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Abstract

Invasive plant pests significantly threaten agriculture, ecosystems and economies. Effec-
tive control requires early pest detection and reliable spread assessment, which can be
addressed through statistical analysis. This thesis develops novel statistical approaches
to data analysis and modelling for two invasive insect species: Fall Armyworm (FAW)
in India during the period 2018-19, and the Emerald Ash Borer (EAB) epidemic in the
USA from 2002 to 2020.

The decision-making for prevention and control is often hampered by the lack of
data or their low quality. Novel detection methods have been developed, but they have
not yet been analysed rigorously. The FAW data are based on a citizen science approach
utilising Plantix, an innovative method that integrates artificial intelligence (AI) with
mobile technologies. Constructed by Progressive Environmental and Agricultural Tech-
nologies (PEAT) GmbH, it can provide comprehensive monitoring of geographical areas
and early detection of pest invasions. However, there is no gold standard, and the data
need to be statistically interpreted before they can be used to estimate prevalence.

For the EAB data, a different approach is needed as only an initial true positive
case was provided from each observed infested county in the USA. However, we also
have data on the host (ash trees) density and climate forcing. For the two cases, the
main research objectives are: (i) developing a rigorous framework for estimating FAW
prevalence and using it to estimate the true prevalence in different parts of India, and
(ii) developing a continental-level model for the spread of EAB in the USA.

Both approaches apply frequentist and Bayesian techniques, using classification
methods and several diagnostic performance tools to compare model outputs with data.
A classification model, a bi-normal mixture, was used to estimate the True and False
FAW observations, using the data classification by the Plantix mobile app and our as-
sumptions. A Bayesian meta-analysis estimates pooled test sensitivity and specificity,

assuming the logit sensitivity and specificity follow a multivariate normal distribution.
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Four distinct methodologies were implemented to select the most appropriate model
for estimating FAW prevalence, including frequentist methods and the Bayesian meta-
analysis with stochastic sensitivity and specificity.

In the case of the EAB, a colonisation-dispersal model was adapted and utilised
to include climatic (annual average of growing degree day), non-climatic (ash intensity
habitat) conditions, and dispersal mechanisms. The model was fitted to the best avail-
able data, quantifying the uncertainty in the model and its predictions and assessing
its performance in tracking the spread of EAB over two decades.

The thesis analysis yields key findings for both FAW and EAB. These findings
classify positive and negative Plantix app observations as True or False, evaluate app
accuracy and enable estimation of FAW prevalence. Additionally, the evaluation of
the data sensitivity and specificity for each maize season is more accurate than for the
entire period. Significant factors for EAB colonisation are ash species availability, and
the adult EAB flights dispersal distance.

The results also highlight that the citizen science and mobile technologies can aid
the government in early pest detection for effective spread control of FAW, EAB, and
similar pests, and may even combined with inspector monitoring to limit the EAB

spread.
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Chapter 1

Introduction

1.1 What are invasive species?

Invasive non-indigenous (non-native, naturalised, exotic, alien) species are species that
have moved accidentally and introduced into a new geographic area. They also can
persist, reproduce, spread and cause negative impacts in the local ecosystem and biodi-
versity [6, 7]. They can disrupt the ecological balance when they encounter mismatched
abiotic and biotic factors in their native habitats [8]. The IUCN (International Union
for Conservation of Nature) Red List of Threatened Species and the 2019 IPBES (Inter-
governmental Science-Policy Platform on Biodiversity and Ecosystem Services) Global
Assessment Report on Biodiversity and Ecosystem Services highlight that the invasive
non-native species are one of the primary reasons that leads to a reduction in bio-
diversity and causes species extinctions. In addition, they rapidly threaten food and
livelihood security [9]. Additionally, Early et al. (2016) [10] found that in the 21st
century, these species are highly susceptible to invasive on the one-sixth of the global
land surface. Hence, they are a global concern [11].

In addition, the alien species can be transported by abiotic dispersal such as wind,
animal, or water. They can also move independently [7] or due to human actions such as
by carrying non-native organisms in material behind native area [7, 12|. It is possible for
airplane wheels to carry species to a new region. Additionally, cargo ships can transport
marine alien species into new areas, since they sometimes carry ballast water to stabilise
the ships load. Then, the ballast water that may contain marine organisms is released
into the port. Moreover, cargo ships and trucks or cargo packaging materials could carry

non-native species into containers. About 51.8 percent of solid wood packing materials
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shipments had alarming infection rates where can carry wood-boring insects, according
to a collaborative report published by the United States Department of Agriculture
(USDA), the Animal and Plant Health Inspection Service (APHIS), and the United
States Forest Service (USFS) [12]. Further, the international trade of live plants has
been one of the main factors to introduce alien forest insects and pathogens into the
USA and Europe. For example, between 1860 and 2006, around 69 percent of non-
native forest insects and pathogens entered to the USA through international trade of

live plants [13].

1.2 Threat of invasive insects

Although invasive non-indigenous species can be plants, insects, vertebrates, or marine
organisms, this work will focus on insects. Non-native insects have increased rapidly
around the world, which endanger native biodiversity, ecological, economic, and human
life [14]. Further, invasive non-native insects can, through direct interactions, disrupt
the native ecosystem balance and contribute to decrease in native biodiversity. More-
over, they consume plants or spread disease [15, 16]. In addition, they might act as
parasitoids and lay their eggs inside other insects. After hatching, the emerging non-
native larvae harm the native ones [16].

In addition, non-indigenous invasive insects have had marked economic effects on
different sectors, such as forestry, agriculture, society and trade. They have been esti-
mated to cost the world economy more than US$ 70 billion yearly [17, 18]. For exapmle.
in agriculture, they incur billions of dollars of losses by reducing yields, increasing pes-
ticides usage, spreading plant pathogens and imposing trade restrictions [19]. United
States of America (USA) governments spent billions of dollars per year to eliminate
non-native forest insects, to limit their distribution to new areas, and to eradicate at
risk and dead trees from public areas for public safety [13].

Moreover, householders incur financial costs to remove or replace infested trees.
Their property prices also may be reduced due to the risk of the infested trees and less
attractive home views [13|. Further, global health consumed around US$ 6.9 billion per
year to treat human disease because of invasive insects [20]. In spite of the above given
costs, the cost of non-indigenous invasive insects is still underestimated. Difficulty in
quantifying costs, insufficient government funding and lack of international coordination

or cooperation are factors that cause this underestimation of costs of the alien invasive
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insects [20].

In this thesis, the focus is on two alien insects that have recently become serious
pests in some parts of the world: the Fall Armyworm (FAW, Spodoptera frugiperda)
on maize crop in India, and the emerald ash borer (EAB, Agrilus planipennis ) in ash

species in the USA.

1.2.1 Fall Armyworm, crop non-native insect, in maize

The Fall Armyworm (J. E. Smith), is a highly mobile and dangerous pest, which was
first recognised by Sir James Edward Smith [21, 22|. The pest is classified from the genus
Spodoptera known as armyworms, and the Noctuidae group which is one of the causes
of agricultural financial losses around the world [21]. It infests a wide range of host
plants with approximately 100 recorded types under 27 families. However, the preferred
species is the Gramineae family of plants, including the economically essential ones such
as maize, millet, sorghum, sugarcane, rice and wheat. Different reports indicate that
there are other crops such as cowpea, groundnut, potato, soybean and cotton, which are
infested by this pest [23]. It is notable that between all these host plants, FAW caused
the most damage in maize [24]|. Hence, the subsequent sections will discuss the FAW
around the world and particularly in India, and at the end will highlight the significance

of maize.

FAW around the World

The Fall Armyworm is native to the tropical - subtropical regions of the American
continent, where it is found in Mexico, Brazil, the USA and Argentina [25, 26]. In Brazil,
the yield of maize crops has been reduced by 98-100 percent due to Fall Armyworm [27].
In addition, in 1845 in western Florida, FAW caused massive damages to various crops
such as corn, sugar cane, and rice [28]. One farmer in 1870 consumed US$1,000 because
of damage caused by the FAW to several crops [28]. Hence, it posed a considerable
damage even in its original habitat.

In 2016, it was found in West and Central Africa and subsequently invaded all the
countries of sub-Saharan Africa [25, 26]. In addition, in 2018, it moved to Asia through
India and then expanded to Bangladesh (December 2018), Myanmar (December 2018),
Nepal, Sri Lanka and China (January 2019) and South Korea and Japan (July 2019)
[29]. The map in Figure 1.1 shows FAW distribution around the world since 2016. This
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pest, which only grows up to 2-cm long, extended to more than 50 countries in Africa
and Asia damaging crops, especially maize |30, 29, 26]. In February 2020, FAW also
invaded Australia and attacked more than 350 commercial and non-commercial hosts
[31].

In fact, the factors that helped FAW to spread fast over the continent was the
importation of non-genuine species for economic purposes. Moreover, unintentional
infected plants arrived in shipping containers were carried by tourists or hidden in the
imported ornamental plant soil [21]. Other factors that contributed to its spread were
its predilection to attack many crops, especially the maize. Furthermore, it has ability

to produce numerous eggs, and its capability to travel over wide distances [21].

B pre-2016
B 2016
2017
9 2018
2019
Bl 2020
B 2021
B 2022
T 2023
W 2024

Figure 1.1: FAW Invasion around the World since 2016, taken from [1].

Fall Armyworm invasion of India

In mid (May-June) 2018, Spodoptera frugiperda was detected first on the maize crop in
many locations in Karantaka, India. Then, the pest expanded to all southern states,
then to western Maharashtra and Gujarat, and eventually to eastern states [30]. Be-
tween July and August 2018, severe damage was reported in Chikkaballapur, Hassan,
Shivamogga, Davanagere and Chitradurga which are located in Karantaka [23]. The
pest was also observed in Andhra Pradesh, affecting the maize growing areas of East
and West Godavari districts, Srikakulam and Vizianagaram in August, 2018 [30]. In
just two years, FAW has grown in most parts of India [32].
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Life cycle of the Fall Armyworm and visible characteristics

The complete worm lifecycle of FAW varies and depends on the prevailing natural
conditions. It averages 30 days in summer, 60 days during the spring (Rabi) and
autumn (Kharif), and during the cold season (winter), it can be prolonged from 80 to
90 days [33]. Male and female adult moths mate nocturnally; from dusk to midnight,
and are most active during warm, humid evenings. The adult female moth lays between
1,500 and 2,000 eggs in her life time, on the inner side of the whorl or on the under
surface of the leaf [33, 23]. She deposits her eggs in a mass which is arranged in a layer,
or sometimes layers, although most eggs are distributed on a single layer. The number
of eggs per mass is very different but is usually between 100 to 200. During laying,
the female arranges fine protective grayish scales which are loosened from her body to
cover the eggs and the egg mass, over which this cover has a moldy appearance [33, 28|.
The eggs are brownish yellow and are of dome shape, where the diameter is about 0.4
mm and the dome height is 0.3 mm [33]. The duration of the egg stage ranges between
two and ten days, where it depends on temperature conditions, rather than humidity,
whether in a dry or moist place [28].

After hatching, the larvae develop through six instars; around 14 days in the summer
with 30 days during cool weather. The instars differ slightly in physical appearance and
pattern. The average development time of each instar in order was determined to be
3.3, 1.7, 1.5, 1.5, 2.0, and 3.7 days at 25°C [33]|. The larvae in the early instar (1st
instar) are greenish with a black head, where the head width is around 0.35 mm and its
body length is about 1.7 mm. Larvae in the second and third instar are orangish and
have a black head of 0.45 to 0.75 mm in width and attain a length of about 3.5 and 6.4
mm, respectively. In the second, and mainly the third instar, the dorsal surface of the
body becames brownish, then white lines begin to form. Larvea from the fourth to the
sixth instars have head widths of 1.3, 2.0, and 2.6 mm, respectively, and their heads
are mottled reddish brown and white. Moreover, the body lengths are 10.0, 17.2, and
34.2 mm, respectively. The body colour is brownish with subdorsal and lateral white
lines. Some spots appear on the dorsal, which are darker than the body colour and have
spines. The faces of the 6th instar larvae (mature larvae) have unique mark on Y form,
and the epidermis of the larva is rough [33].

After leaving the plants, the larvae pupate in the soil to begin a pupal stage. The

duration of a pupal stage ranges eight to nine days in summer and 20 to 30 days in cool
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weather. The pupation stage happens in the soil at a depth range of two to eight cm.
The larva forms a loose cocoon by tying together particles of soil with silk. However,
if the soil is hard, the larva pupates on the soil surface by mixing leaf debris and other
materials to construct the cocoon. The cocoon has an oval shape and is 20 to 30 mm
tall. Gradually, the adult moth emerges to start to the adulthood stage and a new life
cycle. Moths have a wingspan of 32 to 40 mm. The forewing of a male moth is shaded
brown and grey, with triangular white spots at the rim and close to the centre of the
wing. However, the forewing of the female moth is between a uniform greyish brown to
a fine mottling of grey and brown. The back wing in both sexes is iridescent silver-white
with tight dark edges. The female deposits most eggs in the first four to five days of
her life, but some oviposition occurs for up to three weeks. The duration of an adult’s

life on average is approximately ten days, with a range of 7 to 12 days [25, 33, 23].

5\ _I' Female /

Larval instars \.

/
éﬁ;z_:"‘__m__,-l — ‘

T s ur i

Figure 1.2: Life cycle of Fall Armyworm (FAW)

Damage and management

FAW can damage maize during all growth stages, whereas it causes a greater threat in
the vegetative period or young crops, and FAW is more destructive in larvae stage since
it may also attack tassel and developing ears. Larvae in all instars cause damage by

consuming foliage. The larvae in the early instar (1st instar) feed on the eggshells firstly
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and then invade chlorophyll (green tissue) on upper leaves to form a silvery transparent
membrane. In the second and third instar, larvae start to form window pane (hole) on
the leaves and leave moisture resembling sawdust in the funnel and upper leaves, which
they start eating from the edge, working their way to the inside. Larvae in the third
instar to the sixth instar cause heavy defoliation and leave ribs and stalks on the plant,
as well as a large amount of faecal matter. Some larvae can also get onto neighbouring
plants [25, 33, 23]. To sum up, as larvae grow, their feeding rate increases, the hole
sizes and the amount of facal matter increase. Larvae in the first to the third instar
consume 2 percent of the total foliage since they are pretty small, while for the fourth,
fifth and sixth instars, they eat 4.7 percent, 16.3 percent and 77.2 percent, thus heavily
defoliating the crop [29, 24].

Substantial economic losses in agricultural biodiversity, human and animal health
are caused by FAW [23, 30]. In Latin America, FAW caused up to 73 percent of yield
losses in maize crops [29]. Further, over 44 countries in Africa and just in a two-
year period (2016-2017), the damage of FAW in maize led to a financial loss exceeding
US$2-5.5 billion [27]. 13.5 million tons of maize, valued at $3 billion, was the estimated
impact of FAW in sub-Saharan Africa during 2017-2018. It is greater than 20 percent
of its maize production [32]. Within two years, in Ethiopia FAW contributed to the
loss of maize production by an amount 0.67 million tonnes. In the absence of this lost
maize, four million food insecure households would have been able to meet their maize
consumption needs [34].

In India, there has been widespread concern about FAW in maize fields since mid
2018. It spread to more than 90 percent of maize paddies within 16 months [35, 29].
Worth mentioning is the fact that for every 5 to 10 percent drops in production, India
loses 37,000-75,000 tonnes of maize [29]. In Kharif 2018, 17,394 ha out of 462,322 ha
of the actual sown area of maize was infested by FAW and 22,072 hectares (ha) out of
78,982 ha of the actual sown area during Rabi 2018-19 [30]. In addition, Suby et al. [29],
mentioned that in 2019 Karnataka recorded the largest infested area with FAW (211,300
ha), followed by Telangana (24,288 ha) and Maharashtra (5144 ha). Furthermore, FAW
caused economic damage in the rainy and post-rainy seasons of 2018 and 2019 in Andhra
Pradesh, Karnataka, Maharashtra, Tamil Nadu and Telangana. However, FAW did not
cause economic damage in fields with temperatures less than 10°C or more than 40°C.

As a result, there was only a minor FAW infestation in northern Rajasthan, Haryana
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and Punjab [29]. India is the world’s seventh-largest maize producer, which it typically
exports to Asia. As FAW infestation area increases over time, the loss will shift India
to the import of maize [30].

Managing the pest is difficult since the worm can be seen in all stages at the same
time because of the continual generations [30]. However, there are ways to minimise
this invasive insect pest such as using biological control agents or their natural enemies
which are Telenomous sp. and Trichogramma sp, as well as quarantine restictions, all

of which could result in reducing the pest globally [23, 30].

FAW weather conditions

FAW can live throughout the year, diversify its diet, and survive in difficult and harsh
conditions by emigrating to various areas or hiding to return when the conditions are
appropriate. Despite this dangerous threat, the moth needs suitable weather conditions
to survive. Warm and humid conditions help its reproductive capabilities, while extreme
temperatures or excess rainfall cannot be tolerated. Kenya, for example, is not affected
by the pest due to the heavy rains experienced in March 2018 [21]. The moth usually
attacks crops during the larval stage, but its lifecycle seemed to be broken because of
the rains. Since the pest behaves differently from one area to another and from one
season to another, scientists should study these behaviours in diverse environments to

come up with a prediction for each season [30].

Significance of maize

Maize is an essential cereal in India as well as in many countries in the world. From
2018 to 2021, statistics indicate that maize is sown in 165-170 countries in areas of
about 180.63-188 mha (Million hectare), with the annual production ranges between
1060 to 1134 mt (million tonnes) [29, 36]. In 2021, China has the largest maize area
followed by the USA, where both cover 39% of the world maize area. However, the
USA is the highest maize production followed by China, where they are contributing
34 percent and 22 percent of world maize production [36]. Worldwide, maize is used
as food, feed, fodder and raw material. Moreover, the main advantage of maize is that
it can be grown in a moderate climate and planted from sea level elevation to 3000 m
above sea level [36].

In India, maize is the third staple crop after rice and wheat, and it covers 4% of
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the maize world area [37, 36]. In addition, India has been among the top ten maize
production in the World since 1961. Since 2005, India has ranked 4th area under maize
with 9.2 mha of land with a production of 28 mt. Yet, in 2021, India ranks 7th, while the
productivity is above 3 t/ha [36]. Further, Indian maize contribution is about 9 percent
of local production and around 2 percent of global production [37], where around 50 to
60 percent of local production is used as food for people and feed for cattle. Moreover,
about 30-35 percent of the production is consumed for poultry, piggery and fish meal.
Additionally, 10 to 12 percent of it is used in wet milling industry such as starch and
oil, and around 3 percent in dry milling such as corn bread and corn chips [38].

Maize was a rainy season or Kharif crop in northern India before 1980 (1950-1979),
and it was grown mostly in the states of Uttar Pradesh, Bihar, Rajasthan and Madhya
Pradesh [36, 24]. After 1980s, Rabi (Winter) maize has become important in coastal
Andhra Pradesh, Bihar, Telangana, West Bengal and others [36]. Simultaneously, it
was noticed that there is a considerable shift in area towards peninsular region which
represents now of about 40 percent of the total area under maize and over 52% of
production [36, 24]. Since 2017-18, the major maize growing states represent of about
80% of the total maize area of the country which are Karnataka (14.8 percent, 1.22 mh,
3.31 mt/y), Maharashtra (10.9 percent), Madhya Pradesh (10.8 percent), undivided
Andhra Pradesh (10.4 percent), Rajasthan (10.6 percent), Uttar Pradesh (8.3 percent),
Bihar (7.9 percent), Gujarat (5.0 percent) and Tamil Nadu (3.6 percent). However, in
many of these states such as in Rajasthan (1.6 t/ha) and Gujarat (1.6 t/ha), maize
productivity is quite low, while that in Uttar Pradesh (1.7 t/ha), Madhya Pradesh (1.9
t/ha) and Maharashtra (2.3 t/ha) is under the national average of 2.6 t/ha [24].

Moreover, maize can be grown in a mild climate [39]. It can also be grown well in
semi-arid, humid, hot dry or hot moist conditions. In addition, it can be planted in
all type of soils, and the best range of soil pH is 7.5 to 8.5 [40]. Therefore, production
of maize in India is round-the-year [36], and maize can be grown in all seasons in
most maize fields. It can be grown in Kharif (monsoon), post monsoon, Rabi (winter),
summer and spring [39], while Kharif season is the most suitable period to sow maize
[24]. On the other hand, farmers use irrigation during Rabi and spring seasons to achieve
higher yield [39]. However, in Bihar, West Bengal and Peninsular India, maize often
grows in Rabi season, while in Punjab, Haryana and western Uttar Pradesh it grows in

Summer season, requiring more water. Therefore, 80 percent of maize is Kharif maize,
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19 percent is Rabi maize and 1-2 percent is Summer maize. In spite of that, Rabi maize
is growing faster than Kharif maize and with double yield |24, 40|.

It is worth highlighting that in 1950-51, maize production was about 1.73 mt, and
increased to reach 28.75 mt in 2017-18. This rise is because maize area has increased
2.97 times, yield 5.6 times and production 16.64 times compared with the beginning of
the period in 1950-51. India aspires and plans to reach its production of 50-60 mt by
2025. However, climate change is one of the challenges that cause stresses and fears
to achieve this goal. Along with that, from May 2018 Fall Armyworm has threatened

maize crop [24].

1.2.2 Emerold ash borer, forest non-native insect, in ash trees

Emerold ash borer (EAB) is a wood borer beetle that feeds on ash trees (Frazinus) [41].
It is indigenous to East Asia (north east China, Japan, Taiwan, Korea, Mongolia and
the Russian Far East) and was discovered in the southeastern Michigan, USA in 2002
[42, 43, 44, 45, 46|. However, it is suspected to have arrived ten years prior with solid
wood packaging material from Asia and was only identified when ash trees began to die
in significant numbers between 2001 and 2002 [42, 44]. This is because A. planipennis
completes its life cycle inside ash [41], and is extremely difficult to detect and can remain
unnoticed for several years after the infestation [44]. At the end of 2002, it was obvious
that between 5 and 7 million ash trees were dying, declining, or dead in six counties
of southeastern Michigan [42]. Over the next five years, approximately 20 million trees
had been killed by EAB in Michigan state alone [47]. These alarming figures indicate
that the EAB has had a substantial ecological and economic impact in the infested area
[48]. Following is a review of the literature on EAB biology, impacts, and management

options.

Biology: life cycle of the EAB and visible characteristics

EAB life cycle involves four distinct stages: egg, larva, pupa, and adult. The develop-
ment time of the EAB life cycle is flexible, which allows A. planipennis to establish in a
variety of climates and other environment factors [49, 50]. For example, a weakened tree
(e.g. by girdling) has a shorter generation time than a healthy tree [50]. The life cycle
of the EAB typically lasts one year, while it occasionally lasts two years. One of the

contributing factors is that the 2-year development occurs occasionally when oviposition
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takes place in the latter part of the summer and the larvae do not reach the prepupal
stage before winter (42, 51]. In summary, the EAB’s life cycle is one or two years in
North America [49].

From infested ash trees, adults emerge ranging in length from 8.5 to 12.5 mm with
bright green coloration [52|. Prior to mating, adults feed on ash foliage for at least
a week to reach sexual maturity [53, 50]. Following mating, female adults bore into
the bark to lay their eggs, producing between 40 and 70 eggs at once [49]. Individual
eggs are laid within cracks and crevices in the bark, or beneath bark flakes, and hatch
in approximately two weeks [49]. Each egg is about 1 mm in diameter, and its color
develops over time from white to amber [54].

Once the eggs hatch, larvae appear in the bark [54]. A larva will undergo four
instars (stages) over time, where depelovement periods depend on the temperature and
other factors in the environment [49]|. The four-instar larva can be distinguished based
on their sclerotized structure [54]. They tunnel to make their way to the cambium
where they feed, etching a serpentine gallery in the phloem and outer sapwood [54, 52].
Through tunneling, they slowly cut off moisture and nutrients to the higher parts of
the tree [52].

Larvae of the fourth instar chew pupation chambers in the outer sapwood or bark
during late summer or autumn and fold their bodies into J-shaped larvae, the stage at
which they overwinter [54, 53| in an indefinite diapause as prepupae [53]. However, if
the J-shaped larva does not reach the appropriate size and development stage by late
fall, it will delay pupation until the next summer [54]. In the spring, the prepupae will
develop into pupae. A pupa gradually develops into an adult over the course of about
one month while still in the pupation chamber. When adults emerge from the tree bark,
they appear from D-shaped exit holes (2-3 mm in diameter) |54, 49| and are capable
of immediate flight. The adults consume ash foliage during their lifetime and are most
visible during hot afternoons (3-6 p.m.), flying around ash tree trunks and landing to

reproduce [54].

EAB adult flight and natural influences

EAB can migrate from one area to another either at the adult stage of its life cycle or
via anthropogenic movement of ash materials [42, 55]. According to a laboratory study

for assessing EAB flight ability using computer-monitored flight mills, the ability of
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EAB to fly differs between fed and unfed, as well as mated and unmated of both sexes.
A male EAB flies more frequently and farther than an unmated female. Mated females,
however, are likely to increase a population’s range through dispersal and reproduction.
According to the flight mill studies, mated females which were allowed to feed on ash
leaves between flight periods, flew further and longer per day than unmated females
(almost 2.5 times farther) or males. The average flight distance for mated females was
1.3 kilometers per day. The average flight distance of fed, six-day-old female beetles
ranged from 71 m to 2.3 km, compared to 53 m to 5.2 km for males. The results
show that mated females are likely crucial in the spread of EAB, especially if flight mill
recordings are underestimated [55]. The results, however, cannot be applied directly
to field scenario, because environmental factors can also impact adult flight behaviour
[42, 55].

Environmental factors such as ash tree distribution, density, and condition can affect
EAB adult flight and dispersal [42, 55|. For example, adults often prefer stressed trees
and trees expose to full or nearly full sunlight. Additionally, an indirect factor is a
host’s phloem quality and availability which impact larval development. Subsequently
it influences adult flight [55]. Additional elements are weather conditions such as wind

or geographical features including mountains or sea [42].

Destructive impacts of EAB

The emerald ash borer is considered to be one of the most destructive forest insects
ever to invade the USA [14]. It has caused major damage in ash species in the USA
since 2002 [49]. It infests various ash species, though the impact differs substantially
between individual species [14]. A. planipennis poses a threat to all of North America’s
ash species, including at least 16 native varieties, as well as naturalised species and
cultivars used in landscaping [42|. The larvae have a considerable impact on ash trees
because they disrupt the tree’s ability to transport water and nutrients. As a result,
this leads to canopy dieback, bark splitting, and ultimately tree death [49]. Dieback in
affected stands usually occurs within six years, and 50% of it occurs within four years
[56]. As a result, the damage caused by EAB can have obvious ecological, aesthetic,
and economic impacts.

The effect of EAB on ash species have caused both direct and indirect ecological

impacts in the USA [42]. When ash trees die, the composition and structure of the forest
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change [54|. This affects animal species that depend on ash for nesting sites, food, or
shelter. Ash trees are important components of many forest ecosystems, providing
habitat and food for a variety of wildlife species [49]. At least 43 monophagous species,
native to North America, that may be at risk of coextirpation as ash is eliminated from
the ecosystem [14]. Moreover, ash trees provide opprturnity to browse, thermal cover,
and protection for a range of wildlife [42|. Furthermore, water quantity in the soil may
change, due to ash death [48].

Additionally, dead and dying ash trees create both economic and safety risks to
people and property [54]. Therefore, EAB spread attracts the attention of not only
entomologists, ecologists, and forestry experts, yet also the general public [46]. The
EAB spread has resulted in hundreds of millions of dollars being lost by municipalities,
property owners, nursery operators, and the forest products industry [57]. Dying or dead
trees drops the value of house, because aesthetic value reduces [48], This is because ash
trees provide thermal cover and an attractive view of a home. Furthermore, there is the
risk of falling ash trees on humans and houses. Consequently, both governments and
homeowners need to remove drying or dying ash trees. In addition, homeowners suffer
a loss in the value of of the timber on their land, which is significantly lower than that
of healthy trees [48].

EAB presents a major economic concern as it causes direct costs arising from the
removal and replacement of dead or dying ash trees and other management techniques
[48]. For example, Kovacs et al. (2010) estimates that the cost of removing or treating
less than half of the infested ash in the USA cities will be more than $10.6 billion by 2019
[58]. Moreover, removing ash trees was estimated to cost between $20 and $60 billion,
without taking into account the costs associated with their replacement. Additionally,
ash trees account for lumber industry in the eastern USA, with an estimated stumpage
(standing timber) value of $25 billion [42]. This underscores the negative economic
impacts of the EAB, if it infestes ash trees. It is worth noting that there have also
been indirect costs arising from the loss of political considerations in the allocation of
government funding for surveys, research, and outreach activities [48|.

To conclude, EAB poses a significant threat to ash tree populations in the USA, by
causing ecological, aesthetic, and economic damages. However, a number of effective
management strategies are available to mitigate the impact of this invasive species that

will be explored in the following paragraphs.
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Management strategies

A number of strategies have been developed to manage EAB infestations in the USA,
including quarantine, mechanical control, biological control, cultural practices, tree re-

moval and replacement, and chemical treatment.

Quarantine

One of the first management actions taken after the detection of EAB in the USA in
2002 was the creation of quarantine zones. In areas where EAB is present, quarantine
measures had been implemented to limit the movement of potentially infested materials
such as firewood, nursery stock, and cut logs. A quarantine program prevents the spread
of disease across long distances and slows down the rate at which new infestations
develop. It may be effective when combined with other management strategies such as

early detection and the removal and destruction of infested trees [14]

Mechanical control

Ash tree removal is an effective approach in controlling EAB infestations [59, 14, 60].
Moreover, this practice is often necessary when trees are heavily infested and threaten
human or property safety [14, 60]. Further, it is an effective method when EAB is not
yet widespread [60]. In other words, implementing this strategy may not be appropriate
in outbreaks in which the EAB has already established a strong presence [60].
Removing ash trees can slow spread of EAB and provide protection to the sur-
rounding healthy ash trees in the area. As ash trees are removed, there would be fewer
habitats for EAB adults to breed and larvae to feed and survive. As a result, this
would reduce the EAB population and hinder its spread [55]. However, eliminating ash
trees can be expensive and have negative effects on the environment and community
aesthetics, resulting in higher heating and cooling costs, lower property values, and
changing wildlife habitats [60]. To mitigate these impacts, replanting with other species
can promote ecological function and reduce future infestation risks [59, 60]. Addition-
ally, if eradication efforts fail, conventional biological control methods will be needed to

suppress EAB populations [61].
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Biological control

Biological control technique, which relays mainly on natural enemies, can be effective
in reducing EAB growth in population and spread [49]. There are predators, pathogens
or parasitoids as effective natural enemies of EAB [42]|. Clerid beetles are an example
of predators and have been observed attacking EAB larvae [42].

The parasitoids are affecting either eggs or larvae [61]. Encyrtid parasitoids have
been extracted from A. planipennis eggs, making them potential natural enemies of
the EAB [42|. Tetrastichus planipennisi and Spathius agrili are two examples of larval
parasitoids [61]. These parasitoids were first discovered in China, where EAB is native,
and were later introduced to North America as part of a biological control program to
help manage EAB populations. Both have been shown to be effective at reducing EAB
populations in laboratory experiments and field trials [61].

Additionally, early field surveys held in the state of Michigan, USA and other
newly infested sites, found that native North American parasitoids attacking EAB were
marginally effective, resulting in no more than 5% parasitism being observed [62]. Ac-
cording to Cappaert (2009), Atanycolus cappaerti Marsh and Strazanac (Hymenoptera:
Braconidae), a newly described, native North American parasitoid, parasitizes the EAB
at two sites near Fenton, Michigan and had parasitism of up to 71% between 2007 and
2008 [63]. During 2009 and 2010, Roscoe (2016) estimated that Phasgonophora sulcata
Westwood (Hymenoptera: Chalcididae) caused up to 35% persistence at some heavily
infested sites in two cities in Canada [64]. Therefore, while biological control has poten-
tial as a strategy against the emerald ash borer, more research is needed to determine

its feasibility and effectiveness in practice.

Chemical control

Controlling EAB infestations by chemical means is an important approach to managing
infestations and ensures the survival of ash trees in an area [60]. The application of
insecticides is one of the most commonly used chemical control methods. A variety of
insecticides have been used to effectively control EAB populations, including systemic
insecticides, such as emamectin benzoate and azadirachtin, and neonicotinoids, such as
imidacloprid formulations and dinotefuran [60]. These insecticides are typically applied
to the trunks or soil around the base of ash trees [65, 66, 60]. They are absorbed by the

tree and delivered to the foliage, where they are consumed by feeding EAB larvae or
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adults, leading to their death [65, 66]. The SLAM Pilot Project was undertaken between
2009 and 2011 in Michigan, and it concluded that emamectin benzoate can be highly
effective at suppressing emerald ash borer infestations and slowing EAB population
growth, also slowing the process of ash decline and mortality [66]. Factors such as the
size of the tree, the timing of insecticide application, and the development of resistance
may limit the effectiveness of insecticides [49].

Despite chemical control being an option for managing EAB populations, it is not
widely used due to its high cost and environmental impact. Researchers are instead
focusing on the introduction of the natural enemies of EAB as a more sustainable and
effective means of reducing EAB populations in the forest ecosystems of North America
[62]. Multiple management strategies are necessary for effective EAB management,

minimising insecticide reliance and promoting sustainable EAB management [49].

1.3 The role of spatio-temporal data in invasive insects

Due to the non-native insects posing a significant threat, it is important to study them
statistically. Data collection and analysis are essential for this task. In particular,
spatial-temporal data is important, because it offers valuable understandings into pat-
terns and variations species distribution over time. Consequently, the analysis can be
helpful in early pest detection and selecting pest control regulations. It can also provide
reliable spread assessment and identify priority for site-specific pest management [67].
Therefore, it is invaluable for researchers and policymakers to assist in mitigation of

economic and ecological impacts.

1.3.1 Advantages and disadvantages of data collection by human ex-

perts

Precise pest insect identification tools are essential over time and space. Traditionally,
pest identification methods rely on expert visual inspection, and field visits to collect
essential information. Subsequently, it often involves expertise of entomologists. Com-
monly, the collection data by experts record an accurate invasive species type. Yet,
because of the wide number of insect species, skilled entomologists may find it challeng-
ing in pest identification. Moreover, visual inspection by experts is not always practical

or it may not be cost-effective or ethical [68, 69]. In addition, the accurate time and the
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full extent of the observations in a specific location may not be possible to be recorded
by experts. This is because the availability of the experts in the species location may
be delayed due to a lack of experts or their late realisation of the species’ existence
[70]. Additionally, the global shortage of entomologists makes timely and accurate pest
identification difficult. In particular, insufficient number of entomologists can be an in-
creasing problem in developing countries with vast agricultural enviroments or remote

locations such as forests.

1.3.2 Citizen scientists (nonprofessional scientists)

In response to the human experts data challenges, recent complementary approaches
commonly involve citizen scientists supported by artificial intelligence (AI) smartphone
applications [71]. Citizen science (CS) is data collection and scientific thinking by a vol-
unteer in the biodiversity and environmental fields who monitors and collects ecological
observations and physical specimens to expand the knowledge and database, supporting
scientific researchers in their research [72|. Therefore, citizen scientists can minimise the
time of data collecation and increase the accurate estimate of the occurrence time [71].
Additionally, they can collect large quantities of data more quickly, although this data
might be less accurate compared to data collected by human experts.

Citizen scientists (nonprofessional scientists) are expected to fulfill some criteria.
As a minimum, they should have interest, skills, and enthusiasm for the project’s goals
to ensure a successful project. Moreover, providing opportunities for citizen scientists
as training and mentoring skills to develop their expertise is crucial, especially for new
projects [72]. Additionally, it is essential for citizen scientists in the agricultural field
to be under the supervision of scientists and experts to collect and share real and
accurate data to minimise the risk of plant diseases [73|. Citizen scientists can use their
smartphones to take photos of the plant symptoms. Then the image is sent via the
internet to a human expert for diagnosis.

Alternatively, smartphone applications can be based on artificial intelligence and
machine learning methods that enable autodetection and identification of pests and
diseases [74]. In particular, the plant mobile applications either enhance scientific re-
search or provide knowledge and information to farmers. The first one was created to
provide information to farmers and for farmers to provide information to researchers.

These type of apps serve users by supplying most or all of the following advantages:
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standardizing data collection, prompting users through additional useful data collec-
tion questions, adding the ability to take photos associated with the record, automating
Global Positioning System (GPS) reporting, and aggregating all data in a single, easy
to use online interface. Purdue Plant Doctor (Purdue University, 2016) and Plantix
(PEAT, 2016) are examples of this type of application. The second available type of
plant-related mobile app does not contribute to ongoing scientific research. Instead,
the apps serve as identification aides and/or act as repositories of educational infor-
mation already publicly available, such as Forest Tree Identification (Discovery Green
Lab, 2019), PictureThis - Plant Identifier (Glority LLC, 2019), About My Woods (In-
novative Natural Resource Solutions LLC, 2019), and SEEDN (Bugwood, 2019). These
types of apps are useful, but none of it focuses on facilitating scientifically meaningful
collaborations between non-professional and professional researchers [75, 76].

Further, in 2018, the highest number of agricultural apps were used in the USA,
Brazil and India. The large number of apps in the USA and Brazil was likely due to the
strength of the agricultural sector, country size, and popularity of mobile devices. All
these factors spurred public and private institutions to create applications for solving
agricultural problems. In India, apps were introduced in 2015 and were free, but only
accounted for one percent of total apps in 2018 |76].

Furthermore, the integration between citizen scientists and scientific research appli-
cations, especially plant diagnosis mobile applications, helps to monitor the health of
the crop, to analyse soil, to suggest appropriate pesticides at right time before large scale
incidence of disease, and to determine the optimal time for both planting and harvesting
periods. Farmers can find answers to all their queries and receive relevant advice and
recommendations to their specific farm related problems. These smart practices lead
to the best yield and increase the accuracy of the prediction of yield. Agrio, Plantwise,
Smart Scout, Veg Pest ID, Purdue Plant Doctor and Plantix apps are examples of plant
disease diagnosis applications [77, 78, 68].

The Purdue Plant Doctor helps diagnose a disease, and is based on a questionnaire
and decision trees in order to arrive at that diagnosis [71]. Leaf Doctor is a system
for performing quantitative assessments of plant diseases. In addition, Pestoz (Creotix,
India) diagnoses diseases from images of vegetable and crop plants with a primary focus
on India. Furthermore, Plant Village Nuru is a system for diagnosing viral diseases of

cassava and damage caused by FAWs on maize [74].
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1.3.3 Plantix app

Plantix (PEAT GmbH, Germany) is a system for diagnosis of diseases, pest damage
and nutrient deficiencies on crops. Plantix app is a free Android application, and it
is an expert system trained to recognize a large number of diseases, to identify pests
and pathogens, to define crop type, and nutrient deficiencies in soil. It communicates
with a remote database (server) for higher accuracy where can it detects 500 types of
plant damages. It also provides weather forecasting for the next five days in the current
location of the user. Plantix app was created by a tech startup, Progressive Environ-
mental and Agricultural Technologies (PEAT) in Berlin, Germany in 2015. The PEAT
target is to use technology to support cultivators worldwide, explicitly in developing
countries, to promote their agricultural production by diagnosing and treating disease
[79, 80, 81, 82|.

Accordingly, the Plantix app depends on image recognition, artificial intelligence,
machine learning and deep learning algorithms to diagnose plant health [80, 83, 79,
81, 68]. The user (such as a farmer or plant expert) takes a photo of a plant in the
field. Then, the user either directly uploads the image to the PEAT servers or posts it
whenever an internet connection becomes available. Once uploaded, the app automat-
ically records the time of capture and the location. The Plantix app quickly analyses
the image through a deep neural network (Plantix-DNN) by using multiple ConvNets
using images available on the server [80, 83, 79, 81|. One network in the ConvNets is
to check the object in the image, and if there is no plant in it, the photo is deleted.
One network defines crop type (name), and another one defines the health condition
[80, 83, 79, 81|. The app compares a user’s image with a vast database of high-resolution
images of various crops and diseases and provides accurate diagnosis [68]. Then, the
most similar crop disease to the user image according to a highest softmax probability
(top-1 prediction) is displayed to the user. Other predicted lower probabilities, such
as top-2 prediction, can be presented in lower positions, which can be used solely for
internal purposes related to research and the company itself. Therefore, the app can
be used as a decision support tool. The Plantix app provides users with the crop type,
predicts plant diseases, and offers information on biological or chemical treatments to
mitigate the disease. It also gives valuable information on preventive measures to avoid
the plant disease occurrences or at least discover them at an early stage [80, 83, 79, 81].

Today, the Plantix app is available in 150 countries and in 18 different languages.
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In 2016, 25,000 farmers used the application in Germany, and PEAT published the app
to a global level in Brazil, Tunisia, Kenya and India. To date, it has been downloaded
over 15 million times and millions of farmers use it. Day by day the number of images
grows, as PEAT’s database is expanded through people who upload pictures on the
app to find the answer to their plant problems and cooperate with PEAT’s private and
public partners. By April 2021, Plantix app diagnosed over 35 million pictures. Plantix
app has offices in Berlin, Hyderabad and Indore, and this free agricultural app becomes
the most has been used around the World [83, 84, 85, 81].

In India, the Plantix app has been used since 2016, in cooperation with the Centre for
Agriculture and Bioscience International (CABI), and the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT). PEAT has collaborated with ICRISAT
as a partner that help to extend PEAT’s database to include Indian crops and diseases
that differ from other countries. The early plan of this cooperation was to assisst farmers
in Telangana and Andhra Pradesh. In early 2017, ICRISAT organised several workshops
in six districts of Andhra Pradesh and Telangana to teach farmers how to use Plantix
app. The app is available in Indian regional languages, and the first Indian regional
languages were Telugu and Hindi. In India 8.6 million samples were uploaded onto the
app between 2017 and 2018. Most of these submissions were during the harvest of the
Kharif season which between Septamber and November [79, 83, 86, 81, 82].

Although Plantix app is a popular and highly rated app for detecting and managing
plant diseases, it also has some potential disadvantages. One disadvantage of the app
is that it may not be completely accurate at identifying problems in plants. Hence,
there is a risk of misidentification either false positives or false negativies. A study by
Siddiqua et al. (2022) evaluated various apps (17 apps) for detecting and managing
plant diseases based on a set of predefined functionalities. It was found that no sin-
gle app encompassed all seven functionalities, which include disease detection, plant
identification, disease severity estimation, treatment suggestions, community support,
identification of affected plant parts, and plant coverage. While the study highlighted
the Plantix app as one of the top options for disease detection and management, it
did not conclude that it was the best app overall. Nevertheless, among the 17 apps
reviewed, Plantix emerged as the most popular. The study noted that Plantix received
high ratings for its automated plant identification and disease detection capabilities, as

well as for the expert recommendations it provides [68].
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Furthermore, another disadvantage is that the app is not capable of detecting all
types of plant species [68]. In a study conducted in India by Wang, Di Tommaso and
others, it was found that the overall accuracy of Plantix-DNN to define Kharif crop
types of 72,494 samples was 97 percent, while for maize crop it was more than 80
percent [79, 83, 86, 81, 82]. Moreover, an additional drawback is the sampling bias,
whereby farmers without smartphones and internet access cannot participate in data
collection. Additionally, volunteers’ efforts fluctuated over time because of seasonal
patterns or declining commitments. Based on this challenge, control of data collection

or data analysis should be considered |79, 87, 88|.

1.4 Statistical and mathematical modelling

This thesis employs a comprehensive framework of mathematical and statistical analysis
to analyse the Plantix app data about FAW in maize in India, and the expert data about
the EAB in the ash plants in the USA. The details, including literature reviews and
research gaps of these methods are presented in the relevant chapters, Chapter 3 to
Chapter 5 cover the statistical analysis of the Plantix app data, and Chapter 6 deals
with the EAB.

1.4.1 Statistical and mathematical modelling of the Plantix app data

The Plantix app dataset was provided by PEAT GmbH. This dataset consists of no-
tifications in Indian maize crop, including those diagnosed as infested with FAW and
those without FAW infestation. The timeframe of the dataset is from January 1, 2018
until December 31, 2019. Within this period, there were 138359 data points from 631
districts. The dataset includs the time stamp, longitude and latitude GPS coordinates
and the results of the machine learning as categorical and numerical variables. The cat-
egorical variables were "top-1 pathogen name" and "top-2 pathogen name". These two
variables define the detection status of each maize diagnosis as either healthy (indicat-
ing the maize is in good health), infested with FAW| infested with pathogens, affected
by other pests, or suffering from nutrient deficiencies. The numerical variables were
"top-1 similarity" and "top-2 similarity", representing positive integer values ranging
from 2 to 100. A large similarity value indicated that the detection was more confident

of reflecting the real status of the diagnosed maize. It is noteworthy to mention the
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distinction between top-1 and top-2. The DNN generates several similarity scores with
corresponding health conditions for each tested crop where the total sum of these simi-
larities equals 100% (or a probability of 1). Further, under the top-1, the highest value
is recorded, while top-2 includes the next highest value.

Although the Plantix app has been widely discussed in agricultural research due to
its usefulness and practical advantages [68, 89, 90|, a limited number of studies have
used the Plantix app dataset for studying diagnostic accuracy or understanding plant
pest and disease behavior over space and time. Akinyemi et al. [91] evaluated the
accuracy of the Plantix app in diagnosing FAW damage in maize in Nigeria using only
ten images from infested maize plants and ten images from healthy maize plants. The
study results finds that the Plantix app reached 100% accuracy in recognising the FAW
symptoms as well as the healthy maize. However, the very small sample size of only
ten images per condition reduces the reliability of generalising these findings regarding
the Plantix app accuracy in diagnosing healthy or FAW damage in maize.

Hampf et al. [80] used the Plantix app to detect pests and diseases in maize and
soybean crops in the southern Amazon, Brazil. The diagnosed crops with the top-
1 similarity rate greater than 0.5 (50%) were selected to be as true positive cases,
where diagnosed crops below this threshold were excluded to reduce the likelihood of
misclassification and enhance the overall quality of the dataset. Then, the selected high-
confidence observations were used to assess the Plantix app accuracy by comparing
the diagnostic app results with actual conditions (gold standard). The sensitivity of
the Plantix app was reported as 91.51% for maize, although it was lower for soybean
diseases and pests. However, using a cut-off value of 50% may not always represent
a good hypothesis, where the selected observations may include cases with similarity
rate greater than 50% that are incorrect or less reliable A more statistically rigorous
approach, such as a statistical classification framework could provide a more robust
criterion for filtering observations.

Integrating the Plantix app data with statistical and mathematical modelling leads
to explainable, robust, transforming big data into structured knowledge and enabling
better decision-making. Although the diagnostic accuracy of the app remains unknown
[68], estimating its accuracy was a critical gap that needed to be filled. Low accuracy,
combined with a large number of users, can increase the risk of providing incorrect

diagnoses, which may lead to inappropriate treatment, reduce plant quality, and fail to
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stop the spread of pests

Accordingly, to effectively estimate the app accuracy, the app’s internal database
needs to be classified into true and false diagnoses. Moreover, it is fundamental to study
a single pest within a specific crop. This is because it is unrealistic to expect one test to
have uniform accuracy for all pests and crops. Hence, the generalisation of the accuracy
would not provide useful information for the user. Therefore, Fall Armyworm data in
maize crop in India was selected data for further analysis.

This choice was not only due to its importance of FAW and maize but also for
pragmatic reasons. Firstly, the Plantix app recorded thousands of spatio-temporal
data points related to maize for diagnosing Fall Armyworm, providing a substantial
dataset for statistical analysis. Furthermore, this work is part of a collaboration be-
tween ICRISAT, which focuses on Fall Armyworm in maize, and PEAT. PEAT aims to
learn how their data can support research on Fall Armyworm in India. These factors
collectively made the Fall Armyworm data in maize the most suitable and strategically
significant choice for this study.

Direct assessment of the data can be done by comparing with a gold standard data.
A gold standard classifies perfectly between true and false diagnostic results of the
target feature for each unit and estimates unbiasedly the accuracy of diagnostic test
[92]. However, in this study, there is no accessible or feasible gold standard dataset
for the Plantix app data. Establishing a gold standard dataset for the Plantix app
data poses significant challenges. Firstly, it would require accessing the original images
stored on the Plantix app server, which is difficult due to the huge dataset size. Secondly,
since maize is a seasonal crop and the data were collected during the 2018-2019 growing
seasons, it is no longer feasible to revisit the fields for expert verification of the diagnoses.
These limitations emphasise the practical limitations in defining a gold standard for the
Plantix app dataset.

Therefore, statistical parametric and nonparametric methods need to be applied to
classify true and false diagnostic outcomes of the Plantix app and to estimate the gold
standard list [69]. When gold standard is absent, latent class models, mixture mod-
els, logistic regression and receiver-operating characteristic (ROC) curve are statistical
classification methods that have widely been used [93, 69, 94|, and are some of them
are implemented here. In this study, internal evidence from the data itself was used

to classify observations into true and false categories using mixture model. Further,
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since the goal is not to use the data for prediction but rather to understand its behavior
during the time frame of the data, there is no need to test the validation of the data.
The focus is on analysing the data’s patterns and trends.

After the classifiction and extracting the true and false data, they can be used to
estimate the app accuracy. To the best of our knowledge, ours is the first research that
estimates the sensitivity and specificity of the Plantix app, for detecting FAW in maize.
In addition, we believe that in the existing literature, there has not been a study that
statistically evaluates the Plantix app accuracy in any other insects. The estimate, in
this thesis, is made within a single dataset and under the absence of a gold standard or
alternative methods for comparison. Therefore, a statistical framework is introduced to
handle these challenges by integrating meta-analysis with Bayesien statistics. Finally,
the FAW prevalence over space and time was estimated, using four different statistical

methods to find a more accurate estimation.

1.4.2 Statistical and mathematical modelling of the expert data

In addition to the AI diagnostic data, a traditional method of expert diagnostic data
was also analysed in this thesis. The expert data about emerald ash borer (EAB)
invasive insect in the ash species (Frazinus spp.) from 2002 to 2020 in the USA counties
was used. This data was provided by United States Department of Agriculture Animal
and Plant Health Inspection Service (USDA APHISUS). However, a specific challenge
with this data is that it only includes an initial true positive case from each observed
infested county, neglecting subsequent occurrences. This limitation means that density
or prevalence cannot be estimated due to the single value per county. However, the
spatial-temporal distribution of the EAB can still be modeled to provide insights into
its spread and behavior under the influence of climatic and non-climatic factors.
Numerous studies of EAB have employed a variety of mathematical and statistical
models to understand the insect’s spread, either at local or reigonal scale. Related
models have meticulously accounted for one or more influential factors in the spread of
EAB. These factors encompasse ash tree availability or density, EAB presence-absence
[46, 58| or abundance [95], the distance between infested and uninfested areas, as well as
human and climate-related influences [96]. Most of these studies are focussed on North
America, and primarily spatial scales, ranging from cells to subcounties to counties

[96, 43]. The majority of studies consider temporal scale, within year to understand
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EAB either in North America or Europe [97, 96, 43]. The results of these studies have
provided valuable insights into spread of EAB as well as next scientific research.

Moreover, ash tree intensity is critical since EAB is more likely to spread in a high
intensity area of ash trees [41, 98, 58|. Further, most studies focus on presence-absence
data compared with fewer studies of EAB abundance [95|. Climate represents another
essential class of variable to be considered when understanding and forecasting the po-
tential dynamics of EAB. The number of growing degree days (GDD) has a significant
impact on survival of insects, and determining the possible dispersal landscape of EAB
adults [97, 99]. For example, low heat availability can limit the suitable area for EAB es-
tablishment. According to Orlova-Bienkowskaja [97] EAB adults are unable to colonise
an area where its growing degree day accumulation across the year it lower than 700
degree-days.

Additionally, a number of previous efforts have highlighted the importance of long-
distance dispersal in predicting the extent of EAB invasion [43, 100, 58, 101|, because
anthropogenic factors have become a weighty contributor to the spread of EAB. There-
fore, dispersal models have been widely applied in previous research as valuable tools
for understanding the spread of EAB in a local and regional areas. To account for
both natural spread of EAB and human-mediated long-distance dispersal, most studies
utilise a dispersal kernel [41]. In EAB modeling, the negative exponential dispersal
kernel (exponential decay function) was most commonly applied [41]. The negative ex-
ponential kernel was used to model EAB spread in North America by Muirhead et al.
(2006) [43] and Kovacs et al. (2010) [58] and in Europe by Orlova-Bienkowskaja et al.
(2018) [46]. In addition to negative exponential kernel function, Orlova-Bienkowskaja
et al. (2018) [46] applied also a Cauchy (fat-tailed) model and normal kernel function
to predict the EAB spread. They implemented these dispersal functions in European
Russia and neighboring countries. They concluded that the Cauchy model is the most
appropriate for understanding and predicting the EAB spread, when the pairwise dis-
tance between locations is greater than 200 km [46]. Note that, Bienkowskaja et al.
[46] did not consider a power law kernel, where the best model, Cauchy, can be closely
approximated by a power law kernel.

Although a range of variables and factors were addressed in previous research using
models of varying complexity, all of them enhanced the ongoing scientific research,

forestry knowledge and governmental information. For example, some models simply
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considered a distance based kernel function as a factor to predict the EAB spread [46,
58, 43]. Some used only climatic variables in climate-based ecological niche models, to
predict the EAB spread by determining the suitable climate for EAB in North America
[102, 45]. On the other hand, Prasad et al. [101] used a complex mechanistic model
to estimate and forecast the EAB spread in Ohio, USA. Their model is a spatially
explicit cell-based and a combination of two components: i) a short spread model,
which reflected the EAB natural flight, and ii) a long distance model, which simulated
the long distance spread due to human practices. The factors considered important
in the long distance model are traffic density on major roads, wood products weights,
population density and campgrounds.

The generic colonisation—dispersal model proposed by Catterall et al. [103] is a
stochastic spatio-temporal model. It is a generic model designed to be applied when
investigating a diverse range of invasive species in a different geographic regions. It aims
to estimate and predict the spread of a specie through a space and over time. Therefore,
here the model is adapted to study EAB spread in the USA, considering climatic (anuall
average of growing degree day) [97], non climatic (ash density habitat) conditions, and
dispersal mechanisms. To our knowledge this study is the first to apply the generic
colonisation—dispersal model in EAB study on the whole of the USA. Additionally, while
the previous studies in the USA included temperature as a climate variable in estimating
EAB spread, this research replaces temperature with GDD. Chapter 6 bridges these
gaps, and concluded that the significance of incorporating climatic and non-climatic

factors as well as dispersal mechanisms.

1.5 Thesis scope

As discussed earlier, one of the main steps in managing insect pests effectively needs to
early pest detection, and reliable spread assessment, and this can be achieved through
statistical analysis. The Plantix app data on Fall Armyworm in maize crop in India be-
tween 2018 to 2019 provides early detection observations and a large dataset. However,
lack of gold standard and imperfect accuracy were also noted. In addition, the expert
data for EAB in the USA from 2002 to 2020 includes early detection observations and
assumes a perfect accuracy in diagnosing. Nevertheless, providing a first observation
from each county limits the statistical analysis. Thus, this thesis aims to address these

gaps. Statistical analysis has been used to understand FAW prevalence in India, after
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the gold standard data is estimated and the app accuracy is determined. In addition,
spatially extended model is developed for EAB spread, incorporating host location, en-
vironmental factors, and dispersal in order to define reliable spread factors. The thesis
develops several decision-making tools for pest management. Towards achieving these
aims, five research objectives have been established. In this section, these research
objectives and thesis structure are briefly outlined

The first purpose of this research is to enhance the importance of the analysis of the
AT data before using as a tool in important subjects. Therefore, four ojectives under
this main goal were (i) to classify data into “true” and “false” observation, (ii) to measure
the temporal spreading of the FAW, (iii) to evaluate the accuracy of the Al diagnostic
tool, and (iv) to understand the spatio-temporal prevalence of the FAW.

The second objective is to use expert data about historical occurance records of
EAB, geographic land cover, environmental and climatic factors, as well as natural and
human-mediated dispersal of the EAB to understand a spatial-temporal patterns of EAB
in the USA. Once the purposes mentioned above have been achieved, this research will

have answers to the following main research questions.

1.5.1 Research objectives and questions

First objective: Conduct classification model to filter the Plantix app data.
e How should researchers process imperfect data before analysis?

e Are all notifications provided by the Plantix app for diagnosing a Fall Armyworm

pest in maize crop accurate?
e If not, how can the true notifications be distinguished from the false ones?

Second objective: Visualise and analyse the temporal variations in pest in-

tensity within the true notifications.

e How does the intensity of the pest vary over time in the true notifications identified

by the classification model?
e Are there any seasonal patterns or trends in the pest intensity data over time?

Third objective: Evaluate the accuracy of the Plantix app in detecting spe-

cific pest in a particular crop.
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e How sensitive is the app in detecting truly FAW observation?

e What is the specificity of the app in accurately tested maize observations that

truly not infested with FAW?

Fourth objective: Estimate the spatial-temporal prevalence of FAW infesta-

tions in maize filed in India. Highlight impacted regions

e What is the seasonal spatial-temporal maps of FAW infestations in India during

study period 2018-20197
e How is the direction of FAW spatial distribution changed over season in India?

Fifth objective: Understand EAB biology dynamics and relations with host

plants and climate.

e What is the current spatial-temporal map of EAB infestations in the USA county

level?

e What role do land cover and climatic factor, play in influencing the abundance

and distribution of the EAB?

e In what extent does human-mediated dispersal role contribute to EAB colonisation

over time?

e What is the estimated model to imitate EAB spread over the study period in the
USA?

The value of this thesis is in providing suggestions and recommendations for foresters,
farmers, researchers, and government officials who are responsible for controlling the
direct or indirect impacts of alien insects. In addition, this research enhances our ability
to assess spatiotemporal dynamics of non-indigenous insect species, their relation with
the environment, and how provide advice on people can better manage and limit them

in the future.

1.5.2 Thesis structure

The rest of the thesis is structured as follows
Chapter 2 provides general description of selected methods and models that are

used throughout different chapters. Chapter 3 applies classification model, bivariate
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mixture model, to identify the True and False classification of both positive (Plantix
app notifications with maize infested with FAW) and negative (Plantix app notifications
in the absence of FAW) observations. The parameters of the model are estimated using
the expectation-maximization (EM) algorithm. Additionally, this chapter visualises the
intensity of FAW over the invision period (2018-2019), where odds metric is used. The
odds is the ratio of the truly presence of FAW (True positive) compared to the truly
absence of FAW (True negative). This chapter addresses first and second objectives.

Chapter 4 implements the Bayesian-meta analysis to accomplish third research
objective. The chapter briefly discusses meta-analysis. The meta-analysis is a statistical
technique usually utilised to estimate a pooled interested measure(s), integrating data
from multiple independent studies. These studies perform similar methodology, while
the studies can relate to diverse populations [104]. Chapter 4 incorporates the meta-
analysis, assuming each state in India as an independent study, where each state having
its own government and administrative structure. The model is bivariate generalised
linear random effects model. The parameters of the model are estimated using the
Markov Chain Monte Carlo sampling (MCMC) to take into account for the uncertainty.
Further, the pooled sensitivity and specificity estimate in this chapter is used as input
values in the Method-2 to estimate FAW prevalence in Chapter 5

Chapter 5 includes four different methods to select most appropriate modeling
techniques for estimating FAW prevalence in Indian states during each maize seasons
Kharif and Rabi, 2018 and 2019 (fourth objective). These methods range from simple
to comprehensive. Method-1 is based on a frequentist technique, where FAW prevalence
is calculated using a 2x2 diagnostic Table. Method-2 uses the Rogan—Gladen adjusted
estimator with sensitivity and specificity values from Chapter 4. Method-3 uses Chap-
ter 3 methodology to estimate sensitivity and specificity for each maize seasons between
between 2018 to 2019. Then, the Rogan—Gladen adjusted estimator with sesonal sen-
sitivity and specificity values is utlised. Method-4 relies on a comprehensive Bayesian
meta-analysis with stochastic sensitivity and specificity. This technique is similar to
previous chapter methodology but more informative. This is because it has additional
likelihood functions and prior distributions, including priors for each parameter within
the model (hierarchical prior).

In Chapter 6, the expert data about emerald ash borer (EAB) in the USA counties

is used. A generic colonisation-dispersal model proposed by Stephen Catterall and his
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colleagues (2012) [103] was adapted to develop a continental level models for the spread
of EAB in the USA, fitting this to the best available data, quantifying the uncertainty
in these models and their predictions and then assessing their performance in tracking
spread of EAB over two decades. These models consider climatic (annual average of
growing degree day) and non climatic (ash density habitat) conditions, and dispersal
mechanisms. They differ in using different functions and scaling methods for the climatic
factors and two different dispersal kernel functions to understand the natural of the EAB
dispersal sistance. Chapter 7 concludes the thesis by discussing the contributions to

knowledge and potential future directions that can further develop upon this work.
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Chapter 2

Overview of established methods
and models for diagnostic test

classification

The present chapter outlines a comprehensive overview of the general methods that were
derived from the literature. These methods were utilised in the subsequent chapters,

with related detailed applications were explained.

2.1 The 2x2 diagnostic test table

A 2x2 diagnostic test table is a contingency table that outlines the reliability and ac-
curacy of a diagnostic test [105], where the outcomes can be represented as binary
(dichotomous) outputs which are either a positive (P) or negative (N). The positive
outcome means that an studied observation has the target characteristic, while a nega-
tive finding indicates the absence of the target characteristic in an observed event [106].
The P and N outcome results are grouped into four cells within the 2x2 diagnostic test
table. Each cell represents a frequency count as well as a unique characteristic that
describes the accuracy of a test or classification algorithm. One of the best method to
define the frequency of the cell in the 2x2 diagnostic test is a gold standard, which is a
list of the actual target characteristic of the studied observation [105]. Therefore, the

four outcomes of the 2x2 diagnostic test table are:

e True positive (TP): This cell reflects the number of instances where the diagnostic

method correctly predicts the target condition (positive).
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e False positive (FP): The number of observations where the diagnostic tool incor-
rectly signs a target characteristic as present (positive), whlie the observation does

not have the target characteristic.

e True negative (TN): The number of observations in which a diagnostic tool cor-
rectly identifies the absence of a targeted characteristic (negative) when the ob-

servation actually does not have the target characteristic.

e False negative (FN): The number of cases wherein the diagnostic method result
is negative, while the observation actually has the condition being tested for [106,

105).

Table 2.1: A 2x2 diagnostic test table, counts of binary classifier model vs. target
characteristic.

Binary classifier model | Target characteristic
Present ‘ Absent
Positive TP FP
Negative FN TN

The 2x2 diagnostic test table is a simple and effective technique that can be used
to calculate sensitivity and specificity in order to assess the perofomrance of the di-
chotomous diagnostic tool. Sensitivity (true positive rate, TPR) is the probability of
the true positive, which reflects the ability of the diagnostic tool to identify the obser-
vations that truly have the target characteristic. On the other hand, specificity (true
negative rate, TNR) is defined as the probability of the true negative, which indicates
the ability of the diagnostic tool to identify the observations that truly do not own the
target characteristic [106, 105].

TP TN

sensitivity = Se = TP+ PN specificity = Sp = TN L TP

Sensitivity (Se) has a value that ranges between 0 and 1. A sensitivity value of
Se = 0 indicates that there are no true positives, which signifies a complete failure of
the test to identify any actual positive cases. In this instance, all positive events are
incorrectly classified as negative (FN), leading to a total lack of detection. Conversely,
a sensitivity value of Se = 1 means that there are no false negatives, indicating that the

test successfully identifies all actual positive cases. This represents an ideal situation
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where every positive instance is correctly recognised, and there are no missed detections.
Another significant value is Se = 0.5, which corresponds to a situation where the test
has a balanced performance in identifying true positives and false negatives. In this
case, the test correctly identifies half of the actual positive cases while failing to detect
the other half.

Similarly, the specificity (Sp) also ranges from 0 to 1. A specificity value of Sp=0
indicates that the test fails to identify any true negatives (TN), meaning that all negative
instances are incorrectly classified as positive (FP). This results in a complete failure to
recognise the absence of the condition being tested for. On the other hand, a specificity
value of Sp = 1 signifies that there are no false positives (FP), meaning that the
test accurately identifies all negative cases (TN) without mistakenly labeling them as
positive.

However, the gold standard may not be up to date, adequate or cost effective for
diagnostic test. As a result, the constructing of the 2x2 table can be challenging. In
the next chapter we will introduce a new method that allows the classification without
the gold standard. This method uses a number of strategies, one of which is mixture of

two distributions [94].

2.2 Mixture of two normal distributions with EM algo-

rithm

Let X be a random variable, reflecting the outcome of a real-life application. X may
not be unimodal, where it can be multimodal. This suggests that X is a mix of several
distributions, where each distribution has a single mode and corresponds to a simple
parametric distribution. The distributions may belong to the same family with differ-
ent parameter values, or different familes [107]. The procedure of modelling several
components in a single model is called a mixture model, and it is built of two essential
variables: observed variable and unobserved (latent) variable. The observed variable is
a set of observable and collected units, while the latent variable is hidden where the
data does not directly consider. It usually represents grouping within the data. The
latent variable’s occurrence can be discovered by having more than one mode in the
observed variable; in classification language each mode represents a group. To sum up,

the mixture model is composed of a sum of distributions with mixing weights (propor-
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tions), where mixing proportions are non-negative and the sum of them equals one.
The mixture model can be formed from continuous or discrete distributions and from
at least two distributions [108, 107]. The subsequent lines provide an explanation of the
mixture model based on existing literature {109, 110, 111, 108|.

To formulate the mixture model, the latent variable z takes discrete values, {1, 2, ..., K'},
with K the number of observed parametric forms. The observed variable is & and each
data point x is linked to a single value of z,which determines the component from which
it is generated. However, when analysing the data, x may have a likelihood of com-
ing from multiple components, with different probabilities for each. Therefore, the key

expression of the mixture model is built by the following process:

e Firstly we sample z from its distribution p(z). This step determines which com-
ponent of the mixture the observation will come from. p(z) is a prior distribution
that can be derived from a multinomial distribution, z ~ Multinomial(w), where
w is a vector of mixture proportions of size (also called mixture weights or prior
probabilities) K. For example, K-means clustering can be used to initialize these

proportions w.

e Then, we sample x given z (i.e. from the conditional distribution p(z | z)). This
step produces the actual data point based on the selected component. p(z | z)
is a parametric distribution. It is a conditional probability and called a mixture

component. It can be a continuous or discrete distribution.

e Hence, the joint probability of the mixture model is given by:

p(z, ) =p(2) p(z | 2).

e Finally, summing of the joint probability over all possible values K of the latent
variable z is the mixture model. This can be achieved using the law of total
probability (i.e. summing the probability of each observation z over all possible
z, weighted by each z probability p(z)). This is also knwon as the marginal
probability distribution f(x) of the x is
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2.2. Mixture of two normal distributions with EM algorithm

The f(x) here is the weighted average of the mixture components. It gives the overall
probability of x regardless of the value of z. The index K is the number of finite mixture
components equivalent to the number of modes, 2 < K. Here, wy € w satisfies the
conditions 0 < wg < 1 and Zszl wrp = 1. ¢ = [z1, 29, ...,CL‘n]TiS a vector of size n, and
we assumes that each point is independent and identically distributed, x; ~ fi(x;; 6k).
fx (x; 0)) are univariate distributions with a set of parameter €. To simplify, let

0= (wr,...,wg,01,...,0K) aset of the all parameters in the f (x). Then, the likelihood
of f(x) is

=

and the log likelihood is:

" K
= log [Zc%fk (xi§9k)] '
=1 k=1

To identify the points where the ¢ () reaches its maximum using maximum likelihood
estimation (MLE), sets the derivative to be zero. However, the summation inside the
logarithm cannot be solved analytically for each parameter, since it gives a complicated

expression for MLE. For example: to take the derivative with respect to 0,
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2.2. Mixture of two normal distributions with EM algorithm

A0 (6) <~ d & _
6, —; dT?klOg Lz::l w [k (x279k)]

n K
1 d
= g E Wi fre (x4 Hk)] using chain rule
Zk 1 kak (w45 0) d9 L:1

>kt = [wn fr. (25 61)]
_,z; Zk 1 Wi fr (25 Ok)

—ZZ aor W fr (23 0k)]

i=1 k= 1Zk 1ka(xw9k)

It is not possible to derive an analytical solution for ;. This is because these parame-
ters are not independent of each other, while we should estimate them simultaneously.
However, if the latent variable z is known, it simply gathers all z; in each z = k and
simply uses the MLE. To help us to find the MLE when z is unknown, the expectation-
maximisation (EM) algorithm can be used.

The expectation-maximisation (EM) algorithm is a method to estimate probability
distributions parameters with the latent variables present by performing the MLE. The
EM algorithm was published by Demster, Laird, and Rubin in 1977. It can be applied
iteratively as an approach that cycles between two steps. The first one is an expectation-
step or E-step, because it computes the expected value of the latent variable (z) given
the data (x) and the current values of the parameters (*)). In other sense, it calculates
the posterior distribution p(z|z, 8®) of the latent variable (z).

The second step is a maximisation-step or M-step, which attempts to update the
parameter values given the current posterior probabilities (E-step). As a result, this
step maximises the likelihood of the observed data given the estimated posterior prob-
abilities. Hence, M-step generates a new value for the parameters, which are used for
the next iteration of the algorithm. To formulate the EM algorithm, we assume that
we have the complete data log-likelihood, including both the observed data and the
latent variable. Then, we reformulate the derivate of the above marginal log likelihood

as following;:

() < d
T 71 x log [Zwkfk xzaek)]

*Z

Zwkfk (x4;0k) | using chain rule (2.1)
DI 1kak (i3 01) A0 [ ]
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2.2. Mixture of two normal distributions with EM algorithm

The term z7- [fo:l wi fi (wi§0k):| = Y oiiy Wi fr (25 0k) g4 log [Zf:l wifi (245 0k) | -

Now rewrite the equation 2.1 again

£(®) Zk L Wi fr (25 Ok)
wi fie (i3 Ok)
de Z 1 wi fre (@i Ok) de Z ki (i3 0r)

Wi fr (245 0r) d
_zz; kZ:l [Ek L Wi fr (253 ek)] ﬁlog (onfi (s: 60)]

_ Z Z o [ log w, fr (2i; Hk)]

i=1 k=1

- d
:ZEp<Z¢:k|aci,9(t)) [d@ log wy, fx (xl,ek)}
i=1
=Q(0]6).
~ik is called responsibility and it indicates how strongly each data point belongs to each

component. Therefore, Hence, Q(80 | O(t)) is the expected complete data log-likelihood.

Consequently, the EM algorithm procedure is as follows:
e Initially, determines the number of the mixture components K,
e Then, defines the initial values of all possible parameters.
e After that, iteratively refines the mixture components based on two steps

— Expectation step: compuates the 7,

— Maximisation step: compuates the ML parameters given these 7,

n K
arg max Z Z Yik [log wi fi, (w45 O )]

i=1 k=1

e the E-step and the M-step are repeated alternately until the difference [ (0(t+1)> —

l (0(t)) < §,where ¢ is small value. In this thesis, we consideres § = 1 x 1075.

In this thesis, we will assume K = 2. We will also only consider fj, (z;; 0 )to be normal.
Hence, the mixture of two-one dimensional normal distributions according to[109, 110,

111, 108]) can be written as:
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2.2. Mixture of two normal distributions with EM algorithm

1 n (ZE _,Ufl)Q
2 2 v
o “TI10-w)— -y U
f(xth y Tny U1 42, 0’1702,(,0) J [( w) 271_0_% €xp ( Z 20—%

with the proportion of each component w; = 1 — w and wy = w. The parameters of the
each normal distribution is 6; = {1, 01 }and 03 = {ug, 02}. The responsibility function

(E step) becomes

&f2 (24 p2, 03)
1 =) fi (zis 1, 03) + B fa (35 o, 03

iz :( ) = 9. (2.2)

and then,

n

Q (11, p2, 07,03, w) :Z [Fi1 log [(1 = &) f1 (zi5 1, 0%)] + Az log [G f2 (25 2, 03)]]
i1

n 2
:Z (1 —-7)log(l —w)+ (1—7;) | —=log(2m) — logoy — M
P 2 207

~ ~ | 1 (i — p2)’®
+ Filogw +7; | —5 log(27) —logoy — ———5—| | -
2 205
Then, @ is differentiated with respect to each parameter
0 S (05 (25)) <o
= -7 3 =
om = 1
n ~
o1 (L —7) @i
_ Y 2.3
M ) 2
0Q (-~ (iﬁz - Mz))
I _ : —0
06, ; T\ o3
i=1"iTi
— 2ei=1 Vi 2.4
M2 ST A (2.4)
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2.3. A receiver operating characteristic (ROC) curve

L5 = - 3 . (2.5)

i=1
nooo. L~ N2
83 — z:ln%, (xz AMQ) (26)
i=1 (1 - ’Yi)

to maximise the mixing probability w,where it is the average of the responsibilities:

n
~ 1 ~
Wy =— E Vi
n “
=1

This method will be used in Chapter 3, Chapter 4 and Chapter 5.

2.3 A receiver operating characteristic (ROC) curve

The outcomes of classification models or diagnostic tools can be either binary (positive
or negative), or on a continuous or ordinal scale. Thresholds can be used to catego-
rize continuous or ordinal findings into binary outcomes when needed. For example,
any findings above a certain level are assumed positives, while results below that level
are assumed negatives |5]. By comparing these classifications with the true status, the
True Positive Rate (TPR) and False Positive Rate (FPR) for each threshold can be
calculated. Then, to obtain the performance of these models or tools, a receiver op-
erating characteristic (ROC) can be used. ROC is a graphical curve that assesses the
discriminative ability of a classification model. It plots TPR in y-axis against FPR in x-
axis accross various thresholds, providing a comprehensive view of a test’s performance
[112, 5, 113]. Hence, the ROC curve provides more view of the model performance than
the 2x2 diagnostic test table, which only assesses the performance of the model at a
single threshold (cut-off) [5].

A diagonal straight line (chance line) draws between (0,0) and (1,1). The ROC
curve position compared to the line reflects the model’s performance. If the ROC curve

is close to the diagonal line that indicates the classifier model randomly classifies the
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2.3. A receiver operating characteristic (ROC) curve

data. In other words, the model cannot effectively distinguish between the positive and
negative classes [112, 5|. If the ROC curve is under the diagonal straight line, the model
performs worse than random guessing. It indicates that the model is unable to predict
the negatives. The model performance increases as it moves to the top left corner (0,1)
[5].

The ROC curve is very popular in many scientific areas such as radiology and epi-
demiology [113]. It is used to (i) assess the ability of the classification model or tool
to distinguish between two classes truly; (ii) to determine an optimal threshold that
achieves the maximum difference between the two target classes; (iii) and to compare
between two or more classification models or tools for the same application [112].

The ROC curve can be used to measure the model accuracy and summarized in a
single value by finding the area under curve (AUC). It is a dimensionless value that
indicates the performance of the classifier model [114|. The AUC value ranges between
0 and 1. As the AUC value moves closer to 1, it indicates a better discriminatory ability
of the model. [5]. Moreover, AUC can be used to compare the performance of different
classification models in the same data, where the highest AUC value means the best
model [112]. However, while AUC is widely used, it is not always the most suitable
measure, especially in scenarios with highly imbalanced data (low prevalence). In such
cases, a high AUC value may correspond to a model with low sensitivity, meaning it per-
forms well at identifying negatives but poorly at detecting positives [115]. Thus, while
the Table below summarises the general interpretation of AUC values, it is important

to consider the context in which the model is applied:

Table 2.2: AUC Value and Model Performance [5].

’ AUC value ‘ Interpretation ‘

0.5 random
0.7-0.8 acceptable
0.8-0.9 excellent

0.9-1 outstanding

In addition, the ROC value can guide the selection of an optimal threshold for
classification. The optimal threshold allows the construction of the 2x2 diagnostic
table and to assess the model performence. The square of the distance and Youden
index are two mathematical approaches to calculate the optimal threshold. The square

of the distance calculates the squared distance between (0,1) and any order pairs on the
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2.4. Growing degree day (GDD)

ROC curve. The (0,1) point is upper left hand corner of the ROC curve. It represents a
perfect classification, because the TPR=1 and the FPR=0. In other words, it indicates
that the model perfectly classifies all positive and negative observations. Therefore, the

square of the distance can be written as following

d?> = (1 - TPR)? + FPR2

The ROC point that has the minimum value of d? is considered as the optimal cut-off
point and all predicted observations not less than TPR are identified as positives and
the rest as negatives [112].

The Youden index searches the maximum vertical distance between chance line and a
point in the ROC curve [112, 113]. Therefore, the index can be defined as the maximum
difference between TPR and FPR and can be written as

Youdon Index = J = max (TPR — FPR).

The index ranges between 0 and 1, where J = 1 means the maximum difference between
positive and negative groups. Moreover, it means the model can perfectly separate the
two classes. Therefore, as .J value is closer to 1, the ability of model to classify increases

[113]|. These metrics will be used in Chapter 6.

2.4 Growing degree day (GDD)

Growing degree day (GDD) is used in Chapter 6. It will serve as a climatic variable
to investigate its association with the colonisation behavior of EAB. GDD is a metric
used in agriculture and entomology to quantify the growth and development of plants
and insects [116, 117]. It indicates the amount of accumulated heat above the threshold
temperature during a specific time frame. The GDD is calculated by summing the
values of the difference between the average daily temperature and a base temperature
(threshold temperature).

The base temperature is the minimum temperature for an organism to grow or
develop, below this value the plant growth or other biological processes cannot occur
[117, 116]. Base temperatures differ among organisms, and different organisms require
different GDD to activate metabolic processes [117, 116|. The base temperature can

be experimentally and statistically determined, rather than physiologically, through
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2.5. Bayesian approach

observing organism response to different temperatures [118].
The GDD formula can be written as follows:

tn

GDD (tn) = » (Ty—Ty).

t=t1
where T; is the average daily temperature, T} is the base temperature and ¢,, is the total
number of days.

GDD explores the time of the phenological dynamics, and determines the suitable
area for growing plants or insect outbreaks. The GDD is a practical tool for farmers
and agricultural scientists to track crop growth develpement such as crop flowering and
predict harvesting time. In addition, entomologists have used the GDD to follow the
insect pest development and predict outbreaks [118, 116]. The GDD gives an indication
of the likelihood of insect activity where each insect requires a consistent GDD to reach
definite life stages, such as egg hatch or adult flight [117, 118]. The GDD is a better
method for modeling insects compared to using simple temperature measurements due
to its biologically meaningful approach [116].

Additionally, GDD is an effective tool for understanding pest outbreaks over time
and space and consequently for enhancing pest control [97, 99]. GDD, combined with
the knowledge of climate change, forms a powerful tool to predict pest distributions.
As a result, GDD can help pest managers and governments to limit and mitigate the
outbreak [118]. It indicates which pests are likely to attack specific regions, determines
the spatial distribution of damage, and the most likely time of invasion or infestation
[119, 120]. In addition, GDD helps to determine the required type of control that is
needed and the time of applying treatement. Therefore, it can help to reduce the risk

of crop damage and economic losses [118].

2.5 Bayesian approach

In this thesis, Bayesian approach will be employed in Chapters 4, 5 and 6 to estimate
model parameters. Chapter 4 and 5 will utilise Bayesian method within a meta-analysis
framework for estimating diagnostic parameters, including sensitivity (Se), specificity
(Sp), and prevalence. In Chapter 6, Bayesian method will be applied to estimate the pa-
rameters of models that help understanding the distribution of EAB under the influence

of climatic and non-climatic factors, as well as the dispersal kernel of EAB.
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In Bayesian statistics, any unknown parameter is associated with uncertainty, which
can be represented by a probability distribution. A Bayesian approach allows the in-
corporation of prior knowledge and offers a more natural interpretation of uncertainty
than a frequentist approach [121]. In Bayesian inference, observation data D provides
information about a (set of) parameter(s), called likelihood, which is used to update a
prior belief f(8) about a (set of) parameter(s) into a posterior belief f(€ | D) about a
(set of) parameter(s) [122]. Formally, it can be explained by Bayes’ theorem,

f(e|D)= o f(D]0)f(6).

f(D | 0) is the likelihood for an observation of data D. f(@) is prior probability
distribution(s) for parameter(s) of interest. It represents the initial beliefs regarding
each model parameters before any data is observed. The prior can be either informative
or uninformative. Informative priors are shaping the distribution based on existing
knowledge, such as previous analysis or literature. Without such information, the prior
is usually selected in some logical way, such as uniform distribution over a realistic
parameter range [121, 123, 103]. It can also be selected to have a minimal effect on the
posterior distribution, leading to the likelihood to play a more role in explaining the
posterior distribution.

Markov Chain Monte-Carlo (MCMC) has been an increasingly popular technique
for estimating posterior distributions in Bayesian inference, which are often challenging
to obtain analytically [121, 122]. It can handle complex models and high-dimensional
parameter spaces, making it a versatile tool for a wide range of applications. Moreover,
MCMC algorithms naturally incorporate prior information about the parameters of
interest, which can improve the accuracy of inferences [124].

MCMC is a combination of two statistical approaches, a Markov Chain method and
Monte—Carlo approach [125]. The former generates random samples until it converges
to build up the target and optimal posterior distribution [124|. Every random sample
serves as a stepping stone to produce the next random sample (hence the chain). The
"Markov" attribute of the chain reflects the fact that while each new sample depends on
the current one, they do not depend on any previous ones. After running the Markov
Chain for a sufficient length of time, the samples’ distributions converge to a stationary
distribution reproducing the posterior distribution (if well-implemented) [122].

Monte Carlo is a way of generating random samples from the posterior distribu-
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tion. Random samples are derived using a number of Monte Carlo methods, including
rejection, importance, and Metropolis-Hastings sampling [122]. As the Markov Chain
becomes larger, MCMC methods are capable of producing a sample of the Markov
Chain size that represents the posterior distribution, from which to draw conclusions
about the parameters. The sample can be used to estimate posterior probabilities, to
calculate expected values and to obtain credible intervals for parameters [125, 122].
The MCMC method generates random samples from the posterior distribution of
the parameters, after which inferences about the parameters are made. Statistics such
as mean, median, and credible interval (CI) of a parameter can be estimated from the

samples, reflecting the level of belief about its value [121].

2.5.1 MCMC conergence tools

A major step in the Bayesian analysis is to assess the convergence of the chains to
the target posterior distributions. Four tools are frequently implented to evaluate the

convergence of the MCMC simulations.

Trace (Time series) plots

The trace plot is the most frequently graphical method used as a convergence diagnostic
tool in MCMC technique. It is a time series plot, and represents the values of the Markov
chain over time in the state space. It shows the parameter values of the successive
iterations on the y-axis against the corresponding iteration numbers on the x-axis. To

evaluate the trace plot, the subsequent aspects should be considered:

e A converged chain reached stationary distibution, if minimal fluctuation (varia-
tion) occurs around a particular value in absence of visible trends or patterns.
Hence, it represents appropriate mixing, generating the desired posterior distri-

bution.

e The flat bits or lines in the trace plot indicate that the MCMC chain is not

converging efficiently, and it is stuck in some part of the state space.

e The trace plot starts with initial samples, a "burn-in" period. In this period,
the plot mostly shows poor convergence. Hence, the burn-in period should be

discarded.
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e Discarding burn-in samples may not be necessary, if the trace plot exhibits a

consistent pattern throughout [126, 127].

e Multiple chains with various initial values are converge to the same distribution,

if they are overlapping and appear indistinguishable [127].

Autocorrelation function (ACF) plot

The autocorrelation function (ACF) plot is another graphical statistical tool that is used
to test and diagnoses the convergence of the MCMC simulations. The ACF can calculate
the correlations between current estimated parameter and the previous estimated value
based on the iteration number at lag k. In other words, the autocorrelation value at
lag k, means the correlation between the current estimated value and the one k steps
ealier. For example, the ACF value at lag k=4 measures the correlation between each
current estimated parameter value and the value that was estimated at the 4 time steps
earlier. However, at lag k=0 exhibits the relation with itself, as there are no previous
samples, hence, the value is always one. To assess the ACF plot, the following should

be taken into account:

e Asthe lag value k increases, the ACF plot should display a decay in the correlation.
This is an indication that the MCMC simulations are well-mixed, the MCMC
parameters samples are approximately independent and have converged to the

target distribution.

— Fast-mixing chain shows that the lag k autocorrelation values drop down to

zero rapidly

— Slow mixing chain means existence of correlation, and need to include a large

number of samples to reach convergence [127, 126].

Gelman and Rubin diagnostic

Gelman and Rubin (1992) criteria is a single and dimensionless quantitative measure
diagnostic tool, which is alternatively called the potential scale reduction factor (PSRF).
The PSRF relies on analysis more than one chain that are simulated in parallel where
each has a different initial samples. It compares the difference between the variance

within the chains and the variance between the chains,
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S S (X — X)?

W = mean within chain variance
m(n—1)

B m (X, — X)?
— = 21_1 ( ‘ ) variance between chains

n (m—1)

R —1)YW+B

V= u pooled variance

n
.V -1 B 1 —1 B
w n w n nW

where 7 = 1, ..., m represents the index of each chain where the total number of chains
is m. The index j where j = 0, ...,n — 1 represents all samples within each chain. X;and
Xis the average estimation for each chain and for all chains, respectively. The n in the
term g is to ensure comnsistency with the W value. The Vs weighted average of the
within and between variance chains. Finally, R is the point estimate of PSRF.

If R value approaches or equals one, it means that W ~ B. It indicates that chains
are mixed and converge to the same distribution and with enough number of iterations
[127, 126]. If R value is greater than 1.1, it indicates non convergence. Thus, the
solution is either to reduce V the or to increase W, which can be achieved through
increasing the iteration number. Further, H. Du et al. suggested to use both PSRF
point estimate and the PSRF upper confidence interval (UCI) which is the upper bound
of the 95% credible interval to test the convegence [128]. Thus, the MCMC simulation

is considered converge if the following conditions are satisfied;
e The PSRF point estimate is close to 1 and no greater than 1.1 [126].
e The PSRF UCI is commonly less than 1.1. The PSRF UCI explains the uncer-
tainity in the PSRF. The uncertainty in the PSRF estimate is influenced by both
variances of the chains and the number of iterations. Thus, a higher uncertainty in

the PSRF estimate indicates a less accurate convergence assessment, and suggests

that increasing the number of iterations is required [128].

The R value can be simply calculated by using different statistical packages in R such
as coda [129]| and rstan [130].
Effective sample size (ESS)

Effective sample size is another quantitative measure diagnostic tool to assess the

MCMC convergence. It is a single and dimensionless number that reflects the effec-
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tive and independent sample size to measure the efficiency of the MCMC algorithm. It
captures the autocorrelation impact of the variability within the chains on the uncer-

tainty in estimates. The ESS can be estimated by using;

N

ESS = Nog = -
1+2 3 ACFE,
k=1

where N is the total sample size and ACFyis the ACF value at lag k. The Nggcan
o
be greater than N, if the —1 <> ACF}; < 0. In addition, the N = N, if the

k=1
00

> ACF;, = 0 which indicates each sample provides unique information.
k=1
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Chapter 3

Statistical analysis of citizen science
Al data: A case study of Fall

Armyworm invasion in India

3.1 Introduction

Invasive species are one of the key issues threatening the environment and agriculture
throughout the world. Plant pest and disease outbreaks seriously affect agricultural
economies and threaten their food and nutritional security [131]. A major challenge
in these situations is the detection of new pest and diseases by the local communities
and scientific researchers. Early detection of incursions can be critical in management
practices that have the potential to control the spread of these pest to other areas [132].
A monitoring system of pest and disease risk register is developed in most countries,
helping in the detection of a new invasion [133]. However, despite the extensive control
measures, new invasions such as Fall Armyworm (FAW) have been reported in India
since the middle of 2018 [134, 135].

There is a variety of approaches for detecting pests and diseases, such as qualified
inspectors, general public participation (citizen science), remote sensing using satellites
and smartphones |74]. Recently, citizen science reporting that depends on assessments
by people and farmers has played an important role in detecting pest and diesease oc-
currence, around the world. Smartphones have become increasingly popular in the past
few years providing citizens with access to modern technology, allowing rapid collection

of large data sets, including geo-tagged images of pests and their damage to hosts. This
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creates an opportunity for introducing novel detection methods based on artificial intel-
ligence (AI) and machine learning (ML) technologies [74|. One such mobile based tech-
nological company is Progressive Environmental and Agricultural Technologies (PEAT
GmbH), an AgTech startup based in Berlin which has successfully implemented an An-
droid/ Apple based AT/ML application to detect plant damage symptoms, 'Plantix app’
[82, 79, 80].

Plantix application has been trained to automatically detect approximately 550
major pests, diseases, and nutrient deficiencies in 35 major crops. A geo-time tagged
image is uploaded by a smartphone user to the Plantix app. Then, the app analyses
the uploaded image using deep neural networks (DNN) trained on previous data sets.
The DNN examines the uploaded image and identifies different health conditions with
associated probabilities (similarities)[79, 80, 83]. The DNN selects the health status
with the highest probability (top-1 similarity) as the final decision which is then sent
to the user with recommendations on the management of the disease [82, 79, 80].

Fall Armyworm (FAW, Spodoptera frugiperda) is an invasive insect pest from the
Americas, causing massive losses to agriculture in general, and the maize crop in par-
ticular, impacting the industry in India since its initial invastion in 2018. Maize (Zea
mays) is the third-largest crop by area grown in India, spread across an area of 9-9.5
million hectares (mha) with a production of 24-28 million tonnes (mt) [136]. Although,
FAW is a polyphagus pest, it has a preference for maize. First reported in Karnataka
state in India during May 2018, FAW spread to more than 90% of maize fields across
India within 16 months [35, 29]. Mayee et al. [136] reported that FAW caused signifi-
cant damage leading to a decrease in the maize growing area from 9.2 mha in 2018 to
8.19 mha in 2019. As a result, maize production diminished, leading to a rise in feed
prices for poultry, aquaculture and cattle industries, thus impacting outputs from these
industries. The Plantix app has been used in India since 2017 [137]. During the 2018-19
seasons, nearly 140,000 data points of maize crop pests and diseases were recorded using
the Plantix app.

While Plantix app is successful in diagnosing maize crops in a short time and at
the right location, a major challenge is the absence of independent verification. Con-
sequently, there is no established gold standard (reference standard). In this case, it
is difficult to determine the false and true diagnoses and to conduct further analysis.

Therefore, such mathematical classification methods should be supported by internal
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evidence. Hampf et al. [80] used the Plantix app data to detect pests and diseases in
maize and soybean crops in the southern Amazon, Brazil, selecting data points with at
least a similarity of 0.5 (50%) to ensure reliable diagnoses. Then, the selected data was
used to assess the Plantix app accuracy by comparing the diagnostic app results with
actual conditions (gold standard). The sensitivity of the Plantix app was reported as
91.51% for maize, although it was lower for soybean diseases and pests. A majority of
other studies focused on determining the quality of the app in the classification crop
types (names). As an example, Wang et al. [79] measured the app’s quality by analysing
southeast Indian crop types.

For data classification, latent class analysis or panel diagnosis are the most common
methods. The panel diagnosis depends on a group of experts who have the skills required
to decide upon the final diagnosis in every case and is based on all the available related
case data [138]. The latent class analysis relies on the available diagnostic test results
to create a statistical model that establishes a reference standard [139]|. Latent class
analysis is a type of mixture model that is used for model-based clustering. A Gaussian
mixture model (GMM) is the most commonly used around model-based clustering [140].

Recent studies regarding FAW in Indian maize crops have addressed biology, genetic
characterization [141, 142, 143|, ecology, field survey analysis [144]| and controlling and
managing the spreading of FAW [145, 35]. According to our knowledge, no study has yet
evaluated the temporal spread of infested maize crops and their intensity due to FAW
in India. From the Plantix app, a high or low number of FAW notifications cannot
solely reflect the intensity of FAW infestation. These notifications may be high because
of a significant volume of data collected during the same period. Therefore, comparing
FAW reports with all other notifications is essential to understand FAW intensity. This
approach can be referred to as odds. The term odds refers to an estimated rate of the
number of occurrence of a certain event (infested maize crops by FAW) to the number
of non-occurrences [146]. Hence, this study aims to apply a classification model to
distinguish between false and true diagnoses, and to investigate the intensity of FAW

infestation on maize crops.
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3.2 Materials and methods

3.2.1 Data description

The dataset consists of all notifications regarding maize in India, including those diag-
nosed as infested with FAW and those without Fall Armyworm infestation. Provided
by PEAT GmbH, this dataset comprised the data which was crowd sourced from users
of the Plantix app in India. The dataset included various dates from January 1, 2018
until December 31, 2019. Within this period, there were 138359 data points under the
1.1.6 DNN version from 631 districts.

A number of meta-data variables were derived for further analysis (see Table 3.1),
including the time stamp, longitude and latitude GPS coordinates and the results of
the machine learning as categorical and numerical variables. The categorical variables
were saved under the headings "top-1 pathogen name" and "top-2 pathogen name".
These two variables define the detection status of each maize diagnosis as either healthy
(indicating the maize is in good health), infested with FAW| infested with pathogens,
affected by other pests, or suffering from nutrient deficiencies.

The numerical variables were "top-1 similarity" and "top-2 similarity", representing
positive integer values ranging from 2 to 100. A large similarity value indicated that
the detection was more confident of reflecting the real status of the diagnosed maize.
Conversely, similarity values close to one suggest less confidence in detection. It is
noteworthy to mention the distinction between top-1 and top-2. The DNN generates
several similarity scores with corresponding health conditions for each tested crop where
the total sum of these similarities equals 100% (or a probability of 1) . Hence, under
the top-1, the highest value is recorded, while top-2 includes the next highest value.

Moreover, this dataset was based on three different deep neural network (Plantix-
DNN) versions, where each was applied to a different set of maize cases. For the purpose
of our statistical analysis, the research described in this chapter was based on the 1.1.6
version of the app. This is because it is the most recent version, and the analysis was
more consistent when it depended on only one specific version. Hence, this version had
134938 data points in 2018-19 which were used in the subsequent analysis. Further,
there were 1101 cells in the "District" variable without the district name and therefore
labelled with “FAILED”. Accordingly, they were defined manually based on their GPS
coordinates using ArcGIS Pro (version 2.8, ESRI, Redmonds, CA, USA).
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Table 3.1: Sample data from the Plantix app illustrating the key variables used in
statistical analysis.

Date Longitude| Latitude tiitlh()ge‘}n n?(r)rll)(; toi)l—rinl‘aiggﬂ DNN | District

01/01/2018| 75.73 15.31 Boron Healthy 76 2 1.1.6 | Gadag
Defi-
ciency

22/07/2018, 75.13 14.77 Spotted Fall 28 18 1.1.6 | Haveri
Stem- Army-
borer worm

07/12/2019, 87.39 25.73 Fall Violet 22 20 1.1.6 | FAILED
Army- Stem
worm Borer

21/11/2019, 81.44 22.02 Fusarium Healthy 31 6 1.1.15 | Jalgaon
Ear Rot

3.2.2 Research assumptions

In addition, since the FAW was the primary research focus, we assumed positive results
when the Plantix app generated a report for FAW and negative results for all other
categories. Further, the second assumption was that the 134,938 maize notifications

were classified into three categories:
e FAW: maize crop for which Plantix app reports FAW under the top-1.
e Healthy: maize crop reports as healthy under the top-1.

e Non-FAW: maize crop reports as having other conditions (non FAW pests, dis-

eases, or nutrient deficiencies).

Figure 3.1 displays the 134,938 maize notifications on the map of India. It can be seen
that the red points (FAW notifications) are more abundant in the South compared to
the North, while the green (Healthy) and the blue (Non-FAW) dots are more frequent
in the North. Therefore, the third assumption was that the data was divided the
notifications into two zones, in order to see the difference in the spread and where the
infestation started during the period of analysis. The fourth assumption, this study
mainly depended on top-1 variables rather than the top-2 as it was the most accurate

when diagnosing variables using the Plantix app.
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Figure 3.1: The Plantix app top-1 notifications for the maize crops in the South (left)
and North (right) of India during the invasion period (2018-2019) with FAW (red),
Healthy (green) and Non-FAW ( blue).

3.3 Classification model

A classification model was applied to assign each tested maize crop into a True (T) or
False (F) case, with True (T) associated with accurate diagnoses and False (F) with the
app failing to diagnose the maize crop correctly. The classification process was based
on the "top-1 similarity" variable. Therefore, the True class includes high similarity
values, while the false class includes low similarity values. Moreover, the classification
model was utilised separately for the three categories FAW, Healthy and Non-FAW.

The classification model was based on a mixture of two normal distributions with the
expectation-maximisation (EM) algorithm, which was used to estimate the parameters.
Although the similarity values were discrete numbers ranging from 2 to 100, the normal
distribution was chosen as a first approximation among possible continuous distributions
due to its flexibility and widespread applicability in statistical modeling. Furthermore,
the normal distribution is commonly employed in latent class models because of its
mathematical properties, which facilitate estimation and classification. Further, with a
large sample size of over 10,000 for each category, the normal distribution provides a
robust starting point for modeling the data.

The mixture of two normal distributions represents a sum of two normal distributions

with different weights. The expectation-maximisation (EM) algorithm is a statistical
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method to estimate the parameters for the mixtures[109, 110, 111, 108, 107]. Opsteegh
et al. [94] applied this algorithm successfully to classify the results of the RIVM ELISA
test to detect the Toxoplasma gondii parasite in sheep into healthy (Negative) and
unhealthy (Positive) groups. In this study, we implement the algorithm three times,
once for each category independently: FAW, Healthy, and Non-FAW. For each category,
the algorithm is applied to identify True and False groups, resulting in three separate sets
of classifications. This represents a novel application to this type of data. Additionally,
while most classification methods typically distinguish between positive and negative
cases, our work specifically focuses on classifying data into True and False categories.
This unique approach offers a new perspective on analysing the data.

In this context, the mixture model was appropriate as the presented data included
both the latent and observed variables, where both variables are to explain the data
distribution. The latent variable here was a binary variable, with two classes repre-
senting False and True classifications. The observed variable was the “top-1 similarity”
variable. Hence, the model can define the heterogeneity between the observed data
points by estimating the probability of each data point belonging to either the False or
True class.

Therefore, the mixture model[109, 110, 111, 108, 107| for each category can be

expressed in the following way:

N(MFvMT70%7U%aw) = (1 _W)NF (X7/'LF70%7) +WNT (X7MT7O-%) (31)

where 0 < w < 1 is the mixture proportion, representing the proportion of the tested
maize crops that belonged to the True class. Thus, (1 — w) indicates the proportion of
False readings. The one dimensional random variable X is the “top-1 similarity” score,
where each score is assumed to be independent. This is because each image is diag-
nosied separately by the Plantix app, where the diagnosis outcome for one crop does not
impact the diagnosis of another. While it is possible for nearby crops to have similar
symptoms, which could result in indirectly correlated scores, the independence assump-
tion remains reasonable for the purposes of this analysis. Further, N (X JUE, 012;) and
2

Nt (X U, O‘T) are univariate Normal distributions. Thus, in this model, there are five

parameters pp, ur, U%, U% and w which need to be estimated.
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3.3.1 Parameter estimation

Accordingly, the five parameters ug, ur, 012;, a% and w were estimated by the EM algo-
rithm. The EM algorithm can be applied iteratively to cycle between E (Expectation
step) and M (Maximisation step) steps starting from the initial values of each param-
eter. The E-step involves calculating the expected value of the log-likelihood function,
given the current estimates of the parameters and the observed data. The M-step then
updates the parameter estimates by maximising the expected log-likelihood obtained in
the E-step, hence, improving the model’s fit to the data.

The initial values of ug, ur, a% and 0% in this study were estimated using k-means
clustering where & = 2, where k-means clustering is an algorithm that partitions data
into k clusters based on minimising the distance between data points and their respective
cluster centers. The initial value of w was computed using the mean (weight) of one
cluster. After that, the E step assigns the probabilities of each data point in X belonging
to the True class and False class are calculated based on current parameter estimates
values through the responsibility function 7;. The probability 7; of data point 4 in
X belonging to the True class given the current estimates of the model parameters

WE, BT, J%, O'% and w is represented as

5 = wNT (X = 35 pr, 0%)
(1w Np (X = zis pr, 0%) + wNp (X = 245 pr, 07

(3.2)

The complement of 7; is (1 — 7;), and it infers the probability that each data point
belongs to the False class. The normalisation term in the denominator guarantees that
the sum of probabilities for a single data point is equal to one. On the other hand, the
M-step updates the parameter values based on 7; in the E-step. Hence, it allows us to
find the parameters’ values that maximise the likelihood function of the observed data
[109, 110, 111, 108, 107]
. Further, this iterative process between the E and M steps was repeated until conver-
gence, with the convergence threshold set as 1 x 107%. The EM algorithm was run in R
4.2.1 and tested using a normalmixEM function in mixtools package [147].

Further, to assess the goodness of fit of the mixture model, the Q-Q plot and a
Kolmogorov-Smirnov (K-S) test with a parametric bootstrap method was implemented.

The parametric bootstrap approach was used to correct for inaccuracies in the critical
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values of the K-S test, which were caused by estimating model parameters from the
data [148]. In this process, 1,000 bootstrap samples were were generated from the fitted
mixture model. Then, the K-S statistic for each sample was computed in oreder to
form a bootstrap distribution, which facilitated to determine an adjusted p-value by

comparing it to the observed K-S statistic [148|.

3.3.2 Weekly temporal distribution of False (F) and True (T) groups

in North and South zones

After fitting the mixture model of two normal distributions with latent classes (True and
False) using the whole dataset for each category, a temporal distribution for each class
was explored, in order to estimate the weekly expected notifications for both classes.
The temporal distributions were built for each category (FAW, Healthy, Non-FAW), in
North and South zones. Note, the subsequent actions are only explained for the FAW
category in the North zone.

At first, the daily notifications were converted into weekly notifications, resulting in a
total of 104 weeks for the whole two years (2018-19). This transformation was performed
to simplify the analysis without impacting its accuracy as well as the fact that there
was not enough data for 720 days. Following that, for each week w; (1 < j < 104),
the number of notifications (frequency),; at each similarity rate (2 < ¢ < 100) was
determined from the data to estimate the weekly expected notifications of F class w! and

J
T class wJT. These expectations are given by:

100
E [wf | FAWNortn) = Z (frequency),; A (3.3)
i=2
100
E [ij‘ ‘ FAWNorth] :Z (frequency)ij (1 =7) (3.4)
=2

where E [w]T | F AWNmﬂth} and F [wf | F AWNO,«th} are the weekly expected value of
FAW in the North zone in T and F classes, respectively using the final parameters
estimated from the converged EM algorithm of the mixture model of FAW category

and responsibility function (eq. 3.2). The E [wJT | F AWNO,,HL} reflects the weekly
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expected number under the FAW category in the North zone that the Plantix app
successfully diagnosed, while the E wJF | FAWNoren| of FAW representes the weekly
expected number in the North zone that the Plantix app failed to diagnose correctly.
Here, frequency;; represents the number of observations within the FAW category at ¢
similarity rate and in a week j.

This method was applied for all categories (FAW, Healthy and Non-FAW) and in
both spatial zones. As stated described that

FAW is assumed as the positive category, while Healthy and Non-FAW are assumed

as negative categories. Hence, the E [wT | F AWZOM} representes the weekly expected

J
number of True Positive (TP). Similarly, £ [w]T | Healthyzone} and B [w]T | Non—FAWZOne}
denote the weekly expected numbers of True Negative (TN) for Healthy and Non-FAW
categories, respectively. In addition, the F [wf | F AWz(me} indicates the weekly ex-
pected number of False Positive (FP), while F [wJF | Healthyzone} and B [w]F | Non—FAWZ,me}
represent the weekly expected number of True Negative (TN) for Healthy and Non-FAW

categories, respectively. Table 3.2 summaries these terminologies.
Table 3.2: Four possible outcomes of the weekly notifications can be estimated based

on the classification models, which is based on “top-1 similarity” and three categories
(FAW, Healthy and Non-FAW) under the “top-1 Pathogen name” variable.

Plantix app variable “top-1 Pathogen name”

Infested with FAW | Not infested with FAW
(Positive) (Negative)

True (T) | True positive (TP) True Negative (TN)

False (F) | False positive (FP) False Negative (FN)

Classification model

3.3.3 Intensity of weekly FAW infestation

In order to estimate the extent of the FAW infestation, the number of TP notifications
needs to be interpreted in the light of the overall reporting intensity. Thus, the large
number of TP notifications can be associated either with high intensity and medium
(or even low) reporting rate, or low intensity but a very large number of reports. The
solution is to scale TP by TN, resulting in odds. Thus, the odds formula of infested
maize crops by FAW is:

TP
dds =—— 3.5
odds TN (3.5)
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where the odds ranges between 0 and infinity. We considered two scenarios for TN,
where TN either represents TN cases of Healthy or TN represents TN cases of both
Healthy and Non-FAW. If odds > 1, the maize crops infested by FAW outweigh the
number of non-infested by FAW, and if odds < 1, the number of non-infested by FAW
is higher. Consequently, when odds = 1, the number of maize crops infested by FAW
and non-infested by FAW are equal [149]|. Additionally, the odds can be converted to

probability:

odds

odds + 1 (3.6)

probability =

where this probability indicates the likelihood of maize crops being infested by FAW
over week. For instance, if the probability is 0.6, it means that 60% chance of maize

infestation with FAW in that week.

3.4 Results

3.4.1 Descriptive analysis and data visualisation
Bimodal distribution of the similarity index

The similarity rates for the three categories (FAW, Healthy, Non-FAW) in the whole
data set, as well as for the North and the South of the country, are shown in Figure 3.2.
A considerable number of notifications (63.4 %) have a low similarity rate (<50), while
a few notifications (0.72 %) have similarity rates greater than 90. Compared to North
India, South India recorded 20.3 % more notifications, despite the North’s area being
larger than the South (see Figure 3.1), thus, reflecting a higher proportion of maize
growing land in the South.

Further, two peaks can be observed in each category in both North and South India,
and more notifications are present in the left peak, with the exception of the Healthy
category. We use this property of each category of notifications, to classify False (F)
and True (T) classes in the mixture model, with F and T classes as a latent variable.
Therefore, in this situation the mixture of two normal distributions can be used as a
classification model, in order to predict the four possible outcomes of a diagnostic test:

true positive (TP), false positive (FP), true negative (TN), and false-negative (FN).
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Figure 3.2: Stacked histograms of similarity rate (2-100) for maize crop in pan India
during 2018-19 (n=134938), for North India (n=>53779), and South India (n= 81159),
showing FAW (red), Healthy (green) and Non-FAW (blue).

Temporal notifications

Figure 3.3 shows the weekly notifications in both zones. Kharif (June - October) and
Rabi (October - February) are the typical seasons for growing maize in India. Although
the dates vary from year to year, and between locations, we assign the dates of 3rd June
and 9th October as the start and end of the Kharif season, whereas we consider the dates
10th October and 28th February to be when the Rabi season begins and ends.The South
zone notifications under each category outnumbered the North’s notifications over the

first 10 weeks. Further, the FAW notifications in the South were higher when compared
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to the notifications from the North for the entire period, with the exception of the time
between March 2018 and the beginning of Kharif 2018. During North Kharif seasons,
the notifications in the Healthy category surpassed the onse in the South, whilst the
converse was true during the Rabi Seasons. Furthermore, the South accounted for more

Non-FAW notifications than the North during March and mid-July of 2018.
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Figure 3.3: The weekly number of maize crops diagnosed by the Plantix app in the
North (top) and South (bottom). The red curve is the True class, and the blue curve
is the False class. The light blue area is Kharif season (3rd June to 9th October), the
orange area is Rabi maize season (10th October to 28th February).

The results of the weekly notifications show that most of the notifications in both

years have been in Kharif seasons, except for the FAW category in 2018, which had more
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Rabi than Kharif notifications. This can be interpreted by comparing Figure 3.3 with
Figure 3.4, where the number of users of Plantix app were more active during Kharif
and Rabi seasons. Especially during Kharif, the number of users was higher than at
other times as it is a major monsoon season to grow crops. In addition, there were more
users in 2019 than in 2018. This might mean that the number of Plantix app users was

increasing or they were becoming more experienced at using the app.
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Figure 3.4: Monthly total number of the Plantix app users in the whole of India within
the study period (2018-2019).
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3.4.2 Classification model: mixture of two normal distributions
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Figure 3.5: Fitted two univariate normal distribution mixture model (green curve) based
on similarity rate along with probability fitted models for the false group (blue curve)
and true group (red curve). The intersection point between the blue and red curve is
the cut off between two groups. The cut off value is 57 for FAW, 63 for Healthy, and
57 for Non-FAW

The mixture model is used to filter out the low-similarity notifications, interpreted
here as False (F) in contrast to high similarity True (T) cases. The histograms from
Figure 3.2 and the corresponding fitted curves using Eq 3.1, are shown in Figure 3.5.

The estimated parameters of the mixture models are presented in Table 3.3.

Table 3.3: Parameter estimations based on mixture of two univariate normal distribu-
tion with the EM algorithm.

] Category \ False group parameters True group parameters

FAW w=.70, u = 35.51, 0 = 13.60 w = .30, p = 68.13, 0 = 10.37
Healthy w=.62, u=3748, 0 =16.34 w=.38, u="7502, 0 =7.46
Non-FAW | w = .83, 4 =30.68, 0 = 12.25 w=.17 1 =169.92, c = 14.84

The visual inspection of the Q-Q plots for each category in Figure 3.6 suggests a good
fit for the mixture models. This is because across all three plots there is an indication of

linearity, where there are strong linear relationships between the points of empirical CDF
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and theoretical CDF. Further, the points do not consistently deviate above or below the
line, indicating that the theoretical distribution is capturing the data’s behavior well. In
addition, the calculation of the Kolmogorov-Smirnov (K-S) test with a 1000 parametric
bootstrap method was implemented for each mixture model. The p-value for each fitted
mixture mode was above 0.05, indicating that there is insufficient evidence to reject the

null hypothesis. Hence, we can conclude that each mixture model is a reasonable fit for

the data.
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Figure 3.6: Goodness of fit for mixture model using Q-Q plot.

One more analysis which reflects the goodness of fit is comparing the fitted mixture
model with observation data for top-1 similarity" and corresponding rates of "top-2
similarity". It is notable that cut-off points between F and T groups were at a similarity
value of 57 for FAW, 63 for Healthy, and 57 for Non-FAW (see Figure 3.5). For the
true groups, we considered them as the starting rate. To check the accuracy of the
fitted model, these cut off rates were used to find differences between True rates of
"top-1 similarity" and corresponding rates of "top-2 similarity". The differences were
consistently above 30 as can be seen in the boxplots (Figure 3.7). Hence, the results

show that the presence of such gaps indicates that the fitted model was successful in
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determining T and F groups. In other words, a significant difference between True rates

Vbl

of "top-1 similarity" rates and corresponding rates of "top-1 similarity” indicates that
the model was successful in accurately predicting the true diagnosis cases by using the
Plantix app. In contrast, if the distinguished value is small, such as 10 or less, it reflects

that the classification model may struggle to make a clear determination.
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Figure 3.7: Boxplots of similarity rates difference between “top-1 similarity” and “top-2
similarity”, where the top-1 started at the cut-off rate with (a) the FAW at 57, (b) the
Healthy at 63 and (c) the Non-FAW at 63.
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3.4.3 Weekly temporal distribution of F and T groups in North and

South zones
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(a) Weekly expected number of FAW cases based on mixture normal distribution of FAW.
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(b) Weekly expected number of Healthy cases based on mixture normal distribution of
Healthy.
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(c) Weekly expected number of Non-FAW cases based on mixture normal distribution of
Non-FAW.

Figure 3.8: Weekly expected number of infested and non-infested maize crops in 2018
and 2019 in North (solid line) and South (dashed line) India, where the red curve is for
the True groups, the blue curve is for the False groups, and the light blue area is the
Kharif season (3" June to 9" October) and the orange area is the Rabi season (10

October to 28" February).

The weekly expected notifications of tested maize crops under each class (F and T), and
by category, was estimated by equations 3.3 and 3.4, using the estimated parameters of
the mixture models (see Table 3.3). The expected weekly notifications of both T and
F classes for the three categories FAW, Healthy and Non-FAW during 2018-19 can be

seen in Figure 3.8. Figure 3.8 shows that the weekly notifications are distributed quite
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differently between the South and the North of India. For North India, the notification
levels are at the lowest during the first weeks of both years while they peak during the
Kharif season. A significant increase in notifications was observed during Rabi 2019.
In South India, there were notifications in the early weeks of 2018, peaking during the
Rabi season in 2018, for both FAW and Non-FAW. The notifications peaked during the
2019 Kharif season for all the three categories (FAW, Healthy, Non-FAW), and again
in Rabi 2019. In both regions, the number of notifications in 2019 was higher than in
2018. The False groups outnumbered True groups, suggesting that overall similarity

tends to be low.

3.4.4 The odds of FAW

Figure 3.9a shows the intensity of FAW in the North zone and Figure 3.9b for the South,
using the odds formula (3.5). By comparing these two Figures with Figure 3.8, Figure
3.8 shows that the highest peak of FAW in both zones occurred during Kharif 2019.
However, both Figures 3.9a and 3.9b show different patterns. Figure 3.9b illustrates that
the FAW infestation reached its peaks during both Rabi 2018 and Rabi 2019 seasons.
The intensity of FAW in the North zone shows that the highest peak of FAW occurred in
Rabi 2019 (see Figure 3.9a). Therefore, relying solely on the number of TP notifications
can result in incorrect conclusions when determining the FAW outbreak behaviour over
time. However, by integrating the True plots (TP, TN), the intensity of FAW in maize
fields can be identified.
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(b) South India.

Figure 3.9: Weekly FAW intensity in the maize fields over the whole period (2018-19).
The plots were constructed by using the odds formula. The black curve represents the
intensity of FAW in maize fields when TN cases are only from truly Healthy maize
notifications. The purple curve represents the intensity of FAW in maize fields when
TN cases are from both truly Healthy and Non-FAW maize notifications.

There were differences between North and South India in the FAW invasion timing
and level of occurrence in the maize fields based on TP for FAW and TN for the Healthy
category (see the black curve in both Figure 3.9a and 3.9b). In South India, the FAW
invasion started at the beginning of Rabi 2018. Moreover, there was a noticeable FAW

infestation during 2019, there was a significant increase from the beginning of the Kharif
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season to a peak in the middle of the Rabi season with 78% (using formula 3.6, black
curve). It is worth noting that in South India, the FAW invasion peaked during both
2018 and 2019 Rabi seasons, and they were at approximately the same level in both
the years. In North India, the FAW outbreak began at the end of Kharif 2019, and it
reached a peak in the Rabi season with approximately 79% infestation (using formula
3.6, black curve). Moreover, the FAW outbreak was more prevalent in the South than
in the North of India. On the other hand, the intensity of FAW in both zones when
TN cases are from both truly Healthy and Non-FAW maize notifications (see the purple
curve in both Figure 3.9a and 3.9b) show almost flat curves, indicating that there are
very few instances of FAW. This pattern raises concerns that there may be issues with

the data, which the Chapter 4 explains.

3.5 Discussion

Citizen science apps such as Plantix app are very useful for reporting pest infestations,
allowing threats to be detected rapidly, with high temporal resolution, and with a wide
spatial coverage of pest distribution. For statistical analysis, it is essential that both
positive and negative notifications are included, and mobile apps such as the Plantix app
can provide both. This study provides a systematic method for distinguishing between
True and False notifications, as well as estimating the intensity of infestation in various
species.

The distribution of similarity index is bimodal in all cases, and is particularly pro-
nounced when the notifications are identified as Healthy. This allows to researchers to
interpret the two peaks as representing True and False readings, for FAW (“positive”)
and Healthy or Non-FAW (“negative”) crops, respectively using mixture of two normal
distributions mixture models. Opsteegh et al. [94] demonstrated that the two normal
distributions mixture model can be used to classify diagnostic test results into positive
and negative groups when gold standards are unavailable. The difference between our
results and this previous study is the objective of the classification. In our approach,
we used the classification to differentiative between T and F while positive and negative
groups were defined.

Moreover, Hampf et al. [80] considered only images with a top-1 similarity of at
least 50 to be as true diagnosis. The method used in this study is superior to the one

applied by Hampf et al. [80], as it uses the evidence from the actual data rather than an
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arbitrary threshold value of 50. This discrepancy is because they did not depend on a
statistical classification framework. It may be that a similarity of less than 50 indicates
a high level of confidence in true diagnosis, thus using a cut-off value of 50 may not

always represent a good hypothesis.

FAW in regions and seasons

A comparison of the odds calculation based on the model to the time series based on raw
readings showed that the actual progress only occurred in the growing seasons (Kharif
and Rabi). Moreover, the FAW infestation was spreading more in Rabi seasons than
in Kharif seasons, and more in 2019 than 2018. This finding is in agreement with the
estimation that the FAW infested 3.76% of the actual sown area of maize in Kharif
2018, while during Rabi 2018, it infested 27.9% [30]. One plausible explanation for this
result might be that the rainfall in Kharif is higher than in the Rabi season due to
the monsoon period, where the heavy and light rainfall washes out the first and second
instar of larvae from the plant and kill a significant number of them [150]. The odds
calculation also allowed us to distinguish between the South, where the invasion was
earlier, and the North, where it was delayed. This findings agree with Suby et al. [29]
who demonstrated, using offical notifications, that FAW started in South India and

moved towards North.

FAWs invaded maize in early 2018

In this study, the odds calculation showed that the invasion started earlier in 2018,
before it was officially documented (mid of 2018) [134, 135]. This finding is in agree-
ment with Figure 3.10 which cites evidence of FAW availability on 21/01/2018 and
23/01/2018. These figures were extracted from the Plantix app server, and their sim-
ilarity rate is greater than 80. Therefore, the results are inconsistent with the FAW’s
official detection time of FAW in India, which was in June 2018 [30]. This result em-
phasises the importance of early data analysis in pest invasion management, and that
collecting data without analysing it is not enough. The Plantix app could have been
the first to report the invasion in India and this remains a lost opportunity. We sug-
gest that applications such as this should prepare a risk register to demarcate areas by
geo-tagging pest and diseases at the country level. This will directly benefit bio-risk

assessment and management on invasive pest and diseases.
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(a) FAW recorded in 10/01,/2018 in
Karnataka state, South zone.

(b) FAW recorded in 21/01/2018 in(c) FAW recorded in 23/01/2018 in
Gujarat state in North zone Gujarat state in North zone

Figure 3.10: Examples of photos from the Planxtix app of FAW larvae or damage caused
by FAW recorded in January 2018.

Advantages and challenges of citizen data

A unique feature of the Plantix app is the ability to keep track of healthy (negative)
and unhealthy (positive) notifications. This feature allows us to estimate the level of
intensity of pest or disease in a given geographical area. Therefore, citizen scientists
should be encouraged to collect both healthy and diseased data in order to increase the
accuracy of detection. Availability of accurate GPS coordinates in the dataset collectes
by mobile application, allows estimation of the FAW spread across North and South
India. One challenge is that some users might submit photos from places other than
their crop fields (such as their homes or cafes) [137]. A large proportion of notifications

associated with FAW or other categories was characterised by relatively low similarity.
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It is possible that the algorithm has difficulties distinguishing between symptoms caused
by different pests (e.g. FAW and others such as Velvet Stem Borer). By combining the
detection using mobile app with statistical analysis using the mixture model and odds
calculation, we were able to reconstruct the progress of the FAW invasion in India within

the study period (18-2019) (Figure 3.9a & 3.9b).
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Chapter 4

Diagnostic accuracy of mobile
application: A Bayesian

meta-analysis approach

4.1 Introduction

The Plantix app, an Al diagnostic application, has become widely popular among farm-
ers and has enhanced the database for researchers [68]. However, some concerns were
raised about its accuracy in diagnosing crop problems. For example, Siddiqua et al.
|68 concluded that while the Plantix app users feedback indicates that the app is user-
friendly, other users comments suggested that the app diagnosis is imperfect as it cannot
correctly identify crop problems. In addition, in the previous chapter of this work, the
fitted mixture model of the FAW category indicated that the Plantix app has limita-
tions in identifying FAW in maize crops, as shown by the many observations that fall
below the false positive curve. Therefore, this inaccuracy can cause concerns among
the app users, who are mainly farmers, and the app developer. As a result, the assess-
ment of diagnostic test accuracy is important to quantify this accuracy and reassure all
stakeholders.

However, to evaluate the accuracy of the app, a challenge arises. The Plantix app
gold standard database for comparison is absent. Hence, the Plantix app accuracy
becomes difficult to determine. Moreover, to the best of our knowledge, there is no
literature available regarding the app’s accuracy when identifying any of the over 600

plant damages among 30 different major crops. To address this challenge, it can be
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useful to narrow the focus into one single plant damage source in a solitary crop.

Therefore, the previous chapter can be considered as the starting point to estimate
the sensitivity and specificity for the app’s accuracy when detecting FAW in the maize
crop. Thus, the mixture models results rely on point estimates derived using the EM
algorithm in the previous chapter, can be used to build a 2 x 2 diagnostic table for the
entire country of India. This is because the mixture models can be used to calculate the
probability of correctly detecting FAW, it is known as sensitivity, and the probability
of correctly identifying the absence of FAW, which is referred to as specificity [151].
However, to have a more precise estimation, it is necessary to take into account that
the India covers a vast area and contain factors relate to the app and the user.

India has an area of around three million square kilometers [152|. In addition, each
Indian state has an independent government, and most differ in terms of languages,
environmental factors and citizen scientists skills. For example, India has more than
1600 native languages and 22 official languages throughout its states [153]. However,
the Plantix app currently supports eight Indian languages [74]. As a result, it can
cause difficulty for some farmers who are not familiar with other accessible languages.
Moreover, user skills in taking images and variations in infestation levels can cause
variability in both sensitivity and specificity, where there is less diversity in these factors
within the state.

All these factors support a state-specific approach to account for regional differences
instead of providing a single result for all of India from Chapter 3. Hence, the pooled
estimates of sensitivity and specificity across multiple states should be considered to
evaluate the diagnostic test for a particular pest. The pooling is performed through
meta-analysis of diagnostic test accuracy [154]. This approach can significantly im-
pact the accuracy of the estimation of Se and Sp, and provides a more comprehensive
evaluation. Comprehensive literature review of the meta-analysis of the diagnostic test

accuracy is provided in the following subsection.

4.1.1 Review of meta-analytic models for diagnostic test studies

Meta-analysis (MA) is a statistical method that combines and analyses results from
various independent studies that address the same research question, to conclude a sum-
mary estimation with more reliable comparison among those individual studies [155].

The method is widely applied in different disciplines and sciences such as education
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[156], psychology [157, 104], epidemiology [158], criminology and criminal justice [157].
Additionally, it is frequently used as an overall assessment of the diagnostic test accuracy
across populations and environments [104].

The primary purpose of the MA in the diagnostic test accuracy (DTA) studies is
to pool sensitivity (Se) and specificity (Sp). The calculation of the pooled Se and
Sp involves combining, or aggregating data from different groups or studies to derive
summary values representing the overall sensitivity and specificity. This pooling com-
bines the sensitivity (Se) and specificity (Sp) from the independent studies in order to
estimate their combined or pooled sensitivity and specificity [151]. The pooling is more
than just calculating the average of Se and Sp values, it requires statistical models
to integrate these values, accounting for each state contribution based on factors like
sample size and heterogeneity [155].

A number of statistical models are utilised in the MA of the DTA, including separate
or joint models, along with fixed- or random-effects models [155]. The separate pooling
models (univariate models) are rare and not recommended because they fail to consider
the correlation between sensitivity and specificity [159], where these measures often
have a negative correlation within studies [160]. However, these models are frequently
used for analysing either Se or Sp, but not both simultaneously. Moreover, they can
be applied when estimating all parameters of the joint model is challenging [159].

On the other hand, joint pooling of the sensitivity and specificity can be achieved
through bivariate models or the hierarchical summary receiver operating characteristic
(HSROC) model, which involves the simultaneous estimation of sensitivity and speci-
ficity as two correlated outcomes. Both models structures conduct data analysis by
considering two levels; level one models a within-study variability (i.e., random sam-
pling error) and level two models a between-study difference (i.e., heterogeneity) [155].
Moreover, the bivariate model can be employed when the independent studies or groups
have minimal variation in these measures (Se and Sp), and usually occurs when included
studies use the same diagnostic threshold or criteria and uniform treatment protocols
[155]. In most situations, the bivariate random-effects model is more appropriate as it
accounts for the variability between studies and allows for more generalisable findings

[161].
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Bivariate randome-effects meta-analysis model (BRMA)

The bivariate random-effects meta-analysis model (BRMA) was proposed by Reitsma
et al. in 2005 [160]. Their model is a general linear mixed model and includes two
levels representing within (level one) and between (level two) study variability. Level
one of the model makes an assumption of an approximate normal distribution for the
observed logit sensitivity and logit specificity. It is based on the logit transformations of
sensitivity and specificity, because the logit is on an unbounded continuous scale and can
assume to follow a normal distribution [162]. In contrast, level two of the model enables
a joint distribution through a bivariate normal distribution of the logit sensitivities and
logit specificities by integrating two correlated normal distributions [160)].

The model proposed by Chu et al. (2006) [160] contributes a significant modification
in the Reitsma et al. framework. The Chu et al. model introduces a distinct approach
at level one. It addresses the within-study sampling variability (level one) by using
an exact binormal distribution for the sensitivity and specificity in each study, while
the random-effect (level two) remains as in the Reitsma et al. model. Therefore, the
Chu et al. model is a bivariate generalized linear random-effects model. This approach
yields unbiased estimation, unlike the general linear random-effect model by Reitsma
et al. which may provide biased estimates. This is an improvement because the Chu et
al. model eliminates the need for ad hoc corrections and provides reliable estimations
even with the small sample sizes of both diseased and non-diseased groups. Therefore,
the bivariate generalized linear random-effects model of MA has been a cornerstone
framework since 2006 and remains a crucial framework in the current research. For
example, in January 2024, Shi et al. [163] employed a bivariate generalized linear
random-effects model for 21 studies to estimate pooled sensitivity and specificity for the
diagnostic performance of machine learning models in diagnosing early gastric cancer

based on endoscopic images.

4.1.2 Study objective

The main goal of this study is to extend the approach from Chapter 3 to improve
the estimates of the sensitivity and specificity of the Plantix app for detecting FAW
in the maize. This estimate is made within a single dataset and in the absence of a
gold standard or alternative methods for comparison. Therefore, a statistical frame-

work is introduced in this study to handle the challenges of evaluating diagnostic test
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performance. Hence, by addressing this objective, the research offers a comprehensive
evaluation of the Plantix app’s performance in FAW detection. In addition, it can
contribute to the enhancement of its reliability for farmers, agricultural and research
users.

The remainder of the chapter is as follows. In section 4.2, the detailes of the method
used to achieve the study’s objective are presented. Section 4.3 offers a presentation
of the results obtained from the study, and section 4.4 includes some discussion of the

significance of the results while also acknowledging the limitations of the study.

4.2 Materials and methods

4.2.1 Method for extracting data from the mixture models

The data used in this chapter were extracted from the fitted mixture models (see Figure
3.5) using point estimates (see Table 3.3) in Chapter 3 . The extracted data was utilised
to build a 2 x 2 diagnostic table for each Indian state, where the table was specifically
constructed around the presence or absence of FAW. To achieve this, the ArcGIS Pro, a
comprehensive geographic information system (GIS) software suite developed by Esri,
was used to extract the Plantix app notifications within each state in India, Figure 4.1.
Based on these notifications and the fitted mixture models using point estimates, the
expected number of F and T cases were calculated for each state to build up a 2 x 2
diagnostic tables.

The process of extracting the T'P and T'N observations within each state was based
on the number of observation frequency; at each similarity rate (1 < i < 100) and the
fitted curve 7;of the true normal distribution (see Eq. 3.2). The following two steps
were applied to count the TP cases for FAW category and TN for Healthy category and
Non-FAW category:

e Step 1, the expected number of observations belonging to the fitted curve of the
T distribution 7;was calculated at each similarity rate (1 < i < 100) using the

formula:

E [frequency;] = frequency; x (7;) (4.1)

where 7;is defined in Eq 3.2
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e Step 2, the total numbers of T' cases for each state was calculated by summing

the expected numbers in first step.

e Step 3, the above two steps were applied to true fitted mixture model of FAW to
extract TP, to true fitted mixture model of Healthy to extract TN and to true
fitted mixture model of Non-FAW to extract TN.

However, the direct extraction of the FP and FN cases was a challenge from the fitted
False (F) curves. This was because the False curves captured a mix of two different
cases. For example, the FN for the Healthy category indicates that the Plantix app
stated a tested maize as Healthy while the mixture model suggested to be not Healthy.
Therefore, since we have three categories (FAW, Healthy, Non-FAW), the case belongs
to one of the two remaining categories: either FAW or Non-FAW. The FN for the Non-
FAW category indicates that the Plantix app stated a tested maize as Non-FAW while
the mixture model suggested to be not Non-FAW. Thus, the case belongs to either FAW
or Healthy. Moreover, the FP curve picked up Healthy and non-FAW cases. The true
curves were easier to define, for example, the TP curve included only maize infested
with FAW.

Therefore, to count the expected number of False cases of each category, the mix-
ture models with point estimates and the highest similarity (top-1 similarity) and the
second-highest similarity (top-2 similarity) from the Plantix app dataset were used. As
discussed earlier in Chapter 3, the diagnosis with the top-1 similarity was considered to
be the most accurate and reliable. The top-2 similarity diagnosis was also worthwhile to
determine the expected number of each singular category under the F curves. Both the
top-1 and the top-2 similarity diagnoses must have different statuses where they can-
not share the same diagnostic outcome. Hence, if the top-1 similarity was under FAW
category, the top-2 similarity should explore the two remaining possibilities groups.

The method was implemented individually for each category and for each state as
did with True cases, emphasising that the category was identified based on the fitted

mixture model for the variable top-1 similarity. The steps below were applied:

e Step 1, the category within the top-1 similarity was split into two subgroups based

on the binary categories within the top-2 similarity.

— For example, if FAW is identified under the top-1 similarity, the top-2 simi-

larity provides two subgroups: one includes FAW and Healthy, and the other
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includes FAW and Non-FAW

e Step 2, within each subgroup, the cases were merged and counted based on the

top-1 similarity value to have frequency; for (1 <14 < 100).

— For example the subgroup with including FAW and Healthy, at each top-1
similarity value (1 < ¢ < 100) the number of observations frequency; was

determined.

e Step 3, the following formula was applied to step 2 in order to calculate the

expected frequency for each ¢ within each subgroup individually:
E [frequency;] = frequency; x (1 —7;)

e Step 4, the resulting numbers for each subgroup from Step 3 were combined to

provide the total number of False cases.

Figure 4.1: The study Area is the colored region, including South states (dark brown)
and North states (light yellow).
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4.2.2 Study assumptions

To estimate the combined Se and Sp of detecting FAW on infested maize crops at state-

level in India, using Bayesian approach, the following assumptions were considered:

1. The diagnostic accuracy of the Plantix app and the mixture models (chapter 3)

is below 100% and relatively low.
2. The study assumed that the sensitivity and specificity varied across states.

3. The study assumed that the data collected from each state were independent and

identically distributed within that state.

4. The study employs a random effects model to account for the variability between
states, allowing for more accurate estimation of the overall diagnostic test accu-

racy.

4.2.3 Ceriteria for selecting states

To effectively estimate the combined sensitivity and specificity, it is essential for each

state to satisfy two criteria.

e The observed sensitivity for correctly detecting FAW (Se;) and the observed speci-
ficity for correctly detecting not having FAW (Sp;) in each state should satisfy
the Yadon index (J) criterion, which states that (Se; + Sp;) —1 > 0. According
to Flor et al. (2020), the negative value of J indicates a random diagnosis so
that the observed outcomes are obtained by chance rather than through a reliable
diagnostic procedure [164|. Additionally, Toft et al. (2007) [127] stated that the

negative value of J is not a practical value.

e The sample size should be high, otherwise the estimation is biased, and the vari-
ance may increase [165]. Moreover, Teare et al. [165] highlighted that an inade-
quate sample size may lead to either overestimation or underestimation of the test
performance. The sample size here was selected to be greater than 30 based on
the Central Limit Theorem (CLT), ensuring the sampling distribution of sensitiv-
ity (Se) and specificity (Sp) approximates a normal distribution, enabling robust
and unbiased inferences. Furthermore, sample size above 30 provides sufficient

data to approximate the binomial distribution (the likelihood of the Bayesian
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model, see below 4.2.6) for accurate calculation of proportions. Additionally, with
non-informative priors, a larger sample size enhances the likelihood’s influence on
the posterior distribution, making the estimates more data-driven and compatible

with the bivariate normal prior for logit-transformed Se and Sp.

4.2.4 Fixed-effect (FE) vs. random-effects (RE) models in meta-

analysis

In the meta-analysis are two well-known models are used; the fixed-effect model (FE)
and the random-effects model (RE). The two models differ in their unique assumptions
based on the true effect size across studies. The effect sizes are quantitative values that
estimate the extent of the difference or association among interested variables. In the
context of the MA of DTA, the effect size is the differences between the true values of

sensitivity (or specificity) and their observed values in individual studies.

Fixed-effect model

The fixed-effect (FE) model relies on the assumption that there is a unique true effect
size that is common or fixed across all studies encompassed in the analysis. Therefore,
the observed diference between individual studies is only due to sampling error (random
chance in selecting units). Hence, this model is also known as a common-effect model
[166]. However, when studies are conducted in diverse environments with different gov-
ernment regulations, languages, and cultural contexts, the assumption of homogeneity
may be violated. In such cases, applying a fixed-effects model may lead to an overly
optimistic estimate of the treatment effect, as it does not adequately account for the
inherent differences among studies. This limitation can result in misleading conclusions

regarding the generalizability of the findings.

Random-effect model

With the random-effects (RE) model, on the other hand, the true effect sizes can differ
between studies, due to sampling error and true variability in population parameters.
For example, at the state level, the effect size can change due to the differences in farmers
skill in taking images and the quality of the smartphones in terms of internet connection
or camera resolution. Moreover, the effect size can differ due to environmental reasons,

for example, the maize growth stage and severity of the infestation. The RE model
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estimates both the average effect size across studies and the variance in true effect sizes

between them [166].

4.2.5 Bivariate generalized linear mixed effects model of meta-analysis

Suppose that there were n independent studies (states) in test accuracy of the Plantix
app, labeled from ¢ = 1 to n. Each single state had maize crops infested with FAW
(n;, raw) and non infested with FAW (ni7m), where n; paw included FAW cases
that were correctly identified (T'P;) and instances that were missed to recognise FAW
(FN;). While, n,; paw addressed instances Healthy or non-FAW cases. It consisted of
accurately recognised Healthy or Non-FAW cases (T'V;) and instances that incorrectly

identified as FAW (F'F;). Therefore, the observed sensitivity in each study was Se; =

TP; _ TP;
TP+FN; = ng paw

TN; _ TN,
TN;+FP; — N, FAW :

, and the observed specificity was Sp; =

To build the bivariate model, the generalized linear mixed model with two levels
was employed, as proposed by Reitsma et al. and adapted by Chu et al. [160]. At
level one (within-study variability), the number of true positive (7T'P;) and the number
of true negative (T'N;) respectively, were assumed to follow exact binomial distribution

at each study, as suggested by Chu et al. [160]. That is:

TP; ~ Bin(n; paw, Se;).

TN; ~ Bz’n(nLW, Spi). (4.2)

The binomial distribution is a better assumption than the normal distribution that
was proposed by Reitsma et al. for the following reasons: (i) the sample size can be
small, (ii) Se and Sp are limited to the interval [0,1], and (iii) an ad hoc continuity
correction (adding 0.5) is not required when any of the counts in the 2 x 2 diagnostic
table are zero in a state [160]. (iv) the binomial distribution is also appropriate for
describing binary outcomes such as presence or absence of FAW. While the binomial
distribution is suitable for small sample sizes, and small sensitivity and specificity values,
it is important to acknowledge the above criteria.

To account for between-study heterogeneity (level two), each Se; and Sp; converts to

the logit scale. Then, the true logit-transformed sensitivities, logit(Se;) = log(z S )
and specificities, logit(Sp;) = log(lfgzbi) are assumed to follow a bivariate normal
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distribution as proposed by Reitsma et al. [160], and this distribution captures between-

study correlation. It takes the form,

Se; 7 TT
logit vy | =) alaz| T T

7 (4.3)
Spi B2 TIT2p T

where 1 is the mean of the logit sensitivities, and By represents the pooled specificity
on the logit scale. Hence, the pooled sensitivity can be calculated using the inverse

of the mean logit transformation sensitivities and can be expressed as pooled Se =

logit='(B;) = 132551 . The pooled specificity can be calculated using the inverse of the

mean logit transformation specificities and can be expressed as pooled Sp = logit~1(32) =

eP2
14ef2

A variance-covariance Matrix is €2. The diagonal parts of the variance-covariance
matrix (7’12, 722), the variance quantifies the spread or variability of the logit sensitivi-
ties 72 and the logit specificites 72. On the other hand, the off-diagonal term (7172p)
describes pairwise covariances between logit sensitivities and logit specificities, where p
represent a correlation coefficient between both terms. The covariance term reflects the
power and trend of the linear relationship between each of them and it is limited to the
interval [—1, 1], where zero covariance indicates no linear relationship between them.

Therefore, there are five different parameters that need to be estimated. Hence, at least
five independent states should be used to identify these parameters [161]. Estimation of

the above model can be achieved in both the classical and Bayesian frameworks [167].

This work focuses on Bayesian approach with the MCMC algorithm.

4.2.6 MCMC for the joint bivariate normal distribution of logit Se
and Sp

The Bayesian approach combines prior and likelihood to obtain the posterior distri-
bution, and MCMC algorithm was applied to estimate all required parameters. The
likelihood component included the two independent binomial distributions, as provided
in equation (4.2), where the TP, FP, TN and FN were estimated using equations
4.1 and 4.2.1. After the likelihood had been determined, two vague prior distributions
were outlined for the mean vector 8 and the covariance matrix €} parameters. For 3, a

multivariate normal distribution (MV N) was employed as a prior:
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B 0 0.1 0
8= ~MVN | p= , T =

Bs 0 0 0.1

In this instance, it was a weak informative prior, because there was no prior knowledge
of B, and the mean vector u, and the precision matrix X, were vague.

Here ;1 was represented by zeros to be unbiased towards certain values. Further, the
> is known as the precision matrix, and it is an inverse of variance-covariance matrix.
In other words, the precision matrix represents the inverse of variance (precision) [167].
Consequently, to reflect vague or non-informative prior of X, comparatively large values
for the variances were selected for the diagonal to allow for a large variety of potential
values. Therefore, value of 10 was chosen here as variances, equivalent to 0.1 (%) in
the precision matrix. Further, small values in the off-diagonal elements indicate no
correlation between the variables.

For the covariance matrix the inverse-Wishart distribution is often considered as
prior distribution [167, 168]. The inverse-Wishart distribution is defined with two
parameters, namely the scale matrix (S) and the degrees of freedom (df) [167, 168|.
The scale matrix is frequently initialised to be an identity matrix [167, 168|, containing
ones along the diagonal and zeros in the off-diagonal. As a result, the identity matrix
is a practical selection [168] for a prior distribution when there is no prior knowledge.
The df represents the amount of information available for estimating the parameters in
the model. Since there is no prior knowledge, df was chosen as the smallest possible
value, which is 2. The lowest df increases the uncertainty, leading the model to be more

flexible in its estimates and better capturing of the data variability [167].

. ) 10
Q" ~ Wish [ S= df =2
01

The model was fitted in WinBUGS14 software [169] and the R2ZWinBUGS package
[170] to estimate the joint and marginal posterior distributions of the model parameters.
The Markov Chain Monte Carlo (MCMC) algorithm was run for 10,000 iterations. In
addition, a warm-up period of the initial 3000 iterations were discarded to enable the
samples to reach the stationary distribution. Three chains were applied to guarantee
convergence. Subsequently, the trace plots, density plots, effective sample size (ESS),

Gelman-Rubin statistics (R) and autocorrelation plots were checked for convergence of

the posteriors and marginal posterior distributions.
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After that, posterior predictive check was applied, examining whether the model
produces samples that can represent the observed data. This procedure facilitated
the assessment of the suitability of the model to fit and explain the data. Therefore,
after excluding the initial 3000 samples, the histograms of the posterior distributions
of sensitivity and specificity iterations, with dashed line of observed sensitivity and
specificity from the data for each states were drawn. If the observed value alignd
closely to the peak of the histogram (expected of the sensitivity or specificity), it was
considered to be a good indicator that the model reflected the data well and yielded

effective findings.

4.3 Results

4.3.1 State-level data

The method was used to build a 2 x 2 diagnostic test table for each state. The Table
4.1 summarises the 2 x 2 diagnostic test table at state level for the detection of the
FAW when the Healthy category as negative, and the Table 4.2 represents the results
with Non-FAW group as the negative. The data in both Tables is sorted by the Yadon

Index value (J), starting with the highest value.
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Table 4.1: Summary of state-level data for FAW as positive and Healthy as negative.
TP means number of true positives, FP indicates number of false positives, TN re-
flects number of true negatives, and FN means number of false-negatives. P is the
total number of positives, mathematically (P=TP+FP) and the Total indicates the to-
tal number of tested cases, mathematically (Total=TP+FP+TN+FN). Se, Sp and J
indicates sensitivity, specificity and Yadon Index, respectively.

State TP FP | TN FN P Total | Se Sp J
Mizoram 2 0 3 0 2 5} 1 1 1
Nagaland 5 0 5 1 5 11 0.83 | 1 0.83
Telangana 1381 | 256 | 1057 | 685 1637 | 3379 | 0.67 | 0.81 | 0.48
Maharashtra 4004 | 719 | 2631 | 1901 | 4723 | 9255 | 0.68 | 0.79 | 0.47
Manipur 9 2 6 4 11 21 0.69 | 0.75 | 0.44
Karnataka 2209 | 499 | 1846 | 1277 | 2708 | 5831 | 0.63 | 0.79 | 0.42
Andhra Pradesh 1340 | 330 | 949 | 648 | 1670 | 3267 | 0.67 | 0.74 | 0.41
Bihar 364 | 108 | 896 | 375 | 472 1743 | 0.49 | 0.89 | 0.38
Tamil Nadu 575 152 | 316 | 303 | 727 | 1346 | 0.65 | 0.68 | 0.33
Gujarat 356 | 134 | 381 | 291 | 490 | 1162 | 0.55 | 0.74 | 0.29
Madhya Pradesh 932 | 437 | 1607 | 992 1369 | 3968 | 0.48 | 0.79 | 0.27
West Bengal 186 | 83 | 230 | 189 | 269 | 688 0.5 | 0.73|0.23
Jharkhand 82 39 | 205 | 127 | 121 | 453 0.39 | 0.84 | 0.23
Odisha 48 21 | 47 41 69 157 0.54 | 0.69 | 0.23
Assam 27 18 | 57 32 45 134 0.46 | 0.76 | 0.22
Chhattisgarh 164 |92 | 264 | 198 | 256 | 718 0.45 | 0.74 | 0.19
Uttarakhand 24 19 | 46 44 43 133 0.35 | 0.71 | 0.06
Rajasthan 256 | 315 | 1090 | 702 | 571 | 2363 | 0.27 | 0.78 | 0.05
Uttar Pradesh 409 | 431 | 1557 | 1087 | 840 | 3484 | 0.27 | 0.78 | 0.05
Punjab 113 | 128 | 321 | 238 | 241 | 800 0.32 | 0.71 | 0.03
Arunachal Pradesh | 1 2 7 4 3 14 0.2 | 0.78 | -0.02
Himachal Pradesh | 11 23 112 65 34 211 0.14 | 0.83 | -0.03
Haryana 123 | 159 | 263 | 245 | 282 | 790 0.33 | 0.62 | -0.05
Kerala 6 13 | 30 24 19 73 0.2 |07 |-0.1
Goa 2 3 4 4 5 13 0.29 | 0.57 | -0.14
Tripura 2 3 3 7 5 15 0.22 | 0.5 | -0.28

It is clear from Table 4.1 that there are some individual states where the Yadon
index, (J) value is negative (light red), or the sample size is less than 30 (light yellow).
Arunachal Pradesh, Himachal Pradesh, Haryana, Kerala, Tripura and Goa have nega-
tive values, whereas Mizoram, Nagaland, and Manipur have small sample size, of less
than 30, which may lead to misrepresentation of the true performance of the Plantix
app test. For example, a sensitivity of 1 for the Mizoram state could be due to the lim-
ited sample size of 5, and it is a good indication that there may be an overestimation.
Some states also have both a small sample size and a negative Yadon index, such as

Arunachal Pradesh, Kerala and Tripura. In addition, in the rest of the 17 states, it can
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be noted that there is a variability in the observed sensitivity (Se) and the observed
specificity (Sp) among different states, despite the diagnostic test and the classification
algorithm being exactly the same. The Table 4.1 shows the sensitivity ranging from

0.19 to 0.68. Likewise for specificity ranges were from 0.68 to 0.89.

Table 4.2: Summary of state participant data where FAW as positive and Non-FAW as
negative. TP means number of true positives, FP indicates number of false positives,
TN reflects number of true negatives, and FN means number of false-negatives. P is
the total number of positives, mathematically (P=TP+FP) and the Total indicates the
total number of tested cases, mathematically (Total=TP+FP+TN+FN). Se, Sp and J
indicates sensitivity, specificity and Yadon Index, respectively.

State TP FP TN |FN | P Total | Se Sp | J
Nagaland 5 2 2 3 7 12 0.62 | 0.5 | 0.12
Assam 27 58 51 31 85 167 0.47 | 0.47 | -0.06
Goa 2 8 11 4 10 23 0.33 | 0.58 | -0.09
Mizoram 2 4 8 7 6 21 0.22 | 0.67 | -0.11
Madhya Pradesh 932 | 1861 | 979 | 875 | 2793 | 4647 | 0.52 | 0.34 | -0.14
Odisha 48 112 | 66 55 160 281 0.47 | 0.37 | -0.16
Maharashtra 4004 | 6109 | 1873 | 2649 | 10113 | 14635 | 0.6 | 0.23 | -0.17
Uttarakhand 24 69 39 31 93 163 0.44 | 0.36 | -0.2
Telangana 1381 | 2651 | 1056 | 1263 | 4032 | 6351 | 0.52 | 0.28 | -0.2
Karnataka 2209 | 4244 | 1391 | 1988 | 6453 | 9832 | 0.53 | 0.25 | -0.22
Gujarat 356 | 694 | 214 | 305 | 1050 | 1569 | 0.54 | 0.24 | -0.22
Andhra Pradesh 1340 | 2632 | 892 1216 | 3972 | 6080 | 0.52 | 0.25 | -0.23
Tamil Nadu 575 | 1156 | 300 | 443 | 1731 | 2474 | 0.56 | 0.21 | -0.23
Manipur 9 12 5 10 21 36 0.47 | 0.29 | -0.24
Chhattisgarh 164 | 376 | 182 | 216 | 540 938 0.43 | 0.33 | -0.24
Jammu 9 42 37 25 51 113 0.26 | 0.47 | -0.27
Rajasthan 256 | 863 | 402 | 363 | 1119 | 1884 | 0.41 | 0.32 | -0.27
Himachal Pradesh | 11 73 93 59 84 236 0.16 | 0.56 | -0.28
Jharkhand 82 261 | 102 | 110 | 343 555 0.43 | 0.28 | -0.29
Haryana 123 | 346 | 107 | 152 | 469 728 0.45 | 0.24 | -0.31
Bihar 364 | 980 | 533 | 728 | 1344 | 2605 | 0.33 | 0.35 | -0.32
West Bengal 186 | 479 | 215 | 312 | 665 1192 | 0.37 | 0.31 | -0.32
Kerala 6 51 51 30 57 138 0.17 | 0.5 | -0.33
Tripura 2 6 3 4 8 15 0.33 | 0.33 | -0.34
Uttar Pradesh 409 | 1514 | 691 | 759 | 1923 | 3373 | 0.35 | 0.31 | -0.34
Punjab 113 | 410 | 170 | 236 | 523 929 0.32 | 0.29 | -0.39
Arunachal Pradesh | 1 8 3 4 9 16 0.2 | 0.27 | -0.53

On the other hand, all states in Table 4.2 have a negative J except Nagaland, which
has small sample size of 12. Subsequently, the detection of FAW when Non-FAW
as negative was excluded from further analysis due to its failure to satisfy the basic

assumptions. The misdiagnosis of maize infested with FAW, when they were Non-FAW
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as negatives, can be related to the resemblance between damage symptoms or physical
characteristics among FAW and Non-FAW. The most significant misdiagnosis within
the Non-FAW class occured with violet stem borer and spotted stemborer (see Figure

42).
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Figure 4.2: Frequency of false positive observations of Non-FAW category under the
top-2 similarity.

4.3.2 MCMUC for the joint model of the logit sensitivity and specificity

It is clear from Figure (4.3) that there is a variation between the sensitivity and the
complement of the specificity (1-Sp) based on 17 states in Table 4.1. It is also noticeable
that all states lie above the line y = x, indicating the Plantix app was more effective

at correctly identifying true positives than incorrectly identifying false positives. In
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addition, a weak positive linear correlation (Pearson Correlation=0.07) between these
two variables (Se and (1 — Sp)) can be observed. Hence, it can be expected that the
sensitivity and specificity can have a negative linear relationship. Moreover, the scatter
plot follows an ellipse, supporting a possible bivariate distribution, for instance, the
bivariate normal distribution. The bivariate model enables the analysis of their joint
distribution. This joint bivariate normal distribution serves as the prior for sensitivity

and specificity in the Bayesian framework.
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Figure 4.3: Scatter plot of the sensitivity (Se) and the complement of the specificity
(1 — Sp) from Table 4.1. The blue line represents y = x, reflecting equal values of
sensitivity and (1—specificity). Plotting Se against 1 — Sp aligns with the ROC curve.

The bivariate random-effects meta-analysis model was applied after converting sen-
sitivity and specificity into the logit scale. The results presented in detail by including
three main elements: (i) evaluating convergence, (ii) estimating parameters with their
credible intervals of uncertainty, and (iii) conducting posterior predictive checks.

the convergence of three MCMC chains was assessed to ensure the posterior esti-
mate reliability. The trace plots, density plots, ACF plots, Gelman-Rubin statistics,
and effective sample sizes were used as diagnostic tools. These tools were applied after
removing a 3000 burn-in period of 10,000 iterations. The trace plots of the three chains
for means, variance, covariance marginal posterior distributions and Se and Sp showed
convergence (Figure 4.4, left column). This is because the triple-chain trace plots for

each parameter show that they overlap and exhibit similar behaviour. Therefore, they
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have almost the same point estimated values as well as credible intervals. Moreover,

every single chain reflects stationarity and well mixing, because there is no trend and

fluctuates around a consistent value. Thus, the three MCMC chains for each parameter

are expected to converge to the same distribution. Additionally, the density plots for

each interested parameter were inspected, as shown in Figure 4.4, right column. Each

parameter with three independent chains reflects univariate distributions and overlap-

ping curves. Therefore, the plots indicates convergence to a common distribution.
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Figure 4.4: Trace (left column) and density with vertical lines to represent 95% credible
intervals (right column) plots for convergence assessment of the three MCMC chains for
model parameters (51,52, 711,712, T22 ,5€, Sp).
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As indicated in Figure 4.5 the autocorrelation function (ACF) plots which represent
the correlation within MCMC samples of each parameter, confirm convergence. This
is because the ACF plots display rapid decay of autocorrelations and fluctuation near
zero. Therefore, the plots indicate that successive samples (iterations) are independent
and hence demonstrate good mixing. As a result, the MCMC chains are sufficient to
define the posterior distributions.

While ACF plots provide a graphical assessment of autocorrelation, effective sample
size (ESS) summarises the overall efficiency through a quantitative value. Therefore,
the ESS was calculated, and the values for each model parameter were found to be
21000, which is equivalent to the total number of iterations across all three chains
after excluding the burn-in period (7000 x 3). As a result, the ratio of the ESS to the
total number of iterations (QETS(?O) for each model parameter was 100 percent, indicating
minimal correlation between successive samples (see subsection 2.5.1 in Chapter 2).
Hence, all MCMC iterations generated independent samples and proved to be valuable

in reliably estimating the distribution.
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Figure 4.5: Autocorrelation function (ACF) plot for the convergence assessment of

MCMC

In addition, the Gelman-Rubin statistic (R-hat) value was applied to all three chains
of each marginal posterior distribution. The R-hat value was equal to one for each pa-
rameter. As a result, the within-chain variance was equal to the between-chain variance.
Therefore, the chains reached convergence and provided reliable and consistent poste-
rior estimates. To sum up, based on this analysis, the MCMC chains had reached
convergence. Thus, they provided reliable posterior samples.

The logit transformation model and estimated values for the parameters are
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logit Se; ~MUN| 8= —0.023 | 0.434 —0.012

Sp; 1.208 —-0.012 0.179
where the mean logit-sensitivities (95% credible interval) and mean logit-specificities
were -0.023 (-0.352, 0.300) and 1.208 (0.992, 1.423), respectively. Moreover, the unex-
plained between-states heterogeneity in logit(Se) and logit(Sp) was measured as 0.434
(0.212, 0.861) and 0.179 (0.084,0.365), respectively. The posterior covariance between
logit(Se) and logit(Sp) was -0.012 (-0.179,0.139). Hence, the p ~ —0.043 indicates that
the relationship between sensitivity and specificity measures across states was weak and
negative (see also Figure 4.6). This suggests that the effectiveness of the Plantix app
in detecting the presence of FAW (sensitivity) does not significantly impact its ability
to correctly identify the absence of FAW. Additionally, the pooled of Se and Sp can
be obtained from the logit scale by applying the inverse logit transformation, which
can be expressed as ezp(5;)

I+exp(B;)
uncertainty for the pooled sensitivity and specificity are shown in Table (4.3):

where j = {1,2}. Therefore, the estimated mean and

Table 4.3: Summary of estimated Parameters and uncertainty (95% credible intervals,
CI) for pooled sensitivity (Se) and specificity (Sp).

Parameter | Mean= %ﬁj)),j ={1,2} 95% CI

(I+exp(B;
pooled Se 0.494 (0.413,0.574)
pooled Sp 0.769 (0.730, 0.806)

The Table 4.3 showed that the Se was lower than the Sp. Moreover, the uncertainty
in the credible intervals was narrow. This was an indication that the estimation of the
parameters was precise and more reliable. Therefore, the confidence in the results could

increase and enhance the robustness of the inference drawn from the analysis.
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Figure 4.6: Scatter plot of the sensitivity and the complement of the specificity (1 —Sp)
(black points) with estimated pooled Sensitivity and the complement of the specificity
(1 —Sp) (red point).

Further, Figure 4.7 shows the forest plots for the Se and Sp for each state, and the
pooled values at the bottom of the plots. Sensitivity values show greater variability
across states comparing with specificity values. In addition, states in the top of the
Se forest plot show the highest sensitivity, where these states have the highest sample
size as well as the known states with highest maize producing. On the other hand, the
bottom states reflect the opposit where also these states have the lowest dample size,
and less maize producing. The values of specificity appear to be relatively consistent
across most states, with values clustering near the upper range of the scale (around 0.8
to 1.0). High specificity suggests that the system or process being analysed is gener-
ally effective at correctly identifying true negatives across all states. The variability in
sensitivity indicates that there may be challenges in accurately identifying true posi-
tives in certain states, potentially necessitating targeted interventions or adjustments
to improve performance in those states.

Additionally, posterior predictive checks was applied, examining if the logit model
produced samples that represented the observed Se and Sp from the data (see Se and Sp
columns in Table 4.1). This application helped in evaluating the goodness of the model
to fit and explain the data. Therefore, the histograms of the posterior distributions

of sensitivity and specificity samples were compared with the observed sensitivity (see
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Figure 4.8) and specificity (see Figure 4.9) for each of the states were drawn. It can
be seen that in all seventeen histograms the average sensitivity and specificity of the
model aligned closely to the observed value. Thus, it can be concluded that the model

was appropriate and fitted the data well.
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Figure 4.8: The posterior distributions of sensitivity in each Indian-state with the dashed
red line representing the observed sensitivity for each state.
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Figure 4.9: The posterior distributions of specificity in each Indian-state with the dashed
red line representing the observed specificity for every state.

4.4 Discussion

The present chapter was primarily aimed to statistically estimating the pooled sensi-
tivity and specificity of the Plantix app, the Al diagnostic test for identifying FAW in
Indian maize crop. This study was based on data collected by citizen scientists via the
Plantix app, where a gold standard was unavailable. Moreover, there was no evidence
in literature about the app accuracy, poseing a unique challenge in evaluating the sen-

sitivity and specificity of the Plantix app, and similar approaches in machine learning
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and citizen science.

To achieve this, firstly, a 2x2 diagnostic table was constructed for each Indian state
from the distinct mixture models of positive and negative notifications of the Fall Army-
worm (FAW). Secondly, the meta-analysis using the bivariate generalized linear mixed
effects model, with the Markov Chain Monte Carlo (MCMC) algorithm was employed.
The model is based on the bivariate RE model by Reitsma et al. (2005), and the
adapted bivariate generalized linear mixed-effects model. Thirdly, the model was only
applied for detecting FAW when Healthy was used as negative reading, to represent the
performance of the diagnostic accuracy. This is because the data for Indian states for
detecting FAW when Non-FAW as negative failed to satisfy the criteria of the Yadon
index and/or sample size.

The 2x2 diagnostic table in Table 4.1 reflects that nine states with the highest num-
ber of tested maize crop locate in the major maize growing states, which are Karnataka
(14.8 percent), Maharashtra (10.9 percent), Madhya Pradesh (10.8 percen), Rajasthan
(10.6 percent), Andhra Pradesh (10.4 percent), Uttar Pradesh (8.3 percent), Bihar (7.9
percent), Gujarat (5.0 percent) and Tamil Nadu (3.6 percent) [24]|. Hence, these states
with larger sample sizes contribute more to the overall pooled estimate. The results
of this study demonstrate the accuracy of the Plantix app diagnostic test. For the 17
states combined, the pooled sensitivity was 0.494 (95% credible interval: 0.413-0.574).
These estimates suggest that the app test has a sensitivity in detecting the FAW when
Healthy as negatives, with approximately 50 percent of true positive cases being cor-
rectly identified by the test. For the specificity, the Plantix app had the high specificity
of 0.769 (0.730, 0.806), indicating its strong ability to identify Healthy maize crops,
while around 20 percent of Healthy crops were misdiagnosied as infested with FAW
(false positives).

In addition, the correlation between Se and Sp on the logit scale was negative and
weak. This weak correlation indicates that the Plantix app can successfully achieve
high value in both sensitivity and specificity at the same time, with limited drawbacks.
This finding holds significant value for the Plantix developers where improving the app
Se does not significantly impact the app Sp. Further, the high false negative and
low Se are not solely because of the ability to distinguish between FAW and Healthy
crops, while this also suggests the impact of other factors such as image quality and

infestation variability. Furthermore, the bivariate model is still appropriate, even with
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a weak correlation. it can effectively illustrate the trend of the relationship between
these two metrics and takes into account any possible interactions. Hence, it leads to
reliable estimates of the diagnostic performance of the Plantix app.

The misdiagnosis of maize infested with FAW, when they were Non-FAW as nega-
tives, can be related to the resemblance between damage symptoms or physical char-
acteristics among FAW and Non-FAW. The most significant misdiagnosis within the
Non-FAW class occured with violet stem borer and spotted stemborer (see Figure 4.2).
To some extent, the FAW and these two pests have similar physical characteristics in
their eggs colour as well as their shape and mass. Spotted stemborer lays eggs in masses
and on the lower surface of leaves. Yet, FAW lays eggs in masses but on the upper or
under side of leaves. However, violet stem borer lays eggs in two to four rows inside
the leaf sheath [3|. Therefore, the physical characteristics may be similar, while the
area to find those characteristics in the crop may be different. Additionally, all the
three insects make holes in maize leaves. On the other hand, both FAW and spotted
stemborer create a papery (transparent) structures on leaves [3]. In addition, the re-
semblance of larvae and adults of these pests can be subtle, with their general shapes
being alike. This may could be the reason for error or misdiagnosis. Hugo et al. [21]
underscore that there are damage symptoms and physical characteristics between the
FAW and some stemborers, which can be difficult to distinguish. They cause similar
types of damage to maize crops, including leaf feeding. Hence, Hugo et al. [21]| conclude
that understanding these similarities is crucial for developing effective integrated pest
management strategies that can be applied across multiple pest species.

To sum up, one of the key findings of this chapter is that the FAW detection must be
validated against Healthy and not non-FAW reports as there are good biological reasons
for this behavior. This chapter has become evident by providing interpretation of the
ineffectiveness of including Non-FAW category, as the data failed to meet the essential
assumptions required for robust analysis. Furthermore, this finding explains why the
odds of FAW when TN including total Healthy and Non-FAW cases (see Figure 3.9,

purple curve) concluded that the FAW intensity was not significant in the maize filed.
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Spotted stemborer

Violet stem borer

Figure 4.10: Various pictures of Spotted Stemborer and violet stem borer, pictures from
2, 3, 4].

To the best of our knowledge, this is the first study to implement the meta-analysis
techniques in a single study, yet across distinct locations. This analysis was a valuable
study for multiple reasons. (i) All states applied the same methodology within an identi-
cal timeframe, providing the valid chance to apply the meta-analyses. (ii) The bivariate
random effects logistic regression model allowed the research to consider the correlation
between sensitivities and specificities, which is often ignored in the univariate approaches
and observed in diagnostic test evaluations [171, 172]. (iii) The bivariate methodology
can consider the observed variations of the Plantix app test accuracy between states.
These variations may arise from a variety of factors. First, citizen scientists utilising
the app may have different skills, education levels and smartphones with with differ-
ing camera quality. Second factor is the prevalence and severity of FAW infestations
across different states which could also influence the accuracy of the diagnostic test. In-
dian states with heightened and more progressed FAW infestations may have displayed
clearer symptoms and more easily identified FAW availability. Therefore, these states

had higher sensitivities and lower specificities in comparison to states with lower levels
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of infestation.

Moreover, our work is the first study to estimate the sensitivity and specificity of
the Plantx app test, despite its use from 2016. Thus, it contributes to the literature on
diagnostic test accuracy by providing reliable and robust estimates of the sensitivity and
specificity of the Plantix app for detecting FAW in the maize. In addition, the same
approach can be applied to other Al applications with citizen science. Additionally,
the use of the MCMC algorithm in this analysis provided credible intervals for the
sensitivity and specificity estimates, which capture the uncertainty associated with the
point estimates [167]. In summary, the use of the bivariate random-effects logistic
regression model combined with the MCMC algorithm allowed this study to obtain
more precise and reliable estimates of the pooled sensitivity and specificity. Therefore,
this approach provides a foundation for future research which could delve into novel
methodological approaches for evaluating diagnostic tests in similar contexts.

However, while the bivariate random effects logistic regression model offered a robust
approach to estimate the pooled sensitivity and specificity, it is essential to acknowledge

the limitations of this study.

e First, the Plantix app test is the Al-based, hence, it may not be guaranteed to
always provide correct answers. In other words, it was a chance to a tested case
with high similarity to be wrong diagnosis, as well as it was a chance for a tested

case with low similarity to be correct diagnosis.

e Second, the data used for the evaluation was based on the mixture models that
did not entirely separate and overlap, potentially leading to challenges in precisely

assessing the test’s performance.

e Third, inaccuracies in the diagnostic process may be a result of the language
barriers, blurry images or varying levels of users skill. The distance between the

phone and the damaged symptom may lead to inaccurate diagnosis.

e Fourth, in our study, we initially assumed that the data collected from each state
were independent and identically distributed (i.i.d.). However, it is possible that
this assumption may not be valid in real-world scenarios, particularly when consid-
ering geographical proximity. Neighboring states may share similar environmental
conditions, agricultural practices, and pest pressures, which could lead to corre-

lated data. To address this limitation, future studies could consider models that
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explicitly account for spatial dependence.

e Fifth, the research offers a comprehensive evaluation of the performance of the
Plantix app in FAW detection using point estimates derived via the EM algorithm.
While these estimates yield significant findings about the diagnostic accuracy of
the Plantix app, they do not explicitly consider the uncertainty of the estimated
parameters. Future work could address this limitation by employing statisti-
cal methods that includes the uncertainty of the estimated parameters., such as

Bayesian estimation or resampling techniques.

Therefore, the estimation of the pooled sensitivity and specificity may not be completely
accurate and is subject to limitations [171]. Hence, the results should be interpreted
with caution, considering the potential limitations associated with the data sources
and unmeasured confounders. Thus, the results of the study should be considered as

estimates rather than definitive values.
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Chapter 5

Mapping the prevalence of Fall
Armyworm at state-level in India,
by considering an Al imperfect

diagnostic test

5.1 Introduction

In the realm of epidemiological studies in invasive pests, the accurate estimation of true
prevalence within a population is crucial. This is because the true pest prevalence esti-
mation provides numerical value of the infestation and outbreak across space and time.
Such estimation helps us to understand the pest impact on crop health, productivity
and the potential yield losses. It also aids in predicting the potential risks to human
health. In addition, the prevalence estimation level over space and time facilitates un-
derstanding the dynamics of pest transmission and strategies to control and manage
pest distribution [173]|. Implementation of these strategies is achieved through prioritis-
ing, applying efficient resources to areas with higher pest pressure. The control strategy
can include the frequent presence of pest monitoring specialists, providing farmers with
suitable pesticides or offering monitoring tools such as satellites, drones or pest traps.
Therefore, estimation of the true prevalence can support the establishment of a timeline

and plan for monitoring and surveillance of crops, preventing pest invasion as a result.
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5.1.1 True prevalence definition and estimation

Within the realm of statistics and research, true prevalence is the proportion of individ-
uals in a population with a specific characteristic (specific disease, pest or condition) at
a particular period of time [174, 175|. This metric is estimated by using a tested sample
as a representation of the population. Hence, the true prevalence is calculated by divid-
ing the number of individuals with the characteristic of interest by the total number of
individuals in the sample [175]|. In epidemiology and public health, a common method
to investigate the presence of disease or pest in a distinct population is through applying
diagnostic tests [176, 175]. Subsequently, the true prevalence in a perfect diagnostic test
is the number of individuals who tested positive, divided by the total sample size [176].
However, a perfect diagnostic test is uncommon. Accordingly, if the diagnostic test is
imperfect, the true prevalence estimation introduces bias [176, 175].

Therefore, to overcome this limitation, the concept of an apparent prevalence is in-
troduced. An apparent prevalence is the proportion of individuals in a defined sample
that test positive on a diagnostic test [176, 175]. Hence, the true prevalence and the
apparent prevalence are equal when the diagnostic test is deemed perfect; otherwise,
they differ [176, 175]. Thus, the true prevalence can be estimated from the apparent
prevalence. However, the accuracy of apparent prevalence is directly impacted by the
parameters of a diagnostic test; sensitivity (Se) and specificity (Sp) [175]. An ade-
quate sample size and a random sample should also be considered in order to reach
the accuracy of prevalence estimation. Table 5.1 presents the relationship between true
prevalence, apparent prevalence and the parameters of a diagnostic test, where the

detailed explanation can be found in subsection 5.2.2.

Table 5.1: The relationship between true prevalence (TPr), apparent prevalence (AP)
and diagnostic test parameters (Se and Sp).

Diagnostic test | Has characteristic of interest | Does not have characteristic of interest | Total

positive TPr x Se (1-TPr)x (1—Sp) AP

negative TPr x (1—Se) (1-TPr)x Sp 1- AP

Classic estimator and limitation

The Rogan-Gladen estimator, RGE (1978), incorporates both apparent prevalence and
the test’s characteristics (Se and Sp) to provide an unbiased and more accurate estima-

tion of the true prevalence [177|. It is a classic estimator of true prevalence when the
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diagnostic test is imperfect, and it is a well-known method in epidemiology [178]. The
advantage of this estimator is its simplicity, where it applies a simple formula to cal-
culate the true prevalence [178]. However, the estimator requires that both Se and Sp
should be fixed and known [178, 175|. This assumption may lead to biased prevalence
estimates. This is because it may not be practical in real-world applications [178, 175].
In addition, due to the nature of the formula, the true prevalence estimation value may
fall outside the acceptable range, which should be between zero and one [178, 164].

Consequently, researchers should be cautious when using this estimator.

Enhancing prevalence estimation with MCMC

To address the limitations of the Rogan-Gladen estimator (RGE), the Bayesian statistics
and the MCMC methods can be applied within the RGE. The MCMC methods enable
researchers to capture the variability and uncertainty of the estimated parameters. As
a result, they enhance the robustness and reliability of the true prevalence estimates.
Moreover, the true prevalence parameter can be restricted to be within the interval [0, 1]
[178]. This can be achieved by selecting the uniform prior distribution on the interval
[0, 1] for the true prevalence parameter. This assumption is commonly used in studies,
including the research conducted by Fischer et al. (2023) [104] and Flor et al. (2020)
[164].

Furthermore, different factors in real-world settings such as environmental condi-
tions or user behavior, can impact the characteristics of a diagnostic test (Se and Sp)
[104]. Additionally, the random sampling process can be considered as another factor
that influences these characteristics as well [164]. In addition, generating samples from
various populations and subgroups can lead to heterogeneity in these metrics [104].
Thus, these factors have the potential to alter the Se and Sp rather than being fixed.
Therefore, Se and Sp are often addressed as random variables to mitigate bias and
adjust misclassification [164]. However, as a result, the number of unknown parameters
in the RGE raises to be three which are Se, Sp and true prevalence [178]. Hence, the
RGE becomes an over-parameterized equation.

Consequently, this complexity of the over-parameterized problem can be handled
with the MCMC approach. Moreover, applying the Bayesian approach allows the re-
searcher to capture the variability and uncertainty associated with these parameters (Se

and Sp) [164]. Thus, prevalence estimation research has increasingly modelled them as
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prior probability distributions [178, 164, 104]. To sum up, the Rogan-Gladen estimator
within the Bayesian framework enhances the precision and reliability of prevalence es-
timates, by including the prior knowledge of true prevalence, sensitivity and specificity

parameters.

Bayesian meta-analysis in true prevalence estimation

In Bayesian meta-analysis, the Rogan-Gladen estimator (RGE) is also a powerful tool to
estimate the true prevalence. This approach can be extended to analyse data from mul-
tiple independent sources which may be conducted across diverse regions, as illustrated
by Fischer et al. (2023) [104]. The Fischer et al. method [104| depends on a single
diagnostic test across multiple regions. Therefore, the implementation of this technique
promotes measurement consistency across regions, which can reduce bias resulting. In
addition, using the meta-analysis concept by pooling data from several sources increases
the overall sample size. This indicates that the findings mitigate sampling errors, lead-
ing to more stable and reliable estimations. Further, applying the meta-analysis rather
than analysing individual studies separately, makes the comparisons of prevalence es-
timates between different geographic areas straightforward and easy. Furthermore, it

reduces the possible bias due to diverse methodologies in distinct geographical regions.

5.1.2 Statistical analysis of FAW prevalence

A range of studies have demonstrated that almost the entire country of India provides
suitable conditions for the FAW’s persistent presence. They also confirmed the presence
of FAW in various Indian states [179, 35, 136, 180, 104|. However, the statistical analysis
of the true prevalence of FAW in Indian states have not yet been fully carried out.
Therefore, a critical gap exists in our knowledge regarding the true prevalence of FAW.
Although estimating true prevalence for non-native insects such as FAW is uncommon,
statistically valuable knowledge can be gained from other disciplines.

One of the simplest and most straightforward statistical methods to estimate true
prevalence is by using the 2x2 diagnostic table. This is because the proportion of the
interesting characteristics is well-known and uncomplicated. Nevertheless, commonly,
the gold standard list, or a reliable classification method, as we discussed in Chapters
3 and 4, should be available to construct the table [181]. Yet, even in the absence of a

diagnostic table, other statistical techniques can be employed in order to estimate the
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true prevalence. Currently, the recommended technique is Bayesian modelling [182].

Several studies estimating true prevalence have been conducted using multiple diag-
nostic tests. Combining several diagnostic tests can reduce challenges with prevalence
estimation. Accordingly, the impact of bias that may be associated with a single test
can be understood and minimised. Further, it enhances the accuracy of the estimation
model where it offers a comprehensive analysis. These advantages were confirmed by
Speybroeck et al. (2023) [183] in their study. They estimated the true prevalence of
malaria infection in Peru, Vietnam, and Cambodia. They used a Bayesian framework
with three diagnostic tests when no gold standard diagnostic test was available [183].

Moreover, based on two independent diagnostic tests, Sahlu and Whittaker con-
ducted a study to estimate the true prevalence of the COVID-19 in Maryland [184].
The Bayesian framework was applied separately to each test. The incorporation of the
Bayesian approach allowed to control misclassification errors by considering the sensitiv-
ity and specificity in the model. Hence, a binomial distribution was assumed to be the
likelihood function. Its probability parameter of testing positive was estimated using
RGE. Moreover, the model included prior probability distributions for both sensitivity
and specificity. Therefore, this method emphasises that to improve the true prevalence
accuracy regardless of the diagnostic test used, the adjusting misclassification errors
should be included. This underscores the importance of applying the Bayesian method-
ology for correcting misclassification errors.

One such study that was based on a single imperfect diagnostic test, was addressed
by Fischer et al. [104]. It utilised statistical techniques to estimate the true prevalence
of major depressive disorder in Europe. Further, the approach was adopted in 27 Euro-
pean countries where the data source was based on the imperfect diagnostic accuracy
of the PHQ-8 screening tool. Therefore, to account for the variability in diagnostic
accuracy across different countries and provide more precise and reliable prevalence es-
timates, a Bayesian framework within meta-analysis was considered. In addition, this
approach applied the latent class model to classify individuals into hidden categories,
defining their health status as either a major depressive disorder, or not. By utilising
these methodologies and adapting them to the specific challenges of FAW prevalence es-
timation, researchers can develop a more accurate estimation of FAW’s true prevalence

in Indian state.
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5.1.3 Objective

The objective of this study was to estimate the true prevalence of Fall Armyworm
(FAW) in maize crop over space and time. Subsequently, the geographical scale unit in
the India was the Indian state, including states where the FAW is documented in the
study data. Further, the timeframe was from the first day of 2018 to the end of 2019 and
covered the known maize crops seasons in India, which are Kharif and Rabi. Hence, this
is the epidemic phase of the FAW in India. Therefore, this study helped to understand
the burden of FAW infestation during this critical period. To achieve this objective,

four different statistical methods were used to find a more accurate estimation.

5.2 Materials and methods

5.2.1 Data description

The data analysed in this chapter was extracted using the exact methodology that
was expounded upon in the data description subsection in the Chapter 4. A unique
addition in this chapter is that the extraction of data for each state was based on the
main seasonal timeframes of maize crops, Rabi and Kharif. Accordingly, there was
a presentation of four 2x2 Tables shown for each state. The precise period for each
season is detailed in Chapter 3, Kharif 2018 commenced on 10/6/2018 and concluded
on 3/10/2018, Rabi 2018 occurred between 10/10/2018 and 28/3/2019, Kharif 2019
extended from 10/6/2019 to 3/10/2019 and Rabi 2019 spanned from 10/10/2018 to
31/12/2019.

5.2.2 Estimating true prevalence

This research estimated the true prevalence of the FAW in maize crops through four
different methods, taking into account both temporal and spatial aspects. In terms of
time, the analysis depends on the season of planting and harvesting timeframes of the
maize crop. Spatially, the focus was on individual states, and the reasons for choosing
states as the unit of spatial scale are explained in Chapter 4.

The rationale for employing four diverse methods was based on the understanding
that while all methods might be statistically valid, there was a possibility that they
would yield different findings. Hence, the determining of the most accurate approach

and the most precise results were crucial. Consequently, this was achieved by comparing
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with our previous result (odds plots in Chapter 3) and with a real-world maize field.
Additionally, further reasons for adopting multiple methods were that due to the ac-
knowledge imperfection of Plantix app data and the lack of a gold standard. Therefore,
several methods were applied in order to be more cautious and to achieve more reliable
results. Furthermore, a third rationale was to provide a valuable and comprehensive
resource for researchers by presenting multiple methods in an individual document,
enhancing their knowledge and critical thinking.

The following explanation presents each method, extensively describing its approach
and assumptions. In addition, the methods are arranged in a sequential manner, starting
from the easiest, most fundamental, and uncomplicated ones and progressing towards
the more complex ones. Prior to detailing the methods, this study contributions are
outlined below, focusing on the key improvements and differences from existing research:

(i) In Method-1, this study assumes that each state should satisfy a non-negative
Yoadon index in order to estimate true prevalence. To the best of our knowledge, this
assumption not been taken into consideration in the previous research.

(ii) Method-2 and Method-3 combine multiple statistical techniques, including the
meta-analysis with the bivariate relationship between Se and Sp, Bayesian inference
within MCMC, and traditional inference within the Rogan-Gladen Estimator (RGE)
formula. This approach is applied to enhance the accuracy and reliability of prevalence
estimates. The initial part is to estimate Se and Sp, using the the bivariate relationship
between Se and Sp and Bayesian inference within MCMC statistical techniques. Next,
the estimated Se and Sp are substituted in the RGE formula in order to estimate the
true prevalence. Hence, these methods provide a comprehensive and powerful approach
to statistical analysis. The meta-analysis which pools data from various states, can
provide more precise estimates and improve the reliability of results.

(iii) Method-4 is similar to the model published by Fischer et al. [104]. However,
the method applied here has additional likelihood functions and prior distributions, in-
cluding priors for each parameter within it (hierarchical prior). Therefore, this method
(Method-4) can lead to increase informative and accurate estimations and has the po-
tential to reduce uncertainty. Further, having several likelihood functions means that
the model may be built based on extra variables in the data, which enhances the esti-
mation precision. In addition, with the hierarchical prior, the model’s parameters can

be represented in a greater flexibility and subtle way.
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Method-1

The estimate of the true prevalence (T'Pr) of FAW in the maize crops in each state

within a season, is easily computed by the following formula:

TP, + FN;

n;

True prevalence = T Pr; = (5.1)

where i denotes each distinct state. This formula computes the proportion of maize
crops which has the FAW among the total number of the given cases. To consider
the resulting value of the FAW prevalence in a particular state, at a given season, two

assumptions were taken into account.

Co: sample size > 30

Cl: (Sei paw +SpgFqr—1) >0
CO0 plays a vital role in mitigating the risk of bias and representing the entire study
population. Cl1 is a fundamental criterion which it must be applied to any diagnostic
test. If C1 is not upheld, the test detects the interested characteristic by chance alone.
Further, C1 is equivalent to the Youden index (J). For more details, see Chapter 4.
In addition, to calculate the confidence interval (CI) for each estimated prevalence, the
Wilson estimator (which ensures the results stay within the range of 0 to 1) was applied

using the binconf function from the Hmisc package in R.

Method-2

Implementing an apparent prevalence (AP), Serpaw, and Spz7y to estimate the true
prevalence (T'Pr) in one function can be an alternative method rather than Method-1.
This cosideration is important in the presence of diagnostic test imperfection. If the
diagnostic test is imperfect, AP is subject to the bias due to have FP or FN events
[185, 176]. Realising this bias underscores the importance of considering the test’s
imperfection by deriving the true prevalence from AP, Se, and Sp values.

Therefore, by including both Se and Sp into the estimation model, a more accurate
representation of the true prevalence (T'Pr) can be achieved. In this instance, Se
correctly accounts for the true positives, while Sp effectively excludes the false positives

[185, 176]. Subsequently, AP, the sum of the probabilities of true positives (TP) and
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false positives (FP), can be used to express the T Pr:

AP = p(TP + FP)
— p(TP/D) p(D) + p(FP/ND) p(ND) (5.2)

= Se x TPr+ (1 —Sp) x (1 —-TPr). (5.3)

To solve for the true prevalence, T Pr;

AP = (Se x TPr) —
TPr+ (1—Sp)+ (Sp x TPr)
TPr— (Se x TPr)— (Spx TPr) = —AP + (1 — Sp)

TPrx(1—Se—Sp)= —AP+ (1— Sp)

TPrx (Se+ Sp—1) — AP — (1 — Sp) (5.4)
AP —(1— Sp)
TP _
T 1—Se—Sp
AP+ Sp—1
Se+Sp—1
TPTZAP—'—(JSP_I)_

Following this, the values found in Chapter 4 for the point estimate (mean) Se

and Sp of the Plantix app accuracy can be entered into the formula (5.4) to yield

TPr — AP+(0.77-1)

= a9407T—1 - Subsequently, the estimated true prevalences displayed different

results among states due to the differences in the observed AP values. However, it is
important to note that the results obtained from formula (5.3) may exceed one or be
less than zero. Hence, to guarantee that the true prevalence estimations falls within the
proper range of zero to one, the following assumptions and conditions must be satisfied

for each state:

CO0: samplesize > 30
Cl: (1-Sp) < Se
C2: (1-Sp) <AP
C3: AP < Se

In this case, C1 is equivalent to the Youden index (J), hence, it can be represented as

Se +Sp - 1 > 0. Inability to meet the C2 yields a negative value, TPr < 0. Likewise,
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failing to achieve C3 leads to TPr > 1. To sum up, Method-2 is an amalgamation
of the meta-analysis, Bayesian inference and traditional inference to derive estimates
of the true prevalence. To calculate the credibal interval (Crl) for each state in this
method, the lower and upper credible interval values of the pooled estimate (mean) Se
and Sp of the Plantix app accuracy found in Chapter 4 can be entered into the formula

(5.4).

Method-3

There are two steps in this method and they are applied in each season. The first step
employes the Bayesian framework. The purpose of this is to estimate the pooled Se
and Sp of the Plantix app test. The bivariate generalized linear mixed effects model of
the meta analysis within the MCMC framework is used. This step is identical to the
description in Chapter 4. Moreover, the same assumptions (CO and C1) are considered
when selecting the states and before implementing the MCMC. Afterwards, the seasonal
point estimate (mean) of the Se and Sp values from the first step is utilised in the second
step. It is important to note that these values could differ between seasons. After that,
to compute the T'Pr for each state within season, the frequentist statistics formula (5.4)
is applied. In addition, the above-mentioned assumptions C2 and C3 are also taken into
account to guarantee relaible estimations. After that, to calculate the credibal interval
(Crl) for each state in this method, the lower and upper credible interval values of the
pooled estimate (mean) Se and Sp of the Plantix app accuracy found in each seaseon,
can be entered into the formula (5.4).

To sum up, the integration of the meta-analysis, Bayesian inference and traditional
inference to estimate the diagnostic test accuracy and true prevalence, can capture
complex relationships between prevalence, sensitivity, and specificity. As a result, it
can enhance the estimation accurcy. Moreover, the consideration of the temporal trends
and spatial variations in determinants of true prevalence offers more precise estimation.
Therefore, this method contributes an advanced and thorough approach to provide a

more comprehensive understanding of the true prevalence.

Method-4:

This method is a Bayesian hierarchical model and was applied separately in each season.

The model assumed binomial distributions as the likelihood functions for the counts of
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true positives T'P;, true negatives T'N;, and for the total positive tests r; (T P; + F'F;).
The binomial distribution was commonly used as likelihood for r; [185, 176|. Hence,

the Se, Sp and AP; were the probability of success parameters in each state.

T P~ Binomial(n;, paw, Se;).
T'Ni~Binomial(n, = SPi)-

ri ~ Binomial(n;, AP;).

n; is the total sample size in each state within a season. n; paw is the total number
of (T'P; + FN;) in each state i , while n; 74y is the total number of (T'N; + F'F) in
each state ¢. The C0O and C1 should be also considered for the selected states in each
season. To construct the marginal distribution for the true prevalence for each state,

the MCMC steps incorporate the RGE:
AP, = Se; x TPr; + (1 — Spl) X (1 — TP?“I)

Moving on to the prior distributions for each of parameters of interest, the non-
informative prior was used to represent the prevalence parameter in each state and
within each season. A beta prior was used for the prevalence T Pr; with a uniform
distribution, beta(1,1). This beta distribution is a flexible distribution that is often used
to model probabilities or proportions, as defined on the interval [0,1]. Additionally, to
account for the potential variability, and correlations between Se and Sp, a multivariate
normal prior distribution for the logits of sensitivity and specificity with mean vector

B and covariance matrix ) was applied.
TPr; ~ beta(1,1).

Se; T2 1T
logit uvn | =) ala=| ™ ™™

Spi B2 TIT2p T

Further, prior distributions for the parameters within the multivariate normal dis-

tribution were included. For the mean vector (3;

B8 0 01 0
8= ~ MV N(u,prec) = MVN | p= , U=
Bs 0 0 0.1

Additionally, the prior distribution of {2 matrix was
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. ) 10
Q7" ~ Wish | S§= ,df =2
0 1

where Wish indicates an inverse-Wishart distribution. In this situation, §2 is to model
the variability in sensitivity and specificity parameters among studies. The hierarchical
priors enable this study to achieve flexible modeling of the parameters. Further, the
model takes into consideration the uncertainty in the parameters and incorporated
prior knowledge about the relationships between sensitivity and specificity values across
studies. In addition, the model does not explicitly specify a prior distribution for AP;;
instead, it is indirectly shaped by the priors of Se, Sp and T Pr;. This is because AP,
is a function, or dependent variable, of these three parameters.

Finally, after specifying the model, the next step involves running the MCMC algo-
rithm to estimate the posterior samples of the parameters, particualarly the marginal
posterior of the prevalence. Stan, a probabilistic programming language, [186] is used
for MCMC sampling, with three chains, 10,000 iterations, and 2000 warm-up itera-
tions. The trace plots, R-hat values, effective sample size (ESS), and autocorrelation
plots (ACF) are examined to assess model convergence. Further, the MCMC algorithm
is run twice once with the original sample size for each state, and again with 10,000
duplicate observations for each included data variable in the model. This carries out
in order to maintain consistency, and reduce uncertinity as the variance decreased and

indicated a negative relationship with the sample size.

5.3 Results

This section presents the prevalence of FAW at state level in India over four different
seasons; the maize crops periods from 2018 to the end of 2019. This timeframe is the
epidemic phase of the FAW infestation in India. Therefore, to gain a comprehensive
understanding of the prevalence, establishment, and distribution of the FAW during the
period of the outbreak, four different statistical methods were applied. Hence, by using
a variety of methods, the most accurate representation of the prevalence rates could be
identified. Accordingly, this section is divided into four parts, where each represented a
specific season. Within each season, the findings from four different statistical methods

are presented in details:
1. Prevalence of FAW during Rabi 2018
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2. Prevalence of FAW within Kharif 2018
3. Prevalence of FAW in Rabi 2019

4. Prevalence of FAW across Kharif 2019

5.3.1 Estimation of the Prevalence of FAW at state-level during Kharif
2018

The following Table presents the prevalence estimation in Kharif 2018 across Indian
states. The states in Table 7?7 are arranged in descending order based on the total

sample size (total).
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5.3. Results

Method-1

We employed Method-1 to estimate the prevalence (T'Prl) of FAW infestation at
the state level across India. The prevalence was calculated using the formula T Pr.
For example, in Andhra Pradesh, among 230 maize cases, 58 were classified as TP
notifications, while 66 were erroneously diagnosed as FN. Hence, by applying the

prevalence formula (5.1), the prevalence of FAW in Andhra Pradesh was estimated

as TPrl = (58;536) = 0.54 equivalent to 54 percent.

On the map shown in Figure 5.1, the prevalence estimated values are shown, where
the darker colours reflect the higher level of prevalence. As may be observed, the
FAW prevalence level across all studied states varied between 0.34 and 0.54. Andhra
Pradesh (54 percent prevalence), Karnataka (53 percent), Tamil Nadu (51 percent) and
Telangana (50 percent) in the southeast of India reocrded the highest level of infestation
compared to other regions. During this season, Chhattisgarh (41 percent) which is
located in North India, bordering Telangana and Andhra Pradesh to their north, also
exhibited a high level of infestation.

Further, Tamil Nadu and Andhra Pradesh are coastal states. It is possible that the
FAW entered India via the coastline and the initial appearance was therefore in the
southern states. Moreover, Gujarat which is the most westerly state in India, had a
prevalence of 41 percent during this season, making it among the highest rates observed.
This could be due to the state having coastal boundaries on all but one sides, to the east.
It is surrounded by the Arabian Sea on the west and southwest, the Gulf of Khambhat

on the south, and the Gulf of Kutch in the northwest.
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Figure 5.1: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level using Method-1. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour suggests
that the area is not under study.

Method-2

In addition, Method-2 was applied to estimate FAW prevalence (T'Pr2) during Kharif

2018 in each of the states under study. For example, the estimated prevalence in Kar-

AP—(1-Sp) _ 0.45—(1—0.77)
Se+Sp—1 — 0.49+0.77—1

nataka was T Pr2 = = 0.83 or 83 percent. The same formula
was applied to each state, where the only differences between states was the AP rate.
Seven states Chhattisgarh, Uttar Pradesh, Maharashtra, Madhya Pradesh, Rajasthan,
Bihar and Himachal Pradesh have negative T'Pr2 values. This occurred because these
states failed to satisfy condition-two (C2), where C2 is specified as 1 — Sp < AP, or
alternatively, (1 —Sp) — AP > 0. Hence, the AP values in these states were lower than
FPR (1 — Sp). As a result, Method-2 when applied in this season, the method esti-
mated the FAW prevalence for nine of the fifteen states. The estimates ranged between
0 percent in Haryana to 83 percent in Karnataka.

Furthermore, Method-2 agreed with Method-1, suggesting that FAW originated in
the coastal states of southeast India. Based on Method-2 findings, Karnataka had the
highest prevalence at 83 percent. An explanations for this could be that Karnataka

was the first state in India to officially report cases of FAW. However, the 83 percent

value may potentially be an overestimation at the start of the FAW season in India.
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5.3. Results

Moreover, 64 percent of maize crops were infested with FAW in West Bengal, which is
located on the eastern coast. This may also be overestimated and less certain, because

its rate was higher than the costal south states.
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Figure 5.2: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level, using Method-2. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

Method-3

As part of this method, the MCMC algorithm was employed to estimate the pooled Se
and Sp for Kahrif 2018. To ensure the reliability of posterior estimates, the convergence
of the three MCMC chains was assessed. Accordingly, four various diagnostic tools were
evaluated to test convergence, after discarding a burn-in period of 3,000 iterations, a
total of 10,000 iterations were conducted.. The trace plots of both parameters (Se and
Sp) indicate an overlapping of the three chains and that they are well-mixed. Further,
both parameters had single peak distributions as can be seen in the density plots. This
is an indication that the model was able to estimate the parameter space. In addition,
the ACF plots of both parameters show a sharp decrease in autocorrelation values
and fluctuate around zero, which in turn, indicates a well-mixed chain and that they
effectively explore the posterior distribution, thus confirming convergence. Furthermore,

the parameters have R = 1. The ESS rates for both parameters were 100 percent which is
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5.3. Results

the highest possible value, indicating that all samples effectively contributed to estimate
the parameter spaces as well as being well mixed and independent samples. Therefore,
mixing well, overlapping chains, unimodel distributions, ACF values fluctuating near

zero, R = land the maximum rates of ESS provide a reliable and accurate estimation

of the MCMC.
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Figure 5.3: Assessing the convergence of three MCMC chains (post burn-in) for sensi-
tivity and specificity during Kharif 2018, using trace plots in the first row, density plots
in the second row, and ACF Plots in the last row.

Hence, the estimated pooled Se and Sp for states during Kharif season is shown

in Table 5.5. By comparing the estimated Se and Sp for this season with the entire
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period (Method-2), it can be observed that the Se is lower. On the other hand, the
Sp is higher. This variability must not be overlooked. It may highlight that assessing

sensitivity and specificity for each season may result in improved accuracy.

Table 5.5: Point estimates and credible intervals of MCMC summary results for sensi-
tivity (Se) and specificity (Sp) parameters during Kharif 2018.

’ \ Mean \ 95 Crl ‘

Pooled Se | 0.376 | 0.243, 0.526
Pooled Sp | 0.816 | 0.756, 0.866

Following this, the implementation of the TPr3 formula was undertaken to estimate
the FAW prevalence during the Kharif 2018 season. The estimated prevalence rates can
be seen in Table ??tab:Kharil8prevalence under the column labeled TPr3. During this
season, the TPr3 estimation was possible for just eight states. It was also verified that
the outbreak had originated along the southern coast states. However, the estimations
seem to be exaggerated. This is because it is not logical for the prevalence to be so
excessively high in the first season. Further, the estimation exceeded that of the previous
method for this season. One explanantion for this discrepancy may be attributed to the

higher Sp value.

D Not satisfy
[Jo-02
B 0.2-04 ﬂ
-0.6
-08 )
-1.0 ‘e

Figure 5.4: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level using Method-3. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.
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5.3. Results

Method-4

During this season, Method-4 could derive estimates for only nine of the states included
in the study. Those included met the criteria of having a sample size greater than 30
(C0) and non-negative J value (C1). Following this, upon examining the MCMC with
10,000 iterations and three chains, along with a burn-in period of 2,000 iterations, it
was noted that only two states Telangana and Karnataka exhibited signs of convergence

(see in the Appendix Figure A.1).

Tamil Nadu = — - 9 O
Jharkhand | —— s m——— < O
Chhattisgarh { —— s m———— - —a(O—
Gujarat 1 Omm - O
3
% Karnataka = —a(O— b O
Andhra Pradesh + —O— " O
Telangana * —(O— - O
Madhya Pradesh { —— s u—s——— - — (O
Maharashtra —0— " O
0.00 025 0.50 0.75 1.00  0.00 025 050 075  1.00
Prevalence Prevalence

Figure 5.5: Forest plots for the mean posterior prevalence estimates and credible inter-
vals (Crl) of the Indian states during Kharif 2018, where the bold line indicates 50%
Crl, and the thin line indicates 95% Crl. The left plot represents forest plot for the
original sample size for each state, while the right panel illustrates the forest plot for
each state after scaling the sample size by a factor of 10,000.

As previously noted, the model is experiencing low convergence, likely due to the lim-
ited sample size. To address this, the proposed solution is to augment the obsewrations
by multiplying each value of TP, TN, FP, and FN by a large constant (10,000) and then
rerunning the analysis. However, it is important to note that, augmenting the sample
size for each population has no effect on the point estimate. Nevertheless, it effectively
diminishes uncertainty through lowering the variance within the population. This is

because the reduction in variance is directly correlated to the augmentation in sample
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5.3. Results

size (n), with a mathematical relationship of 1/n.

As a result, it can be seen in the right panel of Figure (5.5) that the forest plot
demonstrates a decrease in uncertainty in all nine states. In addition, it can be seen
that the trace plots in Figure A.2 in Appendiz suggest a visual evidence of convergence.
To elaborate, the trace plots for the nine states were mixed effectively. Consequently,
this procedure led to convergence for all states. Moreover, by comparison with Method-

1, the estimated values were matched.
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Figure 5.6: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level using Method-4 after scaling the sample size for each state by a factor
of 10,000. A higher prevalence is associated with darker colours, while the lightest yellow
indicates unsatisfied assumptions. No colour indicates that the area is not under study.

5.3.2 Estimation the prevalence of FAW at state-level during Rabi
2018
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5.3. Results

Method-1

Based on Method-1 and during Rabi 2018, the highest infestation prevalence was esti-
mated at 69 percent in Tamil Nadu, while in Bihar, which is located in the northeast,
displayed the lowest prevalence at 19 percent (see Figure 5.7). Further, there was a
significant escalation in the FAW prevalence intensity in Tamil Nadu, Telangana (68
percent), and Andhra Pradesh (65 percent), when compared with the previous season
and when appling the same method. Furthermore, a slight two percent rise in prevalence
was observed in Karnataka. This season was the time at which India officially acknowl-
edged the presence of FAW in the country, starting in Karnataka. The announcement
may have prompted control and mitigation measures, that restriced the magnitude of
the escalation in Karnataka.

Moreover, Maharashtra recorded a substantial increase in the prevalence, rising from
39 percent to 57 percent. This increase might be linked to the state’s location, where
Gujarat lies on its western border as well as Karnataka, Chhattisgarh, and Telangana on
its southern and eastern boundaries. In the North India, Haryana and Bihar were found
to have prevalence rates of 47 percent and 19 percent, respectively, while there were no
prevalence recorded in these states during the previous season using this method. It
is worth mentioning that Bihar cultivates more maize in the Rabi season than in the
Kharif season in [40]. Further, this method failed to estimate the FAW prevalence in
Chhattisgarh, Madhya Pradesh and Jharkhand during the same season, despite these
states having recorded a prevalence during the Kharif season. Compared to Kharif,

these states are anticipated to have planted fewer maize crops during this season.
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Figure 5.7: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-1. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area does not included under this study.

Method-2

Based on this method, not all states satisfied C2 or C3, with some notable exceptions
Karnataka, Maharashtra, Chhattisgarh and Gujarat. The prevalence estimation for
these states were 79, 83, 22 and 34 percent, respectively. Compared to Method-1, this
approach assigned a higher value to Karnataka, Maharashtra and Chhattisgarh. Figure
5.8 shows the FAW prevalence based on this method.
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Figure 5.8: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-2. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.
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Method-3
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Figure 5.9: Assessing the convergence of three MCMC chains (post burn-in) for sensi-
tivity and specificity during Rabi 2018, using trace plots in the first row, density plots
in the second row, and ACF Plots in the last row.

Further, the MCMC was employed to estimate the pooled Se and Sp for Rabi 2018. To
ensure the reliability of posterior estimates, the convergence of the three MCMC chains
was assessed. After removing a 3000 burn-in period of 10,000 iterations, four various
diagnostic tools were used to test convergence. The trace plots of both parameters (Se
and Sp) display overlapping of the three chains, thus indicating that they are well-mixed.

Although Se exhibits a wider variation, both parameters had single peak distributions
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as can be seen in the density plots. This is an indication that the model was able to
estimate the parameter space.

In addition, the ACF plots of both parameters show a rapid decline towards zero,
which further indicates an effective exploration of the posterior distribution, thus con-
firming convergence. Furthermore, the parameters have R=1. Additionally, the ESS
rates for both parameters were 100% which is the highest possible value. This indicates
that all samples effectively contribute to estimating the parameter spaces as well as well
mixed and independent samples. Hence, well mixed and operlapping chains, unimodel
distributions, ACF values fluctuating near zero, R = land the maximum rates of ESS,
provide a reliable and accurate estimation of the MCMC. Therefore, Table 5.7 sum-
marizes the pooled Se and Sp for states during Rabi 2018. To compare the estimated
Se and Sp for this season with the whole period (Method-2), it can be noted that if
rounded to one decimal place, the values are the same. Nevertheless, with additional

decimal places, the values for the entire period were lower than those for this season.

Table 5.7: Point estimates and credible intervals of MCMC summary results for sensi-
tivity (Se) and specificity (Sp) parameters during Rabi 2018.

’ ‘ Mean ‘ 95 CI ‘

Pooled Se | 0.543 | 0.310, 0.754
Pooled Sp | 0.828 | 0.734, 0.901

Moving forward, the study commenced with applying the TPr3 formula in order
to estimate the FAW prevalence during the Rabi 2018 season. Table 5.6, within the
column entitled TPr3, presents the estimated prevalence values. The TPr3 indicated
valid values, which should be between 0 and 1, for Maharashtra (72 percent), Karnataka
(75 percent), Gujarat (32 percent), West Bengal (10 percent) and Chhattisgarh (40
percent). From the map (see Figure 5.10), it is evident that Method-3 could not estimate
the prevalence rates among the states along the southeast coastline. This is because
the apparent prevalence exceeded the sensitivity in these states. Hence, the FP cases
exceeded the TP cases. As a result, the true prevalence values were overestimation.
To sum up, the formula failed to estimate the majority of states, which resulted in an

inaccurate representation of the prevalence dynamics during this period.
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Figure 5.10: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-3. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

Method-4

During this season, Method-4 could estimate prevalence for only eight of the states
examined in the study (see Figure 5.11). This was since these were the states that
had sample sizes higher than 30 and non-negative J values. However, by running the
MCMC method for all those states, the three states with lowest sample size had a high
level of uncertainty, as demonstrated on the trace plots of Figure A.4. In other words,
these states were non-convergence. All states, including the ones with the lowest sample
sizes had R equal 1 and ESS rates ranged between 72% to 90%. Therefore, only the
first five states were convergent. The prevalence rates for Andhra Pradesh (65 percent),
Telangana (68 percent), Maharashtra (57 percent), Karnataka (56 percent) and Tamil

Nadu (70 percent) were exactly the same as in Method-1.
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Figure 5.11: Mean posterior prevalence estimates and credible intervals (Crl) of the
Indian states during Rabi 2018, where the bold line indicates 50% Crl, and the thin line
indicates 95% Crl. The left plot represents forest plot for the original sample size for
each state, while the right panel illustrates the forest plot for each state after scaling
the sample size by a factor of 10,000.

Increasing the sample size to improve the convergence was only needed for the three
states, Bihar, Gajurata and Haryana, as there was an indication that the first five states
with highest sample size reached convergence. For consistency, running the MCMC was
repeated by multiplying the sample size for each state by a constant factor of 10,000.
The right-hand plot of Figure 5.11 demonstrates a decrease in uncertainty across all
eight states. Further, all these states successfully estimated by the MCMC method
showing convergence. The estimated values remain consistent for the first five states,
while for the remaining three states, there is a noticeable improvement, warranting
their consideration as reliable estimates. Notably, these values align precisely with

those obtained using Method-1 (see Figure 5.12).
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Figure 5.12: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-4. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

5.3.3 Estimation of the prevalence of FAW at state-level during Kharif
2019
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5.3. Results

Method-1

During Kharif 2019 and with applying Method-1 approach, fifteen states met the CO
and CI1 criteria. Hence, the FAW prevalence of these states are presented in the map
(see Figure 5.13). The map clearly shows that North and South India were comprehen-
sively impacted by the FAW prevalence. Maharashtra had the highest prevalence, at 68
percent. Using this method, the seasonal increase of the FAW prevalence in Karnataka
was marginal, yet it increased gradually from season to season. In Kharif 2018, the
prevalence rate was 53 percent, subsequently in Rabi 2018, it increased to 55 percent,
and during this season it reached 59 percent. This may have been prompted by the
great efforts that were made in the state to manage the FAW distribution and pre-
serve maize. Additionally, it is possible that the maize quantities and FAW infestation
remained relatively stable in this state across all seasons. In addition, West Bengal,
Haryana and Punjab failed to meet C1 criteria during Kharif 2018 and Kharif 2019.
One possible explanation could be that there was a more limited amount of maize crop

planted during the Kharif season.
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Figure 5.13: Mapping the prevalence of FAW infestation in the maize crop during
Kharif 2019 at state level using Method-1. A higher prevalence is associated with
darker colours, while the lightest yellow indicates unsatisfied assumptions. No colour
indicates that t