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Abstract

With the electromagnetic spectrum more congested than ever, the task of passively

monitoring the spectrum to detect, separate, identify and locate emitters is fraught

with difficulty. Enabled by modern solid state RF technologies, Radar and communi-

cations systems are more agile, providing a foundation for low probability of intercept

(LPI) emitters to exist for both, Radar and communications systems. One of the key

characteristics is a broadband, spread-spectrum modulation scheme.

Previous efforts in this area have focussed on improving signal to noise and signal to

interference plus noise ratios (SNR and SINR) of LPI emitters using various time and

frequency domain methods. This neglects an important aspect of electronic surveillance

- the spatial domain using antenna arrays. Current literature on antenna array signal

processing exploits the simplifications inherent in the frequency domain at the expense

of limiting these techniques to narrowband signals and making them inadequate for

broadband sources.

This thesis addresses spatio-temporal antenna array signal processing for LPI emit-

ters in order to improve spatial resolution for signal separation. One of the key tools

throughout this thesis is the use of polynomial matrices and the polynomial eigen-

value decomposition that allow spatial super resolution techniques, such as the MUSIC

algorithm, to be extended to the broadband domain.

Results are demonstrated via simulations and statistical analysis throughout this

thesis, concluding that while computationally expensive, the novel methods contained

within this thesis provide an attractive solution to the processing of LPI emitters.
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Chapter 1

Introduction

1.1 Preface

Recent years have shown a strong convergence of radar and communications systems.

In the past, radar systems were limited to the higher frequencies, and characterised

by their short, high power pulses in order to meet range and Doppler requirements.

Conversely, communications systems were mainly at the lower frequencies due to lower

atmospheric absorption promoting a greater range. This is no longer the case. This is

largely enabled by advances in solid state RF technology, allowing devices to be highly

agile, more efficient, lower power, smaller physical sizes or even lower cost. Now, there

are more wireless devices than ever before exploiting the use of the electromagnetic

spectrum. The congestion of the electromagnetic spectrum is further exacerbated by

spectrum users demanding greater data rates and wider bandwidths. This includes

radar systems that can also exploit the agility of modern solid state RF technology to

avoid detection.

Modern radars are a vital piece of technology in today’s world of defence. They pro-

vide the ability to detect and identify threats and estimate their range and velocity with

high accuracy, even in highly cluttered and/or contested electromagnetic environments.

Radar technology has constantly evolved since its inception in the early 20th century,

and this evolution was accelerated by military needs as well as advances in technol-

ogy. The classic radar is characterised by a circular or raster scanning pattern, with

2



Chapter 1. Introduction

a consistent transmit pattern. The modern radar is considerably more sophisticated

with advanced scan patterns to interleave acquisition and track modes of the radar,

also known as ‘track while scan’. In addition, a modern radar may try to deliberately

avoid detection via low probability of intercept (LPI) design characteristics.

Electronic warfare (EW) is an all-encompassing term for monitoring use of the elec-

tromagnetic spectrum, including identifying, classifying, disabling or even exploiting

adversary communications and radar emissions. Electronic Surveillance (ES) is the

branch of EW that focuses on detection, identification and localisation of electromag-

netic emissions. However, the increased level of congestion within the electromagnetic

spectrum, along with emerging technology of LPI radar systems poses a significant

challenge for future ES technology.

The general properties of LPI emissions include broad bandwidth, long pulse length,

sophisticated modulations and low antenna sidelobes. Conventional time domain ap-

proaches do not provide sufficient processing gain to detect weak LPI emissions. Fre-

quency domain approaches can provide some processing gain, but only at the expense

of reduced temporal fidelity. There is a considerable amount of existing literature that

proposes the use of time-frequency distributions to get the best from both domains.

Another domain that can also be exploited is the spatial domain. By sampling in

space through an array of antennas, another key emitter parameter can be extracted -

its direction of arrival (DoA). Super-resolution DoA estimation algorithms have been

a popular research area for quite some time. However, most techniques simplify the

problem by using a narrowband assumption. This is inadequate for broadband LPI

emissions.

This thesis studies and evaluates novel spatio-temporal array signal processing tech-

niques for the detection and localisation of LPI emissions. Results are demonstrated

via simulations and statistical analysis.
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1.2 Contribution

The key contributions of this thesis are:

• A multi-correlation antenna array/receiver architecture for enhanced spatio-temporal

processing of LPI emitters.

• Extension of the Root MUSIC algorithm to polynomial matrices to achieve broad-

band angular super-resolution with reduced computational complexity.

• Development of broadband emitter decorrelation methods (spatial smoothing,

and Doppler induced spatial smoothing) in the context of polynomial matrix

representations.

• Demonstrating the practicality of sparse array signal processing using polynomial

matrix methods.

1.3 List of Publications

Many of the results presented in this thesis have been the subject of refereed journal

and conference publications. These publications are listed below.

• Coventry, W., et al.: Bearing estimation of low probability of intercept sources

via polynomial matrices and sparse linear arrays. IET Radar Sonar Navig. 15(

11), 1408– 1419 (2021). https://doi.org/10.1049/rsn2.12133

• Coventry, W., Clemente, C. and Soraghan, J. (2019), Broadband direction of ar-

rival estimation via spatial co-prime sampling and polynomial matrix methods.

The Journal of Engineering, 2019: 6259-6263. https://doi.org/10.1049/joe.2019.0192

• W. Coventry, C. Clemente and J. Soraghan, ”Enhancing polynomial MUSIC al-

gorithm for coherent broadband sources through spatial smoothing,” 2017 25th

European Signal Processing Conference (EUSIPCO), 2017, pp. 2448-2452, doi:

10.23919/EUSIPCO.2017.8081650.
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• W. Coventry, C. Clemente and J. Soraghan, ”Polynomial Root-MUSIC Algorithm

for Efficient Broadband Direction of Arrival Estimation,” 2017 Sensor Signal Pro-

cessing for Defence Conference (SSPD), 2017, pp. 1-5, doi: 10.1109/SSPD.2017.8233256.

• W. Coventry, C. Clemente and J. Soraghan, ”Broadband Sparse Sensing: A Poly-

nomial Matrix Approach to Co-Prime and Super Nested Arrays,” 2019 IEEE

Radar Conference (RadarConf), 2019, pp. 1-6, doi: 10.1109/RADAR.2019.8835665.
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1.4 Thesis Organisation

This Thesis is organised as follows:

Chapter 2 provides the problem formulation behind the techniques developed through-

out this thesis and introduces radar and ES systems, with emphasis on the existence

of low probability of intercept radars as well as advanced signal processing functions

to counter such emitters. The basic functionality of a radar system is discussed, with

particular attention paid to waveform, antenna and operational parameters which af-

fect its maximum range. Conversely, analysis is provided to demonstrate how a radar

designer can modify these parameters to reduce the maximum interception range of

the intercept receiver. This concept is expanded by a literary review into techniques

to reduce the maximum interception range, while maintaining a good radar detection

range, thus describing the key design features of a low probability of intercept radar.

The corresponding literature on advanced ES techniques is also presented, with an

emphasis on the relevance to detection of LPI emitters. Here the emphasis is on time-

frequency distributions and their use in increasing processing gain. This emphasis is

driven by the fact that current literature addressing LPI emitters has largely focussed

on such time-frequency methods and neglected spatial processing.

Chapter 3 introduces the concept of spatial processing using a fully digital antenna

array, optimal sensor placement and advanced processing techniques. A literature re-

view is provided on direction of arrival (DoA) methods, specifically those which can
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achieve super resolution. Super resolution is the ability to estimate the directions of

more than one source within a typical antenna beam-width. This chapter also discusses

various sparse array geometries and processing techniques to exploit the properties of

sparse arrays. However, all of the aforementioned techniques in literature have heavily

focussed on processing for the narrowband signal problem and, as discovered in Chap-

ter 2, are inapplicable to broadband low probability of intercept emitters. The Chapter

then discusses broadband array processing techniques discovered in literature, and con-

cludes that very recent polynomial matrix techniques provide a promising solution to

the broadband array processing problems.

The first novelty of this thesis is discussed in Chapter 4: the proposal and analy-

sis of a multi-correlation receiver. This Chapter begins with a toy problem with only

two channels to highlight the benefit of correlation analysis methods over conventional

Fourier based techniques. This is then generalised to the case of an arbitrary number

of sensors within a linear aperture. The second novelty discussed within this Chapter

is an algorithm for direction of arrival estimation of broadband emitters with a signifi-

cant reduction in computational cost. These techniques are then analysed using (a) a

simulation of a particularly challenging example of two LPI waveforms and (b) Monte

Carlo analysis to highlight and calculate the reduction in computational cost with no

reduction in estimator accuracy.

Chapter 5 addresses the problem of estimating the direction of arrival of multiple

strongly correlated or coherent emitters. Coherent signals pose a problem to subspace

based super-resolution methods, and this Chapter provides analysis that highlights the

difficulties. A novel technique is proposed in order to effectively decorrelate the coherent

broadband sources, and regain the super resolution property of the DoA estimator. In

addition, this section covers a novel analysis which suggests that the spatial averaging

effect arises naturally for an array in motion due to slight differences in Doppler shift

of the emitters at different angles.

Up until this point in the thesis, all analysis has been focussed on the case of a

uniform linear array (ULA). For a wideband system, a ULA is an inefficient design.

Close antenna spacings are required for ambiguity free DoA estimates of the higher
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frequency sources, yet a wide overall aperture is required for sufficient resolution of

lower frequency sources. Thus, if designed using a ULA, many antenna elements are

required to meet both objectives, increasing overall size, weight and power of the system.

To combat this, Chapter 6 introduces novel signal processing to exploit the geometries

of some sparse arrays. Techniques in this Chapter also involve leveraging the novel

algorithms developed in Chapters 4 and 5. Simulations are provided to analyse (a) the

performance of the techniques in a multi-emitter environment (b) the accuracy of the

novel techniques through Monte-Carlo analysis and (c) the resolution of the techniques,

also presented via Monte-Carlo analysis.

Finally, Chapter 7 provides concluding remarks of this thesis, which include areas

where the techniques presented may be leveraged for real-world applications. This

chapter also discusses future work required to support such exploitation into real-word

applications.
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Chapter 2

Radar And Electronic

Surveillance Systems

2.1 Introduction

While Electronic Surveillance (ES) is the primary application focus of the algorithms

and methods discussed throughout this thesis, it is intuitive to start by discussing mod-

ern radar systems themselves. In this chapter, the basic principles of both conventional

and modern radars are covered in Section 2.2. This provides a foundation for under-

standing the requirements of modern ES systems, and identifies the key challenges in

this area. Following this, Section 2.3 discusses advances in modern radar technology

which enable the radar to avoid being detected or intercepted, including techniques

involving advanced antenna and waveform design, and advanced operation techniques.

Section 2.3.5 covers advanced ES system design and methods proposed in zthe liter-

ature in effort to improve ES performance and enhance detection capabilities. This

section also identifies a gap in the literature where such methods alone are insufficient,

and how the novel signal processing presented throughout this thesis can fill this gap.
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2.2 Radars and Intercept Receivers

The basic concept of a radar system exploits the fact that electromagnetic (EM) energy

transmitted from an emitter may be reflected, or scattered from a surface towards a

receiver. The physics behind the propagation and scattering of EM waves is outside

the scope of this thesis, but can be found in [1]. In the simple case of a monostatic

radar, whereby the transmitter and receiver are co-located, zthe object range, R,

R =
c∆T

2
, (2.1)

zcan be estimated by measuring the round trip delay, ∆T , where c is the EM propa-

gation speed in the medium. In order to locate an object in a two- or three- dimen-

sional space, the radar system requires angular information. Typically, this is achieved

through pointing a highly directional antenna in a specific direction, and overall spatial

awareness is gained through mechanically or electrically scanning over an angular range

(or search volume). The total time to search this volume is defined by the scan frame

time, Tfsz,

Tfs = MTd, (2.2)

where Td is dwell time, defined by the number of pulses and pulse repetition inter-

val (PRI) to achieve range-Doppler requirements, and M is the total number of scan

positions to cover the volume which is calculated as

M =
Ω

φ3θ3
, (2.3)

where Ω is the total angular area for the search (in steradians), and φ3 and θ3 are the

azimuth and elevation beamwidths [2]. Clearly, there is a trade space between angular

resolution and scan frame time. The following is not an exhaustive list of radar scan

patterns, however, it does discuss key scanning methods to highlight challenges for the

ES receiver in the following section.

The more traditional approach to radar scanning is to mechanically steer a highly
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directional antenna to each one of the scan positions in a sequential manner. A circular

scan can be seen in Figure 2.1 and involves using an antenna with a large beamwidth

in elevation, and narrow in azimuth. Due to the large elevation beamwidth, the radar

only needs to scan in azimuth - simplifying the search.

Figure 2.1: Circular Scan

While simple, such a scanning method provides no elevation information. A raster

scanning pattern is similar to a circular scan, however, an antenna with a relatively

narrow beamwidth in both azimuth and elevation is used. This is illustrated in Figure

2.2.

Figure 2.2: Raster Scan
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The disadvantage of such an approach is that the radar is looking in only one direc-

tion at a time with a relatively long scan frame, potentially missing significant targets.

By using a modern AESA (active electronically scanned array) based radar system,

more advanced scanning techniques can be adopted, which allow the radar to perform

several functions simultaneously, such as track while scan [3]. This is enabled by highly

agile electronic scan capabilities, including forming multiple beams and simultaneously

tracking multiple targets as illustrated in Figure 2.3.

Figure 2.3: Multi-beam Scan

At the more extreme end of this, a radar can transmit omnidirectionally, and form

many parallel spatial beams on receive to locate multiple targets simultaneously with

a zero time scan frame. This is shown in Figure 2.4. This approach has recently been

used in [4] in their ‘Holographic Radar’, citing a ‘staring not scanning’ approach. The

clear disadvantage of this method is that due to a considerably lower transmit antenna

gain, the system needs to transmit with a considerably higher power to maintain the

same maximum range. In addition, estimating the location of several targets simulta-

neously over a large area forces a considerably higher size, weight and power (SWAP)

requirement as large fully digital antenna arrays are required.

11



Chapter 2. Radar And Electronic Surveillance Systems

Figure 2.4: Omni Scan Radar

The key purpose of an ES system is to passively gain situational awareness in the

RF domain through the interception, classification, identification and localisation of

emitters.

In order to intercept an emitter such as a radar, the ES system needs to monitor

the RF spectrum. A consistent peak in the spectrum would imply the presence of an

emitter. Upon further processing, features of the emitter, such as frequency, scan rate

and pulse width can be extracted [5]. zThese extracted features are typically combined

into pulse descriptor word (PDW). These zPDWs can be used to classify or identify

emitters. It is important to accurately classify what the transmitter is as this would

determine whether an action is taken by the operator. If the ES sensor suite has

the ability to estimate the direction of arrival (DoA) of the emitter, then the emitter

can be localised through triangulation after intercepting over a span of angles [6].

Localisation of emitters is important as this would help inform an appropriate action for

the operator to take. The following sections identify radar parameters which determine

the maximum range of the radar system, and analyse the maximum intercept range

from an intercept receiver.
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2.2.1 Radar Range Equation

The radar range equation is a simple and well known analytical model of a radar

system, and is derived in many textbooks, such as [2]. The power received at the radar

(expressed in Watts) from a target with a radar cross section (RCS) of σ (expressed in

square meters) at range R can be estimated as

Pr =
PtGtGrλ

2σL2

(4π)3R4LR
, (2.4)

where

• Pt is the transmitted power

• Gt is the gain of the transmit antenna

• Gr is the gain of the receive antenna

• λ is the wavelength of the transmitted waveform

• L2 = e−2αR and is the two way loss due to atmospheric attenuation, where α is

the attenuation coefficient

• LR is the remaining loss in the radar system (Tx + Rx paths)

This is known as the monostatic radar range equation, and [2] provides an excellent

derivation of this. Perhaps a more useful version of this equation is formed when used

for estimating received signal to noise ratio (SNR). The noise power of the receiver can

be expressed as [7]

Pn = kT0FB, (2.5)

where

• k is Boltzmann’s constant

• T0 is the standard temperature (290K)

• F is the receiver noise figure
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• B is the receiver instantaneous bandwidth

Thus the input SNR of a single pulse is

SNR =
Pr
Pn

=
PtGtGrλ

2σ

(4π)3R4LkT0FB
, (2.6)

To calculate the maximum range of the radar system, first, the radar input sensitivity

needs to be defined

δri = Pn × SNRmin = kT0FB(SNRmin), (2.7)

where SNRmin is the minimum input SNR to make a detection. Often it makes greater

sense to express sensitivity in terms of the required SNR after applying some processing

such as pulse compression or coherent integration gain (from multiple pulses). zThe

sensitivity including processing gain, δro,

δro = kT0FiB(SNRo)

δro = δriGp,
(2.8)

where Gp is the processing gain and is defined as

Gp =
SNRo

SNRi
(2.9)

Rearranging (2.8), the maximum range of the radar can be calculated to detect a

target of RCS of σ

Rmax = 4

√
PtGtGrλ2σ

(4π)3Lδro
(2.10)

2.2.2 Intercept Receiver Range Equation

The power received at the intercept receiver (Figure 2.5) can be estimated through the

link budget equation: [8]
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Pi =
PtĜtGiλ

2L1

(4π)2R2Li
(2.11)

where

• Ĝt is the emitter antenna gain in the direction of the intercept receiver

• Gi is the antenna gain of the intercept receiver

• L1 = e−αR and is the one way loss due to atmospheric attenuation, where α is

the attenuation coefficient

• Li is the remaining losses in the intercept receiver

Figure 2.5: Radar and Intercept Diagram

Since the radars received power scales with the inverse of R4 while the received

power at the intercept receiver only scales with R2, it would be intuitive that the inter-

cept receiver has an easier job of detecting the pulse. However, it is important to note

that unless the radar is looking directly at the intercept receiver, the power transmitted

in the direction of the receiver is significantly lower than the power transmitted in the

direction of the radar’s main lobe, i.e. Ĝt � Gt. In addition, the intercept receiver is

at a disadvantage since unlike the radar, it has no knowledge of the radar’s location,

operating frequency or bandwidth. Thus, in general, wideband antennas with low di-

rectivity are required, which results in a low antenna gain. In addition, the intercept

receiver requires a large instantaneous bandwidth, which results in a greater sensitivity

value (i.e. less sensitive), since the sensitivity of the intercept receiver is
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δi = kT0FiBi(SNRi) (2.12)

where

• Fi is the noise figure of the intercept receiver

• Bi is the instantaneous bandwidth

• SNRi is the minimum SNR for an interception

Similar to the sensitivity of the radar system, it is often useful to express this as

a function of the output SNR after some processing gain. However, the ES receiver is

far more limited when it comes to processing gain. For example, since it has no prior

knowledge of the waveform, no matched filter can be applied. The PRI is also unknown,

and thus, coherent or even incoherent integration is difficult. However, a modern digital

receiver can generate many parallel narrower band channels - thus decreasing the noise

floor in each channel and improving sensitivity [8]

δro = kT0FiBo(SNRo) (2.13)

Thus, the maximum range of an intercept receiver detecting a radar with transmitted

power Pt is

Rimax =

√
PtĜtGiλ2

(4π)2L1δi
(2.14)

Unless the intercept receiver has an instantaneous bandwidth that matches the

entire operational frequency, the system will have to spectrally search for emitters,

i.e. just because the intercept receiver is within the maximum range, interception

is not guaranteed. For example, if a system is required to operate with over a 10

GHz bandwidth and the receiver has a 1 GHz instantaneous bandwidth, then each

’dwell’ in frequency will only cover 10% of the overall bandwidth. Thus, some kind of

frequency sweep or receiver dwell strategy needs to be implemented. While the theory

of frequency dwell scheduling is outside the scope of this thesis, it is important to note

this limitation.
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To summarise, this section has covered the basic operations of a radar and an

ES interceptor system and has provided a brief analysis into the factors affecting their

maximum range. The following section explores how a radar system designer can exploit

these factors to minimise intercept range while maintaining a suitable operating range.

2.3 Low Probability of Intercept Radar

The key task of an LPI radar is ‘to see and not be seen’ [8]. When comparing the

maximum radar and intercept range equations, it is not obvious how one can design a

radar system to reduce the maximum intercept range without greatly sacrificing radar

range (recall that the power received at the intercept system scales with R−2 vs the R−4

of the radar). One measure of how ‘quiet‘ a radar is, is to analyse the ratio between

the maximum intercept range and maximum radar range. This is derived as [8]

Rimax

RRmax
= RRmax

[
δR4πĜtGiGpiL1

δiσTGtGRGriL2

]1/2

, (2.15)

If Rimax/RRmax < 1, then the radar cannot be intercepted beyond its maximum range.

From section 2.2, a searching radar will spend most of its time not looking in the

direction of the intercept receiver. Thus, we can consider the general case of Ĝt being

the mean sidelobe level of the radar. A ratio less than 1 means the radar can operate

without being intercepted while it is not scanning in the direction of the interceptor.

Thus, if an LPI radar designer can achieve ultra-low sidelobe levels of the transmit-

ting antenna, then the maximum sidelobe intercept range significantly reduces. The

techniques to acheive this are discussed in Section 2.3.1. From (2.15), the radar designer

can also design a waveform or dwell pattern that either increases the radar’s processing

gain, or reduces the interceptor’s processing gain. These techniques are discussed in

Section 2.3.2

2.3.1 Ultra Low Sidelobe Antenna Design

As discussed previously in this chapter, a scanning radar will not be radiating directly

towards the ES receiver for the vast majority of its time - thus, the ES receiver will
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be mostly intercepting the radar from its sidelobes. Hence, one of the key ingredients

of a low probability of intercept radar is an antenna system which utilises low sidelobe

levels. This review is focussed on the area of electronically scanned arrays, rather than

mechanically scanned arrays, owing to the operational benefit discussed in Section 2.2.

The far field radiation pattern (F (θ)) of a ULA of spacing d is [8]:

F (θ) =
N∑
n=1

Ae(θ)A(n)ejω
(n−1)d sin(θ)

c (2.16)

where

• Ae(θ) is radiation pattern of a single element of the array

• A(n) is the element weighting for element n, whereA is the manifold taper vector

– This quantity is complex for electronic steering (discussed further in Chapter

3). In this Chapter, assume A is a real amplitude vector

• d is the spacing between elements

• N is the total number of elements in the array

• ω is the transmit angular frequency

• c is the speed of light.

Consider a ULA of omnidirectional antennas, i.e. Ae(θ) = 1, then (2.16) simplifies to

F (θ) =
N∑
n=1

A(n)ejω
(n−1)d sin(θ)

c , (2.17)

It is clear that this is an N point DFT of the array taper A. As such, this far field

radiation pattern has the same ‘scalloping’ effect in the spectral density estimate as a

conventional time-domain Fourier transform. If the array manifold vector is a set of

ones, then this is analogous to a rectangular DFT window of length N , and thus, has a

peak sidelobe level of around -13 dB. Conventional windows applied to a DFT, such as

Hann, Hamming, and Blackman-Harris windows are a well studied problem in signal

processing, and it is generally well known that a range of windows can be applied in
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order to reduce these sidelobes at the cost of widening the main lobe. Such windows

can also be applied to the array taper vector in order to minimise the sidelobes in the

radiation pattern, at a cost of broadening the main beam. This is demonstrated in [9],

however, the authors only study the peak sidelobe level, without the beam broadening

effect. Here, this analysis is extended to consider this. Figure 2.6 shows the normalised

radiation pattern of a 20 element ULA spaced at Nyquist (half wavelength spacing)

for rectangular, Hann, Hamming and Blackman-Harris windows, and is summarised in

Table 2.1.

Table 2.1: Comparison between peak sidelobe levels for popular array manifold vectors

Window Peak Sidelobe Level (dB) Beamwidth (degrees)

Rectangular -13.2 5.44
Hann -31.5 8.44

Hamming -38 7.76
Blackman-Harris -58.2 9.66

(a) Rectangular window (b) Hann window

(c) Hamming window (d) Blackman-Harris window

Figure 2.6: Normalised Radiation Pattern for Selected Windowing Methods
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While this analysis only considers the linear array, these windowing techniques can be

extended to planar arrays via a 2D window, as discussed in [9].

The Taylor amplitude taper [10,11] is another significant amplitude tapering method

worth discussing. The authors aimed to reduce the peak sidelobe levels of a circular

array, while maintaining a narrow beamwidth. Unlike the more conventional windows,

the maximum sidelobe level and beamwidth are tunable parameters, while the array

geometry is a dependent variable. The design process for the Taylor scheme is outside

the scope of this thesis, however, [12] provides a good reference of this. In [8], the

authors provide examples of the Taylor weighting characteristics and demonstrate how

sidelobe levels of up to -50 dB can be achieved. In [13] the authors designed, simulated

and experimentally validated an 18 element 24.125 GHz antenna array. The array

geometry was synthesised using the aforementioned Taylor weighting and synthesis

technique. The paper provides impressive results, and the array produced a sidelobe

level of -28.88 dB.

The amplitude weighting methods suggested above are simple to implement as

one signal source can drive multiple antennas via variable attenuators or amplifiers.

However, modern radars may be fully digital, i.e. each element can be driven by several

independent yet synchronised sources - this provides further options for beamforming

techniques (as opposed to conventional delay and sum methods). In [14] the authors

present a novel LPI beamforming scheme where several low-directional, ‘spoiled’ beams

are transmitted to reduce intercept range. However, the radar’s performance remains

unchanged as the original high-gain beam can be formed by processing the return from

the spoiled beams. Although a lower effective power is radiated per pulse, the radar

can maintain its detection performance since the total energy return from the target

remains unchanged. The authors quote a 90% reduction in intercept range with this

technique. There are many papers proposing LPI beamforming techniques similar to

the above technique, where the transmit signal is modulated in both, space and time

in order to reduce intercept range, such as [15–17].
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2.3.2 LPI Waveform design

Recall that in Section 2.2.2, the wideband receiver was decomposed into narrowband

channels via a Fourier Transform to decrease overall noise bandwidth per channel in

order to improve the sensitivity in (2.13). However, this logic follows the assumption

that the emitter must lie within one frequency bin - this is one area where an LPI radar

can exist. For example, if an emitter has a bandwidth that covers two frequency bins,

then the noise bandwidth is doubled, reducing the processing gain and thus, increasing

(worsening) the sensitivity and decreasing the maximum intercept range. In reality, an

emitter may use a spread-spectrum modulation scheme spanning several frequency bins

(of the intercept receiver) in order to reduce the sensitivity significantly. The concept

of a spread-energy LPI waveform is illustrated in Figure 2.7.

Figure 2.7: Spread Energy vs Conventional Waveform

The key to maintaining good radar range performance for spread energy waveforms

is pulse compression [8], where the received signal is correlated with the time-reversed

conjugate of the transmitted signal. This stage is also known as a matched filter, and is

the optimum filter for received SNR (under the assumption that the noise is additive,

white and has Gaussian distribution). The processing gain from this is approximately

the time-bandwidth product of the waveform [2].

One such example of an LPI waveform is the linear frequency modulated continuous
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wave (LFMCW) waveform. This example waveform is commonly used in literature as

a benchmark in LPI radar analysis. An example of an existing LPI radar using such

waveforms is the Thales Scout Maritime Radar [18].

Non-linear frequency modulation schemes such as frequency shift keying (FSK) can

also possess this LPI property [19]. Certain FSK patterns such as Frank codes [8]

are often used in literature for LPI detection analysis. Another common method of

spreading the energy of the radar pulse is to apply a phase code (i.e BPSK, M-PSK) to

the carrier. Phase coded pulse compression radar is a well studied area [2], and example

schemes which possess an LPI property are Frank and polyphase codes [8, 20–22].

Random or noise modulation is another effective method of generating an LPI

waveform [23]. A random signal has the added benefit of the interceptor finding it

considerably difficult to classify the waveform, even if the waveform is intercepted.

However, synthesising a random signal is difficult. Hence, most signals of this type are

based on pseudorandom sequences, or generalised as ‘chaotic radar signals’. An example

of this is presented in [24], wherein the authors propose a method of generating a

pseudorandom signal which is band-limited and optimally flat in the frequency domain,

providing close to the ideal ‘thumbtack’ ambiguity function.

2.3.3 Power Optimised Operation

The maximum range of a radar scales with the fourth root of the transmitted power.

If a radar is tracking a target at less than maximum range, then transmitting at full

power will only increase the probability of it being intercepted. Thus, another method of

reducing the probability of a radar being intercepted is to not transmit more power than

necessary for the task. This idea can be taken a step further and applied to a network

centric approach, or a multi-static system of radars to minimise the power transmitted

towards an intercept receiver. A bistatic LPI radar system was demonstrated in [25],

and indicates the scalability to multi-static systems.

In [26], the authors propose a resource allocation scheme for a multi-static radar

system to meet location accuracy requirements, while minimising the transmit power.

In [27], the authors present analysis of transmit scheduling and power allocation in a
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cognitive radar network for multiple target tracking and propose optimisation methods

for finding an optimal subset of radar systems and their respective transmit power.

Minimising the transmit power while still transmitting enough power to meet localisa-

tion requirements is a well studied problem, and more analysis and optimisation can

be found in [28].

Since the quality of an intercept is dependent on the number of pulses illuminating

the receiver, some studies take the idea of minimising transmit power a step further

by also minimising dwell times in any particular direction. This in turn minimises the

energy at the intercept receiver [29]. zThe approach in [30] presents an optimisation

for Tx power and dwell allocation of individual radars in a multi-static radar system.

In this paper, spatial diversity through multiple input multiple output (MIMO) radar

techniques is exploited, along with using orthogonal waveforms to mitigate cross radar

interference. The authors also claim such an approach can reduce probability of inter-

ception (POI) by up to 75%.

2.3.4 LPI Radar Summary

The main theme of LPI radar strategies is to minimise the power, or overall energy

over a dwell arriving at any potential intercept receiver. Advanced antenna array

design and operation can yield ultra low sidelobe levels to reduce the probability of

being intercepted from a sidelobe illumination. The waveform itself can be spread

in both time and frequency, minimising the (instantaneous) power per unit frequency

incident on the intercept receiver, effectively reducing the processing gain applied by the

receiver. Intelligent power management can be applied to a network of radar systems,

so each system minimises energy towards the intercept receiver.

For the next generation of intercept receivers, the ability to detect such emitters is

crucial. The key challenge in this area is to detect, classify and locate weak emissions

with a low received SNR, in addition to being able to resolve multiple emitters from

different multi-static radar sites.
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2.3.5 Detecting & Locating LPI waveforms

A key aspect of an LPI radar waveform is some form of phase or frequency modulation

to enable low peak power transmissions. Thus, the signal is no longer stationary as

is the case with a conventional waveform, reducing the processing gain of the Fourier

transform and therefore, worsening sensitivity. Since the initial processing stage is

the deciding factor between further processing of the data window or ignoring it, this

is where an LPI emitter exists. Thus, in order to improve the detectability of LPI

waveforms, the initial processing stages are of crucial importance. One popular trend

for increasing processing gain for such emitters is time-frequency analysis, which can

be categorised under short time Fourier Transforms (STFT), Wigner-Ville Distribu-

tions(WVD), Choi-Williams Distributions (CWD) and wavelets. A study with com-

parisons between these techniques can be found in [8] and [31], where examples are

presented for several types of LPI waveforms.

In [32], the authors explore the use of STFTs to detect frequency and phase modu-

lated waveforms and conclude that such a technique can detect LPI waveforms at low

SNR and provide sufficient detail to extract the modulation features of the waveform.

STFTs are also used within [22] whereby the authors propose a STFT for detection

and a convolutional neural network for the classification stages. Another example of a

novel paper exploiting STFTs for LPI detection and classification is [33]. The authors

propose classifying the emitter using visibility graphs and utilising the frequency and

phase modulations in order to identify and classify the waveform. While it is difficult

to numerically compare the performance of this to deep-learning based methods such

as [22], it does suggest that the graph based method is more efficient computation-

ally. Other examples of where the STFT is proposed as a detection stage can be found

in [34]. While simple, the STFT approach for time-frequency analysis is not necessarily

the most appropriate tool for LPI signal analysis. If data windows are non-overlapping,

then it is a strict trade off between time and frequency resolution. Data windows can

be overlapped, however this significantly increases computational cost, and can lead to

‘smearing’ in the time-frequency distribution.

For LFM or FMCW signals, the WVD exhibits a high signal energy concentration in
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the time-frequency domain and can provide a processing gain close to that of a radar’s

matched filter [8]. In [35], the authors propose leveraging the WVD for detection

and feature extraction of FMCW and phase coded waveforms and conclude that as a

tool, the WVD is good for identifying the modulation characteristics of non stationary

signals. However, the authors noted the high computational cost of this, but the key

drawback from this method is the existence of ‘cross terms’, which are manifested

as ‘ghost signals’. A similar conclusion was presented in [36]. Smoothing in time and

frequency is a simple and widely used technique to reduce this effect, and is often cited as

the ‘smoothed psuedo’ Wigner-Ville distribution (PSWVD). There have been multiple

studies, such as [37–39], to further suppress these cross terms. Another important

variation of the WVD is the Wigner-Ville Hough transform (WVHT), initially proposed

in [40]. The classic WVD can provide a high level of processing gain for a linearly

frequency modulated waveform, and the Hough transform can be applied to estimate

the chirp rate. As such, this is an optimal estimator for a single LFM waveform [41].

However, without further modification, the basic WVHT is suboptimal for multiple

simultaneous chirps due to the cross terms present in the WVD. Some efforts to address

this have been studied in [42–44], where the authors exploit the periodicity of the

LFMCW waveform. In [45], the authors provide an overview of the modified WVHT

algorithms for LFMCW signal detection and parameter estimation, and provide analysis

into how they could be implemented on an FPGA (Field Programmable Gate Array)

for real time processing. [46] was later published by the same authors demonstrating a

modified WVHT running in real time on an FPGA, showing a higher level of maturity

than many of the other methods considered within this review.

The Choi-Williams Distribution is another key method used for time-frequency

analysis within the area of LPI waveform detection and classification. The CWD is

largely similar to the conventional WVD, except it uses an exponential weighting kernel

to minimise the cross term components that are prevalent in the WVD. The CWD

is used as the time-frequency analysis stage of the LPI detection method proposed

in [20,21,47]. This was shown to have the same processing gain as the WVD, but can

handle multiple LFM waveforms due to significant suppression of cross terms.
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In [48], the authors noted that while these ‘classical’ time-frequency analysis meth-

ods demonstrated an improvement in detection performance, they had poor resolution

in both, time and frequency domains, leading to inaccurate estimates of frequency and

time of arrival. The authors propose a novel ’reassignment’ technique and present

simulation results for FSK pulses demonstrating an increase in parameter estimation

accuracy.

To summarise, time-frequency analysis techniques demonstrate a significant increase

in processing gain in comparison to conventional windowed FFT (fast Fourier trans-

form) based processing. While the reviewed methods are different, they all function in

a similar way by correlating the signal with some time-frequency kernel and measuring

the resulting power. In the cases where the kernel exactly matches the modulation of

the signal, a processing gain similar to that of the matched filter can be achieved. While

these techniques work well for linear frequency modulated signals, they are sub-optimal

for phase coded or random waveforms.

Another class of LPI detection strategies are correlation based receivers. Rather

than correlating the signal with a known kernel, these techniques correlate the signal

received by two or more synchronised sensors, exploiting the fact that the signal ‘seen’

at the two sensors will have uncorrelated noise, while the LPI signal at the receivers will

be highly correlated. In theory, the same pulse compression gain can be achieved as the

radar. This technique was proposed in [49]. While analysis was limited to CW sinusoids

and binary phase shift keying (BPSK) signals, a significant amount of processing gain

was observed. In [50], the authors proposed that a cross correlation technique could be

used for time difference of arrival (TDoA) estimates between two elements of a bistatic

system for detecting LPI emissions, and concluded that such a technique would work

well when one receiver was in the radar’s main beam, and another receiver was in the

sidelobe (i.e. receiver 2 could not make a detection in isolation). However, the technique

proposed in [50] makes the assumption that one of the ES receivers is in the main beam,

which, as was addressed earlier in this chapter, was an unlikely scenario for a modern

LPI radar. In [51], the authors noted the fact that LFM signals are typically good

for synthetic aperture radar (SAR) processing, and exploited the correlation stages of
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SAR processing for detection of an LPI emitter, and applied SAR spatial processing in

order to locate the emitter.

2.4 Summary

This section has introduced the basic zprinciples of radar and Electronic Surveillance

systems, and discussed parameters which define their maximum detection ranges. Of

particular interest were parameters which could reduce the maximum detection range

of the ES receiver without having too great an impact on the radar’s maximum range

- this is the basis of low probability of intercept radars. Reviewing modern literature

in Section 2.3, we concluded that the radar could minimise the interception range by

• Spreading its energy spectrally to reduce its overall power spectral density

• Reducing sidelobe levels of the transmitting antenna to minimise energy trans-

mitted in the direction of the ES receiver

• Operating in a multistatic geometry

• Minimising transmit power when tracking (while still being able to track)

zThe net result is an overall lower power waveform at the intercept receiver (i.e.

low SNR), where its power is spread across a broad bandwidth. Efforts presented

in Section 2.3.5 demonstrated some methods of being able to detect and classify LPI

radar waveforms. However, these methods mainly focus on temporal processing of

such waveforms and using low-gain, wide field of view antennas. From Section 2.2, it

can be seen that the maximum range of the intercept receiver can be improved when

using a high gain antenna. High gain antennas are highly directional, and are often

considered unsuitable for ES receivers due to their low field of view. However, as we

will discover in Chapter 3, a full digital array of low directional antennas can form

a highly directional high gain beam, and spatial signal processing maintains a wide

field of view. In the remainder of this thesis, novel spatio-temporal signal processing

algorithms will be applied for the purposes of detecting, and locating low probability

of intercept radars.
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Antenna Array Signal Processing

There are three main domains in which sources can differ from one another; space,

time and frequency. As mentioned in Chapter 1.4, modern ES receivers can use in-

formation from all three domains to characterise an emitter. In Chapters 1 and 2, it

was noted that modern transmitters are highly agile in both, the time and frequency

domains in order to decrease the probability of an emission being intercepted. This

forces a greater emphasis on exploiting the spatial domain to gather key information

on RF emissions. Rather than thinking of an antenna array as a number of elements

combined in such a way that the beam is steered electronically, this chapter will provide

an alternative perspective - a spatial sampler. Combined with digitisation at element

level, the problem can now be considered a multi-dimensional (spatio-temporal) signal

processing problem. This chapter provides a review of modern state of the art technolo-

gies and algorithms in the area of direction finding methods for narrow- and broadband

applications. In-depth theory of how electromagnetic waves propagate, and how an-

tennas absorb electromagnetic energy are outside the scope of this chapter, however [1]

provides a compressive overview of this. Moreover, this chapter only considers the case

of far-field point sources.
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3.1 Antenna Array Basics

As opposed to mechanically steering a single high gain (directional) antenna, an alter-

native approach is to use a combination of omnidirectional antennas to achieve a peak

antenna gain in a particular direction through exploiting the concept of superposition.

Such an approach has a few advantages, such as faster beam steering, smaller footprint

and ease of maintenance due to the lack of mechanical parts. This process of electronic

steering is referred to as beamforming and is discussed in Section 3.1.2.

In the far-field region, wavefronts traversing the antenna array can effectively be

modelled as plane waves [52]. Figure 3.1 depicts a source at azimuth angle θ, and zero

elevation illuminating an N element uniform linear array, with an inter element spacing

of d.

Figure 3.1: Wavefronts from an angle θ illuminating an N element array

The distance the wavefront travels between adjacent elements is cτ = d sin θ, and

therefore the signal ‘seen’ between adjacent elements is time delayed by τ = (d/c) sin θ.

Antenna arrays sample at discrete points in space, as such the Nyquist theorem still

applies. Thus to ensure there is no ambiguity with respect to θ, the distance between

two elements must be at most half the shortest wavelength expected in the system, i.e.

d ≤ λmin/2 [53].
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3.1.1 Received Signal Model

Consider the case of L far-field sources illuminating an M element uniform linear array

of isotropic antennas, of spacing d = λ/2, where λ is the wavelength of the sources.

This can be modelled as the superposition of L ‘steered’ sources

x(t) =

L∑
l=1


sl(t)

sl(t− τl)
...

sl(t− (M − 1)τl)

+ ν(t) (3.1)

where sl(t) is the lth source illuminating the array, and ν is the noise vector, which can

be assumed to be white, Gaussian, zero-mean, independent and identically distributed

(IID) between antennas. Here, τl represents the time delay between two adjacent

antenna elements for source l, as described in Figure 3.1, and is calculated as

τl =
d sin(θl)

c
(3.2)

where θl is the direction of arrival of source l, and c is the wave propagation speed in

the medium. In essence, all direction of arrival estimation methods aim to estimate

this time delay, τl. Further assumptions can be made to simplify this problem. If the

source is narrowband, then the complex envelope is approximately constant across the

array [53], simplifying the problem to a time shifted sinusoid, i.e. a simple phase shift.

Thus, (3.1) can be factored as the source multiplied by some steering vector, a.

x(t) =
L∑
l=1

[alsl(t)] + ν(t)

=As(t) + ν(t)

(3.3)

where A = [a1, a2, . . . , aL], and s(t) = [s1(t), s2(t), . . . , sL(t)]T . By taking the first

antenna as a reference, this steering vector can be expressed as
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al =



1

ejωτl

ejω2τl

...

ejω(M−1)τl


(3.4)

Discretely sampling x(t) to x(n), where t = nTs, Ts being the sample period, (3.3)

becomes

x(n) = As(n) + ν(n) (3.5)

This simple model will be used to demonstrate advanced array processing concepts

throughout the remainder of this chapter.

3.1.2 Beamforming

By exploiting the concept of superposition, the received signals can be delayed (or

simply phase shifted in the case of narrowband signals) and summed to achieve a

desired antenna gain pattern known as the array factor. In modern applications, two

key approaches exist: analog and digital beamforming. Figure 3.2 shows a simple

comparison between these two architectures.

The analog beamformer applies these phase shifts (commonly referred to as weights)

in the analog domain, combines the analog voltages and then digitises the resulting sig-

nal. Such an approach is attractive as the succeeding digital signal processing can be

performed at relativity low data rates. There are limitations to this approach as each

analog beamforming circuit can only produce one beamformed channel. If we wanted

to ‘look’ in several directions simultaneously, then several parallel analog beamformers

will be required, increasing SWAP requirements. In contrast, the digital beamformer

does not suffer from this hardware limitation. Since each antenna signal is digitised,

several parallel firmware/software streams can ‘look’ in several directions simultane-

ously. While this does increase firmware/software complexity, owing to Moore’s Law,

this is less of an issue, and means future systems can easily be upgraded with only
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Figure 3.2: Analog and Digital Beamforming Architectures

digital components. In addition, more complex processing can be performed and more

sophisticated beamformers can be implemented such as optimal, or adaptive meth-

ods [53].

3.1.2.1 Array Factor

The directionality of the beamformed array can be analysed through the calculation

of the array factor, analog to the antenna gain pattern on a traditional directional

antenna.

By applying complex weights in the architectures shown in figure 3.2, a similar

antenna gain pattern can be applied. This antenna gain pattern is known as the array

factor, and is calculated as [53]
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AF (θ) =
M∑
m=1

wme
jω(m−1) d

c
sin(θ) (3.6)

where wm is the complex weight applied to the mth element.

Figure 3.3: Example Array Factor for an M = 8 array, steered to 0 degrees

An example array factor can be seen in Figure 3.3, whereby the steering angle is 0

degrees for a Nyquist sampled 8 element ULA.

3.2 Direction Finding Methods

Direction finding is a technique used in many localisation applications. In this section,

major advances in the field, and recent state of the art methods are reviewed. For

simplicity, only linear arrays will be considered, and the antenna elements are assumed

to be perfectly calibrated and isotropic.

Recall the narrowband signal model for a digitised array

x(n) = As(n) + ν(n) (3.7)

where x(n) ∈ CM×1 represents the array signal at discrete time index n, s(n) ∈ CL×1

represents the L source signals, A ∈ CM×L represents the steering matrix, and finally

ν(n) represents the additive noise vector.

To estimate the direction of arrival of all sources, the task is to estimate A, which

is time independent. Assuming that both s(n) and ν(n) are zero mean wide sense
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stationary (WSS) processes, the time domain statistical properties of these variables

can be exploited in order to simplify the problem. Specifically, by estimating the

second order moment of x(n), the time domain information essentially compresses into

a measure of covariance. Owing to the instantaneous mixture model from (3.7), only

instantaneous spatial correlations are of interest. Thus, the M ×M spatial covariance

takes the form

Rxx = E[x(n)xH(n)] (3.8)

The remainder of this section discusses key methods in the area of direction of

arrival estimation. This is a non exhaustive list of methods, but it does provide a

useful insight into some of the more prevalent and impactful methods in this area.

3.2.1 Beam Scanning

While beamforming itself is seldom used for DoA estimation in modern systems, it

provides a foundation that is the basis for the methods used in practice. Consider a

basic beamformer where the goal is to measure the variance (power) in a particular

direction, θ. This can be done by electronically steering the beam via a multiplication

of the steering vector a(θ), which has the same structure as the steering vector in (3.4).

To form a spatial spectrum, this steering vector can be scanned across a range of angles.

PBF (θ) = aH(θ)Rxxa(θ) (3.9)

Clearly, the resolution of this method is limited by the Rayleigh criterion [52],

and can thus only resolve one source within one beamwidth. The remaining methods

discussed in this section are deemed as super-resolution owing to the fact that more

than one signal can be estimated within one beam-width.

3.2.2 Capon’s Minimum Variance

The idea behind Capon’s method is to use the nulls of a beamformer as they are

typically much sharper than the peaks. Thus, rather than maximising antenna factor
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in the direction of the source, minimising output power while forcing the desired signal

to remain constant optimises the SNIR. The array weights for the Capon beamformer

can be calculated as [54]

w(θ) =
R−1
xxa(θ)

aH(θ)R−1
xxa(θ)

(3.10)

Similarly, the DoAs can be estimated through the following heuristic search, θ

Pca(θ) =
1

aH(θ)R−1
xxa(θ)

(3.11)

While the Capon beamformer and direction finder can produce impressive results in

simulations, [55] noted that such a method is not robust and is sensitive to array imper-

fections. Another issue with this approach is that because computational complexity

of a matrix inversion scales as O(M3), such an approach may not be feasible for larger

arrays operating in real time. While Capon’s direction of arrival estimation scheme has

mostly been superseded by more advanced methods in recent years, their beamforming

scheme still remains incredibly influential. One such extension can be seen in [56],

whereby the authors present a method to improve the robustness of Capon’s MVDR

technique to further optimise the SNIR in the presence of array manifold imperfections,

calibration and DoA errors.

3.2.3 MUSIC

The MUSIC (MUltiple SIgnal Classification) algorithm was originally published by

Schmidt in 1986 [57], and has grown in popularity in recent years owing to the advance-

ments in receiver and computing technology. The MUSIC idea is similar to Capon’s

method, but takes it a step further by finding steering vectors orthogonal to a noise

subspace of a covariance matrix, rather than its inverse. Consider a scenario whereby

a perfect estimate of the spatial covariance is found, it can be expressed as
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Rxx = E[x(n)xH(n)]

= AE[s(n)sH(n)]AH + E[ν(n)νH(n)]

= ARssA
H + σ2

νI

(3.12)

where Rss is the source covariance matrix, and will be diagonal on the condition that

all sources are uncorrelated. The eigenvalue decomposition of this spatial covariance

matrix

RxxU = UΛ

Rxx = UΛUH
(3.13)

where U and Λ represent the eigenvectors and eigenvalues. As the covariance matrix

is Hermitian by construction, its eigenvalue matrix will be real and diagonal. It is

clear that the number of significant eigenvalues will be the rank of Rss (which will

be L providing sources are uncorrelated), and thus, there will be a signal subspace of

dimension U s ∈ CM×L. As the steering vectors span the signal subspace, it would be

intuitive to use the signal subspace to estimate the steering vectors. However, owing

to the orthonormality of the eigenvectors, each column of the signal subspace will be

orthonormal, while the steering vectors are unlikely to be orthogonal. The steering

vectors will however be orthogonal to the noise subspace, Un ∈ CM×(M−L). Thus, the

spatial spectrum can be estimated as

Pmu(θ) =
1

aH(θ)UnU
H
n a(θ)

(3.14)

Of course, this method requires the knowledge of the number of signals, L, illuminating

the array. This can be estimated from inspection of the eigenvalues. One disadvantage

of the MUSIC algorithm is the computational cost of the heuristic search in (3.14).

This cannot be overcome with a coarse search as there will be a high risk of completely

missing a peak due to the sharpness. This leads to another disadvantage - estimation

36



Chapter 3. Antenna Array Signal Processing

accuracy and precision is limited by the search space.

It has been reported that the MUSIC DoA estimator is more robust than Capon’s

estimator in the case of a poor estimate of the covariance matrix due to insufficient sam-

ples and mildly correlated sources [53]. Studies have shown that the MUSIC algorithm

is an efficient estimator that lies close to the Cramer Rao Lower Bound [58–60]. There

have been many variations and improvements to the MUSIC algorithms since its origi-

nal publication. Such improvements have mainly focussed on improving computational

cost [61–65].

3.2.3.1 Root-MUSIC

The Root-MUSIC algorithm [61] is a popular modification to the MUSIC algorithm

which removes the need for the heuristic search operator in (3.14). Recall the steering

vector from (3.4) - by exploiting this Vandermonde structure, it can be expressed as

a =



1

z

z2

...

z(M−1)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣z = ejωτ

(3.15)

here, τ is the time delay due to DoA, θ. Root-MUSIC reformulates the problem by

generating the Laurent polynomial:

Γ = aHUnU
H
n a = 0

= aHCa = 0

=

M+1∑
n=M−1

cnz
n

(3.16)

where cn is the sum of the nth diagonal of C. Now, the problem is reformulated to

finding the roots of Γ. While there are 2(M − 1) roots of Γ, only the L distinct roots

closest to the unit circle are of interest (since |ejωτ | = 1). These roots can be translated
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into a DoA estimate as

θl = sin−1
(c arg(ql)

ωd

)
(3.17)

where ql is the root denoting the lth source. It is worth noting that the Root-MUSIC

algorithm is an exact solution to the peaks of the MUSIC spectrum. The primary

advantage of this method is the reduced computational cost, because finding the roots

of a polynomial is less complex than heuristically estimating the spectrum in (3.14) [66].

Another advantage of the Root-MUSIC algorithm over the original MUSIC algorithm

is that accuracy is not limited by the scanning granularity, so it can offer a greater

degree of precision.

One drawback of the original method in [61] is that it was limited to ULAs. However,

manifold separation techniques [67, 68] allow such a method to be used in arbitrary

planer array geometries.

Recall that for an M element array, there are 2(M − 1) roots to the polynomial in

(3.17). These roots appear as conjugate reciprocal pairs, and thus, there is a redundancy

of factor 2. In [69], the authors propose a method to factorise this polynomial to only

produce M − 1 roots to further improve computational cost in the DoA estimation.

3.2.4 ESPRIT

ESPRIT, originally published in [70] is another method which exploits the Vander-

monde structure of a uniform linear array steering vector, and is a search-free estima-

tor to reduce computational complexity. By splitting the ULA into two overlapping

sub-arrays of equal size, each will have a Vandermonde structured steering matrix, and

will be translational invariant, i.e.

A2 = A1Φ (3.18)

where Φ ∈ L×L is a diagonal matrix, where the element φll = ejωτl . Since the steering

vector spans the signal subspace, there exists some linear transform matrix, T , such

that Ak = U skT , for the kth sub-array. Thus,
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U s2T = U s1TΦ

U s2 = U s1TΦT−1

U s2 = U s1Ψ

(3.19)

where Ψ = TΦT−1, and can be estimated using a total least squares approach [71].

As Ψ is the linear transform of Φ, they will share the same eigenvalues. Thus the

eigenvalues of Ψ contain information of the source’s DoA. In a similar fashion to (3.17),

the DoAs can be estimated via

θl = sin−1
(c arg(λl)

ωd

)
(3.20)

where λl is the lth eigenvalue of Ψ.

3.2.5 DoA estimation of Correlated Sources

Recall that the dimensions of the signal subspace of Rxx is defined by the number of

its significant eigenvalues, and the number of the significant eigenvalues is determined

by the rank of Rss. In the case of coherent sources, Rss will be singular. The resulting

estimated signal subspace will contain a combination of the steering vectors for the

coherent sources, and thus, the true steering vectors will no longer be orthogonal to

the noise subspace [72].

One popular method in literature is spatial smoothing. This involves splitting the

array manifold into subarrays, then generating covariance matrices for each subarray.

Due to the translational invariance of the steering matrix, the averaging of the subarrays

effectively shifts energy from the off-diagonals of Rss onto the main diagonal, restoring

the rank of Rss. This method was initially proposed in [73], and further developed

in [72], and is often referred to as ‘forward-only’ spatial smoothing. While effective at

finding the DoA of coherent narrowband sources, this technique is severely detrimental

to the effective array aperture.

For P coherent sources illuminating the array, a minimum of 2P antenna elements
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are required to find their DoA. This spatial averaging technique was further improved

in [74] through averaging in both forward and backward directions. This is known as

forward/backward spatial smoothing, whereby the backwards array is defined as the

spatially reversed conjugate of the forward. Rather than in terms of DoA estimation

performance, the benefits of this approach are in terms of required antenna aperture,

with only 3P/2 minimum sensors required. This is further improved in [75], whereby

the cross correlation between sub-array elements is taken into account.

3.2.6 Summary on DoA Methods

This section has explored some of the more popular direction of arrival estimation

methods cited within the literature. A key element of the super-resolution methods

is to form a spatial covariance matrix, under the assumption of a narrowband emit-

ter. Generally, the better the estimate of the covariance matrix, the more accurate

the direction of arrival estimate. The methods tend to differ in their computational

cost and flexibility. Standard MUSIC and Capon’s method can be used on arbitrary

array geometries, while Root-MUSIC and ESPRIT are more computationally efficient;

they were defined on the assumption of uniformly spaced array elements. Array man-

ifold separation techniques can be applied to combat this, but this further increases

computational cost. In the case of correlated sources, the covariance matrix becomes

ill-conditioned and can cause these super resolution techniques to fail. However spatial

smoothing can be applied to uniform arrays to essentially recondition the covariance

matrix and improve performance. The following section will cover non-linear arrays,

their importance in a wide band system and state-of-the-art techniques.

3.3 Sparse Arrays

Providing a good estimate of the spatial covariance matrix, Rxx, the key limiting factor

for resolution and accuracy of the DoA estimation is the electrical length of the array

(i.e. length of the array in wavelengths). For a ULA, this simply translates into more

elements, which may not be practical in many applications. Furthermore, the models
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above assume the antenna elements behave in the same manner in an array as when

they are in free space. In reality, this may not be the case, and the phenomenon is

known as mutual coupling. This is a well studied effect and can be overcome practically

through calibration [76–78]. This is, however, computationally expensive. Sparse arrays

have been used in astrophysics applications for decades, with the minimum redundancy

array proposed in [79,80]. More recently, sparse arrays have been used in radar [81–83]

and for sensing purposes [84,85].

Consider a set of N sensors placed on a uniform grid of spacing d = λmin/2, where

λmin is the source wavelength. The sensor xn is physically located at nd from the first

sensor in the array. Owing to the wide sense stationary assumption of the data model

in (3.3), the spatial covariance, Rxx(i, j) = Rxx(i− j, 0), and is thus solely dependent

on the difference between sensor locations i and j. It is intuitive to study the difference

set of integers of antenna placement, which can be defined as

M = {xi − xj}, ∀i, j = 0, 1, . . . , N − 1 (3.21)

Following the definition of the difference set from [86], repetition of elements is

allowed, and will thus contain N2 elements. The weight function w(u) of an array is

defined as the number of times the difference u occurs within its difference set. As an

example, Figure 3.5 demonstrates the weight function for an 8 element ULA (displayed

in Figure 3.4). If the same difference, u, occurs more than once, i.e. w(u) > 1, then it

is said to be redundant.

Figure 3.4: Uniform Linear Array - Sensor Positions

From this perspective, the ULA is particularly inefficient in terms of its sensor place-

ment, owing to the redundancy. The remainder of this section discusses key advances

in the area of sparse arrays.
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Figure 3.5: Uniform Linear Array - Weight function

3.3.1 Minimum Redundancy Array

A class of linear arrays was shown in [80], which achieves maximum spatial resolution

for a given number of elements by minimising the redundancies in the difference set.

The case of a zero redundancy array possess a weight function

w(u) =


N for u = 0

1 otherwise

(3.22)

While this is the goal of the minimum redundancy array (MRA), such an array does

not exist for more than 4 elements [87]. Calculating the sensor locations of a minimum

redundancy array is not a trivial task as closed form expressions for estimating sensor

locations do not exist. However, look up tables and examples are provided in [80]

and some methods can be found in [79]. There are also two subclasses of minimum

redundancy arrays: unrestricted and restricted arrays. An example of an 8 element

unrestricted and restricted minimum redundancy array can be seen in Figure 3.6, and

their weight functions in Figure 3.7.

An unrestricted array optimises sensor placement to achieve the largest possible

unbroken region of the weight function, but there are ‘holes’ past this region, resulting

in broken regions in the weight function across the whole aperture. A restricted array

on the other hand optimises sensor placement to achieve a hole free weight function

across the entire aperture. The latter may be a more suitable option in applications
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Figure 3.6: Minimum Redundancy Array - Sensor Positions

Figure 3.7: Weight functions of a restricted MRA (top), and unrestricted MRA (bot-
tom)

where physical space is a scarce resource since it is more spatially efficient. In the

presented 8 element example, the restricted MRA has an array length of 23d, and a

contiguous difference set of 23d - thus, all possible differences within the aperture length

can be calculated. In contrast, the unrestricted MRA has a slightly larger contiguous

difference set length of 24d, however the physical size of the array is now 39d, making

it considerably larger than that of the restricted class.
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3.3.2 Co-Prime Sampling

The temporal co-prime sampler [88] is the union of two uniform samplers, with periods

of N1Ts and N2Ts, where N1 and N2 are co-prime integers and Ts is the Nyquist

sampling rate for the system. Since this sampling method can be applied using two

uniform ADCs, it is more attractive than sparse sampling methods that require difficult

arbitrary clock generation.

The same theory can be applied to array signal processing [89], formed from the

union of two uniform arrays; one with N2 elements spaced at N1d, and the other with

N1 elements at spacing N2d. Owing to the co-primality of N1 and N2, the samplers

only share element 0, and this results in a N1 +N2− 1 length linear array. While good

for minimising redundancy, this conventional co-prime approach contains holes early

within the difference set, limiting its usefulness with certain types of processing, such

as spatial smoothing.

The extended co-prime geometry presented in [90] yields an array with a much

larger continuous region than the conventional co-prime array. The extended geometry

extends the array to contain 2N2 elements at spacing N1, and N1 elements at spacing

N2. The weight function of an N1 = 5, and N2 = 2 with N = 2N2 +N1− 1 = 8 overall

elements can be seen in Figure 3.8 and its weight function can be seen in Figure 3.9.

Figure 3.8: Extended Co-Prime Array - Sensor Positions

While efficient in terms of redundancy, the resulting weight function still contains

holes and is only continuous in the region −(N1N2 +N2 − 1) to (N1N2 +N2 − 1), and

thus, a maximum of (N1N2 + N2 − 2) sources can be resolved using subspace based

DoA estimation methods.
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Figure 3.9: Extended Co-Prime Array - Weight function

3.3.3 Nested, and Super Nested Array

Similar to the co-prime array, it is relativity simple to calculate sensor positions for a set

number of N sensors (due to the closed form expressions for sensor placement). Again,

this array is the union of two ULAs; a Nyquist spaced (d) ULA with N1 elements, and

a sparse ULA of N2 sensors spaced at (N1 + 1)d, over an aperture of N2(N1 + 1)d.

This yields a sparse array with N1 + N2 sensors overall, with the ability to resolve

N2(N1 + 1)− 1 sources. An 8 element (N1 = N2 = 4) nested array is shown in Figure

3.10), and its weight function can be seen in Figure 3.11 (top). Unlike a co-prime

array [90], this array yields a contiguous difference set, akin to the restricted class of

MRAs. While such an array is easy to design, in general, its weight function contains

more redundancies than an MRA. Another major drawback to the conventional nested

array is the issue of mutual coupling between sensors of the dense Nyquist portion of

the array.

Recently, the super-nested array was proposed in [86, 91]. The super nested array

aims to reduce the effect of mutual coupling in the array by redistributing the dense

portion of the array across the entire aperture. The goal of the second order super-

nested array is to minimise the pairs spaced at Nyquist, i.e. the w(1) = 1, which will

reduce the effect of mutual coupling substantially, while a third order also minimises

the pairs spaced at 2 Nyquist.

Figure 3.10 also shows the sensor locations of an 8 element second order super nested

array. It’s weight function can also be seen in Figure 3.11 (bottom) and demonstrates
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Figure 3.10: Array Element Positions for a Nested, and Second Order Super Nested
Array

Figure 3.11: Weight functions of a Nested array (top), and a second order super-nested
array (bottom)

that while there is the same total redundancy as the conventional nested array, the

number of pairs spaced at Nyquist (u = ±1) is reduced from 4 to 2. Both the nested

and second order super nested arrays have the same physical length of 19d, and the

same contiguous region of 19d due to the hole free difference set.

3.3.4 Sparse Array Summary

Sparse array geometries provide a wider distribution of sensor placements, increasing

the electrical length of an array and offering improved resolution compared to a uniform

array of the same number of elements. Figure 3.12 and Table 3.1 provides a comparison
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Table 3.1: 8 Element Sparse Array Comparisons

Array Physical Length hole-free length

Uniform 8d 8d
Restricted MRA 23d 23d
Unrestricted MRA 39d 24d
Co-Prime 15d 11d
Nested 19d 19d
2nd Order Super-Nested 19d 19d

between the physical locations of the 8-element sparse arrays discussed within this

section. x

Figure 3.12: Summary of Sparse Array Geometries

Certain processes require a contiguous difference set of the array. Hence, the task

of sparse array geometries is to maximise the overall aperture, while maximising the

contiguous portion of the difference set, and hence, minimising difference redundancy.

The nested array is perhaps the more intuitive sparse array, as it is the union

of a Nyquist sampled linear array (to avoid angle ambiguity), and an under sampled

array (to achieve overall aperture). The downfall of such an approach is the significant

amount of mutual coupling in the Nyquist section of the array. Super-nested arrays

reduce the amount of mutual coupling through redistribution of the closely spaced

elements. Co-prime arrays provide less overall redundancy compared to the nested

array, but a shorter contiguous region - limiting its usefulness to techniques that do not

require this. Finally, the minimum redundancy array is the oldest technique discussed

within this review, and provides the greatest overall contiguous aperture. While it is

a computationally difficult task of optimising the sensor positions, it is irrelevant from

an application perspective as the array geometry stays constant throughout use. It is,
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however, the least flexible in determining sensor positions.

3.4 Broadband Array Signal Processing

While the model in (3.1) is valid for a broadband signal, the narrowband approximation

used in (3.3) is no longer valid, i.e. the time delay across the array manifold cannot

be approximated as a simple phase shift at some centre frequency. Instead, a way to

represent this as a linear phase shift across a range of frequencies is required. The

obvious approach to this would be to perform a Fourier decomposition on the array

signal:

X(ejω) =
L∑
l=1

[al(e
jω)Sl(e

jω)] + ν(ejω) (3.23)

where X(ejω) and S(ejω) are the frequency domain representations of the array vector

and source signals at angular frequency ω, and al is the steering vector for the lth

source, and can be represented as

al(e
jω) =



1

ejωτl

ejω2τl

...

ejω(M−1)τl


(3.24)

The spatial covariance matrix at frequency ωk can be formed in (3.25)

Rxx(ejωk) = E[x(ejωk)xH(ejω)k)]

= A(ejωk)Rss(e
jωk)AH(ejωk) + σ2

νI
(3.25)

Note that the noise is assumed to be white, and is thus independent of frequency. In

the case of coloured noise, the noise power term will also be a function of frequency, as

is discussed in [92].

Since the covariance matrix at each frequency bin has a similar form to (3.12), all
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DoA estimation methods from section 3.2 can be used independently on each frequency

bin, and an average of these estimates can result in a final estimate. While simple, such

a method has a number of drawbacks - the first being computational complexity. For

M frequency bins containing sufficient energy for a signal detection, M parallel DoA

estimations are required. On a similar note, if there is insufficient energy in each

frequency bin, i.e. the SNR is below a threshold for reliable estimation, this prevents

the final estimation from being effective. The effect of spectral leakage should also

be considered for this method. Applying an appropriate window function will help

mitigate this at the cost of decreased spectral resolution.

3.4.1 Coherent Signal Subspace Methods

One possible approach to overcome some of the issues highlighted above is to no longer

process frequency bins independently. The coherent signal subspace method introduced

in [92] coherently combines narrowband covariance matrices over a range of frequency

bins into a single covariance matrix at some centre frequency, ω0. The idea behind the

coherent signal subspace method is the fact that some transform matrix, T , exists such

that

T (ejωk)A(ejωk) = A(ejω0) ∀ ω (3.26)

i.e. a matrix which focuses a steering vector at one frequency bin, ωk, onto the chosen

centre frequency bin ω0. The transformed frequency domain data model can be defined

as (3.27)

y(ejωk) = T (ejωk)x(ejωk) (3.27)

and the coherently combined covariance matrix can be expressed as (3.28)
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R̂xx(ejω0) =

K∑
k=1

wjE[y(ejωk)yH(ejωk)] =A(ejω0)[
K∑
k=1

wjRss(e
jωk)]AH(ejω0)

+ σ2
ν

K∑
k=1

wjT (ejωk)TH(ejωk)

(3.28)

where wj is normalised weight for SNR in the jth frequency bin.

In [92], the authors prove that the combined focussed covariance matrix possesses

the same eigenspace properties as the narrowband covariance matrix in (3.8). Thus

methods presented in Section 3.2 can be used. The authors demonstrate how this

‘spectral smoothing’ process can resolve coherent sources.

The main difficulty of this method is the generation of the transform matrix,

T (ejωk). In [92], the authors noted that the solution to satisfy (3.27) is non-unique. As

such, many methods have been proposed, e.g. [93–95], to generate this matrix. How-

ever, these methods require knowledge of the source’s DoA, and the overall performance

is dictated by how accurate these initial estimates are. The suggestion from [92] was

to perform a course DoA estimate to get this initial estimate, then a fine DoA estimate

to super-resolve closely spaced sources.

The requirement of a preliminary estimate of the source’s DoA in order to achieve

a better estimate in either accuracy or resolution is an obvious downside. However,

in [96], a new method was presented which did not require a preliminary DoA estimate,

through the use of a set of auto-focussing matrices. The authors identified that the

signal subspace eigenvectors span the same subspace as the steering vectors at each

frequency. Rather than using a preliminary estimate of the steering vectors to form

the focussing matrices, their eigenvectors can be used instead, i.e. the auto-focussing

matrices can be generated as

T (ejωk) =
1√
K
U(ejω0)UH(ejωk) (3.29)

where K is the number of frequency bins to coherently combine covariance matrices.

This transform matrix can be used in (3.28) to form the combined covariance matrix.
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However, such a method cannot resolve coherent, or strongly correlated sources even

though the same ’spectral smoothing’ process is used as in [92]. In the case of coherent

sources, the source covariance matrix will be singular, and thus the signal eigenvectors

will no longer share the same span as the steering vectors due to the same reasons

mentioned in Section 3.2.5.

3.4.2 Polynomial Matrix Methods

Polynomial matrices are a fairly recent advancement in the area of broadband array sig-

nal processing, and have been applied for direction finding, beamforming, and MIMO

systems [97–102]. One of the issues with the frequency domain methods is that each

Fourier component is treated independently, and thus ignores small yet important cor-

relations between spectral components. A key aspect of polynomial matrices is that

rather than performing a Fourier decomposition on the array signal, (3.1) can be ex-

pressed as the following convolutive mixture model

x(t) =
L∑
l=1


sl(t)

sl(t)⊗ δ[t− τl]
...

sl(t)⊗ δ[t− (N − 1)τl]

+ ν(t) (3.30)

where δ(t) is the Dirac-delta function. Similar to (3.3), this can be decoupled to a

convolution of a source and its steering vector

x(t) =
L∑
l=1

[al ⊗ sl(t)] + ν(t)

=A⊗ s(t) + ν(t)

(3.31)

where
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al =



1

δ[t− τl]

δ[t− 2τl]
...

δ[t− (N − 1)τl]


(3.32)

and A = [a1, a2, . . . , aL].

The motivation behind polynomial matrices lies within the convolutive mixture

model in (3.31), i.e. unlike the narrowband scenario, it is now appropriate to consider a

range of temporal correlations in addition to spatial correlations. The spatial covariance

matrix at discrete temporal lag, k, is

Rxx(k) = E[x(n)xH(n− k)] (3.33)

and thus the polynomial space-time covariance matrix is calculated as the power series

Rxx(z) =

W∑
k=−W

Rxx(k)z−k (3.34)

where W should be chosen such that Rxx(k) is a zero matrix beyond k > |W |, which

can be determined experimentally.

The parahermitian operator (denoted by the superscript P ) of a polynomial matrix

is defined as the time-reversed conjugate transpose, and a matrix is said to possess the

parahermitian property if the original matrix is equal to its parahermitian transpose.

Likewise, a paraunitary matrix is a polynomial matrix which when multiplied with its

parahermitian is an identity matrix.

Now, by construction, the space-time covariance matrix of (3.34) has this paraher-

mitian property, i.e.

Rxx(z) = RP
xx(z) = RH

xx(z−1) (3.35)

In a similar fashion to (3.12), this space-time covariance matrix may also be ex-

pressed as
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Rxx(z) = A(z)Rss(z)A
P (z) + σ2

νI (3.36)

In [103], the authors proposed the sequential best rotation algorithm (SBR2) for

the eigenvalue decomposition of parahermitian matrices. This is a generalisation of the

Jacobi algorithm for eigenvalue decomposition of a Hermitian matrix and it provides a

diagonalisation of a polynomial matrix via a paraunitary similarity transform. Since its

publication, variants of the polynomial eigenvalue decomposition (PEVD) have been

formed, such as sequential matrix diagonalisation (SMD) [104] methods, which provide

a faster convergence, but at a greater overall computational cost. There have been

several evolutions to this method such as the maximum energy SMD (ME-SMD) [105],

where each iteration is optimised for shifting the most energy from the off-diagonals per

iteration. While computationally expensive, this method formed part of the framework

that other PEVD methods are compared against. In order to reduce the computational

cost of this, the authors in [106, 107] propose a restricted update SMD (RU-SMD)

algorithm, which reduces computational complexity with little effect on performance.

Such algorithms have been further improved and matured for deployment on an FPGA

for real time computation [108–111].

Using methods described above, it is possible to decouple the space-time covariance

matrix into polynomial eigenvalues and paraunitary eigenvectors.

Rxx(z) ≈ U(z)Λ(z)UP (z) (3.37)

whereby the polynomial eigenvectors possess the paraunitary property, U(z)UP (z) =

UP (z)U(z) = I. The eigenvalues represent a power spectral density

Λ(ω) =


λ1(z)

λ2(z)

. . .

λM (z)



∣∣∣∣∣∣∣∣∣∣∣∣ z = ejω

(3.38)

and are spectrally majorised such that |λ1(ω)| > |λ2(ω)| > . . . > |λM (ω)|. From (3.36),
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it is clear that the number of significant eigenvalues, and thus the dimensions of the

signal subspace will be the rank of Rss, which will be equal to the number of sources

illuminating the array. This can thus be separated into signal and noise subspaces

Rxx(z) ≈
[
U s(z) Un(z)

]Λs(z)

Λν(z)

UP
s (z)

UP
n (z)

 (3.39)

It is clear that the eigenvectors related to the signal subspace, U s, contain information

of the steering matrix, A. However, the columns of U s will be orthonormal, whereas

the columns of the true steering matrix may not be. The columns of the true steering

matrix, however, will be orthonormal to the noise subspace.

Using this rationale, the authors in [97] extended the MUSIC algorithm to broad-

band scenarios using these polynomial matrix methods, and thus the spatio-spectral

Polynomial MUSIC (PMUSIC) algorithm (3.40)

Pmu(θ, ω) =
1

aP (θ, z)Un(z)UP
n (z)a(θ, z)

∣∣∣∣∣∣ z = ejω
(3.40)

where a(θ, z) is the test polynomial steering vector for DoA, θ. The elements of model

steering vectors in (3.32) are ideal fractional delay filters that can only be realised,

for discretely sampled signals, by band limiting to the Nyquist frequency. Such limit-

ing produces a sinc function as the closest approximation to the Dirac delta function.

However, such a filter is both non-causal and of infinite length making direct imple-

mentation impractical. Methods on approximating such a fractional delay filter are

discussed in Section 3.4.2.1

3.4.2.1 Fractional Delay Filters

The most basic implementation of the fractional delay filter is a simple truncated sinc,

ai(n) = sinc(n− τ̂), n ∈ [−Ns, Ns] (3.41)

where τ̂ is the fractional delay in samples, and n is the sample index. Thus this FIR

54



Chapter 3. Antenna Array Signal Processing

filter contains 2Ns + 1 elements. Two issues exist with this basic sinc based fractional

delay filter the first being the ripples in the pass band, which can be overcome with

appropriate windowing functions. The second issue is that the sinc filter becomes band

limited if truncated, causing a sharp null towards the Nyquist frequency.

The Farrow structure is another well known method for inducing a fractional delay

[112,113]. The main feature of the Farrow structure is that the sub-filter coefficients are

fixed, while the fractional delay can be continuously tuned. This provides an attractive

solution for a broadband steering vector for the PMUSIC algorithm in (3.40) as it

eliminates the need for generating a new set of fractional delay filters for the steering

vector at each scan of the spatio-spectrum. This method, however, still suffers from an

increased approximation error at higher frequencies.

A novel method of inducing a fractional delay through the use of filter banks was

introduced in [114], and provides a comparison between the three methods discussed

so far. The idea behind this method is that the approximation error of the Farrow

structure is proportional with increasing frequency. By decomposing a signal into P

sub-bands, down-converting to a lower frequency, applying P parallel fractional delay

FIR filters on each band, followed by a reconstruction, a nearly flat approximation error

can be achieved throughout the entire band. Obviously, such an approach will increase

computational cost P -fold.

3.5 Chapter Summary

This Chapter has provided a review of existing techniques, methods and literature sur-

rounding spatial signal processing for antenna arrays. The concept of a digital antenna

array has been introduced, and thus, a signal model for the narrowband scenario has

been derived.

A common element of the DoA estimation algorithms discussed in Section 3.2 is

to approximate the scenario using the narrowband assumption. This yields an instan-

taneous mixing model and therefore, direction information can be estimated purely

from the spatial domain. Hence, a key processing stage is to form a covariance matrix

of spatial only correlations. However, as discovered in Chapter 2, modern LPI emit-
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ters utilise a broadband modulation scheme, invalidating the narrowband assumption

conventional super-resolution algorithms are based upon.

Section 3.3 provided an overview of sparse array geometries and some techniques

such as the virtual array to exploit the properties of sparse arrays. These techniques

also rely on the narrowband assumption to work effectively. Most literature surrounding

sparse arrays is primarily focussed on the narrowband case. It is apparent, however,

that such geometries pose as attractive solutions for broadband scenarios. A wide

band receiving system requires fine spacing for ambiguity free DoA estimates at higher

frequencies, and a wide overall aperture for sufficient resolution at the lower frequencies.

This is explored further in Chapter 6.

Finally, Section 3.4, presented a review of literature of broadband spatial signal

processing techniques. Independent frequency bin processing is an intuitive approach to

take. However by assuming all frequency bins are independent, important correlations

between bins are ignored, making this technique suboptimal in terms of performance.

Independent frequency bin techniques are also computationally expensive since parallel

independent narrowband computations are required, e.g. if a signal spans N frequency

bins, then N covariance matrices would need to be estimated, and then providing a

final DoA estimate via averaging the extracted DoA from each of these matrices. In

contrast, coherent signal subspace methods focus these N covariance matrices into a

single covariance matrix, and then apply conventional DoA estimation techniques to

this focussed matrix. However, in order to effectively focus these covariance matrices,

some prior knowledge of DoA is required, adding a course, then fine DoA estimation

stage. To combat this issue, a category of auto-focussing coherent signal processing

methods was proposed, omitting the need for the coarse DoA estimation stage.

Polynomial matrices are a recent invention in the area of broadband signal pro-

cessing. These do not require a DFT for the initial processing stages, and instead

a space-time covariance is calculated containing all spatial and a range of temporal

correlations. The significance of this is that there are no errors induced by the DFT,

and a similar processing gain is induced via auto- and cross correlations. One of the

key advances in this area are the Polynomial Eigenvalue Decomposition algorithms,
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which allow the generation of signal and noise subspaces, thus enabling the existence

of spatio-temporal algorithms like the Polynomial MUSIC algorithm.

57



Chapter 4

The Multi-Correlation Receiver

& Polynomial Matrices

4.1 Introduction

The previous chapters have shown that traditional narrow-band approaches are inad-

equate for the separation and localisation of modern radar sources. However, recent

development of polynomial matrix methods show promise as the basis for developing

more appropriate approaches.

The novel contribution of this chapter is the exploitation of the spatial domain

via polynomial matrix methods, as it explores how these methods can be used in a

passive sensing scenario for the detection and direction estimation for LPI emissions.

In this chapter (particularly in Section 4.2), the motivation behind the multi-correlation

receiver will be explored. It will be identified that time and frequency domain based

approaches alone are insufficient for the detection of low power LPI emissions in low

SNR scenarios. This section will also discuss how such emissions can be detected by

considering spatial and temporal correlations through the formation of a space-time

covariance matrix with just 2 elements.

In Section 4.3, the idea from Section 4.2 is generalised to an arbitrary number of

array elements, and a description is formed on a broadband steering vector. This model

includes a down-conversion stage, which is typically not included in most literature.
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This data model is used for all broadband analysis contained within this chapter and

Chapter 6.

Section 4.4, discusses the space-time covariance matrix, including how it can be ana-

lytically modelled, or formed through data. This section also describes how polynomial

eigenvalues can be exploited for detection purposes. In Section 4.5, a novel algorithm is

introduced to significantly decrease the computational cost of the Polynomial MUSIC

algorithm. Finally in Section 4.6, a series of simulations are presented to analyse the

results of the algorithms presented throughout this chapter.

4.2 The Motivation Behind the Correlation Based Re-

ceiver

Before analysing complex polynomial matrices, in this section we explore the idea of

using a cross correlation and subsequently a cross spectral density estimate to enhance

detection of a broadband signal in a low SNR scenario.

First, consider the simple case of a two element receiver with only receiver noise

present. The signal at the receiver can be modelled as

x(n) =

x1(n)

x2(n)

 =

ν1(n)

ν2(n)

 (4.1)

where ν1 and ν2 are uncorrelated i.i.d zero mean Gaussian noise terms. Assuming x(n)

is a wide sense stationary signal the auto (i = j) and cross (i 6= j) correlation terms

are defined as

ri,j(τ) = E[xi(n)x∗j (n− τ)] = E[νi(n)ν∗j (n− τ)] (4.2)

Since the noise is uncorrelated, the cross correlation sequence will be zeros

rij(τ) = 0 ∀ τ, i 6= j (4.3)

and the auto correlation will resemble a Kronecker-Delta function, where the peak is
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the noise variance

rii(τ) =


σ2
ν , τ = 0

0, otherwise

(4.4)

In reality, these correlation terms will be estimated with a finite number of samples,

and the signal bandwidth is assumed to be less than the sampling rate. Thus, the auto

correlation term will not be a perfect Kronecker impulse, and the estimate of the cross

correlation sequence will not be exactly zero. The premise behind the correlation based

detector is that if there is a signal present:

1. The estimation of the cross correlation sequence will not be a sequence of approx-

imately zeros, and will have a peak at some time lag index

2. The estimation of the autocorrelation function will not be a Dirac impulse, but

instead a sinc function (unless the signal bandwidth exactly matches the sampling

rate)

As a reference, consider the scenario of a two element receiver system with only

receiver noise present. The noise power (σ2
ν), and the noise at each receiver is i.i.d. and

600 samples are acquired.

(a) Time domain plots of receiver noise on both
channels

(b) Frequency domain plot of combined re-
ceiver noise

Figure 4.1: Receiver Noise Only Scenario
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At this stage, a conventional approach to detect a signal would be to incoherently

combine their FFT outputs. As expected, since these waveforms are simply uncorre-

lated noise, no obvious temporal or spectral structure can be seen in Figure 4.1.

X(ω) =
1

N
(FFT(x1(n)) + FFT(x2(n))) (4.5)

The autocorrelation of sensor 1 (r11) and the cross correlation sequence (r12) can

be seen in Figure 4.2.

(a) Autocorrelation sequence of sensor 1 (b) Cross correlation sequence between sensors

Figure 4.2: Correlation Sequences of Receiver Noise

As expected from receiver noise only, there is a peak of approximately σ2
ν at the lag of

τ = 0, and no significant peaks can be seen in the cross-correlation term. This analysis

combined with Figure 4.1 can conclude that there is no common signal illuminating

both antennas simultaneously.

Now, consider a 200 sample long wideband pulse of bandwidth π rad/s. Here, the

samples are randomly selected from a zero mean Gaussian pdf with variance of 1, and

passed through a low pass FIR filter to force a normalised bandwidth to π rad/s. This

signal is seen at both antennas, and there is a delay of four samples on the second

channel. Thus the received signal can be modelled as

x(n) =

x1(n)

x2(n)

 =

 s(n)

s(n− 4)

 (4.6)
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A time and frequency domain representation of this waveform can be seen in Figure

4.3.

(a) Time domain plots of filtered Gaussian un-
correlated pulse

(b) Combined frequency domain plot of filtered
Gaussian uncorrelated pulse

Figure 4.3: Time and Frequency Plots of the filtered Gaussian uncorrelated pulse

(a) Time domain plots of filtered Gaussian un-
correlated pulse plus receiver noise

(b) Combined frequency domain plot of filtered
Gaussian uncorrelated pulse plus receiver noise

Figure 4.4: Time and Frequency Plots of Filtered Gaussian Uncorrelated Pulse plus
receiver noise (0dB SNR)

White Gaussian noise is added, and in this scenario the SNR is set 0 dB (i.e. same

signal and noise power). The noisy version of the signal in (4.6) is now defined in (4.7)

x(n) =

x1(n)

x2(n)

 =

 s(n)

s(n− 4)

+

ν1(n)

ν2(n)

 (4.7)
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and the time and frequency domain can be seen in Figure 4.4

In the time domain, there is no obvious rising edge of the pulse. Calculating the

spectral representation in the same way as (4.5), a processing gain of
√

2 is expected

since there are two channels. However, the resulting frequency estimation shows no rise

in power at any particular frequencies. Thus, at this stage a conventional FFT style

ES system would incorrectly determine that there is no emitter present in this dataset.

However, when the auto- and cross correlation terms are considered in Figure 4.5, it

does provide an indication of a common signal across both receivers.

(a) Autocorrelation sequence of sensor 1 (b) Cross correlation between sensors

Figure 4.5: Correlation Sequences for the Noise Pulse plus Receiver Noise Scenario (0
dB SNR)

While the auto correlation looks similar to that in Figure 4.2, the cross correlation

has a significant peak at τ = −4, which is clearly indicative of some common signal

present on both receivers.

The above example has only considered the auto correlation of sensor 1 (r11(τ)),

and the cross correlation between sensors 1 and 2 (r12(τ)). The autocorrelation of

sensor 2 (r22(τ)), and the cross correlation of 2 and 1 (r21(τ)) can also be considered.

It is thus convenient to express this as a space-time covariance matrix (4.8)

Rxx(τ) = E[x(n)xH(n− τ)], (4.8)

and can be estimated over a finite number of samples via temporal averaging (under
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the assumption that x(n) is WSS)

Rxx(τ) ≈ 1

N

N∑
n=1

x(n)xH(n− τ) (4.9)

This matrix is now plotted in Figure 4.6.

Figure 4.6: Space-Time Covariance Matrix

This can be analysed in the frequency domain to form a cross spectral density matrix

by taking the z transform of the above matrix

Rxx(z) =
W∑

τ=−W
Rxx(τ)z−τ (4.10)

where W set such that Rxx(τ) ≈ 0 for |τ | > W , and can be determined empirically.

This is now a polynomial matrix, which is a fairly recent development and has been

discussed in Chapter 3. From here, recent trends, such as the polynomial eigenvalue
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decompositions can be exploited. As discussed in Chapter 3, a parahermitian matrix

can be decoupled into its paraunitary eigenvectors and polynomial eigenvalues, and

these polynomial eigenvalues are representative of a power spectral density, which can

be used to enhance detection. The evaluated polynomial eigenvalues of the matrix in

Figure 4.6 can be seen in Figure 4.7.

Figure 4.7: Frequency Domain Polynomial Eigenvalues

Since there are only two sensors, there are two eigenvalues. From Figure 4.7, the most

significant eigenvalue has an increase in power in the −0.5− 0.5 π rad/s region, which

is a clear indication of a signal of this bandwidth illuminating both antennas.

To summarise, this section has discussed the motivation behind a correlation based

receiver and through the use of a ‘toy problem’, demonstrated that the cross correlation

between two sensors has some ability to indicate a weak emitter is present. Since

the emitting waveform is unknown, this cross correlation somewhat acts as a pseudo

matched filter. This idea is taken a step further in the next sections through the use

of polynomial matrices and the PEVD, where the output includes a power spectral

density estimate of an emitter buried in noise.
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4.3 Signal Model

This section reviews the array signal model for an arbitrary source, s(t), illuminating

an M element antenna array in the case of a band limited receiver with an analog down

conversion stage. Until now, all analysis of polynomial matrix methods have considered

a direct digitisation architecture, which is not practical in many applications. One of

the reasons this may be impractical is that the required sampling rate for directly

digitised Radar and EW applications is of the order of 10’s of Gigahertz.

For elegance of equations, noise is initially omitted. Consider the simple case of one

source at a direction of θ illuminating an M element antenna array. The time delay of

the complex envelope induced by the direction of arrival between the first and the mth

antennas spaced dm meters apart is

τm =
dm sin θ

c
(4.11)

The signal ‘seen’ at the antennas is

x(t) =


s(t)

s(t− τ2)
...

s(t− τM )

 =


δ(t)

δ(t− τ2)
...

δ(t− τM )

⊗ s(t) (4.12)

Omitting the amplifier gain (which is assumed to be purely real and calibrated), the

continuous time signal post down-conversion is

x(t) =
[


δ(t)

δ(t− τ2)
...

δ(t− τM )

⊗ s(t)
]
e−jωdt (4.13)

At this point it is desirable to form the equation in a similar manner to (4.12) to aid

analysis. From Appendix A, it can be seen that
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[δ(t− τ)⊗ s(t)]e−jωdt = [δ(t− τ)e−jωdτ ]⊗ [s(t)e−jωdt] (4.14)

Thus, the signal seen after the down conversion stage is

x(t) =


δ(t)

δ(t− τ2)e−jωdτ2

...

δ(t− τM )e−jωdτM

⊗ s(t)e
−jωdt (4.15)

and finally the model of the digitised and down converted signal is

x(n) =


δ̃(n)

δ̃(n− τ̃2)e−jωdτ2

...

δ̃(n− τ̃M )e−jωdτM

⊗ s(n)e−jωdnTs + ν(n)

x(n) = a⊗ s̃(n) + ν(n)

(4.16)

here, s̃(n) is the down converted source signal, and ν(n) represents the overall additive

noise vector, which is assumed to be spatially and temporally uncorrelated, Gaussian

and white. δ̃(n− τ̃) represents an ideal fractional delay filter with fractional delay τ̃ =

τ/Ts. The general case of L sources illuminating the array is simply the superposition

of all L steered sources and can be expressed as:

x(n) =
L∑
l=1

[al ⊗ s̃l(n)] + ν(n)

= A⊗ s̃(n) + ν(n)

(4.17)

Thus far, this section has discussed and derived a general data model for broadband

array signal analysis. The next section provides further analysis and insight into the

steering vector aspect of the array.
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4.3.1 Steering Vector Analysis

Consider the case of a source illuminating an M element ULA, the steering vector is

a =


δ̃(n)

δ̃(n− τ̃)e−jωdτ

...

δ̃(n− (M − 1)τ̃)e−jωd(M−1)τ

 (4.18)

let

ψ(n) = δ̃(n− τ̃)e−jωdτ (4.19)

and thus its z transform

ψ(z) =

∞∑
n=−∞

ψ(n)z−n (4.20)

where ψ(z) is representative of an FIR filter to induce a time delay and carrier phase

shift between adjacent elements. Thus, the steering vector can now be modelled as

a(z) =


ψ0(z)

ψ1(z)
...

ψ(M−1)(z)

 (4.21)

Here it is important to note the Vandermonde structure of this steering vector, in

the case of a uniform array, as this is used for analysis throughout the remainder of

this thesis, and provides an opportunity to explore new algorithms.

4.4 Space-Time Covariance and Source Order

This section explores a model for the polynomial space-time covariance matrix and

describes how this can be used for detection and estimation of the number of sources

illuminating this array. Following on from the analysis in Chapter 3, if a source is
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broadband, then both temporal and spatial correlations need to be considered. The

space-time covariance matrix of a stationary signal is:

Rxx(z) =
∞∑

k=−∞
Rxx(k)z−k

= A(z)R̃ss(z)A
P (z) + σ2

νI

(4.22)

where the polynomial source covariance matrix, R̃ss(z) can be modelled as

R̃ss(z) =


σ2

11(z) σ2
12(z) . . . σ2

1L(z)

σ2
21(z) σ2

22(z) . . . σ2
2L(z)

...
...

. . .
...

σ2
L1(z) σ2

L2(z) . . . σ2
LL(z)

 (4.23)

Decomposing the space-time covariance matrix into polynomial eigenvalues (Λ(z))

and paraunitary eigenvectors (U(z)), this matrix can now take the form

Rxx(z) ≈ U(z)Λ(z)UP (z) (4.24)

Since the space-time covariance is parahermitian by construction, the eigenvalues

matrix will be diagonal with real polynomial coefficients,

Λ(z) =


λ1(z)

λ2(z)

. . .

λM (z)

 (4.25)

and is spectrally majorised such that λ1(ejω) > λ2(ejω). Due to the Vandermonde

structure of the polynomial steering vector, A(z), the number of significant eigenvalues

of Rxx(z) is determined by the rank of the source covariance matrix. Assuming all L

sources illuminating the array are uncorrelated, the source covariance matrix will be

diagonal. Thus, the number of sources illuminating the array can be estimated through

the number of significant eigenvalues.
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The eigenvalues can be analysed in two ways:

1. The polynomial can be evaluated for z = ejω, to estimate the power spectral

density

2. The sum of the magnitude of the polynomial eigenvalue coefficients, i.e,
∑

τ Λ(τ)

and the number of significant eigenvalues can be determined by a simple threshold.

While 2. is computationally cheaper and provides a more traditional eigenvalue plot,

1. provides additional spectral information.

4.5 Polynomial Root-MUSIC

Recall the polynomial MUSIC algorithm introduced in Chapter 3

Pmu(θ, ω) =
1

aP (θ, z)Un(z)UP
n (z)a(θ, z)

∣∣∣∣∣∣ z = ejω
(4.26)

that produces a spatio-spectrum through a two dimensional heuristic search, and the

calculation of each pixel of the resulting spatio-spectrum requires many polynomial

multiplications. This results in a computationally expensive estimator. By extending

the idea behind the original narrowband Root-MUSIC algorithm [61] to polynomial

matrices, in this section a novel, computationally cheaper spatio-spectrum estimator is

introduced. The peaks of (4.25) are determined by the (near) zeros of the denominator.

Thus, the task is to solve

Γ(z) = aP (z)Un(z)UP
n (z)a(z) = 0

= aP (z)C(z)a(z) = 0
(4.27)

where C(z) = Un(z)UP
n (z). Recall that a(z) is a Vandermonde structured vector,

where the ith element is 〈a(z)〉i = ψ(i−1)(z), and ψ(z) is representative of an ideal all

pass fractional delay filter of delay τ̃ . Its time-reversed conjugate, ψ∗(z−1), will have

a fractional delay of −τ̃ , thus ψ(z)ψ∗(z−1) = 1. Thus, the polynomial Γ(ψ(z)) can be
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formed as a Laurent polynomial containing 2M − 1 coefficients, which are the sums of

the sub-diagionals of C(z), i.e.

Γ(ψ(z)) =

M−1∑
m−(M−1)

bm(z)ψm(z) (4.28)

where bm(z) is the sum of the mth diagonal of C(z).

Interestingly, Γ(ψ(z)) is now a ‘nested’ polynomial that we need to solve for both

ψ(z) (direction information) and z (spectral information). Since the polynomial eigen-

values can determine the number of signals overlapping at each frequency bin, this

information can be used to evaluate (4.28) for z = ejω to estimate the coefficients of a

more conventional Laurent polynomial of ψ(ejω).

Γ(ψ(ejω)) =

M−1∑
l=−(M−1)

bl(e
jω)ψl(ejω) (4.29)

The problem, now, is to find the roots of several independent polynomials for each

frequency containing signal energy. Since ψ(z) is a fractional delay filter with delay τ̃ ,

at a single frequency this can be expressed simply as a phase shift ejωτ . Thus, the L

roots closest to the unit circle can be found and reformulated into a direction of arrival

estimate:

θ̂l(e
jω) = sin−1

[
c arg(ql(e

jω))

ωd

]
(4.30)

where θ̂l(e
jω) is the DoA estimate of the lth source at frequency ω, and ql(e

jω) represents

the root of (4.28) relating to the lth source.

While this technique is computationally cheaper than conventional polynomial MU-

SIC, it is not without its limitations. Since a Vandermonde structured steering vector

is required, this technique is limited to uniform linear arrays. In addition, for large

arrays this equates to find the roots of high order polynomials - which is a numerically

difficult task.
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4.6 Simulations and Analysis

In section 4.2, a toy problem was presented to demonstrate the motivation behind the

multi-correlation receiver architecture and polynomial matrix methods. An expansion

of this problem is presented in this section through the use a more realistic signal model

and a uniform-linear antenna array. In this section a challenging example is presented,

whereby using the above method it is possible to detect and separate two temporally

overlapping FMCW signals in a low SNR scenario. In section 4.6.3, the accuracy

and resolution of the presented methods are derived empirically through Monte Carlo

analysis.

4.6.1 Detecting and Locating an LPI Radar - A Challenging Example

In this example, there are two low power, uncorrelated temporally overlapping broad-

band signals illuminating an antenna array. Both emitters are variants of LFM wave-

forms, one being a ‘sawtooth’ linear chirp, and the other being a triangular linear chirp.

The sawtooth waveform has an incident power 6 dB less than the triangular waveform.

The full signal parameters can be seen in table 4.1.

Table 4.1: Received Signal Parameters

Emitter#1 Emitter#2

Modulation Triangular LFM Sawtooth LFM
Centre Frequency (GHz) 10 10
Pulse Width (µs) 25 55
Bandwidth (GHz) 1 1
SNR (dB) -5 -11

DoA (deg) -15 30

The receiver system consists of an N = 8 element ULA of isotropic antennas, with

an inter-element spacing set to 1.25 cm (spatial Nyquist period for a 12 GHz signal).

The RF down converter is set to 10 GHz and the IF signal is sampled at a rate of 4

GS/s (both I and Q channels). A 2000 sample window of data is used for this example.

Note that this receiver is an arbitrary example, and not based existing products.
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4.6.2 LFM Synthesis

The triangular LFM waveform at the ith antenna is synthesised as

pi(n) = α cos
(

(ωc − ωd)(nTs − τ̂i) + π
B

τc
(nTs)

2
)
, − τc

2
≤ nTs ≤

τc
2

(4.31)

and the linear LFM waveform at the ith antenna is synthesised as

qi(n) = α cos
(

(ωc − ωd)(nTs − τ̂i) + π
B

τc
(nTs)

2
)
, 0 ≤ nTs ≤ τc (4.32)

where n is the sample index, α is the signal amplitude, ωc and ωd are the carrier and

down converter angular frequencies, B is the signal bandwidth, τ̂ is the time delay

due to DoA, and τc is the chirp duration. When expressed in vector format such

that p = [p1, p2, . . . pN ]T and q = [q1, q2, . . . qN ]T , the synthesised array signal can be

modelled as

x(n) = p(n) + q(n) + ν(n) (4.33)

where ν(n) is the additive white Gaussian noise.

4.6.2.1 Analysis

Since the DoA is unknown, a conventional approach to detecting a signal would be

to incoherently combine the frequency spectra of the array signals. The time and

frequency domain of the incoherently combined signals can be seen in Figure 4.8

The significant rise in power between 9.5 and 10.5 GHz in Figure 4.8 is suggestive

of an emitter being present. However, this analysis cannot estimate the number of

sources, their modulation types or pulse width. In Chapter 2, it was noted that a

Wigner-Ville distribution could be used to gain this information from an LPI emitter.

This is demonstrated in Figure 4.9. As discussed in Chapter 2, the WVD will contain

cross terms and this can be seen in Figure 4.9 where the waveforms begin to intersect.
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(a) Time Domain Signal (b) Frequency Domain Signal

Figure 4.8: Time and Frequency Signals

Figure 4.9: Wigner Ville Distribution of the Signal
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While this is a significant improvement over the information provided by Figure 4.8,

owing to the low SNR of each emitter, and the 6 dB difference in signal powers, the

peaks in this Wigner-Ville distribution are fairly weak. While the triangular waveform

can be seen, the sawtooth signal is very faint.

To compliment the above approach, polynomial matrices can be used. A space-

time covariance matrix is constructed using (4.9) and (4.10), where the time domain

correlation limits (W ) are set to ±40, since there is near zero correlation past this point.

The space-time covariance matrix can be seen in Figure 4.10.

Figure 4.10: Space-Time Covariance Matrix

While this provides fairly little information in isolation, the non zero cross correla-

tion terms (off-diagonals) suggest some signal is present. To extract more information,

this can be decomposed into its polynomial eigenvectors and eigenvalues. Recall that

the polynomial eigenvalues are now representative of a power spectral density, so these
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polynomials can be evaluated to estimate the number of signals illuminating the array,

as well as an estimate of their frequencies. This can be seen in Figure 4.11

Figure 4.11: Frequency Domain Plot of the Polynomial Eigenvalues of Figure 4.10

Figure 4.11 shows that there are two significant eigenvalues with an overlapping

frequency between 9.5 and 10.5 GHz. The paraunitary eigenvectors can now be par-

titioned into signal and noise subspaces, and subsequently perform SSP-MUSIC, or

its computationally more efficient version presented earlier in this chapter, the Root

SSP-MUSIC algorithm.

Both estimates in Figure 4.12 present the same information that between 9.5 and

10.5 GHz there are two emitters present at -15 degrees and 30 degrees. Since the

Root SSP-MUSIC simply estimates the L peaks of the SSP-MUSIC algorithm at each

frequency bin without the need to perform the heuristic scan, it makes this estimate

significantly cheaper computationally. This will be discussed further in the following

section. Now, since the directions of the signal have been estimated, a simple delay

and sum beamformer can be applied to separate the signals.

In conjunction with the WVD, the individual signals and their modulations can

easily be seen in Figure 4.13, with a much stronger amplitude than in Figure 4.9 due

to the coherent combination from the beamforming stage. While the simple delay-
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(a) (b)

Figure 4.12: Spatio Spectrum Estimation using (a) Polynomial Root MUSIC (b) Con-
ventional Polynomial MUSIC

(a) (b)

Figure 4.13: Beamformed estimates of (a) Emitter 1 (b) Emitter 2

sum beamformer is the optimal SNR solution, results could further be improved using

an adaptive broadband MVDR beamformer [99] to optimise SINR in effort to fully

separate the sources, i.e. further attenuating the triangular chirp from Figure 4.13(b).

However, this is outside the scope of this thesis.

4.6.3 Accuracy and Computational Cost Analysis

A Monte-Carlo simulation was performed to analyse the performance of both the SSP-

MUSIC and Root SSP-MUSIC algorithms under different SNRs. For each run, the

DoA of the source was chosen at random from a uniformly distributed set of possible
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DoAs, θp ∈ [−50◦, 50◦]. For each SNR point, 100 Monte Carlo runs were performed.

Figure 4.14 displays the mean squared error of the estimators and it is easy to see

that both the SSP-MUSIC and Root SSP-MUSIC algorithms exhibit a very similar

performance. This is expected since the Root SSP-MUSIC algorithm finds the L peaks

of the angular spectra for each frequency point of the Polynomial MUSIC algorithm.

The small differences observed are likely to be because of the difference in precision

of the estimators as Polynomial MUSIC was performed with an angular search grid

spacing of 1 degree, whereas the DoA estimates from the Root Polynomial MUSIC

estimator were calculated using double precision floating point numbers.

Figure 4.14: MSE for Monte Carlo simulation at specific SNRs

The heuristic angular search of the SSP-MUSIC algorithm is an expensive compu-

tational task. This is due to the polynomial matrix multiplications when calculating

Γ(θ, z). The Root SSP-MUSIC algorithm replaces the heuristic search with finding the

roots of a polynomial. Both algorithms, however, still require polynomial eigenvalue

analysis to estimate the spatio-spectrum.

The computer performing this simulation utilised the following hardware and soft-

ware: Intel core i7-6700 quad-core processor, 16 Gb DDR4 RAM, 256 Gb SSD, Windows

7 64 bit, MATLAB R2016b.
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Table 4.2: Normalised Mean Computation time for SSP-MUSIC and Root SSP-MUSIC
algorithm

Nbins 30 60 120 240

Mean Norm. SSP-MUSIC Comp Time 1 1.04 1.124 1.268
Mean Norm. Root SSP-MUSIC Comp Time 0.039 0.054 0.079 0.131

The mean normalised simulation time from 100 runs of both algorithms is dis-

played in Table 4.2. All values are normalised to the SSP-MUSIC computation time

for 30 frequency bins. These results show that the Root SSP-MUSIC algorithm is con-

siderably faster in computation time, but has a stronger scaling with the number of

frequency bins evaluated. Thus for a large number of bins, both algorithms will have

similar complexity. However, in general, the novel Root SSP MUSIC estimator offers

equal performance to the conventional SSP-MUSIC estimation, but in a fraction of the

computation time.

4.7 Conclusion

In this chapter, a multi-correlation receiver was proposed. In Section 4.2, a toy problem

was discussed to highlight the motivation behind this technology. The statistical and

correlation properties of noise between two receivers was explored, and an example was

presented where the two receivers measured the same source at a low SNR. This example

demonstrated that the sources could be detected through these correlation techniques,

where time and frequency domain techniques alone could not produce anything that

would result in an obvious detection. This concept was further explored in Section

4.3, where a representative model was derived. This model included a frequency down-

conversion stage.

The polynomial space-time covariance matrix was discussed in further detail within

Section 4.4. This section highlighted how the polynomial eigenvalues could be ex-

ploited for signal detection purposes, and for the estimation of the number of sources

illuminating the array.
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Section 4.5 introduced a novel algorithm proposing a significant reduction in com-

putation time over the standard Polynomial MUSIC algorithm. This reduction in

computation time was demonstrated in Section 4.6 with a significant effect, while still

maintaining the high accuracy and fine resolution of the conventional Polynomial MU-

SIC algorithm. This section also demonstrated a challenging scenario of detecting and

estimating the directions of two low power FMCW LPI emitters, as well as separat-

ing the two emitters via standard delay-sum techniques. Wigner-Ville time frequency

analysis techniques discussed in Chapter 2 aided this demonstration, highlighting that

the methods presented in this thesis might not replace conventional LPI detection al-

gorithms, but they do provide enhanced performance.
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Chapter 5

Super-Resolution DoA

Estimation of Coherent

Broadband Sources

5.1 Introduction

The focus of this chapter is the development of novel direction of arrival estimation

methods for correlated broadband signals. While broadband sources are naturally re-

silient to multipath fading, there may be scenarios where strongly correlated waveforms

arrive from different directions, such as scatters closely located to the main emitter, or

from a decoy [115]. In effort to solve this problem, two novel methods are proposed

and analysed. Section 5.2 extends the analysis of the well known spatial smoothing

algorithm to broadband scenarios through the use of polynomial matrices. In Section

5.3 analysis is provided to demonstrate that the spatial smoothing effect is naturally

present when estimating a covariance matrix from an array in motion. Finally, conclu-

sions are presented in Section 5.4
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5.2 Broadband Spatial Smoothing

For the broadband angular super resolution algorithms presented in Chapters 2 &

4, one of the key assumptions made was that the sources illuminating the array are

uncorrelated. Recall that the polynomial space-time covariance matrix can be expressed

as

Rxx(z) = A(z)Rss(z)AP (z) + σ2
νI (5.1)

Where A(z) ∈ CM×L(z) is an array of steering vectors

A(z) = [a1(z),a2(z), . . . ,aL(z)] (5.2)

and each column possesses a Vandermonde structure. The source correlation matrix is

defined as

Rss(τ) = E[s(n)sH(n− τ)] (5.3)

Where Rss(z) =
∑

τ Rss(τ)z−τ . Recall that in Chapter 4, the number of significant

eigenvalues were used to determine the dimensions of the signal and noise subspaces,

and to provide an estimate of the number of sources illuminating the array. This

quantity is dependent on the rank of the term A(z)Rss(z)A
P (z), which will be of

rank min(rank(A(z)), rank(Rss(z))). Since the steering vectors possess a Vandermonde

structure, this steering matrix will be full rank (rank L). The source cross spectral

density matrix is structured as:

Rss(z) =


r11(z) . . . rL1(z)

...
. . .

...

r1L(z) . . . rLL(z)

 (5.4)

When the sources illuminating the array are completely uncorrelated, Rss(z) will be

diagonal and be of rank L, and the dimensions of the signal subspace of Rxx(z) will be

L. However, if the sources are coherent, then Rss(z) will have rank < L (or even rank

1 in the case of coherent sources).
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The impact of this is that when sources are coherent, the size of the signal subspace

is smaller than the number of spectrally overlapping signals, and the resulting signal

subspace will contain some combination of the steering vectors. However, owing to

the Vandermonde structure of the steering vectors, no linear combination of steering

vectors can result in another valid (Vandermonde) steering vector. The true steering

vectors will no longer be orthogonal to the noise subspace and this results in loss of the

super-resolution property in the polynomial subspace based estimators.

To overcome this issue, the spatial smoothing technique can be applied to polyno-

mial space-time covariance matrices. The underlying method is to separate the ULA

into K−1 overlapping subarrays (which are also ULAs) of length M−(K−1), where K

is the number of coherent sources. Then, a space-time covariance matrix is calculated

for each subarray. The subarrays are then averaged to form the ‘spatially smoothed’

space-time covariance matrix. Recall the time domain signal model of an M element

array:

x(n) = A(n)⊗ s(n) + ν(n) (5.5)

This can be partitioned into (K − 1) subarrays using appropriate selection matrices.

Thus the kth subarray is

xk(n) = T kx(n) = T kA(n)⊗ s(n) + T kν(n)

= Ak(n)⊗ s(n) + νk(n)
(5.6)

where

Ak(n) = T kA(n)

νk(n) = T kν(n)
(5.7)

and Tk is an M − (K − 1) ×M selection matrix. It is defined by the following block

matrix:
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T k =
[
O(M−(K−1))×(k−1) I(M−(K−1)) O(M−(K−1))×(K−k)

]
(5.8)

where Op×q represents an p × q zero matrix, and Ip is a p × p identity matrix. For a

ULA, the Vandermonde structured steering vector gives translational invariance across

the array. Thus the steering vector for each subarray can be expressed as

Ak(z) = T kA(z) = A0(z)D(k−1)(z) (5.9)

where D(z) is a diagonal polynomial matrix to induce an integer multiple of additional

unit delays for each source in the fundamental subarray steering matrix A0(z)

D(z) =


ψ1(z)

. . .

ψL(z)

 (5.10)

and the fundamental sub array steering matrix

A0(z) =


ψ0

1(z) ψ0
2(z) . . . ψ0

L(z)

ψ1
1(z) ψ1

2(z) . . . ψ1
L(z)

...
...

. . .
...

ψ
(M−L)
1 (z) ψ

(M−L)
2 (z) . . . ψ

(M−L)
L (z)

 (5.11)

The time domain signal from (5.6) can now be described as

xk(n) = [A0(n)⊗D(k−1)(n)]⊗ s(n) + νk(n) (5.12)

The space-time covariance of the kth subarray can be described as

Rxxk(z) =
∞∑

τ=−∞
Rxxk(τ)z−τ =

∞∑
τ=−∞

E[xk(n)xHk (n− τ)]z−τ

= A0(z)D(k−1)(z)Rss(z)D
P (k−1)(z)AP

0 (z) + σ2
νI

(5.13)

The spatially smoothed space-time covariance matrix, R̂xx(z) is calculated via the mean
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of all K sub-arrays, and takes the form of

R̂xx(z) =
1

K

K∑
k=1

Rxxk = A0(z)
[ 1

K

K∑
k=1

D(k−1)(z)Rss(z)D
P (k−1)(z)

]
AP

0 (z) + σ2
νI

= A0(z)R̂ss(z)A
P
0 (z) + σ2

νI

(5.14)

where R̂ss(z) is the modified source cross spectral density matrix

R̂ss(z) =
1

K

K∑
k=1

D(k−1)(z)Rss(z)D
P (k−1)(z) (5.15)

This process has the effect of transferring energy from the off-diagonal to the di-

agonal elements of the source covariance matrix. The following proof is an extension

of the proof presented in [74] and [72] on spatial smoothing techniques for narrowband

scenarios.

5.2.1 Proof

In this section, a proof is presented to demonstrate that the spatial smoothing technique

restores the rank of the source covariance matrix if the condition of the number of

subarrays is at least the number of coherent sources. For simplicity, consider the

worst case scenario where all L sources are coherent, as this provides a good model

for the strongly correlated case. Since the non-modified source covariance matrix is

parahermitian, this can be decomposed into the following vector product

Rss(z) = γ(z)γP (z) (5.16)

Thus, the modified source cross spectral density can be rewritten as:

R̂ss(z) =
1

K

K∑
k=1

D(K−1)(z)γ(z)γP (z)DP (K−1)(z) (5.17)

This summation can be expressed in matrix form and factored as
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R̂ss(z) =
1

K
B(z)BP (z) (5.18)

where

B(z) = [D0(z)γ(z),D1(z)γ(z), . . . ,DK−1(z)γ(z)] (5.19)

It can be noted that the rank of the modified source cross spectral density matrix,

R̂ss(z), is the same as that of B(z). Hence the task, now, is to prove that when

K ≥ L, the rank of B(z) is L. This matrix can be rewritten as a product of a

polynomial diagonal, and Vandermonde matrix, as

B(z) =


γ1(z)

. . .

γP (z)



ψ0

1(z) . . . ψK−1
1 (z)

... . . .
...

ψ0
P (z) . . . ψK−1

P (z)

 (5.20)

The rank ofB(z) will be entirely dependent on the rank of the Vandermonde matrix,

providing the diagonal matrix is at full rank, i.e. γ(z) contains only non-zero elements.

The latter point is guaranteed due to the sources being present and correlated with

themselves.

The resulting rank of B(z) will be min((M − (K − 1)),K). Thus, the modified

source covariance density matrix will be of full rank, providing K ≥ L, i.e. there are

at least as many sub-arrays as there are coherent sources.

This spatial averaging technique does, however, lead to an overall reduction in the

effective array aperture. The general requirement of more sensors than sources still

holds true for the sub-array length, i.e. (M − (K − 1)) > L. Thus, for a situation

where there are L coherent sources present, the minimum overall array length must be

M ≥ 2L.
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5.2.2 Simulations

In addition to the above proof, simulation results provided in this section aid in verifying

that spatial smoothing combined with the polynomial MUSIC algorithm can indeed

provide an improved spatial resolution of correlated sources.

To assess the performance of the spatially smoothed polynomial MUSIC algorithm

for strongly correlated sources, the SMD PEVD algorithm [104] was performed on both,

the non-spatially smoothed space-time covariance matrix and on the spatially smoothed

version. The SSP-MUSIC algorithm was subsequently used for spatio-spectral estima-

tion. Comparisons between the spatio-spectral estimations were made via the resulting

peak-height and peak-width in the spatio-spectrum as this is indicative of the algo-

rithm’s angular resolution.

Both simulations were performed using the same synthetic data (where ideal ane-

choic conditions are assumed), wherein two, 10,000 sample long, coherent CW noise/

OFDM-like sources were present. The source signals were synthesised as I = 1000

linearly spaced sub-carriers within the normalised frequency region Ω ∈ [0.3π, 0.8π].

This can be expressed as

s(n) =
I∑
i=1

ejΩ(i)nejφ(i) (5.21)

where Ω(i) and φ(i) represent the normalised frequency and phase of the ith sub-carrier.

The two identical synthesised signals were steered to directions of −40◦ and 30◦.

The received SNR was set to 5dB, whereby the noise was Gaussian, spectrally white,

and uncorrelated with itself and the sources present. The overall antenna array length

was the same for both algorithms (M = 7).

The previous section found that when coherent sources are present, the dimensions

of the signal subspace do not coincide with the number of sources present. Given the

above analysis and the fact that both sources are coherent in this scenario, only a

one dimensional signal subspace was expected. Figure 5.1 shows the eigenvalue power

spectral density of the non-smoothed space-time covariance matrix, which agrees with
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this expectation as there is only one eigenvalue with significant magnitude, in spite of

there being two sources.

Figure 5.1: Frequency Domain Plot of Polynomial Eigenvalues without Spatial Smooth-
ing

The assumption that steering vectors are part of the signal subspace is still valid.

However, as there are more sources than signal eigenvectors, the latter contains a

combination of the source’s steering vectors. Due to the Vandermonde structure of the

steering vectors, no linear combination of these could result in a legitimate steering

vector. This means that the true steering vectors will no longer be orthogonal to the

noise subspace. This is severely detrimental to the angular resolution of the polynomial

MUSIC algorithm. This loss of resolution can have a knock-on effect when it is part

of a larger system, such as a decreased probability of detection in passive applications.

Figure 5.2 shows the spatio-spectral estimation for the non-spatially smoothed case.

While there are noticeable spatial peaks around −40◦ and 30◦, the peaks are wide

(∼ 20◦ 1 dB width) and less than 5 dB in magnitude (relative to the floor).
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Figure 5.2: SSP-MUSIC of coherent sources without spatial smoothing

As mentioned in the previous section, spatial smoothing will restore the rank of the

source cross spectral density matrix, providing the conditions K ≥ P and L > P are

met. In this particular scenario, the 7 element antenna array is split into 3 overlapping

sub-arrays and is shown in Figure 5.3. This yields an effective array length of 5 -

satisfying the above condition. Figure 5.4 shows the power spectral density (PSD) of

the polynomial eigenvalues, two of which have significant magnitudes over the same

wide bandwidth. This is suggestive of two sources illuminating the array.

The resulting estimate of the signal subspace will contain the true steering vectors

associated with each source. When scanning the null space of the noise subspace, the

Figure 5.3: Splitting the 7 element ULA into 5 overlapping subarrays
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Figure 5.4: Frequency Domain Plot of Polynomial Eigenvalues with Spatial Smoothing

true steering vectors will be orthogonal to this, leading to very tall and sharp peaks in

the spatial spectrum. This will have a similar performance to the uncorrelated case of

the SSP-MUSIC algorithm, as can be seen in Figure 5.5.

Figure 5.5: SSP-MUSIC of coherent sources with spatial smoothing

The spatially smoothed SSP-MUSIC algorithm produces a spatio-spectrum with

a much higher angular resolution, and a 1 dB peak width of ∼ 1◦. The spatial only

characteristics of the spatially smoothed and standalone versions of the SSP-MUSIC

algorithm are displayed in Figure 5.6. This spatial only representation is determined
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Figure 5.6: Spatial Only Polynomial MUSIC comparison between standalone, and spa-
tially smoothed covariance matrices

via spectral averaging over the bandwidth of sources.

5.2.3 A Remark on the Selection of Subarray Size

The broadband spatial smoothing scheme requires at least as many subarrays as coher-

ent sources in order to restore the rank of the source covariance matrix. However, this

does imply that the number of coherent sources are known a priori, which is an un-

likely scenario. While a method to estimate the number of coherent sources is outside

the scope of this thesis, one possible method would be perform a iterative method of

increasing the number of subarrays until no further significant eigenvalues are present,

effectively indicating the number of coherent sources. Such a method would however be

computationally expensive, and improved methods would be subject to further research

in this area.

5.2.4 Summary

Through the extension of a popular narrowband technique, this section has introduced

an improved variation of the polynomial MUSIC algorithm, providing a potential so-

lution to the problem of broadband direction of arrival estimation in an environment

with strongly correlated sources. Simulation results were presented to assess the perfor-
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mance gain of using this spatial smoothing technique for coherent broadband direction

of arrival estimation, in conjunction with the use of polynomial MUSIC algorithm.

The non-smoothed polynomial MUSIC algorithm encounters serious difficulties that

are manifested as a loss of resolution in the presence of strongly correlated, or coherent

sources. When the spatial smoothing technique is applied to the polynomial covari-

ance matrix, the polynomial MUSIC algorithm produces similar results to the case of

uncorrelated sources, with a relatively modest loss of aperture.

5.3 Doppler Induced Spatial Smoothing

The previous section concluded that spatial smoothing can effectively decorrelate sources

by truncating the full aperture into subarrays, reducing the effective aperture of the

system. This in turn has negative consequences for spatial resolution. This section

presents analysis to demonstrate that the effect of spatial smoothing can occur nat-

urally if data is acquired while the array is in motion, removing the need to reduce

effective aperture to decorrelate sources.

Figure 5.7: Array in Motion Illuminated by two Emitters

Consider an array travelling with lateral motion at a constant speed of v̂ m/s, as

illustrated in Figure 5.7. The receiver system has a sampling period of Ts, and thus the

distance travelled between individual samples is v̂Ts, and more generally, the distance

the array travelled at sample point n is
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d̂(n) = nv̂Ts (5.22)

The data model for an array in such a motion is similar to (5.5). However, the

steering vector is now time varying, i.e.

x(n) =
∑
τ

[Â(τ, n)s(n− τ)] + ν(n) (5.23)

Under the assumption that the source is sufficiently far such that its DoA remains

approximately constant throughout the acquisition, the time-varying steering vector

can be modelled as a stationary steering vector, multiplied by some time-dependent

translational factor, Q(n)

Â(τ, n) =
∑
τ

A(n− ν)Q(τ, ν) (5.24)

where A(τ) is the same steering matrix as in (5.2). The translational factor Q(τ, n) is

an L dimensional diagonal time-dependent matrix,

Q(τ, n) =


φ1(τ, n)

φ2(τ, n)

. . .

φL(τ, n)

 (5.25)

and each element is an ideal fractional delay filter. The delay is due to the additional

wavefront distance travelled compared to the initial position at acquisition at time

index n = 1, i.e.

φi(τ, n) = δ̂(n− v̂τ sin(θi)/c) (5.26)

where δ̂(n− v̂τ sin(θi)/c) denotes a fractional delay filter of delay v̂τ sin(θi)/c. In effect,

this describes the rate of change of linear phase shift across all frequencies. While not

immediately obvious from the above equation, this can be expressed in the frequency

domain as
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φi(e
jω) = ejωv̂n sin(θi)/c (5.27)

The phase component of this is simply ωv̂n sin(θi)/c. Since this phase varies linearly

with time, this can be translated into a frequency by taking the derivative of the phase

with respect to time

∆ω = ωv̂ sin(θi)/c (5.28)

which is a familiar formula as it is simply the Doppler shift induced through the motion

of an array. Now, the task is to analyse how the induced Doppler shift can decorrelate

sources.

Through substituting (5.24) into (5.1), the polynomial space-time covariance matrix

can now be expressed as

Rxx(z) = A(z)R̂ss(z)A
P (z) + σ2

νI (5.29)

where R̂ss(z) is the modified source covariance matrix and can be expressed as

R̂ss(z) =
1

N

N∑
n=1

Q(n−1)(z)Rss(z)Q
P (n−1)(z) (5.30)

Similar to the proof presented in Section 5.2, this stage can be proved to restore the

rank of the source covariance matrix, providing there is some amount of translational

array motion during the acquisition. While this rank restoration demonstrates at least

some amount of decorrelation, it does not guarantee a similar performance to the case

of uncorrelated sources as there could still be significant power in the off-diagonal terms

of this matrix. Thus, the next objective is to measure the quality of decorrelation.

One method to determine the amount of decorrelation due to the Doppler induced

spatial smoothing is to quantify the amount of energy that has been shifted from the

off-diagonals to the main diagonal of the source covariance matrix. Consider the case

of two identical white noise sources with equal power and a bandwidth identical to

the system’s sampling frequency. Their auto and cross correlation functions will be a
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Dirac-delta function with a peak equal to the source power. For simplicity, assume this

power is 1. Thus, in this case, the source covariance matrix can be expressed as

Rss(z) =

1 1

1 1

 (5.31)

Thus, the modified source covariance matrix

R̂ss(z) =
1

N

N∑
n=1

φ(n)
1 (z) 0

0 φ
(n)
2 (z)

1 1

1 1

φP (n)
1 (z) 0

0 φ
P (n)
2 (z)

 (5.32)

which simplifies to

R̂ss(z) =
1

N

N−1∑
n=0

φ(n)
1 (z)φ

P (n)
1 (z) φ

(n)
1 (z)φ

P (n)
2 (z)

φ
P (n)
1 (z)φ

(n)
2 (z) φ

(n)
2 (z)φ

P (n)
2 (z)


=

1

N

N∑
n=1

 1 φ
(n)
1 (z)φ

P (n)
2 (z)

φ
P (n)
1 (z)φ

(n)
2 (z) 1

 (5.33)

In effort to simplify analysis, the covariance matrix at the frequency, ωc can be consid-

ered. Recall that the polynomial φi(z) is a fractional delay filter with delay v̂n sin(θi)/c,

which can be translated into a phase shift at the carrier frequency as ωcv̂n sin(θi)/c.

Thus, equation (5.33) can now take the form

R̂ss(ωc) =
1

N

N−1∑
n=0

 1 ejωcv̂nTs(sin(θ1)−sin(θ2))/c

e−jωcv̂nTs(sin(θ1)−sin(θ2))/c 1

 (5.34)

A simple measure of decorrelation (γ) is the ratio of the combined off-diagonal power

in comparison to the power on the main diagonal. This can be expressed as a function

of the total number of samples as
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γ1(N) =
1

2N

N−1∑
n=0

[
ejωcv̂nTs(sin(θ1)−sin(θ2))/c + e−jωcv̂nTs(sin(θ1)−sin(θ2))/c

]
=

1

2N

N−1∑
n=0

2 cos (ωcv̂nTs(sin(θ1)− sin(θ2))/c)

(5.35)

This can be further simplified as

γ1(N) =
1

2N

2 sin(ωcv̂(N − 1)Ts(sin(θ1)− sin(θ2))/c)

ωcv̂Ts(sin(θ1)− sin(θ2))/c

=
sin(ωcv̂(N − 1)Ts(sin(θ1)− sin(θ2))/c)

NTsωcv̂(sin(θ1)− sin(θ2))/c

(5.36)

Assuming N is sufficiently large that N − 1 ≈ N , then (5.36) can be simplified rather

elegantly as a sinc function

γ(N) ≈ sinc(NTsωcv̂(sin(θ1)− sin(θ2))/c) (5.37)

This closed form expression can now be used to analyse the minimum number of sam-

ples, integration time or overall distance to achieve a certain level of decorrelation for

specific scenarios. To illustrate this, Figure 5.8 uses an example of a scenario whereby

the sampling rate of the receiver is set to 1 GHz and the array is moving in a lateral

motion at a velocity of 340 m/s.

Figure 5.8: Decorrelation Factor as a function of Integration time
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Figure 5.8 shows the sinc function approaching its first zero crossing after an integration

time of 20 k samples or 20 µs. 50% decorrelation of emitters is achieved after about

12uS. In spite of this being a relatively long integration time, decorrelation of the

emitter pulses can be achieved, providing that the emitter pulse length is at least this

integration time. However, the pulse length of the emitter may not be known before

the measurement. Thus, it is useful to understand the minimum pulse length that can

be decorrelated through this Doppler smoothing scheme.

An important metric to consider is the first crossing of the sinc function in (5.37),

as this will guarantee at least 79% source decorrelation because the magnitude of the

sinc function remains below 0.21 past this point. The first zero crossing point appears

at

N0 =
c

NTsωcv̂| sin(θ1)− sin(θ2)|
(5.38)

If the minimum integration time is defined at the first zero crossing point, then the

minimum integration time can be expressed as a function of angular separation. If the

emitters lie on either side of the array boresight, then the minimum integration time

(in samples) can be expressed as

N0(δθ) =
c

NTsωcv̂2 sin(δθ/2)
(5.39)

Figure 5.9 shows the minimum integration time as a function of angular separation

for two coherent sources at a carrier frequency of 10 GHz, a receiving platform velocity

of 340 m/s and a sampling frequency of 1 GHz. As expected, closely spaced sources

will have similar Doppler shifts, and thus, will require a much longer integration time

than well-separated emitters. 1

1The analysis in this section assumes a constant velocity. This is an appropriate assumption for the
time scales discussed here. In the example presented, the array would have travelled a total of 6.8 mm
over 20µs during the acquisition
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Figure 5.9: Minimum Integration Time as a Function of Angular Separation

5.3.1 Summary

In summary, an array in motion can induce angle dependent Doppler shifts in coherent

emitters. Under certain circumstances, this is sufficient to completely decorrelate co-

herent sources by effectively performing spatial smoothing naturally while calculating

a space-time covariance matrix. Through analysis of a basic scenario, it can be seen

that integration times required are fairly long (in the order of 10’s of microseconds).

This implies that the pulse width needs to be at least the required integration time if

the emitter is pulsed. However, as discussed in Chapter 2, LPI waveforms tend to be

spread in time and this translates into long pulses, or even into CW waveforms. Thus,

for the waveforms of interest, the minimum pulse length becomes less of an issue.

5.4 Conclusion

This Chapter has explored the problem of estimating the direction of arrival of strongly

correlated sources, and presented novel methods to effectively decorrelate sources. For

a linear array, the conventional spatial smoothing method can be applied to polynomial

space-time covariance matrices as an effective means for the decorrelation broadband

sources. A proof was provided demonstrating the minimum number of subarrays require

to decorrelate emitters. While effective, such a method does come at the cost of a
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reduced effective aperture, reducing the maximum number of emitters that can be

resolved.

In order to avoid aperture reduction to decorrelate emitters, an analytical study

was performed to determine whether the motion of a fast moving platform could be

exploited to decorrelate the emitters. Results determined that such an approach is

possible when considering very long integration times, and is thus, unsuitable for short

pulses. However, this is less of an issue for broadband CW LPI emitters.
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Chapter 6

DoA Estimation of LPI Sources

via Advanced Array Geometries

and Polynomial Matrix Methods

6.1 Introduction

In order to detect and locate sources over a wide operating bandwidth, wide-band

antennas and subsequent analog and digital signal processing circuitry is required.

Such components are expensive in both monetary and power costs. Thus, physical

size, weight, cost and power requirements of the receivers may be a limiting factor in

the number of array elements within an aperture. Setting the element spacing to half

the wavelength of the highest operating frequency for an unambiguous angle resolution

at all frequencies could result in an electrically small aperture, which in turn could

cause a relativity poor angular resolution. Moreover, close element spacing will result

in greater mutual coupling in the array, degrading performance. Both these issues are

exacerbated at the lower operating frequencies. In summary, fine element spacing is

required for unambiguous angular resolution at the higher end of the frequency range,

and a large overall aperture is required for sufficient resolution at lower frequencies.

In this chapter, sparse array geometries are explored and novel signal processing

methods are presented in an effort to form hole-free para-hermitian polynomial space-
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time covariance matrices from sparse arrays. The advanced array signal processing

methods developed in Chapters 4 and 5 are leveraged in this chapter to form novel

techniques. Simulations are presented to demonstrate the enhanced performance of

these sparse arrays in terms of accuracy and resolution for DoA estimation of broadband

LPI sources.

6.2 Sparse Linear Arrays

When designing a linear antenna array, one of the key considerations is the spatial

resolution, which is determined by the electrical size of the aperture. Another important

aspect is the number of elements and their location within the aperture. For example,

one could design an array of two elements spaced several wavelengths apart. This would

provide good spatial resolution, however, this would also produce many ‘spatial aliases’

as this is essentially undersampling in the spatial domain. Alternatively, populating

the array in a uniform manner, where the elements are spaced at the spatial Nyquist

sampling distance (λ/2), would produce the same fine spatial resolution with no spatial

aliases - but would require a significant increase in array elements. The next logical

step would be to populate the array in a non-uniform or ‘sparsely populated’ fashion.

Thus, a significant amount of research has been undertaken in the last few decades

to form frameworks and methods to optimise sensor placement. Previous work in this

area is discussed in more detail in Chapter 3. This section does not propose new sparse

array geometries, but instead focuses on novel signal processing techniques for such

geometries.

Consider a set of N sensors placed on a uniform grid of spacing d = λmin/2, where

λmin is the wavelength of the highest frequency source anticipated - satisfying the

spatial Nyquist sampling criterion and ensuring unambiguous DoA estimation. The

sensor xn is physically located at nd from the first sensor in the array. The difference

set contains all 2N − 1 differences of the element pairs in the array, and is defined as

M = {xi − xj}, ∀i, j = 0, 1, . . . , N − 1 (6.1)
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The significance of this difference set is that it defines the spatial lag, for which second

order statistics can be estimated under wide sense stationary conditions. This arises

naturally when estimating a spatial covariance matrix:

Rxx(τ) = E[x(n)xH(n− τ)]

=


σ2

11(τ) σ2
21(τ) σ2

31(τ) . . . σ2
N1(τ)

σ2
12(τ) σ2

22(τ) σ2
32(τ) . . .

...

σ2
13(τ) σ2

23(τ) σ2
33(τ) . . . σ2

NN (τ)

 (6.2)

where n is the discrete time index, and τ is the discrete lag parameter.

As an example, consider a 3 element sparse array, where the elements are located

at 0, 1 and 3 times d. This array geometry can be seen in Figure 6.1.

Figure 6.1: Example Sparse Array

The difference set of this array is

M = {−3,−2,−1, 0, 0, 0, 1, 2, 3} (6.3)

An important aspect of the difference set is the weight function w(u). The weight

function of a sparse array is defined as the number of times the difference u occurs within

its difference set. If the same difference, u, occurs more than once, i.e. w(u) > 1, then

it is said to be redundant. From 6.3, there are 3 occurrences of 0, thus w(0) = 3,

and there are no redundancies elsewhere, i.e. w(u) = 1 for u 6= 0. This can be seen

graphically in Figure 6.2. Note that, for any N element array geometry, w(0) = N .

The example array is actually a special case of a zero redundancy array, as there is only

one combination by which each non-zero point can be achieved in the difference set.
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Figure 6.2: Weight function of the example sparse array

In section 6.3, the redundancies within the weight function will be further explored

and exploited to improve the performance of the algorithms discussed in this chapter.

6.2.1 Minimum Redundancy Array

A class of linear arrays were shown in [80], where they achieve maximum spatial reso-

lution for a given number of elements by minimizing the redundancies in the difference

set. Whilst the original scope of [80] is for radio astronomy, the aim of detecting and

locating faint distant sources is very similar to an ES problem.

It is worth noting that the case of the zero redundancy array is the goal of a

minimum redundancy array (MRA). However, such an array does not exist for more

than 4 elements [87]. Calculating the sensor locations of an MRA is not a trivial task as

closed form expressions for estimating sensor locations do not exist. However, look up

tables and examples are provided in [80] and some methods can be found in [79]. This

chapter only considers the case of a restricted array, in which the difference set fills the

holes in the entire array aperture. An example of an 8 element minimum redundancy

array is provided in Figure 6.3 and its weight function in Figure 6.4b. There is also no

closed form expression for the maximum number of sources such an array can resolve

with subspace methods. However, in the example provided, it is shown that the 8

element restricted minimum redundancy array can resolve a maximum of 23 sources

since a 24 element virtual uniform linear array is generated in later processing stages.
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6.2.2 Nested, and Super Nested Array

In comparison to the minimum redundancy array, it is trivial to calculate the sensor

positions for a nested array. It is the union of two uniform linear arrays; a Nyquist

spaced (d) array with N1 elements, and a sparse uniform linear array of N2 sensors

spaced at (N1 + 1)d, over an aperture of N2(N1 + 1)d, yielding a sparse array with

N1 + N2 sensors overall, with the ability to resolve N2(N1 + 1) − 1 sources. An 8

element (N1 = N2 = 4) nested array is shown in Figure 6.3, and its weight function in

Figure 6.4c. Unlike a co-prime array [90], a nested array yields a contiguous difference

set, akin to the restricted class of MRAs [116]. While such an array is easy to design, in

general, its weight function contains more redundancies than an MRA. Another major

drawback to the conventional nested array is the issue of mutual coupling between

sensors of the dense Nyquist portion of the array.

Recently, the super-nested array was proposed in [86, 91], which aims to reduce

the effect of mutual coupling in the array by redistributing the dense portion of the

array across the entire aperture. The goal of the second order super-nested array is to

minimise the pairs spaced at Nyquist, i.e. the w(1) = 1, which will reduce the effect

of mutual coupling substantially. A third order super nested array also minimises the

pairs spaced at 2 Nyquist. The weight function of an 8 element second order super

nested array is shown in Figure 6.4d, and demonstrates that while there is the same

redundancy as the conventional nested array, the number of pairs spaced at Nyquist

(u = ±1) is reduced from 4 to 2.

Figure 6.3: Physical Array Geometries for the uniform linear-, nested-, super nested-
and minimum redundancy arrays
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(a) Weight function for an 8 element ULA

(b) Weight function for an 8 Element Minimum Redundancy Array

(c) Weight function for a N1 = N2 = 4 Nested Array

(d) Weight function for a N1 = N2 = 4 Second Order Super-Nested Array

Figure 6.4: Array Weight Functions

6.3 Formation of Virtual Covariance Matrices

Recall the analytical model for the polynomial space-time covariance matrix:

Rxx(z) = A(z)R̃ss(z)A
P (z) + σ2

νI (6.4)

It can be rewritten in summation form as:
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Rxx(z) =
l=1∑
L

[σ2
l (z)al(z)a

P
l (z)] + σ2

νI (6.5)

Following the definition of the difference set that was given in (6.1), it is important

to note the elements of the polynomial covariance matrix contain all spatial differences

from this set. Thus, the component 〈Rxx(z)〉ij represents the spatial auto- (for i = j)

and cross-(for i 6= j) correlations for spatial difference i− j. By vectorising this matrix,

a virtual array is generated with positions contained in the difference set:

γ(z) = vec(Rxx(z)) (6.6)

A worked example of this is presented in Appendix B. Using the summation form from

(6.5), this can be rewritten as

γ(z) = vec

[
L∑
l=1

[σ2
l (z)al(z)a

P
l (z)]

]
+ σ2

ν 1̃ (6.7)

Here, 1̃ is the vectorised identity matrix that is a vector of zeros with ones at N + 1 in-

tervals, corresponding to the diagonal, auto-correlation components of Rxx(z). Clearly,

the first term can be rewritten in matrix form to give something analogous to the orig-

inal sensor model of (4.16):

γ(z) = B(z)σ2(z) + σ2
ν 1̃ (6.8)

where σ2(z) is a vector of source autocorrelation functions, and

B(z) = [a1(z)� a∗1(z−1), . . . ,aL(z)� a∗L(z−1)] (6.9)

represents the steering vector for the much larger virtual array of sensor data pairs,

covering all the sensor displacement in the difference set M, and � represents the

Kronecker product. This representation contains redundancies as spelt out in the weight

functions of the difference set, as introduced in section (2). In particular, for all the

sparse arrays of section (2) there is an N -fold redundancy of the zero displacement
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auto-correlation terms.

The arrays in (6.8) can be truncated to eliminate the redundancies. Assuming each

element is corrupted by some zero mean i.i.d. noise process, then instead of simply

removing the redundant elements, they can be averaged to enhance the estimate of the

virtual ULA and in the process reducing the N2 size of γ(z) to the (2M − 1) element

ULA:

γ1(z) = A1(z)σ2(z) + σ2
ν ẽ (6.10)

Here, ẽ is a vector of zeros, except a 1 at the array position zero. From Chapter 4, it

was noted that

• The rows of the steering vectors are just powers of the primitive (Nyquist) steering

element, i.e. anl(z), the nth row of the lth source steering vector is:

anl(z) = a1l(z)
mn (6.11)

• The parahermitian conjugate of a steering vector is just the inverse of a steering

vector:

a∗nl(z
−1) = anl(z)

−1 = a1l(z)
−mn (6.12)

Reordering the rows of B(z) so that the differences are in order of increasing sensor

displacement and then, using the known steering vector structure summarised in (6.11)

and (6.12), it is possible to obtain the virtual array steering vector in the rationalised

form characterised by the Vandermonde structure:
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A1(z) =



a−M+1
11 (z) a−M+1

12 (z) . . . a−M+1
1L (z)

a−M+2
11 (z) a−M+2

12 (z) . . . a−M+2
1L (z)

...
...

. . .
...

1 1 . . . 1
...

...
. . .

...

aM−2
11 (z) aM−2

12 (z) . . . aM−2
1L (z)

aM−1
11 (z) aM−1

12 (z) . . . aM−1
1L (z)


(6.13)

Having condensed and reordered (6.8), A1(z) now has precisely the structure of a

conventional ULA steering vector. Additionally, the model expressed in (6.10) is almost

identical in structure to that of the ULA summarised in (4.16). With that in mind, the

next step is to construct the quadratic form:

γ1(z)γP1 (z) = A1(z)σ2(z)σ2 P (z)AP
1 (z) + σ4

ν ẽẽ
P (6.14)

Not surprisingly, this has a similar form as the covariance in (6.4). However, it

can be noted that since the source matrix is simply the outer product of two vectors,

the source matrix (σ2(z)σ2 P (z)) is seriously rank deficient; being rank 1, irrespective

of the number of sources. Moreover, the noise term is also of rank 1, since ẽ and ẽP

are also just column and row vectors respectively, each being zero except for a single

1 at the zero displacement element. Thus, despite the familiar form, (6.14) is not a

representation that enables the usual forms of quadratic signal analysis. Nevertheless,

the situation can be recovered as described in the next section.

6.3.1 Rank Recovery by Spatial Smoothing

In Chapter 5, a novel broadband decorrelation technique was introduced through the

spatial averaging of polynomial space-time covariance matrices. In this approach, ap-

plicable to uniform linear arrays, a new array is constructed by taking a shortened

sub-array and forming the average of this array with the translations of it. In general,

averaging over just L such subarrays is sufficient to increase the rank to L, allowing L

sources to be resolved.
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In [117], it was demonstrated that forming M overlapping subarrays of M elements

could restore the rank of (6.14). It was also suggested that this step was required in

order to restore the rank of the source covariance matrix. While this is true, the spatial

smoothing theory states that the above requires only L subarrays to restore the rank of

this matrix, rather than M subarrays. However, in reality, it is true that M subarrays

are required to achieve a valid space-time covariance matrix. Consequently, (6.14)

not only exhibits a singular source matrix, but the noise is also singular. Since more

sensors than sources are assumed (L < M), it is necessary to form an M -dimensional

subarray, obtained as the average of its M possible translations in order to remove both

singularities.

Starting with the shortened array defined by the M -dimensional steering vector,

A0(z) is given as the lowest M rows of A1(z) in (6.13). The M translations of this

uniform linear array are:

γi(z) = A0(z)Q−i+1(z)σ2(z) + σ2
ν ẽi (6.15)

where Q(z) is the diagonal matrix,

Q(z) =


a11(z)

a12(z)

. . .

a1L(z)

 (6.16)

and ẽi is a vector of zeros apart from a single 1 at array index i.

Finally, the covariance of this spatially-smoothed, M -dimensional, virtual uniform

linear array can now be formed as:

Rxx(z) =
1

M

M∑
i=1

γi(z)γ
P
i (z) (6.17)
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Inserting (20), the full structure of this virtual array covariance is obtained:

Rxx(z) = A0(z)R̂ss(z)A
P
0 (z) +

1

M
σ4
νI (6.18)

where

R̂ss(z) =
1

M

M∑
m=1

Q−i+1(z)σ2(z)σ2 P (z)Q−i+1 P (z) (6.19)

The additional phase terms in the vector outer-product terms ensure incoherent

summation that restores the source covariance matrix rank, as can be proved, just as

in [118]. It is also easy to see that the translational shift in the summation, steps the

single 1 along the noise matrix diagonal; restoring it to full rank as well. Thus I in

(6.18) is just the M -dimensional identity matrix.

6.4 Performance Analysis

In this section, combined with the novel techniques presented in Chapters 4 and 5, the

performance of the above methods is demonstrated and analysed. In all the simulation

scenarios, the case of uncorrelated sources and a perfectly calibrated 8 element array

is considered. The PEVD algorithm used is the SMD method [104]. Section 6.4.1

demonstrates the powerful ability of estimating a spatio-spectrum of several spectrally

overlapping, spatially close broadband sources using uniform linear-, super-nested, and

minimum redundancy arrays. Section 6.4.2 analyses the accuracy of the Root spatio-

spectrum estimator when used in conjunction with the array geometries discussed; and

demonstrates the benefit of redundancy averaging. Finally, Section 6.4.3 shows the

empirical resolution of the three array geometries.

6.4.1 Detection & Spatio-Spectrum Estimation

Six temporally overlapping triangular FMCW waveforms of varying carrier frequencies

and bandwidths, linearly spaced between −35◦ and 35◦ are present, with an acquisition

period of Ns = 20000 samples. Table 6.1 shows the ground truth for all simulated

sources, and Table 6.2 shows the receiver properties.
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Table 6.1: Source Parameters

Source No. Carrier Frequency (GHz) Bandwidth (GHz) DoA (◦)
1 10 2 θ = −35
2 9.5 2 θ = −21
3 9.5 2.5 θ = −7
4 10.5 1.3 θ = 7
5 10 2.1 θ = 21
6 9.9 1.9 θ = 35

Table 6.2: Receiver Parameters

Sampling Frequency 4 GS/s
Instantaneous Bandwidth 4 GHz
Centre Frequency 10 GHz
Acquisition Period 5 µs
Acquisition Samples 20000
SNR 10 dB
Number of Channels 8

Recall that the polynomial eigenvalues are representative of a power spectral den-

sity, and this is used to determine the dimensions of the signal and noise subspaces.

Figure 6.5 shows the eigenvalue power spectral densities (PSD) for this simulation.

Note only the first 8 eigenvalues are displayed for the minimum redundancy array and

super nested array. From these figures, it can be seen that there are 6 significant eigen-

values, and thus 6 uncorrelated spectrally overlapping sources present. Separating the

noise subspace, the spatio-spectrum polynomial MUSIC algorithm from Chapter 4 is

used to estimate the spatio-spectrum. Figure 6.6 shows the estimated spatio-spectrum

via uniform linear, super nested, and minimum redundancy arrays. A normalised 1D

projection (spatial) of these can be seen in Figure 6.6d. It is easy to see that all array

geometries correctly estimate both, the frequency/bandwidth and direction of arrival

of all sources present. However, results are clearer in the case of sparse arrays due to

the increased resolution offered by the much larger aperture. While these examples

give a vague idea on performance, the subsequent simulations analyse the statistical

performance in terms of both estimator variance, and resolution.
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(a) Uniform Linear Array (b) Super Nested array (First 8/20 eigenvalues
displayed)

(c) Minimum Redundancy array (First 8/24
eigenvalues displayed)

Figure 6.5: Frequency domain representation of the polynomial eigenvalues in the case
of the three array geometries
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(a) An 8 element Uniform Linear array (b) An 8 element Minimum Redundancy Array

(c) Spatio-Spectrum Estimation of 6 broad-
band FMCW sources using an 8 element Super
Nested Array

(d) A spatial only comparison of the polyno-
mial MUSIC algorithm when used in conjunc-
tion with the three array geometries

Figure 6.6: Spatio-Spectrum Estimation of 6 broadband FMCW sources

113



Chapter 6. DoA Estimation of LPI Sources via Advanced Array Geometries and
Polynomial Matrix Methods

6.4.2 Accuracy

In this section, simulation results are presented to compare the direction of arrival esti-

mation variance across a range of signal to noise ratios. A Monte-Carlo simulation was

performed, using I = 500 runs for each SNR, with fixed bandwidths and randomised

DoAs for each run. The novel Root Polynomial MUSIC algorithm (introduced in Chap-

ter 4) is used for improved computation times. In [118], it was noted that the statistical

performance was largely the same as the heuristic searching method in Section 6.4.1.

Since this is an unbiased estimator, the estimator variance, σ2
E is simply calculated as

the mean squared error, i.e.

σ2
E =

1

I

I∑
i=1

[θ̃i − θ]2 (6.20)

where θ̃i is the estimated DoA, and θ is the ground truth. Figure 6.7 shows the

simulated performance of root polynomial MUSIC algorithms for the three array ge-

ometries without redundancy averaging. Results demonstrate that for a fixed number

of antenna elements, the sparse array geometries have an improved performance over a

uniform linear array. It is to be expected that the Minimum Redundancy array should

perform better than the super nested array due to the greater degrees of freedom of-

fered, and this is verified in Figure 6.7. The effect of redundancy averaging on the

variance can be seen in Figure 6.8. This averaging has a clear improvement in estima-

tor accuracy, and intuitively, this has a greater effect on the super nested array as this

array geometry has more redundancies in its weight function.
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Figure 6.7: Root PMUSIC estimator variance for the three array geometries in the case
of the three array geometries: Redundancies are discarded

Figure 6.8: Root PMUSIC estimator variance for the three array geometries in the case
of the three array geometries: With redundancy averaging
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6.4.3 Probability of Resolution

Since the methods proposed in section 6.4.1 are super-resolution, the resolution is

not bound by the Rayleigh criterion. In this section, a Monte-Carlo simulation of

100 runs is performed to analyse the empirical probability of resolving two sources

spaced at ∆θ = θ1 − θ2 by using the spatial only function of the Polynomial MUSIC

algorithm [119]

Pmu(θ) =

NωH∑
i=NωL

PSSP (θ, ejωi) (6.21)

where NωL and NωH are the indexes of the frequency bins containing sufficient energy

and can be determined experimentally. Rather than considering the full shape of this

spatial-only spectrum, in this separability issue, the following inequality is used to

determine whether a pair of sources are resolved:

Pmu

(
θ1 + θ2

2

)
≤ 1

2
[Pmu(θ1) + Pmu(θ2)] (6.22)

At the point Pmu( θ1+θ2
2 ) = 0, the peaks merge into one, and the DoAs will not be

resolved. The probability of a single run is calculated as

Pr(∆θ) =


1 if Pmu( θ1+θ2

2 ) ≤ 1
2 [Pmu(θ1) + Pmu(θ2)]

0 otherwise

(6.23)

Resolution analysis was performed with two FMCW sources centred at 10 GHz,

with 2 GHz bandwidth. Two scenarios are simulated - one where the received signals

have equal power, and another where there is a 10 dB difference. The received SNR

was set to 15 dB and the redundancy averaging method was used for the formation of

the space-time covariance matrices.
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Figure 6.9: Probability of resolution for the three array geometries. Solid lines represent
equal power of the two sources. Dashed represents a 10 dB difference in source power

Figure 6.9 shows the simulated probability of resolution over a range of angular

separations. It can be noted that the sparse methods perform considerably better in

both scenarios. In the case of equal power sources, both the minimum redundancy, and

super nested arrays demonstrate sub 1 degree resolution, as opposed to the 2 degrees

seen from the ULA. In the case of a 10 dB power difference between the sources, the

resolution improvement using sparse arrays is further improved over the ULA. More

interestingly, there is now a greater difference between the minimum redundancy and

super-nested arrays, demonstrating how the increased degrees of freedom translates

into a greater angular resolving power. While all of the arrays have an equal number of

elements, it is expected that the sparse methods improve upon performance not only

due to the increased aperture, but also due to the increased degrees of freedom. Since

the minimum redundancy array has greater freedoms compared to the super nested

array, this increase in performance is expected.
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6.5 Summary

In this Chapter, the polynomial matrix approach to spatio-temporal array signal pro-

cessing developed in Chapters 3 and 4 were applied to modern sparse array theory.

Analysis demonstrated that the generated virtual array polynomial covariance matrix

would be singular due to the singular noise covariance matrix. This problem was over-

come via the polynomial spatial smoothing method presented in Chapter 5. Results

demonstrated that sparse arrays used in conjunction with polynomial matrix meth-

ods provide an elegant and promising solution for DoA estimation of broadband LPI

emitters.

To demonstrate the presented methods, a simulated scenario of several LPI FMCW

emitters was generated. While all the methods correctly estimated the frequency and

angle of arrival of the emitters, it was clear from Figure 6.6 that the sparse arrays offered

a considerable benefit in terms of resolution. To formally compare the accuracy and

resolution for each of the array topologies for LPI FMCW emitters, Monte-Carlo simu-

lations were performed to calculate estimator variance and probability of resolution. It

was also demonstrated that by using the older method of generating a restricted sparse

array, the minimum redundancy array generally out performs the more modern super-

nested array due to the larger electrical length of the array and thus greater degrees

of freedom generated. The effect of redundancy averaging further improves accuracy

of the estimators by enhancing the estimate of the polynomial space-time covariance

matrices.
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Conclusions

With the electromagnetic spectrum becoming evermore congested, and the emerging

radar technology actively reducing its probability of being intercepted, the detection

and characterisation of radar signals is becoming evermore difficult. Due to advances

in solid state RF technology, modern emitters are agile in both, the time and frequency

domains. Thus, it is now important to continue to discover new techniques and al-

gorithms to deal with these issues. Upon studying existing literature, it was found

that methods based on time-frequency analysis could achieve a significant processing

gain. However, given the fact that modern emitters can be agile, time and frequency

estimations alone may be insufficient to resolve different emitters. One domain where

an emitter cannot be agile (within a pulse duration) is the spatial domain.

In this thesis, there is a strong focus on novel spatial processing techniques to

develop an enabling technology for electronic surveillance systems to cope with a con-

gested electromagnetic environment as well as aid in the detection and localisation of

low probability of intercept radars. Popular literature on spatial processing, however,

focuses on narrowband scenarios, which are incompatible with broadband LPI emitters.

Existing literature on broadband array signal processing problems is limited in compar-

ison to the narrowband super-resolution techniques. However, recent advances such as

polynomial matrices and the polynomial eigenvalue decomposition provide an attrac-

tive solution for broadband array processing problems, and these have been leveraged

throughout Chapters 4 through 6 in this thesis.
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In Chapter 4, a novel multi-correlation receiver was proposed. Through analysis

and a series of example problems, it was demonstrated that a multi-correlation receiver

concept is capable of outperforming conventional Fourier analysis for LPI waveforms.

In addition, a novel algorithm to estimate a spatio-spectrum with a significantly re-

duced computational cost was proposed, and Monte-Carlo simulations demonstrated a

reduction in computation time with no sacrifice to performance.

Chapter 5 focussed on novel solutions for the direction of arrival estimation of

strongly correlated, or even coherent sources. One novel solution included the spatial

averaging technique, which demonstrated a significant improvement in spatial resolu-

tion in the extreme case of coherent sources. Chapter 5 also provided a novel analysis

of exploiting the Doppler effect to decorrelate emitters, which is a naturally arising

phenomenon for an array in motion. It was concluded that for a fast-moving array

(around 340 m/s), the aforementioned spatial smoothing effect happens while estimat-

ing a covariance matrix, and thus no further processing was required to decorrelate the

emitters. The caveat, however, is that relatively long integration times were required

to effectively decorrelate emitters.

Chapter 6 studied the problem of optimal sensor placement for wideband antenna

arrays. When designing a wideband antenna array, closely spaced sensors are required

to achieve ambiguity-free DoA estimates of the higher frequency emitters, while a long

overall aperture is required for sufficient resolution at lower frequencies. For a uniform

linear array, this would result in an array with many elements, making such an array

a particularly inefficient design. Chapter 6 also introduced novel signal processing

techniques to exploit sparse array geometries for broadband scenarios via polynomial

matrices. Simulation results demonstrated a significant improvement in DoA resolution

and accuracy, compared to a ULA of the same number of elements.

The techniques presented throughout this thesis have the potential for real-world

use. Although the material developed was for application in passive sensing of the elec-

tromagnetic spectrum, other domains could also exploit the presented techniques. For

example, passive sonar arrays, microphone arrays and arrays of ultrasonic transducers,

which typically deal with broadband signals, can also find the techniques described in
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this thesis useful to enhance DoA estimation.

While the simulation results presented demonstrate an enhanced performance over

conventional methods, there is a significant amount of work required to mature the

techniques, to be able to leverage them for real-world applications. It could be argued

that the largest obstacle to implementing polynomial matrix techniques in real-time is

the computational cost associated with it. Reducing the computational cost is not a

simple task, but there are now a plethora of options available for optimising and deploy-

ing algorithms onto hardware, such as GPUs, FPGAs, SoCs, and CPUs. Other future

work in this area could involve closer coupling between the spatio-spectral techniques

presented in this thesis, and the time-frequency distributions presented in the exist-

ing literature. Such a technique could be used to provide unique time-frequency-space

distributions for enhanced ‘imaging’ of the emitters.

To conclude, this thesis has made a significant contribution to the knowledge in

areas of broadband array signal processing and low probability of intercept radar de-

tection and localisation. Novel techniques were presented and backed up by analytical

techniques and numerical simulations.
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Appendix A

Down Converted Array Signal

Model Derivation

Given a signal, s(t), where we expect it to have spectral content around some carrier

(angular) frequency close to ωd, we will generally want to remove this high frequency

content prior to digitisation. This is just to reduce the signal bandwidth to allow

the sampling to rate to be reduced to a value not much more than Nyquist for the

underlying signal bandwidth, stripping of its carrier.

Thus if we imagine the signal captured with both I and Q components then the

down-converted signal will be x(t), where:

x(t) = s(t)e−jωdt (A.1)

For any sensor array intercepting such a signal, the arrival times with be element-

dependent but a common down-conversion will be used. Indeed it will be important to

ensure a phase coherent local oscillator is used across the array.

Thus, for an array with elements ‘i, we will have the down-converted components:

xi(t) = s(t− τi)e−jωdt (A.2)

For signal processing of such signals it is convenient to express the separate elements

all in terms of a common reference (that will invariably be a particular element chosen
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Appendix A. Down Converted Array Signal Model Derivation

in that array). Therefore we write:

xi(t) = [δ(t− τi)⊗ s(t)]e−jωdt (A.3)

where δ is the Dirac ‘delta-function’ and ⊗ is the convolution operator so that:

δ(t)⊗ s(t) ≡
∫ ∞
−∞

δ(t− t′)s(t′)dt′ (A.4)

Thus, we can write:

[δ(t− τi)⊗ s(t)]e−jωdt =

∫ ∞
−∞

δ(t− t′ − τi)s(t′)dt′e−jωdt

=

∫ ∞
−∞

δ(t− t′ − τi)ejωdt
′
s(t′)e−jωdt

′
dt′e−jωdt

=

∫ ∞
−∞

δ(t− t′ − τi)ejωdt
′
e−jωdtejωdτis(t′)e−jωdt

′
dt′e−jωdτi

=

∫ ∞
−∞

δ(t− t′ − τi)e−jωd(t−t′−τi)e−jωdτis(t′)e−jωdt
′
dt′

(A.5)

Now δ(t− t′ − τi) is zero everywhere other than where t− t′ − τi = 0, while:

e−jωd(t−t′−τi)|t−t′−τi=0 = 1 (A.6)

Thus, the down-converted array elements can be rewritten as:

xi(t) = [δ(t− τi)⊗ s(t)]e−jωdt

=

∫ ∞
−∞

δ(t− t′ − τi)e−jωdτis(t′)e−jωdt
′
dt′

= [δ(t− τi)e−jωdτi ]⊗ [s(t)e−jωdt]

(A.7)
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Appendix B

Worked Example of the Virtual

ULA Generation Step

Consider a 3 element MRA, with sensors located at positions 0, 1, 3. The weight func-

tion of such an array is [−3,−2,−1, 0, 0, 0, 1, 2, 3]. The steering vector for such an array

takes the form of

a(z) =


ψ0(z)

ψ1(z)

ψ3(z)

 (B.1)

where ψ(z) is a fractional delay filter of delay τd, where this delay is induced due to

the direction of arrival (as explored in Chapter 4). The space time covariance matrix

for a single source can be expressed as

Rxx(z) = σ2
s(z)a(z)aP (z) + σ2

νI (B.2)

Thus, the structure of the space time covariance matrix of the 3 element MRA is
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Rxx(z) = σ2
s(z)


ψ0(z)ψ0(z) ψ1(z)ψ0(z) ψ3(z)ψ0(z)

ψ0(z)ψ−1(z) ψ1(z)ψ−1(z) ψ3(z)ψ−1(z)

ψ0(z)ψ−3(z) ψ1(z)ψ−3(z) ψ3(z)ψ−3(z)

+ σ2
νI

= σ2
s(z)


ψ0 ψ1(z) ψ3(z)

ψ−1(z) ψ0(z) ψ2(z)

ψ−3(z) ψ−2(z) ψ0(z)

+ σ2
ν


1 0 0

0 1 0

0 0 1


(B.3)

Note that in (6.11) and (6.12) it was identified that the time reversed conjugate of a

fractional delay filter is simply its inverse, (i.e. ψ1(z) is a fractional delay filter of τd,

and ψ−1(z) is a fractional delay filter of −τd). Vectorising (B.3) yields:

γ(z) = vec(Rxx(z))

= σ2
s(z)



ψ0

ψ1(z)

ψ3(z)

ψ−1(z)

ψ0(z)

ψ2(z)

ψ−3(z)

ψ−2(z)

ψ0(z)



+ σ2
ν



1

0

0

0

1

0

0

0

1



(B.4)

Note the above quantity is similar to that in (6.10). Following the same logic as Chapter

6, this vector can be rearranged and redundancies can be removed to produce virtual

array:
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γ1(z) = σ2
s(z)



ψ−3

ψ−2(z)

ψ−1(z)

ψ0(z)

ψ1(z)

ψ2(z)

ψ3(z)


+ σ2

ν



0

0

0

1

0

0

0


(B.5)

This equation is now similar to that of a 7-element uniform linear array with a vander-

monde structured steering vector. The next step is to perform the spatial smoothing

step outlined in 6.3.1.
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