ) ≶ 0 separately in order to discard the correct

exponential terms; combining the results we find that the dispersion relation

(3.3.29) reduces to

2ξ3sgn(ξ) + 2DadKξ
2 + [(1−K)(θ − 1)k + 2Daa] sgn(ξ)ξ −DaaK(1−K)k

+O
(
e−2kd, e−2sgn(ξ)ξd

)
= 0, (3.5.36)

where sgn(ξ) = ±1 if <(ξ) ≶ 0.

If <(ξ) > 0 then, as we have seen in section 3.5.3, only the regime 0 < K < 1

permits consistent solutions for long waves. Alternatively, if <(ξ) < 0 then by

defining ξ′ = −ξ we again find that there are consistent solutions for long waves

only when 0 < K < 1. We conclude that when K > 1, in order to find consistent

solutions across all k we must consider a different distinguished limit.

Case 2: <(ξ) and kd remain finite and non-zero as d→∞

We now consider the possibility that ξ remains of order unity (maintaining the

possibility that ω = O(1)) as d → ∞, but that this occurs only for very long

waves. We thus define κ = kd and set κ = O(1) as d → ∞. Again considering

the cases <(ξ) ≶ 0 separately we reduce the dispersion relation (3.3.29) to

(
ξ3 + ξ2sgn(ξ)DadK + Daaξ

)
(cosh(κ) sinh(κ)− κ) +O

(1
d
, e−2sgn(ξ)ξd

)
= 0.

(3.5.37)

Since we are not interested in the root corresponding to ξ = 0, and the factor

cosh(κ) sinh(κ)−κ) is strictly positive for κ > 0, we conclude that ξ must satisfy

the quadratic equation

ξ2 + ξsgn(ξ)DadK + Daa = 0. (3.5.38)
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Again considering separately the cases sgn(ξ) = ±1, we conclude that there

are no consistent solutions in this distinguished limit for any positive value of

K. In the case sgn(ξ) = 1, equation (3.5.38) is a quadratic equation with all

positive coefficients and therefore all roots have negative real part, inconsistent

with the assumption that sgn(ξ) = 1. In the case sgn(ξ) = −1, all roots of

equation (3.5.38) have positive real part, inconsistent with the assumption that

sgn(ξ) = −1.

Case 3: ξd and k remain finite and non-zero as d→∞

We now define Ξ = ξd, where Ξ = O(1). In this case the dispersion relation

(3.3.29) reduces to

[
kd2(1−K)(θ − 1) + 2Daad

2 + 2Ξ2
]

Ξ sinh(Ξ)

+ DadKd
[
(K − 1)kd2 + 2Ξ2

]
cosh(Ξ) +O

(
e−2kd

)
= 0. (3.5.39)

As d → ∞ the dominant terms are those in d3, and so the dispersion relation

reduces further to cosh(Ξ) = 0, with solutions

Ξ =
(
n+ 1

2

)
π for n ∈ Z. (3.5.40)

The solution for the actual growth rate is then

ω = −k2 −
(
n+ 1

2

)2 π2

d2 , (3.5.41)

which describes stable modes, independent of K and decaying a little faster than

the rate ω = −k2 set by pure diffusion of a vertically constant perturbation.

Crucially, when we take the limit d → ∞ all of these modes collapse on to the

pure diffusive mode. The loss of these modes represents a degeneracy in the

problem, which is important only if no other modes exist.
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Case 4: ξd and kd remain finite and non-zero as d→∞

In this final case, we set Ξ = ξd and κ = kd as before, and the dispersion relation

(3.3.29) reduces to

DadK(K − 1)κ
[
sinh2(κ)− κ2

]
cosh(Ξ)

+ 2Daa [cosh(κ) sinh(κ)− κ] Ξ sinh(Ξ) +O
(1
d

)
= 0. (3.5.42)

Rearranging then yields

Ξ tanh(Ξ) ∼ DadK(1−K)
2Daa

κ
(
sinh2(κ)− κ2

)
cosh(κ) sinh(κ)− κ. (3.5.43)

The function of κ on the right-hand side is strictly positive for κ > 0, so the sign

of the left-hand side is identical to the sign of 1 − K. Hence, it can be shown

that for 0 < K < 1 we obtain modes for which Ξ ∈ R+ and thus ω > −k2:

these modes persist in the limit d → ∞, although they occur at wavelengths

that scale with d, while the growth rates scale with 1/d2. For K > 1, we must

seek imaginary solutions for Ξ. We may write Ξ = iχ so that the left-hand side

becomes −χ tan(χ), and so we obtain a spectrum of modes with ω ∼ −κ2/d2 −

χ2/d2 < −k2.

The overall conclusion from this asymptotic analysis is that although the

finite-depth stability problem is well posed for both surfactant and anti-surfactant

solutions, the limit d → ∞ is degenerate. Only a particular family of modes

survives in this limit, and this family is available only for anti-surfactants, 0 <

K < 1, for which it provides the dominant mode.

The modes that degenerate in the limit d → ∞ do so because their spatial

scale is naturally set by the depth of the layer, and becomes ill-defined in this

limit. In contrast, the bulk concentration field for the non-degenerating modes

has a boundary layer structure and the depth of the layer becomes irrelevant.

Since, from equation (3.3.5), the thickness of any concentration boundary layer

must scale as ξ =
√
ω + k2, boundary layers can occur only when <(ω) > −k2,

i.e., when the concentration perturbation is not decaying as rapidly as it would

by pure diffusion. To resist this diffusive decay a destabilizing mechanism must
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Figure 3.15: Growth rates of perturbations ω as a function of the wavenumber k in

the infinite-depth regime (dash), and the general finite-depth regime with dimensionless

layer depth d = 103 (solid), and with K = 0.5, θ = 1/(1 − K) = 2, and all other

parameter values given by Table 3.2.

act near or at the free surface, and thus perturbations with this structure are

available only for anti-surfactants.

3.6 General Finite-Depth Case

We now investigate the effects of finite depth on the stability and instability that

has been analysed in the previous sections. The general-finite depth dispersion

relation (3.3.29) is not analytically tractable, but may be readily solved numer-

ically. For the remainder of this chapter we choose the velocity scale U∗ = U∗Ma

and L∗ = L∗Ps so that Ma = Ps = Pb = 1, unless otherwise stated.

Figure 3.15 shows a comparison between the growth rate of the unstable

mode in the infinite-depth regime (dashed), and the finite-depth regime (solid)

with a dimensionless layer depth d = 103, corresponding to a layer of dimensional

depth d∗ = O(10−6)− O(10−5) m. In particular, it shows that the infinite-depth

regime is a good approximation to the more general finite-depth regime, even
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for dimensional layer depths that might not intuitively be considered particularly

large. The approximation offered by the infinite-depth regime performs well for

any wavenumber k, with the exception of near k = 0, where the qualitative

behaviour predicted by the infinite-depth regime is different from the qualitative

behaviour seen in the finite-depth problem.

For small enough wavenumbers k, a layer of finite depth may also behave in an

oscillatory manner, i.e., the growth rate ω will have a non-zero imaginary part.

However, this oscillatory behaviour occurs only for wavenumbers that satisfy

kd� 1, and is an inherently long-wave phenomenon. We therefore delay detailed

discussion of the oscillatory behaviour until we have constructed the appropriate

thin film approximation of our model, which we do in Chapter 4. In addition, a

brief discussion of the oscillatory behaviour for a layer of general finite depth is

given in Appendix A.

3.6.1 Marginal Stability Analysis: Effect of Finite Depth

In order to investigate the effects of finite depth on the stability of the fluid layer,

we perform a marginal stability analysis similar to that in section 3.5.1, but with

finite values of d. Assuming that the principle of exchange of stabilities holds,

i.e., that ω = 0 in the marginal state, we find that capillarity has no effect on the

onset of instability. In other words, the capillary number will not appear in any

calculations or results in this section, since it always appear multiplied by ω in

the dispersion relation (3.3.29).

Figures 3.16–3.18 show marginal stability curves for several values of the di-

mensionless layer depth d (thin solid and thin dashed lines), along with the

marginal curve in the infinite-depth case (thick solid), the latter of which cor-

responds exactly to the curves given in Figure 3.9.

Figures 3.16–3.18 show that for any finite value of d above a critical value,

which we denote by dcrit, the maximum values of the corresponding marginal

stability curves occur for k 6= 0. For d ≤ dcrit, the maximum values occur at k = 0:

the dashed curve in each of the plots given in Figures 3.16–3.18 corresponds to

d = dcrit. The dotted curve tracks the maxima of each of the thin solid curves.
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Figure 3.16: Marginal stability curves for the advective Damköhler number Daa

as a function of the wavenumber k as d is increased. Thin solid lines correspond to

finite-values of d, the dashed line corresponds to d = dcrit ' 17, the thick solid line

corresponds to the singular limit d→∞, and the dotted line follows the maximum of

the marginal stability curves. For each curve, K = 0.5, θ = 1 and all other parameter

values are given by Table 3.2. The arrow denotes the direction of increasing d, for

d = 10, 13, 17.04 (dashed line), 20, 25, 30, 50, 75, 150, 500.

Finally, the thick solid curve corresponds to the infinite-depth limit d→∞.

As the asymptotic analysis presented in section 3.5.5 suggests, the limit d→

∞ is degenerate, and does not behave as might näıvely be expected. The same

is true in Figures 3.16–3.18 in which the limit d → ∞ is singular. The value

of each finite-d marginal curve (the thin solid curves) at k = 0 is monotonically

increasing with d, and appears to converge to some limit as d becomes large.

However, in the limit d → ∞, the small k behaviour suddenly changes and the

value at k = 0 in this limit is different from what the limiting value appears to

be for large but finite values of d. The limit d → ∞ is therefore singular, and

this behaviour may be a manifestation of the degeneracy that is inherent in the

infinite-depth limit.

Figure 3.16 shows the effect of finite depth on the marginal stability curve for
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the advective Damköhler number Daa. For any finite d, the small k behaviour of

Daa is

Daa ∼
1
4DadMaK(1−K)− DadK

d
. (3.6.1)

Taking the limit d→∞ in (3.6.1), we see that

Daa →
1
4DadMaK(1−K), (3.6.2)

and comparing this to the small k limit of Daa obtained in the infinite-depth

case given by (3.5.7), we see the singular behaviour of the large d limit. As d

is increased, the system becomes more unstable, but the region of instability is

limited by that of the infinite-depth case, i.e., the region cannot extend beyond

the thick solid curve, as shown in Figure 3.9(a).

The dashed curve, corresponding to the value d = dcrit splits the curves below

with d < dcrit, which are qualitatively similar to the infinite-depth case, from

those above with d > dcrit, but excluding the case d→∞, in which the maxima

occur for a non-zero value of k. The value of dcrit may be determined in the

long-wave limit k → 0 as the value of d which satisfies

∂2Daa

∂k2

∣∣∣∣∣
k=0

= 0, (3.6.3)

and while dcrit may easily be determined analytically, we omit the expression for

brevity; in the case shown in Figure 3.16, this value is dcrit ' 17. This corresponds

to a dimensional layer depth of d = O(10−8)−−O(10−7)m.

Figure 3.17 shows the effect of finite depth on the marginal stability curve

for the diffusive Damköhler number Daa, and the description of Figure 3.16 also

applies here. For any finite d, the long-wave k → 0 behaviour of Dad is

Dad ∼
4Daad

K (Mad(1−K)− 4) . (3.6.4)

In the case shown in Figure 3.17, dcrit ' 12.1.

Figure 3.18 shows the effect of finite depth on the marginal stability curve for

the equilibrium rate constant K. The description of Figure 3.18 is qualitatively

different from that of Figures 3.16 and 3.17. For any finite d, there is a “bubble” of

instability that, depending on the particular value of each other parameter, may
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Figure 3.17: Marginal stability curves for the diffusive Damköhler number Dad as

a function of the wavenumber k as d is increased. Thin solid lines correspond to

finite-values of d, the dashed line corresponds to d = dcrit ' 12.1, the thick solid line

corresponds to the singular limit d→∞, and the dotted line follows the maximum of

the marginal curves. For each curve, K = 0.5, θ = 1 and all other parameter values

are given by Table 3.2. The arrow denotes the direction of increasing d, for d = 10, 13,

17.04 (dashed line), 20, 25, 30, 50, 75, 150, 500.

either be connected to the K-axis, or be completely detached from it. Choosing

d such that there is a maximum for non-zero k in the Daa marginal curve (or

equivalently, a minimum for non-zero k in the Dad marginal curve), there are

values of Daa such that perturbations with a small enough wavenumber k are

stable, while a range of non-zero k is unstable. For example, choosing d such

that the Daa marginal curve is given by the top-most thin solid curve in Figure

3.16, for Daa = 0.04 the K marginal curve is a “detached bubble”, such as the

thin solid curves in Figure 3.18. On the other hand, if Daa = 0.02, then the K

marginal is a “bubble” that touches the K-axis, such as the thick solid curve in

Figure 3.18.

For any finite d, there will always be a maximum (or minimum) in each of

the marginal curves that occurs at non-zero k. In particular, the maximum
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Figure 3.18: Marginal stability curves for the equilibrium rate constant K as a func-

tion of the wavenumber k as d is increased. Thin solid lines correspond to finite-values

of d, and the thick solid line corresponds to the singular limit d→∞. For each curve,

θ = 1 and all other parameter values are given by Table 3.2. The arrow denotes the

direction of increasing d, for d = 15, 20, 25, 30, 50, 75, 150, 500.

(minimum) will always occur at k = O(1/d), as this is the magnitude of the

wavenumber for which the infinite-depth regime cannot approximate the finite-

depth regime particularly well. In the limit d → ∞, the maximum (minimum)

squeezes onto the vertical axis, and therefore occurs at k = 0. As mentioned

previously, this singular behaviour may be a manifestation of the degeneracy

present in the infinite-depth regime.

3.6.2 The Long-Wave Limit of the Finite-Depth Problem

For any finite value of the layer depth d the behaviour of the growth rate ω near

k = 0 is different for the general finite-depth regime and the infinite-depth regime.

To determine exactly what differences there are between these two regimes, we

investigate the long-wave limit of the general finite-depth problem, and compare

the behaviour that is obtained in this limit with that obtained in the correspond-

ing limit of the infinite-depth regime, as given in section 3.5.
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When k = 0, the dispersion relation (3.3.29) reduces to either

ω = 0 (3.6.5)

or
KDad

√
ω

(Daa + ω) cosh(
√
ωd) + sinh(

√
ωd) = 0, (3.6.6)

the latter of which has no solutions for which ω > 0, but does have the solution

ω = 0 which we expect to be the value of the possibly unstable modes at k = 0.

In the limit of infinite depth d → ∞, equation (3.6.6) reduces to the second

equation in (3.5.14) (with ξ =
√
ω, and as long as ω = O(1)), as expected.

Equation (3.6.6) has infinitely many solutions for which ω ≤ 0, corresponding

to the infinite series of diffusive modes discussed in section 3.4.3, but modified by

the layer depth, and by the bulk–surface flux, though it is not possible to obtain

these solutions analytically.

We seek a näıve asymptotic expansion for ω of the form

ω = ω2k
2 + ω4k

4 +O(k5). (3.6.7)

Substituting this ansatz into equation (3.6.6) and expanding for small k, we

obtain two solutions for the leading order behaviour of ω, with one solution

corresponding to the dominant mode, and the other to the possibly unstable

sub-dominant mode.

As k → 0, the dominant mode satisfies

ω = dDaa +KDad (1− d (1−K))
dDaa +KDad

k2 +O(k4), (3.6.8)

and the sub-dominant mode satisfies

ω = 1
12

( 1
Ca + 1−K

) 4dDaa +KDad (4− d (1−K))
dDaa +KDad (1− d (1−K)) k

4. (3.6.9)

Figure 3.19 shows a comparison between the exact growth rates, given as solu-

tions to (3.3.29), and the small k asymptotic approximation to the dominant and

sub-dominant modes, given by (3.6.8) and (3.6.9), respectively.

From the leading order behaviour of the two modes that can be unstable,

given in equations (3.6.8) and (3.6.9), it is trivial to determine when each of the
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Figure 3.19: Comparison between the exact growth rates ω (solid) and the small k

asymptotic approximation to the dominant and sub-dominant modes (dashed) in the

case where (a) δ = 1 < δcrit so that both modes are stable, (b) δcrit < δ = 10 < δ∗,

so that both modes are unstable, (c) δ = 20 > δ∗, so that only the dominant mode

is stable. All other parameters are given in Table 3.2, with d = 1000, K = 0.5,

θ = 1/(1−K) = 2.
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modes will become unstable upon varying each of the parameters. In particular,

the value of the ratio δ = Dad/Daa required for instability is

δcrit = d

K (d(1−K)− 1) (3.6.10)

for the dominant mode, and

δ∗ = 4d
K (d(1−K)− 4) (3.6.11)

for the sub-dominant mode. For the parameter values given in Table 3.2, and for

d = 1000, these critical values are δcrit ' 4.01 (δcrit = 4 in the limit d→∞), and

δ∗ ' 16.13 (= 16 in the limit d→∞).

For δ < δcrit the system is stable for small k, i.e., both modes are negative.

For δcrit < δ < δ∗ both modes are unstable, i.e., both modes are positive. For

δ > δ∗, only the dominant mode is unstable.

In the infinite-depth limit it we showed that there is only one mode that can

be unstable, and the critical value of δ required for instability is given by equation

(3.5.20). In the limit as d→∞, equations (3.6.10)–(3.6.11) become

δcrit = 1
K(1−K) , (3.6.12)

δ∗ = 4
K(1−K) , (3.6.13)

which are half and twice, respectively, of the value obtained in the infinite-depth

limit, once again highlighting the singular nature of this limit.

It is also possible to obtain asymptotic approximations to the behaviour of

the sub-dominant diffusive modes; however, since these modes are relatively un-

interesting (i.e., always stable), we omit these approximations.

3.7 Summary

In this Chapter, we performed a linear stability analysis of the dimensionless

system of equations describing the flow of a two-dimensional, initially quiescent

layer of surfactant or anti-surfactant solution. In the special cases of a pure

solvent and of a “perfectly soluble” anti-surfactant solution, or when the solute
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is a surfactant, the system is unconditionally stable; this agrees with previous

studies (see, for example, [35,66,107]). However, in the special case of an infinitely

deep layer, and for a general finite-depth layer, of anti-surfactant solution, the

layer can be linearly unstable to perturbations of certain wavenumbers. Assuming

that the principle of exchange of stabilities holds, a marginal stability analysis

was performed, and instability conditions on the dimensionless parameters in

the system were derived. The effects of finite depth were considered when the

principle of exchange of stabilities is assumed to hold and it was found that the

region of instability in parameter space is largest in the infinite-depth limit. In

section 3.5.2 we postulated a mechanism for the instability and noted that the

system either the must move towards a nonlinear steady state, which could be

determined through a nonlinear stability analysis, or that other factors must be

important to the long time evolution of the system, such as gravity or inertia.

Physically, this instability can occur even when there is no perturbation of the

free surface itself, and we noted that one experimental hallmark could be the

precipitation of solute at or near the free surface, even if no deformation of the

free surface occurs.
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Chapter 4

Thin-Film Formulation and

Stability Analysis

4.1 Introduction

In this Chapter we formulate the model describing the evolution of a thin film of

surfactant or anti-surfactant solution, and perform a linear stability analysis of

an initially quiescent thin film, similar to the analysis performed in Chapter 3 for

a layer of finite or infinite depth. In the following, the substrate is taken to be

at z∗ = 0, instead of at z∗ = −d∗ as in the more general problem, and we choose

the vertical length scale to be the typical layer depth. This allows us to write all

length scales in terms of the aspect ratio and the horizontal length scale, both

to be chosen at a later time. We also choose θ = 1/(1 −K) so that the surface

tension depends solely on the surface excess of solute since, as Figure 3.9 shows,

the value of θ does not significantly alter the results of the linear stability analysis,

especially in the long-wave limit. It might therefore be reasonably expected that

the value of θ matters even less in the thin-film limit.

The mathematical formulation of the model describing the flow of a thin film

of fluid is somewhat different from the formulation of a model describing a layer of

arbitrary depth and aspect ratio, such as we have done in Chapter 3, because the

horizontal and vertical length scales of a thin film are necessarily different, which

is not the case in the general formulation. There is a crucial small parameter,
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namely the aspect ratio ε = H∗/L∗, which is the ratio of the vertical length

scale H∗ to the horizontal length scale L∗. For the general formulation we have

implcitly chosen ε = 1, but to describe a thin film of fluid the appropriate choice is

ε� 1, so that the horizontal length scale is much larger than the vertical length

scale. This is the classical lubrication or thin-film approximation, a detailed

discussion of which can be found in, for example, the review by Oron et al. [67].

4.2 Non-Dimensionalisation

Using natural choices, and with the general scalings (3.2.1) as a guide, we non-

dimensionalise the system by

(x∗, z∗, h∗) = (L∗x, εL∗z, εL∗h), (u∗, w∗) = (U∗u, εU∗w),

t∗ = L∗

U∗
t, p∗ = µ∗U∗

ε2L∗
p, T∗ = µ∗U∗

ε2L∗
T, σ∗ = σ∗solvσ,

Γ∗ = η∗c∗i Γ, c∗ = c∗i c, s∗ = η∗c∗i s,

(4.2.1)

where L∗ is the characteristic horizontal length scale, H∗ is the characteristic

vertical length scale, and U∗ is the characteristic horizontal velocity scale. We

have defined ε = H∗/L∗, the aspect ratio of the film, and will be taking the limit

ε→ 0 in the usual thin-film approximation. The vertical velocity scale W ∗ = εU∗

is a direct consequence of the continuity equation. As in the previous Chapter, the

particular choice of U∗ will follow either from the normal stress condition when

we assume that mean surface tension is important and thus set an appropriate

capillary number equal to unity, or from the tangential stress condition when we

assume that surface tension gradients are important and thus set an appropriate

Marangoni number equal to unity.

4.3 Geometry of the Free Surface

In the formulation of the present thin-film model three key geometrical quantities

arise, namely the outward unit normal n̂ to the free surface, the unit tangent t̂

to the free surface (in the (x, z)-plane), and the surface gradient operator ∇s.

94



Using (4.2.1), we obtain, at leading order in ε, expressions for each of these in

turn, in the thin-film limit ε → 0. We retain any higher order terms that might

conceivably play a role at leading order; this is done a posteriori, as it is difficult

to determine in advance which terms may appear in the leading order problem.

To O(ε) in the thin-film limit the unit normal becomes

n̂ =
(
−ε∂h

∂x
, 1
)

+O(ε2), (4.3.1)

and the unit tangent becomes

t̂ =
(

1, ε∂h
∂x

)
+O(ε2), (4.3.2)

with which the surface gradient operator becomes

∇∗s = 1
L∗

[(
∂

∂x
+ ∂h

∂x

∂

∂z
, ε
∂h

∂x

∂

∂x

)
+O(ε2)

]
. (4.3.3)

4.4 Evolution of the Film Thickness

The first evolution equation we derive is that governing the evolution of the film

thickness, h∗(x∗, t∗). The general method of deriving this equation is as follows

(see, for example, Craster and Matar [15] and/or Oron et al. [67]). From the

z-component of the Navier–Stokes equation, along with the normal stress bound-

ary conditions at the free surface, an expression for the leading order pressure

p∗(x∗, t∗), which will be independent of z∗, is obtained. Using this expression for

the pressure and making use of the tangential stress boundary condition at the

free surface, along with the no-slip and no-penetration conditions at the solid

substrate, an expression for the leading order horizontal velocity u∗(x∗, z∗, t∗) is

obtained from the x-component of the Navier–Stokes equation. This expression

for the horizontal velocity is then substituted into an integrated form of the kine-

matic condition, leading to the final evolution equation for the film thickness

h∗(x∗, t∗). In what follows, we go through this process in detail, first putting the

equations and boundary conditions into dimensionless form.
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4.4.1 Film Thickness: Governing Equations

The continuity equation (2.6.1) scales straightforwardly to give

∂u

∂x
+ ∂w

∂z
= 0. (4.4.1)

The x-component of the Navier-Stokes equation becomes

ε2
(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= 1

Re

(
−∂p
∂x

+ ε2∂
2u

∂x2 + ∂2u

∂z2

)
, (4.4.2)

where

Re = ρ∗U∗L∗

µ∗
(4.4.3)

is the Reynolds number. If the quantity ε2Re (often called the reduced Reynolds

number) satisfies ε2Re � 1, that is, if Re is not too large, then we are free to

neglect all terms that are O(ε2) and all terms that are O(ε2Re); otherwise, if

Re = O(ε−2) or larger, additional advective terms will have to be retained. If,

for now, we assume that ε2Re� 1 (we will justify this in section 4.4.3), then the

leading order x-component is obtained by neglecting any terms that are O(ε2) or

smaller, giving
∂p

∂x
= ∂2u

∂z2 . (4.4.4)

The z-component of the Navier–Stokes equation (2.6.2) is non-dimensionalised in

the same way as the x-component to give

ε4
(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= 1

Re

(
−∂p
∂z

+ ε4∂
2w

∂x2 + ε2∂
2w

∂z2

)
, (4.4.5)

Since we have assumed that ε2Re� 1, the leading order z-component is simply

∂p

∂z
= 0. (4.4.6)

4.4.2 Film Thickness: Boundary Conditions

The no-slip and no-penetration conditions (2.6.5) on the solid substrate are triv-

ially scaled to

u = 0, w = 0 on z = 0. (4.4.7)
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The kinematic condition (2.6.8) also scales trivially to

∂h

∂t
+ u

∂h

∂x
=w on z = h. (4.4.8)

As mentioned in Chapter 2, the kinematic condition (4.4.8) can also be written

in its integrated form

∂h

∂t
+ ∂Q

∂x
= 0, where Q(x, t) =

∫ h(x,t)

0
u dz, (4.4.9)

with Q = Q(x, t) denoting the dimensionless horizontal volume flux (per unit

width in the y-direction) in the layer. This form of the kinematic condition is

more convenient to use when we come to the final step in the derivation of the

evolution equation for the film thickness.

The final two boundary conditions required are the normal and tangential

stress balances. Both of these boundary conditions involve the total stress tensor

T∗, given in matrix form as

T∗ =


−p∗ + 2µ∗∂u

∗

∂x∗
µ∗
(
∂u∗

∂z∗
+ ∂w∗

∂x∗

)

µ∗
(
∂u∗

∂z∗
+ ∂w∗

∂x∗

)
−p∗ + 2µ∗∂w

∗

∂z∗

 . (4.4.10)

Substituting the scalings (4.2.1) into T∗ we obtain

T =


−p+ 2ε2∂u

∂x
ε
∂u

∂z
+ ε3∂w

∂x

ε
∂u

∂z
+ ε3∂w

∂x
−p+ 2ε2∂w

∂z

 . (4.4.11)

Retaining terms that are O(1/ε2) and O(1/ε) since, a posteriori, these are the

only terms that arise in the leading order problem, we write the scaled stress

tensor as

T =


−p ε

∂u

∂z

ε
∂u

∂z
−p

+O(ε2). (4.4.12)

The equation of state (2.6.12), recalling that we have set θ = 1/(1−K), is scaled

to give

σ = 1− αΓ, (4.4.13)
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where

Γ = s− c (4.4.14)

is the dimensionless form of the surface excess, and where we have defined

α = R∗T ∗η∗c∗i
σ∗solv

(4.4.15)

to be a dimensionless parameter controlling the importance of the variation of

surface tension with the surface excess Γ, specifically dσ/dΓ = −α. The leading

order tangential stress balance at the free surface (2.6.7), using the identity t̂·∇s =

t̂ · ∇, becomes
∂u

∂z
= −Ma

[
∂s

∂x
−
(
∂h

∂x

∂c

∂z
+ ∂c

∂x

)]
(4.4.16)

at leading order, where

Ma = εR∗T ∗η∗c∗i
µ∗U∗

(4.4.17)

is the appropriate Marangoni number similar to that defined in (3.2.15), but

with an extra factor of ε, reflecting the effect of the aspect ratio of the film on the

relative strength of surface-tension-gradient forces. We assume that Ma = O(1),

so that there is a non-trivial balance of terms in the tangential stress balance

(4.4.16).

The leading order normal stress balance at the free surface (2.6.6) is

−p = 1
Ca

∂2h

∂x2 (1− αΓ) (4.4.18)

to leading order, where

Ca = µ∗U∗

ε3σ∗solv
(4.4.19)

is the appropriate capillary number. We may write the Marangoni number in

terms of the capillary number as

Ma = α

ε2
1

Ca . (4.4.20)

In order to retain both mean surface tension and surface-tension-gradient effects

at leading order, we require that both Ma and Ca be O(1) which, from (4.4.20),

is consistent only when α = O(ε2), which is reasonable when the typical concen-

tration is c∗i = O(1) mol m−3. In other words to retain both effects to leading
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order, we require that the variation of surface tension is small; physically, this is

generally true, regardless of the underlying mechanism of surface-tension varia-

tion. Thus, if we assume that α = O(ε2), then the leading order normal stress

balance (4.4.18) becomes

−p = 1
Ca

∂2h

∂x2 . (4.4.21)

Note that, because the variation in surface tension is small, this leading order

boundary condition now contains no effects of the variation of surface tension,

and only the effects of mean surface tension appear.

4.4.3 Film Thickness: Dimensionless Numbers

Throughout this scaling process we have made assumptions concerning the sizes

of dimensionless parameters. In particular, we have assumed that ε2Re � 1,

Ma = O(1), and Ca = O(1). In order to determine values for these numbers

we must choose a specific velocity scale, which we do by setting Ca = 1, giving

U∗ = ε3σ∗solv/µ. Using the values given in Table 2.3, and choosing a typical

horizontal length scale to be, say, L∗ = 10−2 m, the reduced Reynolds number is

ε2Re = ε5σ∗solvρ
∗L∗

µ∗2
' ε5 × 106. (4.4.22)

Thus, choosing an aspect ratio of ε � 0.1 ensures that ε2Re � 1, and justifies

neglect of O(ε2Re) terms in the Navier–Stokes equation. Taking an aspect ratio

of ε = 10−2 for the moment, the Marangoni number is

Ma = α

ε2 = R∗T ∗η∗c∗i
σ∗solvε

2 ' c∗i ×
(
1 m3 mol−1

)
. (4.4.23)

Thus, for Ma = O(1) we require that the base-state (or initial) bulk concentration

is c∗i = O(1) mol m−3.

4.4.4 Film Thickness: Evolution Equation

Now that we have dealt with the thin-film reduction of the hydrodynamic equa-

tions and boundary conditions, we combine these into a single PDE governing the

evolution of the film thickness. For the remainder of this section we will switch
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to suffix notation for partial derivatives. For ease of reference, a summary of the

pertinent leading order equations and boundary conditions using this notation is

as follows. Recall that we have now chosen the horizontal velocity scale to be

such that Ca = 1.

Equations

• Conservation of mass,

ht +Qx = 0. (4.4.24)

• Navier–Stokes equation, x-component,

px = uzz. (4.4.25)

• Navier–Stokes equation, z-component,

pz = 0. (4.4.26)

Boundary Conditions

• No slip,

u = 0 on z = 0. (4.4.27)

• No penetration,

w = 0 on z = 0. (4.4.28)

• Normal stress balance,

p = −hxx on z = h. (4.4.29)

• Tangential stress balance,

uz = −Ma [sx − (cx + hxcz)] on z = h. (4.4.30)

Equation (4.4.26) shows that the pressure is independent of z to leading order;

then the normal stress boundary condition (4.4.29) gives

p = −hxx (4.4.31)
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throughout the layer. Substituting this expression for p into the x-component of

the Navier–Stokes equation (4.4.25) and applying the no-slip condition (4.4.27)

we obtain

u = −hxxx2 z2 + Az, (4.4.32)

where the unknown function A(x, t) appears as a consequence of the integration.

Applying the tangential stress balance boundary condition (4.4.30) to determine

A, we obtain

u = hxxxz
(
h− 1

2z
)
− zMa

[
sx − (cx + hxcz)

]
. (4.4.33)

The flux is then

Q =
∫ h

0
u dz = 1

3hxxxh
3 − Ma

2 h2
[
sx − (cx + hxcz)

]
. (4.4.34)

Substituting this into (4.4.24) we obtain

ht +
{
hxxxh

3

3 − Mah2

2 [sx − (cx + hxcz)]
}
x

= 0, (4.4.35)

which is the evolution equation for the film thickness.

4.5 Evolution of Surface Concentration

We now derive the equation describing the evolution of the surface concentration,

s(x, t). Substituting the scalings (4.2.1) into (2.4.4), and using the geometric

quantities outlined in section 4.3, we obtain

st + (us)x = 1
Ps
sxx + Daa (Kc− s) , (4.5.1)

where

Ps = U∗L∗

D∗s
= ε3L∗σ∗solv

D∗sµ∗
(4.5.2)

is a surface Péclet number,

Daa = k∗2L
∗

U∗
= k∗2L

∗µ∗

ε3σ∗solv
(4.5.3)

is an advective Damköhler number, and

K = k∗1
k∗2

(4.5.4)
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is an equilibrium rate constant. All three parameters Ps, Daa, and K are assumed

to be O(1). When evaluated at the free surface, the horizontal velocity (4.4.33)

yields

u|z=h = 1
2hxxxh

2 −Mah [sx − (cx + hxcz)] . (4.5.5)

Thus the equation governing the evolution of the surface concentration is

st+
{1

2hxxxh
2s−Mahs [sx − (cx + hxcz)]

}
x
− 1

Ps
sxx−Daa (Kc− s) = 0. (4.5.6)

4.5.1 Evolution of Surface Concentration: Dimensionless

Numbers

Similarly to how dimensionless parameters were treated in section 4.4.3, we have

made the assumptions that Ps = O(1) and Daa = O(1), so that there is a non-

trivial balance of terms at leading order. Again, using the values given in Table

2.3, and taking the horizontal velocity scale based on Ca = 1, the surface Péclet

number is

Ps = ε3L∗σ∗solv
D∗sµ∗

' 7, (4.5.7)

and so Ps can safely be considered O(1). However, the advective Damköhler

number is

Daa = k∗2µ
∗L∗

ε3σ∗solv
' 1015, (4.5.8)

which is very much larger than unity. Since Daa represents the ratio of the rate

of solute desorption to the rate of advection of solute, this suggests that solute

desorption occurs on a much shorter time scale than solute advection. Notwith-

standing the fact that Daa is very large, in the spirit of existing surfactant-based

models (see, for example, [40, 45]), we proceed, for now, under the assumption

that Daa = O(1). While Daa will be formally treated as O(1) for the time be-

ing, we will also analyse the limit as Daa → ∞, in which the system is always

in surface–bulk equilibrium. In this limit, which we consider in section 4.12, no

oscillatory behaviour (such as that discussed in Appendix A) is possible, and so

we consider both the case of finite Daa and the large Daa limit.
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4.6 Evolution of Bulk Concentration

The final governing equation is that describing the evolution of the bulk con-

centration. Using the scalings (4.2.1) the bulk concentration evolution equation

(2.6.3) becomes

∂c

∂t
+ u

∂c

∂x
+ w

∂c

∂z
= 1

Pb

(
∂2c

∂x2 + 1
ε2
∂2c

∂z2

)
, (4.6.1)

where

Pb = U∗L∗

D∗b
= ε3L∗σ∗solv

D∗bµ∗
(4.6.2)

is a bulk Péclet number. Since D∗s and D∗b are of similar magnitude (see discussion

in section 2.5), Ps and Pb are of similar magnitude and so, in particular, Pb is

O(1). The substrate boundary condition (2.6.9) trivially becomes

∂c

∂z
= 0 on z = 0. (4.6.3)

The flux boundary condition (2.6.10) becomes

1
ε2
∂c

∂z
− ∂h

∂x

∂c

∂x
+O(ε2) = −Dad (Kc− s) , (4.6.4)

where

Dad = k∗2η
∗L∗

εD∗b
(4.6.5)

is a diffusive Damköhler number, formally treated as O(1) for the time being.

Proceeding naively, and recalling that Pb = O(1), we neglect all O(ε2) terms

to obtain the following leading order system:

∂2c

∂z2 = 0, (4.6.6)

∂c

∂z
= 0 on z = 0, (4.6.7)

∂c

∂z
= 0 on z = h. (4.6.8)

It is trivial to see that c is independent of z to leading order, i.e., the leading

order bulk concentration is uniform across the layer and is therefore given by
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some function c = c0(x, t). In order to determine c0 it is necessary to go to higher

order; to do this we expand the bulk concentration according to

c(x, z, t) = c0(x, t) + ε2c1(x, z, t) +O(ε4), (4.6.9)

that is, the bulk concentration is uniform across the layer to leading order in

ε2, with an O(ε2) correction which captures the z-variation (i.e., concentration

gradients) across the layer. The expansion (4.6.9) is often presented as a separate

ansatz (see, for example, [40, 45, 107]) and is sometimes called the rapid vertical

diffusion assumption but, in fact, emerges here naturally, without any additional

assumptions. Note that we must also expand h, u, and w in a similar way, but

the expansions of these variables have no bearing on the resulting leading order

system.

Substituting (4.6.9) into the evolution equation (4.6.1) and the two bound-

ary conditions (4.6.3) and (4.6.4), and neglecting O(ε2) terms, the leading order

system is
∂c0

∂t
+ u

∂c0

∂x
= 1

Pb

(
∂2c0

∂x2 + ∂2c1

∂z2

)
, (4.6.10)

∂c1

∂z
= 0 on z = 0, (4.6.11)

∂c1

∂z
= ∂h

∂x

∂c0

∂x
−Dad (Kc0 − s) on z = h. (4.6.12)

Typically in the literature (see, for example, [15, 40]), the next step is to depth-

average equation (4.6.10), i.e., to integrate each term across the layer and then

divide by the depth of the layer. The reasoning that is usually given for this is to

remove the z-dependence from the equation, but this is a misleading explanation.

What we are actually doing is solving this system for c1 and this solution delivers

the evolution equation for the unknown leading order bulk concentration. Inte-

grating (4.6.10) across the layer, keeping in mind that c0 is independent of z, we

obtain ∫ h

0

∂2c1

∂z2 dz =
∫ h

0

{
Pb

(
∂c0

∂t
+ u

∂c0

∂x

)
− ∂2c0

∂x2

}
dz. (4.6.13)

The left-hand side of (4.6.13) integrates trivially and allows us to apply the two

boundary conditions directly, while on the right-hand side of (4.6.13) the only

function with z-dependence is the velocity u which integrates to yield the volume
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flux Q given by (4.4.34). Note that c1 will no longer appear in the problem, and

so the equation obtained involves only the leading order bulk concentration c0.

Performing the integration we obtain

∂c1

∂z

∣∣∣∣∣
z=h
− ∂c1

∂z

∣∣∣∣∣
z=0

= Pb

(
h
∂c0

∂t
+Q

∂c0

∂x

)
− h∂

2c0

∂x2 . (4.6.14)

Applying the two boundary conditions (4.6.11) and (4.6.12) gives the evolution

equation for c0 that we seek:

∂h

∂x

∂c0

∂x
−Dad (Kc0 − s) = Pb

(
h
∂c0

∂t
+Q

∂c0

∂x

)
− h∂

2c0

∂x2 . (4.6.15)

Writing equation (4.6.15) in a form more readily comparable with those appearing

in the literature (e.g., [40]), the evolution of the leading order bulk concentration

is determined by

Pb

{
h
∂c0

∂t
+
[

1
3h
∂3h

∂x3h
3 − Ma

2 h2
(
∂s

∂x
− ∂c0

∂x

)]
∂c0

∂x

}

− ∂

∂x

(
h
∂c0

∂x

)
+ Dad (Kc0 − s) = 0. (4.6.16)

4.6.1 Evolution of Bulk Concentration: Dimensionless Num-

bers

We have once again assumed that the dimensionless numbers in the previous

section are of order unity, i.e., that Pb = O(1) and Dad = O(1). Since Pb ' Ps,

we immediately have that Pb = O(1). Using the values given in Table 2.3, we

have

Dad = k∗2η
∗L∗

εD∗b
' 1011, (4.6.17)

which is very much larger than O(1), as was the case with Daa. This large value

of Dad also has a similar interpretation to the large value of Daa: sorptive effects

are much faster than diffusion of solute. Also, similarly to the way in which we

treat Daa, in the spirit of existing surfactant-based models, we proceed, for now,

under the assumption that Dad = O(1), but will also analyse the limit Dad →∞

in due course.
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4.7 Summary of the Thin-Film Equation

A summary of the leading order system of evolution equations for a thin film of

surfactant or anti-surfactant solution is given below. Governing the evolution of

the film thickness h(x, t) we have

ht +
[
hxxxh

3

3 − Mah2

2 (s− c)x

]
x

= 0, (4.7.1)

governing the evolution of the surface concentration s(x, t) we have

st +
[1
2hxxxh

2s−Mahs (s− c)x
]
x
− 1

Ps
sxx −Daa (Kc− s) = 0, (4.7.2)

and governing the evolution of the (leading order) bulk concentration c(x, t) we

have

Pb

(
hct +

[
1
3hxxxh

3 − Ma
2 h2 (s− c)x

]
cx

)
− (hcx)x + Dad (Kc− s) = 0. (4.7.3)

Note that we have dropped the subscript on c0 for simplicity of notation and so,

hereafter, any c appearing denotes the leading order bulk concentration, which is

uniform across the fluid layer.

We also summarise the definitions of all of the dimensionless parameters, and

the values that we take for them in general, in Table 4.1. Note that the values

taken for Daa and Dad are significantly smaller than the values that were calcu-

lated in sections 4.5.1 and 4.6.1, respectively. These particular values are chosen

to be on the low end of the possible values, and are for illustrative purposes;

increasing the values of these Damköhler numbers further does not qualitatively

change any results and only causes numerical calculations to become more diffi-

cult.

4.8 Linear Stability Analysis of a Thin Film

We now perform a linear stability analysis of the thin-film equations (4.7.1)–

(4.7.3). As in Chapter 3, the base state is taken to be a quiescent layer with a

flat free surface, and with both the bulk and the surface concentrations constant
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Parameter Expression Value Taken

U∗
ε3σ∗solv
µ∗

O(10−7) m s−1

H∗ d∗ O(10−4) m

ε
H∗

L∗
O(10−3)

Pb
U∗L∗

D∗b
10

Ps
U∗L∗

D∗s
10

Daa
k∗2L

∗

U∗
105

Dad
k∗2η

∗L∗

εD∗b
106

Ca 1 1

Ma εR∗T ∗η∗c∗i
µ∗U∗

10

Table 4.1: Dimensionless parameters in the thin-film limit and the values that will

be taken for each using Table 2.1. The horizontal velocity scale U∗ is chosen such that

Ca = 1, and the vertical length scale H∗ is chosen such that d = 1.
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and at their equilibrium values. Again, we make use of the usual normal mode

ansatz of the type (3.3.1), namely,

h(x, t) = 1 + εα(t) exp(ikx), (4.8.1)

s(x, t) = K + εγ(t) exp(ikx), (4.8.2)

c(x, t) = 1 + εβ(t) exp(ikx), (4.8.3)

where α(t), γ(t), and β(t) are the amplitudes of the perturbations to the film

thickness, the surface concentration, and the bulk concentration, respectively, to

obtain the leading order (in the limit ε→ 0) linear system

dα
dt = −1

3k
4α(t)− Ma

2 k2γ(t) + Ma
2 k2β(t), (4.8.4)

dγ
dt = −K2 k

4α(t)−
(

MaKk2 + 1
Ps
k2 + Daa

)
γ(t) +K

(
Mak2 + Daa

)
β(t),

(4.8.5)
dβ
dt = δDaa

Pb
γ(t)−

(
1

Pb
k2 + KδDaa

Pb

)
β(t), (4.8.6)

where again δ = Dad/Daa. In general, equations (4.8.4)–(4.8.6) have solutions
α(t)

γ(t)

β(t)

 = A1v1 exp(ω1t) + A2v2 exp(ω2t) + A3v3 exp(ω3t), (4.8.7)

where the Ai are constants of integration, and the vi are the eigenvectors of

the linear system, with corresponding eigenvalues ω1, ω2, and ω3, which will be

analysed in detail in section 4.9.

As discussed in Chapter 3, a layer of anti-surfactant solution can be unstable if

certain conditions on the parameters are satisfied. This is also true for a thin film,

though the parameter values for which instability occurs are different because of

the different definitions of many of the parameters. For now, we will simply give

the values of each of the ωi in equation (4.8.7) as illustrative solutions to the

linear thin-film problem. Note that the ωi are, in general, complex; this is true

in general and the occurrence of oscillatory behaviour in the finite-depth case is

discussed in Appendix A, where we demonstrate that oscillatory behaviour is an

inherently long-wave phenomenon
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α

t

γ β

t t

(a)

(b) (c)

Figure 4.1: Amplitude of the perturbation to (a) the film thickness, (b) the surface

concentration, and (c) the bulk concentration, for the linear theory with initial condition

α(0) = 0, γ(0) = 1, β(0) = 1, and where Ma = 0.1, Ps = 10, Pb = 10, Daa = 1,

Dad = 10.

Figures 4.1–4.3 show plots of the solutions (4.8.7) for the amplitudes α(t),

γ(t), and β(t), in each case the initial condition being chosen to be α(0) = 0,

γ(0) = 1, and β(0) = 1. In Figure 4.1 we have chosen parameter values such that

the system is monotonically stable and, in particular, we have chosen Ma = 0.1.

In Figure 4.2 we have chosen parameter values such that the system is stable, but

oscillates around the equilibrium state and, in particular, have chosen Ma = 1. In

Figure 4.3 we have chosen parameter values such that the system is monotonically

unstable and, in particular, have chosen Ma = 4. In each of Figures 4.1–4.3 we
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α

t

γ β

t t

(a)

(b) (c)

Figure 4.2: As in 4.1, except that Ma = 1.

have set Daa = 1 and Dad = 10, in order to delineate the early time evolution

from the late time evolution. While these values of the Damköhler numbers are

small compared to the values they might take in reality, the solutions do not

qualitatively depend of the values of the Damköhler numbers, provided that they

are finite (as we will discuss in section 4.12).

In Figures 4.1–4.3, there is a relatively rapid initial change in the amplitudes

γ(t) and β(t), which occurs over a dimensionless time scale of O(1/Daa) (which

is an O(1) timescale for our choice of Daa = 1). This initial behaviour is due to

the effects of the surface–bulk flux, which ensures that the surface and the bulk

concentrations will remain close to surface–bulk equilibrium.

In the case shown in Figure 4.1, corresponding to Ma = 0.1, the solution to
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α

t

γ β

t t

(a)

(b) (c)

Figure 4.3: As in 4.1, except that Ma = 1.

the linear system (4.8.4)–(4.8.6) is

α(t) ' 0.16 exp(−0.1t)− 0.18 exp(−0.3t) + 0.02 exp(−1.7t), (4.8.8)

γ(t) ' 0.72 exp(−0.1t)− 0.04 exp(−0.3t) + 0.32 exp(−1.7t), (4.8.9)

β(t) ' 1.45 exp(−0.1t)− 0.15 exp(−0.3t)− 0.3 exp(−1.7t), (4.8.10)

where all three eigenvalues are real and negative, i.e., the system is monotonically

stable. The solutions (4.8.8)–(4.8.10) make explicit the behaviour of the system:

at short times, all three modes are important, but the mode corresponding to

the eigenvalue ω3 ' −2.3 becomes negligible after a short time. Physically, this

rapidly decaying mode represents the initial decay caused by the flux of solute.

Increasing the Damköhler numbers, that is, increasing the rate at which surface–
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bulk equilibrium is established, causes this mode to decay even faster, but does

not change the qualitative behaviour of the system. In equation (4.8.10) the coef-

ficient of the rapidly decaying mode is negative, which explains the short period

of transient growth seen in Figure 4.1(c). After this short timescale, only the

modes with ω = ω1 ' −0.1 and ω = ω2 '= −0.3 are non-negligible, thereafter

only the mode with ω = ω1 is important, and corresponds to the long-time evo-

lution of the system. Since ω1 is real and negative, the imposed perturbation to

the system will decay monotonically for long time.

Figures 4.1 and 4.2 also show that the amplitudes α(t) and β(t) undergo

some transient growth before settling down in their long-time monotonic decay.

The increase in α(t) is caused by the Marangoni effect induced by the imposed

concentration gradients in the initial condition. The increase in β(t) is due to the

transfer of solute from the surface to the bulk, as mentioned above.

In the case shown in Figure 4.2, corresponding to Ma = 1, the solution to the

linear system (4.8.4)–(4.8.6) is

α(t) ' (−0.11 cos(0.04t) + 5.98 sin(0.04t)) exp(−0.12t) + 0.11 exp(−2.3t),

(4.8.11)

γ(t) ' (0.74 cos(0.04t) + 2.27 sin(0.04t)) exp(−0.12t) + 0.26 exp(−2.3t),

(4.8.12)

β(t) ' (1.15 cos(0.04t) + 4.82 sin(0.04t)) exp(−0.12t)− 0.15 exp(−2.3t),

(4.8.13)

where there is a pair of complex conjugate eigenvalues with <(ω1) = <(ω2) '

−0.12. Since ω1 and ω2 are complex but with negative real part the perturbation

decays for long time, but oscillates about the equilibrium position as it does so.

This happens over a much longer timescale than we have plotted in Figure 4.2, but

would be imperceptible even if the plot range were to be extended. Similarly to

the case in which Ma = 0.1, the mode with the largest eigenvalue ω = ω3 ' −2.3

is rapidly decaying, and will be negligible after a short time, after which the

oscillatory modes with ω = ω1 and ω = ω2 dominate for all time. There is also

similar transient growth in the amplitudes α(t) and β(t), as in the previous case.
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In the case shown in Figure 4.3, corresponding to Ma = 4, the solution to the

linear system (4.8.4)–(4.8.6) is

α(t) ' 4.18 exp(0.05t)− 4.31 exp(−0.07t) + 0.13 exp(−4.0t), (4.8.14)

γ(t) ' 1.46 exp(0.05t)− 0.64 exp(−0.07t) + 0.18 exp(−4.0t), (4.8.15)

β(t) ' 2.25 exp(0.05t)− 1.20 exp(−0.07t)− 0.05 exp(−4.0t), (4.8.16)

where there is one positive eigenvalue ω1 ' 0.05, meaning that the system is

unstable. At short times, all three modes are important, but the mode corre-

sponding to the largest eigenvalue ω3 ' −4.0 rapidly decays. There is also some

transient decay of the perturbations α(t) and γ(t) due to the positive coefficients

of the mode corresponding to the largest eigenvalue ω3 ' −4.0.

4.9 Thin-Film Stability Analysis: Dispersion Re-

lation

Figures 4.1–4.3 offer only illustrations of the type of behaviour that the solutions

(4.8.7) may have. We now investigate exactly what regions of parameter space

lead to particular types of behaviour, be it monotonic or oscillatory in nature, or

whether the system is stable or unstable.

As in Chapter 3, setting the determinant of the coefficient matrix of the system

(4.8.4)–(4.8.6) to zero yields a dispersion relation from which we may obtain the

growth rate ω of perturbations of wavenumber k > 0. In the thin-film regime,

this dispersion relation is simply a cubic polynomial equation in the growth rate

ω:

ω3 + f2ω
2 + f1ω + f0 = 0, (4.9.1)

where the coefficient fi for i = 0, 1, 2 are real-valued functions of the wavenumber

k and of the dimensionless parameters left in the equations, specifically

f0 = k6

12PbPs

[
(MaPsK+4)k2 +4PsDaa +4KDad +MaPsDadK(K−1)

]
, (4.9.2)
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f1 = k2

12PbPs

{
(MaPsPbK + 4Ps + 4Pb)k4

+ [12(MaPsK + 1) + 4Ps(DadK + PbDaa)] k2

+ 12 (PsDaa +KDad + MaPsDadK(K − 1))
}
, (4.9.3)

f2 = 1
12PbPs

[
4PsPbk

4 + 12(MaPsPbK + Ps + Pb)k2

+ 12Ps(PbDaa +KDad)
]
. (4.9.4)

It should be noted that (4.9.1) can be obtained directly from the general finite-

depth dispersion relation (3.3.29) as follows. If we temporarily label all param-

eters appearing in (3.3.29), including the wavenumber and growth rate, with a

subscript ‘g’ (for “general”), and similarly label their thin-film counterparts with

a subscript ‘t’ (for “thin”), then we may write all of the ‘g’ parameters in terms

of the ‘t’ parameters and the aspect ratio ε as follows:

Mag = ε2Mat, Cag = Cat, Ps,g = ε−3`Ps,t,

Daa,g = ε3`Daa,t, Dad,g = ε`Dad,t, Pb,g = ε−3`Pb,t,

kg = `kt, dg = ε
`
dt, ωg = ε3`ωt,

(4.9.5)

where ` = Lg/Lt is the ratio of horizontal length scales between the general

finite-depth and thin-film problems; also although dt = 1, it has been retained

in the above expression for dg for clarity. Substituting (4.9.5) into (3.3.29) and

expanding for small ε, the leading order dispersion relation is exactly (4.9.1)

with fi for i = 0, 1, 2 given by (4.9.2)–(4.9.4). Note that the ratio ` cancels out

completely from the ‘t’ dispersion relation, and thus does not appear in (4.9.1).

Since the dispersion relation (4.9.1) is a cubic polynomial in ω, the roots may

be obtained explicitly, but they cannot be written in any particularly useful form;

however, we can say something about the nature of the three roots.
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4.10 Thin-Film Stability Analysis: Marginal Sta-

bility and Oscillatory Behaviour

We now further investigate the stability of the thin-film system, and elucidate

which parameter regimes will lead to, for example, oscillatory behaviour, or to

instability. To do so, as in Chapter 3, we plot stability diagrams in which all

but one dimensionless number is held fixed, and we allow only the wavenumber

and the remaining dimensionless parameter to vary; this allows us to plot curves

in parameter–wavenumber space and determine which regions lead to stability

or instability, and to monotonic or oscillatory behaviour. Unlike in Chapter 3,

we do not assume that the principle of exchange of stabilities holds, and ω can

therefore take complex values.

Since the dispersion relation (4.9.1) is cubic in the growth rate ω, we may

make use of the cubic discriminant [116], defined as

∆ = 18f2f1f0 − 4f 3
2 f0 + f 2

2 f
2
1 − 4f 3

1 − 27f 2
0 . (4.10.1)

Wherever ∆ is positive (4.9.1) will have three real and distinct roots, i.e., per-

turbations will grow or decay monotonically in time. Wherever ∆ is negative

(4.9.1) will have one purely real root, and a pair of complex conjugate roots;

thus the system will behave in an oscillatory fashion if the complex roots are

dominant, and in a monotonic fashion if the real root is dominant. Wherever ∆

is zero (4.9.1) will have repeated real roots and, again, the system will behave

in a monotonic fashion. Using ∆, then, we may determine regions in which ω is

real and those in which ω is complex. It turns out to be the case that one mode

(say, ω3) is always real and negative, and is always sub-dominant to the other

two modes. Thus, whenever complex roots occur, the dominant behaviour will

be oscillatory in nature.

In order to distinguish between the two possibilities in the stability diagrams,

to be shown in Figures 4.4–4.9, we will denote regions in which ω is complex

(i.e., in which ∆ < 0) by grey shading. In addition, we also plot solid curves

corresponding to marginal stability curves, that is, the curves on which <(ω) = 0.
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Within the grey region the marginal curves are given by f2f1 − f0 = 0, while

outside the grey region, the marginal curves are given by f0 = 0. This can be

seen by substituting ω = α + iβ into (4.9.1) and equating real and imaginary

parts. Equating the imaginary parts gives

β
(
3α2 + 2f2α + f1 − β2

)
= 0, (4.10.2)

while equating the real parts gives

α3 + f2α
2 + f1α + f0 − β2 (3α + f2) = 0. (4.10.3)

Solving equation (4.10.2) for β we see that either β = 0 or β2 = 3α2 + 2f2α+ f1.

When β = 0, i.e., when ω is purely real, the condition <(ω) = α = 0 is equivalent

to the condition f0 = 0, which is seen by setting α = β = 0 in equation (4.10.3).

The case β = 0 corresponds to the condition that must be satisfied outside the

grey region discussed above. If, instead, we set β2 = 3α2+2f2α+f1 6= 0 in (4.10.3)

then the condition <(ω) = α = 0 is equivalent to the condition f2f1 − f1 = 0.

The case β2 = 3α2 +2f2α+f0 corresponds to the condition that must be satisfied

inside the grey region. Crossing a solid curve, i.e., crossing a marginal stability

curve, shifts the system between stable and unstable states.

In addition, we plot a dashed curve, also given by f0 = 0, which corresponds

to the boundary between regions in which there are two unstable modes and

regions in which there is only one unstable mode.

The curves and shading described above will, in general, divide wavenumber–

parameter space into five distinct regions, labelled U1, U2, U3, S4, S5, where U

denotes a region in which the system is unstable, and S one in which the system

is stable. The meaning and interpretation of each of the five regions, in terms of

stable/unstable, real/complex, and the number of unstable roots, if indeed there

are any, are given in Table 4.2.

We now present these stability diagrams for each of the parameters in turn,

holding fixed all other parameters at reference values given by Table 4.1.

In each of the Figures 4.4–4.9 below, there are two or more plots: part (b)

always shows the marginal stability curve over the whole range of possibly un-

stable wavenumbers, while part (a) shows a zoom in to the small wavenumber
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Region Stability Nature Number of unstable roots

U1 Unstable Monotonic 1

U2 Unstable Monotonic 2

U3 Unstable Oscillatory 2

S4 Stable Oscillatory 0

S5 Stable Monotonic 0

Table 4.2: Definition and interpretation of the regions U1, U2, U3, S4, and S5 depend-

ing on the roots of (4.9.1).

detail that is not apparent on the larger scale, with the exception of Figure 4.9,

in which both (a) and (b) are zoomed in to the small-k detail and (c) is the larger

view. Note that in all cases the box used to show the “zooming in” process is not

drawn to scale.

4.10.1 Stability Diagram: Marangoni Number Ma

To begin, we fix all of the parameters at their reference values given by Table

4.1, with the exception of the Marangoni number Ma and the wavenumber k, and

plot the regions defined in Table 4.2 in the k–Ma plane. We will use this stability

diagram, and the associated analysis, to define and quantify certain critical values

of Ma denoted Macrit and Ma∗. Figure 4.4 shows the marginal stability diagram

for the Marangoni number and shows the positions of the critical values Macrit,

Ma∗, and kmax.

We define Macrit to be the smallest value of Ma for which instability may

occur; for Ma < Macrit the system is stable for all wavenumbers, although the

growth rates may, in general, be complex, and so oscillatory levelling is possible,

except for the special case Ma = 0, for which the levelling will be monotonic for

any wavenumber k.

We also define Ma∗ (> Macrit) to be the value of Ma above which only one

unstable mode exists. For Macrit < Ma < Ma∗ the system is unstable and the

growth rates will be complex for some finite range of wavenumbers, with both ω1
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Figure 4.4: Stability diagram for the Marangoni number Ma as a function of the

wavenumber k. Part (a) shows a zoom in to the small-k detail of (b). The parameters

values used are given in Table 4.1.

and ω2 having positive real part. For Ma > Ma∗ the system is unstable and the

growth rates are all purely real, with only ω1 being positive for some finite range

of wavenumbers. Both of these critical values of Ma will be quantified later.

At Ma = 0, since the k-axis lies only in region S5, the system is stable and

behaves monotonically for all wavenumbers. The grey region touches the line

Ma = 0 at exactly one point (i.e., the boundary of the grey region is tangent to

the line Ma = 0).

For 0 < Ma < Macrit, the system remains stable, but now there is a band of

wavenumbers for which oscillatory stability (i.e., overstability) occurs.

At Ma = Macrit, the system is marginally stable for k = 0 and stable for

all non-zero k, meaning that the longest-wave perturbation neither grows nor

decays. It is interesting to note that the grey region touches the Ma-axis at

exactly Ma = Macrit: the onset of instability is therefore oscillatory. Since inside

the grey region the solid marginal curve is given by f2f1 − f0 = 0, we may

explicitly determine the value of Macrit by looking at the small-k behaviour of

the marginal curve, which is

Ma = Macrit + O(k2), (4.10.4)
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where

Macrit = KDad + PsDaa

PsDadK (1−K) , (4.10.5)

so that Macrit = 0.6 for the parameter values given by Table 4.1. As in the infinite-

depth case studied in section 3.5, the expression (4.10.5) for Macrit shows that

instability becomes more difficult to trigger as K → 1, and as K → 0. Equation

(4.10.5) also shows that the Damköhler numbers enter the value of Macrit only

through the ratio δ = Dad/Daa, again mirroring the infinite-depth case.

For Macrit < Ma < Ma∗ we may draw a horizontal line of constant Ma in

Figure 4.4, and move along this line with k increasing from k = 0. For the

longest waves (i.e., the smallest values of k), the system is in region U2 and is

therefore unstable, with two monotonically unstable modes. Increasing k the

systems moves into region U3, in which it has two unstable but oscillatory modes

for a range of values of k, before crossing the solid curve and moving into region

S4, corresponding to a stable, albeit oscillatory, regime. Finally, increasing k

further we enter region S5 and the system becomes monotonically stable as k

continues to increase without bound.

For Ma = Ma∗ the system has one unstable mode and one marginally stable

mode, both monotonic for k = 0. Increasing k follows the same description as

the previous case when Macrit < Ma < Ma∗. The dashed curve in Figure 4.4 is

given by f0 = 0 and so we may look at the small-k behaviour of the marginal

curve in order to determine Ma∗, i.e.,

Ma = Ma∗ + O(k2), (4.10.6)

where

Ma∗ = 4 (KDad + PsDaa)
PsDadK (1−K) = 4Macrit, (4.10.7)

so that Ma∗ = 2.4 for the parameter values given in Table 4.1. In particular, it is

interesting to note the simple relationship between Ma∗ and Macrit, namely that

Ma∗ = 4Macrit

For Ma > Ma∗ the system is monotonically unstable for sufficiently small

values of k lying in region U1, and stable for sufficiently large values of k lying

in region S5. In this case varying Ma causes much more dramatic changes in the
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magnitude of ω than in the case Ma < Ma∗. For Ma < Ma∗ the range of unstable

wavenumbers grows as Ma increases and, while this is the still the case for Ma >

Ma∗, in the latter case, the range of unstable wavenumbers becomes very large

compared to the former case. Indeed, even increasing Ma to, say, 1.01Ma∗ extends

the range of unstable wavenumbers from between k = 0 and k ' 0.95 when

Ma = Ma∗ = 2.4, to between k = 0 and k ' 61 when Ma = 1.01Ma∗ = 2.424.

As Ma is increased the range of unstable wavenumbers increases further, but it

does not do so without limit: there is a maximum wavenumber, denoted by kmax,

above which the system is unconditionally stable; this maximum wavenumber is

shown as a dotted line in Figure 4.4(b) and corresponds to the k at which the

Ma marginal curve blows up, namely

kmax =
√

Dad (1−K) (4.10.8)

for K < 1. We recall that for K > 1, the roots of the dispersion relation (4.9.1)

are always negative, and so instability is impossible and there is therefore no

equivalent of kmax.

Other interesting features of Figure 4.4(a) are, for example, the maximum

wavenumber for which oscillatory behaviour is possible, and the maximum wave-

number for which two unstable modes may be present. Unfortunately, it has

proved impossible to obtain analytical expressions for these special wavenumbers.

4.10.2 Stability Diagram: Surface Péclet Number Ps

The stability diagram for the surface Péclet number Ps is qualitatively very similar

to that for the Marangoni number that we have just discussed, and is shown in

Figure 4.5. We define Ps,crit and Ps
∗ in an analogous way to how we have defined

Macrit and Ma∗, i.e., they are the minimum value of Ps required for instability

and for a single unstable mode, respectively.

Since the qualitative description of Figure 4.5 is very similar to that of Figure

4.4, we discuss only the differences. Aside from differences in the particular

expression for the critical numbers Ps,crit, Ps
∗ and kmax, the grey region denoting

complex values of ω now stretches much further to the right, i.e., to much larger
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Figure 4.5: Stability diagram for the surface Péclet number Ps as a function of the

wavenumber k. In (a) is shown a zoom in to the small-k detail of (b). The parameters

values used are given in Table 4.1.

values of k. While the grey region in Figure 4.4 ended somewhere in the vicinity

of k = 1, the grey region in Figure 4.5 extends to almost k = 20, and narrows

as it does; at k ' 19 it is necessary that Ps = O(10−4) in order to be inside the

grey region. Figure 4.6 shows a plot of the grey region in its entirety, confirming

what has been said above.

The critical minimum value of Ps required for instability is given by

Ps,crit = Dad

MaDadK(1−K)− 4Daa
, (4.10.9)

so that Ps,crit ' 0.23 for the parameter values given by Table 4.1. Similarly to

Macrit given in (4.10.5), equation (4.10.9) shows that the ratio δ = Dad/Daa

is important (as opposed to the values of the individual Damköhler numbers)

to triggering instability. Equation (4.10.9) also shows that instability becomes

easier to trigger as Ma is increased, with Ps,crit → 0 as Ma→∞.

The minimum value of Ps required to switch between one and two unstable

modes is

Ps
∗ = 4Dad

MaDadK(1−K)− 4Daa
= 4Ps,crit, (4.10.10)

so that Ps
∗ ' 0.92 for the parameter values given by Table 4.1. Interestingly we

have the same simple relationship between Ps
∗ and Ps,crit as we had between Ma∗
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Ps

k

Figure 4.6: As Figure 4.5, but showing the region of complex ω in its entirety.

and Macrit, namely that Ps
∗ = 4Ps,crit, perhaps suggesting that there is a deeper

connection between the two critical values.

Finally, the maximum unstable wavenumber is

kmax =
√

MaDadK(1−K)− 4Daa

MaK , (4.10.11)

and this recovers the equivalent result from the previous case (4.10.8) in the limit

Ma→∞, as expected.

4.10.3 Stability Diagram: Diffusive Damköhler Number

Dad

The stability diagram for the diffusive Damköhler number Dad, shown in Figure

4.7, is qualitatively very similar to the previous two cases described in sections

4.10.1 and 4.10.2, but with one difference. Whereas the previous two cases had a

wavenumber kmax beyond which instability is impossible, this case does not. With

all other parameters fixed, any wavenumber may be unstable, provided that Dad

is sufficiently large. Apart from this, the description of Figure 4.4 and 4.5 given

in section 4.10.1 applies to Figure 4.7.
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Figure 4.7: Stability diagram for the diffusive Damköhler number Dad as a function

of the wavenumber k. In (a) is shown a zoom in to the small-k detail of (b). The

parameters values used are given in Table 4.1..

The minimum critical value of Dad required for instability can again be found

by considering the limit k → 0, and is given by

Dad,crit = PsDaa

K [MaPs (1−K)− 4] , (4.10.12)

so that Dad,crit ' 4.7 × 104 for the parameter values given in Table 4.1. The

minimum value of Dad required for there to be only one unstable mode can also

be found by considering the limit k → 0, and is given by

Dad
∗ = 4PsDaa

K [MaPs (1−K)− 4] = 4Dad,crit, (4.10.13)

Again, we notice that Dad
∗ = 4Dad,crit. As mentioned above, there is no equiv-

alent of kmax in this case since the curve f0 = 0 is simply quadratic in k, and is

given by

Dad = PsDaa

K (MaPs (1−K)− 4) + KMaPs + 4
K (MaPs (1−K)− 4)k

2. (4.10.14)
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Figure 4.8: Stability diagram for the advective Damköhler number Daa as a function

of the wavenumber k. In (a) is shown a zoom in to the small-k detail of (b). The

parameters values used are given in Table 4.1.

4.10.4 Stability Diagram: Advective Damköhler Number

Daa

The stability diagram for the advective Damköhler number Daa is qualitatively

different from those we have described thus far. The three parameters that we

have considered so far in this section have all been destabilising; as Ma, Ps, or

Dad are increased, the system becomes more unstable. This is in contrast with

the parameters Daa, which is stabilising; increasing Daa makes the system more

stable. In terms of the stability diagram, this essentially flips the picture upside-

down compared to those in the previous three cases, with the unstable region

lying below some critical value. Instead of a critical minimum value of Daa that

is required for instability, there is a critical maximum value, i.e., above the value

Daa,crit the system is stable for all k, and below Daa,crit the system is unstable

for a range of k. As in the previous cases, we may obtain an exact expression for

Daa,crit by taking the limit k → 0, in which we obtain

Daa,crit = DadK [MaPs (1−K)− 1]
Ps

, (4.10.15)

so that Daa,crit ' 2.4× 106 for the parameter values given by Table 4.1.

Similarly, there is a maximum value of Daa required for there to be only one
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unstable mode, that is, below the value Daa
∗ there will be one unstable mode,

and above the system will either have two unstable modes (if Daa < Daa,crit) or

will be stable (if Daa > Daa,crit). By taking the limit k → 0 we may obtain an

explicit expression for Daa
∗, namely

Daa
∗ = 4DadK [MaPs (1−K)− 1]

Ps
, (4.10.16)

so that Daa
∗ ' 0.6 × 106 for the parameter values given by Table 4.1, and we

notice that Daa
∗ = Dad,crit/4, which is “upside down” compared to the previous

results.

Finally, there is a maximum unstable wavenumber kmax, but instead of being

a point of blow-up in the Daa marginal curve, it is instead the zero of the Daa

marginal curve, i.e., the value of k for which f0 = 0, and is given by

kmax =
√

DadK [MaPs (1−K)]
MaPsK + 4 . (4.10.17)

4.10.5 Stability Diagram: Equilibrium Rate Constant K

The final stability diagram we consider is that for the equilibrium rate constant

K. Figure 4.9 shows the stability diagram for K, with Figure 4.9(c) showing

the stability diagram over the whole range of unstable wavenumbers, and Figures

4.9(a) and 4.9(b) showing a zoom in of the small-k behaviour of the top and

bottom portions of the solid curve, respectively.

The most striking feature of the large-scale plot shown in Figure 4.9(c) is

the significant qualitative difference from the corresponding plots shown in the

previous sections (i.e., from Figures 4.4(b)–4.8(b)). Instead of the monotonic

behaviour that is shown in the previous figures, with the unstable region above

the solid curves (or below in the case of Daa), and the stable region below (or

above in the case of Daa), the unstable region in Figure 4.9(c) lies in a “bubble”

enclosed by the solid curves. However, It is clear that, while the picture may

appear somewhat different at first, the fine detail is similar to what we have

already seen. Near K = K−crit, varying K causes the system to behave in the same

manner as, for example, varying Ma in Figure 4.4: increasing K destabilises the
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Figure 4.9: Stability diagram for the equilibiurm rate constant K as a function of the

wavenumber k. In (a) and (b) are shown zooms in to the small-k details of (c). The

parameters values used are given in Table 4.1.

system, and the description is very similar to that given in sections 4.10.1–4.10.3.

On the other hand, near K = K+
crit, varying K causes the system to behave in

the same manner as Daa in Figure 4.8: increasing K stabilises the system, and

the description is very similar to that given in section 4.10.4.

The maximum and minimum values of K required to switch between one and

two unstable modes are given by

K∗± =
Dad (MaPs − 4)±

√
Dad

2 (MaPs − 4)2 − 16MaPs
2DadDaa

2MaPsDad
, (4.10.18)

and the critical maximum and minimum values of K required for instability are
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given by

K±crit =
Dad (MaPs − 1)±

√
Dad

2 (MaPs − 1)2 − 4MaPs
2DadDaa

2MaPsDad
. (4.10.19)

Additionally, there exists a maximum unstable wavenumber kmax, but we have

been unable to obtain an analytical expression for this special wavenumber.

4.11 Thin-Film Stability Analysis: Growth Rates

Figures 4.10 and 4.11 show illustrative plots of <(ω1) and <(ω2) (we omit ω3 for

now, since it is always sub-dominant to the other two modes, i.e., it is always

more negative than the other two roots), when the Marangoni number Ma is

varied, from zero to above the critical value at Ma = Ma∗. The thick solid curves

represent <(ω1) when ω1 is purely real, the thin solid curves represent <(ω2) when

ω2 is purely real, and the dashed curves represent <(ω1) and <(ω2) when both ω1

and ω2 have non-zero imaginary part. On the thick and the thin solid curves, the

perturbations to the system will either grow or decay monotonically, depending

on the sign of the dominant (i.e., the least negative value of) ω. However, on

the dashed curve, the perturbation will grow or decay in an oscillatory manner,

depending on the sign of <(ω).

Figure 4.10 shows illustrative plots of the growth rate ω for Ma < Ma∗. Figure

4.10(a) shows a plot of ω1 and ω2 when Ma = 0, and corresponds exactly to the

thin-film limit of the Orchard mode of levelling (thin solid line) given by (3.4.3),

and the pure-diffusive mode (thick solid line) given by (3.4.7). Figure 4.10(b)

shows the corresponding plot for 0 < Ma < Macrit and illustrates the situation

in which the system is stable, but with oscillatory decay for a finite range of

wavenumbers. Figure 4.10(c) shows how the system behaves at exactly Ma =

Macrit, with oscillatory decay for a finite range of wavenumbers from k = 0. This

value of Ma is the lowest for which instability is seen and demonstrates that the

onset of instability is oscillatory and occurs in the long-wave limit corresponding

to k = 0. Figure 4.10(d) shows the situation for Macrit < Ma < Ma∗, in which

the system is unstable for a finite range of wavenumbers, and demonstrates that
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Figure 4.10: Illustrative plots of <(ω1) and <(ω2) when Ma is varied, but below the

value of Ma∗ = 2.4, for the parameter values given in Table 4.1, and (a) Ma = 0, (b)

Ma = 0.1 (so that 0 < Ma < Macrit = 0.6), (c) Ma = Macrit = 0.6, (d) Ma = 2 (so that

0.6 = Macrit < Ma < Ma∗ = 2.4). The thick solid lines represent ω1, the thin solid line

represents ω2, the dashed line denotes the real part of ω1 and ω2 when the imaginary

part is non-zero, and the dotted line is simply ω = 0.
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Figure 4.11: Illustrative plots of <(ω1) and <(ω2) when Ma is varied, but at or above

the value of Ma∗ = 2.4, for the parameter values given in Table 4.1, and (a) Ma =

Ma∗ = 2.4, zoomed in, (b) Ma = Ma∗ = 2.4, (c) Ma = 2.5 (so that Ma > Ma∗ = 2.4),

zoomed in, (d) Ma = 2.5 (so that Ma > Ma∗ = 2.4). The thick solid lines represent

ω1, the thin solid line represents ω2, the dashed line denotes the real part of ω1 and ω2

when the imaginary part is non-zero, and the dotted line is simply ω = 0.
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both monotonic and oscillatory instability are possible.

Figure 4.11 shows illustrative plots for Ma ≥ Ma∗. Both Figure 4.11(a) and

4.11(b) show the growth rates <(ω1) and <(ω2) when Ma = Ma∗, with (a) zoomed

in to show the small-k detail. When Ma = Ma∗, the system switches from having

two unstable modes to having one unstable mode, and so this is also the value

of Ma at which the growth rates can no longer be complex, i.e., at or above

Ma = Ma∗ the system behaves in a monotonically unstable fashion. Figures

4.11(c) and 4.11(d) illustrate how the system behaves when Ma > Ma∗. Just

above Ma = Ma∗, a small variation of Ma causes a large variation in not only

the magnitude of the growth rates, but also the width of the range of unstable

wavenumbers. This rapid change in the monotonically unstable behaviour of

the system becomes less pronounced as Ma is increased further from Ma = Ma∗

and there is a maximum unstable wavenumber kmax beyond which the system is

always stable, regardless of the value of Ma, which is given by k = kmax.

4.12 Thin Film Stability: Large Damköhler Num-

bers Limit

In practice, as we have already seen in sections 4.5.1 and 4.6.1, the numerical

values of Dad and Daa are very large relative to all other parameters in the thin-

film problem. In fact, the values of the Damköhler numbers given in Table 4.1

that we consider in the previous sections are, if anything, on the low side of

what is possible, as they assume only moderately fast flux kinetics [11]. We are,

therefore, motivated to look at the limit of large Damköhler numbers, i.e., the

limit Dad, Daa →∞.

From the stability analysis of the infinite-depth regime in section 3.5 and the

stability analysis of the thin-film problem in the previous section we suspect that

it is the ratio δ = Dad/Daa that is important rather than the individual values

of Dad and Daa. Thus, we consider the distinguished limit Dad →∞, Daa →∞

in which δ = Dad/Daa = O(1) is held fixed. We must be careful, however, to

scale k and ω appropriately in order for the large Damköhler numbers expansion
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of (4.9.1) to lead to consistent solutions for ω.

From the analysis in the preceding sections, we have seen that the maximum

possibly unstable wavenumber is always proportional to
√

Daa (see equations

(4.10.8), (4.10.11), (4.10.17)), and so the appropriate scaling of k is k =
√

Daak̂,

where k̂ is O(1).

To determine the appropriate scaling for ω, we substitute k =
√

Daak̂ and

ω = Daa
αω̂, along with Dad = δDaa, into the dispersion relation (4.9.1) to obtain

g1Daa
4ω + g2Daa

2+α + g3Daa
3+α + g4Daa

1+2α = 0, (4.12.1)

where the gi for i = 1, 2, 3, 4 are functions of the other parameters, including

k̂ and ω̂. By seeking the dominant balances in equation (4.12.1) in the limit

Daa → ∞, we find that the only consistent choices for α are α = 2 and α = 1,

and these choices lead to different solutions for ω̂.

Substituting the former solution, namely ω = Daa
2ω̂, along with our chosen

scaling for k =
√

Daak̂ into the dispersion relation (4.9.1), writing Dad = δDaa,

and expanding for Daa → ∞, we find that the leading order dispersion relation

is

ω̂2
(
3ω̂ + k̂4

)
= 0, (4.12.2)

from which we obtain ω̂ = −k̂4/3, which is exactly the long–wave limit of the

Orchard levelling mode (3.4.3).

If we instead use the latter solution, namely ω = Daaω̂, we obtain the leading

order dispersion relation

4PsPbω̂
2 +

[
(MaPbPsK + 4 (Pb + Ps)) k̂2 + 4Ps (δK + Pb)

]
ω̂

+ k̂2
[
(MaPsK + 4) k̂2 − (MaPsδK (1−K)− 4 (δK + Ps))

]
= 0. (4.12.3)

Figure 4.12 shows plots comparing the appropriately scaled exact solutions of the

dispersion relation (4.9.1), along with the corresponding leading order asymptotic

approximation ω = Daaω̂ with ω̂ obtained from (4.12.3) for large but finite values

of Daa. In all three cases shown the large-Daa asymptotic solutions capture the

dominant mode fairly well, except near k = 0 where the long wave detail present
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Figure 4.12: Typical plots of the exact value of (solid), and the large Damköhler

number asymptotic approximation to (dashed) <(ω̂(k̂)), for the parameter values given

in Table 4.1, and (a) Ma = 0.1, (b) Ma = 1, (c) Ma = 3.

in the full thin-film solutions disappears. In particular, the system does not

behave in an oscillatory fashion in the limit Daa, Dad →∞.

To expand upon this last point: for any finite values of Daa, Dad, the system

may behave in either a monotonic or an oscillatory fashion, but the regions of

long-wave detail near k = 0 shown in Figures 4.4–4.9(a) along with Figure 4.9(b)

become smaller and the regions of monotonic behaviour become larger as Daa

and Dad are increased, and the regions of complex behaviour vanish in the limit

Daa →∞. In practice, the values of the Damköhler numbers are large but finite,

and so, in reality, the fine detail will always be present in a small region near
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k = 0.

We may show explicitly from equations (4.7.1)–(4.7.3) that no oscillatory be-

haviour is possible in the limit Daa →∞, and also show that there is a separation

of timescales into an early timescale, of O(1/Daa), over which the flux acts, and

a longer timescale over which capillarity, diffusion and the Marangoni effect act.

To do so, we define a new timescale t = Daa
−ατ , where τ = O(1) and we take

the limit Daa →∞, with all other parameters remaining O(1). Substituting this

new timescale into equations (4.7.1)–(4.7.3), and expanding h, s and c as power

series in the small parameter 1/Daa � 1, namely,

h =h0 + Daa
−αh1 +O(Daa

−2α), (4.12.4)

s = s0 + Daa
−αs1 +O(Daa

−2α), (4.12.5)

c = c0 + Daa
−αc1 +O(Daa

−2α), (4.12.6)

we obtain

∂h0

∂τ
+ Daa

−α
{
∂h1

∂τ
+ ∂

∂x

[
1

3Ca
∂3h0

∂x3 h
3
0 −

Ma
2 h2

0
∂

∂x
(s0 − c0)

]}

+O(Daa
−2α) = 0, (4.12.7)

∂s0
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−α
{
∂s1

∂τ
+ ∂

∂x

[
1

2Ca
∂3h0

∂x3 h
2
0s0 −Mah0s0

∂

∂x
(s0 − c0)

]
− 1

Ps

∂2s0

∂x2

}

−Daa
1−α (Kc0 − s0)︸ ︷︷ ︸−Daa

1−2α (Kc1 − s1) +O(Daa
−2α) = 0, (4.12.8)

h0
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∂τ︸ ︷︷ ︸+ Daa
−α
{
h0
∂c1

∂τ
+ h1

∂c0

∂x
+
[

1
3Ca

∂3h0

∂x3 h
3
0

−Mah2
0
∂

∂x
(s0 − c0)

]
∂c0

∂x
− 1

Ps

∂

∂x

(
h0
∂c0

∂x

)}

+ δDaa
1−α (Kc0 − s0)︸ ︷︷ ︸+δDaa

1−2α (Kc1 − s1) +O(Daa
−2α) = 0. (4.12.9)

In order to balance the underbraced terms to leading order (for a non-trivial

balance of terms), we require that α = 1, in which case the leading order system
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τ

Figure 4.13: Evolution towards J = 0 of the leading order surface concentration

(dashed line), the bulk concentration (solid line), and the flux J = Kc0 − s0 (dash-dot

line), for an anti-surfactant with K = 1/2, and where the initial condition is s = 1,

c = 1.

τ

Figure 4.14: Evolution towards J = 0 of the leading order surface concentration

(dashed line), the bulk concentration (solid line), and the flux J = Kc0 − s0 (dash-dot

line), for a surfactant with K = 3/2, and where the initial condition is s = 1, c = 1.
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reduces dramatically to
∂h0

∂τ
= O( 1

Daa
), (4.12.10)

∂s0

∂τ
= Kc0 − s0 +O( 1

Daa
), (4.12.11)

h0
∂c0

∂τ
= − (Kc0 − s0) +O( 1

Daa
), (4.12.12)

which has the leading order solution

h0 = 1, (4.12.13)

s0 = 1
1 +K

[
K(cIC + sIC)− (KcIC − sIC)e−(1+K)t

]
, (4.12.14)

c0 = 1
1 +K

[
cIC + sIC + (KcIC − sIC)e−(1+K)t

]
, (4.12.15)

where the subscript IC denotes the initial condition, which may be a function of

x, and the initial condition for the film thickness is h = 1.

The leading order solution given by (4.12.13)–(4.12.15) makes clear how the

system (4.7.1)–(4.7.3) evolves at early times. The free surface undergoes only

small O(1/Daa) changes in shape over this short timescale, and the surface and

bulk concentrations move towards surface–bulk equilibrium, i.e., move towards

the state in which J = Kc0 − s0 = 0, and they both do so monotonically. Figure

4.13 shows the evolution towards J = 0 of the leading order surface concentration

(dashed line), the bulk concentration (solid line), and the flux J = Kc0−s0 (dash-

dot line), for an anti-surfactant with K = 1/2, and where the initial condition

is s = 1, c = 1. Figure 4.14 shows the corresponding plot for a surfactant with

K = 3/2.

If the initial condition is such that the surface and bulk concentrations are not

in equilibrium, then there will be growth in growth in one of them and decay in the

other depending on the sign of J = Kc0−s0. Figure 4.13 demonstrates that when

J < 0 initially, there will be growth in the bulk concentration, whereas Figure

4.14 demonstrates that when J > 0 initially, there will be growth in the surface

concentration. Note that in any physical system there will be small O(1/Daa)

changes in the film thickness, surface concentration, and bulk concentration due

to capillarity, diffusion, and the Marangoni effect, corresponding to the first order

solution in the limit Daa →∞.
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4.13 Summary

In this Chapter, we investigated the behaviour of a thin film of surfactant or

anti-surfactant solution by assuming that the aspect ratio of the layer was small,

i.e., by making a classical lubrication approximation. Closure of the leading order

problem for the evolution of the bulk concentration required going to higher order

in the small aspect ratio limit. We also performed a linear stability analysis sim-

ilar to that performed in Chapter 3, and found that a thin film of anti-surfactant

solution is unstable to perturbations of certain wavenumbers. Stability diagrams

for each of the dimensionless parameters were produced, showing the regions

of instability, and also showing the regions in which oscillatory behaviour oc-

curs. Furthermore, in the limit of fast bulk–surface flux, there is a separation of

timescales with a short timescale over which the surface and bulk concentrations

come into surface–bulk equilibrium, and a long timescale over which capillarity,

diffusion, and the Marangoni effect are dominant.
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Chapter 5

Non-Linear Dynamics of a Thin

Film: Numerical Solutions

5.1 Introduction

In Chapter 4 we formulated the nonlinear equations describing the flow of thin

films of surfactant or anti-surfactant solutions, but thus far have analysed only

their linear stability. In this Chapter we focus on the nonlinear dynamics of thin

films described by equations (4.7.1)–(4.7.3) and, in particular, obtain numerical

solutions.

In section 5.2, we introduce the numerical scheme that will be used to integrate

equations (4.7.1)–(4.7.3) numerically.

In section 5.3, we obtain numerical results for the evolution of a sinusoidally

perturbed layer, both within and outwith the linear regime, in order to validate

the results of Chapter 4. We compare these numerical results with the linear

theory described in Chapter 4, and see that the linear theory performs well even

for perturbations with O(1) amplitudes.

Finally, in section 5.4, we consider the evolution of a layer in which a localized

amount of surfactant or anti-surfactant is initially added to the surface or bulk of

the fluid, and find that there is a separation of timescales. Specifically, there is a

short timescale over which the flux acts to bring the surface and bulk concentra-

tions into equilibrium, and a long timescale over which capillarity, diffusion, and
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the Marangoni effect dominate.

5.2 Numerical Scheme

In order to obtain numerical solutions to the nonlinear equations (4.7.1)–(4.7.3),

we used the finite-element package COMSOL Multiphysics [13]. The system

of equations were solved numerically in COMSOL using three one-dimensional,

time-dependent, “General PDE” modules. The “General PDE” module of COM-

SOL solves equations in the flux-conservative form

ea
∂2u
∂t2

+ da
∂u
∂t

+ ∂Γ
∂x

= f , (5.2.1)

where ea is a so-called “mass coefficient” matrix (ea ≡ 0 in all cases we consider),

da is a so-called “damping coefficient” matrix, u = u(x, t) is the unknown (in

general, vector-valued) function, Γ = Γ(u,ux,uxx) is a flux of u, and f = f(u) is

a source term. In order to solve equations (4.7.1)–(4.7.3) in COMSOL, we must

therefore write them in the flux-conservative form (5.2.1), i.e.,

∂h

∂t
+ ∂

∂x

[
hxxxh

3

3 − Mah2

2 (s− c)x

]
= 0, (5.2.2)

∂s

∂t
+ ∂

∂x

[
hxxxh

2s

3 − Mahs
2 (s− c)x

]
= 1

Ps
sxx + Daa (Kc− s) , (5.2.3)

h
∂c

∂t
− 1

Pb

∂

∂x
(hcx) = −

(
hxxxh

3

3 − Mah2

2 (s− c)x

)
cx − δDaa (Kc− s) . (5.2.4)

An idiosyncrasy of COMSOL (among other numerical packages) is that any vari-

able can be differentiated a maximum of twice, and so the hxxx terms in each

of these equations cannot be handled directly by COMSOL. To circumvent this

difficulty we make the substitution P = hxx, so that all hxxx terms are now Px

terms and, in COMSOL, we simply create a vector equation in u = [h, P ]T in

lieu of the scalar equation for h, of the form given by (5.2.1), where

ea =

0 0

0 0

 , (5.2.5)

da =

1 0

0 0

 , (5.2.6)
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Γ =
[
Pxh

3

3 − Mah2

2 (s− c)x , hx
]T

, (5.2.7)

f = [0, P ]T. (5.2.8)

The geometry, boundary conditions, mesh size, and length of simulation time will

vary depending on the particular simulations that are being done and are therefore

chosen on a case-by-case basis. COMSOL uses variable time step methods, and

so only the start and end times must be specified.

5.3 Comparison Between the Nonlinear and Lin-

ear Results

We first compare the results from the linear stability calculation, as described

in section 4.8, with the results obtained by direct numerical simulation of the

full nonlinear system given by equations (4.7.1)–(4.7.3). We will compare the

results of the nonlinear theory with those of the linear theory when the thin

film is subjected to perturbations of small amplitude relative to the base-state

values of h, s and c, i.e., to perturbations in the linear regime, and also to

larger perturbations that are of the same order as the base state values, i.e., to

perturbations outwith the linear regime.

Equations (4.7.1)–(4.7.3) are solved using COMSOL, as described in section

5.2. We take the initial condition

h = 1, s = K + ε cos(x), c = 1 + ε cos(x), (5.3.1)

i.e., we add a perturbation of wavenumber k = 1 and of initial amplitude ε to the

constant base state values of s and c, which is a specific choice of the wavenumber

and the aspect ratio used in the more general treatment in the linear stability

analysis performed in Chapters 3 and 4. The computational domain is the interval

[0, 2π], i.e., one wavelength long, and periodic boundary conditions are imposed

at the two endpoints. A mesh of twenty uniformly spaced points is sufficient

to resolve the features that occur in the evolution of the system and allows for

short computation times of approximately 2 seconds. Any increase in the mesh
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density does not offer any noticeable increase in quality and only serves to increase

computation time; for this simple problem, the computation time remains at this

“baseline” value of 2 seconds until the mesh is made up of approximately 5000

points for small values of ε, or 2000 points for larger values of ε, and at these

mesh densities the computation time is approximately doubled to 4 seconds.

To obtain the linear behaviour of the full nonlinear system, we solve three

coupled ODEs for the amplitude of perturbations in the limit ε→ 0 (as discussed

in Chapter 4), namely equations (4.8.4)–(4.8.6).

Figures 5.1–5.4 show comparisons between the numerical solutions of the full

nonlinear problem, which are shown solid, and the linear problem, which are

shown dashed, where we have plotted the value of the solution at the origin

minus the value of the constant initial condition of (a) the film thickness, (b)

the surface concentration, and (c) the bulk concentration, as a measure of the

amplitude of the perturbations. In Figures 5.1–5.3 the initial perturbation has

amplitude ε = 0.01, whereas in Figure 5.4 the initial perturbation has amplitude

ε = 0.5. The dashed lines in each of Figures 5.1–5.3 are the solutions to the

linearised problem presented in Figures 4.1–4.3.

In general, for all three of Figures 5.1–5.3, the solutions to the linearised

problem are good approximations to the solutions of the full nonlinear problem.

It is apparent from Figure 5.3 that, in the unstable case (corresponding to Ma = 4

in this particular illustration), the linear approximation does not do particularly

well at long times as nonlinear effects begin to dominate. While the linear theory

performs worse for the large-amplitude initial perturbation shown in Figure 5.4

than it does for the small-amplitude initial perturbation presented in Figure 5.2,

it still performs well, with the maximum error less than 10% in each of h, s, and

c.
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h− 1

t

s−K c− 1

t t

(a)

(b) (c)

Figure 5.1: The value of the solution at the origin minus the value of the constant

initial condition for (a) the film thickness, (b) the surface concentration, and (c) the

bulk concentration, as a measure of the amplitude of the perturbations. The numerical

results are shown for the linear theory (solid lines) and the nonlinear theory (dashed

lines), where Ma = 0.1, Ca = 1, Ps = 10, Pb = 10, Daa = 1, Dad = 10, and ε = 0.01.
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Figure 5.2: As in Figure 5.1, except that Ma = 1.
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Figure 5.3: As in Figure 5.1, except that Ma = 4.
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t t

(a)

(b) (c)

Figure 5.4: As in Figure 5.1, except that Ma = 1 and ε = 0.5

5.4 Local Disturbances to the Surface or Bulk

Concentration

At the end of section 5.3, we considered the evolution of the nonlinear system

given by equation (4.7.1)–(4.7.3) when subjected to periodic disturbances of large

initial amplitude on a spatially periodic domain. We now consider local distur-

bances to the surface or bulk concentrations, where a large amplitude non-periodic

disturbance, i.e., where the disturbance amplitude is comparable in magnitude

to the base state values of h, s, and c, and is imposed in some small region of the

surface or bulk of the fluid.

We consider four cases: two in which the local disturbance is to the surface
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concentration for both surfactants and anti-surfactants, and two in which the local

disturbance is to the bulk concentration for both surfactants and anti-surfactants.

Since these four cases are very closely related, we will describe only the first in

detail, and then discuss only the differences between the first and the other three.

5.4.1 Local Disturbance to the Surface Concentration of

Anti-Surfactant (K < 1)

The first case we investigate in detail is that in which anti-surfactant (K < 1) is

added to the free surface. The initial condition is

h = 1, c = 1, s = K + 0.5 exp(−x2), (5.4.1)

that is the local disturbance to the surface concentration is simply a Gaussian

pulse with initial amplitude 0.5. The spatial domain is taken to be the interval

[−60, 60] (which is long enough for edge effects from the boundaries to be neg-

ligible). As discussed in section 4.12, there are two distinct timescales in this

problem: a short timescale of O(1/Daa), over which the flux acts to bring the

surface and bulk concentration into equilibrium, and in which there is only a

small O(1/Daa) deformation of the free surface, and a long O(1) timescale, over

which the Marangoni effect, capillarity, and diffusion all act, and over which there

are O(1) changes in all of h, s, and c. We consider these timescales separately in

the following numerical solutions.

(a) Early O(1/Daa) Time Evolution: Flux and Free Surface Depression

The first phase of evolution over the short O(1/Daa) timescale is dominated by a

single physical effect: the flux of solute between the surface and the bulk regions

of the fluid layer. This flux causes significant O(1) changes in s and c, while

both the Marangoni effect and capillarity cause small O(1/Daa) changes in h, as

discussed in section 4.12.

Initially, s is larger than the equilibrium value of s = K, and is largest at the

origin. Therefore, there are surface tension gradients, with the surface tension

lowest at the origin. Since the Marangoni effect acts to move fluid from the region
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of low surface tension, i.e., near the origin, to regions of higher surface tension,

i.e., away from the origin, there is therefore an outward Marangoni flow, moving

fluid away from the origin (to the right for x > 0, and to the left for x < 0), and a

small O(1/Daa) depression forms in the free surface, as discussed in section 4.12.

As the Marangoni effect casues a depression to form in the initially flat free

surface, the surface–bulk flux simultaneously acts to bring s and c into surface–

bulk equilibrium. This equilibrium state is such that Kc = s, with K < 1 since

the solute is an anti-surfactant, and the surface tension is increased in regions of

high concentration, rather than being decreased as it was initially at t = 0, when

the surface concentration was larger than Kc. This causes the initial outward

(i.e., away from the origin) Marangoni flow to reverse and become an inward

(i.e., towards the origin) Marangoni flow. This inward flow causes the initial

depression in the free surface to fill in and become a peak.

Figures 5.5(a) shows the evolution of h over the early O(1/Daa) timescale. The

initially flat free surface (shown solid) is deformed due to the flow induced by the

Marangoni effect, with a small O(1/Daa) depression forming initially, which later

fills in and becomes a peak due to the reversal in the direction of the Marangoni

flow. Dimensionally, this deformation of the free surface is of the order 10−6 m.

Figures 5.5(b) and (c) show the evolution of s and c, respectively, over the

early timescale. The initial O(1) disturbance to s reduces because of the flux of

solute from the surface to the bulk, with a corresponding increase in c, as the

system moves into surface–bulk equilibrium.

(b) Late O(1) Time Evolution: Transient Growth and Ultimate Decay

After the early O(1/Daa) timescale described above, the system has reached

surface-bulk equilibrium, and any changes to s and c are due solely to diffusion

and advection. The peak of the free surface that formed and began to grow dur-

ing the early time evolution continues to grow up to some maximum height while,

simultaneously, diffusion begins to reduce concentration gradients. The growth

of the peak of the free surface continues until diffusion has reduced concentration

gradients sufficiently to allow capillarity to counter the Marangoni-flow-induced
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Figure 5.5: Evolution of (a) the film thickness, (b) the surface concentration s, (c)

the bulk concentration c, over the early O(1/Daa) timescale for an anti-surfactant with

K = 0.5 added to the surface concentration, and for Ma = 1, Ca = 1, Ps = Pb = 1,

Daa = 100, Dad = 1000, for times t = 0 (solid), 0.004 (dotted), 0.008 (dashed), 0.012

(dash-dot).

147



growth. This is not to say that the direction of the Marangoni flow again re-

verses, but instead that the direction of the net flow reverses from an inward flow

to an outward flow; the sign of the Marangoni contribution to the velocity of the

fluid does not change. Ultimately, the layer returns to its equilibrium state, with

capillarity levelling the free surface, and diffusion flattening the surface and bulk

concentration profiles.

Figure 5.6(a) shows the evolution of h over the long O(1) timescale. The peak

of the free surface grows until approximately t ' 3, at which time the tendency

for capillarity to level the free surface balances the tendency of the Marangoni

effect to cause growth. Specifically, at t ' 3, the net inward flow that causes the

growth of the film thickness switches to a net outward flow, and causes the free

surface to move back towards its flat equilibrium position. Dimensionally, the

deformation of the free surface is of the order 10−4m at its maximum.

Figure 5.7 shows a plot of the gradient of the velocity evaluated at the origin.

In particular, it shows that the velocity gradient is positive for early times (which

corresponds to net outward flow), but switches sign at an O(1/Daa) time, as

described in the discussion of the early time evolution in the previous subsection,

due to the reversal of the direction of the Marangoni flow. For a finite O(1) range

of times, the velocity gradient is negative (which corresponds to net inward flow),

but once again switches sign at approximately t ' 3, after which time there is

a net outward flow, and this outward flow now persists for all time as the layer

levels. We omit plots of the evolution of the film thickness over these long times,

as this regime is relatively uninteresting.

Figures 5.6(b) and (c) show the evolution of s and c over the O(1) timescale.

The only physical effects at play in these evolutions are diffusion and advection,

the net effect of which is simply to cause the concentrations to flatten over time,

though, again, we do not plot the decay over these long times.
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Figure 5.6: Evolution of (a) the film thickness, (b) the surface concentration s, (c) the

bulk concentration c, over timescales longer than O(1/Daa) for an anti-surfactant with

K = 0.5 added to the surface concentration, and for Ma = 1, Ca = 1, Ps = Pb = 1,

Daa = 100, Dad = 1000, for times t = 0.1 (solid), 0.5 (dotted), 1 (dashed), 3 (dash-dot).
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Figure 5.7: Evaluation of the gradient of velocity at the origin for a localised distur-

bance of anti-surfactant with K = 0.5 added to the surface, and for Ma = 1, Ca = 1,

Ps = Pb = 1, Daa = 100, Dad = 1000. Inset is a zoom in to the O(1) time at which

there is a sign change of the gradient.

5.4.2 Local Disturbance to the Surface Concentration of

Surfactant (K > 1)

We now investigate the case in which surfactant (K > 1) is added to the free

surface. The initial condition is again given by (5.4.1). This case is different from

the previous case in which anti-surfactant was added to the surface in that the

Marangoni flow generated by the concentration gradients does not reverse once

the surface and bulk concentrations have equilibrated. The depression that forms

in the free surface therefore does not become a peak and, instead, the depression

itself grows in magnitude, similar to the growth of the peak in the previous case.

(a) Early O(1/Daa) Time Evolution

As in the previous case, the evolution of the system over the early O(1/Daa)

timescale is dominated by the flux of solute, with small changes in the film thick-

ness. Since the surface concentration is initially large at the origin, there are

surface tension gradients, with surface tension lowest at the origin, and thus an

outward Marangoni flow develops, and causes a depression to form in the free sur-
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face. Unlike the previous case, however, when s and c have reached surface-bulk

equilibrium, the surface tension gradients do switch in sign and surface tension

remains lowest at the origin, since the solute is a surfactant. There is therefore

no reversal in the direction of the Marangoni flow, and the depression that forms

in the free surface remains a depression.

Figure 5.8(a) shows the evolution of the film thickness over the short O(1/Daa)

timescale. The outward Marangoni flow causes a depression to form in the free

surface, which remains for the entirety of this early time period, rather than

switching to a peak as in the previous case.

Figures 5.8(b) and (c) show the evolution of the surface and bulk concen-

trations over this short timescale. Both s and c behave in the same qualitative

manner as in the previous case. Note that since the solute is a surfactant, the

surface concentration will always remain larger than the bulk concentration.

(b) Late O(1) Time Evolution

As with all of the cases considered in this section, there is a period of transient

growth in the film thickness, though, in this case, and differently from the previous

case, it is a depression of the free surface that grows, as there was no peak

formed, as described in the early-time subsection. This growth continues until

approximately t ' 4, at which time the net outward flow causing the depression to

grow becomes a net inward flow in the same manner as the previous case. Figure

5.9 shows the evolution of the film thickness, the surface concentration, and the

bulk concentration, respectively, until the period of transient growth ends.

5.4.3 Local Disturbance to the Bulk Concentration of Anti-

Surfactant (K < 1)

We now investigate the case in which anti-surfactant (K < 1) is added to the bulk

concentration. This case is essentially an “upside down” version of the previous

case (i.e., the case in which surfactant is added to the surface concentration).

Instead of a depression that forms, grows, and ultimately decays, there is a peak
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Figure 5.8: As in Figure 5.5 except that K = 1.5.
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Figure 5.9: As in Figure 5.6, except that K = 1.5.
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that forms, grows, and ultimately decays. This is what might have been expected,

since in both cases the departure of surface tension from its equilibrium state does

not change sign, i.e., surface tension is either always decreased or always increased

relative to the equilibrium, and cannot switch between the two.

(a) Early O(1/Daa) Time Evolution

Since the initial disturbance is to the bulk concentration, the surface tension is

largest at the origin, and there is therefore an inward Marangoni flow which causes

a peak to form on the free surface. After the surface and bulk concentrations

have come into surface–bulk equilibrium, the surface tension remains largest at

the origin, and so the inward Marangoni flow remains throughout the early time

evolution.

Figure 5.10 shows the evolution of the film thickness, surface concentration,

and bulk concentration over this early O(1/Daa) timescale, showing the peak that

forms in the free surface, and the changes due to the surface-bulk equilibration

of the surface and bulk concentrations.

(b) Late O(1) Time Evolution

Figures 5.11 shows the evolution of the film thickness, surface concentration,

and bulk concentration, respectively, over the O(1) timescale. Over these longer

times, the peak of the free surface grow to a maximum at approximately t = 4.

Beyond this, capillarity and diffusion act to bring the system back to equilibrium.

5.4.4 Local Disturbance to the Bulk Concentration of Sur-

factant (K > 1)

The final case we investigate is that in which a surfactant is added to the bulk

concentration. This case is essentially an “upside down” version of the first case

that we considered (i.e., the case in which an anti-surfactant is added to the

surface concentration). Instead of a depression that forms, then flips to become a
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Figure 5.10: Evolution of (a) the film thickness, (b) the surface concentration s,

(c) the bulk concentration c, over the early O(1/Daa) timescale for a surfactant with

K = 0.5 added to the bulk concentration, and for Ma = 1, Ca = 1, Ps = Pb = 1,

Daa = 100, Dad = 1000, for times t = 0 (solid), 0.004 (dotted), 0.008 (dashed), 0.012

(dash-dot).
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Figure 5.11: Evolution of (a) the film thickness, (b) the surface concentration s,

(c) the bulk concentration c, over the early O(1/Daa) timescale for a surfactant with

K = 0.5 added to the bulk concentration, and for Ma = 1, Ca = 1, Ps = Pb = 1,

Daa = 100, Dad = 1000, for times t = 0 (solid), 0.1 (dotted), 0.5 (dashed), 4 (dash-

dot).
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peak, which then grows and ultimately decays, in this case a peak forms, then flips

to become a depression, which grows and ultimately decays. This is what might

have been expected since in both cases there is a change in sign of the departure

of the surface tension from its equilibrium state (i.e., the surface tension switches

from being largest at the origin initially to lowest at the origin in surface–bulk

equilibrium in the case discussed in section 5.4.1, and vice versa in this case).

(a) Early O(1/Daa) Time Evolution

Since the initial disturbance is to the bulk concentration, the surface tension is

increased at the origin, and an inward Marangoni flow causes a peak to form

in the free surface. After the surface and bulk concentrations have come into

surface–bulk equilibrium, the surface tension switches from being increased to

decreased at the origin, and a reversal of Marangoni flow from an inward flow to

an outward flow occurs. This causes the peak of the free surface to flip to become

a depression, which then grows.

Figures 5.12 shows the evolution of the film thickness, surface concentration,

and bulk concentration over the early O(1/Daa) timescale, and showing the for-

mation in the peak of the free surface that becomes a depression, and also show

the changes due to surface–bulk equilibration of the surface and bulk concentra-

tions.

(b) Late O(1) Time Evolution

Figures 5.13 shows the evolution of the film thickness, surface concentration,

and bulk concentration, respectively, over the O(1) timescale. Over these longer

times, the depression in the free surface grows, to a maximum at approximately

t ' 4. Beyond this, capillarity and diffusion act to bring the system back to

equilibrium.
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Figure 5.12: As in Figure 5.10, except that K = 1.5.

158



(a)

(b)

(c)

x

h

s

c

Figure 5.13: As in Figure 5.11, except that K = 1.5.
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5.5 Summary

In this Chapter, we numerically integrated the thin-film equations derived in

Chapter 4. In particular, we confirmed the results of the linear stability analysis

performed in Chapter 4, and demonstrated that the linear theory performs well

even for perturbations that are O(1). We also considered the problem of adding

a large amount of surfactant or anti-surfactant to a small region of either the

surface or the bulk of an otherwise pure solvent. Transient growth of either a

peak or a depression in the free surface occurs, depending on whether the solute

is a surfactant or an anti-surfactant, and on whether the solute is added to the

surface or the bulk, but the free surface deformation is typically small (of the

order 1-100 microns). These results could readily be tested experimentally and

indeed such experiments have been carried out for insoluble surfactants (see, for

example, [24]). For perturbations to the bulk concentration, without disturbing

the surface concentration or the free surface itself, one can imagine, for example,

lacing the substrate with the solute before adding the solvent, or having the solute

in some form of inert, but soluble, capsule which releases when triggered to do

so.
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Chapter 6

Non-Linear Dynamics of a Thin

Film: Analytical Solutions

6.1 Introduction

In this Chapter we seek analytical solutions to the equations describing the flow

of a thin film of surfactant or anti-surfactant solution in the special cases of an

insoluble surfactant (where c ≡ 0, as in section 3.4.2) and a ‘perfectly soluble’

anti-surfactant (where s ≡ 0, as in section 3.4.3). In section 6.2, we focus on

“perfectly soluble” anti-surfactants and seek solutions to a family of Riemann

problems in which there is a discontinuity in the initial condition. In section

6.5, we seek similarity solutions for an insoluble surfactant, where we recover the

similarity solution obtained by Jensen and Grotberg [39] and extend their results

to include different scalings of the film thickness, and for a “perfectly soluble”

anti-surfactant, where we find a doubly-infinite family of new similarity solutions.

The equations that we will use in section 6.2 (i.e., equations (6.2.3) and (6.2.4))

were first solved by Howison et al. [35] in the context of drying paint films,

though they reached these equation through a different process. Howison et

al. demonstrated that one can obtain implicit solutions to these equations, and

used these solutions to show that when a sinusoidal distribution of “perfectly

soluble” anti-surfactant (the resin in the paint) is added to a flat layer, the film

thickens at the peaks of the concentration distribution and thins at the troughs.
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This leads to the formation of a shock in the film thickness in finite time at the

peaks of the concentration distribution. It is also possible to obtain solutions to

these equations in parametric form for sufficiently well-behaved initial conditions,

which we do in Appendix C.

6.2 A Family of Simple-Wave Solutions for a

“Perfectly Soluble” Anti-Surfactant

The equations that describe the flow of a “perfectly soluble” anti-surfactant so-

lution (where s ≡ 0, as in section 3.4.3) can be solved analytically when diffusion

and capillarity are neglected. In fact, these equations can be written in charac-

teristic form, enabling us to use the powerful method of characteristics [95, 117]

to solve problems in which the initial condition may be discontinuous — so-called

Riemann problems. In this section we demonstrate this approach by solving a

family of Riemann problems that resemble the classical dam-break problem (see,

e.g., Whitham [117]), or the classical Stoker problem [95], but where the driving

force is not gravity, but a spatially non-uniform shear stress due to concentra-

tion gradients. In particular, we will consider initial conditions in which there

is a discontinuity at a single point (the origin, for convenience) in both the film

thickness and the concentration gradient.

6.2.1 The Governing Equations in Characteristic Form

We begin by rewriting the governing equations in characteristic form, so that we

may employ the method of characteristics [117] to obtain solutions. Beginning

from equations (4.7.1) and (4.7.3) (with s ≡ 0), we take the limits Ca → ∞ so

that capillarity is neglected, Pb → ∞ so that diffusion is neglected, and K → 0

so that the solute is completely excluded from the free surface. We also choose

the velocity scale to be U∗ = U∗Ma so that Ma = 1. Under the above assumptions,

we obtain the reduced pair of equations

∂h

∂t
+ 1

2
∂

∂x
(h2 ∂c

∂x
) = 0, (6.2.1)
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∂c

∂t
+ 1

2h
(
∂c

∂x

)2

= 0. (6.2.2)

Differentiating (6.2.2) with respect to x and making the substitution ∂c/∂x = b,

where b(x, t) denotes the gradient of the concentration of solute, we obtain the

equations
∂h

∂t
+ 1

2
∂

∂x
(h2b) = 0, (6.2.3)

∂b

∂t
+ 1

2
∂

∂x
(hb2) = 0. (6.2.4)

Note that, because of the Marangoni effect, a positive (negative) value of b cor-

responds to a positive (negative) shear stress at the free surface of the film which

drives the fluid to the right (left).

The system of nonlinear equations given by (6.2.3) and (6.2.4) is purely hy-

perbolic, and so may be written in characteristic form with Riemann invariants

r± = hb±1, which are constant along the characteristic curves in the (x, t)-plane

with slopes given by the eigenvalues λ± = hb(1± 1
2). Thus

d
dt (r+) = d

dt (hb) = 0, (6.2.5)

d
dt (r−) = d

dt

(
h

b

)
= 0 (6.2.6)

on the characteristic curves given by

dx
dt = λ± = hb

(
1± 1

2

)
. (6.2.7)

With the governing equations (6.2.1) and (6.2.2) written in the characteristic

form (6.2.5)–(6.2.7), we are now able to solve a family of Riemann problems in

which there is a discontinuity in the initial conditions for the film thickness h

and/or the concentration gradient b. Specifically, we consider situations in which

an initial discontinuity separates two otherwise uniform regions in each of which

h and b are constant. Without loss of generality, we take the initial discontinuity

to be at x = 0, and so take the initial conditions at t = 0 to be h = hL, b = bL for x < 0,

h = hR, b = bR for x > 0,
(6.2.8)
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where, in general, none of the prescribed constants hL, hR, bL and bR are equal,

and the subscripts R and L denote initial quantities to the right and to the left

of the initial discontinuity, i.e., for x > 0 and x < 0, respectively. Note that since

b is initially piecewise constant, c will be initially piecewise linear, and hence

if bL > 0 and/or bR < 0 then c will be initially negative (which is, of course,

unphysical) as x→ −∞ and/or x→∞. Thus in these cases the present analysis

is strictly only a local (rather than a global) one. However, as we shall show, in all

cases the present analysis gives valuable insight into the surprisingly complicated

dynamics that can arise from an initial discontinuity.

6.3 The “dry-bed” problem

In this section we consider the “dry-bed” problem in which hL > 0 but hR =

bR = 0, so that the region x > 0 is initially dry.

In order to construct solutions for h and b, we consider the characteristics in

the (x, t)-plane given by (6.2.7). There are two characteristics emanating from

any initial point (x, 0), which we label as C±, corresponding to the eigenvalues

λ±, respectively, and we use the superscripts R and L to denote characteristics

emanating from the right and from the left of the initial discontinuity, i.e., from

x > 0 and x < 0, respectively.

For x > 0 we have h = b ≡ 0 at t = 0, and so the CR
± characteristics coincide

and are simply vertical straight lines given by

CR
± : x = xR

±, (6.3.1)

where xR
± is a constant that labels each of the characteristics. On the other hand,

for x < 0 we have h = hL and b = bL at t = 0, and so the CL
± characteristics are

inclined straight lines given by

CL
+ : x = 3

2hLbLt+ xL
+, (6.3.2)

CL
− : x = 1

2hLbLt+ xL
−, (6.3.3)

where xL
± are constants that label each of the characteristics. Evidently, the slopes

of the CL
± (but not the CR

±) characteristics depend on the values and signs of hL

164



t

x

UL

UR

SW

Figure 6.1: The typical arrangement of the characteristics in the (x, t)-plane for the

dry-bed problem with bL < 0. Three separate regions are identified, namely a uniform

region to the left (labelled UL), a uniform region to the right (labelled UR), and a simple-

wave region (labelled SW). The dashed lines correspond to the CR
± characteristics in

region UR and the CL
− characteristics in region UL, the thin solid lines correspond to the

CL
+ characteristics in region UL and the C+ characteristics which form the expansion

fan in region SW, and the thick solid lines represent the limiting characteristics which

form the boundaries of region SW.

and bL. Physically, since h is a thickness, we are restricted to positive values of

hL, but, since b is a concentration gradient, bL can be either positive or negative,

and we now consider these possibilities in turn.

6.3.1 The dry-bed problem with bL < 0

Firstly, consider the case bL < 0 in which a negative concentration gradient drives

the fluid to the left. In this case, the CL
± characteristics have a negative slope,

and hence the information carried by these characteristics propagates to the left.

Figure 6.1 shows the typical arrangement of the characteristics in the (x, t)-

plane in this case. Three separate regions are identified, namely a uniform region

to the left (labelled UL), a uniform region to the right (labelled UR), and a simple-
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wave region (labelled SW). The dashed lines correspond to the CR
± characteristics

in region UR and the CL
− characteristics in region UL, the thin solid lines corre-

spond to the CL
+ characteristics in region UL and the C+ characteristics which

form the expansion fan in region SW, and the thick solid lines represent the lim-

iting characteristics which form the boundaries of region SW. We now construct

the solutions that hold in each of these regions.

Region UL corresponds to the uniform region of undisturbed fluid to the left,

i.e., extending to x → −∞, with the right-hand boundary of region UL being

the limiting CL
+ characteristic, i.e., the straight line given by (6.3.2) with xL

+ = 0.

The solutions for h and b in region UL are therefore simply

h = hL, b = bL (< 0) for x ≤ 3
2hLbLt (< 0). (6.3.4)

The corresponding solution for c is obtained by integrating ∂c/∂x = bL with

respect to x and (6.2.2) with respect to t to obtain

c = cL + bLx−
1
2hLbL

2t for x ≤ 3
2hLbLt (< 0), (6.3.5)

where cL is a constant of integration.

Similarly, region UR corresponds to the uniform region with no fluid to the

right of x = 0, i.e., extending from x = 0 to x→∞. The solutions for h, b and c

in region UR are therefore simply

h ≡ 0, b ≡ 0, c ≡ 0 for x ≥ 0. (6.3.6)

The CL
− characteristics emanating from region UL intersect the limiting CL

+

characteristic, and then enter region SW. Since these characteristics carry the

same value of r− = rL
− in both regions, we have

h

b
= hL

bL
in region SW. (6.3.7)

Furthermore, since each C+ characteristic carries a constant value of r+, we also

have

hb = k in region SW (6.3.8)

for some constant k that is different on each C+ characteristic in region SW.

Solving equations (6.3.7) and (6.3.8) shows that both h and b are constant along
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any given C+ characteristic in region SW. Thus λ+ must be constant for any

value of k and, from (6.2.7), the C+ characteristics in region SW must be straight

lines through the origin of the (x, t)-plane with slopes depending on the value of

k. These C+ characteristics form the expansion fan in region SW shown in Figure

6.1. Furthermore, since all C+ characteristics are straight lines, we may write

dx
dt = x

t
= 3

2hb. (6.3.9)

Solving equations (6.3.7) and (6.3.9), we find the simple-wave solutions for h and

b in region SW to be

h =
√

2hLx

3bLt
, b = −

√
2bLx

3hLt
(< 0), (6.3.10)

where we have chosen the signs of the square roots appearing in h and b appro-

priately.

The corresponding simple-wave solution for c in region SW which is continuous

with the solution in region UL across the limiting CL
+ characteristic, i.e., across

x = 3hLbLt/2, is

c = cL +
(2

3

)3/2
√
bLx3

hLt
. (6.3.11)

The presence of the arbitrary constant, namely cL, in the solution for c reflects

the fact that adding a uniform amount of solute to the film has no effect on the

dynamics of the system, i.e., only gradients in the concentration of solute affect

the behaviour of the film.

Figure 6.2 shows typical plots of the exact solutions given by (6.3.4)–(6.3.6),

(6.3.10) and (6.3.11), and, in particular, shows the uniform solutions to the right

and to the left and the simple-wave solutions that connect them. Since b is always

negative, the negative concentration gradient always drives the fluid to the left,

advecting the solute with it. Note that, since gravity, capillarity and diffusion

effects have all been neglected, there is no physical mechanism to drive the fluid

rightwards, and so the initially dry region x > 0 always remains dry.

We also sought numerical solutions of the system of equations (4.7.1) and

(4.7.3) (with s ≡ 0 and in the limit K → 0), with finite (but large) values of Ca

and Pb (specifically, both were taken to be 104), and compared these numerical

167



Figure 6.2: Exact solutions of the dry-bed problem with bL < 0 given by equations

(6.3.4)–(6.3.6), (6.3.10) and (6.3.11) for (a) h, (b) b and (c) c with initial conditions

(6.2.8), where hR = 0, bR = 0, hL = 1, bL = −1 and cL = 0, for t = 0, 0.25, 0.5, 0.75, 1

(solid to dotted lines, respectively).

solutions with the analytical simple-wave solutions obtained earlier and shown

in Figure 6.2. The initial conditions for h and c are piecewise constant and

piecewise linear, respectively, as given by equation (6.2.8), and are smoothed by

COMSOL such that they each have at least continuous first and second derivatives

by smoothly interpolating over a small range of x around the discontinuity. The

initial conditions, before smoothing, are

h =


hL for x < 0,

0 for x > 0,
c =


bL(x− x0) for x < 0,

x0 for x > 0,
at t = 0,

(6.3.12)

where x0 is a positive constant (chosen to be x0 = 10 so that c > 0 in the

computational domain). The computational domain was chosen to be the interval

[−30, 1], so that there were no significant edge effects from the left-hand boundary,

and, since both h and c remain constant to the right of the initial discontinuity,
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only a relatively small portion of x > 0 needs to be simulated. A uniform mesh of

3000 points was used, in order to resolve any sharp transitions between the two

uniform solutions that occur for early times. The simulation was run for 20 units

of dimensionless time, and used COMSOL’s built in variable-time-step methods.

The typical computation times were approximately 15 seconds.

Figures 6.3 and 6.4 show the numerically calculated solutions of equations

(4.7.1) and (4.7.3) subject to the initial condition (6.3.12). As time increases,

the initial condition “spreads”, but only to the left, which is consistent with the

analytical simple-wave solutions obtained in this section for the dry-bed case with

r− = 0. In order to compare these numerical solutions directly with the analytical

solutions, we rescale the spatial variable in both the analytical and the numerical

solutions to be the simple wave variable ξ = x/t.

Figures 6.5 and 6.6 show a comparison between the numerical solution plotted

using ξ = x/t (shown solid), and the analytical solution (shown dashed). There

is very good agreement between the numerical and analytical solutions for both

h and b, except near the left edge of region SW. These differences are due to

the smoothing associated with the small, but not entirely negligible, effects of

diffusion and capillarity in equations (4.7.1) and (4.7.3).

6.3.2 The dry-bed problem with bL > 0

Secondly, consider the case bL > 0 in which a positive concentration gradient

drives the fluid to the right. In this case, the CR
± characteristics, given by (6.3.1),

are again vertical straight lines, but the CL
± characteristics, given by (6.3.2) and

(6.3.3), now have a positive slope. The C+ and C− characteristics therefore

intersect at the origin of the (x, t)-plane, meaning that shocks form instantly

(i.e., at t = 0) in both h and b at x = 0, and for t > 0 these shocks propagate

with some speed ẋs. The speed of the shocks ẋs is determined by the Rankine–

Hugoniot shock conditions [117] for this problem, namely

ẋs [[h]] = 1
2
[[
h2b

]]
, (6.3.13)

ẋs [[b]] = 1
2
[[
hb2

]]
, (6.3.14)
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h

x

Figure 6.3: Numerically calculated solutions for the film thickness h in the dry-bed

problem when hR = bR ≡ 0, bL = −1, hL = 1. The arrow denotes the direction of

increasing time.

b

x

Figure 6.4: As in Figure 6.3 but showing the concentration gradient b.
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h

x/t

Figure 6.5: Comparison between the numerical solution (shown solid) and the ana-

lytical solution (shown dashed) for the film thickness h in the dry-bed problem when

hR = bR ≡ 0, bL = −1, hL = 1, t = 10.

b

x/t

Figure 6.6: As in Figure 6.5 but showing the concentration gradient b.
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Figure 6.7: Exact solutions of the dry-bed problem with bL > 0 given by equation

(6.3.16) for (a) h, (b) b and (c) c with initial conditions (6.2.8), where hR = 0, bR = 0,

hL = 1, bL = 1 and cL = 2, for t = 0, 1, 2. The arrows indicate the rightwards

propagation of the shocks, which are indicated with dashed lines.

where the notation [[u]] denotes the jump in the quantity u across the shock.

Solving (6.3.13) and/or (6.3.14) yields

ẋs = 1
2hLbL (> 0), (6.3.15)

showing that the location of the shocks is given by the limiting CL
− characteristic.

It is then straightforward to obtain the solutions for h, b and c, namely h = hL, b = bL (> 0), c = cL + bLx− 1
2hLbL

2t for x < 1
2hLbLt (> 0),

h ≡ 0, b ≡ 0, c ≡ 0 for x > 1
2hLbLt (> 0),

(6.3.16)

which simply represent uniform solutions for h and b and a linear solution for c,

terminated by shocks that propagate rightwards at constant speed ẋs given by

(6.3.15).

Figure 6.7 shows typical plots of the exact solutions given by (6.3.16), and,

in particular, shows the rightwards propagation of the shocks. Note that, unlike
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in the case bL < 0 shown on Figure 6.2, in this case the positive concentration

gradient provides a physical mechanism that can drive the fluid rightwards into

the initially dry region x > 0.

6.4 The “wet-bed” problem

In this section we consider the “wet-bed” problem in which hL > 0 and hR >

0, so that there is initially fluid everywhere. Since there are now four (rather

than two) free parameters, there are more cases to consider than for the dry-bed

problem. However, for brevity, in the present work we consider only two of the

more interesting cases, in both of which hL > hR > 0, bL < 0 and bR < 0. These

cases are somewhat analogous to the cases of subcritical and supercritical flow,

respectively, in, for example, the classical dam-break problem [117]. In particular,

in section 6.4.1 we consider the case hLbL < hRbR, and show that the solution

to this problem resembles that of the classical Stoker problem [95] in which a

simple-wave solution continuously connects two uniform regions, the rightmost of

which is connected by a shock to a further uniform region, while in section 6.4.2

we consider the case hLbL > hRbR, and show that the solution to this problem

consists of three uniform regions connected by two shocks. In both cases, like

in the dry-bed problem discussed in section 6.3.1, since b is always negative, the

negative concentration gradient always drives the fluid to the left, and so the

solution in the region x > 0 always remains at its initial values.

6.4.1 Wet-bed problem with hLbL < hRbR

Firstly, we consider the case hLbL < hRbR. For x > 0 we have h = hR and b = bR

at t = 0, and so the CR
± characteristics are straight lines given by

CR
+ : x = 3

2hRbRt+ xR
+ (6.4.1)

CR
− : x = 1

2hRbRt+ xR
−, (6.4.2)

where xR
± are constants that label each of the characteristics. For x < 0 we

have h = hL and b = bL at t = 0, and so the CL
± characteristics are, as in the
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Figure 6.8: The typical arrangement of the characteristics in the (x, t)-plane for the

wet-bed problem with hL > hR > 0, bL < 0, bR < 0 and hLbL < hRbR. In addition

to two uniform regions and one simple-wave region similar to those that occur in the

dry-bed problem (again labelled UL, UR and SW, respectively), an additional “middle”

uniform region (labelled UM), not present in the dry-bed problem, that connects the

simple-wave solutions in region SW to the uniform solutions in region UR via a shock

(indicated with the dash-dot line) is also identified.

dry-bed problem, straight lines given by (6.3.2) and (6.3.3). From the forms of

these characteristics, it is clear that if the constraint hLbL < hRbR did not hold,

then the slope of the CR
+ characteristics would be shallower than that of the CL

+

characteristics, and the C+ characteristics would therefore intersect at the origin

of the (x, t)-plane, meaning that shocks would form instantly in both h and b at

x = 0. This is the situation considered in section 6.4.2.

Figure 6.9 shows the typical arrangement of the characteristics in the (x, t)-

plane for the wet-bed problem in the case hLbL < hRbR. In addition to two

uniform regions and one simple-wave region similar to those that occur in the

dry-bed problem (again labelled UL, UR and SW, respectively), an additional

“middle” uniform region (labelled UM), not present in the dry-bed problem, that

connects the simple-wave solutions in region SW to the uniform solutions in
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Figure 6.9: Exact solutions of the wet-bed problem with hL > hR > 0, bL < 0, bR < 0

and hLbL < hRbR given by (6.3.10), (6.3.11), (6.4.3), (6.4.4), (6.4.9) and (6.4.10) for

(a) h, (b) b and (c) c, where hL = 1, bL = −0.8, hR = 0.5, bR = −0.7 and cL = 1,

at t = 2. The boundaries between the regions are indicated with dashed lines, except

for the locations of the shocks at the boundary between regions UM and UR, which are

indicated with dash-dot lines.

region UR via a shock (indicated with the dash-dot line) is also identified. We

now construct the solutions that hold in each of these regions.

The solutions for h, b and c in the uniform regions UL and UR are simply

h = hL, b = bL (< 0), c = cL+bLx−
1
2hLbL

2t for x ≤ 3
2hLbLt (< 0) (6.4.3)

and

h = hR, b = bR (< 0), c = cR + bRx−
1
2hRbR

2t for x ≥ 3
2hRbRt (< 0),

(6.4.4)

respectively, where cL and cR are constants of integration.

As in the dry-bed problem, the CL
− characteristics emanating from region UL

enter region SW, and so the solutions for h and b in this region are precisely the

same as those in the dry-bed problem given by (6.3.10) and (6.3.11), respectively.
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However, unlike in the dry-bed problem, the right-hand boundary of region SW is

not simply the vertical line x = 0, but now must be found as part of the solution.

Using the solutions for h and b in region SW, the CL
− characteristics in this region

satisfy
dx
dt = x

3t , (6.4.5)

and hence are given by

t = βx3, (6.4.6)

where β (< 0) is a constant of integration which must be negative in order that

the CL
− characteristics be continuous across the boundary between regions UL and

SW. After passing through region SW, the CL
− characteristics eventually intersect

the boundary between regions SW and UM, and then enter region UM. Since these

characteristics carry the same value of r− = rL
− in both regions, we have

b

h
= bL

hL
in region UM. (6.4.7)

However, there are no solutions for the uniform values of h and b in region UM,

denoted by hM and bM, that are continuous with the solutions in region UR given

by (6.4.4), and so there must be shocks in h and b at the boundary between regions

UM and UR. The uniform values of h and b on either side of the shocks are related

by the shock conditions (6.3.13) and (6.3.14), which, along with (6.4.7), give

three simultaneous (nonlinear) algebraic equations for three unknowns, namely

the shock speed ẋs, hM and bM. Solving these equations yields

ẋs = 1
2hRbR (< 0), (6.4.8)

showing that the location of the shocks is given by the limiting CR
− characteristic,

and the uniform solutions for h and b in region UM, namely

hM =
√
hLhRbR

bL
, bM = −

√
hRbLbR

hL
(< 0). (6.4.9)

The solution for c in region UM, denoted by cM, which is continuous with the

solution in region SW is

cM = cL +
√
hRbLbR

hL

(
hRbRt

2 − x
)
. (6.4.10)
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Figure 6.10: Exact solutions of the wet-bed problem with hL > hR > 0, bL < 0,

bR < 0 and hLbL > hRbR given by (6.4.3), (6.4.4), (6.4.9) and (6.4.10) for (a) h, (b) b

and (c) c, where hL = 1, bL = −0.5, hR = 0.5, bR = −1.1 and cL = 1, at t = 1. The

shocks at the boundaries between regions UL and UM and between regions UM and UR

are indicated with dash-dot lines.

Requiring that the solution for c (but not, of course, the solutions for h and b)

is also continuous across the boundary between regions UM and UR, i.e., across

x = 1
2hRbRt, shows that cR = cL, i.e., that, as in the dry-bed case, there is a

single arbitrary constant, namely cL, in the solution for c which has no effect on

the dynamics of the system.

Figure 6.9 shows typical plots of the exact solutions for h, b and c given

by (6.3.10), (6.3.11), (6.4.3), (6.4.4), (6.4.9) and (6.4.10). In particular, Figure

6.9 shows that the solutions for both h and b are continuous everywhere except

for shocks at the boundary between region UM and region UR, which propagate

leftwards into the region x < 0 at constant speed ẋs given by (6.4.8).
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6.4.2 Wet-bed problem with hLbL > hRbR

Secondly, we consider the case hLbL > hRbR, i.e., the case in which the C+

characteristics intersect at the origin of the (x, t)-plane, meaning that shocks

form instantly in both h and b at x = 0. In fact, it is immediately apparent

that in this case there must be two shocks (rather than just one shock) in both h

and b. Specifically, since the values hL, bL, hR and bR are all prescribed, a single

shock in both h and b would introduce only a single unknown (namely, the single

shock speed), leading to an over-determined system, and so a second shock with

a second shock speed must also occur in both h and b.

Proceeding along the same lines as in the cases discussed previously, we find

that the solution in this case consists of the uniform regions UL and UR in which

the solutions for h, b and c are again given by (6.4.3) and (6.4.4) separated from

a middle uniform region UM in which the solutions for h, b and c are again given

by (6.4.9) and (6.4.10). Solving the appropriate shock conditions yields

ẋLM
s = 1

2

(
hLbL + hRbR −

√
hLhRbLbR

)
(< 0) (6.4.11)

and

ẋMR
s = 1

2hRbR (< 0), (6.4.12)

where ẋLM
s and ẋMR

s denote the speeds of the shocks at the boundaries of regions

UL and UM and regions UM and UR, respectively. Note that |ẋLM
s | > |ẋMR

s |, and so

the middle region gets monotonically wider as t increases, and, in particular, the

shocks never collide. Furthermore, comparing the solutions in the three different

regions reveals that whereas the value of bM always lies between bL and bR, the

value of hM is always greater than both hL and hR, i.e., that the film is always

thickest in the middle region.

Figure 6.10 shows typical plots of the exact solutions for h, b and c given by

(6.4.3), (6.4.4), (6.4.9) and (6.4.10). In particular, Figure 6.10 shows that the

solutions for both h and b are uniform everywhere except at the shocks, which

propagate leftwards into the region x < 0 at constant speeds ẋLM
s and ẋMR

s given

by (6.4.11) and (6.4.12), respectively. Figure 6.10 also shows that the film is

thickest in the middle region between the two shocks.
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6.5 Similarity Solutions

It is well known that equations governing the flow of thin films of fluid can, in

some regimes, admit similarity (or, synonymously, self-similar) solutions, i.e.,

the solution for any time t = t1 is simply an appropriately rescaled version of the

solution for any other time t = t2 (see, for example, Barenblatt [5]).

Unfortunately, the governing equations that arose in Chapters 4 and 5, i.e.,

equations (4.7.1)–(4.7.3), do not, in general, admit similarity solutions. However,

in certain simplified regimes in which some physical effects are neglected, simi-

larity solutions can be found that either represent the true long-time asymptotic

behaviour of the system, or are valid in some range of intermediate times. In

particular, we will see that, when the flux of solute is retained in the problem

(i.e., when Daa 6= 0 and Dad 6= 0), no similarity solutions of the specific type

that we seek can exist. In addition we will see that, when capillarity and solute

diffusion are retained, the similarity solutions that we obtain can be either long-

time or intermediate-time asymptotic solutions, depending on the values of the

exponents in the similarity transformation.

In this section, we investigate several simplified regimes that admit similarity

solutions. To do this, we first use a general similarity transformation to trans-

form the system of PDEs governing the evolution of a thin film of surfactant-

or anti-surfactant-laden fluid, without neglecting any of the physics. From these

transformed equations, we investigate special cases in which exact similarity so-

lutions can be obtained, and investigate the times for which we expect these

solutions to be valid.

6.5.1 Similarity Transformation

We seek solutions to equations (4.7.1)–(4.7.3), when they are transformed accord-

ing the following similarity transformation with general constant exponents α, β,

γ, and ζ:

h(x, t) = ĥ(ξ)tα, s(x, t) = ŝ(ξ)tγ, c(x, t) = ĉ(ξ)tβ, ξ = xtζ , (6.5.1)
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where ξ is the independent similarity variable. Substituting (6.5.1) into the PDEs

(4.7.1)–(4.7.3) yields

αĥ+ ζξĥ′︸ ︷︷ ︸+
[

1
3Ca ĥ

′′′ĥ3t3α+4ζ+1 − Ma
2 ĥ2ŝ′tα+2ζ+γ+1 + Ma

2 ĥ2ĉ′tα+2ζ+β+1
]′

= 0,

(6.5.2)

γŝ+ ζξŝ′︸ ︷︷ ︸+
[ 1
2Ca ĥ

′′′ĥ2ŝt3α+4ζ+1 −Maĥŝŝ′tα+2ζ+γ+1 + Maĥŝĉ′tα+2ζ+β+1
]′

− 1
Ps
ŝ′′t2ζ+1 −DaaKĉt

β−γ+1 + Daaŝt
1 = 0, (6.5.3)

ĥ (βĉ+ ζξĉ′)︸ ︷︷ ︸+
[

1
3Ca ĥ

′′′ĥ3t3α+4ζ+1 − Ma
2 ĥ2ŝ′tα+2ζ+γ+1 + Ma

2 ĥ2ĉ′tα+2ζ+β+1
]
ĉ′

− 1
Pb

(
ĥĉ′
)′
t2ζ+1 − δDadKĉt

1−α + δDadŝt
γ−β−α+1 = 0, (6.5.4)

where the prime denotes differentiation with respect to ξ and the underbraced

terms are the transformed time derivatives ∂/∂t) . In addition to these equations

we also require that the change in the total mass of solute in the system balances

the amount of solute (if any) that is being added or removed from the system

by any means. The total mass of solute in the system at any instant, which we

denote by M(t), is given by

M(t) =
∫ +∞

−∞
(δs+ hc) dx, (6.5.5)

which, under the transformation (6.5.1), becomes

Qtm =
∫ +∞

−∞

(
δŝtγ−ζ + ĥĉtα+β−ζ

)
dξ, (6.5.6)

where we have written M(t) = Qtm. When m = 0, the total mass of solute

remains constant for all time; when m > 0 the total mass of solute increases over

time; when m < 0 the total mass of solute decreases over time.

Balancing terms in each of equations (6.5.2)–(6.5.4) and (6.5.6) yields con-

ditions on the values of the exponents that must be satisfied. Many different

combinations of balancing terms could be analysed, and a detailed discussion of

every case is not presented here. Instead, we consider only an interesting subset of

the possible problems; even this subset contains rich mathematical and physical
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problems. In particular, we consider only those regimes in which the underbraced

terms in equations (6.5.2)–(6.5.4) are balanced by some of the other terms. This

precludes any solutions in which the bulk–surface flux of solute is retained, since

it is impossible to balance the flux term proportional to s in equation (6.5.3),

which scale with t1, with the time derivatives, which scale with t0.

6.5.2 Similarity Solution for an Insoluble Surfactant

In order to demonstrate that our model recovers the behaviour of the similarity

solutions that occur for classical insoluble surfactants, we first consider one par-

ticular similarity solution that was first obtained by Jensen and Grotberg [39],

and provide a generalisation. To model an insoluble surfactant solution we set

ĉ ≡ 0, and Daa = 0 in equations (6.5.2)–(6.5.4) so that the bulk concentration

is zero, and no surface concentration is transferred to the bulk. We also choose

δ = 1 and β = 0 without loss of generality, and choose the characteristic velocity

scale to be U∗ = U∗Ma so that Ma = 1. For the time being, we also take the limits

Ca → ∞ and Ps → ∞ so that both capillarity and diffusion are neglected, but

we will discuss later the appropriateness of neglecting these terms.

With the above assumptions the governing ODEs (6.5.2) and (6.5.3) become

αĥ+ ζξĥ′ − 1
2
(
ĥ2ŝ′

)′
tα+2ζ+γ+1 = 0, (6.5.7)

γŝ+ ζξŝ′ −
(
ĥŝŝ′

)′
tα+2ζ+γ+1 = 0, (6.5.8)

along with the conservation of solute (6.5.6), which now states

Qtm =
∫ +∞

−∞
ŝtγ−ζ dξ. (6.5.9)

Balancing terms in each of equations (6.5.7)–(6.5.9) yields two conditions on the

exponents, namely

α + 2ζ + γ + 1 = 0 (6.5.10)

from both (6.5.7) and (6.5.8), and

γ − ζ = m (6.5.11)
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from (6.5.9). Solving these two conditions for γ and ζ, we obtain

γ = 1
3 (2m− α− 1) , (6.5.12)

ζ = −1
3 (m+ α + 1) , (6.5.13)

and with these the governing equations (6.5.7) and (6.5.8) become

αĥ− 1
3 (m+ α + 1) ξĥ′ − 1

2
(
ĥ2ŝ′

)′
= 0, (6.5.14)

1
3 (2m− α− 1) ŝ− 1

3 (m+ α + 1) ξŝ′ −
(
ĥŝŝ′

)′
= 0. (6.5.15)

Equations (6.5.14) and (6.5.15) are generalisations to non-zero values of α of the

corresponding equations obtained by Jensen and Grotberg [39]: by setting α = 0,

one obtains exactly their equations (3.8), with a and b given by their equations

(3.4a).

With γ and ζ given by (6.5.12) and (6.5.13), respectively, the coefficient of

the diffusion term in equations (6.5.2) and (6.5.3) that we have neglected thus

far is
1
Ps
trd , (6.5.16)

and the coefficient of the capillarity term in equations (6.5.2) and (6.5.3) that we

have neglected thus far is
1

Ca t
rc , (6.5.17)

where

rd = −1
3 (2α + 2m− 1) (6.5.18)

and

rc = 1
3 (5α− 4m− 1) , (6.5.19)

and by looking at the signs and magnitudes of rd and rc, we may determine the

values of α and m for which capillarity and diffusion will be negligible for long

time, or will eventually dominate.

Figure 6.11 shows a plot of the lines rd = 0 and rc = 0 in (α,m) parameter

space, with rd and rc given by (6.5.18) and (6.5.19), respectively, for an insoluble

surfactant solution (as considered by Jensen and Grotberg [39]). In regions 1 and
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m

α

Figure 6.11: A plot of the lines rd = 0 and rc = 0 in (α,m) parameter space,

with rd and rc given by (6.5.18) and (6.5.19), respectively, for an insoluble surfactant

solution (as considered by Jensen and Grotberg [39]). In regions 1 and 2 diffusion

will eventually dominate over the Marangoni effect; in regions 2 and 3 capillarity will

eventually dominate over the Marangoni effect; in region 4 diffusion and capillarity will

eventually be negligible. The thick dashed line lies in region 1 and corresponds to the

values of α and m that were considered by Jensen and Grotberg [39].

2, rd > 0 and so diffusion will dominate over the Marangoni effect at times longer

than t = O(Ps
1/rd). In regions 2 and 3, rc > 0 and so capillarity will dominate

over the Marangoni effect at times longer than t = O(Ca1/rc). In region 4,

rd < 0 and rc < 0, and so both diffusion and capillarity will be negligible for long

times. Therefore, equations (6.5.14) and (6.5.15) will describe the true long-time

asymptotic behaviour of the system for choices of α and m in region 4, but will

be only an intermediate-time description for values of α and m lying in any of

the other three regions.

The thick dashed line in Figure 6.11 corresponds to the values of m considered

by Jensen and Grotberg [39] (recall they only considered the special case α = 0),

and so, in particluar, their similarity solutions are valid only during an interme-

diate range of times. Specifically, taking the values of Ca and Ps from Figure

183



2 in Jensen and Grotberg [39], diffusion will dominate for (dimensionless) times

longer than t = O(5003) = O(108) (corresponding to t∗ = O(106) s in dimensional

time using the scaling in [39]), while capillarity will be negligible for long times.

We now briefly recap the similarity solution obtained by Jensen and Grotberg

[39] for the spreading of a two-dimensional “planar strip” of insoluble surfactant,

from an initial localised disturbance, similar to the problems discussed in section

5.4 of this thesis. For this particular problem, which is only one of several treated

by Jensen and Grotberg [39], we choose α = 0, so that a constant film thickness

in the original (x, t) variables corresponds to a constant film thickness in the

transformed variables (we assume that the layer is flat at infinity), and also choose

m = 0 so that the total mass of solute is constant. With these assumptions the

exponents become γ = −1/3, ζ = −1/3, and equations (6.5.14)–(6.5.15) reduce

to
1
3ξĥ

′ + 1
2
(
ĥ2ŝ′

)′
= 0, (6.5.20)

1
3 (ξŝ′)′ +

(
ĥŝŝ′

)′
= 0; (6.5.21)

we investigate solutions that are symmetric about ξ = 0, and so we take ξ ≥ 0.

As in Jensen and Grotberg [39], we seek a solution to (6.5.20) and (6.5.21) with

a shock at ξ = ξs, at which there is/are discontinuities in ĥ and ŝ′.

We first rescale the system so that the shock position is ξ̂ = 1, by rescaling ŝ

and ξ according to

ŝ = ξ2
s s̄, ξ = ξsξ̄, (6.5.22)

where, from (6.5.9),

ξs =

 Q∫ ∞
0

s̄ dξ̄


1
3

(6.5.23)

is the position of the shock before rescaling. Note that the position of the shock

depends on the initial mass of solute in the system: the larger the initial mass of

solute, the further right of the origin the shock will be.

Following Jensen and Grotberg [39], to the right of the shock, i.e., for ξ̄ > 1,

we take the solution to be ĥ = 1, s̄ = 0, and just to the left of the shock, i.e., for
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h s̄

ξ̄ ξ̄

Figure 6.12: Similarity solution (6.5.25) obtained by Jensen and Grotberg [39]. The

dashed vertical line denotes the position of the shock at ξ̂ = 1.

0 < ξ̄ < 1, we impose the boundary conditions

ĥ = 2, s̄′ = −1
6 at ξ̄ = 1−. (6.5.24)

Note that Jensen and Grotberg [39] state that these boundary conditions are

arrived at by integrating equations (6.5.20) and (6.5.21) across the shock, but

we were unable to repeat this process. Instead we obtained these boundary

conditions by solving the shock condition corresponding to equation (6.5.20),

and by expanding equation (6.5.21) just to the left of the shock.

The solution to equations (6.5.20) and (6.5.21) subject to the boundary con-

ditions (6.5.24) is

ĥ = 2ξ̄, s̄ = 1
6(1− ξ̄) for 0 < ξ̄ < 1. (6.5.25)

Figure 6.12 shows the similarity solution (6.5.25) first obtained by Jensen and

Grotberg [39]. The dashed vertical line denotes the position of the shock at ξ̂ = 1,

with the similarity solution valid to the left of the shock, and a uniform solution

to the right of the shock.

We compared the similarity solution given by (6.5.25) with numerical solu-

tions to the full nonlinear equations governing the flow of an insoluble surfactant

solution, i.e., equations (4.7.1)–(4.7.2) with c ≡ 0 and Daa = 0, using the finite
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element package COMSOL. Following Jensen and Grotberg [39], we took the

initial conditions for these computations to be

h = 1, s̄ = 1
2

1− tanh
 ξ̂ − ξ0

ξw

 , (6.5.26)

where ξ0 and ξw are constants, and the boundary conditions

h = 1, hx = 0, s̄ = 0 (6.5.27)

at the right-hand boundary of the numerical domain, and

hx = 0, hxxx = 0, s̄x = 0 (6.5.28)

at the left-hand boundary of the numerical domain. Equations (6.5.27) ensure

that the solutions remain approximately constant far from the initial disturbance,

and equations (6.5.28) are regularity conditions. The numerical domain itself

was chosen to be the interval [0, 30], split into 201 evenly spaced grid points.

The simulation was begun at t = 1 (an arbitrary choice: since we wish to plot

solutions using the similarity variable ξ = x/t
1
3 , any sufficiently small t > 0

such that capillarity and diffusion are still negligible would do), and was run

for an intermediate time range (typically from t = 1 to t = 1000) since for the

particular choices m = α = 0, diffusion will eventually dominate the solution.

Typical computation times were approximately 20 seconds.

Figures 6.13 and 6.14 show plots of the evolution of the film thickness h and

the surface concentration s, respectively, for the spreading of insoluble surfactant

in original (x, t) variables. Initially there are gradients of surface tension, with

the surface tension lowest at the origin. Thus an outward (i.e., away from x =

0) Marangoni flow is generated and the fluid spreads outwards. As the fluid

spreads, a front forms and moves rightwards as t 1
3 . Simultaneously, the surface

concentration is advected away from the origin and also spreads as t 1
3 .

Figures 6.15 and 6.16 show the corresponding plots of the evolutions of the

film thickness h and the surface concentration s, respectively, for the spreading of

a planar strip of insoluble surfactant, plotted in similarity variables (ξ̄, t), along

with the similarity solution (6.5.25) obtained by Jensen and Grotberg [39]. There
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h

x

Figure 6.13: Numerically calculated evolution of the film thickness h for the spreading

of insoluble surfactant (as first analysed by Jensen and Grotberg [39]) in original (x, t)

variables when Ma = 1, Ca = 104, Ps = 104, ξ0 = 0, ξw = 10, simulated between

t = 102 and t = 103 in steps of 102. The arrow denotes the direction of increasing time.

s

x

Figure 6.14: Numerically calculated evolution of the surface concentration s for the

spreading of insoluble surfactant (as first analysed by Jensen and Grotberg [39]) in

original (x, t) variables when Ma = 1, Ca = 104, Ps = 104, ξ0 = 0, ξw = 10, simulated

between t = 102 and t = 103 in steps of 102. The arrow denotes the direction of

increasing time.
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h

ξ̄

Figure 6.15: As Figure 6.13, but plotted in similarity variables (ξ, t). The dotted line

denotes the similarity solution as shown in Figure 6.12.

s̄

ξ̄

Figure 6.16: As Figure 6.14, but plotted in similarity variables (ξ, t). The dotted line

denotes the similarity solution as shown in Figure 6.12.
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is good agreement between the two solutions, but, as might have been expected,

there are transition regions near ξ = 0 and ξ = 1, due to the effects of the bound-

ary conditions on the left, and due to weak diffusion and weak capillarity on the

right, in the numerical simulations. We remark here that the numerical solutions

calculated using COMSOL more accurately match the analytical similarity solu-

tions than those calculated by Jensen and Grotberg [39] for the same values of

Ps and Ca. A better match would, of course, be possible by increasing the values

of Ca and Ps further, but the slight improvement gained in doing so does not

outweigh the increased computation time required.

For a much fuller account of the spreading of a local disturbance of insoluble

surfactant, including generalisations to different geometries and different values

of m, see the original paper by Jensen and Grotberg [39].

6.5.3 Similarity Solutions: “Perfectly Soluble” Anti-surfactant

We now revisit the problem of a “perfectly soluble” anti-surfactant. The equations

solved in section 6.2, i.e., equations (6.2.1) and (6.2.2), also admit similarity

solutions. For now, as in the insoluble surfactant case considered in the previous

section, we take the limits K → 0, s ≡ 0 (and by extension setting the exponent

γ = 0 without loss of generality), Ca → ∞, and Pb → ∞, in equations (6.5.2)–

(6.5.4) (or, alternatively, we simply transform equations (6.2.1)–(6.2.2)). Under

these assumptions the governing equations (6.5.2)–(6.5.4) become

αĥ+ ζξĥ′ + 1
2
(
ĥ2ĉ′

)′
tα+2ζ+β+1 = 0, (6.5.29)

βĉ+ ζξĉ′ + 1
2 ĥ (ĉ′)2

tα+2ζ+β+1 = 0, (6.5.30)

along with the conservation of solute (6.5.6), which now states

Qtm =
∫
ĥĉtα+β−ζ dξ. (6.5.31)

Again, we will shortly describe the regions in parameter space in which these

equations describe the true long-time behaviour of the system, and in which

regions they describe only some intermediate-time evolution. Balancing the terms
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in equations (6.5.29)–(6.5.31) yields two conditions on the exponents, namely

α + 2ζ + β + 1 = 0, (6.5.32)

from both (6.5.29) and (6.5.30), and

α + β − ζ = m (6.5.33)

from (6.5.31). Solving these two conditions for β and ζ, we obtain

β = 1
3 (2m− 1− 3α) (6.5.34)

ζ = −1
3 (m+ 1) , (6.5.35)

and with these the governing equations (6.5.29) and (6.5.30) become

αĥ− 1
3 (m+ 1) ξĥ′ + 1

2
(
ĥ2ĉ′

)′
= 0, (6.5.36)

1
3 (2m− 1− 3α) ĉ− 1

3 (m+ 1) ξĉ′ + 1
2 ĥ (ĉ′)2 = 0. (6.5.37)

With β and ζ given by (6.5.34) and (6.5.35), respectively, the coefficient of the

diffusion term that we have neglected in equations (6.5.2) and (6.5.4) thus far is

1
Pb
trd , (6.5.38)

and the coefficient of the capillarity term that we have neglected in equations

(6.5.2) and (6.5.4) thus far is
1

Ca t
rc , (6.5.39)

where

rd = 1
3 (1− 2m) (6.5.40)

and

rc = 1
3 (9α− 4m− 1) , (6.5.41)

and by looking at the signs and magnitudes of rd and rc, we may determine the

values of α and β for which capillarity and diffusion will be negligible for long

time, or eventually dominate the solution.

190



m

α

Figure 6.17: A plot of the lines rd = 0 and rc = 0 in (α,m) parameter space, with

rd and rc given by (6.5.40) and (6.5.41), respectively, for a “perfectly soluble” anti-

surfactant. In regions 1 and 2 diffusion will eventually dominate over the Marangoni

effect; in regions 2 and 3 capillarity will eventually dominate over the Marangoni effect;

in region 4 diffusion and capillarity will eventually be negligible.

Figure 6.17 shows a plot of the lines rd = 0 and rc = 0 in (α,m) parameter

space, with rd and rc given by (6.5.40) and (6.5.41), respectively, for a “per-

fectly soluble” anti-surfactant, and corresponds to Figure 6.11. Thus, the regions

marked represent the same as they did in Figure 6.11 and, in particular, equations

(6.5.29) and (6.5.30) will describe the true long-time behaviour of the system for

values of α and m in region 4.

We now proceed to find a general solution to equations (6.5.36) and (6.5.37).

Solving (6.5.37) for ĥ, we obtain

ĥ = 2
3

(m+ 1) ξĉ′ + (3α + 1− 2m) ĉ
(ĉ′)2 , (6.5.42)

as long as ĉ′ 6= 0 (we are not interested in singular solutions for which c is constant,

since we are focussing on the effect of concentration gradients). Substituting this
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solution for ĥ into (6.5.37) yields an ODE for ĉ only, namely

(m+ 1) (6α + 2−m) ξ (ĉ′)3 − 3 (3α + 1− 2m)2 ĉ2ĉ′′

+ (3α + 1− 2m) (9α + 4− 2m) ĉ (ĉ′)2

− 2 (m+ 1) (3α + 1− 2m) ξĉĉ′ĉ′′ = 0. (6.5.43)

We then make equation (6.5.43) autonomous by means of the substitution ξ =

±eλ so that ĉ(ξ) = ĉ(λ), ĉ′ = ±e−λĉλ, and ĉ′′ = e−2λ (ĉλλ − ĉλ), and hence

equation (6.5.43) becomes

(m+ 1) (6α + 2−m) ĉ3
λ + 3 (3α + 2) (3α + 1− 2m) ĉĉ2

λ

− 3 (3α + 1− 2m)2 ĉ2ĉλλ + 3 (3α + 1− 2m)2 ĉ2ĉλ

− 2 (m+ 1) (3α + 1− 2m) ĉĉλĉλλ = 0. (6.5.44)

This may now be transformed into a first order equation through the substitution

ĉλ = p, so that ĉλλ = ppĉ, and, recalling that ĉ′ 6= 0 and therefore p 6= 0, solving

for pĉ yields

pĉ = (m+ 1) (6α + 2−m) p2 + 3 (3α + 2) (3α + 1− 2m) ĉp+ 3 (3α + 1− 2m)2 ĉ2

2 (m+ 1) (3α + 1− 2m) ĉp+ 3 (3α + 1− 2m)2 ĉ2
,

(6.5.45)

where we now require that 3α + 1 − 2m 6= 0 (which is equivalent to saying that

the exponent β 6= 0). Finally, equation (6.5.45) may be made separable through

the substitution p(ĉ) = ĉq(ĉ), which yields

q + ĉqĉ = f(q), (6.5.46)

where

f(q) = (m+ 1) (6α + 2−m) q2 + 3 (3α + 2) (3α + 1− 2m) q + 3 (3α + 1− 2m)2

2 (m+ 1) (3α + 1− 2m) q + 3 (3α + 1− 2m)2 ,

(6.5.47)

and equation (6.5.46) is now easily solved to obtain ĉ in terms of a parameter q

which may, in general, take any real value.

Integrating equation (6.5.46) yields∫ dĉ
ĉ

=
∫ dq
f(q)− q , (6.5.48)
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which gives ĉ parametrically in terms of q:

ĉ(q) = c0 [(m+ 1) q + 3α + 1− 2m]
1
3 (3α+1−2m) [mq + 3α + 1− 2m]−

(m−2)(3α+1−2m)
3m ,

(6.5.49)

where c0 is a constant of integration. We may also find ξ parametrically in terms

of q by noting that

ĉλ = p ⇐⇒ dλ
dĉ = 1

p
⇐⇒ λ =

∫ dĉ
p

=
∫ dĉ
qĉ

=
∫ dq
q (f(q)− q) , (6.5.50)

which may be evaluated to give an expression for λ in terms of q, from which we

obtain

ξ = eλ = ξ0q [(m+ 1) q + 3α + 1− 2m]−
1
3 (m+1) [mq + 3α + 1− 2m]

1
3 (m−2) ,

(6.5.51)

where ξ0 is a constant. Substitution of (6.5.49) and (6.5.51) into (6.5.42) yields

an expression for ĥ in terms of q, namely

ĥ = h0 [(m+ 1) q + 3α + 1− 2m]−α [mq + 3α + 1− 2m]
(m−2)(3α+1)

3m , (6.5.52)

where h0 = 2ξ0/(3c0).

To summarise, we have solved equations (6.5.36) and (6.5.37) through a num-

ber of substitutions to obtain solutions for ĥ(ξ) and ĉ(ξ) parametrically in terms

of a parameter q, namely the solutions (6.5.49), (6.5.51), and (6.5.52).

We will now consider two interesting special cases of these solutions by choos-

ing particular values of α and m. The first of these will be an intermediate-time

asymptotic solution, and the second will be the long-time asymptotic solution.

Since the constants of integration in these solutions appear only as multiplicative

factors, we may normalise the solutions by rescaling, i.e., we define

X̂ = ξ

ξ0
, Ĥ = ĥ

h0
, Ĉ = ĉ

c0
, (6.5.53)

with the corresponding solution in the original (x, t) variables, namely

X = ξ

ξ0
t

1
3 , H = ĥ

h0
, C = ĉ

c0
t

1
3 , (6.5.54)

where the hat denotes functions of the similarity variable; functions of the original

variables are unadorned.
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(a) The case α = 0 and m = 0

A natural case to start with is when both free exponents are zero, i.e., m = α = 0.

Note that this places the solution in region 1 in Figure 6.17, so that the solution

will be valid only for an intermediate range of times, until a dimensionless time

of t = O(Ps
3). When m = 0, so that no solute is being added or removed from

the system, and α = 0, the solutions for ξ(q), ĥ(q) and ĉ(q), given by (6.5.51),

(6.5.52), and (6.5.49), respectively, become

X̂ = q(q + 1)− 1
3 , (6.5.55)

Ĥ = exp
(
−2

3q
)
, (6.5.56)

Ĉ = (q + 1) 1
3 exp

(2
3q
)
. (6.5.57)

Figure 6.18 shows plots of the normalised film thickness Ĥ and normalised

bulk concentration Ĉ as functions of the normalised similarity variable X̂ for a

‘perfectly soluble’ anti-surfactant with α = 0 and m = 0. The solution for the film

thickness resembles a classical dam-break problem, such as the dry-bed problem

considered in section 6.2. The shape of Ĉ, increasing from left to right, shows

that the fluid is being pulled from left to right due to the increasing gradients of

surface tension caused by the increasing bulk concentration. This may be shown

explicitly by transforming the solutions back into original variables, namely,

X = q(q + 1)− 1
3 t

1
3 , (6.5.58)

H = exp
(
−2

3q
)
, (6.5.59)

C = (q + 1) 1
3 exp

(2
3q
)
t

1
3 , (6.5.60)

which makes it apparent that, as t increases, both H and C stretch horizontally,

while C will also stretch vertically. Figure 6.19 shows these solutions as time

increases.

Asymptotically, as X̂ → 0, Ĥ and Ĉ satisfy

Ĥ ∼ 1− 2
3X̂ + 8

81X̂
3, (6.5.61)
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Ĥ Ĉ

X̂ X̂

Figure 6.18: The normalised film thickness Ĥ given by (6.5.56) and normalised bulk

concentration Ĉ given by (6.5.57) as functions of the normalised similarity variable X̂

given by (6.5.55), for a “perfectly soluble” anti-surfactant with α = 0 and m = 0.

H C

X X

Figure 6.19: The normalised film thickness H given by (6.5.58) and normalised bulk

concentration C given by (6.5.59) as functions of the normalised original variables

(X, t), with X given by (6.5.60), for a “perfectly soluble” anti-surfactant with α = 0

and m = 0, for t = 1, 5, 20, 50 and the arrow denotes increasing t.
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Ĉ ∼ 1 + X̂ + 2
3X̂

2 + 1
3X̂

3, (6.5.62)

while as X̂ → +∞,

Ĥ ∼ exp
(
−2

3X̂
3
2 − 1

3

)
, (6.5.63)

Ĉ ∼ X̂
1
2 exp

(2
3X̂

3
2 + 1

3

)
, (6.5.64)

and, finally, as X̂ → −∞,

Ĥ ∼
exp

[
2
3

(
3X̂3 + 2

)]
3X̂

, (6.5.65)

Ĉ ∼ 1
exp

(
2
3

)
X̂
. (6.5.66)

Figures 6.20–6.22 show comparisons between the exact solutions, given paramet-

rically by (6.5.55)–(6.5.57), and their asymptotic approximations in the limits

X̂ → 0, X̂ → +∞, and X̂ → −∞, respectively, given by (6.5.61)–(6.5.66).

(b) The case α = 0 and m = 1

We now consider the case in which solute is being added to the system linearly

with time, i.e., α = 0 and m = 1, so that the total mass of solute is increasing as

t1. Note that the values α = 0 and m = 1 lie in region 6 in Figure 6.17, and so

the solution represents the true long-time asymptotic behaviour of the system.

When α = 0 and m = 1, the solutions for ξ(q), ĥ(q), and ĉ(q) (normalised as

in the previous case) become

X̂ = q (2q − 1)−
2
3 (q − 1)−

1
3 , (6.5.67)

Ĥ = (q − 1)−
1
3 , (6.5.68)

Ĉ = (2q − 1)−
1
3 (q − 1)−

1
3 . (6.5.69)

Figure 6.23 shows plots of the normalised film thickness Ĥ and bulk concentration

Ĉ as functions of the normalised similarity variable X̂, for a “perfectly soluble”

anti-surfactant with α = 0 and m = 1. In original variables, these solutions are

X = q (2q − 1)−
2
3 (q − 1)−

1
3 t

2
3 , (6.5.70)

H = (q − 1)−
1
3 , (6.5.71)
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Ĥ Ĉ

X̂ X̂

Figure 6.20: Comparison between the exact solutions for the film thickness Ĥ(X̂)

and bulk concentration Ĉ(X̂), shown with solid lines, given parametrically by (6.5.55)–

(6.5.57), and their asymptotic approximations in the limit X̂ → 0, shown with

dashed lines, given by (6.5.61) and (6.5.62), respectively, for a “perfectly soluble” anti-

surfactant with α = 0 and m = 1.

Ĥ Ĉ

X̂ X̂

Figure 6.21: Comparison between the exact solutions for the film thickness Ĥ(X̂)

and bulk concentration Ĉ(X̂), shown with solid lines, given parametrically by (6.5.55)–

(6.5.57), and their asymptotic approximations in the limit X̂ → +∞, shown with

dashed lines, given by (6.5.63) and (6.5.64), respectively, for a “perfectly soluble” anti-

surfactant with α = 0 and m = 1.
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Ĥ Ĉ

X̂ X̂

Figure 6.22: Comparison between the exact solutions for the film thickness Ĥ(X̂)

and bulk concentration Ĉ(X̂), shown with solid lines, given parametrically by (6.5.55)–

(6.5.57), and their asymptotic approximations in the limit X̂ → −∞, shown with

dashed lines, given by (6.5.65) and (6.5.66), respectively, for a “perfectly soluble” anti-

surfactant with α = 0 and m = 1..

C = (2q − 1)−
1
3 (q − 1)−

1
3 t−

1
3 , (6.5.72)

showing that both H and C will move rightwards, and C will decrease as time

increases. Figure 6.24 shows that this is indeed the case. Asymptotically, as

X̂ → +∞, Ĥ and Ĉ satisfy

Ĥ ∼ X̂, (6.5.73)

Ĉ ∼ X̂, (6.5.74)

and as X̂ → 2− 2
3 (in which limit both Ĥ and Ĉ become zero),

Ĥ ∼ 3 1
3 2− 1

9
(
−2− 2

3 + X̂
) 1

3 , (6.5.75)

Ĉ ∼ 3 2
3 2− 14

9
(
−2− 2

3 + X̂
) 2

3 . (6.5.76)

Figures 6.25 and 6.26 show comparisons between the exact solutions, given

parametrically by (6.5.67)–(6.5.69), and their asymptotic approximations in the

limits X̂ → +∞ and X̂ → 2− 2
3 , respectively, given by (6.5.73)–(6.5.76).

Physically, this solution could be interpreted as a local solution near the con-

tact line of a contracting drop or a growing hole in a thin film of anti-surfactant
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Ĥ Ĉ

X̂ X̂

Figure 6.23: The normalised film thickness Ĥ given by equation (6.5.68) and nor-

malised bulk concentration Ĉ given by equation (6.5.69) as functions of the normalised

similarity variable X̂ given by equation (6.5.67) for a “perfectly soluble” anti-surfactant

with α = 0 and m = 1.

H C

X X

Figure 6.24: The normalised film thickness H given by equation (6.5.71) and nor-

malised bulk concentration C given by equation (6.5.72) for a “perfectly soluble” anti-

surfactant with α = 0 and m = 1 for t = 1, 2, 3. The arrow denotes the direction of

increasing time.
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Ĥ Ĉ

X̂ X̂

Figure 6.25: Comparison between the exact solutions for the film thickness Ĥ(X̂) and

bulk concentration Ĉ(X̂), shown as solid lines, given parametrically by (6.5.67)–(6.5.69)

and their asymptotic approximations in the limit X̂ → +∞, shown by dashed lines,

given by (6.5.73) and (6.5.74), respectively, for a “perfectly soluble” anti-surfactant

with α = 0 and m = 1.

Ĥ Ĉ

X̂ X̂

Figure 6.26: Comparison between the exact solutions for the film thickness Ĥ(X̂) and

bulk concentration Ĉ(X̂), shown as solid lines, given parametrically by (6.5.67)–(6.5.69)

and their asymptotic approximations in the limit X̂ → 2−
2
3 , shown by dashed lines,

given by (6.5.75) and (6.5.76), respectively, for a “perfectly soluble” anti-surfactant

with α = 0 and m = 1.
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solution, and would need to be matched to some outer solution away from the

contact line if a global solution was desired.

It is possible to eliminate q from the solutions (6.5.67)–(6.5.69) and to write

X̂ and Ĉ parametrically in terms of the film thickness Ĥ, namely

X̂ =

(
Ĥ3 + 1

)
(
Ĥ3 + 2

) 2
3
, Ĉ = Ĥ3(

Ĥ3 + 2
) 1

3
. (6.5.77)

From these expression it is easy to obtain information about the behaviour near

the contact line. Since Ĥ = 0 at the contact line we see that Ĉ = 0 at the same

point, so there is no solute outside of the drop or in the expanding hole, and

the position of the contact line is at X̂ = 2− 2
3 . Transforming this position back

into original variables yields X = 2− 2
3 t

2
3 , showing that the contact line moves

rightwards as t 2
3 .

One worry, of course, is that there is no equation built into the model to

describe the movement of a contact line, and that the point where Ĥ = 0 seen

in Figures 6.23 and 6.24 should not move because of the well known contact-line

singularity (also known as the Huh and Scriven paradox) [36], where the force

required to move the free surface at the contact line is infinite. However, for this

particular case, we can readily calculate the force F on the substrate due to the

fluid, namely

F =
∫ L

xc
T · n dx, (6.5.78)

where xc is the position of the contact line, and L > xc is some point away from

the contact line. The stress tensor T is given by (4.4.12), and the velocity and

pressure (from equations (4.4.31) and (4.4.33) when surface tension is neglected,

and for a ‘perfectly soluble’ anti-surfactant) are simply

u = ∂c

∂x
z, p = p0. (6.5.79)

Using these it is trivial to show that the force required to move the substrate,

which is equivalent to moving the contact line, is finite at the contact line, and

thus the contact line is able to move as shown in Figures 6.23 and 6.24.
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6.6 Summary

In this Chapter, we found analytical solutions to the thin-film equations derived in

Chapter 4 in the asymptotic regime in which the Marangoni effect dominates over

capillarity and diffusion, and the solute is a “perfectly soluble” anti-surfactant.

By employing the method of characteristics, we found solutions to problems with

discontinuities in the initial conditions, i.e., Riemann problems. Depending on

the thickness of the thin film and the strength of the concentration gradients at

either side of the initial discontinuity, a wide range of behaviour is possible, with

shocks in both the film thickness and the concentration gradient relatively com-

mon among the problems that we considered. We also demonstrated that, in the

same asymptotic regime, but for an insoluble surfactant, our model recovers the

similarity solution found by Jensen and Grotberg [39] describing the spreading

of an initially localised disturbance of insoluble surfactant along a free surface.

Furthermore, when the solute is a “perfectly soluble” anti-surfactant, we derived

two new similarity solutions. The former resembles a classical dam-break prob-

lem, like those we considered in the first part of Chapter 6. The latter resembles

either the moving contact line of a contracting drop of anti-surfactant solution or

the contact line region of a growing hole in a thin film of anti-surfactant solution

when anti-surfactant is being added to the system at a constant rate.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have formulated a fluid dynamical model describing the flow

of a solution consisting of a fluid solvent and a dissolved solute that is either

a surfactant or an anti-surfactant. We have analysed the stability properties

of an initially quiescent, two-dimensional layer of surfactant or anti-surfactant

solution, and investigated some of the dynamical behaviour that can occur in

such solutions.

In Chapter 2, the model used throughout the thesis was formulated for a

layer of surfactant or anti-surfactant solution with a single free surface, sitting on

top of a horizontal, impermeable substrate. In the model, the hydrodynamics is

coupled to the transport of the surface and bulk concentrations of the dissolved

solute through the balance of normal and tangential stresses at the free surface,

i.e., through capillarity and the Marangoni effect. By considering the surface

excess of the dissolved solute, and by prescribing a specific bulk–surface flux, we

derived from the Gibbs isotherm an equation of state relating the surface tension

of the fluid to the concentrations of the dissolved solute. This equation of state

can describe not only classical surfactants, but also anti-surfactants.

In Chapter 3, we performed a linear stability analysis of the dimensionless

system of equations describing the flow of a two-dimensional, initially quiescent

layer of surfactant or anti-surfactant solution. In the special cases of a pure sol-

203



vent, and a “perfectly soluble” anti-surfactant solution, or when the solute is a

surfactant, the system is unconditionally stable; this agrees with previous stud-

ies. However, in the special case of an infinitely deep layer of anti-surfactant

solution the layer can be linearly unstable to perturbations of certain wavenum-

bers. Assuming that the principle of exchange of stabilities holds, a marginal

stability analysis was performed, and instability conditions on the dimensionless

parameters in the system were derived. The effects of finite depth were considered

when the principle of exchange of stabilities is assumed to hold and it was found

that the region of instability in parameter space is largest in the infinite-depth

limit. When the principle of exchange of stabilities is not assumed to hold it was

found numerically that the growth rate of perturbations to a layer of finite-depth

can be complex, but that the associated oscillatory behaviour is an intrinsically

long-wave phenomenon.

In Chapter 4, we investigated the behaviour of a thin film of surfactant or

anti-surfactant solution by assuming that the aspect ratio of the layer is small,

i.e., by making a classical lubrication approximation. Closure of the leading order

problem for the evolution of the bulk concentration required going to higher order

in the small aspect ratio limit. We also performed a linear stability analysis sim-

ilar to that performed in Chapter 3, and found that a thin film of anti-surfactant

solution is unstable to perturbations ofcertain wavenumbers. Stability diagrams

for each of the dimensionless parameters were produced, showing the regions

of instability, and also showing the regions in which oscillatory behaviour oc-

curs. Furthermore, in the limit of fast bulk–surface flux, there is a separation of

timescales with a short timescale over which the surface and bulk concentrations

come into surface–bulk equilibrium, and a long timescale over which capillarity,

diffusion, and the Marangoni effect are dominant.

In Chapter 5 we numerically integrated the thin-film equations derived in

Chapter 4. In particular, we confirmed the results of the linear stability analysis

performed in Chapter 4, and demonstrated that the linear theory performs well

even for perturbations that are O(1). We also considered the problem of adding

a large amount of surfactant or anti-surfactant to a small region of either the
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surface or the bulk of an otherwise clean solvent. Transient growth of either a

peak or a depression in the free surface occurs, depending on whether the solute

is a surfactant or an anti-surfactant, and on whether the solute is added to the

surface or the bulk.

In Chapter 6 we found analytical solutions to the thin-film equations de-

rived in Chapter 4 in the asymptotic regime in which the Marangoni effect is

dominant over capillarity and diffusion, and the solute is a “perfectly soluble”

anti-surfactant. By employing the method of characteristics, we found solutions

to problems with discontinuities in the initial conditions, i.e., Riemann problems.

Depending on the thickness of the thin film and the strength of the concentration

gradients at either side of the initial discontinuity, a wide range of behaviour is

possible, with shocks in both the film thickness and the concentration gradient

common among the problems that we considered. We also demonstrated that,

in the same asymptotic regime, but for an insoluble surfactant, our model re-

covers the similarity solution found by Jensen and Grotberg [39] describing the

spreading of an initially localised disturbance of insoluble surfactant along a free

surface. Furthermore, when the solute is a “perfectly soluble” anti-surfactant, we

derived two new similarity solutions. One of these resembles a classical “dam-

break” problem, like those we considered in the first part of Chapter 6, and the

other may be interpreted as either the moving contact line of a contracting drop

of anti-surfactant solution or the contact line region of a growing hole in a thin

film of anti-surfactant solution when anti-surfactant is being added to the system

at a constant rate.

7.2 Future Work

The work presented in this thesis can be extended and built upon in many ways.

The assumption of a simple linear bulk–surface flux in Chapter 2 led to a

simple linear equation of state which contains an artificial parameter θ. While we

fixed a value of θ from Chapter 4 onwards, it would certainly be worthwhile to

analyse in more detail what effects different values of θ would have on the results
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of more complicated calculations than the linear stability calculations performed

in Chapter 3, such as those performed in Chapters 5 and 6. Also, by taking into

account the saturation of the bulk and, in particular, the surface concentrations,

a more complicated non-linear bulk–surface flux, and consequently a more com-

plicated equation of state, could be obtained. An analysis of different equations

of state and bulk–surface fluxes, and the stability of a layer governed by the re-

sulting models, would be of interest to test the sensitivity of our results to these

particular choices of constitutive relations. Similarly, when the solute is a salt

consisting of ions, the model presented here could be extended to capture the

complicated electrodynamics that occurs in these systems. The model could also

be extended by assuming that the viscosity and density of the solutions, along

with the diffusivity of the solute, vary with concentration — effects that have

been neglected in this thesis..

It would be of great interest to include in the model the effects of evaporation

of anti-surfactant solutions, both in the context of salt solutions and of binary

mixtures of water and alcohol. While the particles of the anti-surfactant tend

to be expelled from the free surface, if the solvent was evaporating, then this

would lead to some degree of accumulation of particles at the free surface [50],

and these competing effects could lead to interesting behaviour. Furthermore, in

the context of water/alcohol binary mixtures, both the solvent (the alcohol) and

the solute (the water) are volatile [64], which adds another level of complexity to

the problem.

Binary mixtures of water and long-chain alcohols such as hexanol have the

anomalous property that the surface tension of the mixture depends non-monotoni-

cally on the temperature of the fluid, with a well-defined minimum in surface

tension at a critical temperature. As mentioned in Chapter 1, these fluids are

named self-rewetting fluids and were our original motivation to consider the ef-

fects of surface tension increasing with respect to some field, namely temperature

in the case of self-rewetting fluids, and concentration in the case of the anti-

surfactant solutions considered in this thesis. While there is not, in general, a

direct correspondence between the thermal and solutal problems [15], there is
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such a correspondence when the solute in the latter is a “perfectly soluble” anti-

surfactant [39]. The work presented in this thesis may therefore be regarded

as a step towards understanding the behaviour of these self-rewetting fluids at

temperatures above the critical temperature.

The coupling of thermal and solutal Marangoni effects has been considered

previously [22], where the Soret and Dufour effects are important [61,76,77], but

have been considered only in the context of surfactant solutions; similar analyses

could be readily performed for anti-surfactant solutions.

The two-dimensional stability problems solved in Chapters 3 and 4 could also

be readily extended to three dimensions. Surfactant solutions are stable to longi-

tudinal perturbations, but are unstable to transverse perturbations, which leads

to the well-known fingering phenomenon [15]. Perhaps a similar phenomenon

will occur in anti-surfactant solutions. The present model may also be readily

extended to include gravity and the effect of an inclined substrate. A similar

model to the one used in this thesis may also be developed for multi-layer sys-

tems, or for the flow of a rivulet of surfactant or anti-surfactant solution. Another

extension, which may have significant industrial importance, would be to include

the effect of an anti-surfactant at a water-oil interface on the recovery of oil from

oil reservoirs [37]. This latter problem would require the formulation of the ap-

propriate two-layer model, and the possible addition of, for example, a porous

matrix through which the fluids flow.

Finally, in Chapter 6, we noted that the equations governing the Marangoni-

dominated flow of anti-surfactant solutions could be written in characteristic

form, and used this to solve a family of Riemann problems. Similar method-

ology could be used to solve, or at least give insight into, several other types of

problems, such as the local disturbance problems considered in Chapter 5. Also

in Chapter 6 we performed a fairly general similarity transformation on the equa-

tions governing the flow of a thin film of surfactant or anti-surfactant solution.

While we considered only three particular cases, there are many more cases that

could be considered in which different physical mechanism are dominant over dif-

ferent timescales, such as problems in which diffusion and the Marangoni effect
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dominate over capillarity. The equations obtained in Chapter 6 to describe self-

similar flows are very rich, and an extensive survey of all possibilities would be a

substantial, but potentially very rewarding, task.
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Appendix A

Oscillatory Behaviour in a Layer

of Finite Depth

In this Appendix, we describe the occurrence of oscillatory behaviour in the

general finite-depth linear stability problem discussed in Chapter 3. The stabil-

ity analysis in section 3.5 shows that oscillatory behaviour cannot occur in the

infinite-depth limit. The stability analysis described in Chapter 4 shows that

both stable and unstable oscillatory behaviour can occur in the thin-film limit,

and the region of parameter space in which it occurs is relatively straightforward

to locate. This Appendix shows that while oscillatory behaviour can occur in the

general finite-depth problem for physically realisable parameter values, it occurs

only for wavenumbers k and layer depths d such that the aspect ratio kd � 1,

and it is therefore an inherently long-wave phenomenon.

A.1 Growth Rates

Oscillatory behaviour of the physical system corresponds to complex values of

the growth rate ω. We therefore wish to investigate exactly where in parameter

space ω is complex. In particular, we wish to know the extent of the region in

parameter space in which ω is complex.

Figure A.1 shows an illustrative plot of the real part of the growth rate of

perturbations <(ω) as a function of the wavenumber k. In fact, Figure A.1 is
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simply a replot of the solid curve in Figure 3.15, but including the sub-dominant

modes that were omitted from Figure 3.15. The sub-dominant modes are an

infinite series of bulk-diffusive modes, as evidenced by the fact that they disappear

in the limit of infinite depth d → ∞ (see case 3 in section 3.5.5 for a brief

discussion of this). The least negative of these sub-dominant modes can also be

unstable, while all of the other sub-dominant modes remain stable (also shown

in section 3.5.5).

Figure A.2 is a zoomed in version of Figure A.1 showing only the dominant

mode and the two least negative sub-dominant modes, and in which the dashed

curve corresponds to <(ω) when =(ω) 6= 0. The main feature of note in this

figure is that there is a pair of complex conjugate solutions for ω connecting the

two branches of the sub-dominant modes. This “complex bridge” corresponds

to stable oscillatory behaviour. In fact, every sub-dominant mode has a similar

“complex bridge” between its branches, and so all sub-dominant modes will have

oscillatory behaviour for a range of values of k.

Figure A.3 is a zoomed version in of Figure A.2 showing only the dominant

mode and the least negative sub-dominant mode, and in which the dashed curve

again corresponds to <(ω) when =(ω) 6= 0. Figure A.3 shows that, for a narrow

range of wavenumbers k, the dominant behaviour is oscillatory, as shown by the

“complex bridge” connecting the two branches of the dominant mode. Crucially,

a portion of the dashed curve has <(ω) > 0, so that oscillatory instability is

possible in addition to the oscillatory stability previously shown in figure A.2.

Figure A.4 shows a plot of the imaginary part of the growth rate =(ω) for

the “complex bridge” region that is seen in figure A.3. The values k = kmin and

k = kmax correspond to the minimum and maximum values of k, respectively, for

which =(ω) 6= 0.

The overall implication of Figures A.1–A.4 is that oscillatory behaviour that

can occur in the general finite-depth problem is an inherently long-wave phe-

nomenon (i.e., it always occurs for kd � 1), i.e., all of the oscillatory behaviour

is captured by the thin-film stability analysis performed in Chapter 4.
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<(ω)

k

Figure A.1: The real part of the growth rate of perturbations <(ω) as a function of

the wavenumber k in the general finite-depth regime with Ma = 1, Ps = 1, Pb = 1,

Daa = 0.05, Dad = 0.5, K = 0.5, θ = 1/(1−K) = 2, d = 1000.

ω

k

Figure A.2: As figure A.1, but zoomed in to show only the dominant mode and the

two least negative sub-dominant modes. The dashed curve corresponds to <(ω) when

=(ω) 6= 0.
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<(ω)

k

Figure A.3: As figure A.2, but zoomed in to show only the dominant mode and

the least negative sub-dominant mode. The dashed curve corresponds to <(ω) when

=(ω) 6= 0.

=(ω)

k

kmin kmax

Figure A.4: The imaginary part of the growth rate =(ω) as a function of the wavenum-

ber k for the dominant mode, for the same parameter values as Figures A.1–A.3.
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A.2 Effects of Varying the Parameters

Figures A.5–A.9 show how Figure A.4, which shows =(ω), changes as each of the

parameters in the problem is varied in turn, with all the others fixed.

Figure A.5 shows how =(ω) changes as Ma is varied. For Ma = 0, ω is purely

real, i.e., kmin = kmax = 0, but for 0 < Ma . 1.606 there is a range of values of

k for which =(ω) 6= 0, i.e., 0 < kmin < kmax. As Ma is increased kmax behaves

non-monotonically, first increasing up to its maximum value of kmax ≈ 0.0000902,

which it attains at Ma ≈ 0.803, then decreasing until kmax = kmin ≈ 0.0000707,

which occurs for Ma ≈ 1.606, at which value ω becomes purely real once again.

The value of kmin simply increases monotonically until kmax = kmin ≈ 0.0000707.

Above Ma ≈ 1.606 no oscillatory behaviour occurs.

Figures A.6 and A.7 show how =(ω) changes as K is varied, with K ≤ 0.5

(Figure A.6) and K ≥ 0.5 (Figure A.7). For K = 0, ω is purely real, but for any

0 < K < 1, there is a range of k for which =(ω) 6= 0. As K is increased kmax

behaves non-monotonically, first increasing up to its maximum value of kmax ≈

0.0000902, which it attains at K ≈ 0.85, then decreasing until kmax = kmin ≈

0.000055, which occurs at K = 1 at which value ω become purely real. The value

of kmin also behaves non-monotonically, first increasing up to kmin ≈ 0.00003,

which it attains at K = 0.5, then decreasing to kmin ≈ 0.000009, which it attains

at K ≈ 0.95, then increasing until kmax = kmin ≈ 0.000055. Above K = 1

no oscillatory behaviour occurs, demonstrating that the levelling of a layer of

surfactant-laden fluid is always monotonic.

Figure A.8 shows how =(ω) changes as the ratio δ = Dad/Daa is varied. For

δ = 0, ω is purely real, but for any 0 < δ . 16.1, there is a range of k for

which =(ω) 6= 0. As δ is increased both kmax and kmin behave in a qualitatively

similar way to how they behave when Ma was varied. The value of kmax increases

up to its maximum of kmax ≈ 0.0000915, which it attains at δ ' 12.05, then

decreases until kmax = kmin ≈ 0.0000774, which occurs for δ ≈ 16.1, at which

value ω becomes purely real. The value of kmin simply increases monotonically

until kmax = kmin ≈ 0.0000774. For δ & 16.1 no oscillatory behaviour occurs.

213



=(ω)

k

Figure A.5: As in Figure A.4, except that Ma = 0.25 (space-dot), 0.5 (dot), 0.75

(dash-dot), 1 (thick solid), 1.25 (thin solid), 1.5 (long-dash), 1.6 (dash). The arrow

denotes increasing values of Ma.

=(ω)

k

Figure A.6: As in Figure A.4, except that K = 0.1, 0.2, 0.3, 0.4, 0.5. The arrow

denotes increasing values of K.
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=(ω)

k

Figure A.7: As in Figure A.4, except that K = 0.5 (thick solid), 0.6 (thin solid), 0.7

(dash), 0.8 (dash-dot), 0.9 (dot). The arrow denotes increasing values of K.

=(ω)

k

Figure A.8: As in Figure A.4, except that the ratio δ = Dad/Daa takes the values

δ = 6, 8, 10, 12, 14, 16. The arrow denotes increasing values of δ.
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=(ω)

k

Figure A.9: As in Figure A.4, except that d = 1000, 1100, 1250, 1500. The arrow

denotes increasing values of d.

Figure A.9 shows how =(ω) changes as d is varied. As d is increased from

d = 1000 both kmax and kmin decrease. In the limit d → ∞ (with k and ω

kept O(1), i.e., the infinite-depth limit), =(ω) → 0 for all k. Thus, there is

no oscillatory behaviour present in the infinite-depth limit, as we know from

section 3.5. As d is decreased from d = 1000, both kmax and kmin increase. In

the limit d → 0, kmax → +∞ and kmin → +∞, and so only sufficiently short

waves lead to oscillatory behaviour, provided that the wavenumber still satisfies

kd� 1. In fact, in order for oscillatory behaviour to occur for O(1) dimensionless

wavenumbers, an unphysically small dimensional layer depth smaller than η∗, the

thickness of the free surface itself, is required.

The overall conclusion of this Appendix is that the parameter regime in which

complex growth rates occur is small, i.e., increasing or decreasing any of the pa-

rameters (except d) too far from the values given in Table 3.2 or 3.3 leads to purely

real growth rates. The wavenumbers that lead to oscillatory behaviour depend

strongly on the depth of the layer; specifically, only a range of wavenumbers sat-

isfying kd� 1 do so. Oscillatory behaviour is therefore an inherently long-wave

phenomenon. Another important conclusion is that oscillatory behaviour can oc-
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cur only for anti-surfactant solutions (K < 1), but never for surfactant solutions

(K > 1).

217



Appendix B

Derivation of the

Rankine–Hugoniot Shock

Conditions

B.1 Introduction

In this Appendix we derive the Rankine–Hugoniot shock conditions that are used

in Chapter 6. We follow the standard derivation of these shock conditions as given

in, for example, the book by Whitham [117] by writing down the conservation

laws in integral form for the film thickness h, the surface concentration s, and

the bulk concentration across the layer hc (note that it is the quantity hc that is

conserved, and not simply c). From these conservation laws we recover the PDEs

that are analysed in Chapters 4–6 under the assumption that each of h, s, and hc

is continuous, and the shock conditions used in Chapter 6 under the assumption

that each of h, s, and hc is discontinuous at some time-dependent point, xs(t).

B.2 Conservation Laws in Integral Form

Consider the conservation of some quantity g in one spatial dimension, x, where

g may be discontinuous at some time-dependent point xs(t). The rate of change

of the total amount of g in some arbitrary interval [x1, x2] containing the point
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g

x
x1 x2xs(t)

Fin Fout

Figure B.1: The conservation of the (in general, discontinuous) quantity g.

xs(t) must balance the total amount of g that is being added to or removed from

this interval due to some flux F , as shown pictorially in Figure B.1. Thus we

write
d
dt

∫ x2

x1
g dx = Fin − Fout, (B.2.1)

where Fin and Fout are the fluxes of g across the point x = x1 and x = x2,

respectively. For the particular equations we consider in Chapters 4–6, Table

B.1 shows the flux F for each g, where Q is the horizontal mass flux given by

(4.4.34), and u is the fluid velocity given by (4.4.33). Note that we neglect

the bulk-surface flux in the expressions for F in Table B.1, since in Chapter 6 we

consider only the special cases of an insoluble surfactant and a “perfectly soluble”

anti-surfactant, for both of which the bulk–surface flux term J is identically zero.

We also neglect diffusion since, again, the problems that we solve in Chapter 6

do not involve diffusion of either surface or bulk solute. Both of these physical

effects could be readily incorporated into the following analysis, if necessary.
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Conserved quantity, g Conservative flux, F

h Q

s us

hc Qc

Table B.1: The flux F for each g, for the particular equations we consider in Chapters

4–6.

B.3 The PDEs (4.7.1)–(4.7.3)

Under the assumption that g is continuous, equation (B.2.1) can be written∫ x2

x1

∂g

∂t
dx =

∫ x2

x1
−∂F
∂x

dx, (B.3.1)

which holds for arbitrary x1 and x2. Thus, the integrands must be equal, and we

recover the PDEs that are used in Chapters 4–6, i.e., for g = h, s, hc, and the

appropriate choices of flux as in Table B.1, equation (B.3.1) yields

ht +Qx = 0, (B.3.2)

st + (us)x = 0, (B.3.3)

(hc)t + (Qc)x = 0, (B.3.4)

which are equations (4.7.1)–(4.7.3) written in flux-conservative form, with Daa =

Dad = 0, since we neglect the bulk-surface flux, and with Ps →∞ and Pb →∞,

since we neglect diffusion.

B.4 Shock Conditions

When g is discontinuous at some time-dependent point xs(t) we cannot write

equation (B.2.1) in the form (B.3.1). Instead, we must split the integral on the

left-hand side of equation (B.2.1) and apply the Leibniz rule for differentiating un-

der the integral sign, since the end points of the split integral are time-dependent.

Thus, we write

d
dt

∫ xs(t)

x1
g dx+ d

dt

∫ x2

xs(t)
g dx = Fin − Fout, (B.4.1)
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which upon application of the Leibniz rule yields
∫ xs(t)

x1

∂g

∂t
dx+ x′s(t)g(xs(t)−) +

∫ x2

xs(t)

∂g

∂t
dx− x′s(t)g(xs(t)+) = − [F ]x2

x1
, (B.4.2)

where the dash denotes (total) differentiation with respect to time, and the su-

perscripts − and + denote evaluation of the function just to the left, and just

to the right, of the point xs(t), respectively. Taking the limits x1 → xs(t)− and

x2 → xs(t)+ yields

x′s(t)g(xs(t)−)− x′s(t)g(xs(t)+) = − [F ]xs(t)
+

xs(t)− , (B.4.3)

which may be written in the form

ẋs [[g]] = [[F ]] , (B.4.4)

where we define the notation

[[ · ]] = − [ · ]xs(t)
+

xs(t)− , (B.4.5)

and ẋs = x′s(t) is the speed of the discontinuity, i.e., the shock speed. Using Table

B.1, equation (B.4.4) becomes

ẋs [[h]] = [[Q]] , (B.4.6)

ẋs [[s]] = [[us]] , (B.4.7)

ẋs [[hc]] = [[Qc]] , (B.4.8)

which are precisely the Rankine–Hugoniot shock conditions that are used in Chap-

ter 6.
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Appendix C

Parametric Solution to Equations

(6.2.3) and (6.2.4)

C.1 Introduction

In this Appendix we derive explicit solutions to equations (6.2.3) and (6.2.4).

These equations were first solved by Howison et al. [35], who obtained implicit

solutions (for different initial conditions), and were also solved in section 6.2 of

this thesis for a family of Riemann problems in which the initial condition was

piecewise constant with a single discontinuity. We show here that it is possible

to obtain explicit parametric solutions for any sufficiently well-behaved initial

condition.

C.2 Transformation to a Decoupled System

Equations (6.2.3) and (6.2.4), restated, are

ht + 1
2
[
h2b

]
x

= 0, (C.2.1)

bt + 1
2
[
b2h

]
x

= 0, (C.2.2)

and are subject to the initial conditions

h = h0(x), b = b0(x) at t = 0. (C.2.3)
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By defining φ = hb and ψ = h/b, we may rewrite these equations as a decoupled

system, namely

φt + 3
2φφx = 0, (C.2.4)

ψt + 1
2φψx = 0, (C.2.5)

which are an inviscid Burgers’ equation for φ, and an equation for ψ that is

slave to it. These transformed equations are subject to the transformed initial

conditions

φ = φ0(x), ψ = ψ0(x) at t = 0, (C.2.6)

where

φ0(x) = h0(x)b0(x), ψ0(x) = h0(x)
b0(x) . (C.2.7)

C.3 Parametric Solutions

Equation (C.2.4), subject to the initial condition (C.2.6), has the implicit solution

φ = φ0

(
x− 3

2φt
)
, (C.3.1)

which can be written in terms of a parameter q as

x = 3
2tφ0(q) + q, φ = φ0(q), (C.3.2)

where q can, in general, take any real value.

Next, we write (C.2.5) in characteristic form, namely

dψ
dt = 0 on the characteristic curves given by dx

dt = 1
2φ. (C.3.3)

Substituting the expression for x and φ given by (C.3.2) into the second of equa-

tion (C.3.3) yields (3
2tφ

′
0(q) + 1

) dq
dt = −φ0(q). (C.3.4)

Multiplying by the integrating factor |φ0(q)|1/2, we may write this equation in

exact form, namely(3
2t |φ0(q)|1/2 φ′0(q) + |φ0(q)|1/2

)
dq + |φ0(q)|1/2 φ0(q) dt = 0, (C.3.5)
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which has the solution

tφ0(q) |φ0(q)|1/2 + I(q) = constant, (C.3.6)

where we have written

I(q) =
∫
|φ0(q)|1/2 dq, (C.3.7)

which is a known function. Thus, the general solution for ψ of (C.3.3) is

ψ = G
(
tφ0(q) |φ0(q)|1/2 + I(q)

)
, (C.3.8)

where G is an arbitrary function that may, in principle, be determined using the

initial condition (C.2.6), i.e., G is determined from

ψ0(q) = G
(
I(q)

)
. (C.3.9)

Determining G is a non-trivial task in general, but can always be done when the

function I is invertible by defining r = I(q) and inverting to obtain q = I−1(r).

Then, equation (C.3.9) gives G(r) = ψ0(I−1(r)). When the function I is not

invertible, this process is not applicable, and other methods must be used to

determine G.

To summarise, we have solved equations (C.2.4) and (C.2.5) to obtain a para-

metric solution for any sufficiently well-behaved initial condition. Specifically,

the solution for φ is given by (C.3.2), and the solution for ψ is given by (C.3.8).

From these we may obtain the solution for the film thickness h and the bulk

concentration c. The solution for the film thickness is simply

h = (φψ)1/2, (C.3.10)

where we take the positive root, since h must be positive for all x. The solution

for the concentration gradient is

b = ±
(
φ

ψ

)1/2

. (C.3.11)
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Finally, the solution for the bulk concentration is given by

c =
∫
b dx

=
∫

sgn(b)
(
φ

ψ

)1/2 dx
dq dq

= sgn(b)
∫  φ0(q)

G
(
tφ0(q) |φ0(q)|1/2 + I(q)

)1/2

(3
2tφ

′
0(q) + 1

)
dq, (C.3.12)

where sgn(b) = 1 or sgn(b) = −1 if b is positive, or negative, respectively. With

the substitution

p = tφ0(q) |φ0(q)|1/2 + I(q) (C.3.13)

equation (C.3.12) leads to

c = sgn(b)
∫ dp
|G(p)|1/2 . (C.3.14)

C.4 An Example of an Explicit Solution

Given an arbitrary set of initial conditions, it is a non-trivial (or impossible) task

to determine the function G analytically, because of the possible complexity of

the function I(q) defined in (C.3.7). However, for sufficiently well-behaved initial

conditions (in particular, as long as I(q) is invertible), it is possible to determine

G; we provide an illustrative example here.

With the initial conditions

h0(x) = 1, b0(x) = sech2(x), (C.4.1)

we have

φ0(q) = sech2(q), ψ0(q) = cosh2(q), (C.4.2)

and consequently, from (C.3.7),

I(q) =
∫

sech(q) dq = 2 arctan(eq). (C.4.3)

Thus (C.3.8) becomes

cosh2(q) = G (2 arctan(eq)) . (C.4.4)
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To determine G, we define r to be

r = 2 arctan(eq), (C.4.5)

from which we have

q = log
(

tan
(
r

2

))
, (C.4.6)

and it is then clear from (C.4.4) that

G(r) = cosh2
(

log
(

tan
(
r

2

)))
, (C.4.7)

which may be simplified to

G(r) = 1
sin2(r) . (C.4.8)

Thus, the parametric solution for φ and ψ, from (C.3.2) and (C.3.8), respectively,

is

x = q + 3
2t sech2(q), (C.4.9)

φ = sech2(q), (C.4.10)

ψ = 1
sin2

(
t sech3(q) + 2 arctan (eq)

) , (C.4.11)

and the corresponding solutions for h and b, from (C.3.10) and (C.3.11), respec-

tively, are

x = q + 3
2t sech2(q), (C.4.12)

h = 1
cosh(q) sin

(
t sech3(q) + 2 arctan (eq)

) , (C.4.13)

b =
sin

(
t sech3(q) + 2 arctan (eq)

)
cosh(q) . (C.4.14)

Finally, the solution for c, from (C.3.14) (with (C.3.13)), is

c =
∫ dr
G(r)1/2 = − cos

(
t sech3(q) + 2 arctan (eq)

)
+ C (C.4.15)

Figure C.1 shows a plot of this example solution for (a) the film thickness h, (b)

the bulk concentration c, and (c) the concentration gradient b, given by equations

(C.4.13)–(C.4.15), respectively. The initially flat free surface is pulled rightwards
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h

x

c b

x x

(a)

(b) (c)

Figure C.1: Example solution for (a) the film thickness h, (b) the bulk concentration c,

and (c) the concentration gradient b, given by equations (C.4.13)–(C.4.15), respectively,

for C = 1. The arrow denotes the direction of increasing time.

because of the positive concentration gradient. The fluid exactly at the maximum

of the concentration gradient is pulled right faster than the surrounding fluid and,

as shown at the latest snapshot in time, becomes multi-valued at some finite time.

This signifies that a shock forms, and finite-time blow-up of the derivatives of all

of h, b, and c occurs. Calculating, say, dh/dx, we find that the first time that

this shock occurs is

t = min
(

cosh3(q)
3 sinh(q) : q ∈ R

)
=
√

3
2 . (C.4.16)
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solche von lösungen. Annalen der Physik, 263:508–543, 1886.

[111] K. von Neergaard. Neue Auffassungen uber einen Grundbegriff der

Atemmechanik. Die Retrakionskraft der Lunge, abhangig von der Ober-

flachenspannung in der Alveolen. Zetischrift für die gesamte experimentelle

Medizin, 66:373–394, 1929.

[112] B. B. Wang, X. D. Wang, M. Chen, and J. L. Xu. Molecular dynamics

simulations on evaporation droplets with dissolved salts. Physical Chemistry

Chemical Physics, 9:5105–5111, 2007.

[113] Q. Wang, M. Siegel, and M. R. Booty. Numerical simulation of drop and

bubble dynamics with soluble surfactant. Physics of Fluids, 26:052102,

2014.

238



[114] M. R. E. Warner, R. V. Craster, and O. K. Matar. Fingering phemonena

associated with insoluble surfactant spreading on thin liquid films. Journal

of Fluid Mechanics, 510:169–200, 2004.

[115] D. E. Weidner, L. W. Schwartz, and M. H. Eres. Suppresion and reversal

of drop formation in a model paint film. Chemical Product and Process

Engineering, 2, 2007.

[116] E. W. Weisstein. Polynomial discriminant. MathWorld – A Wolfram Web

Resource. [Online, accessed 21st May 2015].

[117] G. B. Whitham. Linear and Nonlinear Waves. Wiley, 1974.

[118] S. K. Wilson. The levelling of paint films. IMA Journal of Applied Mathe-

matics, 50:149–166, 1993.

[119] H. Wong, D. Rumschitzki, and C. Maldarelli. On the surfactant mass

balance at a deforming free surface. Physics of Fluids A, 8:3203–3204,

1996.

[120] M. Yamada, S. Fukusako, T. Kawanami, I. Sawada, and A. Horibe. Sur-

face tension of aqueous binary solutions. International Journal of Thermo-

physics, 18:1483–1493, 1997.

[121] R. W. Zeren and W. C. Reynolds. Thermal instabilities in two-fluid hori-

zontal layers. Journal of Fluid Mechanics, 53:305–327, 1972.

[122] J. Zhang, M. K. Borg, K. Sefiane, and J. M. Reese. Wetting and evaporation

of salt-water nanodroplets: A molecular dynamics investigation. Physical

Review E, 92:052403, 2015.

[123] L. Zhibao and L. Benjamin. Surface tension of aqueous electrolyte solutions

at high concentrations – representation and prediction. Chemical Engineer-

ing Science, 56:2879–2888, 2000.

239


