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Abstract

Invasive plant pests significantly threaten agriculture, ecosystems and economies. Effec-

tive control requires early pest detection and reliable spread assessment, which can be

addressed through statistical analysis. This thesis develops novel statistical approaches

to data analysis and modelling for two invasive insect species: Fall Armyworm (FAW)

in India during the period 2018-19, and the Emerald Ash Borer (EAB) epidemic in the

USA from 2002 to 2020.

The decision-making for prevention and control is often hampered by the lack of

data or their low quality. Novel detection methods have been developed, but they have

not yet been analysed rigorously. The FAW data are based on a citizen science approach

utilising Plantix, an innovative method that integrates artificial intelligence (AI) with

mobile technologies. Constructed by Progressive Environmental and Agricultural Tech-

nologies (PEAT) GmbH, it can provide comprehensive monitoring of geographical areas

and early detection of pest invasions. However, there is no gold standard, and the data

need to be statistically interpreted before they can be used to estimate prevalence.

For the EAB data, a different approach is needed as only an initial true positive

case was provided from each observed infested county in the USA. However, we also

have data on the host (ash trees) density and climate forcing. For the two cases, the

main research objectives are: (i) developing a rigorous framework for estimating FAW

prevalence and using it to estimate the true prevalence in different parts of India, and

(ii) developing a continental-level model for the spread of EAB in the USA.

Both approaches apply frequentist and Bayesian techniques, using classification

methods and several diagnostic performance tools to compare model outputs with data.

A classification model, a bi-normal mixture, was used to estimate the True and False

FAW observations, using the data classification by the Plantix mobile app and our as-

sumptions. A Bayesian meta-analysis estimates pooled test sensitivity and specificity,

assuming the logit sensitivity and specificity follow a multivariate normal distribution.
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Four distinct methodologies were implemented to select the most appropriate model

for estimating FAW prevalence, including frequentist methods and the Bayesian meta-

analysis with stochastic sensitivity and specificity.

In the case of the EAB, a colonisation-dispersal model was adapted and utilised

to include climatic (annual average of growing degree day), non-climatic (ash intensity

habitat) conditions, and dispersal mechanisms. The model was fitted to the best avail-

able data, quantifying the uncertainty in the model and its predictions and assessing

its performance in tracking the spread of EAB over two decades.

The thesis analysis yields key findings for both FAW and EAB. These findings

classify positive and negative Plantix app observations as True or False, evaluate app

accuracy and enable estimation of FAW prevalence. Additionally, the evaluation of

the data sensitivity and specificity for each maize season is more accurate than for the

entire period. Significant factors for EAB colonisation are ash species availability, and

the adult EAB flights dispersal distance.

The results also highlight that the citizen science and mobile technologies can aid

the government in early pest detection for effective spread control of FAW, EAB, and

similar pests, and may even combined with inspector monitoring to limit the EAB

spread.
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Figure 1: Graphical Abstract
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Chapter 1

Introduction

1.1 What are invasive species?

Invasive non-indigenous (non-native, naturalised, exotic, alien) species are species that

have moved accidentally and introduced into a new geographic area. They also can

persist, reproduce, spread and cause negative impacts in the local ecosystem and biodi-

versity [6, 7]. They can disrupt the ecological balance when they encounter mismatched

abiotic and biotic factors in their native habitats [8]. The IUCN (International Union

for Conservation of Nature) Red List of Threatened Species and the 2019 IPBES (Inter-

governmental Science-Policy Platform on Biodiversity and Ecosystem Services) Global

Assessment Report on Biodiversity and Ecosystem Services highlight that the invasive

non-native species are one of the primary reasons that leads to a reduction in bio-

diversity and causes species extinctions. In addition, they rapidly threaten food and

livelihood security [9]. Additionally, Early et al. (2016) [10] found that in the 21st

century, these species are highly susceptible to invasive on the one-sixth of the global

land surface. Hence, they are a global concern [11].

In addition, the alien species can be transported by abiotic dispersal such as wind,

animal, or water. They can also move independently [7] or due to human actions such as

by carrying non-native organisms in material behind native area [7, 12]. It is possible for

airplane wheels to carry species to a new region. Additionally, cargo ships can transport

marine alien species into new areas, since they sometimes carry ballast water to stabilise

the ships load. Then, the ballast water that may contain marine organisms is released

into the port. Moreover, cargo ships and trucks or cargo packaging materials could carry

non-native species into containers. About 51.8 percent of solid wood packing materials
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shipments had alarming infection rates where can carry wood-boring insects, according

to a collaborative report published by the United States Department of Agriculture

(USDA), the Animal and Plant Health Inspection Service (APHIS), and the United

States Forest Service (USFS) [12]. Further, the international trade of live plants has

been one of the main factors to introduce alien forest insects and pathogens into the

USA and Europe. For example, between 1860 and 2006, around 69 percent of non-

native forest insects and pathogens entered to the USA through international trade of

live plants [13].

1.2 Threat of invasive insects

Although invasive non-indigenous species can be plants, insects, vertebrates, or marine

organisms, this work will focus on insects. Non-native insects have increased rapidly

around the world, which endanger native biodiversity, ecological, economic, and human

life [14]. Further, invasive non-native insects can, through direct interactions, disrupt

the native ecosystem balance and contribute to decrease in native biodiversity. More-

over, they consume plants or spread disease [15, 16]. In addition, they might act as

parasitoids and lay their eggs inside other insects. After hatching, the emerging non-

native larvae harm the native ones [16].

In addition, non-indigenous invasive insects have had marked economic effects on

different sectors, such as forestry, agriculture, society and trade. They have been esti-

mated to cost the world economy more than US$ 70 billion yearly [17, 18]. For exapmle.

in agriculture, they incur billions of dollars of losses by reducing yields, increasing pes-

ticides usage, spreading plant pathogens and imposing trade restrictions [19]. United

States of America (USA) governments spent billions of dollars per year to eliminate

non-native forest insects, to limit their distribution to new areas, and to eradicate at

risk and dead trees from public areas for public safety [13].

Moreover, householders incur financial costs to remove or replace infested trees.

Their property prices also may be reduced due to the risk of the infested trees and less

attractive home views [13]. Further, global health consumed around US$ 6.9 billion per

year to treat human disease because of invasive insects [20]. In spite of the above given

costs, the cost of non-indigenous invasive insects is still underestimated. Difficulty in

quantifying costs, insufficient government funding and lack of international coordination

or cooperation are factors that cause this underestimation of costs of the alien invasive
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insects [20].

In this thesis, the focus is on two alien insects that have recently become serious

pests in some parts of the world: the Fall Armyworm (FAW, Spodoptera frugiperda)

on maize crop in India, and the emerald ash borer (EAB, Agrilus planipennis ) in ash

species in the USA.

1.2.1 Fall Armyworm, crop non-native insect, in maize

The Fall Armyworm (J. E. Smith), is a highly mobile and dangerous pest, which was

first recognised by Sir James Edward Smith [21, 22]. The pest is classified from the genus

Spodoptera known as armyworms, and the Noctuidae group which is one of the causes

of agricultural financial losses around the world [21]. It infests a wide range of host

plants with approximately 100 recorded types under 27 families. However, the preferred

species is the Gramineae family of plants, including the economically essential ones such

as maize, millet, sorghum, sugarcane, rice and wheat. Different reports indicate that

there are other crops such as cowpea, groundnut, potato, soybean and cotton, which are

infested by this pest [23]. It is notable that between all these host plants, FAW caused

the most damage in maize [24]. Hence, the subsequent sections will discuss the FAW

around the world and particularly in India, and at the end will highlight the significance

of maize.

FAW around the World

The Fall Armyworm is native to the tropical - subtropical regions of the American

continent, where it is found in Mexico, Brazil, the USA and Argentina [25, 26]. In Brazil,

the yield of maize crops has been reduced by 98–100 percent due to Fall Armyworm [27].

In addition, in 1845 in western Florida, FAW caused massive damages to various crops

such as corn, sugar cane, and rice [28]. One farmer in 1870 consumed US$1,000 because

of damage caused by the FAW to several crops [28]. Hence, it posed a considerable

damage even in its original habitat.

In 2016, it was found in West and Central Africa and subsequently invaded all the

countries of sub-Saharan Africa [25, 26]. In addition, in 2018, it moved to Asia through

India and then expanded to Bangladesh (December 2018), Myanmar (December 2018),

Nepal, Sri Lanka and China (January 2019) and South Korea and Japan (July 2019)

[29]. The map in Figure 1.1 shows FAW distribution around the world since 2016. This
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pest, which only grows up to 2-cm long, extended to more than 50 countries in Africa

and Asia damaging crops, especially maize [30, 29, 26]. In February 2020, FAW also

invaded Australia and attacked more than 350 commercial and non-commercial hosts

[31].

In fact, the factors that helped FAW to spread fast over the continent was the

importation of non-genuine species for economic purposes. Moreover, unintentional

infected plants arrived in shipping containers were carried by tourists or hidden in the

imported ornamental plant soil [21]. Other factors that contributed to its spread were

its predilection to attack many crops, especially the maize. Furthermore, it has ability

to produce numerous eggs, and its capability to travel over wide distances [21].

Figure 1.1: FAW Invasion around the World since 2016, taken from [1].

Fall Armyworm invasion of India

In mid (May-June) 2018, Spodoptera frugiperda was detected first on the maize crop in

many locations in Karantaka, India. Then, the pest expanded to all southern states,

then to western Maharashtra and Gujarat, and eventually to eastern states [30]. Be-

tween July and August 2018, severe damage was reported in Chikkaballapur, Hassan,

Shivamogga, Davanagere and Chitradurga which are located in Karantaka [23]. The

pest was also observed in Andhra Pradesh, affecting the maize growing areas of East

and West Godavari districts, Srikakulam and Vizianagaram in August, 2018 [30]. In

just two years, FAW has grown in most parts of India [32].
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Life cycle of the Fall Armyworm and visible characteristics

The complete worm lifecycle of FAW varies and depends on the prevailing natural

conditions. It averages 30 days in summer, 60 days during the spring (Rabi) and

autumn (Kharif), and during the cold season (winter), it can be prolonged from 80 to

90 days [33]. Male and female adult moths mate nocturnally; from dusk to midnight,

and are most active during warm, humid evenings. The adult female moth lays between

1,500 and 2,000 eggs in her life time, on the inner side of the whorl or on the under

surface of the leaf [33, 23]. She deposits her eggs in a mass which is arranged in a layer,

or sometimes layers, although most eggs are distributed on a single layer. The number

of eggs per mass is very different but is usually between 100 to 200. During laying,

the female arranges fine protective grayish scales which are loosened from her body to

cover the eggs and the egg mass, over which this cover has a moldy appearance [33, 28].

The eggs are brownish yellow and are of dome shape, where the diameter is about 0.4

mm and the dome height is 0.3 mm [33]. The duration of the egg stage ranges between

two and ten days, where it depends on temperature conditions, rather than humidity,

whether in a dry or moist place [28].

After hatching, the larvae develop through six instars; around 14 days in the summer

with 30 days during cool weather. The instars differ slightly in physical appearance and

pattern. The average development time of each instar in order was determined to be

3.3, 1.7, 1.5, 1.5, 2.0, and 3.7 days at 25°C [33]. The larvae in the early instar (1st

instar) are greenish with a black head, where the head width is around 0.35 mm and its

body length is about 1.7 mm. Larvae in the second and third instar are orangish and

have a black head of 0.45 to 0.75 mm in width and attain a length of about 3.5 and 6.4

mm, respectively. In the second, and mainly the third instar, the dorsal surface of the

body becames brownish, then white lines begin to form. Larvea from the fourth to the

sixth instars have head widths of 1.3, 2.0, and 2.6 mm, respectively, and their heads

are mottled reddish brown and white. Moreover, the body lengths are 10.0, 17.2, and

34.2 mm, respectively. The body colour is brownish with subdorsal and lateral white

lines. Some spots appear on the dorsal, which are darker than the body colour and have

spines. The faces of the 6th instar larvae (mature larvae) have unique mark on Y form,

and the epidermis of the larva is rough [33].

After leaving the plants, the larvae pupate in the soil to begin a pupal stage. The

duration of a pupal stage ranges eight to nine days in summer and 20 to 30 days in cool
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weather. The pupation stage happens in the soil at a depth range of two to eight cm.

The larva forms a loose cocoon by tying together particles of soil with silk. However,

if the soil is hard, the larva pupates on the soil surface by mixing leaf debris and other

materials to construct the cocoon. The cocoon has an oval shape and is 20 to 30 mm

tall. Gradually, the adult moth emerges to start to the adulthood stage and a new life

cycle. Moths have a wingspan of 32 to 40 mm. The forewing of a male moth is shaded

brown and grey, with triangular white spots at the rim and close to the centre of the

wing. However, the forewing of the female moth is between a uniform greyish brown to

a fine mottling of grey and brown. The back wing in both sexes is iridescent silver-white

with tight dark edges. The female deposits most eggs in the first four to five days of

her life, but some oviposition occurs for up to three weeks. The duration of an adult’s

life on average is approximately ten days, with a range of 7 to 12 days [25, 33, 23].

Figure 1.2: Life cycle of Fall Armyworm (FAW)

Damage and management

FAW can damage maize during all growth stages, whereas it causes a greater threat in

the vegetative period or young crops, and FAW is more destructive in larvae stage since

it may also attack tassel and developing ears. Larvae in all instars cause damage by

consuming foliage. The larvae in the early instar (1st instar) feed on the eggshells firstly
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and then invade chlorophyll (green tissue) on upper leaves to form a silvery transparent

membrane. In the second and third instar, larvae start to form window pane (hole) on

the leaves and leave moisture resembling sawdust in the funnel and upper leaves, which

they start eating from the edge, working their way to the inside. Larvae in the third

instar to the sixth instar cause heavy defoliation and leave ribs and stalks on the plant,

as well as a large amount of faecal matter. Some larvae can also get onto neighbouring

plants [25, 33, 23]. To sum up, as larvae grow, their feeding rate increases, the hole

sizes and the amount of facal matter increase. Larvae in the first to the third instar

consume 2 percent of the total foliage since they are pretty small, while for the fourth,

fifth and sixth instars, they eat 4.7 percent, 16.3 percent and 77.2 percent, thus heavily

defoliating the crop [29, 24].

Substantial economic losses in agricultural biodiversity, human and animal health

are caused by FAW [23, 30]. In Latin America, FAW caused up to 73 percent of yield

losses in maize crops [29]. Further, over 44 countries in Africa and just in a two-

year period (2016-2017), the damage of FAW in maize led to a financial loss exceeding

US$2–5.5 billion [27]. 13.5 million tons of maize, valued at $3 billion, was the estimated

impact of FAW in sub-Saharan Africa during 2017-2018. It is greater than 20 percent

of its maize production [32]. Within two years, in Ethiopia FAW contributed to the

loss of maize production by an amount 0.67 million tonnes. In the absence of this lost

maize, four million food insecure households would have been able to meet their maize

consumption needs [34].

In India, there has been widespread concern about FAW in maize fields since mid

2018. It spread to more than 90 percent of maize paddies within 16 months [35, 29].

Worth mentioning is the fact that for every 5 to 10 percent drops in production, India

loses 37,000-75,000 tonnes of maize [29]. In Kharif 2018, 17,394 ha out of 462,322 ha

of the actual sown area of maize was infested by FAW and 22,072 hectares (ha) out of

78,982 ha of the actual sown area during Rabi 2018-19 [30]. In addition, Suby et al. [29],

mentioned that in 2019 Karnataka recorded the largest infested area with FAW (211,300

ha), followed by Telangana (24,288 ha) and Maharashtra (5144 ha). Furthermore, FAW

caused economic damage in the rainy and post-rainy seasons of 2018 and 2019 in Andhra

Pradesh, Karnataka, Maharashtra, Tamil Nadu and Telangana. However, FAW did not

cause economic damage in fields with temperatures less than 10◦C or more than 40◦C.

As a result, there was only a minor FAW infestation in northern Rajasthan, Haryana
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and Punjab [29]. India is the world’s seventh-largest maize producer, which it typically

exports to Asia. As FAW infestation area increases over time, the loss will shift India

to the import of maize [30].

Managing the pest is difficult since the worm can be seen in all stages at the same

time because of the continual generations [30]. However, there are ways to minimise

this invasive insect pest such as using biological control agents or their natural enemies

which are Telenomous sp. and Trichogramma sp, as well as quarantine restictions, all

of which could result in reducing the pest globally [23, 30].

FAW weather conditions

FAW can live throughout the year, diversify its diet, and survive in difficult and harsh

conditions by emigrating to various areas or hiding to return when the conditions are

appropriate. Despite this dangerous threat, the moth needs suitable weather conditions

to survive. Warm and humid conditions help its reproductive capabilities, while extreme

temperatures or excess rainfall cannot be tolerated. Kenya, for example, is not affected

by the pest due to the heavy rains experienced in March 2018 [21]. The moth usually

attacks crops during the larval stage, but its lifecycle seemed to be broken because of

the rains. Since the pest behaves differently from one area to another and from one

season to another, scientists should study these behaviours in diverse environments to

come up with a prediction for each season [30].

Significance of maize

Maize is an essential cereal in India as well as in many countries in the world. From

2018 to 2021, statistics indicate that maize is sown in 165-170 countries in areas of

about 180.63-188 mha (Million hectare), with the annual production ranges between

1060 to 1134 mt (million tonnes) [29, 36]. In 2021, China has the largest maize area

followed by the USA, where both cover 39% of the world maize area. However, the

USA is the highest maize production followed by China, where they are contributing

34 percent and 22 percent of world maize production [36]. Worldwide, maize is used

as food, feed, fodder and raw material. Moreover, the main advantage of maize is that

it can be grown in a moderate climate and planted from sea level elevation to 3000 m

above sea level [36].

In India, maize is the third staple crop after rice and wheat, and it covers 4% of
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the maize world area [37, 36]. In addition, India has been among the top ten maize

production in the World since 1961. Since 2005, India has ranked 4th area under maize

with 9.2 mha of land with a production of 28 mt. Yet, in 2021, India ranks 7th, while the

productivity is above 3 t/ha [36]. Further, Indian maize contribution is about 9 percent

of local production and around 2 percent of global production [37], where around 50 to

60 percent of local production is used as food for people and feed for cattle. Moreover,

about 30-35 percent of the production is consumed for poultry, piggery and fish meal.

Additionally, 10 to 12 percent of it is used in wet milling industry such as starch and

oil, and around 3 percent in dry milling such as corn bread and corn chips [38].

Maize was a rainy season or Kharif crop in northern India before 1980 (1950-1979),

and it was grown mostly in the states of Uttar Pradesh, Bihar, Rajasthan and Madhya

Pradesh [36, 24]. After 1980s, Rabi (Winter) maize has become important in coastal

Andhra Pradesh, Bihar, Telangana, West Bengal and others [36]. Simultaneously, it

was noticed that there is a considerable shift in area towards peninsular region which

represents now of about 40 percent of the total area under maize and over 52% of

production [36, 24]. Since 2017-18, the major maize growing states represent of about

80% of the total maize area of the country which are Karnataka (14.8 percent, 1.22 mh,

3.31 mt/y), Maharashtra (10.9 percent), Madhya Pradesh (10.8 percent), undivided

Andhra Pradesh (10.4 percent), Rajasthan (10.6 percent), Uttar Pradesh (8.3 percent),

Bihar (7.9 percent), Gujarat (5.0 percent) and Tamil Nadu (3.6 percent). However, in

many of these states such as in Rajasthan (1.6 t/ha) and Gujarat (1.6 t/ha), maize

productivity is quite low, while that in Uttar Pradesh (1.7 t/ha), Madhya Pradesh (1.9

t/ha) and Maharashtra (2.3 t/ha) is under the national average of 2.6 t/ha [24].

Moreover, maize can be grown in a mild climate [39]. It can also be grown well in

semi-arid, humid, hot dry or hot moist conditions. In addition, it can be planted in

all type of soils, and the best range of soil pH is 7.5 to 8.5 [40]. Therefore, production

of maize in India is round-the-year [36], and maize can be grown in all seasons in

most maize fields. It can be grown in Kharif (monsoon), post monsoon, Rabi (winter),

summer and spring [39], while Kharif season is the most suitable period to sow maize

[24]. On the other hand, farmers use irrigation during Rabi and spring seasons to achieve

higher yield [39]. However, in Bihar, West Bengal and Peninsular India, maize often

grows in Rabi season, while in Punjab, Haryana and western Uttar Pradesh it grows in

Summer season, requiring more water. Therefore, 80 percent of maize is Kharif maize,
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19 percent is Rabi maize and 1-2 percent is Summer maize. In spite of that, Rabi maize

is growing faster than Kharif maize and with double yield [24, 40].

It is worth highlighting that in 1950-51, maize production was about 1.73 mt, and

increased to reach 28.75 mt in 2017-18. This rise is because maize area has increased

2.97 times, yield 5.6 times and production 16.64 times compared with the beginning of

the period in 1950-51. India aspires and plans to reach its production of 50-60 mt by

2025. However, climate change is one of the challenges that cause stresses and fears

to achieve this goal. Along with that, from May 2018 Fall Armyworm has threatened

maize crop [24].

1.2.2 Emerold ash borer, forest non-native insect, in ash trees

Emerold ash borer (EAB) is a wood borer beetle that feeds on ash trees (Fraxinus) [41].

It is indigenous to East Asia (north east China, Japan, Taiwan, Korea, Mongolia and

the Russian Far East) and was discovered in the southeastern Michigan, USA in 2002

[42, 43, 44, 45, 46]. However, it is suspected to have arrived ten years prior with solid

wood packaging material from Asia and was only identified when ash trees began to die

in significant numbers between 2001 and 2002 [42, 44]. This is because A. planipennis

completes its life cycle inside ash [41], and is extremely difficult to detect and can remain

unnoticed for several years after the infestation [44]. At the end of 2002, it was obvious

that between 5 and 7 million ash trees were dying, declining, or dead in six counties

of southeastern Michigan [42]. Over the next five years, approximately 20 million trees

had been killed by EAB in Michigan state alone [47]. These alarming figures indicate

that the EAB has had a substantial ecological and economic impact in the infested area

[48]. Following is a review of the literature on EAB biology, impacts, and management

options.

Biology: life cycle of the EAB and visible characteristics

EAB life cycle involves four distinct stages: egg, larva, pupa, and adult. The develop-

ment time of the EAB life cycle is flexible, which allows A. planipennis to establish in a

variety of climates and other environment factors [49, 50]. For example, a weakened tree

(e.g. by girdling) has a shorter generation time than a healthy tree [50]. The life cycle

of the EAB typically lasts one year, while it occasionally lasts two years. One of the

contributing factors is that the 2-year development occurs occasionally when oviposition
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takes place in the latter part of the summer and the larvae do not reach the prepupal

stage before winter [42, 51]. In summary, the EAB’s life cycle is one or two years in

North America [49].

From infested ash trees, adults emerge ranging in length from 8.5 to 12.5 mm with

bright green coloration [52]. Prior to mating, adults feed on ash foliage for at least

a week to reach sexual maturity [53, 50]. Following mating, female adults bore into

the bark to lay their eggs, producing between 40 and 70 eggs at once [49]. Individual

eggs are laid within cracks and crevices in the bark, or beneath bark flakes, and hatch

in approximately two weeks [49]. Each egg is about 1 mm in diameter, and its color

develops over time from white to amber [54].

Once the eggs hatch, larvae appear in the bark [54]. A larva will undergo four

instars (stages) over time, where depelovement periods depend on the temperature and

other factors in the environment [49]. The four-instar larva can be distinguished based

on their sclerotized structure [54]. They tunnel to make their way to the cambium

where they feed, etching a serpentine gallery in the phloem and outer sapwood [54, 52].

Through tunneling, they slowly cut off moisture and nutrients to the higher parts of

the tree [52].

Larvae of the fourth instar chew pupation chambers in the outer sapwood or bark

during late summer or autumn and fold their bodies into J-shaped larvae, the stage at

which they overwinter [54, 53] in an indefinite diapause as prepupae [53]. However, if

the J-shaped larva does not reach the appropriate size and development stage by late

fall, it will delay pupation until the next summer [54]. In the spring, the prepupae will

develop into pupae. A pupa gradually develops into an adult over the course of about

one month while still in the pupation chamber. When adults emerge from the tree bark,

they appear from D-shaped exit holes (2–3 mm in diameter) [54, 49] and are capable

of immediate flight. The adults consume ash foliage during their lifetime and are most

visible during hot afternoons (3–6 p.m.), flying around ash tree trunks and landing to

reproduce [54].

EAB adult flight and natural influences

EAB can migrate from one area to another either at the adult stage of its life cycle or

via anthropogenic movement of ash materials [42, 55]. According to a laboratory study

for assessing EAB flight ability using computer-monitored flight mills, the ability of
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EAB to fly differs between fed and unfed, as well as mated and unmated of both sexes.

A male EAB flies more frequently and farther than an unmated female. Mated females,

however, are likely to increase a population’s range through dispersal and reproduction.

According to the flight mill studies, mated females which were allowed to feed on ash

leaves between flight periods, flew further and longer per day than unmated females

(almost 2.5 times farther) or males. The average flight distance for mated females was

1.3 kilometers per day. The average flight distance of fed, six-day-old female beetles

ranged from 71 m to 2.3 km, compared to 53 m to 5.2 km for males. The results

show that mated females are likely crucial in the spread of EAB, especially if flight mill

recordings are underestimated [55]. The results, however, cannot be applied directly

to field scenario, because environmental factors can also impact adult flight behaviour

[42, 55].

Environmental factors such as ash tree distribution, density, and condition can affect

EAB adult flight and dispersal [42, 55]. For example, adults often prefer stressed trees

and trees expose to full or nearly full sunlight. Additionally, an indirect factor is a

host’s phloem quality and availability which impact larval development. Subsequently

it influences adult flight [55]. Additional elements are weather conditions such as wind

or geographical features including mountains or sea [42].

Destructive impacts of EAB

The emerald ash borer is considered to be one of the most destructive forest insects

ever to invade the USA [14]. It has caused major damage in ash species in the USA

since 2002 [49]. It infests various ash species, though the impact differs substantially

between individual species [14]. A. planipennis poses a threat to all of North America’s

ash species, including at least 16 native varieties, as well as naturalised species and

cultivars used in landscaping [42]. The larvae have a considerable impact on ash trees

because they disrupt the tree’s ability to transport water and nutrients. As a result,

this leads to canopy dieback, bark splitting, and ultimately tree death [49]. Dieback in

affected stands usually occurs within six years, and 50% of it occurs within four years

[56]. As a result, the damage caused by EAB can have obvious ecological, aesthetic,

and economic impacts.

The effect of EAB on ash species have caused both direct and indirect ecological

impacts in the USA [42]. When ash trees die, the composition and structure of the forest
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change [54]. This affects animal species that depend on ash for nesting sites, food, or

shelter. Ash trees are important components of many forest ecosystems, providing

habitat and food for a variety of wildlife species [49]. At least 43 monophagous species,

native to North America, that may be at risk of coextirpation as ash is eliminated from

the ecosystem [14]. Moreover, ash trees provide opprturnity to browse, thermal cover,

and protection for a range of wildlife [42]. Furthermore, water quantity in the soil may

change, due to ash death [48].

Additionally, dead and dying ash trees create both economic and safety risks to

people and property [54]. Therefore, EAB spread attracts the attention of not only

entomologists, ecologists, and forestry experts, yet also the general public [46]. The

EAB spread has resulted in hundreds of millions of dollars being lost by municipalities,

property owners, nursery operators, and the forest products industry [57]. Dying or dead

trees drops the value of house, because aesthetic value reduces [48], This is because ash

trees provide thermal cover and an attractive view of a home. Furthermore, there is the

risk of falling ash trees on humans and houses. Consequently, both governments and

homeowners need to remove drying or dying ash trees. In addition, homeowners suffer

a loss in the value of of the timber on their land, which is significantly lower than that

of healthy trees [48].

EAB presents a major economic concern as it causes direct costs arising from the

removal and replacement of dead or dying ash trees and other management techniques

[48]. For example, Kovacs et al. (2010) estimates that the cost of removing or treating

less than half of the infested ash in the USA cities will be more than $10.6 billion by 2019

[58]. Moreover, removing ash trees was estimated to cost between $20 and $60 billion,

without taking into account the costs associated with their replacement. Additionally,

ash trees account for lumber industry in the eastern USA, with an estimated stumpage

(standing timber) value of $25 billion [42]. This underscores the negative economic

impacts of the EAB, if it infestes ash trees. It is worth noting that there have also

been indirect costs arising from the loss of political considerations in the allocation of

government funding for surveys, research, and outreach activities [48].

To conclude, EAB poses a significant threat to ash tree populations in the USA, by

causing ecological, aesthetic, and economic damages. However, a number of effective

management strategies are available to mitigate the impact of this invasive species that

will be explored in the following paragraphs.
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Management strategies

A number of strategies have been developed to manage EAB infestations in the USA,

including quarantine, mechanical control, biological control, cultural practices, tree re-

moval and replacement, and chemical treatment.

Quarantine

One of the first management actions taken after the detection of EAB in the USA in

2002 was the creation of quarantine zones. In areas where EAB is present, quarantine

measures had been implemented to limit the movement of potentially infested materials

such as firewood, nursery stock, and cut logs. A quarantine program prevents the spread

of disease across long distances and slows down the rate at which new infestations

develop. It may be effective when combined with other management strategies such as

early detection and the removal and destruction of infested trees [14]

Mechanical control

Ash tree removal is an effective approach in controlling EAB infestations [59, 14, 60].

Moreover, this practice is often necessary when trees are heavily infested and threaten

human or property safety [14, 60]. Further, it is an effective method when EAB is not

yet widespread [60]. In other words, implementing this strategy may not be appropriate

in outbreaks in which the EAB has already established a strong presence [60].

Removing ash trees can slow spread of EAB and provide protection to the sur-

rounding healthy ash trees in the area. As ash trees are removed, there would be fewer

habitats for EAB adults to breed and larvae to feed and survive. As a result, this

would reduce the EAB population and hinder its spread [55]. However, eliminating ash

trees can be expensive and have negative effects on the environment and community

aesthetics, resulting in higher heating and cooling costs, lower property values, and

changing wildlife habitats [60]. To mitigate these impacts, replanting with other species

can promote ecological function and reduce future infestation risks [59, 60]. Addition-

ally, if eradication efforts fail, conventional biological control methods will be needed to

suppress EAB populations [61].
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Biological control

Biological control technique, which relays mainly on natural enemies, can be effective

in reducing EAB growth in population and spread [49]. There are predators, pathogens

or parasitoids as effective natural enemies of EAB [42]. Clerid beetles are an example

of predators and have been observed attacking EAB larvae [42].

The parasitoids are affecting either eggs or larvae [61]. Encyrtid parasitoids have

been extracted from A. planipennis eggs, making them potential natural enemies of

the EAB [42]. Tetrastichus planipennisi and Spathius agrili are two examples of larval

parasitoids [61]. These parasitoids were first discovered in China, where EAB is native,

and were later introduced to North America as part of a biological control program to

help manage EAB populations. Both have been shown to be effective at reducing EAB

populations in laboratory experiments and field trials [61].

Additionally, early field surveys held in the state of Michigan, USA and other

newly infested sites, found that native North American parasitoids attacking EAB were

marginally effective, resulting in no more than 5% parasitism being observed [62]. Ac-

cording to Cappaert (2009), Atanycolus cappaerti Marsh and Strazanac (Hymenoptera:

Braconidae), a newly described, native North American parasitoid, parasitizes the EAB

at two sites near Fenton, Michigan and had parasitism of up to 71% between 2007 and

2008 [63]. During 2009 and 2010, Roscoe (2016) estimated that Phasgonophora sulcata

Westwood (Hymenoptera: Chalcididae) caused up to 35% persistence at some heavily

infested sites in two cities in Canada [64]. Therefore, while biological control has poten-

tial as a strategy against the emerald ash borer, more research is needed to determine

its feasibility and effectiveness in practice.

Chemical control

Controlling EAB infestations by chemical means is an important approach to managing

infestations and ensures the survival of ash trees in an area [60]. The application of

insecticides is one of the most commonly used chemical control methods. A variety of

insecticides have been used to effectively control EAB populations, including systemic

insecticides, such as emamectin benzoate and azadirachtin, and neonicotinoids, such as

imidacloprid formulations and dinotefuran [60]. These insecticides are typically applied

to the trunks or soil around the base of ash trees [65, 66, 60]. They are absorbed by the

tree and delivered to the foliage, where they are consumed by feeding EAB larvae or
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adults, leading to their death [65, 66]. The SLAM Pilot Project was undertaken between

2009 and 2011 in Michigan, and it concluded that emamectin benzoate can be highly

effective at suppressing emerald ash borer infestations and slowing EAB population

growth, also slowing the process of ash decline and mortality [66]. Factors such as the

size of the tree, the timing of insecticide application, and the development of resistance

may limit the effectiveness of insecticides [49].

Despite chemical control being an option for managing EAB populations, it is not

widely used due to its high cost and environmental impact. Researchers are instead

focusing on the introduction of the natural enemies of EAB as a more sustainable and

effective means of reducing EAB populations in the forest ecosystems of North America

[62]. Multiple management strategies are necessary for effective EAB management,

minimising insecticide reliance and promoting sustainable EAB management [49].

1.3 The role of spatio-temporal data in invasive insects

Due to the non-native insects posing a significant threat, it is important to study them

statistically. Data collection and analysis are essential for this task. In particular,

spatial-temporal data is important, because it offers valuable understandings into pat-

terns and variations species distribution over time. Consequently, the analysis can be

helpful in early pest detection and selecting pest control regulations. It can also provide

reliable spread assessment and identify priority for site-specific pest management [67].

Therefore, it is invaluable for researchers and policymakers to assist in mitigation of

economic and ecological impacts.

1.3.1 Advantages and disadvantages of data collection by human ex-

perts

Precise pest insect identification tools are essential over time and space. Traditionally,

pest identification methods rely on expert visual inspection, and field visits to collect

essential information. Subsequently, it often involves expertise of entomologists. Com-

monly, the collection data by experts record an accurate invasive species type. Yet,

because of the wide number of insect species, skilled entomologists may find it challeng-

ing in pest identification. Moreover, visual inspection by experts is not always practical

or it may not be cost-effective or ethical [68, 69]. In addition, the accurate time and the
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full extent of the observations in a specific location may not be possible to be recorded

by experts. This is because the availability of the experts in the species location may

be delayed due to a lack of experts or their late realisation of the species’ existence

[70]. Additionally, the global shortage of entomologists makes timely and accurate pest

identification difficult. In particular, insufficient number of entomologists can be an in-

creasing problem in developing countries with vast agricultural enviroments or remote

locations such as forests.

1.3.2 Citizen scientists (nonprofessional scientists)

In response to the human experts data challenges, recent complementary approaches

commonly involve citizen scientists supported by artificial intelligence (AI) smartphone

applications [71]. Citizen science (CS) is data collection and scientific thinking by a vol-

unteer in the biodiversity and environmental fields who monitors and collects ecological

observations and physical specimens to expand the knowledge and database, supporting

scientific researchers in their research [72]. Therefore, citizen scientists can minimise the

time of data collecation and increase the accurate estimate of the occurrence time [71].

Additionally, they can collect large quantities of data more quickly, although this data

might be less accurate compared to data collected by human experts.

Citizen scientists (nonprofessional scientists) are expected to fulfill some criteria.

As a minimum, they should have interest, skills, and enthusiasm for the project’s goals

to ensure a successful project. Moreover, providing opportunities for citizen scientists

as training and mentoring skills to develop their expertise is crucial, especially for new

projects [72]. Additionally, it is essential for citizen scientists in the agricultural field

to be under the supervision of scientists and experts to collect and share real and

accurate data to minimise the risk of plant diseases [73]. Citizen scientists can use their

smartphones to take photos of the plant symptoms. Then the image is sent via the

internet to a human expert for diagnosis.

Alternatively, smartphone applications can be based on artificial intelligence and

machine learning methods that enable autodetection and identification of pests and

diseases [74]. In particular, the plant mobile applications either enhance scientific re-

search or provide knowledge and information to farmers. The first one was created to

provide information to farmers and for farmers to provide information to researchers.

These type of apps serve users by supplying most or all of the following advantages:
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standardizing data collection, prompting users through additional useful data collec-

tion questions, adding the ability to take photos associated with the record, automating

Global Positioning System (GPS) reporting, and aggregating all data in a single, easy

to use online interface. Purdue Plant Doctor (Purdue University, 2016) and Plantix

(PEAT, 2016) are examples of this type of application. The second available type of

plant-related mobile app does not contribute to ongoing scientific research. Instead,

the apps serve as identification aides and/or act as repositories of educational infor-

mation already publicly available, such as Forest Tree Identification (Discovery Green

Lab, 2019), PictureThis - Plant Identifier (Glority LLC, 2019), About My Woods (In-

novative Natural Resource Solutions LLC, 2019), and SEEDN (Bugwood, 2019). These

types of apps are useful, but none of it focuses on facilitating scientifically meaningful

collaborations between non-professional and professional researchers [75, 76].

Further, in 2018, the highest number of agricultural apps were used in the USA,

Brazil and India. The large number of apps in the USA and Brazil was likely due to the

strength of the agricultural sector, country size, and popularity of mobile devices. All

these factors spurred public and private institutions to create applications for solving

agricultural problems. In India, apps were introduced in 2015 and were free, but only

accounted for one percent of total apps in 2018 [76].

Furthermore, the integration between citizen scientists and scientific research appli-

cations, especially plant diagnosis mobile applications, helps to monitor the health of

the crop, to analyse soil, to suggest appropriate pesticides at right time before large scale

incidence of disease, and to determine the optimal time for both planting and harvesting

periods. Farmers can find answers to all their queries and receive relevant advice and

recommendations to their specific farm related problems. These smart practices lead

to the best yield and increase the accuracy of the prediction of yield. Agrio, Plantwise,

Smart Scout, Veg Pest ID, Purdue Plant Doctor and Plantix apps are examples of plant

disease diagnosis applications [77, 78, 68].

The Purdue Plant Doctor helps diagnose a disease, and is based on a questionnaire

and decision trees in order to arrive at that diagnosis [71]. Leaf Doctor is a system

for performing quantitative assessments of plant diseases. In addition, Pestoz (Creotix,

India) diagnoses diseases from images of vegetable and crop plants with a primary focus

on India. Furthermore, Plant Village Nuru is a system for diagnosing viral diseases of

cassava and damage caused by FAWs on maize [74].
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1.3.3 Plantix app

Plantix (PEAT GmbH, Germany) is a system for diagnosis of diseases, pest damage

and nutrient deficiencies on crops. Plantix app is a free Android application, and it

is an expert system trained to recognize a large number of diseases, to identify pests

and pathogens, to define crop type, and nutrient deficiencies in soil. It communicates

with a remote database (server) for higher accuracy where can it detects 500 types of

plant damages. It also provides weather forecasting for the next five days in the current

location of the user. Plantix app was created by a tech startup, Progressive Environ-

mental and Agricultural Technologies (PEAT) in Berlin, Germany in 2015. The PEAT

target is to use technology to support cultivators worldwide, explicitly in developing

countries, to promote their agricultural production by diagnosing and treating disease

[79, 80, 81, 82].

Accordingly, the Plantix app depends on image recognition, artificial intelligence,

machine learning and deep learning algorithms to diagnose plant health [80, 83, 79,

81, 68]. The user (such as a farmer or plant expert) takes a photo of a plant in the

field. Then, the user either directly uploads the image to the PEAT servers or posts it

whenever an internet connection becomes available. Once uploaded, the app automat-

ically records the time of capture and the location. The Plantix app quickly analyses

the image through a deep neural network (Plantix-DNN) by using multiple ConvNets

using images available on the server [80, 83, 79, 81]. One network in the ConvNets is

to check the object in the image, and if there is no plant in it, the photo is deleted.

One network defines crop type (name), and another one defines the health condition

[80, 83, 79, 81]. The app compares a user’s image with a vast database of high-resolution

images of various crops and diseases and provides accurate diagnosis [68]. Then, the

most similar crop disease to the user image according to a highest softmax probability

(top-1 prediction) is displayed to the user. Other predicted lower probabilities, such

as top-2 prediction, can be presented in lower positions, which can be used solely for

internal purposes related to research and the company itself. Therefore, the app can

be used as a decision support tool. The Plantix app provides users with the crop type,

predicts plant diseases, and offers information on biological or chemical treatments to

mitigate the disease. It also gives valuable information on preventive measures to avoid

the plant disease occurrences or at least discover them at an early stage [80, 83, 79, 81].

Today, the Plantix app is available in 150 countries and in 18 different languages.
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In 2016, 25,000 farmers used the application in Germany, and PEAT published the app

to a global level in Brazil, Tunisia, Kenya and India. To date, it has been downloaded

over 15 million times and millions of farmers use it. Day by day the number of images

grows, as PEAT’s database is expanded through people who upload pictures on the

app to find the answer to their plant problems and cooperate with PEAT’s private and

public partners. By April 2021, Plantix app diagnosed over 35 million pictures. Plantix

app has offices in Berlin, Hyderabad and Indore, and this free agricultural app becomes

the most has been used around the World [83, 84, 85, 81].

In India, the Plantix app has been used since 2016, in cooperation with the Centre for

Agriculture and Bioscience International (CABI), and the International Crops Research

Institute for the Semi-Arid Tropics (ICRISAT). PEAT has collaborated with ICRISAT

as a partner that help to extend PEAT’s database to include Indian crops and diseases

that differ from other countries. The early plan of this cooperation was to assisst farmers

in Telangana and Andhra Pradesh. In early 2017, ICRISAT organised several workshops

in six districts of Andhra Pradesh and Telangana to teach farmers how to use Plantix

app. The app is available in Indian regional languages, and the first Indian regional

languages were Telugu and Hindi. In India 8.6 million samples were uploaded onto the

app between 2017 and 2018. Most of these submissions were during the harvest of the

Kharif season which between Septamber and November [79, 83, 86, 81, 82].

Although Plantix app is a popular and highly rated app for detecting and managing

plant diseases, it also has some potential disadvantages. One disadvantage of the app

is that it may not be completely accurate at identifying problems in plants. Hence,

there is a risk of misidentification either false positives or false negativies. A study by

Siddiqua et al. (2022) evaluated various apps (17 apps) for detecting and managing

plant diseases based on a set of predefined functionalities. It was found that no sin-

gle app encompassed all seven functionalities, which include disease detection, plant

identification, disease severity estimation, treatment suggestions, community support,

identification of affected plant parts, and plant coverage. While the study highlighted

the Plantix app as one of the top options for disease detection and management, it

did not conclude that it was the best app overall. Nevertheless, among the 17 apps

reviewed, Plantix emerged as the most popular. The study noted that Plantix received

high ratings for its automated plant identification and disease detection capabilities, as

well as for the expert recommendations it provides [68].
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Furthermore, another disadvantage is that the app is not capable of detecting all

types of plant species [68]. In a study conducted in India by Wang, Di Tommaso and

others, it was found that the overall accuracy of Plantix-DNN to define Kharif crop

types of 72,494 samples was 97 percent, while for maize crop it was more than 80

percent [79, 83, 86, 81, 82]. Moreover, an additional drawback is the sampling bias,

whereby farmers without smartphones and internet access cannot participate in data

collection. Additionally, volunteers’ efforts fluctuated over time because of seasonal

patterns or declining commitments. Based on this challenge, control of data collection

or data analysis should be considered [79, 87, 88].

1.4 Statistical and mathematical modelling

This thesis employs a comprehensive framework of mathematical and statistical analysis

to analyse the Plantix app data about FAW in maize in India, and the expert data about

the EAB in the ash plants in the USA. The details, including literature reviews and

research gaps of these methods are presented in the relevant chapters, Chapter 3 to

Chapter 5 cover the statistical analysis of the Plantix app data, and Chapter 6 deals

with the EAB.

1.4.1 Statistical and mathematical modelling of the Plantix app data

The Plantix app dataset was provided by PEAT GmbH. This dataset consists of no-

tifications in Indian maize crop, including those diagnosed as infested with FAW and

those without FAW infestation. The timeframe of the dataset is from January 1, 2018

until December 31, 2019. Within this period, there were 138359 data points from 631

districts. The dataset includs the time stamp, longitude and latitude GPS coordinates

and the results of the machine learning as categorical and numerical variables. The cat-

egorical variables were "top-1 pathogen name" and "top-2 pathogen name". These two

variables define the detection status of each maize diagnosis as either healthy (indicat-

ing the maize is in good health), infested with FAW, infested with pathogens, affected

by other pests, or suffering from nutrient deficiencies. The numerical variables were

"top-1 similarity" and "top-2 similarity", representing positive integer values ranging

from 2 to 100. A large similarity value indicated that the detection was more confident

of reflecting the real status of the diagnosed maize. It is noteworthy to mention the
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distinction between top-1 and top-2. The DNN generates several similarity scores with

corresponding health conditions for each tested crop where the total sum of these simi-

larities equals 100% (or a probability of 1). Further, under the top-1, the highest value

is recorded, while top-2 includes the next highest value.

Although the Plantix app has been widely discussed in agricultural research due to

its usefulness and practical advantages [68, 89, 90], a limited number of studies have

used the Plantix app dataset for studying diagnostic accuracy or understanding plant

pest and disease behavior over space and time. Akinyemi et al. [91] evaluated the

accuracy of the Plantix app in diagnosing FAW damage in maize in Nigeria using only

ten images from infested maize plants and ten images from healthy maize plants. The

study results finds that the Plantix app reached 100% accuracy in recognising the FAW

symptoms as well as the healthy maize. However, the very small sample size of only

ten images per condition reduces the reliability of generalising these findings regarding

the Plantix app accuracy in diagnosing healthy or FAW damage in maize.

Hampf et al. [80] used the Plantix app to detect pests and diseases in maize and

soybean crops in the southern Amazon, Brazil. The diagnosed crops with the top-

1 similarity rate greater than 0.5 (50%) were selected to be as true positive cases,

where diagnosed crops below this threshold were excluded to reduce the likelihood of

misclassification and enhance the overall quality of the dataset. Then, the selected high-

confidence observations were used to assess the Plantix app accuracy by comparing

the diagnostic app results with actual conditions (gold standard). The sensitivity of

the Plantix app was reported as 91.51% for maize, although it was lower for soybean

diseases and pests. However, using a cut-off value of 50% may not always represent

a good hypothesis, where the selected observations may include cases with similarity

rate greater than 50% that are incorrect or less reliable A more statistically rigorous

approach, such as a statistical classification framework could provide a more robust

criterion for filtering observations.

Integrating the Plantix app data with statistical and mathematical modelling leads

to explainable, robust, transforming big data into structured knowledge and enabling

better decision-making. Although the diagnostic accuracy of the app remains unknown

[68], estimating its accuracy was a critical gap that needed to be filled. Low accuracy,

combined with a large number of users, can increase the risk of providing incorrect

diagnoses, which may lead to inappropriate treatment, reduce plant quality, and fail to
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stop the spread of pests

Accordingly, to effectively estimate the app accuracy, the app’s internal database

needs to be classified into true and false diagnoses. Moreover, it is fundamental to study

a single pest within a specific crop. This is because it is unrealistic to expect one test to

have uniform accuracy for all pests and crops. Hence, the generalisation of the accuracy

would not provide useful information for the user. Therefore, Fall Armyworm data in

maize crop in India was selected data for further analysis.

This choice was not only due to its importance of FAW and maize but also for

pragmatic reasons. Firstly, the Plantix app recorded thousands of spatio-temporal

data points related to maize for diagnosing Fall Armyworm, providing a substantial

dataset for statistical analysis. Furthermore, this work is part of a collaboration be-

tween ICRISAT, which focuses on Fall Armyworm in maize, and PEAT. PEAT aims to

learn how their data can support research on Fall Armyworm in India. These factors

collectively made the Fall Armyworm data in maize the most suitable and strategically

significant choice for this study.

Direct assessment of the data can be done by comparing with a gold standard data.

A gold standard classifies perfectly between true and false diagnostic results of the

target feature for each unit and estimates unbiasedly the accuracy of diagnostic test

[92]. However, in this study, there is no accessible or feasible gold standard dataset

for the Plantix app data. Establishing a gold standard dataset for the Plantix app

data poses significant challenges. Firstly, it would require accessing the original images

stored on the Plantix app server, which is difficult due to the huge dataset size. Secondly,

since maize is a seasonal crop and the data were collected during the 2018–2019 growing

seasons, it is no longer feasible to revisit the fields for expert verification of the diagnoses.

These limitations emphasise the practical limitations in defining a gold standard for the

Plantix app dataset.

Therefore, statistical parametric and nonparametric methods need to be applied to

classify true and false diagnostic outcomes of the Plantix app and to estimate the gold

standard list [69]. When gold standard is absent, latent class models, mixture mod-

els, logistic regression and receiver-operating characteristic (ROC) curve are statistical

classification methods that have widely been used [93, 69, 94], and are some of them

are implemented here. In this study, internal evidence from the data itself was used

to classify observations into true and false categories using mixture model. Further,
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since the goal is not to use the data for prediction but rather to understand its behavior

during the time frame of the data, there is no need to test the validation of the data.

The focus is on analysing the data’s patterns and trends.

After the classifiction and extracting the true and false data, they can be used to

estimate the app accuracy. To the best of our knowledge, ours is the first research that

estimates the sensitivity and specificity of the Plantix app, for detecting FAW in maize.

In addition, we believe that in the existing literature, there has not been a study that

statistically evaluates the Plantix app accuracy in any other insects. The estimate, in

this thesis, is made within a single dataset and under the absence of a gold standard or

alternative methods for comparison. Therefore, a statistical framework is introduced to

handle these challenges by integrating meta-analysis with Bayesien statistics. Finally,

the FAW prevalence over space and time was estimated, using four different statistical

methods to find a more accurate estimation.

1.4.2 Statistical and mathematical modelling of the expert data

In addition to the AI diagnostic data, a traditional method of expert diagnostic data

was also analysed in this thesis. The expert data about emerald ash borer (EAB)

invasive insect in the ash species (Fraxinus spp.) from 2002 to 2020 in the USA counties

was used. This data was provided by United States Department of Agriculture Animal

and Plant Health Inspection Service (USDA APHISUS). However, a specific challenge

with this data is that it only includes an initial true positive case from each observed

infested county, neglecting subsequent occurrences. This limitation means that density

or prevalence cannot be estimated due to the single value per county. However, the

spatial-temporal distribution of the EAB can still be modeled to provide insights into

its spread and behavior under the influence of climatic and non-climatic factors.

Numerous studies of EAB have employed a variety of mathematical and statistical

models to understand the insect’s spread, either at local or reigonal scale. Related

models have meticulously accounted for one or more influential factors in the spread of

EAB. These factors encompasse ash tree availability or density, EAB presence-absence

[46, 58] or abundance [95], the distance between infested and uninfested areas, as well as

human and climate-related influences [96]. Most of these studies are focussed on North

America, and primarily spatial scales, ranging from cells to subcounties to counties

[96, 43]. The majority of studies consider temporal scale, within year to understand
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EAB either in North America or Europe [97, 96, 43]. The results of these studies have

provided valuable insights into spread of EAB as well as next scientific research.

Moreover, ash tree intensity is critical since EAB is more likely to spread in a high

intensity area of ash trees [41, 98, 58]. Further, most studies focus on presence-absence

data compared with fewer studies of EAB abundance [95]. Climate represents another

essential class of variable to be considered when understanding and forecasting the po-

tential dynamics of EAB. The number of growing degree days (GDD) has a significant

impact on survival of insects, and determining the possible dispersal landscape of EAB

adults [97, 99]. For example, low heat availability can limit the suitable area for EAB es-

tablishment. According to Orlova-Bienkowskaja [97] EAB adults are unable to colonise

an area where its growing degree day accumulation across the year it lower than 700

degree-days.

Additionally, a number of previous efforts have highlighted the importance of long-

distance dispersal in predicting the extent of EAB invasion [43, 100, 58, 101], because

anthropogenic factors have become a weighty contributor to the spread of EAB. There-

fore, dispersal models have been widely applied in previous research as valuable tools

for understanding the spread of EAB in a local and regional areas. To account for

both natural spread of EAB and human-mediated long-distance dispersal, most studies

utilise a dispersal kernel [41]. In EAB modeling, the negative exponential dispersal

kernel (exponential decay function) was most commonly applied [41]. The negative ex-

ponential kernel was used to model EAB spread in North America by Muirhead et al.

(2006) [43] and Kovacs et al. (2010) [58] and in Europe by Orlova-Bienkowskaja et al.

(2018) [46]. In addition to negative exponential kernel function, Orlova-Bienkowskaja

et al. (2018) [46] applied also a Cauchy (fat-tailed) model and normal kernel function

to predict the EAB spread. They implemented these dispersal functions in European

Russia and neighboring countries. They concluded that the Cauchy model is the most

appropriate for understanding and predicting the EAB spread, when the pairwise dis-

tance between locations is greater than 200 km [46]. Note that, Bienkowskaja et al.

[46] did not consider a power law kernel, where the best model, Cauchy, can be closely

approximated by a power law kernel.

Although a range of variables and factors were addressed in previous research using

models of varying complexity, all of them enhanced the ongoing scientific research,

forestry knowledge and governmental information. For example, some models simply
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considered a distance based kernel function as a factor to predict the EAB spread [46,

58, 43]. Some used only climatic variables in climate-based ecological niche models, to

predict the EAB spread by determining the suitable climate for EAB in North America

[102, 45]. On the other hand, Prasad et al. [101] used a complex mechanistic model

to estimate and forecast the EAB spread in Ohio, USA. Their model is a spatially

explicit cell-based and a combination of two components: i) a short spread model,

which reflected the EAB natural flight, and ii) a long distance model, which simulated

the long distance spread due to human practices. The factors considered important

in the long distance model are traffic density on major roads, wood products weights,

population density and campgrounds.

The generic colonisation–dispersal model proposed by Catterall et al. [103] is a

stochastic spatio-temporal model. It is a generic model designed to be applied when

investigating a diverse range of invasive species in a different geographic regions. It aims

to estimate and predict the spread of a specie through a space and over time. Therefore,

here the model is adapted to study EAB spread in the USA, considering climatic (anuall

average of growing degree day) [97], non climatic (ash density habitat) conditions, and

dispersal mechanisms. To our knowledge this study is the first to apply the generic

colonisation–dispersal model in EAB study on the whole of the USA. Additionally, while

the previous studies in the USA included temperature as a climate variable in estimating

EAB spread, this research replaces temperature with GDD. Chapter 6 bridges these

gaps, and concluded that the significance of incorporating climatic and non-climatic

factors as well as dispersal mechanisms.

1.5 Thesis scope

As discussed earlier, one of the main steps in managing insect pests effectively needs to

early pest detection, and reliable spread assessment, and this can be achieved through

statistical analysis. The Plantix app data on Fall Armyworm in maize crop in India be-

tween 2018 to 2019 provides early detection observations and a large dataset. However,

lack of gold standard and imperfect accuracy were also noted. In addition, the expert

data for EAB in the USA from 2002 to 2020 includes early detection observations and

assumes a perfect accuracy in diagnosing. Nevertheless, providing a first observation

from each county limits the statistical analysis. Thus, this thesis aims to address these

gaps. Statistical analysis has been used to understand FAW prevalence in India, after
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the gold standard data is estimated and the app accuracy is determined. In addition,

spatially extended model is developed for EAB spread, incorporating host location, en-

vironmental factors, and dispersal in order to define reliable spread factors. The thesis

develops several decision-making tools for pest management. Towards achieving these

aims, five research objectives have been established. In this section, these research

objectives and thesis structure are briefly outlined

The first purpose of this research is to enhance the importance of the analysis of the

AI data before using as a tool in important subjects. Therefore, four ojectives under

this main goal were (i) to classify data into “true” and “false” observation, (ii) to measure

the temporal spreading of the FAW, (iii) to evaluate the accuracy of the AI diagnostic

tool, and (iv) to understand the spatio-temporal prevalence of the FAW.

The second objective is to use expert data about historical occurance records of

EAB, geographic land cover, environmental and climatic factors, as well as natural and

human-mediated dispersal of the EAB to understand a spatial-temporal patterns of EAB

in the USA. Once the purposes mentioned above have been achieved, this research will

have answers to the following main research questions.

1.5.1 Research objectives and questions

First objective: Conduct classification model to filter the Plantix app data.

• How should researchers process imperfect data before analysis?

• Are all notifications provided by the Plantix app for diagnosing a Fall Armyworm

pest in maize crop accurate?

• If not, how can the true notifications be distinguished from the false ones?

Second objective: Visualise and analyse the temporal variations in pest in-

tensity within the true notifications.

• How does the intensity of the pest vary over time in the true notifications identified

by the classification model?

• Are there any seasonal patterns or trends in the pest intensity data over time?

Third objective: Evaluate the accuracy of the Plantix app in detecting spe-

cific pest in a particular crop.
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• How sensitive is the app in detecting truly FAW observation?

• What is the specificity of the app in accurately tested maize observations that

truly not infested with FAW?

Fourth objective: Estimate the spatial-temporal prevalence of FAW infesta-

tions in maize filed in India. Highlight impacted regions

• What is the seasonal spatial-temporal maps of FAW infestations in India during

study period 2018-2019?

• How is the direction of FAW spatial distribution changed over season in India?

Fifth objective: Understand EAB biology dynamics and relations with host

plants and climate.

• What is the current spatial-temporal map of EAB infestations in the USA county

level?

• What role do land cover and climatic factor, play in influencing the abundance

and distribution of the EAB?

• In what extent does human-mediated dispersal role contribute to EAB colonisation

over time?

• What is the estimated model to imitate EAB spread over the study period in the

USA?

The value of this thesis is in providing suggestions and recommendations for foresters,

farmers, researchers, and government officials who are responsible for controlling the

direct or indirect impacts of alien insects. In addition, this research enhances our ability

to assess spatiotemporal dynamics of non-indigenous insect species, their relation with

the environment, and how provide advice on people can better manage and limit them

in the future.

1.5.2 Thesis structure

The rest of the thesis is structured as follows

Chapter 2 provides general description of selected methods and models that are

used throughout different chapters. Chapter 3 applies classification model, bivariate
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mixture model, to identify the True and False classification of both positive (Plantix

app notifications with maize infested with FAW) and negative (Plantix app notifications

in the absence of FAW) observations. The parameters of the model are estimated using

the expectation-maximization (EM) algorithm. Additionally, this chapter visualises the

intensity of FAW over the invision period (2018-2019), where odds metric is used. The

odds is the ratio of the truly presence of FAW (True positive) compared to the truly

absence of FAW (True negative). This chapter addresses first and second objectives.

Chapter 4 implements the Bayesian-meta analysis to accomplish third research

objective. The chapter briefly discusses meta-analysis. The meta-analysis is a statistical

technique usually utilised to estimate a pooled interested measure(s), integrating data

from multiple independent studies. These studies perform similar methodology, while

the studies can relate to diverse populations [104]. Chapter 4 incorporates the meta-

analysis, assuming each state in India as an independent study, where each state having

its own government and administrative structure. The model is bivariate generalised

linear random effects model. The parameters of the model are estimated using the

Markov Chain Monte Carlo sampling (MCMC) to take into account for the uncertainty.

Further, the pooled sensitivity and specificity estimate in this chapter is used as input

values in the Method-2 to estimate FAW prevalence in Chapter 5

Chapter 5 includes four different methods to select most appropriate modeling

techniques for estimating FAW prevalence in Indian states during each maize seasons

Kharif and Rabi, 2018 and 2019 (fourth objective). These methods range from simple

to comprehensive. Method-1 is based on a frequentist technique, where FAW prevalence

is calculated using a 2x2 diagnostic Table. Method-2 uses the Rogan–Gladen adjusted

estimator with sensitivity and specificity values from Chapter 4. Method-3 uses Chap-

ter 3 methodology to estimate sensitivity and specificity for each maize seasons between

between 2018 to 2019. Then, the Rogan–Gladen adjusted estimator with sesonal sen-

sitivity and specificity values is utlised. Method-4 relies on a comprehensive Bayesian

meta-analysis with stochastic sensitivity and specificity. This technique is similar to

previous chapter methodology but more informative. This is because it has additional

likelihood functions and prior distributions, including priors for each parameter within

the model (hierarchical prior).

In Chapter 6, the expert data about emerald ash borer (EAB) in the USA counties

is used. A generic colonisation-dispersal model proposed by Stephen Catterall and his
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colleagues (2012) [103] was adapted to develop a continental level models for the spread

of EAB in the USA, fitting this to the best available data, quantifying the uncertainty

in these models and their predictions and then assessing their performance in tracking

spread of EAB over two decades. These models consider climatic (annual average of

growing degree day) and non climatic (ash density habitat) conditions, and dispersal

mechanisms. They differ in using different functions and scaling methods for the climatic

factors and two different dispersal kernel functions to understand the natural of the EAB

dispersal sistance. Chapter 7 concludes the thesis by discussing the contributions to

knowledge and potential future directions that can further develop upon this work.
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Chapter 2

Overview of established methods

and models for diagnostic test

classification

The present chapter outlines a comprehensive overview of the general methods that were

derived from the literature. These methods were utilised in the subsequent chapters,

with related detailed applications were explained.

2.1 The 2x2 diagnostic test table

A 2x2 diagnostic test table is a contingency table that outlines the reliability and ac-

curacy of a diagnostic test [105], where the outcomes can be represented as binary

(dichotomous) outputs which are either a positive (P) or negative (N). The positive

outcome means that an studied observation has the target characteristic, while a nega-

tive finding indicates the absence of the target characteristic in an observed event [106].

The P and N outcome results are grouped into four cells within the 2x2 diagnostic test

table. Each cell represents a frequency count as well as a unique characteristic that

describes the accuracy of a test or classification algorithm. One of the best method to

define the frequency of the cell in the 2x2 diagnostic test is a gold standard, which is a

list of the actual target characteristic of the studied observation [105]. Therefore, the

four outcomes of the 2x2 diagnostic test table are:

• True positive (TP): This cell reflects the number of instances where the diagnostic

method correctly predicts the target condition (positive).
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• False positive (FP): The number of observations where the diagnostic tool incor-

rectly signs a target characteristic as present (positive), whlie the observation does

not have the target characteristic.

• True negative (TN): The number of observations in which a diagnostic tool cor-

rectly identifies the absence of a targeted characteristic (negative) when the ob-

servation actually does not have the target characteristic.

• False negative (FN): The number of cases wherein the diagnostic method result

is negative, while the observation actually has the condition being tested for [106,

105].

Table 2.1: A 2x2 diagnostic test table, counts of binary classifier model vs. target
characteristic.

Binary classifier model Target characteristic
Present Absent

Positive TP FP
Negative FN TN

The 2x2 diagnostic test table is a simple and effective technique that can be used

to calculate sensitivity and specificity in order to assess the perofomrance of the di-

chotomous diagnostic tool. Sensitivity (true positive rate, TPR) is the probability of

the true positive, which reflects the ability of the diagnostic tool to identify the obser-

vations that truly have the target characteristic. On the other hand, specificity (true

negative rate, TNR) is defined as the probability of the true negative, which indicates

the ability of the diagnostic tool to identify the observations that truly do not own the

target characteristic [106, 105].

sensitivity = Se =
TP

TP + FN
specificity = Sp =

TN

TN+ FP

Sensitivity (Se) has a value that ranges between 0 and 1. A sensitivity value of

Se = 0 indicates that there are no true positives, which signifies a complete failure of

the test to identify any actual positive cases. In this instance, all positive events are

incorrectly classified as negative (FN), leading to a total lack of detection. Conversely,

a sensitivity value of Se = 1 means that there are no false negatives, indicating that the

test successfully identifies all actual positive cases. This represents an ideal situation
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where every positive instance is correctly recognised, and there are no missed detections.

Another significant value is Se = 0.5, which corresponds to a situation where the test

has a balanced performance in identifying true positives and false negatives. In this

case, the test correctly identifies half of the actual positive cases while failing to detect

the other half.

Similarly, the specificity (Sp) also ranges from 0 to 1. A specificity value of Sp=0

indicates that the test fails to identify any true negatives (TN), meaning that all negative

instances are incorrectly classified as positive (FP). This results in a complete failure to

recognise the absence of the condition being tested for. On the other hand, a specificity

value of Sp = 1 signifies that there are no false positives (FP), meaning that the

test accurately identifies all negative cases (TN) without mistakenly labeling them as

positive.

However, the gold standard may not be up to date, adequate or cost effective for

diagnostic test. As a result, the constructing of the 2x2 table can be challenging. In

the next chapter we will introduce a new method that allows the classification without

the gold standard. This method uses a number of strategies, one of which is mixture of

two distributions [94].

2.2 Mixture of two normal distributions with EM algo-

rithm

Let X be a random variable, reflecting the outcome of a real-life application. X may

not be unimodal, where it can be multimodal. This suggests that X is a mix of several

distributions, where each distribution has a single mode and corresponds to a simple

parametric distribution. The distributions may belong to the same family with differ-

ent parameter values, or different familes [107]. The procedure of modelling several

components in a single model is called a mixture model, and it is built of two essential

variables: observed variable and unobserved (latent) variable. The observed variable is

a set of observable and collected units, while the latent variable is hidden where the

data does not directly consider. It usually represents grouping within the data. The

latent variable’s occurrence can be discovered by having more than one mode in the

observed variable; in classification language each mode represents a group. To sum up,

the mixture model is composed of a sum of distributions with mixing weights (propor-
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tions), where mixing proportions are non-negative and the sum of them equals one.

The mixture model can be formed from continuous or discrete distributions and from

at least two distributions [108, 107]. The subsequent lines provide an explanation of the

mixture model based on existing literature [109, 110, 111, 108].

To formulate the mixture model, the latent variable z takes discrete values, {1, 2, ...,K},

with K the number of observed parametric forms. The observed variable is x and each

data point x is linked to a single value of z,which determines the component from which

it is generated. However, when analysing the data, x may have a likelihood of com-

ing from multiple components, with different probabilities for each. Therefore, the key

expression of the mixture model is built by the following process:

• Firstly we sample z from its distribution p(z). This step determines which com-

ponent of the mixture the observation will come from. p(z) is a prior distribution

that can be derived from a multinomial distribution, z ∼ Multinomial(ω), where

ω is a vector of mixture proportions of size (also called mixture weights or prior

probabilities) K. For example, K-means clustering can be used to initialize these

proportions ω.

• Then, we sample x given z (i.e. from the conditional distribution p(x | z)). This

step produces the actual data point based on the selected component. p(x | z)

is a parametric distribution. It is a conditional probability and called a mixture

component. It can be a continuous or discrete distribution.

• Hence, the joint probability of the mixture model is given by:

p(z,x) =p(z) p(x | z).

• Finally, summing of the joint probability over all possible values K of the latent

variable z is the mixture model. This can be achieved using the law of total

probability (i.e. summing the probability of each observation x over all possible

z, weighted by each z probability p(z)). This is also knwon as the marginal

probability distribution f(x) of the x is
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f(x) =

K∑
k=1

p(z,x)

=
K∑
k=1

p(z = k) p(x | z = k)

=

K∑
k=1

ωk fk (x;θk)

The f(x) here is the weighted average of the mixture components. It gives the overall

probability of x regardless of the value of z. The index K is the number of finite mixture

components equivalent to the number of modes, 2 ≤ K. Here, ωk ∈ ω satisfies the

conditions 0 ⩽ ωk ⩽ 1 and
∑K

k=1 ωk = 1. x = [x1, x2, ..., xn]
T is a vector of size n, and

we assumes that each point is independent and identically distributed, xi ∼ fk(xi; θk).

fk (x;θk) are univariate distributions with a set of parameter θk. To simplify, let

θ = (ω1, ..., ωK , θ1, ..., θK) a set of the all parameters in the f (x). Then, the likelihood

of f (x) is:

L (θ | x) =
n∏

i=1

K∑
k=1

p(zi = k) p(zi, xi) =

n∏
i=1

K∑
k=1

ωkfk (xi; θk) .

and the log likelihood is:

ℓ (θ) =

n∑
i=1

log

[
K∑
k=1

ωkfk (xi; θk)

]
.

To identify the points where the ℓ (θ) reaches its maximum using maximum likelihood

estimation (MLE), sets the derivative to be zero. However, the summation inside the

logarithm cannot be solved analytically for each parameter, since it gives a complicated

expression for MLE. For example: to take the derivative with respect to θk,
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dℓ (θ)

dθk
=

n∑
i=1

d

dθk
log

[
K∑
k=1

ωkfk (xi; θk)

]

=
n∑

i=1

1∑K
k=1 ωkfk (xi; θk)

d

dθk

[
K∑
k=1

ωkfk (xi; θk)

]
using chain rule

=

n∑
i=1

∑K
k=1

d
dθk

[ωkfk (xi; θk)]∑K
k=1 ωkfk (xi; θk)

=
n∑

i=1

K∑
k=1

d
dθk

[ωkfk (xi; θk)]∑K
k=1 ωkf (xi; θk)

= 0.

It is not possible to derive an analytical solution for θk. This is because these parame-

ters are not independent of each other, while we should estimate them simultaneously.

However, if the latent variable z is known, it simply gathers all xi in each z = k and

simply uses the MLE. To help us to find the MLE when z is unknown, the expectation-

maximisation (EM) algorithm can be used.

The expectation-maximisation (EM) algorithm is a method to estimate probability

distributions parameters with the latent variables present by performing the MLE. The

EM algorithm was published by Demster, Laird, and Rubin in 1977. It can be applied

iteratively as an approach that cycles between two steps. The first one is an expectation-

step or E-step, because it computes the expected value of the latent variable (z) given

the data (x) and the current values of the parameters (θ(t)). In other sense, it calculates

the posterior distribution p(z|x,θ(t)) of the latent variable (z).

The second step is a maximisation-step or M-step, which attempts to update the

parameter values given the current posterior probabilities (E-step). As a result, this

step maximises the likelihood of the observed data given the estimated posterior prob-

abilities. Hence, M-step generates a new value for the parameters, which are used for

the next iteration of the algorithm. To formulate the EM algorithm, we assume that

we have the complete data log-likelihood, including both the observed data and the

latent variable. Then, we reformulate the derivate of the above marginal log likelihood

as following:

dℓ (θ)

dθk
=

n∑
i=1

d

dθk
log

[
K∑
k=1

ωkfk (xi; θk)

]

=
n∑

i=1

1∑K
k=1 ωkfk (xi; θk)

d

dθk

[
K∑
k=1

ωkfk (xi; θk)

]
using chain rule (2.1)
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The term d
dθk

[∑K
k=1 ωkfk (xi; θk)

]
=
∑K

k=1 ωkfk (xi; θk)
d

dθk
log
[∑K

k=1 ωkfk (xi; θk)
]
.

Now rewrite the equation 2.1 again

dℓ (θ)

dθk
=

n∑
i=1

∑K
k=1 ωkfk (xi; θk)∑K
k=1 ωkfk (xi; θk)

d

dθk
log

[
K∑
k=1

ωkfk (xi; θk)

]

=

n∑
i=1

K∑
k=1

[
ωkfk (xi; θk)∑K
k=1 ωkfk (xi; θk)

]
d

dθk
log [ωkfk (xi; θk)]

=
n∑

i=1

K∑
k=1

γ̂ik

[
d

dθk
logωkfk (xi; θk)

]

=
n∑

i=1

Ep(zi=k|xi,θ(t))

[
d

dθk
logωkfk (xi; θk)

]
=Q(θ | θ(t)).

γ̂ik is called responsibility and it indicates how strongly each data point belongs to each

component. Therefore, Hence, Q(θ | θ(t)) is the expected complete data log-likelihood.

Consequently, the EM algorithm procedure is as follows:

• Initially, determines the number of the mixture components K,

• Then, defines the initial values of all possible parameters.

• After that, iteratively refines the mixture components based on two steps

– Expectation step: compuates the γ̂ik

– Maximisation step: compuates the ML parameters given these γ̂ik

argmax
θ

n∑
i=1

K∑
k=1

γ̂ik [logωkfk (xi; θk)]

• the E-step and the M-step are repeated alternately until the difference l
(
θ(t+1)

)
−

l
(
θ(t)
)
< δ,where δ is small value. In this thesis, we consideres δ = 1× 10−6.

In this thesis, we will assume K = 2. We will also only consider fk (xi; θk)to be normal.

Hencc, the mixture of two-one dimensional normal distributions according to[109, 110,

111, 108]) can be written as:
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f(x1, x2..., xn;µ1, µ2, σ
2
1, σ

2
2, ω) =

n∏
i=1

[
(1− ω)

1√
2πσ2

1

exp

(
−

n∑
i=1

(xi − µ1)
2

2σ2
1

)

+ ω
1√
2πσ2

2

exp

(
−

n∑
i=1

(xi − µ2)
2

2σ2
2

)]
.

with the proportion of each component ω1 = 1− ω and ω2 = ω. The parameters of the

each normal distribution is θ1 = {µ1, σ1}and θ2 = {µ2, σ2}. The responsibility function

(E step) becomes

γ̂i2 =
ω̂f2

(
xi;µ2, σ

2
2

)
(1− ω̂) f1

(
xi;µ1, σ2

1

)
+ ω̂f2

(
xi;µ2, σ2

2

) = γ̂i. (2.2)

and then,

Q
(
µ1, µ2, σ

2
1, σ

2
2, ω
)
=

n∑
i=1

[
γ̂i1 log

[
(1− ω̂) f1

(
xi;µ1, σ

2
1

)]
+ γ̂i2 log

[
ω̂f2

(
xi;µ2, σ

2
2

)]]
=

n∑
i=1

(
(1− γ̂i) log(1− ω) + (1− γ̂i)

[
−1

2
log(2π)− log σ1 −

(xi − µ1)
2

2σ2
1

]

+ γ̂i logω + γ̂i

[
−1

2
log(2π)− log σ2 −

(xi − µ2)
2

2σ2
2

])
.

Then, Q is differentiated with respect to each parameter

∂Q

∂µ1
=

n∑
i=1

(
(1− γ̂i)

(
xi − µ1

σ2
1

))
= 0

∴ µ1 =

∑n
i=1 (1− γ̂i)xi∑n
i=1 (1− γ̂i)

. (2.3)

∂Q

∂θ2
=

n∑
i=1

(
γ̂i

(
xi − µ2

σ2
2

))
= 0

∴ µ2 =

∑n
i=1 γ̂ixi∑n
i=1 γ̂i

. (2.4)
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∂Q

∂σ1
=

n∑
i=1

[
(1− γ̂i)

(
−1

σ1
+

(xi − µ1)
2

σ3
1

)]
= 0

∴ σ̂2
1 =

∑n
i=1 (1− γ̂i) (xi − µ̂1)

2∑n
i=1 (1− γ̂i)

. (2.5)

∂Q

∂σ2
=

n∑
i=1

[
γ̂i

(
−1

σ2
+

(xi − µ2)
2

σ3
2

)]
= 0

∴ σ̂2
2 =

∑n
i=1 γ̂i (xi − µ̂2)

2∑n
i=1 (1− γ̂i)

. (2.6)

to maximise the mixing probability ω,where it is the average of the responsibilities:

ω̂2 =
1

n

n∑
i=1

γ̂i

This method will be used in Chapter 3, Chapter 4 and Chapter 5.

2.3 A receiver operating characteristic (ROC) curve

The outcomes of classification models or diagnostic tools can be either binary (positive

or negative), or on a continuous or ordinal scale. Thresholds can be used to catego-

rize continuous or ordinal findings into binary outcomes when needed. For example,

any findings above a certain level are assumed positives, while results below that level

are assumed negatives [5]. By comparing these classifications with the true status, the

True Positive Rate (TPR) and False Positive Rate (FPR) for each threshold can be

calculated. Then, to obtain the performance of these models or tools, a receiver op-

erating characteristic (ROC) can be used. ROC is a graphical curve that assesses the

discriminative ability of a classification model. It plots TPR in y-axis against FPR in x-

axis accross various thresholds, providing a comprehensive view of a test’s performance

[112, 5, 113]. Hence, the ROC curve provides more view of the model performance than

the 2x2 diagnostic test table, which only assesses the performance of the model at a

single threshold (cut-off) [5].

A diagonal straight line (chance line) draws between (0,0) and (1,1). The ROC

curve position compared to the line reflects the model’s performance. If the ROC curve

is close to the diagonal line that indicates the classifier model randomly classifies the
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data. In other words, the model cannot effectively distinguish between the positive and

negative classes [112, 5]. If the ROC curve is under the diagonal straight line, the model

performs worse than random guessing. It indicates that the model is unable to predict

the negatives. The model performance increases as it moves to the top left corner (0,1)

[5].

The ROC curve is very popular in many scientific areas such as radiology and epi-

demiology [113]. It is used to (i) assess the ability of the classification model or tool

to distinguish between two classes truly; (ii) to determine an optimal threshold that

achieves the maximum difference between the two target classes; (iii) and to compare

between two or more classification models or tools for the same application [112].

The ROC curve can be used to measure the model accuracy and summarized in a

single value by finding the area under curve (AUC). It is a dimensionless value that

indicates the performance of the classifier model [114]. The AUC value ranges between

0 and 1. As the AUC value moves closer to 1, it indicates a better discriminatory ability

of the model. [5]. Moreover, AUC can be used to compare the performance of different

classification models in the same data, where the highest AUC value means the best

model [112]. However, while AUC is widely used, it is not always the most suitable

measure, especially in scenarios with highly imbalanced data (low prevalence). In such

cases, a high AUC value may correspond to a model with low sensitivity, meaning it per-

forms well at identifying negatives but poorly at detecting positives [115]. Thus, while

the Table below summarises the general interpretation of AUC values, it is important

to consider the context in which the model is applied:

Table 2.2: AUC Value and Model Performance [5].

AUC value Interpretation
0.5 random

0.7-0.8 acceptable
0.8-0.9 excellent
0.9-1 outstanding

In addition, the ROC value can guide the selection of an optimal threshold for

classification. The optimal threshold allows the construction of the 2×2 diagnostic

table and to assess the model performence. The square of the distance and Youden

index are two mathematical approaches to calculate the optimal threshold. The square

of the distance calculates the squared distance between (0,1) and any order pairs on the
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ROC curve. The (0,1) point is upper left hand corner of the ROC curve. It represents a

perfect classification, because the TPR=1 and the FPR=0. In other words, it indicates

that the model perfectly classifies all positive and negative observations. Therefore, the

square of the distance can be written as following

d2 = (1− TPR)2 + FPR2.

The ROC point that has the minimum value of d2 is considered as the optimal cut-off

point and all predicted observations not less than TPR are identified as positives and

the rest as negatives [112].

The Youden index searches the maximum vertical distance between chance line and a

point in the ROC curve [112, 113]. Therefore, the index can be defined as the maximum

difference between TPR and FPR and can be written as

Youdon Index = J = max (TPR− FPR) .

The index ranges between 0 and 1, where J = 1 means the maximum difference between

positive and negative groups. Moreover, it means the model can perfectly separate the

two classes. Therefore, as J value is closer to 1, the ability of model to classify increases

[113]. These metrics will be used in Chapter 6.

2.4 Growing degree day (GDD)

Growing degree day (GDD) is used in Chapter 6. It will serve as a climatic variable

to investigate its association with the colonisation behavior of EAB. GDD is a metric

used in agriculture and entomology to quantify the growth and development of plants

and insects [116, 117]. It indicates the amount of accumulated heat above the threshold

temperature during a specific time frame. The GDD is calculated by summing the

values of the difference between the average daily temperature and a base temperature

(threshold temperature).

The base temperature is the minimum temperature for an organism to grow or

develop, below this value the plant growth or other biological processes cannot occur

[117, 116]. Base temperatures differ among organisms, and different organisms require

different GDD to activate metabolic processes [117, 116]. The base temperature can

be experimentally and statistically determined, rather than physiologically, through
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observing organism response to different temperatures [118].

The GDD formula can be written as follows:

GDD(tn) =

tn∑
t=t1

( Tt − Tb) .

where Tt is the average daily temperature, Tb is the base temperature and tn is the total

number of days.

GDD explores the time of the phenological dynamics, and determines the suitable

area for growing plants or insect outbreaks. The GDD is a practical tool for farmers

and agricultural scientists to track crop growth develpement such as crop flowering and

predict harvesting time. In addition, entomologists have used the GDD to follow the

insect pest development and predict outbreaks [118, 116]. The GDD gives an indication

of the likelihood of insect activity where each insect requires a consistent GDD to reach

definite life stages, such as egg hatch or adult flight [117, 118]. The GDD is a better

method for modeling insects compared to using simple temperature measurements due

to its biologically meaningful approach [116].

Additionally, GDD is an effective tool for understanding pest outbreaks over time

and space and consequently for enhancing pest control [97, 99]. GDD, combined with

the knowledge of climate change, forms a powerful tool to predict pest distributions.

As a result, GDD can help pest managers and governments to limit and mitigate the

outbreak [118]. It indicates which pests are likely to attack specific regions, determines

the spatial distribution of damage, and the most likely time of invasion or infestation

[119, 120]. In addition, GDD helps to determine the required type of control that is

needed and the time of applying treatement. Therefore, it can help to reduce the risk

of crop damage and economic losses [118].

2.5 Bayesian approach

In this thesis, Bayesian approach will be employed in Chapters 4, 5 and 6 to estimate

model parameters. Chapter 4 and 5 will utilise Bayesian method within a meta-analysis

framework for estimating diagnostic parameters, including sensitivity (Se), specificity

(Sp), and prevalence. In Chapter 6, Bayesian method will be applied to estimate the pa-

rameters of models that help understanding the distribution of EAB under the influence

of climatic and non-climatic factors, as well as the dispersal kernel of EAB.
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In Bayesian statistics, any unknown parameter is associated with uncertainty, which

can be represented by a probability distribution. A Bayesian approach allows the in-

corporation of prior knowledge and offers a more natural interpretation of uncertainty

than a frequentist approach [121]. In Bayesian inference, observation data D provides

information about a (set of) parameter(s), called likelihood, which is used to update a

prior belief f(θ) about a (set of) parameter(s) into a posterior belief f(θ | D) about a

(set of) parameter(s) [122]. Formally, it can be explained by Bayes’ theorem,

f(θ | D) =
f(D | θ)f(θ)

f(D)
∝ f(D | θ)f(θ).

f(D | θ) is the likelihood for an observation of data D. f(θ) is prior probability

distribution(s) for parameter(s) of interest. It represents the initial beliefs regarding

each model parameters before any data is observed. The prior can be either informative

or uninformative. Informative priors are shaping the distribution based on existing

knowledge, such as previous analysis or literature. Without such information, the prior

is usually selected in some logical way, such as uniform distribution over a realistic

parameter range [121, 123, 103]. It can also be selected to have a minimal effect on the

posterior distribution, leading to the likelihood to play a more role in explaining the

posterior distribution.

Markov Chain Monte–Carlo (MCMC) has been an increasingly popular technique

for estimating posterior distributions in Bayesian inference, which are often challenging

to obtain analytically [121, 122]. It can handle complex models and high-dimensional

parameter spaces, making it a versatile tool for a wide range of applications. Moreover,

MCMC algorithms naturally incorporate prior information about the parameters of

interest, which can improve the accuracy of inferences [124].

MCMC is a combination of two statistical approaches, a Markov Chain method and

Monte–Carlo approach [125]. The former generates random samples until it converges

to build up the target and optimal posterior distribution [124]. Every random sample

serves as a stepping stone to produce the next random sample (hence the chain). The

"Markov" attribute of the chain reflects the fact that while each new sample depends on

the current one, they do not depend on any previous ones. After running the Markov

Chain for a sufficient length of time, the samples’ distributions converge to a stationary

distribution reproducing the posterior distribution (if well-implemented) [122].

Monte Carlo is a way of generating random samples from the posterior distribu-
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tion. Random samples are derived using a number of Monte Carlo methods, including

rejection, importance, and Metropolis-Hastings sampling [122]. As the Markov Chain

becomes larger, MCMC methods are capable of producing a sample of the Markov

Chain size that represents the posterior distribution, from which to draw conclusions

about the parameters. The sample can be used to estimate posterior probabilities, to

calculate expected values and to obtain credible intervals for parameters [125, 122].

The MCMC method generates random samples from the posterior distribution of

the parameters, after which inferences about the parameters are made. Statistics such

as mean, median, and credible interval (CI) of a parameter can be estimated from the

samples, reflecting the level of belief about its value [121].

2.5.1 MCMC conergence tools

A major step in the Bayesian analysis is to assess the convergence of the chains to

the target posterior distributions. Four tools are frequently implented to evaluate the

convergence of the MCMC simulations.

Trace (Time series) plots

The trace plot is the most frequently graphical method used as a convergence diagnostic

tool in MCMC technique. It is a time series plot, and represents the values of the Markov

chain over time in the state space. It shows the parameter values of the successive

iterations on the y-axis against the corresponding iteration numbers on the x-axis. To

evaluate the trace plot, the subsequent aspects should be considered:

• A converged chain reached stationary distibution, if minimal fluctuation (varia-

tion) occurs around a particular value in absence of visible trends or patterns.

Hence, it represents appropriate mixing, generating the desired posterior distri-

bution.

• The flat bits or lines in the trace plot indicate that the MCMC chain is not

converging efficiently, and it is stuck in some part of the state space.

• The trace plot starts with initial samples, a "burn-in" period. In this period,

the plot mostly shows poor convergence. Hence, the burn-in period should be

discarded.
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• Discarding burn-in samples may not be necessary, if the trace plot exhibits a

consistent pattern throughout [126, 127].

• Multiple chains with various initial values are converge to the same distribution,

if they are overlapping and appear indistinguishable [127].

Autocorrelation function (ACF) plot

The autocorrelation function (ACF) plot is another graphical statistical tool that is used

to test and diagnoses the convergence of the MCMC simulations. The ACF can calculate

the correlations between current estimated parameter and the previous estimated value

based on the iteration number at lag k. In other words, the autocorrelation value at

lag k, means the correlation between the current estimated value and the one k steps

ealier. For example, the ACF value at lag k=4 measures the correlation between each

current estimated parameter value and the value that was estimated at the 4 time steps

earlier. However, at lag k=0 exhibits the relation with itself, as there are no previous

samples, hence, the value is always one. To assess the ACF plot, the following should

be taken into account:

• As the lag value k increases, the ACF plot should display a decay in the correlation.

This is an indication that the MCMC simulations are well-mixed, the MCMC

parameters samples are approximately independent and have converged to the

target distribution.

– Fast-mixing chain shows that the lag k autocorrelation values drop down to

zero rapidly

– Slow mixing chain means existence of correlation, and need to include a large

number of samples to reach convergence [127, 126].

Gelman and Rubin diagnostic

Gelman and Rubin (1992) criteria is a single and dimensionless quantitative measure

diagnostic tool, which is alternatively called the potential scale reduction factor (PSRF).

The PSRF relies on analysis more than one chain that are simulated in parallel where

each has a different initial samples. It compares the difference between the variance

within the chains and the variance between the chains,
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W =

∑m
i=1

∑n−1
j=0

(
Xij − X̄i

)2
m(n− 1)

mean within chain variance

B

n
=

∑m
i=1

(
X̄i − X̄

)2
(m− 1)

variance between chains

V̂ =
(n− 1)W +B

n
pooled variance

R̂ =
V̂

W
=

(n− 1)W +B

n
× 1

W
=

(
n− 1

n

)
+

B

nW

where i = 1, ...,m represents the index of each chain where the total number of chains

is m. The index j where j = 0, ..., n−1 represents all samples within each chain. X̄iand

X̄is the average estimation for each chain and for all chains, respectively. The n in the

term B
n is to ensure consistency with the W value. The V̂ is weighted average of the

within and between variance chains. Finally, R̂ is the point estimate of PSRF.

If R̂ value approaches or equals one, it means that W ≈ B. It indicates that chains

are mixed and converge to the same distribution and with enough number of iterations

[127, 126]. If R̂ value is greater than 1.1, it indicates non convergence. Thus, the

solution is either to reduce V̂ the or to increase W, which can be achieved through

increasing the iteration number. Further, H. Du et al. suggested to use both PSRF

point estimate and the PSRF upper confidence interval (UCI) which is the upper bound

of the 95% credible interval to test the convegence [128]. Thus, the MCMC simulation

is considered converge if the following conditions are satisfied;

• The PSRF point estimate is close to 1 and no greater than 1.1 [126].

• The PSRF UCI is commonly less than 1.1. The PSRF UCI explains the uncer-

tainity in the PSRF. The uncertainty in the PSRF estimate is influenced by both

variances of the chains and the number of iterations. Thus, a higher uncertainty in

the PSRF estimate indicates a less accurate convergence assessment, and suggests

that increasing the number of iterations is required [128].

The R̂ value can be simply calculated by using different statistical packages in R such

as coda [129] and rstan [130].

Effective sample size (ESS)

Effective sample size is another quantitative measure diagnostic tool to assess the

MCMC convergence. It is a single and dimensionless number that reflects the effec-
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tive and independent sample size to measure the efficiency of the MCMC algorithm. It

captures the autocorrelation impact of the variability within the chains on the uncer-

tainty in estimates. The ESS can be estimated by using;

ESS = Neff =
N

1 + 2
∞∑
k=1

ACFk

where N is the total sample size and ACFkis the ACF value at lag k. The Neffcan

be greater than N , if the
∞

−1 <
∑

k=1

ACFk < 0. In addition, the N = Neff , if the
∞∑
k=1

ACFk = 0 which indicates each sample provides unique information.
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Chapter 3

Statistical analysis of citizen science

AI data: A case study of Fall

Armyworm invasion in India

3.1 Introduction

Invasive species are one of the key issues threatening the environment and agriculture

throughout the world. Plant pest and disease outbreaks seriously affect agricultural

economies and threaten their food and nutritional security [131]. A major challenge

in these situations is the detection of new pest and diseases by the local communities

and scientific researchers. Early detection of incursions can be critical in management

practices that have the potential to control the spread of these pest to other areas [132].

A monitoring system of pest and disease risk register is developed in most countries,

helping in the detection of a new invasion [133]. However, despite the extensive control

measures, new invasions such as Fall Armyworm (FAW) have been reported in India

since the middle of 2018 [134, 135].

There is a variety of approaches for detecting pests and diseases, such as qualified

inspectors, general public participation (citizen science), remote sensing using satellites

and smartphones [74]. Recently, citizen science reporting that depends on assessments

by people and farmers has played an important role in detecting pest and diesease oc-

currence, around the world. Smartphones have become increasingly popular in the past

few years providing citizens with access to modern technology, allowing rapid collection

of large data sets, including geo-tagged images of pests and their damage to hosts. This
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creates an opportunity for introducing novel detection methods based on artificial intel-

ligence (AI) and machine learning (ML) technologies [74]. One such mobile based tech-

nological company is Progressive Environmental and Agricultural Technologies (PEAT

GmbH), an AgTech startup based in Berlin which has successfully implemented an An-

droid/ Apple based AI/ML application to detect plant damage symptoms, ’Plantix app’

[82, 79, 80].

Plantix application has been trained to automatically detect approximately 550

major pests, diseases, and nutrient deficiencies in 35 major crops. A geo-time tagged

image is uploaded by a smartphone user to the Plantix app. Then, the app analyses

the uploaded image using deep neural networks (DNN) trained on previous data sets.

The DNN examines the uploaded image and identifies different health conditions with

associated probabilities (similarities)[79, 80, 83]. The DNN selects the health status

with the highest probability (top-1 similarity) as the final decision which is then sent

to the user with recommendations on the management of the disease [82, 79, 80].

Fall Armyworm (FAW, Spodoptera frugiperda) is an invasive insect pest from the

Americas, causing massive losses to agriculture in general, and the maize crop in par-

ticular, impacting the industry in India since its initial invastion in 2018. Maize (Zea

mays) is the third-largest crop by area grown in India, spread across an area of 9-9.5

million hectares (mha) with a production of 24–28 million tonnes (mt) [136]. Although,

FAW is a polyphagus pest, it has a preference for maize. First reported in Karnataka

state in India during May 2018, FAW spread to more than 90% of maize fields across

India within 16 months [35, 29]. Mayee et al. [136] reported that FAW caused signifi-

cant damage leading to a decrease in the maize growing area from 9.2 mha in 2018 to

8.19 mha in 2019. As a result, maize production diminished, leading to a rise in feed

prices for poultry, aquaculture and cattle industries, thus impacting outputs from these

industries. The Plantix app has been used in India since 2017 [137]. During the 2018-19

seasons, nearly 140,000 data points of maize crop pests and diseases were recorded using

the Plantix app.

While Plantix app is successful in diagnosing maize crops in a short time and at

the right location, a major challenge is the absence of independent verification. Con-

sequently, there is no established gold standard (reference standard). In this case, it

is difficult to determine the false and true diagnoses and to conduct further analysis.

Therefore, such mathematical classification methods should be supported by internal
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evidence. Hampf et al. [80] used the Plantix app data to detect pests and diseases in

maize and soybean crops in the southern Amazon, Brazil, selecting data points with at

least a similarity of 0.5 (50%) to ensure reliable diagnoses. Then, the selected data was

used to assess the Plantix app accuracy by comparing the diagnostic app results with

actual conditions (gold standard). The sensitivity of the Plantix app was reported as

91.51% for maize, although it was lower for soybean diseases and pests. A majority of

other studies focused on determining the quality of the app in the classification crop

types (names). As an example, Wang et al. [79] measured the app’s quality by analysing

southeast Indian crop types.

For data classification, latent class analysis or panel diagnosis are the most common

methods. The panel diagnosis depends on a group of experts who have the skills required

to decide upon the final diagnosis in every case and is based on all the available related

case data [138]. The latent class analysis relies on the available diagnostic test results

to create a statistical model that establishes a reference standard [139]. Latent class

analysis is a type of mixture model that is used for model-based clustering. A Gaussian

mixture model (GMM) is the most commonly used around model-based clustering [140].

Recent studies regarding FAW in Indian maize crops have addressed biology, genetic

characterization [141, 142, 143], ecology, field survey analysis [144] and controlling and

managing the spreading of FAW [145, 35]. According to our knowledge, no study has yet

evaluated the temporal spread of infested maize crops and their intensity due to FAW

in India. From the Plantix app, a high or low number of FAW notifications cannot

solely reflect the intensity of FAW infestation. These notifications may be high because

of a significant volume of data collected during the same period. Therefore, comparing

FAW reports with all other notifications is essential to understand FAW intensity. This

approach can be referred to as odds. The term odds refers to an estimated rate of the

number of occurrence of a certain event (infested maize crops by FAW) to the number

of non-occurrences [146]. Hence, this study aims to apply a classification model to

distinguish between false and true diagnoses, and to investigate the intensity of FAW

infestation on maize crops.
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3.2 Materials and methods

3.2.1 Data description

The dataset consists of all notifications regarding maize in India, including those diag-

nosed as infested with FAW and those without Fall Armyworm infestation. Provided

by PEAT GmbH, this dataset comprised the data which was crowd sourced from users

of the Plantix app in India. The dataset included various dates from January 1, 2018

until December 31, 2019. Within this period, there were 138359 data points under the

1.1.6 DNN version from 631 districts.

A number of meta-data variables were derived for further analysis (see Table 3.1),

including the time stamp, longitude and latitude GPS coordinates and the results of

the machine learning as categorical and numerical variables. The categorical variables

were saved under the headings "top-1 pathogen name" and "top-2 pathogen name".

These two variables define the detection status of each maize diagnosis as either healthy

(indicating the maize is in good health), infested with FAW, infested with pathogens,

affected by other pests, or suffering from nutrient deficiencies.

The numerical variables were "top-1 similarity" and "top-2 similarity", representing

positive integer values ranging from 2 to 100. A large similarity value indicated that

the detection was more confident of reflecting the real status of the diagnosed maize.

Conversely, similarity values close to one suggest less confidence in detection. It is

noteworthy to mention the distinction between top-1 and top-2. The DNN generates

several similarity scores with corresponding health conditions for each tested crop where

the total sum of these similarities equals 100% (or a probability of 1) . Hence, under

the top-1, the highest value is recorded, while top-2 includes the next highest value.

Moreover, this dataset was based on three different deep neural network (Plantix-

DNN) versions, where each was applied to a different set of maize cases. For the purpose

of our statistical analysis, the research described in this chapter was based on the 1.1.6

version of the app. This is because it is the most recent version, and the analysis was

more consistent when it depended on only one specific version. Hence, this version had

134938 data points in 2018-19 which were used in the subsequent analysis. Further,

there were 1101 cells in the "District" variable without the district name and therefore

labelled with “FAILED”. Accordingly, they were defined manually based on their GPS

coordinates using ArcGIS Pro (version 2.8, ESRI, Redmonds, CA, USA).
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Table 3.1: Sample data from the Plantix app illustrating the key variables used in
statistical analysis.

Date Longitude Latitude Pathogen name Similarity DNN Districttop-1 top-2 top-1 top-2
01/01/2018 75.73 15.31 Boron

Defi-
ciency

Healthy 76 2 1.1.6 Gadag

22/07/2018 75.13 14.77 Spotted
Stem-
borer

Fall
Army-
worm

28 18 1.1.6 Haveri

07/12/2019 87.39 25.73 Fall
Army-
worm

Violet
Stem
Borer

22 20 1.1.6 FAILED

21/11/2019 81.44 22.02 Fusarium
Ear Rot

Healthy 31 6 1.1.15 Jalgaon

3.2.2 Research assumptions

In addition, since the FAW was the primary research focus, we assumed positive results

when the Plantix app generated a report for FAW and negative results for all other

categories. Further, the second assumption was that the 134,938 maize notifications

were classified into three categories:

• FAW: maize crop for which Plantix app reports FAW under the top-1.

• Healthy: maize crop reports as healthy under the top-1.

• Non-FAW: maize crop reports as having other conditions (non FAW pests, dis-

eases, or nutrient deficiencies).

Figure 3.1 displays the 134,938 maize notifications on the map of India. It can be seen

that the red points (FAW notifications) are more abundant in the South compared to

the North, while the green (Healthy) and the blue (Non-FAW) dots are more frequent

in the North. Therefore, the third assumption was that the data was divided the

notifications into two zones, in order to see the difference in the spread and where the

infestation started during the period of analysis. The fourth assumption, this study

mainly depended on top-1 variables rather than the top-2 as it was the most accurate

when diagnosing variables using the Plantix app.
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Figure 3.1: The Plantix app top-1 notifications for the maize crops in the South (left)
and North (right) of India during the invasion period (2018-2019) with FAW (red),
Healthy (green) and Non-FAW ( blue).

3.3 Classification model

A classification model was applied to assign each tested maize crop into a True (T) or

False (F) case, with True (T) associated with accurate diagnoses and False (F) with the

app failing to diagnose the maize crop correctly. The classification process was based

on the "top-1 similarity" variable. Therefore, the True class includes high similarity

values, while the false class includes low similarity values. Moreover, the classification

model was utilised separately for the three categories FAW, Healthy and Non-FAW.

The classification model was based on a mixture of two normal distributions with the

expectation-maximisation (EM) algorithm, which was used to estimate the parameters.

Although the similarity values were discrete numbers ranging from 2 to 100, the normal

distribution was chosen as a first approximation among possible continuous distributions

due to its flexibility and widespread applicability in statistical modeling. Furthermore,

the normal distribution is commonly employed in latent class models because of its

mathematical properties, which facilitate estimation and classification. Further, with a

large sample size of over 10,000 for each category, the normal distribution provides a

robust starting point for modeling the data.

The mixture of two normal distributions represents a sum of two normal distributions

with different weights. The expectation-maximisation (EM) algorithm is a statistical
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method to estimate the parameters for the mixtures[109, 110, 111, 108, 107]. Opsteegh

et al. [94] applied this algorithm successfully to classify the results of the RIVM ELISA

test to detect the Toxoplasma gondii parasite in sheep into healthy (Negative) and

unhealthy (Positive) groups. In this study, we implement the algorithm three times,

once for each category independently: FAW, Healthy, and Non-FAW. For each category,

the algorithm is applied to identify True and False groups, resulting in three separate sets

of classifications. This represents a novel application to this type of data. Additionally,

while most classification methods typically distinguish between positive and negative

cases, our work specifically focuses on classifying data into True and False categories.

This unique approach offers a new perspective on analysing the data.

In this context, the mixture model was appropriate as the presented data included

both the latent and observed variables, where both variables are to explain the data

distribution. The latent variable here was a binary variable, with two classes repre-

senting False and True classifications. The observed variable was the “top-1 similarity”

variable. Hence, the model can define the heterogeneity between the observed data

points by estimating the probability of each data point belonging to either the False or

True class.

Therefore, the mixture model[109, 110, 111, 108, 107] for each category can be

expressed in the following way:

N
(
µF , µT , σ

2
F , σ

2
T , ω

)
=(1− ω)NF

(
X;µF , σ

2
F

)
+ ωNT

(
X;µT , σ

2
T

)
(3.1)

where 0 ⩽ ω ⩽ 1 is the mixture proportion, representing the proportion of the tested

maize crops that belonged to the True class. Thus, (1− ω) indicates the proportion of

False readings. The one dimensional random variable X is the “top-1 similarity” score,

where each score is assumed to be independent. This is because each image is diag-

nosied separately by the Plantix app, where the diagnosis outcome for one crop does not

impact the diagnosis of another. While it is possible for nearby crops to have similar

symptoms, which could result in indirectly correlated scores, the independence assump-

tion remains reasonable for the purposes of this analysis. Further, NF

(
X;µF , σ

2
F

)
and

NT

(
X;µT , σ

2
T

)
are univariate Normal distributions. Thus, in this model, there are five

parameters µF , µT , σ
2
F , σ

2
T and ω which need to be estimated.
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3.3.1 Parameter estimation

Accordingly, the five parameters µF , µT , σ
2
F , σ

2
T and ω were estimated by the EM algo-

rithm. The EM algorithm can be applied iteratively to cycle between E (Expectation

step) and M (Maximisation step) steps starting from the initial values of each param-

eter. The E-step involves calculating the expected value of the log-likelihood function,

given the current estimates of the parameters and the observed data. The M-step then

updates the parameter estimates by maximising the expected log-likelihood obtained in

the E-step, hence, improving the model’s fit to the data.

The initial values of µF , µT , σ
2
F andσ2

T in this study were estimated using k-means

clustering where k = 2, where k-means clustering is an algorithm that partitions data

into k clusters based on minimising the distance between data points and their respective

cluster centers. The initial value of ω was computed using the mean (weight) of one

cluster. After that, the E step assigns the probabilities of each data point in X belonging

to the True class and False class are calculated based on current parameter estimates

values through the responsibility function γ̂i. The probability γ̂i of data point i in

X belonging to the True class given the current estimates of the model parameters

µF , µT , σ
2
F , σ

2
T and ω is represented as

γ̂i =
ωNT

(
X = xi;µT , σ

2
T

)
(1− ω)NF

(
X = xi;µF , σ2

F

)
+ ωNT

(
X = xi;µT , σ2

T

) (3.2)

The complement of γ̂i is (1 − γ̂i), and it infers the probability that each data point

belongs to the False class. The normalisation term in the denominator guarantees that

the sum of probabilities for a single data point is equal to one. On the other hand, the

M-step updates the parameter values based on γ̂i in the E-step. Hence, it allows us to

find the parameters’ values that maximise the likelihood function of the observed data

[109, 110, 111, 108, 107]

. Further, this iterative process between the E and M steps was repeated until conver-

gence, with the convergence threshold set as 1× 10−6. The EM algorithm was run in R

4.2.1 and tested using a normalmixEM function in mixtools package [147].

Further, to assess the goodness of fit of the mixture model, the Q-Q plot and a

Kolmogorov-Smirnov (K-S) test with a parametric bootstrap method was implemented.

The parametric bootstrap approach was used to correct for inaccuracies in the critical
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values of the K-S test, which were caused by estimating model parameters from the

data [148]. In this process, 1,000 bootstrap samples were were generated from the fitted

mixture model. Then, the K-S statistic for each sample was computed in oreder to

form a bootstrap distribution, which facilitated to determine an adjusted p-value by

comparing it to the observed K-S statistic [148].

3.3.2 Weekly temporal distribution of False (F) and True (T) groups

in North and South zones

After fitting the mixture model of two normal distributions with latent classes (True and

False) using the whole dataset for each category, a temporal distribution for each class

was explored, in order to estimate the weekly expected notifications for both classes.

The temporal distributions were built for each category (FAW, Healthy, Non-FAW), in

North and South zones. Note, the subsequent actions are only explained for the FAW

category in the North zone.

At first, the daily notifications were converted into weekly notifications, resulting in a

total of 104 weeks for the whole two years (2018-19). This transformation was performed

to simplify the analysis without impacting its accuracy as well as the fact that there

was not enough data for 720 days. Following that, for each week wj (1 ≤ j ≤ 104),

the number of notifications (frequency)ij at each similarity rate (2 ≤ i ≤ 100) was

determined from the data to estimate the weekly expected notifications of F class wF
j and

T class wT
j . These expectations are given by:

E
[
wT
j | FAWNorth

]
=

100∑
i=2

(frequency)ij .γ̂i (3.3)

E
[
wF
j | FAWNorth

]
=

100∑
i=2

(frequency)ij . (1− γ̂i) (3.4)

where E
[
wT
j | FAWNorth

]
and E

[
wF
j | FAWNorth

]
are the weekly expected value of

FAW in the North zone in T and F classes, respectively using the final parameters

estimated from the converged EM algorithm of the mixture model of FAW category

and responsibility function (eq. 3.2). The E
[
wT
j | FAWNorth

]
reflects the weekly
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expected number under the FAW category in the North zone that the Plantix app

successfully diagnosed, while the E
[
wF
j | FAWNorth

]
of FAW representes the weekly

expected number in the North zone that the Plantix app failed to diagnose correctly.

Here, frequencyij represents the number of observations within the FAW category at i

similarity rate and in a week j.

This method was applied for all categories (FAW, Healthy and Non-FAW) and in

both spatial zones. As stated described that

FAW is assumed as the positive category, while Healthy and Non-FAW are assumed

as negative categories. Hence, the E
[
wT
j | FAWzone

]
representes the weekly expected

number of True Positive (TP). Similarly, E
[
wT
j | Healthyzone

]
and E

[
wT
j | Non-FAWzone

]
denote the weekly expected numbers of True Negative (TN) for Healthy and Non-FAW

categories, respectively. In addition, the E
[
wF
j | FAWzone

]
indicates the weekly ex-

pected number of False Positive (FP), while E
[
wF
j | Healthyzone

]
and E

[
wF
j | Non-FAWzone

]
represent the weekly expected number of True Negative (TN) for Healthy and Non-FAW

categories, respectively. Table 3.2 summaries these terminologies.

Table 3.2: Four possible outcomes of the weekly notifications can be estimated based
on the classification models, which is based on “top-1 similarity” and three categories
(FAW, Healthy and Non-FAW) under the “top-1 Pathogen name” variable.

Plantix app variable “top-1 Pathogen name”
Infested with FAW

(Positive)
Not infested with FAW

(Negative)

Classification model True (T) True positive (TP) True Negative (TN)
False (F) False positive (FP) False Negative (FN)

3.3.3 Intensity of weekly FAW infestation

In order to estimate the extent of the FAW infestation, the number of TP notifications

needs to be interpreted in the light of the overall reporting intensity. Thus, the large

number of TP notifications can be associated either with high intensity and medium

(or even low) reporting rate, or low intensity but a very large number of reports. The

solution is to scale TP by TN, resulting in odds. Thus, the odds formula of infested

maize crops by FAW is:

odds =
TP

TN
(3.5)
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where the odds ranges between 0 and infinity. We considered two scenarios for TN,

where TN either represents TN cases of Healthy or TN represents TN cases of both

Healthy and Non-FAW. If odds > 1, the maize crops infested by FAW outweigh the

number of non-infested by FAW, and if odds < 1, the number of non-infested by FAW

is higher. Consequently, when odds = 1, the number of maize crops infested by FAW

and non-infested by FAW are equal [149]. Additionally, the odds can be converted to

probability:

probability =
odds

odds+ 1
(3.6)

where this probability indicates the likelihood of maize crops being infested by FAW

over week. For instance, if the probability is 0.6, it means that 60% chance of maize

infestation with FAW in that week.

3.4 Results

3.4.1 Descriptive analysis and data visualisation

Bimodal distribution of the similarity index

The similarity rates for the three categories (FAW, Healthy, Non-FAW) in the whole

data set, as well as for the North and the South of the country, are shown in Figure 3.2.

A considerable number of notifications (63.4%) have a low similarity rate (<50), while

a few notifications (0.72%) have similarity rates greater than 90. Compared to North

India, South India recorded 20.3% more notifications, despite the North’s area being

larger than the South (see Figure 3.1), thus, reflecting a higher proportion of maize

growing land in the South.

Further, two peaks can be observed in each category in both North and South India,

and more notifications are present in the left peak, with the exception of the Healthy

category. We use this property of each category of notifications, to classify False (F)

and True (T) classes in the mixture model, with F and T classes as a latent variable.

Therefore, in this situation the mixture of two normal distributions can be used as a

classification model, in order to predict the four possible outcomes of a diagnostic test:

true positive (TP), false positive (FP), true negative (TN), and false-negative (FN).
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Figure 3.2: Stacked histograms of similarity rate (2-100) for maize crop in pan India
during 2018-19 (n=134938), for North India (n=53779), and South India (n= 81159),
showing FAW (red), Healthy (green) and Non-FAW (blue).

Temporal notifications

Figure 3.3 shows the weekly notifications in both zones. Kharif (June - October) and

Rabi (October - February) are the typical seasons for growing maize in India. Although

the dates vary from year to year, and between locations, we assign the dates of 3rd June

and 9th October as the start and end of the Kharif season, whereas we consider the dates

10th October and 28th February to be when the Rabi season begins and ends.The South

zone notifications under each category outnumbered the North’s notifications over the

first 10 weeks. Further, the FAW notifications in the South were higher when compared
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to the notifications from the North for the entire period, with the exception of the time

between March 2018 and the beginning of Kharif 2018. During North Kharif seasons,

the notifications in the Healthy category surpassed the onse in the South, whilst the

converse was true during the Rabi Seasons. Furthermore, the South accounted for more

Non-FAW notifications than the North during March and mid-July of 2018.
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Figure 3.3: The weekly number of maize crops diagnosed by the Plantix app in the
North (top) and South (bottom). The red curve is the True class, and the blue curve
is the False class. The light blue area is Kharif season (3rd June to 9th October), the
orange area is Rabi maize season (10th October to 28th February).

The results of the weekly notifications show that most of the notifications in both

years have been in Kharif seasons, except for the FAW category in 2018, which had more
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Rabi than Kharif notifications. This can be interpreted by comparing Figure 3.3 with

Figure 3.4, where the number of users of Plantix app were more active during Kharif

and Rabi seasons. Especially during Kharif, the number of users was higher than at

other times as it is a major monsoon season to grow crops. In addition, there were more

users in 2019 than in 2018. This might mean that the number of Plantix app users was

increasing or they were becoming more experienced at using the app.

Figure 3.4: Monthly total number of the Plantix app users in the whole of India within
the study period (2018-2019).
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3.4.2 Classification model: mixture of two normal distributions
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Figure 3.5: Fitted two univariate normal distribution mixture model (green curve) based
on similarity rate along with probability fitted models for the false group (blue curve)
and true group (red curve). The intersection point between the blue and red curve is
the cut off between two groups. The cut off value is 57 for FAW, 63 for Healthy, and
57 for Non-FAW

The mixture model is used to filter out the low-similarity notifications, interpreted

here as False (F) in contrast to high similarity True (T) cases. The histograms from

Figure 3.2 and the corresponding fitted curves using Eq 3.1, are shown in Figure 3.5.

The estimated parameters of the mixture models are presented in Table 3.3.

Table 3.3: Parameter estimations based on mixture of two univariate normal distribu-
tion with the EM algorithm.

Category False group parameters True group parameters
FAW ω = .70, µ = 35.51, σ = 13.60 ω = .30, µ = 68.13, σ = 10.37

Healthy ω = .62, µ = 37.48, σ = 16.34 ω = .38, µ = 75.02, σ = 7.46

Non-FAW ω = .83, µ = 30.68, σ = 12.25 ω = .17, µ = 69.92, σ = 14.84

The visual inspection of the Q-Q plots for each category in Figure 3.6 suggests a good

fit for the mixture models. This is because across all three plots there is an indication of

linearity, where there are strong linear relationships between the points of empirical CDF
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and theoretical CDF. Further, the points do not consistently deviate above or below the

line, indicating that the theoretical distribution is capturing the data’s behavior well. In

addition, the calculation of the Kolmogorov-Smirnov (K-S) test with a 1000 parametric

bootstrap method was implemented for each mixture model. The p-value for each fitted

mixture mode was above 0.05, indicating that there is insufficient evidence to reject the

null hypothesis. Hence, we can conclude that each mixture model is a reasonable fit for

the data.

FAW Healthy Non-FAW

Figure 3.6: Goodness of fit for mixture model using Q-Q plot.

One more analysis which reflects the goodness of fit is comparing the fitted mixture

model with observation data for top-1 similarity" and corresponding rates of "top-2

similarity". It is notable that cut-off points between F and T groups were at a similarity

value of 57 for FAW, 63 for Healthy, and 57 for Non-FAW (see Figure 3.5). For the

true groups, we considered them as the starting rate. To check the accuracy of the

fitted model, these cut off rates were used to find differences between True rates of

"top-1 similarity" and corresponding rates of "top-2 similarity". The differences were

consistently above 30 as can be seen in the boxplots (Figure 3.7). Hence, the results

show that the presence of such gaps indicates that the fitted model was successful in
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determining T and F groups. In other words, a significant difference between True rates

of "top-1 similarity" rates and corresponding rates of "top-1 similarity” indicates that

the model was successful in accurately predicting the true diagnosis cases by using the

Plantix app. In contrast, if the distinguished value is small, such as 10 or less, it reflects

that the classification model may struggle to make a clear determination.
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Figure 3.7: Boxplots of similarity rates difference between “top-1 similarity” and “top-2
similarity”, where the top-1 started at the cut-off rate with (a) the FAW at 57, (b) the
Healthy at 63 and (c) the Non-FAW at 63.
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3.4.3 Weekly temporal distribution of F and T groups in North and

South zones
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(a) Weekly expected number of FAW cases based on mixture normal distribution of FAW.
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(b) Weekly expected number of Healthy cases based on mixture normal distribution of
Healthy.
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(c) Weekly expected number of Non-FAW cases based on mixture normal distribution of
Non-FAW.

Figure 3.8: Weekly expected number of infested and non-infested maize crops in 2018
and 2019 in North (solid line) and South (dashed line) India, where the red curve is for
the True groups, the blue curve is for the False groups, and the light blue area is the
Kharif season (3rd June to 9th October) and the orange area is the Rabi season (10th

October to 28th February).

The weekly expected notifications of tested maize crops under each class (F and T), and

by category, was estimated by equations 3.3 and 3.4, using the estimated parameters of

the mixture models (see Table 3.3). The expected weekly notifications of both T and

F classes for the three categories FAW, Healthy and Non-FAW during 2018-19 can be

seen in Figure 3.8. Figure 3.8 shows that the weekly notifications are distributed quite
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differently between the South and the North of India. For North India, the notification

levels are at the lowest during the first weeks of both years while they peak during the

Kharif season. A significant increase in notifications was observed during Rabi 2019.

In South India, there were notifications in the early weeks of 2018, peaking during the

Rabi season in 2018, for both FAW and Non-FAW. The notifications peaked during the

2019 Kharif season for all the three categories (FAW, Healthy, Non-FAW), and again

in Rabi 2019. In both regions, the number of notifications in 2019 was higher than in

2018. The False groups outnumbered True groups, suggesting that overall similarity

tends to be low.

3.4.4 The odds of FAW

Figure 3.9a shows the intensity of FAW in the North zone and Figure 3.9b for the South,

using the odds formula (3.5). By comparing these two Figures with Figure 3.8, Figure

3.8 shows that the highest peak of FAW in both zones occurred during Kharif 2019.

However, both Figures 3.9a and 3.9b show different patterns. Figure 3.9b illustrates that

the FAW infestation reached its peaks during both Rabi 2018 and Rabi 2019 seasons.

The intensity of FAW in the North zone shows that the highest peak of FAW occurred in

Rabi 2019 (see Figure 3.9a). Therefore, relying solely on the number of TP notifications

can result in incorrect conclusions when determining the FAW outbreak behaviour over

time. However, by integrating the True plots (TP, TN), the intensity of FAW in maize

fields can be identified.

67



3.4. Results

o
d
d
s
o
f
F
A
W

0.
0

1.
0

2.
0

3.
0

4.
0

02
-0
1-
18

29
-0
1-
18

25
-0
2-
18

24
-0
3-
18

20
-0
4-
18

17
-0
5-
18

13
-0
6-
18

10
-0
7-
18

06
-0
8-
18

02
-0
9-
18

29
-0
9-
18

26
-1
0-
18

22
-1
1-
18

19
-1
2-
18

15
-0
1-
19

11
-0
2-
19

10
-0
3-
19

06
-0
4-
19

03
-0
5-
19

30
-0
5-
19

26
-0
6-
19

23
-0
7-
19

19
-0
8-
19

15
-0
9-
19

12
-1
0-
19

08
-1
1-
19

05
-1
2-
19

TP/TN(Healthy)
TP/TN(Healthy & Non-FAW)

(a) North India.
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Figure 3.9: Weekly FAW intensity in the maize fields over the whole period (2018-19).
The plots were constructed by using the odds formula. The black curve represents the
intensity of FAW in maize fields when TN cases are only from truly Healthy maize
notifications. The purple curve represents the intensity of FAW in maize fields when
TN cases are from both truly Healthy and Non-FAW maize notifications.

There were differences between North and South India in the FAW invasion timing

and level of occurrence in the maize fields based on TP for FAW and TN for the Healthy

category (see the black curve in both Figure 3.9a and 3.9b). In South India, the FAW

invasion started at the beginning of Rabi 2018. Moreover, there was a noticeable FAW

infestation during 2019, there was a significant increase from the beginning of the Kharif
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season to a peak in the middle of the Rabi season with 78% (using formula 3.6, black

curve). It is worth noting that in South India, the FAW invasion peaked during both

2018 and 2019 Rabi seasons, and they were at approximately the same level in both

the years. In North India, the FAW outbreak began at the end of Kharif 2019, and it

reached a peak in the Rabi season with approximately 79% infestation (using formula

3.6, black curve). Moreover, the FAW outbreak was more prevalent in the South than

in the North of India. On the other hand, the intensity of FAW in both zones when

TN cases are from both truly Healthy and Non-FAW maize notifications (see the purple

curve in both Figure 3.9a and 3.9b) show almost flat curves, indicating that there are

very few instances of FAW. This pattern raises concerns that there may be issues with

the data, which the Chapter 4 explains.

3.5 Discussion

Citizen science apps such as Plantix app are very useful for reporting pest infestations,

allowing threats to be detected rapidly, with high temporal resolution, and with a wide

spatial coverage of pest distribution. For statistical analysis, it is essential that both

positive and negative notifications are included, and mobile apps such as the Plantix app

can provide both. This study provides a systematic method for distinguishing between

True and False notifications, as well as estimating the intensity of infestation in various

species.

The distribution of similarity index is bimodal in all cases, and is particularly pro-

nounced when the notifications are identified as Healthy. This allows to researchers to

interpret the two peaks as representing True and False readings, for FAW (“positive”)

and Healthy or Non-FAW (“negative”) crops, respectively using mixture of two normal

distributions mixture models. Opsteegh et al. [94] demonstrated that the two normal

distributions mixture model can be used to classify diagnostic test results into positive

and negative groups when gold standards are unavailable. The difference between our

results and this previous study is the objective of the classification. In our approach,

we used the classification to differentiative between T and F while positive and negative

groups were defined.

Moreover, Hampf et al. [80] considered only images with a top-1 similarity of at

least 50 to be as true diagnosis. The method used in this study is superior to the one

applied by Hampf et al. [80], as it uses the evidence from the actual data rather than an
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arbitrary threshold value of 50. This discrepancy is because they did not depend on a

statistical classification framework. It may be that a similarity of less than 50 indicates

a high level of confidence in true diagnosis, thus using a cut-off value of 50 may not

always represent a good hypothesis.

FAW in regions and seasons

A comparison of the odds calculation based on the model to the time series based on raw

readings showed that the actual progress only occurred in the growing seasons (Kharif

and Rabi). Moreover, the FAW infestation was spreading more in Rabi seasons than

in Kharif seasons, and more in 2019 than 2018. This finding is in agreement with the

estimation that the FAW infested 3.76% of the actual sown area of maize in Kharif

2018, while during Rabi 2018, it infested 27.9% [30]. One plausible explanation for this

result might be that the rainfall in Kharif is higher than in the Rabi season due to

the monsoon period, where the heavy and light rainfall washes out the first and second

instar of larvae from the plant and kill a significant number of them [150]. The odds

calculation also allowed us to distinguish between the South, where the invasion was

earlier, and the North, where it was delayed. This findings agree with Suby et al. [29]

who demonstrated, using offical notifications, that FAW started in South India and

moved towards North.

FAWs invaded maize in early 2018

In this study, the odds calculation showed that the invasion started earlier in 2018,

before it was officially documented (mid of 2018) [134, 135]. This finding is in agree-

ment with Figure 3.10 which cites evidence of FAW availability on 21/01/2018 and

23/01/2018. These figures were extracted from the Plantix app server, and their sim-

ilarity rate is greater than 80. Therefore, the results are inconsistent with the FAW’s

official detection time of FAW in India, which was in June 2018 [30]. This result em-

phasises the importance of early data analysis in pest invasion management, and that

collecting data without analysing it is not enough. The Plantix app could have been

the first to report the invasion in India and this remains a lost opportunity. We sug-

gest that applications such as this should prepare a risk register to demarcate areas by

geo-tagging pest and diseases at the country level. This will directly benefit bio-risk

assessment and management on invasive pest and diseases.
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(a) FAW recorded in 10/01/2018 in
Karnataka state, South zone.

(b) FAW recorded in 21/01/2018 in
Gujarat state in North zone

(c) FAW recorded in 23/01/2018 in
Gujarat state in North zone

Figure 3.10: Examples of photos from the Planxtix app of FAW larvae or damage caused
by FAW recorded in January 2018.

Advantages and challenges of citizen data

A unique feature of the Plantix app is the ability to keep track of healthy (negative)

and unhealthy (positive) notifications. This feature allows us to estimate the level of

intensity of pest or disease in a given geographical area. Therefore, citizen scientists

should be encouraged to collect both healthy and diseased data in order to increase the

accuracy of detection. Availability of accurate GPS coordinates in the dataset collectes

by mobile application, allows estimation of the FAW spread across North and South

India. One challenge is that some users might submit photos from places other than

their crop fields (such as their homes or cafes) [137]. A large proportion of notifications

associated with FAW or other categories was characterised by relatively low similarity.
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It is possible that the algorithm has difficulties distinguishing between symptoms caused

by different pests (e.g. FAW and others such as Velvet Stem Borer). By combining the

detection using mobile app with statistical analysis using the mixture model and odds

calculation, we were able to reconstruct the progress of the FAW invasion in India within

the study period (18-2019) (Figure 3.9a & 3.9b).
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Chapter 4

Diagnostic accuracy of mobile

application: A Bayesian

meta-analysis approach

4.1 Introduction

The Plantix app, an AI diagnostic application, has become widely popular among farm-

ers and has enhanced the database for researchers [68]. However, some concerns were

raised about its accuracy in diagnosing crop problems. For example, Siddiqua et al.

[68] concluded that while the Plantix app users feedback indicates that the app is user-

friendly, other users comments suggested that the app diagnosis is imperfect as it cannot

correctly identify crop problems. In addition, in the previous chapter of this work, the

fitted mixture model of the FAW category indicated that the Plantix app has limita-

tions in identifying FAW in maize crops, as shown by the many observations that fall

below the false positive curve. Therefore, this inaccuracy can cause concerns among

the app users, who are mainly farmers, and the app developer. As a result, the assess-

ment of diagnostic test accuracy is important to quantify this accuracy and reassure all

stakeholders.

However, to evaluate the accuracy of the app, a challenge arises. The Plantix app

gold standard database for comparison is absent. Hence, the Plantix app accuracy

becomes difficult to determine. Moreover, to the best of our knowledge, there is no

literature available regarding the app’s accuracy when identifying any of the over 600

plant damages among 30 different major crops. To address this challenge, it can be
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useful to narrow the focus into one single plant damage source in a solitary crop.

Therefore, the previous chapter can be considered as the starting point to estimate

the sensitivity and specificity for the app’s accuracy when detecting FAW in the maize

crop. Thus, the mixture models results rely on point estimates derived using the EM

algorithm in the previous chapter, can be used to build a 2× 2 diagnostic table for the

entire country of India. This is because the mixture models can be used to calculate the

probability of correctly detecting FAW, it is known as sensitivity, and the probability

of correctly identifying the absence of FAW, which is referred to as specificity [151].

However, to have a more precise estimation, it is necessary to take into account that

the India covers a vast area and contain factors relate to the app and the user.

India has an area of around three million square kilometers [152]. In addition, each

Indian state has an independent government, and most differ in terms of languages,

environmental factors and citizen scientists skills. For example, India has more than

1600 native languages and 22 official languages throughout its states [153]. However,

the Plantix app currently supports eight Indian languages [74]. As a result, it can

cause difficulty for some farmers who are not familiar with other accessible languages.

Moreover, user skills in taking images and variations in infestation levels can cause

variability in both sensitivity and specificity, where there is less diversity in these factors

within the state.

All these factors support a state-specific approach to account for regional differences

instead of providing a single result for all of India from Chapter 3. Hence, the pooled

estimates of sensitivity and specificity across multiple states should be considered to

evaluate the diagnostic test for a particular pest. The pooling is performed through

meta-analysis of diagnostic test accuracy [154]. This approach can significantly im-

pact the accuracy of the estimation of Se and Sp, and provides a more comprehensive

evaluation. Comprehensive literature review of the meta-analysis of the diagnostic test

accuracy is provided in the following subsection.

4.1.1 Review of meta-analytic models for diagnostic test studies

Meta-analysis (MA) is a statistical method that combines and analyses results from

various independent studies that address the same research question, to conclude a sum-

mary estimation with more reliable comparison among those individual studies [155].

The method is widely applied in different disciplines and sciences such as education
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[156], psychology [157, 104], epidemiology [158], criminology and criminal justice [157].

Additionally, it is frequently used as an overall assessment of the diagnostic test accuracy

across populations and environments [104].

The primary purpose of the MA in the diagnostic test accuracy (DTA) studies is

to pool sensitivity (Se) and specificity (Sp). The calculation of the pooled Se and

Sp involves combining, or aggregating data from different groups or studies to derive

summary values representing the overall sensitivity and specificity. This pooling com-

bines the sensitivity (Se) and specificity (Sp) from the independent studies in order to

estimate their combined or pooled sensitivity and specificity [151]. The pooling is more

than just calculating the average of Se and Sp values, it requires statistical models

to integrate these values, accounting for each state contribution based on factors like

sample size and heterogeneity [155].

A number of statistical models are utilised in the MA of the DTA, including separate

or joint models, along with fixed- or random-effects models [155]. The separate pooling

models (univariate models) are rare and not recommended because they fail to consider

the correlation between sensitivity and specificity [159], where these measures often

have a negative correlation within studies [160]. However, these models are frequently

used for analysing either Se or Sp, but not both simultaneously. Moreover, they can

be applied when estimating all parameters of the joint model is challenging [159].

On the other hand, joint pooling of the sensitivity and specificity can be achieved

through bivariate models or the hierarchical summary receiver operating characteristic

(HSROC) model, which involves the simultaneous estimation of sensitivity and speci-

ficity as two correlated outcomes. Both models structures conduct data analysis by

considering two levels; level one models a within-study variability (i.e., random sam-

pling error) and level two models a between-study difference (i.e., heterogeneity) [155].

Moreover, the bivariate model can be employed when the independent studies or groups

have minimal variation in these measures (Se and Sp), and usually occurs when included

studies use the same diagnostic threshold or criteria and uniform treatment protocols

[155]. In most situations, the bivariate random-effects model is more appropriate as it

accounts for the variability between studies and allows for more generalisable findings

[161].
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Bivariate random-effects meta-analysis model (BRMA)

The bivariate random-effects meta-analysis model (BRMA) was proposed by Reitsma

et al. in 2005 [160]. Their model is a general linear mixed model and includes two

levels representing within (level one) and between (level two) study variability. Level

one of the model makes an assumption of an approximate normal distribution for the

observed logit sensitivity and logit specificity. It is based on the logit transformations of

sensitivity and specificity, because the logit is on an unbounded continuous scale and can

assume to follow a normal distribution [162]. In contrast, level two of the model enables

a joint distribution through a bivariate normal distribution of the logit sensitivities and

logit specificities by integrating two correlated normal distributions [160].

The model proposed by Chu et al. (2006) [160] contributes a significant modification

in the Reitsma et al. framework. The Chu et al. model introduces a distinct approach

at level one. It addresses the within-study sampling variability (level one) by using

an exact binormal distribution for the sensitivity and specificity in each study, while

the random-effect (level two) remains as in the Reitsma et al. model. Therefore, the

Chu et al. model is a bivariate generalized linear random-effects model. This approach

yields unbiased estimation, unlike the general linear random-effect model by Reitsma

et al. which may provide biased estimates. This is an improvement because the Chu et

al. model eliminates the need for ad hoc corrections and provides reliable estimations

even with the small sample sizes of both diseased and non-diseased groups. Therefore,

the bivariate generalized linear random-effects model of MA has been a cornerstone

framework since 2006 and remains a crucial framework in the current research. For

example, in January 2024, Shi et al. [163] employed a bivariate generalized linear

random-effects model for 21 studies to estimate pooled sensitivity and specificity for the

diagnostic performance of machine learning models in diagnosing early gastric cancer

based on endoscopic images.

4.1.2 Study objective

The main goal of this study is to extend the approach from Chapter 3 to improve

the estimates of the sensitivity and specificity of the Plantix app for detecting FAW

in the maize. This estimate is made within a single dataset and in the absence of a

gold standard or alternative methods for comparison. Therefore, a statistical frame-

work is introduced in this study to handle the challenges of evaluating diagnostic test
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performance. Hence, by addressing this objective, the research offers a comprehensive

evaluation of the Plantix app’s performance in FAW detection. In addition, it can

contribute to the enhancement of its reliability for farmers, agricultural and research

users.

The remainder of the chapter is as follows. In section 4.2, the detailes of the method

used to achieve the study’s objective are presented. Section 4.3 offers a presentation

of the results obtained from the study, and section 4.4 includes some discussion of the

significance of the results while also acknowledging the limitations of the study.

4.2 Materials and methods

4.2.1 Method for extracting data from the mixture models

The data used in this chapter were extracted from the fitted mixture models (see Figure

3.5) using point estimates (see Table 3.3) in Chapter 3 . The extracted data was utilised

to build a 2× 2 diagnostic table for each Indian state, where the table was specifically

constructed around the presence or absence of FAW. To achieve this, the ArcGIS Pro, a

comprehensive geographic information system (GIS) software suite developed by Esri,

was used to extract the Plantix app notifications within each state in India, Figure 4.1.

Based on these notifications and the fitted mixture models using point estimates, the

expected number of F and T cases were calculated for each state to build up a 2 × 2

diagnostic tables.

The process of extracting the TP and TN observations within each state was based

on the number of observation frequencyi at each similarity rate (1 ≤ i ⩽ 100) and the

fitted curve γ̂iof the true normal distribution (see Eq. 3.2). The following two steps

were applied to count the TP cases for FAW category and TN for Healthy category and

Non-FAW category:

• Step 1, the expected number of observations belonging to the fitted curve of the

T distribution γ̂iwas calculated at each similarity rate (1 ≤ i ⩽ 100) using the

formula:

E [frequencyi] = frequencyi × (γ̂i) (4.1)

where γ̂iis defined inEq 3.2
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• Step 2, the total numbers of T cases for each state was calculated by summing

the expected numbers in first step.

• Step 3, the above two steps were applied to true fitted mixture model of FAW to

extract TP, to true fitted mixture model of Healthy to extract TN and to true

fitted mixture model of Non-FAW to extract TN.

However, the direct extraction of the FP and FN cases was a challenge from the fitted

False (F) curves. This was because the False curves captured a mix of two different

cases. For example, the FN for the Healthy category indicates that the Plantix app

stated a tested maize as Healthy while the mixture model suggested to be not Healthy.

Therefore, since we have three categories (FAW, Healthy, Non-FAW), the case belongs

to one of the two remaining categories: either FAW or Non-FAW. The FN for the Non-

FAW category indicates that the Plantix app stated a tested maize as Non-FAW while

the mixture model suggested to be not Non-FAW. Thus, the case belongs to either FAW

or Healthy. Moreover, the FP curve picked up Healthy and non-FAW cases. The true

curves were easier to define, for example, the TP curve included only maize infested

with FAW.

Therefore, to count the expected number of False cases of each category, the mix-

ture models with point estimates and the highest similarity (top-1 similarity) and the

second-highest similarity (top-2 similarity) from the Plantix app dataset were used. As

discussed earlier in Chapter 3, the diagnosis with the top-1 similarity was considered to

be the most accurate and reliable. The top-2 similarity diagnosis was also worthwhile to

determine the expected number of each singular category under the F curves. Both the

top-1 and the top-2 similarity diagnoses must have different statuses where they can-

not share the same diagnostic outcome. Hence, if the top-1 similarity was under FAW

category, the top-2 similarity should explore the two remaining possibilities groups.

The method was implemented individually for each category and for each state as

did with True cases, emphasising that the category was identified based on the fitted

mixture model for the variable top-1 similarity. The steps below were applied:

• Step 1, the category within the top-1 similarity was split into two subgroups based

on the binary categories within the top-2 similarity.

– For example, if FAW is identified under the top-1 similarity, the top-2 simi-

larity provides two subgroups: one includes FAW and Healthy, and the other
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includes FAW and Non-FAW

• Step 2, within each subgroup, the cases were merged and counted based on the

top-1 similarity value to have frequencyi for (1 ≤ i ≤ 100).

– For example the subgroup with including FAW and Healthy, at each top-1

similarity value (1 ≤ i ≤ 100) the number of observations frequencyi was

determined.

• Step 3, the following formula was applied to step 2 in order to calculate the

expected frequency for each i within each subgroup individually:

E [frequencyi] = frequencyi × (1− γ̂i)

• Step 4, the resulting numbers for each subgroup from Step 3 were combined to

provide the total number of False cases.

Figure 4.1: The study Area is the colored region, including South states (dark brown)
and North states (light yellow).
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4.2.2 Study assumptions

To estimate the combined Se and Sp of detecting FAW on infested maize crops at state-

level in India, using Bayesian approach, the following assumptions were considered:

1. The diagnostic accuracy of the Plantix app and the mixture models (chapter 3)

is below 100% and relatively low.

2. The study assumed that the sensitivity and specificity varied across states.

3. The study assumed that the data collected from each state were independent and

identically distributed within that state.

4. The study employs a random effects model to account for the variability between

states, allowing for more accurate estimation of the overall diagnostic test accu-

racy.

4.2.3 Criteria for selecting states

To effectively estimate the combined sensitivity and specificity, it is essential for each

state to satisfy two criteria.

• The observed sensitivity for correctly detecting FAW (Sei) and the observed speci-

ficity for correctly detecting not having FAW (Spi) in each state should satisfy

the Yadon index (J) criterion, which states that (Sei + Spi)− 1 > 0. According

to Flor et al. (2020), the negative value of J indicates a random diagnosis so

that the observed outcomes are obtained by chance rather than through a reliable

diagnostic procedure [164]. Additionally, Toft et al. (2007) [127] stated that the

negative value of J is not a practical value.

• The sample size should be high, otherwise the estimation is biased, and the vari-

ance may increase [165]. Moreover, Teare et al. [165] highlighted that an inade-

quate sample size may lead to either overestimation or underestimation of the test

performance. The sample size here was selected to be greater than 30 based on

the Central Limit Theorem (CLT), ensuring the sampling distribution of sensitiv-

ity (Se) and specificity (Sp) approximates a normal distribution, enabling robust

and unbiased inferences. Furthermore, sample size above 30 provides sufficient

data to approximate the binomial distribution (the likelihood of the Bayesian
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model, see below 4.2.6) for accurate calculation of proportions. Additionally, with

non-informative priors, a larger sample size enhances the likelihood’s influence on

the posterior distribution, making the estimates more data-driven and compatible

with the bivariate normal prior for logit-transformed Se and Sp.

4.2.4 Fixed-effect (FE) vs. random-effects (RE) models in meta-

analysis

In the meta-analysis are two well-known models are used; the fixed-effect model (FE)

and the random-effects model (RE). The two models differ in their unique assumptions

based on the true effect size across studies. The effect sizes are quantitative values that

estimate the extent of the difference or association among interested variables. In the

context of the MA of DTA, the effect size is the differences between the true values of

sensitivity (or specificity) and their observed values in individual studies.

Fixed-effect model

The fixed-effect (FE) model relies on the assumption that there is a unique true effect

size that is common or fixed across all studies encompassed in the analysis. Therefore,

the observed diference between individual studies is only due to sampling error (random

chance in selecting units). Hence, this model is also known as a common-effect model

[166]. However, when studies are conducted in diverse environments with different gov-

ernment regulations, languages, and cultural contexts, the assumption of homogeneity

may be violated. In such cases, applying a fixed-effects model may lead to an overly

optimistic estimate of the treatment effect, as it does not adequately account for the

inherent differences among studies. This limitation can result in misleading conclusions

regarding the generalizability of the findings.

Random-effect model

With the random-effects (RE) model, on the other hand, the true effect sizes can differ

between studies, due to sampling error and true variability in population parameters.

For example, at the state level, the effect size can change due to the differences in farmers

skill in taking images and the quality of the smartphones in terms of internet connection

or camera resolution. Moreover, the effect size can differ due to environmental reasons,

for example, the maize growth stage and severity of the infestation. The RE model
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estimates both the average effect size across studies and the variance in true effect sizes

between them [166].

4.2.5 Bivariate generalized linear mixed effects model of meta-analysis

Suppose that there were n independent studies (states) in test accuracy of the Plantix

app, labeled from i = 1 to n. Each single state had maize crops infested with FAW

(ni, FAW ) and non infested with FAW (ni, FAW ), where ni, FAW included FAW cases

that were correctly identified (TPi) and instances that were missed to recognise FAW

(FNi). While, ni, FAW addressed instances Healthy or non-FAW cases. It consisted of

accurately recognised Healthy or Non-FAW cases (TNi) and instances that incorrectly

identified as FAW (FPi). Therefore, the observed sensitivity in each study was Sei =

TPi
TPi+FNi

= TPi
ni, FAW

, and the observed specificity was Spi =
TNi

TNi+FPi
= TNi

ni, FAW
.

To build the bivariate model, the generalized linear mixed model with two levels

was employed, as proposed by Reitsma et al. and adapted by Chu et al. [160]. At

level one (within-study variability), the number of true positive (TPi) and the number

of true negative (TNi) respectively, were assumed to follow exact binomial distribution

at each study, as suggested by Chu et al. [160]. That is:

TPi ∼ Bin(ni, FAW , Sei).

TNi ∼ Bin(n
i, ¯FAW

, Spi). (4.2)

The binomial distribution is a better assumption than the normal distribution that

was proposed by Reitsma et al. for the following reasons: (i) the sample size can be

small, (ii) Se and Sp are limited to the interval [0, 1], and (iii) an ad hoc continuity

correction (adding 0.5) is not required when any of the counts in the 2 × 2 diagnostic

table are zero in a state [160]. (iv) the binomial distribution is also appropriate for

describing binary outcomes such as presence or absence of FAW. While the binomial

distribution is suitable for small sample sizes, and small sensitivity and specificity values,

it is important to acknowledge the above criteria.

To account for between-study heterogeneity (level two), each Sei and Spi converts to

the logit scale. Then, the true logit-transformed sensitivities, logit(Sei) = log( Sei
1−Sei

)

and specificities, logit(Spi) = log( Spi
1−Spi

) are assumed to follow a bivariate normal
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distribution as proposed by Reitsma et al. [160], and this distribution captures between-

study correlation. It takes the form,

logit

 Sei

Spi

 ∼ MVN

 β =

 β1

β2

 , Ω

 ,Ω =

 τ21 τ1τ2ρ

τ1τ2ρ τ22

 , (4.3)

where β1 is the mean of the logit sensitivities, and β2 represents the pooled specificity

on the logit scale. Hence, the pooled sensitivity can be calculated using the inverse

of the mean logit transformation sensitivities and can be expressed as pooledSe =

logit−1(β1) =
eβ1

1+eβ1
. The pooled specificity can be calculated using the inverse of the

mean logit transformation specificities and can be expressed as pooledSp = logit−1(β2) =

eβ2

1+eβ2
. A variance-covariance Matrix is Ω. The diagonal parts of the variance-covariance

matrix
(
τ21 , τ

2
2

)
, the variance quantifies the spread or variability of the logit sensitivi-

ties τ21 and the logit specificites τ22 . On the other hand, the off-diagonal term (τ1τ2ρ)

describes pairwise covariances between logit sensitivities and logit specificities, where ρ

represent a correlation coefficient between both terms. The covariance term reflects the

power and trend of the linear relationship between each of them and it is limited to the

interval [−1, 1], where zero covariance indicates no linear relationship between them.

Therefore, there are five different parameters that need to be estimated. Hence, at least

five independent states should be used to identify these parameters [161]. Estimation of

the above model can be achieved in both the classical and Bayesian frameworks [167].

This work focuses on Bayesian approach with the MCMC algorithm.

4.2.6 MCMC for the joint bivariate normal distribution of logit Se

and Sp

The Bayesian approach combines prior and likelihood to obtain the posterior distri-

bution, and MCMC algorithm was applied to estimate all required parameters. The

likelihood component included the two independent binomial distributions, as provided

in equation (4.2), where the TP , FP , TN and FN were estimated using equations

4.1 and 4.2.1. After the likelihood had been determined, two vague prior distributions

were outlined for the mean vector β and the covariance matrix Ω parameters. For β, a

multivariate normal distribution (MVN) was employed as a prior:
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β =

 β1

β2

 ∼ MVN

 µ =

 0

0

 , Σ =

 0.1 0

0 0.1

  .

In this instance, it was a weak informative prior, because there was no prior knowledge

of β, and the mean vector µ, and the precision matrix Σ, were vague.

Here µ was represented by zeros to be unbiased towards certain values. Further, the

Σ is known as the precision matrix, and it is an inverse of variance-covariance matrix.

In other words, the precision matrix represents the inverse of variance (precision) [167].

Consequently, to reflect vague or non-informative prior of Σ, comparatively large values

for the variances were selected for the diagonal to allow for a large variety of potential

values. Therefore, value of 10 was chosen here as variances, equivalent to 0.1 ( 1
10) in

the precision matrix. Further, small values in the off-diagonal elements indicate no

correlation between the variables.

For the covariance matrix the inverse-Wishart distribution is often considered as

prior distribution [167, 168]. The inverse-Wishart distribution is defined with two

parameters, namely the scale matrix (S) and the degrees of freedom (df) [167, 168].

The scale matrix is frequently initialised to be an identity matrix [167, 168], containing

ones along the diagonal and zeros in the off-diagonal. As a result, the identity matrix

is a practical selection [168] for a prior distribution when there is no prior knowledge.

The df represents the amount of information available for estimating the parameters in

the model. Since there is no prior knowledge, df was chosen as the smallest possible

value, which is 2. The lowest df increases the uncertainty, leading the model to be more

flexible in its estimates and better capturing of the data variability [167].

Ω−1 ∼ Wish

S =

 1 0

0 1

 , df = 2

 .

The model was fitted in WinBUGS14 software [169] and the R2WinBUGS package

[170] to estimate the joint and marginal posterior distributions of the model parameters.

The Markov Chain Monte Carlo (MCMC) algorithm was run for 10,000 iterations. In

addition, a warm-up period of the initial 3000 iterations were discarded to enable the

samples to reach the stationary distribution. Three chains were applied to guarantee

convergence. Subsequently, the trace plots, density plots, effective sample size (ESS),

Gelman-Rubin statistics (R̂) and autocorrelation plots were checked for convergence of

the posteriors and marginal posterior distributions.
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After that, posterior predictive check was applied, examining whether the model

produces samples that can represent the observed data. This procedure facilitated

the assessment of the suitability of the model to fit and explain the data. Therefore,

after excluding the initial 3000 samples, the histograms of the posterior distributions

of sensitivity and specificity iterations, with dashed line of observed sensitivity and

specificity from the data for each states were drawn. If the observed value alignd

closely to the peak of the histogram (expected of the sensitivity or specificity), it was

considered to be a good indicator that the model reflected the data well and yielded

effective findings.

4.3 Results

4.3.1 State-level data

The method was used to build a 2 × 2 diagnostic test table for each state. The Table

4.1 summarises the 2 × 2 diagnostic test table at state level for the detection of the

FAW when the Healthy category as negative, and the Table 4.2 represents the results

with Non-FAW group as the negative. The data in both Tables is sorted by the Yadon

Index value (J), starting with the highest value.
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Table 4.1: Summary of state-level data for FAW as positive and Healthy as negative.
TP means number of true positives, FP indicates number of false positives, TN re-
flects number of true negatives, and FN means number of false-negatives. P is the
total number of positives, mathematically (P=TP+FP) and the Total indicates the to-
tal number of tested cases, mathematically (Total=TP+FP+TN+FN). Se, Sp and J
indicates sensitivity, specificity and Yadon Index, respectively.

State TP FP TN FN P Total Se Sp J

Mizoram 2 0 3 0 2 5 1 1 1
Nagaland 5 0 5 1 5 11 0.83 1 0.83
Telangana 1381 256 1057 685 1637 3379 0.67 0.81 0.48
Maharashtra 4004 719 2631 1901 4723 9255 0.68 0.79 0.47
Manipur 9 2 6 4 11 21 0.69 0.75 0.44
Karnataka 2209 499 1846 1277 2708 5831 0.63 0.79 0.42
Andhra Pradesh 1340 330 949 648 1670 3267 0.67 0.74 0.41
Bihar 364 108 896 375 472 1743 0.49 0.89 0.38
Tamil Nadu 575 152 316 303 727 1346 0.65 0.68 0.33
Gujarat 356 134 381 291 490 1162 0.55 0.74 0.29
Madhya Pradesh 932 437 1607 992 1369 3968 0.48 0.79 0.27
West Bengal 186 83 230 189 269 688 0.5 0.73 0.23
Jharkhand 82 39 205 127 121 453 0.39 0.84 0.23
Odisha 48 21 47 41 69 157 0.54 0.69 0.23
Assam 27 18 57 32 45 134 0.46 0.76 0.22
Chhattisgarh 164 92 264 198 256 718 0.45 0.74 0.19
Uttarakhand 24 19 46 44 43 133 0.35 0.71 0.06
Rajasthan 256 315 1090 702 571 2363 0.27 0.78 0.05
Uttar Pradesh 409 431 1557 1087 840 3484 0.27 0.78 0.05
Punjab 113 128 321 238 241 800 0.32 0.71 0.03
Arunachal Pradesh 1 2 7 4 3 14 0.2 0.78 -0.02
Himachal Pradesh 11 23 112 65 34 211 0.14 0.83 -0.03
Haryana 123 159 263 245 282 790 0.33 0.62 -0.05
Kerala 6 13 30 24 19 73 0.2 0.7 -0.1
Goa 2 3 4 4 5 13 0.29 0.57 -0.14
Tripura 2 3 3 7 5 15 0.22 0.5 -0.28

It is clear from Table 4.1 that there are some individual states where the Yadon

index, (J) value is negative (light red), or the sample size is less than 30 (light yellow).

Arunachal Pradesh, Himachal Pradesh, Haryana, Kerala, Tripura and Goa have nega-

tive values, whereas Mizoram, Nagaland, and Manipur have small sample size, of less

than 30, which may lead to misrepresentation of the true performance of the Plantix

app test. For example, a sensitivity of 1 for the Mizoram state could be due to the lim-

ited sample size of 5, and it is a good indication that there may be an overestimation.

Some states also have both a small sample size and a negative Yadon index, such as

Arunachal Pradesh, Kerala and Tripura. In addition, in the rest of the 17 states, it can
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be noted that there is a variability in the observed sensitivity (Se) and the observed

specificity (Sp) among different states, despite the diagnostic test and the classification

algorithm being exactly the same. The Table 4.1 shows the sensitivity ranging from

0.19 to 0.68. Likewise for specificity ranges were from 0.68 to 0.89.

Table 4.2: Summary of state participant data where FAW as positive and Non-FAW as
negative. TP means number of true positives, FP indicates number of false positives,
TN reflects number of true negatives, and FN means number of false-negatives. P is
the total number of positives, mathematically (P=TP+FP) and the Total indicates the
total number of tested cases, mathematically (Total=TP+FP+TN+FN). Se, Sp and J
indicates sensitivity, specificity and Yadon Index, respectively.

State TP FP TN FN P Total Se Sp J

Nagaland 5 2 2 3 7 12 0.62 0.5 0.12
Assam 27 58 51 31 85 167 0.47 0.47 -0.06
Goa 2 8 11 4 10 23 0.33 0.58 -0.09
Mizoram 2 4 8 7 6 21 0.22 0.67 -0.11
Madhya Pradesh 932 1861 979 875 2793 4647 0.52 0.34 -0.14
Odisha 48 112 66 55 160 281 0.47 0.37 -0.16
Maharashtra 4004 6109 1873 2649 10113 14635 0.6 0.23 -0.17
Uttarakhand 24 69 39 31 93 163 0.44 0.36 -0.2
Telangana 1381 2651 1056 1263 4032 6351 0.52 0.28 -0.2
Karnataka 2209 4244 1391 1988 6453 9832 0.53 0.25 -0.22
Gujarat 356 694 214 305 1050 1569 0.54 0.24 -0.22
Andhra Pradesh 1340 2632 892 1216 3972 6080 0.52 0.25 -0.23
Tamil Nadu 575 1156 300 443 1731 2474 0.56 0.21 -0.23
Manipur 9 12 5 10 21 36 0.47 0.29 -0.24
Chhattisgarh 164 376 182 216 540 938 0.43 0.33 -0.24
Jammu 9 42 37 25 51 113 0.26 0.47 -0.27
Rajasthan 256 863 402 363 1119 1884 0.41 0.32 -0.27
Himachal Pradesh 11 73 93 59 84 236 0.16 0.56 -0.28
Jharkhand 82 261 102 110 343 555 0.43 0.28 -0.29
Haryana 123 346 107 152 469 728 0.45 0.24 -0.31
Bihar 364 980 533 728 1344 2605 0.33 0.35 -0.32
West Bengal 186 479 215 312 665 1192 0.37 0.31 -0.32
Kerala 6 51 51 30 57 138 0.17 0.5 -0.33
Tripura 2 6 3 4 8 15 0.33 0.33 -0.34
Uttar Pradesh 409 1514 691 759 1923 3373 0.35 0.31 -0.34
Punjab 113 410 170 236 523 929 0.32 0.29 -0.39
Arunachal Pradesh 1 8 3 4 9 16 0.2 0.27 -0.53

On the other hand, all states in Table 4.2 have a negative J except Nagaland, which

has small sample size of 12. Subsequently, the detection of FAW when Non-FAW

as negative was excluded from further analysis due to its failure to satisfy the basic

assumptions. The misdiagnosis of maize infested with FAW, when they were Non-FAW
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as negatives, can be related to the resemblance between damage symptoms or physical

characteristics among FAW and Non-FAW. The most significant misdiagnosis within

the Non-FAW class occured with violet stem borer and spotted stemborer (see Figure

4.2).

Figure 4.2: Frequency of false positive observations of Non-FAW category under the
top-2 similarity.

4.3.2 MCMC for the joint model of the logit sensitivity and specificity

It is clear from Figure (4.3) that there is a variation between the sensitivity and the

complement of the specificity (1-Sp) based on 17 states in Table 4.1. It is also noticeable

that all states lie above the line y = x, indicating the Plantix app was more effective

at correctly identifying true positives than incorrectly identifying false positives. In
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addition, a weak positive linear correlation (Pearson Correlation=0.07) between these

two variables (Se and (1 − Sp)) can be observed. Hence, it can be expected that the

sensitivity and specificity can have a negative linear relationship. Moreover, the scatter

plot follows an ellipse, supporting a possible bivariate distribution, for instance, the

bivariate normal distribution. The bivariate model enables the analysis of their joint

distribution. This joint bivariate normal distribution serves as the prior for sensitivity

and specificity in the Bayesian framework.

Figure 4.3: Scatter plot of the sensitivity (Se) and the complement of the specificity
(1 − Sp) from Table 4.1. The blue line represents y = x, reflecting equal values of
sensitivity and (1−specificity). Plotting Se against 1−Sp aligns with the ROC curve.

The bivariate random-effects meta-analysis model was applied after converting sen-

sitivity and specificity into the logit scale. The results presented in detail by including

three main elements: (i) evaluating convergence, (ii) estimating parameters with their

credible intervals of uncertainty, and (iii) conducting posterior predictive checks.

the convergence of three MCMC chains was assessed to ensure the posterior esti-

mate reliability. The trace plots, density plots, ACF plots, Gelman-Rubin statistics,

and effective sample sizes were used as diagnostic tools. These tools were applied after

removing a 3000 burn-in period of 10,000 iterations. The trace plots of the three chains

for means, variance, covariance marginal posterior distributions and Se and Sp showed

convergence (Figure 4.4, left column). This is because the triple-chain trace plots for

each parameter show that they overlap and exhibit similar behaviour. Therefore, they
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have almost the same point estimated values as well as credible intervals. Moreover,

every single chain reflects stationarity and well mixing, because there is no trend and

fluctuates around a consistent value. Thus, the three MCMC chains for each parameter

are expected to converge to the same distribution. Additionally, the density plots for

each interested parameter were inspected, as shown in Figure 4.4, right column. Each

parameter with three independent chains reflects univariate distributions and overlap-

ping curves. Therefore, the plots indicates convergence to a common distribution.

Figure 4.4: Trace (left column) and density with vertical lines to represent 95% credible
intervals (right column) plots for convergence assessment of the three MCMC chains for
model parameters (β1,β2, τ11,τ12, τ22 ,Se, Sp).
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As indicated in Figure 4.5 the autocorrelation function (ACF) plots which represent

the correlation within MCMC samples of each parameter, confirm convergence. This

is because the ACF plots display rapid decay of autocorrelations and fluctuation near

zero. Therefore, the plots indicate that successive samples (iterations) are independent

and hence demonstrate good mixing. As a result, the MCMC chains are sufficient to

define the posterior distributions.

While ACF plots provide a graphical assessment of autocorrelation, effective sample

size (ESS) summarises the overall efficiency through a quantitative value. Therefore,

the ESS was calculated, and the values for each model parameter were found to be

21000, which is equivalent to the total number of iterations across all three chains

after excluding the burn-in period (7000 × 3). As a result, the ratio of the ESS to the

total number of iterations ( ESS
21000) for each model parameter was 100 percent, indicating

minimal correlation between successive samples (see subsection 2.5.1 in Chapter 2).

Hence, all MCMC iterations generated independent samples and proved to be valuable

in reliably estimating the distribution.
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Figure 4.5: Autocorrelation function (ACF) plot for the convergence assessment of
MCMC

In addition, the Gelman-Rubin statistic (R-hat) value was applied to all three chains

of each marginal posterior distribution. The R-hat value was equal to one for each pa-

rameter. As a result, the within-chain variance was equal to the between-chain variance.

Therefore, the chains reached convergence and provided reliable and consistent poste-

rior estimates. To sum up, based on this analysis, the MCMC chains had reached

convergence. Thus, they provided reliable posterior samples.

The logit transformation model and estimated values for the parameters are
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logit

 Sei

Spi

 ∼ MVN

 β =

 −0.023

1.208

 ,

 0.434 −0.012

−0.012 0.179

 
where the mean logit-sensitivities (95% credible interval) and mean logit-specificities

were -0.023 (-0.352, 0.300) and 1.208 (0.992, 1.423), respectively. Moreover, the unex-

plained between-states heterogeneity in logit(Se) and logit(Sp) was measured as 0.434

(0.212, 0.861) and 0.179 (0.084,0.365), respectively. The posterior covariance between

logit(Se) and logit(Sp) was -0.012 (-0.179,0.139). Hence, the ρ ≈ −0.043 indicates that

the relationship between sensitivity and specificity measures across states was weak and

negative (see also Figure 4.6). This suggests that the effectiveness of the Plantix app

in detecting the presence of FAW (sensitivity) does not significantly impact its ability

to correctly identify the absence of FAW. Additionally, the pooled of Se and Sp can

be obtained from the logit scale by applying the inverse logit transformation, which

can be expressed as exp(βj)
(1+exp(βj)

where j = {1, 2}. Therefore, the estimated mean and

uncertainty for the pooled sensitivity and specificity are shown in Table (4.3):

Table 4.3: Summary of estimated Parameters and uncertainty (95% credible intervals,
CI) for pooled sensitivity (Se) and specificity (Sp).

Parameter Mean= exp(βj)
(1+exp(βj)

, j = {1, 2} 95% CI

pooledSe 0.494 (0.413,0.574)
pooledSp 0.769 (0.730, 0.806)

The Table 4.3 showed that the Se was lower than the Sp. Moreover, the uncertainty

in the credible intervals was narrow. This was an indication that the estimation of the

parameters was precise and more reliable. Therefore, the confidence in the results could

increase and enhance the robustness of the inference drawn from the analysis.
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Figure 4.6: Scatter plot of the sensitivity and the complement of the specificity (1−Sp)
(black points) with estimated pooled Sensitivity and the complement of the specificity
(1− Sp) (red point).

Further, Figure 4.7 shows the forest plots for the Se and Sp for each state, and the

pooled values at the bottom of the plots. Sensitivity values show greater variability

across states comparing with specificity values. In addition, states in the top of the

Se forest plot show the highest sensitivity, where these states have the highest sample

size as well as the known states with highest maize producing. On the other hand, the

bottom states reflect the opposit where also these states have the lowest dample size,

and less maize producing. The values of specificity appear to be relatively consistent

across most states, with values clustering near the upper range of the scale (around 0.8

to 1.0). High specificity suggests that the system or process being analysed is gener-

ally effective at correctly identifying true negatives across all states. The variability in

sensitivity indicates that there may be challenges in accurately identifying true posi-

tives in certain states, potentially necessitating targeted interventions or adjustments

to improve performance in those states.

Additionally, posterior predictive checks was applied, examining if the logit model

produced samples that represented the observed Se and Sp from the data (see Se and Sp

columns in Table 4.1). This application helped in evaluating the goodness of the model

to fit and explain the data. Therefore, the histograms of the posterior distributions

of sensitivity and specificity samples were compared with the observed sensitivity (see
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4.3. Results

Figure 4.8) and specificity (see Figure 4.9) for each of the states were drawn. It can

be seen that in all seventeen histograms the average sensitivity and specificity of the

model aligned closely to the observed value. Thus, it can be concluded that the model

was appropriate and fitted the data well.

Figure 4.8: The posterior distributions of sensitivity in each Indian-state with the dashed
red line representing the observed sensitivity for each state.
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Figure 4.9: The posterior distributions of specificity in each Indian-state with the dashed
red line representing the observed specificity for every state.

4.4 Discussion

The present chapter was primarily aimed to statistically estimating the pooled sensi-

tivity and specificity of the Plantix app, the AI diagnostic test for identifying FAW in

Indian maize crop. This study was based on data collected by citizen scientists via the

Plantix app, where a gold standard was unavailable. Moreover, there was no evidence

in literature about the app accuracy, poseing a unique challenge in evaluating the sen-

sitivity and specificity of the Plantix app, and similar approaches in machine learning
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and citizen science.

To achieve this, firstly, a 2x2 diagnostic table was constructed for each Indian state

from the distinct mixture models of positive and negative notifications of the Fall Army-

worm (FAW). Secondly, the meta-analysis using the bivariate generalized linear mixed

effects model, with the Markov Chain Monte Carlo (MCMC) algorithm was employed.

The model is based on the bivariate RE model by Reitsma et al. (2005), and the

adapted bivariate generalized linear mixed-effects model. Thirdly, the model was only

applied for detecting FAW when Healthy was used as negative reading, to represent the

performance of the diagnostic accuracy. This is because the data for Indian states for

detecting FAW when Non-FAW as negative failed to satisfy the criteria of the Yadon

index and/or sample size.

The 2x2 diagnostic table in Table 4.1 reflects that nine states with the highest num-

ber of tested maize crop locate in the major maize growing states, which are Karnataka

(14.8 percent), Maharashtra (10.9 percent), Madhya Pradesh (10.8 percen), Rajasthan

(10.6 percent), Andhra Pradesh (10.4 percent), Uttar Pradesh (8.3 percent), Bihar (7.9

percent), Gujarat (5.0 percent) and Tamil Nadu (3.6 percent) [24]. Hence, these states

with larger sample sizes contribute more to the overall pooled estimate. The results

of this study demonstrate the accuracy of the Plantix app diagnostic test. For the 17

states combined, the pooled sensitivity was 0.494 (95% credible interval: 0.413-0.574).

These estimates suggest that the app test has a sensitivity in detecting the FAW when

Healthy as negatives, with approximately 50 percent of true positive cases being cor-

rectly identified by the test. For the specificity, the Plantix app had the high specificity

of 0.769 (0.730, 0.806), indicating its strong ability to identify Healthy maize crops,

while around 20 percent of Healthy crops were misdiagnosied as infested with FAW

(false positives).

In addition, the correlation between Se and Sp on the logit scale was negative and

weak. This weak correlation indicates that the Plantix app can successfully achieve

high value in both sensitivity and specificity at the same time, with limited drawbacks.

This finding holds significant value for the Plantix developers where improving the app

Se does not significantly impact the app Sp. Further, the high false negative and

low Se are not solely because of the ability to distinguish between FAW and Healthy

crops, while this also suggests the impact of other factors such as image quality and

infestation variability. Furthermore, the bivariate model is still appropriate, even with
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a weak correlation. it can effectively illustrate the trend of the relationship between

these two metrics and takes into account any possible interactions. Hence, it leads to

reliable estimates of the diagnostic performance of the Plantix app.

The misdiagnosis of maize infested with FAW, when they were Non-FAW as nega-

tives, can be related to the resemblance between damage symptoms or physical char-

acteristics among FAW and Non-FAW. The most significant misdiagnosis within the

Non-FAW class occured with violet stem borer and spotted stemborer (see Figure 4.2).

To some extent, the FAW and these two pests have similar physical characteristics in

their eggs colour as well as their shape and mass. Spotted stemborer lays eggs in masses

and on the lower surface of leaves. Yet, FAW lays eggs in masses but on the upper or

under side of leaves. However, violet stem borer lays eggs in two to four rows inside

the leaf sheath [3]. Therefore, the physical characteristics may be similar, while the

area to find those characteristics in the crop may be different. Additionally, all the

three insects make holes in maize leaves. On the other hand, both FAW and spotted

stemborer create a papery (transparent) structures on leaves [3]. In addition, the re-

semblance of larvae and adults of these pests can be subtle, with their general shapes

being alike. This may could be the reason for error or misdiagnosis. Hugo et al. [21]

underscore that there are damage symptoms and physical characteristics between the

FAW and some stemborers, which can be difficult to distinguish. They cause similar

types of damage to maize crops, including leaf feeding. Hence, Hugo et al. [21] conclude

that understanding these similarities is crucial for developing effective integrated pest

management strategies that can be applied across multiple pest species.

To sum up, one of the key findings of this chapter is that the FAW detection must be

validated against Healthy and not non-FAW reports as there are good biological reasons

for this behavior. This chapter has become evident by providing interpretation of the

ineffectiveness of including Non-FAW category, as the data failed to meet the essential

assumptions required for robust analysis. Furthermore, this finding explains why the

odds of FAW when TN including total Healthy and Non-FAW cases (see Figure 3.9,

purple curve) concluded that the FAW intensity was not significant in the maize filed.
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Figure 4.10: Various pictures of Spotted Stemborer and violet stem borer, pictures from
[2, 3, 4].

To the best of our knowledge, this is the first study to implement the meta-analysis

techniques in a single study, yet across distinct locations. This analysis was a valuable

study for multiple reasons. (i) All states applied the same methodology within an identi-

cal timeframe, providing the valid chance to apply the meta-analyses. (ii) The bivariate

random effects logistic regression model allowed the research to consider the correlation

between sensitivities and specificities, which is often ignored in the univariate approaches

and observed in diagnostic test evaluations [171, 172]. (iii) The bivariate methodology

can consider the observed variations of the Plantix app test accuracy between states.

These variations may arise from a variety of factors. First, citizen scientists utilising

the app may have different skills, education levels and smartphones with with differ-

ing camera quality. Second factor is the prevalence and severity of FAW infestations

across different states which could also influence the accuracy of the diagnostic test. In-

dian states with heightened and more progressed FAW infestations may have displayed

clearer symptoms and more easily identified FAW availability. Therefore, these states

had higher sensitivities and lower specificities in comparison to states with lower levels
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of infestation.

Moreover, our work is the first study to estimate the sensitivity and specificity of

the Plantx app test, despite its use from 2016. Thus, it contributes to the literature on

diagnostic test accuracy by providing reliable and robust estimates of the sensitivity and

specificity of the Plantix app for detecting FAW in the maize. In addition, the same

approach can be applied to other AI applications with citizen science. Additionally,

the use of the MCMC algorithm in this analysis provided credible intervals for the

sensitivity and specificity estimates, which capture the uncertainty associated with the

point estimates [167]. In summary, the use of the bivariate random-effects logistic

regression model combined with the MCMC algorithm allowed this study to obtain

more precise and reliable estimates of the pooled sensitivity and specificity. Therefore,

this approach provides a foundation for future research which could delve into novel

methodological approaches for evaluating diagnostic tests in similar contexts.

However, while the bivariate random effects logistic regression model offered a robust

approach to estimate the pooled sensitivity and specificity, it is essential to acknowledge

the limitations of this study.

• First, the Plantix app test is the AI-based, hence, it may not be guaranteed to

always provide correct answers. In other words, it was a chance to a tested case

with high similarity to be wrong diagnosis, as well as it was a chance for a tested

case with low similarity to be correct diagnosis.

• Second, the data used for the evaluation was based on the mixture models that

did not entirely separate and overlap, potentially leading to challenges in precisely

assessing the test’s performance.

• Third, inaccuracies in the diagnostic process may be a result of the language

barriers, blurry images or varying levels of users skill. The distance between the

phone and the damaged symptom may lead to inaccurate diagnosis.

• Fourth, in our study, we initially assumed that the data collected from each state

were independent and identically distributed (i.i.d.). However, it is possible that

this assumption may not be valid in real-world scenarios, particularly when consid-

ering geographical proximity. Neighboring states may share similar environmental

conditions, agricultural practices, and pest pressures, which could lead to corre-

lated data. To address this limitation, future studies could consider models that
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explicitly account for spatial dependence.

• Fifth, the research offers a comprehensive evaluation of the performance of the

Plantix app in FAW detection using point estimates derived via the EM algorithm.

While these estimates yield significant findings about the diagnostic accuracy of

the Plantix app, they do not explicitly consider the uncertainty of the estimated

parameters. Future work could address this limitation by employing statisti-

cal methods that includes the uncertainty of the estimated parameters., such as

Bayesian estimation or resampling techniques.

Therefore, the estimation of the pooled sensitivity and specificity may not be completely

accurate and is subject to limitations [171]. Hence, the results should be interpreted

with caution, considering the potential limitations associated with the data sources

and unmeasured confounders. Thus, the results of the study should be considered as

estimates rather than definitive values.
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Chapter 5

Mapping the prevalence of Fall

Armyworm at state-level in India,

by considering an AI imperfect

diagnostic test

5.1 Introduction

In the realm of epidemiological studies in invasive pests, the accurate estimation of true

prevalence within a population is crucial. This is because the true pest prevalence esti-

mation provides numerical value of the infestation and outbreak across space and time.

Such estimation helps us to understand the pest impact on crop health, productivity

and the potential yield losses. It also aids in predicting the potential risks to human

health. In addition, the prevalence estimation level over space and time facilitates un-

derstanding the dynamics of pest transmission and strategies to control and manage

pest distribution [173]. Implementation of these strategies is achieved through prioritis-

ing, applying efficient resources to areas with higher pest pressure. The control strategy

can include the frequent presence of pest monitoring specialists, providing farmers with

suitable pesticides or offering monitoring tools such as satellites, drones or pest traps.

Therefore, estimation of the true prevalence can support the establishment of a timeline

and plan for monitoring and surveillance of crops, preventing pest invasion as a result.
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5.1.1 True prevalence definition and estimation

Within the realm of statistics and research, true prevalence is the proportion of individ-

uals in a population with a specific characteristic (specific disease, pest or condition) at

a particular period of time [174, 175]. This metric is estimated by using a tested sample

as a representation of the population. Hence, the true prevalence is calculated by divid-

ing the number of individuals with the characteristic of interest by the total number of

individuals in the sample [175]. In epidemiology and public health, a common method

to investigate the presence of disease or pest in a distinct population is through applying

diagnostic tests [176, 175]. Subsequently, the true prevalence in a perfect diagnostic test

is the number of individuals who tested positive, divided by the total sample size [176].

However, a perfect diagnostic test is uncommon. Accordingly, if the diagnostic test is

imperfect, the true prevalence estimation introduces bias [176, 175].

Therefore, to overcome this limitation, the concept of an apparent prevalence is in-

troduced. An apparent prevalence is the proportion of individuals in a defined sample

that test positive on a diagnostic test [176, 175]. Hence, the true prevalence and the

apparent prevalence are equal when the diagnostic test is deemed perfect; otherwise,

they differ [176, 175]. Thus, the true prevalence can be estimated from the apparent

prevalence. However, the accuracy of apparent prevalence is directly impacted by the

parameters of a diagnostic test; sensitivity (Se) and specificity (Sp) [175]. An ade-

quate sample size and a random sample should also be considered in order to reach

the accuracy of prevalence estimation. Table 5.1 presents the relationship between true

prevalence, apparent prevalence and the parameters of a diagnostic test, where the

detailed explanation can be found in subsection 5.2.2.

Table 5.1: The relationship between true prevalence (TPr), apparent prevalence (AP)
and diagnostic test parameters (Se and Sp).

Diagnostic test Has characteristic of interest Does not have characteristic of interest Total
positive TPr × Se (1− TPr) × (1− Sp) AP
negative TPr × (1− Se) (1− TPr) × Sp 1- AP

Classic estimator and limitation

The Rogan-Gladen estimator, RGE (1978), incorporates both apparent prevalence and

the test’s characteristics (Se and Sp) to provide an unbiased and more accurate estima-

tion of the true prevalence [177]. It is a classic estimator of true prevalence when the
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diagnostic test is imperfect, and it is a well-known method in epidemiology [178]. The

advantage of this estimator is its simplicity, where it applies a simple formula to cal-

culate the true prevalence [178]. However, the estimator requires that both Se and Sp

should be fixed and known [178, 175]. This assumption may lead to biased prevalence

estimates. This is because it may not be practical in real-world applications [178, 175].

In addition, due to the nature of the formula, the true prevalence estimation value may

fall outside the acceptable range, which should be between zero and one [178, 164].

Consequently, researchers should be cautious when using this estimator.

Enhancing prevalence estimation with MCMC

To address the limitations of the Rogan-Gladen estimator (RGE), the Bayesian statistics

and the MCMC methods can be applied within the RGE. The MCMC methods enable

researchers to capture the variability and uncertainty of the estimated parameters. As

a result, they enhance the robustness and reliability of the true prevalence estimates.

Moreover, the true prevalence parameter can be restricted to be within the interval [0, 1]

[178]. This can be achieved by selecting the uniform prior distribution on the interval

[0, 1] for the true prevalence parameter. This assumption is commonly used in studies,

including the research conducted by Fischer et al. (2023) [104] and Flor et al. (2020)

[164].

Furthermore, different factors in real-world settings such as environmental condi-

tions or user behavior, can impact the characteristics of a diagnostic test (Se and Sp)

[104]. Additionally, the random sampling process can be considered as another factor

that influences these characteristics as well [164]. In addition, generating samples from

various populations and subgroups can lead to heterogeneity in these metrics [104].

Thus, these factors have the potential to alter the Se and Sp rather than being fixed.

Therefore, Se and Sp are often addressed as random variables to mitigate bias and

adjust misclassification [164]. However, as a result, the number of unknown parameters

in the RGE raises to be three which are Se, Sp and true prevalence [178]. Hence, the

RGE becomes an over-parameterized equation.

Consequently, this complexity of the over-parameterized problem can be handled

with the MCMC approach. Moreover, applying the Bayesian approach allows the re-

searcher to capture the variability and uncertainty associated with these parameters (Se

and Sp) [164]. Thus, prevalence estimation research has increasingly modelled them as
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prior probability distributions [178, 164, 104]. To sum up, the Rogan-Gladen estimator

within the Bayesian framework enhances the precision and reliability of prevalence es-

timates, by including the prior knowledge of true prevalence, sensitivity and specificity

parameters.

Bayesian meta-analysis in true prevalence estimation

In Bayesian meta-analysis, the Rogan-Gladen estimator (RGE) is also a powerful tool to

estimate the true prevalence. This approach can be extended to analyse data from mul-

tiple independent sources which may be conducted across diverse regions, as illustrated

by Fischer et al. (2023) [104]. The Fischer et al. method [104] depends on a single

diagnostic test across multiple regions. Therefore, the implementation of this technique

promotes measurement consistency across regions, which can reduce bias resulting. In

addition, using the meta-analysis concept by pooling data from several sources increases

the overall sample size. This indicates that the findings mitigate sampling errors, lead-

ing to more stable and reliable estimations. Further, applying the meta-analysis rather

than analysing individual studies separately, makes the comparisons of prevalence es-

timates between different geographic areas straightforward and easy. Furthermore, it

reduces the possible bias due to diverse methodologies in distinct geographical regions.

5.1.2 Statistical analysis of FAW prevalence

A range of studies have demonstrated that almost the entire country of India provides

suitable conditions for the FAW’s persistent presence. They also confirmed the presence

of FAW in various Indian states [179, 35, 136, 180, 104]. However, the statistical analysis

of the true prevalence of FAW in Indian states have not yet been fully carried out.

Therefore, a critical gap exists in our knowledge regarding the true prevalence of FAW.

Although estimating true prevalence for non-native insects such as FAW is uncommon,

statistically valuable knowledge can be gained from other disciplines.

One of the simplest and most straightforward statistical methods to estimate true

prevalence is by using the 2x2 diagnostic table. This is because the proportion of the

interesting characteristics is well-known and uncomplicated. Nevertheless, commonly,

the gold standard list, or a reliable classification method, as we discussed in Chapters

3 and 4, should be available to construct the table [181]. Yet, even in the absence of a

diagnostic table, other statistical techniques can be employed in order to estimate the
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true prevalence. Currently, the recommended technique is Bayesian modelling [182].

Several studies estimating true prevalence have been conducted using multiple diag-

nostic tests. Combining several diagnostic tests can reduce challenges with prevalence

estimation. Accordingly, the impact of bias that may be associated with a single test

can be understood and minimised. Further, it enhances the accuracy of the estimation

model where it offers a comprehensive analysis. These advantages were confirmed by

Speybroeck et al. (2023) [183] in their study. They estimated the true prevalence of

malaria infection in Peru, Vietnam, and Cambodia. They used a Bayesian framework

with three diagnostic tests when no gold standard diagnostic test was available [183].

Moreover, based on two independent diagnostic tests, Sahlu and Whittaker con-

ducted a study to estimate the true prevalence of the COVID-19 in Maryland [184].

The Bayesian framework was applied separately to each test. The incorporation of the

Bayesian approach allowed to control misclassification errors by considering the sensitiv-

ity and specificity in the model. Hence, a binomial distribution was assumed to be the

likelihood function. Its probability parameter of testing positive was estimated using

RGE. Moreover, the model included prior probability distributions for both sensitivity

and specificity. Therefore, this method emphasises that to improve the true prevalence

accuracy regardless of the diagnostic test used, the adjusting misclassification errors

should be included. This underscores the importance of applying the Bayesian method-

ology for correcting misclassification errors.

One such study that was based on a single imperfect diagnostic test, was addressed

by Fischer et al. [104]. It utilised statistical techniques to estimate the true prevalence

of major depressive disorder in Europe. Further, the approach was adopted in 27 Euro-

pean countries where the data source was based on the imperfect diagnostic accuracy

of the PHQ-8 screening tool. Therefore, to account for the variability in diagnostic

accuracy across different countries and provide more precise and reliable prevalence es-

timates, a Bayesian framework within meta-analysis was considered. In addition, this

approach applied the latent class model to classify individuals into hidden categories,

defining their health status as either a major depressive disorder, or not. By utilising

these methodologies and adapting them to the specific challenges of FAW prevalence es-

timation, researchers can develop a more accurate estimation of FAW’s true prevalence

in Indian state.
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5.1.3 Objective

The objective of this study was to estimate the true prevalence of Fall Armyworm

(FAW) in maize crop over space and time. Subsequently, the geographical scale unit in

the India was the Indian state, including states where the FAW is documented in the

study data. Further, the timeframe was from the first day of 2018 to the end of 2019 and

covered the known maize crops seasons in India, which are Kharif and Rabi. Hence, this

is the epidemic phase of the FAW in India. Therefore, this study helped to understand

the burden of FAW infestation during this critical period. To achieve this objective,

four different statistical methods were used to find a more accurate estimation.

5.2 Materials and methods

5.2.1 Data description

The data analysed in this chapter was extracted using the exact methodology that

was expounded upon in the data description subsection in the Chapter 4. A unique

addition in this chapter is that the extraction of data for each state was based on the

main seasonal timeframes of maize crops, Rabi and Kharif. Accordingly, there was

a presentation of four 2×2 Tables shown for each state. The precise period for each

season is detailed in Chapter 3, Kharif 2018 commenced on 10/6/2018 and concluded

on 3/10/2018, Rabi 2018 occurred between 10/10/2018 and 28/3/2019, Kharif 2019

extended from 10/6/2019 to 3/10/2019 and Rabi 2019 spanned from 10/10/2018 to

31/12/2019.

5.2.2 Estimating true prevalence

This research estimated the true prevalence of the FAW in maize crops through four

different methods, taking into account both temporal and spatial aspects. In terms of

time, the analysis depends on the season of planting and harvesting timeframes of the

maize crop. Spatially, the focus was on individual states, and the reasons for choosing

states as the unit of spatial scale are explained in Chapter 4.

The rationale for employing four diverse methods was based on the understanding

that while all methods might be statistically valid, there was a possibility that they

would yield different findings. Hence, the determining of the most accurate approach

and the most precise results were crucial. Consequently, this was achieved by comparing
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with our previous result (odds plots in Chapter 3) and with a real-world maize field.

Additionally, further reasons for adopting multiple methods were that due to the ac-

knowledge imperfection of Plantix app data and the lack of a gold standard. Therefore,

several methods were applied in order to be more cautious and to achieve more reliable

results. Furthermore, a third rationale was to provide a valuable and comprehensive

resource for researchers by presenting multiple methods in an individual document,

enhancing their knowledge and critical thinking.

The following explanation presents each method, extensively describing its approach

and assumptions. In addition, the methods are arranged in a sequential manner, starting

from the easiest, most fundamental, and uncomplicated ones and progressing towards

the more complex ones. Prior to detailing the methods, this study contributions are

outlined below, focusing on the key improvements and differences from existing research:

(i) In Method-1, this study assumes that each state should satisfy a non-negative

Yoadon index in order to estimate true prevalence. To the best of our knowledge, this

assumption not been taken into consideration in the previous research.

(ii) Method-2 and Method-3 combine multiple statistical techniques, including the

meta-analysis with the bivariate relationship between Se and Sp, Bayesian inference

within MCMC, and traditional inference within the Rogan-Gladen Estimator (RGE)

formula. This approach is applied to enhance the accuracy and reliability of prevalence

estimates. The initial part is to estimate Se and Sp, using the the bivariate relationship

between Se and Sp and Bayesian inference within MCMC statistical techniques. Next,

the estimated Se and Sp are substituted in the RGE formula in order to estimate the

true prevalence. Hence, these methods provide a comprehensive and powerful approach

to statistical analysis. The meta-analysis which pools data from various states, can

provide more precise estimates and improve the reliability of results.

(iii) Method-4 is similar to the model published by Fischer et al. [104]. However,

the method applied here has additional likelihood functions and prior distributions, in-

cluding priors for each parameter within it (hierarchical prior). Therefore, this method

(Method-4) can lead to increase informative and accurate estimations and has the po-

tential to reduce uncertainty. Further, having several likelihood functions means that

the model may be built based on extra variables in the data, which enhances the esti-

mation precision. In addition, with the hierarchical prior, the model’s parameters can

be represented in a greater flexibility and subtle way.
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Method-1

The estimate of the true prevalence (TPr) of FAW in the maize crops in each state

within a season, is easily computed by the following formula:

True prevalence = TPri =
TPi + FNi

ni
. (5.1)

where i denotes each distinct state. This formula computes the proportion of maize

crops which has the FAW among the total number of the given cases. To consider

the resulting value of the FAW prevalence in a particular state, at a given season, two

assumptions were taken into account.

C0: sample size > 30

C1:
(
Sei, FAW + SpFAW − 1

)
> 0

C0 plays a vital role in mitigating the risk of bias and representing the entire study

population. C1 is a fundamental criterion which it must be applied to any diagnostic

test. If C1 is not upheld, the test detects the interested characteristic by chance alone.

Further, C1 is equivalent to the Youden index (J). For more details, see Chapter 4.

In addition, to calculate the confidence interval (CI) for each estimated prevalence, the

Wilson estimator (which ensures the results stay within the range of 0 to 1) was applied

using the binconf function from the Hmisc package in R.

Method-2

Implementing an apparent prevalence (AP ), SeFAW , and SpFAW to estimate the true

prevalence (TPr) in one function can be an alternative method rather than Method-1.

This cosideration is important in the presence of diagnostic test imperfection. If the

diagnostic test is imperfect, AP is subject to the bias due to have FP or FN events

[185, 176]. Realising this bias underscores the importance of considering the test’s

imperfection by deriving the true prevalence from AP , Se, and Sp values.

Therefore, by including both Se and Sp into the estimation model, a more accurate

representation of the true prevalence (TPr) can be achieved. In this instance, Se

correctly accounts for the true positives, while Sp effectively excludes the false positives

[185, 176]. Subsequently, AP , the sum of the probabilities of true positives (TP) and
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false positives (FP), can be used to express the TPr:

AP = p(TP + FP )

= p(TP/D) p(D) + p(FP/ND) p(ND) (5.2)

= Se× TPr + (1− Sp)× (1− TPr). (5.3)

To solve for the true prevalence, TPr;

AP = (Se× TPr)−

TPr + (1− Sp) + (Sp× TPr)

TPr − (Se× TPr)− (Sp× TPr) =⇒ −AP + (1− Sp)

TPr × (1− Se− Sp) =⇒ −AP + (1− Sp)

TPr × (Se+ Sp− 1) =⇒ AP − (1− Sp)

TPr =⇒ AP − (1− Sp)

1− Se− Sp

=⇒ AP + Sp− 1

Se+ Sp− 1

TPr =
AP + (Sp− 1)

J
.

(5.4)

Following this, the values found in Chapter 4 for the point estimate (mean) Se

and Sp of the Plantix app accuracy can be entered into the formula (5.4) to yield

TPr = AP+(0.77−1)
0.49+0.77−1 . Subsequently, the estimated true prevalences displayed different

results among states due to the differences in the observed AP values. However, it is

important to note that the results obtained from formula (5.3) may exceed one or be

less than zero. Hence, to guarantee that the true prevalence estimations falls within the

proper range of zero to one, the following assumptions and conditions must be satisfied

for each state:

C0: sample size > 30

C1: (1− Sp) < Se

C2: (1− Sp) ≤ AP

C3: AP ≤ Se

In this case, C1 is equivalent to the Youden index (J), hence, it can be represented as

Se +Sp - 1 > 0. Inability to meet the C2 yields a negative value, TPr < 0. Likewise,
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failing to achieve C3 leads to TPr > 1. To sum up, Method-2 is an amalgamation

of the meta-analysis, Bayesian inference and traditional inference to derive estimates

of the true prevalence. To calculate the credibal interval (CrI) for each state in this

method, the lower and upper credible interval values of the pooled estimate (mean) Se

and Sp of the Plantix app accuracy found in Chapter 4 can be entered into the formula

(5.4).

Method-3

There are two steps in this method and they are applied in each season. The first step

employes the Bayesian framework. The purpose of this is to estimate the pooled Se

and Sp of the Plantix app test. The bivariate generalized linear mixed effects model of

the meta analysis within the MCMC framework is used. This step is identical to the

description in Chapter 4. Moreover, the same assumptions (C0 and C1) are considered

when selecting the states and before implementing the MCMC. Afterwards, the seasonal

point estimate (mean) of the Se and Sp values from the first step is utilised in the second

step. It is important to note that these values could differ between seasons. After that,

to compute the TPr for each state within season, the frequentist statistics formula (5.4)

is applied. In addition, the above-mentioned assumptions C2 and C3 are also taken into

account to guarantee relaible estimations. After that, to calculate the credibal interval

(CrI) for each state in this method, the lower and upper credible interval values of the

pooled estimate (mean) Se and Sp of the Plantix app accuracy found in each seaseon,

can be entered into the formula (5.4).

To sum up, the integration of the meta-analysis, Bayesian inference and traditional

inference to estimate the diagnostic test accuracy and true prevalence, can capture

complex relationships between prevalence, sensitivity, and specificity. As a result, it

can enhance the estimation accurcy. Moreover, the consideration of the temporal trends

and spatial variations in determinants of true prevalence offers more precise estimation.

Therefore, this method contributes an advanced and thorough approach to provide a

more comprehensive understanding of the true prevalence.

Method-4:

This method is a Bayesian hierarchical model and was applied separately in each season.

The model assumed binomial distributions as the likelihood functions for the counts of
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true positives TPi, true negatives TNi, and for the total positive tests ri (TPi + FPi).

The binomial distribution was commonly used as likelihood for ri [185, 176]. Hence,

the Se, Sp and APi were the probability of success parameters in each state.

TPi∼ Binomial(ni, FAW , Sei).

TNi∼Binomial(n
i, ¯FAW

, Spi).

ri ∼ Binomial(ni, APi).

ni is the total sample size in each state within a season. ni, FAW is the total number

of (TPi + FNi) in each state i , while ni, FAW is the total number of (TNi + FPi) in

each state i. The C0 and C1 should be also considered for the selected states in each

season. To construct the marginal distribution for the true prevalence for each state,

the MCMC steps incorporate the RGE:

APi = Sei × TPri + (1− Spi)× (1− TPri).

Moving on to the prior distributions for each of parameters of interest, the non-

informative prior was used to represent the prevalence parameter in each state and

within each season. A beta prior was used for the prevalence TPri with a uniform

distribution, beta(1, 1). This beta distribution is a flexible distribution that is often used

to model probabilities or proportions, as defined on the interval [0, 1]. Additionally, to

account for the potential variability, and correlations between Se and Sp, a multivariate

normal prior distribution for the logits of sensitivity and specificity with mean vector

β and covariance matrix Ω was applied.

TPri ∼ beta(1, 1).

logit

 Sei

Spi

 ∼ MVN

 β =

 β1

β2

 , Ω

 ,Ω =

 τ21 τ1τ2ρ

τ1τ2ρ τ22

 .

Further, prior distributions for the parameters within the multivariate normal dis-

tribution were included. For the mean vector β;

β =

 β1

β2

 ∼ MVN(µ, prec) = MVN

 µ =

 0

0

 , Σ =

 0.1 0

0 0.1

 .

Additionally, the prior distribution of Ω matrix was
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Ω−1 ∼ Wish

S =

 1 0

0 1

 , df = 2

 .

where Wish indicates an inverse-Wishart distribution. In this situation, Ω is to model

the variability in sensitivity and specificity parameters among studies. The hierarchical

priors enable this study to achieve flexible modeling of the parameters. Further, the

model takes into consideration the uncertainty in the parameters and incorporated

prior knowledge about the relationships between sensitivity and specificity values across

studies. In addition, the model does not explicitly specify a prior distribution for APi;

instead, it is indirectly shaped by the priors of Se, Sp and TPri. This is because APi

is a function, or dependent variable, of these three parameters.

Finally, after specifying the model, the next step involves running the MCMC algo-

rithm to estimate the posterior samples of the parameters, particualarly the marginal

posterior of the prevalence. Stan, a probabilistic programming language, [186] is used

for MCMC sampling, with three chains, 10,000 iterations, and 2000 warm-up itera-

tions. The trace plots, R-hat values, effective sample size (ESS), and autocorrelation

plots (ACF) are examined to assess model convergence. Further, the MCMC algorithm

is run twice once with the original sample size for each state, and again with 10,000

duplicate observations for each included data variable in the model. This carries out

in order to maintain consistency, and reduce uncertinity as the variance decreased and

indicated a negative relationship with the sample size.

5.3 Results

This section presents the prevalence of FAW at state level in India over four different

seasons; the maize crops periods from 2018 to the end of 2019. This timeframe is the

epidemic phase of the FAW infestation in India. Therefore, to gain a comprehensive

understanding of the prevalence, establishment, and distribution of the FAW during the

period of the outbreak, four different statistical methods were applied. Hence, by using

a variety of methods, the most accurate representation of the prevalence rates could be

identified. Accordingly, this section is divided into four parts, where each represented a

specific season. Within each season, the findings from four different statistical methods

are presented in details:

1. Prevalence of FAW during Rabi 2018
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2. Prevalence of FAW within Kharif 2018

3. Prevalence of FAW in Rabi 2019

4. Prevalence of FAW across Kharif 2019

5.3.1 Estimation of the Prevalence of FAW at state-level during Kharif

2018

The following Table presents the prevalence estimation in Kharif 2018 across Indian

states. The states in Table ?? are arranged in descending order based on the total

sample size (total).

115



5.3. Results

T
ab

le
5.

2:
FA

W
pr

ev
al

en
ce

at
In

di
an

-s
ta

te
le

ve
lw

it
h

to
ta

ls
am

pl
e

si
ze

s
gr

ea
te

r
th

an
30

du
ri

ng
K

ha
ri

f2
01

8
(C

0)
,u

si
ng

fo
ur

di
ffe

re
nt

pr
ev

al
en

ce
st

at
is

ti
ca

lm
et

ho
ds

.T
P

is
th

e
nu

m
be

r
of

tr
ue

po
si

ti
ve

s,
an

d
F
N

is
th

e
nu

m
be

r
of

fa
ls

e
ne

ga
ti

ve
s.

P
is

th
e

to
ta

lp
os

it
iv

es
,c

al
cu

la
te

d
as

T
P

pl
us

fa
ls

e
po

si
ti

ve
s

(F
P

).
A

P
is

th
e

ap
pa

re
nt

pr
ev

al
en

ce
.

T
ot

al
re

fe
rs

to
th

e
to

ta
l
m

ai
ze

te
st

ed
in

th
e

st
at

e.
C

1,
C

2
(
A
P

−
(1

−
S
p
)
≥

0
),

an
d

C
3

(
S
e
−

A
P

≥
0)

ar
e

th
e

cr
it

er
ia

fo
r

se
le

ct
in

g
st

at
es

.
T

P
r1

to
T

P
r4

ar
e

th
e

es
ti

m
at

ed
tr

ue
pr

ev
al

en
ce

ba
se

d
on

M
et

ho
ds

1
to

4.
n=

10
00

0
m

ea
ns

th
e

sa
m

pl
e

si
ze

fo
r

M
et

ho
d-

4
is

m
ul

ti
pl

ie
d

by
10

00
0.

T
he

(–
)

in
di

ca
te

s
th

at
th

e
tr

ue
pr

ev
al

en
ce

es
ti

m
at

io
ns

of
st

at
e

ar
e

in
va

lid
du

e
to

no
t

m
ee

ti
ng

th
e

cr
it

er
ia

.

M
et

ho
d-

1
M

et
ho

d-
2

M
et

ho
d-

3
M

et
ho

d-
4

St
at

e
T

P
F
N

P
T
ot

al
A

P
C

1
T

P
r1

(9
5%

C
I)

C
2

C
3

T
P

r2
(9

5%
C

rI
)

C
2

C
3

T
P

r3
(9

5%
C

rI
)

T
P

r4
,

n=
10

,0
00

(9
5%

C
rI

)
M

ah
ar

as
ht

ra
81

26
5

14
9

87
7

0.
17

0.
10

0.
39

(0
.3

6,
0.

43
)

-0
.0

6
0.

32
-

-0
.0

1
0.

21
-

0.
39

(0
.3

9,
0.

4)
U

tt
ar

P
ra

de
sh

30
16

4
10

0
55

4
0.

18
-0

.0
4

-
-0

.0
5

0.
31

-
0

0.
2

-
-

M
ad

hy
a

P
ra

de
sh

28
13

9
81

49
1

0.
16

0.
01

0.
34

(0
.3

0,
0.

38
)

-0
.0

7
0.

33
-

-0
.0

2
0.

22
-

0.
34

(0
.2

2,
.3

8)
R

aj
as

th
an

19
12

3
56

39
4

0.
14

-0
.0

2
-

-0
.0

9
0.

35
-

-0
.0

4
0.

24
-

-
T
el

an
ga

na
10

0
89

13
1

38
1

0.
34

0.
37

0.
50

(0
.4

5,
.5

5)
0.

11
0.

15
0.

41
(0

.3
9,

.5
2)

0.
16

0.
04

0.
81

(0
,5

3,
1)

0.
50

(0
.4

9,
0.

5)
A

nd
hr

a
P

ra
de

sh
58

66
80

23
0

0.
35

0.
26

0.
54

(0
.4

7,
0.

60
)

0.
12

0.
14

0.
45

(0
.4

0,
.5

4)
0.

17
0.

03
0.

87
(0

,5
5,

1)
0.

54
(0

.5
4,

.5
4)

K
ar

na
ta

ka
66

34
84

18
7

0.
45

0.
45

0.
53

(.
46

,
0.

60
)

0.
22

0.
04

0.
83

(0
.6

7,
1)

0.
27

-0
.0

7
-

0.
53

(0
.5

3,
.5

4)

H
ar

ya
na

10
51

38
16

4
0.

23
-0

.1
1

-
0

0.
26

0
(0

,.1
)

0.
05

0.
15

0.
24

(0
,2

4,
1)

-

G
uj

ar
at

27
38

51
16

0
0.

32
0.

17
0.

41
(0

.3
3,

0.
48

)
0.

09
0.

17
0.

34
(0

.3
3,

.3
4)

0.
14

0.
06

0.
71

(0
.4

7,
1)

0.
41

(0
.4

0,
.4

1)
B

ih
ar

2
38

15
12

6
0.

12
-0

.1
0

-
-0

.1
1

0.
37

-
-0

.0
6

0.
26

-
-

C
hh

at
ti

sg
ar

h
10

36
24

11
3

0.
21

0.
01

0.
41

(0
.3

2,
0.

5)

-0
.0

2
0.

28
-

0.
03

0.
17

0.
14

(0
,.1

9)
0.

41
(0

.2
8,

.4
5)

116



5.3. Results

M
et

ho
d-

1
M

et
ho

d-
2

M
et

ho
d-

3
M

et
ho

d-
4

St
at

e
T

P
F
N

P
T
ot

al
A

P
C

1
T

P
r1

(9
5%

C
I)

C
2

C
3

T
P

r2
(9

5%
C

rI
)

C
2

C
3

T
P

r3
(9

5%
C

rI
)

T
P

r4
,

n=
10

,0
00

(9
5%

C
rI

)
P

un
ja

b
10

27
27

93
0.

29
-0

.0
3

-
0.

06
0.

20
0.

22
(0

,1
4,

.2
5)

0.
11

0.
09

0.
55

(0
.4

0,
1)

-

Jh
ar

kh
an

d
8

23
20

85
0.

24
0.

04
0.

36
(0

.2
7,

.4
7)

0.
01

0.
25

0.
03

(0
,0

.1
1)

0.
06

0.
14

0.
29

(0
.2

8,
1)

0.
36

(0
.3

3,
.3

8)
T
am

il
N

ad
u

21
19

27
79

0.
34

0.
37

0.
51

(0
.4

0,
.6

1)

0.
11

0.
15

0.
41

(0
.3

9,
50

)
0.

16
0.

04
0.

81
(0

.5
3,

1)
0.

51
(0

.5
0,

.5
1)

H
im

ac
ha

l
P

ra
de

sh
0

5
4

45
0.

09
-0

.1
0

-
-0

.1
4

0.
4

-
-0

.0
9

0.
29

-
-

W
es

t
B

en
ga

l
5

9
14

35
0.

40
-0

.0
7

-
0.

17
0.

09
0.

64
(0

.5
4,

.9
1)

0.
22

-0
.0

2
-

-

117



5.3. Results

Method-1

We employed Method-1 to estimate the prevalence (TPr1) of FAW infestation at

the state level across India. The prevalence was calculated using the formula TPr.

For example, in Andhra Pradesh, among 230 maize cases, 58 were classified as TP

notifications, while 66 were erroneously diagnosed as FN. Hence, by applying the

prevalence formula (5.1), the prevalence of FAW in Andhra Pradesh was estimated

as TPr1 = (58+66)
230 = 0.54 equivalent to 54 percent.

On the map shown in Figure 5.1, the prevalence estimated values are shown, where

the darker colours reflect the higher level of prevalence. As may be observed, the

FAW prevalence level across all studied states varied between 0.34 and 0.54. Andhra

Pradesh (54 percent prevalence), Karnataka (53 percent), Tamil Nadu (51 percent) and

Telangana (50 percent) in the southeast of India reocrded the highest level of infestation

compared to other regions. During this season, Chhattisgarh (41 percent) which is

located in North India, bordering Telangana and Andhra Pradesh to their north, also

exhibited a high level of infestation.

Further, Tamil Nadu and Andhra Pradesh are coastal states. It is possible that the

FAW entered India via the coastline and the initial appearance was therefore in the

southern states. Moreover, Gujarat which is the most westerly state in India, had a

prevalence of 41 percent during this season, making it among the highest rates observed.

This could be due to the state having coastal boundaries on all but one sides, to the east.

It is surrounded by the Arabian Sea on the west and southwest, the Gulf of Khambhat

on the south, and the Gulf of Kutch in the northwest.
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Figure 5.1: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level using Method-1. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour suggests
that the area is not under study.

Method-2

In addition, Method-2 was applied to estimate FAW prevalence (TPr2) during Kharif

2018 in each of the states under study. For example, the estimated prevalence in Kar-

nataka was TPr2 = AP−(1−Sp)
Se+Sp−1 = 0.45−(1−0.77)

0.49+0.77−1 = 0.83 or 83 percent. The same formula

was applied to each state, where the only differences between states was the AP rate.

Seven states Chhattisgarh, Uttar Pradesh, Maharashtra, Madhya Pradesh, Rajasthan,

Bihar and Himachal Pradesh have negative TPr2 values. This occurred because these

states failed to satisfy condition-two (C2), where C2 is specified as 1 − Sp ≤ AP , or

alternatively, (1−Sp)−AP ≥ 0. Hence, the AP values in these states were lower than

FPR (1 − Sp). As a result, Method-2 when applied in this season, the method esti-

mated the FAW prevalence for nine of the fifteen states. The estimates ranged between

0 percent in Haryana to 83 percent in Karnataka.

Furthermore, Method-2 agreed with Method-1, suggesting that FAW originated in

the coastal states of southeast India. Based on Method-2 findings, Karnataka had the

highest prevalence at 83 percent. An explanations for this could be that Karnataka

was the first state in India to officially report cases of FAW. However, the 83 percent

value may potentially be an overestimation at the start of the FAW season in India.
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Moreover, 64 percent of maize crops were infested with FAW in West Bengal, which is

located on the eastern coast. This may also be overestimated and less certain, because

its rate was higher than the costal south states.

Figure 5.2: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level, using Method-2. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

Method-3

As part of this method, the MCMC algorithm was employed to estimate the pooled Se

and Sp for Kahrif 2018. To ensure the reliability of posterior estimates, the convergence

of the three MCMC chains was assessed. Accordingly, four various diagnostic tools were

evaluated to test convergence, after discarding a burn-in period of 3,000 iterations, a

total of 10,000 iterations were conducted.. The trace plots of both parameters (Se and

Sp) indicate an overlapping of the three chains and that they are well-mixed. Further,

both parameters had single peak distributions as can be seen in the density plots. This

is an indication that the model was able to estimate the parameter space. In addition,

the ACF plots of both parameters show a sharp decrease in autocorrelation values

and fluctuate around zero, which in turn, indicates a well-mixed chain and that they

effectively explore the posterior distribution, thus confirming convergence. Furthermore,

the parameters have R̂ = 1. The ESS rates for both parameters were 100 percent which is
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the highest possible value, indicating that all samples effectively contributed to estimate

the parameter spaces as well as being well mixed and independent samples. Therefore,

mixing well, overlapping chains, unimodel distributions, ACF values fluctuating near

zero, R̂ = 1and the maximum rates of ESS provide a reliable and accurate estimation

of the MCMC.

Figure 5.3: Assessing the convergence of three MCMC chains (post burn-in) for sensi-
tivity and specificity during Kharif 2018, using trace plots in the first row, density plots
in the second row, and ACF Plots in the last row.

Hence, the estimated pooled Se and Sp for states during Kharif season is shown

in Table 5.5. By comparing the estimated Se and Sp for this season with the entire
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period (Method-2), it can be observed that the Se is lower. On the other hand, the

Sp is higher. This variability must not be overlooked. It may highlight that assessing

sensitivity and specificity for each season may result in improved accuracy.

Table 5.5: Point estimates and credible intervals of MCMC summary results for sensi-
tivity (Se) and specificity (Sp) parameters during Kharif 2018.

Mean 95 CrI
Pooled Se 0.376 0.243, 0.526
Pooled Sp 0.816 0.756, 0.866

Following this, the implementation of the TPr3 formula was undertaken to estimate

the FAW prevalence during the Kharif 2018 season. The estimated prevalence rates can

be seen in Table ??tab:Khari18prevalence under the column labeled TPr3. During this

season, the TPr3 estimation was possible for just eight states. It was also verified that

the outbreak had originated along the southern coast states. However, the estimations

seem to be exaggerated. This is because it is not logical for the prevalence to be so

excessively high in the first season. Further, the estimation exceeded that of the previous

method for this season. One explanantion for this discrepancy may be attributed to the

higher Sp value.

Figure 5.4: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level using Method-3. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.
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Method-4

During this season, Method-4 could derive estimates for only nine of the states included

in the study. Those included met the criteria of having a sample size greater than 30

(C0) and non-negative J value (C1). Following this, upon examining the MCMC with

10,000 iterations and three chains, along with a burn-in period of 2,000 iterations, it

was noted that only two states Telangana and Karnataka exhibited signs of convergence

(see in the Appendix Figure A.1).

Figure 5.5: Forest plots for the mean posterior prevalence estimates and credible inter-
vals (CrI) of the Indian states during Kharif 2018, where the bold line indicates 50%
Crl, and the thin line indicates 95% CrI. The left plot represents forest plot for the
original sample size for each state, while the right panel illustrates the forest plot for
each state after scaling the sample size by a factor of 10,000.

As previously noted, the model is experiencing low convergence, likely due to the lim-

ited sample size. To address this, the proposed solution is to augment the obsewrations

by multiplying each value of TP, TN, FP, and FN by a large constant (10,000) and then

rerunning the analysis. However, it is important to note that, augmenting the sample

size for each population has no effect on the point estimate. Nevertheless, it effectively

diminishes uncertainty through lowering the variance within the population. This is

because the reduction in variance is directly correlated to the augmentation in sample
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5.3. Results

size (n), with a mathematical relationship of 1/n.

As a result, it can be seen in the right panel of Figure (5.5) that the forest plot

demonstrates a decrease in uncertainty in all nine states. In addition, it can be seen

that the trace plots in Figure A.2 in Appendiz suggest a visual evidence of convergence.

To elaborate, the trace plots for the nine states were mixed effectively. Consequently,

this procedure led to convergence for all states. Moreover, by comparison with Method-

1, the estimated values were matched.

Figure 5.6: Mapping the prevalence of FAW infestation in the maize crop during Kharif
2018 at state level using Method-4 after scaling the sample size for each state by a factor
of 10,000. A higher prevalence is associated with darker colours, while the lightest yellow
indicates unsatisfied assumptions. No colour indicates that the area is not under study.

5.3.2 Estimation the prevalence of FAW at state-level during Rabi

2018
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5.3. Results

Method-1

Based on Method-1 and during Rabi 2018, the highest infestation prevalence was esti-

mated at 69 percent in Tamil Nadu, while in Bihar, which is located in the northeast,

displayed the lowest prevalence at 19 percent (see Figure 5.7). Further, there was a

significant escalation in the FAW prevalence intensity in Tamil Nadu, Telangana (68

percent), and Andhra Pradesh (65 percent), when compared with the previous season

and when appling the same method. Furthermore, a slight two percent rise in prevalence

was observed in Karnataka. This season was the time at which India officially acknowl-

edged the presence of FAW in the country, starting in Karnataka. The announcement

may have prompted control and mitigation measures, that restriced the magnitude of

the escalation in Karnataka.

Moreover, Maharashtra recorded a substantial increase in the prevalence, rising from

39 percent to 57 percent. This increase might be linked to the state’s location, where

Gujarat lies on its western border as well as Karnataka, Chhattisgarh, and Telangana on

its southern and eastern boundaries. In the North India, Haryana and Bihar were found

to have prevalence rates of 47 percent and 19 percent, respectively, while there were no

prevalence recorded in these states during the previous season using this method. It

is worth mentioning that Bihar cultivates more maize in the Rabi season than in the

Kharif season in [40]. Further, this method failed to estimate the FAW prevalence in

Chhattisgarh, Madhya Pradesh and Jharkhand during the same season, despite these

states having recorded a prevalence during the Kharif season. Compared to Kharif,

these states are anticipated to have planted fewer maize crops during this season.
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5.3. Results

Figure 5.7: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-1. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area does not included under this study.

Method-2

Based on this method, not all states satisfied C2 or C3, with some notable exceptions

Karnataka, Maharashtra, Chhattisgarh and Gujarat. The prevalence estimation for

these states were 79, 83, 22 and 34 percent, respectively. Compared to Method-1, this

approach assigned a higher value to Karnataka, Maharashtra and Chhattisgarh. Figure

5.8 shows the FAW prevalence based on this method.
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5.3. Results

Figure 5.8: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-2. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.
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Method-3

Figure 5.9: Assessing the convergence of three MCMC chains (post burn-in) for sensi-
tivity and specificity during Rabi 2018, using trace plots in the first row, density plots
in the second row, and ACF Plots in the last row.

Further, the MCMC was employed to estimate the pooled Se and Sp for Rabi 2018. To

ensure the reliability of posterior estimates, the convergence of the three MCMC chains

was assessed. After removing a 3000 burn-in period of 10,000 iterations, four various

diagnostic tools were used to test convergence. The trace plots of both parameters (Se

and Sp) display overlapping of the three chains, thus indicating that they are well-mixed.

Although Se exhibits a wider variation, both parameters had single peak distributions
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5.3. Results

as can be seen in the density plots. This is an indication that the model was able to

estimate the parameter space.

In addition, the ACF plots of both parameters show a rapid decline towards zero,

which further indicates an effective exploration of the posterior distribution, thus con-

firming convergence. Furthermore, the parameters have R̂ = 1. Additionally, the ESS

rates for both parameters were 100% which is the highest possible value. This indicates

that all samples effectively contribute to estimating the parameter spaces as well as well

mixed and independent samples. Hence, well mixed and operlapping chains, unimodel

distributions, ACF values fluctuating near zero, R̂ = 1and the maximum rates of ESS,

provide a reliable and accurate estimation of the MCMC. Therefore, Table 5.7 sum-

marizes the pooled Se and Sp for states during Rabi 2018. To compare the estimated

Se and Sp for this season with the whole period (Method-2), it can be noted that if

rounded to one decimal place, the values are the same. Nevertheless, with additional

decimal places, the values for the entire period were lower than those for this season.

Table 5.7: Point estimates and credible intervals of MCMC summary results for sensi-
tivity (Se) and specificity (Sp) parameters during Rabi 2018.

Mean 95 CI
Pooled Se 0.543 0.310, 0.754
Pooled Sp 0.828 0.734, 0.901

Moving forward, the study commenced with applying the TPr3 formula in order

to estimate the FAW prevalence during the Rabi 2018 season. Table 5.6, within the

column entitled TPr3, presents the estimated prevalence values. The TPr3 indicated

valid values, which should be between 0 and 1, for Maharashtra (72 percent), Karnataka

(75 percent), Gujarat (32 percent), West Bengal (10 percent) and Chhattisgarh (40

percent). From the map (see Figure 5.10), it is evident that Method-3 could not estimate

the prevalence rates among the states along the southeast coastline. This is because

the apparent prevalence exceeded the sensitivity in these states. Hence, the FP cases

exceeded the TP cases. As a result, the true prevalence values were overestimation.

To sum up, the formula failed to estimate the majority of states, which resulted in an

inaccurate representation of the prevalence dynamics during this period.
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5.3. Results

Figure 5.10: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-3. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

Method-4

During this season, Method-4 could estimate prevalence for only eight of the states

examined in the study (see Figure 5.11). This was since these were the states that

had sample sizes higher than 30 and non-negative J values. However, by running the

MCMC method for all those states, the three states with lowest sample size had a high

level of uncertainty, as demonstrated on the trace plots of Figure A.4. In other words,

these states were non-convergence. All states, including the ones with the lowest sample

sizes had R̂ equal 1 and ESS rates ranged between 72% to 90%. Therefore, only the

first five states were convergent. The prevalence rates for Andhra Pradesh (65 percent),

Telangana (68 percent), Maharashtra (57 percent), Karnataka (56 percent) and Tamil

Nadu (70 percent) were exactly the same as in Method-1.
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5.3. Results

Figure 5.11: Mean posterior prevalence estimates and credible intervals (CrI) of the
Indian states during Rabi 2018, where the bold line indicates 50% Crl, and the thin line
indicates 95% CrI. The left plot represents forest plot for the original sample size for
each state, while the right panel illustrates the forest plot for each state after scaling
the sample size by a factor of 10,000.

Increasing the sample size to improve the convergence was only needed for the three

states, Bihar, Gajurata and Haryana, as there was an indication that the first five states

with highest sample size reached convergence. For consistency, running the MCMC was

repeated by multiplying the sample size for each state by a constant factor of 10,000.

The right-hand plot of Figure 5.11 demonstrates a decrease in uncertainty across all

eight states. Further, all these states successfully estimated by the MCMC method

showing convergence. The estimated values remain consistent for the first five states,

while for the remaining three states, there is a noticeable improvement, warranting

their consideration as reliable estimates. Notably, these values align precisely with

those obtained using Method-1 (see Figure 5.12).
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5.3. Results

Figure 5.12: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2018 at state level using Method-4. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

5.3.3 Estimation of the prevalence of FAW at state-level during Kharif

2019
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5.3. Results

Method-1

During Kharif 2019 and with applying Method-1 approach, fifteen states met the C0

and C1 criteria. Hence, the FAW prevalence of these states are presented in the map

(see Figure 5.13). The map clearly shows that North and South India were comprehen-

sively impacted by the FAW prevalence. Maharashtra had the highest prevalence, at 68

percent. Using this method, the seasonal increase of the FAW prevalence in Karnataka

was marginal, yet it increased gradually from season to season. In Kharif 2018, the

prevalence rate was 53 percent, subsequently in Rabi 2018, it increased to 55 percent,

and during this season it reached 59 percent. This may have been prompted by the

great efforts that were made in the state to manage the FAW distribution and pre-

serve maize. Additionally, it is possible that the maize quantities and FAW infestation

remained relatively stable in this state across all seasons. In addition, West Bengal,

Haryana and Punjab failed to meet C1 criteria during Kharif 2018 and Kharif 2019.

One possible explanation could be that there was a more limited amount of maize crop

planted during the Kharif season.

Figure 5.13: Mapping the prevalence of FAW infestation in the maize crop during
Kharif 2019 at state level using Method-1. A higher prevalence is associated with
darker colours, while the lightest yellow indicates unsatisfied assumptions. No colour
indicates that the area is not under study.
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5.3. Results

Method-2

During the Kharif 2019 season, Method-2 was capable of estimating the prevalence for

12 of the 18 states (see Figure 5.14). Maharashtra, Telangana, Andhra Pradesh and

Gujarat failed to satisfy C3 criteria, while Bihar and Himachal Pradesh were not able

to meet the C2 assumption. Throughout this season, FAW distribution was exhibited

across virtually all northern states, presenting a variety levels of infestation. Further,

the prevalence estimates for Madhya Pradesh during this season were approximately

identical with Method-1 at 42 percent and Method-2 at 43 percent. In addition, there

was a slight difference in the prevalence estimates for Chhattisgarh between Method-1

and Method-2. However, Tamil Nadu exhibited a marked increase reaching 98 percent

when compared with Method-1. It is interesting to note that although the sample

size and number of positive tests in Karnataka increased over the season, the apparent

prevalence remained constant. As a result, the estimated value remained steady, at 83

percent. This may suggest that the level of effective control efforts continued to be

stable.

Figure 5.14: Mapping the prevalence of FAW infestation in the maize crop during
Kharif 2019 at state level using Method-2. A higher prevalence is associated with
darker colours, while the lightest yellow indicates unsatisfied assumptions. No colour
indicates that the area is not under study.
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5.3. Results

Method-3

Figure 5.15: Assessing the convergence of three MCMC chains (Post Burn-in) for sensi-
tivity and specificity during Kharif 2019, using trace plots in the first row, density plots
in the second row, and ACF Plots in the last row.

Moreover, the MCMC was used to estimate the pooled Se and Sp for Kahrif 2019.

Hence, four various diagnostic tools were utilised to test convergence. As shown in

Figure 5.15, three of these tools are tthe race plot in the first row, the density plot in

the second row, and the ACF plot in the last row. The trace plots were well mixed

with overlapping chains, and the density plots show unimodel distributions. Further,

the ACF values fluctuate around zero. The R̂ = 1 and the ESS rate was 100 percent for
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5.3. Results

Sp and above 57 percent for Se. Therefore, the estimation parameters were a reliable

and accurate.

Table 5.9: Point estimates and credible intervals of MCMC summary results for sensi-
tivity (Se) and specificity (Sp) parameters during Kharif 2019.

Mean 95 CrI
Pooled Se 0.507 0.407, 0.604
Pooled Sp 0.778 0.727, 0.821

Hence, the pooled Se and Sp for states during Kharif season are presented in Table

5.9. By comparing the estimated Se and Sp for this season with the entire period

(Method-2), it can be observed that the Se and Sp are almost equal, where the Se for

Method-2 is 0.494 and Sp is 0.769. As a result, there was a high chance of obtaining

the same estimation prevalence for both methods. However, this method was able to

estimate one more state, Telangana (97 percent). Furthermore, Figure 5.16 shows the

estimation prevalence based on this method.

Figure 5.16: Mapping the prevalence of FAW infestation in the maize crop during
Kharif 2019 at state level using Method-3. A higher prevalence is associated with
darker colours, while the lightest yellow indicates unsatisfied assumptions. No colour
indicates that the area is not under study.
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5.3. Results

Method-4

Figure 5.17: Mean posterior prevalence estimates and credible intervals (CrI) of the
Indian states during Kharif 2019, where the bold line indicates 50% Crl, and the thin
line indicates 95% CrI. The left plot represents forest plot for the original sample size
for each state, while the right panel illustrates the forest plot for each state after scaling
the sample size by a factor of 10,000.

Furthermore, Method-4 was utilised to estimate the true prevalence of FAW during

Kharif 2019 season. Accordingly, 15 states met the criteria C0 and C1. Subsequently,

the MCMC process was implemented for those 15 states. Hence, the forest plot shown on

the right in Figure 5.17, is a visual representation of the MCMC process, indicating that

the method effectively estimated the rates for the majority of states. Specifically, the

model successfully estimated the prevalence rates for Maharashtra, Karnataka, Madhya

Pradesh, Telangana, Andhra Pradesh, and Gujarat.

Moreover, with less effectiveness and moderate uncertainty, the model also estimated

prevalence rates for Uttar Pradesh, Chhattisgarh, Tamil Nadu, and Bihar. However,

regarding the remaining states, the model failed to provide estimates. For those with
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5.3. Results

less effectiveness and moderate accuracy, the model displayed a remarkable degree of

similarity with Method-1. Nevertheless, in order to improve the accuracy of the estima-

tions for all states, the MCMC was repeated with a constant factor and a larger sample

size 10,000 for each state. Consequently, the updated forest plot shown in the left in

Figure 5.17 demonstrates convergence for all states. As a result, the map in Figure

5.18 shows the FAW prevalence based on the repeated analysis. In addition, the FAW

prevalence findings were exactly the same as the results from Method-1.

Figure 5.18: Mapping the prevalence of FAW infestation in the maize crop during
Kharif 2019 at state level using Method-4. A higher prevalence is associated with
darker colours, while the lightest yellow indicates unsatisfied assumptions. No colour
indicates that the area is not under study.

5.3.4 Estimation the prevalence of FAW at state-level during Rabi

2019
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5.3. Results

Method-1

By applying this method, and particularly in Rabi 2019 season, it can be noted that the

prevalence of FAW varied from 61 percent in Uttar Pradesh to 76 percent Telangana

(see Figure 5.19). In Karnataka, there was a gradual increase, which may be linked

to the continued attention focused on this state compared to others. In addition, a

marginal increase was noted in each state excluding Andhra Pradesh, where a decline

from 65 percent to 60 percent was witnessed. Therefore, the FAW infestation surpassed

50 percent in all states, causing concern and a hazardous situation in the agricultural

sector, as well as concwening food security, and other related sectors.

Figure 5.19: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2019 at state level using Method-1. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

Method-2

Most states, during Rabi 2019 and when applying this method, had a FAW prevalence

exceeded one. This is because an AP was higher than Se. As a result, the current

method was able to estimate the infestation rates of four states; Uttar Pradesh (91

percent), Rajasthan (95 percent), Punjab (87 percent) and Assam (72 percent) (see

Figure 5.20). However, these results appeared to be overestimated.
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5.3. Results

Figure 5.20: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2019 at state level using Method-2. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.
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5.3. Results

Method-3

Figure 5.21: Assessing the convergence of three MCMC chains (post burn-in) for sensi-
tivity and specificity during Rabi 2019, using trace plots in the first row, density plots
in the second row, and ACF Plots in the last row.

Applying Method-3, the MCMC was implemented to estimate the pooled Se and Sp

for Kahrif 2019. Further, to test convergence, four diagnostic measures were applied.

The trace plots in Figure (5.21) show well-mixed with overlapping chains. In addition,

the density plots within the same Figure show unimodel distributions. Furthermore,

the ACF plots at the bottom reveal that the values fluctuated around zero. Moreover,

the R̂ = 1 and the ESS rate was 100% for Sp, and above 57% for Se. Therefore, the
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5.3. Results

estimation parameters with the MCMC method are reliable and accurate. Hence, the

summary of the pooled Se and Sp for states during Rabi 2019 season appears in Table

5.11 which as follows,

Table 5.11: Point estimates and credible intervals of MCMC summary results for sen-
sitivity (Se) and specificity (Sp) parameters during Rabi 2019.

Mean 95 CrI
Pooled Se 0.693 0.634, 0.745
Pooled Sp 0.724 0.654, 0.790

Remarkably, Rabi 2019 revealed the highest sensitivity and the lowest specificity com-

pared to all earlier seasons. This could indicate that during the Rabi 2019 season, there

was a noticeable rise in FAW outbreaks. In addition, farmers may have gained more

expertise in using the Plantix app. Further, they were increasingly aware of the FAW

dangers. Therefore, they used the app to confirm the presence of FAW. This may have

been because the FAW infestation became easier for farmers to recognise. Furthermore,

they were motivated to use the app because the app suggests treatments and offers

helpful advice to control the FAW. Conversely, the lowest specificity may suggest that

farmers increased their focus to take images of maize crops with a high likelihood of

FAW infestation.

Accordingly, TPr3 in Table 5.10 and the map provided in Figure 5.22 demonstrate

that applying Method-3 during the Rabi 2019 season enabled the estimation of all

studied states, with the exception of the states that failed to meet the C0 criteria. By

comparison the FAW prevalence findings of Method-2 with this method and during

the same seaseon, indicate obvious differences. To start with, Method-2 was able to

estimate the prevalence values for no more than four states. Further, these estimations

seemed to be exaggerated and unrealistic. This seemed to be due to the values of the

C3 criteria in these states were around zero. Although zero is assumed to be acceptable

in the C3 criteria, it is possible that a value far different from zero may yield a more

accurate estimation. Hence, Method-3 was preferable to Method-2.
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5.3. Results

Figure 5.22: Mapping the prevalence of FAW Infestation in the maize crop during
Rabi 2019 at state level using Method-3. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

Method-4

Moreover, Method-4 was also applied to simulate the true prevalence of FAW during

Rabi 2019 season. Hence, the MCMC process was implemented in 13 of 15 states, which

fulfilled the C0 and C1 criteria. Thus, the forest plot on the left in Figure 5.23 shows

the MCMC results and the MCMC method successfully estimated for all states except

the top four on the plot. It is important to highlight that those four states had the

smallest sample sizes.
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5.3. Results

Figure 5.23: Mean posterior prevalence estimates and credible intervals (CrI) of the
Indian states during Rabi 2019, where the bold line indicates 50% Crl, and the thin line
indicates 95% CrI. The left plot represents forest plot for the original sample size for
each state, while the right panel illustrates the forest plot for each state after scaling
the sample size by a factor of 10,000.

Therefore, the MCMC was rerun with an increased sample size, by a constant factor

of 10,000 for each state. This step was conducted to upgrade the FAW prevalence

estimation for all studied states. Consequently, the forest plot, shown on the right

side in Figure 5.23, demonstrates convergence for all states. Interestingly, this step of

Method-4 and Method-1 yielded the same results. Hence, the map in Figure 5.24 is

identical to map in Figure 5.19.
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Figure 5.24: Mapping the prevalence of FAW infestation in the maize crop during Rabi
2019 at state level using Method-4. A higher prevalence is associated with darker
colours, while the lightest yellow indicates unsatisfied assumptions. No colour indicates
that the area is not under study.

5.4 Discussion and conclusion

In this chapter, the primary objective was to estimate the spatio-temporal true preva-

lence of FAW in maize crop where the spatial scale was state-level in India and the time

term was the maize season. Because of the absence of a gold standard and with only a

single imperfect diagnostic test, the Plantix app, four distinct statistical methods were

applied to identify the most accurate estimate of the true prevalence. The identification

of the most accurate method is here determined by the highest method consistency and

capacity to produce satisfactory outcomes. The choice is also influenced by a compar-

ison of the estimation values in this study with results from our prior findings or/and

prior research studies.

Both Method-1 and Method-4 yielded identical estimation true prevalence values

over time and space, when the sample size of Method-4 was augmented to 10,000.

Thus, when referencing Method-1/4, it indicates both Method-1 and Method-4. On the

other hand, Method-2 and Method-3 presented divergent results from each other. They

also exhibited different values compared to Method-1/4. To sum up, while Method-1/4

had the same value, Method-1/4, Method-2, and Method-3 differed. In the following
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lines, we compared between the methods to find the optimal one.

Figure 5.25: Maps of all previous figures to reflect the prevalence of Fall Armyworm
(FAW) infestation in maize crops during the 2018-2019 seasons at the state level using
Method-1/4. Method-2 and Method-3 in order to compare between them. A higher
prevalence is associated with darker colours, while the lightest yellow indicates unsatis-
fied assumptions. No colour indicates that the area is not under study.

The estimation of the true prevalence in Kharif 2018 in Method-1/4 ranged between

34 percent in Madhya Pradesh and 54 percent in Andhra Pradesh. In Method-2, it

was between zero percent in Haryana and 83 percent in Karnataka. In Method-3, there

were three states with true prevalence estimation over 80 percent which were Andhra

Pradesh,Tamil Nadu and Telangana. Therefore, it is highly unlikely at the onset of

the FAW epidemic, that the prevalence surpassed 80 percent. As a result, these results

appear to be an overestimation. In addition, during Rabi 2019, Method-2 exhibited

to estimate the minimal number of states in comparison to other methods. Therefore,

Method-2 highlights possible limitations in accurately representing real-world situations

to capture the temporal and geographical variations. Hence, it can be concluded that

Method-2 was the least consistent approach and failed to yield satisfactory outcomes.
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Table 5.12: Sensitivity and specificity estimation values over seasons.

Kharif Rabi
2018 Se=0.376, Sp=0.816 Se=0.543, Sp=0.828
2019 Se=0.507, Sp=0.778 Se=0.693, Sp=0.724

Method-3 demonstrated that the Se and Sp varied throughout seasons (see Table

5.12). This leads to the accuracy of the diagnostic test that can influence the prevalence

of FAW infestations across different seasons. In addition, it showed that the Se during

Rabi season was better than Kharif in both years. This possibly indicates that the

FAW caused more damage in maize during Rabi seasons. Heavy rains during the Kharif

season, compared to the Rabi season, impact the availability of Fall Armyworm (FAW)

in fields where it cannot be tolerated [21]. Further, Rabi 2019 had the highest Se, almost

0.7, and the lowest Sp. Moreover, the first season, Kharif 2018 recorded the lowest Se,

while this value became higher than 0.5 in the subsequent seasons. This can reflect that

the FAW prevalence incresed over the time, farmer abilities to recognise FAW increased

and their skills in using the app also improved. These findings alignd with our findings

of odds of FAW in Chapter 3 (see Figure 5.26).

In addition, during Rabi 2019, both Method-1/4 and Method-3 provided meaning-

ful and convincing estimation of the FAW prevalence. They reflected that the FAW

prevalence during Rabi 2019 was prevalent across nearly all states, although Method-3

identified that prevalence in the South was more than in the North. On the other hand,

Method-1/4 revealed that the level of prevalence in the all states were nearly uniform

and ranged from 0.6 to less than 0.8 (red legend). Referring back to our findings about

the intensity of the FAW in the Chapter 3 (see Figure 5.26) and comparing them with

Rabi 2019 maps in these two methods, it can be seen that in both North and South

India the level of intensity was the highest and on average ranged between 2 and 3 odds

values, or, alternatively, between 60 and 70 percent. This was consistent with Method-

1/4 and not Method-3. This is because Method-1/4 exhibited consistent patterns in

both intensity and prevalence, whereas Method-3 did not reflect such uniform pattern

in prevalence.

To sum up,

• Overestimation prevalence (Kharif 2018): During Kharif 2018, Method-2 and

Method-3 produced prevalence estimates that overestimated the Fall Armyworm

(FAW) by over 80%, raising concerns about its reliability.
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• Underestimation prevalence (Rabi 2019): In Rabi 2019, Method-2 underesti-

mated the number of affected states compared to other methods (Method-1/4

and Method-3), indicating its limitations in accurately capturing temporal and

geographical variations.

• Seasonal Variation Advantage (Method-3): Despite the overestimation, Method-3

had the advantage of demonstrating that the Se and Sp differ over seasons, which

could be valuable for understanding seasonal patterns.

• Inconsistency: Given these variations, Method-2 was the least consistent approach

and failed to yield satisfactory outcomes across different scenarios.

– Hence,these two methods confirm that directly using the Rogan-Gladen Esti-

mator (RGE) to estimate prevalence by assuming fixed values for sensitivity

(Se) and specificity (Sp) can lead to biased estimates of true prevalence.

• Accuracy of Method-1/4: Method-1/4 was the most accurate representation of

the prevalence. The method reflects that the FAW concentration was lower in

the North area compared to the South during 2018. Moving into 2019, the FAW

concentration had increased in both areas. By the end of the 2019, during Rabi, it

reached the highest risk level in both areas. The prevalence pattern matches the

intensity pattern, and the prevalence map incorporated additional information,

including numerical details in state level and across seasons.

– Method-1 is the simplest and most direct way to calculate prevalence, making

it easy to apply and understand.

– Method-4 is more advanced and provides useful information. it calculates the

pooled Se and Sp values during each season and considers the correlation

between these parameters. The Bayesian framework allows to quantify the

uncertainty for estimated parameters. Therefoe, the following discussion is

based on Method-1/4.

– However, Method 4 has a limitation that should be highlighted and addressed

in future research. The main issue lies in the dependency of the likelihood

functions, which requires modification to improve the method’s accuracy and

applicability
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Figure 5.26: Weekly FAW intensity over the North and South India and over the whole
period (2018-2019). These Figures are from Chapter 3.

Moreover, during Kharif 2018, the prevalence map of Method-1/4 shows that the

prevalence was in its initial stages. The FAW prevalence was the highest in the South

states in Andhra Pradesh at 54 percent, followed closely by Karnataka at 53 percent,

Tamil Nadu at 51 percent and Telangana at 50 percent, where it exceeded 50 percent

in these states. This evidence demonstrated that the epidemic spread out from these

states. Chhattisgarh, Jharkhand and Madhya Pradesh within North India also reported

notable FAW prevalence rates. Chhattisgarh had a prevalence of 41 percent, Jharkhand

had 36 percent and Madhya Pradesh had at 34 percent. However, these rates may not be
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entirely accurate. This is because of their low Youdon index values of 0.01, 0.01 and 0.04,

respectively, which round to zero when taken to one decimal place. As a result, these

estimates may be closer to random occurrences rather than true representations of the

state. It can be concluded that the epidemic originated in the South and subsequently

spread to the North. There were reports of FAW outbreaks in the North in Chhattisgarh,

Jharkhand and Madhya Pradesh during this season as the initial phase of the epidemic.

It was difficult to compare the prevalence values of the current study with previ-

ous studies, due to their limitations to include prevalence analysis. However, existing

studies confirmed the presence of FAW in the states that were addressed during this

season (Kharif 2018). Their confirmation of FAW occurrence enhance the validity of

our findings. During this season, this study revealed the presence of FAW in Gujarat,

where 41 percent of maize was infested. Sisodiya et al. [187] documented that the first

confirmed sighting of FAW in Gujarat was in September 2018. They observed different

characteristics of larvae damage in maize field. These included shot holes on the leaves,

consumption the growing cobs and silk, feeding and accumulation of faeces inside the

whorls. In my view, these characteristic symptoms of infestation suggests that the FAW

may have been present in the field months before September. The Plantix app recorded

FAW damage and larvae in Gujarat during January 2018, as shown in the Figure 3.10.

In Maharashtra and during Kharif 2018, this study concluded that the FAW preva-

lence was 39 percent. Chormule et al. [188] reported that the FAW was identified in Au-

gust 2018 in 40 days old maize crop and with a recorded infestation level was 20 percent.

In addition, this detection can highlight that the FAW was initially observed in maize

before sugarcane and sweet-corn. Table 5.13 summarise the first reported month/year

of FAW occurrence in the states that show FAW prevalence based on Method-1 and

during Kharif 2018:
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Table 5.13: First report of fall armyworm occurrence, Spodoptera frugiperda in Indian
states that show FAW prevalence based on Method-1/4 and during Kharif 2018.

State Time References
Karnataka, South May-June, 2018 [29, 189]

Andhra Pradesh, South August, 2018 [190]
Chhattisgarh, North August, 2018 [191]

Gujarat, North September 2018 [187]
Maharashtra August 2018 [188]

Tamil Nadu, South before November 2018 [192]
Telangana, South 2018 [189]

Madhya Pradesh, North March 2019 [193]
Jharkhand, North June 2019 [29]

Moving to the following season, the FAW prevalence in the South states was signif-

icantly high with no less than 55 percent. Gujarat, on the other hand, had a confirmed

true prevalence of 44 percent. Further, Bihar and Haryana reported initial prevalence,

where the prevalence rate of Haryana was 47 percent and was 19 percent in Bihar.

However, the J value in Haryana was 0.01. Therefore, this small value suggests that

Haryana prevalence value appeared to be unreliable and the possibility of an overesti-

mation. According to a study conducted by Kumar et al. [194] the first incidence of

FAW was documented in September 2019. This means during Kharif 2019. Neverthe-

less, their report did not necessarily mean the complete absence of FAW during Rabi

2018, because the current study confirmed some FAW observations. Therefore, it only

suggests limitations in the prevalence estimation method or the underlying assumptions.

In the first season of 2019, Kharif, there was still a high prevalence in the South,

whereas the North observed the beginning of the prevalence rise. Further, the epidemic

extended to all states with the exception of the easternmost states. The prevalence rate

exceeding 60 percent was identified in Maharashtra, Telangana and Tamil Nadu which

they locate in the South. The prevalence of FAW in Himachal Pradesh was estimated

to be at 34 percent, and its Youdon index, was 0.02, which is a non-positive value with

rounded one decimal place. This indicates that there was FAW during this season,

although the estimated prevalence value may not be accurate and represent the state

population. Despite the fact that Sharma [180] reported that the first observation of

the FAW was in Kharif 2020, meaning that a year after the findings of this study. In

addition, according to Suby et al. [29] Himachal Pradesh was not reported FAW by the

study timeframe end, August 2019.
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Chapter 6

Estimation the spatio-temporal

dynamics of Emerald Ash Borer

(EAB, Agrilus planipennis) in the

USA

6.1 Introduction

Non-native forest insects have caused substantial ecological and economic impacts on

forest health [195]. Consequently, forest pests pose a severe threat to the productivity

and diversity of native ecosystems (such as changing the light availability and air temper-

ature due to dead or dying trees), industries, and property owners [196, 197]. As global

trade and travel have expanded between the United States and other countries, forests

have been increasingly invaded by non-native species of insects, where tree mortality is

the most critical ecological impact [196, 198]. The emerald ash borer (EAB,Agrilus pla-

nipennis (Coleoptera: Buprestidae) is one of the most destructive invasive forest pests

found in the ash species of North America, causing widespread mortality of ash trees in

urban landscapes and natural forests [42, 43, 196, 44, 45, 46]. It has killed hundreds of

millions of ash trees in North America and is considered a high-impact pest [196, 57].

EAB is a wood borer beetle that feeds on ash trees (Fraxinus) and is also reliant

upon them to complete its life cycle [41]. It is indigenous to East Asia (north east

China, Japan, Taiwan, Korea, Mongolia and the Russian Far East) and was discovered

in the southeastern Michigan, USA in 2002 [42, 43, 44, 45, 46]. However, it is suspected
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to have arrived ten years prior with solid wood packaging material from Asia and was

only identified when ash trees began to die in massive numbers between 2001 and 2002

[42, 44]. This is because A. planipennis is extremely difficult to detect and can remain

unnoticed for several years after infestation [44].

While EAB causes minor secondary pest damage to Asian ash species and attacks

only dead or severely stressed ash trees [44], all sixteen native Ash species in North

America are highly susceptible to EAB mortality [44, 49, 56]. The reason for this is

that North American ash species lack resistance mechanisms developed through their

evolutionary history with EAB, which Asian ash species have evolved over time [49, 199,

200, 56]. The International Union for Conservation of Nature’s Red List of Threatened

Species lists six North American ash species as “critically endangered or endangered”,

with EAB as one of their primary threats [201, 202]. This has resulted in hundreds of

millions of dollars being lost by municipalities, property owners, nursery operators, and

the forest products industry [57]. Consequently, EAB in North America has received

more attention than in its native region [203].

Controlling EAB is challenging for several reasons. From a baseline of 25 US states

and 2 Canadian provinces in 2015, EAB has rapidly expanded to 35 US states and 5

Canadian provinces in October 2018. Further, EAB control is complicated by difficulties

associated with detection and the time it takes between establishment and response. In

addition, monitoring invasion fronts requires extensive resources, such as wide-ranging

surveys [41]. Controlling and eradicating EAB can also be expensive, and have adverse

effects on the environment. For example, nearly US$1 billion per year was predicted to

be spent on treating, removing, and replacing ash trees from 2009 to 2019 [58]. Despite

these high costs, successful eradication is not guaranteed [196]. The primary objective

should therefore be to find ways to control EAB in an effective and budget-friendly

manner.

Mathematical or statistical models can be used to implement to such cost-effective

surveillance and control options [121, 103, 41]. Data-driven models can be used to pre-

dict the spread of insect threats, as well as to assess potential impacts and improve

surveillance and control measures [41, 204]. For example, models are useful for iden-

tifying or ranking high risk areas where pests and pathogens can establish themselves

[103, 41]. Moreover, early detection that can guide timely control efforts is most likely

to be effective and crucial for mitigation [41]. Thus, applying statistical models to pre-
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dict and undersatnd EAB is crucial for preventing its spread and protecting ash trees

[205].

EAB modelling has been the subject of substantial research, almost exclusively since

it was recognised as an invasive pest in North America [203]. The numerous studies

of EAB have employed a variety of mathematical and statistical models to understand

and predict the insect’s spread, either at local or reigonal scale. Related models have

meticulously accounted for one or more influential factors in the spread of EAB. These

factors encompasse ash tree availability or density, EAB presence-absence [46, 58] or

abundance [95], the distance between infested and uninfested areas, as well as human

and climate-related influences [96]. Most of these studies are focussed on North America,

and primarily spatial scales, ranging from cells to subcounties to counties [96, 43]. The

majority of studies consider temporal scale, within year to understand EAB either

in North America or Europe [97, 96, 43]. The results of these studies have provided

valuable insights into spread of EAB as well as next scientific research.

Moreover, ash tree intensity is critical since EAB is more likely to spread in a high

intensity area of ash trees [41, 98, 58]. Further, most studies focus on presence-absence

data compared with fewer studies of EAB abundance [95]. Spatial scale is another

critical factor differentiating modelling of EAB. In studies focussed on the USA, the

spatial scale considered ranged from small scale grid cells to entire counties [96, 43].

Subcounty level analyses emphasised the substantial contribution of human actions

and near-neighbor invasions [43]. However, the EAB invasion in the USA gave rise to

observation of numerous long jumps of over 100 km which may be more reliable when

forecasting EAB at county level, rather than at sub-county level (see e.g. Samuel et al.

[96]). Within the spatial scale, the ash intensity can be estimated using a fundamental

metrics in forestry basal area of ash. For example Prasad et al. [101] measured the

ash intensity in Ohi, a state in the USA, within a spatial scale 270 x 270 meter cells,

considering the basal area of ash.

Climate represents another essential class of variable to be considered when un-

derstanding and forecasting the potential dynamics of A. planipennis. The number of

growing degree days (GDD) in a definite area and accumulated between specific points

in time, is one of the main climatic factors determining the insect establishment and

distribution. A certain number of growing degree days are necessary to complete the

pest life cycle. Hence, GDD has a significant impact on survival of insects, and deter-
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mining the possible dispersal landscape of EAB adults [97, 99]. For example, low heat

availability can limit the suitable area for EAB establishment. According to Orlova-

Bienkowskaja [97] EAB adults are unable to colonise an area where its growing degree

day accumulation across the year it lower than 700 degree-days.

Additionally, a number of previous efforts have highlighted the importance of long-

distance dispersal in predicting the extent of EAB invasion [43, 100, 58, 101], because

anthropogenic factors have become a weighty contributor to the spread of EAB. Human

practices may facilitate EABs to spread at the local and regional level as long as host

plants are present and basic requirements are met. For example, people contribute

greatly to EAB spread by moving nursery ash trees, infested logs and firewood [41,

51, 42]. There is also evidence that EAB spread is associated with road networks,

motor sports [41, 206], campgrounds, wood product industries, and human population

density [98]. Therefore, dispersal models have been widely applied in previous research

as valuable tools for understanding the spread of EAB in a local and regional areas.

To account for both natural spread of EAB and human-mediated long-distance dis-

persal, most studies utilise a dispersal kernel. These kernels are functions that determine

the rate of movement of individuals from one location to another and typically indicate

that local movements have a higher rates than those where a greater distance is involved

[207, 41]. In EAB modeling, the negative exponential dispersal kernel (exponential de-

cay function) was most commonly applied [41]. The negative exponential kernel was

used to model EAB spread in North America by Muirhead et al. (2006) [43] and Kovacs

et al. (2010) [58] and in Europe by Orlova-Bienkowskaja et al. (2018) [46].

Furthermore, Muirhead et al. (2006) [43] used the negative exponential kernel to

model the spread of EAB at subcounty level from 2002 to 2003 in order to predict

the dispersal rates of EAB in 2004 to 2005 in Michigan, Ohio, Indiana and Ontario

which are in North America. Additionally, Kovacs et al. (2010) [58] used the negative

exponential kernel to model the spread of EAB in 25 states in the USA. Correspondingly,

they applied the function to predict the annual spread probability of EAB infestation.

To achieve this, the model was implemented in the study area that was divided into

equal grids. Then, they estimated the EAB probability in a uncolonised grid through

considering the distance between grid midpoints. Further, Mercader et al. a year earlier

in 2009 [100] had fitted a negative exponential kernel model for predicting EAB larval

densities at two different sites in Michigan, USA. In addition to negative exponential
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kernel function, Orlova-Bienkowskaja et al. (2018) [46] applied also a Cauchy (fat-

tailed) model and normal kernel function to predict the EAB spread. They implemented

these dispersal functions in European Russia and neighboring countries, which include

countries Ukraine, Belarus, Estonia, Latvia, and Lithuania. They concluded that the

Cauchy model is the most appropriate for understanding and predicting the EAB spread,

when the pairwise distance between locations is greater than 200 km [46]. Note that,

Bienkowskaja et al. [46] did not consider a power law kernel, where the best model,

Cauchy, can be closely approximated by a power law kernel.

Gravity models and logistic regression models have also been used to study and

predict the EAB dispersal. Gravity models consider both species nature and spatial

features (such as road networks, campgrounds, wood product industries, and human

population density, infrastructure), and are used to forecast long-distance dispersal

[98]. Muirhead et al. [43] applied the gravity model to estimate long-distance dispersal

of EAB risk in Michigan, Ohio and Indiana in USA and Ontario in Canada by includ-

ing three factors. The factors were; (i) the amount of firewood transferred from the

epicenter to provincial parks where campers regularly visited. Moreover, (ii) the num-

ber of campsites at each provincial park. In addition, (iii) the road distance between

the epicenter of the infestation and the provincial parks. Further, Prasad et al. [101]

considered the road network distance between EAB areas and campsites, the quantity

of campers journeying from EAB locations to Ohio campsites and the traffic density

in their gravity model. Furthermore, Muirhead et al. [43] use the logistic regression

model, logit model, considering the human populaiton size in non-invaded areas and

distance from the epicentre. They conclude that the model significantly improves with

inclusion of the human population size.

Although a range of variables and factors were addressed in previous research using

models of varying complexity, all of them enhanced the ongoing scientific research,

forestry knowledge and governmental information. For example, some models simply

considered a distance based kernel function as a factor to predict the EAB spread [46, 58,

43]. Some used only climatic variables in climate-based ecological niche models, such as

maximum entropy modelling (Maxent) and genetic algorithm models (GARP) models.

They were used in two studies [102, 45] to predict the EAB spread by determining the

suitable climate for EAB in North America. On the other hand, Prasad et al. [101] used

a complex mechanistic model to estimate and forecast the EAB spread in Ohio, USA.
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Their model is a spatially explicit cell-based and a combination of two components: i)

a short spread model, which reflected the EAB natural flight, and ii) a long distance

model, which simulated the long distance spread due to human practices. The factors

considered important in the long distance model are traffic density on major roads,

wood products weights, population density and campgrounds.

Recent years have seen a considerable increase in the spatio-temporal data presented

in a high resolution. Therefore, this data can be used in statistical and mathematical

modelling to facilitate the understanding of individual-to-individual transmission of the

invasion process. It also helps to predict the outcome of future colonisations [208, 103,

209]. Spatio-temporal modeling approaches can extract maximal information from data.

In addition, they provide an understanding of the underlying dispersal mechanisms,

interactions between species, and spatial heterogeneities in the suitability of land for

colonisation [210, 103, 209].

The generic colonisation–dispersal model proposed by Catterall et al. [103] is a

stochastic spatio-temporal model. It is a generic model designed to be applied when

investigating a diverse range of invasive species in a different geographic regions. It aims

to estimate and predict the spread of a specie through a space and over time. Although

it was orignally applied to invasive vascular plants, the strength of the model is that,

• It accounts for uncertainty in a colonisation time, since the exact time of coloni-

sation is often unknown or uncertain.

• It is fleixible where it can assess multiple hypotheses and include different climatic

and envirommental covariates related to the species spread.

• It can forecast spatial heterogeneity in the colonisation time for a study space

which is divided into grids, and predict the number of colonised grids over a

temporal scale.

• It is an effective resource to develop management strategies in order to limit the

dispersal of non-native species.

Additionally, while the previous studies in the USA included temperature as a climate

variable in estimating EAB spread at small spatial scales (e.g. within counties), further

research is required to replace temperature with GDD in order to predict EAB spread

at larger spatial scales.
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Therefore, here the model is adapted to study EAB spread in the USA. To our

knowledge this study is the first to apply the generic colonisation–dispersal model in

EAB study on the whole of the USA. Additionally, while the previous studies in the

USA included temperature as a climate variable in estimating EAB spread, further

research is required to replace temperature with GDD in order to predict EAB spread

at larger spatial scales (e.g. counties). This chapter bridges these gaps by applying the

methodology developed by Catterall et al. [103] to study EAB spread in all counties

in the USA in a way that accounts for potential environmemtal covariates such as

landscape data describing where the ash host is present and its intensity. Climate

variations such as GDD, and the EAB distance dispersal, under the effect of natural

spread and anthropogenic role. Hence, this study investigates the spatial and temporal

spread of invasive species across USA counties.

In the following, we introduce the study area (7.3.1), the data (7.3.1), and the model

(7.3.2). We estimate the model parameters to simulate the spatio-temporal dynamics of

EAB and investigate the role played by climate and non-climate factors to better assess

their relative importance to the invasion dynamics (7.3). We then discuss how our

study findings can contribute to a better undersatnding of the geographical distribution

of EAB in the USA, useful to plan sustainable management against EAB (7.4).

6.2 Materials and methods

6.2.1 Biology and data

EAB observation data

The United States Department of Agriculture Animal and Plant Health Inspection Ser-

vice (USDA APHISUS) collects data on the presence of EAB at USA county level.

Hence, this provided us with the dataset of the first confirmed observed EAB occur-

rence, in a month-year temporal scale between 2002 and 2020. The USDA APHIS

delivered this data on February 5, 2020, and it matched the data available at the co-

operative EAB project on February 3, 2020 (www.emeraldashborer.info). Further, each

entry consisted of co-ordinates of the EAB occurrence with county name and along with

the observation time. It is worth mentioning that the times provided are not the coloni-

sation times, as these should predate the observation times. However, the data did not

propose information about the relationship between the colonisation and observation
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processes. Moreover, the USDA APHIS assums that once a county becomes infested, it

is considered to be infested indefinitely.

Further, if the latitude-longitude coordinate was missing for a record, the geometric

centroid of the county was used instead. In addition, if there was more than one record

in a county, only the oldest one (first occurrence) was considered. There are 3085

counties in the USA, while the observations recorded were from 1065 counties. Figure

6.1 shows the first observed occurrences of the EAB in the counties between 2002 and

2020, with each observation corresponding to a specific year. Yet, due to the presence of

only one observation for the year 2020, this data point was not included in the further

analysis. This could be due to the COVID-19 pandemic. Hence, the probability of

detection of occurrences was believed to be far lower than in previous years. Thus one

observation is not enough to represent EAB occurrences in that year. Thus, it may result

in an underestimated model and consequently, reduced model accuracy. Accordingly, by

reviewing the remaining data points, it generally appears that upcoming county colonies

of EAB tend to be clustered close to earlier colonies. Further, it can be seen that the

EAB colonies originated in southeastern counties and spread westward and northward.

However, EAB distributed more rapidly to the west than to the north (see Figure 6.1).

In this study, the spatial scale of data was determined to be at the county level as

the county represents the smallest patch in the data, while the time scale was considered

to be year. In fact, the county level was also used by Ward et al. (2020) [211] to predict

EAB throughout the USA. It is also worth to undescore that the temporal scale of the

data is discrete and annual, but the temporal scale of the model is continuous. To sum

up, county/annual scale is useful because, at this scale, patterns of spread are readily

observable.
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Figure 6.1: First detection of EAB in the USA counties between 2002 and 2020, where
the different colours represent colonisation observation time within different years, based
on the USDA APHIS data. The map scaled is 1cm=200 km.

Ecoclimate variables

This chapter aims to model the invasion of EAB in terms of appropriate covariates that

affect its capability of spreading.

• Environmental covariate: proportion of land in county covered by ash (spatial

scale).

• Climatic covariate: Mean for each county (from the beginning of 2002 through

the end of 2020) of annual growing degree day

Environmental variable

At the beginning of this research, a data source for ash species intensity in the

whole USA was unable to be found. As a result, the deciduous broad leaf trees (DBL)

forest was used as a reasonable proxy for ash intensity, which was also be used by

Benjamin [212]. However, after a period of time, the ash basal area data was found,

which was subsequently used to replace the DBL data. Therefore, in the following lines,

the methods to extract both datasets are presented to offer a transparent overview for

each of them.

Land-cover by deciduous broad leaf trees (DBL) was considered as a variable to

represent ash density. Thus, land cover data were derived from the Copernicus global

land service: Land cover 100m: collection 3: epoch 2019: Globe, date of access: 03
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March 2022. This map provides the spatial extent of each forest type (broadleaf forests,

coniferous forests, mixed forests, and other types) in each grid square (20° × 20° latitude

× longitude degrees). The ArcGIS Pro (version 2.8, ESRI, Redmonds, CA, USA) was

used to calculate the DBL proportion area in each county, by summing the DBL area in

all 100X100m grid cells within a county and dividing by the county area to end up with

DBL a proportion. This covariate does not reflect the exact ash intensity in each county,

but hould correlate, perhaps a higher DBL proportion value may be a good indicator

to represent a higher ash intensity, and a lower DBL proportion would indicate the

opposite.

The second data for ash density in each county was calculated by using ash basal

area. Basal area is frequently applied in forestry for calculating tree density and pro-

ductivity. It is a measure of tree density by calculating the total cross-sectional area

of tree breast height (DBH), the diameter of a tree trunk around 4.5 feet (1.3 meters)

above the ground, of all live trees within a specific area. The area of each tree can be

calculated by using the formula; π r2 ,where r is the half value of the diameter. It is

represented in square units, such as square meters or square feet, per unit of land area,

commonly per hectare or acre [213]. Ash basal area is a good indicator of ash density

and a good predictor of the potential for EAB infestation, where it was been used by

several studies to predict EAB distribution [214, 95].

The ash basal area raster map for the contiguous USA was derived from the zipped

file ’RDS-2013-0013_RasterMaps_s351-s600.zip’ which is available on the USDA Forest

Service website [215]. The raster has a resolution of 240 meter-square pixel size grid,

each pixel has the value of a live ash basal area. The data represented ash basal area

in 2011. The ArcGIS Pro (version 3.1.0, ESRI, Redmonds, CA, USA) was used to

calculate the ash proportion area in each county, by summing the ash basal area in all

grids within each county, and dividing the figure by county area, to result in the ash

probability. Finally, this probability was considered as a model covariate to represent

ash density in each county.

It can be noted from Figure (6.2a) and Figure (6.2b) that the USA ash species

distribution is not exclusively deciduous broadleaved (DBL) forest. However, the spatial

range of ash is wider than the DBL forest. In simple terms, the USA ash species can be

found not just in the DBL forest, but also in other areas. Cappaert et al. (2005) [42]

reported that the ash species can be located in the forest, urban and suburbs regions.
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Moreover, the majority of the ash distribution is located in the east and the south of

the USA. Therefore, the selected an environmental covariate to be used for the further

analysis, was the ash density map.

(a) Mean deciduous broad leaf trees (DBL) for each USA county by using Copernicus global land
service: Land cover 100m: collection 3: epoch 2019: Globe source, where the map was produced by
using ArcGIS Pro 3.1.0

(b) Mean ash probability for each USA county by using ash basal area.

Figure 6.2: Comparison of two maps to represent the ash species intensity at the county
level in the USA.

Climatic variable

The mean of anual growing degree day (MAGDD) in each county for the period

2002 to 2020 was considered as a covariate in this study, to provide an overview of the
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average heat availability in each county. Before calculating the MAGDD, the anuall

growing degree day AGDD was calculated from air temperature for each day from the

beginning of 2002 through the end of 2020. The air temperature data were obtained

from the ERA5-Land Global Atmospheric Reanalysis dataset for each grid square (0.1°

× 0.1° latitude × longitude degrees) on the Earth’s surface (Copernicus Climate Change

Service (C3S): C3S ERA5-Land Reanalysis. Copernicus Climate Change Service, date

of access: 17 May 2022). The base temperature (threshold temperature) of 10°C was

chosen because it is a standard base temperature previously used in [216, 97]. The

AGDD10 was carried out using a modified version of the code [97] in the Toolbox

Editor in the Coopernicus Climate Change Service (C3S). This result was a NetCDF

file, which was opened in R software to convert it to an Excel file and calculated the

AGDD10 mean for the 18 years in each grid. Finally, ArcGIS Pro 10.8 calculated the

mean AGDD10 within each county to arrive at the MAGDD10. The MAGDD values

for each county are shown in Figure 6.3.

Figure 6.3: Mean of annual growing degree day (MAGDD) from 2002 to 2020 for each
USA county.

EAB occurences and ecoclimate factors

The EAB occurences data between 2002 to 2019 in the USA and ecoclimate factors can

provide some insights about the most suitable and attractive area for colonisation (see

Figure 6.4). Accordingly, Figure 6.4 can suggest a range of possible models for both ash

distribution and MAGDD covariates. The y-axis data in Figure 6.4 shows that EAB

can inhabit any area with ash trees, regardless of their intensity. Hence, it can be seen

that the EAB colonised county with an ash proportion ranging from above zero to the

167



6.2. Materials and methods

top value of approximately 0.8.

Turning to the MAGDD covariate, the x-axis data in Figure 6.4 displays that EAB

colonised counties had a MAGDD value above 700. Orlova-Bienkowskaja et al. [97]

demonstrated that the EAB adult is an unable to colonise an area while its MAGDD

smaller than 700. They observed this figure in America, Europe and Asia, where Asia

is the native of the EAB. As a result. this value could be the smallest MAGDD that

is essential for the EAB establishment of the population. Further, there was a very

limited number of EAB observations when the ash proportion was at almost zero and

the MAGDD value is seven hundred range. This indicates that it is possible that in some

counties the estimated ash figure had been missed or underestimated. Furthermore,

there was a small number of EAB cases when the ash proportion was less than 0.3 and

MAGDD value was above 3000. Further, it is possible that the optimal and preferred

area for EAB survival is when the MAGDD value ranges from 1200 to 3200, although

the MAGDD values in across the USA counties range between 0 and 5452.

To sum up, these variations suggest that the MAGDD factor had a significant impact

on the behaviour and pattern of the EAB colonisation. Additionally, certain ranges of

MAGDD were shown to be more suitable, even with a lower ash density. On the

other hand, some MAGDD values were undesirable. Hence, to model suitability as a

function of the covariates, the linear equation has potential for modelling the probability

of ash intensity factor. In contrast, the normal distribution, gamma distribution and

exponential function can be appropriate choices to simulate the MAGDD variable.

Figure 6.4: The ash probability and mean of annual growing degree day (MAGDD)
value for each county colonised by EAB between 2002 and 2019.
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6.2.2 Colonisation-dispersal model description

The colonisation-dispersal model is fully specified by equations (6.1)-(6.8) described

below. The area to be modelled is divided into discrete, non-overlaping, sites e.g.

counties, and the temporal scale is a continuous time (years). Hence the model is

a spatio-temporal stochastic process. A stochastic process represents a sequence of

random events, where each event is dependent on the previous events and is described

by a probability distribution [217]. In the model each county was assumed to be either

colonised i or uncolonised j. The colonisation rate rj of any uncolonised countyj at

time T is,

rj =

[
ε+

∑
i∈C(T )

tiK(dij)

]
sj (6.1)

where ti is the transmissibility of colonised county i, while sj is the suitability or sus-

ceptibility of site j for colonisation (more details is below). The term in square brackets

represents the colonisation pressure from all sources. This colonisation pressure is from

both primary/background sources and secondary sources. The primary source is at

rate, ϵ, and is outside the area to be modelled such as human density and road network,

which may lead EAB to move into a suitable county j [218]. The secondary sources

include all counties colonised at time T or earlier, which we represent by the set C(T ).

The summation is over each colonised site i ∈ C(T ) weighted by both the transmissi-

bility ti of site i and the dispersal kernel K(dij) which is a function of the distance dij

between colonised site i and uncolonised site j. In the following is the descriptions of

the dispersal, suitability and transmissibility functions.

Understanding model components: dispersal functions and their Character-

istics

EAB is dispersed locally, or through human-mediated long-distance dispersal within

the county or to neighbouring counties. While a mated female EAB can fly up to five

kilometers [219], most other EAB adults do not fly more than 100 meters when there

are ash trees nearby [58]. A human can, however, disperse EAB over greater distances.

Therefore, long distance dispersal of EAB must be considered when studying its spread

between counties [43, 58, 220, 46]. The dispersal function is unknown. However, it is

clear that the rate of EAB to reach county j from each county i should increase for
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counties i that are closer to j and have high transmissibility ti for the EAB. Therefore,

the dispersal function should be a decreasing function as dij increases. This form of

distribution can be illustrated such as a power-law kernel (Equation 6.2) or negative

exponential kernel (Equation 6.3), which were used in our analysis. The summation

in each denominator is over all possible destination counties j. The mathematical

representations of the two kernels are given by;

Power-law Kpwr(dij) =
d−2λ
ij∑

g
d−2λ
ig

(6.2)

Negative exponential Kexp(dij) =
exp(−λdij)∑
g
exp(−λdig) (6.3)

The parameter {λ, λ ∈ (0,∞)} characterises the decay of the dispersal kernel. It

determines how the rate of secondary transmission decreases when the distance between

i and j increases. It assumes that the infective challenge decreases as the distance

between colonised and uncolonised counties increases. If λ = 0 in kernel functions (6.2

or 6.3), then any colonised county affects all susceptibles (uncolonised counties) equally,

regardless of relative location. Due to this, every susceptible county j is equally likely

to be colonised at any given time, leading to a random pattern over time. If λ is large,

transmissions are mainly to the nearest neighbours since the infection declines with

distance. For any value of λ as the primary source rate goes to infinity dominates

secondary interactions, and the spatial distributions of EAB produced by the model

appear to be random. Similarly, if primary source is small, and λ is large, transmission

is mostly a nearest-neighbor interaction.

The distance metric dij could be Euclidean or alternative. It is a crucial term in the

kernel functions. Orlova-Bienkowskaja et al. [46] calculated dij using the great circle

distances formula, which was also selected for this research. The great circle distance

calculates the shortest path between two locations on a sphere, such as the Earth.

Therefore, it takes into account the curvature of the Earth. Hence, this calculation

provides a reliable and precise calculation comparing with Euclidean distance [221].

The formula can be expressed as
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dij = arccos

[
sin(lati ∗

π

180
) ∗ sin(latj ∗

π

180
)

+ cos(lati ∗
π

180
) ∗ cos(latj ∗

π

180
) ∗ cos((loni − lonj) ∗

π

180
]

where lati and loni are latitude and longitude of county i in a degree unit, and latj

and lonj are latitude and longitude of county j in a degree unit. Then, we multiplied

dij by 180
π to be the final distance dij in a degree unit. In addition, for computational

simplicity, the included colonised counties i in the model were all neighbouring counties

i ∈ C(t) within dij ≤ 12 degree. In addition, the model assumed that the colonisation

pressure from neighbouring counties i to j is additive i.e. total pressure is a sum of

contributions from each county i.

Understanding model components: Suitability and transmissibility

The two sources of covariate information, ash density probability and MAGDD for each

county are used to specify a colonisation suitability function sj , where x represents

either i or j county. The sx is a multiple of both covariate functions, as we assumed

that the two covariates were independent. Hence,

sx = h (bx)× fα (cx) (6.4)

Although the ash density probability function h (bx) is unknown, it is known that

there is a positive correlation between the ash density and the risk of EAB infestation

[206]. Therefore, the h (bx) should be an increasing function of bx, where bx is a nor-

malised ash intensity, representing the fraction of the area that is occupied by ash in

a county. As a result, the h (bx) can be illustrated as a linear equation, h (bx) = βbx.

Hence, the β is a parameter of ash density probability and measures colonisability (i.e.

more suitable for colonisation). Further, it was assumed that it is a constant for all

time periods. Moving to trasmissibility ti, in this work we assumed also that tx = sx ,

because both quantities are likely to be related to EAB abundance in the county when

become colonised.

In addition, most insects have an upper heat threshold, and exceeding it reduces

survival, growth, and reproduction [118]. Therefore, the MAGDD function can possibly

be either an decreasing function or a concave-down function. These kinds of functions
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can include exponential, gamma, or normal probability density functions. The gamma

pdf can adapt to simulate symmetry, left or right skewness. The general formula for all

these three functions are as follows:

Exponential : α = α1 fα,Exp(cx) = exp(αcx) (6.5)

Normal: α = (α1, α2) fα,N (cx) =
1

α2

√
2π

exp

(
−1

2

(
cx − α1

α2

)
2

)
(6.6)

Gamma: α = (α1, α2) fα,G(cx) =
1

(α2)α1Γ(α1)
c(α1−1)
x exp

(
− cx
α2

)
(6.7)

cx is a scaled MAGDD value (see below) for each county x. A parameter α in equation

6.5 can be positive (negative) values, α ∈ (−∞,∞), implying warmer (cooler) locations

are preferred by the EAB. In the case of the normal and gamma functions, two pa-

rameters are involved. In these two functions and during the model-fitting process, one

parameter was assigned a fixed value, and the other parameter was estimated by the

model. Different potential values and alternation between these two parameters for each

iteration of the model were investigated. In the normal, α1 is the middle of the curve,

around the mean, representes the most suitable MAGDD values for the EAB. Subse-

quently, the tails reflectes the coldest and warmest MAGDD where the EAB impact

decreases.

The MAGDD ranges between 0 and high numbers. Hence, it has a much larger and

wider range of values than the other covariates. Therefore, scaling MAGDD to values

closer to the others could help to minimise numerical instability in the fitting model. The

scaled values can be any real number, for both the exponential and normal functions,

while for the gamma pdf the value should be non-negative. Six different scaling methods

cx ∈ {cAx , cBx , cCx , cDx , cEx , cFx } (see Table 6.1 for more details) are considered:

cAx = MAGDD−2344.399
933.7848 cBx = MAGDD−700

5451.229 cCx = MAGDD
700

cDx = MAGDD
1090.246 cEx = MAGDD

2100 cFx = MAGDD
3100

(6.8)
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Scaling function Description
cAx It z-scored transformation, where the mean and

standard deviation of MAGDD in all the USA
counties (3085 counties).

cBx 700 is is the minimum MAGDD was observed in the
colonised counties, while 5451.299 is the maximum
MAGDD was observed in the colonised counties

cCx 700 is is the minimum MAGDD was observed in the
colonised counties.

cDx 1090.246 was obtained by dividing the maximum
MAGDD (5451.229) by five. The selection of five was

due to the maximum value exceeding 5000
cEx 2100 is the middle MAGDD was observed in the

colonised counties.
cFx After 3100 there were few observed colonised counties

Table 6.1: Description of different scaling methods.

6.2.3 Comparison of different models for the fitting data

Consequently, there exists a variety of options to model 6.1 in order to simulate EAB

distribution. Numerous models were applied in this study. However, Table 6.2 sum-

maries the colonisation-dispersal models that demonstrated the best performance and

aid in understanding EAB, which are considered for further analysis.

Model fα(cx) K(dij)

Model 1 (expAα1
Kpwr) fα,Exp(c

A
x ) Kpwr(dij)

Model 5 (expAα1
Kexp) fα,Exp(c

A
x )

Kexp(dij)

Model 16 (ND
α1,.86

Kexp) fα,N (cDx ) α = (α1, 0.86)

Model 22 (GC
α1,.5

Kexp) fα,G(c
C
x ) α = (α1, α2 = 0.5)

Model 15 (GE
α1,.5

Kexp) fα,G(c
E
x ) α = (α1, α2 = 0.5)

Model 17 (GD
α1,.5

Kexp) fα,G(c
D
x ) α = (α1, α2 = 0.5)

Model 21 (GF
α1..5

Kexp) fα,G(c
F
x ) α = (α1, α2 = 0.5)

Model 24 (GE
α1,1

Kexp) fα,G(c
E
x ) α = (α1, α2 = 1)

Table 6.2: Different colonisation-dispersal models that are considered in understanding
the EAB colonisation.

1. To determine the most effective dispersal function to simulate the adult EAB

movement, the colonisation model 6.1 is run twice, once with Model 1 (expAα1
Kpwr)

and then again with Model 5 (expAα1
Kexp), where the only difference between them

is the kernel.

2. The optimal kernel was used in all remaining options for the model 6.1.
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3. In the gamma fα,G(cx), five models were applied to estimate the shape parameter

α1, while the scale parameter α2 was fixed. This is because the shape parameter

forms the skewness. In addition, the peak (mode=(shape − 1) × scale when

shape > 1) of the gamma pdf reflectes the most suitable MAGDD value for

the EAB presence. Scaled cCx , c
D
x , c

E
x , c

F
x were used for Gamma by dividing the

MAGDD covariate by a positive factor to be non-negative.

4. Note that: Other possible values for α in both gamma and normal were also exam-

ined, but did not include because either did not converge or had lower accuracy.

6.2.4 Bayesian inference

We built our likelihood function by taking advantage of the likelihood equation applied

by Cook et al. [121] as well as equation 1, as presented by Catterall et al. [103]. The

f(D | θ) is the likelihood for complete observation data D, and describes the likelihood

of D when given parameter values θ and the model structure.

f(D | θ) =

 ∏
i∈C(TN )

εsi + si
∑

j∈Nj ,Tj<Ti

sj K(dij)


× exp−

εsiTi + si
∑

j∈Nj ,Tj<Ti

sj K(dij) (Ti − Tj)


 Colonised term

×
∏
j∈C∗

exp−

εsjTN + sj
∑

i∈Nj ,Tj<TN

siK(dij) (TN − Ti)

 Uncolonised term

where C(TN ) is the set of colonised counties i up to TN where Ti ≤ TN , while C∗ is

the set of uncolonised counties by TN which are subject to colonisation pressure from

all colonised counties at times Ti < TN = 2019, but remain uncolonised. The term εsj

represent background colonisations i.e. those not directly from colonised counties.

The priors f(θ) for different parameters of our model were assumed to be indepen-

dent, so that f(θ) can be expressed as a product of the priors. The prior distribution

for each parameter was assumed to follow a uniform distribution, as no prior knowledge

was available, making the uniform distribution an appropriate choice (see Table 6.3).

Together these define the posterior distribution and the next step was to estimate the

parameters.
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Table 6.3: Prior distributions for model parameters.

Model Parameter Prior distribution

Model 9 (NB
0,α2

Kexp)

α Uniform(0, 2)
β Uniform(e−100, 2)
λ Uniform(e−100, 2)
ε Uniform(0, 2)

Model 1(expAα1
Kpwr)

α Uniform(−3, 3)
β Uniform(e−100, 10)
λ Uniform(e−100, 2)
ε Uniform(0, 10)

Model 5(expAα1
Kexp)

α Uniform(−10, 3)
β Uniform(e−100, 10)
λ Uniform(e−100, 5)
ε Uniform(0, 10)

Model 16(ND
α1,.86

Kexp)

α Uniform(e−100, 5)
β Uniform(e−100, 10)
λ Uniform(e−100, 5)
ε Uniform(0, 10)

Model 17(GD
α1,.5

Kexp)

α Uniform(1, 8)
β Uniform(e−100, 5)
λ Uniform(e−100, 3)
ε Uniform(0, 3)

Model 15(GE
α1,.5

Kexp)

α Uniform(1, 5)
β Uniform(e−100, 5)
λ Uniform(e−100, 4)
ε Uniform(0, 3)

Model 21(GF
α1..5

Kexp)

α Uniform(0, 5)
β Uniform(e−100, 5)
λ Uniform(e−100, 4)
ε Uniform(0, 3)

Model 22 (GC
α1,.5

Kexp)

α Uniform(0, 5)
β Uniform(e−100, 5)
λ Uniform(e−100, 4)
ε Uniform(0, 3)

Model 24 (GE
α1,1

Kexp)

α Uniform(0, 5)
β Uniform(e−100, 5)
λ Uniform(e−100, 4)
ε Uniform(0, 3)

1) Read the observational data. Initialise model parameters with arbitrary values.

Initialise each unknown colonisation time in U the set of unobserved colonization times

in the time interval [T1, TN ] uniformly at random on the interval of possible times

[TN−1, TN ]. Compute initial likelihood.

2) Repeate the following steps sequentially a large number of times, discarding an

initial number of iterations as ‘burn-in’ to remove the effect of the arbitrary choice of
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θ0 and storing all other values of the sampled parameters. We ran three independent

chains and in each chain 10,000 iterations following a burn-in period of 2000 iterations.

The initial parameters in each chain were randomly drawn based on prior distributions

independently. Suppose we were currently at iteration m, then:

1. Evaluate the current likelihood L[m].

2. Generate proposed parameter value λ∗ for the parameter λ using the proposal

distribution q. The q is to propose the next point to which the random walk

might move. It follows a normal distribution λ∗ ∼ N
(
λ(m), σ2

)
centered on the

current value of the parameter, with variances chosen to facilitate convergence of

the Markov chain.

3. Recalculate the log-likelihood L∗ and prior P (λ∗) using the proposed λ∗.

4. Calculated the Metropolis-Hastings ratio, the acceptance probability to a “jump”

to λ∗ with min

(
1,

L∗×P (λ∗)×q(λ∗,λ[m])
L[m]×P(λ[m])×q(λ[m],λ∗)

)
= min (1,Hastings ratio).

5. If u ∼ U(0, 1) < Hastings ratio, then accepte proposed change, so that λ[m+1] = λ∗

and the likelihood is updated to L∗. Otherwise, take λ[m+1] = λ(m) and the

likelihood is unchanged.

6. Repeate steps 1 to 5 for others parameters θ.

7. Repeate steps 1 to 5 for each of the unknown colonisation times T in U , the only

difference being that the acceptance probability is min

(
1,

L∗×q(T ∗,T [m])
L×q(T [m],T ∗)

)
, and

the new times proposed is also from Gaussian centred the current value.

8. To assess MCMC’s convergence, we analysed the parameter trace plots, autocor-

relation plots, density plots for both prior and posterior distributions by including

all chains, and used the R package coda [129] to calculate the univariate Gelman

and Rubin criteria.

6.2.5 Bayesian analysis and interpretation of MCMC samples

The MCMC method generates random samples from the posterior distribution of the

parameters, which represent inferences about the parameters and unobserved colonisa-

tion times. Statistics such as mean, median, and credible interval (CrI) of a parameter

can be estimated from the samples, reflecting the level of belief about its value [121]. A
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wider CrI implies increased uncertainty about a parameter’s true value. and may also

indicate a lack of robustness or significant uncertainty in the data, requiring additional

analysis or data. Therefore, decision-makers can use our CrI to determine the uncer-

tainty in the forecast EAB spread and prioritize management actions. Moreover, from

a posterior distribution it is possible to obtain a dispersal kernel as a function of dis-

tance, or the suitability of a county j to be colonised given MAGDD and DBL. MCMC

samples are therefore crucial for decision-making and understanding the robustness of

the results.

6.2.6 Evaluating model accuracy with ROC analysis

Assessing model accuracy is essential in real-world applications. It enables assessment of

the performance, practicality and reliability of the estimated models. Moreover, it helps

with the comparison and definition of the goodness of fit for each model. When assessing

the classification models’ accuracy, receiver operating characteristic (ROC) analysis is

one widely used technique. The ROC curve offers a comprehensive understanding of

model practicality through investigating the cut-off of sensitivity and 1-specificity at

various classification thresholds (see below for a description of how this was done for

the model considered here). Furthermore, the Youden Index (J) (see section 2.4) is

frequently applied as a technique to obtain the ideal threshold in the ROC curve.

Further, the Area Under the Curve (AUC) is another significant metric determined by

the ROC curve. This a single value reflects the overall performance of the fitted model.

This integrated approach, through applying the ROC curve, the AUC, and the J values,

offers a comprehensive assessment of the model accuracy and practicality.

Subsequently, each colonisation-dispersal model was estimated for the whole study

period (2002-2019), and then was used to predict the spread of EAB one year ahead for

each successive year from 2003 to 2019. After that, the integrated approach (discuss

above) was implemented. The year 2002 was excluded, because the estimated model was

trained using data from all previous years to forecast the following year. For example,

a fitted model was applied for data in 2002 to predict the colonised counties for 2003.

Following that, the fitted model was trained on data from 2002 to 2003 to predict the

possible colonistion in the following year, 2004, and so on. This procedure continued

until the ending of the time frame, involving 2002 to 2018 to predict the final year

in the study period, 2019. To sum up, each part of the process involved including a
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one-year step (2002, T-1) to predict the colonistion in the subsequent year (T). Hence,

it was possible to identify any temporal trends that impact the model’s accuracy. This

helped to understand in considerable detail the robustness and performance of model

in capturing EAB dynamics.

To build up the ROC curve,

1. The fitted colonisation-dispersal model estimated the colonisation rate (rj) in

year T for every county j that had remained uncolonised in the years preceding

the predicting year (T). Subsequently, these estimated rates were compared with

observation data at time T, which had a binary outcome with 1 to represent the

counties colonised at time T (positive) and denoted 0 for the uncolonised counties

(negative).

2. The data points were sorted according to their predicted rates.

3. Then, each threshold d which are typically based on the sorted predicted rates

defines the true positive rate (i.e., the proportion of the new county, observed

at time T whose colonisation probability exceeded d) and the false positive rate

(i.e., the proportion of vacant county, at time T, whose colonisation probability

exceeded d) was calculated. In order to do this, the true positive rate can be

calculated as the proportion of confirmed colonised counties at time T and their

prediction probability at time T exceeding threshold d. On the other hand, a false

positive rate is the proportion of ucolonised county higher than threshold d.

4. Next, the ROC curve can be drawn by plotting the true and false positive rates

for various d.

5. Then, the AUC calculated as the area under the ROC curve.

6. After that, the single optimal d value was computed by J by subtracting the FPR

values from the TPR values obtained at step 3. The optimal d value was the

maximum Youden index value.

The above three metrics were calculated using the ROCR package [222] in R [222].

A 2×2 diagnostic table was constructed based on the J value. The TP is the total

number of counties when the estimated probability was greater than, or equal to, J and

the counties that were truly colonised by EAB at predicting time T. Conversely, the FP
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is the number of counties where the estimated probability was at least equal to J , yet

the observed counties did not confirm colonisation. In the scenario of TN, the estimated

colonistion probability was below the J , and the counties were truly uncolonised by the

EAB at predicted time T. In the case of FN, the probability falls below the J , while

the counties were colonised at T. Table 6.4 summarises these terminologies:

Table 6.4: Summary of the 2×2 diagnostic table for EAB Scenario at the county-level.

Observed data
Colonised Non-colonised

Model estimation Probability≥ J TP FP
Probability< J FN TN

6.3 Results

6.3.1 Visualising model convergence

There were four intrested parameters for each fitted model were estimated using MCMC

algorithm which are β, α, λ and ε. The convergence of the three MCMC chains was

tested through using visual inspection; trace plots, autocorrelation (ACF) plots and

density plots of the posterior and prior distributions for every parameter (Figures: 6.5,

in Appendix: B.1, B.2, B.3, B.4, B.5, B.6, B.7), and univariate Gelman and Rubin

criteria (or PSRF), (see Table: 6.5). Accordingly, the trace line plots for the three

chains (labeled Chain 1, Chain 2, and Chain 3) in all Figures, fluctuate randomly (a

random walk) where their are not clear patterns. In addition, the trace plots for each

parameter in each chain appear highly consistent around the same values and have

an almost perfect overlap. Therefore, the trace plots indicated the convergence and

stability for each estimated parameter, and they were likely to represent the true value

of the estimated parameter. As a result, each parameter had reached its stationary

distribution.

Further, the ACF plots for each parameter in three chains show a highly consistent

trend, indicating that the MCMC simulations were stable. Furthermore, the plots show

a high degree of correlation in the first few lags and as was expected in a Markov chain,

especially at lag 1. However, as the lag size increases, the correlation values gradually

decrease for some parameters and significantly decrease for other parameters. Thus, the

estimated parameters with a significant decrease in the correlation values indicate that

the estimated values are becoming more independent of each other; the MCMC samples
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are well-mixed and have converged to the target distribution. Yet, the parameters with

a slower rate of decrease in the correlation may indicate that the estimated parameter

is more likely dependent on its previous estimates. As a result, additional tools are

needed to test the convergence and the reliability of the results.

Moreover, the posterior and prior plots for each parameter, and in each chain, had

been plotted as another diagnostic tool for convergence. In addition, the prior and

posterior plots visualised the distribution of the parameter before and after running the

MCMC simulation, indicating how much information has been obtained from the data.

The prior was selected to be uniform for all parameters, assigning equal probability and

indicating no adequate knowledge about the parameters. Further, it can be seen that the

posterior distributions for each parameter in all three chains are highly consistent and

overlap well. Additionally, it can be noted that the width of the posterior distributions

are much narrower than the prior distributions. This indicates that the data was more

informative and limited the possible range values of the estimated parameters which

increased the estimation accuracy and uncertainty in the parameter estimates. It is also

a positive indicator and means that the posterior distributions are reliable distributions

for the true estimated parameters. To sum up, the prior and posterior distributions for

the MCMC simulation converged and the models were a good fit for the data.
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Figure 6.5: Trace plots with a purple dashed line at 2000 (burn-in length), ACF curves,
and uniform prior and posterior density plots with vertical lines to represent 95% Cred-
ible Intervals (CIs) for three chains of the parameters (β, α, λ,

√
ε) of the model 1

(expAα1
Kpwr).

The fourth Bayesian convergence diagnostic tool is the PSRF. The PSRF was cal-

culated based on all three chains of the MCMC. The PSRF point estimate is one or

closed to one for each parameter in all models except model 9 (NB
0,α2

Kexp) which have

distinguished values for different parametrs and a value greater than 1.1 for α (Table

6.5). Moreover, the PSRF UCI for all parameters in all models is narrow where there

is no value greater than 1.2. Therefore, based on the PSRF point and PSRF UCI, all

models converged except, models 9 (NB
0,α2

Kexp) ( see Table 6.5). Overall, the trace,
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autocorrelation, and posterior and prior plots all suggest that the MCMC sampler has

converged to a good estimate of the parameter except model 9 (NB
0,α2

Kexp). Therefore,

all models will use for inference analysis except model 9 (NB
0,α2

Kexp).

Model Parameter PSRF’s Point Estimate PSRF Upper CI

Model 9 (NB
0,α2

Kexp)

α 1.04 1.1
β 1.1 1.11
λ 1 1.01
ε 1 1

Model 1(expAα1
Kpwr)

α 1 1
β 1 1
λ 1 1
ε 1 1

Model 5(expAα1
Kexp)

α 1 1
β 1 1
λ 1 1.01
ε 1 1.01

Model 16(ND
α1,.86

Kexp)

α 1 1.01
β 1 1.01
λ 1 1
ε 1 1

Model 17(GD
α1,.5

Kexp)

α 1 1
β 1 1
λ 1 1
ε 1 1

Model 15(GE
α1,.5

Kexp)

α 1 1
β 1 1
λ 1 1
ε 1 1

Model 21(GF
α1..5

Kexp)

α 1 1.01
β 1 1.01
λ 1 1.01
ε 1 1.0

Model 22 (GC
α1,.5

Kexp)

α 1 1.0
β 1 1.01
λ 1 1.01
ε 1 1.01

Model 24 (GE
α1,1

Kexp)

α 1 1.01
β 1 1.01
λ 1 1.01
ε 1 1

Table 6.5: Point estimate and upper confidence interval of the univariate Gelman and
Rubin convergence criteria (PSRFs) for each of the model parameters. With values
close to one and lower than 1.1 indicate convergence of parameter estimation.
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6.3.2 Model estimation parameters

Tables 6.6, 6.7 and 6.8 summarise the posterior medians and 95% credible intervals for

the model convergence.

Table 6.6: Posterior medians and 95% credible intervals for parameters.

Parameter Lower (2.5%) Median Upper (97.5)
Model 1 (expAα1

Kpwr)

α -0.2741 -0.2062 -0.1384
β 0.7327 0.7753 0.8206
λ 0.9775 1.0316 1.0837
ε .00002954345 0.0005788704 0.002729169

Model 5 (expAα1
Kexp)

α -0.1575 -0.09121894 -0.02630595
β 0.6803 0.7485 0.8113
λ 1.7054 2.1217 2.5766
ε 0.002866614 0.007088049 0.013562181

Table 6.7: Posterior medians and 95% credible intervals for the estimated parameters
with normal function for fitted MAGDD covatiate.

Parameter Lower (2.5%) Median Upper (97.5)
Model 16 (ND

α1,.86
Kexp)

α 1.544464 1.611397 1.678556
β 2.464953 2.571904 2.682967
λ 0.4370948 0.5013145 0.5773101
ε 0.00003853288 0.0008878009 0.003674035
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Table 6.8: Posterior medians and 95% credible intervals for parameters.

Parameter Lower (2.5%) Median Upper (97.5)
Model 15 (GE

α1,.5
Kexp)

α 2.3876 2.5390 2.6882
β 1.3511 1.4455 1.5410
λ 1.1683 1.7740 2.3509
ε 0.0024 0.0077 0.01633

Model 17(GD
α1,.5

Kexp)
α 3.8502 3.9973 4.1533
β 2.4687 2.5729 2.6749
λ 0.5292 0.6205 0.7571
ε 0.00007 0.0013 0.0047

Model 21(GF
α1,.5

Kexp)
α 0.3344 0.3646 0.3996
β 0.8972 1.0082 1.1113
λ 1.3441 1.9166 2.4521
ε 0.002982010 0.0083 0.0162

Model 22 (GC
α1,.5

Kexp)
α 1.4766 1.6115 1.7629
β 3.9791 4.4670 4.9004
λ 1.3002 1.8937 2.5058
ε 0.002771713 0.0084 0.0164

Model 24 (GE
α1,1

Kexp)
α 0.4929 0.5393 0.5927
β 1.3456 1.4961 1.6531
λ 1.2863 1.8927 2.3879
ε 0.0028 0.0083 0.0160

The parameter values can provide different indication about the EAB colonisation

in the USA county level:

• The parameter β is always positive. Hence, it indicates that as the ash densintaty

increases in a new county, the likelihood of colonisation by EAB also tends to

increase (see β in Table 6.6, Table 6.7 and Table 6.8).

• The parameter α1 in both (expAα1
Kpwr) model and (expAα1

Kexp) model is negative.

It means that the suitability is a decreasing function of MAGDD. As the heat

availabilty in county exceeds 2344.399 (the MAGDD value at the mean of cAx and

the intersections point for both models), the suitability of the EAB colonisation

becomes less. Conversely, counties with MAGDD values below 2344.399 are more

suitable for EAB survival, growth, or reproduction (see α1 in Table 6.6). Bosed on

observed data, Figure 6.4 shows a rare number of colonised counties with MAGDD
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value higer than 2344. Further, Model 1 (expAα1
Kpwr) has a larger α1 value than

Model 5 (expAα1
Kexp), resulting in a steeper decline in suitability as MAGDD

increases.

• The parameter α1 in (ND
α1,0.86

Kexp) model indicates that the EAB colonisations

tend to be highest around 1684 (median) degree-days with potential decreases

in suitability as the heat availability falls further from the median. With 95%

credibility, the MCMC analysis suggested that the estimated mean of the MAGDD

ranged between 1757 and 1830. In addition, the point estimate of the mean

(µ = 1759) was slightly higher than the median point estimate (median= 1684).

Hence, it indicates that a longer tail extending towards higher MAGDD values. In

addition, the right long tail indicated that the EAB was able to survive and spread

in warmer climates. Nevertheless, a right-skewed distribution such as gamma

could improve the accuracy of simulation of the EAB (see α in Table 6.7).

• The parameter α1 in (Gα1Kexp) models yield distinct estimated values with dif-

ferent scaling methods. For example, the mode of MAGDD in (GD
α1,0.5

Kexp) is

around 1457 (α1 × cx), 1554 in (GE
α1,0.5.

Kexp) and 167 in (GC
α1,0.5

Kexp). The

modes reflect that the EAB colonisation is at the highest and decreases when the

MAGDD values are either lower or higher. Models (GF
α1,0.5

Kexp) and (GE
α1,1

Kexp)

have α1 < 1, hence, they suggest long tail curves and mean that the EAB coloni-

sation rate reduces as the county become warmer (see α in Table 6.8).

• The estimated parameter λ from different kernel functions in models (expAα1
Kpwr)

and (expAα1
Kexp) can compare to understand EAB dispersal behaviour. A lower

value in Kpwr (λ = 0.98) suggests that EAB colonisation has higher likelihood at

long-distance dispersal. Coversly, the larger value of λ in Kexp (λ = 1.7) reflects

the EAB colonisation prefers short-distance movements (see λ in Table 6.6).

• The estimated parameter λ in all models with (Kexp) function are less than 1.34.

These values indicate that the dispersal distances from secondary sources of the

EAB tend to be short. Further, four models for (Gα1Kexp) show different λ values,

ranging from 0.52 (GD
α1
Kexp) to 1.34 (GF

α1
Kexp). Hence, these values reflect the

impact of the scaling methods (see λ in Table 6.8).

To sum up, each model provides unique values for its parameters. Thus, to determine
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the optimal model and understand the EAB colonisation, the results of a comparison

of various model performances are presented in the following lines.

6.3.3 Models performance

To assess and compare the performance of the models, the ROC curve was employed.

In the Appendix, the ROC curves and the corresponding Tables for each year based on

fitted colonisation-dispersal model were presented. Several metrics were calculated per

year from the ROC curves which were the Area Under the Curve (AUC), the Youden

Index (J), the sensitivity (Se) and the specificity (Sp). Hence, the 2 × 2 classifica-

tion table was constructed for each year. Under these assessments, model performance

improves as false values reduce and the values of all the other metrics increase.

Overview evaluation of annual ROC performance

In general, the yearly AUC exceeded 85 percent in the all models except for the model

22 (GC
α1
Kexp) (see Appendix B.2: ROC analysis). The range of the AUC values in the

model 22 (GC
α1
Kexp) ranged between 99 percent to 75 percent, where the lowest value

occured in 2015. Despite this variation, the performance of all models were consistently

high. In addition, 2014, 2016 and 2018, recorded the minimum AUC scores in all

models, and none of them scored AUC value above 90 in these years. This finding

reflected that the root of the lower performance did not relate to the models. Yet, there

were unexpected spatial distribution behaviour during those years. In other words, the

EAB colonistion in counties in those years might located far away from the exectence

once (for example see 2014 in Figure 6.1). Hence, there might be external factors that

caused those long range colonisations, such as trasfer of the EAB due to the human

activities. Another plausible explanation, experts failed to document the first EAB

colonisation counties in those years or in years earlier.
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Summary of annual ROC for model performance evaluation

Table 6.9: Summaries the performance of the each model based on the average annual
performance .

Model Average Cumulative
AUC Se Sp FP FN FP+FN

model 5(expAα1
Kexp) 0.92 0.95 0.82 7735 79 7814

Model 24 (GE
α1,1

Kexp) 0.91 0.92 0.824 7918 95 8013
Model 15 (GE

α1,0.5
Kexp) 0.91 0.93 0.821 8006 77 8083

Model 21(GF
α1,0.5

Kexp) 0.91 0.91 0.81 8057 114 8171
Model 1 (expAα1,0.5

Kpwr) 0.91 0.99 0.79 9008 106 9114
Model 16(ND

α1,0.86
Kexp) 0.91 0.94 0.79 9263 84 9347

Model 17(GD
α1,0.5

Kexp) 0.91 0.94 0.78 9434 80 9514
Model 22(GC

α1,0.5
Kexp) 0.85 0.85 0.75 10556 201 10757

Table 6.9 summaries the overall performance for each model, calculating the average

across all years for AUC, Se and Sp, and cumulative number for false terms. Hence,

it is obvious that the worst performing model with the highest total false number and

the lowest score in the other mertics was the model 22 (GC
α1,0.5

Kexp). In addition, the

specificity values across all models were at all times less than any Se value observed

in all models. Consequently, the FP numbers were higher than the FN cases. In

other words, the models incorrectly identified substantial numbers of non colonised

counties as colonised. Additional relevant covariates integrated in the analysis, might

help to improve the performance of the models to understand the EAB colonisation.

Furthermore, there may be missing data in this dataset collected by experts. Thus,

involving citizen scientists in data collection increase the number of the observations

over spatial and temporal scales.

The best model is Model 5 (expAα1
Kexp) where exhibits the highest average AUC

and the lowest falses (see Table 6.9). However, it is worth to mention that all other

models show excellent performance, particularly Model 24 (GE
α1,1

Kexp) and Model 15

(GE
α1,0.5

Kexp). Therefore, comparison between models provide deeper insights into sig-

nificant factors influencing EAB colonisation. Hence, the following comparative model

evaluations were conducted:

• Comparison 1: Model 5 (expAα1
Kexp) outperformed Model 1 (expAα1

Kpwr), al-

though they only differ by choice of kernel function K(dij) (see Table 6.9). Hence,

this comparison should be on EAB dispersal distance behavior (details in the fol-

lowing sub-section).
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• Comparison 2: The four models Model 22 (GC
α1,0.5

Kexp), Model 15 (GE
α1,0.5

Kexp),

Model 17 (GD
α1,0.5

Kexp) and Model 21 (GF
α1,0.5

Kexp) were identical in every aspect

except for the scaling method used. Thus, these models can highlight the impact

of scaling in model performance (details in the following sub-section).

• Comparison 3: Model 24 (GE
α1,1

Kexp) and Model 15 (GE
α1,0.5

Kexp) were identical

in every aspect except on their fixed shape parameters, where α2 was 1 and 0.5,

respectively. Moreover, these models are the second and the third best-performing

models, respectivly. Hence, they can help to define the MAGDD function, and the

relationship between heat availability and EAB colonisation behaviour (details in

the following sub-section).

6.3.4 Impact of model components for understanding the EAB coloni-

sation

Comparison 1: Optimal dispersal kernel function

Model 1 (expAα1
Kpwr) with power-law kernel and 5 (expAα1

Kexp) with negative expo-

nential kernel can be used to compare and visualise the impact of the kernels in model

performance. It is well known that the negative exponential kernel function decreases

rapidly with increasing distance compared to the power law kernel. This can also be

confirmed in this research findings in curve plots in Figure 6.6 where the red and orange

curves are of model 1 (expAα1
Kpwr) and 5 (expAα1

Kexp), respectively. It can be seen

that the negative exponential kernel function is a short-range kernel while the power

law kernel function is a long-range kernel.

188



6.3. Results

Figure 6.6: Comparison the kernel function distance curves for different models. The
Figure at the top includes all kernels. The Figure in the bottom left shows the kernels
for Model 1 (expAα1

Kpwr) and model 5 (expAα1
Kexp) which their models are same ex-

cept kernel term, allowing for a direct comparison between them. The Figure in the
bottom middle displays kernels for models that exhibit performance ranging from ex-
cellent to good: Model 5 (expAα1

Kexp), Model 24 (GE
α1,1

Kexp), Model 15 (GE
α1,0.5

Kexp),
and Model 21(GF

α1,0.5
Kexp). The Figure in the bottom right illustrates the kernels for

the worst-performing models: Model 1 (expAα1
Kpwr), Model 16(ND

α1,0.86
Kexp), Model

17(GD
α1,0.5

Kexp) and Model 22(GC
α1,0.5

Kexp).

This research outcomes found that a noticeable difference in the amount of false

cases between these two models, which enhance the role of kernel in understanding

EAB dispersal behaviour. The findings confirmed that Model 1 (expAα1
Kpwr) produced

higher false rates than Model 5 (expAα1
Kexp) (see Table 6.9). The model 1 (expAα1

Kpwr)

had a total of FP=9008 and FN=106, which was more than the model 5 (expAα1
Kexp),
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which had a total of FP=7735 and FN=79 (see Table 6.9). In other words, the model 1

(expAα1
Kpwr) exhibited a alarming difference of 1300 total number of falses than model

5(expAα1
Kexp). Hence, the negative exponential kernel function (Kexp) was a desirable

function and improved performance of the understanding EAB distribution.

Both models, for example, were applied separately to the observed data to distin-

guish the impact of the kernel functions in predicting the presence of EAB in 2014. Yet,

it can be applied to any year (Figure 6.7). Hence, it can be seen that the Kpwr extended

wider than the Kexp. Thus, the power law can model the spread of EAB accross wider

distances (counties) which may cause an increasing of the number of FP (i.e. predicted

non colonised county as colonised). On the other hand, the negative exponential ker-

nel is more responsive to the close counties than far counties. As a result, the Kexp

can cause an decreasing of FP. Model 1 (expAα1
Kpwr) produced higher false rates than

Model 5 (expAα1
Kexp), hence, negative exponential kernel Kexp is better than power-law

kernel to understand the EAB dispersal distance. To sum up, this analysis highlights

the effectiveness of including the kernel function as an a factor to understand the EAB

abundance, and dispersal is mostly very localised, but with a small number of very

long distance dispersals, something which is best modelled by the negative exponential

kernel in combination with a power-low rate of background dispersal.
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Figure 6.7: Power-law kernel function (upper) based on model 1 (expAα1
Kpwr) and

negative exponential kernel function (below) from model 5 (expAα1
Kexp) where both

functions had been applied to estimate the spread of EAB in 2014. The λ value is
1.0315661 for power-law kernel and it represents the mean value of the estimated pa-
rameters by using model 1 (expAα1

Kpwr) while for negative exponential formula, the λ
value is 2.121683 which is the mean value of the estimated parameters by using model
5 (expAα1

Kexp). The white counties represents the colonised counties before 2014, while
the colour counties represents the sum of infection pressure from neighbour colonised
counties. The light cream colour with black dots represents FN, while without dots
indicates TN

Therefore, it can be understood that the EAB tends to colonise the nearby counties

unless the ash species and the suitable MAGDD are unavailable. It can also be observed

in the Figure 6.1 and Figure 6.8 that the most colonised couties are found in clusters.

However, there are some unexpected colonisation events. Further, Figure 6.8 displays

boxplots of the dispersal distance (dij) within dmax < 12 degree between colonised

counties on a particular year (T ) and colonised counties that were colonised in all

previous years (2002, T − 1). Hence, the interquartile range (IQR) reveals the degree

191



6.3. Results

of clustering, where a small IQR (small box of the boxplot) reflects majority of the

colonisation in cluster, and dispersal distances are mostly within 8 degree over 18 years.

The increasing distance over time is due to the fact that EAB is spreading over a wider

area of the USA as time progresses. Hence, the box in the Figure 6.8 confirms the

colonisation behaviour and level which aligns with the negative exponential kernel.

Figure 6.8: Boxplots of the dispersal distance between colonised counties on a particular
year and colonised counties that were colonised in all previous years.

Comparison 2 and 3: Optimal scaling method and MAGDD function

A range of the MAGDD functions and scaling methods were applied in the all models

in order to (i) minimise the false numbers and improve model performance, and (ii) un-

derstand the relationship between EAB distribution and the MAGDD. These functions

were the exponential, normal distributions and gamma distributions. In addition, these

models had been applied at different scaled for MAGDD. The four models which are

Model 22 (GC
α1,0.5

Kexp), Model 15 (GE
α1,0.5

Kexp), Model 17 (GD
α1,0.5

Kexp) and Model 21

(GF
α1,0.5

Kexp) were identical in every aspect except for the scaling method used. Thus,

to understand the impact of scaling on model effectiveness, it lead us to compare the
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top-performing once, Model 15 (GE
α1,0.5

Kexp), with the lowest-performing model which

is Model 22 (GC
α1,0.5

Kexp). These comparison highlight the crucial role of scaling in

model performance, because there were a noticable variation in the amount of false

numbers. The scaling method cEenhances to record lower false cases and improves the

model ability through increasing the accuracy of the classifcation and events prediction.

Hence, it is the optimal scaling method based on this research. In short, the scaling

method can be a significant factor, influencing EAB colonisation and the cE is the op-

timal one, which might be because of only estimating one parameter of the MAGDD

function.

In addition, Model 24 (GE
α1,1

Kexp) and Model 15 (GE
α1,0.5

Kexp) were identical in ev-

ery aspect except on their fixed shape parameters, where α2 was 1 and 0.5, respectively.

These models are also the second and the third best-performing models, respectivly.

Hence, they can help to identify the optimal MAGDD function, and the relationship

between heat availability and EAB colonisation behaviour. Although there were minor

difference between these models, McNemar’s test was used to compare performance of

two models. The test p-value (< 2.2e-16) reveals significantly different between the per-

formance of the two models in terms of both sensitivity and specificity. Hence, it can

conclude that the Model 24 (GE
α1,1

Kexp) fits the data better, as it has a lower number

of false events. In addition, a shape parameter of 1 in a gamma distribution indicate

an exponential decay behaviour, where this model is the second best-performing model.

This aligns with the findings of the best-performing model 5 (expAα1
Kexp) which shows

exponential decay function. Therefore, based on the consistency of this decay pattern

in the top-performing models, we conclude that the exponential function is the most

suitable model.

193



6.3. Results

Figure 6.9: Normalised curves represent the MAGDD values across various models
studied. Normalisation is conducted swhere the area under the curve equals one.

6.3.5 Additional Insights: Analysis of the suboptimal models

In light of our findings, it has been confirmed that the models 16 (ND
α1,0.86

Kexp), 17

(GD
α1,0.5

Kexp) and 22 (GC
α1,0.5

Kexp) demonstrate higher overall false rates than others.

The Table 6.9 confirmed this by revealing a higher overall false rates for these models.

This is because the kernel curves of these models are relatively flat. Hence, they reflect

the minimal impact on EAB movement (see Figure 6.6). Accordingly, the suitability

si dominate these models behavior. It can be ssen that Figure B.15 in Appendix B.3

shows the suitability maps for 16 (ND
α1,0.86

Kexp) and 17 (GD
α1,0.5

Kexp) models. Both

maps closely resemble the original data of ash intensity and MAGDD (see Figure 6.2b

and Figure 6.3). This indicates that the influence of the kernel term is minimal. In

addition, the suitability map of models 22 (GC
α1,0.5

Kexp) reflects that the model fails to

integrate all components (i.e. suitability and EAB dispersal). The map only shows the

influence of the lowest MAGDD values.

To provide further clarification, the prediction maps for these models to predict the

EAB colonisation counties in 2014 are given in Figure 6.10 and Figure 6.11. It is clear

that all these three figures are indication that the suitability has more impact on the

risk map than the kernel. For example, the darker area in the east in Figure 6.10 are the

area where ash intensity and MAGDD are high. In addition, the impact of the kernel in
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the clustered counties is not easily observable, with only a few noticeable effects. The

prediction map in Figure 6.11 demonstrates with clarity the impact of the MAGDD

lowest values in the top south region, while the outcomes of the suitability factors in

the east.

Figure 6.10: Model 16 (ND
α1,0.86

Kexp) (upper) and Model 17 (GD
α1,0.5

Kexp) (below) where
both had been applied to predict the spread of EAB in 2014 based on the median es-
timation parameters for the model in observed data from 2002 to 2013. The white
counties represents the colonised counties before 2014, while the colour counties repre-
sents the sum of infection pressure from negibour colonised counties. The black dots
are EAB observations in 2014. The light cream colour with black dots represents FN,
while without dots indicates TN.
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Figure 6.11: Model 22 (GD
α1,0.5

Kexp) predict the spread of EAB in 2014 based on the
median estimation parameters for the model in observed data from 2002 to 2013. The
white counties represents the colonised counties before 2014, while the colour counties
represents the sum of infection pressure from negibour colonised counties. The black
dots are EAB observations in 2014. The light cream colour with black dots represents
FN, while without dots indicates TN.

6.3.6 Best model is model 5 (expA
α1

Kexp)

Model 5 (expAα1
Kexp) stands out as the best model performance. This model underscores

the critical rule of the positive linearity of ash intensity and the negative exponential of

MAGDD values to identify EAB colonisation counties. The model also reflects the abil-

ity of the negative exponential kernel function to capture EAB movement. The following

analysis, supported by mapped visualisations, highlights the model’s effectiveness.

The suitability map provides clear visual evidence that the model well captures the

variability of the ash intensity and MAGDD factors over counties (see Figure 6.12).

The map effectively identifies the counties with ash intensity, represents by the top two

darker colours. Regarding the MAGDD factor, there is a clear negative relationship

as the MAGDD values increase, the rate decreases. Accordingly, the model assigns

high rates to MAGDD values ranging between zero to 2796. Moreover, the prediction

maps for specific years namely 2004, 2007 and 2012, while it also can be provided to

all other study period years, confirm the model’s effectiveness in integrating suitability

and dispersal movement factors (see Figure 6.13). Thus, the model can predict the TP

counties with a higher rate for counties adjacent to clustered colonised counties. The

model also enhances the effectivence of the kernel to illustrate EAB distribution, where

EAB prefers to flow across nearvy counties.
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Figure 6.12: The overall suitability for each county in the USA for the invasive EAB
colonisation under the model 5 (expAα1

Kexp). The value calculated for each county is
the median of the posterior distribution of the suitability function 6.4.

Figure 6.13: Model 5 to predict the spread of EAB in 2004 (top left), 2007 (top right)
and 2012 (below) based on the median estimation parameters for the model in observed
data from all previous years. The white counties represents the colonised counties before
year T, while the different colour counties represents the sum of infection pressure from
negibour colonised counties. The black dots are EAB observations in the prediction
year (T+1). The light cream colour with black dots represents FN, while without dots
indicates TN. The other colours reflect the positive counties, where with black dots
mean TP and without indicates FP.

6.4 Summary and discussion

The Emerald Ash Borer (EAB) is a non-native insect, which has posed a significant

threat to native ash species ( Fraxinus ) in the USA. However, it is a challenge to erad-
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icate EAB, because of its biological characteristics. In essence, the EAB larvae develop

inside the host ash wood tree for 1-2 years [97]. Efforts to combat EAB infestations

have included accurate understanding of its dispersal and colonisation through statis-

tical analysis. Hence, this chapter primarily aimed to statistically estimate the spatial

and temporal spread of the EAB across USA counties. Thus, the model focused on the

county unit on an annual temporal scale between 2002 when EAB was first identified

in USA to the end of 2019.

This study, focused on generalisations of the generic colonisation–dispersal model

proposed by Catterall et al. (2012) [103]. This is because that the approach allows for

the inclusion of the invasive species distribution at multiple time points. In addition,

it takes accounts of the temporal uncertainty in colonisation times. Further, it allows

to include climate and non climate covariates in order to capture variation in the suit-

ability of counties for invasive colonisation. Moreover, this approach applied MCMC to

deal with model complexity due to multiple parameters and enables quantification of

uncertainty in model parameters, inferred unknown colonisation times and prediction

of future colonisations.

Different models were applied to adapt the model of Catterall et al. (2012), each of

them included the same factors which are dispesal distance between counties and two

covariates that vary spatially across counties, the mean of the annual growing degree

day (MAGDD) and normalised ash intensity. The models varied due to several factors:

(i) the exponential function, gamma distribution, and normal distribution were utilised

to estimate the MAGDD variables; (ii) different scales were applied to the MAGDD

variable; and (iii) two distinct kernels were used, namely the power-law kernel and the

negative exponential kernel. The optimal performance model with the lowest number of

incorrect classification counties was model 5 (expAα1
Kexp), while the worest performance

model was model 22 (GC
α1,.5

Kexp).

In addition, it is worth to mention that all models contributed viewpoints about

EAB reaction with the given different factors and functions. For example, (i) the com-

parison between models (expAα1
Kpow) and (expAα1

Kexp) provided that EAB dispersal

behavior tends to be mostly very localised. Thus, (ii) the negative exponential kernel

is the best fit. Further, the decay exponential function is the most effective option to

reflect the relationship betwen EAB colonisation and MAGDD factor, as the best per-

formance model (expAα1
Kexp) and the second-best model 24 (GE

α1,1
Kexp) underscored
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that. Furthermore, all models confirmed that (iii) there is a positive relationship be-

tween suitable county to EAB colonisation and normalised ash intensity.

6.4.1 Suitability and EAB

Orlova-Bienkowskaja et al. [97] demonstrated that the EAB adult is an unable to

colonise an area while its MAGDD smaller than 700 degree. This figure is based on

the observed EAB in America, Europe and Asia, where Asia is the native of the EAB.

On the other hand, the suitability map (see Figure 6.12) of this study found a nega-

tive relationship between EAB presence and MAGDD, with the highest suitability for

counties with the MAGDD values less than 700 degree-days, while the number of these

counties are very low comparing with others. However, because these counties have lack

normalised ash intensity (almost zero) and are far from the nearest colonised counties,

model 5 (expAα1
Kexp) did not predicte EAB in these counties. Thus, counties with less

than 700 degree-days, they did not impact the model’s performance. Hence, to improve

our understanding, more data on EAB presence in regions with MAGDD values below

700 degree-days is needed.

Furthermore, the body size of the EAB females in the colder areas (lower MAGDD)

are being smaller [223]. In addition, these females might have difficulty for surviving and

cannot lay enough eggs [223, 97]. On the other hand, the study conducted by Haack et

al. (2022) [224] emphasised that adults and larvae of the EAB complete mortality when

they expose to 56°C or above for at least 30 continuous minutes duration. Thus, this

finding suggests that the increasing of the heat availability (high MAGDD) in an area

may impact the reproduction and persistence of the EAB adult. Hence, it is unfavorable

for the EAB colonisation.

6.4.2 EAB dispersal mechanisms

Moreover, the study outcomes revealed that including the geographical distance between

the center of the current colonised counties with the nearby non colonised counties is an

essential factor to understand EAB. This can be supported with models (ND
α1,0.86

Kexp),

(GD
α1,0.5

Kexp) and (GC
α1,0.5

Kexp) which have flat kernels and the highest false rates com-

paring with other models. In addition, useing a negative exponential kernel than a

power law kernel was more suitable model to understand the EAB colonisation dy-

namic. Hence, it increased the model effectivness and performence. Further, compared
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to the power law kernel, the negative exponential kernel reveals a sharp drop as the dis-

tance rises. This is aligned with the EAB colonisation behaviour, where the colonised

counties tended to form clusters, with some odd (see Figure 6.1 and Figure 6.8). Ac-

cordingly, the natural migration of the EAB adults tend to be local distance dispersal

as long as the ash species and the suitable MAGDD are available.

Furthermore, Muirhead et al. (2005) [43] demonstrated the effectiveness of the

negative exponential kernel to predect the invaded locations with EAB in 2004 within

the Great Lakes state. They found that, even at low probabilities of dispersal, the

model predict correctly 77 percent the of invaded locations. In addition, Muirhead et

al. (2005) confirmed that the majority of the EAB infestations between 2002 to 2005

occured because of the natural EAB adult flights. Hence, the negative exponential

kernel can accurately simulate the EAB colonisation distribution, particularly in the

natural dispersal of the EAB adults. On the other hand, human-mediated activities

such as the movement of infested seedlings, can lead to the long-distance dispersal [99],

causing unexpected EAB infestation. For example, in 2003, an outbreak of the EAB

reached Maryland state, USA from Michigan state, USA [99]. Moreover, a 600 miles

from the nearest infested area, EAB outbreak was discovered in Colorado state, USA

in 2013 [99]. Thus, the localised spread of EAB should have significant implications for

management strategies. The priority can present for colonised counties and where it is

projected to spread next. Further, it helps researcher to conduct and focus a research

in specific areas, where they can gather valuable data and enhance the understanding

of the EAB.
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Chapter 7

Conclusion

7.1 Overview

The escalating global population and the increasing interconnectivity of worldwide sys-

tems pose substantial challenges for the sustainability of food production and the preser-

vation of plant forests. One of the primary concerns is the rise of non-native insect pests

that threaten crop yields and plant health. Hence, they are leading to reduce crop yields,

which cause food insecurity. Moreover, they create a severe threat to the productiv-

ity and diversity of native ecosystems, and significant financial losses for industries,

property owners, farmers and governments.

Therefore, accurate identification of pests in the proper physical location and time

is crucial for effective management techniques and understanding of their population

dynamics. Conventional pest identification approaches mainly depend on specialist

knowledge, which are frequently limited and costly. Hence, experts such as entomolo-

gists are unable to effectively and quickly monitor wider spatial space. On the other

hand, creative methods that integrate artificial intelligence (AI) with citizen science can

provide more comprehensive monitoring of geographical area and earlier detection of

pest invasions. However, these modern methods may have lower accuracy compared to

traditional methods.

Lower accuracy of the citizen science AI method or limited experts advice can cause

direct adverse impacts for farmers, foresters and researchers. Farmers and foresters

can overuse or misuse pesticides, which can harm non-target species. Researchers often

need to invest additional resources to establish a gold standard for data validation,

ensuring the accurate identification of AI tools, which can lead to increased project
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costs. Limited availability of expert data can negatively effect the research findings,

increasing the likelihood of biased results.

This thesis demonstrates its strength by developing novel statistical approaches for

analysing and modelling tow non-native pests using two different types of datasets: (i)

a citizen science AI dataset with absent gold standard, and (ii) a limited expert dataset.

The two non-native pests are (i) Fall Armyworm (FAW, Spodoptera frugiperda) in maize

crops (Zea mays) in India during the period 2018-19, and (ii) the Emerald Ash Borer

(EAB,Agrilus planipennis) epidemic in ash trees (Fraxinus) in the USA from 2002 to

2020. The FAW data are based on a citizen science approach utilising Plantix, an

innovative method that integrates artificial intelligence (AI) with mobile technologies.

Constructed by PEAT GmbH, it can provide comprehensive monitoring of geographical

areas and early detection of pest invasions. For the EAB, it is an expert dataset, which

was collected by USDA APHISUS. It includes an initial true positive case from each

observed infested county in the USA. Statistical analysis in both dataset has different

objectives. For the citizen science AI dataset, the estimation of the gold standard is at

first, and it is before investigating pests dynamics. For the expert dataset, we typically

focus on understanding the population dynamics of pests.

The decision to focus on FAW and maize was not random; rather, there were reasons.

In India, maize is the third staple crop after rice and wheat, and FAW was first detected

in 2018 on the maize crop. Hence, FAW has caused widespread concern as it leads to

sever damage. This is because it has a high reproductive rate and strong dispersal

capabilities. The EAB, on the other hand, is one of the most destructive invasive forest

pests found in the ash species of North America, causing widespread mortality of ash

trees in urban landscapes and natural forests. It has killed hundreds of millions of

ash trees in North America and is considered a high-impact pest. This has resulted in

hundreds of millions of dollars being lost by municipalities, property owners, nursery

operators, and the forest products industry. Controlling and eradicating EAB can be

expensive, and have adverse effects on the environment. Thus, using statistical analysis

can be an effective and budget-friendly manner to understand the distribution of EAB

in order to control it.
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7.2 Key contributions

The thesis offers vital contributions, some of which can be considered novel method-

ological contributions, which are valuable for scientific researchers. The contributions

also benefit a wide range of stakeholders, and have a significant impact on the agricul-

tural landscape. The findings of the statistical analysis of the citizen science AI dataset,

specifically the Plantix app data in detecting Fall Armyworm (FAW) in India maize,

contribute important knowledge to the PEAT company and any AI Developer. More-

over, these findings also serve farmers, entomologists and governments. In addition, the

outcomes of the statistical analysis of the expert data to analyse the EAB in the USA

extend the thesis contributions to the forestry sector.

Chapter 3 develops the first statistical framework for estimating True and False

observations/models for citizen science AI dataset. A bi-normal mixture model is em-

ployed as the classification method. The latent variable of the mixture model presents

and predicts True and False notifications, while we use our assumptions to classify

the data into positive (unhealthy, pariculary in our data FAW) and negative (healthy,

pariculary in our others than FAW) outcomes. The previous research used the latent

variable to estimate positive and negative outcomes, thus, this approach is the first to

use a classification model for estimating True and False observations. Following this,

understanding the FAW intensity on maize over space (North and South India), sea-

sons (Kharif and Rabi) and time (2018-2019) is estimated using odds metric, and it is

the first contribution to studying the intensity of Fall Armyworm (FAW) over maize

seasons, across India, and over time.

Chapter 3 provides a statistical method for distinguishing between True and False

notifications, rather than relying on a cut-off that may not always represent a valid

hypothesis. The findings from the odds calculation indicate that the invasion began

earlier in 2018, before it was officially documented in mid-2018, which highlights the

urgency to create a direct connections between warning app notifications and govern-

ment as well as entomologists. This allows for early pest and disease management and

prevent widespread outbreaks. Further, the presence of False notifications, especially

more than 50 percent of the data are false, along with the non-interpretability of the

odds curve of FAW intensity when including non-FAW data, underscores the need to

determine accuracy with distinguishing between Healthy and non-FAW categories. This

discussion leads us to Chapter 4.
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Chapter 4 introduces a statistical approach to estimate the sensitivity and speci-

ficity of the citizen science AI dataset. This approach is the first to estimate pooled

sensitivity and specificity within the same study, yet across distinct locations, using

Bayesian meta-analysis. Each state assumes to be an independent study within the

dataset of FAW in India. The approach also assumes that the logit sensitivity and

specificity follow a multivariate normal distribution.

Chapter 4 findings suggest that FAW detection must be validated against Healthy

reports rather than non-FAW reports, as there are valid biological reasons. In addition,

the Plantix app has a sensitivity in detecting the FAW when Healthy as negatives,

with approximately 50 percent of true positive cases being correctly identified. For the

specificity, the Plantix app had the high specificity of 0.769 (0.730, 0.806), indicating

its strong ability to identify Healthy maize crops, while around 20 percent of Healthy

crops were misdiagnosied as infested with FAW (false positives).

These findings can inform the PEAT company to enhance the app accuracy and

reliability in identifying specific pests or diseases in particular crops. This can be

accomplished through improving the deep neural network (Plantix-DNN) algorithm.

Following that, the PEAT can continuously collaborate with statisticians to ensure the

app improvement. Further, these contributions not only serve the PEAT, yet also the

users. The users use the app to identify crop issue, pay treatement and consider the app’

advice for effective control. The incorrect diagnosis can lead to issues such as harm-

ing the tested crop, as the user may apply the incorrectly advised treatment. Further,

since the app is imperfect, users should conduct independent verification to confirm the

app diagnostic results and treatment advice. For example, users can conduct further

research on the issue through online Resources. An alternative, users can just capture

another photo for the affected crop, in order to ensure whether or not the app remains

consistent. After esetimating sensitivity and specificity, it is time to move to one of

the main objectives of the thesis: understanding FAW prevalence. This takes us to

Chapter 5.

Chapter 5 estimates the prevalence of FAW across each state and within each

season, applying various methodologies based on frequency analysis, Bayesian meta-

analysis or the Bayesian meta-analysis with stochastic sensitivity and specificity, in

order to select the most appropriate model. This study is the first study to estimate

the spatio-temporal true prevalence of FAW in maize crop where the spatial scale was
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state-level in India and the time term was the maize season. Chapter 5 confirms that

estimating FAW prevalence varies over time and space, which enhances the understand-

ing of the preferred seasons and the risk states for FAW. The estimating sensitivity and

specificity by season, rather than for the entire dataset, highlights that these metrics

vary across different seasons. The lowest sensitivity value was recorded in Kharif 2018,

at around 0.4, while the maximum sensitivity reached approximately 0.7 in Rabi 2019.

Sensitivity tends to be higher during the Rabi season compared to the Kharif season,

suggesting that FAW may be more prevalent and damaging during Rabi. These findings

involve entomologists and governments in a deeper understanding of FAW behavior in

maize fields and in implementing more effective pest management strategies during the

preferred seasons and in high-risk states. Furthermore, the identified Rabi season as

preferred for FAW encourages researchers to conduct more studies to understand the

climatic factors influencing its increase. Additionally, during the Kharif season, FAW

may prefer to infest other crops that are not planted during Rabi.

Further, the findings from the analysis of the citizen science AI dataset, specifically

the Plantix app dataset, indicate that citizen science apps are very useful for report-

ing pest infestations. They allow threats to be detected rapidly, with high temporal

resolution and wide spatial coverage of pest distribution. For statistical analysis, it is

essential to include both positive and negative notifications, which are mostly missing

in the expert data. These readings ensures self-sufficiency of the dataset, where these

observations help estimate the intensity (Chapter 3), accuracy (Chapter 4), and

prevalence (Chapter 5) of the subject of interest.

Chapter 6 develops the first a continental-level model for the spread of EAB in

the USA over two decades. A colonisation-dispersal model is utilised to include cli-

matic (annual average of growing degree day, MAGDD), non-climatic (ash intensity

habitat) conditions, and dispersal mechanisms. The model is fitted to the best avail-

able data, quantifying the uncertainty in the model and its predictions and assessing its

performance in tracking the spread of EAB over two decades, 2002 to 2019. EAB data

consists of a single point from each county in the USA, therefore, including additional

dataset help achieve the research objectivies related to understanding EAB colonisation

behaviour.

Chapter 6 findings underscores that the significance of incorporating climatic and

non-climatic factors as well as dispersal mechanisms. Chapter 6 concludes that there is
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a positive relationship between suitable counties for EAB colonisation and normalised

ash intensity. The decay exponential function effectively reflects the relationship be-

twen EAB colonisation and MAGDD factor. However, due to the limited data size,

the research could not determine the exact range of suitable heat. The EAB dispersal

behavior tends to be mostly very localised, making the negative exponential kernel the

best fit. These findings assist various stakeholders in society in participating in the

mitigation and control of EAB. Understanding that the EAB typically colonises locally,

enhances the governments to develop management plans for neighboring uncolonised

counties. Further, the analysis of expert data indicates that the overestimations find-

ings may result from insufficient data in counties that are close to the colonized ones.

Therefore, governments should find ways to involve citizen scientists in data collection.

The following section will discuss some proposed future research directions based on the

contributions of this thesis.

7.3 Research limitations

It is important to note the limitations of the study:

1. Time Recording Accuracy: Study findings may be biased or inaccurate if the

collection data time is inexact. Experts and citizen scientists cannot guarantee to

record observations at the right time or may miss some observations due to their

availability in the infested area or fail to recognize the infestation.

2. Limited spatial coverage: The Plantix app data collection method may have fo-

cused on specific regions or areas based on the availability of the internet and

smart phones, as well as farmers’ skills and knowledge. Data from surveys also

have limitations due to sampling locations or survey cost, as human experts cannot

cover all infested areas. As a result, the study findings not being representative

of the actual situation.

3. Generalisability: The findings and conclusions presented in this study could be

unique to the study areas in India and the USA and would not be applicable to

other geographical areas.
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7.4 Future directions

For future research, this study suggests the methodological framework conducted for

Fall Armyworm, can replicate on other pests affecting Indian maize or different crops in

different space and time from the Plantix app dataset. One possible insect to analyse,

it can be a violet stem borer, where it was the highest pest was found in the maize

after FAW based on our Plantix app data used in this study. Additionally, repeat-

ing the thesis analysis for the latest version of deep neural networks (DNN-Plantix)

could provide valuable insights about the improvement of the app accuracy. While

smartphone-based citizen science tools for plant disease and insect pest detection us-

ing AI are increasingly popular, there are lack studies that conduct rigorous statistical

analysis for assessing accuracy and reliability of these tools and further analysis. Hence,

the statistical methodological frameworks in this research can be transferable to these

tools as well or other that designed for use by citizen scientists.

Further, studing the prevalence of FAW in India during the epidemic phase can be as

a baseline for comparison with more recent data. This can help to evaluate the changing

patterns of the prevalence over time, and determining if the risk level has decreased.

Moreover, it offers an approach to assess the effectiveness of the control strategies in

managing FAW infestations. Furthermore, it can incorporate environmental factors into

the Bayesian meta-analysis model in Method-4 in Chapter 5 to enhace the estimation

of the FAW prevalence. Fan et al. [225] conclude that altitude (in meter), temperature

(in degree Celsius), and humidity (in percentage) can significantly impact the survival,

presence, reproduction and colonisation patterns of FAW. Therefore, these factors can be

incorporated into the prevalence formula. Instead of using πi ∼ beta(1, 1), the following

formula can be used, where the prior distributions for the parameters α0, α1, α2, α3 can

assume to follow uniform.

logit (πi) = α0 + α1 × temperaturei + α2 × altitudei + α3 × humidityi.

The data for the these factors can be extracted with the same methodology as did

for the EAB factors. Additional factors can also be included. However, it is crucial

to confirm that each factor is significant before include in the model. One method to

assess significance is by using the modified Gaussian model, as considered by Fan et al.
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[225].

For the EAB, a limitation of this work is that the model used data from all previous

years to predict the colonisation of the following year. Hence, this approach assumed

that once a county was colonised, it remains permanently colonised (SI model). How-

ever, some infested ash died within 2 to 6 years after infestation [226, 227]. Moreover, a

number of control actions, such as cutting infested hosts or using pesticides, were imple-

mented. Hence, these actions can cause county to be categorised as in recovery rather

than colonised. To address this limitation in future and enhance the model validity, it

is possible to consider a shorter timeframe, for example every 6 years independently.

This duration my be convenient, because the longest expected lifespan is 6 years.
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Appendix A

Additional materials for Chapter 5

A.1 MCMC trace plots for Method-4

A.1.1 Trace plots for Method-4 during Kharif 2018

Figure A.1: Trace plots for the prevalence parameter during Kharif 2018, displaying
three MCMC chains for each state using Method-4.
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A.1. MCMC trace plots for Method-4

Figure A.2: Trace plots for the prevalence parameter during Kharif 2018, displaying
three MCMC chains for each state using Method-4 after scaling the sample size by a
factor of 10,000.
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A.1.2 Trace plots for Method-4 during Rabi 2018

Figure A.3: Trace plots for the prevalence parameter during Rabi 2018, displaying three
MCMC chains for each state using Method-4.
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A.1. MCMC trace plots for Method-4

Figure A.4: Trace plots for the prevalence parameter during Rabi 2018, displaying three
MCMC chains for each state using Method-4 after scaling the sample size by a factor
of 10,000.
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A.1.3 Trace plots for Method-4 during Kharif 2019

Figure A.5: Trace plots for the prevalence parameter during Kharif 2019, displaying
three MCMC chains for each state using Method-4.
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A.1. MCMC trace plots for Method-4

Figure A.6: Trace plots for the prevalence parameter during Kharif 2019, displaying
three MCMC chains for each state using Method-4 after scaling the sample size by a
factor of 10,000.
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A.1.4 Trace plots for Method-4 during Rabi 2019

Figure A.7: Trace plots for the prevalence parameter during Kharif 2018, displaying
three MCMC chains for each state using Method-4.
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A.1. MCMC trace plots for Method-4

Figure A.8: Trace plots for the prevalence parameter during Rabi 2019, displaying three
MCMC chains for each state using Method-4 after scaling the sample size by a factor
of 10,000.
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Appendix B

Additional materials for Chapter 6

B.1 MCMC convergence plots

Figure B.1: Trace plots with a purple dashed line at 2000 (burn-in length), ACF
curves, and uniform prior and posterior density plots with vertical lines to represent
95% Credible Intervals (CIs) for three chains of the parameters (β, α, λ, ε) of the model
5 (expAα1

Kexp).
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B.1. MCMC convergence plots

Figure B.2: Trace plots with a purple dashed line at 2000 (burn-in length), ACF
curves, and uniform prior and posterior density plots with vertical lines to represent
95% Credible Intervals (CIs) for three chains of the parameters (β, α, λ, ε) of the model
9 (NB

0,α2
Kexp).
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B.1. MCMC convergence plots

Figure B.3: Trace plots with a purple dashed line at 2000 (burn-in length), ACF
curves, and uniform prior and posterior density plots with vertical lines to represent
95% Credible Intervals (CIs) for three chains of the parameters (β, α, λ, ε) of the model
16 (ND

α1,.86
Kexp).
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B.1. MCMC convergence plots

Figure B.4: Trace plots with a purple dashed line at 2000 (burn-in length), ACF
curves, and uniform prior and posterior density plots with vertical lines to represent
95% Credible Intervals (CIs) for three chains of the parameters (β, α, λ, ε) of the model
15 (GE

α1,.5
Kexp).
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B.1. MCMC convergence plots

Figure B.5: Trace plots with a purple dashed line at 2000 (burn-in length), ACF
curves, and uniform prior and posterior density plots with vertical lines to represent
95% Credible Intervals (CIs) for three chains of the parameters (β, α, λ, ε) of the model
17 (GD

α1
Kexp).
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B.1. MCMC convergence plots

Figure B.6: Trace plots with a purple dashed line at 2000 (burn-in length), ACF
curves, and uniform prior and posterior density plots with vertical lines to represent
95% Credible Intervals (CIs) for three chains of the parameters (β, α, λ, ε) of the model
21 (GF

α1
Kexp).
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B.1. MCMC convergence plots

Figure B.7: Trace plots with a purple dashed line at 2000 (burn-in length), ACF
curves, and uniform prior and posterior density plots with vertical lines to represent
95% Credible Intervals (CIs) for three chains of the parameters (β, α, λ, ε) of the model
22 (GC

α1
Kexp).
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B.2. ROC analysis

B.2 ROC analysis

Year J AUC Se Sp TP FP TN FN
Model 1 (expAα1

Kpwr)
2003 0.85 0.96 1.00 0.71 15 246 2817 1
2004 0.9 0.98 1.00 0.94 28 305 2730 0
2005 0.95 0.99 1.00 0.93 22 164 2849 0
2006 .85 0.97 1.00 0.91 29 343 2640 1
2007 0.85 0.97 1.00 0.88 23 335 2624 1
2008 0.66 0.89 1.00 0.75 24 1009 1926 0
2009 0.84 0.96 0.99 0.89 45 343 2545 2
2010 0.75 0.91 1.00 0.76 45 662 2180 1
2011 0.73 0.92 1.00 0.74 60 750 2032 0
2012 0.68 0.89 0.99 0.69 68 748 1961 5
2013 0.65 0.89 0.97 0.82 78 474 2141 16
2014 0.58 0.85 0.98 0.73 118 752 1792 16
2015 0.63 0.86 0.99 0.72 121 696 1654 10
2016 0.61 0.88 0.96 0.67 104 493 1732 21
2017 0.63 0.87 0.99 0.77 90 596 1530 9
2018 0.56 0.85 0.99 0.67 83 690 1344 9
2019 0.67 0.89 0.97 0.79 99 402 1519 14

Table B.1: Evaluation the model performance of the model 1 (expAα1
Kpwr) using differ-

ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).
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B.2. ROC analysis

Figure B.8: Evaluation the model performance of the model 1 (expAα1
Kpwr) using differ-

ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The sensitivity is the TPR, while the specificity is
1-FPR.
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B.2. ROC analysis

Year J AUC Se Sp TP FP TN FN
Model 5 (expAα1

Kexp)
2003 0.85 0.93 0.875 0.978778975 14 65 2998 2
2004 0.92 0.98 1 0.924876442 28 228 2807 0
2005 0.97 0.99 1 0.973116495 22 81 2932 0
2006 0.90 0.98 0.966666667 0.937646664 29 186 2797 1
2007 .86 0.97 1 0.861101724 24 411 2548 0
2008 0.71 0.91 0.958333333 0.750255537 23 733 2202 1
2009 0.84 0.95 0.936170213 0.902700831 44 281 2607 3
2010 0.77 0.92 0.97826087 0.791695989 45 592 2250 1
2011 0.77 0.93 1 0.785046729 60 598 2184 0
2012 0.72 0.90 0.95890411 0.756736803 70 659 2050 3
2013 0.67 0.90 0.85106383 0.817208413 80 478 2137 14
2014 0.59 0.86 0.902985075 0.682789198 121 787 1694 13
2015 0.68 0.88 0.93129771 0.748510638 122 591 1759 9
2016 0.64 0.90 0.88 0.765842697 110 521 1704 15
2017 0.70 0.89 0.929292929 0.765757291 92 498 1628 7
2018 0.66 0.86 0.956521739 0.700589971 88 609 1425 4
2019 0.73 0.90 0.946902655 0.78292556 107 417 1504 6

0.931778929 0.827962012 1079 7735 37226 79

Table B.2: Evaluation of Model Accuracy using Different Performance Metrics: Youdon
index,(J), Area Under ROC Curve (AUC), Sensitivity (Sen.), Specificity (Spe.), number
of True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives
(FN). By comparing J, AUC, FP, and FN between models, the bold value indicates
better performance or no changes between different models.
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B.2. ROC analysis

Figure B.9: Evaluation the model performance of the model 5 (expAα1
Kexp) using differ-

ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The sensitivity is the TPR, while the specificity is
1-FPR.
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B.2. ROC analysis

Year J AUC Se Sp TP FP TN FN
Model 16 (ND

α1,.86
Kexp)

2003 .85 .96 0.94 0.92 15 254 2809 1
2004 0.88 0.96 0.96 0.90 27 307 2728 1
2005 0.90 0.97 1.00 0.90 22 304 2709 0
2006 0.85 0.96 0.97 0.89 29 343 2640 1
2007 0.82 0.95 0.92 0.91 22 277 2682 2
2008 0.84 0.88 0.88 0.77 21 684 2251 3
2009 0.84 0.95 0.96 0.88 45 338 2550 2
2010 0.71 0.90 0.98 0.73 45 771 2071 1
2011 0.70 0.90 0.98 0.71 59 801 1981 1
2012 0.67 0.88 0.96 0.71 70 795 1914 3
2013 0.65 0.88 0.85 0.80 80 522 2093 14
2014 0.58 0.85 0.90 0.68 121 791 1690 13
2015 0.62 0.85 0.91 0.71 119 686 1664 12
2016 0.82 0.88 0.94 0.68 118 712 1513 7
2017 0.83 0.88 0.90 0.73 89 568 1558 10
2018 0.80 0.85 0.91 0.69 84 636 1398 8
2019 0.71 089 0.96 0.75 108 474 1447 5

Table B.3: Evaluation the model performance of the model 16 (ND
α1,.86

Kexp) using differ-
ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).
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B.2. ROC analysis

Figure B.10: Evaluation the model performance of the model 16 (ND
α1,.86

Kexp) using
different performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sen-
sitivity (Se), specificity (Sp), number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). The sensitivity is the TPR, while the speci-
ficity is 1-FPR.
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B.2. ROC analysis

Year J AUC Se Sp TP FP TN FN
Model 15 (GE

α1,.5
Kexp)

2003 0.85 0.94 0.88 0.98 14 69 2994 2
2004 0.92 0.98 1 0.92 28 233 2802 0
2005 0.97 0.99 1 0.97 22 84 2929 0
2006 0.90 0.98 0.97 0.94 29 190 2793 1
2007 0.88 0.97 1 0.88 24 355 2604 0
2008 0.67 0.90 0.96 0.71 23 848 2087 1
2009 0.83 0.95 0.94 0.90 44 296 2592 3
2010 0.76 0.92 0.96 0.80 44 561 2281 2
2011 0.77 0.92 0.97 0.80 58 550 2232 2
2012 0.71 0.90 0.96 0.75 70 675 2034 3
2013 0.65 0.89 0.84 0.81 79 485 2130 15
2014 0.59 0.86 0.95 0.64 127 887 1594 7
2015 0.66 0.87 0.92 0.74 121 621 1729 10
2016 0.64 0.89 0.94 0.70 117 658 1567 8
2017 0.67 0.89 0.91 0.76 90 511 1615 9
2018 0.63 0.86 0.90 0.73 83 550 1484 9
2019 0.73 0.91 0.96 0.77 108 433 1488 5

Table B.4: Evaluation the model performance of the model 15 (GE
α1,.5

Kexp) using differ-
ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).
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B.2. ROC analysis

Figure B.11: Evaluation the model performance of the model 15 (GE
α1,.5

Kexp) using
different performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sen-
sitivity (Se), specificity (Sp), number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). The sensitivity is the TPR, while the speci-
ficity is 1-FPR.
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B.2. ROC analysis

Year J AUC Sen. Spe. TP FP TN FN
Model 17 (GD

α1
Kexp)

2003 0.86 0.96 0.94 0.92 15 231 2832 1
2004 0.88 0.97 1.00 0.88 28 351 2684 0
2005 0.92 0.96 1.00 0.92 22 256 2757 0
2006 0.87 0.97 0.97 0.90 29 296 2687 1
2007 0.84 0.96 1.00 0.84 24 487 2472 0
2008 0.66 0.88 0.88 0.78 21 636 2299 3
2009 0.84 0.95 0.96 0.89 45 327 2561 2
2010 0.72 0.90 0.98 0.74 45 736 2106 1
2011 0.71 0.91 0.98 0.72 59 770 2012 1
2012 0.67 0.88 0.96 0.72 70 770 1939 3
2013 0.65 0.88 0.84 0.81 4 79 500 2115 15
2014 0.58 0.85 0.93 0.65 124 856 1625 10
2015 0.61 0.85 0.92 0.70 120 712 1638 11
2016 0.60 0.87 0.94 0.66 118 766 1459 7
2017 0.62 0.86 0.90 0.72 89 592 1534 10
2018 0.58 0.85 0.89 0.69 82 634 1400 10
2019 0.69 0.89 0.96 0.73 108 514 1407 5

Table B.5: Evaluation the model performance of the model 17 (GD
α1
Kexp) using different

performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).
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B.2. ROC analysis

Figure B.12: Evaluation the model performance of the model 17 (GD
α1
Kexp) using differ-

ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The sensitivity is the TPR, while the specificity is
1-FPR.
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B.2. ROC analysis

Year J AUC Sen. Spe. TP FP TN FN
Model 21 (GF

α1
Kexp)

2003 0.78 0.92 0.88 0.90 14 291 2772 2
2004 091 0.99 0.96 0.95 27 154 2881 1
2005 0.93 0.99 1.00 0.93 22 197 2816 0
2006 0.83 0.97 0.93 0.90 28 307 2676 2
2007 0.81 0.97 0.96 0.86 23 425 2534 1
2008 0.64 0.86 0.79 0.84 19 460 2475 5
2009 0.83 0.95 0.96 0.87 45 380 2508 2
2010 0.71 0.91 0.96 0.76 44 692 2150 2
2011 0.74 0.91 0.98 0.76 59 670 2112 1
2012 0.66 0.88 0.90 0.75 66 671 2038 7
2013 0.66 0.89 0.91 0.74 86 674 1941 8
2014 0.59 0.83 0.81 0.78 109 547 1934 25
2015 0.61 0.85 0.87 0.74 114 609 1741 17
2016 0.62 0.86 0.88 0.74 110 588 1637 15
2017 0.65 0.87 0.87 0.78 86 470 1656 13
2018 0.63 0.85 0.85 0.78 78 445 1589 14
2019 0.73 0.91 0.98 0.75 111 477 1444 2

Table B.6: Evaluation the model performance of the model 21 (GF
α1
Kexp) using different

performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).
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B.2. ROC analysis

Figure B.13: Evaluation the model performance of the model 21 (GF
α1
Kexp) using differ-

ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The sensitivity is the TPR, while the specificity is
1-FPR.
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B.2. ROC analysis

Year J AUC Se Sp TP FP TN FN
Model 22 (GC

α1
Kexp)

2003 0.72 0.90 0.81 0.91 13 283 2780 3
2004 0.93 0.99 1.00 0.93 28 201 2834 0
2005 0.87 0.98 0.95 0.91 21 265 2748 1
2006 .75 0.95 0.87 0.89 26 342 2641 4
2007 0.77 0.94 0.96 0.81 23 569 2390 1
2008 0.54 0.83 0.79 0.75 19 745 2190 5
2009 0.66 0.90 0.87 0.79 41 607 2281 6
2010 0.70 0.88 0.91 0.79 42 595 2247 4
2011 0.57 0.86 0.70 0.87 42 355 2427 18
2012 0.46 0.80 0.84 0.62 61 1020 1689 12
2013 0.56 0.84 0.74 0.81 70 491 2124 24
2014 0.44 0.77 0.72 0.71 97 715 1766 37
2015 0.38 0.75 0.84 0.54 110 1092 1258 21
2016 0.42 0.78 0.78 0.64 98 812 1413 27
2017 0.48 0.79 0.77 0.71 76 616 1510 23
2018 0.42 0.76 0.87 0.55 80 919 1115 12
2019 0.49 0.79 0.97 0.52 110 929 992 3

Table B.7: Evaluation the model performance of the model 22 (GC
α1
Kexp) using different

performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).
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B.2. ROC analysis

Figure B.14: Evaluation the model performance of the model 22 (GC
α1
Kexp) using differ-

ent performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The sensitivity is the TPR, while the specificity is
1-FPR.
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B.2. ROC analysis

Year J AUC Se Sp TP FP TN FN
Model 24 (GE

α1
Kexp)

2003 0.82 0.93 0.88 0.95 14 157 2906 2
2004 0.93 0.99 0.96 0.97 27 105 2930 1
2005 0.97 0.99 1.00 0.97 22 105 2908 0
2006 0.87 0.98 0.97 0.90 29 292 2691 1
2007 0.83 0.97 1.00 0.83 24 514 2445 0
2008 0.65 0.88 0.79 0.86 19 424 2511 5
2009 0.84 0.95 0.98 0.86 46 392 2499 1
2010 0.75 0.92 0.96 0.79 44 594 2248 2
2011 0.78 0.92 1.00 0.78 60 620 2162 0
2012 0.68 0.89 0.96 0.72 70 767 1942 3
2013 0.66 0.89 0.91 0.74 86 672 1943 8
2014 0.60 0.85 0.81 0.78 109 538 1943 25
2015 0.64 0.86 0.89 0.76 116 569 1781 15
2016 0.64 0.88 0.91 0.72 114 616 1609 11
2017 0.66 0.88 0.91 0.75 90 529 1597 9
2018 0.63 0.86 0.91 0.71 84 583 1451 8
2019 0.74 0.91 0.96 0.77 109 441 1480 4

Table B.8: Evaluation the model performance of the model 24 (GE
α1
Kexp) using different

performance metrics: Youdon index,(J), Area Under ROC Curve (AUC), sensitivity
(Se), specificity (Sp), number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).

240



B.3. Suitability maps

B.3 Suitability maps

Figure B.15: The overall suitability for each county in the USA for the invasive EAB
colonisation under the model 17 (GD

α1
Kexp) and model 16 (ND

α1,.86
Kexp), respectively.

Each of these model is the spatio-temporal colonisation–dispersal model based on esti-
mated ash density and the MAGDD. The value calculated for each county is the mean
of the posterior distribution of the suitability function.
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B.3. Suitability maps

Figure B.16: The Overall suitability for each county in the USA for the invasive EAB
colonisation under the model 22 (GC

α1
Kexp) which is the spatio-temporal colonisation–

dispersal model based on estimated ash density and the MAGDD. The value calculated
for each county is the mean of the posterior distribution of the suitability function.
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B.3. Suitability maps

Figure B.17: The overall suitability for each county in the USA for the invasive EAB
colonisation under the model 17 (GD

α1
Kexp) and model 16 (ND

α1,.86
Kexp), respectively.

Each of these model is the spatio-temporal colonisation–dispersal model based on esti-
mated ash density and the MAGDD. The value calculated for each county is the mean
of the posterior distribution of the suitability function.G21 G24
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B.3. Suitability maps

Figure B.18: The overall suitability for each county in the USA for the invasive EAB
colonisation under the model 15 (GE

α1,0.5
Kexp). Each of these models is the spatio-

temporal colonisation–dispersal model based on estimated ash density and the MAGDD.
The value calculated for each county is the mean of the posterior distribution of the
suitability function.
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