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Abstract

Quantum-enhanced sensing technologies aim to use novel effects stemming from quantum physics
to benefit sensing applications. Such technologies can allow for sensing in regimes for which
conventional devices cannot, or they can demonstrate improved performance compared to these
conventional devices. We present a quantum-enhanced LIDAR protocol that is practical for
real-life use and has an operator-friendly approach to detector data processing and inference
of target object presence or absence. The overarching objective of this thesis is to describe
such a protocol. Our protocol is based on a quantum illumination system with click detectors
(Geiger-mode single-photon avalanche photo-diodes), which uses time-correlated coincidence
click-counting. We developed a theoretical framework that processes detector data into a metric
intrinsically linked to the likelihood of the absence or presence of a target. This approach
allows for complicated multi-channel detector data to condense into an intuitive single value.
Furthermore, the theoretical framework also has a level of self-calibration inbuilt. We also
characterise the functionality of our protocol in operator-friendly terms such as time-required
for confident detection. Our results reinforce the advantage of quantum states, when compared
to classical light in certain environmental and technological conditions, particularly when we
desire covertness. These advantages persist even when operating at room temperature with
off-the-shelf components, a crucial requirement for the practical roll-out of quantum-enhanced
technologies. Additionally, we have demonstrated robustness to jamming, for both fast and slow
dynamic jamming. Lastly, the theory provides the formalism to include any of the other non-
classical correlations of our source; this feature improves the jamming-resilience of the protocol
due to noise exclusion and a relative increase of heralding gain. Due to its user-operability
and experimental-demonstration with off-the-shelf components, our protocol could hasten the
adoption of quantum-enhanced sensing technology.
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Chapter 1: Introduction

This thesis aims to give a thorough exposition of the quantum-enhanced LIDAR protocol

developed at the University of Strathclyde. We developed this protocol with the feasibility of

real-life experimental implementation and ease of use at mind. When we mention ‘quantum-

enhanced’ this refers to the use of features which require the theory of quantum mechanics and

therefore have no analogue in classical physics.

1.1 Remote sensing background

Remote sensing technologies which involve the electromagnetic spectrum to probe the presence

and range of a possible target object are prevalent in the modern world. Conventional RADAR

functions by sending out classical electromagnetic radiation and then measuring what reflects

back towards the detectors [1]. In particular, RADAR is more suited to long-range target

detection than LIDAR because LIDAR wavelengths are more susceptible to scattering and

absorption in the atmosphere (particularly through rain and fog) than RADAR wavelengths [2].

Enhanced conventional RADAR performance is afforded in certain situations with protocols

such as noise radar, which uses the correlations between the random emitted signal and the

return statistics [3]. Optical LIDAR is more suited for precise target detection over shorter

ranges in comparison to RADAR systems, due to the wavelengths used [4], [5]. LIDAR has

application in ground surveys [6], monitoring sea-levels [7] and aiding navigation in autonomous

vehicles [8], to name but a few. Developments in detector technology have enabled LIDAR

protocols to operate at the single-photon level [9]. Moreover, developments in computational

analysis have facilitated 3D imaging with single-pixel detectors [10]. Both of these developments

paved the way for single-photon cameras [11], [12]. Further developments demonstrated that

both single-photon LIDAR and imaging can function in adverse conditions expected for real-life

application [13], [14].

In this thesis we refer to classical illumination (CI) as a simplified conventional LIDAR

protocol where an unmodulated pulse of light sent towards a point-source possible target object
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back-reflects towards our detector for measurement as shown in Fig. 1.2 a). CI can still be

regarded as in some sense a quantum protocol due to the detectors being quantum devices

and that it can register a single-photon event; however we derive its name from the fact the

measurement statistics on average for CI are not non-classical, unlike QI (which we now define).

1.2 Review of quantum illumination

Quantum mechanics describes features which are not intuitive to our classical understanding of

the world, such as entanglement [15]. In recent times, much work has focused on harnessing

these peculiar features of quantum mechanics into novel scientific and engineering applications

[16]. Such developments continue even though entanglement, for example, is notorious for

being very difficult to detect in real-life situations. In the context of both remote sensing and

quantum mechanics, the two possibilities of object present or absent each correspond to its own

quantum channel. The use of entanglement for object detection is apparent as studies from

Sacchi in 2005 show entanglement can improve our ability to discern different quantum channels

correctly, crucially even in entanglement-breaking situations encountered outside of laboratory

environments [17], [18].

In 2008, Lloyd introduced the term ‘quantum illumination’ (QI) in his seminal paper [19].

QI involves the use of an initially entangled light source to perform object detection. In essence,

object detection via QI entails sending a probe state of the light field (conventionally the signal)

towards a possible target object and recording the light that reaches the detection system,

which may include some signal reflected off the target as shown in Fig. 1.2 c). The target,

if it is present, sits in a noise bath of classical light, which is detected by the signal detector

whether or not the target is there. A joint entanglement-based measurement is made upon the

signal and the other mode (the idler). An object’s presence, for both QI and CI, is revealed by

returned signal, otherwise that light is lost to the environment and the object’s absence results

in a return of solely noise as shown in Fig. 1.2 b) and d), respectively. QI allows us to pick

out returned signal photons from this noise more easily and so provides more information per

photon sent to the target. Often in literature for QI, spontaneous parametric down-conversion

(SPDC) generates the entangled light source as shown in Fig. 2.3. Figure 1.1 is a simple diagram

which shows how SPDC light is used for object detection via our QI protocol. In particular for

the Lloyd paper, the QI light source is treated more simply as a d-mode maximally entangled

two-beam state, with each mode in the signal and idler beams containing a single-photon. This

early work describes an intrinsic advantage over single-photon CI in the regime with a weak
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Figure 1.1 – Schematic of our QI scheme for object detection with our light source generated
from a non-degenerate SPDC process.

emitted signal and strong environmental background noise. Lloyd demonstrates that there is a

factor of d improvement of the SNR for QI compared to single-photon CI. This work clearly

shows how entanglement can improve system performance for object detection. QI is remarkable

as an entanglement-utilising protocol, as its benefit persists even in entanglement-breaking

situations. This further validates the claims made by Sacchi years prior. Moreover, we quantify

this persistence of quantum advantage by a measure of non-classicality of the information content

of a state, known as quantum discord [20]. However, the protocol developed by Lloyd does

have some issues if we wish to map it onto a realistic quantum-enhanced LIDAR system. For

example, Lloyd describes that measurement is an optimal joint measurement on the idler and

signal photons, which is either unknown or difficult to implement experimentally. In particular,

retainment of the idler photon such that we can measure it jointly with the signal photon greatly

adds to the complexity of the experimental setup. Even a simple experimental implementation

to retain the idler by means of a delay line for the idler beam is inappropriate for LIDAR

due to the often unknown signal photon delay. Furthermore, QI is not compared with the

optimal scheme for classical object detection and the background noise model is unrealistic as it

does not consider thermal light with a Bose-Einstein photon-number distribution. Lastly, the

theoretical treatment does not derive the entangled twin beam state from a physical process

such as SPDC (which would include multi-photons and not just single photons). A more

thorough theoretical treatment by Shapiro and Lloyd extended QI to allow multi-photons and

compared QI to object detection with coherent-state transmission. This work demonstrated

that QI does not outperform classical methods with coherent detection when in low noise

regimes [21]. Tan et al. extended the theory of QI to use Gaussian states as the QI light

source. This work demonstrated that QI outperforms all CI methods in lossy, high noise and
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low signal strength scenarios [22]. Moreover, in ideal conditions with an entangled source, up to

a 6 dB enhancement in the error-probability exponent is obtained over the optimal classical

system [23], [24]. Here, we define the optimality of these measurements by the minimum

probability of error given by the Helstrom bound [25]. Unfortunately, the optimal measurement

scheme required to achieve this bound experimentally is unknown. Nevertheless, early work by

Guha and Erkmen presented phase-sensitive measurement schemes which realise up to 3 dB

enhancement in the error-probability exponent [26]; however, these schemes are difficult to

implement experimentally. Therefore, the first experimental demonstration (by Lopaeva et al.)

of optical wavelength QI involved a more experimentally-simple approach using photo-counting

and second order correlation measurements [27]. Following this, much theoretical analysis has

accumulated for optical- or microwave-based joint-measurement QI protocol variants [28]–[47].

There are also experimental demonstrations of optical- or microwave-based QI protocols which

require joint-measurement and phase-sensitivity [48]–[51]. However, the protocols which require

joint-measurement and/or phase-sensitivity are impractical for use outside of the laboratory

due to their experimental demands. Lastly, recent research by Nair and Gu provides universal

performance bounds for idler-assisted sensing [52]. These performance bounds are universal

because it is independent of the type of probe and measurement used.

It is possible to exploit not the entanglement but the strong correlations of the photon

pairs generated in the weak limit of the SPDC process to obtain a quantum advantage with

a simpler detection protocol. These photon pairs have several possible correlations, including

photon-number, temporal and spectral. Instead of a joint entanglement-based measurement

on the signal and idler modes, we make individual measurements upon each mode. Even with

individual measurements, the non-classical correlations with the signal mode and idler mode

enhances the sensitivity of the signal mode measurement via heralding. The signal mode is the

mode which contains information about the presence or absence of the possible target object.

We frame target detection via QI as a quantum state discrimination problem, due to the binary

situation of the object present (H1) or absent (H0) hypotheses [53]. More generally, we recognise

that QI as a state discrimination problem is similar to QI as a quantum parameter estimation

problem [54]–[57].

To continue in the vein of considering QI protocols without using a joint measurement

scheme, systems with independent quadrature measurements on the signal and idler show that

QI retains an advantage over CI, while not necessarily being better than the best possible

classical source [58]–[60]. More recently, a new approach from work by Reichert et al. for

QI with independent quadrature measurements, which uses heterodyne measurement on the
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signal channel to condition the idler channel with a phase shift for the idler channel homodyne

measurement, demonstrates a 3 dB enhancement in the error-probability exponent compared to

the optimal classical system [61]. A similar approach from Shi et al. demonstrates the optimal

advantage of this technique [62], [63]. Unrelated to quadrature measurements, studies show

that QI with photon-counting and second-order correlation measurements retains advantage

over CI [64]–[70]. Recently, work from Blakey et al. demonstrates a QI-based target detection

method using non-local cancellation of dispersion [71], [72]. More pertinently however, studies

show a quantum enhancement from QI with simple photo-counting by click detectors [73]–[79].

Research by Yang et al. shows a QI protocol with simple photo-counting with multiplexed click

detectors, which can (in the limit of many detectors) reproduce the photon-number distribution

of the incident state and provide resilience to sensor dead-time [80]. QI with photon-counting

using click detectors is the easiest to implement experimentally, which suggests that it is suitable

as an approach for developing a practical quantum-enhanced LIDAR.

Object detection and range-finding in a realistic noise and loss environment is challenging.

In an unrealistic scenario without noise or loss a heralded QI scheme can provide signal states

to interrogate the object that are very different, depending on the result of the heralding

measurement, which provides a quantum advantage. However, with noise and loss this quantum

advantage disappears almost completely by the time the light gets to the detectors. We show

that the detectors themselves provide sub-optimal measurements, all of which means that we

need a framework that can work with the tiny remaining advantage over multiple experimental

shots. This thesis presents a model for object detection and range-finding with quantum states

using simple detection with Geiger-mode click photo-detectors. Literature already exists for

quantum-enhanced range-finding, for example, pioneering early work by Rarity et al. which

predates the terminology of QI demonstrated range-finding using non-classical correlations

from a photon pair source [81]. Furthermore, performance analysis of a QI-based LIDAR

which uses the Doppler effect for velocity estimation is in separate work by Zhuang et al. and

Reichert et al. [82], [83], with the ultimate limit on this estimation for range (and velocity)

described in work by Huang et al. [84]. Additionally, later developments in QI-based detection

schemes have also demonstrated range-finding [85]–[90]. However, the method that we present

treats detector data differently in that multiple detector data channels are condensed into

a single metric. This approach means we can also include the often-overlooked information

from non-coincidence events to enhance state discrimination. Our framework has a degree of

self-calibration due to the statistical approach and the parameter regimes typically encountered

in QI. The method facilitates easy comparison between different detection schemes, for example
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CI and QI, for inference of an object’s presence and range via a metric whose interpretation

depends on the likelihood of an object’s presence. Our results quantify the advantage of QI

over CI when performing target discrimination in a noisy thermal environment. We provide

an operator-friendly approach to quantifying system performance via estimation of the time

required to detect a target with a given confidence level. Moreover, we have extended our theory

to include any of the correlations available, which further enhances state discrimination. Finally,

we have applied our theoretical framework to experimentally demonstrate the jamming-resilience

of quantum-enhanced range-finding [91].

For regimes where QI does not out-perform optimal classical protocols, such as high signal

mean photon number regimes n̄ ≫ 1, there exist advantageous protocols inspired by QI. For

example, Liu et al. uses coherent detection and the random and chaotic time-frequency charac-

teristics between a classically-correlated reference and probe beam [92]. Moreover, Brougham

et al. uses random coherent states with different amplitudes to mimic a thermal distribution

(on average) upon each individual mode [93]. This approach mimics QI, as each individual

mode in QI has a thermal distribution. This protocol uses photo-counting rather than coherent

detection. Other protocols such as the work by Torromé extends QI to consider three modes

instead, with an increase of SNR compared to a two-mode QI equivalent; however, there is no

practical experimental implementation to realise this three-mode QI yet [94], [95]. Furthermore,

quantum-enhanced object detection need not use QI as the underlying protocol or inspiration.

For example, a quantum LIDAR based off thresholded detection with photon-number resolving

detectors [96], a quantum interferometer RADAR [97] and the Maccone-Ren proposal [98].

However, for example, an impracticality of the Maccone-Ren proposal is its extreme sensitivity

to noise. Therefore, we do not consider these alternative protocols further, as we consider the

object detection and range-finding problem in the context of experimentally-practical protocols

that function in weak signal strength and high noise regimes.

1.3 System overview

An overview of our system for performing optical detection of a target object immersed in a

thermal background using simple detection is shown schematically in Fig. 1.2 for both CI and

QI regimes. For the CI system, we use a single-mode beam to interrogate the target and data

provided by recording click-counts on the signal detector. We consider a QI source produced

by a pulsed pump laser with repetition rate frep. Each pump pulse produces, via parametric

down-conversion [99], [100], a QI source state located centrally within a single pulse temporal
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window of duration 1/frep. The mechanism for state production is a quasi-simultaneous photon

pair production from one pump photon. The quasi-simultaneous nature of the pair production

provides effective short term temporal correlations that are exploited to enable target detection

and range-finding via coincident detection. Outside this very short timescale the two beams

are effectively uncorrelated. QI has a level of background noise jamming-resilience due to the

coincidence detection method, as background noise is mostly filtered out unless in accidental

coincidence with an idler detection. Each state is described mathematically by Eq. 2.46 which

is the output of the SPDC process: the twin-beam state. We assume that the pump is of a

strength that it produces a twin-beam state with a mean photon number much smaller than one.

This state is distributed over two spatially separated modes: the signal beam and the idler beam.

Within the short correlation timescale the twin-beam state has non-classical photon-number,

frequency and polarisation inter-beam correlations; outside it the two beams are uncorrelated.

Note that for QI, we do not necessarily require a pulsed pump. The intrinsic correlations of

the SPDC source enable application of a continuous wave (CW) pump to this same framework,

with the corresponding time window of a single shot equal to a coincidence detection window

duration τc. For CI, we assume that the signal is a pulsed source with repetition rate frep with

the same frequency and mean photon number as the QI signal. Our form of CI is not the best

implementation possible for CI as we are not using coherent detection methods, for example.

We use its statistics to derive the single-shot click probabilities associated with a single pulse

window duration 1/frep.

The detectors in our protocol are Geiger-mode avalanche photo-diodes, insensitive to phase

and which register a click or a no-click event for each experimental shot of the system, hence the

term ‘simple detection’ [101]. As production of our signal is near the single-photon level, the

detectors are thresholded (in sensitivity) such that single-photon events can trigger them. This

makes them appropriate for use in realistic low signal strength sensing environments. All loss of

light in our system unrelated to interaction with the target object, such as detector quantum

efficiency and coupling loss, are accounted for by the system loss parameter. We define the idler

detector system loss ηI and the signal detector system loss ηS, where ηI/S = 1 represents no loss.

Whereas all forms of loss due to the probing process with the target object, such as absorption

and scattering, are accounted for by the signal attenuation factor ξ, where ξ = 1 represents no

loss from the probing of a target.
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Figure 1.2 – Schematic of optical LIDAR for a target of finite reflectivity ξ in a thermal
background ρ̂B,S. In the CI regime with target (a) present or (b) absent, a single-mode signal
beam is used to interrogate the target with a single signal detector used to measure the return
field mode. In the QI regime with target (c) present or (d) absent, a photon pair-source is used
to illuminate the target, with an additional detector used to directly measure the idler mode
(accounting for idler background noise ρ̂B,I) providing a coincident detection channel.

1.4 Overview of thesis

This thesis aims to provide a user-friendly exposition of a quantum-enhanced practical LIDAR

protocol. From this, an aim is to quantify the system performance for both quantum-enhanced

LIDAR and an unentangled (CI) benchmark. Our discussion about system performance leads

to the advantage of considering multi-mode correlations between the correlated beams of the

quantum-enhanced system. Lastly, we aim to demonstrate the suitability of our detector

data processing framework for our system in the presence of jamming (dynamically varying

background noise). Concerning the scope of this thesis, we avoid over-generalising our description

of the LIDAR protocol for the user-friendliness of our exposition. Hence, we limit the scope

to a quantum illumination-based system with click detectors. Conversely, to avoid restricting

this protocol to a particular experimental setup, we ensure that we can apply this protocol to a

variety of experimental conditions. For example, our protocol is appropriate irrespective of the

wavelengths involved or whether our pump is CW or pulsed.

The thesis is organised as follows. In Ch.2 the relevant background theory of quantum optics

is presented for our characterisation of non-classicality and the states of light used. Chapter 3
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gives the necessary theory for observables and measurements. Chapter 3 also presents the

derivation and expression of the click probabilities which characterise our object detection

model. Chapter 4 demonstrates how we analyse system performance for QI and CI with the

defined figures of merit. Chapter 5 extends the theory of our QI protocol to include any form of

two-beam correlation that the SPDC output could possess. Chapter 6 describes our protocol for

range-finding and provides counter-measures for dynamic jamming attacks. Chapter 7 provides

the methodology for the numerical simulations used throughout this thesis. Chapter 8 presents

the experimental data from our QI laboratory experiment. Chapter 9 concludes the thesis with

a discussion of current capabilities, issues with the system and future applications.



Chapter 2: Background theory

LIDAR requires the generation, transmission and detection of an electromagnetic field (EM-

field). Hence, this chapter provides background theory and the mathematical framework for the

characterisation of light. This thesis considers electromagnetic radiation through the framework

of a ‘mode’ [102]. An EM-field satisfies Maxwell’s equations. Within the field is a mode, which

is uniquely described by the set of values within the degrees of freedom a field possesses: such

as frequency and polarisation.

Maxwell’s equations for the EM-field in a vacuum are

∇×E = −∂B
∂t
, (2.1a)

1

µ0
∇×B = ϵ0

∂E

∂t
+ J, (2.1b)

∇ ·E =
σ

ϵ0
, (2.1c)

∇ ·B = 0, (2.1d)

where E is the classical electric field vector, B is the classical magnetic field vector, µ0 is

the vacuum permeability, ϵ0 is the vacuum permittivity, σ is the charge density and J is the

current density [103]. We will mostly be concerned with the electric field as a plane-wave in 3-D

Cartesian space. This is a monochromatic electric field vector with only one polarisation

Eω ≡ Eω(r, t) = α(ω)ei(k(ω)·r−ωt) + α∗(ω)e−i(k(ω)·r−ωt), (2.2a)

= E+
ω (r, t) + E−

ω (r, t), (2.2b)

where ω is the angular frequency of the source, r = (rx, ry, rz) are the spatial Cartesian coor-

dinates, k(ω) = (kx(ω), ky(ω), kz(ω)) is the wave-vector and E+
ω (r, t) is the positive-frequency

component of the electric field vector which contains α(ω) the amplitude of the field. This

plane-wave solution satisfies Maxwell’s equations.

The work presented in this thesis requires quantisation of the electromagnetic (EM)-field,
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due to the use of light which cannot be described via the classical theory of electromagnetism.

Quantum-mechanical operators that operate on a Hilbert space are used to describe a mode

of the quantised EM field. The modes of the classical EM-field satisfy the harmonic oscillator

partial differential equation. Therefore we quantise using quantum harmonic oscillators in

the next section. Analysis of quantum systems is benefited by use of the quantum harmonic

oscillator as it is a rare system in quantum mechanics with an analytic solution.

2.1 Quantisation of the electromagnetic field

Quantisation of the EM-field is a procedure first written down by Dirac [104]. This procedure

begins by defining a vector A and scalar potential ϕ such that

B = ∇×A, (2.3a)

E = −∇ϕ− ∂A

∂t
. (2.3b)

We substitute Eq. 2.3a and Eq. 2.3b into the Maxwell equations Eq. 2.1b and Eq. 2.1c. This

substitute yields

∇(∇ ·A)−∇2A+
1

c2
∂

∂t
∇ϕ+

1

c2
∂2

∂t2
A = µ0J, (2.4a)

−ϵ0∇2ϕ− ϵ0∇ ·
(
∂

∂t
A

)
= σ. (2.4b)

Both Eq. 2.4a and Eq. 2.4b are referred to as the field equations. These equations determine the

EM-field, based off a given distribution of current J and charge σ. However, the above forms for

the field equations are complicated, therefore it is convenient to introduce the Coulomb gauge,

which requires ∇ ·A = 0. The Coulomb gauge allows for simplification of our analysis as the

potentials can vary, all while leaving the physically measurable field unaffected. By invoking

the Coulomb gauge condition we reduce the redundancies of the vector potential; this is useful

as we wish to minimise the number of dynamic variables which describe the field dynamics. A

further simplification is facilitated by application of Helmholtz’ theorem, which states that we

can write a vector field as a sum of two components (one component with zero divergence and

the other component with zero curl). We can write the current density as J = JT + JL, where

JT is the transverse component (which has no divergence) and JL is the longitudinal component

(which has no curl). Further analysis means that JL = ϵ0
∂
∂t∇ϕ. This further analysis eliminates

the scalar potential from Helmholtz’ theorem decomposed field equation with the transverse
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current density. Therefore, the field equation Eq. 2.4a simplifies to

−∇2A+
1

c2
∂2

∂t2
A = µ0JT, (2.5)

this is equivalent to the transverse field equation if we were to use the Lorentz gauge instead

(∇ ·A + 1
c2

∂
∂tϕ = 0). The Lorentz gauge is useful as it has relativistic invariance, unlike the

Coulomb gauge. However, for the scope of this thesis we shall focus on the quantisation in the

Coulomb gauge only. We can also use Helmholtz’ theorem to decompose Eq. 2.3b, which means

we can state the transverse electric field ET in terms of the vector potential as

ET = −∂A
∂t

. (2.6)

The quantisation procedure is set for the free-space classical field, which is a region of space

where JT = 0 and there are no free charges. In free-space the electric field is entirely transverse

and so we set E = ET. By setting the transverse current density to zero this further simplifies

the field equation Eq. 2.5 into the form

−∇2A+
1

c2
∂2A

∂t2
= 0. (2.7)

Imagining the field is within a cubic cavity of side length L allows the decomposition of A into

a Fourier series

A(r, t) =
∑
k

2∑
s=1

ek,s
(
Ak,s(t)e

ik·r +A∗
k,s(t)e

−ik·r) , (2.8)

where s is the index for the polarisation and ek,s is the unit polarisation vector. This unit

polarisation vector has the condition ek,s ·k = 0 to ensure that the vector potential is transverse,

as required by the Coulomb gauge. It also has the condition ek,s ·ek,s′ = δs,s′ , which ensures that

two different polarisations are perpendicular to each other and that two identical polarisations

are parallel to each other. The Fourier coefficients
(
Ak,s(t) = Ak,se

−iωkt,A∗
k,s(t) = A∗

k,se
iωkt

)
satisfy the simple classical harmonic equation. For example, Ak,s(t) satisfies

∂2Ak,s(t)

∂t2
+ ω2

kAk,s(t) = 0. (2.9)

In terms of the time-independent components
(
Ak,s,A

∗
k,s

)
the energy of a mode of the EM-field

in this cavity is

Ek,s = ϵ0V ω
2
(
Ak,sA

∗
k,s +A∗

k,sAk,s

)
, (2.10)



CHAPTER 2. BACKGROUND THEORY 13

where V = L3 is the volume of the quantisation cavity. Furthermore, as our system is a

simple harmonic oscillator we can introduce the conjugate variables corresponding to generalised

position Qk,s and momentum Pk,s and express the energy of the field in terms of these variables

as

Ek,s =
1

2

(
P2

k,s + ω2
kQ

2
k,s

)
. (2.11)

Hence, we can express the time-independent component Ak,s in terms of the position and

momentum variables as

Ak,s =
1√

4ϵ0V ω2
k

(iPk,s + ωkQk,s) . (2.12)

Equation 2.8 and Eq. 2.9 show that the vector potential is described by a set of harmonic

oscillators and so quantisation of the EM-field is achieved by converting the position and

momentum variables into quantum-mechanical operators. Thus, Qk,s → q̂k,s, Pk,s → p̂k,s and

Ak,s → Âk,s. This quantised field is dynamically described by a quantum harmonic oscillator.

Our quantum operators that were our classical variables must satisfy the canonical commutation

relations

[q̂k,s, p̂k′ ,s′ ] = q̂k,sp̂k′ ,s′ − p̂k′ ,s′ q̂k,s = iℏδkk′ δs,s′ , (2.13a)

[q̂k,s, q̂k′ ,s′ ] = 0, (2.13b)

[p̂k,s, p̂k′ ,s′ ] = 0, (2.13c)

where δkk′ is the Kronecker delta which has δkk′ = 0 for k ̸= k
′
and δkk′ = 1 for k = k

′
. The

commutator relation Eq. 2.13a is non-zero when k = k
′
and s = s

′
, hence the two observables

position and momentum cannot be measured infinitely accurately in a quantised field: the details

behind this are discussed in Ch. 2.3. Furthermore, for any canonically conjugate operators X̂

and Ŷ (i.e [X̂, Ŷ ] = z, where z is a complex number), if there is a time-dependence for these

operators then the equal-time commutator

[X̂(t), Ŷ (t)] = z, (2.14)

is the same as its commutator when there is no time-dependency upon those operators.

With the equal-time commutator result in mind we now demonstrate the similarity be-

tween the abstract canonical position and momentum operators to the canonical position and

momentum for the field in position-space. In the Coulomb gauge, −ϵ0Ê(r, t) is the canonical

momentum of the field, where Â(r, t) is the canonical position for the field. The equal-time
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commutator between Cartesian components of these operators is

[Âi(r, t),−ϵ0Êj(r
′
, t)] = iℏδTij(r− r

′
), (2.15)

where δTij =
1

(2π)3

∫
dk(δij− kikj

k2 )eik·(r−r
′
) is the transverse delta-function. Equation 2.15 results

from a rigorous derivation of the quantisation of the EM field beginning with a Lagrangian with

appropriate conjugate variables which lead onto expressing the field variables already defined.

Furthermore, the reason why we express this commutator between the Cartesian components

is that the Cartesian components are not independent of each other (due to the transverse

nature of the vector potential and field). The similarity of Eq. 2.15 to the canonical position

and momentum commutator in Eq. 2.13a is obvious.

Further analysis with a quantised field is benefited by introducing the (dimensionless)

canonical creation operator

â†k,s =
1√
2ℏω

(ωq̂k,s − ip̂k,s), (2.16)

this relates to the time-independent vector potential amplitude as Â†
k,s =

√
ℏ

2V ϵ0ωk
â†k,s. The

creation operator â†k,s in effect ‘creates’ a quantum of energy ℏω in a mode, also referred to as

a photon in the context of optics. The creation operator and its hermitian conjugate (h.c.),

the destruction operator has a commutator relation derived from Eq. 2.13a. This commutator

relation is [âk,s, â
†
k,s] = δkk′ δs,s′ . This commutation shows that each quantised mode influences

itself only.

From Eq. 2.6 and Eq. 2.8 the multi-mode classical electric field vector in a free-space cubic

cavity (when spatial freedom constrained to the z-axis, is collinear on the z-axis and considering

only one polarisation) is

E(z, t) = i
∑
kz

ωk

(
Ake

−i(ωkt−kzz) −A∗
ke

i(ωkt−kzz)
)
, (2.17)

where ωk represents the frequency for a given wavenumber k, which for the constrained field

on one axis the wavenumber is thus k = |k| = kz. For the remainder of this thesis we omit the

unit polarisation vector ek,s and only consider one polarisation, for brevity. We also consider

that the cavity walls have periodic boundary conditions, therefore the wave-vector z-component

takes the discrete values kz = 2πν
L , where ν is any integer. It is simple to recast the above as a
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multi-mode quantum-mechanical electric field operator, as

Ê(z, t) = i
∑
kz

√
ℏωk

2ϵ0V

(
âke

−i(ωkt−kzz) − â†ke
i(ωkt−kzz)

)
. (2.18)

However, later in this thesis there is a conscious effort to ensure that the number of modes

within each quantum system is limited, for the sake of simplicity. It is wise to define the classical

electric field vector over entire frequency domain, this requires a change from discrete modes to

continuous modes. We can imagine our cavity z-axis having infinite extent but with a finite

cross-sectional Ac.s area perpendicular to the z-axis. As we are restricted to one axis, the

wavenumber k = ω
c is equivalent to the mode variable kz. From our relation of wavenumber

to angular frequency, the mode spacing is ∆ω = 2πc
L . The mode spacing must tend to zero

∆ω → 0 if we wish to consider the set of modes as a continuum, which justifies the condition

that our cavity z-axis length L has an infinite extent. Therefore, we convert from a discrete sum

of modes to a continuous integral via the relation
∑

kz
→ 1

∆ω

∫
dω. We also convert from the

discrete mode destruction operator to its continuous counterpart as â→ (∆ω)
1
2 â(ω) [105]. The

creation operator is similarly converted. The quantum-mechanical electric field operator for a

multi-mode state over the entire frequency domain is

Ê(z, t) = i

∫
dω

√
ℏω

4πcϵ0Ac.s

(
â(ω)ei(kz(ω)z−ωt) − â†(ω)e−i(kz(ω)z−ωt)

)
, (2.19a)

= Ê+(r, t) + Ê−(r, t), (2.19b)

where â†(ω) is the creation operator for frequency ω, kz(ω) is the z-axis wave-vector for frequency

ω and Ê−(r, t) contains the creation operator term in the decomposition of the electric field

into positive and negative frequency terms.

An important concept to now introduce is Hilbert space H as each mode of the quantised

EM-field has its own. This is a vector space with an inner product ⟨·, ·⟩ which has a norm || · ||

defined as

||v1|| =
√
⟨v1, v1⟩, (2.20)

for a vector v1 ∈ H. The space H must be complete with respect to the norm ||v1 − v2||, where

v2 ∈ H. In other words every Cauchy sequence converges to an element in H. A Cauchy sequence

is a sequence in which the elements become arbitrarily close to each other as the sequence

progresses. The properties required for a Hilbert space are all useful in the analysis of light. For

example, the existence of the inner product allows for the similarity between two states to be
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investigated. No similarity means they are orthogonal, which is easily defined in inner product

terms as ⟨·, ·⟩ = 0.

Another useful concept to introduce is Dirac notation. This notation succinctly describes

quantum states and their actions with inner-products and outer-products. For example, a system

with a wave-function ψ(x) with spatial coordinates has a state vector |ψ⟩ which fully describes

the system in Hilbert space. The state vector |ψ⟩ can be expanded into a basis of energy

eigenstates |En⟩. To demonstrate this we begin with the Hamiltonian eigenvalue equation,

Ĥ|En⟩ = En|En⟩, (2.21)

for energy En at energy level n. For the scope of this thesis, in quantum-mechanics the

Hamiltonian is an operator which specifies the energy of a quantum system. The Hamiltonian is

also useful for expressing the evolution of a quantum state |ψ(t)⟩ in the interaction picture. The

time-dependent Schrodinger equation is

iℏ
∂|ψ(t)⟩
∂t

= Ĥ(t)|ψ(t)⟩, (2.22)

this describes the time-evolution of a quantum state |ψ(t)⟩. If we take an initial time t = 0, any

quantum state at time t is solved to be

|ψ(t)⟩ = e−
i
ℏ
∫ t
0
dt̃Ĥ(t̃)|ψ(0)⟩. (2.23)

The initial quantum state is |ψ(0)⟩ = |ψ⟩. We now frame the state vector |ψ⟩ in the energy

eigenstate basis

|ψ⟩ =
∞∑

n=0

En|En⟩, (2.24)

where En = ⟨En|ψ⟩.

In summary, this section quantised the EM-field, introduced the concept of the Hamiltonian

and its purposes, Hilbert space and Dirac notation. The following section elaborates upon the

creation operator for a single mode and how a basis based off of photon number (the Fock basis)

in Hilbert space allows for straight-forward analysis of light.
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2.2 The Fock state

The creation of a photon from the initial state of a single-mode vacuum in Dirac notation is

â†|0⟩ = |1⟩. (2.25)

Here |1⟩ represents a single-photon Fock state as

|1⟩ = (0, 1, 0, . . . )T, (2.26)

with the vector an element of (infinite-dimensional) Hilbert space. The Fock state is a quantum

state and these states can be used as a basis for the quantum state vector of a mode, as the

Fock basis spans its Hilbert space. In less mathematical terms, this means that any possible

photon-number a mode can have can be described by a Fock state.

An arbitrary single-mode pure quantum state |ψ⟩ expressed in the Fock basis is

|ψ⟩ =
∞∑

n=0

cn|n⟩, (2.27)

for a set of complex numbers cn and the n-photon Fock states |n⟩. The Fock states form an

orthonormal basis, as ⟨n|m⟩ = δnm. Using this the inner product of |ψ⟩ with itself is therefore

very simple

⟨ψ|ψ⟩ =
∞∑

n=0

cnc
∗
n, (2.28)

where for a normalised state Eq. 2.28 equals to one. Otherwise, an unnormalised state |ψ⟩unnorm

can become normalised by

|ψ⟩ = |ψ⟩unnorm
⟨ψ|ψ⟩unnorm

(2.29)

As useful as analysis with state vectors are, it is often more convenient to analyse quantum

states in the density matrix formalism. The state vector |ψ⟩ in terms of a density matrix is

ρ̂ = |ψ⟩⟨ψ| =
∞∑

n,m=0

cn,m|n⟩⟨m|, (2.30)

where cn,m = cnc
∗
m is a complex coefficient and |n⟩ and |m⟩ are Fock states. The terms cn,n

are known as the populations and they give the probability of a quantum state inhabiting the

eigenstate |n⟩. The terms cn,m when c ̸= m are called the coherences and these contain the

phase information about the state. Therefore, a state is fully characterised by its density matrix;
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however, only pure states P = 1 can be expressed in terms of a state vector. Purity P is defined

as P = Tr(ρ̂2). A state with purity P < 1 is referred to as a mixed state and cannot be described

by a state vector: this fact illustrates the benefit of density matrix formalism. One frequently

encountered mixed state is a state with only diagonal elements in the photon-number basis. The

lack of coherences in such a density matrix represents the lack of knowledge available for this

state; this means we only have probabilistic information about the state in that basis. Most

states encountered are mixed states with only diagonal elements, often due to interactions and

the resulting decoherence with the environment.

The operators (â†, â) are not observable, as they are not Hermitian. However, the number

operator n̂ = â†â is Hermitian, i.e. observable. The expectation value of this operator is the

mean photon number n̄. For example, for the state |ψ⟩ = 1√
2

(
|0⟩+ |1⟩

)
its mean photon number

is

n̄ = ⟨ψ|n̂|ψ⟩ = 1

2
. (2.31)

The Hamiltonian of a single-mode of the quantised EM-field is reexpressed with the number

operator n̂ as

Ĥ = (n̂+
1

2
)ℏω. (2.32)

Analysis and characterisation of quantum states with the Fock basis is relied upon heavily in

this thesis, however the consideration of quantum states through the framework of phase-space

in the next section is a worthwhile discussion.

2.3 Phase-space and the coherent state

The knowledge that an observer has of a state’s measurable quantities is at odds with clas-

sical theory due to the Heisenberg uncertainty principle, which sanctions that two conjugate

observables (such as position q̂ and momentum p̂) cannot be fully known simultaneously. The

Heisenberg uncertainty relation sets a lower bound on the uncertainty of measuring these two

observables defined as [106], [107]

∆q̂∆p̂ ≥ ℏ
2
, (2.33)

where for any operator Â we have ∆Â =

√
⟨Â2⟩ − ⟨Â⟩2 and the notation ⟨Â⟩ = Tr(ρ̂Â) represents

the expectation value of an operator Â for any specified quantum state ρ̂. The operators q̂ and
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p̂ are rescaled to be the dimensionless quadrature operators for a single-mode field, thus

X̂1 =
1

2
(â+ â†), (2.34a)

X̂2 =
1

2i
(â− â†) (2.34b)

represent the dimensionless quadrature operators associated with the position and momentum

operators respectively. The commutator relation for the quadrature operators is [X̂1, X̂2] =
i
2 .

Furthermore, the Heisenberg uncertainty principle is restated in terms of these quadrature

operators as

(∆X̂1)
2(∆X̂2)

2 ≥ 1

16
. (2.35)

The quadratures are orthogonally out of phase of each other. The quadratures define phase

space on a 2D plane. The rationale of this section is that analysis of a system in phase-space

rather than via the Fock basis is often easier and the effect that some operators have upon

quantum states is visually apparent.

The single-mode vacuum has a state vector |ψ⟩ = |0⟩. The vacuum minimises the uncertainty

relation as ∆X̂1 = ∆X̂2 = 1
2 . The displacement operator is

D̂(α) = eαâ
†−α∗â, (2.36)

for a complex number α. Application of the displacement operator to the vacuum yields the

Glauber-Sudarshan coherent state with state vector [108]

D̂(α)|0⟩ = |α⟩ = e−
|α|2
2

∞∑
n=0

αn

n!
|n⟩. (2.37)

This state also minimises the Heisenberg uncertainty relation. It is a valuable state to consider,

as it is the most ‘classical-like’ of quantum states and its properties lend itself as a reasonable

approximation for mathematically expressing a single-mode output of laser light. Figure 2.1

shows both the (a) vacuum state and (b) coherent state with amplitude |α| = 1
2 and phase

θ = π
4 on phase space, with the shaded circle as the area of uncertainty. Figure 2.1(b) also

shows that the coherent state has uncertainty of amplitude ∆|α| as the circle of uncertainty is

shaded for different values of |α| from the origin, similarly there is an uncertainty of phase ∆θ,

both the amplitude and phase are more intuitive properties of a state than its quadratures.

The coherent state and its role with phase space are important to note also. For example,

⟨X̂1⟩α = R(α) and ⟨X̂2⟩α = I (α), where the subscript denotes that its the expectation value
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of the operator in the state |α⟩. This shows that the complex α-plane can represent phase-space.

Any quantum state can be expressed in terms of the coherent state as coherent states form an

over-complete basis. The ability of the coherent state to represent any state vector is elucidated

by phase space and the complex α-plane being analogous. Any state vector |ψ⟩ is expressed in

the coherent state basis as

|ψ⟩ =
∫
d2α

π
|α⟩⟨α|ψ⟩, (2.38)

where the integral is over the entire complex α-plane so d2α = dR(α)dI (α). This is an

alternative to using the Fock basis for the expression of a state.

Another approach to framing a quantum state in the coherent basis is via the P -function

[109], [110], which under certain conditions can be considered as a phase-space probability

distribution. Knowledge of this function can help us characterise and visualise a quantum state.

For an arbitrary density matrix ρ̂ in the photon-number basis, it is re-expressed in the coherent

basis as

ρ̂ =

∫
P (α)|α⟩⟨α|d2α, (2.39)

where P (α) = e|α|2

π2

∫
e|u|

2⟨−u|ρ̂|u⟩eu∗α−uα∗
d2u. The P -function is not always well-behaved or

properly defined, sometimes it has negative values or is highly singular. In such situations the

interpretation of P (α) as a phase-space probability distribution is invalid. If the P -function is

not properly defined and well-behaved the state typically has observable properties that are not

obtainable in classical physics. We call such states non-classical. For non-classical states other

phase-space quasi-probability distributions such as the Husimi function or the Wigner function

are used to express the state in question [111], [112]. In this thesis only the P -function is used,

due to its benefit when transforming classical-like quantum states into the coherent basis and

that it allows an easy check whether a state is non-classical or not.

2.4 Single-mode squeezing

For classical-like states there is a noise floor that determines how precisly a measurement can

be made. This floor is dubbed the shot noise, which in our context originates from quantum

fluctuations and Heisenberg’s uncertainty principle. However, squeezing allows measurements of

observables to be more precise than classical physics would allow. From the used (squeezed)

non-classical states many applications result; for example, the detection of gravitational waves,

which were previously inaccessible as quantum fluctuations drowned out the extremely weak

signal of these waves [113], [114].
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(a) (b)

Figure 2.1 – Phase-space portraits for (a) the single-mode vacuum state and (b) the single-
mode coherent state. The X̂1 quadrature is in the x-axis and the X̂2 quadrature is in the y-axis.
The uncertainty of the quadratures are annotated in (a) and the effect displacement has upon
the vacuum is shown in (b), for a complex number α = |α|eiθ.

There is squeezing of a quadrature of the field if either (∆X̂1)
2 < 1

4 or (∆X̂2)
2 < 1

4 . If

one quadrature if squeezed, then the other must compensate by being more uncertain than

before the squeezing. The nomenclature of ‘squeezing’ is apparent in the phase-phase portrait

of quadrature squeezing in Fig. 2.2. The single-mode squeezing operator is

Ŝ1(r) = e
1
2 (ζ

∗â2−ζâ†2), (2.40)

where the squeezing complex number ζ = reiθ, with r as the squeeze parameter which dictates

the amount of the squeezing acted upon the state and 0 ≤ r ≤ ∞, and θ is the phase. When

the phase θ = 0, the effect of Ŝ1(r) upon the two quadratures of the vacuum state is

(∆X̂1)
2 =

1

4
e−2r, (2.41a)

(∆X̂2)
2 =

1

4
e2r. (2.41b)

In the degenerate case of no squeezing r = 0, the vacuum state is recovered and the quadrature

uncertainties are at the values set by the quantum fluctuations of the vacuum. However for

r > 0 the X̂1 quadrature uncertainty is reduced below what classical physics allows, as shown in

the phase-space portrait for the quadrature squeezed vacuum state in Fig. 2.2. In other words,

the single-mode squeezing operator when the phase θ = 0 squeezes the X̂1 quadrature. Whereas

the X̂2 quadrature is anti-squeezed, i.e. its uncertainty is increased accordingly.

Experimentally, single-mode squeezing can be produced by a degenerate parametric down-



CHAPTER 2. BACKGROUND THEORY 22

Figure 2.2 – Phase-space portrait for the X̂1 quadrature squeezed vacuum state. The
squeezing parameter r = 1. (∆X̂1)

2 ≈ 0.0338 and (∆X̂2)
2 ≈ 1.847.

converter [115]. In this situation, light from a strong coherent pump beam is converted to light

of a lower frequency in two modes after interaction (via the χ(2) nonlinear susceptibility) with a

nonlinear non-centrosymmetric crystal. If the frequencies of the two modes are the same, the

wave-vectors are the same such that they are collinear and they have the same polarisation then

they can be considered as one mode. A nonlinear material is defined as a material with any

susceptibility χ(n) ̸= 0, n ≥ 2. Moreover, the parametric approximation is made, which is the

approximation that the pump mode operator âP can be transformed into a classical variable α,

this simplifies the calculation with this operator greatly. The parametric approximation was

applied to Eq. 2.40. The classical amplitude of the pump α and the second-order susceptibility

χ(2) is encoded in the squeezing complex number ζ = αχ(2) [116]. The parametric approximation

is possible due to the pump field being orders of magnitude stronger than the output modes from

the nonlinear process. The degenerate parametric down-conversion interaction is modelled by the

operator Ŝ(r) acting upon the vacuum, as described mathematically earlier. The aforementioned

results assume that a monochromatic and intensity stabilised coherent state is used. In the

following section, (non-degenerate) parametric down-conversion for broadband light is described.

Non-degenerate parametric down-conversion is equivalent to squeezing upon two modes and this

is where non-classical effects are far more pronounced and interesting. It is two-mode squeezing

which underpins the non-classical light source considered in this thesis.
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Pump

Signal

Idler

Nonlinear medium

Energy conservation

Momentum conservation

Figure 2.3 – Diagram of the SPDC process involving the pump, signal and idler beam.
Energy conservation is shown in the energy diagram and conservation of momentum is shown
with the wave-vectors.

2.5 SPDC process

Spontaneous parametric down-conversion (SPDC) is an invaluable tool in quantum optics.

It underpins the generation of the quantum-correlated twin-beam state of light used in this

research. The output from SPDC results in light with strong temporal, spatial and polarisation

correlations. Moreover, this light has many applications, for example in quantum information

processing for the heralding of a single-photon source. However, as a single-photon source it has

problems due to the probabilistic output of these single-photons and that if the purity of these

single-photons is desired, this causes them to be exceedingly rare events.

SPDC is initiated by a strong pump field driven into a noncentrosymmetric crystal: as only

noncentrosymmetric materials have a χ(2) nonlinear susceptibility. This pump field is expressed

as a coherent state and it has its own mode denoted by the labeling (p). The interaction of the

pump field with the nonlinear material (often a crystal) induces a polarisation in the material

and the output of this process is a twin-beam, which is a highly entangled bipartite state |ψ⟩SPDC

with modes conventionally referred to as the signal (S) and idler (I), as shown in Fig. 2.3. In

this section the SPDC output is initially derived from the Hamiltonian interaction; this serves

to mathematically express the experimental conditions required for effective generation of these

states. Following this derivation, the SPDC process and its relation to multi-mode squeezing is

demonstrated.

The classical interaction Hamiltonian of the pump field and the nonlinear medium is [117]

Hint(t) ∝
∫
Ep(r, t) · D̃(r, t)dr, (2.42)



CHAPTER 2. BACKGROUND THEORY 24

introducing the electric field displacement vector D̃(r, t). The introduced vector allows for

the nonlinear interaction of the medium and the pump light. Therefore, it is decomposed

into linear and nonlinear components D̃(r, t) = D̃(1)(r, t) + P̃NL(r, t). As three fields of light

are being dealt with the nonlinear polarisation term is restricted to just the χ(2) term, hence

P̃NL = ϵ0χ
(2)ES(r, t)EI(r, t) and the linear term in the electric displacement vector is neglected.

Therefore, the χ(2) classical interaction Hamiltonian is now proportional to

Hχ(2)(t) ∝ ϵ0χ
(2)

∫
Ep(r, t)ES(r, t)EI(r, t)dr (2.43)

The following derivation is simplified by assuming that the pump, signal and idler beams

are all collinear and that spatial freedom is restricted to the z-axis for a crystal with length

Lc. Moreover, the signal and idler electric fields are replaced with their quantum-mechanical

operators. Thus, the quantum-mechanical interaction Hamiltonian with energy conserving terms

only is [118]

Ĥ(t) ∝ ϵ0χ
(2)

∫ Lc
2

−Lc
2

dzE+
P (z, t)Ê−

S (z, t)Ê−
I (z, t) + h.c, (2.44)

where the parametric approximation is applied to ensure that the electric field of the pump

Ep(z, t) is treated classically. We define the classical electric field of the pump (over the entire

frequency domain) as

Ep(z, t) =

∫
dωp

(
α(ωp)e

i(kz(ωp)z−ωpt) + α∗(ωp)e
−i(kz(ωp)z−ωpt)

)
. (2.45)

Additionally, for Ê−
S (z, t) and Ê−

I (z, t) in Eq. 2.44 we use the electric field operator with

negative frequency components as defined in Eq. 2.19b. From this Hamiltonian the output of

the SPDC process is received

|ψ⟩SPDC = e
− i

ℏ
∫ t
t0

Ĥ(t
′
)dt

′

|0, 0⟩, (2.46)

where we use the short-hand |0, 0⟩ = |0⟩S ⊗ |0⟩I, with ⊗ representing the tensor product between

two different Hilbert spaces.

Explicit calculation of |ψ⟩SPDC in the form given in Eq. 2.46 is difficult, therefore a pertur-

bation expansion is applied [119]. Therefore, the state is approximately

|ψ⟩SPDC ≈ |0, 0⟩ − i

ℏ

∫ t

0

dt
′
Ĥ(t

′
)|0, 0⟩+

(
−i
ℏ

)2 ∫ t

0

dt
′
Ĥ(t

′
)

∫ t
′

0

dt
′′
Ĥ(t

′′
)|0, 0⟩+ . . . (2.47)
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We focus on calculation of the first two terms in Eq. 2.47. After substitution of the necessary

expressions into Eq. 2.44, the time integrals in Eq. 2.47 has its limits replaced to (−∞,∞); this

is reasonable as our interest is in the state after it is in the crystal. Solving this time integral

yields the term 2πδ(ωS +ωI −ωp) which involves the Dirac delta function. Therefore, the energy

conservation condition required for effective SPDC dictates that ωp = ωS + ωI, as visualised

in Fig. 2.3 and encoded in the Hamiltonian Eq. 2.44. The energy conservation condition also

removes the time-dependence of Eq. 2.47. Following this, the z-integral is solved, which yields the

term Lcsinc(∆k(ωS, ωI)
Lc
2 ), where the phase-mismatch ∆k = kp(ωp)− kS(ωS)− kI(ωI) encodes

the phase-matching conditions for an effective SPDC process, also visualised in Fig. 2.3. The

pump frequency integral is neglected as there is no dependency on pump frequency, due to the

energy conservation condition.

The SPDC state is approximately

|ψ⟩SPDC ≈ |0, 0⟩+ i

∫ ∫
dωSdωI

(
χ(2) 1

2cAc.s
f(ωS, ωI)â

†
I (ωI)â

†
S(ωS)|0, 0⟩

)
, (2.48)

where we have only used the first two terms of Eq. 2.47 to calculate Eq. 2.48. Additionally the

joint spectral amplitude (JSA) is f(ωS, ωI) = α(ωS + ωI)
√
ωSωILcsinc(∆k

Lc

2 ). Equation 2.48 is

an entangled state photon-pair and vacuum state. The non-classical character of this state is

dependent upon f(ωS, ωI) being non-factorisable between the terms corresponding to the signal

and idler modes.

The crystal length integral is evaluated to be Lcsinc(∆k
Lc
2 ) this means that if the phase-

mismatch ∆k = 0 then the pump energy is transferred into the signal and idler fields as effectively

as possible. However, if ∆k = 2mπ
L , for any integer m ≠ 0 then there is no SPDC process, as the

signal and idler electric field does not build up due to destructive interference. Therefore, the

system should be designed such that the phase-mismatch ∆k ≈ 0 for effective SPDC to occur —

engineering this is not a trivial problem. Due to different frequencies having different refractive

indexes and consequently different phase shifts there is a limitation on what is chosen as the

pump frequency, polarisation and crystal length for phase-matching. Phase-matching is possible

with a birefringent crystal (a material with a refractive index depending on its polarisation and

wave-vector). This phase-matching with a birefringent crystal depends on suitable choices for

pump frequency and polarisation. An alternative that does not require such stringent conditions

as normal phase-matching is quasi-phase matching [120]. This requires specially designed crystals

that have what is known as a poling period, which is regions of alternating polarisation, this

causes a cancelling any build-up of phase-mismatch. The catch is that its not as efficient as
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birefringent phase-matching for SPDC; however, the signal and idler beam collection optics

are more simplistic and there is greater freedom of polarisation and frequency choices. These

benefits outweighs this relative lack of efficiency and quasi-phase matching is more widespread

in use.

Now that the SPDC output state has been derived from Hamiltonian interaction, it is time

to relate this state to the abstract case of using a two-mode squeezing operator Ŝ(ωS, ωI) acting

upon the vacuum. This operator for two-mode squeezing is

Ŝ2(ωS, ωI) = e−ζ(ωS+ωI)â
†
S(ωS)â

†
I (ωI)+ζ∗(ωS+ωI)âS(ωS)âI(ωI), (2.49)

where the squeezing complex number ζ(ωS + ωI) is a function of the signal and idler modes.

The operator in Eq. 2.49 describes multi-mode squeezing; which is when squeezing of the

quantum fluctuations is in the superposition of the two modes, rather than in the quadrature

of a single-mode. We can define the (summation and difference) superposition quadrature

operators in terms of the single-mode quadrature operators given in Eq. 2.34, with the relevant

mode-labelling, as X̂s
1 = 1√

2

(
X̂I:1 + X̂S:1

)
, X̂d

1 = 1√
2

(
X̂I:1 − X̂S:1

)
, X̂s

2 = 1√
2

(
X̂I:2 + X̂S:2

)
and X̂d

2 = 1√
2

(
X̂I:2 − X̂S:2

)
[121]. Where X̂I:1 represents the X̂1 quadrature operator for the

idler mode, for example. The summation and difference superposition quadrature commutator

relations are equivalent to the single-mode relation with [X̂s
1 , X̂

s
2 ] = i

2 and [X̂d
1 , X̂

d
2 ] = i

2 ,

respectively. When we set the phase θ = 0 of the exponential form of ζ(ωS + ωI), both X̂s
1 and

X̂d
2 are squeezed by the operator Eq. 2.49, whereas the other two quadratures are anti-squeezed.

If we wish to visualise the squeezing upon this system, the following approach can be useful. For

an arbitrary quadrature operator X̂θ there is its quadrature eigenstate |Xθ⟩. Hence, from this

eigenstate, we can plot on phase-space the probability distribution for any quadrature operator

and state |ψ⟩ as P(Xθ, θ) = |⟨Xθ|ψ⟩|2. Following from this, Hong-yi and Klauder derived the

eigenstates for the superposition quadrature operators [122].

Non-classical correlations between the two modes are exhibited due to this two-mode

squeezing. The resulting photon-number, frequency, temporal and polarisation correlations

between the two modes are what we explicitly and implicitly use in this thesis, rather than direct

measurement of the squeezed two-mode superposition quadrature. The two-mode squeezing

operator applied to the vacuum over the entire frequency domain for signal and idler is

|ψ⟩Ŝ2
=

∫ ∫
dωSdωIŜ2(ωS, ωI)|0, 0⟩. (2.50)
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Applying the disentangling theorem to the operator results in the operator which is easier to

calculate with [123], the details for this derivation is given later in a more general form in

Eq. 5.4b. We set reiθ = ζ(ωS + ωI) and thus the state vector from the two-mode squeezing

operator Ŝ2 is

|ψ⟩Ŝ2
= sech(r)

∫ ∫
dωSdωI

(
|0, 0⟩ − eiθtanh(r)â†S(ωS)â

†
I (ωI)|0, 0⟩+ . . .

)
, (2.51)

therefore it is easy to see that |ψ⟩Ŝ2
∝ |ψ⟩SPDC, when the perturbation expansion of Eq. 2.47

is fully calculated. In other words the SPDC state is a superposition of photon-pair creations,

another indication that this is a non-classical state of light. The two-mode squeezing operator is

used in the quantum state of light in the LIDAR model as it provides an easy route to expressing

simplified forms of the output of the SPDC process.

2.6 Quantum coherence function

Another tool for characterising light is via analysis of the correlations and coherence properties

exhibited by a state of light [124]. The quantum degree of first order coherence function at the

space-time points (z1, t1) and (z2, t2) is

g(1)(z1, t1; z2, t2) =
⟨Ê−(z1, t1)Ê

+(z2, t2)⟩(
⟨Ê−(z1, t1)Ê+(z1, t1)⟩⟨Ê−(z2, t2)Ê+(z2, t2)⟩

) 1
2

, (2.52)

this function reveals if the two fields, when superposed, will display interference fringes. It is

also useful for determining the spectrum of the light via the Wiener-Khintchine theorem [125].

To further simplify Eq. 2.52 the fields are considered to be stationary, that is their properties

do not vary with time and so the initial time t1, t2 is irrelevant. In reality however, states are

not stationary and their properties are only stable for a period of time known as its coherence

time τcoh: an assumption is made that for any inspected time delay τ ≪ τcoh. Following this, a

fixed spatial point is set and the time delay τ = t2 − t1 − z2−z1
c is defined, therefore Eq. 2.52

(for stationary light) simplifies to

g(1)(τ) =
⟨Ê−(t)Ê+(t+ τ)⟩
⟨Ê−(t)Ê+(t)⟩

. (2.53)

Clearly the first order quantum coherence function measures the correlations between the electric

field of the light. Whereby |g(1)(τ)| = 1 signifies first order coherence, |g(1)(τ)| = 0 signifies first

order incoherence and |g(1)(τ)| ≠ 1, 0 signifies first order partial coherence. When the coherence
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50:50

Time delay

Detector 1

Detector 2

Correlator

Figure 2.4 – The Hanbury Brown and Twiss interferometer. The light to be analysed ρ̂ enters
a 50:50 beamsplitter. One output arm has a variable time delay τ . There is a detector for each
output arm of the beamsplitter and they are connected to a correlator.

time τcoh = ∞, the single-mode case for the first order quantum coherence function is

g(1)(τ) = e−iτ . (2.54)

Hence, any single-mode field at any delay is first order coherent |g(1)(τ)| = 1. We lead onto

the second order quantum coherence function which is a useful tool to identify properties

pertaining to non-classical light. The second order quantum coherence function (with the same

simplifications applied) is

g(2)(τ) =
⟨Ê−(t)Ê−(t+ τ)Ê+(t+ τ)Ê+(t)⟩

⟨Ê−(t)Ê+(t)⟩2
. (2.55)

This measures the intensity correlations within the field, rather than the electric field correlations,

where the intensity of a light field is I(t) = ⟨Ê−(t)Ê+(t)⟩. The Hanbury-Twiss-Brown interfer-

ometer is depicted in Fig. 2.4, this experiment enabled calculation of the g(2)(τ) properties of

the analysed light [126], assuming that the delay is less than the coherence time of the light.

The single-mode case of the second order quantum coherence function is

g(2)(τ) =
⟨: (â†â)2 :⟩
⟨â†â⟩2

=
⟨n̂(n̂− 1)⟩

⟨n̂⟩2
, (2.56)

where : : represents normal ordering of operators, which in this context is where all creation

operators are to the left of the destruction operators. The normal ordering is expected as photo-

detection is an absorptive process [127]. Moreover, the right-hand-side of Eq. 2.56 is instructive
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of how measurement in quantum-mechanics perturbs the system which is being measured, as the

same mode is being measured twice. The second order quantum coherence function is interesting

because it is capable of yielding results which are forbidden in classical physics. Any value of

g(2)(0) < 1 is a purely quantum behaviour as such values in classical physics are not permissible

as a possible measurement, as shown by the Cauchy-Schwarz inequality defined in Eq. 2.69.

Hence such negative values are a good indicator of non-classical light. Light that exhibits the

non-classical property that g(2)(τ) > g(2)(0), for a delay τ , is known as anti-bunched light.

When measuring anti-bunched light, we observe that a detection event reduces the chance of

another detection event immediately after the first detection event. The single-photon state has

g(2)(0) = 0, which is obvious as a photon cannot be split in two, hence an instantaneous second

detection is impossible. Light that has g(2)(0) > g(2)(τ) is known as bunched light, which is

detection of light raises the chance of an immediate follow-up detection. The photons cluster

together. Lastly, Poissonian light has a second order quantum coherence function g(2)(0) = 1,

this means that subsequent detection of light is a completely random process: each photon

arrival time is independent from each other.

2.7 Characterisation of the states of light

The preceding sections provides a tool-kit on how to characterise a state of light. Analysis with

the Fock state basis, coherent state basis and phase-space and quantum coherence functions

are all used in this section. Each modality of analysis has its own virtues when differentiating

between all of the light sources considered in this thesis.

2.7.1 Noise source

We cannot escape noise. The environment and our detectors are flooded by it. For example,

photo-detectors suffer from noise intrinsic to their detection system, dubbed dark noise. There

are detector counts spontaneously produced or stimulated from within the detector due to the

electronics, after-pulsing stimulated from prior incident light, or the blackbody emission due to

the non-zero temperature of the detector material. Noise from the background environment is

similarly random. However, what is considered as ‘noise’ need not be random, it can be from a

coherent light source aimed at our detectors by a hostile party. Therefore, it is more general to

define noise as any light source incident upon our detectors that is not from the intended light

generated for the LIDAR system.

Electromagnetic radiation generated from a body with a temperature T is governed by the
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theory of blackbody radiation. In particular, light cast from the sun is well approximated by

the theory of blackbody radiation: which of course is a major source of environmental noise.

Such light will be referred to as thermal light from now on, which is in thermal equilibrium with

its environment. This form of light has a density matrix given by the Boltzmann distribution,

given in the single-mode case as

ρ̂th =
e
− Ĥ

kBT

Tr(e
− Ĥ

kBT )
, (2.57)

where Ĥ is the Hamiltonian of a single-mode of the quantised EM-field and kB is the Boltzmann

constant. This section will focus on noise as a thermal state of light. In the following derivation,

brevity is achieved by introducing the dimensionless factor β ≡ ℏω
kBT . Using the Hamiltonian

from Eq. 2.32, 1̂ =
∑∞

n=0 |n⟩⟨n| and that Trf(n̂) =
∑∞

n=0⟨n|f(n̂)|n⟩ =
∑∞

n=0 f(n), the density

matrix of single-mode thermal light is now

ρ̂th =

∑∞
n=0 e

−βn|n⟩⟨n|∑∞
m=0 e

−βm
. (2.58)

Solving the infinite series on the denominator of Eq 2.58 and knowing that ⟨n̂⟩ = n̄ = 1
eβ−1

the

density matrix is hence

ρ̂th =

∞∑
n=0

n̄n

(n̄+ 1)n+1
|n⟩⟨n|. (2.59)

This state is a mixed state P < 1 with only diagonal elements in its density matrix and so it

is described by a statistical average of energy levels of the quantum harmonic oscillator. This

state also has a well-behaved P -function, therefore in the coherent state basis the single-mode

thermal state is

ρ̂th =
1

πn̄

∫
d2α̃e−

|α̃|2
n̄ |α̃⟩⟨α̃| (2.60)

The photon-number distribution is given by P (n) = ⟨n|ρ̂th|n⟩ = n̄n

(n̄+1)n+1 , for any photon-number

n. Single-mode thermal light is referred to as super-poissonian light as the variance of the mean

photon number is greater than the mean photon number ∆n̂2th = n̄(2n̄+ 1). This light has the

second order quantum coherence function g(2)(0) = 2 > g(2)(τ), which is photon-bunched light.

The photon number statistics for single-mode thermal light has a Bose-Einstein distribution,

shown by Fig. 2.5.

2.7.2 Classical illumination

The involvement of CI in the LIDAR model is required for there to be any qualitative and

quantitative reason as to why QI-based protocols are beneficial. The light source for CI is
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Figure 2.5 – Photon-number distribution for a single-mode thermal state of light with mean
photon number n̄ = 2. The probability is on the y-axis and the photon-number is on the x-axis.

Figure 2.6 – Photon-number distribution for a single-mode coherent state of light with mean
photon number n̄ = 2. The probability is on the y-axis and the photon-number is on the x-axis.

modelled with a single-mode thermal state in the remainder of the thesis, however it is also

possible to use the single-mode coherent state |α⟩ as the CI light source.

It is trivial for the single-mode coherent state to be represented by the P -function and the

coherent state basis as

ρ̂coh =

∫
d2βδ(R(α)− R(β))δ(I (α)− I (β))|β⟩⟨β| = |α⟩⟨α|, (2.61)

this expression makes intuitive sense. Its photon-number distribution is given by P (n) =

e−|α|2 |α|2n
n! , where |α|2 = n̄, this distribution is shown in Fig. 2.6. Single-mode coherent state

light is a type of Poissonian light as the variance of the mean photon number is equal to the

mean photon number ∆n̂2coh = n̄. Therefore, as ∆n̂2coh < ∆n̂2th, there is less variation in the
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a) b)

Figure 2.7 – Spectral distributions for a) thermal light with temperature T = 5000 K with
normalised spectral radiance on the y-axis and b) Laser light with an idealised Lorentzian
distribution with central frequency ωc = 500 THz and a spectral linewidth of 1 GHz.

return statistics and hence it would provide more knowledge about the system for someone

probing a possible target object. The single-mode coherent state is thus more advantageous

to the single-mode thermal state for object detection performance. However, this advantage

comes at the price of reduced covertness, as the single-mode thermal state can be disguised

more easily within the background noise due to its coherence properties. Single-mode states

only have a single frequency, therefore to discuss the spectral differences between thermal light

and coherent light we extend to multi-modes. The spectral distributions of both (multi-mode)

thermal and coherent light is shown in Fig. 2.7. Multi-mode coherent light is an approximate

model for continuous-wave laser light with an idealised Lorentzian spectral distribution and the

spectral distribution of the thermal light is given by Planck’s law. It is clear that the multi-mode

coherent light has a sharp spectral distribution compared to the multi-mode thermal light. Thus

the multi-mode coherent light is easier to detect than the multi-mode thermal light on account

of its spectral properties.

2.7.3 Quantum illumination

The following analysis considers the twin-beam output from the SPDC process to be an entangled

quantum state known as the two-mode squeezed vacuum (TMSV) [99]. It is a simplification of

the form given in Eq. 2.51 as each beam has only one mode. Later in this thesis an extended

form of the SPDC output is derived which considers multiple discrete modes for each beam.
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The state vector for the TMSV state is

|ψ⟩TMSV = sech(r)

∞∑
n=0

(−1)neinθ
(
tanh(r)

)n|n⟩S ⊗ |n⟩I, (2.62a)

=

∞∑
n=0

√
λn|ψ⟩S ⊗ |ψ⟩I. (2.62b)

Equation 2.62b is known as the Schmidt decomposition [128], with Schmidt eigenvalues λn

where
∑∞

n=0 λn = 1 and |ψ⟩S/I are orthonormal states for the signal or idler mode. We can

quantify the degree of entanglement by evaluating the Schmidt number K =
(∑∞

n=0 λ
2
n

)−1,

if there is only one Schmidt eigenvalue (K = 1) then the state is separable and hence is not

entangled. Otherwise, if there large Schmidt number there is a large degree of entanglement

in that chosen basis. Following this, the density matrix for the TMSV state in terms of the

two-mode squeezing operator and the two-mode vacuum is

ρ̂TMSV = TrP

(
Ŝ(χ(2))|α⟩P ⊗ |0, 0⟩ × h.c

)
, (2.63)

where the pump field is traced out of the composite Hilbert space. This process of partial tracing

is illustrated as follows. A generic density matrix with a composite Hilbert space H1,2 of two

Hilbert spaces H1 and H2 is defined in the Fock basis as

ρ̂H1,2 =

∞∑
n,m,p,q=0

cn,m,p,q|n⟩⟨m| ⊗ |p⟩⟨q|, (2.64)

where cn,m,p,q is a complex number. The partial trace over the Hilbert space H2 in ρ̂H1,2 is

TrH2

(
ρ̂H1,2

)
=

∞∑
j=0

∞∑
n,m,p,q=0

cn,m,p,q|n⟩⟨m| × ⟨j|p⟩⟨q|j⟩, (2.65)

this is clearly an expression only in the Hilbert space H1 as each eigenstate of Hilbert space H2

has an inner product applied to it. Experimentally this partial tracing can be achieved by a

spectral filter. We evaluate Eq. 2.63 and therefore the TMSV density matrix expressed in the

Fock basis is

ρ̂TMSV = sech(r)2
∞∑

n,m=0

(−1)n+meinθ−imθ
(
tanh(r)

)n+m|n, n⟩⟨m,m| (2.66)

However, we omit the off-diagonal elements in the TMSV state as we use detectors which

are insensitive to the off-diagonal elements, therefore we can simplify Eq. 2.66 by setting n = m.
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We can omit the off-diagonal elements because our detectors projects only upon the diagonal

elements of the state. We refer to this state with only diagonal elements as the QI state ρ̂SI and

not the TMSV. This is because the QI state ρ̂SI has the measurable properties of a two-mode

correlated thermal state and does not need to be generated from a SPDC process. Hence the QI

density matrix expressed in the Fock basis is [100]

ρ̂SI = (cosh(r))−2
∞∑

n=0

(tanh(r))2n|n, n⟩⟨n, n|, (2.67a)

=

∞∑
n=0

n̄n

(n̄+ 1)n+1
|n, n⟩⟨n, n|, (2.67b)

where the mean photon number is n̄ = sinh2(r). The QI state has non-classical inter-mode

correlations. We can quantify the degree of correlation with the noise reduction factor (NRF)

[129], which is defined as

NRF =
⟨
(
∆(n̂S − n̂I)

)2⟩
⟨n̂S + n̂I⟩

, (2.68)

where ⟨
(
∆(n̂S − n̂I)

)2⟩ is the variance of the expectation value of the photon-number difference

operator. Classical states are lower bounded by a NRF = 1, whereas our QI state has a

NRF = 0 as the variance of the expectation value of the photon-number difference operator is

zero. Another approach to demonstrate the non-classicality of our inter-mode correlations is by

showing that our state does not satisfy the Cauchy-Schwarz inequality [130]. In terms of the

number operators for a state with two modes the Cauchy-Schwarz inequality is

⟨: n̂S :2⟩⟨: n̂I :2⟩ ≥ ⟨n̂Sn̂I⟩2, (2.69)

this form of the Cauchy-Schwarz inequality is derived from a more general expression ⟨ÎSÎI⟩2 ≤

⟨Î2S⟩⟨Î2I ⟩ in terms of intensity operators and with Î2 ∝
(
Ê−
)2 (

Ê+
)2

ensuring the normal-

ordering and Ê as the electric field operator [131], [132]. For our QI state this inequality is not

satisfied, which demonstrates it has non-classical correlations, as

4n̄4 ≱ 4n̄4 + 4n̄3 + n̄2. (2.70)

If a measurement device only has access to one of the modes, the other mode must be traced

out. Doing so will make the QI state appear to be a thermal state [133]. Furthermore, the

thermal statistical properties of one mode of the QI state when the other mode is ignored is

also implied by the no-signalling theorem [134]. The CI light source (when we wish to use the



CHAPTER 2. BACKGROUND THEORY 35

thermal state as our probe) is equivalent to the QI light source with the idler mode ignored,

under the assumption that the signal mean photon number n̄ for both are equal. Ignoring one

mode is represented by taking the partial trace of that mode, hence

TrI(ρ̂SI(n̄)) ≡ ρ̂th(n̄). (2.71)

This feature means that CI can use the single-mode thermal state as the light source as for a

fair and direct comparison of CI and QI. Moreover, an intruder will only see thermal photon

statistics, which are identical to the photon statistics exhibited by background noise: ideal for

covertness. The accuracy of using our QI state to express the SPDC output can be checked by

an experimental setup involving the Hanbury-Brown and Twiss interferometer. For example,

imagine the situation where only one beam of our QI state is involved in the interferometer

with the vacuum. If we measure g(2)(0) = 2 this demonstrates that this beam only has one

mode, as required by the photon-bunching statistics of a single-mode thermal state. In effect

this indirectly demonstrates the accuracy of describing our light for a QI system as a two-mode

state.

In summary, this chapter begins with the quantisation of the EM field. We introduce the

canonical creation and destruction operator for a mode of the EM field. After, we introduce the

concept of Hilbert space and we then express a general form of the state vector of a quantum

state. Following on from this, we introduce the Fock state. The Fock state is useful as our

detectors discussed later in the thesis are in the photon-number basis. We also introduce the

coherent state and phase-space. We can express quantum states in the coherent state basis

— this formulation allows visualisation of our quantum states in phase-space. These concepts

help with characterising the light we use. Additionally; the coherent state basis simplifies

calculations later in this thesis. We also introduce the non-classical effect known as single-mode

squeezing. The introduction of single-mode squeezing primes us for leading onto the discussion

about SPDC (a process which generates the non-classical light we consider in this thesis). An

overarching theme of this chapter is to introduce the tools and techniques we use later in this

thesis to characterise light. With this in mind, we discuss the quantum coherence function. The

second-order quantum coherence function helps us recognise when a state of light demonstrates

non-classical photon statistics. With the suite of techniques and tools introduced, we proceed to

characterise the types of light relevant to our LIDAR protocol: the background noise, CI and

QI.



Chapter 3: Measurement theory and observ-

ables

This chapter is a primer on the theory of measurement and observables. Also shown are

the methods to calculate the observables in our LIDAR protocol. Following this, there is an

exposition on optimal state discrimination and how state discrimination using click probabilities

is sub-optimal. This chapter concludes with a section about hypothesis testing with click-count

distributions and the log-likelihood value.

3.1 Measurement operators

Measurement of a quantum state can change the state in question. This effect is particularly

apparent with (ideal) projective measurements. For example, a projector P̂n = |λn⟩⟨λn| acting

upon a state ρ̂ =
∑∞

m=0 λm|λm⟩⟨λm|, where |λm⟩ is an eigenstate of ρ̂, will result in the

(normalised) post-measurement density matrix

ρ̂
′
=

P̂nρ̂P̂n

Tr(P̂nρ̂P̂n)
, (3.1a)

= |λn⟩⟨λn|. (3.1b)

The denominator, which normalises the state, is the probability pn that the measurement n is

made by the projector P̂n. We calculate this probability pn as

pn = Tr
(
P̂nρ̂P̂n

)
= λn. (3.2)

However, we must extend our theory to generalised measurements. This is because it

is not sufficient, for a realistic system, to describe measurement of a quantum state via a

measurement apparatus (and the form of the post-measurement state) if we only consider a

projective measurement upon a quantum state Q. We consider a scenario that is known as
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the measurement model, which entails the interaction of our quantum state and an initially

uncorrelated measurement apparatus (ancilla A) state, after this interaction we perform a

projective measurement upon our ancilla and then we trace the ancilla sub-system. A unitary

operator Û describes the interaction between our quantum state and the ancilla. Our quantum

state and ancilla has the density matrix ρ̂ and σ̂ =
∑

k λk|ek⟩⟨ek|, respectively. Where |ek⟩ is an

eigenstate of the ancilla density matrix σ̂. We define a projector for the measurement outcome

α as

P̂α =
∑
l

|fαl⟩⟨fαl|, (3.3)

where |fαl⟩ forms an orthonormal basis over the ancilla system and it satisfies the completeness

relation 1̂ =
∑

α P̂α. The unnormalised post-measurement state of our system is

TrA
(
P̂αÛ ρ̂⊗ σ̂Û†P̂α

)
= Aα(ρ̂), (3.4)

where Aα is a linear map on the system density matrix, which we refer to Aα as a quantum

operation. We can restate the quantum operation Aα in terms of operators acting only upon

the quantum state Q

Aα(ρ̂) =
∑
l,k

Aα,l,kρ̂A
†
α,l,k, (3.5)

where Aα,l,k =
√
λk⟨fαl|Û |ek⟩. Equation 3.5 is known as the Kraus decomposition of the

quantum operation Aα, where Aα,l,k are known as Kraus operators [135]. From the Kraus

operators we can see how a projective measurement relates to our measurement model. The

probability that we measure an outcome α at our measurement apparatus is

pα = Tr
(
Aα(ρ̂)

)
. (3.6)

From the Kraus operators we define a POVM (positive operator-valued measure). The

POVM is an operator that when applied to a state describes the measurement statistics for a

measurement outcome α [136]

π̂α =
∑
l,k

Â†
α,l,kÂα,l,k. (3.7)

A POVM comprises a set of POVM elements Sπ̂ and within this set for each result m there is a
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POVM element π̂m. A POVM has the following properties

π̂†
n = π̂m, (3.8a)

π̂m ≥ 0, as for all m : ⟨ψ|π̂m|ψ⟩ for all |ψ⟩, (3.8b)

|Sπ̂|∑
m=0

π̂m = 1̂, (3.8c)

Eq. 3.8a shows their Hermiticity and therefore they make observable measurements by construc-

tion. Eq. 3.8b shows that their expectation values correspond to probabilities of the result of m.

Eq. 3.8c shows that all of the probabilities related to the POVM will sum to unity. Equations 3.8

together allow the interpretation of probabilities from the POVM acting upon a state. Moreover,

as a POVM pertains to the measurement statistics it corresponds to many different quantum

operations, therefore a POVM does not uniquely specify the post-measurement state. From

Eq. 3.6, due to the cyclic invariance of the trace, the probability of a measurement outcome α

in terms of the POVM element π̂α is

pα = Tr
(
ρ̂π̂α

)
. (3.9)

The formalism pertaining to generalised measurement facilitates the development of our QI

model. It also allows calculation of the optimal measurements one can make, as shown in Ch. 3.5.

3.2 Click detector theory

We focus on a ‘simple detection’ LIDAR system, which entails the use of click detectors. These

detectors for a set measurement window can only register either a click event or a no-click event.

Their use facilitates experimental simplicity, therefore granting the possibility of this protocol

functioning in difficult real-life sensing scenarios.

The experimental component that can represent the click detector is the SPAD (single-photon

avalanche diode) [137]. They can function in the so-called Geiger-mode, aptly named due its

click detector nature. Such detectors only reveal whether light was incident or not, rather than

the full information about the amount of incident light. Moreover, SPADs in the Geiger-mode

are receptive to incident light that arrives in packets of quanta, such as single-photons. What

allows this level of sensitivity is a high reverse bias voltage that places the system precariously

close to triggering an avalanche current. This avalanche current initiates when incident light

hits an atom in a positively charged area and creates an electron-hole pair. A weak electric field
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permeates this area and thus separates the electron-hole pair. The electron then drifts towards

the region with a strong electric field, resulting in an increasing velocity for the electron. The

electron then collides with other atoms generating new electron-hole pairs in a cascade effect. A

large number of electrons now results in a high (and measurable) signal. The detector is reset, in

a process called quenching, by applying a forward current to counter the avalanche and return

the positive charge to the anode, this whole process to reset is known as sensor dead-time.

In realistic systems there are downsides and inefficiencies to SPADs. Such a high level of

sensitivity means that SPADs are vulnerable to dark-counts: which is when the detector is

triggered from causes other than the incident photons. For a photo-detector in the same mode as

the incident light, there is a probability that it clicks according to the detector quantum efficiency

and the state of the incident light itself. For example, any vacuum component of the incident

state reduces the click probability. Moreover, the click probability increases with an increase

of the contribution of single-photons and multi-photons to the quantum state. However, with

these detectors, we are unable to distinguish whether a click event was due to a single-photon or

multi-photon. For a state that only consists of a single-photon the click probability is equal to

the detector quantum efficiency. Finally, uncertainty in the time taken from incident light to

read-out of a measurable photocurrent is known as the detector timing jitter.

The use of click detectors means that the inference of object presence depends upon the

probability of a click event. A relevant click POVM acting upon a quantum state gives the

probability of a click event for that state. The no-click POVM element π̂× for a detector, in the

scenario of no background noise and perfect efficiency, can be found from the photon number

distribution moment generating functions [123], [138] and we now proceed to derive this POVM.

We begin the derivation of the click detector POVM by introducing the quantum-mechanical

formulation of the photo-count distribution given by Kelley and Kleiner. The number of photo-

counts m over a period of time t with a detector quantum efficiency η for a generic quantum

state with density matrix ρ̂ is

pm(t) = Tr

(
ρ̂ :

(ηâ†â)m

m!
e−ηâ†â :

)
. (3.10)

We then extract the POVM for m photo-counts from Eq. 3.10 due to the Born rule

π̂m(η) =:
(ηâ†â)m

m!
e−ηâ†â :, (3.11a)

=
−ηm

m!

∂m

∂ηm
: e−ηâ†â : . (3.11b)
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We can restate the exponential term : e−ηâ†â : by using operator ordering theorems and that

the exponential term commutes with the number operator n̂ — therefore is diagonal in the

photon-number basis

M̂(η) =: e−ηâ†â :, (3.12a)

= eln(1−η)â†â, (3.12b)

= (1− η)â
†â, (3.12c)

=

∞∑
n=0

(1− η)n|n⟩⟨n|. (3.12d)

From Eq. 3.11b and Eq. 3.12d we state the POVM for detecting m photo-counts as

π̂m(η) = ηm
∞∑

n=m

(
n

m

)
(1− η)n−m|n⟩⟨n|. (3.13)

Hence, the no-click POVM is when we register m = 0 photo-counts. Furthermore, when there is

perfect quantum efficiency η = 1 it is obvious that the only non-zero eigenstate of Eq. 3.13 is

when the photon-number n = 0. The no-click POVM is

π̂× =: e−â†â : = |0⟩⟨0|. (3.14)

It is clear that the click POVM element must be the complement of this

π̂✓ = 1̂− π̂×. (3.15)

The normal ordering is expected as photo-detection is an absorptive process. In such an idealised

scenario, registering a no-click means projection onto the vacuum state. However, a realistic

system which entails system loss η and incidence of thermal background noise ρ̂th(n̄B) is instead

projection onto a mixed state [139]. The no-click POVM element in this more realistic scenario

π̂× =
1

1 + n̄B
: e

− η
1+n̄B

â†â
: , (3.16a)

=
1

1 + n̄B
e
ln(1− η

1+n̄B
)â†â

, (3.16b)

=
1

1 + n̄B

(
1− η

1 + n̄B

)â†â

, (3.16c)

=
1

1 + n̄B

∞∑
n=0

(
1− η

1 + n̄B

)n

|n⟩⟨n|, (3.16d)
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which is effectively projection onto a thermal state. Let us consider the two detector system

required by quantum LIDAR described previously in Ch. 1.3. The idler detector click POVM

element for a detector when there is thermal background noise ρ̂th(n̄B,I) and idler system loss ηI

π̂I = 1̂− 1

1 + n̄B,I

∞∑
n=0

(
1− ηI

1 + n̄B,I

)n

|n⟩⟨n|. (3.17)

Furthermore, the signal detector click POVM element for a detector subject to thermal back-

ground noise, ρ̂th(n̄B,S), with signal system loss ηS and the signal attenuation parameter ξ

is

π̂S = 1̂− 1

1 + n̄B,S

∞∑
n=0

(
1− ξηS

1 + n̄B,S

)n

|n⟩⟨n|. (3.18)

For CI, the signal detector is the only detector. We consider on CI a thermal light source, which

is equivalent to the QI light source with the same signal mean photon number and the idler

detector ignored. Therefore, the CI click probability

PrCI:th = Tr
(
ρ̂th(n̄)π̂S

)
, (3.19a)

=

∞∑
n=0

n̄n

(n̄+ 1)n+1
− 1

1 + n̄B,S

n̄n

(n̄+ 1)n+1

(
1− ηS

1 + n̄B,S

)n

. (3.19b)

For QI, measurement at the idler detector conditions the signal beam. Therefore, we consider

the idler click probability first. We define the idler system loss ηI and the thermal background

noise state for the idler detector ρ̂B,I with mean photon number n̄B,I. Hence, the idler click

probability is

PrI = Tr
(
ρ̂SIπ̂I

)
, (3.20a)

=

∞∑
n=0

n̄n

(n̄+ 1)n+1
− 1

1 + n̄B,I

n̄n

(n̄+ 1)n+1

(
1− ηI

1 + n̄B,I

)n

. (3.20b)

Now that the idler click probability has been calculated, the coincidence click probability

PrS|I,1 = Tr

(
TrI(ρ̂SIπ̂I)π̂S

PrI

)
. (3.21)

This is not expanded due to its lack of brevity; however, it is easy to numerically implement.

The non-coincidence click probability is similar,

PrS|I,0 = Tr

(
TrI(ρ̂SI(1̂− π̂I))π̂S

1− PrI

)
. (3.22)
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Figure 3.1 – Representation of a lossless beamsplitter often encountered in quantum optics.
The input modes with labelling 0 and 1 and output modes with labelling 2 and 3.

We emulate the absence of an object by replacing the signal state with the vacuum and use the

notation H0 to refer to the absence of an object (null hypothesis). Consequently, the object

absent click probability for CI and QI (coincidence and non-coincidence) is

PrH0 = Tr
(
|0⟩⟨0|π̂S

)
. (3.23)

3.3 Modelling with beam-splitters

Beam-splitters play an important role for modelling the effect of the light that falls upon a

detector [140]. They mix states of light and facilitate the modelling of imperfect photo-detection.

Figure 3.1 depicts the lossless beamsplitter, which has two input modes and two output modes

as required by quantum optics. For simplicity the beamsplitter is symmetrical, in other words

transmission from mode 0 to mode 2 is the same as transmission from mode 1 to mode 3.

Moreover, the transmission |t|2 and reflection |r|2 parameters must adhere to |t|2 + |r|2 = 1 and

r∗t+rt∗ = 0, for energy conservation in a symmetric beam-splitter — one with the reflection and

transmission coefficients that are the same for each input. The input modes have the destruction

operators â0 and â1. These operators relate to the output mode destruction operators â2 and

â3 by â2
â3

 =

t r

r t


â0
â1

 . (3.24)

We desire a (unitary) beamsplitter operator Û , one which succinctly describes the action of

a beamsplitter upon both modes. Conventionally Û is known and leads to the derivation of

the beamsplitter relations in Eq. 3.24. However, our derivation is framed in the reverse order

because it is more intuitive for understanding to begin with the relations in Eq. 3.24 and lead

towards Û . The derivation of Û begins by setting â2 (â3 has a similar method)

â2 = cos
θ

2
â0 + i sin

θ

2
â1, (3.25a)

= â0

∞∑
n=0

(−1)n( θ2 )
2n

(2n)!
+ iâ1

∞∑
n=0

(−1)n( θ2 )
2n+1

(2n+ 1)!
, (3.25b)
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where θ = 2cos−1(t). Equation 3.25b satisfies the Baker-Hausdorff lemma when Â = 1
2 (â

†
0â1 +

â0â
†
1), B̂ = â0 and λ = −θ. The Baker-Hausdorff lemma is

eiλÂB̂e−iλÂ = B̂ + iλ[Â, B̂] +
(iλ)2

2!
[Â, [Â, B̂]] + . . . (3.26)

This means that there is an operator Û which enacts the beamsplitter transformation, defined as

Û = eiλÂ = e−i θ
2 (â

†
0â1+â0â

†
1), (3.27)

such that â2
â3

 = Û

â0
â1

 Û†. (3.28)

The derivation of Û means that the calculations that involve beamsplitter transformations are

more succinct, particularly when coherent states are involved.

3.3.1 CI click probabilities

There are multiple methods available to calculate the probability that a detector will click (or

not click). One method is from the POVMs described in Ch. 3.2, although this is an easy

method it may seem quite abstract and does not allow easy calculation of a photon-number

distribution. Therefore, this section provides the method for calculation of the click probability

through the beamsplitter approach. The state incident upon our detector ρ̂S is of direct interest

for calculation of the click probability. Figure 3.2 depicts the CI beamsplitter model. The

state incident upon our detector is expressed via the beamsplitter model in terms of the source

light ρ̂source, the background noise state ρ̂B and the beamsplitter operator with transmission

parameter |t|2 as

ρ̂S = Tr3

(
Û ρ̂source ⊗ ρ̂BÛ

†
)
. (3.29)

Derivation of ρ̂S is greatly helped by use of the coherent state basis. This basis affords simplicity

because the beamsplitter operator easily acts upon the displacement operator. For example,

ÛD̂0(α)Û
† = D̂2(tα)D̂3(rα).

We focus first on the CI protocol with the source light as a coherent state, ρ̂source = |α⟩⟨α|,

(with mean photon number n̄ = |α|2) and the background noise as a thermal state ρ̂B = ρ̂th(n̄B).

We also make extensive use of the Gaussian integral
∫
d2αe−a|α|2+bα∗+b∗α = π

a e
|b|2
a . Calculation

of the state incident upon the detector ρ̂S begins with the input states expressed in the coherent
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Figure 3.2 – Representation of the mixing of source light ρ̂source and background noise light
ρ̂B. A beamsplitter with transmission parameter |t|2 and mode 2 is retained, which contains the
state incident upon the detector ρ̂S.

state basis and application of the beamsplitter transformations

ρ̂S = Tr3

(
Û |α⟩0⟨α| ⊗

1

πn̄B

∫
d2βe

−|β|2
n̄B |β⟩1⟨β|Û†

)
, (3.30a)

= Tr3

(
1

πn̄B

∫
d2βe

−|β|2
n̄B |tα+ rβ⟩2⟨tα+ rβ|

⊗ |rα+ tβ⟩3⟨rα+ tβ|
)
,

(3.30b)

=
1

πn̄B

∫
d2βe

−|β|2
n̄B |tα+ rβ⟩⟨tα+ rβ|. (3.30c)

Now with the state incident upon the detector derived, the CI click probability

PrCI:coh = 1− Tr
(
ρ̂S|0⟩⟨0|

)
, (3.31a)

= 1− 1

πn̄B

∫
d2βe

−|β|2
n̄B e−|tα+rβ|2 , (3.31b)

= 1− e
−|t|2|α|2

1+|r|2n̄B

1 + |r|2n̄B
, (3.31c)

= 1− e
−ξηSn̄

1+n̄B,S

1 + n̄B,S
, (3.31d)

where |t|2 = ξηS and n̄B =
n̄B,S

|r|2 . We are only interested in the measured background noise n̄B,S.

Therefore the denominator of the actual background noise n̄B acts to negate the effect of the

beamsplitter model reflecting a portion of the background light. An alternative calculation of

Eq. 3.31d via the Fock basis is given in Appendix A. For the scenario of background noise in

the coherent state and thermal source light the click probability is easily found from Eq. 3.31d

by swapping ξηSn̄ with n̄B,S and vice versa.

We now present CI with the source light as a thermal state ρ̂source = ρ̂th(n̄). The analysis

with the beamsplitter transformations differs slightly to CI with the source light as a coherent
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state due to a variable change in the integral. The state incident upon the detector

ρ̂S = Tr3

(
Û

1

πn̄

∫
d2αe

−|α|2
n̄ |α⟩0⟨α| ⊗

1

πn̄B

∫
d2βe

−|β|2
n̄B |β⟩1⟨β|Û†

)
, (3.32a)

=
1

π2n̄n̄B

∫
d2αd2βe

− |α|2
n̄ − |β|2

n̄B |tα+ rβ⟩⟨tα+ rβ|. (3.32b)

We introduce a variable γ = tα+ rβ and convert the β variable integral to a γ variable integral,

where d2β = d2γ
|r|2 . These steps allow for calculation of the α variable integral. Hence, derivation

of ρ̂S continues

ρ̂S =
1

π2n̄n̄B|r|2

∫
d2αd2γe

−|γ|2

|r|2n̄B e
−|α|2

(
1
n̄+

|t|2

|r|2n̄B

)
+α γ∗t

|r|2n̄B
+α∗ γt∗

|r|2n̄B , (3.33a)

=
1

π
(
|r|2n̄B + n̄|t|2

) ∫ d2γe
−|γ|2 1

|r|2n̄B+n̄|t|2 |γ⟩⟨γ|, (3.33b)

= ρ̂th(|r|2n̄B + n̄|t|2). (3.33c)

Therefore, the object present CI click probability when there is a thermal state for source and

noise is

PrCI:th = 1− Tr
(
ρ̂S|0⟩⟨0|

)
, (3.34a)

= 1− 1

n̄B|r|2 + |t|2n̄+ 1
, (3.34b)

= 1− 1

n̄B,S + ηSξn̄+ 1
. (3.34c)

When an object is absent the type of light produced is irrelevant, all that matters is the type of

noise. The absence of an object is expressed in the beamsplitter diagram method by replacing

the signal state with the vacuum. The object absent click probability in a thermal noise system

is trivial to find in the beamsplitter approach due to the scaling which causes the noise to be

unaffected by the beamsplitter. The object absent CI click probability is

PrH0 = 1− Tr(ρ̂B,S|0⟩⟨0|), (3.35a)

= 1− 1

1 + n̄B,S
. (3.35b)
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3.3.2 POVM from beamsplitter model

The beamsplitter model also allows derivation of the click POVM element given in Ch. 3.2. We

start our derivation with the generic click probability for the scenario of thermal noise

Pr = 1− Tr
(
Tr3(Û ρ̂⊗ ρ̂thÛ

†)|0⟩2⟨0|
)
, (3.36)

where we have used the mode labelling convention in Fig. 3.1. For an unknown no-click POVM

element π×,2 the generic click probability defined in Eq. 3.36 is equivalent to

Pr = 1− Tr (ρ̂π̂×,2) . (3.37)

Equating both Eq. 3.36 and Eq. 3.37 then solving for the unknown no-click POVM element is

π̂×,2 = Tr1
(
(1̂⊗ ρ̂th)Û

†(|0⟩⟨0| ⊗ 1̂)Û
)
. (3.38)

The following derivation finds a closed-form summation over the Fock basis for Eq. 3.38. Firstly,

Û†(|0⟩⟨0| ⊗ 1̂)Û =
1

π
Û†
∫
d2α|0⟩2⟨0| ⊗ |α⟩3⟨α|Û , (3.39a)

=
1

π

∫
d2α|r∗α⟩0⟨r∗α| ⊗ |t∗α⟩1⟨t∗α|, (3.39b)

and

1̂⊗ ρ̂th = 1̂0 ⊗
1

πn̄B

∫
d2β|β⟩1⟨β|. (3.40)

Substitution of Eq. 3.39b and Eq. 3.40 into Eq. 3.38 and mode relabelling (mode 1 to mode 3

and mode 0 to mode 2) yields

π̂×,2 =
1

π3n̄B

∫
d2βd2αd2γe

−|β|2
n̄B |r∗α⟩⟨r∗α| ⊗ ⟨γ|β⟩⟨β|t∗α⟩3⟨t∗α|γ⟩, (3.41a)

=
1

π3n̄B

∫
d2βd2αd2γ×

× e
−|β|2( n̄B+1

n̄B
)−|t∗α|2−|γ|2+γ∗β+β∗t∗α+tα∗γ |r∗α⟩⟨r∗α|, (3.41b)

=
1

π2n̄B|r|2

∫
d2βd2α̃e

−|β|2( n̄B+1

n̄B
)−| t∗

r∗ α̃|2+β∗ t∗
r∗ α̃+β t

r α̃
∗
|α̃⟩⟨α̃| (3.41c)

In the above derivation γ = γr + iγi is decomposed into real and imaginary parts to compute

this integral as a well known Gaussian integral. We also employ a change of variable α̃ = r∗α,
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hence d2α = d2α̃
|r|2 . The d2β integral is easily solved with the double Gaussian integral cited

earlier. Now, the no-click POVM

π̂×,2 =
1

π|r|2(n̄B + 1)

∫
d2α̃e

−|α̃|2 |t|2

|r|2
1

n̄B+1 |α̃⟩2⟨α̃|. (3.42)

Setting b̄ = |r|2
|t|2 (n̄B + 1) displays Eq. 3.42 in the P-representation of a single-mode thermal state

with mean photon number b̄ and a factor of |t|−2 in front

π̂×,3 =
1

π|t|2b̄

∫
d2α̃e

−|α̃|2
b̄ |α̃⟩⟨α̃|. (3.43)

The measured background noise thermal state mean photon number n̄B,S is unaffected by the

beamsplitter. Similar to earlier the actual background noise is scaled n̄B =
n̄B,S

|r|2 . A generic factor

ζ is introduced, which could represent the system loss or system loss and signal attenuation.

This factor ζ relates to the transmission magnitude |t|2 = ζ and reflection magnitude |r|2 = 1−ζ.

Equation 3.43 is converted into the Fock-basis. Therefore, the generic no-click POVM element

with measured background noise n̄B,S and generic loss factor ζ for mode A is

π̂×,A(ζ, n̄B,S) =
1

n̄B,S + 1

∞∑
n=0

(
n̄B,S + 1− ζ

n̄B,S + 1

)n

|n⟩A⟨n|. (3.44)

This leads onto the generic click POVM element for mode A

π̂✓,A(ζ, n̄B,S) = 1̂A − π̂×,A(ζ, n̄B,S). (3.45)

Equation 3.45 is clearly equivalent to the complement of the no-click POVM element in Eq. 3.16d,

with the relevant parameter changes.

3.3.3 QI click probabilities

Figure 3.3 depicts the beamsplitter model for QI, with a separate beamsplitter for both idler

and signal beams. The idler beamsplitter accounts for idler system loss ηI and the measured

background noise of the idler detector n̄B,I. The signal beamsplitter accounts for the signal

system loss ηS, signal attenuation from probing a target object ξ and the measured background

noise of the signal detector n̄B,S. Calculation of the click probabilities for QI via the beamsplitter

method differs from the CI approach as there is not a well-behaved P-representation of the

source light ρ̂SI. However, this is not a problem due to the theory of thermal-difference states

[141]. The (non-classical) idler click conditioned state is a thermal-difference state because the
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unconditioned (no idler detector measurement) signal state and the idler no-click conditioned

signal state are both thermal. It is important to note is that the signal detector is situated on

the reflected arm of the output of the signal beamsplitter, this changes the signal beamsplitter

transmission parameter |t|2 = 1 − ξηS. This change of the output position is not necessary,

but it keeps the calculations consistent with the mode positioning shown in Fig. 3.3. For both

thermal and coherent noise scenarios for the signal channel, the idler click probability is the

same as it is shielded from the environment and thus only has dark counts with thermal state

photon statistics. The idler detector click probability in a more succinct form than Eq. 3.20a

thanks to the beamsplitter approach is

PrI = 1− 1

n̄B,I + ηIn̄+ 1
. (3.46)

We consider thermal noise for the signal channel first. The unconditioned signal state upon

the signal detector is identical to CI with thermal source light ρ̂source = ρ̂th(n̄) and thermal

noise. As shown already in Eq. 3.33c this state is

ρ̂S = ρ̂th(n̄B,S + ξηSn̄). (3.47)

This means that the unconditioned click probability is

PrS = 1− 1

n̄B,S + ξηSn̄+ 1
. (3.48)

For calculation of the idler measurement conditioned states we invoke POVM formalism for

brevity. The density matrix of the idler no-click conditioned state before it is incident on the

signal detector,

ρ̂I|× =
TrI(ρ̂SI(1̂− π̂I))

1− PrI
, (3.49)

= ρ̂th(n̄×), (3.50)

where n̄× = Tr(ρ̂I|×n̂) = n̄
(1+n̄B,I−ηI)
(1+n̄B,I+n̄ηI)

. Following a similar process to that described earlier

with beamsplitters in Eq. 3.33c, the idler no-click conditioned state incident upon the signal

detector is

ρ̂S|I,0 = ρ̂th(n̄B,S + ξηSn̄×). (3.51)
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This means that the non-coincidence click probability is

PrS|I,0 = 1− 1

n̄B,S + ξηSn̄× + 1
. (3.52)

With both the unconditioned and idler no-click conditioned states before they are incident on

the signal detector defined, the idler click conditioned state before the signal detector is

ρ̂I|✓ =
1

PrI

(
ρ̂th(n̄)− (1− PrI)ρ̂th(n̄×)

)
, (3.53)

so using the same process as in Eq. 3.33c, the idler click conditioned state incident upon the

signal detector is

ρ̂S|I,1 = Tr3

(
Û ρ̂th(n̄B)⊗ ρ̂I|✓Û

†
)

(3.54a)

=
1

PrI

(
ρ̂th(ξηSn̄+ n̄B,S)− (1− PrI)ρ̂th(ξηSn̄X + n̄B,S)

)
, (3.54b)

which yields the coincidence click probability

PrS|I,1 = 1− 1

PrI

(
(1− PrS)− (1− PrI)(1− PrS|I,0)

)
, (3.55a)

= 1− 1

PrI

(
1

(ξηSn̄+ n̄B,S + 1)
− (1− PrI)

1

(ξηSn̄X + n̄B,S + 1)

)
. (3.55b)

The QI object absent click probability for thermal noise is given by Eq. 3.35b. These expressions

for the click probabilities are more succinct than the summation forms given in Ch. 3.2.

We now consider the scenario when there is coherent noise on the signal detector ρ̂B,S = |β⟩⟨β|.

This represents a situation where a hostile party may actively jam our LIDAR system with a

strong coherent beam. We assume that the idler detector noise is unaffected and therefore is still

thermal. This is a reasonable assumption as the idler detector is shielded from the environment.

Moreover, the dark count noise on the signal detector is still thermal, but for simplicity it is

neglected due to the likely orders of magnitude stronger coherent noise incident on the signal

detector. The use of the beam-splitter model to calculate the QI click probabilities in this

situation is required, as there does not exist a simplistic click POVM element for the signal

detector coherent noise scenario. The states before the signal detector ρ̂source, ρ̂I|× and ρ̂I|✓

are the same as defined earlier, due to the idler detector still being affected by thermal noise.

However, the states incident upon the signal detector are different. The unconditioned state
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incident on the signal detector is similar to Eq. 3.30c, albeit with the noise and source swapped

ρ̂S =
1

πn̄

∫
d2αe

−|α|2
n̄ |rα+ tβ⟩⟨rα+ tβ|, (3.56)

where |α|2 = n̄ and |β|2 =
n̄B,S

|t|2 . This means that the unconditioned click probability is

PrS = 1− e
−n̄B,S
1+ξηSn̄

1 + ξηSn̄
(3.57)

The idler no-click conditioned state incident upon the signal detector

ρ̂S|I,0 =
1

πn̄×

∫
d2γe

−|γ|2
n̄× |rγ + tβ⟩⟨rγ + tβ|, (3.58)

where |γ|2 = n̄×. Hence, we express the non-coincidence click probability

PrS|I,0 = 1− e
−|t|2|β|2

1+|r|2n̄×

1 + |r|2n̄×
, (3.59a)

= 1− e
−n̄B,S

1+ξηSn̄×

1 + ξηSn̄×
. (3.59b)

Following from this, the idler click conditioned state incident upon the signal detector

ρ̂S|I,1 =
1

PrI

(
1

πn̄

∫
d2αe

−|α|2
n̄ |rα+ tβ⟩⟨rα+ tβ|−

− (1− PrI)
1

πn̄×

∫
d2γe

−|γ|2
n̄× |rγ + tβ⟩⟨rγ + tβ|

)
,

(3.60)

which yields the coincidence click probability

PrS|I,1 = 1− 1

PrI

(
(1− PrS)− (1− PrI)(1− PrS|I,0)

)
, (3.61a)

= 1− 1

PrI

(
e

−n̄B,S
1+ξηSn̄

1 + ξηSn̄
− (1− PrI)

e
−n̄B,S

1+ξηSn̄×

1 + ξηSn̄×

)
. (3.61b)

The object absent click probability for both CI and QI with Poissonian noise is

PrH0 = 1− e−n̄B,S . (3.62)
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∞

Figure 3.3 – Beamsplitter model for QI. Shows the twin-beam state directed towards both
the idler and signal detector beamsplitters where the relevant noise state is mixed and the source
is attenuated by the respective factor.

3.4 Photon-number distributions and heralding gain

If we assess the heralding gain for our QI system we are able to quantify explicitly the advantage

of the idler detector measurement. We define the heralding gain (HG) as

HG =
Tr(ρ̂S|I,1n̂)

Tr(ρ̂Sn̂)
. (3.63)

The HG is the ratio of the expectation value of the photon number for the idler click conditioned

signal state and the unconditioned signal state. For an idealised scenario with perfect efficiency,

no loss, or no noise the HG is

HG = 1 +
1

n̄
. (3.64)

Equation 3.64 tends to infinity as the mean photon number tends n̄→ 0, therefore this shows

that the advantage of idler click conditioning improves as the mean photon number n̄ reduces.

Of course, this improvement comes at the cost of reduction of the probability of an idler click.

For realistic scenarios with non-unity detection efficiency, noise and loss the HG is instead

HG =

Pr−1
I

(
n̄ξηS + n̄B,S − (1− PrI)(n̄×ξηS + n̄B,S)

)
n̄ξηS + n̄B,S

. (3.65)

However, as the HG is based off the photon number expectation values it does not capture the

statistical differences from different types of noise (thermal or Poisson), therefore the photon-

number distributions are more instructive of the effect of idler click/no-click conditioning than

the HG

The photon-number distribution means we can visually demonstrate the advantage of the



CHAPTER 3. MEASUREMENT THEORY AND OBSERVABLES 52

Figure 3.4 – Photon number distributions in the scenario of no noise or loss and perfect
detection. The y-axis has the photon-number probability P (n) and the x-axis has the photon-
number n. Plotted is the unconditioned state (black dots), idler click conditioned state (red
bars) and idler no-click conditioned state (thin blue bars). Mean photon number of the signal
state n̄ = 0.1.

idler detector measurement. Moreover, comparison of the photon-number distribution statistics

for the unconditioned state and the idler click conditioned state gives an alternative approach

for quantifying the idler detector measurement advantage. Of course, this quantified advantage

does not translate to the advantage we have for our QI system in practice, due to the lack

of photon-number resolving detectors, which can not use the full difference of photon-number

distributions. In practice, we can only discriminate between the quantum states via the relevant

click probabilities. The photon-number distribution for any state ρ̂ is found by the equation

P (n) = Tr

(
ρ̂|n⟩⟨n|

)
. (3.66)

For an idealised scenario with perfect efficiency, no loss, or no noise the photon-number

distribution for the unconditioned ρ̂S, idler no-click conditioned ρ̂S|I,0 and idler click conditioned

ρ̂S|I,1 states is shown in Fig. 3.4. We can see from Fig. 3.4 that an idler no-click results in

the conditioned signal state to be the vacuum state. Whereas, an idler click conditions the

signal state to have its vacuum component completely suppressed. This complete suppression

of the vacuum component guarantees the presence of a photon, in other words it heralds a

photon. In a more realistic quantum LIDAR scenario, however, noise, system loss and high

signal attenuation cause the conditioned signal photon number distributions to become much

less clear-cut in their difference. Figure 3.5 (with thermal noise) and Fig. 3.6 (with Poisson

noise) illustrates this. For the parameters shown the unconditioned, no-click conditioned and
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Figure 3.5 – Photon number distributions for a realistic system with thermal noise. The
y-axis has the photon-number probability P (n) and the x-axis has the photon-number n. Plotted
is the unconditioned state (black dots), idler click conditioned state (red bars) and idler no-click
conditioned state (thin blue bars). An inset is plotted with the photon-number distribution
difference ∆P (n) on the y-axis and photon-number n on the x-axis. Mean photon number of the
signal state n̄ = 0.1, signal attenuation factor ξ = 8.84× 10−3, idler channel system loss ηI = 0.5,
signal channel system loss ηS = 0.5, idler detector background noise mean photon number
n̄B,I = 4.49× 10−4 and signal detector background noise mean photon number n̄B,S = 0.2.

click-conditioned signal photon number distributions are hardly different. We can see the size of

the conditioning effect if we take the difference in the two conditioned probability distributions,

∆P (n) = P (n)I,1 − P (n)I,0 which is plotted as an inset, where P (n)I,1 and P (n)I,1 is the idler

click and idler no-click conditioned photon number distribution, respectively. Appendix B

explicitly defines the photon number distributions for a realistic system with either thermal or

Poissonian noise. This difference shows the small residual conditioning effect. It seems clear

that conditioning in a realistic system with multiple shots of the experiment will only cause

a tiny change in the number of counts at the signal detector when the idler fires. Hence a

well-developed statistical framework is required to extract the information, which is what the

remainder of this chapter presents. It should also be noted that the parameters used in both

Fig. 3.5 and Fig. 3.6 understate the difficulty when using realistic parameters encountered

experimentally. There is not a large difference of the photon-number distribution for Fig. 3.5

and Fig. 3.6 due to the relatively low level of signal detector background noise.

3.5 Quantum state discrimination

The use of click detectors means that inference of the presence or absence of an object depends

upon comparison of the respective click probabilities. This is equivalent to discrimination

between the two possible states incident on the detector. The theory illustrated below provides
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Figure 3.6 – Photon number distributions for a realistic system with Poissonian noise. The
y-axis has the photon-number probability P (n) and the x-axis has the photon-number n. Plotted
is the unconditioned state (black dots), idler click conditioned state (red bars) and idler no-click
conditioned state (thin blue bars). An inset is plotted with the photon-number distribution
difference ∆P (n) on the y-axis and photon-number n on the x-axis. Mean photon number of the
signal state n̄ = 0.1, signal attenuation factor ξ = 8.84× 10−3, idler channel system loss ηI = 0.5,
signal channel system loss ηS = 0.5, idler detector background noise mean photon number
n̄B,I = 4.49× 10−4 and signal detector background noise mean photon number n̄B,S = 0.2.

the optimal method for state discrimination; it is worthwhile to find out how state discrimination

with click probabilities fares against the optimal strategy. The generic state incident upon the

detector when an object is absent ρ̂0 and when an object is present ρ̂1. As both ρ̂0 and ρ̂1 are

non-orthogonal ⟨ρ̂0|ρ̂1⟩ ≠ 0 there will be errors Perr in the discrimination between the two states.

We define the error probability as

Perr = p0Tr(ρ̂0π̂1) + p1Tr(ρ̂1π̂0), (3.67)

for POVM elements π̂{1,0} and a priori probabilities p{1,0} corresponding to its respective state

ρ̂{1,0}.

The Helstrom bound provides the minimum error possible Pmin
err for state discrimination,

or in other words the optimal discrimination. This bound does not reveal what experimental

measurement scheme yields the optimal discrimination, therefore the POVM element required

to physically realise this measurement is often either unknown or difficult to implement with

current technology [25]. We focus on the situation of discrimination between two states and

knowing that π̂0 = 1̂− π̂1 and p0 + p1 = 1. A POVM element that minimises the probability of

error Perr will express the optimal measurement. Minimisation occurs when the POVM element

π̂1 is a projector onto the negative-eigenvalue eigenstates of (p0ρ̂0 − p1ρ̂1) as is apparent when
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Perr is expressed as [53]

Perr = p0 +Tr
(
(p0ρ̂0 − p1ρ̂1)π̂1) (3.68)

Therefore, the Helstrom bound (when there are only two states) is [142]

Pmin
err =

1

2

(
1− ||p0ρ̂0 − p1ρ̂1||), (3.69)

where ||Â|| = Tr(
√
Â†Â) is the trace norm for a matrix Â. Figure 3.7 compares the equal priors

(p0 = p1 = 1
2 ) Helstrom bound and the click error probability: which is probability that the

detector clicks when an object is absent and that the detector does not click when an object is

absent. We define this click error probability as

Pclick
err =

1

2
Tr(ρ̂H0π̂S) +

1

2
Tr(ρ̂S|I,1(1̂− π̂S)). (3.70)

The click probability of error Pclick
err is the click POVM element applied to the object absent state

and the no-click POVM element applied to the object present state, for the scenario with thermal

noise. Figure 3.7 shows for a range of mean photon numbers for a light source of mean photon

number n̄ and signal detector background n̄B,S with the colour bar representing Pmin
err − Pclick

err .

Negative values show the lack of saturation and a zero value means saturation of the Helstrom

bound. Fig 3.7 it is clear that the Helstrom bound is saturated when either n̄→ 0 or n̄B,S → 0.

As when n̄ → 0 the object present and absent state are equal and hence the discrimination

is impossible for both Helstrom bound and the click measurement approach. Similarly, when

n̄B,S → 0 and n̄ ̸= 0, discrimination between object present and absent is trivially easy, which

means the click measurement approach saturates the Helstrom bound. Lastly, the Helstrom

bound shows that, even in regimes with parameters which understate the difficulty of typical

LIDAR detection regimes, it is impossible to discriminate accurately between object present or

absent in just a single-shot. The Helstrom bound in such regimes is approximately Pmin
err ≈ 1

2 .

State discrimination also applies to many copies of the two quantum states [143], [144].

Important notation to support this is as follows. Suppose we have an arbitrary state ρ which has

m identical copies, the ensemble of these copies ρ⊗m is the tensor product of the state with itself

m times. Here, m identical copies corresponds to m trials of measurement. The discrimination

between the object and no object present hypotheses in this situation now relates to m copies of

both ρ0 and ρ1. A LIDAR system with click detectors requires multiple trials of measurement;

consequently, it is of interest to calculate the minimum error in such a situation. The m-trials
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Figure 3.7 – Contour plot comparing the single-shot Helstrom bound Pmin
err and the click error

probability Pclick
err for a range of mean photon number of signal n̄ and signal detector background

noise mean photon number n̄B,S values. The colour bar represents Pmin
err − Pclick

err . The idler
detector background noise mean photon number n̄B,I = 0.01, system loss of detectors ηS/I = 0.5
and signal attenuation factor ξ = 0.5.

Helstrom bound between two states is

Pmin
err,m =

1

2

(
1− ∥p1ρ̂⊗m

1 − p0ρ̂
⊗m
0 ∥

)
. (3.71)

After many trials, calculation of Eq. 3.71 is intractable. This is because the Hilbert space of

Eq. 3.71 increases exponentially proportional to the number of trials. Moreover, in any case, the

required measurements may be joint measurements of all trials, which is impractical. Therefore it

is unknowable if a particular POVM element saturates the m-trials Helstrom bound. Fortunately,

a calculable upper bound exists for the minimal error of discrimination. The calculable upper

bound is known as the quantum Chernoff bound [145]. Following this, the upper bound of the

minimum error is,

Pmin
err,m ≤ 1

2
e−mξQCB , (3.72)

where ξQCB = −ln

(
min

0≤s≤1
Tr
(
ρ̂s0ρ̂

(1−s)
1

))
. The Bhattacharyya bound is weaker than the quan-

tum Chernoff bound [22] and is only a reasonable bound when there is a lot of background noise;

however, it is easier to calculate,

Pmin
err,m ≤ 1

2
e−mξBB , (3.73)

where ξBB = −ln

(
Tr
(
ρ̂0.50 ρ̂0.51

))
. For both the quantum Chernoff and Bhattacharyya bounds

it is shown that as m increases the minimum error upper bound exponentially decreases. The

knowledge that state discrimination improves with the number of measurement trials is important
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t
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Figure 3.8 – A pulse train mapped onto (successive measurements) shots with time on the
x-axis, for a pulsed source. Each shot has a temporal duration 1

frep
.

and chimes with what we expect. This tells us that accurate discrimination between object

present and absent states with the use of click detectors (even with their sub-optimal POVM

elements) is possible, after a sufficient number of measurements.

3.6 Properties of a single measurement

The LIDAR system is dependent upon a succession of measurements. Therefore, the make-up of

a single measurement, or in other words a shot, is a topic that first needs properly covered. Our

model assumes a perfect one-to-one mapping of pulses to shots (with a source repetition rate set

by frep) as shown in Fig. 3.8. This mapping is perfectly fine in the low detector timing jitter

regime and where count rates are slow enough that detector dead times are negligible. It is easy

to set the temporal duration of a shot for a pulsed source according to the reciprocal of the

source repetition rate. CW systems require an artificial determiner for the duration of a shot.

For CW a possible determiner is the coincidence window duration τc. Furthermore, the second

order coherence function g2(τ) can instruct what temporal duration for a shot is sensible, for

both CW and pulsed.

Within the duration of one shot multiple modes could exist, due to the spontaneous and

stimulated aspects of our light source and background. In lieu of this, it suffices to model each

shot to only have one mode of the source. This assumption is valid due to the click/no-click

nature of the detectors and the low mean photon numbers considered. The theory is simplified

with the aforementioned assumption, as the click probabilities are calculated with only one

mode in each channel. Moreover, it is clear that the mean photon numbers for the source and

background are dependent on the temporal window size of a shot. Henceforth this thesis focuses

on a pulsed pump source, noting that we consider idler-detector-gated CW for the experimental

results in Ch. 8 and that a pulse-source does not have the aspect of covertness that CW has, as

discussed in Ch. 6.8.
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3.7 Click-count distributions

Inference of the presence or absence of an object is facilitated by comparison of the single-shot click

probabilities for either hypothesis [146]. However, as previously shown a single-shot measurement

with simple click detectors can not effectively distinguish between the two hypotheses of object

present and absent. This is because when background noise is present a click in a single-shot

system can either originate from the reflected signal beam or from background noise, which

for high noise and weak signal regimes the object present and absent click probabilities are

near-equal. Therefore, multi-shot hypothesis testing is performed [31], [147]–[149]. Achieving

accurate state discrimination with multi-shot hypothesis testing line is in line with the knowledge

from the Chernoff bound that state discrimination improves with the number of measurements.

The click-count distribution differs from the photon-number distributions introduced in Ch. 2 as

the click-count distribution does not reveal the innate photon statistics that a particular state of

light has, unlike the photon-number distribution. Click-count distributions are Poissonian, but

in the scenario of a large number of shots and a low click probability it is well-approximated by

the Binomial distribution. The use of the Binomial distribution means that each shot of the

experiment at each detector corresponds to a Bernoulli trial. A click or no-click event occurs

according to a click probability pgeneric and generates a corresponding Binomial click-count

distribution Pgeneric [150]

Pgeneric(x) =

(
N

x

)
pxgeneric(1− pgeneric)

N−x, (3.74)

for a click-count x and number of shots N . Furthermore, in the limit of many shots the Gaussian

distribution approximates the Binomial click distribution, assuming satisfaction of the criterion

detailed in Appendix C. This approximation is used henceforth as it greatly simplifies the

analytical and computational demands.

For CI the click-count is the number of signal detector clicks and the number of shots N is

the ratio of the integration time T and the shot temporal window size τc

N = ⌊T/τc⌋ , (3.75)

where ⌊x⌋ is the floor function, which rounds to the greatest integer less or equal to x. Figure 3.9

shows the CI click-count probability distribution for both object present PCI:H1 and absent

PCI:H0, in the scenario with thermal noise.

For QI, if the click-count in question are coincident clicks, the number of shots is the number
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Figure 3.9 – CI probability distribution displaying click-counts for both object present
(coloured blue) and absent (coloured red) hypotheses. Mean photon number of the signal state
n̄ = 0.1, system loss of signal detector ηS = 0.5, signal attenuation factor ξ = 0.5 and mean
photon number of background and dark counts for signal detector n̄B,S = 1. The number of
shots is 8× 103.

of idler clicks k. If the click-count in question are non-coincidence clicks, the number of shots

is N − k (total number of shots subtracted by number of idler clicks). Each set of system

parameters gives rise to an idler click distribution PI and each (number of idler clicks) value

k in PI has a corresponding object present PH1:k and absent PH0:k signal coincidence click

distribution. Figure 3.10 shows the coincidence and non-coincidence click distributions for both

object present and absent hypotheses, after a set number of idler click events k = 1.98× 104

and in the thermal noise scenario. Equation 4.14 quantifies the advantage of the inclusion of

non-coincidence clicks and also discusses system parameter regimes where non-coincidence clicks

are particularly useful.

Existing literature often overlooks non-coincidence signal clicks events as a source of useful

information. In addition, the rangefinding protocol discussed later in this thesis requires the

recording of all types of click. It is clear that bulk of the useful information for inference is from

the number of coincidence clicks; however, there is a small amount of useful information gained

from considering the non-coincidence clicks. The benefit of non-coincidence events stems from a

sub-optimal idler system loss ηI < 1, therefore would-be coincidence clicks are sometimes missed

when the idler detector does not fire.

3.8 Log-likelihood value

A click-count value might infer the presence of an object in one parameter regime or the absence

of an object in another. A framework that facilitates fair comparison of incoming click data
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Figure 3.10 – QI probability distribution displaying coincidence click-counts and non-
coincidence click-counts for both object present (coloured blue) and absent (coloured red)
hypotheses. Mean photon number of the signal state n̄ = 0.1, system loss of all detectors
ηS/I = 0.5, signal attenuation factor ξ = 0.5, mean photon number of background and dark
counts for signal detector n̄B,S = 1 and mean photon number of background and dark counts for
idler detector n̄B,I = 0.01. The number of shots is 8× 103 and the number of idler click events
displayed is 452.

between different situations is desired. The log-likelihood value (LLV) forms the basis of this

framework. The LLV is also appropriate for use in dealing with multi-channel detector data,

as it reduces multiple channels of data pertaining to two simple hypotheses into a single value.

This value also provides a simple test, in this context commonly known as the likelihood ratio

test. The use of the LLV for hypothesis testing is justified by the Neyman-Pearson lemma,

which states that it provides the most powerful test for a set statistical significance level [151].

For CI the object present PCI:H1 and absent PCI:H0 click distributions in their Binomial form

after N shots defines the LLV which converts click data x into an LLV

Λ(x,N) = ln

(
PCI:H1(x,N)

PCI:H0(x,N)

)
. (3.76)

It is clear from Eq. 3.76 that Λ(x,N) > 0 means that presence of an object is more likely as

for a given number of clicks x the object present probability is higher than the object absent

probability. It is also clear that Λ(x,N) = 0 means that both regimes are equally as likely and

Λ(x,N) < 0 infers that absence of an object is more likely. An advantage of using the LLV as a

test is that it is self-calibrating. This self-calibration occurs when the LLV detection threshold

dLLV = 0, as the detection decision is automatically set according to the equal likelihood of the

presence and absence of an object. We will consider later the effect of setting LLV decision

levels on false alarm probabilities and their extension to receiver operator curves.
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For QI the object present PH1:k and absent PH0:k click distributions in their Binomial form

after N shots and k idler click events define the LLV conditioned by k idler clicks which converts

click data x into an LLV

Λ(x, k) = ln
(
PH1(x, k)

PH0(x, k)

)
, (3.77)

where x = (x, y) with x the coincidence click-count and y the non-coincidence click-count. The

LLV for QI functions as a test in an identical way to the CI protocol.

As the click probabilities, click data and number of shots are all real and positive Eq. 3.76

and Eq. 3.77 are recast as linear equations. The CI LLV in linear form is

Λ(x,N) =Mx+NC. (3.78)

Appendix D defines the constants M and C. The QI LLV in linear form is

Λ(x, k) = (M1x+ kC1) + (M2y + (N − k)C2). (3.79)

Appendix D also defines constants M1, M2, C1, and C2. From Eq. 3.79 it is easy to disregard

non-coincidence clicks in the LLV analysis by excluding the right-hand term.

3.9 Log-likelihood distributions

In the following analysis we focus on the statistical moments of the QI LLV distributions after a

mean number of idler clicks k = µI = NPrI. Figure 3.11 shows the object present PH1:Λ(x,µI)

and absent PH0:Λ(x,µI) LLV distributions for idler clicks k = µI. If the click distributions are

well approximated by a Gaussian, all of the LLV distributions are Gaussian too, as linear

transformations and combinations preserve normality [152]. The results below show the object

present hypothesis, but the analysis is similar for object absent. The mean and standard

deviation for the object present LLV distribution conditioned by mean idler clicks µI is derived

in Appendix E. The mean is

µH1:Λ(x,µI) = N
(
PrI(M1PrS|I,1 + C1 −M2PrS|I,0 − C2) +M2PrS|I,0 + C2

)
, (3.80)

and the standard deviation is

σH1:Λ(x,µI) =
(
N(PrI(M2

1PrS|I,1(1− PrS|I,1)−

−M2
2PrS|I,0(1− PrS|I,0)) +M2

2PrS|I,0(1− PrS|I,0)
) 1

2 .
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Figure 3.11 – QI LLV probability distribution for both object present (coloured blue) and
absent (coloured red) hypotheses. n̄ = 0.1, ηS/I = 0.5, ξ = 0.5, n̄B,S = 1, n̄B,I = 0.01. The
number of shots is 8× 103 and the number of idler click events displayed is 452.

When the detection threshold dLLV = 0 we calculate the probability of error by integrating

over the partition of the LLV distributions that reside in their false decision LLV region. The

LLV probability of error is

PLLV
err =

1

2

(∫ ∞

z=0

PH0:Λ(x,µI)(z) +

∫ 0

z=−∞
PH1:Λ(x,µI)(z)

)
, (3.81)

where z is an LLV. Figure 3.12 is a schematic which shows the two types of error which comprises

the LLV probability of error defined in Eq. 3.81, the probability of false alarm is the area

of the object absent LLV distribution which has values that are greater than the detection

threshold dLLV. Whereas, the probability of false negative is the area of the object present

LLV distribution which has values that are less than the detection threshold dLLV. Figure 3.13

shows the comparison of Perr for the LLV framework and the quantum Chernoff bound as a

function of the number of shots, for QI and CI. In Fig. 3.13 we calculate the quantum Chernoff

bound for QI using the number of trials ⌊PrI ×m⌋, this approach means we can compare the

quantum Chernoff bound for QI and CI fairly, as CI has m trials. The approach for calculating

the quantum Chernoff bound is similar if we wish to include non-coincidence clicks. In Fig. 3.13

we use a Monte-Carlo simulation as described in Ch. 7 to generate the LLV probability of error

for the number of shots that do not satisfy the Gaussian approximation criteria defined in

Appendix C. For the parameter regime in Fig. 3.13 the click probability of error Pclick
err defined

in Eq. 3.70 does not saturate the Helstrom bound, for QI. This means that the LLV framework

also does not saturate the Helstrom bound. However, the CI and QI LLV framework for most
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Figure 3.12 – Schematic depicting the two types of error which comprises the LLV probability
of error defined in Eq. 3.81. The shaded regions depict these two types of error in a QI
LLV probability distribution for both object present (coloured blue) and absent (coloured red)
hypotheses. The shaded region of triangles represents the probability of false negative and
shaded region of horizontal bars represent the probability of false alarm.

number of trials m lies below the quantum Chernoff bound.

The lack of explicit calculation of an optimal performance bound for our multi-shot system

can be solved by first acknowledging that our system belongs to a generalised class of sensing

problems: quantum sensing in ancilla-assisted phase-covariant optical channels [52]. The results

from Nair and Gu in Ref. [52] has provided probe and measurement-independent ultimate

performance bounds (expressed in the quantum fisher information) for this class of sensing

problems, subject to energy and mode-number constraints [153]. These performance bounds

differ from the Helstrom bound discussed earlier as it makes no assumption about the probe

state used. In particular, for phase-covariant Gaussian channels, N independent and identically

distributed TMSV probes tends towards being the optimal probe as the mean photon number

n̄→ 0. For QI we do not discriminate using the TMSV, as we instead discriminate using the

idler-click (no-click) conditioned states which do not tend towards the optimal probe. The

optimality of CI is also discussed in Ref. [52]. Furthermore, while not optimal, our CI system

can be enhanced by the use of threshold detection with photon-number-resolving detectors as

explored in Cohen et al. in Ref. [96]. However, this enhancement is negligible for the parameter

regimes we are concerned with: weak signal strength n̄ << 1 and a low SNR n̄ < n̄B,S. Later in

this thesis, we revisit analysis with the LLV distributions in the context of detection confidence

by defining a figure of merit (F.O.M) based off the LLV framework.
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Figure 3.13 – Comparison of the quantum Chernoff bound and the probability of error of the
LLV framework, for QI with signal channel thermal noise and excluding non-coincidence clicks.
The CI LLV probability of error and quantum Chernoff bound is also plotted. Probability of
error Perr on the y-axis and shots m on the x-axis. The object present and absent states are
being discriminated between. Mean photon number of the signal state n̄ = 0.1, system loss of
all detectors ηS/I = 0.5, signal attenuation factor ξ = 0.5, mean photon number of background
and dark counts for signal detector n̄B,S = 1 and mean photon number of background and dark
counts for idler detector n̄B,I = 0.01.

3.10 Deleterious effects

In reality our system is susceptible to deleterious effects such as timing jitter, sensor dead-time

and after-pulsing. These effects serve to disrupt the idealistic system presented thus far. This

section briefly describes each deleterious effect and the reasoning behind its exclusion from our

model.

Timing jitter results from the uncertainty of the timing of a detection event. There are

multiple possible sources of this uncertainty; for example, electronic timing jitter from the

processing of incoming click data. Another example is timing jitter intrinsic to the detector, as

photons may penetrate the detector at different depths and hence different times to initiate the

registration of a photo-count. Timing jitter limits the accuracy of time correlation between idler

and signal channels, undermining the maximum potency of coincidence counting. Additionally,

timing jitter creates uncertainty of the return of the signal beam, which limits the accuracy

of rangefinding. Our model neglects timing jitter as typical values are much smaller than the

timing correlation and depth resolution aimed for in our system. The timing resolution aimed

for in our system ensures the effect of timing jitter is negligible.

After registering a detection event, a detector is not immediately sensitive to another detection

event: it takes time to return to single-photon sensitivity [154]. Sensor dead-time is the name
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for this time required. The process of recharging a SPAD is known as quenching; this stops

the avalanche process after a detection event and recharges the reverse bias voltage. Sensor

dead-time means that some detection events are missed, thereby obscuring the true photo-count

statistics. Detector saturation occurs when sensor dead-time is prevalent, causing a large error in

our registering of the amount of incident light. Our model also neglects sensor dead-time due to

the low mean photon numbers considered. Detection events are infrequent compared to typical

sensor dead-times in low mean photon number regimes; hence, the effect of sensor dead-time

is negligible. Moreover, detector multiplexing could be used to allow for sensor dead-time to

become less of an issue, as it means a single detector within a multiplex is less likely to have

another detection event within a sensor dead-time window [80].

After-pulsing occurs when a detection event triggers a subsequent detection event due to

the initial excitation. This deleterious effect is neglected in our system, as it is easy to ignore

click events suspected of having an after-pulse origin. These events occur very soon after the

initial event and in low mean photon number regimes, it is valid to exclude events so soon after

the initial event, as the ratio of an after-pulsed click to an independent click increases as the

mean photon numbers reduce. The formalism for a click POVM which includes the deleterious

effects of timing jitter and dead-time is given by Gouzien et. al [155]. Furthermore, we could

include the contribution of after-pulsing by conditioning an appropriate increase of the (detector)

background noise for the subsequent shots after a detection event.

This chapter begins with the formalism of measurement of a quantum state; this leads

to the introduction of the POVM — the construct we use to calculate the probability of a

measurement outcome for a particular quantum state. We place the POVM in the context of a

click detector, which is the type of detector we use for our LIDAR protocol and consider various

extensions to our POVM to improve the realism of our measurement model. We then calculate

the click probabilities for our LIDAR system for different types of background noise and for

both CI and QI. Even though our detectors are not photon-number resolving we discuss the

photon-number distributions and what is known as heralding gain. Object detection requires

discrimination between the object present and absent hypothesis. We then discuss quantum

state discrimination. For example, the Helstrom bound provides the minimum error possible

for state discrimination. Following this, we compare the Helstrom bound to the error for state

discrimination using click probabilities. In realistic scenarios, we must use multiple trials of the

experiment to discriminate between the two similar hypotheses (object present and absent);

however, the Helstrom bound quickly becomes intractable. Instead, we calculate the bounds of

the minimum error via the quantum Chernoff bound and Bhattacharyya bound when there are
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many shots of the experiment. We lead to describing what a shot of the experiment means. For

multi-shot hypothesis testing, we will have click-count probability distributions, this leads to a

discussion about the log-likelihood value (LLV). We present this LLV framework as a method of

processing detector data to add context to it, as it functions as a detection decision test. We

also state how we can re-express our click-count distributions as LLV distributions. Finally, we

discuss various effects which apply to a more realistic treatment of an object detection system.



Chapter 4: System performance

The ability to assess system performance is paramount for any functioning LIDAR protocol.

This chapter introduces the figure of merit (FOM), which quantifies system performance regimes

where QI performs better than CI, i.e. where there is a quantum advantage. The knowledge of

which system parameters convey a quantum advantage is important for justifying the additional

effort required for realising quantum-enhanced systems. The quantum fisher information (QFI)

metric is a particular approach used to assess the performance of a QI protocol [54]; however,

as we focus on the detector data (click-counts) to assess system performance we therefore

do not consider the QFI metric further. Instead, we discuss in Ch. 4.2 the classical Fisher

information when analysing system performance in terms of the statistics of the detector data.

For brevity, this chapter focuses on QI with only coincidence clicks beset by thermal noise. It is

easy to reconsider the FOMs with coherent noise instead and for many regimes the inclusion

of non-coincidence events does not improve system performance considerably for the system

parameter regimes we consider in this chapter.

4.1 Signal-to-noise ratio

One ubiquitous FOM is the signal-to-noise ratio (SNR) [73]. It characterises the amount of

signal in comparison to the noise in the system. For CI this is the ratio of signal clicks when

there is no noise and signal clicks when an object is absent and there is noise. In terms of click

probabilities the CI SNR is

SNRCI =
PrCI:H1 − PrCI:H0

PrCI:H0
. (4.1)

For QI the SNR is the ratio of coincidence clicks when there is no noise and coincidence clicks

when an object is absent and there is noise. Similar to CI, the QI SNR in terms of click

probabilities is

SNRQI =
PrS|I,1 − PrH0

PrH0
. (4.2)
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A problem with the SNR as a FOM is that a SNR value is not unique. It is possible for very

different parameter regimes to produce the same SNR. Therefore, it is difficult to discern whether

a certain parameter regime allows for confident object detection within a time-frame using the

SNR metric. Nevertheless, we define the SNR quantum advantage

Q.A.SNR =
SNRQI

SNRCI
, (4.3)

this shows us the parameter regimes that have the best SNR improvement from use of a

quantum-enhanced protocol. With a perfectly correlated source the quantum advantage for

SNR is Q.A.SNR = g(2)(τ), for an appropriate time delay τ between signal and idler channels

and when the mean photon number n̄ < 1 [73].

4.2 Cramér-Rao lower bound

This section introduces the Cramér-Rao lower bound (CRLB) as a FOM. Literature already

exists that treats system performance for a QI-based object detection protocol via this method

in [76]. In our protocol, the target object dictates the signal attenuation factor ξ. Therefore, a

method for object detection is by estimation of the signal attenuation ξ̂ parameter. The optimal

estimator for ξ̂ satisfies the CRLB ∆2ξ̂min. The CRLB is the lower bound for the variance of an

unbiased estimator. In this section we consider only unbiased estimators, i.e. the expectation

value of our signal attenuation estimator is the signal attenuation E(ξ̂) = ξ. However, in this

section we do not need to know if our estimator ξ̂ satisfies the CRLB.

The CRLB functions as a FOM as it shows the minimum uncertainty a particular protocol

has when interpreting detector data for the presence of an object. The CRLB is the reciprocal

of the Fisher information for that parameter [156]

∆2ξ̂min =
1

I(ξ)
. (4.4)

In the context of our protocol, when an object is present, Fisher information tells us the amount

of information a click-count possesses about the true value of ξ̂. For this FOM we consider

the click-count distributions to be Poisson distributions. This is due to the ease granted by

an analytic form of the Fisher information of ξ as the parameter within a Poisson distribution

given in [76]. We can use this Poisson distribution model as the Poisson distribution is a good

approximation of the Binomial distribution if the number of shots is large and the probability of

success is small. The conventional click-count distributions used in this thesis also applies to
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this theory (albeit with a different Fisher information). The Fisher information of ξ within a

Poisson distribution is

I(ξ) =
1

µ

(
dµ

dξ

)2

, (4.5)

where µ is the mean of the click-count distribution. For CI the CRLB is

∆2ξ̂CI =

[
1

NPrCI:H1

(
NηSn̄

(n̄B,S + ηSξn̄+ 1)2

)2]−1

. (4.6)

For QI the CRLB is

∆2ξ̂QI =

[
1

NPrIPrS|I,1

(
NηSn̄

(n̄B,S + ηSξn̄+ 1)2
−

− (1− PrI)
NηSn̄×

(n̄B,S + ηSξn̄× + 1)2

)2]−1

, (4.7a)

when Nidler = NPrI. The lower the CRLB the better the system is for estimating the properties

of a possible target object. Therefore, we define a quantum advantage in the CRLB framework

as

Q.A.CRLB =
∆2ξ̂CI

∆2ξ̂QI

. (4.8)

An issue with the signal attenuation CRLB as a FOM is that it does not directly tell how easy

a detection decision is.

4.3 Distinguishability measure

System performance comparison of QI and CI using click-counts directly is problematic as

coincidence clicks in QI and signal clicks in CI are not the same type of object. This lack of

equivalence between types of click makes it challenging to use click-counts as a performance

metric. Our framework addresses this problem by recasting click-counts of any type into an

LLV. The LLV framework is how we interpret detector data and make detection decisions [90].

Therefore it is wise to derive a FOM from the LLV framework. First, we define the Q-function

for a Gaussian distribution with LLV detection threshold dLLV, mean µ and standard deviation

σ,

Q(dLLV, µ, σ) =
1√
2πσ

∫ ∞

dLLV

e
−
(

z−µ√
2σ

)2

dz. (4.9)
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Figure 4.1 – ROC curve of QI and CI. Dots represent where dLLV = 0. N = 8.75 × 105,
n̄ = 1× 10−3, ηS/I = 0.5, ξ = 1.99× 10−2, n̄B,S = 1× 10−2, n̄B,I = 4.49× 10−4.

We generate a receiver operator characteristic (ROC) curve by calculating the commonplace

statistical measures of probability of detection

PD(dLLV) = Q(dLLV, µH1:Λ(x,k), σH1:Λ(x,k)), (4.10)

and probability of false alarm PFA

PFA(dLLV) = Q(dLLV, µH0:Λ(x,k), σH0:Λ(x,k)), (4.11)

over a range of LLV detection threshold values. Figure 4.1 shows the ROC curve for QI and CI,

with the dots representing where dLLV = 0, it is clear that QI performs better than CI. For any

LLV detection threshold value dLLV we can relate the sum of Eq. 4.10 and Eq. 4.11 to the LLV

error probability in Eq. 3.81 such that we can compare with the Chernoff bound.

The ROC is useful to analyse the trade-offs between different errors; however, an advantage

of the LLV framework is that it is self-calibrating. That is, the equal likelihoods of object

present and absent occurs at the LLV detection threshold dLLV = 0. To summarise, we have a

self-calibrating method to assess system performance. If we relax the detection threshold dLLV

we have system performance in terms of a ROC curve. If we keep the LLV detection threshold

constant dLLV = 0 this simplifies the following use of our framework. Confidence in our detection

decision is interlinked with the overlap of the object present and absent LLV distributions. The

overlap is encoded in the distinguishability measure we define as

ϕ = 1− [PFN(0) + PFA(0)] , (4.12)
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Figure 4.2 – Distinguishability as a function of shots for QI and CI. n̄ = 1× 10−3, ηS/I = 0.5,
ξ = 1.99× 10−2, n̄B,S = 1× 10−2, n̄B,I = 4.49× 10−4.

where the probability of false negative PFN(0) = 1− PD(0). The distinguishability is defined

by the two different types of error in statistical hypothesis testing. The interpretation of

the distinguishability measure is that ϕ = 0 means there is total overlap and ϕ = 1 means

both distributions are completely separate. The distinguishability measure is a figure of merit

(FOM) which directly characterises system performance in the context of confident detection

decision-making. An acceptable value for PFA within the distinguishability measure ϕ sets what

we mean by confident detection. We can increase the distinguishability ϕ by increasing the

number of shots. Figure 4.2 shows how distinguishability ϕ increases as a function of shots for

QI and CI. A Monte-Carlo simulation (detailed in Ch. 7) generates the distinguishability values

for shots N < 5.5× 105. The use of distinguishability ϕ as a FOM contrasts with other FOM’s

such as SNR and CRLB, as these are not directly based on decision-making. We define the

distinguishability quantum advantage

Q.A.ϕ =
ϕQI

ϕCI
. (4.13)

However, there are deficiencies in the use of ϕ as a FOM. For example, when the distinguishability

of a system ϕ → 1, it is known as saturation. A quantifiable comparison between systems

becomes meaningless in such situations. For example, in the scenario with a parameter regime

such that QI has a distinguishability ϕQI = 1 and CI has a distinguishability ϕCI < 1, we

are unable to specify exactly how much better QI is compared to CI. Moreover, this lack of

quantifiable comparison also occurs if ϕ = 0. Due to the aforementioned deficiencies, there are

only limited regimes with a well-defined distinguishability quantum advantage Q.A.ϕ.
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If we compare the distinguishability for a QI system that does (ϕI,0) and does not (ϕI,1)

include non-coincidence clicks we can quantify the benefit of considering non-coincidence clicks.

We quantify this benefit by defining a relative difference of distinguishabilities

∆ϕI,0 =
ϕI,0 − ϕI,1

ϕI,1
× 100%. (4.14)

For the system parameters in Fig. 3.10 in Ch. 3, the non-coincidence relative advantage is

∆ϕI,0 = 1.157%. This advantage is small, however there are regimes where the inclusion of

non-coincidence clicks improves system performance significantly. For example, the benefit of

non-coincident clicks increases as the idler channel system loss parameter ηI decreases. The

reduction of idler channel system loss parameter ηI means that the upsurge of signal clicks

when an object is present is no longer being registered as a coincidence click, due to the low

efficiency of registering idler clicks. To demonstrate that non-coincidence clicks are more useful

in such regimes, we alter two parameters in Fig. 3.10. The new number of shots N = 1× 105

and idler channel system loss parameter ηI = 0.05. With these updated parameters the non-

coincidence relative advantage is ∆ϕI,0 = 25.3%, which shows a significant benefit for considering

non-coincidence clicks.

A threshold distinguishability ϕt is set to ensure that the effectiveness of the LLV test is

consistent in different regimes. Threshold distinguishability ϕt facilitates direct comparison of

different parameter regimes in the LLV framework. For analytic simplicity, we calculate the

threshold distinguishability from the LLV distributions which have a mean number of idler clicks.

The components (types of error) which underlie the distinguishability ϕ, probability of false

negative PFN and probability of false alarm PFA, both affect our interpretation of the LLV for

inference of object presence or absence. Therefore, if we wish that the effectiveness of the LLV

test is consistent when comparing different regimes in the threshold distinguishability framework,

we assume that the influence these types of error have upon the threshold distinguishability is

identical for all of the regimes we compare. Moreover, for a single regime each object present

and absent LLV distribution distinguishability differs slightly with respect to the number of idler

clicks k. This discrepancy means that the effectiveness of the LLV test differs depending on the

number of idler clicks recorded. We ignore this discrepancy if it does not exceed the bound as

detailed in Appendix F. The purpose of ignoring this discrepancy is that all idler click knowledge

is discarded in post-processing and a particular parameter regime only has one type of LLV, i.e

a single channel of data. Clearly, the higher ϕt is the more confident the detection decision. In

this thesis, threshold distinguishability is set to be ϕt = 0.8 in line with convention [78]. One
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reason for this convention is that such a high threshold distinguishability ϕt = 0.8 corresponds to

a visually obvious lack of overlap between the object present and absent distributions, which is

useful for pedagogical purposes. Another reason is that the probability of false alarm PFA = 0.1,

for regimes when the two types of error (PFN and PFA) are approximately symmetrical. The

two types of error are often symmetrical in regimes when the Gaussian approximation is valid.

As we base our notion of confident detection on an acceptably low value of the probability of

false alarm PFA, it is clear that the value PFA = 0.1 is adheres to this.

We define the number of shots required to reach threshold distinguishability

Nt =

⌊
F−1(ϕt)

PrI

⌋
, (4.15)

where F−1(ϕt) is the inverse of the function ϕt, as derived in Appendix G. The calculation of

shots required for threshold distinguishability Nt enables the direct comparison of LLVs from

different parameter regimes. The ability to ensure that all system parameter regimes have the

same LLV test effectiveness means that signal processing is entirely within the LLV framework.

We define a quantum advantage

Q.A. =
Nt:CI

Nt:QI
, (4.16)

where Nt:QI is Nt shots required for threshold distinguisabitity for QI and similarly for CI.

In other words, the quantum advantage Q.A. as the ratio of the number of shots required

for CI and QI to reach threshold distinguishability. In a physical system, this quantity gives

a reasonable approximation to the relative amount of time it would take to determine the

presence or otherwise of a target object for each system under the same conditions. The use

of the quantum advantage Q.A. in terms of shots required surpasses the deficiencies of the

distinguishability FOM. For example, no longer is saturation ϕ→ 1 or divergence ϕ→ 0 an issue,

as the distinguishability is preset to the threshold ϕt. This means that there is a more resilient

FOM for the LLV framework, with a quantum advantage interpreted in the operator-friendly

metric of a factor of the relative time required to reach confident detection. By operator-friendly

we mean that a person using this protocol would find it straight-forward to interpret the FOM.

4.4 Rolling window and average distinguishability

In any realistic system the underlying statistics for the click-counts can change due to changes in

the environment, our source light, or due to a target object appearing or disappearing. In order

to analyse dynamically changing incoming data, we apply a rolling window to our statistics. We
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Figure 4.3 – Rolling window trajectory of QI mean LLV (solid line coloured red) with a
red shaded region limited by a standard deviation of error plus and minus the mean. Regime
changes from object absent to present suddenly at time-bin z = 2Nt marked by the vertical
dashed line (coloured grey). Nt = 3.172 × 106, n̄ = 1 × 10−3, ηS/I = 0.5, ξ = 1.99 × 10−2,
n̄B,S = 1× 10−2, n̄B,I = 4.49× 10−4.

consider time-bins z via the total number of shots elapsed in our data collection. We define the

cumulative number of coincidence clicks after z time-bins T (z) and cumulative idler clicks TI(z),

where z time-bins is the total number of recorded shots. There is an initialisation stage while

z < Nt. We have an LLV R(z) for each time-bin z defined as

R(z) = Λ (T (z)− T (z −Nt), TI(z)− TI(z −Nt)) , (4.17)

for every time-bin z ≥ Nt.

Figure 4.3 illustrates the change in LLV statistics between the object absent regime and the

object present regime. The object suddenly appears at the time-bin denoted by the vertical

dashed line. The system fully updates from object absent to present regime over z = Nt time

bins. Figure 4.3 illustrates what ϕt = 0.8 (and ϕ in general) means for the distinctness of

the object present and absent distributions. However, the duration of a shot is too short to

practically process data in a rolling-window shot-by-shot.

As previously mentioned, it is often impractical to analyse the system on a shot-by-shot basis.

This is due to the very short time-scale of a shot. Therefore, we consider analysis of system

performance through the framework of LLV samples. In this framework, a sample of an LLV is

taken every Nt shots and Nt is the discrete unit of time considered instead of a single-shot. We
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define the mean LLV sample rolling window R(s̃) with refresh rate of S LLV samples as

R(s̃) =
1

S

s̃∑
i=s̃−S+1

Λi, (4.18)

where the sample number is s̃ ≥ S and Λi is an LLV sample. It is clear that Eq. 4.18 has an

initialisation stage when s̃ < S, just like in the shot-by-shot rolling window introduced earlier.

The sample rolling window is a realistic approach to processing LLV data, as the time-scale

involved in Nt is reasonable. The analysis of the experimental data in Ch. 8 uses the LLV

sample rolling window method, rather than assessing the statistics on a shot-by-shot approach.

This is due to the very large number of shots for a given LLV sample, for example an integration

time T = 0.1 s and a coincidence window size τc = 2 ns has N = 5× 107 shots.

The framework of considering data on an LLV sample basis rather than shot-by-shot basis

extends to system performance. We define the average distinguishability, which is the LLV

sample distributions after S samples. If we assume that the statistics are stable, the distributions

that underpin the average distinguishability have the same mean values as the shot-by-shot

distinguishability defined in Eq. 4.12 but with a smaller standard deviation as the number of

samples increase. Therefore, the average distinguishability for S LLV samples is

ϕavg(S) = 1−
(
(1− Q(0, µH1:Λ(x,k),

σH1:Λ(x,k)√
S

)) + Q(0, µH0:Λ(x,k),
σH0:Λ(x,k)√

S
)

)
. (4.19)

The use of the average distinguishability allows for system performance analysis in the LLV

framework with the constraints of realistic data processing in mind. If S = 1 the average

distinguishability reduces to just the distinguishability.

4.5 FOM comparison

This section provides a visual comparison of the different FOMs considered. We show the

various types of quantum advantage metric introduced earlier on a contour plot, where the mean

photon number of our source is varied on the x-axis and the mean photon number of the signal

detector background noise is varied on the y-axis. Figure 4.4 shows SNR quantum advantage

Q.A.SNR. The lack of uniqueness for the SNR Q.A. as we vary the background noise is apparent

in Fig. 4.4, but it does show that the quantum advantage improves as the signal strength n̄

reduces. The reason for the lack of uniqueness in Fig. 4.4 as we vary the background noise is

because the SNR Q.A. does not depend upon the background noise, this Q.A. is formulated such

that the influence of noise is removed. Figure 4.5 shows CRLB quantum advantage Q.A.CRLB.
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Figure 4.4 – Contour plot of SNR quantum advantage Q.A.SNR for varied background noise
and signal strength. ηS/I = 0.5, ξ = 1.99× 10−2 and n̄B,I = 4.49× 10−4.

Figure 4.5 – Contour plot of CRLB quantum advantage Q.A.CRLB for varied background
noise and signal strength. ηS/I = 0.5, ξ = 1.99× 10−2 and n̄B,I = 4.49× 10−4.

For each data point in Fig. 4.5, we use the QI shots required for threshold distinguishability

Nt:QI, whereas Fig. 4.4 does not depend on the number of shots. Figure 4.6 shows the quantum

advantage Q.A. in terms of shots required. Both the CRLB quantum advantage Q.A.CRLB in

Fig 4.5 and the shots required quantum advantage Q.A. in Fig. 4.6 show that the quantum

advantage is most pronounced in the scenario of high signal channel background noise n̄B,S and

low signal strength n̄. Figure 4.6 has an advantage compared to the previous two figures as it

directly shows an operator-friendly value of how much quicker QI is compared to CI as a factor,

for an LLV sample which would give us a confident detection decision.

This chapter discusses the different types of figure of merit (FOM) for the detector data

we can use to assess system performance and quantify the quantum advantage (Q.A.), which

is the advantage QI has over CI for a particular FOM. We discuss the signal-to-noise ratio
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Figure 4.6 – Contour plot of quantum advantage Q.A. = Nt:CI
Nt:QI

for varied background noise
and signal strength. ηS/I = 0.5, ξ = 1.99× 10−2 and n̄B,I = 4.49× 10−4.

(SNR). The use of this FOM is straightforward; however, its deficiency is that the same SNR

could correspond to scenarios where accurate discrimination is possible or not. We lead onto a

FOM rooted in estimation theory: the Cramér-Rao lower bound (CRLB). It gives the optimal

minimum variance of the estimation of the parameter relevant to the presence of an object.

However, it does not directly describe whether accurate discrimination is possible. We lead onto

the FOMs borne by our LLV framework. We begin by discussing the distinguishability measure:

our measure of the overlap between the object present and absent LLV distributions. There are

deficiencies with the distinguishability measure as an FOM, as it can become saturated or null

in some regimes. From this, we lead onto another FOM, the shots required to reach a threshold

distinguishability. This FOM quantifies the time required for a measurement capable of accurate

discrimination. We also discuss analysing detector data and performance analysis in dynamic

situations via a rolling window approach. Lastly, we plot the quantum advantage (Q.A.) of the

different FOMs. These plots reveal that the Q.A. is most pronounced in the low signal strength

and high background noise regimes.



Chapter 5: Multi-mode distributed twin-beam

state

5.1 Motivation

The TMSV introduced earlier is an idealisation of the output from SPDC. However, there are

many modes available to us in each channel (signal and idler) of the twin-beam squeezed state.

For example, to name a couple, there are the spectral and polarisation modes. If we consider M

modes in each channel, we refer to the twin-beam squeezed state as the Multi-mode distributed

twin-beam state (M:TBSS). It is clear that the 1:TBSS state is equivalent to the familiar TMSV.

This chapter develops the theory to use these multiple modes in each arm. In particular, there

is a non-trivial quantum advantage in spectrally resolving both the idler and signal channels of

the twin-beam squeezed state. Each spectral mode has a set bandwidth to which a detector

corresponding to that mode is sensitive. An advantage with the improved performance granted

by (spectrally) resolving more modes in each arm is that we are able to detect confidently an

object when using a lower mean photon number. Confident detection with a lower mean photon

number enables improved covertness of a LIDAR system. Moreover, in a high background noise

and low dark noise scenario, more detectors means less chance sensor dead-time will affect our

system [80].

5.2 Mode-matching

This section develops the formalism for showing which signal modes correlate with which idler

modes. Set notation is used, as the total number of combinations of different events increases

drastically with the number of modes M . For a M:TBSS system there are 2M modes. We label

the ith idler state as mIi, of which the set of M idler states is mI = {mI1, . . . ,mIi, . . . ,mIM}.

There is a similar approach for the signal states, as the set of M signal states is mS =

{mS1, . . . ,mSk, . . . ,mSM}. There is also the set B = {b1, . . . , bi, . . . , bM}. The set B represents
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the shared photon-number for an idler mode and its correspondingly correlated signal mode.

We define |I| as the number of idler detectors that click and similarly |S| as the number of signal

detectors that click. From this, we define the set of the particular idler detectors that click

as mI|I|:z ⊂ mI, where 1 ≤ z ≤
(
M
|I|
)
. Furthermore, we define the set of the particular signal

detectors that click as mS|S|:y ⊂ mS, where 1 ≤ y ≤
(
M
|S|
)
. We also define the complement of

the idler and signal detector click set as mIc|I|:z and mSc
|S|:y, respectively. This formalism allows

for consideration of all possible combinations of idler and signal detector click or no-click events.

An example of the sets of the particular idler detectors that click when M = 3 and |I| = 2 is

mI2:1 = {mI1,mI2}, mI2:2 = {mI2,mI3} and mI2:3 = {mI1,mI3}. From this it is obvious how

the complement sets and the signal detector sets are expressed.

A mapping f(mI,mS) encodes how idler and signal modes are correlated. By defining the

conditions of this mapping, we can express how idler and signal modes correlate in any way.

This level of freedom for mode correlation means that M:TBSS theory is applicable to any of

the degrees of freedom our light possesses. However, the remainder of this thesis shall focus on

the case of idler and signal mode anti-correlations. This mirrors the anti-correlations of spectral

modes from an SPDC output. If two modes have the same photon-number set element bi ∈ B

then they are photon-number correlated, we use this set to describe the mapping. The mapping

(from a particular mode to photon-number set element) for spectral anti-correlations is thus

f(mI,mS) : mIi→ bi and mSk → bM−k+1, ∀i, k. (5.1)

If we consider a 3:TBSS system, the idler mode mI1 correlates with the signal mode mS3.

Figure 5.1 shows an idealised representation of a joint spectral amplitude (JSA) for a state

with three frequency anti-correlated spectral modes. Figure 5.1 also shows how the idler and

signal modes correlate with each other, with the respective index denoted bi beside each mode.

The utility of the index set B is apparent for succinctly representing mode correlation. This

is a simplified scenario, as a realistic JSA does not have a perfect one-to-one correspondence

between modes. Nevertheless, this idealised JSA is sufficient granted we acknowledge the loss

of useful light when only considering signal and idler modes with one-to-one correspondence.

Moreover, each spectral mode mIi or mSk represents a set bandwidth of frequencies with central

frequency ωi/k. As the mode number i, k increases, this represents an increase of frequency of

central frequency for this spectral mode. This thesis only considers arbitrary frequency values.
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b1        mI1

b2     mI2

b3     mI3

mS1        b3 

mS2        b2 

mS3        b1 

Idler modes Signal modes

Signal frequency (arb. units)
0 1 2 3

0

1

2

3

Figure 5.1 – Idealised representation of a joint spectral amplitude (JSA) with three spectral
modes. Note the one-to-one anti-correlation between idler and signal frequencies.

5.3 Squeezing operator

We extend the theory of a two-mode squeezing operator introduced in Ch. 2 for M:TBSS. The

M:TBSS unitary transformation operator is

Û = e
−χâp

∑M
z=1 â†

Sz â
†
I(M+1−z)

+χâ†
p

∑M
z=1 âSz âI(M+1−z) . (5.2)

We model SPDC when this unitary transformation operator is applied to the pump mode and

the 2M mode vacuum [100],

Û |α⟩ ⊗ |{0}2M ⟩, (5.3)

where |{0}2M ⟩ = |0⟩ ⊗ . . . 2M · · · ⊗ |0⟩. This is for the case of a evenly distributed JSA, that is

each mode in M:TBSS has equal photon number distributions. Furthermore, there are perfect

one-to-one frequency correlations for the state given by Eq. 5.3. Appendix J shows the case

of an unevenly distributed JSA. The remainder of this thesis focuses on the case of an evenly

distributed JSA for M:TBSS.

As previously done in Ch. 2, we apply the parametric approximation to the operators acting

upon the pump mode as it is an intense coherent state. This transforms these operators into

classical variables, which vastly simplifies the analysis [116] as the pump field is no longer

represented by an operator. The unitary transformation operator is restated as a squeezing

operator. Additionally, the pump mode is traced out of the system.

Similar to Ch. 2 we define ζ = χ(2)α, where α is the classical pump amplitude that was

originally âp. With the change of variables, we define the M:TBSS two-mode squeezing operator
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as

Ŝ2,M (ζ) = p⟨α|Û |α⟩p (5.4a)

= e
−ζ

∑M
z=1 â†

Sz â
†
I(M+1−z)

+ζ∗ ∑M
z=1 âSz âI(M+1−z) (5.4b)

Equation 5.4b is an unfavourable form of the M:TBSS two-mode squeezing operator for calcula-

tion. Therefore, we use the disentangling theorem to recast Ŝ2,M into a more favourable form

[123], [157]. The following operators are set as

K̂+ =

M∑
z=1

â†Szâ
†
I(M+1−z), (5.5a)

K̂− = K̂†
+, (5.5b)

K̂3 =
1

2

M∑
z=1

â†SzâSz + âI(M+1−z)â
†
I(M+1−z). (5.5c)

The disentangling theorem requires satisfaction of the following commutator relations [K̂3, K̂±] =

±K̂± and [K̂+, K̂−] = −2K̂3. Proof of this satisfaction is shown in Appendix H. Thanks to

the disentangling theorem and setting ζ = reiθ into exponential form, the squeezing operator

Ŝ2,M (ζ) is framed as

Ŝ2,M (ζ) = e−eiθtanh(r)K̂+eln(cosh
−2(r))K̂3ee

−iθtanh(r)K̂− . (5.6)

With the squeezing operator in this form, it is applied to the 2M mode vacuum state.

5.4 M:TBSS state

In this section we express the M:TBSS state. The squeezing operator Ŝ2,M applied to the 2M

mode vacuum is

|ψ⟩M:TBSS = Ŝ2,M (ζ)|{0}2M ⟩ = e−eiθtanh(r)K̂+eln(cosh
−2(r))K̂3ee

−iθtanh(r)K̂− |{0}2M ⟩ (5.7)

The three exponential components of this favourable form act from right to left, hence the

derivation is split into three parts. A similar form of our M:TBSS state is given by Kok and

Braunstein in Ref. [158], where they focus on the polarisation correlations instead. Appendix I
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details the derivation of |ψ⟩M:TBSS. Hence, the M:TBSS state is

|ψ⟩M:TBSS = (sech(r))M
∞∑

n=0

(−eiθtanh(r))n
n∑

b1,...,bM=0

δb1+···+bM ,n|b1, . . . , bM ⟩mI⊗

⊗ |bM , . . . b1⟩mS, (5.8a)

=
1

(n̄+ 1)
M
2

∞∑
n=0

(
−eiθ

√
n̄

n̄+ 1

)n n∑
b1,...,bM=0

δb1+···+bM ,n|b1, . . . , bM ⟩mI⊗

⊗ |bM , . . . b1⟩mS, (5.8b)

as sinh2(r) = n̄. Our detectors are phase-insensitive and hence do not register the off-diagonals

of a density matrix. Similar to the QI state ρ̂SI introduced in Ch. 3 we can express the M:TBSS

density matrix with diagonals only. The M:TBSS density matrix with off-diagonals disregarded

is

ρ̂M:TBSS =

∞∑
n=0

P(n,M)

n∑
b1,...,bM=0

δb1+···+bM ,n|b1, . . . , bM ⟩⟨bM , . . . , b1|mI⊗

⊗ |bM , . . . , b1⟩⟨b1, . . . , bM |mS, (5.9a)

where P(n,M) = n̄n

(n̄+1)n+M .

5.5 M:TBSS measurement operators

The generalised form of the idler detector POVM describes the single-shot measurement made

by all idler detectors in a M:TBSS system. We define the idler detector POVM as

π̂I(M,mI|I|:z) =

M⊗
i=1

mIi∈mI|I|:z

π̂I,✓(i)⊗
M⊗
i=1

mIi∈mIc|I|:z

π̂I,×(i). (5.10)

We define A(i) = 1
1+n̄B,I(i)

and B(i) = 1 − ηI(i)
1+n̄B,I(i)

. Where n̄B,I(i) is the idler detector

background noise and ηI(i) is the idler detector system loss for mode mIi. The mode mIi click

and no-click measurement operators, respectively

π̂I,✓(i) =

∞∑
p=0

(1−A(i)B(i)p)|p⟩⟨p|mIi, (5.11a)

π̂I,×(i) =

∞∑
p=0

A(i)B(i)p|p⟩⟨p|mIi. (5.11b)
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The generalised form of the signal detector POVM is

π̂S(M,mS|S|:y) =

M⊗
i=1

mSk∈mS|S|:y

π̂S,✓(i)⊗
M⊗
i=1

mSk∈mSc
|S|:y

π̂S,×(i). (5.12)

We define D(k) = 1
1+n̄B,S(k)

, G(k) = 1 − ξ(k)ηS(k)
1+n̄B,S(k)

. Where n̄B,S(k) is the signal detector

background noise, ηS(k) is the signal detector system loss and ξ(k) is the signal attenuation

factor for mode mSk. The mode mSk click and no-click measurement operators, respectively

π̂S,✓(k) =

∞∑
p=0

(1−D(k)G(k)p)|p⟩⟨p|mSk, (5.13a)

π̂S,×(k) =

∞∑
p=0

D(k)G(k)p|p⟩⟨p|mSk. (5.13b)

5.6 Generalised click probability

In this section we define the M:TBSS generalised form of the click probabilities with the idler

detector event combination mI|I|:z and with the signal detector event combination F|S|:y. We

first define the idler detector generalised click probability as

PrI(M,mI|I|:z) = Tr

(
ρ̂M:TBSS π̂I(M,mI|I|:z)

)
(5.14a)

=

∞∑
n=0

P (n,M)

n∑
b1,...,bM=0

δb1+···+bM ,n×

×
M∏
i=1

mIi∈mI|I|:z

(1−A(i)B(i)bi)

M∏
i=1

mIi∈mIc|I|:z

A(i)B(i)bi . (5.14b)
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Therefore, when an object is present the generalised signal detector click probability after idler

detector measurement conditioning is

PrS|I,1(M,mI|I|:z,mS|S|:y) = Tr

(
1

PrI(M,mI|I|:z)
TrmI

(
ρ̂M:TBSS π̂I(M,mI|I|:z)

)
×

× π̂S(M,mS|S|:y)

)
, (5.15a)

=
1

PrI(M,mI|I|:z)

∞∑
n=0

P (n,M)

n∑
b1,...,bM=0

δb1+···+bM ,n×

×
M∏
i=1

mIi∈mI|I|:z

(1−A(i)B(i)bi)

M∏
i=1

mIi∈mIc|I|:z

A(i)B(i)bi×

×
M∏
k=1

mSk∈mS|S|:y

(1−D(k)G(k)bM+1−k)

M∏
k=1

mSk∈mSc
|S|:y

D(k)G(k)bM+1−k .

(5.15b)

When an object is absent this means that any idler event does not affect the click probability at

the signal detector. The lack of effect from the idler measurement is because the signal state is

lost to the environment. This loss to the environment is treated by replacing the signal state

with a M-mode vacuum state ρ̂H0 = |{0}M ⟩. Therefore, the M:TBSS general form of the no

object present click probability is

Pr(M,H0,mS|S|:y) = Tr

(
ρ̂H0 π̂S(M,mS|S|:y)

)
, (5.16a)

=

M∏
k=1

mSk∈mS|S|:y

(1−D(k))

M∏
k=1

mSk∈mSc
|S|:y

D(k). (5.16b)

5.7 Generalised click-count distribution and LLV

The generalised click probability theory for M:TBSS covers all possible types of events for our

click detectors. We denote the number of click events for a particular combination of idler

detector clicks and no-clicks as

xI(mI|I|:z). (5.17)

Therefore, the M:TBSS idler click-count binomial probability distribution is

PI(M,mI|I|:z, xI) =

(
N

xI

)
PrxI

I (1− PrI)
N−xI , (5.18)
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where we use short-hand for the corresponding click event xI ≡ xI(mI|I|:z) and we also use

shorthand for the relevant click probability PrI ≡ PrI(M,mI|I|:z). After this, we define the

number of click events for a particular combination of idler and signal detector clicks and

no-clicks as

x(mI|I|:z,mS|S|:y). (5.19)

We add a condition that we only care for events when there is at least one signal detector that

clicks |S| ≥ 1, as any difference between the object present or absent scenario is manifest in the

signal detector click-count statistics. Following from this, we define the M:TBSS object present

binomial click-count probability distribution for an event combination (mI|I|:z,mS|S|:y) as

P(M,mI|I|:z,mS|S|:y, xI, x) =

(
xI
x

)
Prx(1− Pr)xI−x, (5.20)

where we use short-hand for the corresponding click event x ≡ x(mI|I|:z,mS|S|:y) and for the

relevant click probability Pr ≡ PrS|I,1(M,mI|I|:z,mS|S|:y). Furthermore, we define the M:TBSS

object absent binomial click-count probability distribution

P(M,H0,mS|S|:y, xI, x) =

(
xI
x

)
PrxI

H0(1− PrH0)
M−xI , (5.21)

where we use the shorthand PrH0 ≡ Pr(M,H0,mS|S|:y). The M:TBSS LLV which considers all

possible idler and signal click event combinations (with the condition that |S| ≥ 1) is

Λ(M,x) = ln

( M∏
|I|=0

M∏
|S|=1

|z|∏
z=1

|y|∏
y=1

P(M,mI|I|:z,mS|S|:y, xI, x)

P(M,H0,mS|S|:y, xI, x)

)
, (5.22)

where we use the shorthand |z| ≡
(
M
|I|
)

and |y| ≡
(
M
|S|
)
. We also refer to x as the vector containing

the click-count information of all considered events. It is clear that there are many channels

of data arising from the myriad of possible click event. The benefit of the LLV framework is

apparent as the LLV reduces all these data channels into one value. The full M:TBSS theory

is useful as a comprehensive treatment of the multi-mode light we consider. For example,

it facilitates the possibility of simulating M:TBSS range-finding scenarios or accounting for

single-shot multi-clicks when probing targets in regimes without considerable loss. However, the

simplified M:TBSS theory we present next suffices for further discussion of the use of multi-mode

light.
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5.8 Simplified M:TBSS for LIDAR

We do not need the entire suite of features granted by M:TBSS theory to apply it to a LIDAR

system capable of multi-mode discrimination for each beam. In this section we present a

simplified form of M:TBSS thanks to a few assumptions. We assume that the system parameters

are identical for each mode. This simplifies the POVMs as ∀i, k A(i) = A,B(i) = B,D(k) =

D and G(k) = G. We also assume that the M:TBSS state has an evenly distributed JSA. Lastly,

we only consider coincidence clicks limited to when the number of idler clicks |I| = 1. These

assumptions vastly reduce the number of probabilities required to characterise a LIDAR system,

thereby simplifying this particular application of the theory.

As we only consider coincidence clicks, the mapping from idler detectors that clicked to

signal detectors that clicked is

mS1:y = f(mI1:z,mS). (5.23)

We do not consider no-click events and so we drop the mode no-click operators from the

generalised measurement operators in Eq. 5.10 and Eq. 5.12. Therefore, the simplified M:TBSS

idler click probability is

PrI(M,mI1:z) =

∞∑
n=0

P (n,M)

n∑
b1,...,bM=0

δb1+···+bM ,n(1−ABb1). (5.24)

The simplified M:TBSS coincidence click probability is

PrS|I,1(M,mI1:z) =
1

PrI(M,mI1:z)

∞∑
n=0

P (n,M)

n∑
b1,...,bM=0

δb1+···+bM ,n(1−ABb1)(1−DGb1).

(5.25)

Furthermore, the simplified M:TBSS object absent coincidence click probability is

PrH0(M,mI1:z) = (1−D). (5.26)

The total number of idler clicks, signal clicks and coincidence clicks is also dependent on

the number of detectors M . The click probabilities for each mode are equivalent, therefore

calculating the total number of clicks for the simplified M:TBSS system is an easy multiplicative

task. After N shots, the mean total number of idler clicks NI = NPrI(M,mI1:z)M and

the mean total number of signal detector noise clicks NS:noise = NPrH0(M,mI1:z)M . The

mean total number of coincidence clicks, for object present and absent respectively, NS|I,1 =

NPrI(M,mI1:z)PrS|I,1(M,mI1:z)M and NH0|I,1 = NPrI(M,mI1:z)PrH0(M,mI1:z)M .



CHAPTER 5. MULTI-MODE DISTRIBUTED TWIN-BEAM STATE 87

Due to the assumptions made for simplified M:TBSS the click-count probability distributions

are parameterised only by number of modes M and the set of idler detectors that click once

in total mI1:z. Therefore, we set the notation for the simplified M:TBSS idler click-count

probability distribution as PI(M,mI1:z, xI). Similarly, we set the notation for the simplified

M:TBSS coincidence click-count probability distribution for object present as P(M,mI|1|:z, xI, x)

and object absent as P(M,H0,mI|I|:z, xI, x). As the simplified M:TBSS LLV constitutes M

independent click-count probability distributions, it is easy to state the LLV in its linear form

Λ(M,x) =

|z|∑
z=1

M1x(mI1:z) + xI(mI1:z)C1, (5.27)

where M1 = ln
(PrS|I,1(M,mI1:z)(1−PrH0(M,mI1:z))

PrH0(M,mI1:z)(1−PrS|I,1(M,mI1:z))

)
and C1 = ln

( 1−PrS|I,1(M,mI1:z)

1−PrH0(M,mI1:z)

)
.

5.8.1 Figures of Merit

All of the FOMs introduced in Ch. 4 applies to M:TBSS theory. The SNR for the simplified

M:TBSS is

SNRM:TBSS =
PrS|I,1(M,mI1:z)− PrH0(M,mI1:z)

PrH0(M,mI1:z)
. (5.28)

As for QI (1:TBSS), we set the simplified M:TBSS click-count distribution as Poissonian for the

CRLB of signal attenuation factor estimation ∆2ξ̂min. The simplified M:TBSS CRLB is

∆2ξ̂min =

(
dξ

dµ

)2

µ, (5.29)

where µ = NS|I,1. The distinguishability and shots required for threshold distinguishability

follow suit based off the LLV defined in Eq. 5.27. It is also straight-forward to express a quantum

advantage comparing CI with M:TBSS for any of our FOM.

5.8.2 Performance comparison

It is trivial to show that system performance improves by increasing M for a system with a

mean photon number n̄ for each mode, as the total mean photon number in the system increases

with M modes. Instead, we want to show a non-trivial advantage of increasing the number of

spectral modes M without increasing the total mean photon number. To show the non-trivial

advantage we need to be sure that the comparison of M:TBSS with QI is fair. This condition

for fairness requires that the total mean photon number of our light source and the background

noise is equal for any M:TBSS state. We want to solve for the M:TBSS mean photon number
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n̄M that gives us the same number of clicks as a 1:TBSS state with mean photon number n̄

would. We exclude the influence of idler detector background noise to investigate solely how

the mean photon number is distributed over the number of spectral modes M . Therefore, the

M:TBSS mean photon number is found from

NI|n̄B,I=0 = NPrI(1,mI1:z)

∣∣∣∣
n̄B,I=0

= NPrI(M,mI1:z)

∣∣∣∣
n̄B,I=0

M, (5.30)

where PrI(1,mI1:z) is a function of 1:TBSS mean photon number n̄ and PrI(M,mI1:z) is a

function of M:TBSS mean photon number n̄M . Calculation of the M:TBSS mean photon number

n̄M from Eq. 5.30 is greatly assisted by the knowledge that when only one mode of the M:TBSS

is regarded the photon statistics are thermal, as derived in Appendix K. Hence, the M:TBSS

mean photon number in terms of the 1:TBSS mean photon number is

n̄M =
n̄

M − ηIn̄+ ηIMn̄
. (5.31)

There is a similar approach for calculation of the M:TBSS signal detector background noise

n̄M:B,S. Therefore, the M:TBSS signal detector background noise in terms of the 1:TBSS signal

detector background noise is

n̄M:B,S =
n̄B,S,E

M − n̄B,S,E +Mn̄B,S,E
+ n̄D, (5.32)

where we define the 1:TBSS signal detector environmental background noise mean photon

number n̄B,S,E and the detector dark count mean photon number n̄D = n̄B,I. We assume that

the only noise for the idler detector is from detector dark counts, as we can shield the idler

detector system from the environment. By separating the environmental noise and dark counts

in our analysis this means that M:TBSS systems will have different noise counts, due to the

added dark counts as the number of detectors increase. However, it is still fair to compare

different M:TBSS systems as the signal light and the environmental noise is still distributed fairly.

It is clear that the benefit from increasing the number of spectral modes M is limited by the

dark counts having a dominant effect over the distributed environmental noise. This limitation

from dark counts means there is an optimal number of spectral modes M . Figure 5.2 shows

how the SNR varies with the number of spectral modes M . As shown by Frick in Ref. [159] the

optimal number of spectral modes Mopt is when

∂SNR

∂M

∣∣∣∣
Mopt=M

= 0. (5.33)
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Figure 5.2 – SNR as a function of modes M . n̄ = 0.5, ηS/I = 0.5, ξ = 0.5, n̄B,S = 0.51,
n̄B,I = 0.01. The optimal number of spectral modes Mopt = 26.

Moreover, the use of the LLV framework to quantify M:TBSS performance is shown in the object

absent to present rolling window in Fig. 5.3. The distinguishability for 1:TBSS ϕ1 = 0.552,

2:TBSS ϕ2 = 0.705, 3:TBSS ϕ3 = 0.761 and 4:TBSS ϕ4 = 0.787. It is clear from both Fig. 5.3

and the distinguishabilities that the relative advantage reduces as M < Mopt increases. The

different time-series plots for M:TBSS in Fig. 5.3 appears piece-wise. This is due to the sudden

nature of the object absent to present regime change at N = 200, the rolling window which

takes N = 100 shots to update fully to the other regime and that this is the average of 1× 104

Monte-Carlo simulated LLV trajectories. At each shot number N there is a distribution of LLV

values, which has accrued due to the many Monte-Carlo simulation runs. From this distribution

we are able to plot the error bars shown in Fig. 5.3 as the standard deviation above and below

the mean LLV. In Ch. 7 we discuss the methodology behind the Monte-Carlo simulation used

to generate Fig. 5.3 and that while we can analytically generate this figure, the individual

trajectories which constitute the distribution of LLV values are of interest for signal processing

and testing our protocol.

To summarise, this chapter begins with a motivation of why we wish to extend the theory

of the non-classical light we consider for QI, as there are multi-mode correlations between the

two beams. Hence, it is advantageous to develop a generalised theory to exploit them. We

lead onto the prerequisite theory about the notation for expressing mode correlations. After

this, we derive the state vector and density matrix for the multi-mode twin-beam state of light:

the multi-mode distributed twin-beam squeezed state (M:TBSS). We then lead onto the click

detector POVMs pertaining to all the possible combinations of events and the corresponding

click probabilities. We then define the LLV for the M:TBSS. To ease the application of this

theory to our LIDAR protocol, we can make a few simplifications and refer to this as simplified

M:TBSS. We mention that the previously defined FOMs also apply to the M:TBSS theory.



CHAPTER 5. MULTI-MODE DISTRIBUTED TWIN-BEAM STATE 90

Figure 5.3 – Rolling window of the mean LLV from object absent to present for 1:TBSS,
2:TBSS, 3:TBSS and 4:TBSS, with an error bar of one standard deviation plotted too. Rolling
window size of 100 shots, n̄ = 0.5, ηS/I = 0.5, ξ = 0.5, n̄B,S = 0.51, n̄B,I = 0.01.

From this, we lead onto performance comparison for a different number of modes used for each

beam. Our performance analysis reveals an optimal number of modes we can use in each beam

to maximise distinguishability.



Chapter 6: Practical jamming-resilient LI-

DAR protocol

6.1 Foundation to protocol

A LIDAR model requires the ability to detect and range-find a possible target object. Earlier

in this thesis we introduced the tools for detecting or ruling out a possible target object, for

a known distance. In this chapter we provide our method for range-finding. We introduce

essential aspects of range-finding such as spatial resolution, temporal resolution and target object

scattering properties. Furthermore, in this chapter we reinforce the knowledge that improved

covertness and jamming-resilience is granted by the use of quantum-enhanced LIDAR when

detecting or range-finding a target object.

The previous chapters of this thesis present the precursor material before introduction of

our LIDAR model. Chapter 2 discusses the light sources used and the type of noise in our

system. Chapter 3 discusses the detectors used and how we make measurements. Moreover,

in Ch. 3 we include effects such as system loss and signal attenuation from probing a possible

target object. Chapter 4 introduces the methods for assessing system performance. The ability

to assess system performance is paramount for any remote sensing protocol, as it instructs

the practicality of object detection and ranging in certain scenarios. Chapter 5 extends our

theory to include multi-mode information on both the idler and signal channels. The use of this

multi-mode information improves system performance and covertness, it also grants additional

resilience to jamming.

6.2 Range-finding

We perform range-finding by exploiting timing information and prior knowledge of the reflection

properties of a possible target object. It takes more time for our signal light to reach the object

and back-scatter towards our detector than it does for our idler light. We refer to this time



CHAPTER 6. PRACTICAL JAMMING-RESILIENT LIDAR PROTOCOL 92

D

Light source

Detector

Target object

Figure 6.1 – Idealised diagram of the probing a target object and that light back-reflecting
towards our detector.

taken as the time delay

t(D) =
2D

c
, (6.1)

where c is the speed of light in the medium (approximated as the speed of light in a vacuum for

simplicity). Figure 6.1 visualises the path for light to leave our source and reflect from the target

object back towards our detector. The distance of this path is what sets the time delay t(D).

A technology which facilitates range-finding for classical single-photon LIDAR is known as

time-correlated single-photon counting (TCSPC). This involves time-tagged pulses which are

then correlated with the return photon-count statistics [9], [160]. However, there are downsides

to the use of pulsed light sources for remote sensing. For example, there is a reduction of

covertness as pulses are easier to detect than a CW source with the equivalent power, due to the

short duration the power of a pulse is concentrated within. Therefore, an alternative modality

for remote sensing is classical CW LIDAR via amplitude or frequency modulation of the source

light output [161]. A CW or pseudo-thermal source for classical ghost imaging-based LIDAR is

also possible [162]–[164]. Nevertheless, accurate remote sensing is difficult at low signal strength

and high noise regimes for any modality of classical single-photon LIDAR.

Our CI model is not the optimal modality for classical LIDAR. For example, this is because

of the lack of modulation or use of classical correlations. For a pulsed source our CI model can

perform range-finding akin to TCSPC. Whereas, the CI model with a CW light source cannot

accurately range-find due to the lack of timing information available for the probe beam. The

remainder of this thesis will focus on ranging for QI, ignoring CI. We can ignore CI for our

treatment of range-finding as the system performance analysis of CI and QI in Ch. 4 shows that

even if we perfectly know the distance of the target that QI performs better.

We use the strong non-classical temporal correlations between the idler and signal beams to

range-find [81]. The idler beam is locally measured and therefore has no delay as its distance

from source to detector is known, whereas the signal beam does have a delay due to the distance
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Figure 6.2 – Idealised depiction of detector click-event post-processing for the signal and
idler channels as a function of time discretised into time-bins. Clicks events are represented by
the coloured pulses. The signal beam is delayed by Mdelay(D) = 2 time-bins.

of the object. This delay is often unknown as the distance of the object is often unknown. The

quantum advantage from coincidence counting is recovered by correctly matching idler and

signal channels with an appropriate delay. We segment time into time-bins, where each time-bin

corresponds to a shot of the system (which has a temporal duration set by the coincidence

window size τc). Therefore, the expected signal beam delay is also discretised into time-bins.

Our pump source can be either in pulsed or CW operation, it does not matter as the idler and

signal output from the SPDC process are pulses. The expected delay of the signal beam in shots

for an object at distance D from the detector is

Mdelay(D) = ⌊t(D)frep⌋ , (6.2)

where the source repetition rate frep = 1/τc, which is dependent on the coincidence window

size τc. Therefore, the idler data stream is matched with the signal data stream shifted back

Mdelay(D) shots, for an inspected distance D. Figure 6.2 shows how delay-matching in post-

processing will correlate the signal and idler channel channels segmented into time-bins of

temporal size τc. The desire for considering a system with a discretised delay is that separate

data channels do not suffer from coincidence counting cross-talk, as the coincidence windows do

not overlap. Chapter 8 demonstrates range-finding when the discretised delay approach is not

possible (due to the small distances we attempt to discriminate between); therefore, the effect

of cross-talk and the lack of our discretised delay approach is discussed there. We define the

spatial resolution of the system Dr as

Dr =
c

2frep
. (6.3)



CHAPTER 6. PRACTICAL JAMMING-RESILIENT LIDAR PROTOCOL 94

Timing jitter due to our detector (and to a lesser degree to our source and the object) can

cause the misbinning of click events. The deleterious effect of misbinning could be that an

object is falsely inferred at a wrong distance, thereby affecting the range-finding ability of our

protocol. As the target object distance is never an integer value of the spatial resolution there is

an increased chance of misbinning, as on average the return clicks can be closer to the edges of

a particular time-bin. However, as mentioned earlier, timing jitter is neglected in our model as

we set the coincidence window size τc such that the effect of timing jitter is negligible. Previous

literature for simple-detection based QI range-finding describes timing jitter corresponding to

≈ 10 cm range uncertainty [159], which is smaller than the range resolution we specify henceforth

at 30 cm. We define the (realistic) temporal resolution tr(D) which determines how quickly

our system can make a confident LLV sample for a distance D. This depends on the source

repetition rate frep and the threshold distinguishability ϕt, therefore the temporal resolution is

tr(D) =
Nt(D)

frep
. (6.4)

There is also a quantum LIDAR range formula (for Lambertian-type scatterers) [165]. This

allows for calculation of the maximum range Dmax our protocol can detect an object, for one

LLV sample of N shots. The quantum LIDAR range formula is

Dmax =

√
cmax:IAnξobj

2πcnoise
, (6.5)

where cmax:I is the maximum idler count rate, A is detector area, n is the number of photons given

an idler count, ξobj is the intrinsic reflectivity of an object and cnoise is the noise count rate. We

can relate this directly to our model by setting cmax:I =
(
N × PrI + 4

√
N × PrI(1− PrI)

)
1

τc×N

and cnoise =
(
N × PrH0

)
1

τc×N . Of course, the estimation from Eq. 6.5 does not set a hard limit

for how far we can range a target object. We can beat the maximum range Dmax set by Eq. 6.5

by taking more LLV samples.

6.3 Scattering and absorption of our probe light

This section deals with the scattering and absorption our probe beam experiences during

the process of interrogating a target object. This process includes the journey towards an

object, the reflection or absorption upon the object and the journey back towards our detector.

The medium between our detectors and the target object can absorb or scatter some of our

light, which is known as the atmospheric extinction. A modality of remote sensing known as
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differential absorption LIDAR utilises the atmospheric extinction to investigate the properties of

the atmosphere [166]. However, we neglect the effects of atmospheric absorption and scattering.

This is due to the relatively short stand-off distance we typically consider for quantum-enhanced

LIDAR and the high atmospheric transmissivity for visible and near-IR wavelengths. Another

property we neglect is beam divergence of our signal beam from source to object. We neglect

this property because of the relatively short distances we typically consider and that beam

divergence is partially prevented if the beam is sufficiently collimated.

The signal attenuation factor ξ encodes all loss from the process of probing a target object.

Within this factor ξ we define the object reflectance factor ξobj. A object reflectance factor

of ξobj = 1 is an object that completely reflects all light incident upon it back to the detector

and ξobj = 0 is an object that completely absorbs or reflects all light incident upon it not to

the detector. Typical values in a realistic scenario of the signal attenuation factor are ξ ≪ 1,

where often the bulk of the loss is due to the intermediate space between the object and target,

rather than the reflective property of the object itself (ξobj). We make an idealisation that a

target object either perfectly adheres to the reflective properties of a specular or a Lambertian

reflector. A specular reflector reflects light at an angle equal to its incident angle. An example

of a specular reflector is a perfect mirror. A target object with specular reflectance directed

is relatively easy to detect compared to a Lambertian scatterer, granted that it is angled such

that the reflected light is aimed towards our detector. We refer to a specular reflector angled in

this way as a cooperative target and we assume this scenario is true for the remainder of our

discourse on specular reflectors. Figure 6.3 visualises what a specular reflector is in terms of

beam geometry. Due to the assumptions of no beam divergence or atmospheric extinction the

signal attenuation factor for a specular reflector as a function of object distance is

ξ(D) = ξobj (6.6)

We now consider the Lambertian reflector and its influence on our signal attenuation factor

ξ [167]. To derive ξ in our Lambertian model we have our initial intensity of light I0 and our

detected intensity of light Idet = ξI0. Light incident upon a Lambertian reflector is equally

diffused over all possible angles upon reflection. Figure 6.4 visualises a perfect Lambertian

reflector with beam geometry. A more realistic approach for describing target reflectivity of a

rough-surface is the Rayleigh-fading target statistical model. It considers the speckle that tends to

occur when LIDAR wavelengths interrogate rough surfaces. Here, speckle refers to the Rayleigh-

distributed amplitude and uniformly-distributed phase in the return light. Reference [34] applies
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Light source Detector

Specular reflector

Figure 6.3 – A representation of a specular reflector. The angle of incidence θ for the light
normal to the target object is the same as the angle of reflectance.

Light source Detector

Lambertian reflector

Figure 6.4 – A representation of a Lambertian reflector. A beam with angle of incidence θI
strikes the Lambertian reflector and the reflected light is equally diffuse.

this model in the context of QI. However, we do not consider the Rayleigh-fading target model

further as we restrict ourselves to the idealised scenarios of either a specular or Lambertian

reflector. Lambert’s cosine law applies to Lambertian reflectors. This law dictates that for a

diffusely reflecting object, the initial intensity of light I0 scales with the cosine of the incident

angle θI with respect to the normal of the plane of the object. As the light reflects off the object

with angle θR, we apply Lambert’s cosine law a second time. Hence, we define the resulting

intensity after scattering from the object IS = I0ξobjcos(θI)cos(θR). The double application of

Lambert’s cosine law is obvious in Fig. 6.5 as it shows our incident light I0 striking the reflector

at an angle θI and with the reflected beam leaving the object towards the detector at an angle

θR. If our light source and detector is situated close together and the object is sufficiently far

away from our detector then the angle of incidence and reflectance are approximately the same

θI ≈ θR = θ. Realistic Lambertian objects are rough-surfaced and can move throughout the

detection process, consequently the angle θ changes constantly. Therefore, we take the average

of Lambert’s law applied twice cos2(θ) = 1
2 , which yields IS = 1

2ξobjI0 for the intensity after

scattering off an object. No attenuation occurs upon the beam as it travelled towards the

detector due to the lack of beam divergence, however it will attenuate as a function of distance
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Figure 6.5 – A representation of why Lambert’s cosine law is applied twice. A beam with
angle of incidence θI strikes the Lambertian reflector and the reflected light returns to the
detector with angle θR.

due to the diffuse nature of the post-reflected light. If the detector is at a distance D from the

object, the light will spread out within a hemisphere with area AD = 2πD2 due to the inverse

square law. The factor of 2π in AD is due to the light diffusing equally in all directions of a

hemisphere. Furthermore, we define Adet as the area of our detector. The remainder of this

thesis we set the area of the detector Adet = 1 m2 for the simulation results of range-finding.

The ratio of Adet and AD is the attenuation solely from distance. We restate the intensity of the

light upon the detector as Idet = IS
Adet

2πD2 = I0ξobj
Adet

4πD2 . Therefore, for the Lambertian reflector

model, the signal attenuation factor object distance is

ξ(D) =
Adetξobj
4πD2

. (6.7)

6.4 LLV and distance

It is intuitive to see that the signal attenuates as a function of travelled distance, which in turn

affects the click probabilities and consequently the LLV. Of course, for the idealised model of a

specular reflector there is no signal attenuation from distance, but a more realistic model of

the specular reflector has signal attenuation mainly caused by beam divergence. Our model for

the Lambertian reflector does however have signal attenuation affected by distance. Hence, the

number of shots to reach threshold distinguishablity Nt increases with detector distance D. We

require a specific LLV conditioned by k idler clicks for each each distance D

ΛD(xD, k) = ln
(
PH1,D(xD, k)

PH0,D(xD, k)

)
, (6.8)
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with PH1,D (PH1,D) defined as the click probability distribution for an object present (absent) at

distance D after Nt shots, respectively. We also introduce xD to refer to the click-count data from

the idler detector data channel with no delay and the signal detector data channel with delay in

time-bins Mdelay(D). For a set of system parameters and for an inspected distance D, there is an

expected mean coincidence click-count µD:I,1 resulting from its corresponding number of shots

Nt(D) required for threshold distinguishability. This expected mean coincidence click-count can

differ for each inspected distance, whereas the expected mean LLV is approximately constant

for all inspected distances. This is due to the adherence of the threshold distinguishability

requirement which means the LLV test effectiveness is consistent for all inspected distances.

Hence, the LLV is directly comparable for different distances. This ability to interpret different

possible inspected distances simultaneously is a valuable feature for a range-finding protocol.

The range-finding theory also applies to the multi-mode light (M:TBSS) we introduce in Ch. 5.

Each idler channel and its respective correlated signal channel is encoded within xD.

6.5 Range-finding statistics

The distance of a possible target object is unknown in a range-finding scenario, therefore the

expected delay is also unknown. We systematically work through different possible distances

(delays) from near to far, in search of the correct location. Analysis of the LLV distribution

statistics for different inspected distances is essential for understanding how our LLV framework

can discern the presence of a target object when range-finding. However, we are not able to

generate analytically LLV distributions for inspected distances that are not at the correct object

distance. This is because we are not able to predict how our signal light will cause accidental

coincidence clicks with the idler data stream for incorrect signal beam delays. Instead, we

computationally generate (via a Monte-Carlo simulation) the inspected distance LLV distributions

by processing simulated data streams via the relevant LLV for that inspected distance ΛD(xD, k).

The methodology for this simulation is expanded upon in Ch. 7. We are able to discern that a

certain delay is the correct one if it is sufficiently distinguished from the statistics of the LLV

distributions corresponding to its neighbouring delays. This is because the correct delay LLV

distribution is the only distribution underpinned by the strong temporal correlations for idler and

signal beams. In the following section, we set a coincidence window size as τc = 1
frep

= 2×10−9 s.

This means that we have an spatial resolution of Dr = 0.3 m.
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Distance (m) Nt Mdelay ξ
2 6.64×103 6 1

2.7 6.64×103 9 1
3 6.64×103 10 1

3.3 6.64×103 11 1
6 6.64×103 20 1

Table 6.1 – Inspected distance properties for an object with specular reflectance and a spatial
resolution of Dr = 0.3 m. The columns are the distance (m), the shots required for threshold
distinguishability Nt(D), signal stream delay in shots Mdelay(D) for each object distance and
ξ. System parameters are n̄ = 0.01, ηS/I = 0.5, signal attenuation ξ = 1, n̄B,S = 0.5 and
n̄B,I = 4.49× 10−4.

6.5.1 Specular reflection

We first show the LLV statistics for a set of inspected distances for the specular reflector. For

all inspected distances D, the LLV for k idler clicks is the same ∀D, ΛD(xD, k) = Λ(xD, k).

The reason is that for our idealised model the signal attenuation parameter ξ(D) does not vary

with distance. Therefore, each inspected distance has the same shots required for threshold

distinguishability Nt(D). Table 6.1 shows the properties for each inspected distance, when we

have a specular reflector. Where we use the method in Appendix G to calculate Nt. Figure 6.6

shows the mean and one standard deviation error bar for a set of inspected distance LLV

distributions. The target object is situated at a distance of Dcorrect = 3 m. For the system

parameters in Fig. 6.6 the expected object present mean LLV for all distances is µE ≈ 3.22. In

Fig. 6.6 it is clear that only the correct inspected distance LLV distribution has a mean identical

to the expected object present mean LLV µE. It is therefore apparent that the target object

is situated at 3 m, due to this strong signature. Figure 6.7 shows the inspected distance LLV

distribution statistics when an object is absent. Whereas, for an object absent, all inspected

distances statistics match their respective object absent statistical outcome.

6.5.2 Lambertian reflection

We now consider a target object with Lambertian scattering properties. Each inspected distance

D has its own unique LLV conditioned by k idler clicks ΛD(xD, k). This is because for our

Lambertian model the signal attenuation parameter ξ(D) varies with distance. In consequence,

each inspected distance has a unique value for shots required for threshold distinguishability

Nt(D). Table 6.2 shows the properties for each inspected distance. Where we use the method

in Appendix G to calculate Nt. The results for Nt from Appendix G are numerically consistent

with the Monte-Carlo simulation approach as detailed in Ch. 7.2.1 to find the distinguishability

ϕ — and hence find Nt. To put the shots required for confident detection for the 6 m distance
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Figure 6.6 – Inspected distance LLV distributions when a specular reflecting object is situated
at a distance 3 m. Mean and one standard deviation error bar plus and minus the mean plotted.
The correct distance 3 m is shown as a blue dot and error bar. The shots required for threshold
distinguishability Nt, signal stream delay in shots Mdelay(D) for each object distance and ξ
is given in Tab. 6.1. The horizontal (black) dashed line is the detection threshold dLLV = 0.
n̄ = 0.01, ηS/I = 0.5, n̄B,S = 0.5 and n̄B,I = 4.49 × 10−4. This figure is generated from 104

simulation runs.

Figure 6.7 – Inspected distance LLV distributions when a specular reflecting object is
absent. Mean and one standard deviation error bar plus and minus the mean plotted. The
correct distance 3 m is shown as a blue dot and error bar. The shots required for threshold
distinguishability Nt(D), signal stream delay in shots Mdelay(D) for each object distance and
ξ is given in Tab. 6.1. The horizontal (black) dashed line is the detection threshold dLLV = 0.
n̄ = 0.01, ηS/I = 0.5, n̄B,S = 0.5 and n̄B,I = 4.49 × 10−4. This figure is generated from 104

simulation runs.
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Distance (m) Nt Mdelay ξ
2 1.35×105 6 1.98×10−2

2.7 4.41×105 9 1.09×10−2

3 6.69×105 10 8.84×10−3

3.3 9.76×105 11 7.31×10−3

6 1.05×107 20 2.21 ×10−3

Table 6.2 – Inspected distance properties for a Lambertian reflecting object and a spatial
resolution of Dr = 0.3 m. The columns are the distance (m), the shots required for threshold
distinguishability Nt, signal stream delay in shots Mdelay(D) for each object distance and
ξ. System parameters are n̄ = 0.1, ηS/I = 0.5, signal attenuation ξ = 1, n̄B,S = 0.5 and
n̄B,I = 4.49× 10−4.

into perspective we use the coincidence window size τc = 2 ns used in the first experimental

results in Ch. 8. Hence, the time required for a confident detection LLV sample at the distance of

6 m is t ≈ 0.02 s. Meanwhile, Fig. 6.8 shows the mean and one standard deviation error bar for

each inspected distance LLV distribution, for a set of distances. The target object is situated at

a distance of Dcorrect = 3 m. For the system parameters in Fig. 6.8 the expected object present

mean LLV for all distances is µE ≈ 3.22. Figure 6.8 does not show real-time statistics, as a single

LLV sample for a far distance takes longer to acquire than a near distance in the Lambertian

model. Therefore, we discard some simulation run results for the near distance in order to match

the quantity of simulation results with the far distance. Figure 6.8 shows the object present

statistics and the correctly inspected distance 3 m shows a strong signature, due to the correct

coincidence matching. However, all of the falsely inspected distances display varying levels

of a shifted LLV because the influence of accidental coincidence events are amplified by the

mismatch of real incoming click-counts and what is expected from a certain inspected distance.

Regardless, the two nearest inspected distances to the true distance (2.7 m and 3.3 m) are not

shifted enough to obscure the LLV signature of the true distance. Whereas, for an object absent,

all inspected distances statistics match their respective object absent statistical outcome and is

identical to Fig. 6.7.

6.6 Real-time range-finding

An example of real-time range-finding for our protocol is now demonstrated. In this section we

demonstrate real-time range-finding on an object with Lambertian scattering properties. For

different inspected differences (i.e. different parameter regimes) to have their LLV’s interpreted

the same, we must ensure that each LLV sample is formed from its corresponding shots required

for threshold distinguishability Nt(D). Hence, for each inspected distance D an LLV sample is

taken every Nt(D) shots. We define a set of K LLV samples as {Λ1, . . . ,ΛK}, with each LLV
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Figure 6.8 – LLV of simulated range-finding statistics when a Lambertian reflecting object
is situated at a distance 3 m. The figure displays the mean and one standard deviation error
bar, for each inspected distance. The correct distance 3 m is shown as a blue dot and error
bar. The shots required for threshold distinguishability Nt(D), signal stream delay in shots
Mdelay(D) for each object distance and ξ is given in Tab. 6.2. The horizontal (black) dashed line
is the detection threshold dLLV = 0. n̄ = 0.1, ηS/I = 0.5, signal attenuation is modelled by the
reflection of a perfect Lambertian scatterer at distance D, n̄B,S = 0.1 and n̄B,I = 4.49× 10−4.
This figure is generated from 104 simulation runs.

sample taken every Nt(D) shots. Chapter 4 defines the LLV sample rolling window R(s̃). Here,

we specify a special case of this where the sample number s̃ = S. Hence, it is no longer a rolling

window and is instead the LLV sample mean µS =
ΣS

i=1Λi

S , for a total number of samples S,

where S ≤ K.

The LLV sample mean µS(D) is plotted as a function of time-bin z in Fig. 6.9. This figure is

generated from a Monte-Carlo simulation, as introduced in Ch. 7. The number of LLV samples

⌊z/Nt(D)⌋ that comprise µS(D) increases with the elapsed time z in time-bins. The more LLV

samples there are the sooner a confident detection decision is made, as for an unvarying system

the statistics converge to the relevant inspected distance LLV distribution. The search for an

object is executed by scanning from near to far, this is because near inspected distance have

more LLV samples after an elapsed time and hence a confident detection decision is made sooner.

Our range-finding protocol stops searching once there is a signature of an object at a distance D.

Figure 6.9 shows how the different inspected distances (excluding 6 m) roughly converge by the

last time-bin. The reason why the 6 m inspected distance only has a point in Fig. 6.9 is because

the total elapsed time is equal to the number of shots for just one sample for the 6 m inspected

distance. All inspected distances make the correct LLV test decision as well, with only the 3 m

inspected distance displaying a strong signature for the object present LLV test decision. Our

LIDAR protocol is able to extend to any distance. However, we limited the maximum distance
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Figure 6.9 – Real-time signal trajectory of µS for the near (1.2 m), correct (3 m), one delay
bin after correct (3.3 m) and far (6 m) inspected distances. Each inspected distance LLV sample
has µS on the vertical axis and elapsed time in shots (i.e. time-bins) z = Melapsed on the
horizontal axis. The horizontal (black) dashed line is the detection threshold dLLV = 0. The
total elapsed time in shots is Nt(6). The object situated at a distance 3 m. Nt, Mdelay(D) and
ξ given in Tab. 6.2. frep = 0.5 GHz, n̄ = 0.1, ηS/I = 0.5, signal attenuation is modelled by the
reflection off a perfect Lambertian scatterer at distance D, n̄B,S = 0.1 and n̄B,I = 4.49× 10−4.

considered in this chapter to a short-range 6 m, as the inverse square law for the Lambertian

scatterer causes the shots required to drastically increase in value at a great computational cost

for Monte-Carlo simulation.

Furthermore, the requirement that each LLV sample for an inspected distance must be

made every Nt(D) shots is not necessary. However, if we wish to make an LLV sample for an

inspected distance sooner, this at the expense of detection decision error and comparability of

LLV between inspected distances. By recording an LLV sample sooner, this would mean that

the shots is less than the shots required for threshold distinguishability N < Nt(D). Therefore,

this would cause PD to decrease and PFA to increase due to the larger overlap with a smaller

integration time.

6.7 Velocity estimation

The ability to estimate the velocity of an object is invaluable for instructing the subsequent

possible location of that object. There is classical LIDAR technology that uses the Doppler

effect to estimate object velocity [168]. This can extend to quantum-enhanced LIDARs. The

optimal performance for the precision of range and velocity estimation (via the Doppler effect)

is limited by bounds set in [84]. However, we do not further consider velocity estimation via the

Doppler shift as it is experimentally challenging to implement, as the Doppler shift for sensible

velocities is near imperceptible. Instead, we present a cruder approach which depends on the

upsurge of LLV at the inspected distance with the correct delay as an object moves through
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space. For example, we present a simple demonstration of velocity estimation. An object is

travelling directly towards our detector with an unknown velocity vobj. We detect an object at a

far distance Dfar with the far distance LLV data stream at time-bin z1. Following from this, we

detect an object at a near distance Dnear with the near distance LLV data stream at time-bin

z2. If we assume that the object is at a constant velocity, we can estimate its velocity with

vobj =
Dfar −Dnear

τc(z2 − z1)
. (6.9)

Of course, some error arises due to the delay bin approach, which considers any distance D in a

range [D,D +Dr) as the same distance.

6.8 Covertness

QI performs better than CI for object detection and ranging, particularly in low signal strength

and high background noise regimes. A trivial point is that covertness is afforded by QI enabling

confident detection at a lower signal strength than CI, because of the better performance of QI

[86]. There are other aspects which mean that quantum-enhanced LIDAR enables covertness in a

way that CI does not. For example, the theory for M:TBSS enables us to exploit that our source

hops randomly around the spectrum within its JSA. This means that any particular spectral

mode can have a lower signal strength for an M:TBSS enabled detector system than would be

allowed for one-mode QI (which detects all of the spectral modes in one detector). The ability of

M:TBSS to detect objects confidently using signal light weaker than one-mode QI (i.e. 1:TBSS)

requires enables further covertness. Another point is that QI is able to detect and range-find

using a CW-source pump, whereas for our experiment CI is completely unable to range-find.

There is an inherent reduction of covertness with the use of a pulsed source, as with a pulsed

source the signal power is highly concentrated temporally and therefore easier for a third party

to detect. This is opposed to a CW-source which has the same signal strength but is temporally

spread and is therefore relatively more difficult for a third party to detect. The ability of QI

(and M:TBSS) to detect and range-find with a CW-source pump at considerably weaker signal

strengths and with than CI highlights the improved covertness a quantum-enhanced LIDAR

protocol provides.



CHAPTER 6. PRACTICAL JAMMING-RESILIENT LIDAR PROTOCOL 105

6.9 Jamming-resilience

One of the major benefits of our quantum-enhanced LIDAR protocol is its resilience to jamming.

Jamming can occur via a hostile party deliberately shining dynamic bright light towards our

detector in order to obstruct our ability to accurately range-find or detect target objects. The

coincidence counting approach for our quantum-enhanced LIDAR means that the influence of

background light is reduced compared to the influence it has on CI.

Our LLV is based on prior estimation of the system parameters before jamming. Therefore,

our LLV is out of tune to the real statistics during jamming. Fortunately, we can dynamically

sample the real background noise when the strength of our signal is much weaker than the

environmental background n̄ << n̄B,S. Therefore, our LLV is dynamically updated and this

can counter the effect of a varying background. Our method for dynamic background tracking

is that we continually re-estimate the mean photon number of the signal detector n̄B,S. This

re-estimation is based off the average of the signal detector clicks from the rolling window size

of previous samples, for each sample number. CI is not able to benefit from dynamic tracking

as the signal is negligible compared to the varying background in the regimes we analyse.

The following section shows simulation of a jamming scenario for two different types of

jamming. The first type is sinusoidal jamming, which is a slowly varying sine wave of background

variation. This type of jamming is easy to track and hence mitigate its effect. The second type

of jamming is pseudo-random fast jamming. An intermediate form of jamming (somewhere

between sinusoidal slow jamming and pseudo-random fast jamming) is also possible. For this

intermediate jamming scenario, we can take the (largest) Fourier components of the background

light to partially mitigate the effect of this jamming. We can use the active background

tracking techniques for sinusoidal slow jamming on the largest Fourier components. Whereas,

for completely pseudo-random fast jamming, due to the unpredictable amplitude of noise this

means that dynamic background tracking has less benefit than the (slow) sinusoidal jamming. In

the following sections Ch. 6.9.1 and Ch. 6.9.2 we plot at the same time object present and object

absent statistics under the influence of a varying background. The statistics that we plot are by

LLV sample number, each of which is comprised of N shots. We are able to range-find under

the presence of jamming, using the approach presented earlier by searching for the upsurge of

LLV statistics at the correct delay with respect to neighbouring falsely guessed delays. However,

to avoid over-complicating our exposition of jamming-resilience we assume that we know the

distance of the object and hence its delay.
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Figure 6.10 – Signal clicks as a function of sample number. Object present and absent
statistics shown, undergoing sinusoidal slow jamming. The horizontal (black) dashed line is
the detection threshold dLLV = 0. n̄ = 0.02, ηS/I = 0.5, signal attenuation factor ξ = 0.5,
n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3 and n̄B,I = 0.0001. Each sample is comprised of N = 600
shots. Amplitude of the sinusoidal jamming a = 0.8n̄B,S,E and periodicity b = π/250.

6.9.1 Slow jamming

As a function of sample number s̃ the mean photon number of the signal detector environmental

noise in the presence of sinusoidal slow jamming is n̄B,S,E(s̃) = a sin(b× s̃) + n̄B,S,E, where a is

the amplitude of the jamming and b is the periodicity. Figure 6.10 shows the signal clicks for

both object present and absent as a function of sample number s̃. It is clear in Fig. 6.10 that

the signal clicks for either situation of object present or absent are near identical.

In Fig. 6.11 we apply an LLV sample rolling window with refresh rate of S = 90 samples to

the LLV statistics for object present and absent, for both CI and QI. The benefit of applying a

rolling window is that it reduces the variance of our statistics, as per the theory of the average

distinguishability introduced in Ch. 4, which improves our distinguishability and ability to

visually discern between object present and absent scenarios. It is clear that the QI statistics

for object present and absent are distinguished from each other, but are still negatively affected

by the jamming. It is also clear that CI LLV statistics are not distinguished from each other. In

Fig. 6.11 for CI (and infrequently QI) false LLV test decisions are made due to the jamming.

With the dynamic background tracking shown in Fig. 6.12 for QI, we see that the effect of

jamming is countered by the dynamic background tracking and the QI statistics no longer given

false LLV test decisions. For example in Fig. 6.11 without the dynamic background tracking,

the lower background noise (with respect to the initial background noise estimation) at around

sample number 400 is misconstrued by our LLV statistics as a reduction of the likelihood of
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Figure 6.11 – LLV as a function of rolling window sample number. Object present and absent
statistics shown for QI and CI, undergoing sinusoidal slow jamming. The horizontal (black)
dashed line is the detection threshold dLLV = 0. n̄ = 0.02, ηS/I = 0.5, signal attenuation factor
ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3 and n̄B,I = 0.0001. Each sample is comprised of
N = 600 shots. Amplitude of the sinusoidal jamming a = 0.8n̄B,S,E and periodicity b = π/250.

object presence, because of the relative reduction of coincidence clicks. Whereas in Fig. 6.12 with

dynamic background tracking, this lower background noise at sample number 400 is accounted

for by a (dynamically) updated LLV test. Therefore, the LLV test correctly anticipates a relative

reduction of coincidence clicks originating from noise, thereby increasing the object present LLV

statistics.

6.9.2 Fast jamming

In the presence of pseudo-random fast jamming, for any sample number s̃, the mean photon

number of signal detector environmental noise is subject to selection by a pseudo-random number

in a range of values from [n̄B,S,E − an̄B,S,E, n̄B,S,E + an̄B,S,E]. Where we define a as the range

amplitude for the fast jamming. Figure 6.13 shows the signal clicks for both object present and

absent as a function of sample number s̃, undergoing pseudo-random fast jamming. It is clear in

Fig. 6.13 that the signal clicks for either situation of object present or absent are near identical.

In Figure 6.14 we apply an LLV sample rolling window with refresh rate of S = 90 to the LLV

statistics for object present and absent, for both CI and QI. It is clear that the QI statistics for

object present and absent are distinguished from each other. Moreover, the CI LLV statistics

are not distinguished from each other, we can see that false LLV test decisions are made due to

the pseudo-random fast jamming for CI. Figure 6.15 shows the dynamic background tracking

for QI. We see that the dynamic background tracking for the pseudo-random fast jamming does

not provide any notable advantage in this regime of jamming.
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Figure 6.12 – LLV as a function of rolling window sample number. Dynamic background
tracking is applied for QI. Object present and absent statistics shown for QI and CI, undergoing
sinusoidal slow jamming. The horizontal (black) dashed line is the detection threshold dLLV = 0.
n̄ = 0.02, ηS/I = 0.5, signal attenuation factor ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3 and
n̄B,I = 0.0001. Each sample is comprised of N = 600 shots. Amplitude of the sinusoidal jamming
a = 0.8n̄B,S,E and periodicity b = π/250.

Figure 6.13 – Signal clicks as a function of sample number. Object present and absent
statistics shown, undergoing pseudo-random fast jamming. The horizontal (black) dashed line
is the detection threshold dLLV = 0. n̄ = 0.02, ηS/I = 0.5, signal attenuation factor ξ = 0.5,
n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3 and n̄B,I = 0.0001. Each sample is comprised of N = 600
shots. Amplitude of the range of the fast jamming a = 0.4.
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Figure 6.14 – LLV as a function of rolling window sample number. Object present and
absent statistics shown for QI and CI, undergoing pseudo-random fast jamming. The horizontal
(black) dashed line is the detection threshold dLLV = 0. n̄ = 0.02, ηS/I = 0.5, signal attenuation
factor ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3 and n̄B,I = 0.00001. Each sample is comprised
of N = 600 shots. Amplitude of the range of the fast jamming a = 0.4.

Figure 6.15 – LLV as a function of rolling window sample number. Dynamic background
tracking is applied for QI. Object present and absent statistics shown for QI and CI, undergoing
pseudo-random fast jamming. The horizontal (black) dashed line is the detection threshold
dLLV = 0. n̄ = 0.02, ηS/I = 0.5, signal attenuation factor ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I,
n̄B,S,E = 0.3 and n̄B,I = 0.00001. Each sample is comprised of N = 600 shots. Amplitude of the
range of the fast jamming a = 0.4.
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Figure 6.16 – LLV as a function of rolling window sample number. Object present and
absent statistics shown for 4:TBSS (denoted as 4) and 1:TBSS (denoted as 1), undergoing
sinusoidal slow jamming. The horizontal (black) dashed line is the detection threshold dLLV = 0.
n̄ = 0.0005, ηS/I = 0.5, signal attenuation factor ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3
and n̄B,I = 0.00001. Each sample is comprised of N = 2800 shots. Amplitude of the sinusoidal
jamming a = 0.8n̄B,S,E and periodicity b = π/250.

6.9.3 M:TBSS

There are situations such that the jamming is so intense or the return signal is so weak that

even QI (1:TBSS) is unable to accurately discriminate between object present or absent, even

with dynamic background tracking. Therefore, this section presents how the increase of spectral

modes for an M:TBSS system can improve the resilience to jamming. The jamming-resilience

is afforded by an M:TBSS system because as the number of M spectral modes increases, the

background noise incident on each of the M signal detectors is reduced. This reduction occurs

as we assume that the bandwidth of each detector for an M:TBSS system is a segment of the

bandwidth for a detector in a 1:TBSS system, therefore a higher M means that each detector

bandwidth (and hence the incoming background noise) is smaller. With a reduction of the

background noise, this reduces the ability for jamming to negatively influence our system due to

this spectral filtering. Another reason why jamming-resilience is improved by an M:TBSS system

is that an increase of M decreases our M:TBSS mean photon number n̄M, thereby the HG is

more pronounced. Moreover, as we have access to the idler detectors and a 3rd party does not,

we know which of the M signal detectors is conditioned after an idler click. Figure 6.16 shows

object present and absent LLV for 1:TBSS and 4:TBSS as a function of LLV sample number, in

the presence of sinusoidal slow jamming. 1:TBSS is greatly affected by the jamming and 4:TBSS

is not as affected, but it still causes false LLV test decisions. Figure 6.17 shows the same as

Fig. 6.16 but with dynamic background tracking applied. 1:TBSS still makes false LLV test
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Figure 6.17 – LLV as a function of rolling window sample number. Dynamic background
tracking is applied for both 1:TBSS and 4:TBSS. Object present and absent statistics shown
for 4:TBSS (denoted as 4) and 1:TBSS (denoted as 1), undergoing sinusoidal slow jamming.
The horizontal (black) dashed line is the detection threshold dLLV = 0. n̄ = 0.0005, ηS/I = 0.5,
signal attenuation factor ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3 and n̄B,I = 0.00001. Each
sample is comprised of N = 2800 shots. Amplitude of the sinusoidal jamming a = 0.8n̄B,S,E and
periodicity b = π/250.

decisions, but 4:TBSS now makes consistent correct LLV test decisions. This shows a scenario

where 4:TBSS is resilient to intense jamming, when 1:TBSS is not. Figure 6.18 shows object

present and absent LLV for 1:TBSS and 4:TBSS as a function of rolling window sample number,

in the presence of pseudo-random fast jamming. 1:TBSS is greatly affected by the jamming

and 4:TBSS is not as affected, but it still causes false LLV test decisions. Figure 6.19 shows

the same as Fig. 6.18 but with dynamic background tracking applied. 1:TBSS still makes false

LLV test decisions, but 4:TBSS now makes consistent correct LLV test decisions. This again

shows a scenario where 4:TBSS is resilient to intense jamming, when 1:TBSS is not. Contrary

to the previous application of dynamic background tracking, Fig. 6.19 shows an improvement in

the LLV test decisions compared to Fig. 6.18. This is because the amplitude of the jamming is

greater in Fig. 6.18 than in Fig. 6.14.

We begin this chapter by relating the previous chapters to the necessary background for

presenting a LIDAR protocol with jamming-resilience. We discuss the basics behind range-

finding and how it relates to our discretised time framework for coincidence matching. We then

discuss different models for expected signal attenuation, which correspond to various types of

scattering off a possible target object. We discuss how to incorporate delay information into

our LLV framework. After this, there are plots of the range-finding statistics for specular and

Lambertian reflectors at different distances. However, these are not real-time range-finding

statistics. We demonstrate how the LLV is affected nonlinearly when we consider delays for
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Figure 6.18 – LLV as a function of rolling window sample number. Object present and
absent statistics shown for 4:TBSS (denoted as 4) and 1:TBSS (denoted as 1), undergoing
pseudo-random fast jamming. The horizontal (black) dashed line is the detection threshold
dLLV = 0. n̄ = 0.0005, ηS/I = 0.5, signal attenuation factor ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I,
n̄B,S,E = 0.3 and n̄B,I = 0.00001. Each sample is comprised of N = 2800 shots. Amplitude of
the range of the fast jamming a = 0.8.

Figure 6.19 – LLV as a function of rolling window sample number. Dynamic background
tracking is applied for both 1:TBSS and 4:TBSS. Object present and absent statistics shown for
4:TBSS (denoted as 4) and 1:TBSS (denoted as 1), undergoing pseudo-random fast jamming.
The horizontal (black) dashed line is the detection threshold dLLV = 0. n̄ = 0.0005, ηS/I = 0.5,
signal attenuation factor ξ = 0.5, n̄B,S = n̄B,S,E + n̄B,I, n̄B,S,E = 0.3 and n̄B,I = 0.00001. Each
sample is comprised of N = 2800 shots. Amplitude of the range of the fast jamming a = 0.8.
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coincidence matching that do not correspond to the real delay (location) of the object. We then

show a set of LLV trajectories for a real-time scenario. For Lambertian scatterers, there are

more LLV samples for the nearer object location guesses. Therefore, it is obvious it is easier to

rule out or confirm the location of an object at closer distances. We have a short discussion

about velocity estimation and how our system provides a level of covertness unobtainable in

conventional LIDAR systems. We discuss how our system functions in the presence of dynamic

noise (jamming) and show that the LLV framework allows us to counter this jamming, along

with the innate resilience granted by coincidence counting for QI. We show simulated signal click

and LLV trajectories for different types of jamming for CI and QI, which shows the inability of

CI to function under such jamming. Finally, we extend our jamming-resilience capabilities by

incorporating the M:TBSS theory to show that the more modes in each beam, the more resilient

the system is to jamming.



Chapter 7: Simulation methodology

7.1 Motivation and foundations

Throughout this thesis, we strive to characterise our LIDAR system with analytic instead of

numerical techniques. The reason for this is that it is often simpler and computationally less

expensive. However, there are multiple situations when an analytic approach is either unavailable

or not desired. In these situations we simulate what we require. Moreover, simulation allows

us to emulate experimental data sets to test our LIDAR protocol. This chapter details the

methodology of our simulations.

Monte Carlo simulation is a commonly used tool to estimate probabilistic outcomes which

are difficult or impossible to calculate through analytic methods. This type of simulation entails

repeated random sampling to generate an outcome (which is a random variable). In the context

of our LIDAR system, a click-count is an outcome of a simulation run. Each simulation run s̃

comprises of N iterations, where an iteration is synonymous with a single experimental shot of

our system. After multiple simulation runs, we generate a probability distribution of the random

variable (i.e. the click-count). The simulated probability distribution allows us to estimate

the true probability distribution of the random variable. We can improve this estimation by

increasing the number of simulation runs. Moreover, for the next iteration of a simulation run,

the outcome of that iteration does not depend on the outcomes from the previous iterations.

The outcome only depends upon its current situation (whether an object is present or not,

for example) and the probability of such an outcome. This is known as a Markovian process.

Therefore, the type of simulation we consider is called Markov-chain Monte Carlo [169].

We wish to generate a discrete random variable X which corresponds to an outcome of a

single shot of our experiment. This random variable has a probability mass function defined as

Pr(X = xj) = pj , where j = 0, 1, . . . , J and

J∑
j

pj = 1. (7.1)

Where pj the probability of an outcome xj of a single shot of our experiment. We use the
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discrete inverse transform method to sample the discrete random variable X from a uniformly

distributed random number U [170]. Where we set

X =



x0 if U < p0

x1 if p0 ≤ U ≤ p0 + p1

. . .

xj if
∑j−1

i=0 pi ≤ U <
∑j

i=0 pi

. . .

xJ if
∑J−1

i=0 pi ≤ U <
∑J

i=0 pi

(7.2)

For a single experimental shot if the only outcome is either a click event or a no-click event then

Eq. 7.2 reduces to simulation of a Bernoulli trial, where p0 is the probability of a no-click and p1

is the probability of a click. However, we require the formalism of Eq. 7.2 when simulating an

M:TBSS system, due to the multiple different types of outcome for a single experimental shot.

As this is a discrete example of the inverse transform method we search (through the index j)

until we find the outcome xj which satisfies the condition for our uniformly distributed random

variable U set by Eq. 7.2. Once the outcome xj is found for a given U , we now have our desired

random variable X = xj .

When simulating a single experimental shot for QI, there are two discrete random variables

corresponding to XI the idler detector outcomes and XS the signal detector outcomes. Therefore,

for each iteration, there are two uniformly distributed random numbers UI and US, corresponding

to the idler and signal detector random variables respectively. Figure 7.1 shows diagrammatically

the process for simulating a QI system. From this diagram it is apparent that our model is a

Markov chain, as it does not matter how many clicks or no-clicks precede an iteration of the

simulation. This fact is reflected by the lack of change of probabilities p1, p2, p3 and p4 from

iteration 1 to iteration 2. Following on from this, there are multiple approaches to simulating

M:TBSS when M > 1, this is expanded upon in Ch. 7.3.1.

7.2 QI and CI click-count simulation

7.2.1 Method

This section details the methodology for simulating a click-count (for QI and CI), which is then

processed into an LLV. For each simulation run s̃ there are N iterations. Each iteration i has
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I,1 I,0

Iteration 1

Record I,1 and Record I,0 and 

I,1 I,0

Iteration 2

p1 p2 p3 p4 p3 p4
p1 p2

Figure 7.1 – Diagram of two iterations of a Markov Chain Monte-Carlo simulation of a QI
system. The Markovian nature of our simulation is obvious as the recorded outcome of an
iteration does not affect the probabilities p1, p2, p3, p4 for signal click or no-click after idler click
or no-click for the subsequent iteration. We define UI/S(i) as the random number generated for
the idler or signal detector outcome for iteration i.

two uniformly distributed random numbers UI(i) and US(i). As discussed earlier, the outcome

of an iteration is found by a search involving UI(i) and US(i), therefore we have the detector

outcome random variable XI(i) and XS(i), for the idler and signal detectors respectively. If we

want a fair comparison of QI and CI from one simulation run, the random numbers US which

selects the outcomes for the signal detector for QI should be the same for CI. Moreover, if we

want a fair comparison of object present and absent scenarios for one simulation run, we reuse

random numbers for the object absent simulation after it has selected the outcomes for the

object present simulation.

From each simulation run, the number of each type of idler detector and signal detector

outcome is recorded. The data that is recorded for a simulation run is then processed into the

relevant LLV. Following this, we define the number of simulation runs Ñ . The set of LLVs after a

number of simulation runs Ñ is our simulated LLV distribution. If the Gaussian approximation

is valid for the system parameters, the convergence of the simulated LLV distribution to the

expected analytic LLV distribution is discussed in Ch. 7.2.2. We define the mean of our simulated

LLV distribution as

µ̃ =
1

Ñ

Ñ∑
s̃=1

Λ(s̃), (7.3)

where Λ(s̃) is the LLV from simulation run s̃. The standard deviation of our simulated LLV

distribution is

σ̃ =

√√√√ 1

Ñ

Ñ∑
s̃=1

(
Λ(s̃)− µ̃

)2
. (7.4)
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Figure 7.2 – The convergence of Monte-Carlo generated LLV distribution mean towards the
analytically calculated mean LLV. With mean on the y-axis and number of simulation runs on
the x-axis. n̄ = 0.001, n̄B,S = 0.1, n̄B,I = 0.00001, ξ = 0.5, ηS = 0.3, ηI = 0.3 and N = 1× 105.

However, in situations when the simulated LLV distribution is not Gaussian, complete char-

acterisation of the distribution by the first two moments (µ̃ and σ̃) is not possible. Therefore,

if we want to calculate the distinguishability measure from the simulated object present and

absent LLV distributions, this requires a manual search for the elements that have positive or

negative LLVs.

7.2.2 Convergence

This section shows how a simulated LLV distribution converges to what is expected analytically.

This is for a set of system parameters where the Gaussian approximation is valid, therefore the

LLV distribution is fully characterised by its mean and standard deviation. Figure 7.2 shows the

analytic mean and the mean of the Monte-Carlo generated LLV distribution as the number of

simulation runs Ñ accumulates. Whereas, Fig. 7.3 shows the analytic standard deviation and the

standard deviation of the Monte-Carlo generated LLV distribution as the number of simulation

runs Ñ accumulates. Convergence is guaranteed by the strong law of large numbers which

states that for the mean of a set of independent and identically distributed random variables, it

converges to the expected mean as Ñ tends to infinity [171].
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Figure 7.3 – The convergence of Monte-Carlo generated LLV distribution standard deviation
towards the analytically calculated standard deviation LLV. With mean on the y-axis and
number of simulation runs on the x-axis. n̄ = 0.001, n̄B,S = 0.1, n̄B,I = 0.00001, ξ = 0.5,
ηS = 0.3, ηI = 0.3 and N = 1× 105.

7.3 M:TBSS LLV simulation

7.3.1 Method

There are two different methods we use to simulate a single shot of the experiment for M:TBSS.

The first method uses the simplified M:TBSS theory. For an iteration i, there are M uniformly

distributed random numbers UI(M, i) for the set of M idler detectors and there are M uniformly

distributed random numbers US(M, i) for the set of M signal detectors. For each iteration

only the idler detector click and signal detector click which is correlated to the idler detector is

recorded.

It is difficult to simulate the full theory of M:TBSS with the first method. This is because

for the full theory of M:TBSS the click probabilities are framed to consider all detectors and

their outcomes together, rather than as M separate Bernoulli trials. Instead, we require an

alternative approach for simulation. For an iteration i, only one random number generates the

outcome for M idler detectors and only one random number generates the outcome for M signal

detectors. Unlike simplified M:TBSS, QI and CI, full M:TBSS does not have a Bernoulli trial

for each shot. Instead, there are many possible outcomes (when M > 1) which are sampled

according to the general form given in Ch. 7.2.
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7.4 Simulation case examples

Throughout this thesis, we have set system parameters such that we can use the analytic

approach as much as possible. Monte-Carlo simulation can also generate many of these figures.

For example, we analytically calculate the LLV distributions in Fig. 3.11; however, we can also

generate them following the simulation technique described in Ch. 7.2.1. In this section we shall

focus on the situations where an analytic approach is not optional and simulation is required.

Figure 3.13 shows how the Bhattacharyya bound compares to the probability of error for the

LLV framework as a function of shots N . We use the Gaussian approximation for the click-count

distributions (and therefore the LLV distributions) to save computation time. However, when

shots N < 2000 the Gaussian approximation fails and we must generate the LLV distributions

by simulation. Therefore, we calculate the probability of error for the LLV framework for shots

N < 2000 via simulation. Figure 4.2 shows the distinguishability ϕ as a function of shots N .

Similar to Fig. 3.13, there are data points for when the Gaussian approximation fails as there

are too few shots, therefore we simulate the LLV distributions for each N which is too small for

Gaussian approximation validity. Figure 5.3 is a rolling window of the mean LLV with an error

bar of one standard deviation for M:TBSS from an object absent to object present situation.

The Gaussian approximation is more prone to failure for M > 1 as there are more types of event

for the same number of shots, meaning there is a smaller mean number of click-counts for each

distribution.

The figures in Ch. 6 for range-finding all require Monte-Carlo simulation as we can not

analytically predict how different delays will affect coincidence click matching to a simulated

stream of click events. Moreover, if we want to simulate a realistic incoming stream of click

events the full formalism which includes non-coincidence clicks is required, because we need to

simulate every possible type of click that will occur. This is because non-coincidence clicks may

be coincident with clicks at another delay. The need for Monte-Carlo simulation is particularly

obvious for Fig. 6.9 as it displays an LLV-processed random variable on a time-series. The

figures pertaining to jamming, Fig. 6.10 to Fig. 6.19, need Monte-Carlo simulation because it is

also an LLV-processed random variable on a time-series.



Chapter 8: Application to experiment

This chapter showcases the simple-detection quantum LIDAR experiment performed at the

University of Strathclyde. Mateusz Mrozowski and Jonathan Pritchard devised the experiment.

Mateusz Mrozowski conducted the experiment. John Jeffers and myself developed the under-

pinning theoretical framework. Jonathan Pritchard, myself and Mateusz Mrozowski performed

analysis of the data. Ch. 1 details the premise of our experiment. If we exclude the idler detector

measurements, the experimental setup reduces to a CI system.

8.1 Experimental setup

Figure 8.1 is a schematic of the setup used to conduct the experiment for object detection

and Fig. 8.16 is a schematic of the setup used to conduct the range-finding experiment. Here,

a photon pair is generated at 810 nm from a 405 nm CW pump via Type-II spontaneous

parametric down conversion (SPDC). The nonlinear medium which facilitates SPDC here is a

periodically-poled Potassium titanyl phosphate (ppKTP) crystal stabilised at the temperature

62◦C. The reason for a stabilised crystal temperature is that it is required for phase-matching

and hence effective generation of the down converted light. The poling period of the ppKTP

crystal is temperature-dependent — we require a particular poling period which matches (and

cancels out) the phase-mismatch of our light as it travels through the crystal. Furthermore,

each beam has a temperature-dependent refractive index, which affects the wave-vectors and

hence the phase-matching of the system [172]. Appendix L provides further details of our source

characterisation. The use of type-II SPDC facilitates easy separation of the idler and signal

beams as their polarisations are orthogonal. Moreover, as we use a quasi-phase matched and

periodically-poled crystal for SPDC generation the output light is collinear. This in turns allows

for a simpler experimental setup than SPDC generation from a birefringent crystal. To avoid

residual pump light interfering with our system, we include a LP (long-pass) filter after the

crystal, this LP filter blocks out light with a wavelength smaller than ω = 750 nm. We then

separate the resulting photon pair on a polarising beam-splitter (PBS). The idler photon is
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Figure 8.1 – Schematic of the quantum LIDAR experiment.

detected directly in a shielded environment. Noise is injected to the system using an 810 nm LED

driven by a low-noise current driver to provide a constant noise independent from the target.

This noise is combined with the attenuated signal and coupled into a single photon detector.

We can change the noise levels to demonstrate operation at a variety of SNRs. Furthermore, to

emulate controllably the loss associated with finite target reflectivity in the object present (H1)

hypothesis, the signal photons pass through a calibrated ND (neutral density) filter. For the

target absent hypothesis (H0), a beam block is placed in the signal path, allowing coupling of

only the noise into the signal detector.

8.2 System parameter estimation

We process the click-count data from the experiment into an LLV. This processing requires

calculation of the underlying click probabilities for the system, which depends upon estimation

of system parameters. In this section we demonstrate how we estimate the system parameters

from experimentally acquired data. From a data-set we have multiple samples, with each sample

consisting of click-count data accumulated during integration time T . We use the binomial

distribution to approximate the Poisson photo-count statistics of a sample of this time T . As the

Binomial distribution constitutes N Bernoulli trials, this means that we consider the make-up

of the integration time T as a succession of discrete experimental shots N . A shot is defined to

have the temporal duration of τc, where τc is the coincidence window size set by the time-tagging

equipment. Therefore, each sample has N =
⌊

T
τc

⌋
shots.
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8.2.1 Detector dark count characterisation

We begin estimation of the system parameters by characterising the detector dark count for

idler n̄D,I and signal detector n̄D,S. The system is isolated as much as possible from the

background environmental noise such that the only noise source arises from detector dark counts.

Furthermore, we switch off the pump, meaning there is no source light.

The click probability for the idler and signal detectors under the conditions required for

detector dark count characterisation is estimated via the estimators P̂rI, P̂rS, respectively. The

idler and signal detector click probability estimators are, respectively,

P̂rI =
Nidler

N
(8.1)

and

P̂rS =
Nsignal

N
, (8.2)

Where we define Nidler and Nsignal as the average of many click-count samples for idler and

signal data channels, respectively, for the relevant data-set (the pump switched off data-set for

this situation). These values converge to the mean of its respective click-count distribution as

the number of samples increases, if we assume that the underlying statistics are stable. Both

estimators satisfy the CRLB for PrI/S.

As the dark noise is assumed thermal, the idler detector click probability is

PrI:off = 1− 1

1 + n̄D,I
. (8.3)

Following from this, we substitute the estimator Eq. 8.1 for PrI:off and solve for n̄D,I. Therefore,

the idler detector dark count mean photon number is

n̄D,I =
1

1− P̂rI
− 1. (8.4)

Following a similar approach, the signal detector dark count mean photon number n̄D,S is defined

as

n̄D,S =
1

1− P̂rS
− 1. (8.5)

For example, when the coincidence window size is set as τc = 2 ns and the integration time

for each sample is T = 0.1 s we can proceed with characterising the dark count mean photon

numbers of our experiment. The dark count mean photon number for the idler detector is
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n̄D,I = 2.38× 10−6 and for the signal detector it is n̄D,S = 4.18× 10−6.

8.2.2 System loss and signal mean photon number estimation

Now that estimation of the dark count mean photon numbers is complete, the pump is switched

on. With the pump switched on, we can estimate the idler channel system loss ηI, signal channel

system loss ηS and the mean photon number of the light source n̄. The system is still isolated

from the environmental background noise and there is no attenuation in the signal beam.

A common value encountered in analysis of photon-pair experiments is the heralding efficiency.

We define the idler detector heralding efficiency as

HEI =
Ncoinc.

Nidler
. (8.6)

We define Ncoinc. as the average of many click-count samples for the coincidence click data

channel. Furthermore, the signal detector heralding efficiency is

HES =
Ncoinc.

Nsignal
. (8.7)

Estimation of the system loss parameters are neatly approximated by the heralding efficiency.

Therefore, the idler and signal system loss estimators are

η̂I = HES, (8.8)

and

η̂S = HEI. (8.9)

This approximation for estimating the system loss for the idler and signal detectors is valid in

the parameter-space where the system loss parameters are 0.15 ≤ ηS, ηI ≤ 0.99, the dark count

mean photon numbers are 5× 10−9 ≤ n̄D,S, n̄D,I ≤ 5× 10−6 and the mean photon number is

3.3× 10−3 ≤ n̄ ≤ 8.3× 10−3. Appendix N describes the details for the system loss estimation

approximation. For estimation of the light source mean photon number we use the idler click

probability estimator P̂rI = Nidler

N for when the pump is switched on. Hence, our estimation of

the light source mean photon number is

n̄ =
(1− P̂rI)−1 − 1− n̄D,I

η̂I
. (8.10)
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8.2.3 Background noise and signal attenuation

Now that we have estimated the system parameters that are (relatively) unvarying, we now

proceed to estimate system parameters that are susceptible to change throughout the object

detection and ranging process. These parameters include the environmental background noise

and the signal attenuation factor. As the idler detector is optically-shielded from the environment,

its total background noise mean photon number equals the dark count mean photon number

n̄B,I = n̄D,I. However, the signal detector is exposed to the environment when probing for a

possible target object. Therefore, we must estimate the (measured) signal detector background

noise mean photon number n̄B,S. The signal detector background noise mean photon number is

estimated by blocking the signal beam and collecting the click-count statistics. Our experiment

injects Poissonian noise into the signal detector channel; consequently, the signal detector

and coincidence click probabilities differ from the prior dark count estimation. Moreover, for

simplicity, we assume that the Poissonian noise dwarfs the signal detector thermal dark noise,

such that we approximate the signal channel noise as solely Poissonian in nature. Therefore, we

use the object absent click probability in the presence of Poissonian noise, as defined in Eq. 3.62.

This click probability has an estimator P̂rH0 =
Nsignal

N . Thus, the estimation of the measured

mean photon number of the signal detector background noise is

n̄B,S = −ln
(
1− P̂rH0

)
(8.11)

For our experiment the signal attenuation factor ξ has a preset value for each ND filter

used to emulate the loss from probing a possible target object. Appendix M describes the

method for calculating the signal attenuation factor ξ for a particular ND filter. Otherwise, for

a realistic system with an unknown signal attenuation factor ξ, it is the last system parameter

we estimate. Appendix O details the method for estimating an unknown signal attenuation

factor and compares this to the CRLB.

8.3 Experimental results

In this section we show a selection of experimental results. We demonstrate capabilities such as

object detection, system performance metrics and object detection in the presence of different

types of jamming. We also demonstrate range-finding with and without jamming. We show

both the unprocessed raw data (signal clicks) and the (CI and QI) LLVs from a rolling window

of a sample refresh rate S. The rolling window allows for both easier visual interpretation of
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the statistics and improved distinguishability. The system parameters for the experimental

results are framed in terms such as click-count rate in Hz and dB for signifying loss or SNR.

In this section we will relate the experimental results terminology to the terms primarily used

throughout this thesis, such as mean photon number and attenuation factors. Of course, it

is more general to state the experimental results in terms of Hz and dB, as the mean photon

number and attenuation factor depends upon the type of click probability and the coincidence

window used. For a particular experiment, we calibrate our model off an initial data set (for

the noise only situation and object present) to estimate the system parameters. Following

the estimation of the system parameters, we are able to process click-count data into an LLV

for inference of object presence. Throughout our showcase of the experimental results, we

superimpose two data-sets for a particular set of system parameters: the object present (H1)

and absent (H0) data-sets. Even though we record these data-sets separately, they adhere to

the same system parameter regimes. For the experimental data we present we calculate that the

signal system loss ηS = 0.233 and the idler system loss ηI = 0.1958. We also calculate the SNR

from measured data rather than via the click probabilities as in Ch. 4.

8.3.1 Object detection

The data we show in Fig. 8.2 is when there is ≈ 1 MHz of signal noise, 50µW of pump power

giving a pair production rate of 377± 5 kHz, a ND40 filter to cause 33.5 dB of signal attenuation

and an integration time for each sample T = 0.1 s. The coincidence window size τc = 2 ns.

From an initial set of 100 samples we estimate the system parameters to calibrate the system.

The ND40 filter corresponds to a signal attenuation factor of ξ = 1.79 × 10−3. The mean

photon number of the source is n̄ = 9.83 × 10−4, the idler detector background noise mean

photon number is negligible and the signal detector background noise mean photon number

n̄B,S = 2.07× 10−3. For the object present hypothesis, the signal return rate of 167± 1 Hz yields

a CI SNR of SNRCI = −37.9± 0.1 dB. The object present (no noise) coincidence click rate is

39.1±0.4 Hz and the object absent (noise-engaged) coincidence click rate is 200.2±0.5 Hz. These

values give the QI SNR SNRQI = −7.1± 0.1 dB. It is clear from Fig. 8.2 that the click-count

statistics are very similar for object present and absent data-sets. Figure 8.3 shows a rolling

window of CI LLV as a function of sample number s̃. Equation 4.18 defines the LLV sample

rolling window, for a refresh rate of S = 50 samples. Figure 8.4 shows a rolling window of QI

LLV as a function of sample number s̃, for a refresh rate also of S = 50 samples. In Fig. 8.4 we

have set the refresh rate high enough such that the object present and absent QI rolling average

LLV statistics are clearly distinguishable. For the same refresh rate the CI rolling average LLV
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Figure 8.2 – Signal clicks as a function of sample number s̃. Both object present (H1) and
object absent (H0) data-sets superimposed. This example has ≈ 1 MHz of signal noise, 50µW
of pump power, a ND40 filter to cause 33.5 dB of signal attenuation and an integration time for
each sample T = 0.1 s. The coincidence window size τc = 2 ns.

statistics are not clearly distinguishable. However, with a suitable increase of sample refresh

rate S, we could clearly distinguish between object present and absent CI rolling average LLV

statistics, at the cost of an increased time required to reach confident detection for an LLV

sample.

The data we show in Fig. 8.5 is when there is ≈ 1 MHz of signal noise, 150µW of pump

power giving a pair production rate of 1.13± 0.02 MHz, a ND80 filter to cause 52 dB of signal

attenuation and an integration time for each sample T = 1 s. This increase of integration time

compared to the ND40 data-set is to counter the extremely low return rate of signal photons

for ND80. From an initial set of 100 samples we estimate the system parameters to calibrate

the system. The ND80 filter corresponds to a signal attenuation factor of ξ = 3.09× 10−5, this

degree of attenuation approaches values typically encountered outside the laboratory [86]. The

mean photon number of the source is n̄ = 2.97× 10−3, the idler detector background noise mean

photon number is negligible and the signal detector background noise mean photon number

n̄B,S = 2.01× 10−3. For the object present hypothesis, the signal return rate of 7.1± 0.9 Hz

therefore corresponds to a CI SNR of SNRCI = −51.5± 0.6 dB. The object present (no noise)

coincidence click rate is 1.8± 0.1 Hz and the object absent (noise-engaged) coincidence click

rate is 577± 1 Hz. These values give the QI SNR SNRQI = −25.1± 0.2 dB.

It is clear from Fig. 8.5 that the click-count statistics are very similar for object present and

absent data-sets. Figure 8.6 and Fig. 8.7 shows a rolling window of CI/QI LLV as a function of

sample number s̃, for a refresh rate of S = 150 samples. The QI rolling average LLV statistics
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Figure 8.3 – CI rolling window LLV as a function of sample number s̃, for a refresh rate of
S = 50 samples. Both object present (H1) and object absent (H0) data-sets superimposed. This
example has ≈ 1 MHz of signal noise, 50µW of pump power, a ND40 filter to cause 33.5 dB of
signal attenuation and an integration time for each sample T = 0.1 s. The coincidence window
size τc = 2 ns.

Figure 8.4 – QI rolling window LLV as a function of sample number s̃, for a refresh rate of
S = 50 samples. Both object present (H1) and object absent (H0) data-sets superimposed. This
example has ≈ 1 MHz of signal noise, 50µW of pump power, a ND40 filter to cause 33.5 dB of
signal attenuation and an integration time for each sample T = 0.1 s. The coincidence window
size τc = 2 ns.
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Figure 8.5 – Signal clicks as a function of sample number s̃. Both object present (H1) and
object absent (H0) data-sets superimposed. This example has ≈ 1 MHz of signal noise, 150µW
of pump power, a ND80 filter to cause 52 dB of signal attenuation and an integration time for
each sample T = 1 s. The coincidence window size τc = 2 ns.

are clearly disjoint for object present and absent. The CI rolling average LLV statistics have the

wrong detection decisions for object present and absent, even with an increase of sample refresh

rate S. Thus showing that CI does not function in this parameter regime.

8.3.2 System performance

The previous section visually demonstrated the advantage of QI compared to CI for object

detection with LLV data. This section utilises some aspects of the system performance analysis

introduced in Ch. 4. We focus on the experiment when there is ≈ 1 MHz of signal noise, 50µW

of pump power giving a pair production rate of 377± 5 kHz, a ND40 filter to cause 33.5 dB of

signal attenuation and an integration time for each sample T = 0.1 s. We use the entire data-set

as to estimate the system parameters. Equation 4.19 defines the average distinguishability as

a function of sample rolling window size. Figure 8.8 plots how average distinguishability ϕavg

increases with number of samples S for both theory-predicted and experimentally-measured CI

and QI. From Fig. 8.8 we see good agreement between experiment and theory. QI reaches the

peak distinguishability with S = 50 samples, this corresponds to an integration time of 5 s to

reach peak distinguishability. A common approach to assessing system performance for LIDAR

protocols is by a ROC. Chapter 4 describes how a ROC is calculated from object present and

absent LLV distributions. Figure 8.9 shows the ROC based off the object present and absent

distributions averaged from S = 50 samples. Plotted are both the theoretically predicted and

experimentally measured ROCs for CI, QI and CI averaged by 17 ∗ S samples to match the QI
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Figure 8.6 – CI rolling window LLV as a function of sample number s̃, for a refresh rate of
S = 150 samples. Both object present (H1) and object absent (H0) data-sets superimposed.
This example has ≈ 1 MHz of signal noise, 150µW of pump power, a ND80 filter to cause 52 dB
of signal attenuation and an integration time for each sample T = 1 s. The coincidence window
size τc = 2 ns.

Figure 8.7 – QI rolling window LLV as a function of sample number s̃, for a refresh rate of
S = 150 samples. Both object present (H1) and object absent (H0) data-sets superimposed.
This example has ≈ 1 MHz of signal noise, 150µW of pump power, a ND80 filter to cause 52 dB
of signal attenuation and an integration time for each sample T = 1 s. The coincidence window
size τc = 2 ns.
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Figure 8.8 – Average distinguishability ϕavg as a function of sample refresh rate S. This
example has ≈ 1 MHz of signal noise, 50µW of pump power, a ND40 filter to cause 33.5 dB
of signal attenuation and an integration time for each sample T = 0.1 s. The coincidence
window size τc = 2 ns. QIth is the theory-predicted QI average distinguishability and QIexpt
is the experimental data QI average distinguishablity. CIth is the theory-predicted CI average
distinguishability and CIexpt is the experimental data CI average distinguishablity. The vertical
dashed grey line signifies the number of samples S = 50 used in the ROC curve in Fig. 8.9.

ROC. Once again, there is good agreement between theory and experiment for the ROC. It is

clear that the refresh rate S affects system performance. Another parameter that we can adjust

that affects system performance is the coincidence window size (duration of a shot) τc. However,

even though the probability of a click increases with respect to an increased coincidence window

size, the noise-filtering benefit of QI due to inter-beam temporal correlations is reduced and the

heralding gain benefit is also reduced as the mean photon numbers are increased.

8.3.3 Object detection in a jamming situation

So far our exposition of experimental data for object detection assumes that the system

parameters do not change with time and that the LLV trained from an initial calibration

data-set applies to the remainder of the data-set. However, in reality LIDAR systems operate in

highly dynamic situations, where the background noise or our return signal varies over time.

This section presents experimental results which demonstrate the jamming-resilience theory

introduced in Ch. 6.9 for object detection when there is the deliberate temporal variation

of background noise, known as classical jamming. Intentional jamming techniques involve

emitting strong modulated light or laser signals (for our experiment we use an LED to inject

jamming noise), or deploying countermeasures to confuse or blind the LIDAR sensor. The

purpose of intentional jamming of LIDAR systems is to hinder accurate data gathering, thereby

compromising situational awareness. The results shown below experimentally demonstrate
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Figure 8.9 – ROC for CI and QI. The x-axis shows probability of false alarm PFA and the
y-axis shows probability of detection PD. This example has ≈ 1 MHz of signal noise, 50µW of
pump power, a ND40 filter to cause 33.5 dB of signal attenuation and an integration time for
each sample T = 0.1 s. The coincidence window size τc = 2 ns. QIth is the theory-predicted QI
average distinguishability and QIexpt is the experimental data QI average distinguishablity. CIth
is the theory-predicted CI average distinguishability and CIexpt is the experimental data CI
average distinguishablity. All ROCs are generated from object present and absent distributions
averaged from S = 50 samples, apart from the black dashed line which is CI averaged from
17 ∗ S samples.

that QI is resilient to classical jamming. Moreover, as mentioned in Ch. 6.9 active background

tracking is possible when n̄≪ n̄B,S. The ability to track the background actively means we are

able to update the LLV proactively to attempt to further counter the effects of jamming. For

our experiment, we consult a look-up table (LUT) for background tracking instead of proactively

re-calculating the LLV.

Figure 8.10 shows signal clicks as a function of sample number s̃ when there is sinusoidal

jamming. This form of jamming is first described in Ch. 6.9.1. We calibrate our system with

the first 200 samples, when there is no jamming. The object present and absent click-counts in

Fig. 8.10 are indistinguishable from each other, this indistinguishabilty is reflected in Fig. 8.11

which shows the CI rolling window LLV for object present and absent data-sets. Figure 8.12

shows the QI rolling window LLV for object present and absent data-sets for a) without active

background tracking b) active background tracking. We can see that for Fig. 8.12a) the object

present and absent LLVs are distinguishable, however the effect of jamming results in the

occurrence of false LLV test decisions. Whereas, Fig. 8.12b) the active background counters the

effect of jamming and only correct LLV test decisions are made. Figure 8.12 experimentally

confirms the jamming-resilience provided by QI as theoretically predicted in Ch. 6.9.

We now show the experimental results where the form of jamming is a pseudo-random noise,
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Figure 8.10 – Signal clicks (MHz) as a function of sample number s̃ when there is sinusoidal
jamming. Both object present (H1) and object absent (H0) data-sets superimposed. This example
has ≈ 2.4 MHz of signal noise which corresponds to a mean photon number n̄B,S = 4.65× 10−3.
This figure has jamming with a modulation amplitude of 0.3 MHz which corresponds to a mean
photon number of 4.76× 10−4. 50µW of pump power, a ND40 filter to cause 33.5 dB of signal
attenuation and an integration time for each sample T = 0.1 s. The coincidence window size
τc = 2 ns. The vertical dashed grey line at s̃ = 200 represents the end of the calibration data-set.

Figure 8.11 – CI rolling window LLV as a function of sample number s̃ when there is
sinusoidal jamming, for a refresh rate of S = 200 samples. Both object present (H1) and
object absent (H0) data-sets superimposed. This example has ≈ 2.4 MHz of signal noise which
corresponds to a mean photon number n̄B,S = 4.65 × 10−3. This figure has jamming with a
modulation amplitude of 0.3 MHz which corresponds to a mean photon number of 4.76× 10−4.
50µW of pump power, a ND40 filter to cause 33.5 dB of signal attenuation and an integration
time for each sample T = 0.1 s. The coincidence window size τc = 2 ns. The vertical dashed
grey line at s̃ = 200 represents the end of the calibration data-set.
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Figure 8.12 – QI rolling window LLV as a function of sample number s̃ when there is
sinusoidal jamming a) without active background tracking b) with active background tracking.
These plots have a refresh rate of S = 200 samples. Both object present (H1) and object absent
(H0) data-sets superimposed. This example has ≈ 2.4 MHz of signal noise which corresponds
to a mean photon number n̄B,S = 4.65 × 10−3. This figure has jamming with a modulation
amplitude of 0.3 MHz which corresponds to a mean photon number of 4.76× 10−4. 50µW of
pump power, a ND40 filter to cause 33.5 dB of signal attenuation and an integration time for
each sample T = 0.1 s. The coincidence window size τc = 2 ns. The vertical dashed grey line at
s̃ = 200 represents the end of the calibration data-set.
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Figure 8.13 – Signal clicks (MHz) as a function of sample number s̃ when there is pseudo-
random fast jamming. Both object present (H1) and object absent (H0) data-sets superimposed.
This example has ≈ 2.4 MHz of signal noise which corresponds to a mean photon number
n̄B,S = 4.65× 10−3. This figure has jamming with a modulation amplitude of 0.3 MHz which
corresponds to a mean photon number of 4.76× 10−4. 50µW of pump power, a ND40 filter to
cause 33.5 dB of signal attenuation and an integration time for each sample T = 0.1 s. The
coincidence window size τc = 2 ns.

as first introduced in Ch. 6.9.2. Once again, we calibrate our system with the first 200 samples,

when there is no jamming. Figure 8.13 shows signal clicks (MHz) as a function of sample number

s̃. Figure 8.14 and Fig. 8.15 shows the CI and QI rolling window LLV as a function of sample

number s̃, respectively. The reason that Fig. 8.15 does not show active background tracking

is that for the rolling window size set, the change of noise is averaged out and so there is no

need to track. Active background tracking is of use for smaller rolling windows sizes, due to the

greater effect of the noise fluctuations.

8.3.4 Range-finding

The time-tagging software creates a virtual data channel for the coincidence counting. As it is

virtual, it is easy to have multiple coincidence channels corresponding to different delays for

matching the two real data channels: signal and idler. Chapter 6 demonstrates that a different

delay corresponds to a possible target object situated at a distance set by that delay. For our

experiment, we implement variations in target position with a mirror serving as the target

positioned on a motorized translation stage. This setup enables movement of the target at a total

range variation of 22 cm. Figure 8.16 shows how our experimental setup is modified to enable

the extension to range-finding. We define three locations separated by 11 cm intervals, denoted

as xA, xB and xC . Following this, we assign three parallel coincidence detection channels with

delays of τxA
= 1.77 ns, τxB

= 2.52 ns and τxC
= 3.27 ns corresponding to the round-trip time
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Figure 8.14 – CI rolling window LLV as a function of sample number s̃ when there is
pseudo-random fast jamming, for a refresh rate of S = 200 samples. Both object present (H1)
and object absent (H0) data-sets superimposed. This example has ≈ 2.4 MHz of signal noise
which corresponds to a mean photon number n̄B,S = 4.65× 10−3. This figure has jamming with
a modulation amplitude of 0.3 MHz which corresponds to a mean photon number of 4.76× 10−4.
50µW of pump power, a ND40 filter to cause 33.5 dB of signal attenuation and an integration
time for each sample T = 0.1 s. The coincidence window size τc = 2 ns.

Figure 8.15 – QI LLV as a function of sample number s̃ when there is pseudo-random fast
jamming, for a refresh rate of S = 200 samples. Both object present (H1) and object absent
(H0) data-sets superimposed. This example has ≈ 2.4 MHz of signal noise which corresponds
to a mean photon number n̄B,S = 4.65 × 10−3. This figure has jamming with a modulation
amplitude of 0.3 MHz which corresponds to a mean photon number of 4.76× 10−4. 50µW of
pump power, a ND40 filter to cause 33.5 dB of signal attenuation and an integration time for
each sample T = 0.1 s. The coincidence window size τc = 2 ns.
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Figure 8.16 – Schematic of the quantum LIDAR experiment with an extension to range-
finding capabilities.

to each location. For a coincidence channel for a set delay τx, we record a coincidence click if

there is a signal click [τx − τc
2 , τx + τc

2 ] after the idler click. For the following results, we set

the coincidence window size τc = 1 ns. This value is mindful of the limitation to temporal

resolution set by the ≈ 250 ps timing jitter of our system. However, as τc > |τxB
− τxA

| and

τc > |τxC − τxB | we can not discretise the different delays into a shot-by-shot basis akin to the

approach in Ch. 6 with Eq. 6.2. The inability to discretise the different delays according to

shots necessarily leads to a degree of cross-talk between the coincidence counting channels. This

cross-talk occurs in regimes where τc > |τxB −τxA |, for any of the target delays τxB and τxA . The

relative amount (as a fraction) of cross-talk for two different delay channels is |τxB
−τxA

−τc|
τc

. For

the following results, the relative cross-talk between the A,B channels (and the B,C channels) is

0.25. Therefore, cross-talk is not severely limiting for the example shown henceforth.

We now consider how to process the different coincidence delay channels into an LLV. The

relatively short distances involved and the specular nature of the reflection ensures that there

is a negligible difference in signal attenuation between the considered object locations. This

means that the system parameters for each delay channel are identical: consequently, for each

channel, the parameters that define the LLV only differ in delay. Therefore, range-finding in this

scenario depends only upon our ability to match signal and idler data channels with the correct

delay. We only train the LLV from an initial batch of data once. In the subsequent figures we

omit plotting the calibration stage. We now present the experimental data for a range-finding

scenario of a target object in three separate locations. The target begins at location xA, then

after 200 samples we stop recording and move the target with the translation stage to location

xB. Once the target has moved we resume recording, the same process follows for moving to
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Figure 8.17 – Signal detector click-counts in MHz as a function of sample number s̃. Both
object present (H1) and object absent (H0) data-sets superimposed. For the object present data
set the object is three different locations, demarcated by the coloured regions. This example
has ≈ 0.1 MHz of signal noise, 300µW of pump power, a ND40 filter to cause 33.5 dB of signal
attenuation and an integration time for each sample T = 0.1 s. The coincidence window size
τc = 1 ns.

location xC. Figure 8.17 shows the signal clicks in MHz as a function of sample number s̃, for

both object present and absent scenarios. Figure 8.18 and Fig. 8.19 show the rolling window

CI and QI LLVs as a function of sample number s̃, respectively. Where Fig. 8.19 shows three

subplots corresponding to the three different delay channels for that LLV.

For Fig. 8.18 the object present and absent data-sets are distinguishable and would give a

confident result with a higher sample refresh rate. However, it is unable to range the location of

the object as it moves between the three different locations due to the lack of timing information

available for CI. Figure 8.19 demonstrates that QI is able to range-find the location of a target

object, as there is a clear upsurge in LLV for a delay channel when the target delay/location

corresponds to that delay channel. Even though we are able to correctly range-find, the effect of

cross-talk is noticeable for samples when the focused LLV delay channel has a delay adjacent to

the correct delay for that sample number. We can negate the effect of cross-talk in our detection

decision-making by increasing the LLV detection threshold dLLV to a higher value than the

conventional dLLV = 0.

8.3.5 Range-finding in a jamming situation

This section describes how our protocol can range-find even when there is dynamic time-varying

jamming. It combines the theory from Ch. 6.2 and Ch. 6.9. The results from this section

demonstrate a major advantage of a QI-based LIDAR protocol: that we are able to range-find
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Figure 8.18 – CI rolling window LLV as a function of sample number s̃, for a refresh rate of
S = 25 samples. Both object present (H1) and object absent (H0) data-sets superimposed. For
the object present data set the object is three different locations, demarcated by the coloured
regions. This example has ≈ 0.1 MHz of signal noise, 300µW of pump power, a ND40 filter to
cause 33.5 dB of signal attenuation and an integration time for each sample T = 0.1 s. The
coincidence window size τc = 1 ns.

covertly in the presence of time-varying noise which could confuse conventional LIDAR systems.

Figure 8.20 shows the signal clicks as a function of sample number s̃. The target begins at

location xA, then after 500 samples we stop recording and move the target with the translation

stage to location xB. Once the target has moved we resume recording, the same process follows

for moving to location xC. The object present and absent data-sets become out of sync due to

imperfect splicing of the different data-sets corresponding to a change in target object location.

The CI LLV object present and absent data-set is not plotted as it is unable to even detect the

presence of an object due to the jamming (additionally, CI range-finding is impossible due to

the lack of timing information as shown in Ch. 8.3.4. Figure 8.21 shows the QI rolling window

LLV as a function of sample number s̃ with three subplots corresponding to the three different

delay channels for that LLV.

We begin this chapter with a description of the experimental setup. We discuss how we can

map our theoretical protocol onto this experiment via the estimation of the system parameters.

We then present the experimental results. First, we demonstrate the ability to detect an object

(at a known distance) for various parameter regimes. After, we discuss the system performance

of QI compared to CI for object detection. Following this, we consider object detection in

a jamming situation, which proves the inability of CI to object detect in this situation. We

show how the experiment extends to facilitate range-finding capabilities. We then present

the experimental results for QI (CI with a CW source can not perform range-finding). We
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Figure 8.19 – QI rolling window LLV as a function of sample number s̃, for a refresh rate of
S = 25 samples. Both object present (H1) and object absent (H0) data-sets superimposed. For
the object present data set the object is three different locations, demarcated by the coloured
regions. a) the LLV is for delay τxA

, b) the LLV is for delay τxB
and c) the LLV is for delay

τxC
. This example has ≈ 0.1 MHz of signal noise, 300µW of pump power, a ND40 filter to

cause 33.5 dB of signal attenuation and an integration time for each sample T = 0.1 s. The
coincidence window size τc = 1 ns.
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Figure 8.20 – Signal detector click-counts in MHz as a function of sample number s̃, in the
presence of sinusoidal jamming. Both object present (H1) and object absent (H0) data-sets
superimposed. The object present and absent data-sets become out of sync with the sinusoidal
jamming due to imperfect splicing of the different object location data-sets. This example has
≈ 0.1 MHz of signal noise which corresponds to a mean photon number n̄B,S = 1.99 × 10−5.
This figure has jamming with a modulation amplitude of 10 kHz which corresponds to a mean
photon number of 1.5× 10−6. 50µW of pump power, a ND40 filter to cause 33.5 dB of signal
attenuation and an integration time for each sample T = 0.1 s. The coincidence window size
τc = 0.2 ns.

conclude our experimental results by demonstrating the ability of QI to perform range-finding

in a jamming situation.
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Figure 8.21 – QI rolling window LLV as a function of sample number s̃, for a refresh rate of
S = 50 samples. This is in the situation of sinusoidal jamming. Both object present (H1) and
object absent (H0) data-sets superimposed. For the object present data set the object is three
different locations, demarcated by the coloured regions. a) the LLV is for delay τxA

, b) the LLV
is for delay τxB

and c) the LLV is for delay τxC
. This example has ≈ 0.1 MHz of signal noise

which corresponds to a mean photon number n̄B,S = 1.99× 10−5. This figure has jamming with
a modulation amplitude of 10 kHz which corresponds to a mean photon number of 1.5× 10−6.
50µW of pump power, a ND40 filter to cause 33.5 dB of signal attenuation and an integration
time for each sample T = 0.1 s. The coincidence window size τc = 0.2 ns.



Chapter 9: Conclusion

9.1 Aim of thesis

The aim of this thesis has been to provide a quantum-enhanced LIDAR protocol which is both

operator-friendly and applicable for deployment outside of a laboratory environment. Previous

literature does not demonstrate quantum-enhanced LIDAR with self-calibrated decision-making

abilities and operator-friendly terminology. Moreover, this thesis aims to demonstrate that

realisation of quantum-enhanced technologies for sensing applications are in the near-term.

9.2 Discussion of protocol abilities and experimental results

We have provided a quantum-enhanced LIDAR protocol that can detect objects and range-find.

The theoretical and experimental results from our protocol reinforce the knowledge that simple-

detection QI performs better than CI in high noise, lossy and low signal strength regimes. Our

range-finding is covert when we use a CW pump in a low signal strength and high background

noise regime. We introduce a new and operator-friendly performance analysis method, alongside

more common-place approaches. A further operator-friendly feature of our protocol is that

detection decision-making is inbuilt into the data processing framework. Furthermore, the

framework is designed such that it is possible for the decision-making interpretation of the LLV

to be identical for QI or CI, or different parameter regimes. This facilitates a direct comparison

of the aforementioned modalities or assumed parameter regimes in our LLV framework.

There is a large amount of freedom to tailor the model, which underpins our protocol, to a

certain scenario: it is not restricted to a certain platform. For example, it is not restricted to a

certain wavelength, type of pump (pulsed or CW), or coincidence window size. Nor does the

photon statistics of the background light or source light restrict it, a change of type of light only

requires an updated set of relevant click probabilities. We can also modify the assumed target

object scattering properties.

Our framework demonstrates a small advantage from using the often-overlooked non-
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coincidence clicks as demonstrated by Eq. 4.14. This advantage stems from the missed idler

clicks not registering a signal click as a true coincidence-click. Moreover, the LLV framework

for analysing detector data easily extends to considering multi-mode correlations present in the

non-classical light, as introduced in Ch. 5. As such, our framework allows for multiple data

channels to reduce to a single metric. We theoretically demonstrate an advantage in using

multi-mode light for state discrimination.

A problem in binary hypothesis testing is the inability to dynamically update the estimations

of the two hypotheses, simultaneously. The relevant parameter regime for QI is well-suited to

remedy this, as the signal strength is low compared to the background noise. Therefore, the signal

detector statistics can estimate the background noise for the H0 hypothesis, even when H1 is true.

This allows for dynamic updating of object present (H1) and object absent (H0) hypotheses,

facilitating a level of self-calibration of the LLV. This feature reinforces the operator-friendly

aspect of our protocol. It also shows the suitability of our likelihoodist statistical approach for a

QI-based system.

Our results demonstrate accurate object detection in scenarios with a SNR of -51.5 dB and

52 dB of signal attenuation, this corresponds to object detection in realistic scenarios [86]. Our

best improvement of SNR for QI compared to CI is 30 dB, which translates to accurate target

discrimination 17x faster for QI than CI. Moreover, our QI object detection results have a 13

dB improvement compared to the QI findings from England et al. in Ref. [73] and they are

comparable to the findings in from Liu et al. in Ref. [85]. Furthermore, our spatial resolution for

range-finding is 11 cm, limited by the timing jitter of our room temperature detectors. However,

what distinguishes our work from Ref. [85] is that we have a detection-decision orientated

framework for processing detector data, we demonstrate range-finding, our framework shows its

suitability for countering the effect of dynamic time-varying jamming and we have developed

generalised theory to improve system performance by using multi-mode correlations between

the two beams in QI. As such we have presented a jamming-resilient quantum-enhanced LIDAR

protocol which is practical for real-life use and is operator-friendly.

9.3 Applications and possible future developments

One of the key limitations of QI for applications is that the signal strength is limited to

n̄ < 1 for a quantum advantage. This makes detection of uncooperative targets at distance

challenging due to the weak signal strength and the subsequent low return rate. For example,

the demonstrated -52 dB loss is comparable to that expected from a Lambertian scatterer at
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15 m using a 10 cm diameter telescope [91]. Cooperative specular reflectors, however, could

allow for accurate target discrimination at more typical LIDAR distances within reasonable

integration times. Our protocol could also provide accurate target discrimination of cooperative

specular reflectors which are partially obscured, when CI is unable to (albeit at shorter distances

than the unobscured situation). Lastly, high levels of incident probe light can damage or alter

certain targets. Therefore, QI would allow accurate target discrimination of such fragile samples,

due to its enhanced performance in weak signal strength regimes.

The other key limitation of QI is that it only outperforms classical coherent detection methods

in the presence of high noise n̄B,S > 1. Frequency-filtered natural daylight does not exceed this

mean photon number for optical wavelengths [173]. Whereas active strong jamming would cause

such a high noise mean photon number at optical wavelengths. This further demonstrates the

applicability of QI for sensing in jamming situations. Furthermore, frequency-filtered natural

background noise at microwave wavelengths does exceed this value, which gives credence to the

desire for the development of QI protocols at the microwave wavelengths [174].

By considering the two key limitations of QI, it is clear that the main application of QI-

based LIDAR is in scenarios when CI-based LIDAR fails or when coherence-based (optimal)

classical LIDAR methods are inappropriate for use. CI-based LIDAR could fail in active

jamming situations and/or when covertness is desired. Furthermore, coherence-based classical

LIDARs are not covert. QI-based LIDAR is able to function in such regimes. In particular, the

jamming-resilience from the coincidence-click noise filtering grants robustness. Additionally, the

range-finding capabilities with a CW pump and functionality at low signal strength regimes

grants a level of covertness.

Before considering experimental or theoretical extensions to our protocol we must consider

how certain parameters in our system influence the performance of our system. Some parameters

we have almost no control over, for example the signal attenuation factor ξ. We can only

partially adjust the signal attenuation factor ξ by changing the area of our detectors to increase

the size of the collection optics. Whereas, we can increase the system loss parameters ηI/S by

improving the fibre-coupling, collection optics, or the detector quantum efficiency. However,

detector quantum efficiency is inversely related to the timing jitter, hence we must compromise

between an improved coincidence-count rate or spatial resolution. If we reduce the idler detector

background noise n̄B,I this would improve the quality of our heralding measurements as less

coincidence-clicks stem from detector dark noise. A better environmental-shielding method could

reduce the detector background noise, as would cooling our detectors to reduce thermally-induced

detector dark counts. For example, cooling our detectors from 30◦C to −10◦C would reduce
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the dark count mean photon number by a factor of 100, for a particular reverse bias voltage

of the SPAD [175]. Lastly, we could optimise our mean photon number n̄ according to the

requirements of a particular application. For example, a smaller mean photon number would

improve the heralding gain and would improve covertness, albeit at the cost of an increased

integration time for accurate target discrimination.

There are extensions to our experimental setup which could improve the system performance.

For example, engineering to facilitate non-local dispersion cancellation shown by Blakey et

al. in Ref. [71] would filter out more noise, thereby improving the SNR. We can enhance

our spatial resolution for range-finding with the reduction of timing uncertainty via the use

of superconducting nanowire detectors, albeit this requires the use of cryogenics to cool the

detectors to their operating temperatures [176]–[178]. Future experiments could implement the

multiplexed detector set-up by Yang et al. in Ref. [80]. This could extend to a multiplexed

set-up for each detector in a set of spectrally resolving detectors, in line with M:TBSS theory

in Ch. 5. This approach would achieve enhanced system performance, with the reduction of

the deleterious effect of sensor dead-time and increased noise filtering. We could also improve

our detection and estimation theoretical framework. Instead of a rolling window approach to

mitigate the effects of a dynamic system, a more advanced approach would use a Kalman filter

to ensure accuracy of the LLV test by not only continually re-estimating the underlying system

parameters, but it would proactively predict the possible future parameters in a dynamic system.

This research has security and covertness at the forefront of its potential applications. We

could obtain imaging security with a QKD-like protocol running adjacent to our LLV framework.

Such a protocol would guarantee spoofing-resilience on-top of the jamming-resilience already

provided. This QKD-like protocol would benefit from the lack of classical channel required, as

the sender (Alice) and receiver (Bob) are the same person. Moreover, as Alice and Bob are the

same person there would be no false basis measurements, thereby helping the resultant key-rate.

However, the question remains as to which photonic degree of freedom would work best as a

basis for this QKD-like framework, given the requirements of preservation during free-space

propagation, reflection upon target object and practicality of the experiment.

To conclude, the outlook for deployment of QI-based LIDAR depends upon acknowledgement

of its advantageous use in niche use-cases. Such as covert sensing, fragile-target probing and

secure-imaging scenarios. The aforementioned future (possible) developments would improve

the capabilities of QI-based LIDAR in these application-spaces.
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Chapter A: Fock basis method for click prob-

ability

This appendix demonstrates an alternative method for calculation of Eq. 3.31d. It also illustrates

how usage of the coherent state basis for beamsplitter calculations is desired instead of the Fock

basis approach shown here, due to the relative difficulty of this method. We consider the CI

protocol with thermal noise ρ̂B = ρ̂th(n̄B) and a coherent signal ρ̂source = |α⟩⟨α|. The output

state from the beamsplitter is thus

Û ρ̂source ⊗ ρ̂BÛ
† =

∞∑
n=0

n̄nB
(n̄B + 1)n+1

1

n!
(râ†2 + tâ†3)

nD̂2(tα)D̂3(rα)

× |0⟩2⟨0| ⊗ |0⟩3⟨0|(r∗â2 + t∗â3)
nD̂†

2(tα)D̂
†
3(rα), (A.1a)

=
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n∑
k,k′=0

(
n

k

)(
n

k′

)
(râ†2)

n−k(tâ†3)
k

× |tα⟩2⟨tα| ⊗ |rα⟩3⟨rα|(r∗â2)n−k
′

(t∗â3)
k
′

, (A.1b)

=

∞∑
n=0

n̄nB
(n̄B + 1)n+1

n∑
k=0

(
n

k

)
|r|2(n−k)|t|2k

× |tα, n− k⟩2⟨tα, n− k| ⊗ |rα, k⟩3⟨rα, k|, (A.1c)

where we introduce the displaced number state D̂(α)|n⟩ = |α, n⟩ [179]. We also simplify the

expression by setting k = k
′
, as the detectors only enact upon the diagonals of the density

matrix. After this, we apply the method shown in Appendix. A.1. Hence, the state incident

upon the detector is

ρ̂S = Tr3

(
Û ρ̂source ⊗ ρ̂BÛ

†
)
, (A.2a)

=

∞∑
n=0

n̄nB
(n̄B + 1)n+1

n∑
k=0

(
n

k

)
|r|2(n−k)|t|2k|tα, n− k⟩⟨tα, n− k|, (A.2b)

=

∞∑
u=0

(n̄B|r|2)u

(n̄B|r|2 + 1)u+1
|tα, u⟩⟨tα, u|. (A.2c)
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Figure A.1 – Plot showing how a change of variables into u and v spans the entire space
summed originally by n and m.

Calculation of the click probability draws upon the results from Appendix A.2 for the overlap,

hence the click probability is

Pr = 1− ⟨0|ρ̂S|0⟩, (A.3a)

= 1−
∞∑
u=0

(n̄B|r|2)u

(n̄B|r|2 + 1)u+1
|⟨0|tα, u⟩|2, (A.3b)

= 1− e
−|tα|2

n̄B|r|2+1

n̄B|r|2 + 1
. (A.3c)

A.1 Simplifying a double summation

The method of simplifying a double summation is used in the Fock basis method for beamsplitter

calculations. Suppose there is a density matrix of form

ρ̂ = A

∞∑
n=0

Xn
n∑

m=0

(
n

m

)
Y mZn−m|n−m⟩⟨n−m|. (A.4)

To tackle this problem, a discrete plot is made, resembling a right-angled triangle, with n and

m on the axes as pictured in Fig. A.1. The subsequent change of variables is u = n−m and

v = n+m. Following this, it is easy to see the new form of the double summation will be

ρ̂ = A

∞∑
u=0

(XZ)u|u⟩⟨u|
∞∑

v=u
v∈S

(u+v
2

v−u
2

)
(XY )

v−u
2 (A.5)
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Where S = {u, . . . , u+ 2k}, k ∈ N . Additionally, setting y = v−u
2 and expanding for the first

few number states, we see a pattern emerge, that allows the second summation to be rewritten

as,

ρ̂ = A

∞∑
u=0

(XZ)u|u⟩⟨u|
∞∑
y=0

(
u+ y

y

)
(XY )y. (A.6)

Knowing that
∞∑
y=0

(
u+ y − 1

y

)
(XY )y =

1

(1−XY )u
. (A.7)

The second summation can be rewritten again as,

∞∑
y=0
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Supplanting this result into the density matrix receives,

ρ̂ =
A

1−XY

∞∑
u=0

(
XZ

1−XY

)u

|u⟩⟨u|. (A.9)

A.2 Calculating the displaced number state overlap

We want to calculate the displaced number state overlap |⟨0|tα, u⟩|2. This derivation beings

with calculation of the non-conjugated term in the overlap

⟨0|tα, u⟩ = ⟨0| D̂(tα) |u⟩ , (A.10a)

=
1√
u!

⟨0| D̂(tα)â†u |0⟩ . (A.10b)
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We use the relation [180], D̂(α)â†mD̂†(α) = (â† − α∗)m and Eq. A.10b is rearranged into the

form

⟨0|tα, u⟩ = 1√
u!

⟨0| (â† − (tα)∗)uD̂(tα) |0⟩ , (A.11a)

=
1√
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u∑
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p

)
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=
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=
e

−|tα|2
2

√
u!

(−(tα)∗)u. (A.11d)

Above in Eq. A.11b the only non-zero term is when p = 0. Following on from the above, the

overlap is

|⟨0|tα, u⟩|2 =
e−|tα|2

u!
|tα|2u. (A.12)



Chapter B: Photon-number distribution defi-

nitions

In this appendix we define the photon-number distributions for the unconditioned ρS, idler

no-click conditioned ρ̂S|I,0 and idler click conditioned ρ̂S|I,1 states. We provide the distributions

for both noise types we consider in this thesis: thermal (Fig. 3.5) and Poissonian (Fig. 3.6). The

photon-number distribution of the unconditioned state with thermal noise (Eq. 3.47) is

P (n)S =
(ξηSn̄+ n̄B,S)

n

(ξηSn̄+ n̄B,S + 1)(n+1)
. (B.1)

Following this the photon-number distribution of the idler no-click conditioned state (Eq. 3.52)

is

P (n)I,0 =
(ξηSn̄X + n̄B,S)

n

(ξηSn̄X + n̄B,S + 1)(n+1)
, (B.2)

where n̄X = n̄
(1+n̄B,I−ηI)
(1+n̄B,I+n̄ηI)

. The photon-number distribution of the idler click conditioned state

with thermal noise (Eq. 3.54b) is

P (n)I,1 =
1

PrI

(
(ξηSn̄+ n̄B,S)

n

(ξηSn̄+ n̄B,S + 1)(n+1)
−

− (1− PrI)
(ξηSn̄X + n̄B,S)

n

(ξηSn̄X + n̄B,S + 1)(n+1)

)
. (B.3a)

For the photon-number distributions with Poissonian noise, the derivation followed a similar

method as given in Appendix A.2, instead with the source with thermal statistics and the noise

with Poissonian statistics from the coherent state with amplitude β =
√
n̄B,S

t . The photon-number

distribution of the unconditioned state with Poissonian noise (Eq. 3.56) is

P (n)S =

∞∑
u=0

(ξηSn̄)
u

(ξηSn̄+ 1)u+1
|⟨n|tβ, u⟩|2, (B.4)
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where the overlap between the n-photon Fock state and the displaced number state |tβ, u⟩ is

⟨n|tβ, u⟩ = 1√
u!

u∑
p=0
p≤n

(
u

p

)
(−(tβ)∗)u−p

√
n!

(n− p)!
(tβ)n−pe−|tβ|2/2. (B.5)

The photon-number distribution of the idler no-click conditioned state with Poissonian noise

(Eq. 3.58) is

P (n)I,0 =

∞∑
q=0

(ξηSn̄×)
q

(ξηSn̄× + 1)q+1
|⟨n|tβ, q⟩|2, (B.6)

where Eq. B.5 defines ⟨n|tβ, q⟩. The photon-number distribution of the idler click conditioned

state with Poissonian noise (Eq. 3.60) is

P (n)I,1 =
1

PrI

(
P (n)S − (1− PrI)P (n)I,0

)
, (B.7)

where P (n)S and P (n)I,0 are the relevant photon-number distributions for states with Poissonian

noise.



Chapter C: Gaussian approximation require-

ments

The Gaussian regime affords analytic simplicity and computational speed. This regime refers to

the system parameters that permits the approximation of the Binomial click-count distributions

as Gaussian distributions, with negligible error produced. The following criteria is applied to

ensure the Gaussian approximation is valid for the system parameters set. The criteria is that

all distributions for the system parameters in question must not be too skewed and that the

mean is not too skewed towards the limits of the range of possible values [181]. We can apply

two rough rules of thumb which is that both

|1− 2p|√
Np(1− p)

< 0.3, (C.1)

and

Np > 5, (C.2)

are satisfied. Where p is the success probability which underlies the distribution and N is

the number of shots. In practice, not all Binomial distributions require a Gaussian validity

check; instead, a validity check only applies to the Binomial distribution most prone to failing

the Gaussian approximation. In the scenario of low signal strength with signal loss in a

noisy environment, the weakest distribution is the object absent signal coincidence click-count

distribution after a thresholded minimum of idler clicks. The mean and standard deviation of

the idler click distribution is µI and σI respectively. The thresholded minimum of idler clicks is

Imin = ⌊µI − 4σI⌋. Hence, the form of the weakest distribution is

Pmin(x) =

(
Imin

x

)
pxmin(1− pmin)

Imin−x, (C.3)

where pmin is the least likely type of signal click event in the analysed system when the object

is absent. The least likely type of signal click event for the system is the coincidence click. If
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this distribution satisfies Eq. C.1 then the Gaussian approximation is valid for the given system

parameters. If the Gaussian regime applies to even the weakest distribution, an approximation

to Gaussian is possible for all Binomial distributions for the system parameters set. This

approximation from Binomial to Gaussian is

P (x,N, p) =

(
N

x

)
px(1− p)N−x. (C.4)

to

P (x, µ, σ) ≈ 1

σ
√
2π
e−0.5( x−µ

σ )2 , (C.5)

where µ = Np and σ =
√
Np(1− p).



Chapter D: Deriving the linear form of the

LLV

The generic LLV in its ratio of click probability distributions form

Λ(x, k) = ln
(
PH1(x, k)

PH0(x, k)

)
, (D.1)

x is the vector of the click-counts by type of click event, k is the relevant number of shots (CI

total shots and QI number of idler clicks) and PH{1,0}(x, k) is the probability for object present

or absent respectively. The probability distribution for click events is originally Binomial, due to

the Bernoulli trials undertaken. For the remainder of the appendices I use shorthand notation

for the click probabilities PrH1:CI ≡ pH1, PrH0:CI ≡ pH0, PrI ≡ pI, PrS|I,1 ≡ pS|I,1, PrS|I,0 ≡ pS|I,0

and PrH0 ≡ pH0. The CI protocol is focused on first, as there is only one element in x ≡ x. The

object present and absent probability density functions in its Binomial form, respectively

PH1(x,N) =

(
N

x

)
pxH1(1− pH1)

N−x, (D.2)

PH0(x,N) =

(
N

x

)
pxH0(1− pH0)

N−x. (D.3)

As N, x and all the click probabilities are all real and positive Eq. D.1 can be expressed as a

linear equation. Hence, for CI Eq. D.1 is

Λ(x,N) =Mx+NC, (D.4)

where M = ln
(

pH1(1−pH0)
pH0(1−pH1)

)
and C = ln

(
1−pH1
1−pH0

)
. The LLV for QI easily extends to include

idler not firing events in the linear equation. The signal click-count x conditioned by k idler

click events and signal click-count y after N − k idler no-firing events in the QI protocol is
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transformed by the LLV defined as

Λ(x, k) =MTx+NCT, (D.5)

where MT = (M1 M2), x = (x y), CT = (C1 C2) and N =
(

k
N−k

)
. Where

M1 = ln
(
pS|I,1(1− pH0:I1)

pH0:I1(1− pS|I,1)

)
, (D.6)

M2 = ln
(
pS|I,0(1− pH0:I0)

pH0:I0(1− pS|I,0)

)
, (D.7)

C1 = ln
(

1− pS|I,1

1− pH0:I1

)
, (D.8)

C2 = ln
(

1− pS|I,0

1− pH0:I0

)
. (D.9)

.



Chapter E: Click to LLV distribution

All click-count distributions are easily transformed into LLV forms, assuming that the Gaussian

approximation is valid. The LLV for CI Eq. D.4 and QI Eq. D.5 are linear; this property

faciltates easy transformation from click-count to LLV distribution. The first two statistical

moments fully specify a Gaussian distribution and as linear transformations preserve normality

it is easy to transform click-count to LLV distribution. We focus upon the object present

scenario for the following analysis (the object absent scenario requires a simple replacement of

the relevant click probabilities). Shown below is the transformation into LLV moments for the

mean µH1:CI = NpH1 and standard deviation σH1:CI =
√
NpH1(1− pH1) for CI

µH1:CI:Λ = Λ(µH1:CI, N), (E.1)

= MµH1:CI +NC. (E.2)

and

σH1:CI:Λ =MσH1:CI. (E.3)

However, it is not as simple for QI. Equation D.5 encodes both coincidence clicks and non-

coincidence click-count distributions into the one LLV distribution. Equation D.5 amounts to a

linear combination and linear combinations preserve normality. Therefore, the resulting LLV

distribution is still normal. When there are k idler click events, a click-count distribution’s

statistical moments (µH1:k, σH1:k) are transformed into its respective LLV statistical moments as

µH1:Λ(x,k) = M1kpS|I,1 + C1k +M2

(
(N − k)pS|I,0

)
+

+ (N − k)C2. (E.4)
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for the mean and

σH1:Λ(x,k) =
(
M2

1 kpS|I,1(1− pS|I,1) +

+ M2
2 (N − k)pS|I,0(1− pS|I,0)

)0.5 (E.5)

for the standard deviation. Much of the characterisation of system performance is oriented

around the LLV distributions conditioned by mean idler clicks µI = NpI, rather than for k idler

clicks. Therefore, the mean of the object present LLV distribution conditioned by mean idler

clicks is defined as

µH1:Λ(x,µI) = N
(
pI(M1pS|I,1 + C1 −M2pS|I,0 − C2) +

+ M2pS|I,0 + C2

)
, (E.6)

and the standard deviation of the object present LLV distribution conditioned by mean idler

clicks is

σH1:Λ(x,µI) =

(
N
(
pI(M

2
1 pS|I,1(1− pS|I,1) +

− M2
2 pS|I,0(1− pS|I,0)) +

+ M2
2 pS|I,0(1− pS|I,0)

))0.5

. (E.7)



Chapter F: Distinguishability discrepancy

The LLV conditioned by k idler clicks processes coincidence (and possibly non-coincidence)

click data which has had k idler clicks, once this processing has occurred the knowledge of the

underlying click data is obscured and only an LLV is known. Neglecting our knowledge of how

many idler clicks there has been simplifies the post-processing of LLV data. Therefore, for any

LLV conditioned by k idler clicks this LLV can be processed with any other LLV with k̃ ̸= k

idler clicks. In other words, each LLV conditioned by any number of idler clicks are equivalent

to each other in post-processing. Hence, it is important that the discrepancy in the effectiveness

of each LLV test conditioned by k idler clicks is limited. Otherwise this equivalence is erroneous.

For a set of system parameters, QI has object present and absent LLV distributions for each

k idler clicks. This corresponds to a distinguishability for each LLV conditioned by k idler clicks,

which is denoted as ϕk. The system performance is characterised in terms of the threshold

distinguishability ϕt, which is calculated from the LLV distributions conditioned on the mean

number of idler clicks. Consequently, there must be only a limited discrepancy between any ϕk

and ϕt, for LLV equivalence to be valid.

Bounds are placed on what is considered to be extremal numbers of k idler clicks. We

define the minimum and maximum k idler clicks as Imin = ⌊µI − 4σI⌋ and Imax = ⌊µI + 4σI⌋,

respectively, where µI is the mean and σI is the standard deviation of the idler clicks distribution.

The upper bound for distinguishability discrepancy is arbitrarily set as Tϕ = 0.05. Therefore,

a regime has an acceptable amount of distinguishability discrepancy if both criterion

|ϕt − ϕImin |
ϕt

≤ Tϕ and
|ϕt − ϕImax |

ϕt
≤ Tϕ (F.1)

are satisfied.



Chapter G: Solving distinguishability equa-

tion

The distinguishability measure for the LLV distributions conditioned on the mean number of

idler clicks is defined as

ϕ = 1−
(
(1− Q(0, µH1:Λ(x,µI), σH1:Λ(x,µI))) +

+ Q(0, µH0:Λ(x,µI), σH0:Λ(x,µI))
)
. (G.1)

where Q(dLLV, µ, σ) is the Gaussian Q-function. We use the object present/absent LLV distribu-

tion mean µΛ(x,µI) and standard deviation σΛ(x,µI) in the following derivation. The Gaussian

Q-function can be approximated by the error function erf(dLLV) as

Q(dLLV, µ, σ) = 0.5

(
1− erf(

dLLV − µ

σ
√
2

)

)
. (G.2)

Hence, the definition of ϕ is restated as

ϕ = 0.5

(
erf(

−µH0:Λ

σH0:Λ
√
2
) + erf(

µH1:Λ

σH1:Λ
√
2
)

)
. (G.3)

The signs for above are dictated by the need for a positive argument in the error function.

Solving Eq. G.3 to find the parameters required for ϕ = ϕt needs the shots required for

threshold distinguishability Nt to be found. Firstly, for QI the shots required is decomposed into

Nt = NI1 +NI0 and Nt =
NI1
pI

, where NI1 and NI0 are shots when the idler does and does not

fire, respectively. If we combine the previous two expressions it is clear that NI0 = NI1(
1
pI

− 1).

Equation G.3, framed in terms of the variable NI1 when ϕ = ϕt is expressed as

ϕt = 0.5
(
erf(−G0

√
NI1) + erf(G1

√
NI1)

)
, (G.4)
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where

G =
M1pI1 + C1 + ( 1

pI
− 1)(M2pI0 + C2)

√
2
(
M2

1 pI1(1− pI1) +M2
2 (

1
pI

− 1)pI0(1− pI0)
)0.5 . (G.5)

From Eq. G.5, we substitute the relevant click probabilities to yield the object present coefficient

G1 and object absent coefficient G0, respectively. Therefore, NI1 is numerically solved with the

inverse function of ϕt

NI1 = F−1(ϕt). (G.6)

Following this, the shots required to reach threshold distinguishability is

Nt =

⌊
NI1

pI

⌋
. (G.7)

The shots required to reach threshold distinguishability is used throughout this thesis. It is

how we can ensure a particular system parameter regime will reach threshold distinguishability,

as we have the ability to increase the integration time (increase the number of shots) when

acquiring an LLV sample. This analytic approach we have demonstrated here to calculate the

shots required to reach threshold distinguishability saves us from a computationally expensive

numerical approach to estimate this value.



Chapter H: Commutator relations

We restate the operators shown in Eq. 5.5b, Eq. 5.5a and Eq. 5.5c. We demonstrate in this

appendix that these operators satisfy the commutator relations which the disentangling theorem

requires. We have that

K̂+ =

M∑
z=1

â†Szâ
†
I(M+1−z), (H.1a)

K̂− =

M∑
z=1

âSzâI(M+1−z), (H.1b)

K̂3 =
1

2

M∑
z=1

â†SzâSz + âI(M+1−z)â
†
I(M+1−z). (H.1c)

We begin with the commutator relation

[K̂+, K̂−] = −2K̂3 (H.2)

If we expand the commutator and rearrange we get

[K̂+, K̂−] =

M∑
z,t=1

â†SzâStâ
†
I(M+1−z)âI(M+1−t) − âSzâ

†
StâI(M+1−z)â

†
I(M+1−t). (H.3)

We then separate the summation into terms where z = t and rename the index as ν. We also

isolate terms where z ̸= t.

[K̂+, K̂−] =

M∑
ν=1

â†Sν âSν â
†
I(M+1−ν)âI(M+1−ν) − âSν â

†
Sν âI(M+1−ν)â

†
I(M+1−ν)+

+

M∑
z,t=1
z ̸=t

â†SzâStâ
†
I(M+1−z)âI(M+1−t) − âSzâ

†
StâI(M+1−z)â

†
I(M+1−t). (H.4a)



APPENDIX H. COMMUTATOR RELATIONS 163

The expression is simplified thanks to the z ̸= t summation equalling to 0, since every term in it

commutes. Therefore,

[K̂+, K̂−] =

M∑
ν=1

â†Sν âSν â
†
I(M+1−ν)âI(M+1−ν) − âSν â

†
Sν âI(M+1−ν)â

†
I(M+1−ν), (H.5a)

=

M∑
ν=1

â†Sν âSν â
†
I(M+1−ν)âI(M+1−ν) − (1 + â†Sν âSν)âI(M+1−ν)â

†
I(M+1−ν), (H.5b)

=

M∑
ν=1

â†Sν âSν

(
â†I(M+1−ν)âI(M+1−ν) − âI(M+1−ν)â

†
I(M+1−ν)

)
−

− âI(M+1−ν)â
†
I(M+1−ν), (H.5c)

= −
M∑
ν=1

â†Sν âSν + âI(M+1−ν)â
†
I(M+1−ν) = −2K̂3. (H.5d)

Thus, relation 1 is satisfied. Following from this, the next commutator relation is

[K̂3, K̂±] = ±K̂±. (H.6)

As the analysis is very similar for the + case as the − case, I shall only derive the + case here.

Expansion of the commutator receives

[K̂3, K̂+] =
1

2

M∑
z,t=1

(â†SzâSz + âI(M+1−z)â
†
I(M+1−z))â

†
Stâ

†
I(M+1−t)−

− â†Stâ
†
I(M+1−t)(â

†
SzâSz + âI(M+1−z)â

†
I(M+1−z))

(H.7)

By separating the summation into two components: one where z = t, and the index renamed

as ν, and one where z ̸= t. The summation when z ̸= t equals to zero, hence the commutator

reduces to

[K̂3, K̂+] =
1

2

M∑
ν=1

(
â†Sν âSν + âI(M+1−ν)â

†
I(M+1−ν)

)
â†Sν â

†
I(M+1−ν)−

− â†Sν â
†
I(M+1−ν)(â

†
Sν âSν + âI(M+1−ν)â

†
I(M+1−ν)), (H.8a)

=
1

2

M∑
ν=1

(
â†Sν(âSν â

†
Sν − â†Sν âSν) + â†Sν(âI(M+1−ν)â

†
I(M+1−ν)−

−â†I(M+1−ν)âI(M+1−ν))

)
â†I(M+1−ν), (H.8b)

=
1

2

M∑
ν=1

2â†Sν â
†
I(M+1−ν) = K̂+. (H.8c)

Relation 2 has been verified.



Chapter I: State vector derivation

In this appendix we apply the individual operators in Eq. 5.7 to the M mode vacuum. The

combination of these three results yields the M:TBSS state vector in Eq. 5.8a. The first term in

the derivation is

ee
−iθtanh(r)K̂− |{0}2M ⟩ = |{0}2M ⟩. (I.1)

This reduces to the vacuum state because the only non-zero terms are when the index of the

exponent power expansion is zero. We now derive the second term

eln(cosh
−2(r))K̂3 |{0}2M ⟩ =

∞∑
n=0

1

n!

(1
2
ln(cosh−2r)

)n
(K̂3)

n|{0}2M ⟩. (I.2)

We use the multi-nomial expansion and focus on [182]

(K̂3)n|{0}2M ⟩ =
n∑

b1,c1,...,bM ,cM=0

δb1+c1+···+bM+cM ,n
n!

b1!c1! . . . bM !cM !
(â†S1âS1)

b1×

× . . . (â†SM âSM )bM (âI1â
†
I1)

c1 . . . (âIM â
†
IM )cM |{0}2M ⟩, (I.3a)

=

n∑
c1,...,cM=0

δc1+···+cM ,n
n!

c1! . . . cM !
|{0}2M ⟩ (I.3b)

=Mn|{0}2M ⟩. (I.3c)

In the above we use that for all i where 1 ≤ i ≤ M the only non-zero terms are when bi = 0.

Moreover, for all i, (âI1â
†
I1)

ci |{0}2M ⟩ = |{0}2M ⟩. Therefore, the remainder of the derivation is

eln(cosh
−2(r))K̂3 |{0}2M ⟩ =

∞∑
n=0

1

n!

(M
2
ln(cosh−2r)

)n
, (I.4a)

=
(
sech(r)

)M |{0}2M ⟩. (I.4b)
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The last derivation applies the multi-nomial expansion again,

(
sech(r)

)M
e−eiθtanh(r)K̂+ |{0}2M ⟩ =

(
sech(r)

)M ∞∑
n=0

(−eiθtanh(r))n×

×
n∑

b1,...,bM=0

δb1+···+bM ,n|b1, . . . , bM ⟩mI ⊗ |bM , . . . b1⟩mS.

(I.5a)

This state is the M:TBSS state vector in Eq. 5.8a.



Chapter J: Unevenly distributed joint spec-

tral amplitude

This appendix details the case of a JSA that is not evenly distributed between the M spectral

modes. Each correlated idler i and signal k mode has a weight Ωi attributed to it, where

0 < Ωi < 1 and
∑M

i=1 Ωi = 1. Hence, the unequal JSA M:TBSS squeezing operator is

Ŝ2,M ̸=(ζ) = exp

(
−ζM

M∑
z=1

Ωzâ
†
Szâ

†
I(M+1−z) + ζ∗M

M∑
z=1

ΩzâSzâI(M+1−z)

)
. (J.1)

By applying the disentangling theorem as before, the three operators that satisfy the required

commutator relations are

K̂+ =M

M∑
z=1

Ωzâ
†
Szâ

†
I(M+1−z), (J.2a)

K̂− = K̂†
+, (J.2b)

K̂3 =
M2

2

M∑
z=1

Ω2
z(â

†
SzâSz + âIzâ

†
Iz). (J.2c)

Furthermore, by applying the squeezing operator to the 2M mode vacuum this yields

|ψ⟩M ̸=:TBSS =Ŝ2,M ̸=(ζ)|{0}2M ⟩ = (sech(r))M
2 ∑M

z=1 Ω2
z

∞∑
n=0

(−eiθtanh(r))n . . .

. . .
n∑

b1,...,bM=0

δb1+···+bM ,nM
n

M∏
i=1

Ωbi
i |b1 . . . , bM ⟩mI ⊗ |bM , . . . , b1⟩mS,

(J.3a)

=
1

(n̄+ 1)
M2

2

∑M
z=1 Ω2

z

∞∑
n=0

(
−eiθ

√
n̄

n̄+ 1

)n

. . .

. . .

n∑
b1,...,bM=0

δb1+···+bM ,nM
n

M∏
i=1

Ωbi
i |b1 . . . , bM ⟩mI ⊗ |bM , . . . , b1⟩mS.

(J.3b)

When all modes have the same weight Ωi =
1
M , this state vector |ψ⟩M ̸=:TBSS reduces to the

equally distributed JSA form presented earlier |ψ⟩M:TBSS.
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Chapter K: M:TBSS reduced state

The density matrix of the M:TBSS reduced state is ρ̂M:TBSS(1) = Tr∀mS,mI−{mI1} (ρ̂M:TBSS),

which is when all but one mode is traced out. Calculation of the M:TBSS mean photon number

n̄M from Eq. 5.30 is greatly assisted when we are aware that the photon statistics of the M:TBSS

reduced state is thermal. From the photon-number distribution of this reduced state we can

easily calculate the click probability when only one idler detector clicks — relevant to Eq. 5.30.

Hence, the photon-number distribution of the reduced state for a photon-number q is

P (q) = Tr
(
ρ̂MTBSS(1)|q⟩⟨q|

)
, (K.1a)

=

∞∑
n=0

P (n,M)

n∑
b2,...,bM=0

δb2+···+bM ,n−q, (K.1b)

=

∞∑
l=0

P (l + q,M)

(
l +M − 2

M − 2

)
, (K.1c)

=
n̄q

(n̄+ 1)q+M 1F0(M − 1; ;
n̄

n̄+ 1
), (K.1d)

=
n̄q

(n̄+ 1)q+1
. (K.1e)

We can see clearly that Eq. K.1e is thermal, where in the derivation we have introduced the

generalised hypergeometric function pFq [183].



Chapter L: SPDC Photon Source

The QI source used in these experiments is a type-II collinear SPDC photon pair source based

on a ppKTP crystal [184], with a polling period of 10 µm and stabilised at the temperature

62◦C. A CW 405 nm pump laser focused to a 1/e2 radius of 11 µm is driven through the

crystal to generate photon pairs at 810 nm. We use a Hanbury-Brown-Twiss configuration

to characterise our source quality [185]. At a pump power P = 0.3 mW, the typical count

rates were Nidler = 0.562 MHz and Nsignal = 0.507 MHz signal photons. We used fiber-coupled

single-photon counting modules (Excelitas SPCM-AQRH-14-FC) with a quantum efficiency of

60 % at 810 nm operating at room temperature as our detectors. Using a τc = 2 ns coincidence

window, we measured the typical rate of coincidences as Nc = 0.138 MHz. We measured the

second-order coherence of the signal path conditioned on idler detection as g(2)(0) = 0.006.

The value for source brightness was 7.55 ± 0.01 × 106 pairs/s/mW. The pump power for our

experiments varied between 50 and 300 µW.



Chapter M: Target Reflectivity and Noise

Source

Neutral density (ND) filters realises a replicable and finite target reflectivity for our experiment.

To calibrate the filter loss and thus target reflectivity ξ, we take the ratio of the total signal

count-rate with (without) the filter after subtracting the detector background measured with

the SPDC source blocked. To ensure accuracy of our estimation of target reflectivity ξ at the

highest attenuation levels, we use integration times of up to 1 second.

A low-noise current driver (Koheron DRV300-A-10) drives an LED, which provides our

system with (artificial) background noise. The low-noise current driver facilitates a controllable

and constant background count to the signal detector. Our LED light is not coherent like

how laser light is, but it does have Poissonian photon statistics. Moreover, our noise source is

independent of target reflectivity or position. Use of a low-noise current driver is necessary to

make a comparison between CI and QI detection protocols, as CI is extremely susceptible to any

drift in noise level. For the sections Ch. 8.3.3 and Ch. 8.3.5 that involve temporally modulated

active jamming, we use a function generator to add modulation on top of a DC offset at the

current driver.



Chapter N: System loss estimation approxima-

tion

As stated earlier, system loss calculated by Eq. 8.8 and Eq. 8.9 is an approximation. We estimate

the heralding efficiency when there is limited noise in the system and there is no attenuation of

our signal beam. The heralding efficiency of the signal and idler detectors, respectively, in terms

of click probabilities and as an explicit function of system loss

HES =
Ncoinc.

Nsignal
=

PrI1PrI
PrS

= AIηI (N.1)

and

HEI =
Ncoinc.

Nidler
= PrI1 = ASηS, (N.2)

where AI and AS are constants. The signal attenuation factor ξ = 1 as there is no attenuation

of the signal beam when we are estimating the system loss. The noise source is thermal as there

are only dark counts during the system loss estimation, this determines which click probabilities

we use. Equation 8.8 is valid when AI ≈ 1 for all possible values of idler and signal system loss,

where it is defined as

AI =
1

PrS

(
n̄+

n̄D,I

ηI

n̄D,I + ηIn̄+ 1
− 1

ηI

( 1

ηSn̄+ n̄D,S + 1
− (1− PrI)

1

ηSn̄× + n̄D,S + 1

))
. (N.3)

Equation 8.9 is valid when AS ≈ 1 for all possible values of idler and signal system loss, where it

is defined as

AS =
1

PrI

(
PrI(n̄+

n̄D,S+1
ηS

)(ηSn̄× + n̄D,S + 1)− F

(ηSn̄+ n̄D,S + 1)(ηSn̄× + n̄D,S + 1)

)
, (N.4)

with F =
(
n̄× − (1− PrI)n̄

)
+ 1

ηS

(
n̄D,S + 1− (1− PrI)(n̄D,S + 1)

)
. If the approximation does

not hold then calculation of the system loss ηI/S requires a numerical approach. Our maximum

tolerance of the HE approximation error is |1 − AS| = 0.01 and |1 − AI| = 0.01, any set of

parameters that exceeds this tolerance is not included in the parameter space mentioned in



APPENDIX N. SYSTEM LOSS ESTIMATION APPROXIMATION 172

Ch. 8.2.2 when our HE approximation is valid.



Chapter O: Signal attenuation factor estima-

tion

In a realistic system, the signal attenuation factor is completely unknown from the onset. This

appendix details how we would estimate this parameter in a system that does not use preset ND

filters to emulate the signal attenuation. Chapter 4 introduces a FOM which uses the CRLB for

estimation of the signal attenuation factor ξ. This section compares the variance of our method

for estimating the signal attenuation factor ∆2ξ̂ with the variance of the optimal estimator, as

given by the CRLB ∆2ξ̂min. The CRLB in this section differs from Ch. 4 as we have Poissonian

noise for the signal channel and we consider the click-count distributions to be binomial. The

CRLB for CI is

∆2ξ̂CI:min =

(
−

N∑
x=0

fCI(x)
∂2ln

(
fCI(x)

)
∂ξ2

)−1

, (O.1)

where fCI(x) =
(
N
x

)
(PrS(ξ))

x(1− PrS(ξ))
N−x and Eq. 3.57 defines PrS(ξ). The CRLB for QI is

∆2ξ̂QI:min =

(
−

Nidler∑
x=0

fQI(x)
∂2ln

(
fQI(x)

)
∂ξ2

)−1

, (O.2)

where fQI(x) =
(
Nidler

x

)
(PrS|I,1(ξ))

x(1− PrS|I,1(ξ))
Nidler−x and Eq. 3.61 defines PrS|I,1(ξ). The

CRLB estimator theory is shown for only one click-count sample, therefore to remain consistent

with the theory developed in Ch. 4, our signal attenuation factor estimators ξ̂ are also only

from one click-count sample. Of course, if we were to increase the number of samples for our

estimations this will consequently reduce the CRLB and the variance of our method of estimation.

Moreover, to keep consistent with the CRLB theory introduced in Ch. 4 and for simplicity we

only consider that ξ is a parameter that we estimate. Whereas, a more thorough treatment

acknowledges that the other system parameters are also estimates and this in turn results in a

multi-parameter CRLB and a vector of our estimators. We use the theory developed by Liu

et al. in Ref. [76] for our CI and QI signal attenuation factor estimators. For a CI system the
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signal attenuation factor estimator is

ξ̂CI = argmaxξ
(
fCI(x)

)
(O.3)

The QI system the signal attenuation factor estimator is

ξ̂QI = argmaxξ
(
fQI(x)

)
(O.4)

We can calculate the variance of our estimator ξ̂ with the relation

∆2ξ̂ = E(ξ̂2)− E(ξ̂)2. (O.5)

The expected value of ξ̂ is given by

E(ξ̂) =
xmax∑
x=0

w(x)ξ̂(x), (O.6)

where x is number of signal clicks for CI and number of coincidence clicks for QI, xmax is N for

CI and Nidler for QI, and w(x) is the probability for the estimator ξ̂ to estimate the value ξ(x).

We calculate the probability w(x) for CI/QI as

w(x) = fCI/QI(x), (O.7)

this distribution has the actual signal attenuation factor ξ as its parameter. Figure O.1 compares

the CI CRLB and the variance of our method for CI signal attenuation estimation, as a function

of signal detector background noise. Whereas, Fig. O.2 compares the QI CRLB and the variance

of our method for QI signal attenuation estimation, as a function of signal detector background

noise. Our estimator essentially satisfies the CRLB for both CI and QI, this is expected as our

estimation of the click probability for a binomial distribution satisfies the CRLB. It is also clear

that the QI estimator is better than the CI estimator when comparing Fig. O.1 and Fig. O.2.
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Figure O.1 – Comparison of the CRLB and our estimator ξ̂ for CI. The variance of the
estimation is on the y-axis ∆2ξ̂ and signal detector background noise mean photon number on
the x-axis. ηS = 0.3, ξ = 0.5, n̄ = 0.05 and N = 50000.

Figure O.2 – Comparison of the CRLB and our estimator ξ̂ for QI. The variance of the
estimation is on the y-axis ∆2ξ̂ and signal detector background noise mean photon number on
the x-axis. Nidler = N PrI, ηS = 0.3, ηI = 0.3, ξ = 0.5, n̄ = 0.05, n̄B,I = 0.0001 and N = 50000.
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