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Abstract

Attenuated total reflectance mid-infrared (ATR-MIRpectrometry and liquid
chromatography — mass spectrometry (LC-MS) have beestigated as techniques
for profiling Scotch Whisky colour (naturally deeie and that originating from
E150a caramel).

ATR-MIR was initially implemented to investigateraanel colourants and it was
found that profiles dominated by colour constitgetduld be obtained by analysing
dried residues of caramel solutions. Using thisrepgh, it was possible to
differentiate between legally permitted E150a casismand the three other EU
recognised classes (not permitted in Scotch). & @alao possible to obtain unique
profiles for different E150a formulations. Thesstutictions between caramels were
maintained when dissolved in a typical blend whjskyfinding that could provide
the opportunity to use E150a caramels as inhenathieaticity markers in Scotch.
Additional factors such as changing caramel comagah, varying the blend matrix,
and caramel fade were also investigated in thiskvamd found in some cases to

influence spectra.

Work progressed from the above findings to compauéivariate data analysis tools
for the prediction of caramel identities, basedtlogir characteristic spectra. PCA
with GLSW and PC-DFA were found to be most sucedgsktit would require

background whisky matrices to be accounted forducalibration.

Analysis of LC-MS data complemented that of ATR-MBhowing the potential to
distinguish between caramel materials as descrdbede. The advantage of ATR-
MIR over LC-MS is its adaptability for field studies a portable device, LC-MS on
the other hand has the ability to identify compdseresponsible for sample
distinctions and it was possible in this work tadficomponents characteristic of
different caramels. Advanced software also enalilstative structures to be
assigned to some components. Additional studieagusiC-MS highlighted its

potential for other applications relating to Scotdor example components

characteristic of different cask histories and mettan ages were found.
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1.0 INTRODUCTION

1.1 The History of Scotch Whisky

The word ‘whisky’ comes from the Gaelic termisge beathg'which translates in

English as ‘water of life’ and in Latin aadua vitaé* This name ties in nicely with

the early history of distilled alcoholic beveragadich were regarded as having
powerful medicinal properties, and whose recipesewsimarily entrusted to the
religious clerics of the tim&Whisky has since grown to be one of the most popul
drinks of leisure, with Scotch Whisky in particuldreing considered as the
international spirit of choice. The success oft8ltas entwined with its extensive
history, in its time being exposed to ever chandaws of taxation and legislation

that have ultimately shaped the industry as inevn today.

Whisky is produced by the art of distilling and #erliest documented record of the
craft in Scotland dates as far back as 1494. Is yeiar an entry in the Scottish
Exchequer Rolls refers to “eight bolls of malt tealF John Cor wherewith to make
aquavitae™ This quantity is sufficient to produce almost 1%@ftles of whisky and

so clearly indicates that distillation was alreadwell established technique by this
time. In fact, the earliest roots of distillatioarcbe traced back as far as the ancient
Egyptians, who introduced the art to Western Euréipe generally considered, that
distilling was then brought to Scotland by missignemonks from Ireland, where
monastic distilleries were already in operatiotthia later twelfth century.

The first record of control in place over whisky 8totland dates back to 1505,
where a monopoly was granted to the Guild of Surgearbers in Edinburgh over
the manufacture and sale of what they called ‘adtea > These being the medical
practitioners of the time, this supports the eadg of whisky for medicinal purposes
and a clear attempt to control distilling for thise only. Closely following this, a
reference to whisky being acquired for drinkinggsiere is noted in the Treasury
Accounts of King James IV during a stay at InvesngsSeptember of 1506. Two
entries were made on the™&nd 17" of the month reading ‘For aqua vite to the



King...” and ‘For ane flacat of aqua vite to the King respectively and record

payment to the local barber.

The production of whisky in these early stages yseditive equipment and lacked
scientific expertise making the spirit potent amdentially harmful. It was not until
the mid sixteenth century that an improvement i@ ¢juality of Scotch began to
develop, due to advances in still designs and iesollition of the monasteries.
Monks had no choice but to put their distillingliskto use causing the knowledge of
whisky production to spread rapidly to oth&s.shortage of grain for food became
evident in the months to follow and alerted thehatities to the widespread practice
of whisky distillation. The lack of availability ajrain caused by the clear violation
of the 1505 monopoly led to the first subjectionSufotch Whisky to government
control in 1597

The government Act of 1597 stated that productibthe distilled product was to be
restricted to Earls, Lords, Barons and Gentlemdrg eould distil for their own use
only. Despite these regulations, the drinking of whiskyScotland for social
purposes had widely increased in popularity, legdom many breaches of the law
and further government attention. An Act of Exorsgs consequently passed by the
Scots Parliament in 1644, fixing the duty as 2s. 8# pint of aquavitae or other
strong liquor. Taxation continued for the remaindérthe seventeenth century,
although it was not strongly imposed. There weraynaariations made to the types

and amounts of duty collected and at one poinectihn was even allowed to lagse.

Taxation began to have a larger impact on the mtomiu of Scotch Whisky after the
Act of the Union with England in 1707. An Englishalintax was extended north
across the border in 1713 meeting strong oppositi@cotland by those arguing that
it directly contradicted the terms of the Treatylbfion. When an attempt was then
made to increase the tax to 3d per bushel of malt7k5, a series of violent riots
resulted. The government backed off after suchrangtreaction and over the next
hundred years the excise laws were in confusioh wat two distilleries being taxed

at the same rate’®



Legitimate distilling did however develop and frdivi51 the Parliament in London
increasingly subjected whisky production to taxati®he extent of this meant that
by 1756 the duty paid on spirits had now reachgfhteiimes that of 1708. The
resulting outcome in Scotland was a thriving traddlicit distilling and although
14000 illegal stills were being confiscated eveealy more than half of the whisky
being enjoyed in Scotland had not contributed anpea duty®®

Smuggling also became common, with the perpetrgiorsgy to extreme measures to
prevent detection. Cases exist of smugglers tratisgowhisky in pig’'s bladders
hidden under clothing and on some occasions cangewlhisky in coffins while
imitating funeral processiorisThis extreme flouting of the law eventually proempt
the Duke of Gordon, one of the largest landownargeantral Scotland, to push
through the Excise Act of 1823, making it profitatbbr distillers to produce whisky
legally. Licensed distillers were now able to proglgpirit of strength equal to that of
the smugglers in return for a licence fee of £108uatly and a payment of 2s. 3d. per
gallon of spirit made in stills of capacity greatean 40 gallons. lllicit distilling

began to subside and virtually disappeared ovendte decadé?

The 1823 legislation laid the foundations for theot8h Whisky industry as it is
known today, with a few points of interest boostihdurther. Up until this point
Scotch Whisky had been made by the fermentatioondy malted barley, using
copper pot stills for distillation. In 1826 Rob&tein patented a new still, which was
soon superseded by an improved version in 1830dneAs Coffey, known today as
the ‘Coffey’ still. This important development eiath whisky to be distilled in a
continuous operation, with the resulting whisky\pding a milder and less intense
spirit, irrespective of the quality of malt utilde This invention introduced the
opportunity to ferment other sources of sugar t@miobalcohol, mainly cereals such
as wheat, maize and rye. Whiskies produced in rttagner became termed grain
whiskies. Around the 1860s blending was pioneergd Amdrew Usher and
constitutes mixing grain whiskies with the highemality malts. Although this
primarily reduced the costs of production, the tighflavours of the products also
extended the appeal of Scotch Whisky to a conduierarger market and even
today over 90% of Scotch sold worldwide is in thenoled fornt?®



A second development assisting the popularity addssof Scotch Whisky came
about in 1863 when the vineyards of France becamvastated by plagues of the
phylloxera beetle. By the 1880s the whole of Eurepes affected, resulting in
significant shortages in wine and brandy. The Sease quick to take advantage
and the Scotch Whisky industry was presented wit @pportunity to capture
international markets, which it did, replacing ktgnwith whisky as the preferred
spirit. Over the following years the industry slusdpslightly due to economic

depression but Scotch Whisky still maintained itgLss as the spirit of choiée.

By the beginning of the twentieth century an istael surfaced among distillers
regarding clarification of what should be classifees ‘whisky’. Malt distillers, grain
distillers and the blended whisky producers all badflicting ideas as to the correct
definition and this turned into a confrontation1fi01. This year saw the Pattison
brothers, owners of a successful distillery attihee, on trial for fraud after mixing
large quantities of grain whisky with a minute ambaf malt and attempting to pass
the product off as high quality m&lfThis prompted the malt distillers to demand
action to limit the term ‘whisky’ to malt whiskieslone and in 1905 two wine and
spirit merchants were prosecuted by the IslingtmroBgh Council for retailing
whisky ‘not of the nature, substance and qualityaeded™

The debate had gone in favour of malt whisky and wtaongly appealed by the
grain distillers and blenders over the next fewrgedn 1908 the government
appointed the Royal Commission, comprised of smenand medical men, the task
of settling the debate. Their findings were whastfiencompassed both grain and
malt whiskies as being authentically Scotch. In ykars that followed, legislation
continued to build from this decision, providingyé definitions of Scotch Whisky
and the beginnings of restrictions on productiortemals, geographical location of

manufacture and a minimum time frame for maturation



1.2 Current Scotch Whisky Legislation

Scotch Whisky is currently legislated under thet8ltdaNVhisky Regulations (SWR)
of 2009 and has come a long way since the firsbuatcof ‘aquavitae’ in Scotland
from 1494'° In the present day Scotch Whisky is exported ter 00 countries
worldwide and in 2014 generated £3.95 billion fbe tUK balance of trad€.
Effective legislation of Scotch Whisky is therefakcrucial importance for the UK
economy, as well as for the protection of branchewiicity and reputation. The
SWR replace the Scotch Whisky Act of 1988, and ohdhe most prominent
additions is the introduction of 5 distinct newemaries of Scotch WhiskY:

* 'Single Malt Scotch Whisky’: which means a Scotch Whisky that has
been distilled in one or more batches at a singildry; from water and

malted barley without the addition of any othereads; and in pot stills.

e ‘Single Grain Scotch Whisky” which means a Scotch Whisky that has
been distilled at a single distillery; from watenalted barley and other
malted or un-malted cereals; and so does not comipythe definitions
of ‘Single Malt Scotch Whisky’ or ‘Blended Scotchhigky'.

» ‘Blended Malt Scotch Whisky’: which means a blend of two or more
Single Malt Scotch Whiskies that have been distié# more than one
distillery.

» ‘Blended Grain Scotch Whisky: which means a blend of two or more
Single Grain Scotch Whiskies that have been distitht more than one
distillery.

* ‘Blended Scotch Whisky: which means a blend of one or more Single

Malt Scotch Whiskies with one or more Single Gragotch Whiskies.



The remaining contents of the SWR provide for tlatwl of the manufacture,
marketing, movement and labelling of Scotch Whidkythese regulations ‘Scotch

Whisky’ is therefore defined as a whisky produae&eotland®

(@) that has been distilled at a distillery in Scotlafdm water and malted
barley (to which only whole grains of other cereatsly be added) all of
which have been —

I. processed at that distillery into a mash;
II. converted at that distillery into a fermentable swhte only by
endogenous enzyme systems; and
lll. fermented at that distillery only by the additidnyeast

(b) that has been distilled at an alcoholic strengthvimume of less than 94.8
per cent so that the distillate has an aroma arstdalerived from the raw
materials used in, and the method of its produgtion

(c) that has been matured only in oak casks of a c#pamt exceeding 700
litres;

(d) that has been matured in Scotland

(e) that has been matured for a period of not less thaee years;

() that has been matured only in an excise warehouagpermitted place;

(g) that retains the colour, aroma and taste derivearfrthe raw materials used
in, and the method of, its production and matunatio

(h) to which no substance has been added, or to whicButbstance has been
added except —

I. water;
[I. plain spirit caramel colouring; or
lll. water and plain spirit caramel colouring; and
(i) that has a minimum alcoholic strength by voluméGQ$fo.

If the whisky product does not comply with thesd@csstipulations then it cannot be
labelled, packaged, sold or advertised as Scotcharketed in any way which
implies a Scotch product. Neither can it be movetiveen countries while still in the

wooden casks used for maturation or any other wocdatainer.



1.3 Current Manufacturing Process

The production of Scotch Whisky is not the resuitao single discovery; the
manufacture has instead developed throughout goryi In the present day the
process is now established as having five main sstapalting, mashing,
fermentation, distillation and maturation. Thesagsts are utilised both in the
production of grain and malt whiskies, however ¢hare a number of differences

between the two that will be outlined where appiatp?

1.3.1 Malting

Malting is the process by which barley is converted malted barley, to generate
enzymes which will later be used to convert stantb fermentable sugars. Barley
(Figure 1.1) consists of two main components: th#éryo which is the living

structure that develops into a new plant; and tidosperm which is the store of

starch from where the new plant draws its food Eapf?

Endosperm |

Figure 1.1: Cross section of a barley grain illustting embryo and endosperm.

Malting is a three step process consisting of $begpgermination and drying.
Steeping involves the immersion of barley grainsvater for a period of typically
two to three days, the cycle depending on the taken for the moisture content of
the barley to rise to the desired level. This pssaeiggers the growth mechanism of
the embryo, prompting the barley to germinate. Geation involves the activation

of enzymes which begin to convert the barley’'scétanto sugar, providing energy



for the developing shoot. Traditionally, the barlegs laid out on a stone or tiled
malting floor for seven to fourteen days for thieps where it was required to be
turned regularly to allow an even process and prethee build up of heat. The large
amount of space required and the need for skilleckers however, has led to the
development of more modern techniques and largmsiare now commonly used.
The barley is slowly turned in these drums allowalhgrains to receive similar

treatment and the air conditions can also be chedroto provide the ideal

environment for germination. Once complete, thetnsathen transferred into kilns

for drying, which halts the germination to leavéiinel a source of enzymés™

The heat for drying is provided by a furnace at blase of the kiln and is evenly
distributed by a hot air chamber to the kiln suefathe temperature however must
always be kept below 70 °C or the enzymes will estrdyed The fuel source for
the furnace was traditionally peat, which has naerbgradually replaced by coal.
Peat can still be added to the furnace in smalluatsohowever, as it is well known
for imparting a recognizable smoky flavour on tieaf whisky* After the drying
process the malt is removed from the kiln and stdoe several weeks to allow heat
to dissipate naturally — hot malt would prove cewptoductive at later stages in
production. In the present day there are only dlsmanber of distilleries which use
their own malting systems as consistent malt cestead be acquired from a

specialised maltstéf.

1.3.2 Mashing

In preparation for mashing the dried malt is groumid a coarse flour known as
grist. When grain whiskies are being manufactuogder cooked unmalted cereals
are incorporated into the flour. The mashing predégn involves mixing the grist
with hot water in a vessel known as the Mash-Tud gpically includes three
additions of water. The first addition of wateras approximately 63 °C and the
purpose is to rupture the starch cells and all@aweiizymes generated during malting
to convert the starch into sugars. The result isf skep is the formation of a sugary
liquid known as ‘wort’, which is drained from thed#h-Tun to a vessel known as

the underback.



The second addition of water to the grist occuralaiut 78°C and assists in the
solubilisation of any starch not converted at thedr temperature. The Mash-Tun is
then drained for a second time to allow a sufficignantity of wort to progress
forward for fermentation. The final water is addedthe Mash-Tun at even higher
temperatures of between ~ 80 — 90°C. The primangtion of this is to strip away
any last remaining sugars into a Sparge tank, thgtresulting liquid being recycled
and used for the first application of water to tlext mash. The solid grist which
remains in the Mash-Tun after draining is callechffl and this is sold on as cattle

feed2,12,15

1.3.3 Fermentation

Before fermentation can begin the wort needs tocheled to a temperature of
around 22 - 24°C. Once this is achieved the sulggund can then be transferred to
fermentation vessels known as washbacks, wheré geadded and the fermentation
process starts. The particular species of yeaksadtiin the production of Scotch
Whisky is generally Saccharomyces cerevisiaand its primary purpose is to
convert the sugars in the wort to ethanol. Theidigesulting after fermentation
(typically 2 - 5 days) is known as the wash and has ethanol content of
approximately 8 - 10%°" Although the remaining bulk of the wash is wagenall
quantities of other components, termed congeneespr@sent and their production
depends on factors such8s:

the genetic properties of the yeast strain;

» the viability and vitality of the yeast;

* initial aeration of the wort;

» the temperature profile during fermentation; and

* microbial contamination.

Typical congeners produced during fermentationuidel higher alcohols such as
butyl alcohol and propyl alcohol; aldehydes andokes such as acetaldehyde,
diacetyl and furfural; sulphur compounds for exanplimethyl sulphide; acid

compounds; and esters like ethyl acetate and is¢-acetate. These components are



very important in the production of whisky, influeng the unique flavour and

organoleptic qualities of the final distilled pradz’

1.3.4 Distillation

The low ethanol content wash from fermentation {g@ming its various congeners)
is next passed on to the distillation stage of potidn; distillation being a process
that allows the separation of components from aidignixture (or partial separation

that increases the concentration of a componentgXpjoiting differences in the

boiling points and/or volatility of the mixture cqonents. This process in Scotch
Whisky production therefore enables the alcoholiergyth of the spirit to be

increased from ~8 — 10% to a level adequate fagsdiaation as a Scotch Whisky
(>40% in the final product as laid out by the SWR).

When considered individually, pure ethanol boils78t5°C whilst water boils at
100°C. When mixed together however, the resultiggid will typically possess a
boiling point at a temperature somewhere betweent®o; the value of which
depends on the relative concentrations of ethandlveater. This can be explained
with reference to Raoult's Law, which states tha¢ tvapour pressure of each
component of an ideal solution will be equal to treour pressure of the pure
component (at the same temperature) scaled by anrdamroportional to the mole
fraction of that component. This has been depigtglin Figure 1.2a for an ideal
mixture of two liquids, showing how the total vapopressure would change

depending on the mole fractiotfs™
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Figure 1.2: (a) Plot depicting the total vapour pssure for an ideal mixture of two components at
different mole fractions and (b) plot showing a ptige deviation from Raoult’'s Law as observed for
a non ideal mixture of two components such as etbaand water-

It is important to note at this point, that Raasilaw is only true for ideal mixtures,

whereby the forces between the particles in salui@ exactly the same as those in

the pure liquids. A mixture of ethanol and watem@ an ideal solution and will

result in a positive deviation from Raoult’'s Law depicted within Figure 1.2b. It is

clear from Figure 1.2b that the maximum vapour gues of an ethanol:water

mixture is actually greater than that of eithertlo¢ individual components. This

occurs because when in solution, the intermoledolaes between the molecules of

ethanol and water are less than those observetthdopure components. At certain

compositions therefore, the molecules of a nontidaature can be liberated from
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solution more easily than they would be from theediquids. The maximum vapour
pressure for a mixture of ethanol and water is kmaav occur at a composition of
95.6% ethanol.

The higher the vapour pressure of a mixture thestatg boiling point will be, as less
heat is required to overcome the intermoleculaaetibns between molecules. For a
mixture of ethanol and water therefore (where thpour pressure varies depending
on the relative concentrations of these componehéshoiling point will change in

accordance with composition as illustrated withigue 1.3'%°

Boiling Point Boiling Point

I\ A

(100)

Liquid Composition

Tife------m o Dy
(78.5C)
R (78.2C)
X, X, !
0% Ethanol + 100% Ethanol
% by mass :
100% Water ! 0% Water
\
95.6%
ethanol

Figure 1.3: Plot illustrating the relationship beteen boiling point and composition (% by mass) for
an ethanol and water mixture. The affect on vapocomposition by heating an ethanol:water
mixture of composition Xis also demonstratetf.
It is clearly demonstrated by this figure that thaling point of the liquid mixture
generally decreases as the percentage of ethamotases. Figure 1.3 also
demonstrates how the vapour composition is affesfeeh a solution of ethanol and
water is distilled. A liquid ethanol:water mixtuvdgth composition X will boil at a
temperature (4) given by the liquid composition curve and the mapproduced will
have a composition of 2{which has a higher concentration of ethanol caegh&o
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the starting liquid. This is due to the fact thia¢ tmolecules of ethanol, which are
more volatile than water, can be liberated mordyefiem solution in this non-ideal
mixture than they can from pure ethanol. When cosdd, the vapour will maintain
the composition of Xand if the boiling-condensing sequence were coatinthe
concentration of ethanol can be increased uniquad of 95.6% ethanol is obtained.
At this point an azeotropic mixture is obtained &nd no longer possible to increase
the concentration of ethanol by boililf®

This is the process by which the low ethanol cantessh from fermentation (with
ethanol content of ~8-10%) is concentrated to ml@wa spirit of adequate ethanol
concentration to be acquired for maturation (thetnstep in Scotch Whisky
production). Congeners present in the original waghalso be present within the
resulting spirit: those of high volatility vapomgj to a greater extent earlier on during
distillation and those with lower volatilities peséntially vaporising later in the

process %t

Scotch whiskies are distilled in apparatus knowristéils’ and there are currently
two types used by the industry: the pot still, whias been traditionally used for the
production of malt whiskies; and the Coffey stilhieh was developed later and is
now used in the manufacture of grain whiskfeEach method of distillation will be

discussed separately over the following sections.

1.3.4.1 Pot-still for distillation of malt whiskies

The distillation of malt whiskies takes place usagair of copper pot-stills. Copper
was traditionally chosen for this purpose due t gbod malleability and high
conductance of heat; however more recently it gepated for its ability to remove
unwanted sulphurous compounds, which provide usplga flavours and
aromas’>?® The pot still can assume many shapes, heightssares and it is
believed that the structure is important for defamg the individual characteristics
of a malt due to variations in contact with the peyg? The pot still therefore varies
from one distillery to another, although the geneomponents remain the same and

are illustrated by Figure 1.4. Although a pot stdhsists of a number of components,
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the major ones include: a broad pot, where theditiu be distilled is contained; the
swan neck bending at the head to the lyne armgaidmnch vapours from the pot are
directed; and the condenser, where these vapoues ieto a liquid distillaté?

Condenser

WATER OUT +—

Lyne
Arm
Swan
neck Condenser L
tubes
— T
-~ N
Y
Pot —
+— WATER IN
Steam
/ coil

Figure 1.4: Schematic illustrating the general corapents of a pot stilf’

The distillation process begins by heating the wasim fermentation in the first of
the two pot stills, referred to as the wash s@itiginally the still would have been
heated by peat or coal fires, however this commaogulted in burnt solids adhering
to the bottom of the still, tainting the distillatéletal chains known as ‘rummagers’
were fitted as a solution to this, rotating arotinel base of the wash still to prevent
the build up of charred material. Most distilleriesday employ steam coils for
heating which avoid these problems and give mocarate heat control. The wash is
therefore steam heated and maintained at a teraperfatt below the boiling point
of water, allowing the alcohol and other componethtst are most volatile to

vaporise and pass over the still neck and lyneiatonthe condensér.>

Many modern distilleries utilise a shell and tulmndenser design (as shown in

Figure 1.4), which consists of multiple straightpper tubes through which a
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constant flow of water runs from bottom to top. Whee vapours from the wash
reach the top of the tubes they condense and flomnaards where the resulting
distillate, known as the low wines, is collectedarnvessel termed the low wines
receiver. Alternatively the more traditional worobtcondenser can be incorporated
(Figure 1.5) where the vapours are condensed whaleelling along a ‘worm’
shaped copper tube which is completely immersed itank of cooling water,
entering at the base of the tt75°
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Figure 1.5: lllustration of a worm tub condenséft.
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Distillation in the wash still usually takes betwe® — 8 hours to complete, with the
exact time depending on the shape and size otithé ke resulting low wine has an
approximate ethanol content of 20% v/v and now ttutes around a third of the
original volume. At this point the low wines ararnsferred into the second of the
pair of stills, the spirit still, where distillatiois undertaken again but with a great

deal more contrdl®

This second distillation can be considered asifraated and is separated into three

parts known as the foreshots, the middle cut aedeimts**2°

» The foreshotsconsist of the most volatile components and inelaothny of

the congener compounds mentioned in the fermenta@stion. There are
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also a number of residues present from the fittlidition, mainly fatty acids
and their esters, which are not highly volatile lng#come soluble more
quickly at the higher alcohol concentration. Théseeshots tend to have
pungent, unpleasant flavours with some componeestiagbdangerous to
health. For these reasons they are not retainghraf the final spirit and

are transferred back to the low wines receiver.

* The middle cutis the portion of the distillate that is of theatjty required to
progress onwards for maturation. The changeovehefdistillate from the
foreshots to the middle cut is typically monitodeyl the addition of water to
the distillate, which will appear cloudy until tHereshots have mostly
passed. The middle cut, referred to as ‘new-makeallected in a vessel
called the spirit receiver where the alcohol comegion is regularly
monitored until reaching the desired value, apprately 65 — 75 % viv

being typical.

* The feints make up the final fraction and consist of the congnts of lowest
volatility. Like the foreshots, the feints fracti@ontains compounds harmful
to the aroma of the final whisky and so is alsedied back to the low wines
receiver to be reused in the next spirit stillidagion. The feints portion isn’'t
completely unwanted however and is rich in pheaold certain compounds
responsible for smoky aromas, all of which berié#t final spirit. The cut off
point for this fraction therefore has to be cargfaletermined to permit the
addition of some flavours but not others.

1.3.4.2 Coffey still for distillation of grain whides

The production of grain whiskies incorporates amnbus distillation and the scale of
operations is such that one grain distillery camdsponsible for six times the annual
output of the large malt distilleries. The devel@mhof continuous distillation links
back to 1827 when Robert Stein devised and patehtedirst still for this use. His
design was however rather complex and became sgmetsin 1830 by Aeneas
Coffey, whose invention is known as the Patent affey still.
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The Coffey still is in use today for the manufaetof grain whisky in a form that has
remained fundamentally unchanged since 1830. Thergk construction of the
Coffey still entails two tower sections, an anatysed a rectifier column, the
purpose of the former being to separate the alcbbol the wash obtained during
fermentation and the latter designed to allow remhowf unwanted flavour
compounds from the final spirit. The essential dest of the Coffey still are
highlighted by Figure 1.6’
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Heads racycle from fusel oil still d
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Figure 1.6: Diagram showing the essential featureta Coffey still: HW, hot wash; X, wash coil;
HSV, hot spirit vapour*’

Both columns of the Coffey still stand side by s@hel can be up to 60 feet in height.

Internally the two columns consist of a series @ihpartments separated by a large

number of plates, usually 35-40 make up the analgsel up to 60 for the

rectifier?*2’ Firstly the wash is pumped along a copper pipe the top of the

rectifier column, coming straight from the fermeida vessel at a temperature of
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about 30 °C. The wash travels downwards betweenetttdier platesyia bends in
the wash coil, constantly rising in temperature ttueontact with vapour from the
analyser. By the time the wash reaches the bottbtheorectifier it has reached
about 94 °C and is directed into the top of theyeea columrf®** Some other still
designs used in grain whisky production do not iregihis process and pre-heat the

wash in a separate container before dischargiaigtiite top of the analysét.

The hot wash flows out of the piping at the toptleé analyser and across the top
plate where it can flow through the downpipe (l&dzEfdowncomer’ in Figure 1.6)
and cascade through the subsequent compartmenke allay to the bottom. Steam
is fed into the analyser from its base allowingtimggaof the entire column and the
vapour pressure is sufficient to allow it to bubblgo the liquid washvia
perforations in each tray, while preventing anyuid falling though them. The
principle of operation of the analyser is to sefmithe wash components by the
countercurrent flow of liquid and vapour. The whistworks is that when the vapour
passes through the liquid some of the less volatiteponents begin to condense and
transfer latent heat to the wash. This causes thiee molatile components of the
liquid to boil and so enriches the rising vapouithvalcohol. The alcohol and other
components of sufficient volatility, make their wiythe top of the analyser column
where they are passed into the rectifier towaits base. The hot spirit vapour from
the analyser rises through the rectifier and pregively condenses on contact with
the pipeline coiling through the column. This agegsults in a countercurrent flow
as while the vapour is rising, the condensing tcgscend&® 2327

The temperature gradient of the rectifier columoses less volatile components in
the vapour to collect in the lower plates and tlerarvolatile components to reform
into liquid in the higher trays where temperatuags lower. Liquid of different
composition is therefore obtained in different camments of the rectifier tower and
collection of the grain spirit is taken from theagd which corresponds to a
concentration of about 94% alcohol. By law, the ergpmit of ethanol content from
continuous distillation cannot exceed 94.8%8 Most unwanted congeners have
consequently been separated out onto differeneglat this point, allowing the
production of a milder and less intense whisky patdollowing maturation.
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1.3.5 Maturation

On completion of the distillation process, the waity colourless new make spirit is
transferred to oak casks for maturation. It is ¢hesk casks which are acknowledged
as being one of the most important factors inflimpdhe final quality of a Scotch
Whisky. During maturation the pungent and oftenleagant aromas of the distillate
transform into the typical mellow characteristicss@ciated with a mature whisky

and the spirit changes colour from being virtualsar to a golden browi??

The oak casks used by the Scotch Whisky industry mawood variety and size but
cannot legally exceed 700 L, as enforced by the SWRraditionally casks
consisting of Spanish oak, previously used for firenentation and shipment of
sherry, were preferred for the maturation of Scatold they are still highly sought
after today due to their excellent maturation poé&t@and longer lifespan. The sherry
casks used are mainly 500 L butts, however theg le@en in short supply since the
early 20" century when containers for sherry transportatiene gradually replaced
by bulk tanker$>%® As a consequence, processes such as wine-treaamentine-
seasoning have since been developed as alternpto@edures to emulate the

conditions of the originally used sherry cagk®+!

The main supplies of oak casks in the present dayherefore imported from the
USA and consist of ex-bourbon casks manufacturetgusmerican oak. There are
two different barrels of this type: the standingrbh with a capacity of about 180 L;
and the hogshead barrel, which is built from dieadded casks, using a larger
number of staves, to hold an increased volume pfagimately 250 1*° These

casks are relatively easy to acquire due to reiguisin the USA which specify that
only newly charred oak casks can be used for thenatgon of bourbon. Therefore
rather then the casks being disposed of after @m® they can be re-used by
distilleries in Scotland? One final type of cask that is relatively raretis puncheon,

which has similar capacity to a butt. These araecally prepared using American

oak and are newly manufactured in the UK and cdasedore usé®
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Oak casks manufactured for the bourbon and sheduystries are both subjected to
heat treatment during cooperage. This process gelfhumportant during cask
construction, as it holds an important role in dask’s ability to mature the spirit
that it containg® Bourbon casks are heat treated by two methodeetiieea thermal
gradient through the wood. Initially the cask iadted, which is a milder form of
heating achieved over a more prolonged time peridds is then followed by
charring, which is a much faster process and ire®kleating the inside of the cask
with a gas burner until it catches fire and becoosbonised. This results in a layer
of active carbon or char on top of the already texhsayer>*° Sherry butts are
typically heat treated by placing them over an ofenat 200 °C, a procedure which
also aids in making the cask more pliable for augninto shapé?

Although different methods of heat treatment exisg objectives of each are the

same?®3!

* To degrade wood polymers and so achieve the foomati many important
colour and flavour related compounds.

* To eliminate components present in the wood that kamown to transfer
unpleasant aromas to the maturing spirit.

 To aid in the removal of undesirable charactessgoesent in the distillate,

via the active carbon layer.

Once the new make spirit has been transferredo@kacasks, the maturation process
can begin. Most countries enforce a minimum timieséar maturation and for
Scotch Whisky this is legally assigned as at I8agtars™’ During the time spent in
the cask, major changes occur to the chemical ceitipo of the spirit, both
enhancing its flavour and introducing colour. Thare a vast number of reactions
occurring during the process which are respondiriéhese chemical changes and

they can be divided into: additive, subtractive amndractive reactions >3

» Additive reactions refer to the extraction of components from caslodvo
during maturation. The main constituents extrackemn oak casks are

thermal degradation products of the wood polymethilose, hemicellulose
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and lignin, originating from the heat treatmentgstaf cask manufacture.
Constituents such as vanillin, syringaldehyde, fevaidehyde, furfural and
sinapaldehyde originate from wood polymers and tedvbeen identified as
having sensory importance to the final spirit. Eggltous wood substances
can also be extracted from the cask and includepoomds such as: oak
lactones, associated with a coconut aroma; eugeroth imparts a clove
like flavour; and tannic substances including gadind ellagic acid. Another
source of additive components can be from carryofeompounds from the
previous use of a cask, for example it is posdiblielentify characteristics of
sherry and bourbon in whisky matured in ex-shemg ax-bourbon casks

respectively.

* Subtractive reactions incorporate the evaporation of low boiling point
compounds through the cask wood and can also iavtile absorption of
compounds onto the active carbon surface of thk. CHse most common
subtractive reactions facilitate the removal of esithble sulphur related

compounds by both of these methods.

* Interactive reactions take place as maturation starts to progress and
incorporate components of the original distillaither reacting with each
other or with components which have been extraftesh the oak wood.
Esterification reactions are very common, with &eg acids interacting with

the ethanol and many important whisky aromas avdumred by this manner.

The final composition of the whisky is very compldxe to the vast number of
components introduced during maturation, meaningide variety of flavour and
colour related compounds are fornfédThe exact make-up from one whisky to
another is dependent on a number of cask varia#dedifferent cask conditions will
affect the extent to which components are extraftted the wood and consequently
the reactions which occur to the spirit thereaftér:** The affects of these variables

on whisky colour will be discussed in more detaisection 1.4.1.
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1.3.6 Blending and Bottling

Blending was pioneered by Andrew Usher in Edinbuilghing the early 1860s and
describes the process of mixing single whiskieprtmduce a product of unique and
recognizable flavout? The individual grain and malt whiskies chosenddslend all

offer a specific flavour profile and are selecteddd on their ability to complement
and enhance each others flavours. Malt whiskiesisbrof a greater quantity of
flavour congeners and so their role in a blendigprovide the key flavours. The
grain whiskies possess lighter flavours and sa thedition imparts a more rounded
character on the blend, toning down harsh notetstziso revealing certain flavours

of the malt$?®

Blending also enables a consistency of charactdretachieved, as it reduces the
differences which may be seen between the indiViguaducts due to the wide
variety of manufacturing parameters. Blended wiskian contain anything from
about 20 to 50 different malts combined with 2 gr&in whiskies, the proportion of
which depends entirely on the requirements sebgdhe blender, but typically more
grain whisky is used than malt. Preparing a blenal complex procedure and heavily
relies on the expertise and knowledge of the bler@embining the whiskies is not
as simple as following step by step instructionsl amly the experience of the
blender allows for mixing of the appropriate wheskiat adequate proportions to
achieve the desired characteristics. Consisteneyveés harder to accomplish, with
component whiskies varying in quality and on somecagions becoming
unavailable. The blender therefore has to draw upeir knowledge to adapt the

blend formula as required?®

The first task in blending is to locate and reteig¢kie specific casks required for the
blend formulation. The blender can quickly asskessensory characteristics of each
cask by drawing a small sample and testing the asdmy nose. Casks of satisfactory
quality are then combined together in the correcpertions by draining into
stainless steel vats where they are mixed thorgugking mechanical agitators or
compressed air. The resulting product is assesgath &y the blender who can

highlight any problems and recommend any furthek @alditions>>°
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Once vatting is complete, many blenders believe‘tharrying’ is the next essential
step for optimising the quality of the blend. Tmsolves storing the vatted whisky
in exhausted wooden casks for a period of timdltavahe components of the blend
to come together full§? After marrying, there are only a few final stepscbmplete

before bottling. The alcoholic strength of the vidyiseeds to be reduced, typically to
40% or 43%, and this is achieved by dilution witater®® Once diluted the product
then requires filtration, roughly first to elimimabits of particulate material and
secondly, using chill filtration to remove any camnents that will cause a haze
when the whisky is stored in the bottfé® The final stage before bottling is the
addition of food grade caramel. The caramel do¢smypart any flavour or taste on
the whisky due to the low levels introduced, indtéa primary purpose is to achieve
consistency of colour from one batch to anoffi€?.The influence of caramel on

whisky colour will be discussed in section 1.4.2.
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1.4 The Origins of Colour in Scotch Whisky

The colour of Scotch Whisky is known to originatenii two sources: the natural

maturation process; ania the addition of plain spirit caramef®

1.4.1 Natural Colour

The natural colour of Scotch Whisky is known tagorate during maturation in oak
casks, where the virtually colourless distillateampes into the golden brown
associated with the final product. Colour relatednponents are introduced to the
spirit by their extraction from the cask wood, theee major constituents of which
are lignin, cellulose and hemicelluloSE® Heat treatment of casks during
manufacture promotes thermal degradation of thesedwpolymers and it is the
breakdown of hemicellulose in particular that isught to contribute to whisky
colour during maturation. Certain tannic substandesved from lignin are also
believed to contribute to whisky colour; howevee titegradation products of this

wood polymer predominantly influence flavair’

Hemicelluloses are branched polymers comprisingseVeral different sugar
monomers, such as glucose, xylose, arabinose alattgse. On degradation,
hemicellulose breaks down into its constituent ssigahich then degrade further
into caramelisation products, such as furfural, roygmethyl furfural and maltol.
These sugar condensation products then go on tonteechighly condensed
structures and it is these complex materials thattlaought to provide the brown

colour of whisky?*"®

The reactions involved in the formation of colowridg maturation are very
complex and as a consequence very little is kndvawiathe exact chemical structure
of natural colour arising during maturation. Th&eatent colour intensities and hues
associated with different whiskies however, arevkmdo depend on a number of

cask variables such as: cask history, fill streregtth maturation agg:>*3%34
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1.4.1.1 Cask history
Sherry vs. bourbon casks

As has been mentioned before, the majority of cased for the maturation of
Scotch Whisky have previously been used for theagmof either sherry or bourbon.
This previous cask use will change the compositibnolour extractives as certain
compounds may have already been completely reméneed the wood? The
previous beverage may also have caused the dirertdoect formation of new
colour related compounds in the wood and theseawitisequently be available for
extraction during subsequent whisky maturafibSherry casks, despite the milder
use of heat treatment, are known to impart higlelgwef colour on a Scotch Whisky
during maturation and these originate from the joesly used sherry itself. Ex-
bourbon casks on the other hand are known to paseny slight amounts of colour

from bourbon already absorbed in the oak wood.

Maturation in a newly charred cask, which has neérb used previously with
bourbon or sherry, imparts a high degree of cotouhe maturing spirit. This is a
direct result of the heat treatment which is uralerh in its manufacture, as research
has shown that the level of colour components etd¢dagenerally increases with the
intensity of toasting and charridg>! This is reasonable to suggest as the natural
colour of Scotch has already been proposed asnatigg from the degradation of

wood polymers.

First fill vs. refill casks

In the Scotch Whisky industry, casks are re-usedersé times for maturation,
introducing a further variable affecting the prefif the final product. Repeated use
of casks results in a decrease in the quantityotdut components present in the
wood and this leads to changes in the charact=isti the maturing spirit.
Comparison of first fill and refill casks do showat the majority of components
remain present, however the levels observed arerloihe reduced amounts of cask
extractives will also limit interactive reactionsurthg maturation, therefore

impacting on the final whisky compositigh®*>°
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Casks which no longer produce satisfactory matmatdue to depletion of cask
extractions from continued re-use, can undergon@gion. This process involves
scraping away the original char to create a newdsvarface and then re-charring
the cask with a gas burner for a controlled peabtime. This promotes the thermal
degradation of wood polymers again to yield simdamponents as a newly charred
cask?® It is however reported that re-charring does resttare the maturation

potential of used barrels to the same extent afva one, which is likely a result of

certain oak constituents, such as lactones andlygdible tannins, being unable to
regeneraté’®“% Re-charring is also a difficult process to controle to variable

moisture and spirit contents in the wood of différeasks. The level of colour
produced from regenerated casks can thereforedegrgnding on the length of time

employed for charring’

1.4.1.2 Other variables

A cask’s history covers the factors responsibleliergreatest degree of variation
observed between whiskies after maturation. Othdekles such as maturation time

and fill strength however, will also influence thaturing spirit>>’

Maturation time

The time frame for maturation is variable and aligfio a minimum of three years is
the legal requirement, maturation periods of tetwinty years are not uncomm®on.
Studies have shown that the extraction of coloumdumaturation generally occurs
most rapidly over the first year of storage in @akks. From this point onwards the
extraction rate is reduced, however a steady iserea colour is still observed
throughout maturatioft*® A longer maturation time therefore allows for @ager
change in chemical composition and so the longeturagon progresses for, the
more colour will develop. Although colour is thesed known to be affected by
maturation time, the important reactions involvedts generation remain unknown.
The main restriction which has so far prevented ihithat modelling of maturation
in the laboratory does not allow appreciable olmgsns within a practical

timescale®
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Cask fill strength

New make spirits from distillation are typicallylléid into casks at a constant
strength; however variations in fill strength wéllter the extent to which certain
congeners are extracted from the oak wood. Lovlestfengths favour the extraction
of components that are water soluble, while highleohol concentrations extract
components which are more soluble in ethahdl.This will consequently have an
affect on the colour intensity obtained and cerdirdies have shown that increasing

the fill strength will reduce the level of colouevtloped during maturatiofi*#2

1.4.2 Caramel Colour

Colourants have played a vital role in the food baderage industry for many years,
being added to food to: make up for colour that rbayost during processing; add
consumer appeal to an otherwise colourless prodocinfer a taste by colour
association; and to provide colour consistency ftoatch to batcA*** The SWR

legally permit the use of plain spirit caramel (Bapin Scotch Whisky with the

purpose of achieving consistency of colour in ihalfproduct:®?°

The use of caramel colourings in foodstuffs is vetgsely legislated by the
European Union, which has adopted the four intenatly recognised caramel
classes as legal: E150a, E150b, E150c and E15@seTdaramels are regulated by
the European Union Directive 2008/128/EC and aserdeed in Table 1.134°

Table 1.1: Descriptions of the four caramel classesognised by the European Union Directive
2008/128/EC™*°

Caramel - : Colloidal
Caramel name Restrictions on Preparation
Class charge
E150a Plain Spirit Carame] No ammonium or sulphite compoundls Negative
can be used
E150b Caustic Sulphite In the presence of sulphites but nd Negative
Caramel ammonium compounds
E150c Ammonia Caramel In the presence of ammonium Positive
compounds but no sulphite compour|ds
E150d Sulphite Ammonia In the presence of both sulphite angl Negative
Caramel ammonium compounds
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Caramel colourants are described by their legmtatis dark brown to black liquids
or solids and there are several means by whichctiiuring can be produced. The
two most important reactions involved in the forimatof colour components, also

known as browning, ar®:

* The Maillard reaction — a series of reactions in which sugars, aldehgdds
ketones react with nitrogen containing compoundthépresence of heat to

form complex mixtures of colour and flavour relatmmmpounds.

» Caramelisation reactions— a series of reactions in which sugars undergo

pyrolysis in the absence of nitrogen containing pounds.

E150 products are therefore produced by the cdyefohtrolled heat treatment of
carbohydrates, which are the monomers glucose raictbe, and polymers thereof
(e.g. glucose syrups, sucrose, dextrose). Thigisally done in the presence of food
grade acids, alkalis and salts to promote the ogisation process; however
restrictions on preparation must be adhered taliféerent caramel classes as stated
in Table 1.1***® Theses different parameters of manufacture résuitifferences
being observed in the final composition of thesaels; however the mechanisms
of colour formation remain consistefitDuring caramelisation reactions, sugars
initially undergo dehydration on exposure to hewmlhjch creates a range of low
molecular weight (LMW) compounds providing only yeight colour. Many of
these LMW compounds then begin to undergo condensair polymerisation
reactions that result in the formation of stronglyloured high molecular weight
(HMW) polymers. Caramel colourants are therefor@eay complex mixture of
components and as a result, there is currently itk known about their exact
chemical natures. It has been suggested that th&VLivhctions of caramel
colourants comprise of compounds such as furan vateres (e.g. 5-
(hydroxymethyl)-2-furfural (a.k.a. HMF) and 2-hyas@cetylfuran (HAF)),
furanones (e.g. hydroxydimethyl furanone (HDF))gmpones (e.g. maltol), a variety
of saccharides and many other componé&titéThe HMW components on the other
hand remain mostly uncharacterised and are sugbestebeing made up of

caramelan (©H1g09), caramelen (6Hs0025) and caramelin  (6sH1020s1);
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polymeric products that constitute a mixture offatiént compounds whose

structures are currently unknowh!”*°Maillard reactions follow a similar scheme as

described for caramelisation however only occurtle presence of nitrogen

containing components; they are therefore typicallyserved during only the

production of E150c and E150d caramels. Figurehhs been included below to

help demonstrate an example reaction scheme ofc#ramelisation process,

representing the production of a few key LMW comgrus from glucosé’*®

1,2-enediol
H—C—OH
.
HO— ¢ Enolisation
H—C——OH
H—C—OH
CH,OH
-H20
c—/oO
L,
b
H—‘C—OH
H—‘C—OH
C‘JHZOH

Polymerish

Glucose

H—C—O

C—OH

HO—C——H

H——C——OH

H——C——OH

CH,OH

HsC

\

HO

Enolisation
—_—

2,3-enediol
CH,0H
C——OH
o)
H—C——O0H
H—C—OH
CH,0H

CHs

\\o

HDF

U Polymerisation

HMW
Polymeric
Products

Polymerisation

Figure 1.7: An example of reaction schemes that ocduring the caramelisation process,
demonstrating the formation of HMF, HDF and HAF (LMV components) from glucose, that
subsequently undergo polymerisation reactions tonfioHMW polymeric products?
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As described above, caramel colour is a complexurexof components and some
of the HMW polymers are known to form colloidal aggates. These aggregates can
be either positively or negatively charged depegdipon the reactants used in their
manufacture (see Table 1.1). This is an importaature of caramels, which often
determines the most appropriate caramel for aquéati application. The charge of
the colourant must match that of the product itsng added to otherwise the
particles of opposite charge may attract towards another and form larger,
insoluble particles. These will then settle out ebhiwould be an undesirable

characteristic for any food or beveratje'®

The SWR state that only E150a can be legally atlm&totch Whisky and the slight
negative charge of the caramel is compatible wii# beverage. Another factor
which affirms the use of E150a in Scotch Whiskghit it remains stable in solutions

containing up to about 80% alcohol, the highestrtaice of all four caramel8.
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1.5 General Thesis Scope and Aims

The primary objective of this research was to itigase and develop analytical
approaches that can be used to profile and understeore about Scotch Whisky
colour, both originating from the addition of plaprit caramel and also that derived
naturally during maturation. Attenuated total reféece mid-infrared (ATR-MIR)
spectrometry and liquid chromatography — mass speetry (LC-MS) were the two
primary techniques investigated for this purpose.

Initial research presented in Chapter 3 assesgealility of ATR-MIR for profiling

caramel colour and the main objectives were:

* To determine whether the technique could succdgshalquire profiles of

caramel materials.

* To identify if the technique could discriminate Wween different classes of
caramel (E150a — E150d) and additional colouramghipited in Scotch
Whisky.

* To find out whether E150a caramels prepared usifigrent conditions of

manufacture could be differentiated between.

 To determine the influence of natural Scotch Whisigtour (and real
scenarios affecting whisky colour) on ATR-MIR spattprofiles, when

caramel is dissolved in this matrix.

As well as presenting a tool that can aid in urtdexding more about Scotch Whisky
colour, the ability of ATR-MIR to profile carameblourants in accordance with the
above aims would be extremely useful to the Scdtthisky industry in terms of
product authenticity. For instance, being ableistinuish between different classes
of caramel would help to identify whether a mateother than the legally permitted
E150a had been implemented to provide colour wighsuspect whisky sample. In
addition, the ability to distinguish between dif#fat formulations of E150a could
introduce the potential for E150a manufacture tonmmipulated in the future to
create caramel materials with distinct signaturefil@s that could be added to
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different products and so act as inherent markarghfe positive identification of

authentic whisky samples.

After a preliminary investigation of the above altjees in Chapter 3, the work was
subsequently progressed within Chapter 4 to determihether caramel identities
(alone and in Scotch Whisky) could actually be ptedl based on their
characteristic spectral profiles acquired using AVIR. PCA with GLSW
preprocessing, HCA, PC-DFA akeNN classification were the data analysis tools

investigated for this purpose.

Chapters 5 and 6 investigate the capabilities oME& as a tool for profiling Scotch
Whisky, with the former focussing on profiling carel colourants and the latter
generally investigating the non-volatile compouahich encompass colour related
components) derived naturally during production. with Chapter 3, the primary
aim of Chapter 5 was to assess the ability of LCfSrofiling caramel colour and
the main objectives matched those described abbwvecontrast to ATR-MIR
however, LC-MS systems can have the potentiallbaadtructural elucidation to be
investigated and so it was an additional aim of#a5 to determine whether any of
the components responsible for differentiation leemvsamples could be picked out
and their structures subsequently identified. Géraptinvestigated the ability of LC-
MS to assess naturally derived components in SaMigisky and was primarily used
in this research to identify whether changes irdpotion variables could be picked
up and if the components responsible for thesemiffces could be identified. The

main objectives were therefore:

* To identify whether LC-MS could differentiate besvesamples that varied

only by their maturation age.

* To determine if LC-MS could distinguish between ps taken from casks
with different histories (i.e. first fill vs. refiland sherry casks vs. bourbon

casks).

* To find out whether whiskies with authentic matimatprofiles could be
distinguished from those that have been artifigiedatured, using LC-MS.
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* To identify differences between different whiskygucts on the market (i.e.

different blends and malt whiskies).

* To determine whether any components responsibledoations in the LC-
MS profiles of different whisky samples could begied out.

The research presented within Chapters 5 and 6damikextremely beneficial to the
Scotch Whisky industry, as the ability to profiteividual non-volatile components
within the spirit would allow a greater understamgdiof the composition of colour
within Scotch Whisky, a subject area where thereursently very little knowledge.
LC-MS would also be a particularly useful tool fenderstanding more about the
non-volatile fraction of Scotch Whisky in generaht only in relation to colour

components.
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2.0 THEORY

Attenuated total reflectance mid-infrared (ATR-MIRpectrometry and liquid

chromatography — mass spectrometry (LC-MS) werettywe primary techniques

investigated within this research for profiling ot related components in Scotch
Whisky. The theory behind them will therefore beatdissed within this chapter. The
data acquired from both of the above mentionedstosere compared using
multivariate data analysis tools; principal compananalysis (PCA) being the
predominant tool implemented for preliminary asses#s of trends and

relationships between samples. In addition to P@Aselection of other pattern
recognition techniques were investigated when assgthe ATR-MIR data, being

implemented to determine whether sample identitiesid be predicted based on
characteristic spectral features. The backgroumarthfor the data analysis tools
investigated within this research is therefore disgussed in the following text.

2.1 ATR-MIR Spectrometry

2.1.1 MIR Spectrometry

Spectroscopic measurements are commonly usedhergaformation relating to the
structure of a compound and are based around teeaation of electromagnetic
radiation with matter. The infrared portion of thkectromagnetic spectrum covers a
wavenumber range of approximately 10 — 14000" @nd can be subdivided into
three main regions: near infrared (NIR), mid indci(MIR) and far infrared (FIR).
The frequency range defined by infra red radiatamiresponds to the energy
required to cause molecular vibrations in a compoumhese vibrations are
characteristically different for each bond type thee molecule and so infrared

spectroscopy can be used to identify the functignalips present in a compould.

On irradiation by infrared light, a sample will alls energy characteristic of its
vibrational structure and the difference betweenititident and detected energy will
lead to the production of a spectrum with distwvetiabsorption bands. For a
vibration to be detected with infra red spectrogcibpnust be accompanied by a net

change in dipole moment, which is defined as thwdpet of the charge and the
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distance of separation between two atdrhMIR spectroscopy, which encompasses
the region between 400 and 4000 Groorresponds to the fundamental vibrations of
virtually all the functional groups of organic moiges. These particular vibrations
are the most strongly absorbed and provide shagtrsp lines, resulting in the MIR
region of infrared being of greatest practical use the characterisation of

compounds.

To better understand the molecular vibrations neside for the characteristic bands
of MIR spectroscopy, it is useful to consider a@enmodel derived from classical
mechanics. A pair of atoms joingdh a covalent bond can therefore be thought of as

being like two massesn| andmy) attached by a spring, as shown in Figure®2.1.

m, @

Figure 2.1: Schematic depicting a simple diatomiohacule as two masses {rand m) attached by

a spring®
This is the typical construction of a simple harmeooscillator and the system can
vibrate with different amounts of energy at a frelgey that depends on the masses
of the two atoms and the strength of the bond. fiéguency of vibrationv) can be
approximated by Hooke’s Law, whepedefines the reduced mass of the diatomic
molecule and describes the force constdrit:

V:i E Where:ﬂ:ﬂ

Equation: 2.1
21\ m, +m,

For the classic harmonic oscillation of a diatommiolecule, the potential energy)(
of the system (related to frequency\bsthv) is given by Equation 2.2, whexds the
displacement of the spring akdtill refers to the force constaht.
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1

V= 5 kx? Equation: 2.2

A plot of the potential energy curve for the diatorsystem as a function of the
internuclear distance is thus a parabola that mnsgtric about the equilibrium
distance X¢) (Figure 2.2a). Herexe occurs at the energy minimum and is established
depending on the attractive and repulsive forcesheftwo atoms. The potential
energy sharply increases to either sidexods the bond is compressed or stretched
away from equilibriun?:*

< Compressed Stretched =
| Owe o ] = 1.2
o & | 2 1
]
I 3 fx % p=3
.'l_: A \ Ii p=4
a b
(x,) (@) (x,) (b)
Internuclear distance (x) Internuclear distance (x}

Figure 2.2: Potential energy curves for (a) a singpharmonic oscillator and (b) a diatomic
molecule, constrained to the quantum mechanical nebt
The simple model shown in Figure 2.2a implies thatolecule could absorb energy
at any frequency to result in deviation of the bdnom equilibrium; however
guantum mechanics dictates that molecules canexidy in quantized energy states
of discrete values. These vibrational energy levidlisstrated in Figure 2.2b, are
equidistant from each other and exist at energyemldefined by Equation 2.3:
where h is Planck’s constanty is the frequency of vibration; and defines the

quantum number, which can have only positive integéues (0, 1, 2, .3/

E,p, = [U +%)hv Equation: 2.3
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Molecules can undergo transitions between vibrati@mergy levels on absorption
of photons with corresponding energy. When considea harmonic oscillator,
these transitions can only occur across one enlengt (Av = £1), for example
v=0—-v=1andv=1— v =2 are allowed while = 0— v = 2 is forbidden. The
first transition fromv = 0 — v = 1 is the strongest of the allowed transitiorsstree
Boltzmann distribution dictates that at room tenap@re most molecules will exist in
the ground vibrational state. These transitionsltes what are termed fundamental
vibrations. Transitions occurring from levels highieganv = 0 will be much weaker,

as there will be a lower population of moleculesumying these energy stafes.

In reality molecules do not comply with simple hamt motion and are classed

instead as anharmonic oscillators. Anharmonicitsults if the change in dipole

moment is not linearly proportional to the nucldeplacement coordinate and there
are two main reasons which cause this to happdndiatomic molecules. Firstly, as

the molecule compresses, the electron clouds afitbeatoms limit the approach of

the nuclei due to the build up of repulsive forcHsis results in the potential energy
of the system rising rapidly when internuclear atises become smaller than the
equilibrium distance x). When the internuclear distance is increasingmfro

equilibrium, the atoms are becoming further apant @#he bond between them

eventually breaks when the dissociation energgashied. At this point the potential

energy levels off. These deviations from harmorsciltation are demonstrated in

Figure 2.3/
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Figure 2.3: Potential energy diagram comparing haonic and anharmonic oscillators. Pis the
energy of dissociation of the atoms angdirdicates the equilibrium bond length.
It can also be seen from the diagram that devidtiom harmonic motion becomes
greater as the vibrational quantum number incredlseseparation between adjacent
energy levels becomes smaller at higher vibratitsadls until the dissociation limit
is reached. The energy term corrected for anhawriigncan be expressed by

Equation 2.4, whergw, defines the magnitude of the anharmoniéity.

1 1Y’ |
E,, =hv,| v +§ —hxy,| v +§ Equation: 2.4

The transitions which are observed under anharmoomtlitions are also seen to
deviate from those that are allowed for a harmaosiallator model. Experimentally,
as well as the fundamental transitions (i4x,= +1) both overtonesAp = +2) and
combination bands are seen. These transitions aegua higher vibrational energy
states are however far less probable then the medtals and so in practice they are
seen at much lower intensiti&3 When the frequency of a fundamental vibration for
a particular functional group is quite low, thenedenes may be observed in the
MIR region. Combination bands and overtones howearertypically responsible for

features in the NIR spectral region.

42



2.1.2 ATR-MIR Spectrometry

ATR-MIR spectrometry has rapidly grown in populgiih recent years, a feat which
is mainly due to its ease of operation and the widges it holds over more
conventional approaches of MIR analysisTraditionally, samples have been
commonly analysed by means of transmitting radmativectly through the material,
however for transmission to be possible it is ofeerrequirement that sample
thickness be restricted to the order of tens ofoms. The main disadvantage of this
approach is that sample preparation is generailg gune consuming and can often
be relatively complex. For example solid samplesildiaypically have to be ground
to a fine powder and either: pressed into a diger ahixing with a matrix material
(e.g. KBr); or suspended in the form of a mull batw two MIR transparent
windows. Liquid samples on the other hand woulddsiy be analysed as thin films
by transferring them into cells constructed with RMtransparent windows. An
additional difficulty associated with these methaafssample preparation is the
ability to attain samples of suitable concentratioa trial and error approach is
commonly employed to prepare samples that allow abguisition of adequate

spectra*®

ATR-MIR spectrometry is much simpler to operate andlyses can be undertaken
of solid, liquid and gas samples as long as theenatof interest is placed in direct
contact with an element or crystal of high refreetindex®** Rather than infrared
radiation being transmitted through the sample télcnique operates by measuring
changes that occur in an infrared beam, which tallyointernally reflected within
the crystal, when that beam comes into contact thiéhsample as shown in Figure
2.4. Interaction between the infrared beam and dheaple is achievedia an
evanescent wave that extends beyond the surfadbeotrystal of the order of

microns — good contact between the sample andatigstherefore vital®*
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Figure 2.4: Schematic of a multi reflection ATR siggn to demonstrate contact between a sample
and ATR crystal resulting from total internal reflion.

ATR-MIR spectrometry therefore allows a vast regucin both sample preparation
time and complexity and so the tool offers advaesagver more traditional
approaches in terms of faster sampling and specgptoducibility®>** The
instrumentation used to complete this researchrpmated an MIR spectrometer
coupled to an ATR fibre optic probe and so the @pies behind this particular
technology are described in the following subsedtim relation to this set up.

2.1.2.1 Optical fibres

The use of optical fibres has become invaluablenfany techniques incorporating
spectroscopic analysis, as they provide a meansaobmitting light over long
distances. Optical fibres remove the need for ektra sampling and can be usied
situ. This has the advantage of facilitating the adtjars of data from otherwise
inaccessible areas, as well as providing the odtorthe analyser to stay clear of

hazardous areag!®

An optical fibre typically consists of a cylindriceore of refractive indexng) which

is enclosed by an annular cladding material of &iglefractive indexr(,). Fibres
constructed in such a way are known as step-ingéicad fibres, as both; andn;
are uniform throughout the core and cladding resgelyg. Light is transmitted along
the fibre through the core material and is confitiezte by total internal reflection at
the core-cladding interfad&’ The propagation of light along an optical fibre is
illustrated in Figure 2.5.
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Figure 2.5: A cross section through a step indextiepl fibre, illustrating how light propagates

along it by total internal reflectiort?

When considering the propagation of light alongogtical fibre, Snell’'s law can be
used to relate angles of refraction to angles cidence when the beam of light is
passing through a boundary of two media with différefractive index® At the air-
core interface, where light is introduced to thedi the angle of refractiol,] of the
incident ray can therefore be related to the aafjiecidence ;) as follows™

singd =n,siné, Equation: 2.5
From this it can be deduced that the refracted wdl strike the core-cladding
interface of the fibre at an angle of inciden@egqual to (90° 6,). For total internal
reflection to occur and so continue the transmissib light along the fibre, a
minimum value of6 is required. This angle can be determined by tileviing

equation>*®

nsing, =1, Equation: 2.6

As light propagates along an optical fibre, trarssian losses will occur as a result
of attenuation. Attenuation is the term used tacdlee the reduction in intensity of
the propagating light beam due to scattering arsbrance by the core material.
1618 Different core materials will vary in their perfoance to transmit

electromagnetic radiation and so are chosen depgnaoin their ability to limit
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attenuation and maximise the amount of transmiitgd at the wavelengths required

for a given techniqu®

Optical fibres for MIR spectrometry have been daading to develop, especially in
comparison with NIR spectrometry and this is duethe limited choice of core
materials available to provide adequate transmisesiolR radiation. NIR typically
uses fibres made of silica, which as well as hawrgellent transmission in this
region is low in cost. Silica fibres can also tratsNIR light over distances greater
than a thousand metres and as a result the teehhapibecome well established for
applications in process analysis. Unfortunatelicaiis not transparent in the MIR
region and so the use of MIR spectrometry with agitfibres was initially limited
whilst more specialised fibre materials were sodgfihe main fibre optic materials
that have been developed for use with MIR specttgnfeave been summarised in
Table 2.1131>%
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Table 2.1: Fibre optic materials for use with MIRnal their properties>*>*°
Fibre Optic Transmission range
Material 1 Comments
(cm™) (Hm)
» Higher laser power delivery
Heavy Metal capabilities
Fluoride « Low frequency cut off ~1820 ¢
1820 -5000| 2-5.5 _ .
(HMF) * Brittle/fragile
e.g Zrk based « Difficult to manufacture
» Sensitive to moisture
» Cover a broad spectral range
» Very robust
Hollow
_ 400 -10000{ 1-25| « Demonstrate strong attenuation
Waveguides _
on bending
* Length restricted to a few metre$
» Expensive
_ » Toxic & Fragile
Chalcogenidg
~ 1500 - 5000 2-6.5 | « Low frequency cut off ~1500 ¢
e.g. AsS;
« Absorb at 2500 and 3300 ¢m
* Non-hygroscopic
* Visible light sensitive
. . » Non-toxic
Silver halide | ~600-3100 3.2-137 _
* Non-hygroscopic
* Very flexible & robust

The first accounts of non-silica-based fibres fae uwwith MIR radiation were
reported in the 1960s. These newly developed filaree being constructed from
chalcogenide glass, a material that is still in te#ay. The applications of these
fibres are however limited and this is due to thexicity, fragility and a lack of
transmission below ~1000 ¢&m Alternative optical fibres have since been

developed, including hollow waveguides, heavy méiabride fibres and silver

47



halide fibres - each offering a number of advardgage well as some of their own
restrictions (see Table 2.1). Of these materialsershalide fibres have proven
increasingly popular and have greatly broadenedagi®ication prospects of MIR
spectroscopy incorporating optical fibres. Silvalidie fibres resolve many of the
issues associated with those constructed from obalide, being non-toxic, more

flexible and allowing the transmission of a widange of MIR light:>*°

Although there have been many advancements in fdpgc technology for
applications within spectroscopy, optical fibrafl save certain limitations that need
to be considered. One of the primary limitationghiat all fibres will suffer losses of
radiation as a result of attenuation; in other wsortght will be lost due to
absorbance and scattering by the core materiahcanrrence that will reduce the
overall signal reaching the detector. In additi@my fibre movement during
transmission can influence final spectra due tongka in the angle of incidence
influencing total internal reflection. A further msideration when implementing fibre
optics is related to optimising the fibre diametenin fibres will have much greater
flexibility, less attenuation and smaller cost imations whereas larger diameter
fibres can carry more light and so improve sighabtighput. Larger diameter fibres
are also considered easier to interface to speetes1 The process of coupling
fibores to a spectrometer can additionally affea #fficiency of a fibre. If the
radiation beam is wider than that of the fibre ctiien over-filling will occur,
resulting in much of the radiation being lost t@ tlibre cladding but if the fibre
diameter is greater than that of the radiation b#aen the core is not transmitting
radiation to its full potential. Time also has t® faken to ensure optimum alignment

of the radiation beam with the optical fibre sd@snaximise signal throughptt*®

2.1.2.2 ATR-MIR probe technology

As eluded to in the previous subsection, MIR smacétry was initially not as well
established as NIR spectrometry in applications tequired coupling to optical
fibres. This was primarily due to the incompattyilof MIR with silica fibres but

since the development of fibre optics constructennfsilver halide materials, the

popularity of MIR for these applications has greaisen in recent yeafS.The tools
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main advantage over NIR is that the MIR frequenc@sesponding to fundamental
vibrations are more strongly absorbed and give mmantiower and more distinct
spectral lines:** As a consequence however, sample pathlengthsatiypiave to be
short when dealing with MIR spectrometry and st ihow common to find these
fibres coupled with ATR probeé§:*

Excitation fibre
Path of IR Collection
beam fibre
| Outer body
of probe
S /

Crystal
Evanescent !
wave g

Figure 2.6: Schematic of an ATR probe heatf??

The typical construction of an ATR probe head isveh in Figure 2.6%% The
infrared radiation in an ATR probe is transmittddng the excitation fibre and
directed to a crystal of high refractive index. §hwill result in total internal
reflectance at the points of contact as long asb#en strikes the crystal at the
critical angle €.), governed by Equation 2.7, wheteis the refractive index of the
crystal andn; is the refractive index of the medium that thestay is in contact

with %123

6. = Sin_l(ﬂj Equation: 2.7

7,
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The IR beam interacts with the sampi@ an evanescent wave produced at the
sample-crystal interface, which becomes altera@gmons of the spectrum where the
sample absorbs. This attenuated information is thiestted along a collection fibre

and carried to a detector where a spectrum ofahek is generated:**

The penetration deptlald) of the evanescent wave for a single reflectiogiven by
Equation 2.8, wheré is the angle of incidence andis the wavelength of the

excitation radiatiof>>*°

A

d =
" 2mlsin 6-(n,/m. )"

Equation: 2.8

The pathlengthl) can also be defined and relates to the numbeeflections and

the penetration depth as shown in Equatiorf2.9.
b =d, * No. of reflections at the crystal Equation: 2.9

ATR crystals therefore possess very short equivaatitlengths, as the penetration
depth of the evanescent wave into the sample il ain@ach reflection (of the order
of microns). This is the main reasoning behind tiiecéve use of ATR probes for
the analysis of strongly absorbing compounds treacountered when using MIR

spectrometry>%123

2.1.2.3 ATR probe desigh?"°

The ATR probe used for this research incorporatectrsihalide optical fibres and
was supplied by Fibre Photonics. Due to their dgwalent being an ongoing
process, probe designs differ slightly between rfesturers and the typical ATR
probe currently adopted by Fibre Photonics isfitated in Figure 2.7.
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Figure 2.7: Schematic of the typical ATR probe dgsiadopted by Fibre Photonics.

The Fibre Photonics ATR probe consists of two silvalide optical fibres running
parallel to each other from the crystal tip to $ipéit; the purpose of the split being to
allow one of the fibres to be connected to the s®and the other to the detector,
which are attached to the spectrometer using SM#ectors. The whole assembly
is encased to protect the fibres and this proteatnduit is typically made using
stainless steel (Figure 2.8a). Recent developntemiever have indicated that this
allowed too much flexibility and so the fibres wittbecame prone to breakage. The
majority of probes now offered by Fibre Photonicgluding the one used in this
research, therefore incorporate liquid tight protecwhich makes use of an extra
silicon coating to hold the fibres in place momgdly (Figure 2.8b).

Figure 2.8: Pictures illustrating the protective ooluit materials used by Fibre Photonics
(a) stainless steel and (b) liquid tight protection
The probe body can also be constructed from stsnééeel, however hastelloy is
generally more common. This part of the assemlidyegts the end of the fibres and
allows them to be positioned at the edge of thestafytip. The probe body is
completely sealed around the crystal to prevenstsmges infiltrating the probe and
damaging the fibres inside. The material used fos fpurpose was originally

polytetrafluoroethylene (PTFE or Teflon), howeugstwas often found to crack as a
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result of the pressure exerted on it during prolaaufacturing. The alternative seal
material currently employed is polyether ketoneERE which has been found to be

much more robust.

ATR crystals can be constructed from a variety afterials, each having different
properties. Crystals made from zinc selenide (ZmB&)jamond are most commonly
employed and though the former is relatively inagpee the latter is generally
favoured. This is related to the robust nature ialdnd allowing it to withstand
much harsher conditions than ZnSe; ZnSe can bespmicratching and its use is
restricted to a small pH range (between ~pH 5 -TBe only major downfalls of
diamond are its expense and that it absorbs IRatiadi between about 1900 and
2200 cni. Crystals constructed of germanium, silicon arallithm-bromoiodide are
also available but less frequently employed. Geramarhas a very high refractive
index which makes it well suited for the analysish@hly absorbing samples and
due to the resulting low penetration depth it canuseful for the analysis of thin
films. Silicon also has a high refractive index lsitaffected by strong acids and
alkalis. Thallium-bromoiodide crystals cover a vewide spectral range however
they are very soft and can be easily damaged. @autust also be taken due to the

material being highly toxic.

The ATR probe used in this research incorporatetiaenond crystal of 2.4 mm
diameter and its geometry is illustrated in Fig@r8. Different crystal geometries
will influence the number of reflections at the stigt surface, which in turn will

affect pathlength and consequently probe performanc
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2.4 mm

Figure 2.9: Schematic of the diamond crystal geomyeas currently in use by Fibre Photonic8.

2.1.3 Fourier Transform Infrared Spectrometry

The instrumentation utilised for infrared spectromeypically implements either a
dispersive or fourier transform infrared (FTIR) eswemeter. The original
instruments that were developed for infrared spewdtry were of the dispersive
type and these worked by sequentially measuringitidevidual frequencies of
energy emitted from an infrared source. The typisat up of a dispersive
spectrometer is provided within Figure 2.10, denrating the workings of this
instrumental setup. Source energy is initially cieel through a reference and a
sample at the same time (so as to account forretgument interferences specific to
that analysis, such as differences in lamp briggghbefore both beams are directed
onto a rotating segmented mirror known as a ‘choppée purpose of the chopper
is to alternately focus each beam onto the detedtbra monochromator. The
monochromotor — typically a prism or more commoaldiffraction grating — then
separates the wavelengths of light in the specarage so that each wavelength of
radiation is passed one at a time through a slihéodetector, where the amount of
energy at each frequency is measured sequentmablyeate a spectrum of intensity

vs. frequency’
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Figure 2.10: Diagram demonstrating the typical sap of a dispersive IR spectromet&r?

FTIR spectrometers emerged later and were develapedmeans to measure all IR
frequencies simultaneously, a key advantage owgredsive spectrometry. An FTIR
spectrometer uses a system known as an interfeeonb@tachieve this type of

spectral measurement and the typical setup ofrietsument type has been depicted

within Figure 2.18+3*
Stationary
Mirror
Moving
Source Beamsplitter Mirror
>
@ sampe

Figure 2.11: Diagram demonstrating the typical sap of an FTIR spectrometef*
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As depicted in Figure 2.11, source radiation isspdsonto a beamsplitter which
splits the energy beam into two parts: one beiagsimitted onto a stationary mirror
whilst the other is reflected onto a mirror thatves back and forth with a constant
velocity. Once reflected back by both mirrors, beams are then recombined at the
beamsplitter. If the two mirrors are at the sanwadice from the beamsplitter when
this occurs, the distance travelled by the two Isewifl be equal and this situation is
defined as the zero path difference (ZPD). As tlowable mirror travels away from
the beamsplitter however, the light beam strikihgs tmirror will travel a longer
distance compared to the radiation reflected froengtationary mirror. This results
in wavelengths recombining at the beamsplitter weélther constructive or
destructive interference depending on the extréance travelled by the moving
mirror. The extra distance travelled is definedtlas optical path difference (OPD)
and is equal to two times the distance that theallevmirror travels away from the
beamsplitter. When the OPD is the multiples of tevelength (Equation 2.10,
where n = 0,1,2,3... andis the wavelength) constructive interference ce@md a
maximum intensity signal is observed by the detecWwwhen the OPD is in
accordance with Equation 2.11 (where again n 2(B1, and\ is the wavelength)
destructive interference occurs and minimum intgnssignals are instead

observed!3*

OPD=nA Equation: 2.10

OPD= (n + %)/] Equation 2.11

These two situations for OPD are the extreme saenand as the moving mirror
travels back and forth from the beamspilitter, titensity of the signal increases and
decreases between them giving rise to a cosine wag@n as the interferogram.
When a broad band source is utilised as in FTIRgeak is found at the ZPD of the
interferogram and the signal decays quickly at othstances as the movable mirror
travels back and forth. The interferogram then ga$isrough the sample where some
energy is absorbed and the remainder transmithexd Jatter portion reaching the
detector which reads information about every wawglle simultaneously. The

interferogram collected by the detector is a funrctof time (relative intensitys.
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OPD) and to obtain the infrared spectrum, the fategram is converted from the
time domain to the frequency domain using an dallgoriknown as the Fourier
transform. This decoded signal is also correctethigus background spectrum
acquired with no sample present so as to removéurtsa arising from the
instrumentation in the resulting infrared spectr#rsingle background can be used

for many sample measuremerits?

As well as allowing spectral ranges to be meassreuliltaneously as opposed to
sequentially, FTIR spectrometry has a variety bkeotadvantages over the dispersive
type that make the former preferred for infrareéctpmetry in the present day.

These have been summarised betbi:

» Data collection with an FTIR spectrometer is muaicker due to its ability
to measure all frequencies simultaneously. A dEperspectrometer has to
measure each spectral wavelength individually -uamslower process.

« The signal-to-noise ratio measured on an FTIR spewter is higher than
attained using a dispersive spectrometer, meanemgpitvity is greatly
improved. A few reasons responsible for this dne:fast speed of scanning
means that several scans can be averaged in codeeduce random
measurement noise; and optical throughput is migieh as the absence of a
slit and fewer mirror surfaces means that moregneraches the detector.

e High resolution measurements are of a better qualiten using an FTIR
spectrometer as the instrument does not use atcsliimit individual
frequencies reaching the sample and detector. petss/e spectrometer does
implement this setup however and so in order tosomeawavelengths closer
together (i.e. of higher resolution) the slit mastverely limit the amount of
energy transmitted, which results in poor qualggdcra.

e The FTIR spectrometer uses a laser to control &ecity of the moving
mirror and this can in addition be used as an matewavelength calibration
standard, making the device self-calibrating. Dispe spectrometers on the
other hand require external calibration standandsthis can result in spectra
being less comparable due to instrument unknownmsgluand between

scans.
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2.2 Liquid Chromatography — Mass Spectrometry

Liquid chromatography — mass spectrometry (LC-MS3n analytical technique that
combines the physical separation power of LC vhthrhass determining capabilities
of mass spectrometry. It is therefore a very useéahnique for concurrently
obtaining the separation of components in complexures and the identification of
component massé3.LC-MS is also particularly well suited to the aysis of non-
volatile components and so overall the tool is \egopealing for the investigation of
colour related constituents within Scotch whiskaesl caramel materials, of which
there is currently very little knowledge.

2.2.1 Liquid Chromatography

Chromatography is the collective term that deseriaeset of analytical techniques
used for the separation of mixtures. The aspedtttieamajority of these systems
have in common is that separation occurs due to piwitioning of sample
components between a mobile and a stationary phasdiquid chromatography, a
liquid mobile phase is incorporated and this caraealytes over a stationary phase
that typically consists of a liquid medium boundat®olid support. An equilibrium
arises between the two phases and component depakdt be achieved if different
analytes are distributed between the phases terdift extents. Components with a
higher affinity for the stationary phase materidl wteract more strongly and so be
retained in the system for longer, whereas analwiiés a lower attraction will
interact less and so move more quickly to the detebence allowing component

separatiori>®’

The mobile phase employed for LC depends on theenodathromatography being
applied and reversed phase chromatography is tjpitee most populaf® This
form of chromatography incorporates a mobile phthse is more polar than the
stationary phase meaning that hydrophobic moledgled to partition to a greater
extent in the stationary phase. Mobile phases fineréend to be aqueous based,
although if the system incorporated only water tseparation would be extremely
time consuming due to strong component interactiith the stationary phase.

Organic solvents are therefore implemented thataedhe affinity of hydrophobic
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analytes to the stationary phase, therefore pnogidnore practical retention
times®=® The presence of organic solvents is also imporfanthe up keep of
stationary phases, which are known to collaps¢oifes in the wrong medium. The
ratio of aqueous to organic, generally terrdeénd B respectively, can be altered
during analysis to produce gradient conditions. ¢beponents of a mixture in this
case are separated as a function of the affinity th@ current mobile phase
composition relative to the stationary phase. Tloeenmydrophilic solutes will elute
when the composition of the mobile phase is maagjyeous, while the hydrophobic
components will elute later in the run when the position is mainly organic.
Gradients can therefore be altered to suit the Eaofanterest and provide the best
separation in the shortest amount of time possiie.

Stationary phases typically incorporate spheriealigles of porous silica as the solid
support to which many different chemical groups d¢en incorporated to allow
interactions with the majority of compound typesic8 is an ideal support material
due to its mechanical strength, the well estabtise#éane chemistry, its porous
structure and the wide range of particle and pameedsions that it can adoptA
porous material such as silica allows analytesiffoiset into the pores and this is
what permits an equilibrium to be established i stationary phase surfatdn
theory this can be achieved more quickly by redygarticle size and would result
in a significant gain in the chromatographic e#fitty below 2.5 pum. This is in
accordance with the Van Deemter equation that snirch efficiency will not
diminish even at increased flow rates or lineaoeiiles. Equation 2.12 depicts the
Van Deemter equation, the terms of which can benddfas followsH is the plate
height, « is the linear flow rateA depicts eddy diffusionB represents longitudal

diffusion andC portrays mass transfer.

H = AxExC,u Equation: 2.12
7

Plate heightKl) is a measure of column efficiency and is inverg@bportional to
the number of theoretical platds)(as depicted by Equation 2.13 (wherequates to
column length).
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H=— Equation: 2.13

The number of theoretical platedl)(is defined as the number of independent
equilibration events that occur between the statipmand mobile phases and so the
greater the number of theoretical plates, the b#teefficiency of the column. This
in turn means that to obtain optimum column efficig plate heightH) needs to be
minimised. This can be achieved by reducing termB And C of the Van Deemter
equation (Equation 2.12), all of which portray thain factors contributing to band
broadening, a phenomenon that greatly reducesffivgeecy of separation over a
column. Band broadening in relation to eddy diffus{A), longitudal diffusion B)
and mass transfe€] have been discussed below along with explanatbhew the
effects can be minimised*?

* Eddy diffusion: Eddy diffusion describes the fact that the moleswé an
analyte can take different paths through the dagiof a column even if they
start at the same position. Some analyte moleaulésherefore take longer
than others to elute from the column, the consetpibeing that the analyte
band is broadened. Band broadening caused by effdyioh is independent
of the linear flow rate of the mobile phase, it damwever be reduced by
decreasing the column particle size. Smaller statip phase particles will
cause the differences in analyte paths to be reduwesulting in much

narrower analyte bands, a principle depicted withgure 2.12.

Analyte Band
D ——

Large Particles

Analyte
Band
<>

Small Particles

Figure 2.12: lllustration of the reduction of bantiroadening caused by eddy diffusion by the
implementation of smaller stationary phase partislé®**
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* Longitudal diffusion: Longitudal diffusion describes the process by Wwrac
band of analytes will disperse in every directiame do the concentration
gradient at the outer edges of the band. The anaitgiecules are effectively
moving from an area of high concentration (the kot the analyte band) to
an area of lower concentration (the edges of timelbt achieve equilibrium
and this results in band broadening. The extebiaofl broadening caused by
longitudal diffusion will increase the longer a qooment is present in the
column; higher linear flow rates will therefore veg the effects of band

broadening caused by this parameter.

* Mass Transfer: Particles of the stationary phase consist of aygmaterial,
utilised so that a very large surface area is albel for separation to occur.
Out with these pores the mobile phase flows atsthmilated rate, however
inside the pores the mobile phase is stagnant dlomess. This means that
analyte molecules that diffuse through the pordktake longer to elute than
analyte molecules that don’t enter the pores. Aratyolecules that diffuse to
different depths within a pore will also be heldtogifferent extents and as a
result of these factors, band broadening will oc€ume way to reduce the
effect of band broadening caused by mass trarsterreduce the linear flow
rate, however a reduction in the size of statior@rgse particles will also
minimise these effects. Smaller particles resulpame sizes being reduced
meaning that: the distance for analyte diffusiotess; diffusion time within
the pores is minimised; and any differences inydaatliffusion caused by

analytes travelling to different depths within fhares is reduced.

As alluded to in the preceding text, the two priynfactors that influence the effects
of band broadening (and so improve column efficgebg minimisingH) are the
linear flow rate of the mobile phase and the pkrtstze of the stationary phase. The
relationship between plate heiglt)(and linear flow rate in relation to terms A, B
and C (both individually and cumulatively) has bekpicted using a Van Deemter
plot as shown in Figure 2.13a. This clearly denmatss that optimum column

efficiency occurs at the lowest plate height andapendant on the linear flow rate.
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Figure 2.13b then demonstrates how the Van Deeptders influenced by the use of
stationary phase particles of different sizes and iclearly shown that smaller
particles yield better column efficiencies. It isamobserved that the curve becomes
flatter and less affected by higher flow rates acaadance with decreasing particle
size, emphasising the point stated earlier thatethe a significant gain in
chromatographic efficiency below 2.6n which is not compromised by the use of

faster linear velocitie®*?
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Figure 2.13: (a) Van Deemter plot illustrating theslationship between plate height and linear flow
rate in relation to eddy diffusion, longitudal diffsion and mass transfer. (b) Van Deemter plot
illustrating the influence of stationary phase pagte size on plate height as linear flow rate

increases.
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Although smaller particles are known to improveucoh efficiency, in practice the
use of smaller particles creates resistance tartbeile phase stream and so very
high pressures are required to drive the flow ofetales over the stationary phase.
Standard high performance liquid chromatographyLE)Ptypically uses columns
containing particles with sizes from 3 to 5 um, keer the development of ultra
performance liquid chromatography (UPLC) has alldwzes down to 1.8 um to be
used. UPLC therefore offers the ability to run @ént separations at higher flow
rates, allowing faster analysis speeds and doewisp superior resolution and
sensitivity*>*°

Analytes eluting from the LC column are typicallgtdcted using a UV detector, as
the majority of organic compounds absorb in thiioe. These detectors generally
fall into two categories allowing either fixed wédeegth or multi-wavelength
detection. The latter are most commonly favourethbse they allow a wide choice
of wavelengths to be covered during a single amaly8iode array detectors are
typically employed for this purpose®

Liquid chromatography with UV detection can be ayveowerful tool for the
identification of many compounds, as long as aablgt reference material is
available for comparison or the relative amounte@th component are known. If
however a complex mixture containing unknown congmig is being dealt with,
then analyte identification may prove difficult by alone. Combining LC with a
technique such as mass spectrometry can insteagedeto determine the molecular

masses of components and so aid in the confirmafianalyte identity®>’

2.2.2 Mass Spectrometry

Mass spectrometry is an analytical technique thased to determine the molecular
mass of components, which can in turn be helpfuerms of structural elucidation.

The principle behind the technique consists of Smg chemical compounds to

generate charged molecules or molecule fragment$heem measuring these by their
mass to chargen(/2 ratio. The typical instrumentation generally dsts of three

main modules: an ion source for the conversiorhefdample into gas phase ions; a
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mass analyser that sorts the ions according to theiratio; and a detector, which

measures and records the abundances of ions fongavalue present>*’

2.2.2.1 lon source

The ion source is the section of the mass spectsyménere sample components are
ionised to provide gas phase ions that can theadselerated towards the mass
analyser. A number of ionisation methods exist f@xas being electron ionisation,
chemical ionisation, atmospheric pressure chemaabkation) however the most
common mode employed when coupled to LC instruntemntais electrospray
ionisation, depicted by Figure 2.1%%’

Accelerating
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Figure 2.14: lllustration of electrospray ionisatio. The light blue areas containing dark blue
plus/minus signs indicate the solvated ioffs’

An electrospray consists of two main parts, a medgillary and an accelerating slit
positioned between approximately 0.3 — 2.0 cm awasn the capillary tip. The
analyte solution is drawn from the capillary intoTaylor cone due to the large
potential difference with respect to the &fit® When a threshold voltage is reached
the solution is emitted from the tip as a jet guid that is progressively broken up
into smaller droplets until all solvent has evapeda It is generally considered that
this occurs as the repulsive forces between pesitus in solution exceed surface
tension and eventually leaves behind only gas phaséte ions®*®*8 These are
then accelerated to the mass analyser to be sadeording to their m/z ratio.
Electrospray ionisation is generally a very gemyige of ion formation and so the

molecular structure of even large complicated mdkcan be retainéd.
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lonisation can be employed in two different modesobtain either positive ion
spectra or negative ion spectra. Positive ionisai® generally used for analytes
containing functional groups that readily accegraton (H) and trace amounts of
formic or acetic acid are commonly added to aithis process. Negative ionisation
on the other hand is typically used for componeghtd will more readily lose a
proton and ammonia solution is one additive that ba used to assist with this

ionisation modé®

2.2.2.2 Mass analyser

lons generated in the ion source are directed éonthss analyser, which sorts the
ions depending on their m/z ratio. A variety offelient mass analyser types are
available and these can include magnetic sectaegjrgpoles, time of flight (TOF)
mass analysers and ion trdpghe TOF is currently one of the most desirablesnas
analysers due to its quick speed of analysis agtheni sensitivity (accurate to
approximately 1 mDa) and as such it was required atilised to facilitate the
objectives set out within this research projecte Tonstruction of a typical TOF

mass analyser is shown in Figure 224’

Application of Reflectron
/ pulse (E) R —
® *o——, .
@

Figure 2.15: lllustration of a time of flight massnalyser. lons are represented by the blue circles,
in order of descending mass from left to right.

In a TOF mass analyser, ions simply drift alongeddffree vacuum at velocities
dictated by their mass. This is in accordance ththequation of motion (Equation
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2.14) which dictates that an ion’s velocity) (ill decrease with ascending mass
(m).*” Consequently if energy¥f remains constant, lighter ions will travel fastean

heavier ones, resulting in ions arriving at theedtdr in order of increasing mass.
This set up allows the detection of all ions asytherive at the detector and so

accounts for the technique’s high sensitivft’
1 .
= E m\/2 Equation 2.14

lons are introduced into the analyser as a pulsesanall receive the same initial
kinetic energy ). An issue that may arise from this is that inctice the pulse may
not be experienced by all ions to the same intgnsésulting in a slight kinetic
energy distribution for each m/z ion and so lowesotution. This is typically
corrected by the application of a reflectron atehd of the drift zone, consisting of a
series of electric fields (usually at a displacedla). This allows ions to be re-pulsed
back along the flight tube to be refocused with shene m/z value on the reflectron

detector’®46-48

The TOF mass analyser (as with all mass analysars)be used independently to
gain information about component masses, howewvestfactural information to be
obtained (as required within this project), a maleanust be fragmented to yield a
combination of ions that are generally charactertthat analyte. Fragmentation of
components can typically be achieved using tandexasnspectrometry where two
mass analysers, separated by a collision cell,uaesl in combination with each
other®® There are four different ways that data can beuiaed using this
instrumental set up but the most useful for prowidistructural information of
individual components is the product ion experimédntthis case the first mass
analyser is used to select an ion of interest fariaon), which is then passed on to
the collision chamber where an inert gas is adnhittecollide with the selected ion
and bring about its fragmentation. These fragmens iare then passed onto the
second mass analyser which separates them accaalitigeir m/z ratio, before
directing them to the detector. All of the fragmeéms detected arise directly from

the initially selected parent ion and so a fingerppattern specific to the parent ion
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singled out by the first mass analyser is providdds information can therefore be
extremely useful for the structural elucidation aialytes however is typically

restricted to the investigation of a single paientat a time’>*%>°

Waters has patented an analysis mode, termefl (MBere E represents collision
energy), which can overcome the abovementioneddtan of traditional tandem

mass spectrometry and instead can allow the fragatien patterns of all parent ions
to be catalogued from a single inject®dn? This offers a significant advantage when
complex mixtures with very little compositional kmledge are to be assessed.MS
technology has been utilised within this researuth @ orthogonal acceleration time
of flight (oa-TOF) mass analyser was used to fatdi the analysis. A schematic of
the oa-TOF instrumentation has been provided inr€i@.16 to help visualise how it

works 3
TOF
Reflectron —p=— —
= I\ =
[
Transfer I \
Optics . .
\ | |
- N » : \
tons | pen | p— WNV\W\;HI--—'_'"IS -
Collision cell Pusher Detector

Figure 2.16: Schematic depicting the workings of aa-TOF mass analyser.

Once generated at the ion source, ions are direstedhe oa-TOF mass analyser
where they are focussed by an RF only quadrupdlg, (@hich facilitates the initial
transmission of parent ions along the mass anadrs#allows all parent ions to pass
through. The ions then pass through a second gpalér(Q1), which if required can

be set to select a specific parent ion for targerealysis’® The analysis undertaken
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within this research however was untargeted andigmot utilise this function; the
guadrupole was instead set to allow the passagdl ains straight to the collision
cell. MS" data collection is then implemented and works Ipidig alternating the
collision cell between two scanning functions fatalacquisition. The first scanning
function uses a low collision energy over the del@omass range, which allows
spectra to be generated relating to all parent present in the sample, whilst the
second scanning function uses an elevated enengyed up to the extent where the
fragmentation of the parent ions can occur. Thitedafunction therefore allows
spectra to be acquired that provide informationualtbe fragmentation patterns of
all analyte ions that were found in the precediogns’™® lons passing through or
generated within the collision cell are transmitfed transfer optics) to the TOF and
on entering this section of the mass analyser atleogonally ‘pushed’ by an
accelerating voltage. This creates a discrete pawkeulse of ions which travel
through the TOF mass analyser and are separatdesasbed earlier in this section,
before reaching the detector in order of ascendiags:’

2.2.2.3 Detector

Once ions leave the mass analyser they are callbgt¢he detector (in modern mass
spectrometers this is typically an electron mukipbr a photomultiplier) and their
relative abundances measurédypically the MS detector monitors the ion curgent
amplifies it and then transmits the signal to tlagadsystem where it is recorded in
the form of a mass spectrufhA mass spectrum is usually presented as a vehral
graph in which each bar represents an ion of aifepevz ratio and the height of the
bar indicates the relative abundance of the ionstMons formed in the mass
spectrometer have a single charge and so the rhie isactually equivalent to the
mass of the ion itseff:>*

When working with LC-MS, data are normally presenés a mass chromatogram,
which is a representation of signal intensity versetention time. The mass spectra
acquired at a particular retention time can therekeacted and interpreted using
data collection software to allow the identificatiof any components present at that

point>*
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2.2.3 MarkerLynx XS™ Software®>®

MSF mass spectrometry generates a vast amount ofdimgénsionality data and so
sophisticated software is required that can extitaetappropriate information and
also allow its interpretation. MarkerLynx X$is a one such package that can make
sense of MSdata and was utilised for the interpretation dbdaithin this research.
The software is able to extract m/z values fromntiass spectra and aligns these data
(or mass peaks) according to their retention tifft@s process is done using an
algorithm known as ‘ApexPeakTrack’, however theadstof this are not publically
revealed. The mass peaks extracted in this wayykras exact mass retention time
(EMRT) pairs, are then populated into a browser rehaultivariate data analysis
can be completed to compare samples based on tRETEMirs (or in other words
components) they are found to contain.

PCA is one of the main statistical approaches uwsithin MarkerLynx XS™ to
compare samples based on the EMRT pairs they opratabol that is described in
more detail in Section 2.3.1. PCA displays datthanform of a scores plot to assess
any patterns between samples; samples fallingnmiasi regions of the plot having
similarities in their composition anglice versa The variables (i.e. the EMRT
markers) responsible for particular groupings stares plot can then be determined
from corresponding loadings data and passed badb ithe MarkerLynx X3
browser where elemental composition can be asséssedl on the masses (accurate
to ~1 mDa) obtainediia UPLC-MS. A direct link from the software to online
databases then has the potential to allow the rasgigt of chemical structures, if a

suitable match can be determined.

To aid in the determination of component structuhesMarkerLynx X3" software

has a useful feature termed ‘MassFragment’, whigh be used as an aid for
structural elucidation. As well as MarkerLynx X8aligning mass peaks with their
associated retention times, the software can dilgo e precursor information from
the low energy scanning with the corresponding rfragtation spectra acquired
during high energy scans. The MassFragment toargées a list of the of the most

likely fragment ions that would result from a prepd structure by undertaking
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calculations based on a series of algorithms reptasy the most likely bond
disconnections. The tool then allows the exact rfraggnent ions (obtained from the
high energy data of the MSacquisition mode) associated with the parent ibn o

interest to be evaluated against those from thpqs®d structure.
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2.3 Data Analysis

ATR-MIR spectrometry and UPLC-MS both generate vgsantities of high
dimensionality data: MIR spectra consisting of egéganumber of data points that
depict absorbance values over a range of wavensnbailst LC-MS data typically
cover a variety of analyte masses over a rangetehtion times. Samples analysed
using these techniques are therefore described Iayga number of variables and
manual interpretation of trends is therefore vafiiadit (as four or more variables
cannot be represented graphically). Multivariateadgmalysis tools can therefore be
implemented to help identify patterns or groupimgthin such high dimensionality
datasets?®' A range of multivariate data analysis tools hagerbutilised within this
research and the theory behind each has been lkcwithin the following

subsections.

2.3.1 Principal Component Analysis (PCA)

PCA is an exploratory data analysis tool that imesl the visualisation of
relationships between samples and also betweeablasi without prior knowledge
of those samples. The basic function of PCA isemuce the dimensionality of a
large complex dataset by compressing it into a malmber of abstract variables,
termed ‘latent variables’ or ‘principal componefRCs)’. For the statistical analysis
to be successful however, the PCs acquired fronothignal data must retain the
underlying structure of the dataset, both in tewhsassociated samples and any

variable correlation&6?

A few rules exist for computing PCs, the first ofiieh being that the primary PC
must account for the greatest amount of variatiotihé data and successive PCs then
describe the maximum amount of variation that hatsafready been accounted for
by the preceding PC. The first PC is therefore dra® a line through the centroid of
the data (assuming the data has been mean cerntretie direction of maximum
variation (Figure 2.17a). Another important corafitithat must be followed is that
the second and any subsequent PCs must alwaysHoga@mal to the previous PC
and be drawn through the direction denoting thet me@st variation in the data
(Figure 2.17b§% %3
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Figure 2.17: Simplistic plots constructed to reperd the data from 6 samples (blue dots) and two
measured variables to demonstrate (a) PC1 beingadrahrough the centroid of the data in the
direction of maximum variation and (b) PC2 as beimgthogonal to PC1 in the direction of next
most variation. The centroid is illustrated by adelot®?
When undertaking multivariate data analysis, a tspkedataset can be represented as
a matrix X, where rows describe the spectra of different $asnand each column
represents the variables (different wavenumbersg data matrix is considered as
being composed of two separate components: therlymdestructure or model of
the datalf1); and random fluctuations known as ‘noisg),(due to the measurement

process. It can therefore be described as sho®nuation 2.1%>

X=M+E Equation: 2.15

Successful PCA results in the model mathk) being broken down into two smaller
matrices;T andP, such thaf®*

X=TP+E Equation: 2.16

T is known as the scores matrix and it indicatestidreany relationships exist
betweensamples A PC score for a particular sample is definethaspoint at which
that data point is projected onto the PC axis (fig.18a)°*® Thus samples
related to each other will be found in the samea afemultidimensional space and so
possess similar scores.
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Figure 2.18: Plots demonstrating (a) the projectiaf a data point onto a PC1 axis to obtain a score
and (b) the angle that would be used to determihe lbading value relating to PC1 and
variable 1%
P describes the loadings matrix and indicates afgtioaships between individual
measurementariables which in the case of this work are the differenvemumbers
at which measurements have been taken. The loadilsgshelp to explain any
clustering or separation between samples in theesc@lots. Loadings are
determined for a given PC by calculating the casiné the angles between the
individual variable axis and the direction of th€,Ras illustrated in Figure 2.18b.
The smaller the angle, the closer the loading veemmes to 1, which indicates that
the PC is closely associated or correlated to phaicular variable (or in this case
wavenumber). Conversely, if a variable has vetielihfluence on the PC then the
loading will be close to 0 and results from an anglbse to 90 degrees. Variables
can also be anti-correlated to a PC, which ocdutseiangle is near to 180 degrees,
giving loading values close to 21:°264
Mathematically, PCA relies upon an eigenvector dguuosition of the covariance
matrix of the process variables. Covariance is asue of how much each of the
dimensions being assessed (e.g. the different gsoeariables) vary from the mean
with respect to each other and is measured betwadables to determine if there is
a relationship between those parameters. When thare two variables are being
considered, covariance can be represented as & awadk so for a given data matrix
(X) with mrows (samples) amacolumns (variables), the covariance matrix (2Qy
would be defined as shown in Equation 2.17, praVithat the data have been mean

centred®
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cov(X) =

Equation: 2.17

The covariance matrix is then decomposed into egeors and eigenvalues, the
former denoting the direction of a PC whilst thiéedadescribes how much variance
there is in the data in that direction (the largeigienvalues corresponding to the
strongest correlation in the dataset). The eigaovewith the highest eigenvalue

therefore signifies the primary PC and subsequ&ldg &e in order of decreasing

eigenvalue (i.e. in order of significance from heghto lowest). When the eigenvalue
becomes so low that it no longer describes anytiaddi variance in the data there is
said to be a sufficient number of PCs to descrit® rheasurement data. In other
words the dimensionality of the original data mats reduced and can be described
by a smaller number of latent variables (PCs) thaintain the underlying structure

of the dat£*°°

2.3.2 Clustering and Classification Tools

Data sets often consist of samples that belong noraber of different groups or
‘classes’ and the ability to classify samples ititeir associated categories based on
measured responses is a common requirement. Ther \aariety of methods that
have been developed to achieve this and most of ttes be split into being either
unsupervised pattern recognition or supervisedepattrecognition techniques.
Unsupervised pattern recognition, also termed efushalysis, attempts to identify
groupings (or ‘clusters’) without the use of preaddished class information. This is
also true of exploratory data analysis (EDA) tosleh as PCA, however the main
difference between the two approaches is that w@rsiged pattern recognition aims
to detect similarities between samples and so Bdargroupings, whereas EDA has
no particular prejudice as to whether any groupsh@~ many groups) will be
found. In the case of supervised pattern recogni@lso called classification)
knowledge of the class membership is required imaade for a set of training
samples and the main aim of such a tool is to hisdariformation to try and allocate
new samples of unknown identity into the correcissl The classification of

unknown samples can also be achieved using clastdysis; however in this case it
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would have to be done manually and so would albp oe the judgement of the
analyst®®>%® Details of the specific pattern recognition techusis that have been
investigated within this research have been desdrit the following subsections.

2.3.2.1 Hierarchical cluster analysis (unsuperviged

There are a variety of clustering methods encongahéy the term ‘hierarchical
cluster analysis’ (HCA) and the majority of these hased on the assumption that
samples close together on a measurement spacéelsetb belong to the same
class®® The first step taken as part of HCA is therefovedefine the distance
between samples and there are a variety of wagsh®@ve this. The most common
approach used is to measure Euclidean distancehasds depicted by Equation
2.18, which defines the Euclidean distandebletween sampldsandl, where there

arej measurements angj is thej™ measurement on sam&*®’

J
dy :\/Z(ij = Xj )2 Equation: 2.18
j=1

Another popular distance measure is Mahalanobitarie and although this is

similar to Euclidean distance, it takes into acdotirat some variables may be

correlated and so considers the possibility thattian in some directions is much

larger than in others. It should also be noted liba¢ distance measures can be
determined based on either the raw data or on R©fes. The latter can provide

colinearity and noise reduction benefits, howewddittonally requires the selection

of an appropriate number of P&/¢>

Once the distance between samples has been defieedext step of HCA is to link
samples together to form clusters. There are malustering techniques
encompassed by HCA, however these methods candssifdd into two main
categories: partitional clustering, which startshvall samples being considered as a
single cluster and progresses by dividing existihgsters into smaller ones; and
agglomerative clustering, whereby all samples ani#iaily considered as lone

clusters before gradually being connected to e#iodr an group$?®’ Agglomerative
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clustering is the most frequently employed of the ttechniques and was the

approach utilised within this research.

In general an agglomerative clustering method Is=gi finding the samples with

the smallest distance between them (calculatedyusie of the measures described
above e.g. Euclidean distance) and linking thenettogr to form a new set of

clusters. The distances between the newly formedpy are then compared once
more and the two nearest clusters are again combanerocess which is repeated
until a stopping criterion is m&t®’ It is important to note here that although
Euclidean or Mahalanobis distance measures are tosddfine distances between
individual samples, they cannot be used to meatb@relistance between groups of
samples?® In the case of agglomerative clustering, linkaggwieen groups of

samples can instead be determined by a variety ethads, such as: nearest
neighbour, furthest neighbour, centroid, and Wan#age. The nearest neighbour
method (also known as single-linkage clusteringgénerally considered as the
simplest approach and defines the distance betamgtwo clusters as the minimum

of all possible pair-wise distances of samples betwthe two clustef§:*®

To help visualise the steps followed during agglaatiee clustering, an example has
been depicted in Figure 2.19 for five samples (AtExt have two associated
measured responses;(And ). Figure 2.19a shows the beginning of the process,
where each of the five samples is considered asdividual cluster and in the first
step of agglomerative clustering the distance betweach of these samples would
be determined — typically using the Euclidean distameasure. The next step then
links together the samples that are closest to @diclr in distance and in this
example the closest samples are clearly B and @hvare therefore shown to form
a new cluster in Figure 2.19b. The method is tlepeated so that the next closest
clusters are grouped together and in this exangrekes D and E are next closest in
distance to each other (now shown grouped togeth&igure 2.19c). In the next
repetition of the clustering technique, sample Ainked to the group containing B
and C to form the two clusters illustrated withigufe 2.19d. This is the next closest
distance between clusters and has been definethébyearest neighbour linkage
method as groups of samples are now being consdiddige final step of the
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clustering process, illustrated by moving from Feg2.19d to 2.19e, links together

the cluster containing samples A — C with the dusf samples D and E. This again

used the nearest neighbour linkage method and eswalue defining the distance

between the two clusters was the distance betwamples C and D — this distance

representing the minimum of all possible pair-widsstances for all sample

combinations between the two clusters depictedgarg 2.19d.
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Figure 2.19: An example of agglomerative clusteriagalysis involving five samples (A-E) and two
measured responses;(&nd %). Plots (a) - (e) illustrate the steps taken dugithe clustering
process whilst plot (f) shows the resulting dendrag. The dashed blue circles in each plot

represent the clusters formed at each repetitiorttod method.

The results of HCA are often represented in thenfaf a dendrogram and the

dendrogram generated from the above example has fregided in Figure 2.19f.

The vertical bars in the dendrogram indicate wtsamples (or groups of samples)

are linked together, while the horizontal bars deribe distance between the linked

samples or groups. When interpreting a dendrograean be broken at different

levels to yield different clustering of the d&t&’ In the example above (Figure

2.19f), the clusters would be defined by placingegical line across it and moving it

up and down the distance axis; for any given deathe number of clusters would

then be signified by the number of horizontal litlest intersect the vertical line. In



Figure 2.19f, the red dashed line that has beesrtes would therefore indicate the

presence of two clusters in the example dataset.

2.3.2.2 k-nearest neighbour (k-NN) classification

The k-NN classification method is a supervised pattecognition technique and so
can be used to automatically predict the identftgro unknown sample as long as a
training set is available where the class membgrsiiieach sample is already
known. Once the class of each training sample e lassigned, the unknown
sample can then be projected into the measurerpacesand its identity predicted
based on the pre-established class informationhef ttaining set.The k-NN
classification method works by calculating the aliste of the unknown sample to all
members of the training set; typically achievedgghe Euclidean distance measure
(see 2.3.2.1) although other approaches can be ifigeduired. Thek smallest
distances are then identified to determine whicining samples the unknown
sample is closest to and the unknown sample is d@llenated to the class that the
majority of thek samples belong t:°° If no majority is found (which can occur if
more than two classes are being considered) tleeartknown sample is assigned to
the class of the closest training sanfflé. is typical fork to take on the value of a
small odd number such as 3; however it is oftefulise test a few additional values

(e.g. 5 and 7) to see if classification charmj&s.

An example ofk-NN classification has been depicted by Figure 2.@@ich
represents the measurement space describing tviables (X and »%) and was
generated from a training set of samples incorpayahree classes (Classes 1 — 3).
The unknown sample projected on to the measurespatie has been depicted by a
black cross and a value kf= 5 has been utilised to predict its identity.dtdear
from the figure that the majority of the five nestreeighbours (encircled by a grey
dashed line) are members of Class 1 and so théitideh the unknown sample in

this case would be assigned as Class 1.
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Figure 2.20: An example of the k-NN classificatiamethod being applied to predict the identity of
an unknown sample (represented by a black crosd$)eme k=5. The dashed grey line encompasses
the 5 closest samples to the unknown and the ma&jooif these are clearly from Class 1. The
identity of the unknown sample would therefore beedicted as belonging to Class 1.
The simplicity of the k-NN method has made it extremely popular for the
classification of scientific data and it can eadly applied to data sets recording
many more than two measured responses; only twsureaent variables were used
in the example above however, for ease of visuaisaAnother appealing feature
of k-NN classification is that it can prove extremelsetul when the groups in a
training set cannot be separated by a pldnBespite these advantageous
characteristicsk-NN classification does have a number of potenimaitations that
are important to consider prior to its applicattdf>®°Firstly, it is important that the
numbers of samples within each class of the trgiset are approximately equal, as
this prevents there being a bias towards the elétbsthe most representatives. It is
also important that no outliers or ambiguous sam@es contained within the
training data, as such samples could wrongly imitee classification. Another
potential issue arises when samples have beenctbiasad by many variables that
possess different degrees of significance (e.g.nwégectroscopic data is being
considered). In such a case, it might be necedsaselect a smaller number of
variables prior to classification or to investigaaéiernative means to measure
distances between samples. It is also importantkkdep in mind thatk-NN
classification does not take into account the gpravariance in a class and so in
some cases it might be appropriate to use moreidmgalted versions of the

methodology that can employ voting schemes othaet ghmajority voté’
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2.3.2.3 Principal components — discriminant functianalysis (PC-DFA)

PC-DFA is another supervised pattern recognitiehriiegue and so aims to classify
new, unknown samples based on the identity of ptesly classified samples from a
training (or calibration) datasét.DFA (also known as canonical variate analysis
(CVA)) is based on linear discriminant analysis A)and so attempts to find linear
combinations of the originally measured variabldsciv best separate two or more
classes (termed canonical variaf®s¥-"® This procedure has been depicted within
Figure 2.21 for the simplest scenario, where tlaeeetwo classes (A and B) and two
measurement variables {&nd X). In Figure 2.21a it is clear that both of thesskes
are clearly distinct from each other when the mesament variables are plotted
against each other; however when each sample jecped onto the individual X
and X axes (as shown in the figure), it is clear thatséd alone neither of the two
measurement variables would be able to discrimibhatereen the two classes. Both
measurement variables are therefore crucial fossdiaation and Figure 2.21b
demonstrates how a canonical variate can be impigzddo enable class separation
using information from both measurement variables flased on only a single
dimension. Figure 2.21b shows that a line (dottey ¢n this example) can be drawn
between Classes A and B that allows them to berlglelstinguished from each
other. All samples can then be projected onto glaitine at right angles to this
discriminating line (the new line being the canahivariate) that allows clear
visualisation of the distinction between the twasses based on a new single
variable®*®**®The identity of unknown samples can then be ptedibased on their
value when projected onto the canonical variateooecal variatesY) typically
being described by the function given in Equatioh92 wherea, is the coefficient

for measurement variab,.>®

Y =a1X1+a2X2 +---aan Equation 2.19
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Figure 2.21: Plots of X vs. % for samples covering two classes (blue circleside@lass A and red
squares denote Class B). Plot (a) demonstrates thiaen samples are projected onto the individual
axes, class discrimination cannot be achieved whising only one of the measurement variables.
Plot (b) then illustrates the use of a canonicalnate to allow class discrimination by the creation
of a new single measurement variable that is a Bimeombination of the original measurement
variables (% and X,).
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Although the above example only depicts how DFA ldoseparate between two
classes (with two associated measurement varialblés)commonly used in much
more complex situations and seeks out canonic&tearthat will maximise between
group distances whilst reducing within group vagiaf®’? The main advantages of
DFA are that it is fast and simple to implement ahdwill also give good
classification when samples are linearly separ&tikespite this however, DFA does
suffer when data are highly collinear and also whka number of features
(wavenumbers in the case of this research) areehighan the number of
sample€® %23 The condition described by Equation 2.20 typichias to be met;
whereNs corresponds to the number of samphgsdepicts the number of groups and
N, reflects the number of featur®s.

(Ns —Ng —1) >N, Equation 2.20

To overcome the above mentioned limitations, PCA lba performed on the data
prior to DFA, hence the term PC-DFA. PCA is ableggduce the dimensionality of
the data whilst preserving its underlying structarel does so without using prior
knowledge of the sample groupings. This meansafiat PCA has been applied to
the original dataset, only a small number of newaarelated latent variables remain
to be employed during DFA. This therefore removes effect of collinearity and

also reduces the number of variables to satisfy dbedition depicted within

Equation 2.1%870.7273

2.3.3 Data Preprocessing Tools
2.3.3.1 Derivatisation

Derivatives can be applied to data prior to muliste (or univariate) analysis and
are commonly used to pre-process spectral datenmve the effects of baseline
offset or to remove sloping baseline offsets, agrdeusing 1 and 2¢ derivatives
respectively. In simple terms thé& derivative shows the rate of change of a tangent
drawn at each point of the untreated data, a gi@cllustrated by Figure 2.22 for
the transformation of data with a baseline offsettte ' derivative. Figure 2.22

demonstrates that: when the tangent slope is isicrgao the greatest extent a
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maximum is observed in thé' terivative spectrum; when the slope is decreatsing
the largest degree a minimum is observed in fheletivative plot; and when the
slope is flat (such as at the top of a peak with@untreated data) the value of tfie 1
derivative becomes zero. If thé“2derivative were sought after this would be
acquired in the same manner as for tHedrivative but taking the rate of change of

the F' derivative spectrum as opposed to the untreatedftia

Untreated
Data

v

1st Derivative
Data

v

Figure 2.22: Schematic depicting the transformatiai untreated data to the*iderivative.

Transforming data to the*dor 2' derivative can be done using the Savitzky-Golay
filter, which in addition to applying derivatisatiowill simultaneously smooth the
data. This typically allows noise reduction with@uty significant loss of the signal
of interesf* The Savitzky-Golay algorithm works by fitting a Ipoomial to
windows around each point in a spectrum and regjufre selection of the window

size (filter width), the order of the polynomialdathe order of the derivative. In
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general, the larger the window and the lower thiyrmmmial, the more smoothing

will be applied and so these settings have to befuéy selected depending on the
data being assessed. If the filter width is togeéathen distortion of the derivative
curve may occur but if the chosen window size & small, unwanted noise can be

introduced®®

2.3.3.2 Normalisatiof®

Normalisation preprocessing methods are typicafigduto correct for scaling/gain
effects in data that have caused the variables ureédor a given sample to be
increased or decreased from their true value byudtiphcative factor. Scaling
effects can be caused by a variety of reasonsexample they might arise from
instrumental sensitivity effects (e.g. source/detecvariations and pathlength
effects) or alternatively could arise from physieald chemical effects such as the
physical positioning of a sample relative to a sen8 normalisation preprocessing
method attempts to correct for these types of &ffbg identifying an aspect of each
sample that should remain virtually constant frone @ample to another and then

amends the scaling of all variables based on dstife.

When being applied as a preprocessing tool prighéoapplication of multivariate
data analysis, normalisation can also help to glyeamples an equal impact on the
model being created. This is typically requirethié relationship between variables —
and not the magnitude of the response — is thecagpehe data most crucial for
identifying a species. This would be the caseristance, if simply the presence of a
material is important for identification and noethoncentration at which it is there.
If normalisation were not applied in this case, taer samples with large
multiplicative scaling effects might not be consete by many multivariate tools due
to not significantly contributing to variance.

A number of different normalisation preprocessingtmods are available and simple
normalisation will calculate one of several differenetrics using all of the variables
of each sample. Common normalisation methods iecldd/iding each variable by

the sum of the absolute value of all variablesiiergiven sample; normalising to the

sum of the squared value of all variables for aegisample (which is a form of
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weighted normalisation where larger values are ey more heavily in the
scaling); and normalising to the maximum value oles@ for all variables for a
given sample (also weighted, where only the largestie is considered in the

scaling).

Normalisation should typically be applied after tlegnoval of any baseline offset
(e.g. by derivatisation) and prior to any centrafighe data. The presence of baseline
offset when normalisation is applied can impede ¢beection of multiplicative
scaling effects (unless the baseline is very ctersisrom one sample to another, in

which case it would provide a useful referencenfmmmalisation).

2.3.3.3 Generalised least squares weighting prepssing

Generalised least squares weighting (GLSW) is a gagprocessing tool that has
been implemented within this research (primarilyjoprto PCA) as a means to
improve the prediction of test samples when datyars tools for classification
have been investigated (work undertaken within @rag). GLSW incorporates an
algorithm that calculates a filter matrix from ttiéferences between samples which
should otherwise be similar and subsequently attenmp down weight these
differences which it considers ‘clutter’ or interéace. In the case of classification,
similar samples would be the members of a givessctand so in this case, the main
goal of GLSW is to reduce any within class variatwithout bringing the individual
groupings any closer together (i.e. whilst maintagnbetween category variance).
Such an objective thus enables better discriminatb classes. In more detail,
GLSW works by centring the data from pre-assignatkgories to their own class
means and uses this ‘class-centred’ data to cadctha filter matrix. The algorithm
itself contains only a single adjustable parameker weighting parametes);, which
dictates the degree to which the GLSW filter maown weights any clutter.
Adjusting a towards higher values would decrease the effeictheo filter, whilst
lower values would apply a higher degree of filigriThea value therefore needs to
be optimised for any individual dataset and thoakies implemented within this

research will be quoted where appropriate in letapters> "
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3.0 ATR-MIR SPECTROMETRY FOR PROFILING CARAMEL
COLOUR IN SCOTCH WHISKY

3.1 Introduction

3.1.1 Basis of this Study

As discussed previously, there are four classesavhmel recognised by the
European Union for use in foodstuffs (E150a, E199b50c and E150d) and the
research presented in this study has attemptedofdepthese materials. Particular
emphasis has been given to the study of E150a etsam these are the only class
legally permitted for use in Scotch Whiskyinderstanding the profiles provided by
these caramel colourants and their behaviour irtcBc@/hisky would therefore be

extremely useful to the industry in terms of pradagthenticity.

A wide variety of E150a products are available loa market as the manufacturing
process can incorporate a number of variable pasamesuch as: the starting
carbohydrate substrate implemented; the reactaltsdato aid with caramelisation;
the concentration of added reactants; and the textyse and pressure profiles of the
reaction vessét® Changing any of these conditions has the potetuiadffect the
final product composition and so the main purposéhis work was to determine
whether any spectral differences could be identifleetween E150a caramels
prepared in different ways. The ability to do tb@uld indicate whether there is the
potential to manipulate E150a manufacture in ther&uand create distinct signature
profiles. These could then be spiked into diffenehisky products to act as inherent
markers for the positive identification of authergaamples. The ability to distinguish
the profiles of E150a caramels from other sourdelmur that would be prohibited
in Scotch Whisky (e.g. alternative caramel clagsesny other sources that provides
the characteristic yellow/brown colour of a Scotetguld also be important for
achieving this aim - it would potentially allow fext samples to be screened based
on their colour profile. To enable these conceptise implemented, it would also be
crucial to assess the affect of the Scotch Whiskyrimnon the ability to identify the
presence of particular caramels. This was addilipransidered when completing

the research presented in this chapter.
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This chapter investigates the use of mid infraygecsometry (MIR) combined with
an attenuated total reflection (ATR) probe for éimalysis of caramel colourants. The
literature review that follows explores how carasnleve been characterised in the
past and consequently summarises why ATR-MIR ha&s lehosen for use in this

research.

3.1.2 Profiling Caramel Colourants in Foodstuffs -A Literature Review

Caramel colourants are extremely difficult to cleéedase, which is directly related to
the complexity of their chemical composition. A®ypusly discussed in Chapter 1,
the process of caramelisation involves a complees®f reactions and results in a
dense mixture of low molecular weight (LMW) compdsgnand high molecular
weight (HMW) polymers in the form of colloidal aggate$. The majority of
studies in the literature have therefore attempiesimplify caramel characterisation

by the analysis of separate fractions rather thercaramel colourant as a whofe.

There are a few studies in the literature that tediempted to characterise the HMW
fractions of caramels and these have used techsigueh as gel permeation
chromatography, ultrafiltration and size-exclusidmgh performance liquid
chromatograph{®**? Although some knowledge has been acquired abait th
overall characteristics of these HMW fractions dafferent caramel materials, little
information has actually been acquired about thelremical composition.
Considerable issues were also identified when usirese tools to assess the
presence of caramels in food productghe application of high performance liquid
chromatography (HPLC) and gas chromatography (@C)He analysis of LMW
compounds has therefore proven much more poputaough the case remains that
relatively few compounds have actually been stmadityiidentified. Most analytical
studies relating to the analysis of caramel coloisrdave consequently centred on
the acquisition of characteristic or ‘fingerpriprofiles. This was an approach taken
by A. Pateyet al, who used a chloroform/ethanol mixture to extradtiw
components from a selection of E150a, E150b andO&ldassed caramels.
Analysis of the silylated extracts using GC revedaliestinct traces for caramels of

different class and also allowed the manufactufréiko produced E150c caramels to
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be identified. Consistency of marker component<ifipeto all caramels in a class
could not however be determined; neither couldviddial caramel types within a

class.

Subsequent studies by Litobtt al have progressed caramel characterisation further,
HPLC being particularly useful for the identificati of LMW components:*?
Multiple samples from each of the four caramel stswere analysed in this work
and similar chromatographic profiles were obtairfed all caramels within a
particular class, regardless of differences in ¢baditions of manufacture. This
indicated compositional uniformity within each da<learly distinct profiles were
also identified for caramels belonging to sepadsses, highlighting the potential
of HPLC for caramel differentiation. Further worl bitcht et al took these results,
along with additional information relating to thehysical and compositional
properties of caramels, to develop specificatidrag tvould clearly define the four
classes of caramel colotifrThey presented a series of simple and practis# that
when combined, could ensure both the class of adramd conformity of that

caramel to the outlined specifications.

Despite these advances in caramel characterisatiansferring such methods to
allow the detection of caramel materials in foodsl deverages has proven very
complex™® When incorporated into food matrices it becomeshmore difficult to
identify components that are characteristic of di@#lar caramel, which is largely
due to difficulties in distinguishing between compats present as a result of
caramel addition and those that have been formadally during the manufacture
and cooking of foodstuffs. Rather then attemptingidentify specific caramel
components, the literature demonstrates that theepce of caramel in foods and
beverages has taken on a more empirical appréaém other words, most studies
have relied on the detection of unknown marker comepts that have been
identified as unique to the caramel and can be ummedswithout interference from
the features of food and beverage matrices. CalifelyCastle for instance, report the
use of ion-pair HPLC for the detection of a distipeak in the chromatographic
trace of E150c caramels that was absent from tbélgw of E150a and E150d
classes? This methodology was then successfully appliedterdetection of E150c
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caramel in a variety of food products, with no #igant interference being found at
the retention time for the marker pedk.. Ciolino also demonstrated the use of
HPLC to identify caramel components in foodstuffsnfirming the adulteration of
acerola juice with a specific E150d formulatidriThis analysis was based on the
detection of four distinct peaks in the chromatpgia trace, matched with a
reference caramel already identified as the aduiteAlthough this demonstrates the
potential of HPLC for caramel analysis, the patacumethodology would be

difficult to apply to caramels of unknown origin.

Although the literature surrounding caramel chaasation has been found to centre
largely on HPLC, research into the application &pittary electrophoresis (CE) has
also been investigatédt!®!’ CE separates sample analytes based on differémces
ionic mobility and so is suited to the analysis aaframels, which are generally
charged as a result of the reactants used duringufacture. L. Royleet al
undertook a study using CE for the assessment 60 taramels and developed a
method that could clearly separate five differeatamels within this class — the
migration time of peaks was found to be relatedh® sulphur content of each
material*’ They were then able to implement this methodolimgythe identification
and quantification of E150d caramels in a rangsait drinks'”?° Further work by
the same group has also assessed the possibilidystioguish between caramel
classes E150a, E150c and E150d using CE and chas#ct profiles have been
obtained"® This latter study however has not assessed teetaif food matrices on
peak detection and so this would need to be coresidé the methodology were to
be applied for the identification of these caramefoodstuffs.

Whilst the preceding studies demonstrate the sacaas unknown marker
components to confirm the presence of caramel mdem foodstuffs, some
headway has been made in the identification of iBpemarker compounds. For
instance, a number of studies over the last twadex have indicated that a family
of compounds known as difructose dianhydrides (DFAsn during the process of
caramelisation and so could be indicative of thespnce of caramel colourants in
foodstuffs?*?® A study by A. Montillaet al has made use of this information and
demonstrated that honey samples adulterated bywdbgion of caramel could be
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successfully identified by GC-MS analysis to camfithe presence of DFASThe
main limitation of this approach to confirm the geace of caramels in foodstuffs
would arise if the food (or beverage) product ftgalolved a caramelisation process
during manufacture. In this case, DFAs would alyebd present even without the
addition of caramel — A. Montillat al.for instance were able to identify the process
used for roasting coffee beans by assessing DFAilgmd’ Analysing for the
presence of DFAs might therefore be restricted tfor assessment of caramel
colourants in Scotch whiskies as natural colourthe product results from a
caramelisation process (see Chapter 1). MonitddRé levels might therefore be a
more appropriate alternative to confirm the presavfccaramels in Scotch whiskies,
however it is currently unclear from a search of {iterature whether profiles
acquired of DFAs would allow caramels from diffarezriasses and of varying

formulation to be distinguished.

The majority of literature highlighted so far inighreview has indicated that the
characterisation of caramel colourants has been t masccessful using
chromatographic based techniques and also withllagpielectrophoresis. These
analytical tools could be investigated for the gsial of caramels in Scotch Whisky
however they generally require quite sophisticagaipment and often employ quite
complex and time consuming methods. These techsigmeuld therefore be
impractical for use on a routine basis, howeverefh® currently a drive in the Scotch
Whisky industry for tools that can provide quickdasimple screening of sampf&s.
% The potential for miniaturisation is also a desieacharacteristic to the industry, as
such tools could allow screening of suspect samipleéke field to allow an initial
assessment of authenticity before more comprehensivestigations can be
undertaken in the laboratof§i*>3%3’ After reviewing the literature it appears as
though techniques based on optical spectroscoplpeang commonly assessed with
this purpose in min®3? A publication by W. Mckenzieet al for example
demonstrates the use of a hand held UV-Visible tspelcotometer for the analysis
of Scotch whiskies, allowing brand authenticitybi confirmed in the field based on
the absorbance spectra of sampieSuspect samples were assigned based on their
absorbance spectra falling out with limits predeieed for the genuine brand.
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Analysis time was reported to take less than oneutaiper sample and only those
that failed were passed on for confirmatory analysi the laboratory. GC would

typically be used for this purpose and in this ctee analysis of a single sample
could take at least 20 minutes. Using the portelMeVisible spectrophotometer as a
screening tool therefore offers advantages in texfmaobility and speed, as well as

lowering analysis costs.

Only one example could be found in the literaturenese UV-Visible
spectrophotometry has been used as a tool to sadlgifassess caramel colourants
and it was implemented to identify both the preseand quantity of caramel in
spirits aged in oak cask®.The work made use of the ratio between absorbance
values at two wavelengths (210 and 282 nm) to &ehilkis finding however there
was no indication as to whether it would be possibldistinguish between different

caramel materials using this methodology.

Further assessment of the literature indicated NHEt spectrometry might be better
suited for the analysis of caramel colourants iat&8t Whisky. In addition to the tool
providing more comprehensive spectral features, Mcintyre et al have
demonstrated its potential for profiling carameiswihisky product§? Using MIR
spectrometry combined with an ATR probe, this graugre able to characterise 17
samples as either authentic or counterfeit baseal combination of 2 methods: the
determination of ethanol concentration; and ansassent of the colourant added.
The latter was achieved by analysing the drieddves of whisky samples and
comparing the resulting profiles to those obtaifean the dried residues of
caramels dissolved in 40% ethanol. Distinction leetv one type of caramel from
each of the four classes recognised by the Europ@s&m was clearly achieved in
this study. The research presented in this chamtdds upon the methodology
developed by A. Mcintyreet al for profiling caramels by dried sample residue
analysis and has particular emphasis on the aseassfnE150a products.

A few other examples have been found in the liteeatwhere colour profiles of
liquid samples have been assessed by the analydited residues using MIE:*

Picqueet al. for instance used transmission MIR to successtfiiByinguish cognacs
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from other distilled spirits by the analysis ofeattisample extracts — these extracts
being described as containing carbohydrates, cdranteextractable material from
oak wood®® Another example published by N. Naikal. shows how it was possible
to use MIR analysis of spentwash residues to momitelanoidin and caramel

degradatiorf?

3.1.3 Study Objectives

This chapter has investigated the use of ATR-MIBcsiometry for the analysis of
caramel colourants and highlights the potential efiesn for Scotch Whisky

authentication. The main objectives of the workeaver

* To determine whether ATR-MIR can differentiate beéw E150a caramels

prepared using different conditions of manufacture.

 To identify whether differentiation is also achidvebetween E150a
colourants and the three remaining caramel classesgnised by the

European Union.

* To determine whether burnt sugar profiles can stirdjuished from those

acquired of E150a caramels.

« To examine the influence of natural colour on ATRRMspectra when
caramels are dissolved in the more complex matfixa &Gcotch Whisky;
would features characteristic of the added colduséih be observed and/or

dominate dried residue profiles?

e To find out whether the background matrix of diffiet blends would

influence ATR-MIR spectra to different extents.

» To explore how ATR-MIR spectra might be affected &genarios that
influence actual Scotch Whisky products such agatiran in caramel

concentration and colour fading over time.

After the exploration of these initial aims and é&®n the information gathered, an

additional investigation was undertaken to asséss ability of ATR-MIR to
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differentiate between the dried residue profilesSobtch Whisky blends already on
the market.
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3.2 Experimental

3.2.1 Samples and Materials
3.2.1.1 Caramels and colourant materials

Fifteen E150a caramels were provided for this stuyglthe Scotch Whisky Research
Institute (Riccarton, Edinburgh, UK), including bigdifferent formulations covering
three manufacturers. Multiple batches of some ek¢hcaramels were analysed to
compare batch to batch variability with variatiostween E150a caramels prepared
using different conditions of manufacture. At leasie type of each of the other
caramels recognised by the European Union (E15060& and E150d) were also
analysed in this work to allow a comparison of Edf0ofiles with those acquired
from caramels not legally permitted for use in $boWhisky. Three burnt sugar
(BS) materials were also included in this samptessech products being produced in
the same way as caramel colourants but withoutateof reactants to promote
caramelisation. All samples have been summarisedainle 3.1 and have been

denoted with a code for future referral.

Table 3.1: Summary of the main colourant samplesafysed within this study.

Colourant . % Starting Reference
Class | Manufacturer | Formulation Batches substrate Code
X 1 3 Maize E150A_X1
2 3 Maize E150A X2
3 2 Wheat E150A Y3
E150a Y 4 2 Maize E150A_Y4
5 2 Sucrose E150A Y5
6 1 Maize E150A_Z6
Z 7 1 Wheat and Maize| E150A Z7
8 1 Wheat and Maize| E150A Z8
E150b X 9 1 - E150B_X9
E150c X 10 2 - E150C_X10
E150d X 11 2 - E150D_X11
X 12 1 - BS_X12
BS z 13 1 - BS 713
14 1 - BS_ 714

98




All colourant samples were either dissolved in 488anol or a Scotch Whisky
blend prior to analysis using ATR-MIR. Absolute a&tlol was acquired from Sigma
Aldrich and prepared to the required concentrabgrdiluting with distilled water,
whilst the whisky blends were provided by the SWRAii0 blends were acquired for
this research, each of which was devoid of anyipusvcaramel addition. The first
blend Blend Whisky A) represented a typical blend whisky that woulddaend on
the market, whilst the second bler8Bldnd Whisky B) represented a much higher
level of colour that would be developed naturatlyd Scotch Whisky product.

3.2.1.2 Blends for discrimination study

Four whisky blends that are available on the mavkate analysed in this study to
assess whether any differences could be observettheincolourant profiles of
different blends (all known to contain caramel).énty samples were analysed in
total, including five batches of each whisky. Alebds were supplied by the Scotch
Whisky Research Institute (Riccarton, Edinburgh,)UK

3.2.2 Mid-infrared Spectrometry

MIR spectra were acquired using an ABB MB3000 FHpectrometer (Clairet
Scientific, Northampton, UK) coupled with polycrg8ine silver halide optical fibres
to a 25 cm long, 12 mm diameter hastelloy bodiedRAsfobe containing a diamond
cone (Fibre Photonics Ltd., Livingston, UK). Thetalofibre-probe length was
approximately 1.8 m. All measurements were obtausdg 51 scans per spectrum
with a resolution of 16 cthin the 400 — 4000 cthregion. Spectra were acquired
using GRAMS Al software version 7.00 and exportedS&C files into MATLAB
for further interpretation. An air background wasvays obtained prior to any

analysis.

3.2.3 UV-Visible Spectrometry

UV-Visible spectra were obtained using a Model 4AB-Visible Spectrometer (S.I.
Photonics, Tucson, Arizona) fitted with a tungstamp. Samples were analysed
using a Dip-Probe of 1 cm pathlength (S.I. Photni€ucson, Arizona) and

absorbance data were collected from 390 to 700 rnith & 1.1 nm spectral

99



bandwidth. Triplicate measurements were taken lfagaanples (removing the probe
head between each acquisition) and the averagebaee used for any subsequent
work. Spectra were referenced against 40% ethaneter (prepared by volume).

3.2.4 Methods of Analysis
3.2.4.1 Samples spiked in 40% ethanol

All caramel and burnt sugar samples described witlable 3.1 were analysed in this
part of the study and solutions of these matemadse prepared at approximately
2.2 g per 100 mL in 40% ethanol (by volume). FoRMiInalysis, the ATR probe was
set up in an inverted position and an air backgioobtained. A 1QuL aliquot of
sample solution was then injected onto the probpesdi as to completely cover the
diamond crystal. The sample deposition was nexddwith the use of a heat lamp
for about 5.5 min to leave a thin film over the stg} for analysis. The maximum
temperature at the probe tip was kept between BIFE€ and checks were performed
to ensure that samples were not being degradeleblyeat (discussed in more detail
in section 3.3.1.1). Spectra were then acquirethefdried residues once the probe
had been allowed to cool back to ambient tempezaiithis was repeated in triplicate
for each sample and six repeat spectra were adgarel averaged for each
deposition. When six replicate spectra were contpf@n a single deposition of a
typical E150a caramel, the average %RSD basedeoaliborbance of the five most
prominent peaks (in the range 1000 — 1800%)cmwas 0.33%. When the first
derivative spectra (normalised to the largest p&aky three separate depositions of
the same caramel were measured, the average %Rfreacfrom the six most

intense peaks was found to be 4.11%.

3.2.4.2 Samples spiked in blended Scotch Whisky

Only a selection of the samples described withibl&&.1 were utilised in this part
of the study and those that were assessed ardlmburhere relevant in the results
and discussion section (section 3.3). All sampledysed were added to either Blend
Whisky A or Blend Whisky B (the particular whiskyed being described where
relevant in the results and discussion sectionjl tim¢ final colour level became

similar to that of a typical blend available on tharket. To allow consistent colour
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levels to be achieved, all sample solutions werenitaed using UV-Visible
spectrometry to ensure that the absorbance at ABWas close to 0.55 (the level
predetermined for a typical blend). The mass omeal required to reach this level
was much lower (~0.08 g per 100 mL) then that added0% ethanol and so all
sample solutions required preconcentration priaartalysis by MIR to allow spectra
of adequate absorbance to be acquired. This was wdh the use of a hairdryer,
reducing 6 mL of sample down to dryness beforenstituting the resulting residue
in 300 uL of distilled water. The concentrated sample sohdg were then analysed
using ATR-MIR as described for the samples dissbine40% ethanol. In this case,
when the first derivative spectra (normalised ® lrgest peak) from three separate
depositions of a typical sample solution were camgpathe average %RSD acquired
from the six most intense peaks was found to b2%.5As this methodology also
incorporated an additional sample preparation sthp, spectra acquired from
preparing and analysing one sample three times alscecompared. The %RSD in
this case was calculated as 2.04%.

3.2.4.3 Caramel concentration study
Control samples

Four glass vials were each filled with approximateb mL of 40% ethanol and an
E150A X1 type caramel was added to each vial taiokfiour different solutions
with the following absorbance levels at 430 nm:; 0.2, 0.6 and 0.8. All absorbance
levels were monitored using UV-Visible spectrometnyd the above absorbance
range was chosen as it represented the rangeaifrcagsociated with blends on the
market. To acquire spectra of adequate absorbaticeample solutions required
concentrating prior to analysis by ATR-MIR. This svachieved as described in
section 3.2.4.2; solutions were reduced from 6 L300 puL with the use of a
hairdryer. The resulting sample solutions were thealysed by ATR-MIR using the

methodology as described in section 3.2.4.1.

Study samples

Eight caramel solutions were prepared in this pathe study (all using the same
E150A_ X1 type caramel as the above control sampfes) dissolved caramel in
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40% ethanol, whilst the remaining four had caradissolved in Blend Whisky A.
For each different solution medium, the four sanos were prepared to possess
absorbance levels of 0.2, 0.4, 0.6 and 0.8 at 480Blend Whisky A alone had an
absorbance of approximately 0.07 at 430 nm analkabrbance levels were again
monitored using UV-Visible spectrometry. Prior taadysis by ATR-MIR, each
sample solution required pre-concentrating andwhas achieved by reducing 6 mL
of solution down to dryness before reconstitutihg tesulting residues in specific
volumes (109, 218, 327 and 436  respectively) depending on their original
absorbance. The purpose of this adapted concemtratep was to ensure that all
solutions were prepared to equivalent absorbavetsi@rior to ATR-MIR analysis —
results from the control samples had indicated thatATR-MIR methodology did
not provide consistent profiles when solution coniions varied (described in
more detail in section 3.3.2.1). The procedure useatktermine appropriate volumes

is described in Appendix 8.1.

3.2.4.4 Caramel fade study
In this part of the study one E150A_ X1, a singlé&c®A_X2 and one E150D_X11

caramel were examined. Stock caramel solutions wegpared for each caramel
type by the addition of caramel to 40% ethanol (@®® mL) until an absorbance of
approximately 0.80 at 430 nm was reached (monitousihg UV-Visible
spectrometry). This absorbance level was chosenrapresented the higher end of
colour that would be associated with blends onntlagket. Once prepared, the stock
solutions were then split, using 10 mL aliquotdpiright separate clear glass vials
all of equal dimensions. Five of these vials wérentplaced in a UV light box and
one removed after each of the following time paoidtglay, 2 days, 3 days, 4 days,
and 7 days. The absorbance of each sample at 43@asnmeasured again after its
removal from the light box and subsequently recdrdéach sample was then
concentrated prior to ATR-MIR analysis so that $fzeof adequate intensity could
be acquired. Sample volumes were reduced using@Yyer as described in section
3.2.4.2 but in this case the volume to which eaztidue was reconstituted was
adjusted so that the final absorbance of all sasnples equivalent (see Appendix 8.1

for example calculation). Once concentrated tordwpiired level, each sample was
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analysed using ATR-MIR as described for caramelsalved in 40% ethanol
(section 3.2.4.1).

The three remaining sample vials for each caragps,teach containing 10 mL of
stock solution, were used as controls. Control Sarhpvas analysed by ATR-MIR
on the same day that other samples were placedeirdV light box (Day Zero).
Control Sample 2 was kept under ambient conditinrike lab and its absorbance at
430 nm monitored from day zero to day seven, poanalysis using ATR-MIR
spectrometry on day seven. Control Sample 3 wag Wwiapped in aluminium foll
and stored in the UV light box for the 7 day duwatof the experiment. This latter
control sample was then analysed by ATR-MIR afteremoval from the UV light
box. Prior to the analysis of these controls uskibR-MIR, each sample was
concentrated to the required level as describethfoother five samples included in

this study.

3.2.4.5 Blend discrimination study

This study was undertaken using the whisky samgéseribed in section 3.2.1.2.
The absorbance of each sample at 430 nm was Iyiiabessed using UV-Visible
spectrometry. Samples were then concentrated farifurther analysis so that ATR-
MIR spectra of adequate absorbance could be achuirbairdryer was used for this
purpose and the reduction in volume for each sample undertaken according to
the procedure described in Appendix 8.1. Once gunated to the required level, the
blend samples were analysed using ATR-MIR specthymas described for the

samples dissolved in 40% ethanol (section 3.2.4.1).

3.2.5 Data Analysis

All ATR-MIR data were imported for analysis into MAAB version 7.13.0.564
(R2011b) (Mathworks Inc., Natick, MA, USA) with PL%oolbox version 6.7
(Eigenvector Research Inc., WA, USA) incorporat8sfore the application of
multivariate data analysis, all data were processsidg a Savitsky-Golay first
derivative filter, which employed a width of 7 dapmints and a second order
polynomial. PCA was then carried out using 155 afalgs in the 625 — 1813 ém
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range of the derivatised spectra, hence removigigme that only contributed noise
to the measurements. Multiple PCA models were coastd during this study and
the samples included in each model are stated wapmmopriate in section 3.3. All
data were normalised to the largest peak (consigtéound between 950 and

1050 cnt') and mean centred before PCA was performed.
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3.3 Results and Discussion

3.3.1 ATR-MIR for Profiling Caramel Colourants

3.3.1.1 Assessment of the ATR-MIR method
Rational behind methods

In this research, caramel colourants were profiiter being dissolved in one of two
media: in 40% ethanol, to allow an initial assessnoé profiles in a form similar to
that of a Scotch Whisky but without any interferefiom natural whisky colour or;
in a Scotch Whisky blend devoid of previous caramédlition, to subsequently
investigate whether caramel profiles could stillidentified when inherent whisky
components might interfere. Sample preparation slightly different for these two
media and this was due to differences in the masisearamel being added to each
solution medium. When in 40% ethanol, caramel wiasalved at a concentration
much higher than would typically be found in a $boWhisky product (2.2 g vs.
~0.08 g per 100 mL). This was so that spectra @fgadte absorbance could be
acquired without the need for any sample pre-treatmWhen caramels were
dissolved in blend whisky however, they were adtted colour level that matched
that of a typical product and as a result, all sohs required preconcentration prior
to analysis with the ATR-MIR method.

Although sample preparation of caramel solutionshim two media used different
approaches, the actual methodology for ATR-MIR wsialwas exactly the same;
spectra were obtained from dried residues acqusedrying 10 uL of a sample
directly onto the ATR crystal with the use of atleap. This procedure was used as
it allowed features relating to the underlying aola@onstituents to be observed,;
something that was not possible using a convertap@roach. When implementing
MIR spectrometry with an ATR probe, the analysidigfiid samples such as those
considered in this research would traditionallyrelertaken by immersion of the
probe head directly into each sample. When thisagmih was implemented for the
analysis of caramel solutions (in 40% ethanol ca ilend whisky) however, spectra
were completely dominated by the features of ethaswd water. This is

demonstratedvia Figure 3.1a which shows the liquid spectrum ofEb0A X1
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caramel dissolved in 40% ethanol. The spectralufeat were accounted for as
follows: the broad band around 1640 tmas caused by the H-O-H bending mode
of water; the features between 1200 and 1500 kave been attributed to the H-C-H
bending of ethanol; the peaks at 1085 and 104% were caused by the C-O stretch
and C-C-O bending modes of ethanol; and the banddf@t ~875 ci has arisen
from the C-C ethanol stretéfi*? Identical features were observed for all other
caramel solutions (whether dissolved in 40% ethanal whisky blend) analysed by

immersion of the probe head directly into eachitiqu

Absorbance

0.6- 1

(b)
0.2} 1

800 1000 1200 1400 1600 1800
Wavenumber (cm '1)

Figure 3.1: (a) The ATR-MIR spectrum of an E150A Xdaramel dissolved in 40% ethanol,
acquired by immersing the probe head directly ik sample solution and (b) the ATR-MIR
spectrum of the same caramel sample, acquired byrdy the solution directly onto the ATR

crystal. The absorbance of spectrum (a) has bedsatf(by 0.8) with respect to spectrum (b).

As it was not possible to observe features relatingcolour components by
conventional ATR-MIR analysis, a methodology wasvedeped that involved

inverting the fibre optic probe head so that sangoleitions could be dried directly
onto the ATR crystal. This allowed ethanol, wated @ny other volatile congeners
(the latter being present when caramels were diedoin Scotch Whisky) to be
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evaporated, leaving behind a residue that was fdonde dominated by colour
components. The dried residue profile of an E150A céramel dissolved in 40%
ethanol has been provided in Figure 3.1b to allowomparison of the features
obtained with those acquired from the equivalemiga analysed in the traditional
manner (Figure 3.1a). As caramel colourants encempacomplex mixture of both
LMW compounds and HMW polymers it was difficult #tis point to assign the
resulting spectral features to specific componentfunctional groups. It is likely
that the spectral contributions have resulted frantombination of the typical

functional groups associated with a range of orgarolecules.

Method repeatability

To gain a greater understanding of the ATR-MIR rodtilogy applied in this
research a number of experiments were undertakersdess method repeatability
and also to investigate whether any parameterkeofrtethod could be affecting the

precision of spectral measurements.

Repeatability of the ATR-MIR methodology was asedsgy comparing the spectra
obtained from three replicate depositions of E150A caramel solutions. The
average %RSD values, based on the absorbanceseatioim the six most intense
peaks in the first derivative spectra (normalisethe largest peak), were found to be
4.11% and 2.52% respectively when this caramel digsolved in 40% ethanol and
then in Blend Whisky A. Although this assessmentegfeatability only accounted
for one type of caramel colourant, it provided ad@andication that the acquisition
of repeat measurements resulted in consistent rapddeasurements of all other
sample solutions however were analysed in trigicéd verify that this level of

repeatability was maintained throughout.

When caramels were dissolved in a blend whisky,pdasnrequired concentrating
prior to ATR-MIR analysis; an extra step that wa$ needed when caramels were
incorporated in 40% ethanol. To assess the repéptabf measurements that
required this additional sample preparation, treelitions of an E150_ X1 caramel
in Blend Whisky A were prepared and separately eontrated before each was
analysed by the ATR-MIR method. In this case theSBRacquired in the same
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manner as above but for the three replicate saykes determined as being 2.04%.
This value is comparable with those quoted preWoasid so indicates that the
additional sample preparation step for caramelsotiied in a blend whisky did not

compromise the repeatability of spectra.

The methodology used in this research has beenlapece from an approach
originally implemented by Mcintyret al, who used the analysis of dried residues by
ATR-MIR to compare the colourant profile of a S¢oM/hisky product with that
provided by different caramel colourartsin their work, all solutions had a colour
level similar to that of a typical blend whisky asd spectra of adequate absorbance
were acquired by building up dried residues from-180uL directly onto the ATR
crystal (in 10uL aliquots). This highlights the main differencetween the two
methods: Mcintyreet al concentrating samples for analysis by building up
depositions directly on the ATR crystal, whilst threethodology presented in this
research concentrated samples prior to injectioeammg that only a single
deposition of sample solution onto the probe ti wequired. When three separately
built up residues of an E150a caramel were compayddcintyreet al, the %RSD
value was cited as being 4.5%. The values repartetthis work were therefore
comparable if not slightly improved. The reasonibeélthis improved repeatability
could be explained by the reduction in the numbersample injections being
deposited on the ATR crystal. Concentrating samplgsr to deposition on the
ATR-MIR crystal also greatly improved the timescafeanalysis, reducing the full

measurement of one sample to approximately 30 msubm over 3 hours.

The %RSD values quoted above indicated that the -MIR methodology
employed in this research allowed the acquisitibmeasonably consistent spectra.
Despite this, a few additional investigations wemedertaken to assess whether
certain factors of the methodology were influencsyectral measurements. For
example an investigation was undertaken to examihether caramel materials
might be affected by thermal degradation as a resuheir exposure to a heat lamp
for drying. To examine this, three additional spgetere acquired of the E150A X1
caramel in 40% ethanol where the solution wastteftry naturally rather than with
the use of a heat lamp. Figure 3.2 shows the d¢af#i normalised first derivative
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spectra acquired for the two different drying sc@asa(with and without the use of a
heat lamp). From a visual comparison of the spgmtoaided in Figure 3.2 it was
observed that the positioning of spectral featwas consistent when the E150A_ X1
solution was dried by the two different approachgiis indicated that thermal
degradation had not affected the sample residwa textent where its composition
was significantly altered. The break down of caromnponents into degradation
products would have resulted in a reduction ofesponding peak absorbances and
the formation of new peaks. Although there wadelitb no variation in spectral
features, it did appear as though there were dlifférences in the peak absorbances
between 1550 and 1800 ¢mwhen a heat lamp had been implemented rather than
natural drying. Although this might indicate a sh@iange in composition, it was
found that the repeatability of triplicate spectvas actually comparable for both
drying procedures. The %RSD values based on thgeak maxima or minima
indicated in Figure 3.2 were 4.11% for the use béat lamp and 2.97% for the case
of natural drying. Although these findings indichtidat the repeatability of spectra
was slightly better when natural drying was empthye use of a heat lamp was
maintained as part of the methodology. The sligimgromise in repeatability meant
that each sample could be analysed in less thdrthgatime (20-25 minutes rather
than ~55 minutes).
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Figure 3.2: Overlay of the normalised first deriviae spectra acquired from the dried residue of an
E150A_X1 solution, firstly dried using a heat lan{ped) and then left to dry naturally (blue). The
six peak maxima/minima used to assess spectral atgiglity are labelled as (a)-(f).
As well as the heat lamp potentially causing theérdegradation, it was considered
that the slight change in spectra and the smapp draepeatability could have been
an affect of the heat lamp on the probe itselfeathan on the residue components.
As the background reference spectra for this methece always acquired in air
prior to the use of the heat lamp, measurementntakter drying could have been
affected by a consequent change to the probe wdssexamined by running through
the methodology without any sample being depositedhe probe head and spectra
were acquired throughout the analysis. Figure B@ws the spectra acquired at
various time points through the method and it wWasrcthat the spectral features
deviated slightly from the original air spectrum lasat was applied to the probe
head. Once the heat lamp was turned off and ledbt back to room temperature
however, the features were then seen to revert toackds the original air spectrum.
These findings indicated that the application dfeat lamp could potentially affect
sample spectra and Figure 3.4 demonstrated thagpihetra of the caramel residue
from E150A X1 (dissolved in 40% ethanol) were dieatifferent when acquired
just after the heat lamp was switched off (tempeeabetween 60-70°C) and after
the probe head had cooled back to room temperafdireneasurements of dried

caramel solutions were therefore only acquired dhegyrobe head had cooled back
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to room temperature, to try and reduce any issu#s nepeatability that might be

caused by the influence of the heat lamp on thbero
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Figure 3.3: Overlay of the air spectra acquired different time points when the ATR-MIR method

was applied without any sample on the probe healde Black spectrum was acquired prior to the

application of the heat lamp; the red spectrum waken after the probe head had been exposed to

the heat lamp for 5 minutes; and the blue spectruvas obtained once the probe head had cooled
back to room temperature.
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Figure 3.4: Overlay of two ATR-MIR spectra acquirdcbm the dried residue of the E150A_ X1
solution (in 40% ethanol). The blue spectrum wasjared just after the heat lamp was switched
off, whilst the red spectrum was acquired when fmbe had cooled back to room temperature.
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Another aspect of the ATR-MIR methodology that cbulave been affecting
measurement repeatability was related to the soludrying process, which would
likely be influenced by the coffee ring effect. Theffee ring effect is the term
describing the formation of a more concentratedodiépof suspended particles
around the outer perimeter of a dried residue dueapillary flow induced by
differential evaporation rates across the drop -etlmer words, liquid evaporating
from the edges of the droplet is replenished byidiqrom the interior of the droplet
hence concentrating dispersed material to the cedge of the dried residd&*
This process could potentially result in heterogtgria the composition of the dried
residue covering the ATR crystal and the heterogemeuld likely differ from one
deposition to another, creating variation betwedre tspectra of duplicate
measurements. An interesting publication by L. lkgneet al. discusses the coffee
ring effect in relation to dried blood serum samspd@d has used spectral imaging to
visualise the heterogeneity of their sample residoror to analysis using FTIR.
Using this approach they were able to clearly destrate that certain components
had a tendency to migrate towards the periphethe@fsample residues (monitored
by assessing characteristic wavelengths for prdiaids). They also noted that the
effect was more visible when serum samples werdeatll before drying, a process
that actually resulted in a better homogeneity dkierresidue surface. Neat samples
on the other hand were shown to contain crackssactioeir surface and it was
suggested that these could also contribute to igpetistortion. The group therefore
suggested that improved reproducibility could beamled by using more dilute
samples and also smaller sample depositions. liti@addhey noted that when dried
directly onto an ATR crystal (as has been donehis tesearch when assessing
caramel solutions) spectra were more representatittee whole serum sample as an
averaged spectrum is acquired over the whole sarfécwould be extremely
interesting to use a similar approach within tleisearch to investigate the influence
of the coffee ring effect on dried caramel residdese and resources however were
not available to assess this in greater detail @ued reproducibility of replicate

spectra was deemed suitable to move forward wehrpmary studies.
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In addition to the occurrence of the coffee rinfetf another factor that might have
influenced the reproducibility of replicate sampheasurements was that such thin
films of sample are being dealt with. The driedidess could therefore be of a
similar thickness to the penetration depth of thranescent wave, meaning full
measurements might not be obtained for each sadgpesition. This was not a
factor that could easily be controlled with the reat instrumental set up and so
again was not considered further at this pointsaraple repeatability was adequate

for the purpose of preliminary investigations.

3.3.1.2 Profiling caramels in 40% ethanol

Dried residues of 8 different E150a formulationgsgdlved in 40% ethanol) were
analysed to determine whether differences in spkefdgatures could be identified as
a result of differences in the manufacturing cdodsg of different sample types. The
dried residues of at least one caramel from eadheobther EU recognised classes
(1 x E150b, 2 x E150cs and 2 x E150ds) were alatysed to determine whether the
profiles of different classes could also be digtisged when multiple types of E150a
were included in the dataset. In addition to thes@amel samples, three burnt sugar
materials were assessed so as to include an additawlourant material that is
known to provide the golden brown colour associatéith Scotch whiskies. The
ATR-MIR absorbance spectra acquired from the dresidues of selected samples
are provided in Figure 3.5, illustrating one El1%@aamel from each manufacturer
and a spectrum from each of the remaining colourkasises described in Table 3.1.
Clear differences were visible between colourahiferent class and although the
three chosen E150a caramels possessed similaraeettures, variation was still
observed between their relative peak ratios. Ib algpeared as though there were
slight differences in the shape of the peak at@pprately 1050 cii in the E150a

spectra.
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Figure 3.5: ATR-MIR absorbance spectra acquired frothe dried residues of a batch each of (a)
BS_X12, (b) E150D_X11, (c) E150C_X10, (d) E150B_a¢@l () E150A_X1 (solid line),
E150A_Z76 (dashed line), E150A Y3 (dotted line). T8pectra of all samples have been offset with
respect to the three E150A profiles.
Once the dried residues of all 20 caramels an@thernt sugar materials had been
analysed using ATR-MIR, PCA was carried out oncdlthese samples to allow a
comparison of their spectral profiles. The resgltiRC1 vs. PC2 scores plot is
provided in Figure 3.6 and clear separation is destrated between the four caramel
classes, even though multiple types of E150a haen lwonsidered in the model.
This is an advancement on the work completed byniot et al, who obtained this
same distinction but when only a single type ofheearamel class was consideréd.
Figure 3.6 also showed that burnt sugar matereisbe clearly distinguished from
all types of caramel in the dataset, the betwepe tyariability of the burnt sugars
being visibly much smaller than the spectral déferes between burnt sugars and

caramel colourants.
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Figure 3.6: PC1 vs. PC2 scores plot obtained fro@A°of the ATR-MIR spectra acquired from all
fifteen E150A caramels (red triangles), one batchEl50B_X9 (green stars), two batches of
E150C_10 (blue squares), two batches of E150D _1k[ffe diamonds) and the three burnt sugar
materials (orange circles). Each sample had beessdived in 40% ethanol and was analysed in

triplicate.

The spectral regions responsible for the above rehsens were investigated by
looking at the loadings data corresponding to P@sd. 2. These loadings plots are
provided in Figure 3.7 alongside the normalisest filerivative spectra of all samples
incorporated in this PCA model. Differentiation Wween the four caramel classes
was clearly observed along PC1 and the correspgridadings plot indicated that
spectral variation was present throughout the regiovering 1000 to 1800 ¢h
Within this range, the spectral region between &8660 and 1200 cthwas seen to
have the largest influence on separation along P4#Lil,observation that was
supported by a visual comparison of the specti@dare 3.7a. There is a feature in
the PC1 loadings just above 1050 tthat indicated PC1 was anti-correlated with
this wavenumber and in the normalised first deneaspectra the absorbance at this
point were seen to clearly decrease as the PCg sommeased (which occurs in the
order of E150a»E150c->E150b—-E150d). The region immediately surrounding

approximately 1150 cth was also seen to be correlated with PC1 scores and
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absorbance at this variable could be seen to gl@aiease along with PC1 scores.
Distinction between caramel colourants and burrgasunaterials was achieved
along the PC2 axis and loadings data again indicHtat spectral variation was

present over a large range (between approximafhaad 1800 cif).

Although it was possible to separate out all fiveéhe colourant categories based on
PCs 1 and 2, these latent variables only accounte®B8.27% of the variation in the
data. PC3 and PC4 (accounting for 7.66% and 2.48f&tion in that order) were
also assessed and allowed further distinction &@0Eland E150b classed caramels
respectively. The scores plots and loadings dateesponding to these additional

PCs can be found in Appendix 8.2.
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Figure 3.7: (a) Normalised ATR-MIR spectra of allecamels dissolved in 40% ethanol: fifteen
E150a caramels (red); one E150B_X9 caramel (greem)p E150C_10 caramels (blue); two
E150D 11 caramels (purple); and the three burnt sugnaterials (orange). All spectra have been

acquired from the ' derivative spectra and each sample has been amalys triplicate. Shown
alongside the loadings plots for (b) PC1 and (c) P@btained from PCA of all caramel samples.
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An additional observation from the scores plot jted in Figure 3.6 was that within
the E150a classed caramels, a few distinct clusteusd be observed. On closer
inspection it was found that although some type€£d50a were overlaying with
others, multiple batches of the same type of EM@e all clustering in the same
region of space. Distinction between different /¢ E150a was also found to be
slightly more pronounced when additional PCs upPt©4 were considered (see
Appendix 2.2). These findings therefore indicateat differences in spectral profiles
were being detected between different E150a casageh result of variation in the
manufacturing conditions used to produce these Emmpurther PCA was therefore
carried out to incorporate only the fifteen E15@samels to determine whether the
use of a more focused model could allow each tydel60a caramel to be clearly
distinguished. The resulting P@& PC2 scores plot (in total accounting for 93.7%
of the variation in the data) is shown in Figur® &nd clear differentiation has been
demonstrated between the different types of E158eantel. Only caramels
E150A_Y3 and E150A Y4 from this dataset were foundhave profiles that
overlapped, indicating that their spectral featuresre very similar. This was
confirmed when their normalised first derivativeespa were shown to overlay very
closely (Figure 3.9) and when the assessment dfiaglal PCs could not allow any
further separation. An additional finding drawn rfrahe scores plot depicted by
Figure 3.8 was that when multiple batches of an0&ldaramel were considered they
were found to cluster tightly together; indicatitigat the spectral variation between
different caramel formulations was much more sigaiit than batch to batch

variability.
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Figure 3.8: PC1 vs. PC2 scores plot obtained fro@Aof the ATR-MIR spectra acquired from all

fifteen E150a caramels (eight different formulatia) dissolved in 40% ethanol. Caramels from the

same manufacturer are colour coordinated whilst fifent types within these manufacturers have
been given different symbols.
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Figure 3.9: Overlay of the normalised first derivige spectra acquired from two batches of
E150A_Y3 (red) and E150A_Y4 (blue). Samples werealgsed in triplicate and all repeat spectra
are shown.

119



The PC1 and PC2 loadings data corresponding t®@# model created using only
E150a caramels have been provided in Figure 3.40gaide the normalised first
derivative spectra of all fiteen E150a caramelkhdugh the spectral features were
shown to occur at very similar positions for all#@a caramels, the loadings for PC1
and PC2 indicated that separation in the correspgrstores plot (Figure 3.8) was
influenced primarily by features in the region beémn 1500 and 1750 ¢émThe
ratios of peaks in this region were observed aagodistinctly different for each
E150a caramel formulation and the ratios remaimedistent when multiple batches
of the same caramel were considered. The PC1 a@dd2@ings also indicated that
spectral features close to 1050 tand just above 1100 chrespectively influenced
separation along these axes, a finding which comghts the earlier observation
made when comparing the raw spectra of three difteE150a caramels (Figure
3.5). The peak observed in the raw spectra in #gon encompassing these
wavenumbers appeared to differ slightly in shaperwHtifferent types of E150a

caramel were considered.
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Figure 3.10: (a) Normalised ATR-MIR spectra of difteen E150a caramels in 40% ethanol: three
batches of E150A X1 (red); three batches of E1502 (green); two batches of E150A_Y3 (cyan);
two batches of E150A Y4 (pink); two batches of EASY5 (purple); one batch of E150A Z6 (dark
blue); one batch of E150A Z7 (dark yellow); and obatch of E150A Z8 (black). All spectra have
been acquired from % derivative spectra and each sample was analysetifficate. Shown
alongside the loadings plots for (b) PC1 and (c) P@btained from PCA of all E150a caramels.
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At this point in the research it was difficult tetdrmine exactly what manufacturing
conditions were responsible for the spectral viamabbserved between different
E150a caramels. The reason behind this was thatifispe&letails relating to
production conditions were confidential and couldt rbe released by each
manufacturer. The only information provided to aidh the interpretation of data,
described what starting substrate had been usedgdproduction. It was also
confirmed that each of the eight formulations hakrb produced by a different
combination of production conditions (apart frombBA 76 and E150A Z7, which
only differed by their starting substrate). Caransamples E150A X1 and
E150A X2 are from the same manufacturer and haea pespared using the same
starting substrate (maize). The ability to sepatla¢se materials along the PC1 axis
therefore demonstrated that variation in producgiarameters can provide spectrally
different caramels. Comparison of caramel samplEsOB Z6 and E150A Z7 then
demonstrated that changing the starting substfeden (maize to a combination of
wheat and maize respectively) could also providerals with distinct spectral
profiles, as they were clearly separated along Rl axis. In this case, the
production parameters of the two caramels were kntowbe the same. In contrast to
this finding, the two caramels that overlaid on #wores plot (E150A Y3 and
E150A_Y4) were both prepared using different stgrsubstrates (wheat and maize
respectively) but their profiles could not be seped. This indicated that changing

the starting substrate may not influence caramelpasition in all situations.

These initial findings have clearly demonstrateat ih certain cases it is possible to
differentiate between E150a caramels produced udifigrent starting substrates
and different combinations of production conditioAs interesting next step would
be to determine exactly what influence individuabguction parameters have on
caramel profiles, as a greater understanding of tlevprocess conditions affect
caramel composition could allow E150a manufactarlee manipulated in the future
to create caramels with distinct signature profil@gese materials could then
potentially be added to different blend whiskiesrésult in products with unique
colourant profiles, an action that could aid withtheenticity testing and counterfeit

detection.
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3.3.1.3 Profiling caramels in blended Scotch Whisky

The results to this point demonstrated that it wassible to differentiate between
caramels of different class and also between EpB@ducts of different formulation,
based on the ATR-MIR spectra acquired from driessideges of sample solutions (in
40% ethanol). This next section of the study hanhendertaken to build on these
initial observations and assess whether the psobledifferent caramels could still
be distinguished when spiked in the more complexrignaf a Scotch Whisky. In
this case, dried residue spectra may also be mtkek by natural whisky colour
components that have been imparted on the spmnglunaturation. It was therefore
important to assess whether colour from this sowmeld mask the unique spectral

features that have so far allowed distinction betwdifferent caramel materials.

Fifteen samples were dissolved in Blend Whisky A fois purpose including:
twelve E150a caramels (incorporating at least oatehbfrom each of the eight
different formulations); one batch of E150B_X9;iagée batch of E150C_X10; and
one batch of E150D_X11. Once the dried residuethese sample solutions were
analysed using ATR-MIR (following preconcentrati@s described in section
3.2.4.2), two PCA models were constructed usingéselting spectral profiles. The
first model was created using all samples dissolneBllend Whisky A, whilst the
second contained data from only the twelve E15@ancels in this solution medium.
The PClvs.PC2 scores plots for these models are providédgares 3.11 and 3.12
respectively. Figure 3.11 highlighted that separatbetween the four classes of
caramel was maintained when samples were dissatvadtypical Scotch Whisky
and Figure 3.12 showed that it was still possibl@listinguish between profiles of
different types of E150a when added to this typhdahd. These findings therefore
indicated that the spectral features responsible vériation between different
caramel materials were not all masked by contrimstifrom natural whisky colour.
It should also be noted here that the scores platsined for these models were very
similar to those acquired when the same caramedstypere dissolved in 40%
ethanol, as were all loadings plots (not shown)is Tabservation indicated that
spectral features in the same regions were effdgtiresponsible for separation in

this case, supporting the proposal that the chenatt features of caramels
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dominate spectra and have not been masked by theaheolour matrix of a typical
blend.
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Figure 3.11: PC1 vs. PC2 scores plot obtained fre@A of the ATR-MIR spectra acquired from a
selection of caramel colourants dissolved in Blewthisky A. Samples have been colour coded
according to their caramel class: E150a (red trideg), E150b (green stars), E150c (blue squares)

and E150d (purple diamonds). Each sample was anadym triplicate.
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Figure 3.12: PC1 vs. PC2 scores plot obtained fré@A of the ATR-MIR spectra acquired from
twelve different E150a caramels (incorporating eigfifferent formulations) dissolved in Blend

Whisky A. Caramels from the same manufacturer amaur coordinated whilst different types
within these manufacturers have been given diffetesymbols.
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Although the above findings demonstrated that catdeatures dominated the ATR-
MIR spectra of dried residues when dissolved ippacal blend whisky, at this point
the contributions from natural colour were not kmowo investigate this further,
two additional sample solutions were prepared oEaB0A X2 caramel: the first
sample dissolved this caramel in 40% ethanol, tentily whether spectral
differences were present when compared to the algmty sample added to Blend
Whisky A; whilst the second solution dissolved taamel in a different whisky
matrix (Blend Whisky B), to identify whether theflurence of natural colour
components varied for different blends. Blend WhiBkcontained only malt whisky
products and so represented the higher level ofralatolour found for real products
on the market. Thus as well as allowing a comparifdhe effects of different blend
matrices, it was thought that this solution medwould provide a good indication
as to whether characteristic caramel features nighthasked by natural colour even
in more extreme cases. Both solutions describetiealn@re prepared and analysed
as described in section 3.2.4.2 so that they ctelccompared directly with the

caramels dissolved in Blend Whisky A.

Once the two additional E150A X2 samples were amalythe resulting normalised
first derivative spectra were projected into theAR@odel previously constructed for
all twelve E150a caramels dissolved in Blend Whigkgo as to obtain their PC1
and PC2 scores. The resulting P&LPC2 scores plot is shown in Figure 3.13. It
was clearly demonstrated by this figure that th&@L X2 caramel dissolved in
40% ethanol did not overlay with the equivalent prdissolved in Blend Whisky
A. This highlighted that features originating fromatural whisky colour were
influencing spectra in the regions where charastiericaramel features occurred;
although as previously demonstrated this was notth® extent where the
characteristic nature of the latter features wesi@d masked. It was also shown by
Figure 3.13 that the E150A X2 sample in Blend Whigkwas clearly separated
from the E150A X2 sample dissolved in Blend WhigkyThis showed that as well
as natural colour influencing the ATR-MIR profile$ dried solution residues, the
extent of natural colour contributions differed tbe two blend whiskies assessed in
this study.
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Figure 3.13: Projection of the PC1 and PC2 scoresues for two solutions of EL150A X2 — in 40%
ethanol (light grey star) and in Blend Whisky B (dagrey star) — into the subspace defined by the
PCA model acquired from the twelve E150a caramdissdlved in Blend Whisky A. Triplicate data
for all samples have been included.

The raw spectra acquired from each solution of BLX® have been overlaid in
Figure 3.14 to allow a comparison of their spedatures and to help visualise why
the profiles of this caramel dissolved in the thdééerent media did not overlap on
the scores plot provided in Figure 3.13. When tlpecsum acquired from
E150A X2 dissolved in Blend Whisky A was assesaéddijtional peaks were clearly
visible in the region between 1150 and 1550"ctmat were not observed in the
spectrum acquired for the same caramel dissolvd@%n ethanol. In addition to this,
the relative absorbance levels of the two peaksvdmt 1550 and 1750 ¢m
appeared to differ between the spectra of thesesamoples. When the profiles of
E150a caramels were originally assessed when dessoh 40% ethanol (section
3.3.1.2), loadings data indicated that characterishramel features were found
throughout the region covering 1000 to 1800 ‘crprimarily being attributed to
features between 1500 and 17507crithe above observation from Figure 3.14
therefore explained why separation was observédguare 3.13 between E150A X2

caramel profiles in 40% ethanol and Blend Whiskya8,natural colour components
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were clearly influencing spectra within the regiombere characteristic caramel

features have previously been found.
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Figure 3.14: Overlay of the ATR-MIR spectra acquiatdrom the dried residues of three different
caramel solutions: E150A_X2 in 40% ethanol (red spreim); E150A_X2 in Blend Whisky A (blue
spectrum); and E150A_X2 in Blend Whisky B (greeresprum). Each spectrum has been averaged

from triplicate results.

When the raw spectra of caramel E150A X2 in thedferent blend matrices were
compared, peaks caused by natural colour were glgnheshown to appear at
consistent positions for both samples. The maifedihces between the two spectra
were instead related to variations in peak intessithe natural colour features were
clearly more prominent when the caramel was diggbim Blend Whisky B. This
could potentially be explained by the fact thatriglaVhisky B represented the high
end of natural colour that would be associated Wwldnds on the market, whereas
Blend Whisky A possessed a much lower, more tymo&dur level (absorbances of

approximately 0.26 and 0.07 respectively at 43(befiore caramel addition).

As natural colour from Blend Whisky B clearly inflaced spectra to a different
extent than Blend Whisky A, this raised the quests to whether natural colour
features might actually mask characteristic carai@a&iures when different whisky
matrices are considered. Solutions of three diffetgpes of E150a caramel were
therefore prepared in Blend Whisky B to assess henedifferentiation was

maintained when a whisky matrix with a high levehatural colour was considered
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as opposed to a typical whisky blend (Blend Whiggy Caramels E150A_ X1,
E150A X2 and E150A Y5 were chosen for this purpasetheir profiles were
already quite close together when compared in Bleéisky A and so their
differentiation might be affected to a greater aktey an increased influence from
natural whisky colour. Once the dried residueshefse sample solutions had been
analysed using ATR-MIR, PCA was undertaken to campheir spectral profiles.
Also included in the model was the previously asaty E150A_ X2 caramel in 40%
ethanol and the dried residue profile of Blend Whi8 devoid of any caramel

addition. The resulting PGis PC2 scores plot is provided in Figure 3.15.
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Figure 3.15: PC1 vs. PC2 scores plot obtained fre@A of the ATR-MIR spectra acquired from a
selection of caramel solutions in Blend Whisky Bn&150A X1 caramel (blue triangles); two
batches of E150A_ X2 caramel (red stars); and oneébBA_Y5 caramel (green circles). Also
included in the model were the dried residue spadcquired from a sample of EL150A X2
dissolved in 40% ethanol (dark grey stars) and angde of Blend Whisky B devoid of caramel

addition (light grey stars). All samples were ansdd in triplicate.

Figure 3.15 showed that E150A X2 in Blend WhiskyBs clearly separated from
the equivalent caramel dissolved in 40% ethanoichvreiterated that natural colour
components from Blend Whisky B influenced the sgzeof dried solution residues.

When the same sample was compared to the profitdesfd Whisky B containing
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no caramel however, the profiles were again cledidiinct, indicating that caramel
features were not completely masked by a high lef/elatural colour in the case of
E150A X2. The other caramel solutions includedhe tnodel were also clearly
separated from the blend whisky matrix alone arstirdition was still achieved
between the three different types of E150a caravheh dissolved in Blend Whisky
B. These findings therefore indicated that evenmwihe level of natural colour is at
a high level, features characteristic to differemtamel materials can still potentially

be observed.

The spectral regions responsible for the above rehsens were investigated by
looking at the loadings data corresponding to P@sdL2. These loadings plots have
been provided in Figure 3.16 alongside the averagmthalised first derivative
spectra acquired for each type of solution incaafemt in the PCA model. Solutions
of the E150A X2 type caramel dissolved in the ddilend were clearly
differentiated from the dark blend alone and theiejent caramel dissolved in 40%
ethanol along the PC1 axis. The corresponding hggsdplot indicated that spectral
variation in this case was present throughout #mge covering 950 to 1800 ¢m
Within this range, a few notable regions that welearly influencing separation
along PC1 were identified as 1095, 1190, 1580 atf ni'. Distinction between
the three different E150a caramels when dissolne8lend Whisky B was observed
along the PC2 axis and the corresponding loadiatgsiddicated that variables in the
regions surrounding 900, 1120 and 1750cwere primarily responsible for the
observed separation. Comparison of the normaliseti derivative spectra at these
wavenumbers supported these findings, showing dié@rences between the three

E150a caramel solutions at these points.

As natural colour in this case has been shown fltaeince spectra throughout the
spectral range it cannot definitively be said tladt caramels could still be
distinguished when dissolved in a blend with highels of colour; or in fact in any
other blend matrices. It has however been shownctieracteristic caramel features
still influenced dried residue spectra and so tbeemial exists to create distinct

product profiles even when caramels are spikeddat&er blends.
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Figure 3.16: (a) Normalised ATR-MIR spectra showirtge average profiles acquired from three
different types of E150a caramel dissolved in Blewthisky B. The average spectrum acquired
from an E150A X2 caramel dissolved in 40% ethanabaalso from a sample of Blend Whisky B
devoid of caramel addition have also been includdl.spectra have been acquired froni'1
derivative spectra, each sample being analysediplitate. Shown alongside the loadings plots for
(b) PC1 and (c) PC2 obtained from PCA of these stdd samples in Blend Whisky B.
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3.3.2 Scenarios Relevant to ‘Real’ Whisky Products
3.3.2.1 Caramel concentration study

In all initial experiments involving the additiorf oaramel to a blend whisky, the
affect of changing the amount of caramel preserg wat considered. In reality
however, the amount of E150a caramel added to t&cpar Scotch Whisky will
vary from one batch to another. This is becauseldtel of natural colour is not
typically consistent from one batch to another e development of natural colour
being dependant on the individual casks implemedtethg the maturation step of
production. The amount of E150a caramel requiredctueve consistent colouring
for a Scotch Whisky product will therefore vary froone batch to another. The
following study was therefore undertaken to idgntithether spectral features are
affected by changing the ratio of caramel coloumétural colour in the case of
Blend Whisky A. It was considered a possibilityttihdoen less caramel was present,
natural colour features might begin to influenceci@ to a greater extent and
potentially mask certain caramel features (asmxk versaif more caramel were

present).

Control samples

Prior to assessing how changing the level of carame blend would affect spectral
profiles, it was important to assess whether th&RAMIR methodology itself was
robust to changes in caramel concentration. Tosasges, four caramel solutions
ranging in their level of absorbance from 0.2 — (r8increments of 0.2) were
prepared using an E150A X1 type caramel in 40%neihd&ach sample solution
was initially concentrated using the methodologgatided in section 3.2.4.2 and
subsequently analysed using the ATR-MIR methodologylined in the same

section.

Once all four sample solutions were analysed, tlasulting normalised first
derivative spectra were projected into the PCA rhpdeviously constructed for all
fifteen E150a caramels when dissolved in 40% ethése® section 3.3.1.2 (Figure
3.8) for original model) so as to obtain their P&l PC2 scores. The resulting PC1
vs. PC2 scores plot is shown in Figure 3.17 and detratesl that although all four
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samples of variable caramel concentration were downa similar region to the
original E150A X1 sample, both the PC1 and PC2exctor these samples clearly

decreased as caramel concentration increased.
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Figure 3.17: Projection of the PC1 and PC2 scordwes, for four solutions of E150A X1 at
various concentrations, into the subspace defingdtbe PCA model acquired from fifteen E150a
caramels dissolved in 40% ethanol. The E150A X1 pam of different concentration are all
represented by grey triangles, becoming darkertss absorbance values increased from 0.2 to 0.8
in increments of 0.2. Triplicate depositions havedn included for all samples.

The above findings therefore demonstrated that wingplementing the current
ATR-MIR methodology, changes in caramel concerdgmatresulted in spectral
variation, even though all spectral measuremendsble@n normalised. This had not
been a problem for previous analyses as all sanfy@ldsbeen prepared to the same
concentration; however it was now indicated thahething about the ATR-MIR
method was sensitive to concentration changes. ddukl possibly be explained by
the fact that all solution residues being driedootite ATR crystal were very thin
films and so the sample thickness would be on alasirscale to the evanescent
wave. This was discussed previously in sectionl3l3as a parameter that could
influence spectral repeatability as a result of faéasurements not being attained.

When solutions that gradually increased in caragmbcentration were being

132



analysed, it could therefore be the case thatioeig¢atures were being picked up as
increasing whilst others were not. No other exaspteuld be found in the literature
that assessed ATR-MIR analysis of samples at dasitiickness to the evanescent
wave and so further investigation would be requiedssess this further. This was
not something that could be studied further witthia timescale of this project but
would be important to factor into the design of daoyure work and instrument

development.

Study samples

After analysis of the control samples as descrddsale, it was determined that if the
current ATR-MIR methodology were to be employedassess the effect of adding
different amounts of caramel to a blend, then gwecsal variation could be caused
by the methodology rather than real differencesnfichanging the caramel:natural
colour ratio. A change was therefore made to théhaumlogy to determine if the
variation in spectral features resulting from concation differences in the control
samples could be reduced or removed. To do thialt@nation was made to the
concentration step involved with sample preparagoar to analysis by ATR-MIR.

Rather than all samples being concentrated by #meesfactor (from 6 mL to

300 uL), they were instead concentrated so thatfitted absorbance level of all
samples was always equivalent. This was achievecedhycing 6 mL of sample to
dryness as normal but reconstituting in a volumat tihepended on the original

absorbance of each sample at 430 nm.

The developed methodology was initially tested gstme four solutions of
E150A X1 caramel dissolved at different absorbateeels in 40% ethanol
(absorbances of 0.2 — 0.8 in increments of 0.2ceCtoncentrated using the new
approach and analysed using ATR-MIR, the PC1 an2 $40res for these samples
were acquired by projecting their normalised fustivative spectra into the PCA
model constructed for all fifteen caramels whensaliged in 40% ethanol. The
resulting PClvs. PC2 scores plot is shown in Figure 3.18 and it damonstrated

that a trend between initial concentration and BQres was no longer observed,;
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samples instead clustered together in the samermregii space as the original
E150A X1 samples.
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Figure 3.18: Projection of the PC1 and PC2 scordwes, for the four solutions of EI50A X1 at
various concentrations and analysed by the adapdddR-MIR methodology, into the subspace
defined by the PCA model acquired from fifteen EEb€aramels dissolved in 40% ethanol. The
E150A_X1 samples of different concentration are edpresented by grey triangles, becoming
darker as the absorbance values increased fromt0.02.8 in increments of 0.2. Triplicate
depositions have been included for all samples.

These findings therefore indicated that the adaptethodology could allow spectra
to be acquired that were unaffected by concentratependent variation introduced
via the application of the original ATR-MIR methddgy. The adapted methodology
was therefore taken forward and used to compareplsasolutions containing

different levels of caramel in Blend Whisky A; aggectral differences should now

only be related to a change in the caramel:nataialur ratios.

To assess this, four sample solutions were predayeatissolving different amounts
of an E150A_ X1 caramel in Blend Whisky A. The faolutions had absorbance
levels of 0.2, 0.4, 0.6 and 0.8 at 430 nm, meatiay both the level of caramel
added and hence the ratio of caramel:natural colas increasing respectively.

Once each sample was pre-concentrated and analgseflATR-MIR, the PC1 and
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PC2 scores were again obtained by projecting tmealcsed first derivative spectra
into the PCA model constructed previously from tivelve E150a caramels when
dissolved in Blend Whisky A at an absorbance ofraxmately 0.55 (see section
3.3.1.3 (Figure 3.12) for original model). The riésg PClvs. PC2 scores plot is
shown in Figure 3.19 and it was demonstrated tHasaamples from this study
clustered tightly together in the same region ommipoy the E150A X1 type
caramels previously analysed. This indicated thdahé case of Blend Whisky A, no
significant difference was observed between spebttaicontained different ratios of
caramel:natural colour, within the range investgatThese data therefore implied
that if different amounts of caramel have been dddea typical blend whisky, both
the characteristic caramel features and the cglmfile should not be influenced to
a significant extent. Further work would be neettedetermine whether this finding
was maintained for other blend matrices but coudtl Imle completed within the

timescale of this project.
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Figure 3.19: Projection of the PC1 and PC2 scoredues, for the four solutions of EI50A_ X1 at
various concentrations in Blend Whisky A, into ttebspace defined by the PCA model acquired
from twelve E150a caramels dissolved in Blend Whigk The E150A X1 sample solutions of
different concentration are represented by greyatrgles. Triplicate depositions have been included

for all samples.
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3.3.2.2 Caramel fade study

All preliminary experiments undertaken in this @®f have used caramel solutions
that have been prepared freshly from raw caramiel po analysis (both when in
40% ethanol or in a blend whisky). Alcoholic begga containing caramel however
are known to fade in the bottle over time, a fadtwat occurs at a significantly
increased rate when products are left in direclight*® The process of caramel fade
over time indicates that certain components withie caramel are being degraded
and so the caramel composition will be changingt#dy was therefore undertaken
by Gemma Gardiner as part of her undergraduatéstpesject to identify whether
the caramel fading process would affect the ATR-MiRfiles of dried caramel

solution residue$’

Stock solutions of an E150A X1, an E150A X2 andedb0D_X11 were prepared
in glass vials and forcibly faded as describedeictisn 3.2.4.4. To summarise, each
caramel solution was split into eight portions,efigf which were placed in a UV
light box to simulate the fading process but oraecelerated timescale. One sample
was removed from the light box after each of thiko¥ang time points: 1 day,

2 days, 3 days, 4 days and 7 days. The remainreg #liquots of each solution were
used as control samples: one being analysed o0 ¢iag. not faded); the next being
stored under ambient conditions in the lab andyased on day 7; and the final
sample being wrapped in aluminium foil and storethe UV light box for the 7 day

duration of the experiment.

The colour levels of all solutions within this syudlere monitored using UV-Visible

spectrometry, prior to any analysis by ATR-MIR. kg 3.20 has plotted the
absorbance values (at 430 nm) for each samplei@oland a clear decrease in
colour was demonstrated as time within the UV ligbk increased. It could also be
seen that the two E150a caramels faded to a greatent than the E150d classed
caramel. The absorbance levels of all control samplere consistent, indicating that

natural fade had not influenced samples over thedcale of this experiment.
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Figure 3.20: Plot of absorbance at 430 nm versusmgae solutions for each caramel type assessed
in this study: E150A_ X1 (blue trendline), EL50A Xg&d trendline) and E150D_ X11 (green
trendline).

The percentage of original colour remaining aftactetime point was determined
from the absorbance values at 430 nm and the iregwalues were summarised in
Table 3.2. For the E150a caramels, these valuesmigmted that the level of colour

had reduced to just below 30% of the original valukich represented an extreme

level of fade as might be encountered with realasiin the industr§?

Table 3.2: Percentage values demonstrating the lew€ colour
remaining for each caramel solution after being séal in the UV
light box for various time points over a 7 day pedi.

Percentage of colour remaining
at 430 nm (%)

E150A X1| E150A_X2 | E150D_X11
After ‘Day 1’ 66.4 63.3 80.2
After ‘Day 2’ 54.9 53.2 69.8
After ‘Day 3' 51.1 45.6 64.7
After ‘Day 4' 42.1 39.2 58.2
After ‘Day 7’ 29.4 27.8 45.3
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On completion of the fading experiment, each samjle prepared for and analysed
using ATR-MIR as described in section 3.2.4.4. P&as then used to compare the
resulting spectral profiles for each of the threeamel types individually. When a

model was constructed using the eight solutionEIB0A X1, PC1 was found to

account for 93.38% of the spectral variation. Theuilting PC1 scores for each
E150A_ X1 solution have been plotted in Figure 324 in general were shown to
decrease as time spent in the UV light box (anccéehe level of fade) increased.
The PC1 scores for all control samples were agaimsistent and subsequent

principal components did not indicate any furthentls between samples.

0.9 ]

|
*
T
|

|

-0.3

W Control (Day 7)

-0.6 @ Foil Contro b
R o e
09 |20

*Dayz B

A pay 3
¥ Day 4 ”}
-1.2 }037 i

Scores on PC 1 (93.38%)

O 2 4 6 8 10 12 14 16 18 20 22 24
Sample Number

Figure 3.21: Plot showing the PC1 scores acquiredrh PCA of the eight EI50A X1 sample
solutions included in this study. ATR-MIR analysigas undertaken in triplicate for all samples.

The above findings indicated that the ATR-MIR pledi of E150A X1 type

caramels were affected by the process of fadinghdlp visualise which spectral
features were responsible, the normalised firsivdve spectra acquired for the
eight E150A X1 solutions have been provided in FegB8.22 alongside the PC1

loadings.

138



T T T T T T T T T T T T T T T T T T T T T

T T
9o (a) “ —Control Samples —Day 1 —Day 2 -

Day 3—Day 4 —Day 5

Normalised 1  Derivative
of Absorbance

L | L L L L L | L L L L L | L L L L L L L | L L
700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Wavenumber (cm '1)

T T T T T T T T T T T T T T T T T T T T

o
w
T

o
[N

PC 1 Loadings
o
o |

o
[N

L L L L L L L L L L L L L L L L L L L L L L L L
700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Wavenumber (cm '1)

-0.2

Figure 3.22: (a) Normalised ATR-MIR spectra showirije average profiles acquired from the

control samples and five faded samples of an E158A caramel dissolved in 40% ethanol. All
spectra have been acquired froni @lerivative spectra and each sample was analysetifficate.

Shown alongside (b) the PC1 loadings plot acquifeaim PCA of all eight EI50A X1 solutions.
The PC1 loadings plot shown in Figure 3.22b indidathat caramel fade primarily
affected the normalised first derivative spectra Ef50A_X1 at approximately
1040 cnt. This variable was clearly correlated to PC1 andirspection of the
corresponding region in Figure 3.22a, spectra wsen to clearly decrease in
absorbance in accordance with their PC1 scoresviffgo in Figure 3.21). The
loadings data also indicated a few variables thatewclearly anti-correlated with
PC1; these being found at 970, 1640 and 1716, é&hsorbance values were clearly

seen to increase in these regions in a mannecohasponded with PC1 scores.

Two additional PCA models were constructed to asHes affect of caramel fade on

the other caramel types assessed in this studyffeaetit type of E150a caramel
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(E150A _X2) and a caramel of different class (E158D1). In both cases, PC1
scores were generally found to decrease the Isagaple solutions were kept in the
UV light box, as was found previously for the E150#1 caramel solutions. These
findings have been demonstrated in Figures 3.23 &@d respectively for the
E150A X2 and E150D_X11 caramel solutions. WhenRRH loadings data were
assessed for each of these additional PCA modata (@t shown), those acquired
from the E150A X2 caramel model were very simitathose already acquired for
E150A X1. These data therefore indicated that aim#pectral regions (and
potentially similar components) were being affectsdthe fading process for this
other E150a caramel. Loadings data obtained forEt&0D_X11 model indicated
that different spectral regions were being affedigdhe fading process (primarily
from 1000 to 1300 arh and at approximately 1680 &n Subsequent principal
components did not indicate the presence of anthdurtrends resulting from

caramel fade for these two additional caramel types
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Figure 3.23: Plot showing the PC1 scores acquiredrii PCA of the eight EL50A_X2 sample
solutions included in this study. ATR-MIR analysigas undertaken in triplicate for all samples.
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Figure 3.24: Plot showing the PC1 scores acquiredri PCA of the eight EI150D_X11 sample
solutions included in this study. ATR-MIR analysigas undertaken in triplicate for all samples.

Overall this study has demonstrated that carandel ¥eould potentially influence the
ATR-MIR spectra of dried Scotch Whisky residuestiis point however, it had not
been identified whether the extent of spectral atan would make a particular
caramel profile unrecognisable. This will be coesatl in more detail in Chapter 4
when the influence of caramel fade on the abilaypredict caramel profiles is

investigated.

3.3.3 Blend Discrimination Study

Prior to the commencement of this project, literatindicated that the ATR-MIR
spectral features acquired from the residues ofcBcahiskies containing caramel
were dominated by the features of this added calduather than those from natural
colour component¥. It has been demonstrated within this research heryehat
natural colour does influence residue spectra amddo so to different extents for
different blend matrices (see section 3.3.1.3).s€hendings therefore indicated that
the dried residues of different blends containiagamel could already have distinct
profiles based on the potentially unique naturallo@o contributions. An
investigation was therefore undertaken to deternwhether it was possible to
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discriminate between different blend products (aonihg caramel) by the

assessment of dried residue profiles using ATR-MIR.

Five batches each of four different Scotch Whiskgntds were prepared and
analysed using ATR-MIR as described in sectiond32.The spectral profiles that
were attained were then compared using PCA andethdting PC1 vs. PC2 scores
plot has been provided in Figure 3.25. It was cleam this plot that some

differentiation was possible between different bigmoducts; Blend 1 being clearly
separated from all others along the PC2 axis. Engaiming three blends however
could not be distinguished in this plot. These ifngd therefore indicated that the
natural colour contributions from Blend 1 were sfigant to the extent that a distinct
profile could be obtained, whilst the contributidnem natural colour from the other
blends were not significant enough to allow themb&odistinguished using these
PCs. The fact that Blends 2-4 overlaid in Figurg53whilst Blend 1 separated out,
could be due to the fact that the former three ddeall originated from the same
brand.
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Figure 3.25: PC1 vs. PC2 scores plot acquired fr®@A of the normalised first derivative spectra
acquired from ATR-MIR analysis of the dried resida®f five batches each of four blend whiskies:
Blend 1 (red triangles), Blend 2 (orange circle®lend 3 (blue squares) and Blend 4 (green

diamonds). Each sample has been analysed in trioiéc
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PCs 1 and 2 only accounted for 79.91% of variafiorthe data and so PCS3,
describing an additional 11.89% of the spectralatimn, was also considered to see
whether further differentiation between the blecdsld be achieved. The P&
PC3 scores plot has been provided in Figure 3.26itawas clearly demonstrated
that Blend 3 could also be separated from all gthéng the PC3 axis. The triplicate
repeats of a single batch of Blend 4 however, i@iad to have similar PC3 scores
to Blend 3. The only difference associated witls fharticular batch was that it was a
few years older than the others and so it was dersil a possibility that degradation
over time may have altered certain spectral featwfethis blend (mainly those
associated with PC3).
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Figure 3.26: PC1 vs. PC3 scores plot acquired fr®@A of the normalised first derivative spectra
acquired from ATR-MIR analysis of the dried resida®f five batches each of four blend whiskies:
Blend 1 (red triangles), Blend 2 (orange circle®lend 3 (blue squares) and Blend 4 (green

diamonds). Each sample has been analysed in trioiéc
Overall, this particular study has demonstrated thavas possible to differentiate
between some blends on the market containing cérabssed on spectral
contributions from natural colour that are distirtot different products (it was
assumed that the same E150a caramel was usedhibleacl). Although it was not

possible to distinguish between all of the blendseased in this study, it is a
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possibility that alternative data analysis toolsuldoallow differentiation to be

improved — this is discussed in more detail in Goiag. A more extensive study
incorporating a wider range of blends would alsadxpuired to determine whether
these findings are true for the majority of produatailable on the market. It would
also be interesting to see whether Scotch Whiskylymts containing no caramel

could be distinguished based on their natural edieatures alone.
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3.4 Conclusions

ATR-MIR spectrometry has been successfully impletegnn this research for
profiling caramel colourants and was achieved by &malysis of dried solution
residues when the caramel samples were dissolvedher 40% ethanol or a blend
whisky matrix. Characteristic profiles were attain®r different E150a caramel
products and the implementation of PCA demonstrekear differentiation between
all but two of the E150a materials analysed in stigly. PCA also demonstrated that
is was possible to clearly distinguish betweenfthue caramel classes recognised by
the EU (and burnt sugar materials), even with tba oniformity of profiles for
different product formulations within the E150asdaSeparation between different
caramel products was also shown to be maintainednwhese materials were
dissolved in a standard blend whisky, indicatingtttried residues of this spirit
would typically be dominated by the colourant addddhese data therefore
highlighted an appealing attribute of this methodgl for characterising caramel
colourants in foodstuffs over other procedures ilesd in the literature, as the latter
are often limited by interference from componeniieaay present in food and
beverage products:*’*?

The ability to identify characteristic caramel pked in Scotch Whisky products, as
demonstrated in this study, could be greatly berafio the industry in terms of

counterfeit detection; authentic products couldepbally be identified based on the
confirmation of a specific colourant profile. Theaim advantage of the ATR-MIR

methodology over other tools that are currentlylengented for authenticity testing

is that the ATR-MIR technology (and hence methodg)aould be developed into a
portable instrument. This would therefore permingie screening of suspect
samples in the field and there is currently a gngaiequirement for such techniques
in the Scotch Whisky industry.

This study has also investigated how the ATR-MIkdlresidue profiles of caramel
solutions might be affected by different scenameevant to real Scotch Whisky
products. Firstly, it was shown that even thouglarabteristic caramel features
dominate the dried residue spectra of a typicalsiwhi natural colour components
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will also influence the profile. It was also foutttat the contributions from natural
colour will potentially vary for different blend rtraces. Despite the latter finding

however, distinction between different caramel mal® was shown to be

maintained even when a blend matrix possessinglalbevel of natural colour was

assessed. Additional experiments have assessedspeutral profiles might be

affected by varying the concentration of caramelspnt in a blend and also how
they might be influenced by the process of carafade. When the ratio of

caramel:natural colour was varied for a typicahnblevhisky, there did not seem to
be any affect on spectral profiles; caramel fadedwer, was found to influence

spectral profiles. Each of these findings have begplored in greater detail in

Chapter 4, which is based around the use of dabysas tools to predict caramel
identities when dissolved in either 40% ethanoblend whisky. Part of that work

therefore assessed whether each of the above medtszenarios would affect dried
residue profiles to the extent where the type ohmel present would no longer be
recognisable.
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4.0 THE APPLICATION OF CLASSIFICATION TOOLS FOR
THE PREDICTION OF CARAMEL IDENTITIES

4.1 Introduction

4.1.1 Basis of this Study

The research presented previously in Chapter 3ssddhe potential of ATR-MIR
spectrometry as a tool for profiing caramel coamis and it was clearly
demonstrated that different caramel products psssesniquely different spectral
features. It was therefore possible to distinglistween caramels of different class
(E150a — E150d) and also to differentiate betwe&BOB caramels that had been
produced using different conditions of manufacturbese findings were initially
obtained from the assessment of caramels within d@fanol but were subsequently
maintained when the same caramel materials weldesd in the matrix of a
typical Scotch Whisky blend. The work completedhivitthis next chapter aimed to
progress these findings further and determine vendathwould actually be possible
to predict the identity of test or ‘unknown’ cardmelissolved in Scotch Whisky,
based on the characteristic ATR-MIR spectral fesguobtained. The ability to
achieve this would be extremely beneficial to treth Whisky industry, as the
potential to confirm the presence (or absence)lefally permitted caramel within a

suspect product would aid in the determinationuthanticity.

The research completed within this chapter theeetordertook preliminary studies
to investigate and compare a selection of datayaisatiools for the classification of a
variety of test caramel solutions. It should beedohere that all test data were
compared to calibration models constructed usimgmals dissolved in 40% ethanol
(i.e. pure caramel profiles). The test solutiongally investigated covered caramels
dissolved at a typical concentration in 40% etharal in a typical Scotch Whisky

blend and the main objectives were to determirstlyirwhether the caramel class
could be correctly assigned and secondly whetherfohmulation of any E150a

solutions could be subsequently predicted. Addaiagstudies were then undertaken
to investigate test solutions that represented tgpical situations: caramels

dissolved in a blend matrix more heavily influendeg natural colour; caramel
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solutions subjected to fade; and caramel solutgapared at varied concentrations.
Initial work presented within Chapter 3 indicatdttt such factors could influence
the ATR-MIR spectral features acquired from carasodlitions.

4.1.2 Classification Tools for Profile Prediction -A Literature Review

From an assessment of the literature it was natiplesto find any examples of data
analysis tools being applied to the classificatbrearamel colourants, a finding that
emphasised the novel nature of this research. geraf different classification tools
were therefore compared within this chapter to m@tee the most appropriate
approach. Those that provided the most useful nmédion were: PCA with GLSW
preprocessing, HCAk-NN classification and PC-DFA. The literature ravi¢hat
follows explores how these data analysis tools teeen implemented previously for
classification and also describes some of the d@dgas and disadvantages that have

been encountered.

4.1.2.1 GLSW preprocessing

As discussed previously in Chapter 2 (section 213.I5LSW preprocessing creates
a filter matrix that down weights differences betwesamples that should otherwise
be similar and so its main goal is to eliminateredluce the affects of extraneous
variation, so that variation related to the taskntérest can be more easily observed.
GLSW has therefore proven extremely useful for @etaof applications within the
literature and some of the most common uses fougr@:wo remove interferences
arising from background chemical speciésfo reduce variation caused by
systematic sampling errot$;to simplify calibration transfer problems by rethg
variation caused by switching between instrumefitgnd to compensate for
scenarios that may cause measurement differencea simgle instrument (e.g.
temperature correction or system driff)The most relevant application of GLSW to
this research however, was its implementation peprocessing tool for data being
assessed using classification techniddés. Within these publications, the
implementation of GLSW was shown to maximise vaiabetween classes whilst
reducing the variability within classes, which gdedter class discrimination and as

a result typically improved classification accura®y Rozensteiret al. for example
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showed that the classification of different soiingdes was significantly improved
when GLSW was employed prior to the applicationboth partial least squares
discriminant analysis (PLS-DA) and random fore&B)(° In another example, J. H.
da Silva Taveireet al. demonstrated that the addition of GLSW preprangs®as
extremely beneficial when applied prior to PLS-0éy, the classification of coffee
samples belonging to the same species but fronerdiff geographical origirs.
These publications (along with a selection of ci)té?° clearly demonstrated that in
certain situations, GLSW preprocessing can be &ulugpeeprocessing tool when
used prior to classification; its affect on eaéhihe classification tools investigated
within this chapter has therefore been investigatezhses where it was thought that
prediction accuracy could be improved.

As well as being implemented prior to typical clasation tools, examples were
found in the literature of GLSW being used in conation with PCA, a more
simplistic data analysis technique. Although PCAasmally considered as being an
exploratory data analysis tool, literature indicktieat the application of GLSW prior
to PCA could potentially facilitate its use for s$dfication due to its ability to
improve distinction between sample clas$g€.S. Serrantiet al for instance used
GLSW preprocessing in combination with PCA to obtéietter discrimination
between oat and groat profiles based on NIR hypetsgl imaging data and in
another publication, the same group demonstrate@ migtinct separation between
different wheat kernels when GLSW was implementadrgo PCA (spectral data
being utilised in this case). Although these tw@gya went on to assess different
tools for the classification of test samples, saemearch by Eigenvector Research
Inc. demonstrated that it is possible to use PCt VdLSW for classification and
indicated that such an approach may be simpler dtlaer classification toof$:’
Researchers at Eigenvector Research Inc. used RCAmbination with GLSW to
classify different types of food grade oil and aellwas obtaining improved
separation between sample groups, they were aliéréaluce T confidence ellipses
around each of the assigned classes within theratitbn datd®*’ When test data
were then projected onto the calibration model,%0fF test oil samples accurately
fell within the corresponding confidence ellipséswas also possible to clearly
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identify when oil samples had been adulteratedhieyaddition of a cheaper oil at a
level greater than 5%. An approach similar to teatployed by Eigenvector
Research has therefore been investigated withgnrdsearch to determine whether
the same procedure (PCA with GLSW preprocessinghdcoe implemented for the
classification of unknown caramel colourants bagedharacteristic differences in
their ATR-MIR spectral profiles. The only potentighitation found in relation to
the implementation of GLSW preprocessing prior ftoe tapplication of a
classification tool was that any potential souroésextraneous variation within
samples would typically have to be accounted fahiwithe calibration data to allow

for accurate predictions to be obtairtéd.

4.1.2.2 HCA

As discussed previously in Chapter 2 (section 2. 3QA is an unsupervised pattern
recognition tool and so aims to search for groupingtween samples without the use
of pre-established class information. If sampleslifferent categories can therefore
be distinguished between using HCA, it can be § ueeful tool for classification;
the prediction of test data would however havedaranually interpreted. Examples
of HCA being implemented for a wide variety of apations were observed in the
literature and these included fields such as: noetaimics/metabolomicS:%> market
research/analysf€ studies relating to the food and drinks industife8 and also

for medical applications (e.g. for disease diaghasid psychiatry}>*?

In all of the publications identified above, it waind that HCA was most useful as
an exploratory tool. In other words it was implerteehsimply to determine whether
samples could be classified into distinct groupibgs not to actually predict the
identities of unknown/test data; this was insteadngleted using an additional
multivariate data analysis tool, if completed &tYél Tikunov et al. for instance used
HCA to distinguish between different types of tooest using GC-MS data of the
volatile tomato constituents; the authors howewkd, not go on to predict test
sample identitie&’ In a different publication, O. Beckonest al.implemented HCA
as a means to provide an impression of how wellpgamroups could be separated

prior to applying a subsequent classification t8dThe authors were testing urine
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taken from mice dosed with different toxins to detme whether similarities were
present in the response of the animals to fousesf toxin (control, liver, kidney
and other). It was shown that HCA had the abilityliscriminate between these four
classes (based dil NMR spectral data) and subsequent data analgsis) k-NN
classification demonstrated very good predicticiegavhen applied to test data. In
another example, C. Yat al. successfully utilised HCA based on HPLC data to
clearly distinguish between three different speckshe ginseng plant (often used
for medicinal purposes but only one of the threecgs is considered as appropriate
for a wider range of patient$).The authors were then able to successfully predict
the identity of test samples using LDA and so thHeidings demonstrated the
possibility to screen ginseng for medicinal purmote ensure that it has originated

from the correct source/species.

A similar approach as those described above wasftre undertaken within this
research project; HCA was used as an exploratoiy a@alysis tool to investigate
whether samples could be clearly classified in&tigct groupings, before additional
classification tools were investigated for predhigtithe identities of test data. No
examples of HCA being applied to differentiate bedw caramel colourants could be
found in the literature (indicating the noveltyattempting this) however there were
publications demonstrating its successful applicatising infrared data (the type
being implemented within this research). M. De Latal.for example implemented
HCA for the classification of Moroccon olive oilsat had been analysed using
fourier transform infrared (FTIR) spectromeffy. The authors successfully
demonstrated that HCA was able to separate oligepooduced from four different
regions into four corresponding groupings, the s between each class being
extremely distinct. This was described as beingteel to the good sensitivity of
FTIR and its ability to obtain unique fingerpriragécompounds (in this case picking
up on differences in samples of the same varietplok oil that differ only in
production locations). In another publication, Sik&t al have also demonstrated
the successful application of HCA to IR d&t&s Goket al utilised ATR-FTIR to
analyse honey samples from different botanicalimsigo determine whether their
profiles could be distinguished between. Twelvefeddnt sample types were
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included in the study: five classes originated frbawers, three were from trees,
three were fake honey (commonly known adulteraatg) one was maple syrup
(used as a non honey control). When HCA was applig¢te data, clear cut clusters
were obtained, in the first instance splitting damples into four groupings: those
originated from flowers; those sourced from tretbgse that were fake; and those
that were maple syrup. It was also demonstratetdalhaamples had as their nearest
neighbour samples from the same class, indicabiagih general the data could also
be split further into the twelve individual sampyges using HCA. This publication
in particular indicated that HCA could be well sditfor allowing different types of
caramel colourants to be separated into clustessrding to their class or E150a
formulation. The publication by S Goét al includes figures of the ATR-FTIR
spectra of the different honeys and many of théufea shown are similar to those
observed in Chapter 3 for caramel materials, canh@tes being responsible for the
majority of peaks in both cas&sThe success observed in this piece of literature
based on small compositional differences betwearendypes could therefore be
indicative of the same success being observedaaithmel substances that vary only

due to slight changes in manufacturing conditions.

4.1.2.3 k-NN classification

As described beforehand in Chapter 2 (see sect®.2),k-NN classification is a
supervised pattern recognition technique and sdbeamsed to predict the identities
of test samples by their comparison to a trainetg(@here the class membership of
samples has already been established).kINB tool can therefore be implemented
for classification in a wide range of applicatioasd a review of the literature
demonstrated examples of its use in medical/biokgiields?**® within the fuel
industry®®>2 for metabonomic/metabolomic studi€s® and most relevant to this
research, frequent references were found relatinthé application ok-NN for
classification in the food and beverage indu3ti?. Many of the publications listed
above also demonstratéeNN being applied successfully for the classifioatiof
spectroscopic dafd:*>°0°1>4-5638 6 hjg therefore indicated th&tNN classification
could have potential for classifying caramel coémis within this research, which

were analysed using ATR-MIR spectrometry.
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Some of the most notable examples found withinitbeature were published by the
following authors: M. Kansizt al, who demonstrated the use IoNN for the
classification of 6 different cyanobacterial stsaanalysed using FTIR spectrometry
- test data being predicted with an accuracy lexfeP8% or above when the
wavelength range (and data preprocessing condjtiotiised to build thek-NN
model was optimisetf R. M. Balabinet al, who showed thak-NN could
successfully classify both gasoline (by its typedl 40 different types of biodiesel
samples when analysed using NIR spectrometry, mibtpiprediction accuracies
typically greater than 96% and 93% respectivéR}; E. Sikorskaet al, who
illustrated thak-NN classification could be used to predict theniitg of 8 different
types of edible oils with a prediction accuracy agproximately 98% — the oil
samples being analysed using fluorescence spespgdtand H. B. Dinget al,
who analysed beef hamburgers using NIR spectronagitlydemonstrated thiatNN
classification could be used to classify test saspls being authentic or adulterated
with other meats/ingredients with a prediction aacy of up to ~93%.

A common consensus identified between the paparsodstrating applications of
k-NN classification, was that the main advantagetto$ tool is related to its
simplicity and ease of implementation — persons \ahe not experts in analytical
chemistry and/or chemometrics could still easilteipret the data produced by this
technique®®>*>!n addition, thek-NN models themselves can be quickly constructed
with only basic programming skill:>* A few of the publications also indicated a
further advantage of theNN technique over other classification tools betiatated

to the fact that it is free from statistical asstioms about class distribution®*
One potential limitation identified in relation NN classification was that it

typically requires a large training set of sampesnprove performanc¥.

4.1.2.4 PC-DFA

As described previously in Chapter 2 (section 233.2PC-DFA is a supervised
pattern recognition technique and so lik&IN classification, it can be used to
classify test/'unknown samples based on the ideatifyreviously classified samples

in a training dataset. PC-DFA is generally congdeas being equivalent to the
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classification tool LDA but in the case of the f@amPCA is performed prior to LDA
so as to reduce the dimensionality of data. Thasteahal step prior to LDA can be a
common requirement when being implemented for gleason, as LDA becomes
restricted when the number of variables being asses higher than the number of
samples (commonly seen with spectroscopic/chromapbic data¥>°>°®® Many
examples of LDA and PC-DFA being implemented fassification were observed
within the literature and these examples were foimadssess samples covering a
wide range of fields (as was the case for previowdscribed multivariate data

‘@84.6,64,65

analysis tools): medicinal/biological studi engineering applicatior;

metabolomic researct®®*®°® and investigations within the food and drinks

ind UStry.54_56' 59-62,69-70

As was the case fd&#NN classification, examples of LDA/PC-DFA beingpéipd to
spectroscopic data were observed amongst thosel letove, highlighting that it
may have potential for the classification of carhowourants analysed using ATR-
MIR spectrometry. Some of the papers demonstratingessful classification using
spectroscopic data were published by the follovanthors: P. Ritthiruangde al,
who demonstrated the use of LDA to classify thngees of fish sauce (analysed
using NIR spectrometry) into groupings with a difisation rate above 829
E. Sikorskaet al, who showed the implementation of LDA to succdsgftiassify
beers according to their duration of storage, amalyvia fluorescence
spectroscopy’ R. M. Jarviset al, who successfully implemented PC-DFA to
discriminate between and classify different stragfisbacteria according to their
surface-enhanced Raman scattering spéttrand R. Goodacreet al, who
demonstrated the use of PC-DFA to classify autherdcoa buttergs those that
had been adulterated with other vegetable fatsd#te being acquired using FTIR
spectrometry?

One of the main advantages of LDA/PC-DFA that wighlightedvia the literature
was that it is typically considered fast and simglemplement and will give good
classification when samples are linearly separddfeAlthough few limitations of
this tool were identified, a few publications hiigifited that model performance will
suffer when data are highly colline#r®*®*G. Koset al. for example experienced
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this limitation of LDA when attempting to classifiealthy corn samplegs. those

afflicted with a fungal infectiofi?

One of the overall observations highlighted whewviewing literature relating to
classification tools was that they each have tlgin associated advantages and
disadvantages and so one is not always better dhather. In other words, the
performance of different classification tools wibpically depend on the data being
examined. Many publications identified throughouist literature review were
therefore found to contain comparisons of multiplassification tools rather than
just a single data analysis technique being predenthis became particularly
evident early on in the literature review, as marythe publications previously
identified as showing exampleslefNN classification were also found to assess their
datasets using LDA or PC-DFA (as well as othersifestion tools not assessed
within this researchi?#¢°0:53-565963¢ \ya5 for this reason that not just a single data
analysis tool was selected to assess the predicficaramel colourants within this
research; so that the most effective and appr@paiproach could be determined for

this case.

4.1.3 Study Objectives

This chapter aimed to compare different multivariaiata analysis tools for the
prediction of caramel identities based on a consparif their dried residue profiles
(obtained via ATR-MIR spectrometry) to those obeairfrom pure caramel spectra.
PCA with GLSW, HCA k-NN classification and PC-DFA were all investigafed
this purpose and the work aimed to assess thditiebfirstly to predict the caramel
class of test data and secondly to determine whéatkéesidual E150a formulations
could be identified. A variety of test datasets eveonstructed to examine the
capabilities of each data analysis tool for carapmetliction and the main objectives
that they covered were:

* To assess the ability of each classification t@optedict caramel profiles
when dissolved in 40% ethanol (the same solutiodinme as the calibration

samples).
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* To determine whether prediction of caramel idegsitis still possible when

caramels are dissolved in a typical Scotch Whiskyrix

* To identify whether high levels of natural colouithin the background
whisky matrix would mask the ability of data anayol to predict caramel

identities.

« To determine whether variation in caramel concdiomawould affect the

ability of classification tools to predict the idan of profiles.

* To find out what effect caramel fade would haveparfile predictions.

After the exploration of these initial aims, an gidthal study was undertaken within
this section of the research to assess whetheofahyg classification tools could also
be used to predict the identity of blends alreadyttee market. Four blends were
used to construct the calibration model in thisecasnd test data consisting of
additional examples of these blends were project&d the model to assess the
prediction of their identities.
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4.2 Experimental

4.2.1 Samples

To allow a comparison of data analysis tools fer pinediction of caramel identities,
this research attempted to classify a selectiodiféérent test samples based on the
identity of previously classified calibration sampl The samples incorporated
within both the calibration and test datasets aescdbed over the following

subsections.

4.2.1.1 Calibration samples/data

Two calibration datasets were compiled as parthf tesearch: Dataset 1, which
contained a range of caramel and burnt sugar naiteand classified the calibration
samples according to the identity of their caramlelss; and Dataset 2, which
contained only E150a caramels and classified samabeording to their E150a
formulation. The former aimed to assess the abiitythe chosen classification
techniques to predict the caramel class of tespkmnwhilst the objective of the
latter was to assess the prediction of differerb@lformulations. The calibration
data used within this section of the research \Wwas dlready acquired using ATR-
MIR spectrometry within Chapter 3 for the samplesatibed in section 3.2.1.1
(Table 3.1) when caramels/burnt sugars were disdalv 40% ethanol. All samples
had been analysed in triplicate as per the metlggotlescribed in section 3.2.4.1
and the resulting spectra (utilised for calibratrondels in this part of the research)
have been summarised within Table 4.1, which dlestiates what sample spectra
were incorporated within each of the two calibmatidatasets (and the calibration

categories associated with each).

In general, all spectra incorporated within eaclibcation dataset were utilised for
the construction of calibration models, however imyr the use of certain
classification techniques the models required oation/validation. In these cases
the calibration datasets were split into calibmatspectra and validation spectra. The
samples chosen for the latter grouping have beghlighted within Table 4.1 for
both calibration datasets. The data analysis tthals required this to be undertaken

have been highlighted where relevant in the resaisd discussion (section 4.3),
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otherwise it should be assumed that all calibrasamples for each dataset were

utilised for the construction of calibration models

Table 4.1: Summary of the ATR-MIR sample spectrdlised for the construction of calibration

models within this chapter of the research.

Dataset 1 Calibration Dataset 2 Calibration
Categories Categories

Spectrum Caramel Class Caramel Identity Batch | Replicate
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! Denotes the spectra utilised as validation san{piezertain cases) for Calibration Dataset 1.
2 Denotes the spectra utilised as validation sarjpiesertain cases) for Calibration Dataset 2.
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Table 4.1 cont.. Summary of the ATR-MIR sample strac utilised for the construction of
calibration models within this chapter of the resed.

Dataset 1 Calibration Dataset 2 Calibration
Categories Categories
Spectrum Caramel Class Caramel Identity Batch | Replicate

No. No. No.

49" 1

50 1 2

51 E150C E150C_X10 3

52 1

53 2 2

54 3

55 1

56" 1 2 o
57" 3 5
p E150D E150D_X11 T %
59" 2 2 =
60 3 §
61 1 2
62 BS_X12 1 2 .
63" 3

64 1

65 Burnt Sugars BS_X13 1 2

66" 3

67 1

68" BS_X14 1 2

69" 3

4.2.1.2 Test samples/data

Five different test datasets were put togethertfis section of the research to
examine the ability of different classification ted®o predict caramel identities. Each
test dataset was compiled to assess the prediatioaramel solutions representing

different scenarios, all of which have been sumseakrbelow.

Test Set 1

Test Set 1 consisted of a selection of caramekohblied in 40% ethanol (the same
solution medium as the calibration samples) tovalém initial examination of the
classification tools for predicting caramel prddilevithout any interference from
other background sources. The samples include@sh Set 1 have been summarised
within Table 4.2, where they have been split inboirf groups representing four
different scenarios (as described in the table).oAlthese samples were analysed
using ATR-MIR spectrometry as per the methodologgsatdibed in Chapter 3

(section 3.2.4.1), triplicate spectra being acqufog each of the 10 samples.
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Table 4.2: Summary of the test samples includechmitTest Set 1

Category for | Category for
Test Sample Description Caramel E150a
Class Formulation

No. of
batches

Group
Number

=N

E150A X1 caramels re-prepare
1 and re-analysed (Batches 1 and 2 E150A X1 2
from Table 4.1)

New E150A_X1 caramels (i.e.

2 fresh caramel samples not E150A_X1 2
analysed before) E150A
New E150A_X2 caramels (i.e.
3 fresh caramel samples not E150A_ X2 2
analysed before)
E150A_ X1 caramels passed thgir
4 expiry date (newly acquired) E150A_X1 4
Total
Samples 10
Test Set 2

Test Set 2 comprised of a selection of caramel ma¢gedissolved in a typical blend
whisky (Blend Whisky A as described in Chapter 8ct®n 3.2.1.1). Fifteen
caramels were included in total and incorporatedtite E150a caramels (at least
one batch from each of the eight different formolas assigned in the calibration
dataset); one batch of E150B_X9; a single batcBXB0C_X10; and one batch of
E150D_X11. These samples had been analysed prgvesipart of the preliminary
studies within Chapter 3 (see section 3.3.1.3) smtheir spectral data were taken
forward to this section of the research to assessthe background matrix of typical
whiskies might influence the prediction capabistief classification tools. All
samples were analysed as per the methodology bdedanithin section 3.2.4.2, each

being analysed in triplicate.

Test Set 3

Test Set 3 was made up of five caramel samplesldess in Blend Whisky B, a
blend representing high levels of colour that wohkl developed naturally for a
Scotch Whisky product. The caramels included withést Set 3 comprised of one
batch of E150A X1, three batches of E150A X2 arsihgle batch of E150A Y5.
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These samples were again analysed in triplicaigeashe methodology previously
depicted within section 3.2.4.2 and were included determine whether the
prediction of caramel identities using classifioatitools would be influenced by

extremely high levels of natural whisky colour etbackground matrix.

Test Set 4

Test Set 4 comprised of data acquired from caraam@lples previously analysed as
part of preliminary research within Chapter 3 (gett3.3.2.1) and was included as
part of this subsequent study to examine whether/lehhanges in caramel
concentration might influence profile predictiodstotal of eight caramel solutions
were included as part of Test Set 4 and encompagsedE150A X1 caramel
solutions dissolved in 40% ethanol previously désdt in section 3.2.4.3 (the
samples from the study of concentration that wessadved in Blend Whisky A were
not included at this point). To summarise, thesea solutions were split into two
subsets each containing four initially identicalusions ranging in absorbances from
0.2 — 0.8 (at 430 nm) in increments of 0.2. Theseulk samples were then prepared
for analysis by pre-concentrating through reductéithe volume from 600QL to
300 pL, in other words maintaining the variation in gael concentration. The
Subset 2 samples were prepared for analysis bggreentrating from 6 mL to a
volume that resulted in each caramel sample pasgeite same final concentration
prior to analysis using ATR-MIR spectrometry. Modetails relating to the
preparation and ATR-MIR analysis of these sampkas lse found in Chapter 3,
section 3.2.4.3.

Test Set 5

Test Set 5 was put together to investigate whatheamel fade would influence the
prediction of caramel profiles using classificatitwols and it comprised of the
samples previously investigated during preliminstydies within Chapter 3 (section
3.3.2.2). This test set therefore included eigm@as each for an E150A X1, an
E150A X2 and an E150D_X11 caramel, in each caseroay 3 control samples
(not faded) and 5 solutions subjected to diffeegrees of fade up to a final level

representing the extreme case likely to be observadeal Scotch Whisky product.
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Additional details relating to the preparation aathlysis of these samples can be
found previously in section 3.2.4.4. Triplicate ANMRR spectra were acquired of all
sample solutions and subsequently utilised for datdysis.

4.2.2 Data Analysis
4.2.2.1 Data preparation/pre-treatment

All ATR-MIR data were initially imported into MATLA version 7.13.0.564
(R2011b) (Mathworks Inc., WA, USA) with PLS_Toolberrsion 6.7 (Eigenvector
Research Inc., WA, USA) incorporated. Prior to #pplication of any multivariate
data analysis however, all raw data were processaty a Savitsky-Golay first
derivative filter, which employed a width of 7 dapmints and a second order
polynomial. All data analysis tools were then eadrout using 155 variables in the
625 — 1813 cri range of the derivatised spectra, so as to remmeggons
contributing only noise to the measurements. Atadaere normalised to the largest
peak (consistently found between 950 and 1050)cand mean centred before any

classification tools were implemented.

4.2.2.2 PCA with GLSW preprocessing

PCA with GLSW preprocessing was undertaken using TMAB software
incorporating the PLS_Toolbox (the details of whitéive already been described
above). The theory behind this technique has besaoritbed previously in Chapter 2
(section 2.3.1.1) and to briefly summarise it atmsnable optimal discrimination
between classes by the implementation of a filtatrix that ultimately allows the
reduction of within class variation whilst maxinmgi between category variation.
Two calibration models were constructed using PO BLSW preprocessing in
this part of the research: one using the spect@atibration Dataset 1 and the other
using the Calibration Dataset 2 spectra (detaidaioed in Table 4.1). Only a single
parameter had to be set for the construction otehealibration models (the
weighting parameteraf) and this was assigned a value of 0.06 for Cailibn
Dataset 1 and 0.03 for Calibration Dataset 2. Thedges were optimised using a
trial and error approach by splitting each caliloratdataset into calibration and

165



validation samples; the validation samples usedetmh of the calibration datasets

have been indicated in Table 4.1.

4.2.2.3 HCA

HCA was undertaken using MATLAB software incorpargtthe PLS_Toolbox (the
details of which have already been described abdve background theory for this
data analysis tool has been described previouskeation 2.3.2.1 and to quickly
recap, this technique aims to detect similaritieeMeen samples and so search for
groupings, without the use of pre-established clafgmation. Two HCA models
were initially constructed for this research, usfdglibration Dataset 1 in the first
instance and in the second using Calibration Datasén both cases the raw data
(after data pre-treatment) were implemented for HA distances between samples
were defined using the Euclidean distance and th&artes between groups of
samples were measured using the nearest neighbetimodh All 69 calibration
spectra shown in Table 4.1 were utilised during tmastruction of the HCA
calibration model for Dataset 1, whilst all of tredevant 45 spectra were utilised for
the calibration model corresponding to Dataset 2.tkdd HCA model was
additionally constructed using the same paramedsrstated above and all of the
Dataset 2 spectra. This however implemented thelu&.SW preprocessing using

ana value of 0.03 to allow an improvement in classdmsination in this case.

4.2.2.4 k-NN classification

The technique ok-NN classification was undertaken using MATLAB sadre
incorporating the PLS_Toolbox (the details of whitdive already been described
above). The theory behind this classification twerh be found previously in section
2.3.2.2 and to briefly summarise, this tool allatws prediction of test samples based
on the majority identity of thek nearest calibration samples (whose class
memberships are already known). Two calibration e®dvere constructed when
utilising k-NN classification, one using all spectra from Gediion Dataset 1 and the
other using all spectra from Calibration Datasein2both cases & value of 3 was

implemented and GLSW preprocessing was utilisedtiier construction of the
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Dataset 2 calibration model (using arnvalue of 0.03) to improve differentiation

between categories.

4.2.2.5 PC-DFA

Data analysis utilising PC-DFA was completed bytP®romski (a postdoctoral
scholar within the same group at the UniversityStfathclyde at the time this
research was undertaken) and conducted in R ve8sio@. The background theory
for PC-DFA has been described previously in 2.3&h@ its main objective is to
seek out canonical variates that will maximise le&w group distances whilst
reducing within category variation. Classificatian generally very good when
samples are linearly separable. As has generalgn tbe case for the other
classification tools, two PC-DFA calibration modelgre constructed within this
work, for both calibration dataset 1 and 2. It dddee noted however, that although
all of the relevant 45 spectra were used in thesttoation of the latter model, the
calibration model built for Calibration Dataset Jasvprepared using only the 34
spectra not marked as validation spectra. This faa®ase of visualisation in the

measurement space.
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4.3 Results and Discussion

4.3.1 PCA with GLSW Preprocessing

Chapter 3 demonstrated good discrimination betvdiféerent caramel classes using
PCA, however as an unsupervised technique, PCAeatamnot be used for the
prediction and classification of test samples. Huglitional implementation of

GLSW as a preprocessing tool however, requiresttif@tPCA model be provided
with information about the category of all sampiesluded, so that variation

between samples of the same category can be medmisilst between category
variation is maximised or maintained. Prior knovgedf the category of calibration
samples therefore also means that the potentisiseta determine the identity of test
or ‘unknown’ samples based on whether they fallhwitany of the confidence

ellipses associated with the pre-assigned caldmagroupings. The ability of PCA

with GLSW preprocessing to determine the identifytest caramel samples is
consequently discussed within the following sediofwo calibration datasets were
investigated: Dataset 1, which assessed prediofitime unknown caramel class (i.e.
can a sample profile be predicted as E150a as eddosa different caramel class or
burnt sugar); and Dataset 2, which assessed whatparticular E150a formulation
could subsequently be predicted. Prior to the itigason of either dataset however,
the GLSW parameters required optimisation and $® ith discussed initially in

section 4.3.1.1 below.

4.3.1.1 Optimisation of the weighting parameter amodel validation)

As described previously in section 2.3.1.1, GLSWlisats an algorithm that
calculates a filter matrix from the differences vioe¢n samples which should
otherwise be similar. The filter matrix is then dde down weigh these differences
which it considers interference or ‘clutter’ andisdhe case of classification this can
enable better discrimination of classes to be abthi The degree to which the filter
matrix down weighs clutter is dictated by the wdigly parameterdo), the only
adjustable parameter within the GLSW algorithmuatinga towards higher values
decreases the effects of the filter, whilst lowalues would apply a higher degree of
filtering. The a value has to be optimised for any individual deteand this was

done manually within this research by splitting tbalibration samples into a
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‘calibration’ set and a ‘validation’ set (see Tadld for details). Thex parameter
was then optimised based on classification errotte validation dataset, where a
range of differenta values were applied to construct different PCAhWW&GLSW
calibration models and the most appropriate moded gelected based on how well
the validation data was predicted onto each cdldranodel. Ana value of 0.02
was used as a starting point for this processhiasmas the value recommended by
the software tutoridl. Additional values above and below this were thempared
(0.005 — 0.09) to assess which would provide therapn value. It was found that
values of 0.06 and 0.03 were the most appropratede with calibration Dataset 1
and calibration Dataset 2 respectively. Figure 4H@avs the PCls.PC2 scores plot
obtained from the optimum PCA with GLSW calibratimodel chosen for Dataset 1,
whilst Figure 4.2a illustrates the P@4. PC2 scores plot acquired from the optimum
PCA with GLSW calibration model chosen for Dataaefigures 4.1b and 4.2b have
also been included to show the PCA data without WLBreprocessing and
correspond to Datasets 1 and 2 respectively. ThHese been included to
demonstrate that for both datasets, the implementatf the GLSW preprocessing
tool has clearly enabled within category variatiome reduced whilst maintaining or

maximising the between category variation.

From Figure 4.1a, differentiation is clearly vigbbetween all of the calibration
categories of Dataset 1 apart from the E150a amdt lsugar groupings. This can
instead be seen more clearly in Figure 4.1c, wisitcbws an enlargement of the
subspace surrounding the E150a and burnt sugaeduglthough there is still a
slight amount of overlap visible between the cosfice ellipses for these two
categories, improved distinction could be obtaiatihg the PC3 axis. The relevant

PC1vs.PC3 scores plot has been provided in Figure 4d&imoonstrate this finding.

Figure 4.2a demonstrates clear differentiation betw all of the calibration

categories of Dataset 2, apart from the E150A X8 Bh50A X4 caramels, whose
confidence ellipses overlap (Figure 4.2c). This éeev can be related to the findings
of Chapter 3 that indicated these two caramelsgssesl similar compositions due to

similarities in their production conditions.
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Figure 4.1: (a) PC1 vs. PC2 scores plot obtainednfr PCA with GLSW ¢=0.06) of the ATR-MIR spectra acquired for the clatation samples of Dataset 1. The Dataset
1 validation samples are projected onto this cadibon subspace. (b) Corresponding PC1 vs. PC2 sspiet obtained from PCA without GLSW preprocessiiig) Shows
an enlargement of the region surrounding the twausters assigned as E150a caramels and burnt sugAalistelevant sets of calibration samples are ersdal by 95%
confidence ellipses. KEY: E150a calibration caraméted triangles), E150b calibration caramels (grestars), E150c calibration caramels (blue squareS150d
calibration caramels (purple diamonds), Burnt Sugaalibration caramels (orange circles), E150a vadtibn caramels (black triangles), E150b validati@aramels
(black stars), E150c validation caramels (black sgi@s), E150d validation caramels (black diamondByrnt Sugar validation caramels (black circles).
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Figure 4.2: (a) PC1 vs. PC2 scores plot obtainednfr PCA with GLSW preprocessing£0.03) of the ATR-MIR spectra acquired for the datation samples of Dataset
2. The Dataset 2 validation samples are projectatbahis calibration subspace. (b) Corresponding P@s. PC2 scores plot obtained from PCA without QIS
preprocessing. (¢) Shows an enlargement of the oegsurrounding the two clusters assigned as E1503 arid E150a_Y4 caramels, both sets of calibratiamples
including 95% confidence ellipses. KEY: E150a_Xllibaation caramels (red triangles), E150a_X2 caldion caramels (red stars), E150a_Y3 calibratiorramels
(green triangles), E150a_Y4 calibration caramelgégn stars), E150a_Y5 calibration caramels (greerties), E150a_Z6 calibration caramels (blue squajeE150a_Z7
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Figures 4.1a and 4.1c clearly demonstrated thahwiseng ano value of 0.06 for
PCA with GLSW, the validation samples for Dataseivérlaid extremely well with
the samples of corresponding category in the cldom data. All validation samples
were found within the 95% confidence ellipses dittcorresponding calibration
category where relevant. These findings were noprasounced whem values
lower than 0.06 were examined and when values hidfla® 0.06 were assessed, the
between category variation began to significamigréase. This therefore indicated
that ana value of 0.06 was optimum when PCA with GLSW posgissing was
undertaken for Dataset 1.

In the case of Dataset 2, Figures 4.2a and 4.2arlglelemonstrated that all
validation samples overlaid very well with the sa@spof corresponding category in
the calibration data, when am value of 0.03 was used for PCA with GLSW
preprocessing. All validation samples were founthinithe 95% confidence ellipses
of their corresponding calibration category whelevant. Whem values lower than
0.03 were examined the validation samples did metlay sufficiently with their
corresponding calibration data and whewalues higher than 0.03 were assessed the

reduction of between category variation was comsec
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Figure 4.3: PC1 vs. PC3 scores plot obtained fro@Awith GLSW preprocessingz£0.06) of the

ATR-MIR spectra acquired for the calibration sam@ef Dataset 1. The Dataset 1 validation
samples are projected onto this calibration subspac
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4.3.1.2 Predicting the caramel class and E150a faotation of test data
Test Set 1 — Caramels in 40% ethanol

Test Set 1 consisted of 10 caramel samples splifaur groups (see Table 4.2). The
four different groups have been summarised belmmglith an explanation as to

their purpose as part of this test dataset:

(1) 2 x batches of E150A_ X1 re-prepared and re-anajytsealssess whether the
PCA model (with GLSW preprocessing) is robust fbe tprediction of

samples already incorporated within the calibratata.

(2) 2 x batches of E150A_X1 freshly acquired and amalyso determine
whether the PCA model (with GLSW preprocessing)rabust for the
prediction of fresh caramel samples, not previodsind in the calibration

data.

(3) 2 x batches of E150A X2 freshly acquired and arlysncluded for the
same reason as (2) but to investigate the prediatioa different E150a
formulation.

(4) 4 x batches of E150A X1 passed their date of expiryascertain whether
prediction of caramel class and E150a formulati@ulel be affected by the

degradation of caramels over their likely time séun industry.

It should also be noted here that all of the absamples were dissolved in 40%
ethanol prior to analysis so as to match the meditithe calibration samples. This
was done for Test Set 1 so that predictions cautaily be undertaken without any

interference from other background sources (eggSitotch Whisky matrix).

Once ATR-MIR spectra had been acquired for all flthe test samples in Test Set 1
(analysed in triplicate), the spectra were firsbjgcted into the PCA with GLSW
calibration model for calibration Dataset 1 to abtacores and see whether their
caramel class could be correctly predicted as E1b@gure 4.4a illustrates the
resulting PClvs. PC2 scores plot and it was clearly demonstratatiah of the test
data points overlaid very closely with the E150asskd calibration samples. This
can be seen more clearly in Figure 4.4b which shaowsnlargement of the subspace
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surrounding the E150a and burnt sugar calibratiasters. All of the test samples

are clearly demonstrated to fall within the 95% faence ellipse defined by the

E150a calibration samples. To emphasise the predicf these test caramels as
being E150a classed caramels further, the VWCRC3 scores plot has been provided
(Figure 4.5) and clearly shows all of the test dasmmverlaying with the E150a

class, separated more obviously from the burntrsugjang the PC3 axis.
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Figure 4.4: (A) Projection of the PC1 vs. PC2 scerir the Test Set 1 samples onto the subspace
defined by the PCA with GLSW calibration model olsted for Calibration Dataset 1. (B) Shows an
enlargement of the region surrounding the two cal#tion clusters assigned as E150a caramels
and burnt sugars. KEY: E150a calibration caramel®( triangles), E150b calibration caramels
(green stars), E150c calibration caramels (blue sges), E150d calibration caramels (purple
diamonds), Burnt Sugar calibration caramels (orangécles), E150a Test Set 1 samples (black
symbols with grey borders).
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Sugar calibration caramels (orange circles), E150ast Set 1 samples (black symbols with grey
borders).
After successfully utilising PCA with GLSW to pretlthe caramel class of the test
samples within Test Set 1, the ATR-MIR spectra warbsequently projected into
the PCA with GLSW calibration model for calibrati@rataset 2 (to obtain scores).
This was to determine whether the classificationl twuld also predict the E150a
formulation of the test samples. The resulting RG1PC2 scores plot has been
provided in Figure 4.6a and clearly demonstratesdh test samples known as being
E150A X1 were correctly classified within the E150&1 category of the
calibration data whilst the test samples known eisd E150A X2 were correctly
classified within the E150A X2 calibration categoiihis can be observed more
clearly in Figure 4.6b, which shows an enlargentérihe subspace surrounding the
E150A X1 and E150A X2 calibration clusters. All thie test samples are clearly
demonstrated to fall within the 95% confidence pskis defined by their
corresponding calibration groupings.
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Figure 4.6: (A) Projection of the PC1 vs. PC2 sceror the Test Set 1 samples onto the subspace
defined by the PCA with GLSW calibration model olstad for Calibration Dataset 2. (B) Shows an
enlargement of the region surrounding the two calition clusters assigned as E150A X1 and
E150A_ X2. KEY: E150a_X1 calibration caramels (retangles), E150a_X2 calibration caramels
(red stars), E150a_Y3 calibration caramels (greeiamngles), E150a_Y4 calibration caramels
(green stars), E150a_Y5 calibration caramels (gresrcles), E150a_Z6 calibration caramels (blue
squares), E150a_Z7 calibration caramels (blue triglas), E150a_Z8 calibration caramels (blue
diamonds), ‘E150A_ X1’ samples from Test Set 1 (agangles), ‘E150A X2’ samples from Test
Set 1 (black stars).

Overall, this assessment of Test Set 1 has indidi@ PCA with GLSW has the
potential to predict the identity of test E150aaraels when dissolved in 40%
ethanol (the same medium as for the calibratiorpéash Both the caramel class and
E150a formulations were correctly predicted for %00f the samples incorporated
by Test Set 1. This demonstrated that the claasific tool was robust for the
prediction of samples that had been re-preparetifgsed and also for those that

had been freshly acquired. This can only be saideker for the types of E150a
included within this preliminary study (E150A X1 carE150A X2). Additional
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samples would be required to confirm this finding éther E150a formulations and
samples of other caramel classes. In addition ¢oaltove, the PCA with GLSW
technique also correctly predicted the class anahdtation of E150a caramels that
had passed their date of expiry, indicating th& thassification tool would not be
affected by the introduction of ATR-MIR spectra argd from caramel samples that
are at different stages of their shelf life. Th@snconly be stated in relation to
E150A_ X1 caramels however and so further samplegdame required to determine
whether this was always the case for different B1&rmulations and also for

classes of caramel other than E150a.

Test Sets 2-3 — Caramels in Scotch Whisky

After the initial success of PCA with GLSW preprssiag to predict the identity of
Test Set 1 samples (dissolved in the same backdrousirix as the calibration
samples), a subsequent study was undertaken usengatne calibration models to
investigate the prediction capabilities for carasmdibsolved in Scotch Whisky. Two
data sets were examined in this part of the reBeand included: Test Set 2;
caramels dissolved in a typical blend matrix (Blafnthisky A) and Test Set 3; a
selection of the same caramel materials dissoluea blend representing the high
levels of colour that would be developed naturddly a Scotch Whisky product
(Blend Whisky B) (see section 4.2.1.2 for more igta

After the acquisition of ATR-MIR spectra for thengales included within Test Sets
2 and 3 (analysed in triplicate), the spectra vpeogected into the PCA with GLSW
calibration model optimised for calibration Dataseto assess whether caramel class
could be correctly predicted. Figure 4.7 showsrdsellting PClvs. PC2 scores plot
and it was clearly demonstrated that although fathe E150a classed test samples
(from both Test Sets 2 and 3) were close to theORTHuster, they did not fall within
the associated 95% confidence ellipse. This casel@ most clearly in Figure 4.7b
which shows an enlargement of the subspace surirmgirtie E150a calibration
samples and the test samples. The same findingisabserved for the remaining
test samples of Test Set 2; none of the E150b, €@l E150d test samples

overlaying with their corresponding calibration stiers. These data therefore
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indicated that the prediction of caramel classgii€A with GLSW is affected by a
change in the background matrix from that of thHécation data. Although time and
resources did not permit in this project, it woldd interesting to create a new
calibration model consisting of caramels in Blendi$ky A and B to confirm
whether the prediction of caramels within this nxais actually possible when the
background matrix is accounted for during calitimatiThe success of Test Set 1
predicting caramels in 40% ethanol where the catiibn samples were also in 40%

ethanol indicates that this would be the case.
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Figure 4.7: (A) Projection of the PC1 vs. PC2 scerfor the Test Set 2 and 3 samples onto the
subspace defined by the PCA with GLSW calibrationahel obtained for Calibration Dataset 1. (B)
Shows an enlargement of the region surrounding tB&50a calibration cluster and the test
samples. KEY: E150a calibration caramels (red trigles), E150b calibration caramels (green
stars), E150c calibration caramels (blue squareS1L50d calibration caramels (purple diamonds),
Burnt Sugar calibration caramels (orange circles)est Set 2 E150a samples (black triangles), Test
Set 3 E150a samples (grey triangles), Set 2 E150bes (black stars), Set 2 E150c samples (black
squares), Set 2 E150d samples (black diamonds)n@M/hisky B without caramel ( blue triangles).

178



An additional sample analysed as part of Test Sec@rporated Blend Whisky B
without the addition of any caramel and was inctutte see whether natural colour
alone would be correctly predicted out with the fatence ellipses of all of the
caramel calibration classes. This was demonstrageldeing the case in Figure 4.7;
the Blend Whisky B sample falling far from all dfet caramel samples dissolved in
Blend Whisky B (remaining Test Set 3 samples — gneygles) and away from all
of the calibration clusters. This would however cdhéde be repeated for future
calibration models created to account for cararbelsg dissolved in that particular
background matrix, to confirm that the whisky wittha@waramel can be successfully

distinguished from the whisky with caramels present

After the assessment of PCA with GLSW for the predn of caramel class for Test
Set 2 and 3 samples, the ATR-MIR spectra were gi@jeinto the calibration model
optimised for calibration Dataset 2, to assessathikty of the classification tool for
the prediction of E150a formulation when dissolwedlends. The resulting PGA.
PC2 scores plot, initially showing only the Test Sedata, has been provided in
Figure 4.8 and demonstrated similarities to thelifigs observed for the prediction
of caramel class. Although each type of E150a féatian from each of the test sets
sat closest to its corresponding calibration clustaly the E150A X1 type test
caramels were found to lie fully within the releva®5% confidence ellipses
(suggesting prediction of this caramel type wasatfi@cted by the matrix of a typical
blend whisky). The other samples however, typicalbpeared to shift away from
their equivalent calibration caramel groupings.sTégain could have been caused by
the fact that the background matrix of the test@amdid not match that of the
calibration samples. It would therefore be intengsin future work to determine
whether the prediction of E150a formulation usir@APwith GLWS preprocessing
is improved for test samples dissolved in a typioknd whisky by utilising a
calibration model where samples are dissolvederstimple whisky matrix.
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Figure 4.8: Projection of the PC1 vs. PC2 scores floe Test Set 2 samples onto the subspace
defined by the PCA with GLSW calibration model olstad for Calibration Dataset 2. KEY:
E150A X1 calibration caramels (red triangles), E1A0 X2 calibration caramels (red stars),
E150A_Y3 calibration caramels (green triangles), ®1A Y4 calibration caramels (green stars),
E150A_Y5 calibration caramels (green circles), EX5Q6 calibration caramels (blue squares),
E150A_Z7 calibration caramels (blue triangles), EQA_Z8 calibration caramels (blue diamonds),
The symbols for the E150a formulation of the tesingples match those of their corresponding
calibration category but are all coloured black (BQA_Y4 test samples are grey stars to
differentiate from E150A_X2 test samples).

Figure 4.9 illustrates the P@%.PC2 scores plot that contains the Test Set 3 gsampl
projected onto the calibration dataset for the jotemh of E150a formulation
(calibration Dataset 2). The sample of Blend Whigkglone has been excluded at
this point as in an ideal situation it should bgcdunted as an E150a caramel during
the initial prediction to identify the caramel da®\n E150A X1 caramel is included
within Test Set 3 and Figure 4.9 demonstrated iisaformulation was correctly
predicted even when dissolved within Blend Whiskytlie sample found within the
95% confidence ellipse for the E150A X1 calibratismmples. The other E150a
caramels included within Test Set 3 however weré cwrectly predicted: an
E150A_Y5 sample and 3 samples of E150A X2. Theescabtained for these
samples were closer to those of the E150A X1 cdlim samples than the
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calibration groupings for their own correspondingbBa formulations. It was also
the case that the Test Set 3 samples were muchrdiosach other than the test
samples of Test Set 2 were (Figure 4.8) correspgndith the fact that more natural
colour is present and affecting the characteristi@amel features of spectra. These
data therefore again indicated that the predictbiz150a formulation using PCA
with GLSW preprocessing will be influenced by theckground matrix of a sample
if this has not been accounted for in the calibratdata. Future work to create a
calibration model where caramels are dissolvediwiBiend Whisky B would be
extremely interesting to undertake to determinethdreE150a formulation could be
predicted even when dissolved in a whisky matrpreésenting an extremely high
case of natural colour. Previous findings withina@ter 3 (section 3.3.1.3) indicated
that the ATR-MIR spectral features of these differE150a caramels could still be

distinguished in this matrix.
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Figure 4.9: Projection of the PC1 vs. PC2 scores Test Set 3 samples onto the subspace defined
by the PCA with GLSW calibration model obtained fGalibration Dataset 2. KEY: E150A_ X1
calibration caramels (red triangles), E150A X2 daiation caramels (red stars), E150A Y3
calibration caramels (green triangles), E150A Ydliteation caramels (green stars), E150A_ Y5
calibration caramels (green circles), E150A_Z6 daiation caramels (blue squares), E150A 77
calibration caramels (blue triangles), E150A_Z8 dadation caramels (blue diamonds). The
symbols for the E150a formulation of the test sampimatch those of their corresponding
calibration category but are all coloured black @tblack stars are test EL50A_X2 samples).
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It should also be noted at this point that in ddditto variation in the background
matrix affecting the prediction of the samples witffest Sets 2 and 3, it is also
possible that the change in the preparation ofdbesamples in comparison with the
preparation of the calibration samples (see expmriat section 4.2) could have
influenced spectra and so subsequently affectedigii@n. This relates back to

findings previously presented within Chapter 3 (sssction 3.3.2.1), which

demonstrated that even when data have been noedhalihanging the caramel
concentration resulted in spectral variation. ThaloWwing subsection (which

discusses Test Set 4) examines this proposal ie oetail to determine whether the
change in concentration due to variation in sarppéparation will influence spectra

to the extent where prediction is affected.

Test Set 4 — Variation in caramel concentration

Test Set 4 incorporated samples put together tesasshether changes in caramel
concentration (and also changes to the methoddlogglation to the addition of a
preconcentration step) would affect the predictmfincaramel class and E150a
formulation using PCA with GLSW preprocessing. Baenples included within Test
Set 4 have already been analysed by ATR-MIR witGimapter 3 (see sections
3.2.4.3 and 3.3.2.1) and can be split into two stgowhich have been summarised
below along with an explanation as to their purpasepart of Test Set 4 in this

section of the research:

(1) ‘Subset 1': Four samples of a batch of E150A Xlgnag in their colour
level (and hence concentration) from an absorbah€?2 — 0.8 (at 430 nm)
and dissolved in 40% ethanol. Sample preparationhiese samples prior to
ATR-MIR involved concentrating each sample up te #ame final volume
and so the variation in concentration was not actsxl for during sample
preparation. The samples were however prepardttisame sample medium
as for the samples in calibration Datasets 1 amh@® so investigating the
prediction of these samples using these calibratiodels would identify if
classification using PCA with GLSW can allow therreat prediction of
caramels despite the influence that changing cdramoecentration has

already been found to have on ATR-MIR spectra.
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(2) ‘Subset 2’: Four samples of a batch of E150A Xlgnag in their colour
level (and hence concentration) from an absorbah€?2 — 0.8 (at 430 nm)
and dissolved in 40% ethanol. Preparation of ttessaples prior to ATR-
MIR involved increasing the concentration of eaample up to the same
final concentration (the same approach used fopkesrwithin Test Sets 2
and 3). Each sample was therefore prepared inahne sample medium as
for the samples used in calibration Datasets 1 armit any variation in
concentration was accounted for during sample patpa. The only
difference of these test samples compared to thleraidon samples would
therefore be in the sample preparation methodoltwgy:test samples being
pre-concentrated whilst the calibration samplesewsst. Investigating the
ability of PCA with GLSW preprocessing to predibetidentities of these
four samples would therefore determine whetheriptied is affected by the
changes made to the ATR-MIR methodology betweerbregion and test

samples.

The ATR-MIR spectra acquired from the E150a sampléhin Test Set 4 (both
Subset 1 and Subset 2 samples) were initially ptejeinto the PCA with GLSW
calibration model optimised for calibration Datadetto assess the prediction of
caramel class. The resulting P€4. PC2 scores plot has been given in Figure 4.10
and it could be seen from Figure 4.10a that atheftest samples were situated in a
similar region of space as the E150a calibratioouging however they did not
overlay with this cluster. Figure 4.10b has consadjy been included to investigate
this more closely and shows a zoomed in area arthen@&150a calibration samples
and the Test Set 4 samples (the burnt sugar cligsiéso visible).
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Figure 4.10: (A) Projection of the PC1 vs. PC2 sesrfor the Test Set 4 samples onto the subspace
defined by the PCA with GLSW calibration model olsted for Calibration Dataset 1. (B) Shows an
enlargement of the region surrounding the E150a itahtion cluster and the test samples. KEY:
E150a calibration caramels (red triangles), E150alibration caramels (green stars), E150c
calibration caramels (blue squares), E150d calibmat caramels (purple diamonds), Burnt Sugar
calibration caramels (orange circles), Test Set3ubset 1' E150a samples (grey triangles), Test Set
4 ‘Subset 2’ E150a samples (black triangles).

Considering Subset 1 first, it can be seen fromufeigd.10b that these samples
spread out away from the E150a cluster with bota BC1 and PC2 scores
decreasing in accordance with increasing samplecesdration. This finding

therefore indicates that the implementation of P@ifh GLSW preprocessing does

not filter out the ATR-MIR spectral regions thataffected by variation in caramel

concentration and so classification with this teolconsequently affected by this
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parameter. The test samples incorporated by S@lusethe other hand, are shown to
cluster tightly together, which corresponds welthe fact that the changes in sample
concentrations have been accounted for within sarppéparation. The fact that
these samples do not overlay with the E150a caidiracluster can therefore be
attributed to the additional preconcentration sigplied to these test samples in
comparison with how the calibration samples werpared for analysis. This also
consequently helps to confirm that the separatiosenved previously between the
samples of Test Sets 2/3 and their correspondifigraton categories could be

related to the variation in sample preparation el & the change in sample matrix.

Similar findings as above were subsequently obsewleen the samples from Test
Set 4 were projected into the PCA with GLSW caliiora model optimised for
calibration Dataset 2, to assess the predictionEd50a formulation. This is
illustrated within Figure 4.11, where it is clebhat all test samples do not completely
overlay with their corresponding E150a formulati(Ell50A X1). This offset is
likely a result of the additional preconcentratstep applied for the preparation of
these test samples but not for the preparatiohetalibration samples. Figure 4.11
shows that the scores for the Subset 1 sampletchstfarther away from the
E150A X1 calibration grouping and possess a trehdthareasing PC2 score in
accordance with increasing caramel concentratidns &gain indicated that PCA
with GLSW preprocessing does not filter out the AVIR spectral regions that are
affected by variation in caramel concentration aul classification of E150a
formulation with this tool is consequently affectled this parameter. The Subset 2
samples however cluster together in no particuétepn, which corresponds to the
fact that spectral variation resulting from changesaramel concentration has been

accounted for.
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Figure 4.11: Projection of the PC1 vs. PC2 scores Test Set 4 samples onto the subspace defined
by the PCA with GLSW calibration model obtained fGalibration Dataset 2. KEY: E150A_ X1
calibration caramels (red triangles), E150A X2 daiation caramels (red stars), E150A Y3
calibration caramels (green triangles), E150A_Ydlitmation caramels (green stars), E150A_Y5
calibration caramels (green circles), E150A_Z6 daiation caramels (blue squares), E150A 77
calibration caramels (blue triangles), E150A_Z8 dalation caramels (blue diamonds), Test Set 4
‘Subset 1’ E150_X1 samples (grey triangles), Test &'Subset 2' E150A_X1 samples (black
triangles).

Test Set 5 — Caramels subjected to fade

Results obtained previously in Chapter 3 (sectidhi2®) demonstrated that the
ATR-MIR spectral features of caramel materials banaffected by the process of
fade. An E150A_ X1, an E150A X2 and an E150D Xl1lwcel were examined in
the previous work and all were shown to be affettgdhis parameter. Test Set 5 in
this section of the research has therefore beere ropdusing the data from these
same caramel substances, incorporating eight sani@leeach material: 3 control
samples and 5 samples faded for 1, 2, 3, 4 ang¥ wader extreme conditions (see
sections 3.2.4.4 and 3.3.2.2 for more details) #aay in their degree of fade from
approximately 66% to 30% for the E150a caramels&0% to 45% for the E150d
caramel (see Table 3.2). The purpose of this waketermine whether the effect of
fade on ATR-MIR spectral features was enough ttuamice prediction using the

PCA with GLSW preprocessing classification tooll & the samples were prepared
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in 40% ethanol and so matched the background mafixhose making up
calibration Datasets 1 and 2. In addition samplesevall pre-concentrated to the
same final concentration to eliminate/reduce vemmin concentration as a factor
influencing spectra. The preconcentration howeveas van additional sample
preparation step in comparison to the calibratiam@es, which from earlier
findings in this chapter indicated that a slighiftsim data with respect to the
calibration samples could be observed when implémgnPCA with GLSW

preprocessing.

The ATR-MIR spectra obtained from the caramel saspif Test Set 5 (acquired in
triplicate for each sample) were initially projettéento the PCA with GLSW
calibration model optimised for calibration Dataseto assess how the prediction of
caramel class might be affected by the fading mac&he resulting PCis. PC2
scores plot has been provided in Figure 4.12. & gkaar from the figure that neither
of the E150A classed caramels overlaid well witkirttcorresponding calibration
category (emphasised in Figure 4.12b) and this teasatively assigned to the
difference in sample preparation between the testcalibration samples (the former
being pre-concentrated whilst the latter was not)is made it quite difficult to
determine the extent to which fade affects preaictusing PCA with GLSW,
however a few trends could be picked out from th&dFor instance for both types
of E150a it can be seen that all samples fadedddo 3 days (inclusive) cluster in a
similar region of space as the control samples fgmé¢d) and have PC2 scores quite
close to the E150a calibration grouping. Fade geems to have a more significant
influence on samples after this point, i.e. the @asfaded for a time period of 4 and
7 days move further away from the E150a calibratamples (the PC1 scores
decreasing whilst the PC2 scores clearly incrediseduld therefore be the case that
fading of caramel up until a certain level will nextensively influence ATR-MIR
spectra to the extent where prediction using PC# vBLSW preprocessing is
affected, however further work would be neededdnfiem this. The test samples
would need to be compared to a calibration datemetrporating the exact same
sample preparation procedures as used for theséesples, so as to remove this
factor already identified previously as being respble for shifting PCA scores.
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Figure 4.12: (A) Projection of the PC1 vs. PC2 sesrfor the Test Set 5 samples onto the subspace

defined by the PCA with GLSW calibration model olsted for Calibration Dataset 1. (B) Shows an
enlargement of the region surrounding the E150a dahtion cluster and the test samples, whilst
(C) has zoomed on the region surrounding the E15&dibration and test samples. KEY: E150a
calibration caramels (red triangles), E150b caliltftan caramels (green stars), E150c calibration
caramels (blue squares), E150d calibration caram@sirple diamonds), Burnt Sugar calibration
caramels (orange circles), E150A X1 test sampldadk-grey triangles), EL150A_X2 test samples
(purple-pink stars), E150D_X10 test samples (gréeangles). The colour of each test sample set

decreases in shade as the degree of fade increases.

The E150D_X11 caramel samples showed a slightffierdifit trend to the E150a
caramels (Figure 4.12c). The E150D caramels fadedup to 2 days (inclusive)
along with the control samples (not faded) overlaaty well with the E150D
calibration samples, indicating that fade did nghsgicantly affect spectra up to this
level. After this point however, the PC2 scoressamples began to increase in

accordance with increasing level of fade, implyihgt fade of this caramel type will

also influence the prediction of its identity wharmsing PCA with GLSW
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preprocessing. Again, further work that involvestchang the sample preparation of

the calibration and test samples would be requoembnfirm these findings.

Similar findings to those observed above were sylesetly seen when the E150a
samples from Test Set 5 were projected into the R@A GLSW calibration model
optimised for calibration Dataset 2, to assess fame might affect the prediction of
E150a formulation when using this classificatiomltoThis is demonstratedia
Figure 4.13, where it is clearly seen (for both @3ormulations) that the three
samples faded for 1, 2 and 3 days cluster quitsetyotogether and are closest in
their vicinity to the control samples; in the casfethe E150A X2 samples, the
samples faded for 4 days are also found to havédasistores to these samples. It
can then be clearly seen that the caramel samgdiesl ffor 4 and 7 days in the case
of E150A_X1 and the sample faded for only the taitethe case of E150A X2
begin to vary in their positioning on the scorestjpin both cases moving away from
the remaining samples by a decrease in both thét Bhd PC2 scores. These
findings therefore reiterated that caramel fadeée(ad certain degree) is likely to
affect the prediction of caramel identities whenings PCA with GLSW
preprocessing. It would be extremely interestingutalertake further work in this
area with a calibration dataset that matches ex#wotl conditions used to analyse the
test samples and so determine exactly what levdaad would affect prediction
using PCA with GLSW preprocessing.
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Figure 4.13: Projection of the PC1 vs. PC2 scores Test Set 4 samples onto the subspace defined

by the PCA with GLSW calibration model obtained fGalibration Dataset 2. KEY: E150A_ X1
calibration caramels (red triangles), E150A X2 daiation caramels (red stars), E150A Y3

calibration caramels (green triangles), E150A Ydliteation caramels (green stars), E150A_ Y5
calibration caramels (green circles), E150A Z6 daiation caramels (blue squares), E150A Z7

calibration caramels (blue triangles), E150A_Z8 dalation caramels (blue diamonds), E150A X1

test samples (black-grey triangles), E150A X2 w@anples (purple-pink stars). The colour of each

test sample set decreases in shade as the degifagl®increases.

4.3.1.3 Summary

Overall, the preliminary data presented in the a&begction of the research have
demonstrated that PCA with GLSW has good poteata classification tool for the
prediction of caramel identities in Scotch Whiskne key finding however, was
that to be successful, the technique would havaectount for the constituents of the
background matrix in the calibration model. Diffierecalibration models would
therefore be required for all different brands dhisky, which could present a
potential drawback. This study also indicated tirafile prediction using PCA with
GLSW would be affected by changes to sample préparghat vary between the
calibration and test samples, in this case theusich of an additional
preconcentration step implemented for test sampérly influenced prediction. In

addition, factors such as variation in caramel eotration and also the process of
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caramel fade were found to present potential isade utilising PCA with GLSW
for the prediction of caramel identities. A seleantiof other data analysis tools was
consequently investigated as part of this rese&wchllow a comparison of their
applicability for the prediction of caramel ider# in Scotch Whisky. The resulting

findings are presented within the subsequent sectio

4.3.2 HCA

As discussed previously (see theory section 23@A is an unsupervised pattern
recognition technigque and so attempts to detedtagitres between samples with the
aim of searching for groupings. In addition, asuasupervised technique, it attempts
to achieve this without the use of pre-establiskss information. HCA was
therefore investigated in this work as the firsigressive step after PCA as a means
to determine whether sample clusters could be e@libly picked up within the
calibration data; PCA on its own being an EDA tegbe and so not intentionally
looking for groupings between samples. This wasgéchl progression as Chapter 3
had already demonstrated that similar samples ggfpsely together using PCA.
This part of the research has been included hertepagvided a useful starting point
for the selection of a potential alternative clsation tool for the prediction of

caramel identities within this project.

HCA was initially utilised to search for groupings calibration Dataset 1 which in
this case incorporated all 69 spectra describethépamples within Table 4.1. As a
starting point, the most simplistic input parametarailable in the data analysis
software were used to perform HCA and so distabetseen samples were defined
using Euclidean distance; the raw data (and not BC#es were utilised) as data
points; and the nearest neighbour method was ingiésd to measure the distances
between groups of samples. Figure 4.14 shows thérdgram resulting from HCA
analysis for Calibration Dataset 1 using these tmms$. The data has been colour
coded according to caramel class in this figure dwaw it should be noted that

information on the classes was not used to heigragsoupings during HCA.
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Figure 4.14: Dendrogram acquired from HCA of all 6§pectra obtained from ATR-MIR analysis
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The dendrogram depicted within Figure 4.14 cleddynonstrated that all samples of
the five different classes of interest in this cés&50a, E150b, EI50c, E150d and
Burnt Sugars) have as their nearest neighbour ssnfpbm the same class. By
inserting a vertical line at a distance of apprcadiety 0.7, the presence of five clear
clusters has been demonstrated, with all calibmasemmples being found within the
correct grouping (i.e. all E150a caramels were ¢bim the E150a grouping, all
E150b caramels were found in the E150b cluster,..gtcAnother interesting
observation from Figure 4.14 was that the differéb0a formulations were also
shown to be closest in distance to samples of etgnv formulation. Clear clusters
for the different E150a formulation however, couldt be demonstrated in this
particular HCA model by the insertion of a vertidi@e. HCA was therefore next
undertaken to include only the E150a calibratiomas (Calibration Dataset 2, see
Table 4.1) to investigate whether the different @ 5ormulations could also be
assigned into individual clusters using this teghei when only these samples were
included within the calibration model. The resudtidendrogram has been provided
within Figure 4.15.

The dendrogram provided within Figure 4.15 demaes that almost all samples of
the eight different E150a formulations have asrtheiarest neighbour samples of
equivalent formulation. If a vertical line were tee placed at a distance of
approximately 0.25, the presence of five clustessilal be indicated; the E150A Y3
and E150A Y4 caramels being considered part ofsdme grouping and also the
E150A 77 and E150A 78 being deemed as part of dhgescluster. The former of
these observations can be linked back to PCA uakimmtin Chapter 3 (see section
3.3.1.2) which indicated that EI50A_Y3 and E150A hadl very similar ATR-MIR
profiles due to similarities in their manufacturimgnditions. The close distance
between the E150A_Z7 and E150A_Z8 caramels inH@# model could also be
linked to similar manufacturing conditions, beingade from the same starting
substrates and coming from the same manufactueser Table 3.1). It is clearly
shown within Figure 4.15 however, that the lati®p tcaramels can be split into
separate clusters in this HCA model; looking aharter distance of ~0.15 allows

distinction between these two caramel types. Addél work completed in an
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attempt to improve HCA for Calibration Dataset 2rid that it was actually possible
to clearly split the samples of this dataset ih ¢ight clusters corresponding to the
eight different E150a formulations. This could behiaved only after the
implementation of GLSW preprocessing (usingnaralue of 0.03) and the resulting
dendrogram has been provided in Figure 4.16. GLS®prpcessing utilises prior
knowledge of sample categories during analysisaams to reduce within category
variation whilst maximising between category vaoat This would therefore

explain the improvement observed during HCA in tt@se.

Sample 30 E150A_Y4
Sample 29 E150A_Y4
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Sample 17 E150A_X2
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Sample 33 E150A_Y5
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Sample 32 E150A_Y5
Sample 31 E150A_Y5
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Figure 4.15: Dendrogram acquired from HCA of the 4fpectra obtained from ATR-MIR analysis
of the Calibration Dataset 2 samples (samples dixsxt within Table 4.1).
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Sample 33 E150A_Y5
Sample 36 E150A_Y5
Sample 35 E150A_Y5
Sample 34 E150A_Y5
Sample 32 E150A_Y5
Sample 31 E150A_Y5
Sample 30 E150A_Y4
Sample 29 E150A_Y4
Sample 28 E150A_Y4
Sample 27 E150A_Y4
Sample 26 E150A_Y4
Sample 25 E150A_Y4
Sample 24 E150A_Y3
Sample 23 E150A_Y3
Sample 22 E150A_Y3
Sample 21 E150A_Y3
Sample 20 E150A_Y3
Sample 19 E150A_Y3
Sample 15 E150A_X2
Sample 14 E150A_X2
Sample 13 E150A_X2
Sample 12 E150A_X2
Sample 11 E150A_X2
Sample 18 E150A_X2
Sample 17 E150A_X2
Sample 16 E150A_X2
Sample 10 E150A_X2
Sample 45 E150A_Z8
Sample 44 E150A_Z8
Sample 43 E150A_Z8
Sample 41 E150A_Z7
Sample 42 E150A_Z7
Sample 40 E150A_Z7
Sample 39 E150A_Z6
Sample 38 E150A_Z6
Sample 37 E150A_Z6
Sample 9 E150A_X1
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Sample 7 E150A_X1
Sample 6 E150A_X1
Sample 5 E150A_X1
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4.16: Dendrogram acquired from HCA with GLSW premessing ¢=0.03) of the 45 spectra
obtained from ATR-MIR analysis of the Calibration @aset 2 samples (samples described within
Table 4.1). The vertical line at a distance of ~Gndicates the presence of eight clusters.

As previously discussed in section 2.3.2, the diaaton of unknown or test

samples using HCA would have to be done by manuatijuding data into the

model (due to the technique utilising no prior kiheslge of samples). As well as this
being extremely time consuming, classification vaorgly on the judgement of the
analyst and so could easily result in misclasdifices. As the nearest neighbour
method for assigning distances between clustemvsllvery clear and accurate
groupings of samples to be identified during HCiis tpart of the research instead

indicated thatk-NN classification could be a useful supervisedgatrecognition
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tool for the automated prediction of caramel pedil The technique oOk-NN

classification was subsequently investigated aeditidings discussed below.

4.3.3k-NN Classification

As previously described in the theory section 22Z3.%-NN is a supervised
classification technique and so can be used tonaattoally predict the identity of
test (or unknown) samples provided that a traimalgiration set is available where
the class membership of each sample is already ikndest data can be projected
into thek-NN model constructed using the calibration data te classification tool
will predict the identity of the test samples basedthe majority identity of thek®

nearest calibration samples (wh&ris a small odd number).

4.3.3.1 Predicting the caramel class and E150a fatation of test data

In this part of the researcksNN classification was initially assessed to deiesnits
ability for the prediction of caramel class (i.eegiction of test samples as being
either E150a, E150b, E150c, E150d or a burnt sumad)so calibration Dataset 1
was used as the training set (see Table 4.1) v@alue of 3 was implemented to
construct thek-NN model using this training datasétNIN Model 1) and the data
acquired from all test sets (Test Sets 1 — 5) vseitesequently projected into the
model to assess what class they would be predaged@he results obtained from this
data analysis have been provided within Figure ,4nhich clearly demonstrated that
100% of test samples were correctly assigned to twresponding calibration

class.

After this initial success, a secokeNN model k-NN Model 2) was subsequently
constructed using calibration Dataset 2 as thaitrgiset (i.e. taking forward just the
E150a caramels) to determine whether individualdalformulations could also be
correctly assigned usingNN classification. Ak value of 3 was again implemented
to construct th&-NN model and the E150a caramels from all of tls $ets (Test

Sets 1 — 5) were projected into the model. It wasdl that GLSW preprocessing
was required to improve prediction in this case andwas implemented during

construction of th&-NN Model 2 using ar value of 0.03. This tied in well with
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earlier results obtained during HCA, which demaatsil clustering of the E150a
formulations was better when GLSW preprocessing wgdemented. The results
obtained from this data analysis have been providétdgure 4.18 and in this case it
was found that 94% of the test samples were cdyreassigned to their
corresponding calibration category (these being #ight different E150a
formulations included within calibration Dataset Zhe significance of these above
findings in relation to each of the individual tests is discussed in the subsections

that follow.
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Calibration Samples TestSet1 Test Set 2 TestSet3 ' TestSet4 Test Set5
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Figure 4.17: Results obtained after projecting tkamples contained within Test Sets 1 — 5 into thRK classification model constructed using calibrah
Dataset 1 (k-NN Model 1). KEY: E150a calibration i@anels (red triangles), E150b calibration caramétgreen stars), E150c calibration caramels (blue sages),
E150d calibration caramels (purple diamonds), BurBugar calibration caramels (orange circles). Thest samples are all coloured dark grey and theirarael
class is portrayed by their symbol shapes (whichrespond to the symbol shapes used for each caracteds within the calibration data).
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Figure 4.18: Results obtained after projecting tlke150a samples contained within Test Sets 1 — 5 thik-NN classification model constructed usinglitaation
Dataset 2 (k-NN Model 2). KEY: E150A X1 calibratiararamels (red triangles), E150A X2 calibrationreanels (red stars), EL50A Y3 calibration caramels
(green triangles), E150A Y4 calibration caramelgégn stars), E150A_Y5 calibration caramels (gredrckes), E1L50A_Z6 calibration caramels (blue squaje
E150A_Z7 calibration caramels (blue triangles), EQA_Z8 calibration caramels (blue diamonds). Thettsamples are all coloured grey and their E150a
formulation is portrayed by their symbol shapes (el correspond to the symbol shapes used for eaéb® formulation within the calibration data). Any
E150A_Y4 test samples have been portrayed as tdtals to differentiate them from E150A_X2 test sdagp(grey stars).
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Test Set 1 — Caramels in 40% ethanol

As discussed previously in section 4.3.1.2, Tedt1Sacorporated a selection of
samples dissolved in 40% ethanol (the same backdrouatrix as the calibration
samples) and included: two batches of E150A Xladlyeanalysed as part of the
calibration dataset (re-prepared and re-analyded); completely new batches of
E150a caramel (two E150A X1 materials and two E150Asubstances); and four
E150A X1 caramels passed their date of expiry. Wirejected intdk-NN Model 1,

all of these samples were correctly assigned asgbg&il50a caramels and on
subsequent projection intoNN Model 2, the different E150a formulations of al
caramels were correctly predicted. These findifgsefore demonstrated that this
classification tool was robust to predict the iagnof test caramel samples when
dissolved in the same background matrix as théregion data. Additional test
samples covering caramels from classes other tH&0d& and of the remaining
E150a formulations would be required to confirmstHinding; however this

preliminary study did indicate thak-NN classification has potential for the

classification of caramel materials.

The caramel class and E150A formulation of the rexpicaramels were also
correctly assigned and so indicated thelfIN classification would also not be
affected by the introduction of ATR-MIR spectrarfraccaramel samples that are at

different stages of their shelf life.

Test Set 2 — Caramels in a typical Scotch WhiskytmgBlend Whisky A)

Test Set 2 included a range of caramel materialsotlied in a typical blend whisky
matrix (Blend Whisky A) and incorporated at lease @aramel from each of the four
E150 classes and at least one example from eadheokight different E150a
formulations. On projection intkkNN Model 1, the caramel class of all samples was
correctly predicted and when the E150a caramel® ween projected inté-NN
Model 2, it was found that all test samples (bag)omere subsequently assigned to
the correct E150a formulation. Only the E150A Y4acael was assigned to the
wrong E150a formulation, being misclassified as ®L5Y3. This however can be
linked to previous results (see section 3.3.1.2)clwindicate that E150A_Y3 and
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E150A Y4 have very similar ATR-MIR profiles due tsimilarities in their
manufacturing conditions. These findings demonstiran improvement over those
obtained previously to predict the identity of T&st 2 samples using PCA with
GLSW, k-NN classification being able to correctly predixith caramel class and
E150a formulation despite the caramels being dissbin a typical Scotch Whisky
matrix. The influence of natural colour has cleartt affected ATR-MIR spectra to
the extent where prediction usiRgNN classification is affected; in other words the
test samples are still nearest to their correspmndalibration samples. This data
therefore also overcomes another issue identifigd RCA with GLSW, where it
was found that the addition of a preconcentratiep sluring sample preparation of
the test samples caused prediction to be affettad.does not appear to have caused
a problem duringk-NN classification, a finding that is reiteratedaayg in the

discussion of the Test Set 4 samples.

Test Set 3 — Caramels in Scotch Whisky with hightural colour (Blend Whisky
B)

Test Set 3 incorporated a selection of caramelsoblied in a blend whisky
containing a high degree of natural colour (Blendhisdy B): one E150A X1
caramel; three E150A X2 caramels; and one E150Acafamel. This test data set
was therefore compiled to assess how the predicdiararamel identities would be
affected when high levels of natural colour couiteifere with ATR-MIR spectral
features. On projection intkkNN Model 1 all of the caramels dissolved in Blend
Whisky B were correctly predicted as E150a caraneelgast improvement over the
use of PCA with GLSW as a classification tool (Whicould not assign these
samples to any class). Prediction of the E150a ditation of the Test Set 3 samples
(via projection intok-NN Model 2) did however encounter a few misclasatfons;
although all of the E150A_ X1 and E150A X2 samplesevcorrectly assigned to
their corresponding calibration grouping, the E158A samples were wrongly
predicted as E150A X2 caramels. These findingsetber indicated that although
having excellent potential for caramels dissolvedyipical blend whiskiesk-NN
classification may encounter issues when prediatargmel identities if a high level

of natural colour is present in the Scotch Whiskagtn®. It would be interesting to
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complete additional work in the future to test @evirange of caramels to see if this
Is a consistent issue when uskdIN classification and it would also be interesting
to see whether accounting for the background whisiatrix in the calibration

samples would remove this limitation.

An additional sample included in Test Set 3 aldpdubto highlight another potential
drawback ok-NN classification. This sample incorporated Blédisky B without
the addition of any caramel and it can be seenitialNN Model 1 this samples was
predicted as being an E150a caramel, whil&tMNN Model 2 this was assigned as an
E150A Z7 caramel. The major limitation kNN classification is therefore that it
has to assign a test sample into one of the ctbbraategories and so if a test
sample with an alternative source of colour wasiftgal this would not be picked up.
This therefore introduces the potential for sampiesbe wrongly assigned as
containing a particular caramel and may mean thapect samples are wrongly
predicted as containing authentic E150a if thelowosource has not been accounted
for during calibration.

Test Set 4 — Caramel solutions that vary in congatibn

Test Set 4 was split into two subsets which eaattamoed four E150a caramel
solutions of E150A X1 dissolved in 40% ethanol dtedent concentration levels
(from an absorbance of 0.2 - 0.8 in increments .8j.0Subset 1 pre-concentrated
these samples to the same final volume (hence amaiimgg the concentration
differences for ATR-MIR analysis) to assess whetk@&N classification could
correctly predict sample identities despite thet fdbhat changing caramel
concentration has been shown previously to infleeRTR-MIR spectra (see section
3.3.2.1). Subset 2 was made up of the same igtii@mel solutions as for Subset 1
but these were pre-concentrated to provide the sfamaé concentration for all
samples prior to ATR-MIR analysis, leaving the ordifference between the
calibration and test samples as the additionalgoeentration step during sample
preparation. The purpose of this latter subsetthax®fore to assess/confirm whether
k-NN classification could correctly predict sampl@entities despite this slight

variation in sample preparation. When projected ikaNN Model 1, the samples
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from both subsets of Test Set 4 were all correaslyigned as being E150a caramels
and on subsequent projection ilkdNN Model 2, all were correctly predicted as
E150A X1 caramels. These findings therefore dennatest that prediction of
caramel identities using-NN classification was not affected by the influenaf
variation in caramel concentration on ATR-MIR spacneither was it affected by
the addition of a sample preconcentration stepireduo obtain adequate spectra
from solutions representing the colour level ofl ihiskies. It should be noted at
this point however, that this test set only assesse type of caramel colourant and
so it would be interesting to undertake additiomadlyses in the future to confirm
whether this would always be the case for caranmwith different E150a

formulations and also caramels of different class.

Test Set 5 — Caramels subjected to fade

As described already in section 4.3.1.2, Test Sechided eight samples each for
three different caramel types (an E150A X1, an BAL53® and an E150D X11)
that comprised of 3 control solutions and 5 sampé#ging in their degree of fade to
provide a final sample with approximately 30% afatriginal colour level remaining
(45% for the E150d caramel). On projection of théador these Test Set 5 samples
into k-NN Model 1, it was found that all samples (irrespee of their degree of
fade) were assigned to the correct caramel claggr@-4.17). When the E150a
caramel solutions were then projected kN Model 2, it was subsequently found
that the E150A X1 and E150A_ X2 samples were alremily assigned to their
corresponding calibration grouping even when faibethe highest level assessed in
this work. It should be noted here that one ofréqdicate spectra for an E150A X1
control sample was actually misclassified as ba@indg=150A 78 caramel. This can
potentially be discounted as an outlier howevehasdentity of all of the other eight
control spectra were correctly predicted. The figdi obtained from this part of the
study therefore indicated thiiNN classification could have the ability to cortgc
predict both caramel class and E150a formulati@nef/the caramel being analysed
had undergone fading. It would be interesting teetthis work further and confirm
these findings for the remaining caramel classdb@B and E150C) and for the

other formulation of E150a. Future work looking the process of fade when
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caramels are dissolved in the Scotch Whisky matrauld also be interesting, to
determine whether the affect of fade on naturabwolould cause spectra to be
affected differently when caramels are dissolve8centch Whisky.

4.3.3.2 Summary

Overall, the preliminary assessmentkelN classification as a tool for predicting
caramel identities has indicated that it has pakfar this purpose. In contrast to
PCA with GLSW,k-NN classification was able to correctly predicttbthe caramel
class and E150a formulation of test data and sygheliminary study prediction was
not affected by: caramels being dissolved in acgipiScotch Whisky matrix;
variation in caramel concentrations; the additidragreconcentration step during
the preparation of test samples (not used for thpgration of calibration samples);
and caramels subjected to an extreme level of fadspite these clear advantages of
the k-NN classification tool over PCA with GLSW prepreseng, a few drawbacks
were however identified, one of which could be gumajor. The prediction of
caramel identities usinktNN classification was found to deteriorate wheranzels
were dissolved in a blend whisky containing a higlgree of natural colour. This
however could potentially be improved upon or resdlif the features of natural
colour were to be accounted for in the calibratimodel. The only potentially major
downfall of k-NN classification identified was therefore downthe fact that it has
to predict a test sample into one of the calibrawategories (whichever one it is
closest to). This means that samples with a cadource not accounted for within
the calibration model would not be picked up andnsduces the potential for test
or unknown samples to be misclassified as authevitien they might not be. This
issue led to the investigation of an additionaksiication technique (PC-DFA) for
the classification of caramel identities, which slo®t have to assign samples to one
of the calibration categories unless it falls witla pre-assigned confidence limit
(falls within an appointed threshold). PC-DFA cotierefore potentially overcome
this major limitation identified fok-NN classification and the findings obtained are
discussed within the following section.
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4.3.4 PC-DFA

As is the case witk-NN classification, PC-DFA is a supervised pattezoognition
technigue and so can be used to automatically giratle identity of test (or
unknown) samples provided that a training set isilable where the class
membership of each sample is already known. Asritest previously in section
2.3.2.3, PC-DFA seeks out canonical variates th#it maximise between group
distances whilst reducing within group variationdais known to provide good
classification when samples are linearly separablpreliminary investigation into
PC-DFA was therefore investigated within this reskdo assess its capabilities for
the assignment of test caramel identities (botir te@amel class and where relevant
their E150a formulation). Time did not allow for assessment of the prediction
accuracies for test data using PC-DFA to be ingattd and so the results that
follow instead discuss visual interpretations & #C-DFA measurement spaces for

the different test datasets assessed.

4.3.4.1 Assigning caramel class and E150a formubatito test data

PC-DFA was initially assessed in this research é&bemnine its potential for
assigning the caramel class of test samples (Tetst 5 — 5) and so calibration
Dataset 1 was utilised to create a calibration h@€-DFA Model 1). It should be
noted at this point that only the spectral measerdm labelled as calibration
samples (and not validation samples) in Table 4fewtilised in the creation of this
PC-DFA model, for ease of visualisation on the meament space. After the initial
assessment of the test data to assign its cardassl was completed, a second PC-
DFA Model (PC-DFA Model 2) was subsequently creafeding the samples
contained within calibration Dataset 2) to detemnihe ability of this classification
tool for the assignment of E150a formulations fibo&the E150a classed caramels
found within the test datasets. The results obthfrem these analyses are discussed
over the following subsections for each of the tedtisets in turn.

Test Set 1 — Caramels in 40% ethanol

The ATR-MIR spectra acquired from the Test Setrhdas were first projected into
PC-DFA Model 1 to assess the ability of this cléssiion tool for assigning the
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caramel class of these test samples. Figure 4uirdtes the resulting measurement
space and it was clearly observed that all of &€& $amples clustered in the same
region as the E150a calibration cluster, the corigdentity of these samples. On
subsequent projection of the Test Set 1 samplestbetmeasurement space defined
by PC-DFA Model 2, it was also found that each folation of E150a overlaid well
with its corresponding calibration grouping (Figut20). These findings therefore
indicated that PC-DFA has good potential for thedption of caramel identities
when dissolved in 40% ethanol (the same mediunpashe calibration samples);
correctly indicating the identity of re-preparedamalysed caramels, new caramel
batches and those passed their expiry date, ag B&b0a caramels. As was the case
for PCA with GLSW preprocessing however, future kvanth a much larger test

dataset would be required to confirm these findilogshose caramels not assessed.
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Figure 4.19: Projection of the Test Set 1 samplegmthe measurement space defined by PC-DFA
Model 1.
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Figure 4.20: Projection of the Test Set 1 samplegmthe measurement space defined by PC-DFA
Model 2.

Test Set 2 & 3 — Caramels in the Scotch Whisky matr

The Test Set 2 samples (incorporating a selectidal60a caramels dissolved in a
typical blend whisky — the data for the other atsssf caramel in this blend were not
available at this point) were firstly projectedarC-DFA Model 1 to determine the
ability of the data analysis tool for assigning ta@amel class of these samples. The
resulting PC-DFA measurement space has been prbwidEigure 4.21 and it was
clearly demonstrated that all test samples weradan very close proximity to the
E150a calibration grouping. This indicated thatrewehen dissolved in a typical
Scotch Whisky, the correct caramel class of tektiawn samples could potentially
be predicted using PC-DFA. The inclusion of addigibtest samples representing the
other caramel classes would however be requirambmdirm if this was always the

case.
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Figure 4.21: Projection of the Test Set 2 sampIEEFc:])-the measurement space defined by PC-DFA
Model 1.

Projection of the Test Set 2 samples into PC-DFAI8M@ to assess prediction of
their E150a formulation has been depicted withiguFé 4.22 and it was found that
although the test samples did not all overlay witleir equivalent calibration
grouping, they were at least found in a regionpece closest in proximity to their
corresponding calibration cluster. This finding rdfere indicated that PC-DFA
could potentially allow the correct prediction ofi¥ba formulations, even when
these caramel materials are dissolved in a tycatch Whisky. The shift in the test
samples from their equivalent calibration groupiniyg however demonstrate that
the background matrix of this typical Scotch Whisisy influencing ATR-MIR
spectral features to the extent that the valuesirdd during PC-DFA are affected.
Therefore, as was found for PCA with GLSW, classifion of E150a formulations
using PC-DFA would potentially need to account fbe whisky matrix in the
calibration model. This could also potentially b@plemented to improve the
classification of caramel class using PC-DFA if uegd, when caramels are

dissolved in a typical Scotch Whisky.
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Figure 4.22: Projection of the Test Set 2 samplegmthe measurement space defined by PC-DFA
Model 2.

Projection of the Test Set 3 samples into botthefRC-DFA models also reiterated
that the application of this classification techraqgfor the prediction of caramel
identities would require the background whisky fxato be accounted for during
calibration. As previously described, the Test Esamples constitute three different
types of E150a caramel dissolved in a blend whiskytaining an extremely high
degree of natural colour. Prediction using PC-DFasvifound to be affected to an
even greater extent in this case than previousteied for the Test Set 2 samples,
in accordance with the increased influence of métoolour on spectral features for
the darker blend. This can be seen within Figur28 d4nd 4.24 which show the Test
Set 3 samples projected onto the measurement $paP€-DFA Model 1 and PC-
DFA Model 2 respectively.
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Test Set 4 — Variation in caramel concentration

As previously discussed earlier in this chaptee, Tlest Set 4 samples comprise of
two subsets: ‘Subset 1’, incorporating four E150A_c¢aramel solutions at different
concentrations; and ‘Subset 2’, being the samabeaunting for these concentration
differences and leaving the only difference witte tbalibration samples as an
additional preconcentration step during sample gnapn. The data acquired from
the Test Set 4 samples were initially projectea iRIC-DFA Model 1 to assess
whether these variable parameters would potentsflct the prediction of caramel
class (all being E150a in this case) using thisa datalysis tool. The resulting
measurement space has been provided within Fig@eahd it was clearly shown
that although the Subset 2 samples overlaid readpnaell with the E150a
calibration grouping, not all of the Subset 1 samplid. These findings therefore
indicated that the prediction of caramel class gi$h€-DFA would potentially be
affected by variations in caramel concentratior; dldditional preconcentration step
used during sample preparation however, did noeapps if it would significantly
influence class assignment. Additional samples dméed to be assessed in the
future to determine whether this were the casé@iprediction of all E150 classes.
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Figure 4.25: Projection of the Test Set 4 samplegmthe measurement space defined by PC-DFA
Model 1.
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Projection of the Test Set 4 samples into PC-DFAI8M@ to assess prediction of
their E150a formulation has been depicted withiguFeé 4.26 and it was found that
although some samples overlaid well with their esponding E150a calibration
grouping (E150A X1), a number of caramel solutiémsn both Subsets 1 and 2
were found to be situated significantly further gvila the measurement space. This
finding therefore indicated that the predictionEif50a formulation using PC-DFA
would potentially be affected both if test samplasy in caramel concentration with
respect to the calibration samples and also if thaye been prepared using an

additional preconcentration step.

8 — Test Set 4
2 Subset 1 ‘E150A_ X1’ %2

1 Subset 2 ‘E150A_X1'

10
|

8
8
8§8

DF2
0
I
c?%g

1

Calibration Set ?Z

E150A X1
E150A_X2 2
E150A_Z6
E150A_Z7 j
E150A 78 3
E150A_Y3 %
E150A_Y4
E150A_Y5

-10
®NO OTAWNPE

-20

DF1
Figure 4.26: Projection of the Test Set 4 samplegmthe measurement space defined by PC-DFA
Model 2.

Test Set 5 — Caramel Fade

Figure 4.27 illustrates the Test Set 5 sampleseptinig into PC-DFA Model 1 to
investigate the potential influence of caramel fadehe ability of this classification
tool to predict the caramel class of test sampAasspreviously described, the Test
Set 5 samples constituted solutions of an E150A i, E150A X2 and an
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E150D_X11 subjected to varying degrees of fadeur€igt.27 clearly demonstrated
that the prediction of caramel class using PC-DFduM be affected by caramel
fade. In the case of the E150a test caramelsf &leocontrol samples (that had not
been faded) overlaid very well with their corresgioig calibration grouping but all
of the faded E150a caramels (no matter the dedréle) were found offset to the
E150a calibration cluster (their DF1 scores geheratreasing in accordance with
fade). When the E150d caramel samples of Test Seerg considered, it was
observed that all samples were offset from the Hl&ibration grouping. It could
therefore not be conclusively stated that carameéé finfluenced the prediction of
caramel class for E150d caramels, as the controples were also apart from the
relevant calibration cluster. This was tentativplyt down to the small number of
E150d samples incorporated within the calibrati@atad(especially in comparison
with the number of E150a calibration samples). diuld be interesting to obtain a
much larger set of calibration samples in the ®itto allow a more consistent
representation of samples from each of the carafastes. As E150a caramels are
the only class legally permitted within Scotch Wdyisthis was the reason behind a
higher number of samples being available for théss and also why predictions

were in general focussed on E150a test samplesgitinis preliminary research.

Subsequent projection of the E150a samples of $ests into PC-DFA Model 2
demonstrated that the prediction of E150a formaiatising PC-DFA would also be
influenced by the fading process (Figure 4.28)haligh the control samples of both
the E150A_X1 and E150A_X2 caramels cluster togeiheuite close proximity to
their corresponding calibration groupings, the posing of the faded samples are
varied. In the case of E150A X1 it can be seendbahe level of fade is increased,
both the DF1 and DF2 scores generally decrease dvealy the E150A X1
calibration grouping. In the case of E150A_X2, fatlees not appear to have as
significant an affect. Only the E150A_ X2 sampleusion faded for seven days (to
~30% of its original colour level) was found inegion of the measurement space far
away from the calibration samples that match ienidy. Overall however, these
findings indicated that prediction of E150a forntida would be affected by the
implementation of test/'unknown samples that hawen Iseibjected to fade.
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4.3.4.1 Summary

Overall, the preliminary results presented abowsehadicated that PC-DFA could
have good potential as a classification tool fadicting caramel identities in Scotch
Whisky. The findings were however very similar bose previously observed when
utilising PCA with GLSW preprocessing. When carasneére dissolved in the same
matrix as the calibration samples (40% ethanol)gassent of caramel class and
E150a formulation appeared to be reasonably suatedsowever if caramel

materials were dissolved in a Scotch Whisky maitriwas found that this would

likely need to be accounted for in the calibratoadel. In addition, it was found that
the prediction of caramel class and E150a formaatising PC-DFA would also be
affected by factors such as: the addition of a qumeentration step during the
preparation of test samples; any variation in cataooncentration between the
calibration and test samples; and also if thedastples had been subjected to fade.

4.3.5 Prediction of Blend Whisky Identities using Gassification Tools

Previous findings in Chapter 3 indicated that wlwanamels are dissolved in the
Scotch Whisky matrix, the ATR-MIR spectra resultifigm the dried sample
residues are dominated by the caramel constitudnteias additionally found
however, that natural colour components presethenwhisky matrix also had an
influence on spectra and so a preliminary study uvakertaken to determine whether
different blends on the market could be distingedsibetween using ATR-MIR
analysis of dried sample residues, based on tlerelifces caused by variation in
natural colour components (see section 3.3.3). R@4 undertaken to examine this
proposal for four blend whiskies and it was fourgttthe ATR-MIR spectral
features were too similar to allow discriminatioetween the four different blends.
In other words the dominance of the caramel featam@uld not permit samples to be
differentiated between using PCA.

This section of the research therefore aimed tgness from these initial findings
and determine whether discrimination between tlie lidends (and hence prediction
of their identities based on characteristic ATR-Mé#Rectral features) could be

improvedvia the application of more advanced data analysisnigoes. To do this
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the ATR-MIR data acquired previously for the fouffetent blends were split into a
‘calibration set’ and a ‘test set’; the former caining four batches of each blend and
the latter containing one batch of each blend. rAtite construction of calibration
models, prediction of the test sample identities teen attempted using each of the
classification tools described previously withinisttChapter (PCA with GLSW
preprocessing, k-NN classification and PC-DFA) aidwere found to improve
discrimination between the four different blendghe calibration models. The best
results were achieved however, using PC-DFA andhsse have been depicted
within Figure 4.29, which illustrates projection tife test data onto the PC-DFA
calibration model. Figure 4.29 clearly demonstrabed distinction between the four
different blends has been achieved, PC-DFA suaagsshaximising between group
distances whilst reducing within group variationhisl is a vast improvement
compared to the previous findings where these Wata analysed using PCA alone
(see Figure 3.25 in section 3.3.3). Projection had test data into the PC-DFA
calibration model also demonstrated that in gengealy good overlay was achieved
between test samples and their corresponding a#bbr categories. Only the
triplicate spectra of the Blend 3 test samples i@nad to be slightly separated from
their equivalent calibration grouping, althoughytiveere still closest to this cluster
and not mistaken for one of the other blends. Hasaon behind this separation for
the Blend 3 test data is currently unclear andtssould be interesting to obtain
additional test samples in the future to determwieether this was a consistent
finding. This preliminary investigation however,shdemonstrated that it could be
possible to discriminate between Scotch Whisky potsl already on the market
using ATR-MIR spectrometry and subsequently predioeir identities using

advanced data analysis techniques.
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Figure 4.29: PC-DFA of the normalised first derivae spectra acquired from ATR-MIR analysis
of the dried residues of four batches each of fdalend whiskies (Blend 1 — 4). Data acquired from
test data (incorporating one batch of each blend)gthen been projected onto the measurement
space. All samples have been analysed in triplicate

4.4 Conclusions

The research presented within this chapter hasssfidly provided a comparison of
different data analysis tools for the predictioncafamel identities (both their class
and where relevant E150a formulation) based onARR-MIR spectral features
acquired from dried sample residues. A selectiondafa analysis tools were
investigated as part of this work and although digenot stand out at this point as
being most successful, the advantages and limisiio terms of how they could be
applied for future work were carefully comparedeTdata analysis tools PCA with
GLSW preprocessing and PC-DFA would be the bedbke forward for future
studies and were found to provide very similar ltsswithin this preliminary
research. Both were demonstrated to show excgbletential for the prediction of
caramel identities when dissolved in 40% ethandl ibuwas indicated that the

background matrix would need to be accounted forindu calibration if
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predicting/assigning caramel identities when digsolin Scotch Whisky products. A
number of additional studies would also need tahdertaken, using test samples
representing a wider range of caramel types. Intiaddto this, predictions using

both of these techniques were found to be affebtethctors such as: variation in
caramel concentrations between the calibrationtastidata; the addition of a pre-
concentration step during the preparation of tast@es; and also if a test caramel
had been subjected to fade. Future work would tbexebe required to determine
whether these variable parameters could be acabd@mtesither by adjusting sample
preparation/ATR-MIR methodology or by adjusting themple types incorporated

within calibration models.

The data analysis to&NN classification was also investigated for thedsction of
caramel identities within this research and showesg promising results. In contrast
to the previous two techniques (PCA with GLSW poepissing and PC-DFA) it was
actually possible to correctly assign both the wealaclass and E150a formulation of
various test datasets using calibration sample®lisd in 40% ethanol (i.e. the pure
caramel profiles) when: (1) samples were dissoluealtypical blend whisky matrix;
(2) caramel concentration was varied; (3) sampleewprepared using an additional
preconcentration step in comparison to the caldmatiata; and (4) when caramel
materials had been faded. The only main difficuigcountered withk-NN
classification was when attempting to predict tH&Ea formulation of test samples
when dissolved in a blend whisky containing highels of natural colour. In this
case a selection of the test samples were misidabsind so indicated that in such
an extreme situation, the background whisky matrould potentially need to be
accounted for during calibration. Despite the ckdwantages d&-NN classification
over the other two tools investigated, there was miajor drawback that could limit
its use for future workk-NN classification has to appoint test data inte a@h the
pre-assigned calibration categories and so thiddcoause misclassifications if the
identity of a test or unknown sample was not actedirior within the calibration
data. This could be a problem when assessing duspewles within the Scotch

Whisky industry where the origin of colour could cmmpletely unknown.
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Overall the main findings from this chapter havendastrated the potential to utilise
data analysis tools to predict the identity of oash colourants when dissolved
within Scotch Whisky, something that has never béene before. This would be
extremely beneficial to the Scotch Whisky industparticularly in terms of
authenticity testing. It could allow the potentialconfirm the presence (or absence)
of a legally permitted caramel within a suspectdpid or alternatively, future
whiskies could be spiked with E150a caramels manufad to possess distinct
signature profiles and so be used as markers éopdiitive identification of specific

blends.

In addition to predicting caramel identities usolgssification techniques, part of the
research undertaken within this chapter also inya&std their ability to discriminate
between blends already on the market and subsdyymatict the identity of test
samples. Using PC-DFA it was shown that four blecwldd be clearly distinguished
between and on projection of test data into thélon model, three of the four
test samples very obviously overlaid with theirresponding calibration samples.
These findings could be extremely beneficial foe tBcotch Whisky industry,
introducing the potential to use ATR-MIR spectroryiein combination with
multivariate data analysis to confirm the authetyticlentity of market blends.
Future work would be required in this area howewgcorporating a much larger

dataset and a wider variety of the available whigtoducts.
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5.0 UPLC TOF MS IN COMBINATION WITH STATISTICAL
DATA ANALYSIS FOR THE IDENTIFICATION OF CARAMEL
COMPONENTS

5.1 Introduction

5.1.1 Basis of this Study

It has been demonstrated in the preceding chaptetsATR-MIR spectrometry
could be implemented as an analytical tool for iprmf caramel colour.
Characteristic MIR spectra were attained for ddfeércaramel materials (indicating
that they vary in their non volatile compositiomdaas a result it was possible to
predict when a particular caramel was present typacal Scotch Whisky. For the
reason that only E150a classed caramels are legatiyitted in Scotch Whisky,
ATR-MIR spectrometry could therefore be extremelgnéficial to the Scotch
Whisky industry in terms of counterfeit detectiomdaone of the appealing features
of the tool is that it has the potential for futa@aption into portable instrumentation.
Suspect samples could therefore be screened irfidglte to identify authentic
products based on the confirmation of a specifiowant profile. Despite these
appealing features, the main limitation of ATR-M$Rectrometry is that it provides
little information relating to the exact chemicabneposition of caramel colour.
Hence at this point, the identities of componertsponsible for spectral variation
between caramels are still unknown. An understandif the composition of
different caramel materials could be extremely fiera to the Scotch Whisky
industry; as well as allowing a greater understagdif the composition of authentic
colour, the ability to identify specific marker cpounds in caramels could allow

more comprehensive confirmation as to the originadbur.

This chapter investigates the value of an ultrdgperance liquid chromatography
(UPLC) system in combination with a time of fligfifOF) mass spectrometer as a
tool for the identification of marker componentghin different caramel colourants.
A selection of caramel samples were analysed podhe commencement of this
project (by Simon Cubbon of Waters Limited) andtb® study focuses on the

application of statistical data analysis softwavedemonstrate the value of UPLC
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TOF MS for the analysis of caramels in Scotch WAiskhe review that follows
investigates why individual components within caehntolourants have been
difficult to characterise in the past and explanigy UPLC TOF MS in combination

with multivariate data analysis has been chosenrasans to assess this now.

5.1.2 UPLC-MS in Combination with Statistical Data Analysis for

Differentiating Caramel Materials

Caramel colourants comprise a complex mixture ofatle and non volatile
components and only the former fraction, accounforgapproximately 5% of the
total product, has been reasonably well charaetti$ The majority of caramel
composition therefore remains poorly understood isélucidation in the past was
impeded by analytical techniques that were insigfficat the time for the analysis of
individual non volatile components within complex ixtares. Liquid
chromatography (LC) is one such technique thatcbasmonly been implemented in
the past for profiling caramel colourants but waestnicted by its level of
development. Although it was possible to obtainoomatographic traces that were
characteristic of the non-volatile fraction of @ifént caramel materials (see section
3.1.2 for more details), the lack of resolution\pded by separation science at the
time meant that LC peaks were typically broad andesolved®® The complex
mixture of components present within single peaksl(inadequate tools available to
further investigate these components) thereforeninttzat features could not be

linked to analytical composition.

The field of LC has greatly advanced from thisecent years and the development
of UPLC has meant that chromatographic separatansnow be employed with far
superior resolution and much better sensititiffo make the most of this enhanced
performance however, it is now common practiceU&L.C to be coupled with a
mass spectrometer for detection purposes. Massrgprtry (MS), which has also
rapidly evolved over the last decade, can readdgpk up with the speed and
efficiency of UPLC separation and allows minimasmrsion of components. As
well as UPLC-MS enabling the opportunity to beeparate out components within

complex mixtures, this instrumental set up theefallows the subsequent
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identification of component masses. UPLC-MS tecbgypl can therefore allow
individual components within complex mixtures to benitored whether their
identities are previously known or ngt? In addition to permitting individual
components to be monitored, recent development nmaithe field of MS have also
opened up the potential to assign structural itleatto components that have been
detectedria UPLC-MS. Typically this is achieved using tanders Mhere particular
analytes are targeted within an initial mass amaly®fore being passed through a
collision chamber to cause that component to fragnferagmentation patterns can
then be monitored at a second mass analyser and data can aid in the
identification of compounds. The recent developnunime of flight (TOF) mass
analysers has also made this process easier bytfigncomponent masses to be
measured with very high sensitivity and accurate tb mDa — potential molecular

formulae can then be generated from data of thisracy level:

Due to these advancements in the fields of bothabh@ MS, analytical procedures
based on UPLC-MS are now being regularly implenemighin a variety of subject
areas both to profile known analytes and also tp dain a greater understanding of
the unknown components present within complex medu These include
applications within fields such as bioanalySis® drug analysis/drug metabolism
studied”?* and metabolomics/metabonomit$># Although examples of UPLC-
MS being utilised on its own for the analysis ofarael colourants could not be
found in the literature, three recent publicatibgsA. Golonet al. demonstrated that
this type of analytical technology could have eba@l potential to help profile non
volatile components within caramel type materf4fS. Each publication assessed
caramel products being formed from different startnaterials and the authors were
able to generate lists of caramel components asid mholecular formulae using a
combination of high resolution mass spectrometrg diquid chromatography-
tandem mass spectrometry. The data were then sedbjex graphical interpretation
tools that enabled a rough picture of structuehdis and likely reaction mechanisms
to be obtained, before the compositions of selestedtures were confirmed using

targeted LC-tandem mass spectrometry and direasiorh tandem MS experiments.

227



Although the above mentioned literature indicatbdt tUPLC-MS has excellent
potential for profiling individual components withicomplex mixtures (including
caramels), determining what components are redplensor differences between
such samples can be a very difficult task. Onénefrhain reasons behind this is that
for each sample being compared, a large numbenalf/i@ masses will be detected
over a wide range of retention times, resultingigh dimensionality data that would
be impossible to manually interpret. The processihguch data is therefore often
simplified by the implementation of multivariate tdaanalysis tools; principal
component analysis (PCA) often being utilised asnatial exploratory technique.
Examples of UPLC-MS in combination with PCA beingphked to the analysis of
caramel samples could not be found in the liteeatdrindicating the novelty of
attempting this — though examples were found teatahstrated the success of this
approach for a wide range of other application®olvinmg the analysis of complex
mixtures>>*> One of the most common applications of UPLC-MScambination
with multivariate statistics was found to be withire field of metabonomics, where
this analytical approach has been commonly impléeteto differentiate between
healthy and diseased patiefft4®> The application of PCA to the UPLC-MS data also
meant that potential biomarkers for these illnessmdd be identified, as well as
information relating to the metabolic pathways behihem. As an example, X. Zhao
et al were able to clearly distinguish between urinemygas taken from cancer
patients versus those acquired from healthy perf€ofisis separation was based on
the components present within each sample and ession of PCA loadings data
enabled 15 biomarkers for cancer to be found. Aditadhal highlight of this
publication was that it included a comparison @ thsults obtained using UPLC-
MS with those acquired using conventional LC-MSe Buthors were able to clearly
demonstrate that separation between sample groagsgneatly improved when
implementing UPLC-MS and a greater number of paénbiomarkers were
identified using this approach. Hence as a redultssmg UPLC, more information

could be acquired about the components presenirviitese complex samples.

A few other notable examples of UPLC-MS being usedombination with PCA to
differentiate between complex samples based om theimical compositions were
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published by: Chengt al, whowere able to clearly differentiate between fiveeyp

of gelatine®® Xiao et al, who demonstrated the potential to distinguishwben
samples of corn steep liquor prepared by differeanufacturers! M. Zhouet al,

who highlighted the potential to differentiate beem four organs of the Lotus
Nelumbo planf? and G. Xieet al, who were able to distinguish between three
different varieties of a medicinal herb. In eachi@se cases, assessment of loadings
data after PCA enabled components that were clegistat of each different sample
group to be picked out — highlighting the poteniidl UPLC-MS as a tool for
understanding more about individual components d@natcharacteristic of different

sample types.

The vast majority of the publications identifiedoab were found to implement a

UPLC system coupled to a TOF mass spectrometehisaparticular mass analyser

was described as allowing all compounds within ma to be analysed from a

single injection. This therefore allowed a widegarf components to be considered
simultaneously without them being specifically &tegl. The very high mass

accuracy of TOF analysis also meant that in soreesctentative structural identities
could be assigned for components of interest. Imymaases however, the

identification of structures required additional M&alysis targeted to the component
of interest and/or further analysis using NMR spmoetry.
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5.1.3 Study Objectives
In this chapter, data acquired using a UPLC TOF $y§tem was analysed using
statistical data analysis software to assess tteigue’s value to help unravel the

composition of caramel colourants. The main obyestiof the work were:

« To determine whether UPLC TOF MS could differemtibetween the four

caramel classes recognised for use in foodstufthéy¥uropean Union.

* To find out whether components could be identifieat were characteristic

of each caramel class.

* To investigate whether the compositions of E150aroals were consistent

when different formulations were assessed.

* To examine whether caramel markers could still bseoved when these
materials were dissolved in Scotch Whisky and é&dsmlentify whether any
interference might occur from components naturaligsent within Scotch
Whisky.

* To assess whether the data acquired from the plantit)PLC-MS system
could be used in combination with the data analgsifware to assign

tentative structures to caramel components.
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5.2 Experimental

5.2.1 Samples

Seven different caramel materials were assessethign study, including four
different types of E150a and one type of caranmhfeach of the remaining classes
recognised by the European Union (E150b, E150cEttDd). All samples were
dissolved in either 40% ethanol or a typical blemdisky (devoid of previous
caramel addition and termed Blend W) to provide tlhesample solutions described
within Table 5.1. For each of these solutions, mwerlawas added to the chosen
medium until the colour level matched that of aidgp market blend — monitored
with the use of absorbance measurements at 43@lemd W containing no caramel
was also analysed in this work for comparison psegolt should also be noted here
that all sample solutions were prepared at the cBcivhisky Research Institute

(Riccarton, Edinburgh, UK) prior to the commencebwdrthis project.

Table 5.1: Descriptions of the 11 caramel solutioassessed within this study.

Sample e SWRI
Number Sample Description Reference
Number
1 E150a (Type 1) dissolved in 40% ethanql S11-1310
2 E150b dissolved in 40% ethanol S11-1311
3 E150c dissolved in 40% ethanol S11-1312
4 E150d dissolved in 40% ethanol S11-1313
5 E150a (Type 2) dissolved in 40% ethangl S11-1314
6 E150a (Type 3) dissolved in 40% ethanql S11-1315
7 E150a (Type 4) dissolved in 40% ethanql S11-1316
8 E150a (Type 1) dissolved in Blend W | S11-1317
9 E150b dissolved in Blend W S11-1318
10 E150c dissolved in Blend W S11-1319
11 E150d dissolved in Blend W S11-1320
5.2.2 UPLC-MS

UPLC-MS analysis of the caramel solutions was uatten by Simon Cubbon

(Waters Ltd., Wilmslow, UK). Sample solutions wesmalysed without any
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additional pre-treatment using a Waters ACQUITY @Rfitted with an ACQUITY
HSS T3 column (100 x 2.1 mm i.d., lué particle size). The column temperature
was maintained at 40°C throughout analysis, wlhilstsample chamber was kept at
10°C. Chromatographic separation was achieved ugiagjent conditions and 0.1%
formic acid in water and 0.1% formic acid in metblawere used as the A and B
solvents respectively. The chromatographic condticused for this gradient
separation have been provided in Table 5.2. Tapgdianeasurements were acquired
for each sample solution using a @D injection volume and the order of analysis
was randomised to minimise the affects of crosgaromation. A 50uL injection

loop was also implemented as a means to dilutefteets of ethanol.

Table 5.2: Gradient conditions employed for the dysis of caramel solutions.

Tme | rlow Rate (mUmin) | % A % B

(min)
0.0 95 5
1.0 o5 5
7.0 055 1 99
9.0 1 99
9.1 o5 5
10.0 o5 5

The ACQUITY UPLC was coupled to a Xevo G2 TOF msgsctrometer to allow
mass analysis of high accuracy to be determined. miss analyser was operated
using electrospray ionisation in both positive arepative modes over the mass
range of 50 to 1200 (m/z). MSlata acquisition mode was also used meaning that
both low and high energy data were simultaneoustgqumed. The former
configuration results in no fragmentation of pretur ions, whereas the latter
generates fragment ion data to aid in the assighmiestructures based on their
fragmentation data. External calibration was penkal using leucine enkephalin and
all data were acquired using MassLyspftware (version 4.1) (Waters Ltd.,
Wilmslow, UK).
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5.2.3 Data Analysis

The raw UPLC-MS data were processed using MarketL}®s, which is an

Application Manager built into the MassLynx softwafversion 4.1; Waters Ltd.,
Wilmslow, UK). MarkerLynx used the proprietary Apeack algorithm to

automatically detect chromatographic peaks andwallb the extraction and
tabulation of exact mass and retention time (EMBAi)ys with associated intensities
for all peaks detected over all samples. The manarpeters implemented for this
procedure were set as follows: retention time raoig@.7 — 9.6 min, mass range of
50 — 1200 (i.e. unrestricted), mass tolerance @ @a, marker intensity threshold of

1500 counts, mass window of 0.02 Da and retentina wvindow of 0.05 min.

Once the raw data were processed as described,aPGv¥ewas used to compare
samples based on the intensity values of the EMRiTspThis multivariate data
analysis was undertaken using the extended statipickage incorporated within
the MarkerLynx Application Manager. Prior to PCA, @data were normalised to the
total marker intensity and then subjected to paseiing. Other scaling methods
were also examined in this research, including saaiing (also known as unit
variance) and mean centring, however pareto wasrgky found to allow the most

successful sample separations.

5.2.3.1 Pareto scaling

The first step of pareto scaling is to mean cettieedata being assessed, a process
which shifts the origin of the measurement varialitethe centroid (or mean value)
of the data. Each variable is then divided by tingase root of the standard deviation,
which reduces the effect of large intensities tgraater extent than small ones,
therefore making the most intense variables lessimmt*®*’ Pareto scaling was
therefore used in this research to account foptientially large concentration range
covered by caramel components. If scaling wereimptemented, subsequent PCA
models would be dominated by the components ofdsgboncentration; however it
might be the case that some of the less intens@aonds would be useful in terms
of allowing sample differentiatioff When literature relating to this topic was

assessed, it was found that this scenario was caogneocountered in the field of
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metabonomics and many examples were identifieddéatonstrated pareto scaling
as a suitable solutiof!:**3*3942%aAn additional advantage found to be associated
with pareto scaling was that any baseline noisedata was not significantly

enhanced.

5.2.4 Elemental Composition Analysis (ECA)

MassLynx contains an elemental composition took #léows the prediction of
molecular formulae to be automated within the safev The elemental composition
method implemented in this research was set tarmretumaximum of 20 results and
to contain no more than the following amounts otheaf these atoms: 0 — 50
carbons; 0 — 100 hydrogens; 0 — 20 nitrogens; 0 ©xX3gens; and 0 — 6 sulphurs.
Other main parameters employed for ECA were: thesmaerance, which was set at
10 ppm; the mass mode, set as monoisotopic; tlatr@hestate, which was set to
even and odd electron ion; and the double bondvatarice range, which was set as
-1.5-50.0.
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5.3 Results and Discussion
5.3.1 UPLC-MS in combination with PCA to profile caamel composition

5.3.1.1 Caramels in 40% ethanol
Caramel class differentiation

Seven caramel materials (samples 1-7 in Table \Belg assessed in this work to
determine whether their UPLC TOF MS profiles cobéddistinguished between and
subsequently if components responsible for anyedfitiation could be picked out.
The seven materials — incorporating four E150amalsand one example from each
of the remaining caramels classes — were initiaigessed whilst dissolved in 40%
ethanol to allow a comparison of profiles withoayanterference from components
inherent to whisky. Once UPLC-MS analysis was catgal (in triplicate for all

samples), MarkerLynx software was then used toaektcomponent information

from the raw data in the form of EMRT pairs, alowigh the associated intensities of
these components in each sample. This was undertséearately for both the
positive and negative ionisation data and 3161 EMRIFs were obtained from the
former, whilst 4397 were attained for the latte€APincluding all seven sample
solutions in 40% ethanol was then carried out,BMIRT pairs in this case acting as
the variables. The negative ionisation data wemsidered first and the resulting
PC1vs.PC2 scores plot has been provided in Figure ®rgaide the corresponding

loadings data.
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Figure 5.1: (a) PC1 vs. PC2 scores plot obtainednfr PCA of the negative ionisation data acquired
from all seven caramels dissolved in 40% ethandiplicate data were included for all samples.
(b) Shows the corresponding (PC1 vs. PC2) loadidgta
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It was seen from Figure 5.1a that differentiaticgivieen the four caramel classes
was clearly possible based on the components é@etesing UPLC TOF MS under
negative ionisation mode. The four different foratidns of E150a caramel overlaid
very closely together in the scores plot, whilst #amples representing the three
remaining caramel classes (E150b, E150c and El®@d¢ generally found in
distinct regions of the plot. This indicated tha® tompositional differences between
caramel classes were more significant than with&ssc variation, in this case in
relation to E150a. The assessment of differentncaraypes within the E150Db,
E150c and E150d classes would be important in atyd work to investigate the

extent of within class variation for the remaincayamel classes.

In addition to the above observations from the RG1PC2 scores plot, further
separation between certain caramel samples wasvacthwhen additional PCs were
considered. For instance, distinction between E1H3pe 4) and the other three
E150a caramels was clearly achieved along the PGS (&igure 5.2). When
background information relating to E150a (Type 4svassessed, it was identified
that this sample was actually a burnt sugar. Tkipdd to explain why the sample
stood out so clearly compared to the other El150anuels as the production
processes implemented for burnt sugar manufactuakheugh very similar to the
production of E150a — differ in the reactants tbah be added to aid in the
caramelisation process. The presence of differeactants during manufacture
therefore highlights why the composition of the BA®aramels and the burnt sugar
would be likely to differ. When PC4 was assessedchmclearer separation was
achieved between the E150b and E150d classed darghsn was originally
observed in the PCls. PC2 scores plot; a finding depicted by Figure 8§.3hould
be noted at this point however, that the analysalditional batches of each caramel
type would be required in the future to assesstimsistency of caramel profiles and

so confirm each of the above findings.
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Figure 5.2: (a) PC1 vs. PC3 scores plot obtainednfr PCA of the negative ionisation data acquired
from all seven caramels dissolved in 40% ethandaiplicate data were included for all samples.
(b) Shows the corresponding (PC1 vs. PC3) loadidgsa.
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Figure 5.3: (a) PC1 vs. PC4 scores plot obtainednfr PCA of the negative ionisation data acquired
from all seven caramels dissolved in 40% ethandaiplicate data were included for all samples.
(b) Shows the corresponding (PC1 vs. PC4) loadidgsa.

The components responsible for the above mentifindahgs were investigated by
examination of loadings data that correspondeddeob scores plot. The loadings data
relating to the PCis. PC2, PClvs. PC3 and PCis. PC4 scores plots have been
provided in Figures 5.1b, 5.2b and 5.3b respegtivehch triangular point within
one of these loadings plots represents a diffd®RT pair (or component) and data
points clustered around the origin of a loadingd pte known to be common to all
samples. As you move further from the centre howetese components will be
present in fewer samples and so can be linked yosaparation observed in the

corresponding scores plots depending on their imtaEor instance in Figure 5.1b
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the data points found towards the top of the logsliplot were most characteristic of
E150c, as E150c samples clustered towards thefttye @orresponding scores plot
(Figure 5.1a). From the data presented in eacthefldadings plots above it was
therefore possible to identify components that wararacteristic of each different
caramel class and these potential marker compduens been summarised in Table
5.3. The intensity levels of each selected compbwene compared over all samples
with the use of trend plots to ensure compoundsewessentially unique to a
particular caramel class; all components listedtageefore either completely distinct
to their associated caramel class (at the condantranalysed) or present in their
associated category at significantly elevated kwelmpared to the other samples.
The trend plots constructed for marker componerasad 52 have been included in

Figures 5.4 and 5.5 respectively as examples sfsitliection process.

Table 5.3: Marker components of different caramdasses — from negative ionisation data.

Marker Number | Retention Time (min)| Mass | Associated Class
1* 0.98 377.08471
2 1.00 383.1001
3* 1.02 341.1084 E150A Types 1-4
4* 1.07 503.1611
5* 1.08 323.0976
6 1.08 429.1245
7* 0.95 305.0636
8* 0.96 269.0873
9 1.01 366.1085
10* 1.01 179.0553 E150A Types 1-3
11~ 1.04 281.0873
12 1.05 177.039¢
13 1.33 251.0764
14 1.08 531.155]
15 1.08 693.2081  E150A Type 4
16 1.32 693.2079 (confirmed as being
17 1.33 855.2611 a BS)
18 1.34 809.255]

! The mass quoted is the component mass minusroteng(a result of using negative ionisation).
* Labels the components that were most clearlyblagmost intense when the same caramels were
dissolved in a typical blend matrix (Blend W).
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Table 5.3 cont.: Marker components of different @anel classes — from negative ionisation data.

Marker Number Retention Time Mass' | Associated Class

19 3.00 449.1294

20 3.20 477.1243  ELS0A Type 4

(confirmed as being

21 3.32 477.124( a BS)
22 3.83 441.103¢

23* 0.96 202.003¢

24 0.97 329.053¢

25* 0.97 359.064¢

26* 0.98 345.049]

27* 0.98 168.9803

28 0.99 285.0274

29* 1.00 210.9904

30* 1.00 255.0174

31* 1.01 182.9959 E150B
32 1.08 330.9791

33* 1.33 251.0234

34 1.33 279.0174

35* 1.34 237.0067%

36 1.35 293.033]

37 1.35 321.0284

38 3.05 273.006¢4

39 3.75 361.0234

40 0.92 261.108¢4

41 0.93 305.1344

42* 0.95 184.06049

43* 0.99 339.07349

44* 0.99 338.0769

45 1.29 165.039¢ E150C
46* 1.29 303.1194

47* 1.29 213.08771

48* 1.30 349.125(

49 1.33 207.0504

50 1.35 333.129]

51 0.82 246.9884

52* 0.93 270.9581

53* 0.93 258.958( E150D
54* 0.94 226.0384

55* 0.96 385.0914
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Table 5.3 cont.: Marker components of different @anel classes — from negative ionisation data.

Marker Number Retention Time Mass' | Associated Class
56 1.00 431.0424
57+ 1.01 235.038¢
58 1.07 415.0454
5g* 1.07 225.0061 1500
60 1.34 146.974¢
61* 1.34 247.03849
62* 1.34 349.071(
63 1.35 160.9908
64* 0.90 3211204 oo eeon
65 0.90 435.122(
66 0.97 405.070(
67* 0.98 243.0173
08" 0.99 241,000 £1508 and E150D
69 0.99 213.0064
70* 1.00 197.0106
71 1.01 227.0218
72 1.02 167.0009
73 1.05 391.0001
74* 1.05 194.9961| E150B and E150D
75+ 1.08 164.9855
76* 1.34 191.0087
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Figure 5.4: Trend plot of the component with retéon time of 0.95 minutes and mass of 305.0636
(marker compound 7) showing the intensity of thismponent across the seven caramel samples
dissolved in 40% ethanol. Triplicate data includéat each sample solution.
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Figure 5.5: Trend plot of the component with retéon time of 0.93 minutes and mass of 270.9581
(marker compound 52) showing the intensity of tliemponent across the seven caramel samples
dissolved in 40% ethanol. Triplicate data includémt each sample solution.

As shown in Table 5.3, a number of components ifiedtfrom the negative
ionisation data were also found to be present witlvo of the caramel classes; either
in both E150b and E150d or in both E150c and E16Qdas thought that this could
be due to the common reactants that can be add#étk$e caramel classes during
their manufacture; sulphite reactants for the fartme classes and ammonium based
reactants for the latter. This will be discussedhiore detail in section 5.3.2.1, where
potential elemental compositions for the marker gonents have been investigated.

When the positive ionisation data were consideredvas again possible to

differentiate between the four caramel classesdasethe detected EMRT pairs
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using PCA (although not as easily as with the negabnisation data). The PGJ.
PC2 scores plot (shown in Figure 5.6a) clearlyimstished both the E150c and
E150d caramels from each other as well as fronother samples assessed; in this
plot however the E150a caramels and the E150b samete not separated from
each other. The PC3 axis still did not allow distion of these latter materials but
instead enabled E150a Type 4 (now confirmed asgbeinburnt sugar) to be
differentiated from all other samples (Figure 5.7&)was not until PC4 was then
assessed that E150b could be distinctly separated the remaining samples
(Figure 5.8a).

(a) (b)
100
80 .
60
a 40 A E150a (Type 1) 28
I s £
& oo R 8
O 20 ¥ Eis0a (Type a) o
-40 .
-60
-80 L Y
-100 ‘
-50 25 0 25 50 75 100 125 -0.2 -0.1 -0.0 0.1 0.2
PC1 Scores PC1 Loadings

Figure 5.6: (a) PC1 vs. PC2 scores plot obtainednfr PCA of the positive ionisation data acquired
from all seven caramels dissolved in 40% ethandaiplicate data were included for all samples.
(b) Shows the corresponding (PC1 vs. PC2) loadidgsa.
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Figure 5.7: (a) PC1 vs. PC3 scores plot obtainednfr PCA of the positive ionisation data acquired
from all seven caramels dissolved in 40% ethandaiplicate data were included for all samples.
(b) Shows the corresponding (PC1 vs. PC3) loadidgsa.
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Figure 5.8: (a) PC1 vs. PC4 scores plot obtainednfr PCA of the positive ionisation data acquired
from all seven caramels dissolved in 40% ethandiplicate data were included for all samples.
(b) Shows the corresponding (PC1 vs. PC4) loadidgsa.

The components responsible for these observatiogre vmgain investigatedia
loadings data using the same approach implememntedopsly for the negative
lonisation data. The loadings plots correspondomghe PClvs. PC2, PClvs. PC3
and PClvs. PC4 scores plots have been provided in Figurels, b and 5.8b
respectively. From these data it was possible eéatifiy additional components that
were characteristic of certain caramel classesthese have been summarised in
Table 5.4. Overall, the positive ionisation datavied fewer marker components
than the negative ionisation data for caramelsifbérént class. This indicated that
the majority of components responsible for cararddéferentiation possessed
functional groups that more readily lose a prosargh as carboxylic acids (R-G@
— R-CQGy) and alcohols (R-OH-> R-O). These are known to be common functional
groups in saccharides and so this potentially expléhese findings in relation to
caramel differentiation. The highest amount of mnfation from the positive
ionisation data (in terms of characteristic compusegicked out) was attained for
the E150c classed caramel (potentially due to thegmce of amines, resulting from
the addition of ammonium compounds during productithat will more readily
receive a proton) and also for the E150a caranaglitad been previously confirmed
as a burnt sugar (E150a Type 4). It was difficolvbver, to attain much information
about the other E150a caramels using the posibinisation data, which was due to
the close proximity in the majority of scores plofsthese materials with the E150b
caramel. Any components found as being common lt&e8b0a caramels were

243



therefore also found to be present in the E150bnear at significant (but typically
lower) levels. These components have been recaelealately in Table 5.5.

Table 5.4: Marker components of different caramdasses — from positive ionisation data.

Marker Number | Retention Time (min) | Mass' Associated Class

1 2.71 127.0397

2 3.01 471.0904

3 3.28 309.0374

4 3.70 163.0758

5 3.81 414.1394

6 3.89 163.0754

7 4.10 257.0427 (EBluSr?]?Sng:r;'
8 4.10 109.029(

9 4.10 235.0624

10 4.10 273.018]

11 4.11 249.0811

12 4.47 371.0533

13 7.70 339.2891

14 0.95 383.066

15 1.07 307.0474

16 1.08 225.078f

17 1.32 259.0801 E150B
18 1.32 275.0597

19 1.50 385.11071

20 3.33 165.0541

21* 0.90 319.1504

22% 0.92 303.1554

23 0.93 259.1293

24 0.93 333.1661

25* 0.95 317.1704

26 0.96 273.1444 E150C
27* 0.97 243.1344

28 0.99 287.1604

29* 0.99 213.1244

30* 0.99 301.140(

31* 1.06 227.1394

! The mass quoted is the component mass plus otend@result of using positive ionisation).
* Labels the components that were most clearlyblagmost intense when the same caramels were
dissolved in a typical blend matrix (Blend W).
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Table 5.4 cont.Marker components of different caramel classes erfr positive ionisation data

Marker Number | Retention Time (min) | Mass' Associated Class

32 1.09 153.1027

33* 1.34 289.1401 E150C
34* 3.10 199.1084

35 0.93 210.043]

36* 0.97 387.1084

37* 0.99 305.1344

38* 1.01 237.055(

39* 1.07 369.0964 E150D
40 1.08 251.1034

41 1.24 272.1133

42* 1.34 110.060¢

43 2.98 269.1134

44* 0.91 323.1454

45% 0.94 335.1453

46* 0.95 173.0929

47* 0.97 277.1399

48 0.98 467.1874

49 1.02 321.1299

50* 1.03 233.114Q E150C and E150D
51 1.04 187.1084

52 1.06 275.1244

53 1.06 245.114]

54* 1.18 126.05564

55 1.19 108.0444

56* 1.29 305.1354
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Table 5.5: Components prominent in E150a caramelg biso found in the E150b assessed.

JJ

J7

Marker Retention .
. : Mass' Component Information
Number | Time (min)
Highest in E150a caramels Types 1 & 3.
1 0.95 293.0849 Also present in E150b & E150a Type 2 at
lower intensity. Absent from E150a Type 4
Present at high levels in all E150a caramel
2 0.98 365.1063 (Types 1 - 4). Also in E150b at a similarly
high intensity.
Highest in E150a caramels Types 1 - 3. Als
q
3 0.99 219.0279 in E150b & E150a Type 4 at lower levels.
Highest in E150a caramels Types 1 - 3. Als
4 1.00 343.1241 in E150b at lower level. Absent from E1508
Type 4.
Highest in all E150a caramels (Types 1 — 4).
5 1.01 381.0804 Also in E150b at much lower levels.
Highest in all E150a caramels (Types 1 - 4}.
q
6 L1l 363.0699 Also in E150b but at much lower levels.
Present at high levels in all E150a caramel
7 1.11 347.0952 (Types 1 -4). Also in E150b but at much
lower level.
Highest in E150a caramels Types 2 - 4. Als
8 3.09 127.039% in E150a Type 1 and E150b at lower
intensity.
Highest in E150a caramels Types 2 - 4. Als
9 3.10 109.0293 in E150a Type 1 and E150b at lower
intensity.

! The mass quoted is the component mass plus oteng(@result of using positive ionisation).
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E150a differentiation

As shown in the previous subsection, when PCA waderttaken to compare all
seven caramel materials the three different typ&si60a (E150a Type 4 now being
classed as a burnt sugar instead) were generaihdfto cluster closely together both
when negative and positive ionisation data werearsgply considered. This tight
grouping of the E150a caramels was maintained witkdl of the scores plots
previously shown, indicating that different typelsEil50a caramel had consistent
compositions when their UPLC TOF MS profiles weoenpared with samples from
other caramel classes. In other words the diffekii0a caramels contained many
common components that were not present in E15060&and E150d caramels.
This however could only be concluded for the paftic caramels analysed in this
study and a wider range of samples would be reduaeonfirm whether this would

always be the case.

Despite the above observation, it was possible istindquish one of the E150a
caramels from the other two when using the PCA rmadeviously constructed
using the positive ionisation data, containing sdven sample solutions in 40%
ethanol. E150a Type 2 could be separated out alemdC5 axis as demonstrated
within Figure 5.9a. Examination of the correspogdioadings data (Figure 5.9b)
identified one primary component that was respdesfbr this distinction. This
marker has been highlighted within a red box iruFegs.9b and had a retention time
of 0.97 minutes and a mass of 258.1097. The tréotdfqr this component has also
been provided in Figure 5.10, which clearly dem@tst that this compound is
predominantly characteristic of E150a Type 2.
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Figure 5.9: (A) PC1 vs. PC5 scores plot obtainedrfr PCA of the positive ionisation data acquired

from all seven caramels dissolved in 40% ethandaiplicate data were included for all samples.
(B) Shows the corresponding (PC1 vs. PC5) loadidgsa.
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Figure 5.10: Trend plot of the component with retiéon time 0.97 minutes and mass of 258.1097
showing the intensity of this component across #even caramel samples dissolved in 40%
ethanol. Triplicate data included for each samplelstion.

PCA incorporating only the three E150a caramels meag performed for both the
negative and positive ionisation data to determwhether further separation could
be attained between these materials using modelséad on this caramel class only.
The resulting PCYs PC2 scores plots have been given in Figures Sahila5.11b
for the negative and positive ionisation data regpely. These plots indicated that
the positive ionisation data provided clearest s#mm between the three E150a
caramels assessed; each type being situated stiactiregion of the relevant scores
plot (Figure 5.11b). This indicated that the comumigi responsible for E150a
differentiation were those containing functionabgps more readily able to accept a

proton. Consistency was also obtained betweenidagl measurements. The
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loadings data corresponding to the RGIPC2 scores plot attained from the positive
ionisation data has been provided in Figure 5.18 am@as used to allow the
components responsible for differentiation betwE&B0a caramels to be examined.
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A E150a (Type 1)
E150a (Type 2)
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PC2 Scores
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-30 A E150a (Type 1)
E150a (Type 2)
E150a (Type 3)

-50-40-30-20-10 0 10 20 30 40 50 60 70
PC1 Scores

Figure 5.11: PC1 vs. PC2 scores platistained from PCA of E150a Types 1 - 3 dissolved@%o
ethanol using (a) negative ionisation data and (fjsitive ionisation data. In both cases, triplicate
data were included for all samples.

PC2 Loadings

A
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Ret. Time: 0.97
Mass: 118.0871 A
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A
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0.0 N
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A Ret. Time: 0.97
-0.17 A Mass: 258.1097
-0.1 0.0 01 0.2

PC1 Loadings

Figure 5.12: PC1 vs. PC2 loadings data obtainednré®CA of E150a Types 1 - 3 dissolved in 40%
ethanol using positive ionisation data. Triplicateeasurements included for all samples. Markers
of interest have been numbered for future refereneghin the document.

The two most notable components picked out fronldhdings data shown in Figure

5.12 have been highlighted with red boxes. Thesmpocments had masses of
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118.0871 (Marker 1) and 258.1097 (Marker 2) andhgyassessment of trend plots
were found to be virtually unique to E150a Typen8 &150a Type 2 respectively.
The latter of these components was the same okedoimut previously from PCA
incorporating all seven caramel materials in 40%aebdl analysed using positive
ionisation data (PC¥s.PC5 as shown in Figure 5.9). The trend plot forkéa 2
can therefore be found in Figure 5.10, whilst ttemd plot for Marker 1 has been
provided in Figure 5.13. A few other componentsemelentified from the loadings
data that were predominantly characteristic of BHi®0a Type 2 caramel, though
these were present at lower intensities than Ma2zkdrhese additional components
have been labelled as Markers 3 and 4 in Figur2 &t were found to have masses
of 104.1080 (RT of 0.91 mins) and 420.1626 (RT @00mins) respectively. When
the trend plots for these components were exaniseever (plots not shown), it
was found that they appeared in caramels other ttarc150a class. Marker 3 for
instance was present in the E150d caramel at &higtensity, whilst Marker 4 was
also present in the E150b caramel although compatiais was at a very low level.
This would not necessarily be an issue howevdhefcaramel present had already

been initially confirmed as one from the E150a<las

A E150a (Type 1)

E150b
120 4 E150c

B E150d

E150a (Type 2)
100 E150a (Type 3)
¥ E150a (Type 4)

80
60
40

Marker Intensity

20

0 AAA YW § § AAA

Figure 5.13: Trend plot of the component with retiéon time 0.97 minutes and mass of 118.0871
showing the intensity of this component across #@/en caramel samples dissolved in 40%
ethanol. Triplicate data included for each samplelstion.
It was difficult to find any further components thaere unique to a particular type
of E150a. The other components that were primaggponsible for the observed

separations in the PG/&. PC2 scores plot (Figure 5.11b) were instead ptesdwo
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or more of the E150a caramels and it was distiffeérdnces in intensity levels of
these compounds that allowed the different E150agyto be clearly distinguished.
For example, the majority of the markers found tasahe bottom left corner of the
loadings plot were generally highest in E150a T¢peut were also found at lower

levels in one or both of the other E150a caramels.

The above findings indicated that it might be polesio use UPLC TOF MS to
confirm the identity of a particular E150a caranfe@lsed on the presence and
intensity of selected marker components. To be sdirthis however, additional
batches of each caramel type would need to bededlun the model to ensure
consistency of composition from batch to batch. Igsia of a wider range of E150a
caramels would also be interesting to identify \keetthe majority of E150a
products possess unique UPLC TOF MS profiles. @iiteh to this (as was found
within the ATR-MIR chapter; more specifically inc®n 3.3.1.2) it would also be
interesting to determine exactly what changes @& nitanufacturing process cause
any sample differentiation between E150a caranklhis can be identified then
E150a manufacture could potentially be manipulatettie future to create materials
with distinct UPLC TOF MS profiles. The presenceagfarticular E150a in a Scotch
Whisky product could then be confirmed in the labory using this technology to

monitor for specific marker components.

5.3.1.2 Caramels in the whisky matrix (Blend W)

The results so far have indicated that carameldiftérent class and also E150a
products of different formulation can be clearlgtiguished between (using PCA)
based on the presence and intensity of charaatensirker compounds detected
using UPLC TOF MS. To enable the presence of agodait caramel to be identified
when dissolved in a Scotch Whisky however, it wohtl extremely important to
understand whether inherent whisky components mightfere with the ability of
this tool to detect marker compounds. When dissblwe Scotch whiskies,
characteristic caramel components could becomdedilor masked to the extent
where they are no longer clearly visible, or alégnrely, it could be the case that the

presence of a caramel would be mistakenly assignin@ chosen markers already
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occurred naturally within the Scotch Whisky beimglysed. These possibilities were
investigated in this research for the case of ac&pblend whisky matrix, by

dissolving a selection of caramels in Blend W.

Four of the caramel materials previously considevede assessed in this part of the
study: E150a (Type 1) and each of the samples septiag the three remaining
caramel classes (incorporating solutions 8 to 1Taible 5.1). This was to facilitate a
preliminary study to initially identify whether aamnels of different class could still
be distinguished when inherent whisky componentghininterfere with the UPLC-
MS profiles. Each caramel was dissolved in Blendd&void of previous caramel
addition) until the final colour level matched thafta typical market blend, so that
caramel components would be present at a levetseptative of real products. Once
prepared, all solutions — along with Blend W comita no caramel — were analysed
in triplicate using UPLC TOF MS and data were agegliin both negative and
positive ionisation modes. MarkerLynx software when used to extract EMRT
pairs from both datasets and 2739 were obtained the negative data whilst 6677
were attained from the positive. Two separate PGHlaels were then constructed
from these data in turn (including all five samplegach case) and the resulting PC1
vs. PC2 scores plots have been included in Figure&atahd 5.15a for the negative

and positive ionisation data respectively.

(@) (b)

A
R 2 [ b
25
%) * 2] 4
4 2
o O A E150a (Type 1) k]
3 E150b s
~ : 51505 1
E150
8 -25 #* Blend W S
a
-50
-75 A
-75 50 -25 O 25 50 75 100 -0.1 0.0 0.1 0.2 0.3 0.4
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Figure 5.14: (a)PC1 vs. PC2 scores plot obtained from PCA of thgattéve ionisation data
acquired from all four caramels dissolved in Blet and Blend W prior to caramel addition.
Triplicate data were included for all samples anld)) (shows the corresponding (PC1 vs. PC2)

loadings data
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Figure 5.15: (a)PC1 vs. PC2 scores plot obtained from PCA of thsipiee ionisation data acquired

from all four caramels dissolved in Blend W and Bié W prior to caramel addition. Triplicate data
were included for all samples and (b) shows theresponding (PC1 vs. PC2) loadings data

In both cases it was shown that all four carameitEms in Blend W were clearly
separated from the blend alone. This demonstrai@dcomponents characteristic of
caramel materials did not appear to be completelgked (if at all) by the matrix of
a typical blended whisky. It was however, only plolgsto clearly distinguish
between all four caramel classes using the negainisation data, as demonstrated
in Figure 5.14a. When the positive ionisation date considered, the E150a and
E150b caramels could no longer be separated whesolded in Blend W, even
when additional PCs were assessed (plots not shdviang latter finding indicated
that some of the components previously identifiscbaing unique to one of these
caramel classes may have been diluted to the ewtbate they were no longer
clearly visible when these materials were dissolaea typical level in a standard
Scotch Whisky.

The loadings data corresponding to each scoreswsoé assessed to understand
what variables (or in other words components) wagponsible for the above
observations. The loadings from the negative iditsadata (shown in Figure 5.14b)
were considered first and it was found that the poments responsible for separation
between the four caramel classes matched up willthbse previously identified as
suitable markers of different classes when the szane@mels were dissolved in 40%
ethanol (see Table 5.3 for reference). The markerponents of different caramel

classes that were the most clearly visible whearoats were dissolved in the typical
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blend matrix have been labelled in Table 5.3 whelevant. The markers not
labelled in this way in the table were still fouwwtien the caramels were dissolved in
Blend W but at lower intensity levels.

The loadings data corresponding to the R&1PC2 scores plot attained from the
positive ionisation data have been included in FEghi15b. When these data were
assessed it was found that marker compounds ckasdict of the E150c and E150d
caramels were the easiest to pick out. It was plestd detect all of the components
previously identified as suitable markers for theseamel types when the same
materials had been dissolved in 40% ethanol (sd#eTa.4 for reference). The

marker components that were visible at the higheensity levels when these two
caramel types were dissolved in Blend W have beghlighted in Table 5.4. From

Figure 5.15b, it was also possible to detect thepmunds that were previously
found as being common to E150c and E150d and thkensathat were most intense

in this case have again been labelled in Table 5.4.

The bottom left hand region of the loadings plajaed from the positive ionisation
data (Figure 5.15b) was next examined to invesigety the E150a and E150b
caramels could no longer be separated when digbatvéhe typical blend whisky
matrix. It was only possible to find the componethiast were previously identified as
being common to both E150a and E150b (recordedalniel5.5); the components
previously identified as being unique to E150b ¢ghan Table 5.4) could no longer
be found amongst those furthest from the centteefoadings plot. Examination of
trend plots demonstrated that some of the E150kkenazomponents were still
present when that caramel was dissolved in BlenthdWever they were at intensity
levels that were very close to zero. This obseovaindicated that the components
characteristic of the E150b classed caramel woaldlimost completely masked by
the background matrix of a typical Scotch Whiskyt (e concentration
implemented) when analysed using positive ionisatimde.

Trend plots were used next to determine whether ainthe marker components
(from both the negative and positive ionisationaglalso occurred naturally within

Blend W, in which case the suitability of a marker confirming the presence of a

254



particular caramel might come into question. It wlasind however, that all
compounds previously identified as being suitablarkars of different caramel
materials were not generally inherent within theidgl blend whisky matrix
assessed. The trend plot for marker 62 from Tal8e $howing its intensity across
the five samples analysed in this part of the stiidg been provided in Figure 5.16
as an example. It was clearly seen from this fighat marker 62 was not inherent to
Blend W and remained only characteristic of the ElLSaramel assessed in this

research.
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Figure 5.16: Trend plot of the component with retiéon time of 1.34 minutes and mass of 349.0710
(marker compound 62 —Table 5.3) showing the intdpf this component across the four caramel
samples dissolved in Blend W and Blend W as it weer to any caramel addition. Triplicate data
included for each sample solution.

In the few cases where components were found toroeaturally in Blend W
(markers 27 and 76 for the negative ionisation dasble 5.3) and markers 3, 5, 8
and 9 from Table 5.5 for the positive ionisationtajla the intensity of those
compounds were always considerably higher in tmepsa containing the relevant
caramel. The trend plots for markers 76, 3 andve feeen included in Figures 5.17,
5.18 and 5.19 respectively to demonstrate thistpdine three marker compounds
whose trend plots have not been shown were foumdtdar naturally in even lower

levels still.
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Figure 5.17:Trend plot of the component with retention time 34 minutes and mass of 191.0087
(marker compound 76 —Table 5.3) showing its intagsicross the caramel samples dissolved in
Blend W (and Blend W alone). Triplicate data inclad for each sample solution.
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Figure 5.18: Trend plot of the component with retention time 899 minutes and mass of 219.0279
(marker compound 3 —Table 5.5) showing its integsiicross the caramel samples dissolved in
Blend W (and Blend W alone). Triplicate data inclad for each sample solution.
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Figure 5.19:Trend plot of the component with retention time /01 minutes and mass of 381.0804
(marker compound 5 —Table 5.5) showing its integsiicross the caramel samples dissolved in
Blend W (and Blend W alone). Triplicate data inclad for each sample solution.
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Overall this part of the research has demonstriitadit was possible to assess the
influence of a blend matrix on the ability of UPOOF MS to detect characteristic
caramel components. This particular study howewds; investigated samples where
caramels had been dissolved in a typical blendimaind at a concentration to
provide a level of colour similar to that of theeaage blend on the market. If UPLC
TOF MS was to be implemented in the Scotch Whiskigustry to confirm the
presence of caramel colourants, additional studiesld be required to assess the
suitability of the components identified in this lkdor different scenarios (i.e. for

different caramel concentrations and blend matyices

5.3.2 The Application of MarkerLynx Software for Structural Elucidation

5.3.2.1 Elemental composition analysis

The use of a TOF mass analyser within this reseanelrled component masses to
be detected with ppm mass accuracy. Elemental csitigro analysis (ECA) could
therefore be performed to provide potential molaectdrmulae for compounds. This
procedure (ECA) is an automated feature within MeekerLynx software and so
was applied to the majority of components iderdifearlier as being characteristic of
different caramel materials (details of the metlpadameters for ECA have been
provided in section 5.2.4). In all cases howeveultiple elemental compositions
were returned and so it was attempted to manuailbyifise the proposed formulae
for all components based on a number of factoshéav closely the mass of the
predicted composition matched that of the mass igeolv by the instrument
(<1.0 mDa difference is normally considered); (@ i-FIT value obtained, which
compares the theoretical isotope distribution @& #suggested formula against the
isotope pattern observed experimentally; (c) tkelihood of the proposed formula
being related to a plausible structure. Table 3léstrates some of the most
conceivable formulae acquired for selected markieas were previously listed for
different caramel materials analysed under negatiorisation mode. The
components taken forward to this point (from Tabl8) were generally those that
were most clearly visible when caramels were digblwithin the typical blend

matrix.
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Table 5.6: The most plausible elemental compositi@itained for selected components found as
being characteristic of different caramel materialsfrom negative ionisation data.

Retentiqn Time Mass Associated Poten'_tial
(min) Caramel Class Composition(s)*
0.96 269.0873 61600
1.01 179.0553 1,06
1.02 341.1084 E150A GH2,011
1.07 503.1611 GH3:016
1.08 323.0976 C12H2¢010
0.97 359.0648 GH>001:S
0.98 345.0491 H1501:S
0.98 168.9803 E1508 @He06S
1.00 210.9909 ¢s0-S
1.00 255.0172 €H1,08S
1.01 182.9959 C4HgO6S
0.95 184.0608 @H1.NO,
0.99 339.0738 GH1:N4Os
1.29 303.1194 E150C (oglét'ﬁ’lﬁbz)
CoH1N20
1.29 213.0877 (ORQC;-4|122|\15233)
1.30 349.1250 Ci13H2:N>0q
0.93 270.9581 505,
0.93 258.9580 GHg05S,
0.93 226.0384 ¢13NO6S
1.07 225.0067 E150D &100-S
1.34 146.9749 ¢,0,S
1.34 247.0389 6H 1,N-O5S
1.35 160.9908 CsHO,S
0.90 321.1298 E150C and E150p C1oH2N,Og
0.98 243.0173 §H1,08S
0.99 241.0017 §H1008S
0.99 213.0065 E1508B and E150D! €H1,0,S
1.02 167.0009 ¢HgO0sS
1.05 194.9961 €HgO06S
1.08 164.9855 C4HsOsS

! The mass quoted is the component mass minusroteng(a result of using negative ionisation).
* One proton has been added to each formula tousmtcfor the one removed during negative
ionisation
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An interesting observation made from the elemetaipositions recorded in Table
5.6 was that the elements present in each fornarl@gponded well with those that
would originate from the materials that are legg@érmitted during manufacture of
the four different caramel classes; each caramadschaving a different set of
restrictions in place for their production as set loy the EU Directive 2008/128/EC
(see section 1.4.2 for more detaff)The markers relating to E150b for example,
were all shown as being likely to contain sulphomt(not nitrogen), reflecting the
use of sulphites during manufacture but the rdgiricof ammonium compounds.
The E150c components on the other hand were irticas containing nitrogen but
not sulphur, reflecting the use of ammonium compisubut not sulphites during
production. E150a caramels, which cannot be pratiuegh either ammonium
compounds or sulphites, were shown to incorporaéekens that did not contain
either nitrogen or sulphur in their proposed conitpmss. The E150d components all
contained sulphur (reflecting the use of sulphitkging production) but also
contained nitrogen in a few cases. This latter ofad®n therefore corresponded
well to the fact that ammonium compounds can akanbplemented during the
production of E150d classed caramels. It was atsmd that markers common to
two caramel classes (i.e. either E150c and E1508180b and E150d) contained
elements (nitrogen or sulphur) that reflected timon materials permitted for use
during the manufacture of each of these caramelpyngs: ammonium compounds

for the former combination and sulphites for thitela

It is possible that the elemental compositions giveTable 5.6 may not denote the
correct formulae in all cases, as multiple possiéd were initially produced when

ECA was undertaken. They do however act as goodirgtapoints for the

determination of component structures as they welected due to them being the
most plausible formulae according to the criteri@ntroned earlier in the section. If
on further investigation however, these formulae mw represent the actual
composition of a component, the next most likegnetntal composition provided by

the software would need to be assessed.
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5.3.2.2 Structural elucidation

Once ECA has been completed, any chosen molecotarufa can be searched
against online databases (in this case using Mayka&j to find potential structures
that would match the proposed composition. In ttagonity of cases however, this
search provides quite a large number of suitablesires, making the assignment of
the correct structure quite complex. The particutatrumental set up used for this
research however (incorporating M%lata acquisition), acquired fragmentation
patterns for all components as well as the masgnrdtion for the precursor ion.
Any potential compound structures can thereforadsessed using MassFragment; a
tool within the MarkerLynx software that can comgp#éne most likely fragment ions
relating to a proposed structure with those thaehaeen observed experimentally
(see section 2.2.3 for more details). This tool teamefore aid in the assignment of a

structure to an unknown component of interest.

The implementation of the above procedure for stimat elucidation can be a very
difficult task. One initial issue found was thatitgua high number of matching
structures can be proposed for a single molecalanidla and each of these has to be
manually inputed into the MassFragment tool in tdrgn extremely time consuming
process. This may then have to be repeated foerdiit molecular formulae
(suggested during ECA) if none of the fragmentafpatterns can be matched up
with those acquired experimentally. Further diffims can also be encountered
when multiple isomers are suggested for a comporanthese often have similar
fragmentation patterns and so are difficult to idgiish between. Personal
judgement also has to be used to identify whetharuwcture fits well with the raw

experimental data.

Another issue with assigning component structusesommonly encountered when
complex mixtures such as caramels and whiskieassessed. In this situation it is
likely that many sample analytes will co-elute frahe chromatographic system,
which could lead to certain peaks within relevardsms spectra being mistaken as
fragments by the MassFragment software, when theyim fact related to a

completely different component. Structures thatld¢dquotentially be a good match
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would therefore be discounted by the analyst dupdmr correlation between the
proposed and experimental fragmentation patternseter approach for structural
elucidation would therefore be to firstly isolateetcomponents of interest before
fragmentation patterns are assessed. Isolating @oemps would also allow
additional tools such as NMR spectrometry to beduge a means to aid with
confirming assigned structures — restrictions Wiitie and resources meant that this
could not be achieved within the scope of thisgebput such an approach should be

considered for any future work.

The issue of co-eluting analytes could also infageisotope patterns in mass spectra,
if the masses of such components are very closgheg This would throw off i-FIT
values used as a means to select plausible forndulideg ECA and so could mean
that the correct elemental composition is initialyssed. This would significantly

hamper attempts to structurally elucidate companehinterest.

In addition to each of the abovementioned issue) & a plausible structure can be
identified from the MassFragment software, thissloet necessarily make it the
correct assignment. The identity of a component ldv@ubsequently need to be
confirmed, which can be done by further fragmeatatstudies on the isolated
component and/or by comparing the mass and retetitiee of the component with a
reference standard analysed under the same cordithggain however, time and
resource restrictions meant this could not be aelievithin this project. An attempt

has been made however to use the tools within Miayke to understand as much
as possible about the structures of a selectiothe@fE150a components. These
components have been discussed in turn within dlewiing subsections. These
examples were included to demonstrate the capebildf the UPLC TOF MS

technology, however before further time is exertea assigning component
identities, it would be important to analyse nunusra@dditional batches of each
caramel sample - to confirm the suitability of albmponents as markers for

particular caramel classes.
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E150a component with a mass of 341.1084 (RT of Infi@utes)

The most plausible elemental composition sugged$tedthis component was
Ci2H20011 and when searched against online databases a nuwhbpotential
structures were proposed. The top hit returnechbysbftware was sucrose, however
literature indicated that E150a classed carameidsildhcontain very little of this
material, if any at aft® The other proposed structures returned from thechewere
therefore examined and the vast majority were foiantde disaccharides, generally
with similar conformations to sucrose. Each of éhetructures was subsequently
implemented into MassFragment in turn to determiit@ch would provide a
fragmentation pattern that would best fit the obsesved experimentally. When this
was undertaken however, a high number of the stegesructures were well fitted
with the experimental results, which was likely digethe structural similarities
between the proposed materials. Many of the sugmiisthe same general backbone
but differed mainly in either stereochemistry oe tpositioning of just a few
functional groups — meaning that each provided garylar fragments. At this point
therefore, the most information that could confitiebbe deduced about this E150a
marker was that it is very likely to be a disaca@rsugar. Some of the potential
identities of this component ar@-lactose, f-maltose, a,a-trehalose; cellobiose;
lactulose; kojibiose; 6-@-D-Mannopyranosyhk-D-mannopyranose; and various
other isomers/sterecisomers of these materials.M&&sFragment results acquired
for B-lactose have been provided in Figure 5.20 to destnate how well its most
likely fragments matched up with those observededrpentally. The main peaks
observed in the mass spectrum were clearly showgldte to plausible fragments of
B-lactose with very good mass accuracy. Each ofother sugars returned similar
fragments when submitted to MassFragment, matctiisgexperimental data well
and with good mass accuracy. It was therefore rodsiple to use personal
judgement to pick out the correct assignment fag BE150a marker at this point. A
lot of future work (of the type described in senti6.4.2.2) would therefore be

required to confirm the correct identity of this nier.
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89.0238 (+0.1.mDa) (5:3.0, B:2)

CaHg05 (CaH,£05)

75.0082 (+1.2.mDa) (5:3.0, B:2)
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Figure 5.20: MassFragment results returned frofftlactose (structure in top left box). The masses
of experimentally observed fragments are providadbld in the top left corner of each box whilst
the masses of the likely fragments (pictured in bdmox) are listed underneath each structure.

E150a component with a mass of 179.0553 (RT of Infidutes)

The most plausible elemental composition sugged$tedthis component was

CsH1206 and when searched against online databases anargber of potential

structures were again proposed. When these stesctuere compared, it became
clear that this component was very likely to be @anosaccharide, with D-Glucose
being the top hit. Other possible identities weleex-2-ulose; D-Fructose;

D-Tagatose; D-Sorbose; and a variety of other hesxoBhe fragmentation pattern of

D-Glucose appeared to provide a very good fit witte fragments observed
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experimentally and the MassFragment results far ¢bimpound have therefore been

provided in Figure 5.21 to demonstrate this finding

179.0553 2= (+1H)

Chiral

179.0556 (-0.3.mDa)

Gal-!1 1 OG (-none)

129.0196 ~-(-1H)
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CgH:0, (-CHZ0,)

89.0241 - (+0H)

Chiral

89.0239 (+0.2.mDa) (S:1.0, B:1)

03H503 ('CaHaoa)

59.0137 == (+0H)
Chiral

Q

s

59.0133 (+0.4.mDa) (8:1.0, B:1)
C,H,0, (-C,Hg0,)

161.0451 == (+0H)

Chiral

161.0450 (+0.1.mDa) (S:0.5, B:1)

CgHg0, (H,0)

113.0245 ~- (+0H)

Chiral

113.0239 (+0.6.mDa) (S:2.0, B:3)
CgHg0, (-CHZ0,)

85.0292 - (+0H)
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85.0290 (+0.2.mDa) (5:2.0, B:3)

CHg0, (C,H,0,)

131.0345 =-(-1H)
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131.0344 (+0.1.mDa) (S:1.5, B:2)

CH,0, (-CH,0,)

101.0242 2= (-1H)

Chiral

101.0239 (+0.3.mDa) (5:1.5, B:2)
C4Hs0, (€ HL0,)

71.0138 - (-1H)

Chiral

71.0133 (+0.5.mDa) (S:1.5, B:2)

C3H302 (-C3H804)

Figure 5.21: MassFragment results returned from glase (structure in top left box). The masses of
experimentally observed fragments are provided @icbin the top left corner of each box whilst the
masses of the likely fragments (pictured in eachxpare listed underneath each structure.
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To confirm the identity of this particular E150a nker however, additional work
would be required. The component should be analy@edgside a reference
standard for comparison and also isolated so tHardurther fragmentation studies
could be undertaken and/or NMR analysis. It shdndchoted here that a number of
the other monosaccharides conforming to the madedairmula of GH1,0s could
also represent the correct identity of this E15@aker however, as there are a lot of

similarities in their structures.

E150a component with a mass of 503.1611 (RT of Infidutes)

The most plausible elemental composition sugged$tedthis component was
C18H32,016 and so this molecular formula was subsequentlyched against online
databases using MarkerLynx. One of the top hitsrned in this case was raffinose
(which is a trisaccharide sugar) and when its #inec was submitted to
MassFragment a good match was obtained betweetikéllg fragments of this
compound and those that were observed experimgntdle MassFragment results
for raffinose have therefore been provided in Fegbi22, however not all fragments
have been included — this was for clarity as thigdasize of this molecule meant
there were a very high number of fragments. Theoritgj of other proposed
structures returned from the database search wsoetdsaccharide sugars (e.g.
melezitose,f-gentiotriose, and various isomers/sterioisomersuwfh sugars) and
many of these gave similar fragmentation pattemsaffinose — consequently
providing reasonable matches with the fragmentsuadlgt observed. Further
experiments would therefore be required to contine correct structural identity of
this component, however it does seem very likebt tihis E150a marker has the

conformation of a trisaccharide.
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Figure 5.22:MassFragment results returned from raffinose (striwze in top left box). The masses
of experimentally observed fragments are providadbld in the top left corner of each box whilst
the masses of the likely fragments (pictured in Bdiox) are listed underneath each structure.
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5.4 Conclusions

The research presented within this chapter has deimaded that UPLC TOF MS in
combination with statistical data analysis softwdras excellent potential for
profiling caramel colourants. Characteristic pwdil were obtained for different
caramel materials and it was possible, using PGAlifferentiate between the four
caramel classes based on the components detecdted WBLC-MS. This finding
was achieved when both negative and positive itinisadata were separately
considered, however the former was found to givghsl improved sample
distinction in this case. It was also demonstrateat different types of E150a
caramel had quite similar profiles when materia@presenting all caramel classes
were incorporated during PCA — indicating that kestw class variation was much
more significant than within class variation in tbase of E150a caramels. When
only E150a caramels were compared using PCA howatewas possible to
distinguish between the three different types idetli within this study — the best
results being obtained from the UPLC TOF MS datguaed using positive

ionisation mode.

In addition to being able to distinguish betweeffedent caramel materials, the
examination of relevant loadings data also allowesl components responsible for
the above observations to be picked out (as EMR/E)p#s a result, it was possible
to find compounds within this research that wereque to or predominantly
associated with each of the four caramel classe$ewA components were also
detected that were characteristic of different El5@aterials. When selected
caramels were then dissolved in a typical whiskyrixathe majority of these
markers could still be clearly observed; the masket being masked by the whisky
matrix and not being found to occur naturally itypical blend. These data therefore
demonstrated that UPLC TOF MS could potentiallydpplied within the Scotch
Whisky industry to confirm sample authenticity, mpnitoring for specific marker
compounds known as being characteristic of legakymitted E150a. Further
experiments would be required in the future howeterassess the influence of
different blend matrices and caramel concentrationsthe detection of marker

compounds. It should also be noted here that amiytatch of each caramel material

267



was assessed in this work and so additional batwhalé samples would be required

in the future to confirm the consistency of carapreffiles.

As well as the ability to pick out potential margerthe particular software
implemented within this research enabled attemptsbé made at structural
elucidation based on the accurate mass detailsradgas a result of TOF analysis.
The use of elemental composition analysis enablaasle molecular formulae to
be proposed for markers of different caramel classe after searching these against
online databases, a number of possible chemicattates could be identified for
certain components. Although many difficulties werend when assigning the exact
chemical structures to components, it was possibt®nfidently assign three E150a
markers as being sugars (a mono-, a di- and aadeharide) and to give tentative
structural identities to these components using NfassFragment tool. Isolating
these compounds and subjecting them to additionalyses (such as further
fragmentation studies and NMR) would be requiredthe future to confirm

structural identities.

This latter part of the research has demonstratatl WPLC TOF MS could be
extremely useful as a tool for understanding maeuathe identity of the individual
components that make up caramel colourants and fed®o composition varies
between different caramel materials. This is araaoé research that has been
severely limited in the past due to a lack of suditly developed analytical
techniques being available to profile individualngmonents within such complex
mixtures. The research presented in this chapténesefore novel and introduces
technology that could have a lot of potential ie flature for understanding more
about the non volatile composition of caramel cohois (and other complex

mixtures).
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6.0 UPLC TOF MS IN COMBINATION WITH STATISTICAL
DATA ANALYSIS FOR PROFILING NON VOLATILE
COMPONENTS IN SCOTCH WHISKY

6.1 Introduction

6.1.1 Basis of this Study

Chapter 5 demonstrated the success of UPLC TOFavighé analysis of individual
components within caramel colourants and using HCAvas possible to find
compounds that were characteristic of differentacel materials. As a result of
these findings it was then possible to identify wlee particular caramel colourant
was present in a Scotch Whisky, by monitoring feese marker components. From
an assessment of the literature it became cleathtsawork represented one of the
first examples of UPLC-MS being combined with mudtiate statistics for the
analysis of Scotch whiskies and so raised the gureat to what else this tool could
offer to the Scotch Whisky industry. The work costipl in this chapter has
therefore been undertaken to determine whether URRE MS in combination with
PCA could be implemented for a wider range of aions involving Scotch
Whisky. Such analyses could both complement anddmo the data provided by
existing tools applied for the analysis of Scot€he review that follows explains
why LC-MS has been disfavoured in the past andligigts some recent examples

demonstrating the success of UPLC-MS within thetsgndustry.

6.1.2 UPLC in combination with MS as a tool for prdiling Scotch Whisky

Techniques based on chromatography are commonljemgmted for analysing
Scotch whiskies and both liquid chromatography (B6J gas chromatography (GC)
have been employed for profiling components wittiiis spirit’”” When used as
stand alone techniques however, it is typical topsy monitor known components
using these tools, as peak identities can only drdircsned by comparisons with
reference standards. It is therefore extremelyiadiltf to profile new components
using chromatographic tools on their own and saewolve this it has become

common for LC/GC to be combined with mass specttom@IS) as a mode of
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detection® This approach enables component masses to bemileter after
component separation and as a result known comgoman be easily monitored
based on their masses and the identity of unknowmew components can

potentially be elucidated — especially with recativancements in the field of M'S.

MS has been implemented in the Scotch Whisky imgust many years; however
GC has traditionally been preferred over LC as pgheceding tool employed for
component separatidrf:® The reasons behind this preference in the past dige to
better separation efficiency and much improved aépcibility associated with GC
when combined with MS detection. These factors alsant that the availability of
searchable reference libraries that aid with comepbndentification were far
superior for GC-MS analysis. The main limitation ®@C-MS for profiling Scotch
Whisky is that not all components present in thieitspill be picked up using this
technique. For instance, GC is not well suitedtifigr analysis of compounds that are
non volatile or for those that are thermally labilhere are also potential issues
when using GC-MS in relation to precursor ions finagting to the extent where

component identification from libraries becomes guabus.

LC-MS could potentially overcome the above issussoaiated with GC-MS and so
help to provide a fuller understanding of the chexhicomposition of Scotch
Whisky. Its implementation has been restricted ha past however, due to the
aforementioned limitations. In recent years thddfieof both LC and MS have
greatly advanced making LC-MS increasingly moreytap The development of
UPLC has resulted in the ability to achieve comporseparations with far superior
efficiency and also reproducibility, whilst the dipption of TOF mass spectrometers
can allow untargeted components to be measuredverthhigh sensitivity (accurate
to ~1 mDa). Potential molecular formulae can beegated from data of this
accuracy level, a factor that has aided in thegassent of component identities
using LC-MS. In addition, the introduction of madvanced software packages that
link to online databases has also helped to sisnghie processing of complex

datasets using LC-MS.
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Due to the dominance of GC-MS in the past, theedew publications available that
have implemented LC-MS for the analysis of alcahdieverages such as Scotch
Whisky. Most examples have only emerged in receats and the majority of these
focus on a means to monitor for the presence ofsantetimes quantity of known or
specifically targeted componerft§> These papers include implementation of LC-MS
for the analysis of polyphenols in wines and fiththe determination of ethyl
carbamate in wines and spirtts:’the identification of artificial sweeteners in sisi
and beer$? and also for the analysis of dipeptides in varials®holic beverage¥.
The general consensus from each of these papératithe advancements made in
LC-MS technology over recent years has made itslementation much more
appealing for these applications. Good resolutlugh sensitivity, short analysis
times, low solvent consumption and reduced sami@papation are all described as
being desirable features of this tool. A selectiérihe papers also demonstrate the
potential advantage of LC-MS for the elucidationstfuctures of unknown peaks

that are encountered in chromatographic tra¢g%t

Although the above publications demonstrate thevomg use of LC-MS in the
spirits industry, their primary purpose was noassess the technique’s potential for
profiling unknown components. In fact, only a smglublication could be found in
the literature that had implemented LC-MS technylfmy the analysis of untargeted
components, as a means to gain a greater undeargjasfdhe chemical composition
of the beverage under investigatidhis paper, by T. Collinst al, demonstrates the
use of UPLC coupled to a quadrupole time of flighass analyser to compare the
non volatile compositions of 63 commercial Amerisaiskeys'® The instrumental
set up that was employed allowed the detectionppiraximately 7600 different
components across all samples — although this numvBe manually reduced to
simplify subsequent data analysis. These non W@letimponents were then used to
model differences among the whiskey samples ugswichinant analysis and it was
possible to distinguish between whiskeys of diffieréype. Blended American
whiskeys were clearly separated from all othershin dataset and the majority of
Tennessee whiskeys could be distinguished from dwourand rye products. In
addition to this it was possible to differentiatetieen whiskey samples from
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different producers and also those of different.afiee important components
responsible for these findings were also identifiethis research by examination of
loadings data that corresponded to the relevamtidigiant analysis model. These
data therefore highlight the potential of UPLC-M$ @inderstanding more about the
non volatile compositions of alcoholic beveragesnother advantage of the
untargeted analysis used in the work presented.l@ollins et al is that samples
were directly injected into the UPLC-MS system with any prior sample
preparation. The majority of previous examples tmabnitored for specific
components required an additional preparation pteg to analysis by LC-MS to

extract and isolate the components of interest.

A similar approach to T. Collinet al'® has been adopted for the work presented in
this chapter, where UPLC TOF MS in combination WGA has been assessed as
an untargeted tool to further elucidate the nomatiel composition of Scotch Whisky

and hence increase understanding of the procasadsad in its production.
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6.1.3 Study Objectives

In this chapter, data acquired using a UPLC TOFW&S analysed using statistical
data analysis software to assess the techniquas Yai profiling the non volatile

components in Scotch Whisky. A range of sampleatirg) to different aspects of
Scotch Whisky production were assessed within wogk and the main objectives
were to determine whether UPLC TOF MS in combimatieth PCA could be used

to:

» Differentiate between whisky samples that variety doy their maturation

age.

» Distinguish between samples taken from casks dérifit history (i.e. first

fill vs second fill and sherry cask.bourbon cask).

* Separate whiskies that have been artificially netufrom those with

authentic maturation profiles.

» Differentiate between different whisky products the market (i.e. multiple
blends and a malt whisky).

* Find out whether characteristic components coulddeatified for samples
within each of the above scenarios to help gaireatgr understanding of the

processes behind authentic Scotch Whisky production

» Discover whether sample fade may impact analysialternatively whether
the technique could be used to identify componeelating to the fading

process.

* Identify when common adulterants such as sucraoaeillm and methanol

have been added to a whisky product.
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6.2 Experimental

6.2.1 Samples

Twenty three samples were assessed in this stimbgen to represent a variety of
different sample types typically encountered wittiia Scotch Whisky industry. The
details of each sample are summarised in TableV@ithin this table, samples have
also been divided into multiple subsets, each asgps different aspect of Scotch
Whisky production or another scenario of intereghe industry. The samples within
subset ‘A’ were grouped together to assess howil@sotompare when whiskies
have been matured in casks of different historybs8t ‘B’ was put together to
investigate how whisky composition is affected bgriation in maturation age.
Subset ‘C’ included wood extracts that had beemiaed using a variety of different
solvents (details of their production provided ection 6.2.1.1). These samples
therefore represented cases of artificial matunatemd their comparison with
authentically matured samples could be useful enfibld of counterfeit detection.
Subset ‘D’ grouped together multiple samples ofmctl blend (Blend C) subjected
to different conditions. One of the samples incoaped the blend as normal; another
sample was forcibly faded to see whether infornmatiould be acquired about this
particular process; and the final three Blend Camwere spiked with different
compounds commonly found in adulterated whiskiesse¢e whether they could
easily be detected. The final group of samples,s8ulE’, included a range of
different blend products (and one malt whisky) & svhether different whiskies

could be discriminated between.

It should be noted at this point that all sampleseaprovided by the Scotch Whisky
Research Institute (Riccarton, Edinburgh, UK).
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Table 6.1: Descriptions of the 23 samples assesg#iuin this study. Each sample has been

designated within a specific subset.

Sample | Sample Sample Description SWRI
Number | Subset P P Number
Whisky from afirst fill sherry cask i
1 (from Distillery X and 7 years 8 months old S1i-1418
Whisky from arefilled sherry cask i
2 A (from Distillery X and 7 years 10 months olq) S11-1419
Whisky from a first fill bourbon cask (FFBC) i
3 (from Distillery X and 7 years 5 months old S11-1420
Whisky from a refilled bourbon cask )
4 (from Distillery X and 7 years 7 months old Sil-1421
Whisky aged for 3 years 5 month i
> (from Distillery V and a FFBC) S11-1346
Whisky aged for 6 years 2 months )
6 5 (from Distillery V and a FFBC) Sil-1347
Whisky aged for 9 years 6 months )
! (from Distillery V and a FFBC) S11-1348
Whisky aged for 12 years 4 months i
8 (from Distillery V and a FFBC) S11-1349
9 Wood extract acquired using water S11-1422
10 ‘C Wood extract acquired using ethanol S11-1423
11 Wood extract acquired using ethyl acetats S11-1xm24
12 Blend C S11-133(
13 Blend C with added sucrose (2000 ppm) S11-1B824
14 ‘D’ Blend C with added vanillin (50 ppm) S11-13p5
15 Blend C with added methanol (6000 ppm S11-1B26
16 Blend C subjected to forced fade by 25% S11-1827
17 Blend A S11-132§
18 Blend B S11-1324
12 Blend C S11-133(
19 - Blend D S11-133]
20 Blend E S11-1337
21 Blend F S11-1333
22 Blend G S11-139(
23 Malt H S11-1334
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6.2.2.1 Preparation of the solvent extracts (sangpbe— 11)

Solvent extracts were prepared by the SWRI fronstesh American oak wood that
had been treated at 190°C for 60 minutes. For edicthhe three samples being
prepared, 3 g of wood was extracted using 180 ndobfent for 6 hours in a Soxhlet
extractor (Quickfit EX5/53). The three samples werepared using each of the
following solvents in turn: water, ethanol and éthgetate. Once extraction was
complete, the three samples were treated slighfferently. The ethyl acetate

extract was firstly evaporated to dryness usingtary evaporator (bath temperature
set to 35°C), before being reconstituted in 40 rhietbanol. This solution was then

diluted to 40% ethanol using UHQ water. The ethaxdtact was reduced in volume
to 100 mL (again using a rotary evaporator) anah tthiéuted to 40% ethanol using

UHQ water. Finally, the water extract was simpliutid with ethanol (Analar) so

that the final concentration of the sample was 4@Banol.

6.2.2 UPLC-MS

UPLC-MS analysis of all samples was undertakenr poidhe commencement of this
project by Simon Cubbon (Waters Ltd., Wilmslow, UK)he analysis itself was
completed on the same occasion as the carameios™uthat were discussed in
Chapter 5. The UPLC-MS conditions of operation tiagrefore be found within

section 5.2.2.

6.2.3 Data Analysis

Data were processed using MarkerLynx XS (built iftassLynx software (version
4.1; Waters Ltd., Wilmslow, UK)), which was implented to automatically extract
and tabulate components from the raw UPLC-MS dag&tected components were
recorded as EMRT pairs and the intensity of eaanpound was listed over all
samples. The main parameters that were implemewitddn the software for

component extraction were set as follows: retentiore range of 0.7 — 9.6 min,
mass range of 50 — 1200 (i.e. unrestricted), maksance of 0.05 Da, marker
intensity threshold of 1500 counts, mass windowOdf2 Da and retention time
window of 0.05min. These conditions were identicathose used when UPLC-MS

data from caramel solutions were assessed in Qhasee section 5.2.3).
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As in Chapter 5, once the raw data were processedl Was used to compare
samples based on the intensity values of the ¢aetdEMRT pairs. This procedure
was undertaken using the extended statistics packagorporated within the
MarkerLynx Application Manager. Prior to PCA, alatd were normalised to the
total marker intensity and then subjected to pasetding. This scaling method and

the reasons behind its use have been describepsgrin section 5.2.3.1.
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6.3 Results and Discussion

The research presented within this section descthmeresults of a preliminary study
undertaken to assess the benefits of UPLC TOF MSafweariety of applications
within the Scotch Whisky industry. A range of sae®lsplit into particular subsets
as assigned in section 6.2.1, were assessed whinivork and the results that follow
have therefore been divided into subsections t@uds the different sample
groupings in turn.If is important to note here that any mass valuesoted within
the following results will be less one proton ifkan from negative ionisation data
and will contain an extra proton if taken from pasve ionisation datd.

6.3.1 Profiling Whiskies with Different Cask History — ‘Subset A’

As discussed previously in Chapter 1 (section 114.the composition of a Scotch
Whisky is known to be affected by the history oé ttask used during maturation;
typically a cask will previously have been used éther the storage of sherry or
bourbon and it can either be the first time thataak has been filled with Scotch
Whisky or a cask could have been refilled. A quiekiew of literature indicated that
some work has been done in the past to investipateompositional changes that
occur during the maturation process due to diffeesnn cask history but many of
these have targeted specific components and so @f imformation still remains
unknown*°"*¥The work completed in this part of the study Herefore aimed to
determine whether UPLC TOF MS (in combination watiatistical data analysis)
could be suitable as a non-targeted approach tiogiuelucidate, in this case, the non
volatile components responsible for compositionékences caused by variations

in cask history.

Sample Subset ‘A’ was assessed in this part ofstoely (see Table 6.1) and
incorporated four whisky samples that varied inirtleask history. The samples
included one whisky from a first fill sherry cask,second whisky from a refilled
sherry cask, a whisky from a first fill bourbon kaand a whisky from a bourbon
cask that had been refilled. All of the samplesensrquired from the same distillery
and had been matured for approximately the sameumtmaf time so that other

potential sources of variation were kept as coestsas possible. Once analysed
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using UPLC-MS, detected components were extractech fthe raw data using
MarkerLynx software and tabulated alongside thegoaiated intensities. This was
undertaken for data acquired using both negatigepasitive ionisation modes and
1468 EMRT pairs were attained from the former w836 were obtained from the
latter. PCA was then undertaken separately for batlasets and the P@%. PC2
scores plot acquired from the negative ionisatiatachas been provided in Figure

6.1 alongside the corresponding loadings data.
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Figure 6.1: (a) PC1 vs. PC2 scores plot obtainednfr PCA of the negative ionisation data acquired

from the four samples incorporated within Subset Friplicate data included for all samples.
(b) Shows the corresponding (PC1 vs. PC2) loadidgta. Certain EMRT pairs have been enclosed
within coloured circles to allow them to be refeddo in future text.

Figure 6.1la demonstrates that the two sherry caskples can clearly be
distinguished from the two samples originating frembourbon casks, based on the
components detected using UPLC TOF MS in negatimesation mode. In addition
to this, further separation was achieved betweenfitht fill and refill sherry cask
samples; it was not possible however to clearljedghtiate the first fill and refill

bourbon cask samples in this case.

The examination of corresponding loadings datauii€ds.1b) enabled components
responsible for the above separations to be irgegstil and a number of compounds
could be picked out that were characteristic ofedént cask histories. Components
with both highly negative PC1 and PC2 loadingsftbtowards the bottom left hand
corner of the loadings plot) were identified asnigepredominantly associated with
the first fill sherry cask sample. The four compaisehighlighted with a blue circle
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in Figure 6.1b were all significantly higher inémisity within the first fill sherry cask

compared to the other three sample types. Thisnignd depicted by the trend plot
provided in Figure 6.2, which shows the intenséydls of these four components
over all sample measurements — the mass and mietithe details of each

component have been included in the figure. Otlmnponents predominantly

characteristic of the first fill sherry cask samplere found within the loadings plot;

however those four that have been highlighted wezanost influential.
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Figure 6.2: Trend plot showing the intensity levat§ four components across the samples
incorporated by ‘Subset A’. The plot demonstratbattthese components were most characteristic
of the first fill sherry cask sample. Triplicate daincluded for each sample.
Further components characteristic of sherry cask® wlso identified from the top
left hand quadrant of the loadings plot shown igufe 6.1b. The point enclosed
within a red circle on the plot for instance wasrfd at similar levels within both the
first fill and refilled sherry casks but was comgdaly much lower within the two
bourbon cask samples. The trend plot for this camepb(with retention time of 5.91
mins and mass of 517.3160) has been provided inr&i¢.3 to highlight this
observation. The components encircled in orangéigare 6.1b were also found in
both of the sherry cask samples at much higheridettean in the bourbon cask
samples, they were however most intense withingfiked sherry cask sample. This
was related to an increase in the value of the B@dings (compared to the red

circled marker) to become less negative, takingnttaboser to the region of the
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loadings plot that corresponded to the positiorthef refilled sherry cask on the
scores plot. When the PC1 loadings became verg ¢togero (and the PC2 loadings
remained highly positive), components were predamty characteristic of the
refilled sherry cask sample. The compound emphésisthin a green circle in the
loadings plot (with retention time of 4.40 mins andss of 253.0349) was the most
unique to the refilled sherry cask and its trerat plas been included in Figure 6.4 to
demonstrate this finding.
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Figure 6.3: Trend plot of the component with reteéoh time of 5.91 minutes and mass of 517.3160
showing its intensity across the four samples cane within Subset ‘A’. Triplicate data included
for each sample.
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Figure 6.4: Trend plot of the component with reteéon time of 4.40 minutes and mass of 253.0349
showing its intensity across the four samples cane within Subset ‘A’. Triplicate data included
for each sample.
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The bottom right hand quadrant of the loadings (dbbwn in Figure 6.1b) held the
most information relating to components that alldwiee two bourbon cask samples
to be separated from the sherry cask samples. $ passible to find a few
compounds that were predominantly found within tike bourbon cask samples as
opposed to the sherry cask samples and the madilaaif these had a retention time
of 0.94 minutes and a mass of 225.0608. The tréwtdiqr this component has been
included in Figure 6.5 to show how its intensityrigd across the four samples
incorporated by Subset ‘A’.

Another interesting finding from these negativeisation data was that within the
top right hand quadrant of the loadings plot, gaifew components were found that
as well as being common to both the bourbon casiples, were also present within
the whisky from the refilled sherry cask. This abylotentially indicate that when

sherry casks are refilled, the maturation procafisimthis cask type might begin to

have some similarities with maturation inside exudbon casks. As an example,
Figure 6.6 has been included to provide a trent gfi@mne such component (with a

retention time of 6.85 minutes and a mass of 28024
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Figure 6.5: Trend plot of the component with retéoh time of 0.94 mins and mass of 225.0608
showing its intensity across the four samples canel within Subset ‘A’. Triplicate data included
for each sample.
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Figure 6.6: Trend plot of the component with retéon time of 6.85 mins and mass of 297.2430

showing its intensity across the four samples cane within Subset ‘A’. Triplicate data included
for each sample.

When PCA was undertaken using the data acquirad fpositive ionisation, the
findings were similar to those already obtainedhfrine negative ionisation data. For
instance, it was possible to clearly distinguish two sherry cask samples from the
two bourbon cask samples and the first fill andleef sherry cask samples could be
clearly separated from each other. Some additicoaiponents characteristic of
certain cask histories could therefore be acquibgdinterpretation of relevant
loadings data (components not shown within thigippreary study). One additional
observation from the positive ionisation data west separation between the first fill
and refilled bourbon cask samples was slightly mapd. It was still difficult
however to extract components that were clearlyadtaristic of one or the other of
these two samples. The P@4. PC2 scores plot attained from the positive iorsat
data has been provided in Figure 6.7a to help lisuthe above observations. The

corresponding loadings data are given in Figure.6.7

Another interesting observation from Figure 6.7aswaat the two bourbon cask
samples and the refilled sherry cask sample allveag similar PC1 scores, whilst
the PCL1 scores for the first fill sherry cask measents were significantly different.
This suggested that the former three samples cmttatommon components that
were not present in the first fill sherry cask vidyisAs alluded to previously when

the negative ionisation data were considered, dbigd indicate that when refilled,
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maturation within an ex sherry cask might undem@me processes that are similar to

those occurring when ex bourbon casks are used.
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Figure 6.7: (a) PC1 vs. PC2 scores plot obtained from PCA af positive ionisation data acquired

from the four samples incorporated within Subset Friplicate data included for all samples.
(b) Shows the corresponding (PC1 vs. PC2) loadidgsa.

Overall, the findings from this initial study hademonstrated that UPLC TOF MS
(in combination with statistical data analysis) leesellent potential as a tool for
differentiating between whisky samples of differeatsk history. In addition, this
analytical approach allowed components characdiestdifferent cask types to be
identified and so the tool could prove very usefukerms of understanding more
about the processes behind maturation. It shoulehdied however, that a much
larger data set incorporating multiple batches athesample would be required to
assess the consistency of these results. The @ddtimultiple batches would also
mean that further PCA models could be construcegmhmmtely for the sherry cask
samples and the bourbon cask samples, which may dhew the first fill and
refilled bourbon casks to be better distinguishetivieen (as this was not clearly
achieved within this preliminary work). It shouldsa be noted that the work
completed in this section only considered whiskynfra single distillery and all
samples were of a similar maturation age. Additiexperiments would therefore be
required in the future to assess what affect cmantiiese circumstances might have
on the ability of UPLC TOF MS to distinguish whiskimatured in casks of different
history.
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6.3.2 Profiling Whiskies with Different Maturation Ages — ‘Subset B’

The Scotch Whisky Regulations of 2009 stipulate #heScotch Whisky must be
matured for a minimum time period of three yedr§he maturation age of products
can therefore vary above this time period and itds uncommon for maturation to
occur over periods of ten years (and also for moager than this). As discussed
previously in Chapter 1 (section 1.3.5), a vast benof reactions occur during the
maturation process, resulting in major changeshé&dhemical composition of the
spirit. These changes are known to depend on tigtHeof time that a whisky is
matured for and so Scotch whiskies of different uratton age will vary in their
final composition. Work has been undertaken inghst to try and understand the
processes occurring during maturation and the lef/&olour and specific, known
cask extractives have been used as easy to meamrers for the length of
maturation:®> The majority of important reactions however hawefar remained
unidentified and so the work completed in this parthe study aimed to identify
whether UPLC TOF MS (in combination with statistidata analysis) could be used
as a non-targeted tool to increase knowledge ofuratbn in terms of any

compositional changes that occur due to differenceghisky maturation age.

Sample Subset ‘B’ was investigated in this parthaf study and incorporated four
whisky samples that varied in the length of timettthey had been matured (see
Table 6.1 for specific details). All of the samplesre matured in first fill bourbon
casks and were obtained from the same distilleryhab other potential sources of
variation in composition could be kept as consiséenpossible. After analysis using
UPLC TOF MS (under both negative and positive iatiism modes), MarkerLynx
software was used to extract and tabulate detemgtponents from the raw data.
PCA models were then constructed separately fopdiséive and negative ionisation
datasets to compare the compositions of all foonpdas (measured in triplicate);
1468 components were incorporated within the negabnisation data set, whilst
2751 were present within the positive. The posit@sation data yielded slightly
better results and so these data have been coegigetially in the following text.
The PC1lvs. PC2 scores plot acquired from the positive iomsatlata has been
provided in Figure 6.8 along with the correspondoaylings plot.
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Figure 6.8: (a) PC1 vs. PC2 scores plot obtainednfr PCA of the positive ionisation data acquired
from the four samples incorporated within Subset Briplicate data included for all samples.
(b) Shows the corresponding (PC1 vs. PC2) loadidgsa.
The scores plot depicted within Figure 6.8a denrated that clear separation was
achieved between the four samples of different maéitn age, based on the
components detected using UPLC TOF MS operateasitipe ionisation mode. A
distinct pattern was observed along the PC1 axigrevthe scores were clearly
shown to increase as maturation age increasechdfutifferentiation was also seen
along the PC2 axis; the 3 year 5 month old and 4& y} month old samples
possessing similar positive PC2 scores, whilstethyear 2 month old and 9 year 6
month old samples had PC2 scores that were negatidesimilar in value to each

other.

The components responsible for the above obsenstiowere subsequently
investigated by examination of corresponding logslidata (shown in Figure 6.8b)
and it was possible to pick out a number of comptmevhose intensity levels

clearly varied as a result of differences in mataraage. Components with highly
negative PC1 loadings and also highly positive R28ings were found to be most
intense within the whisky sample matured for thersst amount of time (3 years
and 5 months). Examination of the top left handdyaat of the loadings plot

therefore enabled components to be identified tetreased in intensity as
maturation time lengthened (in this case from appmately 3 to 12 years). A

compound that eluted at a retention time of 8.4Butés with a mass of 283.2643
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was one notable example of such a component. Emel fplot for this compound,
comparing its intensity over the four samples ipooated within Subset ‘B’, has
been provided in Figure 6.9 to illustrate how teeel of this component gradually
decreased as maturation age increased. This sateenpaas also observed for a
number of other components within the top left hgoddrant of the loadings plot
and so these data could indicate that compounds begn detected that are being
used up in reactions occurring during the matunapiemcess.
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Figure 6.9: Trend plot of the component with retéon time of 8.43 minutes and a mass of
283.2643 showing its intensity across the four sdespcontained within Subset ‘B’. Triplicate data
included for each sample.

In addition to finding components that graduallgm@ased in intensity as maturation
age increased, compounds were detected within dbdirlgs data that clearly
increased over time (typically found within the toot right hand quadrant of the
loadings plot). These components could thereforerdaetion products that are
forming during maturation, in this case under taskcconditions covered by the four
samples assessed within Subset ‘B’. The most r®taihponent found to increase
in intensity in accordance with maturation age hagtention time of 3.98 minutes
and a mass of 249.1137. The trend plot for thispmmd has been included within
Figure 6.10 to illustrate its level over the fouongponents contained within
Subset ‘B'.
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Figure 6.10: Trend plot of the component with retention time 898 minutes and a mass of
249.1137 showing its intensity across the four sdespcontained within Subset ‘B’. Triplicate data
included for each sample.
A number of other interesting components were fowthin the loadings data
(provided in Figure 6.8b) that varied in intenséty a result of differences in the
maturation age of samples. Some components wenel filnat tended to be present in
high levels until reaching a particular maturataage, at which point they decreased
quite sharply and levelled off. Figures 6.11 anti?Gllustrate trend plots for two
such components, each decreasing in intensity leetweo of the maturation ages
covered by Subset ‘B’ and reaching a steady l&vemponents were also found that
followed the opposite trend; i.e. they were inijiapresent at low levels until
reaching a specific maturation age, at which pdin@ir intensity increased and
levelled off. These findings could potentially indte that UPLC TOF MS could
provide information about the timescale over whadrtain maturation reactions

might occur.

Components responsible for separation along the &@2of the scores plot were
also investigated by examination of the correspuogdioadings data and the
component with the most negative PC2 loading wasdato follow an interesting
trend. This compound was observed at similar lewélsin the whisky samples of
approximately 6 and 9 years old, whilst being pnése the other two samples at
comparably much lower levels. It therefore appeassdthough this component
initially increased in concentration in accordaneg#h maturation age before

reaching a steady level and then eventually deicrg&s intensity. The trend plot for
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Figure 6.11: Trend plot of a component with reteati time of 4.83 minutes and a mass of 197.0798
showing its intensity across the four samples can&d within Subset ‘B’. (Triplicate data included
for each sample.) The plot demonstrates that theeirsity of this component begins to level of at
approximately 6 years into the maturation process.
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Figure 6.12: Trend plot of a component with reteati time of 0.97 minutes and a mass of 187.0602

showing its intensity across the four samples can& within Subset ‘B’. (Triplicate data included
for each sample.) The plot demonstrates that theeirsity of this component only begins to decrease
after approximately 9 years of maturation.

this component has been included in Figure 6.18emonstrate its variation in
intensity over the four samples of different matiormage. A few other components
with the most negative PC2 loadings also followlsd intensity pattern. In addition
to this, it was found that compounds with the mussitive PC2 loadings followed
the opposite trend; being most intense in bothythengest and oldest maturation
samples but being present at lower intensities iwithe middle two samples. A
component with a mass of 309.2798 (retention tifn8&.63 minutes) for instance,

steadily decreased in intensity over the first 8rgeafter which point its level began
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to increase again (visualised by the trend plotvidexd in Figure 6.14). These
findings corresponded well with the positioningsainples in the scores plot.
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Figure 6.13: Trend plot of a component with reteati time of 7.31 minutes and a mass of 323.2596
showing its intensity across the four samples cane within Subset ‘B’. Triplicate data included
for each sample.
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Figure 6.14: Trend plot of a component with reteati time of 8.63 minutes and a mass of 309.2798

showing its intensity across the four samples cane within Subset ‘B’. Triplicate data included
for each sample.

When PCA was undertaken using the negative iooisatiata, the findings were

similar to those already described above for th&@tpe ionisation data. The PQ&.

PC2 scores plot acquired from the negative iorisatiata has been included in

Figure 6.15 for reference alongside the correspantbadings data. As was found

previously with the positive ionisation data, aatlérend was observed along the

PC1 axis; in this case however PC1 scores cleabredsed as maturation age
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increased. Separation of samples along the PC2wagsalso found to match the
pattern previously observed when the positive @i data were considered. Due
to the similarities of the two scores plots, it wamsequently possible to identify
components from the negative ionisation loadings @gigure 6.15b) that showed
similar changes in intensity (in accordance withturetion age), as those that have
already been highlighted. These have not beendedat this point however, as the

positive ionisation data provided better examples.
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Figure 6.15: (a) PC1 vs. PC2 scores plot obtaineahi PCA of the negative ionisation data

acquired from the four samples incorporated withBubset B. Triplicate data included for all
samples. (b) Shows the corresponding (PC1 vs. HG&Jings data.

Overall, the findings presented in this sectionendemonstrated that UPLC TOF
MS (in combination with statistical data analysisjld be extremely beneficial as a
tool to help increase knowledge of the composiliacteanges that occur during
maturation as the time whisky spends in the casteases. It has been possible to
distinguish between samples of different maturatiage and a number of
components associated with this differentiationlddoe easily identified. Again
however, it should be noted that additional batcbeg®ach sample incorporated
within Subset ‘B’ would be required to assess thesestency of profiles. In addition,
as all of the samples assessed in this piece d& were from the same cask type and
acquired from the same distillery, further expemtsenvould be required in the future
to identify the applicability of UPLC TOF MS to &ss compositional changes
resulting from variation in maturation age unddfedlent cask conditions. It would

also be interesting to analyse samples that coatunation timescales other than the
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one assessed above, to see whether information deubbtained about reactions

that might occur over shorter or longer time pesiod

6.3.3 Comparison of ‘Authentic’ vs. ‘Simulated’ Maturation Profiles —
‘Subset C’

The maturation process undertaken during the ptadumf Scotch Whisky is
legally required to adhere to the stipulations set within the Scotch Whisky
Regulations of 2008 The details of these conditions have been outlpregtiously

in Chapter 1 (section 1.2) and part of the legmatictates that Scotch whiskies
must be matured in oak casks for a period nottless three years. This time that the
spirit spends within the cask has a huge influemrtcehe final composition of the
whisky and is ultimately when the majority of impant colour and flavour related
components are formed. The minimum three year ratbur requirement for Scotch
Whisky however, is a factor that potential courggers want to avoid and so it has
been known for them to try and mimic the procesauthentic maturation but over a
significantly shorter timescale. A common way inigththis has been achieved is
via the use of solvent extracts. Such a process wgpidally involve the extraction
of components from a piece (or pieces) of wood byirfg it in contact with a
particular solvent, heated to a temperature closést boiling point. The solvent
material can then be evaporated off and the resultesidue dissolved in 40%
ethanol. The product that is formed in this cadétiverefore have a similar colour to
authentically matured whisky and the use of woothwithe process means that an
attempt has been made to simulate the compositican cauthentic whisky. The
common features that the simulated product migknh tehare with one that has
undergone natural maturation often makes thesetedait samples difficult to
detect and so the aim of this part of the study teaislentify whether UPLC TOF
MS (in combination with statistical data analysisuld potentially be used as a tool

to differentiate between ‘authenties ‘artificial’ maturation.

Sample Subset ‘C’ was the main focus of this patihe study and incorporated three
different solvent extracts prepared from shavinig®asted American oak wood (for
specific sample details see section 6.2.1). Thesepkes therefore represented
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examples of simulated maturation and in this wdrkirt UPLC TOF MS profiles
were compared with those attained from the whis&yn@es contained within
subsets ‘A’ and ‘B’; both of these latter sampl®upings representing cases of
authentic Scotch Whisky maturation. PCA was undéteriato compare all of these
samples, based on the component information erttdobm the raw UPLC-MS data
using MarkerLynx software. Separate models weresttoated for the positive and
negative ionisation datasets and it was foundttiaformer provided slightly better
results. The PCYs. PC2 scores plot attained from the positive iomsatiata has

therefore been provided in Figure 6.16 alongsisleatresponding loadings data.
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Figure 6.16: (a) PC1 vs. PC2 scores plot obtaineahi PCA of the positive ionisation data acquired
from the samples included in Subsets ‘A’, ‘B’ an@’, to compare the profiles obtained from
authentic maturation with those of solvent extraciriplicate data included for all samples.

(b) Shows the corresponding (PC1 vs. PC2) loadidgsa.
Figure 6.16a clearly demonstrated that it was pbssto distinguish between
authentically matured samples (ranging in theikdaistory and age) and solvent
extracts along the PC1 axis, based on the compodetected using UPLC TOF MS
in positive ionisation mode. Examination of theregponding loadings data (Figure
6.16b) subsequently allowed a selection of intergstomponents to be identified
that were associated with this sample separatiompg®nents with the highest PC1
loadings for instance, were found to be predomigassociated with all three of the
solvent extracts, corresponding with the positibthese samples on the scores plot.
One of the most notable components found as beigigyhelevated in intensity

within the solvent extracts (highlighted with a r@ctle in Figure 6.16b) had a mass
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of 209.0822 and a retention time of 4.34 minutdee frend plot for this component
has been provided in Figure 6.17 to demonstratetgasity across all samples from
Subsets ‘A — C’. Another interesting observatioketafrom this trend plot was that
this particular component, although comparably mimber in the authentically
matured samples, was present at the next highedtvathin the sample matured for
the longest time (12 years and 4 months). Thiscatdd a component that if
extractedvia authentic maturation would take many years to fdsot whose
extraction was clearly significantly acceleratediemthe stronger conditions of the
simulated maturation process being addressed. Aauwf other components with
high PC1 loadings followed similar intensity patierand the trend plot of the
component highlighted with a green circle in thadmgs data has been provided in
Figure 6.18 as another example. Although the trghots of other similar
components have not been included, the exact nmaksetention time (RT) details
of the most influential compounds have been giverfiodows: component with a
mass of 179.0715 (RT of 4.37 minutes); compoundt wimass of 249.1132 (RT of
4.84 minutes); component with a mass of 213.077D0 ¢R 3.95 minutes); and a
compound with mass of 183.0666 (RT of 4.12).
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Figure 6.17: Trend plot of a component with reteati time of 4.34 minutes and a mass of 209.0822
showing its intensity across the samples contaimgthin Subsets ‘A — C'. Triplicate measurements
included for each sample.
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Figure 6.18: Trend plot of a component with reteati time of 3.87 minutes and a mass of 227.0925
showing its intensity across the samples contaimgthin Subsets ‘A — C'. Triplicate measurements
included for each sample.

As well as the presence of components that werelhigievated within the three
solvent extracts, it was also possible to identiynpounds from the loadings data
that were present within all of the authenticallgtored samples, whilst being absent
from (or present in considerably lower levels wibhthose that were artificially
matured. Such components had highly negative P&dirigs and the most notable
compound showing this intensity pattern has beghlighted with a blue circle
within Figure 6.16b. The trend plot for this compah showing its intensity over all
samples within Subsets ‘A — C’, has also been pexViin Figure 6.19. On closer
inspection it turned out that this component (wrthss of 283.2643 and RT of 8.43
minutes) had already been picked out as an integestarker in a previous section
of this Chapter; being found to gradually decremsétensity as maturation age
increased within a first fill bourbon cask (Fig@®). Other components with highly
negative PC1 loadings that followed the same infemmttern as this component
included: a compound with a mass of 201.1861 (RT7.20 minutes); a component
with a mass of 311.2950 (RT of 9.11 minutes); apoamd with a mass of 307.2645
(RT of 8.20); and a component with mass of 229.AR/Bof 7.74 minutes).
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Figure 6.19: Trend plot of a component with retention time of48 minutes and a mass of 283.2643
showing its intensity across the samples contaimgthin Subsets ‘A — C'. Triplicate measurements
included for each sample.
The PC1lvs. PC2 scores plot acquired from the negative ioimsatlata has been
provided in Figure 6.20a and it showed very sinmskyparation along the PC1 axis as
was observed previously for the positive ionisataataset. Examination of the
corresponding loadings data (Figure 6.20b) theectdlowed the identification of
some components that were highly elevated witha gblvent extracts and some
compounds that were present within the authemyicalitured samples but generally
absent from the samples of simulated maturatiqereésent at comparably low levels.
The details of these components have not beengdisdat this point however, as the
positive ionisation data provided better exampbtedtie purposes of this preliminary

study.
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Figure 6.20: (a) PC1 vs. PC2 scores plot obtaineahi PCA of the negative ionisation data
acquired from the samples included in Subsets ‘B, and ‘C’, to compare the profiles obtained
from authentic maturation with those of solvent eatts. Triplicate data included for all samples.

(b) Shows the corresponding (PC1 vs. PC2) loadidgsa.

Overall this study has demonstrated that UPLC TO§ {#h combination with
statistical data analysis) has the potential ttrdjsish between products that have
been authentically matured within oak casks andpsesrihat have been artificially
matured with the use of solvents to extract comptsdrom wood shavings.
Particular components responsible for the diffeesnabserved in the profiles could
also be identified and so UPLC TOF MS would be sineenely useful tool both to
identify cases of simulated maturation and alsalkmw a greater understanding of
the processes occurring during maturation (botlirahtand simulated). Additional
batches of the solvent extracts would be requigeddnfirm the consistency of
UPLC TOF MS profiles and future experiments woukbae required to assess the
effect of changing extraction method parameters tbe resultant simulated
maturation profiles (e.g. changing the type/quarait wood or the timescale of the
extraction process). Details of the extraction pthoe used in this work can be
found in section 6.2.1.1. Future work would alsorbquired to ensure that any
marker components identified would show consistesmds for cases of natural
maturation that have not been covered by the samptorporated within Subsets
‘A’ and ‘B’. The samples from the former subsetynbvered whiskies of different
cask history from a single distillery and the sagspirom the latter only covered a

particular range of maturation ages for a singkkdgpe.
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6.3.4 Detecting common adulterants and understandgthe affect of fade

The work completed within this part of the studgessed the samples of Subset ‘D’,
which incorporated five samples of a particularnble(Blend C) that had been
subjected to different conditions. Three of the gla® had each been spiked with
one of the following common adulterants: vanillin5® ppm; sucrose at 2000 ppm;
and methanol at 6000 ppm. Compared to the levatswbuld naturally be observed
in Scotch whiskies, these concentrations repredeslievated amounts; such high
levels often being indicative of a counterfeit Wyis Another sample within this
subset had been forcibly faded to 25% of its odficolour to see what affect this
might have on whisky profiles and also whether arfigrmation could be obtained
about the fading process. The remaining sampleiw@bset ‘D’ was one of Blend
C that had been unaltered and was included for aosgn purposes. After UPLC
TOF MS analysis and extraction of component infdroma using MarkerLynx
software, the five samples were compared using P€Hjgarate models being
constructed for the negative and positive ionisatlata. The PCis.PC2 scores plot
acquired from the negative ionisation data has heeluded within Figure 6.21

alongside the corresponding loadings data.
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Figure 6.21: (A) PC1 vs. PC2 scores plot obtaineanfi PCA of the negative ionisation data

acquired from the five samples incorporated withBubset ‘D’. Triplicate measurements included
for all samples. (B) Shows the corresponding (PGl PC2) loadings data.
Figure 6.21a demonstrated that the samples of Bleggiked with either vanillin or
sucrose could be clearly distinguished from thdtered blend, indicating the ability

of UPLC TOF MS to monitor for the presence of thege components at elevated
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levels in Scotch Whisky. Vanillin was easily iddiil within the corresponding
loadings data (Figure 6.21b) and has been higledyktithin a red circle. The trend
plot obtained for this compound has been providdéigure 6.22 and clearly showed
the elevated concentration of vanillin within theiked sample. It was also clear
from this plot that UPLC TOF MS was sensitive erfoug detect vanillin at its
natural level within Blend C; with comparably lowlent consistent intensities being
observed within the four other samples assessed.
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Figure 6.22: Trend plot of vanillin (mass of 151.02 under negative ionisation) eluting with a
retention time of 4.10 minutes, showing its intetysacross the four samples contained within
Subset ‘D'. Triplicate measurements included fol ahmples.

Although the sucrose spiked blend was also cledidtinct within the scores plot,
sucrose itself was a little more difficult to piokit from the loadings data. As can be
seen from Figure 6.21b, a number of componentsaapgdo be characteristic of the
Blend C sample containing added sucrose (highllhhtehin an orange ellipse).
Slightly unexpectedly, two of these components werend to have a mass that
matched sucrose and so one hypothesis was thatediffconformations of sucrose
were being detected (as nothing else was addedetsample other then sucrose).
When the trend plots for these two components werapared however (Figure
6.23), the findings were quite difficult to expla@ne of the components was found
to be completely absent from the remaining samahekthis was the expected trend
for sucrose; Aylott and MacKenzie describing thashould generally be absent
within typical Scotch whiskie®. The other component with the same mass however,
appeared naturally at much higher levels and it wadear as to why this was —
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unless something has been formed (with the sams)rttet also appears naturally in
blends (potentially from E150a as on closer ingpactthis component had
previously been highlighted as a marker for thisaceel class (see Table 5.3)). Due
to the difficulties in explaining this finding, would be very interesting at this point
to repeat the analysis of these samples to ske ibliservations remained consistent.
One other possibile explanation could be that sbimgthas occured as a result of
the particular instrumentation (or data analysisapeeters) implemented, as this
behaviour of sucrose appeared very unusual. Féarios it may be the case that
during chromatography, sucrose has eluted oveightlsi broader timescale than
would typically be expected using this instrumentatind so would be picked up as
two separate components by the MarkerLynx softvaare to the narrow retention
time window set for component extraction (see sect.2 for settings). It could
therefore just be a coincidence that one of thatpgicked up above happened to
occur at the same retention time as something aatupresent within blends
(potentially originating from the E150a caramelattis not sucrose but has exactly
the same mass. Some of the other components foithoh wthe orange ellipse were
much easier to tentatively identify: one appea@de a dimer of sucrose, being
exactly double in mass; and two others looked Bdelucts formed during the
ionisation process, their masses being 45 unitgefathen the two ‘sucrose’

compounds and so potentially indicating [M + HCQO]
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Figure 6.23: Trend plot showing the intensity lewebf two components across the samples
incorporated by Subset ‘D’. The component where gdes are linked with a black line had a mass
of 341.1084 and a retention time of 1.02 minutesilat the component where samples are linked
with a pale blue line had a mass of 341.1085 angktention time of 1.11 minutes. Triplicate
measurements of each sample are included.
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The data depicted by Figure 6.21a also demonsttagedhe UPLC TOF MS profile
of Blend C was unaffected by the process of fadéhis case, the faded and the
unaltered Blend C samples overlaying within the saegion of the scores plot. This
could be very useful information to the industryitawould mean that analyses with
this technique, if carried out in negative ionisatimode, could be undertaken
without having to account for the fading process aspotential means of
compositional variation. Further work would be riggd however to confirm
whether this finding would be true for other blamdtrices and for higher levels of
fade. The negative ionisation data also demonstrthi@t Blend C spiked with high
levels of methanol could not be distinguished. Mas not surprising however as it
is likely that any excess methanol would have elutethe solvent front (removed
for the purposes of data analysis) and also theniass of the compound would not
have been detected within the mass range set witisnexperimental work. The
same results were therefore encountered when \ositnisation data were
considered; the blend spiked with methanol coultl b® distinguished from the
unaltered blend using UPLC TOF MS.

The PC1vs. PC2 scores plot attained from the positive ioimsatata has been
included in Figure 6.24 alongside correspondinglilogs data. As with the negative
ionisation data, elevated levels of vanillin weesiy detected, however in this case
high levels of added sucrose were not observed. |diter finding indicated that
sucrose was not well suited for ionisation undexr positive mode. Another key
difference observed from the positive ionisationrss plot was that the sample of
Blend C faded by a factor of 25% could now be sa&jgar from the remaining
samples. This indicated that, whilst negative iatism mode could be used for
analysis free from the influence of fade, posiimaisation mode could potentially be
used as an investigative tool to find out more &liba components and reactions
involved with the fading process of whisky. ThissmMavestigated for Blend C by
examination of the loadings data provided in Figau@tb, from which a number of
interesting components could be identified thatewvelearly related to the fading
process. Components with the most positive PC2escaere found to provide the
most information, being found in significantly rexhd levels within the faded
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whisky compared to the other four Blend C samplégse could therefore represent
components that have been broken down or degrasea r@sult of the fading
process. The most notable compound that followedititensity pattern had a mass
of 249.1137 (retention time of 3.98 minutes) amdtiend plot has been provided in
Figure 6.25 to demonstrate this finding. Other comgnts found to follow a similar
trend (all of which had high positive PC2 loading®re: a compound with a mass of
323.2596 (RT of 7.31 minutes); a component withassnof 193.0507 (RT of 4.18
minutes); a compound with a mass of 209.0822 (RT48# minutes); and a
component with mass of 459.1421 (RT of 3.98 minutes
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Figure 6.24: (a) PC1 vs. PC2 scores plot obtaineahi PCA of the negative ionisation data
acquired from the five samples incorporated withBubset ‘D’. Triplicate measurements included
for all samples. (b) Shows the corresponding (PGl RC2) loadings data.
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Figure 6.25: Trend plot of a component with retention time ofd® minutes and a mass of 249.1137
showing its intensity across the samples contaimgthin Subset ‘D’. Triplicate measurements
included for each sample.
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As well as the presence of components that werlgleeduced in intensity as a

result of the fading process, it was also posdiblénd a few compounds from the

loadings data that were present in higher levelbiwthe faded whisky compared to
the four other Blend C samples. These componerdstina most negative PC2

loadings (encircled in pale blue within Figure G24nd could potentially represent
products forming as a result of degradation reasti@lating to fade; it should also

be noted here though, that these compounds wesergren quite low levels and

already had low intensities prior to any fade. Gmeh component had a mass of
141.0552 and a retention time of 4.52 minutes #ttend plot has been provided in
Figure 6.26 for reference.
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Figure 6.26: Trend plot of a component with retention time of52 minutes and a mass of 141.0552
showing its intensity across the samples contaimgthin Subset ‘D’. Triplicate measurements
included for each sample.
Overall, the positive ionisation data indicatedt ti®LC TOF MS could be useful as
a tool to increase knowledge of the fading protkeascan occur to Scotch whiskies.
Using Blend C as an example, a number of componemitd be identified that
either decreased or increased in intensity aswdtresthe fading process. It should
also be noted here though, that this does not riedrall components related to the
fading process have been detected using UPLC TOFagSome may have been
missed if they are not easily ionised under thediamms employed. Future
experiments implementing additional batches of dads. non faded samples of
Blend C would also be required to determine whettmrsistent results would be
obtained to those of the preliminary study desctiladove. It would also be
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important to assess the fading process in relatoonther blend products to see
whether similar components remain responsible dame distinction. In addition to
this, as the samples analysed in this part of thayswere of a caramel containing
blend, it is currently unclear as to whether themponents being detected originated
from the spirit itself or from the E150a carameélwbuld therefore be interesting in
the future to profile (a) faded E150a caramel sasplissolved in 40% ethanol and
(b) faded whiskies containing no caramel, to see tihee composition of each would

change individually as a result of fade.

6.3.5 Blend Discrimination — ‘Subset E’

Subset ‘E’ was included within this study to getidea as to whether UPLC TOF
MS had the potential to discriminate between ddiférwhiskies on the market, and
so be used as a tool to understand more aboubthpasitional differences between
these products. A selection of seven blends andnmade whisky were analysed as
part of this work and their UPLC TOF MS profilesr@e&ompared using PCA; based
on the component information extracted using Mdrkex software. The PCs.

PC2 scores plots constructed separately from tlgative and positive ionisation

data have been provided in Figures 6.27a and G&&fiectively.
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Figure 6.27: PC1 vs. PC2 scores plots obtained frB@A of all samples from Subset ‘E’ using
(a) negative and (b) positive ionisation data. Tiigate measurements included for all samples.

Both scores plots showed very similar patterns epasation and the clearest

distinction between the samples occurred alongPGé axis, where the malt was
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clearly separated from all blends. Correspondiragilogs data were subsequently
examined to identify which components were respgmeador this observation; only

the information acquired from the negative ionzatdata will be discussed at this
point however, as it provided better examples & purposes of this preliminary
study. The loadings plot acquired from the negato@sation data has therefore
been provided in Figure 6.28 and it was found dastponents with the highest PC1

loadings were predominantly associated with Malt H.
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Figure 6.28: PC1 vs. PC2 loadings plot obtainedrfrd®CA of the negative ionisation data acquired
from the samples incorporated within Subset ‘E’. @marker numbers that label the pink circled
components refer to the compounds contained witfiiable 5.3 in Chapter 5.

One of the most notable components characteristddadt H has been highlighted
within a red circle in Figure 6.28. The mass ofstltompound was 363.1112
(retention time of 4.18 minutes) and its trend las been provided in Figure 6.29,
to demonstrate its intensity across the sampldsidad within Subset ‘E’. It was
clear from the trend plot that this component wassent in much higher levels
within Malt H than in any of the seven blend produ®©n closer inspection it turned
out that this particular component had already beieked out as an interesting
marker within this Chapter; being primarily assoethwith the first fill sherry cask
sample compared to the casks of other historygseton 6.3.1). When background
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information on Malt H was investigated, the whiskys identified as being a
Macallan product; supporting why this ‘sherry caslarker’ was able to help
distinguish the malt, as this brand of whisky iowmn to typically contain a high
degree of spirit from sherry casks. In further adaace with this finding, when the
loadings data were examined in more detail, it alas determined that the majority
of components previously identified as being asged with sherry casks clearly
influenced the separation of Malt H along the PGis.aThe components with
masses of 149.0103, 385.2228, 455.3158 and 5178&68 all found to have PC1
loadings close to or higher than a value of 0.1.wdl as these components, a
number of additional compounds were present thaekeo distinguish Malt H from
the seven blends. One example (encircled in gregmnwFigure 6.28) had a mass of
124.9907 (RT of 1.29 minutes) and its trend plat been provided in Figure 6.30 to
demonstrate its comparably high intensity withinltMid compared to the seven
blends. Although not previously included as a congm characteristic of sherry
casks, on closer inspection the level of this commgoagain appeared to be much
higher in the two sherry cask samples within sul¥sdhan in the two bourbon cask
samples. This again highlighted that a large nurobérte components allowing Malt
H to be distinguished from the blends originateahfrit containing high levels of
whisky from sherry casks.
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Figure 6.29: Trend plot of a component with reteati time of 4.18 minutes and a mass of 363.1112
showing its intensity across the blends and malbt@ned within Subset ‘E’. Triplicate
measurements included for each sample.
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Figure 6.30: Trend plot of a component with reteati time of 1.29 minutes and a mass of 124.9907
showing its intensity across the blends and malbt@ned within Subset ‘E’. Triplicate
measurements included for each sample.

As well as the presence of components presentgim levels within Malt H, it was
also possible to identify compounds from the logdidata that were high in all of
the blends but either absent or present in sigmtig lower levels within Malt H.
These components all had highly negative PC2 s@mwdshe component encircled
in blue within Figure 6.28 provided a good examplde trend plot for this
compound — including its mass and retention timmitde— has been provided in
Figure 6.31 to demonstrate its presence withinbs#hd products but its near
complete absence from the malt. When investigatadare detail, the fact that this
component stood out was really interesting, agadt dlready been highlighted within
Chapter 5 as a marker characteristic of all E15@@amels assessed (see section
5.4.1.1 — Table 5.3). When the loadings plot waessed further, a number of other
components previously identified as markers of EBl1&&ramel were clearly found to
influence the separation along PC1 between thensbiends and the malt. These
components included the markers 1, 7 and 10 (nuzdbezcording to Table 5.3) and
each has been encircled in pink within Figure @28 labelled. As well as these data
indicating that the presence of E150a caramel eadetected within real blends on
the market (using marker components detected byGQJPOF MS), blend products
could potentially be differentiated from malts bésen markers originating from

(and unique to) E150a caramel.
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Figure 6.31: Trend plot of a component with reteati time of 1.02 minutes and a mass of 341.1084

showing its intensity across the blends and malhtained within Subset ‘E’. Triplicate
measurements included for each sample.

The scores plot previously depicted in Figure 6.@&monstrated that as well as the

potential to differentiate all blends from the maltere was also a certain degree of

separation between the seven different blend ptedaocluded in Subset ‘E’. These

compositional differences were slightly easierrtipret by removing Malt H from

the PCA model and the new P@4. PC2 scores plot attained has been provided in

Figure 6.32 alongside the corresponding loadinggs. da
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Figure 6.32: (a) PC1 vs. PC2 scores plot obtaineahi PCA of the negative ionisation data
acquired from only the seven blends contained witldubset ‘E’. Triplicate measurements included
for all samples. (b) Shows the corresponding (PGl RC2) loadings data.

Blend B was shown to be the most distinct withigufe 6.32a and examination of

the corresponding loadings data (Figure 6.32b) ledaihe components responsible
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for this observation to be investigated. Compon@nésent at the highest intensity
levels within Blend B had the most negative PCaliogs and one of the clearest
examples has been highlighted by a red circle wikhgure 6.32b. This component
had a mass of 373.2590 (retention time of 5.97 tes)uand its trend plot has been
provided in Figure 6.33 to show its intensity asrtfse seven blends. The trend plot
demonstrated that although this component was contmall blends, it was present
at its highest level within Blend B. The componesstsircled in blue within Figure
6.32b were also found to be present at their higlesels within Blend B and had
masses of 197.0447 (RT of 4.10 minutes), 297.2430 ¢f 6.85 minutes) and
515.2126 (RT of 5.11 minutes). On closer inspectitre middle of these three
components was identified as one previously picket in section 6.3.1; being
common to the first fill and refilled bourbon casks well as the refilled sherry cask
of Subset ‘A’. This pattern of intensities withihet Subset ‘A’ samples was also
observed for the above component of mass 373.259@ed. The component of
mass 515.2126 was also quite interesting; beingagpily associated with both first
fill and refilled bourbon casks and present onlyeatremely low levels if at all
within in the two sherry cask samples. These olagiems indicated that non volatile
cask congeners detected by UPLC TOF MS could biiluserkers to investigate
compositional differences between different blenabpcts.
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Figure 6.33: Trend plot of a component with reteati time of 5.97 minutes and a mass of 373.2590
showing its intensity across the seven blends corgd within Subset ‘E’. Triplicate measurements
included for each sample.
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Examination of the loadings data in Figure 6.3Zw alllowed components present in
higher levels within Blends D and F to be foundesth two samples both appearing
quite close together in the top left hand quadadnthe corresponding scores plot
(Figure 6.32a). Two such components (encircled@eiy in Figure 6.32b) were those
that had been previously highlighted as being dtarstic of E150a caramel:
179.0553 and 341.1084. The trend plot for the rattes therefore been included
previously in Figure 6.31 whilst the trend plot filme former is now provided in
Figure 6.34. Both plots demonstrated that thesepoments are clearly most intense
within Blends D and F. Such findings could therefordicate that these two blends
contain the highest amounts of E150a caramel aattcthis is the primary parameter
that distinguishes them from the other blends.
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Figure 6.34: Trend plot of a component with reteati time of 1.01 minutes and a mass of 179.0553

showing its intensity across the seven blends cord within Subset ‘E’. Triplicate measurements
included for each sample.
The remaining blends within Subset ‘E’ (Blends A,ECand G) were slightly more
difficult to distinguish based on their UPLC TOF Np®ofiles; all appeared in quite
close proximity to each other within the scored.pline component could be picked
out however that appeared to be higher in these litends than the other three
(highlighted with an orange circle in Figure 6.32bhis component had a mass of
517.3160 (retention time of 5.91 minutes) and riénd plot has been provided in
Figure 6.35 to demonstrate this intensity pattecnoss the seven blends. As
explained previously, this component has been ifiethtas being predominantly

characteristic of sherry casks rather than boudasks and so this finding indicates
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that Blends A, C, E and G potentially contain higpercentages of sherry cask
whisky than the other three blends. A few other gonents were found that
followed this same intensity pattern (as well asdeprimarily associated with
sherry casks) emphasising this point. UPLC TOF M#ld therefore be an
extremely useful tool to understand the componesgponsible for compositional

variations between different blends and also tigirg of such compounds.
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Figure 6.35: Trend plot of a component with reteati time of 5.91 minutes and a mass of 517.3160

showing its intensity across the seven blends cord within Subset ‘E’. Triplicate measurements

included for each sample.
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Overall, the findings obtained within this part tbe study have demonstrated that
UPLC TOF MS has excellent potential for investiggtinon volatile components
responsible for compositional differences betweiereént whisky products on the
market. It was shown that as well as having thditabio distinguish between
different blend products, this tool could differat¢ the malt from all of the blends
included within this analysis. It would be interagtto include other malt products
within future studies to confirm whether this wouwlbivays be possible. Additional
malt samples would also allow an investigationcaw/tiether different malt products
could be distinguished between using UPLC TOF MShoéuld also be noted at this
point that multiple batches of all samples woulédéo be assessed in the future to
investigate the consistency of profiles from batehatch. The inclusion of multiple
batches of samples would also mean that a varieother PCA models could be

constructed (more robustly) to focus on the congoas of particular blends. This
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might help to further distinguish blends that haveven difficult to separate when a

wide variety of products are included in the model.

6.4 Conclusions

The research presented within this Chapter has dstinaded that UPLC TOF MS in
combination with statistical data analysis softwéwas excellent potential for a
variety of applications within the Scotch Whiskydustry. Characteristic profiles
were obtained for a wide range of whisky samples lanimplementing PCA it has
been possible to distinguish between these diftesample types based on the
components that have been detected. Differentiat@as achieved between whiskies
that differed in their cask history; whiskies thadre matured for different lengths of
time; samples that containing elevated levels efdbmmon adulterants sucrose and
vanillin; a faded whiskyersusits non faded equivalent; samples that had been
artificially matured using solvent extraction fromvariety of whiskies that were
authentically matured; different blend whiskies;,daa range of blends from a

particular malt product.

The particular software implemented also enableddbmponents responsible for
the above observations to be examined and as & meswmber of interesting
compounds were found that were characteristic ef different scenarios. One
application of UPLC TOF MS within the Scotch Whiskglustry could therefore be
to analyse for particular marker compounds thatccptovide important information
about the particular product or sample under ingatsbn; whether this be to assess
characteristics such as maturation age, cask hjstorauthenticity, or simply to
understand more about the compositional variatfafifterent blends (or malts). The
potential of advanced software packages to helpuahthe chemical composition of
marker components could also be extremely benéfrid would mean that UPLC
TOF MS could allow a greater understanding of mangcesses relevant to the
Scotch Whisky industry; the findings in this chapiedicated that the technology
could assess maturation reactions and the prodessisky fade. At this stage,
structural elucidation of components identified tinis research has not been
attempted however, as a number of future expersneuld initially be required
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(containing additional batches of all samples) nsuge the consistency of UPLC
TOF MS profiles. In addition, as indicated throughthe results, a number of future
experiments would also be required to account &stiqular factors that may affect

the profiles of specific samples.

The findings presented in this Chapter represemtinmesearch, with UPLC TOF MS
not having been implemented for analyses withinSbetch Whisky industry before.
This preliminary work has therefore introduced tembgy that could greatly
broaden and compliment knowledge of the compositib&cotch Whisky. One of
the primary advantages of this tool is that it baes ability to monitor a variety of
components that would not be detected using thditivaally preferred GC-MS.
This preference of GC-MS in the past has also leercase throughout the spirits
industry and so this preliminary investigation,vesll as demonstrating benefits in
relation to Scotch Whisky analysis, could potehtifighlight the advantages of this

tool to a much wider audience.
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7.0 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The primary objective set out at the beginninghid tesearch was to investigate and
develop analytical approaches that could be useprdble and understand more
about Scotch Whisky colour (originating both frolmetlegally permitted E150a
caramel and also that derived naturally during magiton). ATR-MIR spectrometry
and LC-MS were investigated as potential techniqfes this purpose and
multivariate data analysis tools were implementethterpret the results acquired.

ATR-MIR was initially assessed to profile caramelourants, to determine whether
unique profiles could be obtained for differentatael materials. Caramels were
firstly dissolved in 40% ethanol to mimic the meadiwf a typical Scotch Whisky
and it was determined that characteristic profdesld be obtained by drying the
sample solutions directly onto the ATR crystal +stlallowed the otherwise
dominating features of ethanol and water to be k@uo By implementing this
methodology to analyse different caramel colouraritsvas possible to clearly
distinguish between the four caramel classes rasedrfor use in foodstuffs by the
EU (E150a, E150b, E150c and E150d). In additiothts it was found that ATR-
MIR spectrometry also had the ability to differeéi between a selection of E150a
caramels produced using different conditions of ufacture. These findings were
maintained when the same caramel materials wesldesd in a typical Scotch
Whisky (subject to no prior caramel addition), rating that the dried residues of
this spirit would be dominated by the colourant edldDespite this finding, it was
also found that natural whisky colour did have sonfieence on the spectra of dried
residues when caramels were dissolved within troslyct. Additional studies were
therefore undertaken using ATR-MIR spectrometry agsess how the spectral
profiles of caramels (when dissolved in Scotch ies) would be affected by
variation in the background whisky matrix and itswibund that differentiation
between E150a caramels was still possible even \ahagh level of natural colour
was present. Other factors that were found to émibe the ATR-MIR spectral
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features of dried caramel residues were the pramfesaramel fade and variations in

caramel concentration.

After it was established that ATR-MIR spectrometrgd the ability to obtain
characteristic profiles of different caramel colanis, a number of multivariate data
analysis tools were investigated to determine wareithwould be possible to predict
the identity of test/unknown caramel solutions blass their unique spectral
features. PCA with GLSW preprocessing, HGANN classification and PC-DFA
were all compared for this purpose and althoughditi@ot stand out at this point as
being the most successful, each was found to havmwin associated advantages and
disadvantages to be considered. PCA with GLSW pogssing and PC-DFA both
showed very similar findings: they demonstrated elieat potential for the
prediction of caramel identities (both class an®@®ilformulation) when dissolved
in 40% ethanol, however it was found that the bemlgd matrix of any whisky
would need to be accounted for during calibration allow more successful
predictions when caramels are dissolved in a Scéthisky. It was also found that
the prediction of caramel identities using these tata analysis tools would likely
be influenced by factors such as variation in calaeoncentrations between
calibration and test data and also if a test car&iad been subjected to fade. Studies
undertaken using-NN classification were found to overcome all oésk potential
limitations associated with PCA with GLSW and PCA)R-NN classification
however had its own major drawback in that tesa dts to be appointed to one of
the pre-assigned calibration categories. This woedallt in misclassifications if the
identity of a test/unknown sample was not accoufdgedvithin the calibration data —

a potentially significant problem if being used dssess suspect whisky samples

where the origin of colour would most likely be goletely unknown.

An additional study undertaken using PC-DFA demastl the potential to
differentiate between four real blend productsaaseon the market based on their
dried residue profiles (obtaineda ATR-MIR spectrometry) and the potential to
predict the identity of test blend samples wasrgleshown. It would be interesting

to undertake future work in this area using a mbigger sample set, to see whether
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blend discrimination using ATR-MIR spectrometrypessible using a much wider

range of Scotch Whisky products.

A wide range of samples relevant to the Scotch Whisdustry were analysed using
LC-MS prior to the commencement of this project aodthe primary objective of
this research was to determine the potential aftibol for profiling the non-volatile
components of Scotch Whisky by the application oftivariate data analysis tools
to the data. Caramel colourant profiles were assesstially in this work and it was
possible to clearly distinguish between the fouraoel classes based on the
components detected using LC-MS. It was also plesdib differentiate between
three different types of E150a included within teisidy and both findings were
maintained when caramels were dissolved in a t{/@catch Whisky as opposed to
40% ethanol. These findings therefore complemetttede attained already when
ATR-MIR spectrometry was used to profile carameloaoants, however the
advantage of using LC-MS over ATR-MIR is that thernfier can allow the
individual components responsible for sample ddfdiation to be investigated. It
was therefore possible in this part of the resedcctpick out specific marker
compounds that were either unique to or predomiynadsociated with different
caramel materials and not present in/masked bytypeal background whisky
matrix. An attempt was also made using advancetvact to structurally elucidate
these compounds and hence confirm the identityedbin caramel markers. It was
possible to confidently assign three E150a mar&srsugars and tentative structures
for these compounds were suggested. These compawmndd however need to be
isolated and subjected to additional analyses h@urtfragmentation studies and

NMR) to confirm their structural identities.

Additional studies undertaken using the LC-MS dattademonstrated that it was
possible to use this technique to differentiatevieen: whiskies that differed in their
cask history; whiskies that were matured for ddférlengths of time; samples that
contained elevated levels of the common adulterantsose and vanillin; a faded
whiskyvs.its non faded equivalent; samples that had beditiatly matured from a

variety of whiskies that were authentically matyrdiferent blend whiskies; and a
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range of blends from a particular malt. It was gisssible to pick out a number of

interesting components that were responsible fesdlobserved distinctions.

7.2 Comments and Suggestions for Future Work

Overall, the above findings relating to ATR-MIR spemetry could be extremely
beneficial to the Scotch Whisky industry, particlyain terms of counterfeit
detection; authentic products could potentially Dentified based on the
confirmation of a specific colourant profile beipgesent (or absent). The fact that
different E150a caramel materials can be cleafffemdintiated between using ATR-
MIR spectrometry also opens up the potential fob®l caramels with unique
spectral profiles to be spiked into different blgpbducts to act as markers for
authenticity. At this point of the research howevire manufacturing conditions
responsible for spectral variation could not beopinted as limited information was
available about the caramels from the manufactu@ne key piece of future work
that would therefore be extremely interesting talertake would be to obtain and
analyse a set of caramels with known manufactudogditions, to investigate
whether spectral variations could be attributed garticular manufacturing
parameters. It would then potentially be possilide control/manipulate E150a
manufacture in the future to create legally pemittaramels with distinct signature
profiles that could be used as authenticity markerdslends. A much larger dataset
would be recommended for this work to be taken &vdy incorporating samples
covering a wide range of manufacturing variable=efing any parameters not being
assessed consistent). Multiple replicates of eaoipte type would also be important

to ensure consistency of profiles for each seboflttions considered.

Another key area of future work would be to invgste the potential to
miniaturise/adapt the ATR-MIR instrumentation imt@ortable device to open up the
possibility for it to be taken into the field; asdicated by the preliminary findings
within this research, such a tool could be usedcteen suspect samples based on
their colourant profile. There is currently a gragirequirement for such portable
devices within the Scotch Whisky industry and iki®ne of the key advantages of
ATR-MIR over LC-MS; although it has been shown Imistresearch that the latter
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can provide a more comprehensive assessment ofkyvltiemposition, it is a

laboratory based tool and so could not be impleetktias a field device for quick

screening purposes. Recommendations as to cortsardhat should be taken

when developing the ATR-MIR methodology into a pbie device have been

included in Appendix 8.3.

Other areas of future work that could be undertakerelation to profiling Scotch

Whisky colour using ATR-MIR have been summariseldwe

Only single batches of caramel types E150b, E15AcEL50d were assessed
in this research when distinguishing between carastasses. An area of
future work would therefore be to obtain multipletdhes of additional types
of caramels from these classes to investigate wehekbiey would still group
together and also remain distinguished from otlessses.

Caramel profiles were also only assessed withinSaotch Whisky matrixes
(one typical and one representing a much highegl lef/ natural colour). It
would therefore be interesting to assess a widegaaf whisky matrixes to
see what influence their natural colour componevasid have on caramel
profiles. For instance, would all whiskies withyaital level of natural colour

influence spectra to the same or a similar extent?

Only a single or a few types of caramel were exachiwhen investigating
the influence of the following factors on caramebfpges: high levels of
natural colour, caramel concentration and carameé.f Future work could
therefore asses other caramel types to see whéimdings remained

consistent.

Preliminary work in this research demonstrated tfatral colour will also
influence the ATR-MIR spectral features of driedisily residues and an
area of future work could be to determine whethhisiies that contain no
caramel will possess unique features depending heir thatural colour
profiles. This could be particularly useful for tiliguishing between malt

whiskies, the majority of which do not contain EaSfaramel.
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* It would also be interesting to determine whether developed ATR-MIR
methodology could be used to profile and inveséigatsk variables based on
natural colour profiles. Natural colour is knownle influenced by factors
such as cask history (e.g. the use of ex-sherksaasex-bourbon casks and
first fill vs.refill casks), maturation age and cask fill stitend@ he ability to
distinguish between different cask variables cobkl used to provide
information — for cask or bottle samples — as ®wod policy used for their
production. Obtaining a greater understanding hask cvariables influence
natural colour could also be used to identify thaturation potential of a
particular cask and to evaluate and optimise varfmocedures available for

cask regeneration.

In relation to predicting the identity of test camels when dissolved in Scotch
whiskies, it was identified that the background sidyi matrix would likely have to
be accounted for in the calibration model to allswccessful predictions. A key
piece of future work would therefore be to constrmew calibration models
consisting of samples dissolved in a typical Scotthsky and predict the identity of
fresh test samples (dissolved in the same whiskygonfirm whether predictions
could be improved when using PCA with GLSW and PEARs classification tools.

A much bigger sample set would also be requirecerisure that test samples
representing all types of caramels within the catibn dataset are being assessed.
The number of test samples utilised within thiseegsh were restricted in their

availability but were deemed suitable to allow pnéhary studies to be undertaken.

The use of LC-MS to analyse the non volatile canetits of Scotch whiskies is
relatively novel and the results obtained from L@MS data analysis within this
research have provided an excellent preliminarynoge as to how this technique
could be utilised within the Scotch Whisky industBeing a preliminary study
however, means that only a small sample set spgraniange of sample types was
initially utilised, typically incorporating only aingle example of each sample type
(analysed in triplicate). It would therefore be rertely interesting to split this
research into a number of subprojects each focumingne of the different factors

initially assessed within this preliminary resean&hg. caramel colourants, cask
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history, maturation age, authentis. natural maturation, etc...) and obtain multiple
batches of the samples initially assessed/any athemples deemed relevant. This
would allow confirmation of these initial findinggn terms of the sample

differentiation observed and also in terms of whetlthe marker components
identified for different sample types are consiliienbserved. Once the identity of
suitable markers has been confirmed, it would therextremely interesting to take
structural elucidation further and assign tentasitractures to all marker components
using the advanced LC-MS software. It would subsaty be recommended that
components of interest be isolated and their sirattidentities confirmed using

additional fragmentation studies and techniqueb ssd\MR.

Overall it has been demonstrated that LC-MS wowdb extremely beneficial tool
for understanding more about the non volatile cositfom of Scotch Whisky (which

would incorporate components relating to colourothbcaramel colour and natural
colour). This is an area where there is currendyyMittle knowledge within the

industry and this is due to GC-MS being traditibynadreferred for compositional

analysis. The advances made in LC-MS technologseaent years however have
made it very appealing for profiling complex mixtgrand so as well as highlighting
its potential within the Scotch Whisky industry,ethesults from this research
indicate that this technology could potentially beed on a much wider scale
throughout the spirits industry where GC-MS haditianally been preferred.
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8.0 APPENDICES

8.1 Calculating Reconstitution Volume

When samples were being prepared for the concemtrstudy it was found that the
original ATR-MIR methodology (pre-concentrating gales from 6 mL to 30QiL)

did not provide consistent profiles when solutiohshe same caramel were prepared
at different concentrations in 40% ethanol. Thiswaexpected due to the fact that
all data were normalised, a process that should hagounted for any concentration
differences and so provide consistent spectra.cEoumt for this issue encountered
with the original ATR-MIR methodology, when sample$ different starting
concentration were to be considered they weresathnistituted in different volumes
during the preconcentration step to ensure thatinbéconcentration before analysis
was theoretically equivalent. An example of thecakdtions used to determine the

appropriate reconstitution volume in these cassdkan provided below.

The desired final concentratio®4) for sample solutions was calculated based on
what was originally obtained after pre-concentgtian average whisky (with
absorbance of 0.55 at 430 nm) from 6Q00to 300 uL. This was calculated as
shown below using Equation 8.1, wheZe is the initial concentration (before the
pre-concentration step),;¥% the volume taken of this initial solution, G the final
concentration (after pre-concentration) ang i¥ the final volume. Concentration
values in this case have been replaced with therbdisce values at 430 nm as the

two are linearly proportional.

C]_Vl = 02V2 Equation: 8.1
055x6000=C, x300
CZ =11
The reconstitution volume required to prepare alufe sample solutions was

subsequently calculated to provide this final comi@ion C,=11) — although it
should be noted that this is not a true absorbaale but rather a theoretical value
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to scale others to in order to achieve equivalerdl fconcentrations. If a caramel
solution therefore had an initial absorbandg;)( of 0.2 for example, the
reconstitution volume\{;) can be calculated as follows (a starting voluig ©Of
6000uL was always used):

C]_Vl = C2V2
02x6000=11xV,

V, =109 plL
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8.2 Scores and Loadings Data for Additional PCs
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Figure 8.1: PC1 vs. PC3 scores plot obtained frodA°of the ATR-MIR spectra acquired from all
fifteen E150A caramels (red triangles), one batchEl50B_X9 (green stars), two batches of
E150C_10 (blue squares), two batches of E150D_1ffje diamonds) and the three burnt sugar
materials (orange circles). Sample details can barid in Table 3.1 and each sample was dissolved
in 40% ethanol and analysed in triplicate.
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Figure 8.2: PC3 loadings acquired from PCA of theTR-MIR spectra acquired from all 23
samples described in Table 3.1, when dissolvedd#o4ethanol and analysed in triplicate.
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Figure 8.3: PC1 vs. PC4 scores plot obtained fro@A°of the ATR-MIR spectra acquired from all
fifteen E150A caramels (red triangles), one batchEl50B_X9 (green stars), two batches of
E150C_10 (blue squares), two batches of E150D_1ffje diamonds) and the three burnt sugar
materials (orange circles). Sample details can berid in Table 3.1 and each sample was dissolved
in 40% ethanol and analysed in triplicate.
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Figure 8.4: PC4 loadings acquired from PCA of theTR-MIR spectra acquired from all 23
samples described in Table 3.1, when dissolvedd#o4ethanol and analysed in triplicate.
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8.3 Considerations and Recomm
Development

endations for ATR-MIRnstrument

Table 8.1: Table of the considerations and recomrdations for developing a portable ATR-MIR
device for field testing whiskies using the methdatyy developed in this research.

Consideration

Resulting Recommendation

Instrumentation needs to be develoj

that is practical as a portable device.

nddhe fibre optic probe set up would not
the most suitable for a portable devi
an ATR system with a ‘drop in’ samp

chamber might be more appropriate.

Samples with the colour level of a typic

blend (~0.5 at 430nm) currently require
pre-concentration step to get spectra

adequate absorbance.

dévised

concentration step as part of the analy

that incorporated the p
procedure. One suggestion could be
incorporate a heating element or an
flow to dry samples onto the AT

crystal.

dt would be much more practical af

> e effective if instrumentation could K

De
e
Sis
to
air
R

Spectral differences have been obser

when comparing profiles of drie
residues just after switching the h¢
lamp off with when the probe head h

returned back to room temperature.

Vé¢buld it be possible/feasible to include
dneans to rapidly cool the device back
rabom temperature for measuremeras?
ad/ould it be possible to dry samples ir
reasonable timeframe without the use

heat (e.g. with an air flow)?

2 a

to

of

The size of the sample chamber wo
need to reflect the volume of liqu
required for adequate spectra to
obtained.

uBased on current pre-concentrat

introduced directly into the sam
chamber, the equivalent factor would
from 200uL to dryness.Need to
consider if this would this change if
crystal parameters changed (e.g. no. ¢

bounces)

on

d6000uL to 300uL and then taking 10uL
lwé this to dryness), then if samples were

le
be

=
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Table 8.1 cont.: Table of the considerations andoenmendations for developing a portable ATR-

MIR device for field testing whiskies using the

nhetdology developed in this research.

Consideration

Resulting Recommendation

th

different concentrations of the sar

Initial research has indicated

sample will affect spectral features, ev

when data is normalised.

aCan different calibration models perhg
nbe created for different concentrati
(e.g.
selected by the analyst according to

aanges low/typical/high)  arn

sample being considered?

ps
og!
d
the

Samples are currently injected manug
onto the ATR crystal and there is
means of sample containment, both
which could be affecting dried resid
concentration and introducing a source

spectral variation.

li$an the sample compartment be adaj
neo that sample droplets can be depos
afore consistently over the ATR crys
uée.g. incorporate a sample well arou
tife crystal)?

Would an automated sample introduct
be

development?

more  appropriate/a  practig

nted
ited
al
nd

on

al

As sample concentration has been shc
to influence spectral features it would
important to ensure that no sam|
material is lost on the sides of a

sample chamber when drying.

pWould Teflon or another similar mater
beotentially be used to coat the walls
bilne sample chamber/the sample well

ngrevent samples from sticking?

al
of

to

The sample compartment/sample W
would need to be cleaned between e
measurement. Can an easy clean

mechanism be devised?

achamber set up with disposable tips
itfee crystal that can be removed after €

sample analysis.

It would be an additional benefit/provig
if

developed instrumentation could also

an additional application an

used to determine ethanol concentratid

lét might therefore be beneficial to devi
ya way that the sample chamber can
lzealed/covered to allow an initial ethar
rconcentration to be determined withg

sample evaporation.

What data analysis would need to

performed/how can this be implemente

Hease of implementation — the instrum

dvill not necessarily be used by scienti

b

eéDne suggestion could be to incorporate a

at

ach

be
nol

ut

Nt

c

personnel.
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