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Abstract 

In recent years, governments worldwide have been actively advocating for the 

electrification of the transportation sector to reduce carbon emissions. As a result, the 

global fleet of electric vehicles (EVs) has undergone significant growth, signifying their 

increasing importance in the overall power consumption landscape. The unique 

characteristics of power converters used in EV charging stations have a direct influence 

on power system dynamics, which necessitates the development of new methods and 

models to analyse the dynamic performance of distribution networks (DNs) that 

incorporate EVs. 

This thesis presents a novel approach to analysing the dynamic properties of EVs 

and simulating the dynamic behaviour of EV-rich DNs. These studies focus on two 

aspects - EV dynamic equivalent modelling and the impact of EVs and their modelling 

for system-level studies. 

From the perspective of dynamic equivalent EV load modelling, this study 

investigates different charging approaches of EVs, i.e. slow and fast charging. From the 

perspective of DNs, EVs represent a distinctive type of load characterized by the control 

loops of interfacing converters. By examining the charging approaches utilized by EVs, 

this study provides insights into the behaviour of EV loads and their interaction with the 

distribution networks. It considers the implications of EV charging dynamics on load 

modelling, recognizing the need to accurately represent the distinctive characteristics of 

EV loads in power system studies. Through a comprehensive investigation, this research 

sheds light on the specific features and behaviour of EV loads, facilitating the 

development of accurate and reliable models for incorporating EVs into distribution 

network analysis.  

On the other hand, this thesis investigates the dynamic characteristics of DNs 

hosting EVs. As EVs become a part of the overall load in DNs, the research focuses on 

analysing the dynamic behaviour of the entire network. However, the presence of EVs 

introduces complicated parameters that influence the system, posing challenges in 

quantifying differences among extensive simulation results. Consequently, new methods 

and models are needed to simulate and analyse the dynamic performance of DNs 

integrated with EVs. Towards this objective, an equivalent model based on variable order 
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transfer functions, is proposed in this thesis, to analyse the dynamic properties of EVs as 

well as to simulate the dynamic behaviour of EV-rich DNs. Furthermore, the study 

quantifies the influence of EV penetration levels on DN dynamics using a set of metrics. 

This analysis contributes to a better understanding of the effects of increasing EV 

penetration on the overall network behaviour. Additionally, a parametric analysis is 

conducted to validate the applicability of the proposed equivalent model for the dynamic 

analysis of DNs under specific EV penetration levels. Finally, guidelines for the 

derivation of generic parameters for the developed equivalent model are proposed.
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1.1 Background 

The impact of climate change on global temperatures is a topic of increasing concern, 

with excessive emissions of greenhouse gases being the primary cause of accelerated 

warming [1]. During the last decades, CO2 emissions from the transport sector have been 

continuously increasing. In particular, they rose from 5.8 gigatons (GT) in 2000, and CO2 

emissions caused by transportation rose to 8.2 GT in 2018 [2]. As the energy sector is a 

major contributor to greenhouse gas emissions, it is critical to develop strategies to 

reduce emissions and mitigate the impact of climate change. It is important to explore 

the use of advanced statistical methods for load forecasting in the energy sector, to 

improve accuracy and reduce the need for fossil fuel-based power generation. Moreover, 

transportation is one of the most important carbon emission channels, which makes 

transportation decarbonization becoming a key part of supporting climate mitigation 

goals. Road vehicles are responsible for approximately 75% of carbon emissions [3]. 

Currently, ICEVs (Internal Combustion Engine Vehicle) are still the most popular type 

of vehicle in the market. These vehicles use petrol or diesel as fuel and these fuels will 

emit CO2 after releasing energy. Of course, in some situations, other harmful gases such 

as Sulfur dioxide (SO2) will also be released due to oil quality, this issue will not be 

discussed in this thesis. Compared with ICEVs, EVs (Electric Vehicles) require electricity 

to charge and do not directly emit any greenhouse gases during operation. This feature 

makes EVs become an alternative transportation method to face the climate change 

problem, following the successful decarbonisation of electricity networks. In summary, 

transitioning to zero-carbon electricity sources is crucial for mitigating climate change 

and achieving a sustainable energy future. To decarbonize the transport sector, several 

countries across the globe have implemented bans on the sale of new internal 

combustion engines [2][4], and have also promoted the purchase of EVs via incentive 

schemes [5][6].    

 Despite the considerable time that has passed since the inception of EVs, their 

widespread adoption as a mainstream transportation solution for the general population 

remains elusive. The market share of EVs remains relatively small compared to 

traditional fuel-powered vehicles. One of the primary reasons for this is the limitations of 

EV technology. When compared to ICEVs, EVs have longer charging times and shorter 

travel ranges.   
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As technology has advanced and human needs have evolved, EVs have gradually 

made inroads into various sectors, including logistics, public transport, and private use, 

over the past few years. This trend has been further encouraged by policymakers who 

recognize the potential of EVs to help address climate change [7]. For example, the 

European Union has announced plans to ban the sale of fuel-powered vehicle, thereby 

promoting the shift towards EVs [4]. Such policy initiatives signal a significant shift 

towards sustainable mobility, and EVs are expected to play a crucial role in achieving the 

necessary reductions in carbon emissions in the transportation sector. As a result, it is 

essential to examine the opportunities and challenges associated with the transition to 

electric mobility and identify strategies that can accelerate the adoption of EVs [8]. 

Influenced by these radical policies, an increasing number of vehicle manufacturers have 

begun to actively develop and sell EVs. Furthermore, due to beneficial policies and 

enhanced environmental awareness, more consumers are considering purchasing EVs 

instead of ICEVs. The International Energy Agency (IEA) published an outlook 

showing that there were more than 5.1 million EVs worldwide in 2018. Consequently, 

the global EV fleet is increasing at a fast pace. For instance, EV sales in Europe present 

an increase of two-thirds on a year-on-year level. In China and the United States, EV 

sales in 2021 tripled and doubled, respectively, compared to 2020 [9][10][11]. This trend 

is anticipated to intensify further in the near future. If the market share continues to 

increase by 2 million annually, the global stock of total EV ownership will exceed 130 

million by 2030 [12][13]. The adoption rates of EVs across different countries, their 

impact on the automotive industry, and associated environmental benefits have been 

analysed in [14].  

The global push towards transport decarbonization has seen significant policy 

developments across various regions. The UK plans to achieve net zero emissions across 

the entire transport sector by 2050 [15]. The European Union aims to reduce CO2 

emissions from new cars by 55% by 2030 and achieve a 100% reduction by 2035 

compared to 2021 levels, as part of its fit for 55 packages [16]. China has set a target for 

20% of all new vehicle sales to be new EVs by 2025, with a broader goal of achieving 

carbon neutrality by 2060 [17]. Japan plans for 100% of new car sales to be electric or 

hybrid by the mid-2030s, aligning with its objective of reaching carbon neutrality by 2050 

[18]. These aggressive goals are a big opportunity for EVs, but also a challenge for EV 

impacts on power system dynamics. 
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As the adoption of EVs increases, it is important to recognize that there may be 

potential problems associated with the shift towards electric mobility. One such issue 

arises from the fundamental difference between EVs and ICEVs in terms of energy 

conversion. Both types of vehicles convert stored energy into kinetic energy to facilitate 

transportation. However, the key difference is that ICEVs convert the chemical energy 

stored in fossil fuels into kinetic energy, whereas EVs utilize electricity stored in batteries, 

which is typically generated through chemical processes. As a result, the energy streams 

of ICEVs and EVs differ significantly, with fossil fuels being sourced from pipelines or 

tanker trucks and the electricity for EVs being supplied through power networks. The 

reference [19] compares the life cycle impact of ICEVs and EVs. This difference has 

implications for the infrastructure and supply chain required to support the shift towards 

electric mobility and highlights the need to consider the broader impacts of transitioning 

to EVs, particularly in terms of electricity generation and distribution. Nevertheless, as 

the number of EVs on the road increases, it becomes increasingly important to recognize 

that transportation energy will be more reliant on the power system. This poses a new 

challenge for the operation of the power grid, and it is essential to understand the impact 

of EV charging from the perspective of the power system. These challenges are mainly 

related to voltage regulation and power quality issues, increased network losses, and 

congestion problems created due to the simultaneous charging of several EVs [20][21]. 

Furthermore, centralized charging of EVs in a region can create a power demand 

comparable to that of large-scale power electronics charging load, such as those used for 

aircraft. According to the existing study [22] implies that this substantial charging 

demand could impact the system frequency stability, which can provide effective primary 

and secondary frequency responses to improve the frequency nadir by 0.2 - 0.3 Hz under 

grid disturbance. This will be especially the case for urban regions and during certain 

times of the day. Specifically, it is important to identify any specific characteristics 

associated with EV charging and how these compare to existing loads on the grid [23]. 

Understanding the differences between EV charging and other loads can help to identify 

the infrastructure and grid-management requirements necessary to support the transition 

towards electric mobility. By assessing the potential impacts of EV charging on the 

power system, stakeholders can develop strategies to optimize the utilization of 

renewable energy sources and minimize the transportation sector carbon footprint. 

The frequency response in DNs is crucial for maintaining grid stability, especially 

with the increasing integration of renewable energy sources and EVs [24]. It is essential 
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to consider the variability of EV load response to meet system requirements and 

maintain frequency stability by optimizing the daily EV charging profile [25]. EVs can 

also help stabilize electrical grids by providing voltage support. This involves maintaining 

stable voltage levels to ensure a reliable power supply. EVs can do this through Vehicle-

to-Grid (V2G), Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-

Microgrid (V2M) applications [26][27]. Inverter control is crucial for this process, 

allowing EVs to adjust voltage and frequency dynamically. This helps balance supply and 

demand, especially during peak times. EV voltage support enhances grid stability, 

facilitates renewable energy integration, and offers economic benefits to EV owners. 

Moreover, as renewable energy becomes increasingly integrated into the electric 

power network, combining fast charging with renewable energy at central charging 

stations presents a viable option to harness the benefits of both. The proximity between 

the power generation source and the consumption point significantly reduces 

transmission losses. However, this setup introduces new challenges, such as more 

complex power dispatch requirements. Consequently, the network faces difficulties in 

accurately determining the timing and duration of charging and generation operations. 

Another unavoidable question is how the pandemic has affected the EV market. The 

COVID-19 pandemic has significantly transformed various aspects of our lives, including 

our daily routines, work patterns, and transportation choices. With more flexible work 

arrangements, the need for long-distance commuting decreased. As a result, potential EV 

buyers reconsidered their transportation preferences [28]. In this context, the EV market 

has experienced notable shifts. The unprecedented drop in global car sales and the 

contrasting performance of EVs have been expressed in [29], despite this, the demand 

for EVs has remained robust [30]. However, the market is influenced not only by 

demand itself but also by manufacturing processes and supply chains. Amidst the 

pandemic, disruptions to supply chains, particularly those related to chips and other 

essential elements, have also had an impact on EV sales [31].  

In alignment with the zero-emission objectives for the transportation system and 

prevailing market trends, EVs have become an increasingly significant load with specific 

characteristics that cannot be ignored in the electric power network. Consequently, a 

systematic study of EV penetration into power networks from the perspective of 

dynamic stability is imperative. The motivation behind this thesis is to address the 

dynamic characteristics of distribution systems hosting EV penetration. Understanding 
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the dynamic characteristics of DNs is crucial for ensuring stability. By providing a 

comprehensive summary of the two primary EV charging approaches - slow and fast 

charging. It further simplifies the converter-based model into a dynamic load model 

suitable for system-level simulations. Additionally, investigating the influence of varying 

EV penetration levels by quantifying the dynamic response to transformer tap change 

events will help in developing robust solutions for future power systems. 

 

1.2 Dynamic modelling for EV charging 
 

1.2.1 EV Charging standards and status 

EV is a form of transportation, but from the perspective of the power system, it is 

considered as a specific type of load when it is charging. To express this load, the first 

step is to calculate its load demand, which is defined by the EV charging speed. As 

mentioned in the previous section, EVs have existed in the market for many years, but 

they have only occupied a small market share for a long time.  

The normal charging speed can be defined by the EV charging standards IEC62196 

[32], which focuses on physical connectors, and IEC61851 [33][34], which focuses on 

charging modes and requirements. The Electric Power Research Institute (EPRI) and the 

Society of Automotive Engineers (SAE) have methodically categorized EV charging 

levels as AC level-1, AC level-2, and DC fast charging [35]. These diverse charging 

standards encompass a spectrum of EV charging speeds, ranging from gradual to rapid 

and ultra-fast charging. 

Table 1.1 Charging archetypes as defined by charging locations, charging 

methods, and charging power. 

Power type AC DC 

Scenarios 

Residential  

Charging station 

 On street / public 

Speed level Level 1 level 2 level 3 Super charge Ultra-fast 

Charge condition 120 Volt 240 Volt CHAdeMO/CCS Tesla 480 V Experimental 
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Charge speed 

3.7 kW 7.4 kW 

11 kW ~ 60 kW Up to 140 kW Up to 400 kW 

Normal speed >11 kW >60 kW  

 

Table 1.1 combines the information on different charging scenarios. These charging 

strategies are defined by the network and location conditions. For example, the network 

in the United States is 110 V, which results in a relatively slow speed of charging. 

Moreover, some smaller electric transportation vehicles such as electric scooters have 

even lower charging speeds [34]. Nowadays, 7.4 kW (32A single phase) can be installed in 

residential areas [36][37]. This is also the main choice for installing chargers in European 

homes (240V AC supply). Not only can EVs be charged at home, but they can also be 

charged in public places such as workplaces, streets, and highway service stations. These 

scenarios can also provide faster charging methods such as CHAdeMO [38] and CCS 

(SAE Combined Charging System) [39]. These charging methods are supplied by DC 

power, the actual charging rate is adjusted by the charging piles, normally 11 kW ~ 60 

kW.  

Not all vehicle manufacturers are following these standards. Some small charge 

speeds can be about 1.4 kW (110V AC voltage network), but some fast chargers can 

exceed 60 kW (DC fast charge). For example, the Nissan Leaf has a charging speed of 

3.6 kW or 6.6 kW, while the BMW i3 is 7.4 kW, and some new manufacturers have new 

technologies like the Tesla supercharger that can provide even 250 kW charging speed.  

Note that, these DC charging approaches are still developing rapidly, for example, 

the CHAdeMO 2.0 can provide an “ultra-fast” charging speed of 400 kW. The Tesla 

charging station is one of the types of “ultra-fast” charge approaches. More and faster 

charging stations might be added in the future. On the other hand, integrating fast 

charging with renewable energy at central charging stations presents a promising 

approach. The proximity between the power generation source and the consumption 

point significantly reduces transmission losses. However, this setup introduces new 

challenges, such as more complex power dispatch requirements. Consequently, the 

network faces difficulties in determining the optimal timing and duration of charging and 

generation operations. Furthermore, Due to the high power consumption of fast 

charging, placing the charging station close to the on-site generation source and grid 
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connection points is advisable to minimize transmission losses. However, it is important 

to note that chargers, being switch-based converters, can introduce harmonics. 

Conversely, V2G and reactive power control during charging can be beneficial in this 

setup. It is crucial to consider the differences between chargers, as more commercial and 

consumer-oriented chargers can complicate the understanding of their operational details 

by network companies, particularly in response to short-circuit events. However, these 

experimental products, which have not yet to be a solid standard, are temporarily out of 

the scope of this thesis.  

In 2024, the typical battery capacity for electric vehicles ranges from approximately 

60 kWh to 70 kWh [40], Companies like Tesla offer various battery capacity options to 

customers, with the Model 3 having an approximate capacity of 60 kWh [62], and the 

Model Y reaching up to 90 kWh [41]. With the anticipated increase in fast charging 

stations, the duration required for charging is expected to decrease.  

 

1.2.2 Converter-based EV charger modelling 

Although EVs primarily serve as a mode of transportation, it is crucial to elucidate 

their impact from the standpoint of the power system since they can be seen as 

charging/discharging elements from the sight of the network. There are two main 

control modes when EVs connect to the power network G2V (Grid-to-Vehicle) and 

V2G (Vehicle-to-grid). In both modes voltage and current are regulated, ensuring that 

the power system variables remain within normal operating conditions. This regulation is 

achieved through a converter-based control loop model.  

A converter-based control loop model represents the dynamic behaviour of power 

converters and their associated control mechanisms within a power system. This model 

typically encompasses multiple control loops, including voltage and current regulation 

loops, as well as power control loops, all of which are designed to preserve system 

stability and optimize performance [42]. Moreover, it possesses the capability to sustain 

system stability and efficiency maintain the balance between variable power demands and 

supplies. The model influences system stability by delivering a responsive action to 

disturbances. The converter-based control loop modelling for EV chargers has been 

studied in the literature. Some articles focus on its reliability [43] - [46], and some articles 

focus on optimizing the design of converter-based charging control loops for fast 

charging [47] - [50], Several scholarly articles have investigated the intricate interaction 
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between the electric system and fuel system in hybrid EVs [51]. In Chapter 3, this thesis 

will compare and discuss the similarities and differences of these models, and build the 

two most typical charging approaches (AC slow charge – level 1 and 2; DC fast charge – 

level 3). Furthermore, the influence of the PI control parameter will also be illustrated. 

The charger is not the only crucial component of EV charging, but the battery also plays 

a significant role [52]. This thesis will also investigate the battery features and how they 

impact EV charging in Chapter 5.  

 

1.2.3 Dynamic load modelling in the presence of EVs 

 The load characteristics of EVs can have a crucial influence on system stability as 

EVs exhibit dynamic behaviour in response to disturbances, which is markedly different 

from traditional load types and the load models that were previously utilized in power 

systems. This results in more complex dynamic responses that cannot be adequately 

represented by traditional load model structures. Consequently, there is a necessity for 

higher-order models and a comprehensive understanding of parameter sensitivities. As 

demonstrated in the preceding section, a plethora of power electronic charger designs for 

EV charging already exist. However, despite encapsulating intricate details of EV 

charging, the converter-based model remains cumbersome for dynamic power system 

studies involving EVs, since it requires to build the full control loop for each EV charger, 

with millions of such devices potentially connected. the converter-based model must 

undergo simplification to be suitable for system-level studies. Therefore, the EV chargers 

shall be simplified through a dynamic load model, which does not compromise the 

characteristics that impact system dynamics. 

Dynamic load modelling in power systems is a method utilized to simplify the 

analysis of large-scale power networks by reducing the complexity of the system without 

compromising the essential dynamics characteristics of the loads. This process involves 

creating a model that represents the aggregate behaviour of various individual loads 

which are integrated within the network. The objective is to accurately represent the 

static and dynamic influence of the original load on the system [53]. 

In addition, the transfer function is an important part of the dynamic load model 

which provides the oscillatory behaviour of the dynamic responses [54]. On the other 

hand, the orders of the transfer function, which refers to the highest exponential 
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parameter of (𝑠 ) in the denominator, can affect the characteristics of the dynamic 

responses, such as the first/second or higher type of responses. 

V2G is an innovative technology that allows EVs to not only draw power from the 

grid but also send power back to it. This bi-directional charging capability helps stabilize 

the power grid by balancing supply and demand, particularly during peak usage times [55]. 

Although some studies model V2G as a PQ unit [56], V2G is being investigated in 

various types of studies, such as frequency response [57] and power quality and stability 

[58]. To accurately represent the characteristics of V2G during EV charge-back to the 

network, the V2G model must include relevant characteristics of these studies, such as 

frequency response and the Rate of Change of Frequency (RoCoF). 

This thesis aims to utilize a simplified model for EVs to enable system-level 

simulations within a single software environment, specifically using a dynamic load 

model. However, the generic dynamic load model [59] does not include characteristics. 

Note that, essentially, the dynamic load modelling for EVs simplifies the EV charging 

characteristics to suit the target simulation aspect. This simulation is focusing on the 

dynamic responses of DNs during a voltage step change event, such as transformer tap 

changes. Consequently, the resulting EV dynamic load model may be insufficient for 

other types of studies, such as frequency response, rotor angle stability studies, and V2G. 

Additionally, this thesis does not contribute to these directions. 

Therefore, in this thesis, the EV dynamic equivalent load model will be developed to 

facilitate static and dynamic analysis of power systems [59][60] by considering different 

order level based transfer functions. 

 

1.3 System-level studies on the impact of EV penetration 

In the context of EV charging in the network, a fundamental question is concerning 

to schedule the start time and duration of charging, which are strongly related to human 

behaviour. For instance, some people choose to charge their EVs when returning home 

in the afternoon, while others prefer a nearby DC fast charger, either on the street or at 

their workplace. The duration of charging discussions encompasses considerations 

related to battery capacity and desired SoC thresholds. Notably, modern EVs mostly 

employ lithium-ion batteries (such as the widely recognized ‘18650 battery’ manufactured 

by Panasonic), featuring energy capacities spanning 10 kWh to 100 kWh [61][62]. Several 
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studies have extensively analysed EV charging behaviour and human preferences using 

Monte-Carlo simulation techniques[63][64][65]. However, these articles limit their 

research to temporal (when the charging starts and ends) and spatial (charge location, 

home, or workplace) aspects. This thesis contributes to the field of EV charging research 

from the perspective of power system stability.  

 

Figure 1.1 Classification of power system stability [60]. 

Power system dynamic studies analyse the behaviour of electrical power systems over 

time, focusing on how they respond to disturbances like faults, load changes, and 

switching operations. These studies examine variables such as voltage, frequency, rotor 

angles, and power flows. Power system stability studies are a subset of dynamic studies 

that specifically look at the system's ability to return to a stable state after disturbances. 

They include transient stability (response to large disturbances), voltage stability 

(maintaining acceptable voltage levels), and frequency stability (maintaining steady 

frequency)[66]. This thesis considers the EVs charging in the DNs, and focuses on 

maintaining acceptable voltage levels under various operating conditions and 

disturbances, ensuring that the voltage remains within safe limits. In this study, the event 

selected is a voltage step change, and the output is the dynamic change of power 

consumption. By the classification of power system stability which is shown in Figure 1.1, 

this study belongs to the small-disturbance voltage stability.  

Based on this small disturbance, this study investigates the impact of various load 

characteristics, specifically those associated with the EVs dynamic load model. In this 

thesis, the EV charging static aspect will be represented by using two distinct approaches: 

the exponential model, which is based on exponential functions, and the ZIP model, 
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which presents the relationship between voltage and power consumption in a steady-

state scenario.   

In this section, the significance of the EV dynamic load model is underscored, 

alongside the critical importance of the methodology for integrating it into power system 

simulations. This methodology ensures an accurate representation of EV charging 

behaviour, taking into account factors such as load impact and dynamic behaviour. 

Therefore, the power network, which is integrated with EVs dynamic load model, is 

capable of conducting system studies, including steady-state and dynamic analysis. The 

detailed process of this study is expressed in Chapter 3, and these results will also be 

quantified through indicators.  

 

1.4 Quantifying the differences in dynamic responses 

The system dynamics will be affected when the dynamic load model of EVs is 

integrated into the simulation network. And this influence is strong related to the 

different EV penetration levels. As more EVs penetrate the DNs as dynamic load 

models, the DN's equivalent model will exhibit more dynamic characteristics. These 

dynamic characteristics can be applied to investigate voltage support and network 

constraint management with high EV penetration scenarios.  

 The aim of this study is to examine the impact of the system’s time-domain response 

under various EV penetration scenarios. The differences, which scenarios are compared 

between no-EV and various levels of EV penetration, will be quantified through 

indicators.  

The difference in EVs penetrating the distribution network can be quantified through 

indicators, such as 𝑅𝑀𝑆𝐸 (Root Mean Square Error), 𝑅2 (Coefficient of determination), 

𝑆𝑆𝐸 (Steady-State Error), 𝑂𝐸 (Overshoot Error), which will be utilized to quantify the 

differences between the network with/without EV penetration. As will be explained in 

Chapter 4, the control parameter settings of PI (Proportional-Integral control) can 

significantly impact the EV dynamic load model parameters, which consequently affect 

its dynamic response. This dynamic recovery may exhibit varying degrees of oscillatory 

behaviour, and these subtle differences are not adequately captured by existing metrics of 

differential magnitudes, such as 𝑅𝑀𝑆𝐸 and 𝑅2.  
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An additional potential challenge arises from the fact that EV manufacturers do not 

provide the settings of the control parameters within the EVs. Consequently, all 

conducted studies are based on case studies, implying that EVs produced by different 

manufacturers may exhibit varying control parameter settings. From the perspective of 

the system, the diverse EV dynamic load models with distinct dynamic recoveries can 

add complexity to the overall system dynamic response. This complex dynamic response 

necessitates illustration and quantification through appropriate methodologies. This 

investigation will be presented in Chapter 5.  

The distribution network can be analysed as an aggregated dynamic load model, 

effectively illustrating the dynamic characteristics of the entire distribution system. The 

methodology is the same as that utilized in EV dynamic load modelling.  However, the 

difference is the more complicated dynamic response may necessitate higher order 

transfer function during the fitting process. Chapter 5 also delves into the selection of 

different orders of transfer functions and discusses their applicability under varying 

conditions. 

Additionally, focusing on the dynamic recovery process, this thesis employs the Pole-

Zero analysis which is commonly used in control loop stability analysis, to quantitatively 

assess the detailed dynamic characteristics across different EV penetration levels and 

control parameter settings.  

 

 

1.5 Research questions 
 

Definition and Modelling of EVs: 

• What are the essential components and behaviours of EVs within the context 

of power systems? 

• What kind of EV model is sufficiently simplified for system-level dynamic 

simulations while retaining necessary characteristics? During developing this 

type of model, what method can be utilized to define the model parameters 

accurately? 
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Integration into Network Models and Simulations: 

• What are the dynamic characteristics of DNs that are affected by varying 

levels of EV various charging times and penetration? 

• How do EVs impact the system-level dynamics of DNs under various 

operating conditions? 

• A significant number of results are expected to be presented as dynamic 

response curves. What approaches can be utilized to manage and analyse the 

large volume of dynamic responses while maintaining the integrity of the 

recovery process details to derive reasonable conclusions? 

 

1.6 Main objectives 

Definition and modelling of EVs - The EVs incorporated into the simulation are 

modelled to represent the existing real-life counterparts. It is crucial to identify the 

necessary elements for the simulation and determine the level of detail required when 

modelling the EVs. The objective is to model EVs based on existing literatures, focusing 

on aspects relevant to power systems, such as the charging process, charging converters, 

and batteries. This task includes: 

• Evaluating the ability of existing static and dynamic equivalent models for the 

representation of EVs. 

• Proposing a modelling approach based on parameter fitting and dynamic 

equivalent load models to represent the dynamics of EVs. 

• Investigating the impact of different control parameters on the dynamic 

equivalent load model structure. 

The objectives of integrating the EV model into system-level simulations. The power 

consumption of EVs depends not only on the EV model but also on human behaviour, 

such as the timing of charging based on electricity pricing policies. The objectives include: 

• Developing daily charging profiles based on existing literature and integrating 

these profiles into the CIGRE benchmark MV DNs to simulate. 

• Investigating the impact of high EV penetration on DNs, considering 

different control parameters and operating conditions. The dynamic response 
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of the network to these scenarios is investigated through typical charging 

scenarios, such as maximum EV penetration and peak charging times. 

• Conducting systematic simulations and statistical analysis, which involves 

systematically simulating scenarios across various EV penetration levels and 

system operation conditions. Statistical analysis of error metrics is utilized to 

identify the impact of EV charging on DNs. 

• Obtaining dynamic equivalent models to represent DNs hosting EVs and 

identifying the optimal order of the transfer function, which aims to 

represent the detailed dynamic recovery process accurately. 

• Analysing the characteristics of the obtained dynamic equivalent models 

using Pole-Zero analysis, and highlighting significant observed features. 

An additional objective examines the impact of reduced charging speeds as EV 

batteries approach full charge on EV load modelling. It is necessary to investigate the 

effects of the characteristic on converter-based models and evaluate whether the EV 

model needs adjustment to represent this state accurately, which involves: 

• Investigating the role of the battery model within the overall converter-based 

EV charge model. 

• Identifying changes during high SoC scenarios and their impact on EV 

dynamic response. 

• Integrating the battery model into the converter-based EV charge model and 

simulating high SoC scenarios to determine whether adjustments are needed. 

 

1.7 Method scope 
 

Methods: 

For the modelling method, make the EV model capable of system-level studies with 

dynamic characteristics. The study analyses the converter-based control model for EV 

charging, including single/three-phase power supply, IGBT switches, control loop, and 

PWM modulation. A circuit-based model for the battery will also be considered. 

Static and dynamic load modelling methods are applied to develop a dynamic EV 

charge model suitable for system-level studies. It includes the testing, which is the EV 
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charging converter-based model operating during the dynamic events in DNs. This part 

of the work shall be implemented by Simulink software. Afterwards, the measurements 

shall be recorded by the MATLAB Simulink, and the corresponding algorithm, which is 

expressed in detail, and be applied to implement the EV dynamic load modelling. 

Furthermore, this task also includes the fitting technique, which is utilized to obtain the 

transfer function to represent the recovery process of the dynamic load model, the 

method of assessment is used to quantify the difference between the measured data and 

the obtained dynamic load model. This process is implemented on MATLAB coding.  

For investigating the impact of EV charging in DNs, this study integrates the 

accomplished EV dynamic load model into DNs and simulates various scenarios. For the 

method of integrating the EV model into DNs, this study starts with the existing EV 

charging start/end data from the literature, which has already considered human 

behaviour and other conditions, and converted it into an EV charging profile. This EV 

charging profile shall be adjusted by assuming different EV ownership levels, which is 

utilized to avoid predicting the EV market share in the future. Also, the residential & 

industrial demand shall be considered and integrated as other components into the DNs. 

Finally, the daily demand profiles of the DNs, which include different components and 

EV ownership levels, are prepared for the dynamic stability studies. This process is 

implemented using MATLAB coding, and the EV dynamic load model will be developed 

in DIgSILENT PowerFactory through DSL modelling. 

Equivalent dynamic load modelling methods are used to analyse the entire DNs’ 

dynamic responses. The dynamic equivalent load modelling and the fitting technique, 

which have been utilized in EV dynamic modelling, are utilized to achieve this equivalent 

model. The assessment methodologies, such as 𝑅𝑀𝑆𝐸  and 𝑅², are applied. Statistical 

analysis of error metrics is conducted, and Pole-Zero analysis is utilized to examine 

dynamic recovery curves. This process is implemented on MATLAB coding.  

In order to analyse the dynamic recovery in more detail, the method of Pole-Zero 

analysis is applied. This method represents the dynamic recovery curve by poles and zero 

that can analyse a large number of results together to find the underlying laws of various 

EV penetrations 
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Conditions: 

EV modelling perspective - The study considers different charging approaches (slow 

& fast) and various control parameters (e.g., PI parameters). And tests under different 

levels of voltage disturbances.  

System-level dynamic studies - The study examines EV penetration, including 

ownership levels, demand locations, charging times, and the daily load profile of all 

network loads, considering different types of EVs charging simultaneously. 

 

Assumptions: 

Converter based models - The study adapts the existing converter-based control EV 

charging model into a dynamic load model. The process begins by the selected 

converter-based EV model from the literature. Any modifications to this model could 

introduce variables, potentially compromising its accuracy for EV charging. To ensure 

the final model accurately represents EV charging, no changes are made to the selected 

converter-based model. Furthermore, this study does not aim to optimize the design of 

the converter-based EV charging model.  The influence of each control component on 

the dynamic characteristics is analysed in Section 3.2.  

Technique for parameters estimation - In the static and dynamic load modelling 

process, this study employs the parameter estimation technique to derive the parameters 

for the dynamic equivalent model, which  involves determining all the corresponding 

static and dynamic parameters that affect the dynamic characteristics. Furthermore, 

assessment metrics are utilized to quantify the discrepancies between the measured and 

estimated data using specific indicators. Each step of the fitting process is expressed in 

detail by the algorithm. However, this study focuses solely on the similarity between the 

measured and estimated data, rather than the parameter estimation technique itself. It 

does not delve into the development or optimization of the fitting techniques themselves. 

The detailed process for parameter estimation is described in Section 3.4. 

Frequency and Rotor Angle Characteristics – The model must include relevant 

characteristics to accurately represent EVs (both G2V and V2G) in frequency response 

and rotor angle stability studies. However, the generic dynamic load model used in this 

study to simplify the EV charging model for system-level simulations does not include 
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these characteristics. The accomplished EV dynamic load model lacks the detailed 

frequency and rotor angle characteristics as well. However, these characteristics are 

essential for V2G studies. Therefore, the EV dynamic model developed in this study is 

inadequate for V2G studies. The capability and characteristics of the dynamic load model 

is expressed in Section 3.3. 

Dynamic Studies Focus - In system-level studies, there are numerous variables that 

affect EV penetration levels, such as charge time scheduling and EV market share 

predictions. In simulations, these variables collectively determine the EV penetration 

level settings, hence the dynamic characteristics of the dynamic equivalent models. To 

avoid injecting more independent variables, the EV daily demand profile is derived from 

existing EV charging start/end simulation data by literature to avoid discussing the 

differences caused by EV charge time schedule. The ownership level considers different 

EV ownership levels and includes the scenario where all vehicles are replaced by EVs as 

the worst case, without predicting EV market penetration. The details of this process are 

expressed in Section 4.4.2. In summary, this study does not contribute to providing a 

new EV charge time scheduling or EV market share predictions.  

 

1.8 Thesis contributions  

The first main contribution of this thesis is the representation of the dynamic 

behaviour of EVs through equivalent dynamic load models, along with the investigation 

of the applicability of typical dynamic equivalent load models in systems with high 

penetration of EVs. This work employs a typical load modelling methodology, including 

the exponential recovery and ZIP model, to represent EVs in terms of dynamic 

behaviour. This research investigates the extent to which these models can accurately 

represent EVs. The dynamic equivalent load models are developed through rigorous 

testing of EV charger models, which are derived from detailed converter-based models 

This contribution also proposes typical parameters for dynamic load model structures 

that can accurately represent EVs, thereby filling the technical gap of having 

recommendations for using typical dynamic equivalent load models and associated 

parameters to represent the dynamic behaviour of EVs. Furthermore, this thesis 

examines the impact of varying control parameters and generates corresponding sets, 

which demonstrate that different EV dynamic load models can be influenced by these 
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parameters. Additionally, this thesis contributes to the field by proposing transfer 

function based dynamic models to represent the EV dynamic recovery process and the 

particularities of dynamic responses (e.g. the appearance of oscillatory behaviour) across 

various scenarios.   

The second principal contribution of this thesis involves the comparison and 

quantification of the impact of EVs on dynamic characteristics of the benchmark 

medium voltage (MV) grid of CIGRE with EV penetration. The study addresses a critical 

gap concerning the impact of EVs on the DN. By utilizing the existing EV charging 

scheduling algorithm, this research examines the dynamic response of power networks 

during voltage disturbance events, considering varying EV penetration levels within a 

single day across diverse EV ownership scenarios. Building on these accomplished 

methodologies, this study integrates the implemented EV dynamic load model into the 

network considering the dynamic equivalent load modelling aspects specifically 

representing EV charger dynamics. These results are quantified by indicators and 

combined to provide a comprehensive view of the impact of EVs integrated into the 

power system.  

The third contribution of this thesis involves the introduction of a methodology to 

quantify the subtle differences that emerge from a complex dynamic recovery process. 

This process can be decoupled from dynamic responses, by employing Pole-Zero based 

analysis. To implement the dynamic equivalent model in system level studies, this study 

constructed the complex dynamic load modelling by DIgISLENT Simulation Language 

(DSL) in DIgSILENT PowerFactory. 

 A parametric analysis is performed to validate the suitability of the proposed 

equivalent model for dynamic analysis of DNs under specific EV penetration levels. 

Additionally, this thesis presents guidelines for deriving generic parameters for the 

proposed equivalent model. 

Last but not least, one of the significant contributions of this thesis is the exploration 

of the influence of the battery’s SoC (State-of-Charge). The SoC reflect the charging level 

related to the battery capacity and impact the coefficient such as the battery excitation 

voltage 𝐸𝑏𝑎𝑡𝑡. This study integrates the conventional electric circuit-based battery model 

into the control model of the EV charging converter. This research helps in 
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understanding how the SoC during battery charging impacts EV load modelling and 

whether this influence necessitates adjustments to the implemented EV load modelling. 

 

1.9 Thesis Outline 

The remainder of this thesis is organised as follows: 

 Chapter 2 – This literature review Chapter, begins with an overview of the 

fundamental concepts and technical aspects of EVs, followed by an exploration of 

various modelling techniques used in simulating EV behaviour within power networks. 

Subsequent sections address the methodologies employed in integrating EV models into 

system-level simulations and analyse the impacts of different EV penetration levels on 

the dynamic stability of power systems. This review highlights the challenges and future 

directions in EV-related research, laying the groundwork for the ensuing chapters of this 

thesis. 

 Chapter 3 – The aim of this chapter is to develop an accurate dynamic load model 

for EVs. To achieve this objective, this chapter first reviews and generalizes existing 

power electronic models for EV charging. Then, this study replicates two typical EV 

charging converter-based control models from selected literature using MATLAB 

Simulink. After simulating a voltage step change disturbance event, this study utilizes the 

dynamic response of the detailed models to implement the EV dynamic load model 

using a parameter estimation algorithm. Then this study compares the results obtained 

from the two converter-based control models and analyses their similarities and 

differences. Furthermore, it investigates the impact of different EV control parameter 

settings and transfer function parameter estimation on the dynamic load model results. 

Consequently, this study quantifies their differences using appropriate indicators. 

Chapter 4 – The impact of EVs on system dynamic responses at the distribution 

level is the target of this chapter. To achieve this, the load demand profile of the EVs is 

determined using a Monte-Carlo based methodology. Subsequently, the dynamic load 

model of the EVs, derived in Chapter 3, is incorporated into the benchmark CIGRE MV 

distribution network to assess its capacity to accommodate EV charging.  

This study also takes into account the variability in EV ownership per household. 

Under different predictions of EV ownership per household, extensive simulations are 
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conducted to investigate the dynamic response of the power network at various times 

throughout the day. These results encompass various penetrations of EVs and other 

loads. These findings are then compared with scenarios that have the same settings but 

exclude EVs, and all results are quantified using indicators. Ultimately, this study presents 

results comprehensively, visualized using boxplots, to provide a clear understanding of 

the impact of EV charging on the power system dynamic behaviour.  

Chapter 5 – This chapter focuses on the complex dynamic response of DNs with 

increasing penetration of EVs.  

Comparative analysis of the results between single and composite type EV 

penetration, this study identified that the existing quantification indicators are inadequate 

for discerning detailed differences. This thesis applied Pole-Zero analysis to power 

system voltage stability analysis to quantify the impact of different conditions on the 

DNs' dynamic response. 

Moreover, this study conducts a parametric analysis to verify the applicability of the 

proposed equivalent model for the dynamic analysis of DNs under discrete EV 

penetration levels and quantify the influence of the penetration of dynamic EV models. 

Overall, this study presents a valuable contribution to the understanding of the complex 

dynamic response of DNs with high EV penetration levels and provides a tool to 

support the planning and management of future power systems. 

Chapter 6 – This chapter enhances the existing research on EV charging static load 

modelling by investigating the influence of battery charging at various SoC. It reviews 

and analyses the features of the battery, and discusses the influence of different battery 

SoC on EV charging. Subsequently, this study incorporates an electronic circuit-based 

battery model from the literature. This battery model has also been utilized to extend the 

existing EV power electronics model. Through this enhanced model, this study examines 

the impact on EV load modelling using simulation results.  

Chapter 7 – This chapter draws a number of conclusions and provides a list of areas 

of ongoing and future activity that can build upon the findings and outcomes of the 

research work reported in the thesis.  



Chapter 2 Literature Review 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2                                         

Literature Review 

 
 

 

 

 

 

 

 

 

 

 

 

  



Chapter 2 – Literature Review 

18 | P a g e  
 

2.1 Modelling and parameter settings of converter-based EV chargers 

Converter-based EV charging involves complex interactions between power 

electronic converters, such as rectifiers, inverters, and DC-DC converters, and the power 

grid [67][68]. The dynamics of these systems can be categorized into static and dynamic 

characteristics. 

In steady-state operation, the converter balances input and output power, stabilizing 

voltage and current waveforms [69]. It maintains constant charging parameters using 

feedback loops and aims for a unity power factor to minimize losses [70]. The converter 

should provide a steady DC output for the EV battery and a sinusoidal AC input from 

the grid. Efficiency is measured as the ratio of output power to input power under these 

steady-state conditions. 

Dynamic characteristics of converter-based EV charging involve system behaviour 

during disturbances or transients. Electromagnetic transients (EMT) include fast changes 

in voltage and current due to switching events or grid faults, often modelled using 

circuit-based simulations[71][72]. Electromechanical dynamics, though less relevant for 

EV chargers, can impact grid stability and power quality during large charging events. 

The converter's dynamic response affects voltage stability, power quality, and frequency 

regulation. Dynamic control of charging current or voltage is crucial for responding to 

voltage fluctuations, load changes, or grid disturbances [73]. 

To summarize the mathematical modelling differences between static and dynamic 

models for EV charging: Static models use steady-state equations, ignoring time 

derivatives of voltages and currents. For example, an AC-DC converter in steady-state is 

modelled as a constant power source with linear input-output relations. Dynamic models 

handle transients with differential equations for time-varying currents and voltages. 

These include State-Space models for control dynamics, Switching models for converter 

behaviour, and impedance models for grid interaction analysis [71].  

On the perspective of timescales, steady-state conditions are reached over seconds to 

minutes, depending on the charging rate and control system. EMT occur in 

microseconds to milliseconds due to high-frequency switching. Electromechanical 

dynamics occur in tens to hundreds of milliseconds to a few seconds, especially during 

grid disturbances or large load changes. Static timescales are longer, while dynamic 
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timescales are shorter. These differences are crucial for understanding the behaviour of 

converter-based EV charging systems [59].  

The simulation of EVs charging in DNs is a comprehensive task, which contains 

several simulators. Each simulator has its own solver and works simultaneously and 

independently on its own model [74].  In this simulation strategy, the different part of the 

simulator relies on the communications and Function Mock-up Unit (FMU) to connect 

the different simulation interfaces with different simulation software [74]. On the other 

hand, lots of new challenges arise with the co-simulation. The different simulation tools 

run in a synchronized manner is difficult to reach and keep reliable [75], the data 

exchange among different simulation tools is difficult to be efficient and accurate [76]. 

This thesis focuses exclusively on EV charging in the context of dynamic voltage stability 

at the distribution grid level. By removing unnecessary simulation components, a 

simplified methodology is employed, enabling all simulations to be conducted within a 

single software environment. 

When EVs connect to the power grid, they operate in two primary modes: V2G and 

G2V. In these modes, EVs charge and discharge respectively. Precise control of voltage 

and current is essential in both modes to maintain the stability and efficiency of the 

power system. This control is implemented through a converter-based control loop 

model. 

To understand this control, it is necessary to understand the EV charging structure 

on the power electronic aspect to explore the EV’s dynamic characteristics that can be 

utilized in dynamic load modelling. In [77], a model for EV fast charging stations is 

developed in the dq (Direct-Quadrature) frame. A multi-timescale modelling approach 

for fast charging stations is proposed in [78][77]. Moreover, in [79] a dynamic EV model 

for power system oscillatory stability analysis is developed. Nevertheless, in the 

abovementioned approaches, detailed EV modelling at the converter level is required. 

With respect to the dynamic response of EVs, detailed modelling approaches were 

introduced in [80][81][82], these approaches can represent in detail the dynamic features 

of EV chargers, such as G2V [83], V2G [84][85] and residential charging [86]. The 

battery dynamic modelling for EVs has also been implemented in [87]. However, such 

models are not suitable for large-scale power system stability and dynamics studies due to 

the increased complexity and required computational effort. Consequently, these intricate 
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power electronic charging models cannot be directly employed in power system-level 

simulations, necessitating the development and utilization of dynamic load models. 

On the perspective of control parameter settings, a Proportional-Integral (PI) 

controller is a type of feedback controller widely used in referred EV converter-based 

modelling. It can be seen as a Proportional-Integral-Derivative (PID) controller with a 

derivative part deactivated [88]. It combines two control actions: proportional and 

integral, to provide a balanced and effective control strategy.  

The proportional component of the PI controller produces an output that is directly 

proportional to the current error value. The error is the difference between the desired 

setpoint and the actual process variable. The proportional term helps to reduce the 

overall error by applying a correction that is proportional to the magnitude of the error. 

The integral component of the PI controller addresses the cumulative sum of past errors. 

This term is crucial for eliminating steady-state errors that persist over time. By 

integrating the error over time, the integral action ensures that any residual discrepancies 

are corrected, leading to zero steady-state error. 

It is important to note that PI control is not the sole method applicable to EV 

charging. With the installation of additional EV charging converters in parallel, droop 

control, primary control and secondary control become necessary within the network. 

Droop control is utilized in microgrids and parallel converter systems, enabling 

decentralized control. This allows each converter to operate independently without the 

need for communication links [89][90]. Primary control in a small network with multiple 

EVs focuses on immediate, local management tasks. It ensures voltage and frequency 

stability during charging and balances the load among chargers to prevent overloading. 

This control reacts quickly to changes in demand, such as when multiple EVs start 

charging at once. By managing these aspects, primary control helps maintain a stable and 

efficient charging process. Secondary control, on the other hand, functions as a higher-

level control mechanism, managing the restoration of system frequency and balancing 

power supply and demand among various converter-based EV chargers [91].  The 

secondary control is a crucial element of smart charging system, which coordinating 

multiple charging stations to balance the network load [92].  

In summary, the selection of a control architecture for multiple EV charging within a 

small network is contingent upon the specific requirements and constraints of the system. 
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PI control is favoured for its simplicity and robustness, whereas droop control offers 

advantages in decentralized operation and load sharing. Secondary control provides 

enhanced performance but introduces increased complexity.  

 

2.2 Dynamic load modelling of EV chargers 

Although the converter-based model includes the necessary characteristics for 

dynamic stability studies, it is excessively complex for integration into system-level 

simulations. Consequently, a simplified model that retains all essential features is required 

for effective EV charging system-level analysis. Additionally, there is a notable gap in the 

study of EV load modelling [47]. This section presents the corresponding studies 

implemented to establish a dynamic load model for EVs.  

In the context of power system dynamic load modelling, this type of model needs to 

include both static and dynamic characteristics of the load, which account for time-

dependent changes, capturing transient behaviours and interactions with the power 

system through complex differential equations. A precise and appropriate model which 

both includes the static and dynamic characteristics [93][94][95] has already been 

established and utilized for power system dynamic load model studies. One of the goals 

of this chapter is to represent EV charging through these dynamic load models. To 

achieve this, this study needs to build some typical existing EV charging converter-based 

control models and test them in voltage step change events, and then, record their 

dynamic response. Obviously, this dynamic response is affected by the controller of the 

chargers, such as the PI (proportional and integral) control parameters. These differences 

affect the dynamic characteristics of the EV [96], which will also be discussed in this 

study.  

On the other hand, artificial intelligence (AI) techniques are increasingly utilized to 

model the dynamic response in power system stability studies. AI-based methods for 

creating dynamic equivalent models of power systems significantly enhance the accuracy 

and efficiency of these models [97][98]. Potentially, these methods can be utilized in EV 

dynamic load modelling.  
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2.3 Parameters from the dynamic responses 

To accurately represent the dynamic response using target dynamic load model 

functions, which include the relationship between the voltage supply and power 

consumption, such as the power and voltage before and after the dynamic events occur 

and the detailed recovery process. It is essential to quantify the dynamic recovery curve 

and translate it into a transfer function with well-defined parameters, hence the curve 

fitting techniques. Not only the vector fitting technique can be utilized to implement the 

target estimation [100], but also the established toolbox can provide a variety of target 

fitting function selections [101]. Furthermore, the fitting technique has already been 

widely utilized in high-order dynamic load modelling [102][103]. This methodology will 

be utilized in this study to represent EV charging dynamic behaviours by the dynamic 

load model. The fitting quality which includes results from various fitting transfer 

functions is quantified through indicators which will also be compared in this chapter. 

Moreover, curve fitting can also be applied in a measurement-based manner using data 

from a real EV charger, which could be explored as future work from this study. 

Beyond traditional fitting techniques, several advanced methods are employed to 

model the dynamic response. These include primary frequency response, which models 

the immediate system response to frequency deviations [99], caused by EV charging or 

discharging in this study. Secondary frequency response involves the analysis of slower, 

controlled responses that restore system frequency following a disturbance [100]. High-

frequency response modelling captures rapid dynamics through detailed EMT 

simulations [105]. Additionally, for the system dynamics, virtual inertia provided by EVs 

addresses the impacts of reduced system inertia, while contingency analysis and dynamic 

security assessment help model the effects of a sudden loss of generation or load [106]. 

Loss of infeed in power systems refers to the sudden disconnection of generation units 

or external imports, causing significant frequency deviations and stability issues. To 

prevent cascading failures and maintain stability, the system must effectively manage 

these deviations [107]. Impedance-based oscillation analysis, which examines the 

impedance characteristics of systems with high power electronics penetration, helps 

identify and mitigate oscillations, ensuring stable operation and understanding small-

signal dynamics [108].  
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 It is important to note that, this study focuses on dynamic voltage stability and does 

not address frequency or rotor angle stability only necessitates attention to dynamic 

voltage response. 

Although the parameters of the dynamic recovery curve can be derived from detailed 

modelling of power electronics, only assuming the control loop and parameters are 

known. In practical scenarios, it is often challenging to obtain all parameters for EV 

charger converter design due to intellectual property constraints. Furthermore, in system-

level simulations, the large number of devices makes it impractical to model each one 

individually. Therefore, this study aims to achieve precise parameter estimation through 

measurement-based equivalent models, which facilitate the aggregation of responses in 

the DNs. Consequently, this thesis utilizes fitted results as the parameters for dynamic 

recovery curves. 

 

2.4 EV charge time scheduling 

Prior to investigating EV charging in the context of power system dynamic stability, 

it is essential to clarify the power demands associated with EV charging. Furthermore, 

these charging requirements are influenced by random variables, such as travel distance 

and charging preference [109][110][111].  

Standard charging - This charging plan implies a lack of formal scheduling; it 

presumes that customers will plug in and charge whenever a charging point is available 

after completing their last trip. Commonly, this daily charging occurs in the evening 

when people return home. Consequently, there may be variations in traffic patterns 

between weekdays and weekends. Moreover, peak charging times often coincide with 

evening hours. If the EV penetration rate is sufficiently high, it becomes feasible to 

establish a new daily system that peaks during the evening, corresponding with people’s 

return home.  

Multiple tariff charging - This charging plan is based on a market-driven approach 

to managing energy demand. By offering electricity supply at relatively cheaper rates 

during specific hours, customers are incentivized to charge their EVs during these off-

peak timeframes [110]. For instance, some suppliers provide reduced electricity prices at 

midnight. Consequently, some customers prefer to charge their EVs late at night rather 
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than immediately upon arriving home. This strategic shift helps mitigate stress on the 

electricity grid during peak demand hours.  

Smart charging - Smart charging is a strategy designed to mitigate peak-time stress 

on the power grid by shifting energy demand to off-peak hours. In contrast to multiple 

tariff charging, smart charging depends on control systems to determine charging start 

and end times, rather than relying solely on economic incentives to influence customer 

behaviour. Typically, EV mobility during off-peak hours is limited, facilitating efficient 

charging management.  

Note that multiple scheduling strategies can be applied simultaneously, such as 

coordinate charging, which refers to the strategic management of EV charging to 

optimize energy use and grid stability by utilizing both multiple tariffs and smart charges 

[112]. Furthermore, Virtual Power Plants (VPPs) can also be considered, which provide 

grid services such as balancing supply and demand, reducing peak loads, and enhancing 

grid stability which requires the smart charging infrastructure [113]. Hierarchical control 

of EV aggregation involves multiple levels of control strategies to manage large-scale EV 

charging and ensure that both local and global objectives are met [114].  

In the realm of optimization methods, both non-linear and linear techniques have 

been extensively reviewed. The paper [115] provides a comprehensive overview of 

various optimization techniques, including non-linear methods, specifically for 

scheduling EV charging. Additionally, the study [116] explores optimization-based 

approaches for EV routing and smart-charging. In terms of distribution network-

charging demand coordination and co-optimisation, the paper [117] proposes a control 

strategy aimed at enhancing regional consumption levels. Similarly, the research [118] 

investigates a coordinated planning method for distribution networks that incorporates 

demand response. Within the context of model predictive control (MPC), the paper [119] 

presents an MPC-based optimization for the real-time optimal charging of EV 

aggregators. Furthermore, the study [120] discusses an MPC strategy that employs mixed 

integer linear programming for optimal charge scheduling. 

Moreover, the V2G technique is also included in the smart charge category, which 

can be considered as an extension. In this strategy, the power flow between the EV and 

the power network becomes bi-directional [86][114]. This allows EVs to charge back to 
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the power grid during peak hours to reduce the electricity demand during those periods. 

In this context, EVs act as a source of energy rather than a load.  

Several studies focused the EV charging on the power network, these studies focus 

on two aspects - Time of start/end and the Place of home/work/station of charging 

[121] [122].  

Regarding the temporal perspective, some studies such as [123][124] assume all the 

EVs arrive at a specific time with a single fixed energy requirement. For instance, these 

studies estimated all EVs arrive home and start charging at 6 pm for a set duration. In 

contrast, some research, such as [125][126], defined that EVs are plugged into the 

network at different times. Regarding simulation modelling, the time-varying EV load 

model located at different busbars was performed in [127][128]. A management 

algorithm for the EV charge in real-time has been developed in [129][130], which also 

considered the operation conditions of the distribution system. Although these works 

provided the assumption of all EVs arriving at a given time, there are also some studies 

based on real-world datasets pertaining to EV charging in a given area. Numerous studies 

have evaluated the impact of electric vehicles on power demand, including extensive 

investigations into the EV power demand curve within smart grid environments [131]. 

Furthermore, certain charging scenarios such as charging in the retail building have been 

studied in [132]. The research on the spatial and temporal analysis of EV charging 

demand has also been discussed in [133][134][135]. The algorithm of anticipating the EV 

load demand in a real distribution power network in the residential-dominated Southside 

area of Glasgow in the UK, has been implemented by [63][64]. This predicted EV 

charging demand data from the algorithm has been implemented in this study to present 

residential area charging demand. Further, some studies also present the optimized 

methodology to reduce the load pressure on the power system [136] 

Regarding the spatial aspect, this encompasses the location, distance, and duration of 

trips which can be utilized to simulate the arrival time and energy demand of a fleet of 

EVs. Because the EVs are the replacement for ICEV, the individual trip behaviours are 

assumed not to change. The US-based travel survey [137] and the UK travel survey [138] 

have been employed to derive probability distributions of the arrival time of the vehicle 

in daily drive simulation [139][138]. Additional articles take into account the probabilistic 

aspect or generate different driving behaviours to analyse the arrival time and charging 

location [140][141].  
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2.5 Algorithm of EV charging events 

Various EV charging scheduling management methods can be applied to networks 

and simulations, necessitating efficient and reliable techniques to predict and manage 

charging events. Two prominent approaches in this domain are the Monte Carlo method 

and the Markov Chain model [142][143].  

The Monte Carlo method utilizes random sampling to simulate diverse scenarios of 

EV charging events. This technique is particularly effective in addressing the uncertainty 

and variability inherent in EV charging patterns [63][64]. By generating numerous 

potential charging scenarios based on probabilistic distributions of driving patterns, 

charging needs, and station availability, the Monte Carlo method can predict the load on 

the power grid [142]. 

Markov Chain models, on the other hand, employ a sequence of possible events 

where the probability of each event depends solely on the state attained in the previous 

event [143]. This method is adept at modelling the sequential nature of EV charging 

events. However, it requires accurate transition probabilities, which can be complex to 

implement.  

Combining Monte Carlo simulations with Markov Chain models, known as Markov 

Chain Monte Carlo (MCMC) [144][145], leverages the strengths of both methods. 

MCMC can generate more accurate and realistic simulations of EV charging events by 

incorporating the sequential dependencies and variability in charging behaviours [146] 

[147]. 

In addition to Monte Carlo and Markov Chain methods, machine learning 

methodologies offer powerful tools to address these challenges by predicting charging 

demand, optimizing charging schedules, and ensuring efficient energy distribution 

[148][149].  

 

2.6 The Distribution system under study 

Subsequently, the impact of EV penetration level on the DN is investigated. Note 

that in this thesis, EV penetration is defined as the ratio of EV load to the total system 
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load.  For this purpose, the benchmark MV grid of CIGRE [150][151] is simulated in 

DIgSILENT. Several scenarios are considered assuming different EV penetration levels 

and time-varying consumption profiles. Simulations are performed using typical 

residential and industrial load profiles. Further, both residential and industrial loads will 

be defined as ZIP loads with the parameter provided in [152] to ensure they reflect real-

world conditions.  

 

2.7 Circuit-based modelling of EV batteries 

Despite revolutionary advancements in EV technology, such as DC fast charging, 

V2G, and plug-in hybrid charging, the battery remains a critical component that 

dominates the charging speed limitations of EVs, as it is the source of all required energy 

[109]. These technologies are heavily dependent on battery packs. Consequently, it is 

imperative to elucidate the role of the battery in EV charging within power system 

studies and to identify the characteristics of the battery that warrant attention.  

The representation of a battery in power system studies is crucial. The literature 

primarily illustrates three types of battery models: experimental, electrochemical, and 

electric circuit-based models. Among these, the experimental and electrochemical models 

are not suitable for modelling in power networks. The electric circuit-based model offers 

the advantage of representing the electrical characteristics of batteries. This model, in its 

simplest form, comprises a voltage source in series with internal resistance [109][153]. 

Therefore, this chapter will employ the electric circuit-based battery model for the study.  

In the context of the electric circuit-based battery model, it is essential not only to 

include the voltage source and internal resistance but also a parameter to signify the 

stored electrical charge within the battery, commonly referred to as the SoC. 

Unlike the batteries used in other electronic devices such as mobile phones and 

laptops, batteries for EVs require the capacity to manage high power and energy within a 

cost-effective and spatially efficient framework [109]. From the material perspective, EVs 

were initially designed to utilize rechargeable lead-acid batteries for short trips. Presently, 

two primary battery technologies employed in EVs are the Nickel Metal Hydride (NiMH) 

battery, used in vehicles such as the Honda Civic and Nissan Altima, and the Lithium-

Ion (Li-ion) battery, used in vehicles such as Tesla and GM Chevyvolt [154]. Among 
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these, the electric circuit-based modelling of lead-acid batteries has been implemented 

[153]. The modelling of NiMH batteries can be found in [155], the reference [156] 

discusses the advancements in NiMH battery technology, covering aspects such as design 

flexibility, energy, power, environmental acceptability, and cost. The modelling of the Li-

ion battery has been presented in [87], and the reference [157] provides a detailed review 

of the state of the art and future perspectives of Li-ion batteries, emphasizing their 

immense potential in various contexts. 

This study necessitates not only the electronic circuit-based battery model but also 

the consideration of the upstream AC/DC structure, given its integral role in EVs. The 

AC/DC component can be composed of a diode and a PFC controller, as depicted in 

the literature [159][160][161]. Alternatively, this AC/DC component can be implemented 

via a full-bridge converter, encompassing outer voltage and inner current control [47]. 

The specifics of this component have been illustrated in Chapter 3. This chapter will 

concentrate on the variations induced by the battery model when connected under 

diverse SoC scenarios.  

Concerning the distinctions that need to be observed in this study from the 

perspective of power system load modelling, the modelling will follow the methodologies 

introduced in references [61][94][95]. Additionally, a precise dynamic load model for EV 

charging has been implemented in Chapter 3. The work presented in this chapter can be 

viewed as an extension of this model, considering the charging characteristics under 

various SoC settings. 
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3.1 Introduction 
 

3.1.1 Motivation 

While EVs are commonly associated with transportation, power system studies 

recognize them as multifaceted entities. In addition to serving as loads, EVs also function 

as inverter-based energy sources, particularly in V2G systems. To represent EVs as loads 

in power system studies, it is essential to comprehend their charging structures and 

control loops. This understanding enables the identification of specific EV charging 

characteristics relevant to power system stability simulations. The subsequent step 

involves selecting an appropriate dynamic load model to represent EVs, considering both 

their charging behaviour and the requirements of power system dynamic stability 

simulations. This study investigates the impact of varying PI control parameters on 

dynamic load modelling in the context of charging control. The primary objective of this 

chapter is to develop an accurate dynamic load model specifically tailored for EVs, 

facilitating its utilization in power system dynamic stability analyses. 

 

3.1.2 Contributions 

This chapter investigates the extent to which standard static and dynamic load 

models used in power system studies could represent typical slow and fast EV chargers, 

as well as their sensitivity to changes in control parameters. Complex detailed models 

(including the detailed behaviour of power electronics) are initially used to extract 

parameters for typical load models used in power system studies, following a fitting 

approach. In more detail, the key contributions of this chapter are the following:  

• Detailed models are used to test the capability of a standard dynamic load model 

commonly used in power system dynamic studies namely, the adopted dynamic 

load model to represent EV charging dynamic behaviour. Curve fitting is used to 

define appropriate model parameters for both the static and dynamic load 

models.  

• Different control settings (PI parameters) for two charging approaches (a fast 

and slow charger) are investigated, showcasing the impact they have on the ability 

of the exponential recovery dynamic load model to accurately represent the 

response of EV charging.  
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• Ultimately, the thesis presents a set of parameters that can be utilised to represent 

EV charging behaviour for certain control settings and for both static and 

dynamic responses. Thus, this thesis offers insight into the potential limitations 

of standard models in representing EV charger dynamic behaviour. 

 

3.2 Charging approaches for EV 

EV charging is the process that transfers the electricity from the power network into 

the battery. These two electrical energy transmission approaches have some detailed 

differences, which is the placement of AC/DC converter installations as illustrated in  

Figure 3. 1. 

 

Figure 3. 1. Two typical charging scenarios [109].  

Here are two typical charging scenarios, one is charging at home or residential area, 

and another is in charging stations. Both receive electricity from the power network. The 

difference is the charging in the residential areas connects the EV to the residential 

supply voltage which is 230V in the UK. In this scenario, the EV charging cable will be 

plugged into the AC port, and this approach can be classified as the AC charge. On the 

other hand, if the EV charges from the charging station, the inbuild AC/DC converter 

will provide DC current to the DC charge port. In this scenario, the EV will receive DC 

and convert it into a battery with an acceptable voltage level [109]. This approach can be 

classified as the DC charge. One thing that needs to be emphasized is that some of the 

modern manufactured EVs have both AC and DC ports on the build, but only one will 

be activated in the charging process. Therefore, this study treats them as separate 

charging approaches. By the end of the charging process is the battery part, Chapter 6 
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will discuss whether the different battery State-of-Charge will impact the EV charging 

load modelling in detail.  

In this section, two typical models are adopted and utilized to represent a relatively 

slow (7.4 kW, level-2 charge) and fast charge (~50 kW DC fast charge). The relatively 

slower charge approach (named “Approach A” in this study) is based on a diode rectifier 

and a DC/DC converter [159][160][161]. On the other hand, the fast charge approach 

(named “Approach B” in this study) uses a 3-phase full-bridge converter and a DC/DC 

converter [47][162]. Approach A is characterised by a simplified control structure, which 

is popular for residential chargers e.g., level-2, ~7.4 kW). Despite this, approach A has 

functional limitations (i.e., unidirectional power flow), and it is also inappropriate for 

smart charging applications. Approach B is characterised by the possibility of 

bidirectional power flows and fast charging features. For DC fast charging, 50 kW 

chargers are popular (e.g., ABB Terra 53 [38] and CHAdeMO DC 50 kW quick charger 

[163]); therefore, the 50 kW charging level was chosen for approach B in the modelling 

of this section. 

From these two charge approaches, both AC/DC and DC/DC exhibit similar 

dynamic responses. However, the slow charge model is suitable for single-phase charging 

in residential installations, and the fast charge for three-phase power supply in charging 

stations. Sections 3.2.1 and 3.2.2 provide a detailed discussion of these two charging 

approaches. The results, including dynamic response curves and the dynamic load model 

with parameters, are presented in sections 3.5.2 and 3.5.3. 

These approaches are modelled using detailed power converter models in 

MATLAB/Simulink, in order to obtain the detailed response of EVs charging for small 

voltage disturbances. These detailed dynamic responses are utilized to establish the static 

and dynamic EV dynamic load models for power system studies.  

 

3.2.1 Approach A - Typical EV slow charge model (~7.4 kW level-2) 

This charging approach is generally used in slow charging and relatively low-power 

designs, such as electric scooters, which can be charged through the household power 

supply. The charging approach A consisted of two main parts, one is a diode rectifier 

[164][165] and PFC (Power Factor Correction) controller [166][167] in order to transfer 

AC to DC, and another is a DC/DC converter [159][160][161], as depicted in Figure 3. 2. 
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Figure 3. 2. Topology for charging approach A (~7.4 kW, level-2 charge) 

Despite, the AC/DC has already provided the DC power supply that can charge the 

battery, two-stage power conversion (i.e., AC/DC and DC/DC) provides inherent low-

frequency ripple rejection and has been used in modern battery charger topology 

[159][168]. 

As the structure illustrated in Figure 3. 2, several technologies can be utilized for each 

part. For example, a diode rectifier can be used on the AC/DC converter [81][169][170]. 

The purpose of PFC control is to keep the power factor close to 1, which can also be 

implemented in charger structures. This can be done by appropriately controlling the 

boost converter between the diode rectifier and the full bridge DC/DC converter as 

defined in [159][160][171].  The DC/DC part can be implemented by a series-loaded 

resonant DC/DC converter [160], or even a buck converter [47].  

There are three PI (Proportional-Integral) controllers; PI1 and PI2 are located in the 

AC/DC and PFC components, respectively, and PI3 is located in the DC/DC converter. 

PI1 compares and integrates the difference between 𝑉𝐷𝐶 𝑟𝑒𝑓 and 𝑉𝐷𝐶 . PI2 compares and 

integrates the difference between 𝐼𝐿 𝑟𝑒𝑓  and 𝐼𝐿 , primarily impacting the power factor by 

adjusting the phase angle.  

In this study, the EV charging approach A is based on the architecture described in 

[171], which utilised a diode rectifier, a boost converter (including PFC) and a full bridge 

DC/DC converter. 
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3.2.2 Approach B – Typical DC fast charge model (~50 kW) 

The DC fast chargers are usually not installed in private homes, on the contrary, they 

focus on public charge stations as shown in Figure 3. 3. Therefore, they can be powered 

by three-phase power. The Approach B represents the DC fast charge which can 

physically consist of a full-bridge 3-phase converter and a DC/DC converter [172] as 

shown in Figure 3. 3 below [47].  

 

Figure 3. 3. Topology for charging approach B (Level-3, DC fast charge) 

Unlike the slow charging approach, which involves placing the AC/DC component 

within the EV, DC fast charging incorporates a high-power full bridge AC/DC 

converter in the charging station. This full-bridge converter consists of both outer 

voltage and inner current control [47][79][162]. The inner current control loop drives the 

converter based on dq (Direct-Quadrature) currents which are generated by the 

associated references of the outer control loops. To meet power quality requirements and 

control the battery charging, a DC/DC converter is also used. Additionally, the DC/DC 

converter can be part of a battery management unit that regulates battery charging in CC 

(constant current) and CV (constant voltage) modes [161][173].  

The fast charging approach also utilizes three PI controllers, with PI1 and PI2 

located in the full-bridge AC/DC converter and PI3 located in the DC/DC converter in 

front of the battery. PI1 is placed in the voltage outer loop control and adjusts the 

voltage dynamic response by comparing and integrating the difference between 𝑉𝐷𝐶  and 

𝑉𝑟𝑒𝑓 . This signal will pass to the current inner loop control and adjust the phase angle 

and power factor by comparing with 𝐼𝑑  on the Direct axis and comparing 𝐼𝑞  and 𝐼𝑟𝑒𝑓  

on the Quadrature axis. 

For the purpose of this study, the impact of the built-in DC/DC converters in both 

Approach A and B on dynamic load modelling is considered negligible. Nevertheless, 
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these structures are retained in the models utilized in this chapter, as the comprehensive 

development of detailed models fell beyond the scope of this research. Consequently, 

state-of-the-art models reported in the existing literature were implemented. 

In summary, the difference between charging approaches A and B (slow and fast) 

strongly related to their charging speeds. Slow charging typically uses lower power levels 

(e.g., Level 1 and Level 2 chargers), which are suitable for overnight charging at home by 

single-phase. Fast charging, on the other hand, uses higher power levels (e.g., Level 3 

chargers or DC fast chargers), usually provided by charging stations by 3-phase, which 

can charge an EV much more quickly, often in less than an hour. 

Indeed, the electrical architecture of approaches A and B is similar, as shown in 

Figure 3. 1 Both utilize the basic electrical architecture (AC – AC/DC – DC/DC – EV 

battery), ensuring compatibility and efficiency in converting AC power from the grid to 

DC power for the EV battery. However, there are detailed differences: for slow charging, 

the AC/DC converter is installed in the EV and uses a single-phase power supply, 

whereas for fast charging, it is located in the charging station and uses a three-phase 

supply. Additionally, as illustrated in Figure 3. 2 and Figure 3. 3, slow charging includes 

power factor correction, while fast charging employs the abc/dq framework 

 

3.3 Power system dynamic load modelling 

The characteristic of the power system load has an important influence on system 

stability. This characteristic can be divided into two aspects - Static and Dynamic, 

characterising the responses of active and reactive power to certain power system 

conditions [54].  

The static load model illustrates load characteristics by algebraic functions at any 

instant of time [174], since it does not contain any dynamic information. The dynamic 

load model is important to analyse power system dynamic behaviour both in small and 

large disturbances. It focuses on the response in a period of time, which does not contain 

steady-state information. Both static and dynamic parts of the load model for both EV 

charging approaches are analysed in this section.  
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3.3.1 Structure of the static load model 

The static load model expresses load characteristics at any instant of time, the 𝑃 

(Active power) and 𝑄  (Reactive power) are considered separately. The relationship 

between voltage supply and power consumption is fundamental in load modelling. As 

voltage (𝑉 ) deviates from its nominal value (𝑉0 ), the power consumed by the load 

changes according to the equations. Traditionally, the voltage dependency of load 

characteristics is represented by the exponential model: 

𝑃 = 𝑃0(
𝑉

𝑉0
)𝑎 (3.1) 

𝑄 = 𝑄0(
𝑉

𝑉0
)𝑏 (3.2) 

The 𝑃0 , 𝑄0 , are the active power, and reactive power when the supply voltage 

corresponds to 1 p.u. When the 
𝑉

𝑉0
 is equal to 1 means the active power and reactive 

power are operating at the nominal voltage. The exponential parameters 𝑎  and 𝑏  as 

shown in equations (3.1) and (3.2) describe the relationship of active and reactive power 

with respect to voltage [102][175][176]. These exponents determine how sensitive the 

load is to voltage changes. For instance, if 𝑎 is greater than 1, the active power increases 

more than proportionally with voltage. With the exponents 𝑎 and 𝑏 equal to 2, 1 or 0, 

the model represents constant impedance, constant current, and constant power 

characteristics, respectively.  

Not only the exponential equations can be utilized in static load model description, 

but also a polynomial load model can represent the static features, which can also be 

named as the ZIP model (Z for impedance, I for current, P for Power).  

𝑃 = 𝑃0 ∙ [𝑝1(
𝑉

𝑉0
)2 + 𝑝2

𝑉

𝑉0
+ 𝑝3] (3.3) 

𝑄 = 𝑄0 ∙ [𝑞1(
𝑉

𝑉0
)2 + 𝑞2

𝑉

𝑉0
+ 𝑞3] (3.4) 

Both the Exponential function and ZIP function represent the same thing, which is 

the relationship between the voltage supply and power consumption. The exponential 

fitted curve to an exponential equation, while the ZIP model follows a polynomial 

equation, each maintaining their respective mathematical properties. These two methods 

can be transformed into each other. However, they offer distinct ways to represent the 

underlying relationships between coefficients. In equations (3.1)  - (3.4) , 
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for a constant impedance load, the parameter 𝑎  in the exponential model should be 

approximately 2, and 𝑝1 in the ZIP model should be close to 1. For a constant current 

load, the parameter 𝑎  in the exponential model should be approximately 1, and 𝑝2 

in the ZIP model should be close to 1. For a constant power load, the parameter a in the 

exponential model should be approximately 0, and  𝑞3 in the ZIP model should be close 

to 1 [54][102]. The independent parameter in both Exponential functions and ZIP 

functions is 
𝑉

𝑉0
, which means the per-unit supply voltage.  

 

3.3.2 Structure of the dynamic load model 

Static load models in power systems represent loads that remain constant over time, 

utilizing simple mathematical relationships for steady-state analysis. Conversely, dynamic 

load models account for time-dependent variations, capturing transient behaviours and 

interactions within the power system through complex differential equations. One thing 

that needs to be emphasised is that, the dynamic load model is also called the 

Exponential Recovery Load Model (ERLM) in the literature [61][94], because its 

recovery process can be represented by an exponential function in the time domain. It is 

different from the exponential static load model illustrated in the previous paragraph. 

The ERLM is concerned with the relationship between time and power consumption, on 

the other hand, the exponential static load model is related to the voltage supply and 

power consumption at any instant in time. 

The ERLM typically encompasses the instantaneous change at the moment the 

disturbance occurs and the recovery process in the following seconds. It is expressed as 

the change of Active/Reactive power over time. On the other hand, the ERLM only 

supports the exponential function in its recovery process, rendering it inadequate to 

represent some complicated dynamic characteristics in the recovery process. Given that 

EVs exhibit dynamic behaviours that significantly differ from traditional types of loads 

and load modelling in the current power system, the use of exponential recovery may 

prove inadequate for representing this process. As a result, it may be necessary to employ 

higher-order dynamic responses to augment the capability of the dynamic load equivalent 

model.  

As shown in Figure 3. 4, the adopted dynamic equivalent model can be seen as a 

block diagram interconnection of a linear transfer function, described by 𝐺(𝑠), and two 
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nonlinear functions, described by 𝑓1 and 𝑓2. The equivalent model receives as input the 

grid voltage (𝑉𝐿 ) and provides as output the real/reactive power response (𝑦𝑑 ). The 

lower branch of the block diagram representation is determined by 𝑓1 , which is a 

nonlinear function that is used to describe the transient part of the real/reactive power 

response [93]. The upper branch consists of 𝑓2  and 𝐺(𝑠) . 𝑓2  is a second nonlinear 

function used to describe the new steady-state of the power, i.e., the new steady-state 

after the voltage disturbance. 𝐺(𝑠)  is a linear transfer function used to simulate the 

recovery response of the real/reactive power.  

 

Figure 3. 4. General structure of adopted dynamic load model. 

The whole response is divided into two parts as shown in Figure 3. 4, the 

mathematical expression of the adopted dynamic model is defined as in [103]: 

𝑦𝑠(𝑡) = 𝑦0 [
𝑉𝐿(𝑡)

𝑉0
]

𝑁𝑠

       𝑦𝑡(𝑡) = 𝑦0 [
𝑉𝐿(𝑡)

𝑉0
]

𝑁𝑡

(3.5) 

𝑦𝑑(𝑡) = 𝑦𝑟(𝑡) + 𝑓1(𝑉𝐿(𝑡)) (3.6) 

𝑇𝑦�̇�𝑟 + 𝑦𝑟(𝑡) = 𝑓2(𝑉𝐿(𝑡)) (3.7) 

𝑓1(𝑉𝐿(𝑡)) = 𝑦𝑡(𝑡)         𝑓2(𝑉𝐿(𝑡)) = 𝑦𝑠(𝑡) − 𝑦𝑡(𝑡) (3.8) 

The 𝑁𝑡 and 𝑁𝑠 are the transient and steady-state voltage exponential parameter that 

corresponds to the exponential parameter 𝑎 to equation (2.1) shown above. The output 

𝑦𝑑  is the time domain real/reactive power response. 𝑦𝑟  is the time domain recovery 

response of the power. 𝑦𝑡  and 𝑦𝑠  are two exponential functions used to simulate the 

transient and the steady-state behaviour of the power response, respectively. 𝑉𝐿 is the 

load voltage, that corresponds to 𝑉 from equations (3.1) ~ (3.4). The  𝑉0 and 𝑦0 are the 

voltage magnitude and the total power consumption prior to the disturbance. 

As shown in Figure 3. 4, a transfer function has been utilized to represent the 

recovery process, it makes the dynamic load model better capable of representing a more 

complicated recovery process. The implemented dynamic load model consists of a 
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transfer function and two nonlinear functions [61]. The input time-varying voltage 𝑉𝐿(𝑡) 

is shown in (3.6) and (3.7).  

On the other hand, the ERLM only contains an exponential function to represent the 

dynamic recovery process, which can be seen as a 1st order transfer function in the 

Laplace domain. In order to represent the higher order transfer function based 

oscillatory response, in this study, the exponential function in ERLM will be replaced by 

transfer function 𝐺(𝑠), which is capable of having the same order level as the oscillatory 

recovery, to make the model become the adopted load model [102].  

𝐺(𝑠) =
𝛽𝜈𝑠

𝜈 + 𝛽𝜈−1𝑠
𝜈−1 +⋯+ 𝛽0

𝑠𝜇 + 𝛼𝜇−1𝑠
𝜇−1 +⋯+ 𝛼0

(3.9) 

The component in upper branch 𝐺(𝑠) is a transfer function used to approximate the 

recovery response of power. One thing that needs to be emphasised is that, the 

parameters 𝜈 <  𝜇, to ensure that the load recovery is continuous. Set of parameters 𝜃 =

[𝑁𝑠, 𝑁𝑡, 𝛽𝜈 , 𝛽𝜈−1, … 𝛽0, 𝛼𝜇−1, … 𝛼0] will be specified using measurements.  

Here is an example to illustrate the adopted dynamic load model response in the 

following Figure 3. 5. 

 

Figure 3. 5 The adopted dynamic load model  

 



Chapter 3 - Electric Vehicle Dynamic Load Modelling 

40 | P a g e  
 

The voltage supply 𝑉𝐿(𝑡)  has a step change in the disturbance that occurs. 

Corresponding to the dynamic power consumption 𝑦𝑑 also has the instantaneous step 

change at the same time, and the transient power consumption is 𝑦𝑡. Regarding to the 

dynamic characteristics of the load model, there is a recovery after that instantaneous 

change, the amplitude of this recovery can be calculated by 𝑦𝑡 , which has also been 

expressed in equation (3.7). The static load model in power systems represent loads in 

the steady state, which means the steady state component 𝑦0 [
𝑉𝐿(𝑡)

𝑉0
]
𝑁𝑠

 is the static load 

model in Figure 3. 5. 

The dynamic model can be utilized in representing different loads such as EV by 

adjusting the parameters among these equations. The method to access the parameters 

from measurement data is expressed in Section 3.4.  

 

3.4 Technique for parameter estimation 

The required set of parameters, i.e., 𝜃 = [𝑁𝑠, 𝑁𝑡 , 𝛽𝜈 , 𝛽𝜈−1, … 𝛽0, 𝛼𝜇−1, … 𝛼0] , is 

estimated using the iterative procedure of Algorithm-1, presented in Table 3. 1, A 

detailed analysis of all required steps is provided in the next paragraphs. 

 

Table 3. 1. Algorithm for parameter estimation. 

Algorithm-1: Pseudocode for the parameter estimation 

Step-1:    Record voltage 𝑉𝐿(𝑡) and power 𝑦𝑑(𝑡)  responses. Determine the desired 

tolerance, i.e., 𝑡𝑜𝑙 

Step-2:    Filter the recorded responses using an LPF 

Step-3:    Determine the optimal window length 

Step-4:    Compute 𝑁𝑡 and 𝑁𝑠 exponents using (3.10) and (3.11), respectively 

Step-5:    Calculate 𝑓1  and 𝑓2 in TD using (3.8) 
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Step-6:    Calculate 𝑦𝑟(𝑡) using  (3.6) 

Step-7:    Set 𝜇 = 0 and 𝑅0
2 = 0 

Step-8:    Set 𝜇 = 𝜇 + 1 and Repeat Steps 9 to 11 

Step-9:          Compute a 𝜇 order approximation for the 𝐺(𝑠) 

Step-10:        Compute 𝜇 = 𝜇 − 1 in TD, using (3.14) 

Step-11:        Compute 𝑅𝜇
2 and 𝛥𝑅2 

Step-12:   Until 𝛥𝑅2 < 𝑡𝑜𝑙 

Step-13:   Finalize model with order equal to 𝜇 − 1 

 

The main steps of the proposed Algorithm are explained below: 

Step-1: When a disturbance occurs, the resulting voltage and power dynamic 

responses are recorded. In this study, data is recorded from simulation from MATLAB 

Simulink. The user also defines the desired tolerance (𝑡𝑜𝑙). 𝑡𝑜𝑙 is a predefined tolerance 

threshold used to determine the desired order 𝜇 . Further information about 𝑡𝑜𝑙  is 

provided in Step-12. The voltage 𝑉𝐿(𝑡)  and power 𝑦𝑑(𝑡)   can be obtained by the 

detected dynamic response directly. 

Step-2: The recorded responses are filtered using a low pass filter (LPF). 

Step-3: Prior to the parameter estimation, the optimal length of the window analysis 

is determined using the method of [103]. 

Step-4: Exponents 𝑁𝑡 and 𝑁𝑠   are determined using (3.10) and (3.11), respectively. 

𝑁𝑡 =
𝑙𝑜𝑔 (

𝑦+
𝑦0
)

𝑙𝑜𝑔 (
𝑉+
𝑉0
)

(3.10) 
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𝑁𝑠 =
𝑙𝑜𝑔 (

𝑦𝑠𝑠
𝑦0
)

𝑙𝑜𝑔 (
𝑉𝑠𝑠
𝑉0
)

(3.11) 

Here, 𝑉+ and 𝑦+  denote the voltage magnitude and power consumption immediately 

after the disturbance, respectively; 𝑉𝑠𝑠 and 𝑦𝑠𝑠 express the voltage magnitude and power 

consumption at the new steady-state. The (3.10) and (3.11) can derived using formula 

(3.5). 

Step-5: 𝑓1 and 𝑓2 are computed in the time domain (TD), using (3.8). 

Step-6: The recovery response of the power (𝑦𝑟) is calculated using (3.6). 

Step-7: Set  𝑅0
2 = 0. 

Step-8: Set the estimated order 𝜇 for the transfer function and execute Steps 9 to 11. 

Step-9: Compute a 𝜇 order the approximation for the characteristic function 𝐺(𝑠) 

and determine the corresponding parameters, i.e., [𝛽𝜈 , 𝛽𝜈−1, … 𝛽0, 𝛼𝜇−1, … 𝛼0] . 

Parameters are estimated using 𝑡𝑓𝑒𝑠𝑡 function in MATLAB. 

Step-10: The estimated power response, i.e., 𝑦𝑒𝑠𝑡(𝑡), is computed. For this purpose, 

the estimated recovery response, i.e., 𝑦𝑒𝑠𝑡 is initially calculated via the 𝑙𝑠𝑖𝑚 function in 

MATLAB, using as inputs the identified transfer function 𝐺(𝑠) and 𝑓2. Afterwards, 𝑦𝑒𝑠𝑡 

is calculated via (3.12). 

𝑦𝑒𝑠𝑡(𝑡) = 𝑦𝑟,𝑒𝑠𝑡(𝑡) + 𝑦𝑡(𝑡) (3.12) 

Step-11: The coefficient of determination for the 𝜇 -th iteration, i.e., 𝑅𝜇
2, is computed 

via (3.13) 

𝑅𝜇
2 = (1 −

∑ (𝑦𝑑[𝑛] − 𝑦𝑒𝑠𝑡[𝑛|𝜽])
2𝑁

𝑛=1

∑ (𝑦𝑑[𝑛] − 𝑦𝑑)
2𝑁

𝑛=1

) (3.13) 

𝛥𝑅2 = 𝑅𝜇
2 − 𝑅𝜇−1

2 (3.14) 

 

In the above notation, N is the total number of TD samples. 𝑦
𝑑

 is the mean value of 

𝑦𝑑 . For the first iteration of Algorithm-1, 𝑅0
2 is set to zero. A 𝑅2 value equal to 100% 

denotes a perfect estimate. 
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Step-12: If 𝛥𝑅2 is lower than the user defined tolerance, i.e., 𝑡𝑜𝑙, then the Algorithm 

moves to Step-13. Otherwise, the Algorithm moves back to Step-8 and a higher order 

approximation for the 𝐺(𝑠) function is computed. 

Step-13: The fulfilment of the 𝛥𝑅2 criterion implies that the accuracy of the model is 

not increased between the last two iterations. Therefore, to ensure that the developed 

models will have the lowest possible complexity, the Algorithm terminates by setting the 

model order to 𝜇 = 𝜇 − 1. 

 

3.5 Dynamic load modelling and parameterization of EVs 

In this section, both static and dynamic parameters will be identified. The process is 

divided into two steps, the first step is clarifying the static load model parameters such as 

𝑁𝑠 and 𝑁𝑡 by exponential static load model, Subsequently, the parameter for this study 

determines the parameters for the ZIP model as well.  

The second step focuses on the modelling of the dynamic recovery process. A 

parameter estimation algorithm is used to implement the fitted model based on different 

order levels of transfer functions. The recovery curve will be affected by the choice of PI 

control parameters. This study will also analyse how these selections vary and determine 

the most appropriate fitting method for different scenarios. The quantification indicator  

𝑅2 value will identify which is better to be utilized in the EV load model. 

In the context of EV charging, reactive power consumption is typically negligible. 

This is primarily due to the inherent characteristics of the charging process. The AC 

supplied by the grid is converted into DC within the charging system to facilitate the 

charging of the EV’s battery. Reactive power, quantified in VAr (Volt-Amps Reactive), is 

essentially provided by the phase differential between the voltage and current. Given that 

the EV charging process does not actively generate this phase differential, the EV can be 

seen as a load that only consumes active power. However, depending on the design of 

the charging system and the characteristics of the electrical grid, it cannot guarantee that 

reactive power consumption will always be zero [177]. Therefore, only the active power 

aspect will be considered in this study.  
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3.5.1 Static load model parameters for charging Approaches A & B 

As illustrated from equations (3.1) and (3.3), the static load model characterises the 

relationship between the supply voltage and active power exchange for EV chargers. The 

active power output at each voltage level is obtained from detailed simulations after they 

reach steady-state values. The curve fitting analysis was performed to determine the static 

load model parameters for the active power, as expressed in equations (3.1) and (3.3). 

Both exponential function and polynomial function fitting can be easily obtained by the 

CFTOOL [101] in MATLAB. The results of the fittings of the exponential and ZIP 

static models, respectively, are shown in Figure 3. 6.  

  

Figure 3. 6. Simulation & curve fitting results for active power and charging approach A: (a) 
exponential model, (b) ZIP model. 

The range of voltage in this study is 0.8 p.u. to 1.2 p.u., the active power does not 

show a significant change within this range, indicating that the EV charger exhibited 

behaviour close to a constant active power load. This is observed for the exponential and 

ZIP models.  

In particular, the curve fitting exercise produced numerical results, as presented in 

Table 3. 2. For the exponential model, the corresponding parameter is very close to 0; for 

the ZIP model, the P parameter is close to 1. Such numerical results indicated that an EV 

could be treated as a constant power load when operating in charging Approach A. 

In a similar manner, the static model parameter under Approach B is also obtained. 

Which is presented in Figure 3. 7. The produced numerical results for the static load 

parameters for the exponential and ZIP models are presented in Table 3. 2.  
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Figure 3. 7 simulation & curve fitting results for active power and charging approach B: (a) 
exponential model, (b) ZIP model. 

Overall, the trends of active power consumption are the same as Approach A, albeit 

with a slightly larger deviation. Consequently, the EV charging characteristic, in this case, 

is also close to a constant power load. this result can also be verified from Table 3. 2 - 

the active power exponential load model parameter was close to 0 while the P parameter 

from the ZIP model was close to 1. To summarize: the exponential and ZIP models can 

both represent EV charger static behaviour. 

Table 3. 2 Static load model parameters for EV charging 

EV Charge Static Load Model Parameters 

Charging type 
Exponential 
parameter 

Parameter 
Z 

Parameter 
I 

Parameter 
P 

Approach A -0.052 00034 -0.1199 1.086 

Approach B -0.092 0.0620 -0.2199 1.156 

 

 

3.5.2 EV dynamic load model for AC voltage single phase charging 

As the detailed EV converter-based control model presented in Figure 3. 2, the 

dynamic response can be measured by voltage step changes for various sets of 

parameters under the different PI controllers. Then, the measured responses were used 

to fit the parameters of the typical dynamic load model structure. 

It needs to be emphasised that, both charging Approaches A & B have three 

controllers, PI1, PI2, and PI3, in this study. The PI1 controller corresponds to the 

voltage outer loop, the PI2 controller to the current inner loop, and the PI3 controller to 

the DC/DC battery charge loop (depicted in Figure 3. 2 and Figure 3. 3). It is important 
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to understand the distinctions among these PI controllers influence the dynamic 

response curve., hence, influence the EV dynamic load modelling. It is necessary to 

figure out whether and how these PI controllers affect the dynamic response, and how 

the P and I parameters affect the dynamic response respectively.   

This study utilized Simulink to connect the voltage source directly to the EV model. 

Consequently, the 5% voltage step change in the simulation reflects an actual voltage 

change. This voltage variation is implemented by controlling the voltage source. To 

investigate the proportional parameter influence, Figure 3. 8 presents the effect of the 

proportional gain of PI1. Decreasing the proportional gain caused the behaviour of the 

model to become less oscillatory and to deviate from 1st order responses. In this situation, 

the 𝐺(𝑠) in (3.9) needs to become a higher-order transfer function that can represent 

the dynamic response precisely.  

 

Figure 3. 8. Dynamic response for different proportional gain values of PI1 for a −20% voltage  

 

In the charging approach A, PI1 had a significant influence on the dynamic response 

of the model when a disturbance was caused on the AC side. On the other hand, PI3, 

which is placed on the DC/DC converter, does not affect the overall response of the 

model as Figure 3. 9 shows below.  
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Figure 3. 9. Comparison of dynamic response by different DC/DC PI parameter settings for −5% 
voltage disturbance (P1 = 1; I1 = 0.1; P2 = 10; I2 = 5). 

 

The amplitude of the voltage step disturbance can impact the dynamic response. For 

additional clarity, Figure 3. 10 presents the response of the EV model for P1 = 1 and I1 

= 10 for different voltage step disturbances (both increased and decreased) ranging from 

5 - 20%. These data further highlight that the response was closer to a 2nd order system 

which can effectively present oscillatory behaviour. 

 

Figure 3. 10. Dynamic response for control approach A, considering different voltage 
disturbances (PI settings: P1 = 1; I1 = 10; P2 = 10; I2 = 5; P3 = 5; I3 = 10. 

To investigate the impact of integral parameters on dynamic response is also 

important. Initially, the impact of PI settings of the EV chargers on the resulting active 

power dynamic responses is demonstrated via a simple example. For this purpose, a -15% 

voltage disturbance is simulated and six cases for the PI values are considered. In 

particular, for Case#1, Case#2, and Case#3 the value of the proportional term is set to 1, 

i.e., P=1, while the value of the integral term (I) is set to 0.1, 1, and 30, respectively. For 

Case#4 and Case#5 Case#6, it is assumed that I = 0.1 I = 1 and I = 30, respectively. For 
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Case#4 Case#5 and Case#6 the proportional term is set to 10. The resulting active 

power dynamic responses for each of the examined cases are summarized in Figure 3. 11. 

 

 

Figure 3. 11. Dynamic response for the different values of integral gain of PI1 for a −20% 
voltage disturbance occurring at the 20th second; P2 = 10; I2 = 5; P3 = 5; I3 = 10 

 

The results demonstrate that the proportional parameter significantly influences the 

power recovery time. Specifically, a higher value of the proportional term leads to faster 

recovery. Additionally, the integral term significantly impacts the dynamic behaviour of 

power during the recovery phase. As the value of the integral term increases, the 

recovery phase becomes more oscillatory. The presented results verify that based on the 

PI settings different order equivalent models are required to accurately capture the 

dynamic behaviour of the power. This is further exemplified in Figure 3. 12 where 

equivalent models are developed for Cases#1, #2 and #3.  
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Figure 3. 12. Representative curve fitting results for slow charging. Comparison of the fitted 
curve and original response data from charging slow charge, considering -15% voltage 

disturbance. (a) measured data from EV charge power electronics model controlled by P = 1; I = 
0.1; (b) controller setting as P = 1; I = 1; (c) controller setting as P = 1; I = 10. 

 

As the fitting result in Figure 3. 12, a 1st order dynamic equivalent model is 

inadequate to analyse the dynamic behaviour of the EVs for all possible PI settings. 

Indeed, a 1st order model cannot capture the oscillatory behaviour that may be exhibited 

due to high integral gains. This is clearly demonstrated in Figure 3. 12(b) and Figure 3. 

12(c). Under these conditions, higher order equivalent models are required. In the 

presented example, a 1st order equivalent is not adequate for the modelling of Case#2 

and Case#3.  For these cases, a 2nd order equivalent model is required. It shall be noted 

that using the proposed approach, this study has recorded the fitting results obtained 

from the 1st 2nd and 3rd transfer functions. These results serve as a basis for comparing 
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their respective fitting qualities and details. In addition, in a high integral setting scenario, 

such as Figure 3. 12(c), the 2nd order equivalent is also not adequate for the modelling. In 

this case, the 3rd order equivalent is necessary to be utilized. 

Further, the higher order transfer function does not mean better fitting quality such 

as some inappropriate fitting results illustrated in Figure 3. 12, and the corresponding 𝑅2 

value shown in Table 3. 3.   
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Table 3. 3 Dynamic load model parameters for slow charge Approach A 

Model Order 𝑁𝑠 𝑁𝑡 𝑅2 𝛽2 𝛽1 𝛽0 𝛼3 𝛼2 𝛼1 𝛼0 

P=1; I=0.1 1 -0.052 2.257 96.049   2.23   1.00 2.26 

P=1; I=0.1 2 -0.052 2.257 96.214  2.04 4.32  1.00 3.94 4.39 

P=1; I=0.1 3 -0.052 2.257 98.863 3.41E+04 2.85E+04 4.97E+06 1.00 4.74E+04 2.19E+06 5.05E+06 

P=1; I=0.5 1 -0.052 2.137 88.162   2.60   1.00 2.59 

P=1; I=0.5 2 -0.052 2.137 96.089  2.00 1.02  1.00 2.15 1.05 

P=1; I=0.5 3 -0.052 2.137 91.902 1.73E+03 -4.68E+03 2.10E+05 1.00 2.82E+03 7.61E+04 2.09E+05 

P=1; I=1 1 -0.052 2.131 76.703   3.04   1.00 3.01 

P=1; I=1 2 -0.052 2.131 95.224  2.01 1.94  1.00 2.11 1.98 

P=1; I=1 3 -0.052 2.131 94.812 1.79 7.94 5.77 1.00 5.08 8.50 5.90 

P=1; I=10 1 -0.052 2.107 33.938   7.19   1.00 7.21 

P=1; I=10 2 -0.052 2.107 96.179  1.76 19.99  1.00 2.00 20.35 

P=1; I=10 3 -0.052 2.107 96.183 1.67 25.42 58.19 1.00 4.94 26.23 59.31 

P=1; I=30 1 -0.052 2.236 -0.019   6.17E+04   1.00 6.35E+04 

P=1; I=30 2 -0.052 2.236 84.049  -0.82 58.00  1.00 1.89 59.69 

P=1; I=30 3 -0.052 2.236 84.095 -0.86 58.10 81.33 1.00 3.34 62.48 83.74 
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P=10; I=0.1 1 -0.052 1.756 86.664   10.12   1.00 10.53 

P=10; I=0.1 2 -0.052 1.756 91.651  -3.52 419.37  1.00 35.49 4.37E+02 

P=10; I=0.1 3 -0.052 1.756 95.542 9.73E+03 -2.76E+05 1.35E+07 1.00 1.65E+04 9.17E+05 1.40E+07 

P=10; I=0.5 1 -0.052 1.807 86.620   10.07   1.00 10.56 

P=10; I=0.5 2 -0.052 1.807 92.275  -2.88 3.72E+02  1.00 31.66 390.83 

P=10; I=0.5 3 -0.052 1.807 95.495 1.31E+04 -3.93E+05 1.88E+07 1.00 2.39E+04 1.30E+06 1.98E+07 

P=10; I=1 1 -0.052 1.849 85.938   9.80   1.00 10.31 

P=10; I=1 2 -0.052 1.849 91.809  -3.38 364.58  1.00 31.48 3.84E+02 

P=10; I=1 3 -0.052 1.849 94.840 1.37E+04 -4.22E+05 1.92E+07 1.00 2.56E+04 1.36E+06 2.02E+07 

P=10; I=10 1 -0.052 1.774 78.651   11.91   1.00 12.36 

P=10; I=10 2 -0.052 1.774 87.549  -1.49 3.43E+02  1.00 25.30 3.56E+02 

P=10; I=10 3 -0.052 1.774 90.862 2.02E+04 -5.95E+05 2.88E+07 1.00 3.86E+04 1.62E+06 2.99E+07 

P=10; I=30 1 -0.052 1.711 65.093   14.65   1.00 15.11 

P=10; I=30 2 -0.052 1.711 86.764  10.25 43.39  1.00 10.48 45.07 

P=10; I=30 3 -0.052 1.711 91.468 -0.03 3.50E+02 6.70E+02 1.00 27.17 3.53E+02 6.97E+02 
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Table 3. 3 presents the fitting results of the PFC slow charging approach. “PI” is the 

Proportional-Integral controller utilized inside of EV charging approaches which are 

indicated in the preceding sections. The coefficients 𝑁𝑠 and 𝑁𝑡 are illustrated in Section 

3.3.1, Notably, these coefficients remain unaffected by independent parameters, 

including PI control or the order level of transfer function settings. The 𝛽2 − 𝛽0 and 

𝛼3 − 𝛼0 are expressed in section 3.3.2. The fitting quality between the measured curve 

and the estimated curve is represented by the 𝑅2 value, illustrated in equation (3.13). To 

summarize, the 2nd order transfer function has the best overall fitting quality for charging 

approach A, only in a few scenarios, the 3rd order fitting results have a slight advantage.  

There are also some characteristics that can be observed from Table 3. 3, The steady-

state values 𝑁𝑠 are the same. Further, the different orders of the transfer function will 

not impact the transient power change, that is because the transfer function only 

represents the recovery process. Therefore the 𝑁𝑡  is the same in the same control 

parameter settings. From the point of view of integral parameter setting, for the fitting 

quality of the 1st order transfer function, the higher the integral parameter can result in 

the smaller the fitting quality coefficient 𝑅2. Due to the influence of a higher integral 

parameter, the recovery process exhibits increased oscillations, and 1st order transfer 

function cannot represent it well. On the contrary, higher-order transfer functions 

exhibit improved 𝑅2  when subjected to higher integral parameter settings. However, 

upon careful observation and comparison of the fitted and original curves, these 

advantages are not that apparent.  

 

3.5.3 EV dynamic load model for DC fast charging 

Instead of charging approach A which has a relatively slower charging speed (~7.4 

kW, Level-2 charging), charging approach B is built for fast charging (Level-3, DC fast 

charge). In this section, the results of dynamic load modelling of EV charging approach 

B are presented in detail. In the same setting as the slow charging approaches studies, for 

Case#1, Case#2, and Case#3 the value of the proportional term (PI1) is set to 1, i.e., 

P=1, while the value of the integral term (I) is set to 0.1, 1, and 30, respectively. For 

Case#4 and Case#5 Case#6, it is assumed that I = 0.1 I = 1 and I = 30, respectively. For 

Case#4 Case#5 and Case#6 the proportional term is set to 10. 
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Although, Section 3.2 provides an illustration of the distinct power electronic 

structures of Approach A and Approach B, it is noteworthy that they exhibit relatively 

similar dynamic response characteristics during voltage step change disturbances. Figure 

3. 13. which is shown below, presents the response of the charge approach B for 

different values of the outer voltage loop control parameters (PI1). Compared with 

Figure 3. 8 and Figure 3. 11, which represent the same scenario by using approach A, it 

becomes evident that increasing the integral gain leads to the onset of oscillatory 

behaviour.  

 

Figure 3. 13. Fast charger approach. Active power dynamic responses, derived using the detailed 
model, assuming different values for the PI control parameters. All responses are recorded 

during a -15% voltage disturbance, occurred at 𝑡=1 s. 

 

The fitting results for such cases by different transfer functions are presented in 

Figure 3. 14, highlighting instances for the higher integral parameter set in which the 1st 

order transfer function is unable to offer a proper fitting or accurately represent the 

dynamic behaviour of an EV charging dynamic response for approach B. 
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Figure 3. 14. Representative curve fitting results for the fast charger. (a) Case#1, (b) Case#2, and 
(c) Case#3 

 

Figure 3. 14 illustrates representative curve fitting outcomes for fast charging, 

specifically comparing the fitted curve with the original response data obtained from DC 

fast charge while considering a -15% voltage disturbance. Figure 3. 14(a) showcases the 

measured data from the EV charge power electronics model controlled by P = 1 and I = 

0.1. On the other hand, Figure 3. 14(b) exhibits the controller settings with P = 1 and I = 

1, while Figure 3. 14(c) depicts the controller settings with P = 1 and I = 10. 

It is evident that the dynamic response can be accurately represented by a 1st order 

transfer function, particularly when the integral parameter (I1) is set to 0.1. However, as 

the value of the integral gain increases (e.g., I1 = 1), the model starts exhibiting 

oscillations. Under such circumstances, the 2nd and 3rd transfer functions offer improved 

fitting results by higher 𝑅2. Nevertheless, the 𝑅2 for these fitting results exhibits only 

minimal variation, as indicated in Table 3. 4. 



Chapter 2 Literature Review 

 

 
 

 

Table 3. 4. Dynamic load model parameters for fast charge Approach B 

Model Order 𝑁𝑠 𝑁𝑡 𝑅2 𝛽2 𝛽1 𝛽0 𝛼3 𝛼2 𝛼1 𝛼0 

P=1; I=0.1 1 -0.092 1.294 96.857   1.37   1.00 1.29 

P=1; I=0.1 2 -0.092 1.294 97.379  1.25 0.50  1.00 1.49 0.48 

P=1; I=0.1 3 -0.092 1.294 98.907 5.89E+04 -7.01E+04 4.54E+06 1.00 6.93E+04 3.20E+06 4.29E+06 

P=1; I=0.5 1 -0.092 1.256 84.593   1.84   1.00 1.64 

P=1; I=0.5 2 -0.092 1.256 98.214  1.20 0.66  1.00 1.18 0.63 

P=1; I=0.5 3 -0.092 1.256 98.195 1.34 22.40 12.01 1.00 19.49 22.01 11.41 

P=1; I=1 1 -0.092 1.238 70.449   2.30   1.00 2.06 

P=1; I=1 2 -0.092 1.238 98.046  1.40 0.94  1.00 1.21 0.90 

P=1; I=1 3 -0.092 1.238 98.163 1.14 2.49 0.62 1.00 1.98 2.15 0.61 

P=1; I=10 1 -0.092 1.274 36.296   5.34   1.00 5.06 

P=1; I=10 2 -0.092 1.274 95.795  1.78 10.18  1.00 1.49 9.61 

P=1; I=10 3 -0.092 1.274 97.668 0.13 22.44 47.01 1.00 6.35 19.10 45.11 

P=1; I=30 1 -0.092 1.241 22.709   9.81   1.00 8.91 

P=1; I=30 2 -0.092 1.241 94.535  0.94 36.43  1.00 1.38 33.56 
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P=1; I=30 3 -0.092 1.241 94.637 0.85 37.50 21.76 1.00 2.03 34.42 20.12 

P=10; I=0.1 1 -0.092 1.274 72.981   10.14   1.00 9.60 

P=10; I=0.1 2 -0.092 1.274 73.095  9.42 70.03  1.00 15.57 66.33 

P=10; I=0.1 3 -0.092 1.274 90.768 5.54E+02 2.00E+03 3.53E+05 1.00 3.67E+02 3.25E+04 3.35E+05 

P=10; I=0.5 1 -0.092 1.101 88.550   10.57   1.00 9.53 

P=10; I=0.5 2 -0.092 1.101 88.938  8.90 104.84  1.00 17.48 94.69 

P=10; I=0.5 3 -0.092 1.101 94.135 6.06E+04 1.68E+05 4.76E+07 1.00 8.49E+04 4.19E+06 4.29E+07 

P=10; I=1 1 -0.092 1.106 88.471   9.50   1.00 8.89 

P=10; I=1 2 -0.092 1.106 88.940  7.62 102.50  1.00 17.37 96.04 

P=10; I=1 3 -0.092 1.106 96.288 5.79E+04 3.55E+04 3.50E+07 1.00 7.07E+04 3.29E+06 3.28E+07 

P=10; I=10 1 -0.092 1.127 84.128   12.19   1.00 11.17 

P=10; I=10 2 -0.092 1.127 90.621  10.19 13.22  1.00 9.53 12.24 

P=10; I=10 3 -0.092 1.127 91.028 9.09E+04 -1.24E+05 7.42E+07 1.00 1.33E+05 5.35E+06 6.81E+07 

P=10; I=30 1 -0.092 1.128 73.691   14.31   1.00 13.25 

P=10; I=30 2 -0.092 1.128 90.312  9.28 40.49  1.00 9.06 37.75 

P=10; I=30 3 -0.092 1.128 90.473 8.58 132.55 320.49 1.00 17.61 124.68 299.25 
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Table 3. 4 presents the dynamic load model parameters for different integral 

parameters and fitting transfer function settings in the same disturbance. As the integral 

parameter increased, the value of  𝑁𝑡 decreased, implying that the active power transient 

response amplitude (caused by the transient voltage change) was smaller. Compared 

between Table 3. 3 and Table 3. 4, the model under charging approach B had a smaller 

value of 𝑁𝑡 , indicating a smaller instantaneous change in the transient active power 

response. The DC fast charging approach has different control structures but has similar 

characteristics in the dynamic response curve. The 1st order transfer function is suited for 

smaller integral parameter settings, but it proves inadequate for higher integral parameter 

settings. Regarding the result of 𝑅2 from both Table 3. 3 and Table 3. 4, the higher order 

transfer functions significantly fit better. However, the excessively high-order transfer 

function does not always lead to improved fitting, they may not be necessary due to their 

tendency to increase complexity without necessarily enhancing accuracy. 

 

3.6 Summaries 

This chapter meticulously investigates the performance of a widely used dynamic 

load model within the power system, specifically, it assesses its capability to accurately 

represent the dynamic characteristics of EVs in response to voltage disturbance. Further, 

this chapter implements two detailed EV models using MATLAB/Simulink software, 

representing two distinct charging approaches: relatively slower charging (as Approach A) 

and DC fast charging (as Approach B). 

Initially, the analysis of the static behaviour of the detailed model revealed that the 

behaviour of both charging approaches closely approximates constant power. It is 

identified that, this study identifies the EV charging load model as effectively 

representing a constant power load in the static aspect. By applying curve fitting by 

exponential and polynomial functions, the static behaviours of both models are fitted to 

the exponential and ZIP static load models. The results show that their static 

characteristics can be precisely represented by the standard load model which is 

commonly utilized in power system stability studies.  
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The main contribution of this chapter is the investigation of the performance of the 

typically adopted equivalent model (based on ERLM) utilized in dynamic power system 

research to represent the dynamic characteristics of two detailed EV models. The 

parameter estimation algorithm is utilized to fit the dynamic load model to the measured 

response data from these detailed EV models. The results show that the specific value of 

control parameters can affect the shape of the dynamic response of the EV chargers. The 

1st order transfer function based dynamic load model is insufficient to represent the 

dynamic behaviours under some control parameters (PI control parameters) settings. For 

both models, the fitting quality by the different order of transfer functions has been 

quantified and compared. In the context of different PI settings in EV chargers, the 

oscillatory behaviour of dynamic load models might be different from the 1st order 

recovery transfer function. In this scenario, it becomes necessary to consider 2nd and 3rd 

order recovery transfer functions for more accurate curve fitting.  

Such information may be useful to system operators considering how to model the 

dynamic behaviour of EVs when performing stability studies, as their numbers are 

increasing. Investigating the magnitude of the potential impact of such differences is also 

a future research direction. 
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4.1 Introduction 
 

4.1.1 Motivation 

In recent years, the market penetration of EVs has seen a steady increase, elevating 

their significance as a critical load type within the power network. In studies at the power 

system level, several fundamental questions related to EV charging have been 

investigated, including the start/end times of charging, charging duration, battery 

capacity, and charging event locations. In these studies, EVs have been treated as loads 

under specific conditions - such as direct current (DC) loads driven by human behaviour 

analysis and probabilistic studies. However, existing models used to represent EVs lack 

essential dynamic characteristics, leading to a scarcity of research on EV charging in the 

context of power system dynamics. As concluded, the preceding chapter established that 

EV charging can be effectively represented using a dynamic load model for power system 

stability studies.  

This chapter aims to investigate the dynamic behaviour of EV charging within the 

power system and address existing research gaps. These gaps include methods for 

systematically integrating EVs into DNs to represent various EV penetration levels, 

determining the typical time points for simulation, and understanding the dynamic 

characteristics of DNs under these conditions. Additionally, it includes appropriate 

approaches for managing and analysing the large volume of dynamic responses to derive 

reasonable conclusions. 

To fill these gaps, this study integrates the EV dynamic load model into the CIGRE 

benchmark MV network, considering various levels of EV ownership and daily operation 

times. The study defines typical time points, such as maximum EV penetration times and 

peak times of the day, to run simulations and present the dynamic responses of the DNs. 

Furthermore, systematic simulations and statistical analyses are applied to identify the 

impact of EV charging on DNs.  

This Chapter integrates the EV as a dynamic load model, previously implemented in 

Chapter 3, into the network simulation. This dynamic load model has been defined 

following the ERLM (Exponential Recovery Load Model) from [61][94][95], and the 

parameters for the dynamic load model definition have been provided in the preceding 

chapter. To facilitate simulation at the distribution power system level, this EV dynamic 



Chapter 4 - Dynamic modelling Considerations for Distribution Networks with EVs 

 

62 | P a g e  
 

model will be re-built through DIgSIlENT PowerFactory DSL (DIgSILENT Simulation 

Language) model to fit the simulation platform.  

The dynamic response of the entire DN will be recorded. This study constructs a 

dynamic equivalent model for the entire DN, incorporating EVs with the aim of 

observing the difference in dynamic responses under various EV penetration rates at 

different times and EV ownership levels, the results will be quantified by specific 

indicators.  

 

4.1.2 Contributions 

This chapter investigates the dynamic behaviour of the power system during 

transformer tap change events under varying levels of EV penetration. To accomplish 

this, this study employs an EV dynamic load model derived from a parameter estimation 

algorithm. Subsequently, the EV dynamic load model will be implemented into the 

CIGRE benchmark MV network as a new independent variable. The difference in 

dynamic response under various EV penetration rates is observed and quantified by 

specific indicators. The specific contributions are as follows: 

• This research integrates the developed EV dynamic load model into the 

CIGRE benchmark MV network to investigate the impact with respect to 

dynamic equivalent modelling. Furthermore, this study draws conclusions 

from the simulation results by comparing the effects of single and composite 

types of EV penetration. 

• The comprehensive influence of EV charging on system dynamic responses 

is quantified for different EV ownership levels and daily operating times 

through the indicators of 𝑅𝑀𝑆𝐸, 𝑅2, 𝑆𝑆𝐸, and 𝑂𝐸.  

• The extensive simulation results are statistically analysed, providing a more 

generalized understanding of how EV charging impacts the dynamic 

behaviour of the DN. 

• Since the simulation software - DIgSILENT PowerFactory does not include 

the 2nd order transfer function based dynamic load model defined, a custom 

DSL model has been constructed and integrated into the software platform. 

This model is based on the proposed dynamic load model structure. 
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Additionally, a method for parameter conversion has been implemented to 

accommodate complex DSL modelling.  

 

4.3 EV load demand profile definition 

Since the usual EV charging scenarios have been depicted in the preceding section, 

the method used to derive a set of the specific EV load model profile will be expressed in 

detail in this section, and this data will be utilized in the dynamic stability analysis. It 

should be noted that, the EV daily load profile implemented in this section will be 

utilized simply as an input with the focus on modelling the dynamic behaviour of EVs 

for power system dynamic studies.  

In the referenced study [63] the management of EV charging events was addressed 

by considering the anticipated energy requirements for car-based transportation of 

residents served by an existing power network. To implement this, geographical 

information systems (GIS) data of a real distribution network and GIS data from the UK 

Census are considered. This method can be divided into two main aspects: the power 

system perspective and Algorithm modelling of EV charging events. The code for the 

data generation is available in [178]. 

 

4.3.1 Introduction of charging database  

A real distribution network in the residential-dominated Southside area of Glasgow is 

utilized as a practical example for EV charging.  This network includes a secondary (11 

kV / 0.4 kV) substation and three 0.4 kV distribution feeders and serves 157 households 

by 47 endpoints. The image is available from Google Maps [179].  

 The UK National Travel Survey (NTS) is conducted annually for around 15.000 

residents. Their 7-day period trips have been recorded [180].  This data includes the 

driving Origin (e.g. home/shop/work), Destination, Time for Start/End, and Distance. 

In this study, travel was categorized based on the type of employment an individual had 

and the way they travelled to work. According to UK census data from the same field, 

this is utilized to assign travel diaries to fleets of electric vehicles instantiated in a network 

that may represent the travel habits of individuals served by the network. 
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4.3.2 Obtain the EV charging daily profile 

In the study a Monte-Carlo generated data for individual EV charging, as provided by 

the literature [63], is utilized to estimate the EVs’ daily charging profile. The code for the 

data generation is available in [178]. Network data and Census data are combined to 

create a fleet of EVs, as described in the algorithm [63]. 

In summary, this Monte-Carlo based approach is utilized to model uncertainties 

associated with the charging habits of customers who owned EVs per household. The 

results will be utilized in the following sections, which include events for 24 hours (12 

pm to 12 pm), and 10,000 individual vehicles. This routine method assumes drivers will 

always plug their charger into the system when they arrive home, without considering the 

remaining electricity in the battery. This corresponds to the standard charging illustrated 

in the preceding section. The data includes the information of the time EV plug in/out 

(the times 𝑡𝑖𝑛  and 𝑡𝑜𝑢𝑡  are in 10 timesteps, 0-142 covering 24 hours), the electricity 

amount 𝐸𝑠𝑡𝑎𝑟𝑡  and 𝐸𝑒𝑛𝑑  in the battery (united by kWh) at start/end of the charging 

event. The way to integrate them together is shown below: 

 

Figure 4. 1. EV prediction model into daily load profile. 

As depicted in Figure 4. 1, the predicted EV charge plug-in/out data are integrated 

into a daily demand profile, comprising total dynamic charge power and time. This 

profile can be considered as an average comprehensive load model for EV charging in 

residential areas. In this study, the EV is added to the power network as one type of load. 

On the other hand, other variables such as the EV ownership per household are also 
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important for the EV penetration rate in the area.  The process of incorporating this 

averaged EV charging demand daily profile data into the power network will be 

expressed in Section 4.4 in detail.  

 

4.3.3 DSL modelling in DIgSILENT PowerFactory for EV charging 

The simulation of the DNs was conducted using the software – DIgSILENT 

PowerFactory. Notably, this software only supports the definition of a 1st order dynamic 

load model within its “Generic load model definition” feature. Therefore, to 

accommodate higher order transfer functions, a novel model structure was developed in 

DIgSILENT, which is a significant contribution to this thesis. Based on the results 

obtained from the preceding chapter, it is suggested that the EV dynamic load model 

could potentially be based on 2nd or even higher order transfer functions. Consequently, 

it is necessary to accomplish the manually defined dynamic load model that incorporates 

a high order transfer function. The detailed structure for both the “Composite model” 

and “Common model” definitions are illustrated in Figure 4. 2 below.  

 

Figure 4. 2. The manual defined model structure in DIgSILENT PowerFactory 

The DIgSILENT PowerFactory allows for the manual definition of the dynamic load 

model, which encompasses contains two types of model definitions, the “Composite 

model”, and the “Common model”. The “Composite Model” is constructed to replace 

the generic load model which is limited to providing a 1st order dynamic response. Within 

the composite model, the “Voltage Measurement” is connected to the busbar where the 

EV loads are connected, and it measures the voltage, denoted as 𝑉𝑚𝑒𝑎 from the busbar, 
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afterwards, converts to the “Dynamic load model”. The “Dynamic load model” is the 

most important part that can be included by the “Common model”. The “Common 

model” serves as the fundamental unit for manual model definition in DIgSILENT, 

which determines the mathematical relationship between various parameters. In this 

study, the “Common model” is constructed following the dynamic load model structure 

depicted in the preceding chapter. The 𝑁𝑠 is the steady state power voltage exponent, 𝑁𝑡 

is the transient power voltage exponent refer to Equation (3.5), as expressed in section 

3.3.2. The power recovery 𝑃𝑜𝑢𝑡 can be obtained from the “Common model”, and then 

passed to the “Load Network Element” to act on the target element, which is the “Load” 

in the power system model. 

Note that, the “Composite model” and “Common model” must be constructed 

individually in DIgSILENT. Subsequently, both models should be imported into the 

project. The EV model in this study will be defined based on the “Generic load model” 

[181]. The transition from the “Generic load model” to the defined “Composite model” 

is achieved by connecting the “measurement point” to the busbar and associating the 

“Load Network Element” to the load itself. Following this, the “Dynamic load model” 

within the “Composite model” is set to become the defined “Common model”. The 

interrelationship among the power network, “Composite model” and “Common model” 

is depicted in Figure 4. 2. After this definition, all parameters of the dynamic load model 

can be set in the “Common model” which can make the defined “Generic load model” 

represent the EV dynamic model. 

This manually defined model is more capable and can represent the model with more 

complicated dynamic characteristics through the incorporation of higher order transfer 

functions.   

 

4.3.4 Parameter conversion for complex DSL models 

The existing dynamic load model which has been implemented in the preceding 

section may not possess the requisite capability for the aggregated dynamic load 

modelling. Which may encompass extremely complicated dynamic characteristics. This 

section strives to implement the high order transfer function based dynamic load model 

from DIgSILENT PowerFactory. As mentioned above, the default dynamic load model 

(generic dynamic load) in DIgSILENT PowerFactory only includes 1st order recovery. 
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Section 4.3.3 has built the user-defined “Common model” in DIgSILENT, which is only 

capable support the 2nd order transfer function. That model is sufficient for to 

representing a single EV, but it lacks the capability to accurately represent the dynamic 

characteristics of the entire DNs. Notably, there is no support for a transfer function 

higher than the 2nd order within the “Common model” definition options. a series 

connection for more than 2 2nd order transfer functions can make a “Variable over 

defined” error.  

To solve this question, this study integrated several 2nd order transfer functions 

“Common model” in the “Composite model” level to implement the high order transfer 

function based dynamic load model at the system level. For example, the 5th order based 

transfer function dynamic load model, which is shown in the figure below: 

  

Figure 4. 3. Structure of implemented 5th order transfer function based dynamic load 
model 

 

Comparing the structure between the dynamic model shown in Figure 4. 2 and 

Figure 4. 3, the only difference is the transfer function 𝐺(𝑠) has been separated into 

𝐺(𝑠)1 𝐺(𝑠)2 and 𝐺(𝑠)3. Essentially, it is separating the 5th order transfer function into 

the multiple multiplications of 3 lower order transfer functions, such as the 1st and 2nd 

order transfer functions, which can be expressed through the equations shown below.  

𝐺(𝑠)5−𝑜𝑟𝑑𝑒𝑟 =
𝛼5𝑠

5 + 𝛼4𝑠
4 + 𝛼3𝑠

3 + 𝛼2𝑠
2 + 𝛼1𝑠 + 𝛼0

𝛽5𝑠
5 + 𝛽4𝑠

4 + 𝛽3𝑠
3 + 𝛽2𝑠

2 + 𝛽1𝑠 + 𝛽0
(4.1) 
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𝐺(𝑠)1 =
𝐴11𝑠 + 𝐴10
𝐵11𝑠 + 𝐵10

(4.2) 

𝐺(𝑠)2 =
𝐴22𝑠

2 + 𝐴21𝑠 + 𝐴20
𝐵22𝑠

2 + 𝐵21𝑠 + 𝐵20
(4.3) 

𝐺(𝑠)3 =
𝐴32𝑠

2 + 𝐴31𝑠 + 𝐴30
𝐵32𝑠

2 + 𝐵31𝑠 + 𝐵30
(4.4) 

𝐺(𝑠)ℎ𝑖𝑔ℎ−𝑜𝑟𝑑𝑒𝑟 = 𝐺(𝑠)1 ∙ 𝐺(𝑠)2 ∙ 𝐺(𝑠)3 (4.5) 

From the software this method is feasible, but another challenge is also coming, 

more variables need to be defined. For example. Only 𝛼5 – 𝛼0 and 𝛽5 – 𝛽0 need to be 

defined in (4.1) , but when this 5th order transfer function is separated into the 

multiplications of (4.2), (4.3) and (4.4), the variable 𝐴10 – 𝐴32 and 𝐵10 – 𝐵32 also need 

to be defined.  

In this study, the transfer function is conceptualized as a polynomial equation. 

Notably, there is no general solution in radicals to polynomial equations of the 5th or 

higher [182][183]. Fortunately, the coefficient of the 5th order in (4.1) can be defined as 1 

since it is a transfer function, this renders the subsequent derivation feasible. 

Consequently, the primary task in this section is to meaningfully simplify the extended 

transfer functions. 

It is obvious that the equation (4.5) can be simplified, Specifically, the 5th order 

transfer function can be represented by only 2 2nd order and 1 1st order transfer functions. 

This simplification is based on the implemented dynamic load model with parameter 

settings, the 5th order transfer function can be simplified as the equation shown in 

equation (4.6). 

𝐺(𝑠)5−𝑜𝑟𝑑𝑒𝑟 =
(𝑠2 + 𝐴21𝑠 + 𝐴20)(𝐴32𝑠

2 + 𝐴31𝑠 + 𝐴30)

(𝑠 + 𝐵10)(𝐵22𝑠
2 + 𝐵21𝑠 + 1)(𝐵32𝑠

2 + 𝐵31𝑠 + 𝐵30)
(4.6) 

This equation strives to remove irrelevant variables, the variable 𝐴11 is set to 0, and 

the variables 𝐴10, 𝐴22 𝐵20 and 𝐵11 are set to 1. It needs to be emphasised that, this is 

not the only approach for this simplification, this study just provides an inspiration to 

solve this question.   
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Afterwards, derivate the equation (4.6)  and compare it to equation (4.1) , the 

corresponding components can be summarized through the equations below: 

{
 
 

 
 

𝛼5 = 0
𝛼4 = 𝐴32

𝛼3 = 𝐴21 + 𝐴31
𝛼2 = 𝐴30 + 𝐴21𝐴31 + 𝐴20𝐴32
𝛼1 = 𝐴21𝐴30 + 𝐴20𝐴31

𝛼0 = 𝐴20𝐴30

(4.7) 

{
 
 

 
 

𝛽5 = 𝐵22𝐵32
𝛽4 = 𝐵22𝐵31 + 𝐵21𝐵32 + 𝐵10𝐵22𝐵32

𝛽3 = 𝐵22𝐵30 + 𝐵21𝐵31 +𝐵32 + 𝐵10𝐵22𝐵31 + 𝐵10𝐵21𝐵32
𝛽2 = 𝐵21𝐵30 + 𝐵31 +𝐵10𝐵22𝐵30 + 𝐵10𝐵21𝐵31 + 𝐵10𝐵32

𝛽1 = 𝐵30 + 𝐵10𝐵21𝐵30 + 𝐵10𝐵31
𝛽0 = 𝐵10𝐵30

(4.8) 

A multitude of methods can be employed to solve the equation sets presented in 

Equation (4.7)  and (4.8) , including programming solutions in MATLAB and Maple. 

However, the specifics of these methods are not beyond the scope of the thesis. 

Essentially, this process converts the parameter from high order transfer function 𝐺(𝑠), 

which is obtained by the fitting process illustrated in Section 3. 4, to the lower order 

transfer function that can be defined in DIgSILENT software.  

The procedure for parameter definition within DIgSILENT parallels the process 

expressed in Section 4.4.3 but becomes more complicated. Figure 4. 4 lists the 

parameters that need to be set in DIgSILENT in each slot.  

 

Figure 4. 4. The process of defining the parameters in DIgSILENT PowerFactory model 
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. 

Note that, this implemented high order transfer function based dynamic load model 

can also be feasible to represent low order model. For example, set the parameters 𝐴12, 

𝐴11, 𝐵12, 𝐵11 to be 0, and 𝐴10, 𝐵10 to be 1, the transfer function 𝐺(𝑠)1 can be seen as 

inactivated.  

This study also attempted to employ the Pole-Zero representation of the polynomial 

equation which can be readily obtained via MATLAB commands, rather than the 

solution. However, due to the Fundamental Theorem of Algebra, Poles and Zeros could 

be complex numbers in high order polynomial equations [184][185]. Regrettably, 

DIgSILENT PowerFactory does not accommodate the use of complex numbers within 

DSL modelling. Consequently, this approach is not feasible.  

 

4.4 Power network simulation benchmark 

In this Section, the impact of EV penetration on DN dynamics is investigated using a 

set of error metrics. Towards this objective, a model of an extended DN is created and 

several loading conditions are examined. The rest of this Section is organized as follows: 

In Section 4.4.1 the system under study is described. In Section 4.4.2 daily consumption 

profiles, used to create realistic loading conditions, are presented. The modelling of EVs 

and DN loads is discussed in Section 4.4.3. A summary of the examined cases is 

presented in Section 4.4.4. The assessment methodology is explained in Section 4.4.5. 

Indicative results are summarized in Section 4.5. 

 

4.4.1 System under study 

The examined DN is depicted in Figure 4. 5, and it is based on the European MV 

grid of CIGRE [150] The nominal voltage and frequency of the system are 20 kV and 50 

Hz, respectively. The DN hosts both residential and industrial customers. The nominal 

power of industrial and residential loads is summarized in Table 4. 1. For each load, the 

connection node is also reported. Variables 𝑆𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙  and 𝑆𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙  in Table 4. 1 

denote the nominal apparent power (in MVA) of residential and industrial loads, 

respectively, while 𝑃𝐹  is the corresponding power factor [150]. For the analysis, it is 

assumed that nodes with residential customers host also EVs. The number of EVs, 
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connected at each node, is defined as follows: initially, the total number of households 

connected at each node of the examined DN is determined. The load model parameters 

settings of residential and industrial load models are following the reference [152]. The 

residential loads are presented by ZIP model, the active power 𝑍𝑝=0.827; 𝐼𝑝=-0.049; 

𝑃𝑝=0.827, its reactive power 𝑍𝑞=14.14; 𝐼𝑞=-24.838; 𝑃𝑞=11.696. The industrial loads are 

presented by exponential model, the active power exponent 𝑘𝑝=0.772; Reactive power 

exponent 𝑘𝑞=4.522. In particular, it is assumed that a typical household has a peak 

consumption of 3.5 kW [186]. Based on this value and the total power of residential 

loads, provided in Table 4. 1, the number of households is defined. 

Concerning the number of households that have EVs, six scenarios (𝑁𝑠=6) are 

generated. In each scenario, the EV ownership level is assumed to be different. For the 

analysis, in the first scenario (S1), the EV ownership is set to 0.2. This practically implies 

that only 2 out of 10 households per system node have an EV. In S2, S3, S4, and S5 the 

EV ownership is set to 0.4, 0.6, 0.8, and 1, respectively. Therefore, in S5 all households 

are equipped with an EV. Finally, in S6 EV ownership is set to 1.2. This implies that 

there are 12 EVs per 10 households, i.e., 1.2 vehicles per household. During 2020 every 

household in the UK owned 1.2 vehicles [138]. Therefore, S6 corresponds to the case 

where all traditional vehicles with internal combustion engines are replaced by EVs. The 

nominal power of EVs for the six examined scenarios is provided in Table 4. 1. 

Connection nodes of all EVs are also reported.  

Table 4. 1 The nominal power of residential industrial and six examined EVs load settings. 

Node 𝑆𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝐹 𝑆𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑃𝐹 S1 S2 S3 S4 S5 S6 

1 0.4466 0.98 0.4435 0.98 0.1633 0.3265 0.4898 0.6531 0.8163 0.9796 

2   

  

      

3 8.22E-03 0.97 0.0199 0.85 4.40E-03 8.80E-03 0.0132 0.0176 0.0220 0.0264 

4 0.0129 0.97 

  

3.56E-03 7.12E-03 0.0107 0.0142 0.0178 0.0214 

5 0.0216 0.97 

  

6.00E-03 0.0120 0.0180 0.0240 0.0300 0.0360 

6 0.0164 0.97 

  

4.52E-03 9.04E-03 0.0136 0.0181 0.0226 0.0271 

7   6.83E-03 0.85 7.20E-04 1.44E-03 2.16E-03 2.88E-03 3.60E-03 4.32E-03 

8 0.0175 0.97 

  

4.84E-03 9.68E-03 0.0145 0.0194 0.0242 0.0291 

9   0.0509 0.85 5.40E-03 0.0108 0.0162 0.0216 0.0270 0.0324 

10 0.0142 0.97 6.03E-03 0.85 4.56E-03 9.12E-03 0.0137 0.0182 0.0228 0.0274 

11 9.86E-03 0.97 

  

2.72E-03 5.44E-03 8.16E-03 0.0109 0.0136 0.0163 
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Note that for each one of the examined scenarios, a power flow analysis is conducted 

using the rated powers of  Table 4. 1 to determine the currents flowing in the lines of the 

DN. The computed currents are then compared to the corresponding thermal limits in 

order to identify potential congestion issues. In all scenarios no thermal constraints were 

reached, thus justifying the applicability of the selected scenarios.   

 

Figure 4. 5. Utilized Medium-Voltage network model. 

 

4.4.2 Daily consumption profiles 

To replicate realistic loading conditions, typical consumption profiles are used. 

Residential and industrial profiles in per unit, along with peak-time energy consumption 

in MW, are extracted from [150] and [151]. respectively, to establish detailed real and 

reactive power consumption profiles for each busbar. The impact of policy adjustments, 

such as price mechanisms, as well as temporal and spatial aspects on charging profiles of 

EVs are indirectly taken into account in this study by employing the method of [64]. In 

particular, [64] is based on the UK national travel survey and uses real data from 10.000 

individual EVs. By exploiting the individual data, an aggregated EV profile is created. 

The code for data generation is available in [178], and incorporated into the network 

using the methodology delineated in Section 3.3.2.  
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All considered consumption profiles, i.e., residential, industrial, and EV profiles, are 

normalized based on the corresponding maximum consumed power. The derived 

normalized profiles are depicted in Figure 4. 6.  

 

Figure 4. 6. Normalized daily profiles for residential, industrial loads and EVs. 

 

4.4.3 Modelling of EVs dynamic loads 

In order to represent various types of EV penetration, this study investigates two 

scenarios. The first scenario considers a single type of EV penetration. The second 

scenario involves a composite model, which includes different types of EVs, to 

encapsulate the most complex scenario and illustrate different aspects. By comparing the 

results of these scenarios, this study aims to provide a comprehensive understanding of 

how differentiated EVs impact the system’s dynamic behaviour. Note that the EVs 

penetrate in this system level studies only as dynamic load, this means that this study 

does not include any V2G or grid intelligent dispatching analysis.  

For the scenario involving charging of a single type of EV, this study employs the 

DC fast charging approach with parameter settings of P = 1 and I = 1.  

In the scenario of composite EV penetration, to establish a realistic test case, EV 

chargers with varying characteristics, such as different types and discrete PI control 

parameters, are taken into account. Consequently, three types of chargers with distinct 

dynamic characteristics are assumed for analysis. The first type corresponds to a slow 

charger with P = 1 and I = 0.1. The second type corresponds to a fast charger with P = 

10, I = 10. Finally, the third type is a slow charger with P = 1, I = 30. 
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To demonstrate the different dynamic characteristics of the composite type of EV 

load penetration, their active power responses during a -15% voltage step disturbance are 

illustrated in Figure 4. 7. 

 

Figure 4. 7.  The dynamic characteristics of the selected EV dynamic load model. (a) Slow charge 
P = 1, I = 0.1; (b) Fast charge P = 10; I = 10; (c) Slow charge P = 1; I = 30. 

As shown in Figure 4. 7(a), the active power of the first charger exhibits a smooth 

recovery without any overshoots or oscillations. The second charger has the fastest 

recovery, with an overshoot observed during the recovery phase. The third charger 

presents oscillatory behaviour during recovery. 

To simulate the considered EVs and to integrate them into the DN model, the 

parameters of Figure 4. 1 are used. More specifically, in this Table, the optimal order for 

the proposed equivalent and the corresponding parameters are summarized for each one 

of the examined EVs. Note that for each node host EVs, equal participation of all 

models is considered. 

Table 4. 1. Parameters of selected dynamic load models 

Model Order 𝑁𝑠 Nt α2 α1 α0 β3 β2 β1 β0 

Fast 

charge 

P=1;   

I=1 

2 -0.092 1.238 0 1.40 0.94 0 1 1.21 0.90 
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Slow 

charge 

P=1; 

I=0.1 

1 -0.052 2.257 0 0 2.227 0 0 1.000 2.260 

Fast 

charge 

P=10; 

I=10 

2 -0.092 1.127 0 10.194 13.218 0 1.000 9.527 12.237 

Slow 

charge 

P=1; I=30 3 -0.052 2.236 -0.857 58.103 81.331 1.000 3.340 62.475 83.744 

 

Since the simulation software, DIgSILENT PowerFactory, does not support transfer 

functions higher than 2nd order within a single DSL, a conversion method is required to 

implement the complex dynamic load model integration. The methodology for this 

conversion is detailed in Section 4.3.4. Following this, the parameters should be 

converted using equations (4.7) and (4.8).  

The converted parameters are shown in Table 4. 2 below.  

Table 4. 2 Converted dynamic load model parameters for DIgSILENT PowerFactory parameters 
settings. 

Charging approach Fast slow fast slow 

Parameters P=1; I=1 P=1; I=0.1 P=10; I=10 P=1; I=30 

𝑁𝑠 -0.092 -0.052 -0.092 -0.052 

Nt 1.238 2.257 1.127 2.236 

B10 1.000 1.000 1.000 1.000 

B11 0.000 0.000 0.000 0.000 

A10 1.000 1.000 1.000 1.000 

A11 0.000 0.000 0.000 0.000 

B20 1.000 1.000 1.000 1.401 

B21 0.000 0.000 0.000 1.000 

B22 0.000 0.000 0.000 0.000 

A20 1.000 1.000 1.000 1.000 
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A21 0.000 0.000 0.000 0.000 

A22 0.000 0.000 0.000 0.000 

B30 0.900 2.260 12.237 59.755 

B31 1.210 1.000 9.527 1.937 

B32 1.000 0.000 1.000 1.000 

𝐴30 0.940 2.227 13.218 81.331 

𝐴31 1.400 0.000 10.194 58.103 

𝐴32 0.000 0.000 0.000 -0.857 

 

The parameters 𝐴10 – 𝐴32 and 𝐵10 – 𝐵32 as defined in Equations (4.2) – (4.4), are 

utilized to define the DSL model depicted in Figure 4. 3. Once these EV dynamic load 

models are connected to the DNs, the network exhibits complex dynamic characteristics 

in response to a -2.17% voltage disturbance. An illustrative example of this composite 

EV model dynamic recovery process is provided in Figure 4. 8. It is estimated that each 

household owns 1 EV, and the simulation time is 2 am.  

 

Figure 4. 8. The dynamic recovery of the DNs with 1 EV ownership per household at 2 am in 
the morning. 

 

4.4.4 Examined Cases 

To thoroughly evaluate the impact of EV penetration level on DN dynamics, several 

test cases are considered. For this purpose, realistic loading conditions are created for the 

examined DN as well as discrete scenarios regarding the EV penetration level are 
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examined. Towards this objective, Daily consumption profiles are constructed for each 

node of the examined DN by multiplying the nominal power of each load, depicted in 

Table 4. 1, with the corresponding normalized profile of Figure 4. 6. For all profiles a 

one-hour resolution is considered (𝑁ℎ=24). Note that for each EV ownership level, i.e., 

for scenarios S1, S2, S3, S4, S4, and S6, dedicated EV consumption profiles are used, i.e., 

profiles that correspond to the examined EV ownership level. Using this approach, a set 

of 𝑁 = 𝑁ℎ  × 𝑁𝑠 = 24 × 6 = 144 cases, corresponding to different loading conditions 

and EV penetration levels are constructed. 

An indicative example of the examined loading conditions is presented in Figure 4. 9. 

In this figure, the total load demand for scenario S5, which means 1 EV owned per 

household, throughout the day is presented. The total power consumed per load type, 

such as EVs, residential, and industrial loads, is also illustrated. Additionally, the load 

composition for four specific hours of the day, namely 02:00, 12:00, 14:00, and 19:00, is 

reported. Similar profiles are created for all examined scenarios.  

 

 

Figure 4. 9 Considerable 4 scenarios from daily load profile 
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4.4.5 Assessment methodology 

 To quantify the impact of EVs on the dynamic performance of DNs, the following 

procedure is adopted: for each one of the 144 cases reported in Section 4.4.2, a -2.17% 

voltage disturbance is analysed by changing the tap position of the interconnection 

transformer (see Figure 4. 5) For this purpose, RMS simulations are performed using the 

corresponding DIgSILENT module.   

For all examined cases, the resulting dynamic response of active power (𝑃𝐸𝑉) at the 

point of interconnection (POI) is recorded and normalized. The basis for normalization 

is the maximum value of active power. Subsequently, for each one of the 144 cases, the 

EVs are disconnected from the DN, and the same voltage disturbance is examined. The 

resulting real power response (𝑃𝑁𝑜,𝐸𝑉) is recorded and normalized using as a base its 

maximum value. Afterwards, 𝑃𝑁𝑜,𝐸𝑉 is compared with the corresponding 𝑃 𝐸𝑉 response. 

For the comparisons, the following metrics are used [187].  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑃𝐸𝑉[𝑛]  −  𝑃𝑁𝑂,𝐸𝑉[𝑛])

2
𝑁

𝑛=1
(4.9) 

𝑅2 = 1 −
∑ (𝑃𝐸𝑉[𝑛]  − 𝑃𝑁𝑂,𝐸𝑉[𝑛])

2𝑁
𝑛=1

∑ (𝑃𝐸𝑉[𝑛]  −  𝑃𝐸𝑉̅̅ ̅̅ ̅)2𝑁
𝑛=1

(4.10) 

𝑆𝑆𝐸(%) = |
𝑃𝐸𝑉,𝑠𝑠 −  𝑃𝑁𝑂,𝐸𝑉,𝑠𝑠

𝑃𝐸𝑉,𝑠𝑠
| ∙ 100% (4.11) 

𝑂𝐸(%) = |
𝑃𝐸𝑉,+  −  𝑃𝑁𝑂,𝐸𝑉,+

𝑃𝐸𝑉,+
| ∙ 100% (4.12) 

In the above equations, 𝑃𝐸𝑉̅̅ ̅̅ ̅ is the mean value of the DN response when EVs are 

connected. 𝑃𝐸𝑉,𝑠𝑠 and 𝑃𝑁𝑂,𝐸𝑉,𝑠𝑠 are the new steady-state values of active power after the 

voltage disturbance, assuming EVs are connected or not, respectively. 𝑃𝐸𝑉,+  and 

𝑃𝑁𝑂,𝐸𝑉,+ are the active power immediately after the voltage disturbance for the cases 

where EVs are connected or not, respectively.  

The 𝑅𝑀𝑆𝐸  measures the average difference between the predicted values 𝑃𝐸𝑉[𝑛] 

and actual values  𝑃𝑁𝑂,𝐸𝑉[𝑛]. It provides an indication of the model’s prediction accuracy, 

with lower values indicating better performance. 𝑅2  measures how well the model’s 

prediction explains the variance in the actual data. 𝑅2  value of 1 indicates perfect 

prediction, while 𝑅2  equal to 0 indicates no predictive power. 𝑆𝑆𝐸(%) quantifies the 
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error between the steady-state predicted value and the actual steady-state value. 𝑂𝐸(%) 

measures the error between the peak predicted value and the actual peak value. 

In this study, the 𝑅𝑀𝑆𝐸 and 𝑅2 are used to assess the similarity of 𝑃𝐸𝑉 and 𝑃𝑁𝑂,𝐸𝑉  

responses. Additionally, the steady-state error (𝑆𝑆𝐸) and the overshoot error (𝑂𝐸) are 

used to quantify the differences between 𝑃𝐸𝑉 and 𝑃𝑁𝑂,𝐸𝑉 in terms of the new-steady state 

and the power immediately after the voltage disturbance, respectively. 

 

4.5 Dynamic voltage characteristics of DNs with EV penetration 
 

4.5.1 Indicative results 

Initially, indicative results are presented for four representative time instances of S5. 

These time instances are those reported in Figure 4. 9, the i.e., T1=02:00, T2=12:00, 

T3=14:00, and T4=19:00.  T1=02:00 corresponds to the time instance with the maximum 

EV penetration level. Indeed, for T1, EV penetration is equal to 66.5%. Note, that EV 

penetration is defined in this study as the ratio between the power consumed by all EVs 

and the total load consumption. T2 is the time instant with the minimum EV penetration 

level (only 0.6% of the total load is consumed by EVs); T3 and T4 correspond to two 

instances with moderate EV penetration levels. 

For each one of the above-mentioned time instances 𝑃𝐸𝑉 and 𝑃𝑁𝑜,𝐸𝑉   are compared 

assuming a -2.17% voltage disturbance. For the single type of EV penetration scenario, 

the corresponding responses are illustrated in Figure 4. 10. As shown, the DN presents 

different dynamic characteristics during the day. In fact, the higher the EV penetration 

level is, the more oscillatory the response of the DN is. Moreover, as the EV penetration 

increases, the DN tends to behave as a constant power load after the voltage disturbance, 

i.e., the post-disturbance steady-state power is closer to the corresponding pre-

disturbance value. EV penetration also increases the magnitude of power undershoots.  
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Figure 4. 10. Comparison of single type of EV penetration 𝑃𝐸𝑉 and 𝑃𝑁𝑜,𝐸𝑉   responses for S5 

scenario during a -2.17% voltage disturbance.  Time instance (a) T1 (b) T2 (c) T3 (d) T4. 

To facilitate a more intuitive observation of the differences introduced by the single 

type of EV penetration into the system, the indicators quantify the difference between 

the grid without EV penetration and the four scenarios of EV penetration. The results 

are shown in Table 4. 3 below. 

 

Table 4. 3. Quantifying the difference among four scenarios with single type EV model 

Time 
EV 

penetration 
𝑅𝑀𝑆𝐸 𝑅2 𝑆𝑆𝐸 𝑂𝐸 

2:00 66.56% 0.0119 0.4999 0.1421 0.0052 

12:00 0.63% 7.60E-05 0.9863 5.79E-06 1.80E-06 

14:30 10.50% 0.001 0.5721 0.0011 3.56E-04 

19:00 32.14% 0.0048 0.5028 0.0235 6.27E-04 
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As delineated in Table 4. 3,  the time of the highest EV penetration, which is at 2:00, 

exhibits the most significant deviation from the no-EV penetrated scenario. This is 

because the most of residential and industrial loads are in-operated during the midnight, 

at the same time, the EV is still charging, so the EV dynamic load is dominant. This is 

also reflected in the largest 𝑅𝑀𝑆𝐸 value and the smallest 𝑅2 value. Because these two 

indicators represent the fitting quality by comparing the estimated value and obtained 

value between with/without EV penetration, implied by the equations (4.1) and (4.2). 

The higher 𝑅𝑀𝑆𝐸  means the larger differences between the with/without EV, 

conversely, the higher 𝑅2 means the with/without EV penetration data is more similar.   

Furthermore, considering the largest recovery process observable in Figure 4. 10, this 

recovery contributes to a larger difference compared to the data with lower EV 

penetration. Consequently, the data at 2:00 has a larger 𝑆𝑆𝐸  as shown in Table 4. 3. 

Additionally, more EV penetration results in more dynamic characteristics in the 

response, leading to a heavier 𝑂𝐸  that can be detected at the instantaneous of the 

disturbance. The data at 2:00 also exhibits the largest 𝑂𝐸 value.  

Another obvious rule can be found in Table 4. 3 is that the scenario with higher EV 

penetration consistently has larger 𝑅𝑀𝑆𝐸 , 𝑆𝑆𝐸  and 𝑂𝐸  values, and smaller 𝑅2  values. 

The strength of this relationship is also investigated in this study. 

Comparing the dynamic responses at (a) T1 (midnight) and (d) T4 (peak time), the EV 

charging load demands are very similar, at 1.3775 MW and 1.3228 MW, respectively, as 

shown in Figure 4. 9. However, the dynamic response in DN is significantly different. 

This indicates that the dynamic response is influenced not only by the EV load demand 

but also by the EV penetration level, which shares the demand with other loads.  

By the sight of 𝑅2 values, the 𝑅2 at (a) T1 (c) T3 (d) T4. are relatively small and around 

0.5 as shown in Table 4. 3. Despite this, their dynamic response appears not that similar 

in Figure 4. 10.  

For the composite EV penetration scenario, the results are shown in Figure 4. 11. 
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Figure 4. 11 Comparison of composite of EV penetration 𝑃𝐸𝑉 and 𝑃𝑁𝑜,𝐸𝑉  responses for S5 

scenario during a -2.17% voltage disturbance.  Time instance (a) T1 (b) T2 (c) T3 (d) T4. 

 

Comparing the results shown in Figure 4. 10 and Figure 4. 11, a notable similarity 

emerges, particularly in the context of a larger recovery process when the penetration 

level of EVs increases. The system exhibits greater oscillation recovery following a 

voltage step change with higher EV penetration. In this scenario, the DN behaves more 

like a constant power load. On the other hand, a system with EV penetration invariably 

exhibits a larger overshoot error. Interestingly, this overshoot error is more pronounced 

than that observed in Figure 4. 10. This is why the result in Figure 4. 11(c) appears more 

similar to the no-EV scenario than the result from Figure 4. 11(b), despite the higher 

penetration of EVs into the DNs. To facilitate a more intuitive observation of the 

differences post-EV penetration, the indicator expressed in Section 3.4.5 is used to 

quantify the difference between the grid with and without EV penetration for these four 

typical scenarios. The results are shown in Table 4. 4. 
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Table 4. 4.  Quantified the difference among 4 simulation scenarios with composite type EV load. 

Time 
EV 

penetration 
𝑅𝑀𝑆𝐸 𝑅2 𝑆𝑆𝐸(%) 𝑂𝐸(%) 

2:00 66.56% 0.0122 0.5422 1.5378 0.6728 

12:00 0.63% 0.0022 0.9998 0.3211 0.3431 

14:00 10.50% 4.67E-04 0.9979 0.0050 0.3427 

19:00 32.14% 0.0040 0.9639 0.5509 0.5627 

 

The results bear a strong resemblance to the indicators presented in Table 4. 3. At 

2:00 am, the greatest disparity between the EV and no-EV scenarios is observed. This 

discrepancy corresponds to the highest 𝑅𝑀𝑆𝐸  value and the lowest 𝑅2  value. This 

scenario also has a larger 𝑆𝑆𝐸 which can be discerned from Figure 4. 7. Furthermore, 

increased EV penetration results in more pronounced dynamic characteristics in the 

response, leading to a heavier overshoot at the instant of disturbance occurrence. 

Consequently, the data at 02:00 also records the largest 𝑂𝐸 value. 

Based on the 𝑅2 values, the 𝑅2 at (a) T2 (c) T3 (d) T4. are relatively small and around 

1 as shown in Table 4. 4. Meanwhile, the 𝑅2 at T1 still close to 0.5. This suggests that, the 

𝑅2 can also be influenced by the different types of EV model penetration, but this is only 

valid in scenarios without very high EV penetration. On the other hand, during the 

maximum EV penetration time, the DN’s dynamic response is dominated by the EV, 

which results in significant differences from the no-EV scenarios, that 𝑅2 will always be 

smaller.  

An intriguing phenomenon emerges upon comparing the results from 12:00 and 

14:00. The results at 14:00, which have a larger EV penetration and are more oscillatory 

but get better fitting quality on 𝑅𝑀𝑆𝐸, 𝑅2 and 𝑆𝑆𝐸. That is because the complex EV 

dynamic load model has a relatively larger overshoot, but is close to a constant power 

load. As the penetration of EV load increases, the worse overshoot results in a worse 𝑂𝐸. 

On the other hand, the slightly larger power recovery can make a more similar steady-

state which can result in better fitting quality.  
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4.5.2. Statistical analysis of error metrics 

To provide further insights concerning the impact of EVs on DN dynamics, error 

metrics for all examined cases are computed and statistically analysed by means of 

boxplots. The corresponding results for single type EV penetration are summarized in 

Figure 4. 12. Additionally, in Figure 4. 13 the error metrics are presented as a function of 

the single type of EV penetration level for all the examined cases, i.e., for all examined 

time instances and scenarios.  

    

Figure 4. 12. Statistical analysis of error metrics using boxplots with single type EV penetration. 

(a) 𝑅𝑀𝑆𝐸, (b) 𝑅2, (c) 𝑆𝑆𝐸, and (d) 𝑂𝐸 

The four indicators used to quantify the differences are shown in Figure 4. 12, which 

illustrates the trend of EVs connecting to the power system. The 𝑅𝑀𝑆𝐸 results indicate 

that increased EV penetration in power systems will lead to greater deviations in dynamic 

response under the same conditions. A similar conclusion can be drawn from the  𝑅2 

results. However, due to the length of the analysis window, the resulting difference is 

magnified. It is important to note that the best-fitting data, with an 𝑅2 value close to 1, 

which is the data captured by the time of 12:00, with the lowest EV penetration. The 
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𝑆𝑆𝐸 results indicate that as more EVs are connected to the network, the steady-state 

value after a disturbance will change more significantly.  

 

Figure 4. 13. Error metrics as a function of single type of EV ownership and EV penetration 

level. (a) 𝑅𝑀𝑆𝐸; (b) 𝑅2; (c) 𝑆𝑆𝐸; (d) 𝑂𝐸. 

Results of Figure 4. 12 and Figure 4. 13  reveal that as the EV penetration increases, 

𝑅𝑀𝑆𝐸, 𝑆𝑆𝐸, and 𝑂𝐸 generally increase, thus 𝑅2 is reduced. It is evident that EVs have a 

clear impact on the dynamic characteristics of DNs.  

On the other aspects, the four indicators also show some monotonicity with the 

increasing of EV penetration in Figure 4. 13. However, the same EV penetration does 

not mean other loads in this system are also in the same scenario. Which results in this 

monotonicity is not absolute. Further, this is also the reason that this study does not 

provide a precise number or fit these results via functions to represent the relationship 

between the EVs penetration and the number of indicators. 

For the composite EV penetration, an evident pattern discernible from Table 4. 4 is 

that the scenario with more EV penetration always exhibits a larger oscillatory. However, 

when the EV penetration is minimal, a marginal increase in EV penetration can enhance 

the fitting quality. The results of the error metric for the composite type of EV 

penetration are presented in Figure 4. 14 and Figure 4. 15. 
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Figure 4. 14 Statical analysis of error metrics with composite EV penetration using boxplot. 

(a)𝑅𝑀𝑆𝐸, (b) 𝑅2, (c) 𝑆𝑆𝐸, and (d) 𝑂𝐸 

 

The results of this study are quantified using four indicators, which are presented in 

Figure 4. 14. These indicators provide a general trend of the impact of EVs on power 

systems. The 𝑅𝑀𝑆𝐸 results show that an increase in EV penetration levels can lead to 

higher deviations in the dynamic response under similar conditions. Similarly, the 𝑅2 

results demonstrate a similar trend, although the difference is magnified due to the length 

of the analysis window. It is worth noting that the best fitting data, captured at 12:00 

with the lowest EV penetration, has an 𝑅2  value close to 1, which indicates that the 

difference is likely caused by the penetration of EVs. The 𝑆𝑆𝐸 results suggest that an 

increase in EVs connected to the power network will result in greater changes in the 

steady-state value following a disturbance. This is further supported by Figure 4. 14, 

which shows that the integrated load becomes closer to a constant power load with 

increased EV penetration levels. Finally, the 𝑂𝐸 results suggest that the connection of 

EVs will also result in more overshoot errors. 
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Figure 4. 15 Error metrics as a function of composite type EV ownership and EV penetration 

level. By complex EV penetration scenario (a) 𝑅𝑀𝑆𝐸; (b) 𝑅2; (c) 𝑆𝑆𝐸; (d) 𝑂𝐸. 

In summary, despite the apparent similarity between Figure 4. 12 and Figure 4. 14, 

there are significant differences in the dynamic response between the two scenarios 

compared in Figure 4. 10 and Figure 4. 11.  

The variations observed in these four indicators for composite EV penetration align 

with the trends identified for single-type EV penetration. As EV penetration increases, 

the 𝑅𝑀𝑆𝐸, 𝑆𝑆𝐸 and 𝑂𝐸 increase, and the 𝑅2 decreases. However, the application of this 

complex dynamic model yielded some notable distinctions. Specifically, it can be 

observed that the relationship between EV penetration levels and the indicators is not as 

robust as indicated by Figure 4. 13, due to the model’s more intricate dynamic recovery 

process. Additionally, this analysis indicates that marginal increases in EV penetration 

levels can enhance fitting quality when EV penetration is low. From Figure 4. 15(b), it 

can be observed that there is a trend where higher EV penetration results in a smaller 

𝑅𝑀𝑆𝐸, this also confirms the inference made in Section 4.5.1.  

This observation suggests that the indicators employed in this study may lack the 

precision necessary to comprehensively encapsulate the influence of EVs on DN in 

complex scenarios. Consequently, a more robust methodology is needed to overcome 

these limitations, which will be expressed in Chapter 4. 
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4.6 Summaries 

In this chapter, the impact of EVs on the dynamic performance of DNs is 

investigated. Several test cases are examined, assuming different EV penetration levels 

and loading conditions. To replicate realistic loading and operational conditions, typical 

residential, industrial, as well as EV consumption profiles are used, and RMS simulations 

are performed on the benchmark MV DN of CIGRE using the DIgSILENT software. 

Moreover, the influence of PI parameters of EV chargers on network dynamics is 

analysed by performing parametric analysis. A subsequent evaluation is carried out to 

ascertain the network load capacity is sufficient to accommodate a scenario where all 

vehicles are replaced by EVs.  

The dynamic characteristics derived from four typical time points demonstrate that 

DN penetrated by EVs exhibits varying dynamic behaviours at different times of daily 

operation. Generally, compared to the no-EV penetration scenario, the higher EV 

penetration level makes the DN have a worse 𝑂𝐸 but a smaller steady 𝑆𝑆𝐸. Overall, this 

study provides a general direction of change for the four quantification indicators 

(𝑅𝑀𝑆𝐸, 𝑅2, 𝑆𝑆𝐸, and 𝑂𝐸).  

The result from the dynamic characteristics from the four typical time points 

illustrates that the higher EV penetration scenarios lead to larger overshoots and 

oscillations. 

By comparing the results from single and composite types of EV penetration, this 

study finds that the differences cannot be distinctly illustrated through the four indicators. 

Therefore, a more precise quantification methodology is required for a detailed analysis. 

Future research will focus on the PI parameters, these factors may have a significant 

impact on the penetration level of EVs, since they can affect the tripping of protection 

devices during voltage sags. Thus, the determination of the maximum EV penetration 

level, under different types of chargers and PI values, considering also dynamic 

constraints is another interesting topic for future research. Additionally, more 

sophisticated techniques shall be developed to provide further insights regarding the 

relation between EV penetration level and model parameters. 
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5.1 Introduction 
 

5.1.1 Motivation 

As the market share of EVs continues to grow, an increasing number of EVs 

connect to the power system for battery charging. Beyond merely quantifying the 

differences among various EVs integrated into the system, it is crucial to explore the 

detailed impact on the system active power recovery. In the preceding Chapter, this 

thesis introduces the concept of an EV dynamic load model, which is integrated into the 

power network using four indicators. While these indicators effectively quantify different 

levels of EV penetration, they fall short of capturing the nuanced differences during the 

recovery process. For instance, composite types of EV penetration resulted in more 

complex oscillatory behaviour during recovery. This prompts the question of which 

method could be employed to reinforce the insight of the dynamic response. 

Consequently, a type of indicating methodology is necessitated to fulfil this gap, that 

incorporates not only the comprehensive attributes of the two curves but also the 

characteristic points that are not subject to artificial selection.  

The complexity of the dynamic response is primarily governed by the transfer 

function, a critical component of the dynamic equivalent model. Therefore, the method 

to quantify the characteristics of the transfer function would be a way to reinforce the 

insight of the dynamic response. The Pole-Zero representation can encompass the 

entirety of the transfer function, condensing its features into a handful of straightforward 

parameters [188]. As a result, this study introduces an analysis based on Pole-Zeros of 

the dynamic equivalent model of the entire DN hosting EVs. This approach will be 

employed to quantify and emphasize the dynamic characteristics. 

 

5.1.2 Contributions 

This chapter focuses on the dynamic recovery process and proposes a methodology 

to meticulously indicate the characteristics of dynamic recovery. To accomplish this, 

there are some tasks that need to be analysed: 

• The simulation results from the preceding chapter have been presented using 

Pole-Zeros to highlight the characteristics of the complex dynamic response.  
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• These numerous Pole-Zeros are analysed using statistical methods, 

investigating their characteristics across various scenarios, such as EV 

ownership and operation time.  

• This study has explored the optimal fitting order for the equivalent model 

across a range of operational scenarios. The optimal order is determined 

using the indicator 𝑅2. 

Fundamentally, this chapter builds upon the work of the preceding chapter. Its 

contributions extend beyond the scope of EV penetration into DNs, encompassing the 

analysis of complex dynamic characteristics. This broadens its application scenarios and 

benefits the power system dynamic stability analysis.  

 

5.2 Pole-Zero Methodology 

Pole-Zero analysis is a fundamental tool in control systems and power system 

stability analysis. It helps in understanding the behaviour of a system by examining its 

poles and zeros, which are derived from the system’s transfer function. This implies that 

the transfer function, representing the dynamic characteristics of DNs with EV 

penetration, can be summarized using poles and zeros. Consequently, this approach 

facilitates the derivation of rules from a large number of response curves. The control 

system can be expressed to determine stability margins and transient response 

characteristics [190] This analysis is based on the transfer function obtained from the 

control loop, which is identical to the dynamic load model utilized in Chapter 3 

[61][94][95]. This similarity between these two systems provides the inspiration for 

utilizing the Pole-Zero analysis in dynamic load modelling to investigate its dynamic 

characteristics and quantify its influence on system stability. 

The transfer function has been expressed in the equation (2.9), to highlight its poles 

and zeros, this transfer function can be written as below: 

𝐺(𝑠) =
𝑛(𝑠)

𝑑(𝑠)
=
𝛽𝜈𝑠

𝜈 + 𝛽𝜈−1𝑠
𝜈−1 +⋯+ 𝛽0

𝛼𝜇𝑠
𝜇 + 𝛼𝜇−1𝑠

𝜇−1 +⋯+ 𝛼0
= 𝐾

(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝜈)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝜇)
(5.1) 

The coefficient 𝑛(𝑠)  is the number polynomial of degree 𝜈 , and 𝑑(𝑠)  is the 

denominator polynomial of degree 𝜇. The poles of the system 𝐺(𝑠) are defined as the 
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roots of the denominator polynomial equation, which 𝑑(𝑠) = 0. The zeros of the system 

𝐺(𝑠) are defined as the roots of the numerator polynomial equation, which 𝑛(𝑠) = 0.  

The zeros can be both real and complex numbers. If the zeros are complex, the zero 

locations will occur in complex conjugate pairs. The real and imaginary parts of the Pole-

Zero can be defined by 𝜎 and 𝜔, respectively.   

 

Figure 5. 1. 𝑠-plane for pole and zero location [190]. 

From Figure 5. 1 shown above, the complex Pole-Zero has been represented by the 

“Origin”. The left of the imaginary axis is the Left Half Plane (LHP), and the region to 

the right of the imaginary axis is the Right Half Plane (RHP). Therefore, it can be 

identified, as a single pole in 𝑠-plane: 

• If 𝜎 = 0, the response of the pole is a perfect oscillator. 

• If 𝜔 = 0, the response of the pole is a perfect exponential curve. 

• If the pole is located in LHP, the exponential part of the response will decay 

towards zero, so the system becomes stable. 

• If the pole is located in RHP, the exponential part of the response will rise 

towards infinity, and the system will be unstable.  

 In contrast to poles, modifications in the zeros do not directly and distinctly impact 

the dynamic response of the transfer function [190], except at certain specific points. 

Each zero indicates that the value of the transfer function equals zero at that point, 

resulting in an output of zero. An RHP zero introduces a phase lag in the system and 

terms characteristic to non-minimum phase systems, as the system’s initial response to a 

step input is in the opposite direction of the final steady-state value [191].  
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In summary, the stable system means all the poles are located in the LHP, even if one 

of these poles lies in the RHP, the total response will be dominated by this pole and the 

system becomes unstable.  There is no definitive criterion that dictates the role of zeros 

in determining the stable/unstable of a transfer function. An additional point that 

warrants emphasis is that, the characteristics of Pole-Zero analysis can primarily serve as 

a source of inspiration for dynamic stability analysis rather than being directly applicable. 

Given the potential issues that may arise from varying application scenarios, the 

characteristics of Pole-Zeros may not necessarily be relevant when analysing the 

characteristics of the dynamic equivalence model of DNs. 

Because the distribution system under study is powered by an external grid, as 

illustrated in Figure 4. 5, and the only dynamic component is the EV dynamic load model, 

whose detailed dynamic characteristics are presented in Table 3. 3 and Table 3. 4, it is 

observed that the EV dynamic load model exhibits stable behaviour. Consequently, the 

distribution system under study does not experience any instability. The focus of the 

Pole-Zero analysis is to quantify the dynamic recovery characteristics, thereby providing 

a comprehensive analysis.  

 

5.3 Analysis of dynamic recovery processes 

The proposed modelling approach is used to derive dynamic equivalent models for 

entire DNs hosting EVs. The performance of the proposed method is evaluated under 

different loading conditions as well as under different EV penetration levels. For this 

purpose, the 144 cases of Section 4.5 are utilized. The composite type of EV load 

penetration which has been illustrated in Section 4.4.3 is utilized in this study. Moreover, 

the impact of the EV penetration level on the optimal order of the proposed model as 

well as on the required model parameters is assessed and recommendations for the 

derivation of generic equivalent model parameters are proposed. Furthermore, this 

chapter focuses on indicating the impact of EVs through Pole-Zero perspective, 

discusses the results predicated on Pole-Zero, and analyses their characteristics. 
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5.3.1 Fitting quality and target order of the transfer function 

To derive reduced order equivalent models that represent the dynamic characteristics 

of the entire DN, the following procedure is adopted: dynamic responses of active power 

and voltage are recorded at the POI and forwarded as inputs to the developed method. 

Subsequently, the iterative procedure outlined in Section 3.4.1 is utilized for the 

determination of the optimal model order and for the identification of the required 

model parameters. 

In order to maximize the dynamic characteristics from the response, this case study 

selects the time of 2 am in the morning with 1.2 EVs owned per household. The 

dynamic response fitted by the 1st 2nd and 3rd order transfer function based dynamic 

model is shown in Figure 5. 2 below.  

 

 

Figure 5. 2. Equivalencing of DNs. Convergence of the proposed modelling approach. Dynamic 
responses for S6, T=02:00 are used.  

 

An indicative example is presented in Figure 5. 2, where the iterative procedure, used 

for the determination of the optimal model order, is illustrated. The ∆𝑅2  for the 

convergence of the iterative procedure is set to 1%. As shown, a 1st and a 2nd order 

model cannot capture accurately the oscillatory behaviour of the power. On the contrary, 

the 3rd order model provides very accurate results. 
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Figure 5. 3. Equivalencing of DNs. Convergence of the proposed modelling approach. Dynamic 
responses for S1, T=14:00 are used. 

 

The dynamic data results, which correspond to a time of 14:00 and an EV ownership 

of 0.2 per household, represent the lowest EV penetration level, are illustrated in Figure 

5. 3. The 3rd order transfer function does not exhibit a superior fitting quality in 

comparison to the others. Despite this, the result fitted by the 3rd transfer function 

exhibits a steady-state error, a characteristic absent in other results. On the other hand, 

the results from the 1st and 2nd transfer functions are similar. The sole distinction is the 

2nd order function has an overshoot during the recovery process, which consequently 

enhances its fitting quality slightly over the 1st order transfer function.  

 

 

 

5.3.2 Variability of model parameters - 5 seconds recorded 

To thoroughly evaluate the performance of the proposed modelling approach, the 

dynamic responses of the 144 cases, as described in Section 3.4, are utilized. For each 

case, the proposed method is applied and equivalent models for the examined DN are 

derived. The original data is recorded 5 seconds after the disturbance occurs.  
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Table 5. 2. The fitting quality 𝑅2 of the aggregated dynamic load modelling from the 1st order 

2nd order and 3rd order transfer functions. 

Time 
Ownership 

0.2 

Ownership 

0.4 

Ownership 

0.6 

Ownership 

0.8 

Ownership 

1.0 

Ownership 

1.2 

1:00 97.330 95.689 94.096 92.736 91.878 99.905 

2:00 97.114 95.240 93.506 92.119 91.111 99.894 

3:00 97.130 95.272 93.547 92.161 91.148 99.894 

4:00 97.182 95.380 93.687 92.304 91.276 99.897 

5:00 97.638 96.353 95.030 93.798 92.738 99.925 

6:00 98.104 97.286 96.451 92.304 94.763 99.964 

7:00 98.402 98.037 97.659 97.238 96.832 99.988 

8:00 98.586 98.404 98.205 98.043 97.860 99.997 

9:00 98.629 98.499 98.196 98.201 98.083 99.998 

10:00 98.634 98.507 98.220 98.228 98.108 99.998 

11:00 98.602 98.444 98.262 98.107 97.946 99.997 

12:00 98.746 98.742 98.737 98.733 98.728 100.000 

13:00 98.715 98.679 98.641 98.602 98.563 100.000 

14:00 98.683 98.612 98.538 98.458 98.377 99.999 

15:00 98.648 98.539 98.422 98.299 98.177 99.999 

16:00 98.577 98.383 98.180 98.004 97.809 99.996 

17:00 98.503 98.218 97.969 97.691 97.399 99.993 

18:00 98.396 98.028 97.643 97.234 96.803 99.987 

19:00 98.418 98.109 97.780 97.425 97.050 99.990 

20:00 98.396 98.033 97.653 97.247 96.819 99.987 

21:00 98.319 97.890 97.417 96.918 96.397 99.983 

22:00 98.209 97.634 97.085 96.459 95.815 99.973 

23:00 98.049 97.221 98.293 95.329 94.774 99.955 

0:00 97.748 96.509 98.104 93.910 93.233 99.927 

 

As delineated in Section 4.4.1, the EV essentially exhibits the highest penetration 

level around 02:00 am and the lowest penetration level around 14:00 pm. Furthermore, a 

higher EV ownership level can directly result in a higher penetration level of the EV 

dynamic load model. Consequently, a pattern can be discerned from Table 5. 2 indicating 

that the higher order, such as the 3rd order transfer function, typically exhibits superior 

fitting quality when the EV has a higher penetration level in DN.  

However, this rule is not universally applicable, as the concept of ‘Higher EV 

penetration’ primarily centres on the independent value represented by EV charge 

demand. Even if the EV penetration level remains constant, the conditions of other 

loads, such as the residential and industrial loads in this study, might differ. This is why 
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this study can only provide a rough rule. Combining the results from Figure 5. 2, Figure 

5. 3 and Table 5. 2, when the EV penetration level is high, there is a significant 

complicated oscillatory recovery. The 1st and 2nd order transfer functions cannot 

adequately fit this oscillation, which is why the 3rd order transfer function normally has 

the best fitting quality. When the EV penetration level is low, the dynamic characteristics 

are not obvious, which is why the 3rd order transfer function has relatively worse fitting 

quality in this scenario. 

 The indicated Pole-Zeros will be incorporated within this section, and their evolving 

patterns under varying EV penetration levels will be exhibited and analysed.  

 

Figure 5. 4. Variations of (a) 𝑁𝑠 and (b) 𝑁𝑡. across the 144 examined cases.  

 

The S1 - S6 in Figure 5. 4 represent the nominal power of residential industrial and 

six examined EV load settings, as illustrated in Table 4. 1. It appears that there is a strong 

relationship between the value of 𝑁𝑠  and the EV penetration level. As the EV 

penetration level increases, the static parameter 𝑁𝑠 tends to decrease. This implies that 

the higher the EV penetration, the more the DN behaves as a constant power load a few 

seconds after a voltage disturbance. Additionally, as the EV penetration increases, 

voltage exponent 𝑁𝑡  tends to increase. Thus, for higher EV penetration levels, larger 

power undershoots are expected. Finally, it is worth noting that the results of Figure 5. 4 

reveal a strong linear relationship between the values of voltage exponents and the EV 

penetration level. This strong linear relationship can be used by DN operators to roughly 

predict the values of voltage exponents 𝑁𝑠 and 𝑁𝑡  based on the EV penetration level. 

This information can provide insights to the system operator regarding the expected 
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power undershoot during a voltage disturbance as well as information regarding the new 

equilibrium point, i.e., the new steady-state of power after a voltage disturbance. 

The poles fitted by 1st order transfer functions are presented in Figure 5. 5 below. 

Note that in this figure, the EV penetration on the x-axis is limited to 35%. It can be 

discerned that varying levels of EV penetration primarily influence the poles, indicative 

of stability, when few EVs penetrate this system. On the other hand, an interesting 

characteristic emerges in scenario S6, which represents 1.2 EVs owned per household, as 

it exhibits a deviation from the other scenarios.  

 

Figure 5. 5. Poles Variation for 1st order model. 

 

This study conducted a detailed analysis of the characteristics of poles by separating 

them into real and imaginary parts. Figure 5. 6 presents the dynamic responses of DNs 

recorded under different EV ownership level settings. These results are fitted by 3rd order 

transfer functions using the methodology expressed in Section 3.4.3. Subsequently, the 

transfer functions from the equivalent dynamic model have been converted into Pole-

Zero expressions.  

 



Chapter 5 - Indicating the Dynamic Characteristics through Pole-Zero Technique 

 

99 | P a g e  
 

 

Figure 5. 6. Poles for third order models. (a): Real part of Pole; (b): Imaginary part of Pole; 

  

As illustrated in Figure 5. 6, a robust correlation exists between the EV penetration 

level and EV ownership per household, as an increase in ownership signifies growth in 

EV penetration. Subsequently, when a low EV ownership level operates during low EV 

charging time, such as the scenario analysed in Figure 4. 11(b) there is not a clear 

dynamic recovery process. On this occasion, the fitted transfer function fails to 

accurately represent its dynamic response, which is why some poles are close to the 

coordinate zero point and the RHP area.  

As the EV penetration level increases, the poles in the imaginary part also show a 

strong nonlinear relationship. However, similar to the results from the real part, the 1.2 

EV ownership cases do not follow this relationship. 

 

 

Figure 4. 7. Zeros for 3rd order model. (a): Real part of Zero; (b): Imaginary part of Zero; 
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Although the value of zeros does not directly determine whether the system is stable 

or not, it is still valuable to explore their changing patterns under different EV 

penetrations and ownership settings. Similar to the characteristics of poles, the values of 

zeros also show a strong relationship, except in 1.2 ownership scenarios. 

 

5.3.3 Variability of model parameters - 0.3 second recorded 

An interesting feature emerges from the results in Section 5.4.2. Not only does the 

EV penetration itself impact the poles and zeros of the dynamic response, but the EV 

ownership per household can also individually influence them in some cases. This 

section will use different fitting scales, guided by [189], rather than the 5 seconds, to 

identify results that differ from those in Section 5.4.2.  

In this study, only 0.3 seconds after a disturbance occurs have been utilized in the 

fitting process of the equivalent function. To thoroughly evaluate the performance of the 

proposed modelling approach, the dynamic responses in the same cases as utilized in 

Section 5.4.2 are examined. For each case, the proposed method is applied, and 

equivalent models for the examined DN are derived. The resulting model order for each 

case is presented in Figure 5. 8, the corresponding R2 values are summarized in Figure 5. 

9. As shown, in all cases very high R2 values (generally higher than 98%) are reported, 

demonstrating the accuracy of the proposed method. 

The impact of EV penetration level on the required model order is analysed in Figure 

5. 10. As shown, for low EV penetration scenarios, i.e., for EV penetration below 40%, 

1st order models are adequate. On the other hand, for higher EV penetration levels 

(higher than 40%) 3rd order models are required. 
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Figure 5. 8. Derivation of equivalent models for the examined DN under discrete loading 
conditions and EV penetration levels. Variability of model order. 

 

Figure 5. 9. Derivation of equivalent models for the examined DN under discrete loading 

conditions and EV penetration levels. Resulting 𝑅2 values. 

 

Figure 5. 10. Required model order for the dynamic analysis of DNs hosting EVs. 

On the other hand, the static parameters 𝑁𝑠 and 𝑁𝑡 under the 0.3 second time scale 

fitting, are initially presented in Figure 5. 11.    
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Figure 5. 11. Variation of (a): 𝑁𝑠 and (b): 𝑁𝑡, fitted by the time range of 0.3 seconds after the 
disturbance occurred.  

The result in Figure 5. 11 is very similar to the 5 second recording scenarios (Figure 5. 

4). Both have a strong linear relationship between the value of voltage exponent and EV 

penetration level. Except, the high 𝑁𝑡 in EV penetration scenarios is more concentrated. 

In general, the recording time scale almost no impact on the 𝑁𝑠 and 𝑁𝑡.  

 

Figure 5. 12. Poles Variation for 1st order model. 

To discern the variation in the value of the Pole between different recording scales, 

this study compared the outcomes in 5s (Figure 5. 5) and 0.3s (Figure 5. 12). Notably, the 

fitted results at the 0.3-second scale exhibit a higher concentration, particularly in 

scenarios with high EV penetration.  
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Figure 5. 13. Poles and Zeros for third order models. (a): Real Pole; (b): Real part of the 
oscillatory mode; (c): Imaginary part of the oscillatory mode; (d): Real part of Zeros; (e): 

Imaginary part of Zeros. 

 

Concerning the 3rd order transfer functions, the variability of their parameters is 

presented in Figure 5. 13(a)-(e) As already explained, 3rd order transfer functions are used 

to simulate DN dynamics when EV penetration is relatively high, typically exceeding 

40%. As shown in Figure 5. 13(a)-(e), the poles and zeros of these transfer functions do 

not vary considerably across the examined cases. In fact, only trivial differences are 

observed. As discussed in Section 2, the parameters of the developed transfer functions 
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are mainly affected by the PI settings of the EV chargers. Therefore, since these settings 

do not change during the day, the variability of model parameters is rather limited. 

Based on the aforementioned remarks, it can be deduced that when the transfer 

function is fitted by the 0.3 second time scale, the EV penetration level mainly affects the 

order of the required transfer functions. Nevertheless, the EV penetration level does not 

have a significant impact on the parameters of the transfer functions. Therefore, the 

system operator can use 1st order transfer functions for the modelling of DNs that 

present relatively low EV penetration levels, i.e., lower than 40%; 3rd order transfer 

functions shall be used for DNs with EV penetration levels. For both cases, since the 

variability of the parameters is restricted, typical parameters can be identified via a limited 

number of measurements/responses. 

 

5.4 Summaries 

This chapter employs the Pole-Zero concept to indicate the complex dynamic 

characteristics of DNs accommodating EVs, and the interesting attributes from the 

results.  

The outcome is markedly influenced by the duration of the recording time. This 

chapter encompasses two distinct recording durations, such as, 0.3 seconds and 5 

seconds. However, an interesting characteristic emerges unexpectedly, wherein the 

scenario of 1.2 EV ownership exhibits unique patterns of change, particularly during the 

5-second recording duration.  

Moreover, the impact of the EV penetration level on the order of the required 

transfer functions is analysed. Results reveal that for low EV penetration levels, 1st order 

transfer functions are generally needed, but for high EV penetration levels (higher than 

40%), 3rd order transfer functions are required. Note that the 40% EV penetration level is 

an indicative value, determined by the analysis conducted in this thesis. This value can 

differ in cases where the PI parameters of fast and slow EV chargers differ considerably 

compared to those used in this study. Finally, the variability of model parameters is also 

assessed, and general guidelines are provided to facilitate the derivation of generic sets of 

parameters. 
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Future studies will concentrate on enhancing the robustness of Pole-Zero analysis, 

which may include proposing an optimal duration for data acquisition. Furthermore, for 

the interesting results, the 1.2 ownership exhibits a different role and should be deeply 

researched to identify the hidden reason.  
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6.1 Introduction 
 

6.1.1 Motivation 

In the preceding chapters, various aspects of EV charging within the power network 

have been investigated. In this chapter, this thesis will delve into the terminal stage of the 

charging process, specifically focusing on the EV’s battery. 

The battery is a critical component of EVs, and currently poses a significant 

technological challenge. The objective of this study is to shed light on the influence of 

the battery on EV load modelling. To address this question, this study undertakes a 

comprehensive review of EV battery modelling in this chapter, with a particular 

emphasis on the construction and control of the charging circuit, inclusive of the 

DC/DC converter briefly discussed in Chapter 2. Subsequently, this chapter introduced a 

representative battery charging terminal model to depict charging scenarios across a 

spectrum of State-of-Charge (SoC) levels. This model will be employed in subsequent 

simulations to examine the impact of varying SoC values on EV static load modelling. 

 

6.1.2 Contributions 

Building upon the established dynamic load modelling for EVs, this chapter 

introduces an electronic circuit-based battery charging model that can be incorporated 

into the existing modelling framework. In view of this independent component, this 

chapter will examine its impact on the current EV load model.  The key contributions of 

this chapter are the following: 

• A review of the typical electronic circuit-based battery model that can be 

employed in EV load modelling, along with an investigation of battery 

characteristics under different SoC conditions. 

• An exploration of the phenomenon where the charging speed decreases as 

the battery approaches full charge. This chapter will focus on identifying 

which parameters of the battery model change and how these changes 

influence the EV charging model.  

• The application of the EV model, adjusted for different SoC settings, to load 

modelling in order to observe deviations from the standard charging scenario 
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EV load model. This will address the question of whether a new load model 

is required to accurately represent the EV nearing a fully charged state. 

 

6.2 Methodology 
 

6.2.1 Characteristics and performance of batteries 

Instead of the basic principles of chemistry, this study emphasizes the electrical 

characteristics of the battery. The initial challenge in this field is the representation of the 

energy stored in the battery. The unit “Ampere-hour (𝐴ℎ)” can be employed to articulate 

this characteristic, which signifies the total power that can be discharged from a fully 

charged battery under specified conditions [109]. The rated 𝐴ℎ capacity is the nominal 

capacity of a fully charged battery, as predefined by the manufacturer. Furthermore, the 

unit “Watt-hour (𝑊ℎ)” (or 𝑘𝑊ℎ) is also utilized to represent a battery capacity, which is 

defined as: 

 𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑊ℎ
= 𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐴ℎ
× 𝑅𝑎𝑡𝑒𝑑 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝐵𝑎𝑡𝑡𝑒𝑟𝑦 (6.1) 

On the other hand, the SoC is utilized to define the remaining capacity of battery. It 

is also affected by operating conditions, for example, battery temperature and load 

current. 

 𝑆𝑜𝐶 =
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
(6.2) 

The change of SoC can be also expressed as the equation shown below if it is defined 

by 𝐴ℎ capacity. 

 ∆𝑆𝑜𝐶 = 𝑆𝑜𝐶(𝑡)− 𝑆𝑜𝐶(𝑡0) =
1

𝐴ℎ
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦∫ 𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

(6.3) 

In summary, the SoC serves as a parameter for quantifying the amount of electricity 

in the battery and for representing the battery’s state during the charging process. From 

the perspective of EV charging, the End of Charge (EoC) characteristic is also a crucial 

consideration in electronic circuit-based battery modelling, although its relevance is 

contingent on the type of battery. 

The Li-ion battery, which is extensively employed in EV manufacturing, exhibits 

EoC characteristics wherein the voltage increases rapidly as the battery nears full charge 

[87]. This phenomenon can be modelled by the polarisation resistance term. In the 
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model, the polarisation resistance increases abruptly when the battery is almost fully 

charged.  

 𝑅𝑃𝑜𝑙 = 𝐾
𝑄

∫ 𝑖𝑑𝑡
(6.4) 

Where the ∫ idt is actual battery charge (𝐴ℎ), K is polarisation constant (𝑉/𝐴ℎ) or 

polarisation resistance 𝑅𝑃𝑜𝑙, and 𝑄 is battery capacity (𝐴ℎ). Theoretically, if the battery is 

fully charged, the ∫ 𝑖𝑑𝑡 should be 0. And at this moment, the 𝑅𝑃𝑜𝑙 is infinite. On the 

other hand, there are some experimental results illustrating that the 𝑅𝑃𝑜𝑙  is shifted by 

about 10% of the capacity of the battery [87][192], therefore, the equation (6.4) can be 

re-written as: 

 𝑅𝑃𝑜𝑙 = 𝐾
𝑄

∫ 𝑖𝑑𝑡 − 0.1𝑄
(6.5) 

In this chapter, the battery modelling will be built based on the Li-Ion model. The 

battery voltage (𝑉𝑏𝑎𝑡𝑡) can be defined through the equation (6.6) shown below.  

 𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝑅 ∙ 𝑖 − 𝑅𝑃𝑜𝑙 ∙ 𝑖
∗ − 𝑅𝑃𝑜𝑙 ∙ ∫ 𝑖𝑑𝑡 + 𝐴 ∙ 𝑒𝑥𝑝(−𝐵 ∙ ∫ 𝑖𝑑𝑡) (6.6) 

In this equation, 𝐸0 is the battery constant voltage,  𝑅 is the internal resistance, 𝑖∗ is 

the filtered current. The parameters 𝐴 and 𝐵 are exponential zone amplitude (𝑉) and 

exponential zone time constant inverse (1/𝐴ℎ) respectively.  

The electronic circuit-based battery model to be employed in this chapter is 

predicated on the aforementioned equation. It is important to underscore that this 

modelling is oriented towards power system stability studies, and as such, certain detailed 

characteristics of the battery will be disregarded. For instance, this study does not 

consider the influence of temperature or the memory effect of the battery. Furthermore, 

the internal resistance 𝑅 remains invariant for the amplitude of the current.  

 

6.2.2 Equivalent circuit models of batteries 

The battery model employed in this study is based on an electronic circuit-based 

framework. This Li-ion EV battery model has been presented in [153], since the Li-ion 

battery is the most prevalent choice [192]. When compared to other battery types, Li-ion 

batteries exhibit superior energy density, diminished memory effect, and reduced power 
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wastage. In relation to the battery characteristics outlined in Section 6.2.1, the electronic 

circuit-based battery model utilized in this Chapter is depicted below. 

 

Figure 6. 1. Structure of electronic circuit based battery model [192]. 

 

The model illustrated in Figure 6. 1, represents a battery that comprises an equivalent 

voltage source, denoted as 𝐸𝑏𝑎𝑡𝑡 in series with an internal resistance. After passing 

through the DC/DC battery charger, the battery voltage 𝑉𝑏𝑎𝑡𝑡  is directly charging the 

battery. The equivalent voltage source is dictated by the battery’s characteristics and its 

SoC. The 𝐸𝑏𝑎𝑡𝑡  can be calculated through the integration of the battery current 𝐼𝑏𝑎𝑡𝑡 

over time and it consists of polarisation resistance 𝑅𝑃𝑜𝑙, which is defined in Equation 

(6.4) and (6.5). This term represents the non-linear voltage changes with the amplitude 

of the 𝐼𝑏𝑎𝑡𝑡, and the SoC.  

Typically, there are two main charging control strategies for the DC/DC battery 

charger - constant current control and constant voltage control. The constant current 

control maintains 𝐼𝑏𝑎𝑡𝑡  constant. The advantage of this charging strategy is that it 

maintains the charging speed within a safe and stable range. On the other hand, the 𝐸𝑏𝑎𝑡𝑡 

can be changed by the charge state, which is shown in Figure 6. 2. When the battery is 

close to being fully charged, the charge state will cross the 𝑄𝑒𝑥𝑝, and enter an exponential 

zone. In this zone, the 𝐸𝑏𝑎𝑡𝑡  will increase rapidly. If the DC/DC charge controller 

continues to employ the constant current charge strategy, the 𝑉𝑏𝑎𝑡𝑡  will continue to 

increase which makes it dangerous. 
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Figure 6. 2. Relationship between battery voltage 𝑉𝑏𝑎𝑡𝑡 and Battery electricity 𝑄. 

To circumvent potential hazards, the constant voltage charge strategy is employed in 

DC/DC charge control as the battery nears full charge. In this scenario, the 𝑉𝑏𝑎𝑡𝑡 

remains constant, while the 𝐼𝑏𝑎𝑡𝑡 gradually decreases as 𝐸𝑏𝑎𝑡𝑡 increases. This is also why 

the charge speed slows down as the battery approaches full charge. When 𝐸𝑏𝑎𝑡𝑡 equals 

𝑉𝑏𝑎𝑡𝑡, there is no voltage drop across the internal resistance, resulting in 𝐼𝑏𝑎𝑡𝑡 becoming 

zero and consequently terminating the charge. The research conducted in [87][194] 

revealed that battery equivalent voltage (i.e., the internal voltage source 𝐸𝑏𝑎𝑡𝑡) increased 

significantly in a high SoC. The power flow into the battery decreased with the DC/DC 

converter operating in constant voltage control. 

In summary, the 𝐸𝑏𝑎𝑡𝑡  will remain relatively stable between nominal voltage 𝑉𝑛𝑜𝑚 

and exponential voltage zone 𝑉𝑒𝑥𝑝 if the charge state keeps between the nominal capacity 

𝑄𝑛𝑜𝑚 and exponential capacity zone 𝑄𝑒𝑥𝑝.  

From the perspective of this study, it is crucial to discern the differences among 

various SoC levels and ascertain whether these differences influence the load modelling 

of EVs. These variations can be reflected in different 𝐸𝑏𝑎𝑡𝑡. This study will not consider 

the temperature affection, self-discharge of battery, and battery memory effect. More 

detailed explanations will be presented in Section 6.4.  

 

6.3 Converter-based model with integrated batteries 

The study presented in this chapter extends the research conducted in Chapter 3 by 

adding an electronic circuit-based battery model to the existing EV power electronic 
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model. In the aforementioned Chapter 3, the EV charging model was divided into two 

approaches – single-phase slow charge (~7.4 kW, level-2) and DC fast charge (~50 kW). 

Both approaches deliver a stable DC charging power to the battery. Moreover, both 

methodologies share a common structure for the DC/DC converter and battery 

component, as illustrated in Figure 6. 3.  

 

Figure 6. 3. Comparing both two charging approaches 

The focus of the extended work in this section is on the battery component. As 

outlined in Section 6.2.2, the electronic circuit-based battery model can be constructed as 

depicted in Figure 6. 1. Consequently, the extended EV power electronic model, which 

will be utilized in this chapter, is established by replacing the battery component with the 

battery model described in [192]. It is important to emphasize that the objective of this 

study is to present a representative outcome of the characteristics of EV load modelling, 

including the battery component. Therefore, there is no need to extend both charging 

approaches individually.  

The simulation model used in this study extends the DC fast charge model (~50 kW) 

by incorporating the electronic circuit-based battery model. This model will be crucial for 

investigating the characteristics of the battery as it nears full charge. It will enable a 

comparison of the load modelling results with the parameters outlined in Chapter 3. 

Furthermore, it will facilitate an analysis to determine whether a distinct load model 

needs to be developed separately for EVs approaching full charge.   
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6.4 Investigation of how battery SoC level affects EV equivalent model 

parameters 

As presented in Chapter 3, the EV load model for power system stability studies 

encompasses both static and dynamic information. This model illustrates load 

characteristics through algebraic functions at any given instant and the dynamic response 

to small or large disturbances over time. However, it is important to note that once 

established, the components of the load model, such as 𝜃 =

[𝑁𝑠, 𝑁𝑡, 𝛽𝜈 , 𝛽𝜈−1, … 𝛽0, 𝛼𝜇−1, … 𝛼0] illustrated from Section 2.3.2, remain invariant over 

time. This suggests that the existing load model structure may be insufficient in 

representing the dynamic characteristic changes as the battery approaches full charge, 

because these variables are predefined and remain constant in equations (3.5) – (3.9). 

This chapter focuses on the process when the EV is fully charged, examining whether 

the deceleration of the charging speed necessitates adjustments to the EV load model 

derived in Chapter 3. This section conducts multiple case studies at various stages during 

this process and compares the resulting load model with the conclusions drawn from 

Chapter 3.  

In this study, high SoC scenarios have been modelled by increasing the battery 

equivalent voltage. A series of simulations were conducted, considering different levels of 

battery equivalent voltage (e.g., 420 V under normal conditions, 440 V, 460 V, and 480 

V), which correspond to higher SoC. The same DC fast charge model used in Section 

6.4.1 is considered for these studies. The results for active power at different voltage 

levels are presented in Figure 6. 4 below. These results reveal that, while the actual power 

level changes, the overall static load behaviour remains close to constant power 

(dependent on the battery voltage). 
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Figure 6. 4. Active power consumption for different battery equivalent voltage (𝐸𝑏𝑎𝑡𝑡) and 
voltage supplies. 

In the preceding chapter, the exponential and ZIP models are selected to describe the 

static characteristics of the EV load model. In this section, by applying the curve fitting 

approach described previously to the results presented in Figure 6. 4, model parameters 

were extracted for the exponential and ZIP models. The numerical results for different 

SoC levels are presented in Table 6. 1. The parameter sets for both exponential and ZIP 

load models continue to indicate a near-constant power static behaviour from the EV 

charger. 

 

Table 6. 1 Curve fitting parameters for DC fast charging approach for different battery equivalent 

voltage (𝐸𝑏𝑎𝑡𝑡 ) levels. 

DC fast charge model 

       𝐸𝑏𝑎𝑡𝑡 Exponential parameter Z I P 

420 V −0.0921 0.062 −0.2199 1.156 

440 V −0.0764 0.044 −0.1651 1.12 

460 V −0.0683 −0.1440 0.218 0.9283 

480 V −0.0821 −0.1326 0.1816 0.9495 
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6.5 Summaries 

In this study, to investigate whether the high SoC can impact the EV static modelling, 

the power electronic model of EV charging is extended by incorporating an electronic 

circuit-based battery model. This enhanced model can accurately represent the 

characteristics of the battery as it is near full charge. Subsequently, based on this 

implemented model, the study explores the process of charge termination. As SoC 

increases with more electricity flowing into the battery, the nominal equivalent voltage, 

𝐸𝑏𝑎𝑡𝑡 also increases. On the other hand, the charge current decreases as the voltage drop 

across the internal resistance is reduced. When 𝐸𝑏𝑎𝑡𝑡 equals to 𝑉𝑏𝑎𝑡𝑡, which is supplied 

via constant voltage control, the charging process stops.  

Through a series of case studies that represent the battery charge at different SoC by 

adjusting 𝐸𝑏𝑎𝑡𝑡 . Based on the discussions and results presented, it is evident that the 

static load model does not need to account for varying SoC scenarios. In this study, the 

SoC is not directly a component in the circuit-based battery model but rather affects the 

battery excitation voltage. To simplify the process, a higher excitation voltage scenario is 

used to represent a higher SoC. This approach effectively achieves the study’s objective. 
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7.1 Conclusions 

This thesis investigates the impact of EV charging on power network dynamics, 

addressing several key aspects and providing comprehensive insights into the modelling 

and integration of EVs within power systems. 

Dynamic Load Modelling - The study meticulously assesses the performance of 

dynamic load models, focusing on their ability to accurately represent the dynamic 

characteristics of EVs under voltage disturbances. It demonstrates that EV charging 

loads, both for slow & fast charging approaches, can be effectively represented as 

constant power loads in static scenarios. However, dynamic equivalent load models, 

derived using parameter estimation algorithms, reveal that control parameters 

significantly influence the dynamic response of EV chargers. The necessity of higher-

order transfer functions (2nd and 3rd order) for accurate dynamic representation under 

varying control settings is highlighted, offering valuable information for system operators 

in stability studies. 

Impact on Distribution Networks - The dynamic performance of DNs with varying 

levels of EV penetration is analysed using residential, industrial, and EV consumption 

profiles. This study performs RMS Simulations on the CIGRE benchmark MV DN to 

quantify the impact of different EV penetration scenarios, revealing that higher 

penetration levels lead to increased overshoot and oscillation in dynamic responses. The 

influence of PI parameters on network dynamics is also examined, with results 

statistically analysed through metrics such as 𝑅𝑀𝑆𝐸 , 𝑅2, 𝑆𝑆𝐸  and 𝑂𝐸 . The findings 

underscore the necessity of identifying detailed differences in the recovery process for 

comprehensive analysis and future research on the impact of PI parameters on EV 

penetration levels. 

Pole-Zero Analysis - The study employs the Pole-Zero concept to analyse the 

complex dynamic characteristics of DNs accommodating EVs. It finds that the required 

order of transfer functions varies with EV penetration levels, with higher levels 

necessitating 3rd order functions. This analysis provides general guidelines for deriving 

generic parameter sets and suggests future research directions to further explore the 

application of Pole-Zero analysis and investigate unique patterns observed at specific EV 

ownership scenarios. 
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State of Charge Influence - The power electronic model of EV charging is extended 

by incorporating an electronic circuit-based battery model to investigate the impact of 

high SoC on EV static modelling. The study concludes that while SoC affects the battery 

excitation voltage (𝐸𝑏𝑎𝑡𝑡), it does not necessitate adjustments to the EV static load model. 

This finding is based on a series of case studies and discussions, demonstrating that the 

implemented static load model remains valid across varying SoC scenarios. 

Overall, this thesis provides contributions to the understanding of EV charging 

dynamics within power networks. It highlights the importance of accurate dynamic load 

modelling, the use of appropriate analysis techniques, and the potential effects of EV 

penetration on network stability.  

 

 

7.2 Future work 

This thesis has already outlined the scope of EV load modelling for power system 

dynamic stability, the impact of EV charging on power system distribution and 

transmission levels respectively, and some basic extensions about charge modelling 

influenced by battery charge states. Naturally, there are still numerous interesting aspects 

in these areas. Future areas of activity, which logically follow from the activities and 

outcomes reported in this thesis, are analysed in this section.  

From the perspective of EV modelling, potential extensions include measuring real-

world EVs to derive load models from actual data, as the current converter-based control 

model differs from real-world EVs. Additionally, the EV dynamic load model, derived 

from small voltage step disturbances, may not accurately represent EV behaviour under 

large voltage disturbances or other events. Collecting data from various event tests could 

enhance the model’s generality and versatility. Furthermore, the extended EV model 

should incorporate more characteristics, such as frequency, rotor angle, and inertia for 

V2G scenarios, while remaining simple enough for integration into system-level studies. 

For the system-level studies hosting EV charging. Potential extensions include 

improving EV demand estimation by using more accurate and reasonable EV charging 

demand distribution data, which can be implemented using the Monte-Carlo 

methodology, as the current study only considers the average EV load demand profile 

and estimated EV ownership per household. Additionally, applying the EV load model 
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to other power networks beyond the CIGRE benchmark MV network could provide 

more typical results regarding the impact of EV charging on dynamic voltage stability. 

This thesis uses Pole-Zero analysis to compare different scenarios in the dynamic 

recovery process. These scenarios include varying levels of EV ownership and EV 

penetration level. Interestingly, while both EV ownership and penetration levels are 

expected to affect the DN dynamic equivalent model similarly, the results show that in 

extreme cases (e.g., all vehicles are EVs), only EV ownership levels influence the model's 

parameters, with no change from different EV penetration levels. Future work should 

investigate the reasons behind this phenomenon and provide a theoretical explanation. 
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Appendix A - The explanation of the fitting result with negative 𝑹𝟐 

The 𝑅2 is defined in equation  (2.13), which is utilized to quantify the fitting quality.  

It also implies that the 𝑅2 should always be a positive value when the coefficient 𝑅 is not 

an imaginary or complex number.  However, the negative value of  𝑅2 can be observed 

from some results.  The purpose of this Appendix is to investigate and discuss the 

reasons for this occurrence.   

In addition to illustrating the 𝑅2  through the calculation equation, but from the 

definition equation, which is shown in   (𝐴. 1). The  𝑅2 is a parameter to represent the 

relationship between  𝑅𝑆𝑆, 𝑇𝑆𝑆 and 𝐸𝑆𝑆.  Where the 𝑅𝑆𝑆, 𝑇𝑆𝑆 and 𝐸𝑆𝑆 represent the 

residual sum of squares, tot sum of squares, and explained sum of squares, respectively. 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
=
𝐸𝑆𝑆

𝑇𝑆𝑆
(𝐴. 1) 

Where: 

𝑅𝑆𝑆 =∑ (𝑦[𝑛] − �̂�[𝑛])2
𝑁

𝑛=1
(𝐴. 2) 

𝑇𝑆𝑆 =∑ (𝑦[𝑛] − �̅�)2
𝑁

𝑛=1
(𝐴. 3) 

𝐸𝑆𝑆 =∑ (�̂�[𝑛] − �̅�)2
𝑁

𝑛=1
(𝐴. 4) 

 �̅� is the mean value of the response, �̂� is the estimated value. Transfer the equation 

(𝐷. 3) into: 

𝑇𝑆𝑆 =∑ (𝑦[𝑛] − �̂�[𝑛] + �̂�[𝑛] − �̅�)2
𝑁

𝑛=1
(𝐴. 5) 

And then: 

𝑇𝑆𝑆 =∑ (𝑦[𝑛] − �̂�[𝑛])2
𝑁

𝑛=1
+∑ (�̂�[𝑛] − �̅�)2 + 2 ∙∑ (𝑦[𝑛] − �̂�[𝑛])(�̂�[𝑛] − �̅�)

𝑁

𝑛=1

𝑁

𝑛=1
(𝐴. 6) 

𝑇𝑆𝑆 = 𝑆𝑆 + 𝐸𝑆𝑆 + 2 ∙∑ (𝑦[𝑛] − �̂�[𝑛])(�̂�[𝑛] − �̅�)
𝑁

𝑛=1
(𝐴. 7) 

Finally, another equation for 𝑅2 can be obtained.  
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𝑅2 =
𝐸𝑆𝑆 + 2 ∙ ∑ (𝑦[𝑛] − �̂�[𝑛])(�̂�[𝑛] − �̅�)𝑁

𝑛=1

𝑇𝑆𝑆
(𝐴. 8) 

By focusing on the component ∑ (𝑦[𝑛] − �̂�[𝑛])(�̂�[𝑛] − �̅�)𝑁
𝑛=1 . It can be seen that if 

the estimated data is significantly different from the original data, the signs of these two 

parts may become opposite. In this case, this component can become a large negative 

value, which can result in a negative 𝑅2.  
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